NAACL HLT 2018

The International Workshop on Semantic Evaluation

Proceedings of the Twelfth Workshop

June 5—June 6, 2018
New Orleans, Louisiana



(©2018 The Association for Computational Linguistics

Order copies of this and other ACL proceedings from:

Association for Computational Linguistics (ACL)
209 N. Eighth Street

Stroudsburg, PA 18360

USA

Tel: +1-570-476-8006

Fax: +1-570-476-0860

acl@aclweb.org

ISBN 978-1-948087-20-9

ii



Introduction

Welcome to SemEval-2018!

The Semantic Evaluation (SemEval) series of workshops focuses on the evaluation and comparison of
systems that can analyse diverse semantic phenomena in text with the aim of extending the current state
of the art in semantic analysis and creating high quality annotated datasets in a range of increasingly
challenging problems in natural language semantics. SemEval provides an exciting forum for researchers
to propose challenging research problems in semantics and to build systems/techniques to address such
research problems.

SemEval-2018 is the twelfth workshop in the series of International Workshops on Semantic Evaluation.
The first three workshops, SensEval-1 (1998), SensEval-2 (2001), and SensEval-3 (2004), focused on
word sense disambiguation, each time growing in the number of languages offered, in the number of
tasks, and also in the number of participating teams. In 2007, the workshop was renamed to SemEval,
and the subsequent SemEval workshops evolved to include semantic analysis tasks beyond word sense
disambiguation. In 2012, SemEval turned into a yearly event. It currently runs every year, but on a
two-year cycle, i.e., the tasks for SemEval-2018 were proposed in 2017.

SemEval-2018 was co-located with the 16th Annual Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technologies (NAACL HLT 2018) in New
Orleans, Louisiana, US. It included the following 12 shared tasks organized in five tracks:

o Affect and Creative Language in Tweets

— Task 1: Affect in Tweets
— Task 2: Multilingual Emoji Prediction
— Task 3: Irony Detection in English Tweets

Coreference

— Task 4: Character Identification on Multiparty Dialogues

— Task 5: Counting Events and Participants within Highly Ambiguous Data covering a very
long tail

Information Extraction

— Task 6: Parsing Time Normalizations

— Task 7: Semantic Relation Extraction and Classification in Scientific Papers

— Task 8: Semantic Extraction from CybersecUrity REports using Natural Language
Processing (SecureNLP)

Lexical Semantics

— Task 9: Hypernym Discovery
— Task 10: Capturing Discriminative Attributes

Reading Comprehension and Reasoning

— Task 11: Machine Comprehension using Commonsense Knowledge

— Task 12: Argument Reasoning Comprehension Task
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This volume contains both Task Description papers that describe each of the above tasks, and System
Description papers that present the systems that participated in these tasks. A total of 12 task description
papers and 184 system description papers are included in this volume.

We are grateful to all task organizers as well as to the large number of participants whose enthusiastic
participation has made SemEval once again a successful event. We are thankful to the task organizers
who also served as area chairs, and to task organizers and participants who reviewed paper submissions.
These proceedings have greatly benefited from their detailed and thoughtful feedback. We also thank the
NAACL HLT 2018 conference organizers for their support. Finally, we most gratefully acknowledge the
support of our sponsor, the ACL Special Interest Group on the Lexicon (SIGLEX).

The SemEval-2018 organizers, Marianna Apidianaki, Saif M. Mohammad, Jonathan May, Ekaterina
Shutova, Marine Carpuat, Steven Bethard
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Invited Talk: Why should we care about linguistics?

Ellie Pavlick
(Joint Invited Speaker with *SEM 2018)

Brown University

Abstract

In just the past few months, a flurry of adversarial studies have pushed back on the apparent progress of
neural networks, with multiple analyses suggesting that deep models of text fail to capture even basic
properties of language, such as negation, word order, and compositionality. Alongside this wave of
negative results, our field has stated ambitions to move beyond task-specific models and toward "general
purpose" word, sentence, and even document embeddings. This is a tall order for the field of NLP,
and, I argue, marks a significant shift in the way we approach our research. I will discuss what we
can learn from the field of linguistics about the challenges of codifying all of language in a "general
purpose" way. Then, more importantly, I will discuss what we cannot learn from linguistics. I will argue
that the state-of-the-art of NLP research is operating close to the limits of what we know about natural
language semantics, both within our field and outside it. I will conclude with thoughts on why this opens
opportunities for NLP to advance both technology and basic science as it relates to language, and the
implications for the way we should conduct empirical research.

Biography

Ellie Pavlick is currently a Post Doc at Google Research in NY. She will join Brown University as an
Assistant Professor in July. Ellie received her PhD from University of Pennsylvania under the super-
vision of Chris Callison-Burch. Her current research focus is on semantics, pragmatics, and building
cognitively-plausible computational models of natural language inference.
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Zewen Chi, Heyan Huang, Jiangui Chen, Hao Wu and Ran Wei

Amrita_student at SemEval-2018 Task 1: Distributed Representation of Social Me-
dia Text for Affects in Tweets
Nidhin A Unnithan, Shalini K, Barathi Ganesh H. B., Anand Kumar M and Soman
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16:30-17:30

16:30-17:30

16:30-17:30

16:30-17:30

16:30-17:30

SSN MLRGI at SemEval-2018 Task 1: Emotion and Sentiment Intensity Detection
Using Rule Based Feature Selection
Angel Deborah S, Rajalakshmi S, S Milton Rajendram and Mirnalinee T T

CENNLP at SemEval-2018 Task 1: Constrained Vector Space Model in Affects in
Tweets
Naveen J R, Barathi Ganesh H. B., Anand Kumar M and Soman K P

TeamCEN at SemEval-2018 Task 1: Global Vectors Representation in Emotion De-
tection
Anon George, Barathi Ganesh H. B., Anand Kumar M and Soman K P

IIT Delhi at SemEval-2018 Task I : Emotion Intensity Prediction
Bhaskar Kotakonda, Prashanth Gowda and Brejesh Lall

Mutux at SemEval-2018 Task 1: Exploring Impacts of Context Information On Emo-
tion Detection
Pan Du and Jian-Yun Nie

TeamUNCC at SemEval-2018 Task 1: Emotion Detection in English and Arabic
Tweets using Deep Learning
Malak Abdullah and Samira Shaikh

RIDDL at SemEval-2018 Task 1: Rage Intensity Detection with Deep Learning
Venkatesh Elango and Karan Uppal

ARB-SEN at SemEval-2018 Taskl: A New Set of Features for Enhancing the Senti-
ment Intensity Prediction in Arabic Tweets
El Moatez Billah Nagoudi

psyML at SemEval-2018 Task 1: Transfer Learning for Sentiment and Emotion
Analysis
Grace Gee and Eugene Wang

UIUC at SemEval-2018 Task 1: Recognizing Affect with Ensemble Models
Abhishek Avinash Narwekar and Roxana Girju

KU-MTL at SemEval-2018 Task 1: Multi-task Identification of Affect in Tweets
Thomas Nyegaard-Signori, Casper Veistrup Helms, Johannes Bjerva and Isabelle
Augenstein

EmoNLP at SemEval-2018 Task 2: English Emoji Prediction with Gradient Boost-

ing Regression Tree Method and Bidirectional LSTM
Man Liu
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16:30-17:30
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UMDSub at SemEval-2018 Task 2: Multilingual Emoji Prediction Multi-channel
Convolutional Neural Network on Subword Embedding
Zhenduo Wang and Ted Pedersen

UMDuluth-CS8761 at SemEval-2018 Task 2: Emojis: Too many Choices?
Jonathan Beaulieu and Dennis Asamoah Owusu

The Dabblers at SemEval-2018 Task 2: Multilingual Emoji Prediction
Larisa Alexa, Alina Lorent, Daniela Gifu and Diana Trandabat

THU_NGN at SemEval-2018 Task 2: Residual CNN-LSTM Network with Attention
for English Emoji Prediction

Chuhan Wu, Fangzhao Wu, Sixing Wu, Zhigang Yuan, Junxin Liu and Yongfeng
Huang

#TeamINF at SemEval-2018 Task 2: Emoji Prediction in Tveets
Alison Ribeiro and N4dia Silva

EICA Team at SemEval-2018 Task 2: Semantic and Metadata-based Features for
Multilingual Emoji Prediction
Yufei Xie and Qingqing Song

Emojilt at SemEval-2018 Task 2: An Effective Attention-Based Recurrent Neural
Network Model for Emoji Prediction with Characters Gated Words
Chen Shiyun, Wang Maoquan and He Liang

Peperomia at SemEval-2018 Task 2: Vector Similarity Based Approach for Emoji
Prediction
Jing Chen, Dechuan Yang, Xilian Li, Wei Chen and Tengjiao Wang

ECNU at SemEval-2018 Task 2: Leverage Traditional NLP Features and Neural
Networks Methods to Address Twitter Emoji Prediction Task
Xingwu Lu, Xin Mao, Man Lan and Yuanbin Wu

NTUA-SLP at SemEval-2018 Task 2: Predicting Emojis using RNNs with Context-
aware Attention

Christos Baziotis, Athanasiou Nikolaos, Athanasia Kolovou,
Paraskevopoulos, Nikolaos Ellinas and Alexandros Potamianos

Georgios

Hatching Chick at SemEval-2018 Task 2: Multilingual Emoji Prediction
Joél Coster, Reinder Gerard van Dalen and Nathalie Adriénne Jacqueline Stierman

EPUTION at SemEval-2018 Task 2: Emoji Prediction with User Adaption
Liyuan Zhou, Qiongkai Xu, Hanna Suominen and Tom Gedeon
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16:30-17:30

16:30-17:30

PickleTeam! at SemEval-2018 Task 2: English and Spanish Emoji Prediction from
Tweets

Daphne Groot, Rémon Kruizinga, Hennie Veldthuis, Simon de Wit and Hessel
Haagsma

YNU-HPCC at SemEval-2018 Task 2: Multi-ensemble Bi-GRU Model with Atten-
tion Mechanism for Multilingual Emoji Prediction
Nan Wang, Jin Wang and Xuejie Zhang

DUTH at SemEval-2018 Task 2: Emoji Prediction in Tweets
Dimitrios Effrosynidis, Georgios Peikos, Symeon Symeonidis and Avi Arampatzis

TAJJEB at SemEval-2018 Task 2: Traditional Approaches Just Do the Job with
Emoji Prediction
Angelo Basile and Kenny W. Lino

SyntNN at SemEval-2018 Task 2: is Syntax Useful for Emoji Prediction? Embed-
ding Syntactic Trees in Multi Layer Perceptrons
Fabio Massimo Zanzotto and Andrea Santilli

Duluth UROP at SemEval-2018 Task 2: Multilingual Emoji Prediction with Ensem-
ble Learning and Oversampling
Shuning Jin and Ted Pedersen

CENNLP at SemEval-2018 Task 2: Enhanced Distributed Representation of Text
using Target Classes for Emoji Prediction Representation
Naveen J R, Hariharan V, Barathi Ganesh H. B., Anand Kumar M and Soman K P

Manchester Metropolitan at SemEval-2018 Task 2: Random Forest with an Ensem-
ble of Features for Predicting Emoji in Tweets
Luciano Gerber and Matthew Shardlow

Tweety at SemEval-2018 Task 2: Predicting Emojis using Hierarchical Attention
Neural Networks and Support Vector Machine

Daniel Kopev, Atanas Atanasov, Dimitrina Zlatkova, Momchil Hardalov, Ivan Koy-
chev, Ivelina Nikolova and Galia Angelova

LIS at SemEval-2018 Task 2: Mixing Word Embeddings and Bag of Features for
Multilingual Emoji Prediction
Gaél Guibon, Magalie Ochs and Patrice Bellot

ALANIS at SemEval-2018 Task 3: A Feature Engineering Approach to Irony Detec-
tion in English Tweets
Kevin Swanberg, Madiha Mirza, Ted Pedersen and Zhenduo Wang

NEUROSENT-PDI at SemEval-2018 Task 3: Understanding Irony in Social Net-

works Through a Multi-Domain Sentiment Model
Mauro Dragoni
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16:30-17:30

16:30-17:30

UWB at SemEval-2018 Task 3: Irony detection in English tweets
Tomas Hercig

NIHRIO at SemEval-2018 Task 3: A Simple and Accurate Neural Network Model
for Irony Detection in Twitter

Thanh Vu, Dat Quoc Nguyen, Xuan-Son Vu, Dai Quoc Nguyen, Michael Catt and
Michael Trenell

LDR at SemEval-2018 Task 3: A Low Dimensional Text Representation for Irony
Detection
Bilal Ghanem, Francisco Rangel and Paolo Rosso

IIDYT at SemEval-2018 Task 3: Irony detection in English tweets
Edison Marrese-Taylor, Suzana Ilic, Jorge Balazs, Helmut Prendinger and Yutaka
Matsuo

PunFields at SemEval-2018 Task 3: Detecting Irony by Tools of Humor Analysis
Elena Mikhalkova, Yuri Karyakin, Alexander Voronov, Dmitry Grigoriev and Artem
Leoznov

HashCount at SemEval-2018 Task 3: Concatenative Featurization of Tweet and

Hashtags for Irony Detection
Won Ik Cho, Woo Hyun Kang and Nam Soo Kim

WLV at SemEval-2018 Task 3: Dissecting Tweets in Search of Irony
Omid Rohanian, Shiva Taslimipoor, Richard Evans and Ruslan Mitkov

Random Decision Syntax Trees at SemEval-2018 Task 3: LSTMs and Sentiment
Scores for Irony Detection
Aidan San

ELIRF-UPYV at SemEval-2018 Tasks 1 and 3: Affect and Irony Detection in Tweets
J osé—Angel Gonzalez, Lluis-F. Hurtado and Ferran Pla

IronyMagnet at SemEval-2018 Task 3: A Siamese network for Irony detection in
Social media
Aniruddha Ghosh and Tony Veale

CTSys at SemEval-2018 Task 3: Irony in Tweets
Myan Sherif, Sherine Mamdouh and Wegdan Ghazi

Irony Detector at SemEval-2018 Task 3: Irony Detection in English Tweets using

Word Graph
Usman Ahmed, Lubna Zafar, Faiza Qayyum and Muhammad Arshad Islam
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Lancaster at SemEval-2018 Task 3: Investigating Ironic Features in English Tweets
Edward Dearden and Alistair Baron

INAOE-UPV at SemEval-2018 Task 3: An Ensemble Approach for Irony Detection
in Twitter

Delia Irazi Herndndez Farfas, Fernando Sdnchez-Vega, Manuel Montes-y-Gémez
and Paolo Rosso

ECNU at SemEval-2018 Task 3: Exploration on Irony Detection from Tweets via
Machine Learning and Deep Learning Methods
Zhenghang Yin, Feixiang Wang, Man Lan and Wenting Wang

KLUEnicorn at SemEval-2018 Task 3: A Naive Approach to Irony Detection
Luise Diirlich

NTUA-SLP at SemEval-2018 Task 3: Tracking Ironic Tweets using Ensembles of
Word and Character Level Attentive RNNs

Christos Baziotis, Athanasiou Nikolaos, Pinelopi Papalampidi, Athanasia Kolovou,
Georgios Paraskevopoulos, Nikolaos Ellinas and Alexandros Potamianos

YNU-HPCC at SemEval-2018 Task 3: Ensemble Neural Network Models for Irony
Detection on Twitter
Bo Peng, Jin Wang and Xuejie Zhang

Binarizer at SemEval-2018 Task 3: Parsing dependency and deep learning for irony
detection
Nishant Nikhil and Muktabh Mayank Srivastava

SSN MLRG1 at SemEval-2018 Task 3: Irony Detection in English Tweets Using
MultiLayer Perceptron
Rajalakshmi S, Angel Deborah S, S Milton Rajendram and Mirnalinee T T

NLPRL-IITBHU at SemEval-2018 Task 3: Combining Linguistic Features and
Emoji pre-trained CNN for Irony Detection in Tweets
Harsh Rangwani, Devang Kulshreshtha and Anil Kumar Singh

ValenTO at SemEval-2018 Task 3: Exploring the Role of Affective Content for De-
tecting Irony in English Tweets
Delia Irazd Hernandez Farias, Viviana Patti and Paolo Rosso

#NonDicevoSulSerio at SemEval-2018 Task 3: Exploiting Emojis and Affective
Content for Irony Detection in English Tweets
Endang Wahyu Pamungkas and Viviana Patti

KNU CI System at SemEval-2018 Task4: Character ldentification by Solving

Sequence-Labeling Problem
Cheoneum Park, Heejun Song and Changki Lee
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6 June 2018

09:00-09:30

09:30-10:30

10:30-11:00

11:00-12:30

11:00-11:15

11:15-11:30

11:30-11:45

11:45-12:00

12:00-12:15

NewsReader at SemEval-2018 Task 5: Counting events by reasoning over event-
centric-knowledge-graphs
Piek Vossen

FEUP at SemEval-2018 Task 5: An Experimental Study of a Question Answering
System
Carla Abreu and Eugénio Oliveira

NAI-SEA at SemEval-2018 Task 5: An Event Search System
Yingchi Liu, Quanzhi Li and Luo Si

SemEval 2019 Tasks

State of SemEval Discussion

Coffee

Tasks 7,8 and 9

SemEval-2018 Task 7: Semantic Relation Extraction and Classification in Scientific
Papers

Kata Gébor, Davide Buscaldi, Anne-Kathrin Schumann, Behrang QasemiZadeh,
Haifa Zargayouna and Thierry Charnois

ETH-DS3Lab at SemEval-2018 Task 7: Effectively Combining Recurrent and Con-
volutional Neural Networks for Relation Classification and Extraction
Jonathan Rotsztejn, Nora Hollenstein and Ce Zhang

SemEval-2018 Task 8: Semantic Extraction from CybersecUrity REports using Nat-
ural Language Processing (SecureNLP)
Peter Phandi, Amila Silva and Wei Lu

DM_NLP at SemEval-2018 Task 8: neural sequence labeling with linguistic fea-
tures
Chunping Ma, Huafei Zheng, Pengjun Xie, Chen Li, Linlin Li and Luo Si

SemEval-2018 Task 9: Hypernym Discovery

Jose Camacho-Collados, Claudio Delli Bovi, Luis Espinosa Anke, Sergio Oramas,
Tommaso Pasini, Enrico Santus, Vered Shwartz, Roberto Navigli and Horacio Sag-
gion
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12:15-12:30

12:30-14:00

14:00-15:30

14:00-14:15

14:15-14:30

14:30-14:45

14:45-15:00

15:00-15:15

15:15-15:30

15:30-16:00

16:00-16:30

CRIM at SemEval-2018 Task 9: A Hybrid Approach to Hypernym Discovery
Gabriel Bernier-Colborne and Caroline Barriere

Lunch

Tasks 10, 11 and 12

SemEval-2018 Task 10: Capturing Discriminative Attributes
Alicia Krebs, Alessandro Lenci and Denis Paperno

SUNNYNLP at SemEval-2018 Task 10: A Support-Vector-Machine-Based Method
for Detecting Semantic Difference using Taxonomy and Word Embedding Features
Sunny Lai, Kwong Sak Leung and Yee Leung

SemEval-2018 Task 11: Machine Comprehension Using Commonsense Knowledge
Simon Ostermann, Michael Roth, Ashutosh Modi, Stefan Thater and Manfred
Pinkal

Yuanfudao at SemEval-2018 Task 11: Three-way Attention and Relational Knowl-
edge for Commonsense Machine Comprehension

Liang Wang, Meng Sun, Wei Zhao, Kewei Shen and Jingming Liu

SemEval-2018 Task 12: The Argument Reasoning Comprehension Task
Ivan Habernal, Henning Wachsmuth, Iryna Gurevych and Benno Stein

GIST at SemEval-2018 Task 12: A network transferring inference knowledge to
Argument Reasoning Comprehension task
HongSeok Choi and Hyunju Lee

Coffee

Discussion
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16:30-17:30
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Poster Session

LightRel at SemEval-2018 Task 7: Lightweight and Fast Relation Classification
Tyler Renslow and Giinter Neumann

OhioState at SemEval-2018 Task 7: Exploiting Data Augmentation for Relation
Classification in Scientific Papers Using Piecewise Convolutional Neural Networks
Dushyanta Dhyani

The UWNLP system at SemEval-2018 Task 7: Neural Relation Extraction Model
with Selectively Incorporated Concept Embeddings
Yi Luan, Mari Ostendorf and Hannaneh Hajishirzi

UC3M-NII Team at SemEval-2018 Task 7: Semantic Relation Classification in Sci-
entific Papers via Convolutional Neural Network
Victor Sudrez-Paniagua, Isabel Segura-Bedmar and Akiko Aizawa

MIT-MEDG at SemEval-2018 Task 7: Semantic Relation Classification via Convo-
lution Neural Network

Di Jin, Franck Dernoncourt, Elena Sergeeva, Matthew McDermott and Geeticka
Chauhan

SIRIUS-LTG-UiO at SemEval-2018 Task 7: Convolutional Neural Networks with
Shortest Dependency Paths for Semantic Relation Extraction and Classification in
Scientific Papers

Farhad Nooralahzadeh, Lilja @vrelid and Jan Tore Lgnning

IRCMS at SemEval-2018 Task 7 : Evaluating a basic CNN Method and Traditional
Pipeline Method for Relation Classification

Zhongbo Yin, Zhunchen Luo, Luo Wei, Mao Bin, Tian Changhai, Ye Yuming and
Wu Shuai

Bf3R at SemEval-2018 Task 7: Evaluating Two Relation Extraction Tools for Find-
ing Semantic Relations in Biomedical Abstracts
Mariana Neves, Daniel Butzke, Gilbert Schonfelder and Barbara Grune

Texterra at SemEval-2018 Task 7: Exploiting Syntactic Information for Relation
Extraction and Classification in Scientific Papers
Andrey Sysoev and Vladimir Mayorov

UniMa at SemEval-2018 Task 7: Semantic Relation Extraction and Classification
from Scientific Publications

Thorsten Keiper, Zhonghao Lyu, Sara Pooladzadeh, Yuan Xu, Jingyi Zhang, Anne
Lauscher and Simone Paolo Ponzetto

GU IRLAB at SemEval-2018 Task 7: Tree-LSTMs for Scientific Relation Classifica-
tion
Sean MacAvaney, Luca Soldaini, Arman Cohan and Nazli Goharian

XXXV



6 June 2018 (continued)

16:30-17:30

16:30-17:30

16:30-17:30

16:30-17:30

16:30-17:30

16:30-17:30

16:30-17:30

16:30-17:30

16:30-17:30

16:30-17:30

16:30-17:30
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ClaiRE at SemEval-2018 Task 7: Classification of Relations using Embeddings
Lena Hettinger, Alexander Dallmann, Albin Zehe, Thomas Niebler and Andreas
Hotho

TakeLab at SemEval-2018 Task 7: Combining Sparse and Dense Features for Rela-
tion Classification in Scientific Texts
Martin Gluhak, Maria Pia di Buono, Abbas Akkasi and Jan §najder

NEUROSENT-PDI at SemEval-2018 Task 7: Discovering Textual Relations With a
Neural Network Model
Mauro Dragoni

SciREL at SemEval-2018 Task 7: A System for Semantic Relation Extraction and
Classification
Darshini Mahendran, Chathurika Brahmana and Bridget McInnes

NTNU at SemEval-2018 Task 7: Classifier Ensembling for Semantic Relation Iden-
tification and Classification in Scientific Papers
Biswanath Barik, Utpal Kumar Sikdar and Bjorn Gambéck

Talla at SemEval-2018 Task 7: Hybrid Loss Optimization for Relation Classification
using Convolutional Neural Networks
Bhanu Pratap, Daniel Shank, Oladipo Ositelu and Byron Galbraith

TeamDL at SemEval-2018 Task 8: Cybersecurity Text Analysis using Convolutional
Neural Network and Conditional Random Fields
Manikandan R, Krishna Madgula and Snehanshu Saha

HCCL at SemEval-2018 Task 8: An End-to-End System for Sequence Labeling from
Cybersecurity Reports
Mingming Fu, Xuemin Zhao and Yonghong Yan

UMBC at SemEval-2018 Task 8: Understanding Text about Malware
Ankur Padia, Arpita Roy, Taneeya Satyapanich, Francis Ferraro, Shimei Pan,
Youngja Park, Anupam Joshi and Tim Finin

Villani at SemEval-2018 Task 8: Semantic Extraction from Cybersecurity Reports
using Representation Learning
Pablo Loyola, Kugamoorthy Gajananan, Yuji Watanabe and Fumiko Satoh

Flytxt NTNU at SemEval-2018 Task 8: Identifying and Classifying Malware Text
Using Conditional Random Fields and Naive Bayes Classifiers
Utpal Kumar Sikdar, Biswanath Barik and Bjorn Gambick

Digital Operatives at SemEval-2018 Task 8: Using dependency features for mal-

ware NLP
Chris Brew
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Apollo at SemEval-2018 Task 9: Detecting Hypernymy Relations Using Syntactic
Dependencies
Mihaela Onofrei, Ionut Hulub, Diana Trandabat and Daniela Gifu

SJTU-NLP at SemEval-2018 Task 9: Neural Hypernym Discovery with Term Em-
beddings
Zhuosheng Zhang, Jiangtong Li, Hai Zhao and Bingjie Tang

NLP_HZ at SemEval-2018 Task 9: a Nearest Neighbor Approach
Wei Qiu, Mosha Chen, Linlin Li and Luo Si

UMDuluth-CS8761 at SemEval-2018 Task9: Hypernym Discovery using Hearst
Patterns, Co-occurrence frequencies and Word Embeddings
Arshia Zernab Hassan, Manikya Swathi Vallabhajosyula and Ted Pedersen

EXPR at SemEval-2018 Task 9: A Combined Approach for Hypernym Discovery
Ahmad Issa Alaa Aldine, Mounira Harzallah, Giuseppe Berio, Nicolas Béchet and
Ahmad Faour

ADAPT at SemEval-2018 Task 9: Skip-Gram Word Embeddings for Unsupervised
Hypernym Discovery in Specialised Corpora
Alfredo Maldonado and Filip Klubicka

300-sparsans at SemEval-2018 Task 9: Hypernymy as interaction of sparse at-
tributes
Gabor Berend, Marton Makrai and Péter Foldiak

UWB at SemEval-2018 Task 10: Capturing Discriminative Attributes from Word
Distributions
Tomdas Brychcin, Tomdas Hercig, Josef Steinberger and Michal Konkol

Meaning_space at SemEval-2018 Task 10: Combining explicitly encoded knowl-
edge with information extracted from word embeddings
Pia Sommerauer, Antske Fokkens and Piek Vossen

GHH at SemEval-2018 Task 10: Discovering Discriminative Attributes in Distribu-
tional Semantics
Mohammed Attia, Younes Samih, Manaal Faruqui and Wolfgang Maier

CitiusNLP at SemEval-2018 Task 10: The Use of Transparent Distributional Models
and Salient Contexts to Discriminate Word Attributes
Pablo Gamallo

THU_NGN at SemEval-2018 Task 10: Capturing Discriminative Attributes with

MLP-CNN model
Chuhan Wu, Fangzhao Wu, Sixing Wu, Zhigang Yuan and Yongfeng Huang

XXXVil



6 June 2018 (continued)

16:30-17:30

16:30-17:30

16:30-17:30

16:30-17:30

16:30-17:30

16:30-17:30

16:30-17:30

16:30-17:30

16:30-17:30
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16:30-17:30
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ALB at SemEval-2018 Task 10: A System for Capturing Discriminative Attributes
Bogdan Dumitru, Alina Maria Ciobanu and Liviu P. Dinu

ELiRF-UPV at SemEval-2018 Task 10: Capturing Discriminative Attributes with
Knowledge Graphs and Wikipedia
José-Angel Gonzilez, Lluis-F. Hurtado, Encarna Segarra and Ferran Pla

Wolves at SemEval-2018 Task 10: Semantic Discrimination based on Knowledge
and Association

Shiva Taslimipoor, Omid Rohanian, Le An Ha, Gloria Corpas Pastor and Ruslan
Mitkov

UNAM at SemEval-2018 Task 10: Unsupervised Semantic Discriminative Attribute
Identification in Neural Word Embedding Cones
Ignacio Arroyo-Fernandez, Ivan Meza and Carlos-Francisco Meéndez-Cruz

Luminoso at SemEval-2018 Task 10: Distinguishing Attributes Using Text Corpora
and Relational Knowledge
Robert Speer and Joanna Lowry-Duda

BomlJi at SemEval-2018 Task 10: Combining Vector-, Pattern- and Graph-based
Information to Identify Discriminative Attributes
Enrico Santus, Chris Biemann and Emmanuele Chersoni

Igevorse at SemEval-2018 Task 10: Exploring an Impact of Word Embeddings Con-
catenation for Capturing Discriminative Attributes
Maxim Grishin

ECNU at SemEval-2018 Task 10: Evaluating Simple but Effective Features on Ma-
chine Learning Methods for Semantic Difference Detection
Yunxiao Zhou, Man Lan and Yuanbin Wu

AmritaNLP at SemEval-2018 Task 10: Capturing discriminative attributes using
convolution neural network over global vector representation.
Vivek Vinayan, Anand Kumar M and Soman K P

Discriminator at SemEval-2018 Task 10: Minimally Supervised Discrimination
Artur Kulmizev, Mostafa Abdou, Vinit Ravishankar and Malvina Nissim

UNBNLP at SemEval-2018 Task 10: Evaluating unsupervised approaches to cap-
turing discriminative attributes
Milton King, Ali Hakimi Parizi and Paul Cook

ABDN at SemEval-2018 Task 10: Recognising Discriminative Attributes using Con-

text Embeddings and WordNet
Rui Mao, Guanyi Chen, Ruizhe Li and Chenghua Lin
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16:30-17:30
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UMD at SemEval-2018 Task 10: Can Word Embeddings Capture Discriminative
Attributes?
Alexander Zhang and Marine Carpuat

NTU NLP Lab System at SemEval-2018 Task 10: Verifying Semantic Differences by
Integrating Distributional Information and Expert Knowledge
Yow-Ting Shiue, Hen-Hsen Huang and Hsin-Hsi Chen

ELiRF-UPV at SemEval-2018 Task 11: Machine Comprehension using Common-
sense Knowledge
J osé—Angel Gonzalez, Lluis-F. Hurtado, Encarna Segarra and Ferran Pla

YNU_AI1799 at SemEval-2018 Task 11: Machine Comprehension using Common-
sense Knowledge of Different model ensemble
Liu Qingxun, Yao Hongdou, Zhou Xaobing and Xie Ge

YNU_Deep at SemEval-2018 Task 11: An Ensemble of Attention-based BiLSTM
Models for Machine Comprehension
Peng Ding and Xiaobing Zhou

ECNU at SemEval-2018 Task 11: Using Deep Learning Method to Address Machine
Comprehension Task
Yixuan Sheng, Man Lan and Yuanbin Wu

CSReader at SemEval-2018 Task 11: Multiple Choice Question Answering as Tex-
tual Entailment
Zhengping Jiang and Qi Sun

YNU-HPCC at Semeval-2018 Task 11: Using an Attention-based CNN-LSTM for
Machine Comprehension using Commonsense Knowledge
Hang Yuan, Jin Wang and Xuejie Zhang

Jiangnan at SemEval-2018 Task 11: Deep Neural Network with Attention Method
for Machine Comprehension Task
Jiangnan Xia

IUCM at SemEval-2018 Task 11: Similar-Topic Texts as a Comprehension Knowl-
edge Source
Sofia Reznikova and Leon Derczynski

Lyb3b at SemEval-2018 Task 11: Machine Comprehension Task using Deep Learn-
ing Models
Yongbin Li and Xiaobing Zhou

MITRE at SemEval-2018 Task 11: Commonsense Reasoning without Commonsense
Knowledge

Elizabeth Merkhofer, John Henderson, David Bloom, Laura Strickhart and Guido
Zarrella

XXXIX



6 June 2018 (continued)

16:30-17:30

16:30-17:30

16:30-17:30

16:30-17:30

16:30-17:30

16:30-17:30

16:30-17:30

16:30-17:30

16:30-17:30

16:30-17:30

16:30-17:30

16:30-17:30

SNU_IDS at SemEval-2018 Task 12: Sentence Encoder with Contextualized Vectors
for Argument Reasoning Comprehension
Taeuk Kim, Jihun Choi and Sang-goo Lee

ITNLP-ARC at SemEval-2018 Task 12: Argument Reasoning Comprehension with
Attention
Wenjie Liu, Chengjie Sun, Lei Lin and Bingquan Liu

ECNU at SemEval-2018 Task 12: An End-to-End Attention-based Neural Network
for the Argument Reasoning Comprehension Task
Junfeng Tian, Man Lan and Yuanbin Wu

NLITrans at SemEval-2018 Task 12: Transfer of Semantic Knowledge for Argument
Comprehension
Timothy Niven and Hung-Yu Kao

BLCU_NLP at SemEval-2018 Task 12: An Ensemble Model for Argument Reason-
ing Based on Hierarchical Attention
Meiqgian Zhao, Chunhua Liu, Lu Liu, Yan Zhao and Dong Yu

YNU-HPCC at SemEval-2018 Task 12: The Argument Reasoning Comprehension
Task Using a Bi-directional LSTM with Attention Model
Quanlei Liao, Xutao Yang, Jin Wang and Xuejie Zhang

HHU at SemEval-2018 Task 12: Analyzing an Ensemble-based Deep Learning Ap-
proach for the Argument Mining Task of Choosing the Correct Warrant
Matthias Liebeck, Andreas Funke and Stefan Conrad

YNU Deep at SemEval-2018 Task 12: A BiLSTM Model with Neural Attention for
Argument Reasoning Comprehension
Peng Ding and Xiaobing Zhou

UniMelb at SemEval-2018 Task 12: Generative Implication using LSTMs, Siamese

Networks and Semantic Representations with Synonym Fuzzing
Anirudh Joshi, Tim Baldwin, Richard O. Sinnott and Cecile Paris

Joker at SemEval-2018 Task 12: The Argument Reasoning Comprehension with
Neural Attention
Sui Guobin, Chao Wenhan and Luo Zhunchen

TakeLab at SemEval-2018 Taski12: Argument Reasoning Comprehension with Skip-
Thought Vectors
Ana Brassard, Tin Kuculo, Filip Boltuzic and Jan Snajder

Lyb3b at SemEval-2018 Task 12: Ensemble-based Deep Learning Models for Argu-

ment Reasoning Comprehension Task
Yongbin Li and Xiaobing Zhou

x1



6 June 2018 (continued)
16:30-17:30 TRANSRW at SemEval-2018 Task 12: Transforming Semantic Representations for

Argument Reasoning Comprehension
Zhimin Chen, Wei Song and Lizhen Liu

xli






SemEval-2018 Task 1: Affect in Tweets

Saif M. Mohammad
National Research Council Canada

saif.mohammad@nrc—-cnrc.gc.ca

Mohammad Salameh
Carnegie Mellon University in Qatar

msalameh@gatar.cmu.edu

Abstract

We present the SemEval-2018 Task 1: Affect
in Tweets, which includes an array of subtasks
on inferring the affectual state of a person from
their tweet. For each task, we created labeled
data from English, Arabic, and Spanish tweets.
The individual tasks are: 1. emotion intensity
regression, 2. emotion intensity ordinal classi-
fication, 3. valence (sentiment) regression, 4.
valence ordinal classification, and 5. emotion
classification. Seventy-five teams (about 200
team members) participated in the shared task.
We summarize the methods, resources, and
tools used by the participating teams, with a
focus on the techniques and resources that are
particularly useful. We also analyze systems
for consistent bias towards a particular race or
gender. The data is made freely available to
further improve our understanding of how peo-
ple convey emotions through language.

1 Introduction

Emotions are central to language and thought.
They are familiar and commonplace, yet they are
complex and nuanced. Humans are known to per-
ceive hundreds of different emotions. Accord-
ing to the basic emotion model (aka the categor-
ical model) (Ekman, 1992; Plutchik, 1980; Par-
rot, 2001; Frijda, 1988), some emotions, such
as joy, sadness, and fear, are more basic than
others—physiologically, cognitively, and in terms
of the mechanisms to express these emotions.
Each of these emotions can be felt or expressed
in varying intensities. For example, our ut-
terances can convey that we are very angry,
slightly sad, absolutely elated, etc. Here, inten-
sity refers to the degree or amount of an emo-
tion such as anger or sadness.! As per the
valence—arousal-dominance (VAD) model (Rus-
sell, 1980, 2003), emotions are points in a

ntensity is different from arousal, which refers to the
extent to which an emotion is calming or exciting.
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three-dimensional space of valence (positiveness—
negativeness), arousal (active—passive), and domi-
nance (dominant—submissive). We use the term af-
fect to refer to various emotion-related categories
such as joy, fear, valence, and arousal.

Natural language applications in commerce,
public health, disaster management, and public
policy can benefit from knowing the affectual
states of people—both the categories and the
intensities of the emotions they feel. We thus
present the SemEval-2018 Task 1: Affect in
Tweets, which includes an array of subtasks where
automatic systems have to infer the affectual state
of a person from their tweet.> We will refer to
the author of a tweet as the tweeter. Some of the
tasks are on the intensities of four basic emotions
common to many proposals of basic emotions:
anger, fear, joy, and sadness. Some of the tasks
are on valence or sentiment intensity. Finally, we
include an emotion classification task over eleven
emotions commonly expressed in tweets.> For
each task, we provide separate training, develop-
ment, and test datasets for English, Arabic, and
Spanish tweets. The tasks are as follows:

1. Emotion Intensity Regression (El-reg): Given
a tweet and an emotion E, determine the inten-
sity of E that best represents the mental state
of the tweeter—a real-valued score between 0
(least E) and 1 (most E);

. Emotion Intensity Ordinal Classification (EI-
oc): Given a tweet and an emotion E, classify
the tweet into one of four ordinal classes of
intensity of E that best represents the mental
state of the tweeter;

. Valence (Sentiment) Regression (V-reg): Given
a tweet, determine the intensity of sentiment or
valence (V) that best represents the mental state

Zhttps://competitions.codalab.org/competitions/17751
3Determined through pilot annotations.
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of the tweeter—a real-valued score between 0
(most negative) and 1 (most positive);

4. Valence Ordinal Classification (V-oc): Given
a tweet, classify it into one of seven ordinal
classes, corresponding to various levels of
positive and negative sentiment intensity, that
best represents the mental state of the tweeter;

5. Emotion Classification (E-c): Given a tweet,
classify it as ‘neutral or no emotion’ or as one,
or more, of eleven given emotions that best
represent the mental state of the tweeter.

Here, E refers to emotion, EI refers to emotion
intensity, V' refers to valence, reg refers to regres-
sion, oc refers to ordinal classification, ¢ refers to
classification.

For each language, we create a large single tex-
tual dataset, subsets of which are annotated for
many emotion (or affect) dimensions (from both
the basic emotion model and the VAD model). For
each emotion dimension, we annotate the data not
just for coarse classes (such as anger or no anger)
but also for fine-grained real-valued scores indi-
cating the intensity of emotion. We use Best—
Worst Scaling (BWS), a comparative annotation
method, to address the limitations of traditional
rating scale methods such as inter- and intra-
annotator inconsistency. We show that the fine-
grained intensity scores thus obtained are reliable
(repeat annotations lead to similar scores). In to-
tal, about 700,000 annotations were obtained from
about 22,000 English, Arabic, and Spanish tweets.

Seventy-five teams (about 200 team members)
participated in the shared task, making this the
largest SemEval shared task to date. In total, 319
submissions were made to the 15 task—language
pairs. Each team was allowed only one official
submission for each task—language pair. We sum-
marize the methods, resources, and tools used by
the participating teams, with a focus on the tech-
niques and resources that are particularly useful.
We also analyze system predictions for consistent
bias towards a particular race or gender using a
corpus specifically compiled for that purpose. We
find that a majority of systems consistently assign
higher scores to sentences involving one race or
gender. We also find that the bias may change
depending on the specific affective dimension be-
ing predicted. All of the tweet data (labeled and
unlabeled), annotation questionnaires, evaluation
scripts, and the bias evaluation corpus are made
freely available on the task website.

2 Building on Past Work

There is a large body of prior work on sen-
timent and emotion classification (Mohammad,
2016). There is also growing work on related
tasks such as stance detection (Mohammad et al.,
2017) and argumentation mining (Wojatzki et al.,
2018; Palau and Moens, 2009). However, there is
little work on detecting the intensity of affect in
text. Mohammad and Bravo-Marquez (2017) cre-
ated the first datasets of tweets annotated for anger,
fear, joy, and sadness intensities. Given a focus
emotion, each tweet was annotated for intensity of
the emotion felt by the speaker using a technique
called Best—Worst Scaling (BWS) (Louviere, 1991;
Kiritchenko and Mohammad, 2016, 2017).

BWS is an annotation scheme that addresses
the limitations of traditional rating scale methods,
such as inter- and intra-annotator inconsistency, by
employing comparative annotations. Note that at
its simplest, comparative annotations involve giv-
ing people pairs of items and asking which item is
greater in terms of the property of interest. How-
ever, such a method requires annotations for N?
items, which can be prohibitively large.

In BWS, annotators are given n items (an n-
tuple, where n > 1 and commonly n = 4). They
are asked which item is the best (highest in terms
of the property of interest) and which is the worst
(lowest in terms of the property of interest). When
working on 4-tuples, best—worst annotations are
particularly efficient because each best and worst
annotation will reveal the order of five of the six
item pairs. For example, for a 4-tuple with items
A, B, C, and D, if A is the best, and D is the
worst, then A > B, A > C, A > D, B > D, and
C > D. Real-valued scores of association between
the items and the property of interest can be de-
termined using simple arithmetic on the number
of times an item was chosen best and number of
times it was chosen worst (as described in Section
3.4.2) (Orme, 2009; Flynn and Marley, 2014).

It has been empirically shown that annotations
for 2N 4-tuples is sufficient for obtaining reliable
scores (where N is the number of items) (Louviere,
1991; Kiritchenko and Mohammad, 2016). Kir-
itchenko and Mohammad (2017) showed through
empirical experiments that BWS produces more
reliable and more discriminating scores than those
obtained using rating scales. (See (Kiritchenko
and Mohammad, 2016, 2017) for further details on
BWS.)



Mohammad and Bravo-Marquez (2017) col-
lected and annotated 7,100 English tweets posted
in 2016. We will refer to the tweets alone
as Tweets-2016, and the tweets and annotations
together as the Emotion Intensity Dataset (or,
Emolnt Dataset). This dataset was used in the
2017 WASSA Shared Task on Emotion Intensity.*

We build on that earlier work by first compiling
a new set of English, Arabic, and Spanish tweets
posted in 2017 and annotating the new tweets for
emotion intensity in a similar manner. We will re-
fer to this new set of tweets as Tweets-2017. Simi-
lar to the work by Mohammad and Bravo-Marquez
(2017), we create four subsets annotated for inten-
sity of fear, joy, sadness, and anger, respectively.
However, unlike the earlier work, here a common
dataset of tweets is annotated for all three negative
emotions: fear, anger, and sadness. This allows
one to study the relationship between the three ba-
sic negative emotions.

We also annotate tweets sampled from each of
the four basic emotion subsets (of both Tweets-
2016 and Tweets-2017) for degree of valence. An-
notations for arousal, dominance, and other basic
emotions such as surprise and anticipation are left
for future work.

In addition to knowing a fine-grained score
indicating degree of intensity, it is also useful to
qualitatively ground the information on whether
the intensity is high, medium, low, etc. Thus, we
manually identify ranges in intensity scores that
correspond to these coarse classes. For each of the
four emotions F, the 0 to 1 range is partitioned
into the classes: no E can be inferred, low F
can be inferred, moderate E can be inferred,
and high E can be inferred. This data can be
used for developing systems that predict the
ordinal class of emotion intensity (EI ordinal
classification, or El-oc, systems). We partition
the O to 1 interval of valence into: very negative,
moderately negative, slightly negative, neutral
or mixed, slightly positive, moderately positive,
and very positive mental state of the tweeter can
be inferred. This data can be used to develop
systems that predict the ordinal class of valence
(valence ordinal classification, or V-oc, systems).5

* http://saifmohammad.com/WebPages/EmolInt2017.html

>Note that valence ordinal classification is the traditional
sentiment analysis task most commonly explored in NLP lit-
erature. The classes may vary from just three (positive, nega-
tive, and neutral) to five, seven, or nine finer classes.

Annotated In

Dataset Source of Tweets 2016 2017
E-c Tweets-2016 - v
Tweets-2017 - v
El-reg, El-oc Tweets-2016 v -
Tweets-2017 - v
V-reg, V-oc Tweets-2016 - v
Tweets-2017 - v

Table 1: The annotations of English Tweets.

Finally, the full Tweets-2016 and Tweets-2017
datasets are annotated for the presence of eleven
emotions: anger, anticipation, disgust, fear, joy,
love, optimism, pessimism, sadness, surprise, and
trust. This data can be used for developing multi-
label emotion classification, or E-c, systems. Ta-
ble 1 shows the two stages in which the anno-
tations for English tweets were done. The Ara-
bic and Spanish tweets were all only from 2017.
Together, we will refer to the joint set of tweets
from Tweets-2016 and Tweets-2017 along with all
the emotion-related annotations described above
as the SemEval-2018 Affect in Tweets Dataset (or
AIT Dataset for short).

3 The Affect in Tweets Dataset

We now present how we created the Affect in
Tweets Dataset. We present only the key details
here; a detailed description of the English datasets
and the analysis of various affect dimensions is
available in Mohammad and Kiritchenko (2018).

3.1 Compiling English Tweets

We first compiled tweets to be included in the four
El-reg datasets corresponding to anger, fear, joy,
and sadness. The El-oc datasets include the same
tweets as in El-reg, that is, the Anger EI-oc dataset
has the same tweets as in the Anger El-reg dataset,
the Fear El-oc dataset has the same tweets as in the
Fear El-reg dataset, and so on. However, the labels
for El-oc tweets are ordinal classes instead of real-
valued intensity scores. The V-reg dataset includes
a subset of tweets from each of the four El-reg
emotion datasets. The V-oc dataset has the same
tweets as in the V-reg dataset. The E-c dataset in-
cludes all the tweets from the four El-reg datasets.
The total number of instances in the E-c, El-reg,
El-oc, V-reg, and V-oc datasets is shown in the last
column of Table 3.

3.1.1 Basic Emotion Tweets

To create a dataset of tweets rich in a particu-
lar emotion, we used the following methodology.



For each emotion X, we selected 50 to 100 terms
that were associated with that emotion at differ-
ent intensity levels. For example, for the anger
dataset, we used the terms: angry, mad, frustrated,
annoyed, peeved, irritated, miffed, fury, antago-
nism, and so on. We will refer to these terms as
the query terms. The query terms we selected in-
cluded emotion words listed in the Roget’s The-
saurus, nearest neighbors of these emotion words
in a word-embeddings space, as well as commonly
used emoji and emoticons. The full list of the
query terms is available on the task website.

We polled the Twitter API, over the span of two
months (June and July, 2017), for tweets that in-
cluded the query terms. We randomly selected
1,400 tweets from the joy set for annotation of in-
tensity of joy. For the three negative emotions,
we first randomly selected 200 tweets each from
their corresponding tweet collections. These 600
tweets were annotated for all three negative emo-
tions so that we could study the relationships be-
tween fear and anger, between anger and sadness,
and between sadness and fear. For each of the
negative emotions, we also chose 800 additional
tweets, from their corresponding tweet sets, that
were annotated only for the corresponding emo-
tion. Thus, the number of tweets annotated for
each of the negative emotions was also 1,400 (the
600 included in all three negative emotions + 800
unique to the focus emotion). For each emotion,
100 tweets that had an emotion-word hashtag,
emoticon, or emoji query term at the end (trailing
query term) were randomly chosen. We removed
the trailing query terms from these tweets. As a
result, the dataset also included some tweets with
no clear emotion-indicative terms.

Thus, the El-reg dataset included 1,400 new
tweets for each of the four emotions. These were
annotated for intensity of emotion. Note that the
Emolnt dataset already included 1,500 to 2,300
tweets per emotion annotated for intensity. Those
tweets were not re-annotated. The Emolnt El-reg
tweets as well as the new El-reg tweets were both
annotated for ordinal classes of emotion (EI-oc) as
described in Section 3.4.3

The new El-reg tweets formed the El-reg de-
velopment (dev) and test sets in the AIT task; the
number of instances in each is shown in the third
and fourth columns of Table 3. The Emolnt tweets
formed the training set.®

®Manual examination of the new El-reg tweets later re-

3.1.2 Valence Tweets

The valence dataset included tweets from the new
El-reg set and the Emolnt set. The new El-reg
tweets included were all 600 tweets common to
the three negative emotion tweet sets and 600 ran-
domly chosen joy tweets. The Emolnt tweets in-
cluded were 600 randomly chosen joy tweets and
200 each, randomly chosen tweets, for anger, fear,
and sadness. To study valence in sarcastic tweets,
we also included 200 tweets that had hashtags
#sarcastic, #sarcasm, #irony, or #ironic (tweets
that are likely to be sarcastic). Thus the V-reg
set included 2,600 tweets in total. The V-oc set is
comprised of the same tweets as in the V-reg set.

3.1.3 Multi-Label Emotion Tweets

We selected all of the 2016 and 2017 tweets in the
four El-reg datasets to form the E-c dataset, which
is annotated for presence/absence of 11 emotions.

3.2 Compiling Arabic Tweets

We compiled the Arabic tweets in a similar
manner to the English dataset. We obtained the
the Arabic query terms as follows:

e We translated the English query terms for the
four emotions to Arabic using Google Translate.

e All words associated with the four emotions in
the NRC Emotion Lexicon were translated into
Arabic. (We discarded incorrect translations.)

e We trained word embeddings on a tweet corpus
collected using dialectal function words as
queries. We used nearest neighbors of the
emotion query terms in the word-embedding
space as additional query terms.

e We included the same emoji used in English for
anger, fear, joy and sadness. However, most of
the fear emoji were not included, as they were
rarely associated with fear in Arabic tweets.

In total, we used 550 Arabic query terms and
emoji to poll the Twitter API to collect around
17 million tweets between March and July 2017.
For each of the four emotions, we randomly se-
lected 1,400 tweets to form the El-reg datasets.
The same tweets were used for building the EI-
oc datasets. The sets of tweets for the negative
emotions included 800 tweets unique to the focus
emotion and 600 tweets common to the three neg-
ative emotions.

vealed that it included some near-duplicate tweets. We kept

only one copy of such pairs. Thus the dev. and test set num-
bers add up to a little lower than 1,400.



The V-reg dataset was formed by including
about 900 tweets from the three negative emotions
(including the 600 tweets common to the three
negative emotion datasets), and about 900 tweets
for joy. The same tweets were used to form the V-
oc dataset. The multi-label emotion classification
dataset was created by taking all the tweets in the
El-reg datasets.

3.3 Compiling Spanish Tweets

The Spanish query terms were obtained as fol-
lows:

e The English query terms were translated into
Spanish using Google Translate. The transla-
tions were manually examined by a Spanish
native speaker, and incorrect translations were
discarded.

e The resulting set was expanded using synonyms
taken from a Spanish lexicographic resource,

Wordreference’.

o We made sure that both masculine and fem-
inine forms of the nouns and adjectives were
included.

e We included the same emoji used in English
for anger, sadness, and joy. The emoji for
fear where not included, as tweets contain-
ing those emoji were rarely associated with fear.

We collected about 1.2 million tweets between
July and September 2017. We annotated close to
2,000 tweets for each emotion. The sets of tweets
for the negative emotions included ~1,500 tweets
unique to the focus emotion and ~500 tweets
common to the two remaining negative emotions.
The same tweets were used for building the Span-
ish El-oc dataset.

The V-reg dataset was formed by including
about 1,100 tweets from the three negative emo-
tions (including the 750 tweets common to the
three negative emotion datasets), about 1,100
tweets for joy, and 268 tweets with sarcastic hash-
tags (#sarcasmo, #ironia). The same tweets were
used to build the V-oc dataset. The multi-label
emotion classification dataset was created by tak-
ing all the tweets in the El-reg and V-reg datasets.

3.4 Annotating Tweets

We describe below how we annotated the English
tweets. The same procedure was used for Arabic
and Spanish annotations.

"http://www.wordreference.com/sinonimos/

We annotated all of our data by crowdsourcing.
The tweets and annotation questionnaires were
uploaded on the crowdsourcing platform, Figure
Eight (earlier called CrowdFlower).® All the anno-
tation tasks described in this paper were approved
by the National Research Council Canada’s Insti-
tutional Review Board.

About 5% of the tweets in each task were an-
notated internally beforehand (by the authors of
this paper). These tweets are referred to as gold
tweets. The gold tweets were interspersed with
other tweets. If a crowd-worker got a gold tweet
question wrong, they were immediately notified of
the error. If the worker’s accuracy on the gold
tweet questions fell below 70%, they were re-
fused further annotation, and all of their annota-
tions were discarded. This served as a mechanism
to avoid malicious annotations.

3.4.1 Multi-Label Emotion Annotation

We presented one tweet at a time to the annotators
and asked which of the following options best de-
scribed the emotional state of the tweeter:

— anger (also includes annoyance, rage)

— anticipation (also includes interest, vigilance)

— disgust (also includes disinterest, dislike, loathing)
— fear (also includes apprehension, anxiety, terror)

— joy (also includes serenity, ecstasy)

— love (also includes affection)

— optimism (also includes hopefulness, confidence)
— pessimism (also includes cynicism, no confidence)
— sadness (also includes pensiveness, grief)

— surprise (also includes distraction, amazement)

— trust (also includes acceptance, liking, admiration)
— neutral or no emotion

Example tweets were provided in advance with ex-
amples of suitable responses.

On the Figure Eight task settings, we specified
that we needed annotations from seven people for
each tweet. However, because of the way the gold
tweets were set up, they were annotated by more
than seven people. The median number of anno-
tations was still seven. In total, 303 people anno-
tated between 10 and 4,670 tweets each. A total of
174,356 responses were obtained.

Annotation Aggregation: One of the criticisms
for several natural language annotation projects
has been that they keep only the instances with
high agreement, and discard instances that obtain
low agreements. The high agreement instances

8https://www.figure-eight.com



anger antic. disg. fear joy love optim. pessi. sadn. surp. trust neutral
English 36.1 139 366 168 393 123 313 11.6 294 52 5.0 2.7
Arabic 39.4 96 196 178 269 252 24.5 228 374 22 53 0.6
Spanish ~ 32.2 11.7 147 105 305 7.9 10.2 16.7  23.0 4.6 4.6 4.7

Table 2: Percentage of tweets that were labeled with a given emotion (after aggregation of votes).

tend to be simple instantiations of the classes of
interest, and are easier to model by automatic sys-
tems. However, when deployed in the real world,
natural language systems have to recognize and
process more complex and subtle instantiations of
a natural language phenomenon. Thus, discarding
all but the high agreement instances does not fa-
cilitate the development of systems that are able to
handle the difficult instances appropriately.
Therefore, we chose a somewhat generous ag-
gregation criterion: if more than 25% of the re-
sponses (two out of seven people) indicated that a
certain emotion applies, then that label was cho-
sen. We will refer to this aggregation as Ag2. If no
emotion got at least 40% of the responses (three
out of seven people) and more than 50% of the re-
sponses indicated that the tweet was neutral, then
the tweet was marked as neutral. In the vast ma-
jority of the cases, a tweet was labeled either as
neutral or with one or more of the eleven emotion
labels. 107 English tweets, 14 Arabic tweets, and
88 Spanish tweets did not receive sufficient votes
to be labeled a particular emotion or to be labeled
neutral. These very-low-agreement tweets were
set aside. We will refer to the remaining dataset
as E-c (Ag2), or simply E-c, data.
Class Distribution: Table 2 shows the percent-
age of tweets that were labeled with a given emo-
tion using Ag2 aggregation. The numbers in these
rows sum up to more than 100% because a tweet
may be labeled with more than one emotion. Ob-
serve that joy, anger, disgust, sadness, and opti-
mism get a high number of the votes. Trust and
surprise are two of the lowest voted emotions.

3.4.2 Annotating Intensity with BWS

We followed the procedure described by Kir-
itchenko and Mohammad (2016) to obtain best—
worst scaling (BWS) annotations.

Every 4-tuple was annotated by four indepen-
dent annotators. The questionnaires were devel-
oped through internal discussions and pilot anno-
tations. They are available on the SemEval-2018
AIT Task webpage.

Between 118 and 220 people residing in the
United States annotated the 4-tuples for each of

the four emotions and valence. In total, around
27K responses for each of the four emotions and
around 50K responses for valence were obtained.’
Annotation Aggregation: The intensity scores
were calculated from the BWS responses using
a simple counting procedure (Orme, 2009; Flynn
and Marley, 2014): For each item, the score is the
proportion of times the item was chosen as having
the most intensity minus the percentage of times
the item was chosen as having the least intensity.'°
We linearly transformed the scores to lie in the O
(lowest intensity) to 1 (highest intensity) range.
Distribution of Scores: Figure 1 shows the his-
togram of the V-reg tweets. The tweets are
grouped into bins of scores 0-0.05, 0.05-0.1, and
so on until 0.95-1. The colors for the bins corre-
spond to their ordinal classes as determined from
the manual annotation described in the next sub-
section. The histograms for the four emotions are
shown in Figure 5 in the Appendix.

3.4.3 Identifying Ordinal Classes

For each of the El-reg emotions, the authors of
this paper independently examined the ordered list
of tweets to identify suitable boundaries that par-
titioned the 0-1 range into four ordinal classes:
no emotion, low emotion, moderate emotion, and
high emotion. Similarly the V-reg tweets were
examined and the 0-1 range was partitioned into
seven classes: very negative, moderately negative,
slightly negative, neutral or mixed, slightly posi-
tive, moderately positive, and very positive mental
state can be inferred."!

Annotation Aggregation: The authors discussed
their individual annotations to obtain consensus on
the class intervals. The V-oc and El-oc datasets
were thus labeled.

Class Distribution: The legend of Figure 1 shows
the intervals of V-reg scores that make up the
seven V-oc classes. The intervals of El-reg scores
that make up each of the four El-oc classes are
shown in Figure 5 in the Appendix.

°Gold tweets were annotated more than four times.

Code for generating tuples from items as well
as for generating scores from BWS annotations:
http://saifmohammad.com/WebPages/BestWorst.html

"Valence is a bi-polar scale; hence, more classes.
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Figure 1: Valence score (V-reg), class (V-oc) distribution.

3.4.4 Annotating Arabic and Spanish Tweets

The annotations for Arabic and Spanish tweets fol-
lowed the same process as the one described for
English above. We manually translated the En-
glish questionnaire into Arabic and Spanish.

On Figure Eight, we used similar settings as for
English. For Arabic, we set the country of annota-
tors to fourteen Arab countries available in Crowd-
flower as well as the United States of America.'?
For Spanish, we set the country of annotators to
USA, Mexico, and Spain.

Annotation aggregation was done the same way
for Arabic and Spanish, as for English. Table 2
shows the distributions for different emotions in
the E-c annotations for Arabic and Spanish (in ad-
dition to English).

3.5 Training, Development, and Test Sets

Table 14 in Appendix summarizes key details
of the current set of annotations done for the
SemEval-2018 Affect in Tweets (AIT) Dataset.
AIT was partitioned into training, development,
and test sets for machine learning experiments as
described in Table 3. All of the English tweets
that came from Tweets-2016 were part of the train-
ing sets. All of the English tweets that came from
Tweets-2017 were split into development and test
sets.!? The Arabic and Spanish tweets are all from
2017 and were split into train, dev, and test sets.

12" Algeria, Bahrain, Egypt, Jordan, Kuwait, Morocco,
Oman, Palestine, Qatar, Saudi Arabia, Tunisia, UAE, Yemen.

"3This split of Tweets-2017 was first done such that 20% of
the tweets formed the dev. set and 80% formed the test set—
independently for El-reg, El-oc, V-reg, V-oc, and E-c. Then
we moved some tweets from the test sets to the dev. sets such
that a tweet in any dev. set does not occur in any test set.

Dataset Train Dev Test Total
English
E-c 6,838 886 3,259 10,983
El-reg, El-oc
anger 1,701 388 1,002 3,091
fear 2,252 389 986 3,627
joy 1,616 290 1,105 3,011
sadness 1,533 397 975 2,905
V-reg, V-oc 1,181 449 937 2,567
Arabic
E-c 2,278 585 1,518 4,381
El-reg, El-oc
anger 877 150 373 1,400
fear 882 146 372 1,400
joy 728 224 448 1,400
sadness 889 141 370 1,400
V-reg, V-oc 932 138 730 1,800
Spanish
E-c 3,561 679 2,854 7,094
El-reg, El-oc
anger 1,166 193 627 1,986
fear 1,166 202 618 1,986
joy 1,058 202 730 1,990
sadness 1,154 196 641 1,991
V-reg, V-oc 1,566 229 648 2,443

Table 3: The number of tweets in the SemEval-2018
Affect in Tweets Dataset.

4 Agreement and Reliability of
Annotations

It is challenging to obtain consistent annotations
for affect due to a number of reasons, including:
the subtle ways in which people can express affect,
fuzzy boundaries of affect categories, and differ-
ences in human experience that impact how they
perceive emotion in text. In the subsections below
we analyze the AIT dataset to determine the extent
of agreement and the reliability of the annotations.

4.1 E-c Annotations

Table 4 shows the inter-rater agreement and Fleiss’
k for the multi-label emotion annotations. The
inter-rater agreement (IRA) is calculated as the
percentage of times each pair of annotators agree.
For the sake of comparison, we also show the
scores obtained by randomly choosing whether a
particular emotion applies or not. Observe that the
scores obtained through the actual annotations are
markedly higher than the scores obtained by ran-
dom guessing.

4.2 El-reg and V-reg Annotations

For real-valued score annotations, a commonly
used measure of quality is reproducibility of the
end result—if repeated independent manual anno-
tations from multiple respondents result in similar



IRA  Fleiss’ &

Random 41.67 0.00
English  avg. for all 12 classes 83.38 0.21
avg. for 4 basic emotions  81.22 0.40
Arabic avg. for all 12 classes 86.69 0.29
avg. for 4 basic emotions  83.38 0.48
Spanish  avg. for all 12 classes 88.60 0.28
avg. for 4 basic emotions  85.91 0.45
Table 4:  Annotator agreement for the Multi-label

Emotion Classification (E-c) Datasets.

Language Affect Dimension Spearman Pearson
English Emotion Intensity
anger 0.89 0.90
fear 0.84 0.85
joy 0.90 0.91
sadness 0.82 0.83
Valence 0.92 0.92
Arabic Emotion Intensity
anger 0.88 0.89
fear 0.85 0.87
joy 0.88 0.89
sadness 0.86 0.87
Valence 0.94 0.94
Spanish Emotion Intensity
anger 0.88 0.88
fear 0.85 0.86
joy 0.89 0.89
sadness 0.86 0.86
Valence 0.89 0.89

Table 5: Split-half reliabilities in the AIT Dataset.

intensity rankings (and scores), then one can be
confident that the scores capture the true emotion
intensities. To assess this reproducibility, we cal-
culate average split-half reliability (SHR), a com-
monly used approach to determine consistency
(Kuder and Richardson, 1937; Cronbach, 1946;
Mohammad and Bravo-Marquez, 2017). The in-
tuition behind SHR is as follows. All annotations
for an item (in our case, tuples) are randomly split
into two halves. Two sets of scores are produced
independently from the two halves. Then the cor-
relation between the two sets of scores is calcu-
lated. The process is repeated 100 times, and the
correlations are averaged. If the annotations are of
good quality, then the average correlation between
the two halves will be high.

Table 5 shows the split-half reliabilities for the
AIT data. Observe that correlations lie between
0.82 and 0.92, indicating a high degree of repro-
ducibility.'*

1“Past work has found the SHR for sentiment intensity an-
notations for words, with 6 to 8 annotations per tuple to be
0.95 to 0.98 (Mohammad, 2018b; Kiritchenko and Moham-
mad, 2016). In contrast, here SHR is calculated from whole
sentences, which is a more complex annotation task and thus
the SHR is expected to be lower than 0.95.

5 Evaluation for Automatic Predictions

5.1 For El-reg, EI-oc, V-reg, and V-oc

The official competition metric for El-reg, El-oc,
V-reg, and V-oc was the Pearson Correlation
Coefficient with the Gold ratings/labels. For
El-reg and El-oc, the correlation scores across
all four emotions were averaged (macro-average)
to determine the bottom-line competition met-
ric. Apart from the official competition metric
described above, some additional metrics were
also calculated for each submission. These were
intended to provide a different perspective on
the results. The secondary metric used for the
regression tasks was:

e Pearson correlation for a subset of the test set
that includes only those tweets with intensity
score greater or equal to 0.5.

The secondary metrics used for the ordinal classi-
fication tasks were:

e Pearson correlation for a subset of the test set
that includes only those tweets with intensity
classes low X, moderate X, or high X (where
X is an emotion). We will refer to this set of
tweets as the some-emotion subset.

e Weighted quadratic kappa on the full test set.

e Weighted quadratic kappa on the some-emotion
subset of the test set.

5.2 ForE-c

The official competition metric used for E-c was
multi-label accuracy (or Jaccard index). Since
this is a multi-label classification task, each tweet
can have one or more gold emotion labels, and
one or more predicted emotion labels. Multi-label
accuracy is defined as the size of the intersection
of the predicted and gold label sets divided by the
size of their union. This measure is calculated for
each tweet ¢, and then is averaged over all tweets
T in the dataset:

1 GNP

A = — -t ¢
ceuracy T G, 0D,

teT
where Gy is the set of the gold labels for tweet ¢, P,
is the set of the predicted labels for tweet ¢, and T
is the set of tweets. Apart from the official compe-
tition metric (multi-label accuracy), we also calcu-
lated micro-averaged F-score and macro-averaged
F-score.!d

SFormulae are provided on the task webpage.



Task English  Arabic Spanish  All
El-reg 48 13 15 76
El-oc 37 12 14 63
V-reg 37 13 13 63
V-oc 35 13 12 60
E-c 33 12 12 57
Total 190 63 66 319

Table 6: Number of teams in each task—language pair.
6 Systems

Seventy-five teams (about 200 team members)
participated in the shared task, submitting to one
or more of the five subtasks. The numbers
of teams submitting predictions for each task—
language pair are shown in Table 6. The English
tasks were the most popular (33 to 48 teams for
each task); however, the Arabic and Spanish tasks
also got a fair amount of participation (about 13
teams for each task). Emotion intensity regression
attracted the most teams.

Figure 2 shows how frequently various ma-
chine learning algorithms were used in the five
tasks. Observe that SVM/SVR, LSTMs and Bi-
LSTMs were some of the most widely used al-
gorithms. Understandably, regression algorithms
such as Linear Regression were more common in
the regression tasks than in the classification tasks.

Figure 3 shows how frequently various features
were used. Observe that word embeddings, af-
fect lexicon features, and word n-grams were some
of the most widely used features. Many teams
also used sentence embeddings and affect-specific
word embeddings. A number of teams also made
use of distant supervision corpora (usually tweets
with emoticons or hashtagged emotion words).
Several teams made use of the AIT2018 Dis-
tant Supervision Corpus—a corpus of about 100M
tweets containing emotion query words—that we
provided. A small number of teams used training
data from one task to supplement the training data
for another task. (See row ‘AIT-2018 train-dev (other
task)’.)

Figure 4 shows how frequently features from
various affect lexicons were used. Observe that
several of the NRC emotion and sentiment lexi-
cons as well as AFINN and Bing Liu Lexicon were
widely used (Mohammad and Turney, 2013; Mo-
hammad, 2018b; Kiritchenko et al., 2014; Nielsen,
2011; Hu and Liu, 2004). Several teams used
the AffectiveTweets package to obtain lexicon fea-
tures (Mohammad and Bravo-Marquez, 2017).16

"https://affectivetweets.cms.waikato.ac.nz/

#Teams

ML algorithm El-reg El-oc V-reg V-oc E-c

AdaBoost 1 1 3 1 0
Bi-LSTM 8 10 6 6
CNN . 8 7 6 3
Gradient Boosting 8 3 5 4 1
Linear Regression 2 7 2 1
Logistic Regression 7 8 6 6
LSTM 5 4
Random Forest 8 7 5 6 6
RNN 0 0 0 0 1
SVM or SVR 8 6 6

Figure 2: Machine learning algorithms used by teams.

#Teams

Features/Resources El-reg El-oc V-reg V-oc Ec
affect-specific word embeddings 10 8 9 9 5
affect/sentiment lexicons 24 16 16 15 12
character ngrams 6 4 3 4 2
dependency/parse features 2 3 3 3 2
distant-supervision corpora 10 8 7 5 4
manually labeled corpora (other) 6 4 4 5 3
AIT-2018 train-dev (other task) 6 5 5 5 3
sentence embeddings 10 8 7 8 6
unlabeled corpora 6 3 5 3 0
word embeddings

word ngrams 12 10 9
Other 5 5 5 5 5

Figure 3: Features and resources used by teams.

6.1 Results and Discussion

Tables 7 through 11 show the results obtained by
the top three teams on El-reg, El-oc, V-reg, V-oc,
and E-c, respectively. The tables also show: (a) the
results obtained by the median rank team for each
task—language pair, (b) the results obtained by a
baseline SVM system using just word unigrams as
features, and (c) the results obtained by a system
that randomly guesses the prediction—the random
baseline.!” Observe that the top teams obtained
markedly higher results than the SVM unigrams
baselines.

Most of the top-performing teams relied on
both deep neural network representations of
tweets (sentence embeddings) as well as features
derived from existing sentiment and emotion
lexicons. Since many of the teams used similar
models when participating in different tasks, we
present further details of the systems grouped by
the language for which they submitted predictions.

"The results for each of the 75 participating teams are
shown on the task website and also in the supplementary ma-
terial file. (Not shown here due to space constraints.)



Pearson r (all instances)

Pearson 7 (gold in 0.5-1)

Test Set Rank Team Name avg. anger fear joy sadness avg. anger fear joy sadness
English
1 SeerNet 79.9 82.7 779 79.2 79.8 63.8 70.8 60.8 56.8 66.6
2 NTUA-SLP 77.6 782 758 T77.1 79.2  61.0 63.6 595 554 65.4
3 PlusEmo2Vec 76.6 81.1 728 773 753 579 663 497 542 61.3
23 Median Team 65.3 654 672 6438 63.5 49.0 526 49.7 420 51.7
37  SVM-Unigrams 52.0 52.6 525 575 453  39.6 455 302 47.6 35.0
46 Random Baseline -0.8 -1.8 24 -58 20 -48 -8.8 -1.1 -32 -5.9
Arabic
1 AffecThor 68.5 647 642 756 69.4 53.7 469 54.1 57.0 56.9
2 EiTAKA 66.7 62.7 627 738 67.5 533 479 604 49.0 56.0
3 EMA 64.3 61.5 593 709 65.6 49.0 444 457 49.7 56.2
6  Median Team 54.2 50.1 50.1 628 53.7 446 39.1 43.0 454 51.0
7  SVM-Unigrams 45.5 40.6 435 53.0 450 353 344 36.6 332 36.7
13 Random Baseline 1.3 -0.6 1.6 -1.0 52  -0.7 0.2 0.7 1.1 -4.8
Spanish
1 AffecThor 73.8 67.6 77.6 753 74.6  58.7 549 604 59.1 60.4
2 UGI8 67.7 595 689 712 712  51.6 422 521 540 58.1
3  ELiRF-UPV 64.8 59.1 632 663 70.5 44.0 41.0 375 456 51.7
6  SVM-Unigrams 54.3 457 619 536 56.0 46.2 429 474 479 46.4
8 Median Team 44.1 348 533 414 47.1  38.2 246 425 448 41.0
15 Random Baseline -1.2 -5.6 0.4 1.8 -4 -05 0.1 46 1.8 0.8
Table 7: Task 1 emotion intensity regression (El-reg): Results.
Lexicon #Teams e DeepMoji (Felbo et al., 2017): a neural network
AFINN 2 for predicting emoji for tweets trained from a
ANEW o very large distant supervision corpus. The last
Arabic translation of the NRC Emotion Lexicon 4
T _ two layers of the network were used as features.
Bing Liu Lexicon 23
ElhPolar polarity lexicon for Spanish 3 o Skip thoughts: an unsupervised neural network
LIwC 5 for encoding sentences (Kiros et al., 2015).
Mohammad et al.'s Arabic Emoticon Lexicon 5 .
Mohammad et al.'s Arabic Hashtag Lexicon 5 e Sentiment neurons (Radford et al., 2017): a
Mohammad et al.'s Arabic Hashtag Lexicon (dialectal) 2 byte'level recurrent language model for learn-
MPQA 21 ing sentence representations.
i i 21 . . .
NRC Adfect Intensity Lexicon e Features derived from affective lexicons.
NRC Emoticon Lexicon (Sentiment140) 24
NRC Emotion Lexicon (EmoL.ex) = These feature vectors were used for training XG
NRC Hashtag Emotion Lexicon 23 Boost and Random Forest models (using both re-
NRC Hashtag Sentiment Lexicon gression and classification variants), which were
SentiStrength 18 . . .. .
_ later stacked using ordinal logistic regression and
SentiWordNet 18 d . dels for th di
Spanish translation of the NRC Emotion Lexicon 5 ridge regression moders 1or the corresponding or-

No lexicons used

Figure 4: Lexicons used by teams.

High-Ranking English Systems: The best per-
forming system for regression (El-reg, V-reg) and
ordinal classification (EI-oc,V-oc) sub-tasks in
English was SeerNet. The team proposed a unified
architecture for regression and ordinal classifica-
tion based on the fusion of heterogeneous features
and the ensemble of multiple predictive models.
The following models or resources were used for
feature extraction:
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dinal classification and regression tasks.

Other teams also relied on both deep neural net-
work representations of tweets and lexicon fea-
tures to learn a model with either a traditional
machine learning algorithm, such as SVM/SVR
(PlusEmo2Vec, TCS Research) and Logistic Re-
gression (PlusEmo2Vec), or a deep neural network
(NTUA-SLP, psyML). The sentence embeddings
were obtained by training a neural network on the
provided training data, a distant supervision cor-
pus (e.g., AIT2018 Distant Supervision Corpus
that has tweets with emotion-related query terms),
sentiment-labeled tweet corpora (e.g., Semeval-
2017 Task4A dataset on sentiment analysis in
Twitter), or by using pre-trained models.



Pearson r (all classes)

Pearson 7 (some-emotion)

Test Set Rank Team Name avg anger fear joy sadness avg anger fear  joy sadness
English
1  SeerNet 69.5 706 637 72.0 717 547 559 458 61.0 56.0
2 PlusEmo2Vec 65.9 704 528 72.0 68.3 50.1 548 320 604 53.3
3 psyML 65.3 67.0 58.8 68.6 66.7 50.5 517 468 57.0 46.3
17 Median Team 53.0 53.0 47.0 552 56.7 41.5 40.8 31.0 494 44.8
26  SVM-Unigrams 394 382 355 469 37.0 29.6 31.5 183 396 28.9
37 Random Baseline -1.6 -6.2 4.7 14 -6.1  -1.1 38 -07 -0.2 0.1
Arabic
1 AffecThor 58.7 55.1 55.1 63.1 61.8 43.7 426 472 446 40.4
2 EiTAKA 57.4 572 529 634 56.3 46.0 48.8 476 509 36.6
3 UNCC 51.7 459 483 538 58.7 36.3 34.1 33.1 383 39.8
6  SVM-Unigrams 31.5 28.1 28.1 396 30.2 23.6 251 252 241 20.1
7  Median Team 30.5 30.1 242 360 31.5 2438 242 172 283 29.4
11  Random Baseline 0.6 5.7 -19 0.8 9.2 1.2 02 -2.0 2.9 3.7
Spanish
1 AffecThor 66.4 60.6 70.6 66.7 677 542 474 588 535 57.2
2  UGI8 59.9 499 60.6 66.5 62.5 48.5 38,0 493 53.1 53.4
3 INGEOTEC 59.6 46.8 63.4 655 62.8 46.3 330 498 533 49.2
6  SVM-Unigrams 48.1 444 546 45.1 483 408 37.1 46.1 37.1 42.7
8 Median Team 36.0 263 283 513 38.0 33.1 240 26.1 505 31.6
15 Random Baseline  -2.2 1.1 -69 -05 -2.7 1.6 02 -1.8 4.4 3.6
Table 8: Task 2 emotion intensity ordinal classification (EI-oc): Results.
Rank Team Name r(all) r(0.5-1) Rank Team Name r (all) 7 (some emo)
English English
1 SeerNet 87.3 69.7 1 SeerNet 83.6 88.4
2 TCS Research 86.1 68.0 2 PlusEmo2Vec 83.3 87.8
3 PlusEmo2Vec 86.0 69.1 3 Amobee 81.3 86.5
18 Median Team 78.4 59.1 18 Median Team 68.2 75.4
31 SVM-Unigrams 58.5 44.9 24 SVM-Unigrams 50.9 56.0
35 Random Baseline 3.1 1.2 36 Random Baseline -1.0 -1.2
Arabic Arabic
1 EiTAKA 82.8 57.8 1 EiTAKA 80.9 84.7
2 AffecThor 81.6 59.7 2 AffecThor 75.2 79.2
3 EMA 80.4 57.6 3 INGEOTEC 74.9 78.9
6  Median Team 72.0 36.2 7  Median Team 55.2 59.6
9  SVM-Unigrams 57.1 423 8  SVM-Unigrams 47.1 50.5
13 Random Baseline -5.2 2.2 14  Random Baseline 1.1 0.9
Spanish Spanish
1 AffecThor 79.5 65.9 1  Amobee 76.5 80.4
2 Amobee 77.0 64.2 2 AffecThor 75.6 79.2
3  ELiRF-UPV 74.2 57.1 3 ELiRF-UPV 72.9 76.5
6  Median Team 60.9 50.9 6  Median Team 55.6 59.1
9  SVM-Unigrams 574 51.5 8  SVM-Unigrams 41.8 46.1
13 Random Baseline -2.3 2.3 13 Random Baseline -4.2 -4.3

Table 9: Task 3 valence regression (V-reg): Results.

High-Ranking Arabic Systems: Top teams
trained their systems using deep learning tech-
niques, such as CNN, LSTM and Bi-LSTM (Af-
fecThor, EiTAKA, UNCC). Traditional machine
learning approaches, such as Logistic Regression,
Ridge Regression, Random Forest and SVC/SVM,
were also employed (EMA, INGEOTEC, PARTNA,
Tw-StAR). Many teams relied on Arabic pre-
processing and normalization techniques in an
attempt to decrease the sparsity due to mor-
phological complexity in the Arabic language.
EMA applied stemming and lemmatization us-
ing MADAMIRA (a morphological analysis and

11

Table 10: Task 4 valence ord. classifn. (V-oc): Results.

disambiguation tool for Arabic), while TwStar
and PARTNA used stemmer designed for handling
tweets. In addition, top systems applied addi-
tional pre-processing, such as dropping punctua-
tions, mentions, stop words, and hashtag symbols.

Many teams (e.g., AffecThor, EIiTAKA and
EMA) utilized Arabic sentiment lexicons (Mo-
hammad et al., 2016; Badaro et al., 2014). Some
teams (e.g., EMA) used Arabic translations of the
NRC Emotion Lexicon (Mohammad and Turney,
2013).  Pre-trained Arabic word embeddings
(AraVec) generated from a large set of tweets
were also used as additional input features by



EMA and UNCC. AffecThor collected 4.4 million
Arabic tweets to train their own word embeddings.
Traditional machine learning algorithms (Random
Forest, SVR and Ridge regression) used by EMA
obtained results rivaling those obtained by deep
learning approaches.

High-Ranking Spanish Systems: Convolutional
neural networks and recurrent neural networks
with gated units such as LSTM and GRU were em-
ployed by the winning Spanish teams (AffecThor,
Amobee, ELIRF-UPV, UG18). Word embeddings
trained from Spanish tweets, such as the ones pro-
vided by Rothe et al. (2016), were used as the basis
for training deep learning models. They were also
employed as features for more traditional learning
schemes such as SVMs (UG1S8). Spanish Affec-
tive Lexicons such as the Spanish Emotion Lexi-
con (SEL) (Sidorov et al., 2012) and ML-SentiCon
(Cruz et al., 2014) were also used to build the fea-
ture space (UWB, SINAI). Translation was used in
two different ways: 1) automatic translation of En-
glish affective lexicons into Spanish (SINAI), and
2): training set augmentation via automatic trans-
lation of English tweets (Amobee, UGIS).

6.2 Summary

In the standard deep learning or representation
learning approach, data representations (tweets in
our case) are jointly trained for the task at hand via
neural networks with convolution or recurrent lay-
ers (LeCun et al., 2015). The claim is that this can
lead to more robust representations than relying on
manually-engineered features. In contrast, here,
most of the top-performing systems employed
manually-engineered representations for tweets.
These representations combine trained representa-
tions, models trained on distant supervision cor-
pora, and unsupervised word and sentence embed-
dings, with manually-engineered features, such as
features derived from affect lexicons. This shows
that despite being rather powerful, representation
learning can benefit from working in tandem with
task-specific features. For emotion intensity tasks,
lexicons such as the Affect Intensity Lexicon (Mo-
hammad, 2018b) that provide intensity scores are
particularly helpful. Similarly, tasks on valence,
arousal, and dominance can benefit from lexicons
such as ANEW (Bradley and Lang, 1999) and the
newly created NRC Valence-Arousal-Dominance
Lexicon (Mohammad, 2018a), which has entries
for about 20,000 English terms.
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micro  macro

Rank Team Name acc. F1 F1
English

1 NTUA-SLP 58.8 70.1 52.8

2 TCS Research 58.2 69.3 53.0

3 PlusEmo2Vec 57.6 69.2 49.7

17 Median Team 47.1 59.9 46.4

21 SVM-Unigrams 44.2 57.0 443

28 Random Baseline 18.5 30.7 28.5
Arabic

1 EMA 48.9 61.8 46.1

2  PARTNA 48.4 60.8 47.5

3 Tw-StAR 46.5 59.7 44.6

6  SVM-Unigrams 38.0 51.6 38.4

7  Median Team 254 37.9 25.0

9 Random Baseline 17.7 294 27.5
Spanish

1 MILAB_SNU 46.9 55.8 40.7

2  ELiRF-UPV 45.8 53.5 44.0

3 Tw-StAR 43.8 52.0 39.2

4 SVM-Unigrams 39.3 47.8 38.2

7 Median Team 16.7 27.5 18.7

8 Random Baseline 13.4 22.8 21.3

Table 11: Task 5 emotion classification (E-c): Results.

7 Examining Gender and Race Bias in
Sentiment Analysis Systems

Automatic systems can benefit society by pro-
moting equity, diversity, and fairness. Nonethe-
less, as machine learning systems become more
human-like in their predictions, they are inadver-
tently accentuating and perpetuating inappropriate
human biases. Examples include, loan eligibility
and crime recidivism prediction systems that nega-
tively assess people belonging to a certain pin/zip
code (which may disproportionately impact peo-
ple of a certain race) (Chouldechova, 2017), and
resumé sorting systems that believe that men are
more qualified to be programmers than women
(Bolukbasi et al., 2016). Similarly, sentiment and
emotion analysis systems can also perpetuate and
accentuate inappropriate human biases, e.g., sys-
tems that consider utterances from one race or
gender to be less positive simply because of their
race or gender, or customer support systems that
prioritize a call from an angry male user over a
call from the equally angry female user.
Discrimination-aware data mining focuses on
measuring discrimination in data (Zliobaite, 2015;
Pedreshi et al., 2008; Hajian and Domingo-Ferrer,
2013). In that spirit, we carried out an analysis
of the systems’ outputs for biases towards cer-
tain races and genders. In particular, we wanted
to test a hypothesis that a system should equally
rate the intensity of the emotion expressed by two
sentences that differ only in the gender/race of a
person mentioned. Note that here the term system



refers to the combination of a machine learning ar-
chitecture trained on a labeled dataset, and possi-
bly using additional language resources. The bias
can originate from any or several of these parts.

We used Equity Evaluation Corpus (EEC), a re-
cently created dataset of 8,640 English sentences
carefully chosen to tease out gender and race bi-
ases (Kiritchenko and Mohammad, 2018). We
used the EEC as a supplementary test set in the
El-reg and V-reg English tasks. Specifically, we
compare emotion and sentiment intensity scores
that the systems predict on pairs of sentences in the
EEC that differ only in one word corresponding to
race or gender (e.g., ‘This man made me feel an-
gry’ vs. ‘This woman made me feel angry’). Com-
plete details on how the EEC was created, its con-
stituent sentences, and the analysis of automatic
systems for race and gender bias is available in
Kiritchenko and Mohammad (2018); we summa-
rize the key results below.

Despite the work we describe here and that pro-
posed by others, it should be noted that mecha-
nisms to detect bias can often be circumvented.
Nonetheless, as developers of sentiment analysis
systems, and NLP systems more broadly, we can-
not absolve ourselves of the ethical implications
of the systems we build. Thus, the Equity Evalu-
ation Corpus is not meant to be a catch-all for all
inappropriate biases, but rather just one of the sev-
eral ways by which we can examine the fairness
of sentiment analysis systems. The EEC corpus is
freely available so that both developers and users
can use it, and build on it.!®

7.1

The race and gender bias evaluation was carried
out on the El-reg and V-reg predictions of 219
automatic systems (by 50 teams) on the EEC
sentences. The EEC sentences were created from
simple templates such as ‘<noun phrase> feels
devastated’, where <noun phrase> is replaced
with one of the following:

Methodology

e common African American (AA) female and
male first names,
common European American (EA) female and
male first names,
noun phrases referring to females and males,

such as ‘my daughter’ and ‘my son’.

Notably, one can derive pairs of sentences from the
EEC such that they differ only in one phrase cor-

Bhttp://saifmohammad.com/WebPages/Biases-SA.html
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responding to gender or race (e.g., ‘My daughter
feels devastated’ and ‘My son feels devastated’).
For the full lists of names, noun phrases, and sen-
tence templates see (Kiritchenko and Mohammad,
2018). In total, 1,584 pairs of scores were com-
pared for gender and 144 pairs of scores were
compared for race.

For each submission, we performed the paired
two sample t-test to determine whether the mean
difference between the two sets of scores (across
the two races and across the two genders) is signif-
icant. We set the significance level to 0.05. How-
ever, since we performed 438 assessments (219
submissions evaluated for biases in both gender
and race), we applied Bonferroni correction. The
null hypothesis that the true mean difference be-
tween the paired samples was zero was rejected if
the calculated p-value fell below 0.05/438.

7.2 Results
7.2.1 Gender Bias Results

Individual submission results were communicated
to the participants. Here, we present the summary
results across all the teams. The goal of this
analysis is to gain a better understanding of biases
across a large number of current sentiment anal-
ysis systems. Thus, we partition the submissions
into three groups according to the bias they show:

e F'= M: submissions that showed no statistically
significant difference in intensity scores pre-
dicted for corresponding female and male noun
phrase sentences,

Ft-M|: submissions that consistently gave
higher scores for sentences with female noun
phrases than for corresponding sentences with
male noun phrases,

F|-M*: submissions that consistently gave
lower scores for sentences with female noun
phrases than for corresponding sentences with
male noun phrases,

Table 12 shows the number of submissions in each
group. If all the systems are unbiased, then the
number of submissions for the group F' = M would
be the maximum, and the number of submissions
in all other groups would be zero.

Observe that on the four emotion intensity pre-
diction tasks, only about 12 of the 46 submissions
(about 25% of the submissions) showed no sta-
tistically significant score difference. On the va-
lence prediction task, only 5 of the 36 submissions
(14% of the submissions) showed no statistically



Task F=M F-M| F|-M{ all
El-reg
anger 12 21 13 46
fear 11 12 23 46
joy 12 25 8 45
sadness 12 18 16 46
V-reg 5 22 9 36

Table 12: Analysis of gender bias: The number of
submissions in each of the three bias groups.

significant score difference. Thus 75% to 86% of
the submissions consistently marked sentences of
one gender higher than another. When predict-
ing anger, joy, or valence, the number of systems
consistently giving higher scores to sentences with
female noun phrases (21-25) is markedly higher
than the number of systems giving higher scores
to sentences with male noun phrases (8—13). (Re-
call that higher valence means more positive sen-
timent.)

In contrast, on the fear task, most submissions
tended to assign higher scores to sentences with
male noun phrases (23) as compared to the num-
ber of systems giving higher scores to sentences
with female noun phrases (12). When predicting
sadness, the number of submissions that mostly
assigned higher scores to sentences with female
noun phrases (18) is close to the number of
submissions that mostly assigned higher scores to
sentences with male noun phrases (16).

7.2.2 Race Bias Results

We did a similar analysis as for gender, for race.
For each submission on each task, we calculated
the difference between the average predicted score
on the set of sentences with African American
(AA) names and the average predicted score on
the set of sentences with European American (EA)
names. Then, we aggregated the results over all
such sentence pairs in the EEC.

Table 13 shows the results. The table has the
same form and structure as the gender result ta-
ble. Observe that the number of submissions with
no statistically significant score difference for sen-
tences pertaining to the two races is about 5-11
(about 11% to 24%) for the four emotions and 3
(about 8%) for valence. These numbers are even
lower than what was found for gender.

The majority of the systems assigned higher
scores to sentences with African American names
on the tasks of anger, fear, and sadness intensity
prediction. On the joy and valence tasks, most
submissions tended to assign higher scores to sen-
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Task AA=EA AAT-EA] AA|-EAT Al
El-reg
anger 11 28 7 46
fear 5 29 12 46
joy 8 7 30 45
sadness 6 35 5 46
V-reg 3 4 29 36

Table 13: Analysis of race bias: The number of sub-
missions in each of the three bias groups.

tences with European American names.

We found the score differences across genders
and across races to be somewhat small (< 0.03 in
magnitude, which is 3% of the 0 to 1 score range).
However, what impact a consistent bias, even with
a magnitude < 3%, might have in downstream ap-
plications merits further investigation.

8 Summary

We organized the SemEval-2018 Task 1: Affect
in Tweets, which included five subtasks on infer-
ring the affectual state of a person from their tweet.
For each task, we provided training, development,
and test datasets for English, Arabic, and Span-
ish tweets. This involved creating a new Affect
in Tweets dataset of more than 22,000 tweets such
that subsets are annotated for a number of emotion
dimensions. For each emotion dimension, we an-
notated the data not just for coarse classes (such
as anger or no anger) but also for fine-grained
real-valued scores indicating the intensity of emo-
tion. We used Best—Worst Scaling to obtain fine-
grained real-valued intensity scores and showed
that the annotations are reliable (split-half reliabil-
ity scores > 0.8).

Seventy-five teams made 319 submissions to
the fifteen task—language pairs. Most of the top-
performing teams relied on both deep neural net-
work representations of tweets (sentence embed-
dings) as well as features derived from existing
sentiment and emotion lexicons. Apart from the
usual evaluations for the quality of predictions,
we also examined 219 El-reg and V-reg English
submissions for bias towards particular races and
genders using the Equity Evaluation Corpus. We
found that a majority of the systems consistently
provided slightly higher scores for one race or gen-
der. All of the data is made freely available.'”

Phttps://competitions.codalab.org/competitions/17751
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Appendix

Table 14 shows the summary details of the
annotations done for the SemEval-2018 Affect in
Tweets dataset. Figure 5 shows the histograms
of the El-reg tweets in the anger, joy, sadness,
and fear datasets. The tweets are grouped into
bins of scores 0-0.05, 0.05-0.1, and so on until
0.95-1. The colors for the bins correspond to
their ordinal classes: no emotion, low emotion,
moderate emotion, and high emotion. The ordinal
classes were determined from the El-oc manual
annotations.

Supplementary Material: The supplementary
pdf associated with this paper includes longer ver-
sions of tables included in this paper. Tables 1
to 15 in the supplementary pdf show result tables
that include the scores of each of the 319 systems
participating in the tasks. Table 16 in the supple-
mentary pdf shows the annotator agreement for
each of the twelve classes, for each of the three
languages, in the Multi-label Emotion Classifica-
tion (E-c) Dataset. We observe that the Fleiss’
scores are markedly higher for the frequently oc-
curring four basic emotions (joy, sadness, fear, and
anger), and lower for the less frequent emotions.
(Frequencies for the emotions are shown in Table
2.) Also, agreement is low for the neutral class.
This is not surprising because the boundary be-
tween neutral (or no emotion) and slight emotion
is fuzzy. This means that often at least one or two
annotators indicate that the person is feeling some
joy or some sadness, even if most others indicate
that the person is not feeling any emotion.
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Figure 5: Emotion intensity score (El-reg) and ordinal class (EI-oc) distributions for the four basic emotions in the SemEval-
2018 AIT development and test sets combined. The distribution is similar for the training set (annotated in earlier work).

Dataset Scheme Location Item #Items #Annotators MAI #Q/Item #Annotat.
English
E-c categorical World tweet 11,090 303 7 2 174,356
El-reg
anger BWS USA  4-tuple of tweets 2,780 168 4 2 27,046
fear BWS USA  4-tuple of tweets 2,750 220 4 2 26,908
joy BWS USA 4-tuple of tweets 2,790 132 4 2 26,676
sadness BWS USA  4-tuple of tweets 2,744 118 4 2 26,260
V-reg BWS USA 4-tuple of tweets 5,134 175 4 2 49,856
Total 331,102
Arabic
E-c categorical World tweet 4,400 175 7 1 36,274
El-reg
anger BWS World  4-tuple of tweets 2,800 221 4 2 25,960
fear BWS World  4-tuple of tweets 2,800 197 4 2 25,872
joy BWS World  4-tuple of tweets 2,800 133 4 2 24,690
sadness BWS World  4-tuple of tweets 2,800 177 4 2 25,834
V-reg BWS World  4-tuple of tweets 3,600 239 4 2 36,824
Total 175,454
Spanish
E-c categorical World tweet 7,182 160 7 1 56,274
El-reg
anger BWS World  4-tuple of tweets 3,972 157 3 2 27,456
fear BWS World  4-tuple of tweets 3,972 388 3 2 29,530
joy BWS World  4-tuple of tweets 3,980 323 3 2 28,300
sadness BWS World  4-tuple of tweets 3,982 443 3 2 28,462
V-reg BWS World  4-tuple of tweets 4,886 220 3 2 38,680
Total 208,702

Table 14: Summary details of the current annotations done for the SemEval-2018 Affect in Tweets Dataset. MAI
= Median Annotations per Item. Q = annotation questions.
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Abstract

The paper describes the best performing sys-
tem for the SemEval-2018 Affect in Tweets
(English) sub-tasks. The system focuses on the
ordinal classification and regression sub-tasks
for valence and emotion. For ordinal classi-
fication valence is classified into 7 different
classes ranging from -3 to 3 whereas emotion
is classified into 4 different classes O to 3 sep-
arately for each emotion namely anger, fear,
joy and sadness. The regression sub-tasks es-
timate the intensity of valence and each emo-
tion. The system performs domain adaptation
of 4 different models and creates an ensem-
ble to give the final prediction. The proposed
system achieved 1% position out of 75 teams
which participated in the fore-mentioned sub-
tasks. We outperform the baseline model by
margins ranging from 49.2% to 76.4%, thus,
pushing the state-of-the-art significantly.

1 Introduction

Twitter is one of the most popular micro-blogging
platforms that has attracted over 300M daily
users! with over 500M 2 tweets sent every day.
Tweet data has attracted NLP researchers because
of the ease of access to large data-source of peo-
ple expressing themselves online. Tweets are
micro-texts comprising of emoticons, hashtags as
well as location data, making them feature rich
for performing various kinds of analysis. Tweets
provide an interesting challenge as users tend to
write grammatically incorrect and use informal
and slang words.

In domain of natural language processing, emo-
tion recognition is the task of associating words,
phrases or documents with emotions from prede-
fined using psychological models. The classifica-
tion of emotions has mainly been researched from

Uhttps://www.statista.com/statistics/282087/number-of-

monthly-active-twitter-users/
“http://www.internetlivestats.com/twitter-statistics/
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two fundamental viewpoints. (Ekman, 1992) and
(Plutchik, 2001) proposed that emotions are dis-
crete with each emotion being a distinct entity.
On the contrary, (Mehrabian, 1980) and (Russell,
1980) propose that emotions can be categorized
into dimensional groupings.

Affect in Tweets (Mohammad et al., 2018) -
shared task in SemEval-2018 focuses on extract-
ing affect from tweets confirming to both vari-
ants of the emotion models, extracting valence (di-
mensional) and emotion (discrete). Previous ver-
sion of the task (Mohammad and Bravo-Marquez,
2017) focused on estimating the emotion intensity
in tweets. We participated in 4 sub-tasks of Affect
in Tweets, all dealing with English tweets. The
sub-tasks were: El-oc: Ordinal classification of
emotion intensity of 4 different emotions (anger,
joy, sadness, fear), EI-reg: to determine the inten-
sity of emotions (anger, joy, sadness, fear) into a
real-valued scale of 0-1, V-oc: Ordinal classifica-
tion of valence into one of 7 ordinal classes [-3,
3], V-reg: determine the intensity of valence on
the scale of 0-1.

Prior work in extracting Valence, Arousal,
Dominance (VAD) from text primarily relied
on using and extending lexicons (Bestgen and
Vincze, 2012) (Turney et al., 2011). Recent ad-
vancements in deep learning have been applied
in detecting sentiments from tweets (Tang et al.,
2014), (Liu et al., 2012), (Mohammad et al.,
2013).

In this work, we use various state-of-the-art ma-
chine learning models and perform domain adap-
tation (Pan and Yang, 2010) from their source task
to the target task. We use multi-view ensemble
learning technique (Kumar and Minz, 2016) to
produce the optimal feature-set partitioning for the
classifier. Finally, results from multiple such clas-
sifiers are stacked together to create an ensemble
(Polikar, 2012).

Proceedings of the 12th International Workshop on Semantic Evaluation (SemEval-2018), pages 18-23
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In this paper, we describe our approach and ex-
periments to solve this problem. The rest of the
paper is laid out as follows: Section 2 describes
the system architecture, Section 3 reports results
and inference from different experiments. Finally
we conclude in Section 4 along with a discussion
about future work.

2 System Description

2.1 Pipeline

Figure 1 details the System Architecture. We now
describe how all the different modules are tied to-
gether. The input raw tweet is pre-processed as
described in Section 2.2. The processed tweet is
passed through all the feature extractors described
in Section 2.3. At the end of this step, we extract
5 different feature vectors corresponding to each
tweet. Each feature vector is passed through the
model zoo where classifiers with different hyper
parameters are tuned. The models are described in
Section 2.4. For each vector, the results of top-2
performing models (based on cross-validation) are
retained. At the end of this step, we’ve 10 differ-
ent results corresponding to each tweet. All these
results are ensembled together via stacking as de-
scribed in Section 2.4.3. Finally, the output from
the ensembler is the output returned by the system.

2.2 Pre-processing

The pre-processing step modifies the raw tweets
to prepare for feature extraction. Tweets are
pre-processed using tweettokenize > tool. Twit-
ter specific keywords are replaced with tokens,
namely, USERNAME, PHONENUMBER, URLs,
timestamps. All characters are converted to
lowercase. A contiguous sequence of emojis is
first split into individual emojis. We then replace
an emoji with its description. The descriptions
were scraped from EmojiPedia®.

2.3 Feature Extraction

As mentioned in Section 1, we perform transfer
learning from various state-of-the-art deep learn-
ing techniques. We will go through the following
sub-sections to understand these models in detail.

2.3.1 DeepMoji
DeepMoji (Felbo et al., 2017) performs distant su-
pervision on a very large dataset (1246 million

3https://github.com/jaredks/tweetokenize
*https://emojipedia.org/

19

tweets) comprising of noisy labels (emojis). Deep-
Moji was able to obtain state-of-the-art results in
various downstream tasks using transfer learning.
This makes it an ideal candidate for domain adap-
tation into related target tasks. We extract 2 differ-
ent feature sets by extracting the embeddings from
the softmax and the attention layer from the pre-
trained DeepMoji model. The vector from soft-
max layer is of dimension 64 and the vector from
attention layer is of dimension 2304.

2.3.2 Skip-Thought Vectors

Skip-Thought vectors (Kiros et al., 2015) is an off-
the-shelf encoder that can produce highly generic
sentence representations. Since tweets are re-
stricted by character limit, skip-thought vectors
can create a good semantic representation. This
representation is then passed to the classifier. The
representation is of dimension 4800.

2.3.3 Unsupervised Sentiment Neuron

(Radford et al., 2017) developed an unsupervised
system which learned an excellent representation
of sentiment. The original model was trained to
generate amazon reviews, this makes the senti-
ment neuron an ideal candidate for transfer learn-
ing. The representation extracted from Sentiment
Neuron is of size 4096.

2.3.4 Emolnt

Apart from all the pre-trained embeddings, we
choose to also include various lexical features bun-
dled through the Emolnt package > (Duppada and
Hiray, 2017) The lexical features include AFINN
(Nielsen, 2011), NRC Affect Intensities (Moham-
mad, 2017), NRC-Word-Affect Emotion Lexi-
con (Mohammad and Turney, 2010), NRC Hash-
tag Sentiment Lexicon and Sentiment140 Lexicon
(Mohammad et al., 2013). The final feature vector
is the concatenation of all the individual features.
This feature vector is of size (141, 1).

This gives us five different feature vector vari-
ants. All of these feature vectors are passed indi-
vidually to the underlying models. The pipeline is
explained in detail in Section 2.1
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We participated in 4 sub-tasks, namely, El-oc, EI-
reg, V-oc, V-reg. Two of the sub-tasks are ordi-
nal classification and the remaining two are regres-
sions. We describe our approach for building ML

Machine Learning Models

Shttps://github.com/SEERNET/Emolnt



Pre-processing

Feature Extraction

Model Zoo Ensemble Stacking

DeepMoji - XGBoost >
Tweettokenize Softmax ”[Random Forest > Ordinal
DeepMoji | XGBoost »| Logistic
v 1 Second Last ”TRandom Forest > E('Ijlassifller
Split continuous (El-oc, V-oc)
N Emojis | | Skip Thoughts +| XGBoost > -
Tweet ” l Vector ”IRandom Forest > ’@
o Sentiment XGBoost »| _ Ridge
Emoji to > { R
Description Neuron Random Forest} > (Eﬁ?rr:gs,s\(;f
reg)
o XGBoost >
( . Emoint ”Random Forest >
Figure 1: System Architecture.
models for both the variants in the upcoming sec- Task | Baseline | 2" best | Our Results
tions. El-reg | 0.520 0.776 0.799
241 Ordinal Classificati El-oc | 0.394 0.659 0.695
e raina assiication
V-reg | 0.585 0.861 0.873
We participated in the emotion intensity ordinal Vooc 0.509 0.833 0.836

classification where the task was to predict the
intensity of emotions from the categories anger,
fear, joy, and, sadness. Separate datasets were pro-
vided for each emotion class. The goal of the sub-
task of valence ordinal classification was to clas-
sify the tweet into one of 7 ordinal classes [-3, 3].
We experimented with XG Boost Classifier, Ran-
dom Forest Classifier of sklearn (Pedregosa et al.,
2011).

2.4.2 Regression

For the regression tasks (E-reg, V-reg), the goal
was to predict the intensity on a scale of 0-1.
We experimented with XG Boost Regressor, Ran-
dom Forest Regressor of sklearn (Pedregosa et al.,
2011).

The hyper-parameters of each model were tuned
separately for each sub-task. The top-2 best mod-
els corresponding to each feature vector type were
chosen after performing 7-fold cross-validation.

2.4.3 Stacking

Once we get the results from all the classi-
fiers/regressors for a given tweet, we use stack-
ing ensemble technique to combine the results. In
this case, we pass the results from the models to
a meta classifier/regressor as input. The output of
this meta model is treated as the final output of the
system.

We observed that using ordinal regressors gave
us better performance than using classifiers which
treat each output class as disjoint. Ordinal Re-
gression is a family of statistical learning meth-
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Table 1: Primary metrics across various sub-tasks.

ods where the output variable is discrete and or-
dered. We use the ordinal logistic classification
with squared error (Rennie and Srebro, 2005) from
the python library Mord. ¢ (Rennie and Srebro,
2005)

In case of regression sub-tasks we observed the
best cross validation results with Ridge Regres-
sion. Hence, we chose Ridge Regression as the
meta regressor.

3 Results and Analysis
3.1 Task Results

The metrics used for ranking various systems are
discussed in this section.

3.1.1 Primary Metrics

Pearson correlation with gold labels was used as
a primary metric for ranking the systems. For EI-
reg and El-oc tasks Pearson correlation is macro-
averaged (MA Pearson) over the four emotion cat-
egories.

Table 1 describes the results based on primary
metrics for various sub-tasks in English language.
Our system achieved the best performance in each
of the four sub-tasks. We have also included the
results of the baseline and second best perform-
ing system for comparison. As we can observe,

Shttps://github.com/fabianp/mord



Task | Pearson (SE) | Kappa Kappa (SE)

V-oc | 0.884 (1) 0.831 (1) | 0.873 (1)

El-oc | 0.547 (1) 0.669 (1) | 0.503 (1)
Table 2: Secondary metrics for ordinal classification

sub-tasks. System rank is mentioned in the brackets.

Task | Pearson (gold in 0.5-1)
V-reg | 0.697 (1)
El-reg | 0.638 (1)

Table 3: Secondary metrics for regression sub-tasks.
System rank is mentioned in brackets.

our system vastly outperforms the baseline and is a
significant improvement over the second best sys-
tem, especially, in the emotion sub-tasks.

3.1.2 Secondary Metrics

The competition also uses some secondary met-
rics to provide a different perspective on the re-
sults. Pearson correlation for a subset of the test
set that includes only those tweets with intensity
score greater or equal to 0.5 is used as the sec-
ondary metric for the regression tasks. For ordi-
nal classification tasks following secondary met-
rics were used:

e Pearson correlation for a subset of the test
set that includes only those tweets with in-
tensity classes low X, moderate X, or high X
(where X is an emotion). The organizers re-
fer to this set of tweets as the some-emotion
subset (SE).

e Weighted quadratic kappa on the full test set

e Weighted quadratic kappa on the some-
emotion subset of the test set

The results for secondary metrics are listed in
Table 2 and 3. We have also included the ranking
in brackets along with the score. We see that our
system achieves the top rank according to all the
secondary metrics, thus, proving its robustness.

3.2 Feature Importance

The performance of the system is highly depen-
dent on the discriminative ability of the tweet rep-
resentation generated by the featurizers. We mea-
sure the predictive power for each of the featurizer
used by calculating the pearson correlation of the
system using only that featurizer. We describe the
results for each sub task separately in tables 4-7.
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Feature Set Pearson
Deepmoji (softmax layer) 0.808
Deepmoji (attention layer) 0.843
Emolnt 0.823
Unsupervised sentiment Neuron | 0.714
Skip-Thought Vectors 0.777
Combined 0.873

Table 4: Pearson Correlation for V-reg task. Best re-
sults are highlighted in bold.

Feature Set Pearson
Deepmoji (softmax layer) 0.780
Deepmoji (attention layer) 0.813
Emolnt 0.785
Unsupervised sentiment Neuron | 0.685
Skip-Thought Vectors 0.748
Combined 0.836

Table 5: Pearson Correlation for V-oc task. Best re-
sults are highlighted in bold.

Feature Set Pearson
Deepmoji (softmax layer) 0.703
Deepmoji (attention layer) 0.756
Emolnt 0.694
Unsupervised sentiment Neuron | 0.548
Skip-Thought Vectors 0.656
Combined 0.799

Table 6: Macro-Averaged Pearson Correlation for EI-
reg task. Best results are highlighted in bold.

Feature Set Pearson
Deepmoji softmax layer 0.611
Deepmoji attention layer 0.664
Emolnt 0.596
Unsupervised sentiment Neuron | 0.445
Skip-Thought Vectors 0.557
Combined 0.695

Table 7: Macro-Averaged Pearson Correlation for EI-
oc task. Best results are highlighted in bold.

We observe that deepmoji featurizer is the most
powerful featurizer of all the ones that we’ve used.
Also, we can see that stacking ensembles of mod-
els trained on the outputs of multiple featurizers
gives a significant improvement in performance.



3.3 System Limitations

We analyze the data points where our model’s pre-
diction is far from the ground truth. We observed
some limitations of the system, such as, some-
times understanding a tweet’s requires contextual
knowledge about the world. Such examples can
be very confusing for the model. We use deepmoji
pre-trained model which uses emojis as proxy for
labels, however partly due to the nature of twitter
conversations same emojis can be used for mul-
tiple emotions, for example, joy emojis can be
sometimes used to express joy, sometimes for sar-
casm or for insulting someone. One such example
is "Your club is a laughing stock’. Such cases are
sometimes incorrectly predicted by our system.

4 Future Work & Conclusion

The paper studies the effectiveness of various rep-
resentations of tweets and proposes ways to com-
bine them to obtain state-of-the-art results. We
also show that stacking ensemble of various clas-
sifiers learnt using different representations can
vastly improve the robustness of the system.
Further improvements can be made in the pre-
processing stage. Instead of discarding various
tokens such as punctuation’s, incorrectly spelled
words, etc, we can utilize the information by learn-
ing their semantic representations. Also, we can
improve the system performance by employing
multi-task learning techniques as various emotions
are not independent of each other and information
about one emotion can aid in predicting the other.
Furthermore, more robust techniques can be em-
ployed for distant supervision which are less prone
to noisy labels to get better quality training data.
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Abstract

This paper describes the results of the first
shared task on Multilingual Emoji Prediction,
organized as part of SemEval 2018. Given the
text of a tweet, the task consists of predicting
the most likely emoji to be used along such
tweet. Two subtasks were proposed, one for
English and one for Spanish, and participants
were allowed to submit a system run to one or
both subtasks. In total, 49 teams participated
in the English subtask and 22 teams submitted
a system run to the Spanish subtask. Evalua-
tion was carried out emoji-wise, and the final
ranking was based on macro F-Score. Data
and further information about this task can
be found at https://competitions.
codalab.org/competitions/17344.

1 Introduction

Emojis are small ideograms depicting objects,
people, and scenes (Cappallo et al., 2015). Emojis
are one of the main components of a novel way of
communication emerging from the advent of so-
cial media. They complement (usually) short text
messages with a visual enhancement which is, as
of now, a de-facto standard for online communi-
cation (Barbieri et al., 2017). Figure 1 shows an
example of a social media message displaying an
emoji.

Sometimes | think | wanna change the
world... and | forget it just starts with
changing me. ¥

Figure 1: Message from Twitter including a single red
heart emoji.

Emojis' can be considered somehow an evolu-
tion of character-based emoticons (Pavalanathan
and Eisenstein, 2015), and currently they represent
a widespread and pervasive global communication
device largely adopted by almost any social media
service and instant messaging platforms.

Any system targeting the task of modeling so-
cial media communication is expected to tackle
the usage of emojis. In fact, their semantic load is
sufficiently rich that oversimplifying them to sen-
timent carriers or boosters would be to neglect
the semantic richness of these ideograms, which
in addition to mood (%) include in their vocabu-
lary references to food (), sports (*.), scenery
(™), etc?. In general, however, effectively predict-
ing the emoji associated with a piece of content
may help to improve different NLP tasks (Novak
et al., 2015), such as information retrieval, gener-
ation of emoji-enriched social media content, sug-
gestion of emojis when writing text messages or
sharing pictures online. Given that emojis may
also mislead humans (Barbieri et al., 2017; Miller
et al., 2017), the automated prediction of emojis
may help to achieve better language understand-
ing. As a consequence, by modeling the semantics
of emojis, we can improve highly-subjective tasks
like sentiment analysis, emotion recognition and
irony detection (Felbo et al., 2017).

In this context, Barbieri et al. (2017) introduced
the task of emoji prediction in Twitter by training
several models based on bidirectional Long Short-
Term Memory networks (LSTMs) (Graves, 2012),
and showing they can outperform humans in solv-

'"https://unicode.org/emoji/charts/
full-emoji-list.html

https://unicode.org/emoji/charts/
emoji-ordering.html

Proceedings of the 12th International Workshop on Semantic Evaluation (SemEval-2018), pages 24-33
New Orleans, Louisiana, June 5-6, 2018. ©2018 Association for Computational Linguistics



ing the same task. These promising results moti-
vated us to propose the first shared task on Mul-
tilingual Emoji Prediction. Following the experi-
mental setting proposed by Barbieri et al. (2017),
the task consists of predicting most likely emoji
associated of a given text-only Twitter message.
Only tweets with a single emoji are included in
the task datasets (trial, train and test sets), so that
the challenge can be cast as a single label classifi-
cation problem.

In this paper, we first motivate and describe the
main elements of this shared task (Section 2 and
3). Then, we cover the dataset compilation, cura-
tion and release process (Section 4). In Section 5
we detail the evaluation metrics and describe the
overall results obtained by participating systems.
Finally, we wrap this task description paper up
with the main conclusions drawn from the orga-
nization of this challenge, as well as outlining po-
tential avenues for future work, in Section 6.

2 Related Work

Modeling the semantics of emojis, and their ap-
plications thereof, is a relatively novel research
problem with direct applications in any social me-
dia task. By explicitly modeling emojis as self-
containing semantic units, the goal is to allevi-
ate the lack of an associated grammar. This con-
text, which makes it difficult to encode a clear
and univocous single meaning for each emoji, has
given rise to work considering emojis as function
words or even affective markers (Na’aman et al.,
2017), potentially affecting the overall semantics
of longer utterances like sentences (Monti et al.,
2016; Donato and Paggio, 2017).

The polysemy of emoji has been explored user-
wise (Miller et al., 2017), location-wise, specifi-
cally in countries (Barbieri et al., 2016b) and cities
(Barbieri et al., 2016a), gender-wise, time-wise
(Barbieri et al., 2018b; Chen et al., 2017), and
even device-wise, due to the fact that emojis may
have different pictorial characteristics (and there-
fore, different interpretations), depending on the
device (e.g., Iphone, Android, Samsung, etc.) or
app (Whatsapp, Twitter, Facebook, and so forth)?
(Tigwell and Flatla, 2016; Miller et al., 2016).

3The image that represents the same emoji can vary, e.g.,
for the emoji U+1F40F, the following are over different ren-
derings by platform in Unicode v11 (up to April 2018): Ap-
ple ’?m', Google f:f, Twitter <., EmojiOne h, Facebook cw’,
Samsung ¥, Windows <.
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Today, modeling emoji semantics via vec-
tor representations is a well defined avenue of
work. Contributions in this respect include mod-
els trained on Twitter data (Barbieri et al., 2016c¢),
Twitter data together with the official unicode de-
scription (Eisner et al., 2016), or using text from a
popular keyboard app Ai et al. (2017). In the lat-
ter contribution it is argued that emojis used in an
affective context are more likely to become popu-
lar, and in general, the most important factor for an
emoji to become popular is to have a clear mean-
ing. In fact, the area of emoji vector evaluation has
also experienced a significant growth as of recent.
For instance, Wijeratne et al. (2017a) propose a
platform for exploring emoji semantics. Further
studies on evaluating emoji semantics may now
be carried out by leveraging two recently intro-
duced datasets with pairwise emoji similarity, with
human annotations, namely EmoTwi50 (Barbieri
et al., 2016¢c) and EmoSim508 (Wijeratne et al.,
2017b). In the application avenue, emoji similarity
has been studied for proposing efficient keyboard
emoji organization, essentially for placing similar
emojis close in the keyboard (Pohl et al., 2017).

An aspect related with emoji semantic mod-
eling in which awareness is increasing dramati-
cally is the inherent bias existing in these repre-
sentations. For example, Barbieri and Camacho-
Collados (2018) show that emoji modifiers can af-
fect the semantics of emojis (they looked specif-
ically into skin tones and gender). This recent
line of research has also been explored in Robert-
son et al. (2018) who argue, for example, that
users with darker-skinned profile photos employ
skin modifiers more often than users with lighter-
skinned profile photos, and that the vast majority
of skin tone usage matches the color of a user’s
profile photo.

The application of well defined emoji represen-
tations in extrinsic tasks is, an open area of re-
search. A natural application, however, lies in
the context of sentiment analysis. This has fos-
tered research, for example, in creating sentiment
lexicons for emojis (Novak et al., 2015; Kimura
and Katsurai, 2017; Rodrigues et al., 2018), or
in studying how emojis may be used to retrieve
tweets with specific emotional content (Wood and
Ruder, 2016). Moreover, Hu et al. (2017) study
how emojis affect the sentiment of a text message,
and show that not all emojis have the same im-
pact. Finally, the fact that emojis carry sentiment



and emotion information is verified in the study
by Felbo et al. (2017), where an emoji prediction
classifier is used as pre-trained system, and then is
fine-tuned for predicting sentiment, emotions and
irony.

The last item to be covered in this review in-
volves multimodality. Recently, emojis have been
also studied from a prism where visual signals are
incorporated, taking advantage of existing social
media platforms like Instagram, with a strong fo-
cus on visual content. Recent contributions show
that the usage of emojis depends on both textual
and visual content, but seem to agree in that, in
general, textual information is more relevant for
the task of emoji prediction (Cappallo et al., 2015,
2018; Barbieri et al., 2018a).

3 Task Description

Given a text message including an emoji, the emoji
prediction task consists of predicting that emoji by
relying exclusively on the textual content of that
message. In particular, in this task we focused on
the one emoji occurring inside tweets, thus relying
on Twitter data.

Last hike in our awesome camping
weekend! @

Figure 2: Example of tweet with an emoji at the end,
considered in the emoji prediction task.

The task is divided into two subtasks respec-
tively dealing with the prediction of the emoji as-
sociated to English and Spanish tweets. The mo-
tivation for providing a multilingual setting stems
from previous findings about the idiosyncrasy of
use of emojis across languages (Barbieri et al.,
2016b) (see Figure 3): one emoji may be used with
completely different meanings depending not only
on the language of the speaker, but also on regional
dialects (Barbieri et al., 2016a).

For each subtask we selected the tweets that in-
cluded one of the twenty emojis that occur most
frequently in the Twitter data we collected (Table
1). Therefore, the task can be viewed as a multi-
label classification problem with twenty labels.

Twitter datasets were shared among participants
by providing a list of tweet IDs* or directly the

*Participants ~ were  provided with a  Java-
based crawler (https://github.com/fra82/
twitter—crawler) to ease the download of the textual
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It's flipping hot out here! &

Iniciamos el nuevo afno con ilusion! &

Figure 3: Example of distinct use of the fire emoji
across languages: the first tweet (English) comments
on the torrid weather, while the second one (Spanish)
exploits the same emoji to wish an happy new year
(" We start the new year with enthusiasm!”).

English

1 23 45 6 7 8 91011121314 1516 17 18 19 20
VOoedyHoe 1VR=ELPLX0AEE

Spanish

1 23 45 6 7 8 91011121314 151617 18 19 20
Voedvovshbo aoYWPee® ' MNRo .

Table 1: The 20 most frequent emojis of each language
(due to a data processing issue we only considered 19
emojis in the Spanish task).

text of each tweet. The last approach was adopted
to share the test sets (more details are provided in
Section 4).

4 Task Data

The data for the task consists of a list of tweets
associated with a given emoji (i.e. label). As
explained in the previous section, the dataset in-
cludes tweets that contain one and only one emoji,
of the 20 most frequent emojis. We split the data
in trial’, training and test data. The quantity of
tweets per set is displayed in Table 2.

The tweets were retrieved with the Twitter APIs
and geolocalized in United States and Spain for
subtasks 1 and 2, respectively. As for the trial and
training data, the tweets were gathered from Oc-
tober 2015 to February 2017, whereas for the test
data we decided to gather the tweets correspond-
ing to the last months until the evaluation period
started (from May 2017 to Jan 2018). This would
prevent participants from gathering these tweets
before-hand and also would enable us to test the
emoji prediction task on a more realistic setting,
as the test data is subsequent to the training data.

content of tweets from the ID list.
5Trial data was used as development by participants.



Trial Training Test
English | 50,000 500,000 50,000
Spanish | 10,000 100,000 10,000

Table 2: Number of tweets for trial, training and test
for each of the subtasks.

5 Evaluation

This section introduces the overall evaluation set-
ting of this shared task. We first describe briefly
the evaluation metrics used and then provide a suc-
cinct description of the baseline system.

5.1 Evaluation Metrics

As this was a single label classification problem,
the classic precision (Prec.), recall (Recall), f-
score (F1) and accuracy (Acc.) were used as of-
ficial evaluation metrics. Note that because of the
skewed distribution of the label set we opted for
macro average over all labels.

5.2 Baseline

The baseline system for this task was a classifier
based on FastText® (Joulin et al., 2017). Given a
set of N documents, the loss that the model at-
tempts to minimize is the negative log-likelihood
over the labels (in our case, the emojis):

n=1

1
loss = N % en log(softmaz(BAy,))

where e,, is the emoji included in the n-th Twitter
post, represented as hot vector, and used as label.
Hyperparameters were set as default’.

5.3 Participant Systems

Due to the overwhelming number of participants,
we cannot describe all systems.8 We do, however,

®github.com/facebookresearch/fastText

"https://github.com/facebookresearch/
fastText#full-documentation

8This is the list of systems that ranked below the base-
line in either of the subtasks: #TeamINF (Ribeiro and Silva,
2018), CENNLP (J R et al., 2018), DUTH (Effrosynidis
et al.,, 2018), ECNU (Lu et al., 2018), EICA (Xie and
Song, 2018), EPUTION (Zhou et al., 2018), LIS (Guibon
et al., 2018), Manchester Metropolitan (Gerber and Shard-
low, 2018), Peperomia (Chen et al., 2018), PickleTeam!
(Groot et al., 2018), Shi (Shiyun et al., 2018), SyntNN (Zan-
zotto and Santilli, 2018), TAJJEB (Basile and Lino, 2018),
The Dabblers (Alexa et al., 2018), THU_NGN (Wu et al.,
2018), Tweety (Kopev et al., 2018), UMDSub (Wang and
Pedersen, 2018), YNU-HPCC (Wang et al., 2018). Note that
some participants did not submit a final paper but they are
included in the results table.
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briefly mention the main features of some signif-
icant systems ranked above the baseline in either
of the subtasks.

o Tiibingen-Oslo (Coltekin and Rama, 2018).
This supervised system consists of an SVM
classifier with bag-of-n-grams features (both
characters and words). Tiibingen-Oslo is the
top performing system in both tasks.

NTUA-SLP (Baziotis et al., 2018). This sys-
tem uses a Bi-LSTM with attention, and pre-
trained word2vec vectors. They used external
resources for associating each tweet with in-
formation on emotions, concreteness, famil-
iarity, and others. They only participated in
the English subtask but they classified second
(according to the F1 score) with the highest
recall.

EmoNLP (Liu, 2018). This system is based
on a Gradient Boosting Regression Tree Ap-
proach combined with a Bi-LSTM on char-
acter and word ngrams. It is complemented
with several lexicons as well as learning sen-
timent specific word embeddings.

UMDuluth-CS8761 (Beaulieu and
Asamoah Owusu, 2018) This supervised sys-
tem combines an SVM with a bag-of-words
approach for extracting salient features. This
is one of the most competitive systems with
the highest precision in English and the third
best result in Spanish.

Hatching Chick (Coster et al., 2018). This
system builds an SVM classifier (with gradi-
ent descent optimization) on words and char-
acter ngrams. They obtained the second best
result in the Spanish subtask, but their En-
glish system performed worse than the base-
line.

TAJJEB (Basile and Lino, 2018). This sys-
tem made use of an SVM classifier over wide
variety of features such as tf-idf, part-of-
speech tags and bigrams. The system was
competitive on both languages, outperform-
ing the baseline on the Spanish dataset.

Duluth UROP (Jin and Pedersen, 2018).
This system consists of a soft voting en-
semble approach combining different ma-
chine learning algorithms (Naive Bayes, Lo-



gistic Regression, Random Forests, etc.). In-
frequent classes are oversampled using the
SMOTE algorithm. As for features, they use
both unigrams and bigrams.

English | Spanish
Emo | F1 % | Emo | F1 %
O 878|216 | 9O |696]|214
© |378] 97| & |373]14.1
& 471|191 | & |534] 15
¢ [269] 52| ¢ | 85| 35
& 1555 74| @ | 149 5.1
©@ 1162 32| @ [269]| 4
= | 26| 4 L 1398 | 3.1
362 | 55 | @ |163]| 45
¥ | 24 | 31 13 | 1.8
3 22224 | B |499 | 42
40 | 29 | & | 147 | 34
= | 647| 39| € | 142 4.1
6371 25| € | 68 | 24
O 17122 @ | 77| 27
® 13 | 26 | @& 56 | 09
12921 25 20 | 4.2
@ | 143] 23| M 1237 21
4 |736] 31| W | 86| 13
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Table 4: Best F1 measure (among all the teams) for
each emoji in English (20) and Spanish (19). We also
report the relative frequency percentage of each emoji
in the test set.

5.4 Results

Each system was evaluated according to its capac-
ity to perform well across all emojis under consid-
eration. As mentioned, and due to the skewed dis-
tribution of the label set, we evaluated each partic-
ipating system according to Macro F-Score (F1).
The overall results are provided in Table 3,
and already several interesting conclusions can be
drawn from them. For instance, it is noteworthy
the fact that the best systems for both subtasks
are more than 10 points apart (English better),
which suggests that a one-size-fits-all model may
be suboptimal for this task, and that indeed the
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particularities of each individual language should
be taken into consideration for best performance.
The most precise systems were EmoNLP and
Tiibingen-Oslo, whereas the highest Recall was
obtained by NTUA-SLP and again Tiibingen-Oslo
(English and Spanish respectively, in both cases).
Clearly, the Tiibingen-Oslo system shows a fine
balance between precision and recall, perhaps due
to its little preprocessing, fine-tuning and reliance
on external libraries. It seems reasonable to as-
sume, thus, that combining word and ngram em-
beddings as features, with SVMs and NN classi-
fiers, provides a robust and high performing archi-
tecture for emoji prediction, with the added value
of being resource/knowledge agnostic.

5.5 Analysis

This evaluation is finally complemented with the
overall emoji-wise performance across all systems
(Table 4). The lexical notion of near synonymy
seems to clearly apply to emojis as well, as we can
clearly see a worse performance on those emojis
which are pictorically similar (e.g., the photo cam-
era with and without flash, or the expected con-
fusion between least frequent hearts and the red
heart, which accounts for over 20% of the whole
label set in the test data).

Finally, emojis with several interpretations and
less frequent seem to be much more difficult to
predict (e.g., the face & in the English and Span-
ish dataset, and © in the Spanish dataset). Zhou
et al. (2018) showed in their system description
paper how exploiting user-specific features may
provide significance performance boosts.” This
additional user-specific information may clearly
help in these difficult cases which proved to be
hard for all systems.

6 Conclusions

In this paper we have described the SemEval 2018
shared task in multilingual emoji prediction. The
task, consisting in predicting the most likely emoji
given the text of a tweet, was well received, with
almost 50 system runs submitted to the English
subtask and more than 20 to the Spanish subtask.
One of the main conclusions that can be drawn is
that the baseline we used (FastText) was highly
competitive, with only 6 and 5 system runs per-
forming better in English and Spanish.

°The use of user-specific data was not allowed by the main

competition regulations and therefore none of the systems in
the final ranking made use of it.



ENGLISH SPANISH

Team F1 Prec. Recall Acc. Team F1 Prec. Recall Acc.
Tiibingen-Oslo 3599 36.55 36.22 47.09 | Tiibingen-Oslo 2236 2349 2280 37.27
NTUA-SLP 3536 34.53 38.00 44.74 | Hatching Chick 18.73 20.66 19.16 37.23
hgsgnlp 34.02 35 33.57 45.55 | UMDuluth-CS8761 18.18 19.02 18.6 34.83
EmoNLP 33.67 39.43 337 47.46 | TAJJEB 17.08 18.99 2036 25.13
ECNU 33.35 35.17 33.11 46.3 | Duluth UROP 16.75 17.11 18.1 28.51
UMDuluth-CS8761 31.83 39.80 31.37 45.73 | BASELINE 16.72 16.84 17.52 31.63
BASELINE 30.98 30.34 33 42.56 | Nova 16.7 172 17.07 26.50
THU_NGN 30.25 31.85 29.81 42.18 | ECNU 1641 1691 1648 30.82
TAJJEB 30.13 2991 33.02 38.09 | MMU - Computing 16.34 17.83 16.4 2892
Emojilt 29.5 35.17 2991 39.21 | PickleTeam! 15.86 17.57 16.76 29.70
Reborn 29.24 33.67 2894 4243 | ART @ Tor Vergata 1491 1581 1551 30.68
freeze 29.13 31.54 29.23 37.14 | CENNLP 14.68 16.32 16.2 34.85
csy 2893 31.12 29 36.85 | YNU-HPCC 1425 17.51 1598 31.19
Nova 27.89 28.49 28.2 34.83 | Amrita CEN_.NLP1 12.13 1246 1241 21.64
Sheffield 27.18 28.57 26.61 37.69 | erai 11.36 12,72 1139 23.38
YNU-HPCC 26.89 2697 29.71 32.53 | Lips Eggplant 10.89 15.78 10.62 23.88
mboyanov 26.77 32.82 2742 36.79 | thelonewolf190694 10.87 11.13 12.55 27.04
kaka manData 26.59 30 26.97 36.34 | The Dabblers 9.2 17.28 9.92 27.72
Duluth UROP 26.59 27.18 27.87 33.8 | LIS 8.81 15.16 10.14 28.53
CENNLP 2645 31.62 26.87 41.18 | jogonba2 7.99 17.81 9.85 29.99
UMDSub 2599 3301 26.71 41 | hjpwhu 39 746 6.81 13.81
THU_HCSI 25.83 32.38 259 3534
Peperomia 25.68 2898 26.04 35.34

MMU - Computing 2498 28.94 25.04 34.59
NoEmotionsAttached  23.3 25.27 2447 32.76

PickleTeam! 2286 2617 2437 34.09
Reborn 2197 2652 22.06 30.64
PALM._gzy 2197 2652 22.06 30.64
#TeamINF 215 2621 20.84 31.59
Hatching Chick 2144 2597 2148 3652
CORAL 2135 3282 2248 34.05
Meisele 2002 2574 19.54 30.71
erai 1996 221 19.62 2836
SBIG 1944 2541 1612 19.84
The Dabblers 1892 25.02 1896 30.45

ART @ Tor Vergata 1839 2449 1725 29.45
Amrita CEN_NLP1 1796 1947 1775 24.41

Lips Eggplant 17.69 21.81 17.19 26.81
XSSX 16.45 3156 16.77 30.99
Kno.e.sis 1442 18.72 1849 18.99
thelonewolf190694 1421 13.66 17.35 30.7
LIS 13.53 2558 14.14 2942
uaic2018 11.06 13.65 11.24 19.61
jogonba2 852 24.16 9.51 256
SBIG2 6.44 18.76 8.49 12.64
alsu_wh 373 438 506 9.83
Innovating world 3.09 18.47 573 2274
hjpwhu 204 263 322 392

Table 3: Ranking of the participating systems by precision, recall, F1 and accuracy for the English track and the
Spanish track. Those above the horizontal line ranked above the task baseline.
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In terms of participating systems, and accord-
ing to the post-participation survey the participants
completed, we can see a high prevalence of neu-
ral approaches, with only 9 systems opting for
more traditional linear models (6 SVMs, 3 Ran-
dom Forests). Among the chosen neural architec-
tures, LSTMs and CNNs are by far the preferred
ones. It is noteworthy, however, the excellent per-
formance of SVMs as used in the best performing
system on both English and Spanish datasets.

This task has set the foundations for upcoming
work on modeling emoji semantics, first, by pro-
viding a standardized testbed for emoji prediction
in two languages, and second, by providing a com-
prehensive evaluation with a wide range of ideas,
which we hope are of use for future research.
Emojis, undoubtedly, are becoming increasingly
important in understanding social media commu-
nication and in human-computer interaction, and
thus we believe the problem of modeling emoji
semantics can be further extended as follows. (1)
Leveraging multimodal information (e.g., associ-
ated images (Barbieri et al., 2018a)); (2) incorpo-
rating more and more diverse languages (one step
in this direction will be the re-run of this task for
Italian at the Evalita 2018 evaluation campaign'®);
and (3) considering individual and communicative
contexts for overall performance improvements.
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Abstract

This paper describes our participation in the
SemEval-2018 task Multilingual Emoji Pre-
diction. We participated in both English and
Spanish subtasks, experimenting with support
vector machines (SVMs) and recurrent neural
networks. Our SVM classifier obtained the top
rank in both subtasks with macro-averaged F1-
measures of 35.99 % for English and 22.36 %
for Spanish data sets. Similar to a few earlier
attempts, the results with neural networks were
not on par with linear SVMs.

1 Introduction

Emojis are graphical symbols that represent an
idea or emotion. The use of emojis has become
popular over the last decade, particularly in in-
formal communication in the social media. Their
popularity kindled a recent interest in investigating
many aspects of emojis, including their interaction
with natural language (e.g., Barbieri et al., 2016,
2017; Felbo et al., 2017; Kralj Novak et al., 2015).
Although the emojis are presumably language-
independent, their use typically goes together with
linguistic text. In this context, the SemEval 2018
task 2, Multilingual Emoji Prediction (Barbieri
et al., 2018), aims predicting the emoji from the
surrounding micro-blogging (Twitter) text for En-
glish and Spanish.

The task at hand is to predict a label, an emoji,
from a short text that it accompanies. This is es-
sentially a text/document classification problem,
and shares many aspects of other text classifica-
tion problems such as topic classification, senti-
ment analysis, language identification and author-
ship attribution — just to name a few. Although
each of these problems have some task-specific as-
pects, the same models can be used for all of them.
In this study, we experiment with and compare two
well-known methods: support vector machines
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(SVMs) with bag of word/character n-gram fea-
tures and recurrent neural networks (RNNs) with
word and character sequences as input. The meth-
ods and implementations are similar to our earlier
attempts in other text classification tasks (Coltekin
and Rama, 2016; Rama and Coltekin, 2017; Col-
tekin and Rama, 2017).! In the remainder of this
paper, we describe our methods and experiments,
present and discuss our results.

2 Experiments and Results

We participated in both subtasks using the same
architectures. However, we trained and tuned
the model parameters on each data set separately.
The training set for the competition consisted of
500 000 tweets for English and 100 000 tweets for
Spanish subtask. The data sets contained most
frequent 20 emojis for English and 19 emojis for
Spanish. Joining late to the party, our training set
consisted of 485151 English tweets, and 97765
Spanish tweets, since about 3 % of the tweets were
not available by the time we crawled them. As pre-
sented in Figure 1, the label distribution is simi-
lar and quite skewed for both languages. We in-
cluded pre-processing steps of case normalization
and discarding low-frequency features as part of
our hyperparameter optimization. In all our exper-
iments, we use only the data supplied by the orga-
nizers. We did not use any external sources (e.g.,
pre-trained word embeddings), nor did we perform
any further linguistic processing (e.g., POS tag-
ging, or parsing). The test size for English and
Spanish is 50 000 and 10 000 respectively.

2.1 Support Vector Machines

The best results obtained in the shared task are
based on multi-class (one-vs-rest) linear support

! The source code of our implementation is available at
https://github.com/coltekin/emoji2018.
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Figure 1: Label distribution in both data sets. Ratio of
each label is plotted against its rank. Note that the emo-
jis sharing the same rank are not necessarily identical in
both languages.

vector machines (SVM). We use ‘bag of n-grams’
as features, combining both character n-grams and
word n-grams of different sizes, weighted by sub-
linear TF-IDF scaling applied globally to all n-
grams (character and word n-grams with varying
sizes). Although we also experimented with logis-
tic regression and random forests using the same
feature set, the results were consistently inferior to
the SVMs. Therefore, we will not discuss the re-
sults of logistic regression and random forests. The
models discussed in this section were implemented
with scikit-learn package (Pedregosa et al., 2011)
using liblinear back end (Fan et al., 2008).

We optimized the models for best macro F1-
score on each language data set through a grid
search using 5-fold cross validation. The hyper-
parameters considered during optimization were
maximum character/word n-gram size, case nor-
malization, minimum document frequency thresh-
old for excluding low-frequency features, and
SVM margin (or regularization) parameter ‘C’.
Although there has been other parameter settings
with competitive scores, we used maximum char-
acter n-grams size of 6, maximum word n-gram
size of 4, minimum document frequency threshold
of 2, SVM parameter C of 0.10, and we case nor-
malized only word (not character) n-grams. Our
submitted system achieved 36.55 precision, 36.22
recall and 35.99 F1-score on the English test set,
and 23.49 precision, 22.80 recall and 22.36 F1-
score on the Spanish test set. These figures were
about 1% lower than the figures we obtained in
5-fold cross validation results on the training data.

Figure 2 presents the effects of character and
word n-grams of different sizes. For all results pre-
sented in Figure 2, n-grams from size 1 up to the in-
dicated number are included as features. Although
both combining character and word n-grams, and
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Figure 2: The effect of maximum character and word n-
gram size combinations to F1-measure. Darker shades
indicate higher F1-measure.

larger n-gram sizes increase the performance, the
gains from higher n-gram values are rather small.
The effects of other hyperparameters are smaller.
In general, however, excluding features based on
frequency seems to hurt the performance. Case
normalization is useful if applied to word n-grams,
but its effects are often negative if it is applied to
both character and word n-grams. The optimum
regularization parameter ‘C’ is stable over both
languages and different training sizes.

2.2 Recurrent Neural Networks

Gaining popularity relatively recently, neural
models are another common approach to text clas-
sification. Fully-connected networks are compu-
tationally impractical. However, convolutional
networks (CNNs) and recurrent neural networks
(RNNs) offer reasonably efficient computation, as
well as better modeling of sequences. RNNs, par-
ticularly gated RNNs, have been used in many di-
verse natural language processing tasks success-
fully, and text classification is not an exception.
Our neural model includes two bidirectional
RNN components: one taking a sequence of words
as input and another taking a sequence of charac-
ters as input. The recurrent components of the net-
work builds two representations for the text (one
based on characters, the other based on words), the
representations are concatenated and passed to a
fully connected softmax layer that assigns an emoji
to the document based on the RNN representa-
tions. Since the tweets are relatively short, we did
not truncate the input documents. For both char-
acter and word inputs, we used embedding layers
before the RNN layers. All neural network exper-
iments were implemented with Tensorflow (Abadi
etal., 2015) using Keras API (Chollet et al., 2015).



Although the history/context is not a parameter
for recurrent networks, the architecture has many
hyperparameters. We optimized the hyperparame-
ters of the architecture through a random search for
the embedding size of both characters and words,
the hidden representation size of the RNN cells,
the dropout parameter for each component of the
network, frequency threshold for excluding fea-
tures, RNN architecture, GRU (Cho et al., 2014)
or LSTM (Hochreiter and Schmidhuber, 1997),
and case normalization. For the RNN models,
we used a random training—validation split (80 %—
20 % for Spanish, and 90 %—10 % for English) dur-
ing hyperparameter tuning. We used early stop-
ping based on macro F1-measure, and picked the
epoch with the best F1-measure for each hyperpa-
rameter setting. Besides these parameters — used
for systematic random search — we also experi-
mented with deeper architectures, both by stack-
ing RNNs and by multiple fully-connected layers.
Deeper networks, however, yielded worse results.

We obtained F1-scores of 33.02 % for English
data and 17.98 % for the Spanish data on the (ran-
domly split) development set. For both subtasks,
we submitted results with the hyperparameter set-
ting that worked best on the English data set (al-
though it yielded a slightly lower Fl-score than
the best one obtained for Spanish). For both lan-
guages, the RNN results submitted used a model
with embedding layers of size 32 (for characters)
and 128 (for words). In the case of bidirectional
GRU networks we used hidden units of sizes 32
and 128 for character and word input, respectively,
minimum frequency threshold of 4 for characters
and 1 for words, dropout parameter of 0.50 at the
embedding layers and 0.10 at the RNN layers, and
no case normalization.

2.3 Effect of training set size

The performance with different training set sizes is
an important consideration in model choice. Fur-
thermore, since the training set sizes for the two
languages in present study are different, it is also
be a plausible explanation for the fact that sub-
stantially lower performance of both models on the
Spanish task. To shed light into these two issues,
we present incremental results on (only) the En-
glish data set. In this experiment, we randomly set
aside 10 % of the English training data for testing,
we split the remaining 90 % into 10 splits, and train
both systems by starting with one of splits, and in-
crementally adding another one in each iteration.
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Figure 3: Learning curve for the SVM and RNN mod-
els on the English training set. The error bars indicate
maximum and minimum values in 10 trials.

Figure 3 shows the Fl-score against training set
size, for both SVM and RNN models.

3 Discussion and conclusions

In this paper, we described our submitted systems
at SemEval-2018 Task 2 on Multilingual Emoji
Prediction. Besides providing details on our sys-
tems, this paper also intends to provide a com-
parison between two text classification methods:
RNNs and linear SVMs. The comparison is mo-
tivated by the fact that, despite their popularity
and argued superiority, we and others found lin-
ear models, particularly SVMs, yield better re-
sults than (deep) neural models in a series of other
text classification tasks (e.g., Coltekin and Rama,
2016; Rama and Coltekin, 2017; Coltekin and
Rama, 2017; Medvedeva et al., 2017).

One plausible explanation is the fact that neu-
ral networks typically require more data to train.
Indeed, the previous shared tasks cited above of-
ten provided modest-size training sets, mainly due
to the cost of labeling. Emoji classification task
has an advantage in this respect as the labeling
is relatively cheap compared to many other text
classification tasks. As a result, at least for En-
glish, the shared task included a rather large train-
ing set. However, our current findings also indi-
cate that the linear SVMs still perform better than
the RNN counterparts. Although the results pre-
sented in Figure 3 indicate that more data is, in-
deed, helpful for RNNs, the performance gap in
favor of SVMs persists. Another interesting (but
expected due to model complexity) observation in
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Figure 4: Confusion matrices for both data sets. The labels are sorted by frequency.

Figure 3 is that the RNNs also exhibit larger vari-
ation, especially with smaller data sizes.

Our findings seem to contradict with the major-
ity of recent NLP literature, where RNNs are of-
ten claimed to be superior to linear models, and
emoji classification is not an exception (e.g., Bar-
bieri et al., 2017). Part of this impression comes
from the fact that, in most studies, the linear base-
lines used in comparison are simple bag-of-words
models. As words in a text are not independent,
simple bag-of-words is deemed to fail. The sim-
ple addition of word n-gram features, however, cir-
cumvents this problem to a large extent, enabling
the linear models to capture some local dependen-
cies. RNNs, however, still have a potential advan-
tage since they can, at least in theory, capture long-
range dependencies as well. However, it seems ei-
ther local dependencies are enough in many text
classification tasks, or the data sets are (still) small
for RNNSs to generalize over useful long-range de-
pendencies. Furthermore, character n-gram fea-
tures are also useful, particularly for morphologi-
cally rich languages, as they also capture informa-
tion present in sub-word units. Although including
many overlapping character and word n-gram fea-
tures result in large feature vectors, the sparse im-
plementations of these models are computationally
feasible and easy to tune — often more than corre-
sponding deep neural network models.

A curious finding from our experiments is that
despite the language-agnostic nature of our meth-
ods, both models yielded a rather large perfor-
mance difference (13.63 % F1-measure on the test
set) between English and Spanish. The possible
explanation based on training set size is not sup-
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ported by the experiments presented in Section 2.3.
Figure 3 shows that, at about the training set size
of Spanish data (100000 instances), one can ob-
tain about 32 % F1-score on the English data set,
which is substantially higher than the best test and
development set results we obtained using the full
training data for Spanish (22.36 % and 23.59 % re-
spectively). Hence, the difference is likely to be ei-
ther due to differences between the languages, or
due to some inherent confusability of the emojis
in the Spanish data set. The confusion matrices
in Figure 4 indicate higher majority class bias for
Spanish. More experiments are needed for a better
understanding of the differences.

3.1 Future directions

Past research has found that ensemble methods
that combine multiple classifiers yield better per-
formance compared to each individual classifier
(Malmasi and Dras, 2015). Besides the differences
in the learning algorithms, the models we com-
pare in this work exploit rather different types of
information. Hence, a combination of classifiers
may result in better performance. Even though we
did not experiment with ensemble methods in this
work, the number of test instances that were pre-
dicted correctly by one of the models (but not by
both) was 17.28 % and 19.95 % for English and the
Spanish data respectively, indicating a promising
upper bound for an ensemble approach.

Although we did not use any external resources
in this task, another potential source of improve-
ment is to use external information (e.g., embed-
dings or cluster labels) extracted from large unla-
beled texts.
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Abstract

This paper presents the first shared task on
irony detection: given a tweet, automatic nat-
ural language processing systems should de-
termine whether the tweet is ironic (Task A)
and which type of irony (if any) is expressed
(Task B). The ironic tweets were collected us-
ing irony-related hashtags (i.e. #irony, #sar-
casm, #not) and were subsequently manually
annotated to minimise the amount of noise in
the corpus. Prior to distributing the data, hash-
tags that were used to collect the tweets were
removed from the corpus. For both tasks, a
training corpus of 3,834 tweets was provided,
as well as a test set containing 784 tweets.
Our shared tasks received submissions from
43 teams for the binary classification Task A
and from 31 teams for the multiclass Task B.
The highest classification scores obtained for
both subtasks are respectively F1= 0.71 and
Fi= 0.51 and demonstrate that fine-grained
irony classification is much more challenging
than binary irony detection.

1 Introduction

The development of the social web has stimulated
the use of figurative and creative language, includ-
ing irony, in public (Ghosh et al., 2015). From a
philosophical/psychological perspective, discern-
ing the mechanisms that underlie ironic speech im-
proves our understanding of human reasoning and
communication, and more and more, this interest
in understanding irony also emerges in the ma-
chine learning community (Wallace, 2015). Al-
though an unanimous definition of irony is still
lacking in the literature, it is often identified as a
trope whose actual meaning differs from what is
literally enunciated. Due to its nature, irony has
important implications for natural language pro-
cessing (NLP) tasks, which aim to understand and
produce human language. In fact, automatic irony
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detection has a large potential for various appli-
cations in the domain of text mining, especially
those that require semantic analysis, such as au-
thor profiling, detecting online harassment, and,
maybe the most well-known example, sentiment
analysis.

Due to its importance in industry, sentiment
analysis research is abundant and significant
progress has been made in the field (e.g. in the con-
text of SemEval (Rosenthal et al., 2017)). How-
ever, the SemEval-2014 shared task Sentiment
Analysis in Twitter (Rosenthal et al., 2014) demon-
strated the impact of irony on automatic senti-
ment classification by including a test set of ironic
tweets. The results revealed that, while senti-
ment classification performance on regular tweets
reached up to Fi;= 0.71, scores on the ironic
tweets varied between F1= 0.29 and F;= 0.57. In
fact, it has been demonstrated that several applica-
tions struggle to maintain high performance when
applied to ironic text (e.g. Liu, 2012; Maynard
and Greenwood, 2014; Ghosh and Veale, 2016).
Like other types of figurative language, ironic text
should not be interpreted in its literal sense; it re-
quires a more complex understanding based on as-
sociations with the context or world knowledge.
Examples 1 and 2 are sentences that regular senti-
ment analysis systems would probably classify as
positive, whereas the intended sentiment is unde-
niably negative.

(1) Ifeel so blessed to get ocular migraines.

(2) Go ahead drop me hate, I'm looking for-
ward to it.

For human readers, it is clear that the author of
example 1 does not feel blessed at all, which can
be inferred from the contrast between the positive
sentiment expression “I feel so blessed”, and the
negative connotation associated with getting ocu-
lar migraines. Although such connotative infor-

Proceedings of the 12th International Workshop on Semantic Evaluation (SemEval-2018), pages 39-50
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mation is easily understood by most people, it is
difficult to access by machines. Example 2 illus-
trates implicit cyberbullying; instances that typi-
cally lack explicit profane words and where the
offense is often made through irony. Similarly to
example 1, a contrast can be perceived between a
positive statement (“I’m looking forward to”) and
a negative situation (i.e. experiencing hate). To be
able to interpret the above examples correctly, ma-
chines need, similarly to humans, to be aware that
irony is used, and that the intended sentiment is
opposite to what is literally enunciated.

The irony detection task!' we propose is formu-
lated as follows: given a single post (i.e. a tweet),
participants are challenged to automatically de-
termine whether irony is used and which type of
irony is expressed. We thus defined two subtasks:

e Task A describes a binary irony classifica-
tion task to define, for a given tweet, whether
irony is expressed.

Task B describes a multiclass irony classi-
fication task to define whether it contains a
specific type of irony (verbal irony by means
of a polarity clash, situational irony, or an-
other type of verbal irony, see further) or is
not ironic. Concretely, participants should
define which one out of four categories a
tweet contains: ironic by clash, situational
irony, other verbal irony or not ironic.

It is important to note that by a tweet, we under-
stand the actual text it contains, without metadata
(e.g. user id, time stamp, location). Although such
metadata could help to recognise irony, the objec-
tive of this task is to learn, at message level, how
irony is linguistically realised.

2 Automatic Irony Detection

As described by Joshi et al. (2017), recent ap-
proaches to irony can roughly be classified as ei-
ther rule-based or (supervised and unsupervised)
machine learning-based. While rule-based ap-
proaches mostly rely upon lexical information and
require no training, machine learning invariably
makes use of training data and exploits different
types of information sources (or features), such as
bags of words, syntactic patterns, sentiment infor-
mation or semantic relatedness.

'All practical information, data download links and the

final results can be consulted via the CodaLab website of our
task: https://competitions.codalab.org/competitions/17468.
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Previous work on irony detection mostly ap-
plied supervised machine learning mainly exploit-
ing lexical features. Other features often include
punctuation mark/interjection counts (e.g Davi-
dov et al., 2010), sentiment lexicon scores (e.g.
Bouazizi and Ohtsuki, 2016; Farias et al., 2016),
emoji (e.g. Gonzdlez-Ibafiez et al., 2011), writ-
ing style, emotional scenarios, part of speech-
patterns (e.g. Reyes et al., 2013), and so on. Also
beneficial for this task are combinations of differ-
ent feature types (e.g. Van Hee et al., 2016b), au-
thor information (e.g. Bamman and Smith, 2015),
features based on (semantic or factual) opposi-
tions (e.g Karoui et al., 2015; Gupta and Yang,
2017; Van Hee, 2017) and even eye-movement
patterns of human readers (Mishra et al., 2016).
While a wide range of features are and have been
used extensively over the past years, deep learning
techniques have recently gained increasing popu-
larity for this task. Such systems often rely on se-
mantic relatedness (i.e. through word and charac-
ter embeddings (e.g. Amir et al., 2016; Ghosh and
Veale, 2016)) deduced by the network and reduce
feature engineering efforts.

Regardless of the methodology and algorithm
used, irony detection often involves binary clas-
sification where irony is defined as instances that
express the opposite of what is meant (e.g. Riloff
et al., 2013; Joshi et al., 2017). Twitter has been
a popular data genre for this task, as it is eas-
ily accessible and provides a rapid and convenient
method to find (potentially) ironic messages by
looking for hashtags like #irony, #not and #sar-
casm. As a consequence, irony detection research
often relies on automatically annotated (i.e. based
on irony-related hashtags) corpora, which contain
noise (Kunneman et al., 2015; Van Hee, 2017).

3 Task Description

We propose two subtasks A and B for the auto-
matic detection of irony on Twitter, for which we
provide more details below.

3.1 Task A: Binary Irony Classification

The first subtask is a two-class (or binary) classi-
fication task where submitted systems have to pre-
dict whether a tweet is ironic or not. The following
examples respectively present an ironic and non-
ironic tweet.

(3) I just love when you test my patience!!
#not.



(4) Had no sleep and have got school now
#not happy

Note that the examples contain irony-related
hashtags (e.g. #irony) that were removed from the
corpus prior to distributing the data for the task.

3.2 Task B: Multiclass Irony Classification

The second subtask is a multiclass classification
task where submitted systems have to predict one
out of four labels describing i) verbal irony re-
alised through a polarity contrast, ii) verbal irony
without such a polarity contrast (i.e. other verbal
irony), iii) descriptions of situational irony, and iv)
non-irony. The following paragraphs present a de-
scription and a number of examples for each label.

Verbal irony by means of a polarity contrast
This category applies to instances containing an
evaluative expression whose polarity (positive,
negative) is inverted between the literal and the in-
tended evaluation, as shown in examples 5 and 6:

Vv
)%

(5) I love waking up with migraines #not

(6) [ really love this year’s summer; weeks
and weeks of awful weather

In the above examples, the irony results from a
polarity inversion between two evaluations. For
instance, in example 6, the literal evaluation (“I
really love this year’s summer”) is positive, while
the intended one, which is implied by the context
(“weeks and weeks of awful weather”), is nega-
tive.

Other verbal irony This category contains in-
stances that show no polarity contrast between the
literal and the intended evaluation, but are never-
theless ironic.

(7)

@someuser Yeah keeping cricket clean,
that’s what he wants #Sarcasm

(8) Human brains disappear every day. Some
of them have never even appeared.
http://t.co/FbOAq5Frqs #brain #human-

brain #Sarcasm

Situational irony This class label is reserved for
instances describing situational irony, or situations
that fail to meet some expectations. As explained
by Shelley (2001), firefighters who have a fire in
their kitchen while they are out to answer a fire
alarm would be a typically ironic situation. Some
other examples of situational irony are the follow-
ing:
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(9) Most of us didn’t focus in the #ADHD lec-
ture. #irony
(10) Event technology session is having Inter-

net problems. #irony #HSC2024

Non-ironic This class contains instances that are
clearly not ironic, or which lack context to be sure
that they are ironic, as shown in the following ex-
amples:

(11) And then my sister should be home from
college by time I get home from babysit-
ting. And it’s payday. THIS IS A GOOD
FRIDAY

Is Obamacare Slowing Health Care
Spending ? #NOT

12)

4 Corpus Construction and Annotation

A data set of 3,000 English tweets was constructed
by searching Twitter for the hashtags #irony, #sar-
casm and #not (hereafter referred to as the ‘hash-
tag corpus’), which could occur anywhere in the
tweet that was finally included in the corpus.
All tweets were collected between 01/12/2014
and 04/01/2015 and represent 2,676 unique users.
To minimise the noise introduced by ground-
less irony hashtags, all tweets were manually la-
belled using a fine-grained annotation scheme for
irony (Van Hee et al., 2016a). Prior to data anno-
tation, the entire corpus was cleaned by removing
retweets, duplicates and non-English tweets and
replacing XML-escaped characters (e.g. &amp; ).

The corpus was entirely annotated by three stu-
dents in linguistics and second-language speak-
ers of English, with each student annotating one
third of the whole corpus. All annotations were
done using the brat rapid annotation tool (Stene-
torp et al.,, 2012). To assess the reliability of
the annotations, and whether the guidelines al-
lowed to carry out the task consistently, an inter-
annotator agreement study was set up in two
rounds. Firstly, inter-rater agreement was calcu-
lated between the authors of the guidelines to test
the guidelines for usability and to assess whether
changes or additional clarifications were recom-
mended prior annotating the entire corpus. For
this purpose, a subset of 100 instances from the
SemEval-2015 Task Sentiment Analysis of Figu-
rative Language in Twitter (Ghosh et al., 2015)
dataset were annotated. Based on the results,
some clarifications and refinements were added to



the annotation scheme, which are thoroughly de-
scribed in Van Hee (2017). Next, a second agree-
ment study was carried out on a subset (i.e. 100
randomly chosen instances) of the corpus. As
metric, we used Fleiss’ Kappa (Fleiss, 1971),
a widespread statistical measure in the field of
computational linguistics for assessing annotator
agreement on categorical ratings (Carletta, 1996).
The measure calculates the degree of agreement
in classification over the agreement which would
be expected by chance, i.e. when annotators would
randomly assign class labels.

annotation Kappa v Kappa «
round 1  round 2

ironic / not ironic 0.65 0.72

ironic by clash / other / not ironic 0.55 0.72

Table 1: Inter-annotator agreement scores (Kappa) in
two annotation rounds.

Table 1 presents the inter-rater scores for the bi-
nary irony distinction and for three-way irony clas-
sification (‘other’ includes both situational irony
and other forms of verbal irony). We see that better
inter-annotator agreement is obtained after the re-
finement of the annotation scheme, especially for
the binary irony distinction. Given the difficulty
of the task, a Kappa score of 0.72 for recognising
irony can be interpreted as good reliability?.

The distribution if the different irony types in
the experimental corpus are presented in Table 2.

class label # instances

Verbal irony by means of a polarity contrast 1,728
Other types of verbal irony 267
Situational irony 401
Non-ironic 604

Table 2: Distribution of the different irony categories
in the corpus

Based on the annotations, 2,396 instances out of
the 3,000 are ironic, while 604 are not. To balance
the class distribution in our experimental corpus,
1,792 non-ironic tweets were added from a back-
ground corpus. The tweets in this corpus were
collected from the same set of Twitter users as
in the hashtag corpus, and within the same time
span. It is important to note that these tweets do
not contain irony-related hashtags (as opposed to
the non-ironic tweets in the hashtag corpus), and
were manually filtered from ironic tweets. Adding

2 According to magnitude guidelines by Landis and Koch
1977).
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these non-ironic tweets to the experimental cor-
pus brought the total amount of data to 4,792
tweets (2,396 ironic + 2,396 non-ironic). For
this shared task, the corpus was randomly split
into a class-balanced training (80% or 3,833 in-
stances) and test (20%, or 958 instances) set. In
an additional cleaning step, we removed ambigu-
ous tweets (i.e. where additional context was re-
quired to understand their ironic nature), from the
test corpus, resulting in a test set containing 784
tweets (consisting of 40% ironic and 60% non-
ironic tweets).

To train their systems, participants were not re-
stricted to the provided training corpus. They were
allowed to use additional training data that was
collected and annotated at their own initiative. In
the latter case, the submitted system was consid-
ered unconstrained, as opposed to constrained if
only the distributed training data were used for
training.

It is important to note that participating teams
were allowed ten submissions at Codalab, and
that they could submit a constrained and uncon-
strained system for each subtask. However, only
their last submission was considered for the offi-
cial ranking (see Table 3).

5 Evaluation

For both subtasks, participating systems were
evaluated using standard evaluation metrics, in-
cluding accuracy, precision, recall and F; score,
calculated as follows:

true positives + true negatives

accuracy = 1
Y total number of instances M
. true positives
precision = — — 2
true positives + false positives
true positives
recall = — - 3)
true positives + false negatives
recision - recall
Fi=2.L 4)

precision + recall

While accuracy provides insights into the sys-
tem performance for all classes, the latter three
measures were calculated for the positive class
only (Task A) or were macro-averaged over four
class labels (Task B). Macro-averaging of the
F; score implies that all class labels have equal
weight in the final score.



For both subtasks, two baselines were provided
against which to compare the systems’ perfor-
mance. The first baseline randomly assigns irony
labels and the second one is a linear SVM classi-
fier with standard hyperparameter settings exploit-
ing tf-idf word unigram features (implemented
with scikit-learn (Pedregosa et al., 2011)). The
second baseline system is made available to the
task participants via GitHub?.

6 Systems and results for Task A

In total, 43 teams competed in Task A on binary
irony classification. Table 3 presents each team’s
performance in terms of accuracy, precision, re-
call and F; score. In all tables, the systems are
ranked by the official F; score (shown in the fifth
column). Scores from teams that are marked with
an asterisk should be interpreted carefully, as the
number of predictions they submitted does not
correspond to the number of test instances.

As can be observed from the table, the SVM
unigram baseline clearly outperforms the random
class baseline and generally performs well for
the task. Below we discuss the top five best-
performing teams for Task A, which all built a
constrained (i.e. only the provided training data
were used) system. The best system yielded
an F; score of 0.705 and was developed by
THU_NGN (Wu et al.,, 2018). Their architec-
ture consists of densely connected LSTMs based
on (pre-trained) word embeddings, sentiment fea-
tures using the AffectiveTweet package (Moham-
mad and Bravo-Marquez, 2017) and syntactic fea-
tures (e.g. PoS-tag features + sentence embedding
features). Hypothesising that the presence of a cer-
tain irony hashtag correlates with the type of irony
that is used, they constructed a multi-task model
able to predict simultaneously 1) the missing irony
hashtag, 2) whether a tweet is ironic or not and 3)
which fine-grained type of irony is used in a tweet.

Also in the top five are the teams NTUA-
SLP (Fi= 0.672), WLV (F;= 0.650), NLPRL-
HTBHU (Fi= 0.648) and NIHRIO (F;= 0.648).
NTUA-SLP (Baziotis et al., 2018) built an en-
semble classifier of two deep learning models: a
word- and character-based (bi-directional) LSTM
to capture semantic and syntactic information in
tweets, respectively. As features, the team used
pre-trained character and word embeddings on
a corpus of 550 million tweets. Their ensem-

3https://github.com/Cyvhee/SemEval2018-Task3/
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ble classifier applied majority voting to combine
the outcomes of the two models. WLV (Roha-
nian et al.,, 2018) developed an ensemble vot-
ing classifier with logistic regression (LR) and
a support vector machine (SVM) as component
models. They combined (through averaging) pre-
trained word and emoji embeddings with hand-
crafted features, including sentiment contrasts be-
tween elements in a tweet (i.e. left vs. right sec-
tions, hashtags vs. text, emoji vs. text), senti-
ment intensity and word-based features like flood-
ing and capitalisation). For Task B, they used
a slightly altered (i.e. ensemble LR models and
concatenated word embeddings instead of aver-
aged) model. NLPRL-IITBHU (Rangwani et al.,
2018) ranked fourth and used an XGBoost Classi-
fier to tackle Task A. They combined pre-trained
CNN activations using DeepMoji (Felbo et al.,
2017) with ten types of handcrafted features.
These were based on polarity contrast information,
readability metrics, context incongruity, charac-
ter flooding, punctuation counts, discourse mark-
ers/intensifiers/interjections/swear words counts,
general token counts, WordNet similarity, polarity
scores and URL counts. The fifth best system for
Task A was built by NIHRIO (Vu et al., 2018) and
consists of a neural-networks-based architecture
(i.e. Multilayer Perceptron). The system exploited
lexical (word- and character-level unigrams, bi-
grams and trigrams), syntactic (PoS-tags with tf-
idf values), semantic features (word embeddings
using GloVe (Pennington et al., 2014), LSI fea-
tures and Brown cluster features (Brown et al.,
1992)) and polarity features derived from the Hu
and Liu Opinion Lexicon (Hu and Liu, 2004).

As such, all teams in the top five approached the
task differently, by exploiting various algorithms
and features, but all of them clearly outperformed
the baselines. Like most other teams, they also
showed a better performance in terms of recall
compared to precision.

Table 3 displays the results of each team’s of-
ficial submission for Task A, i.e. no distinction is
made between constrained and unconstrained sys-
tems. By contrast, Tables 4 and 5 present the rank-
ings of the best (i.e. not necessarily the last, and
hence official submission) constrained and uncon-
strained submissions for Task A.

As can be deduced from Table 4, when consid-
ering all constrained submissions from each team
and ranking them based on performance, we see



team acc precision  recall Fi
THU_NGN 0.735 0.630 0.801 0.705
NTUA-SLP 0.732 0.654 0.691 0.672
WLV 0.643 0.532 0.836  0.650
NLPRL- 0.661 0.551 0.788  0.648
IITBHU

NIHRIO 0.702 0.609 0.691 0.648
DLUTNLP-1 0.628 0.520 0.797  0.629
ELiRF-UPV 0.611 0.506 0.833  0.629
liangxh16 0.659 0.555 0.714  0.625
cl 0.667 0.565 0.695 0.623
#NonDicevo- 0.679 0.583 0.666 0.622
SulSerio

UWB 0.688 0.599 0.643  0.620
INAOE-UPV 0.651 0.546 0.714 0.618
RM@IT 0.649 0.544 0.714 0.618
DUTQS 0.601 0.498 0.794 0.612
ISP RAS 0.565 0.473 0.849 0.608
ValenTO 0.598 0.496 0.781 0.607
“binarizer 0.666 0.553 0.647 0.596
SIRIUS_LC 0.684 0.604 0.588 0.596
warnikchow 0.644 0.543 0.656 0.594
ECNU 0.596 0.494 0.743  0.593
Parallel

Computing-

Network Re- | 0.617 0.513 0.701  0.592
search Group

Lancaster 0.635 0.532 0.666 0.591
Unigram SVM | 0.635 0.532 0.659 0.589
BL

IITBHU-NLP 0.566 0.472 0.778  0.587
s1998 0.629 0.526 0.653 0.583
Random Deci-

sion -

Syntax Trees 0.617 0.514 0.672  0.582
textbflyreact 0.628 0.525 0.640 0.577
UTH-SU 0.639 0.540 0.605 0.571
KLUEnicorn 0.594 0.491 0.643  0.557
ai-ku 0.643 0.555 0.502 0.527
UTMN 0.603 0.500 0.556  0.527
UCDCC 0.682 0.645 0.444  0.526
IITG 0.556 0.450 0.540 0.491
MI&T-LAB 0.614 0.514 0.463 0.487
*NEUROSENT- | 0.504 0.409 0.560 0.472
PDI

Lovelace 0.512 0.412 0.543  0.469
codersTeam 0.509 0.410 0.543  0.468
WHLL 0.580 0.469 0.437 0.453
DKE_UM 0.561 0.447 0.450 0.449
LDR 0.564 0.446 0.415 0.430
*YNU-HPCC 0.509 0.391 0.428  0.408
Random BL 0.503 0.373 0.373 0.373
ACMK- 0.620 0.550 0.232  0.326
POZNAN

iiidyt 0.352 0.257 0.334 0.291
milkstout 0.584 0.427 0.142 0.213
INGEOTEC- 0.628 0.880 0.071 0.131
IIMAS

Table 3: Official (Codal.ab) results for Task A, ranked
by F; score. The highest scores in each column are
shown in bold and the baselines are indicated in purple.
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that the UCDCC team ranks first (F;= 0.724),
followed by THU_NGN, NTUA-SLP, WLV and
NLPRL-IITBHU, whose approach was discussed
earlier in this paper. The UCDCC-system is an
LSTM model exploiting Glove word embedding
features.

team ace precision  recall F,
UCDCC 0.797 0.788 0.669 0.724
THU_NGN 0.735 0.630 0.801 0.705
NTUA-SLP 0.732 0.654 0.691 0.672
WLV 0.643 0.532 0.836 0.650
NLPRL- 0.661 0.551 0.788  0.648
IITBHU

NCL 0.702 0.609 0.691 0.648
RM@IT 0.691 0.598 0.679  0.636
#NonDicevo- 0.666 0.562 0.717 0.630
SulSerio

DLUTNLP-1 0.628 0.520 0.797 0.629
ELiRF-UPV 0.611 0.506 0.833  0.629

Table 4: Best constrained systems for Task A.

team acc  precision recall ¥
#NonDicevo- 0.679 0.583 0.666  0.622
SulSerio

INAOE-UPV 0.651 0.546 0.714 0.618
RM@IT 0.649 0.544 0.714 0.618
ValenTO 0.598 0.496 0.781  0.607
UTMN 0.603 0.500 0.556  0.527
TG 0.556 0.450 0.540 0491
LDR 0.571 0.455 0.408 0.431
milkstouts 0.584 0.427 0.142 0.213
INGEOTEC- 0.643 0.897 0.113  0.200
IIMAS

Table 5: Best unconstrained systems for Task A.

In the top five unconstrained (i.e. using ad-
ditional training data) systems for Task A are
#NonDicevoSulSerio, INAOE-UPV, RM@IT, Va-
lIenTO and UTMN, with F; scores ranging be-
tween 0.622 and 0.527. #NonDicevoSulserio ex-
tended the training corpus with 3,500 tweets from
existing irony corpora (e.g. Riloff et al. (2013);
Barbieri and Saggion (2014); Ptacek et al. (2014)
and built an SVM classifier exploiting struc-
tural features (e.g. hashtag count, text length),
sentiment- (e.g. contrast between text and emoji
sentiment), and emotion-based (i.e. emotion lexi-
con scores) features. INAOE-UPV combined pre-
trained word embeddings from the Google News
corpus with word-based features (e.g. n-grams).
They also extended the official training data with
benchmark corpora previously used in irony re-
search and trained their system with a total of
165,000 instances. RM@IT approached the task
using an ensemble classifier based on attention-
based recurrent neural networks and the Fast-



Text (Joulin et al., 2017) library for learning word
representations. They enriched the provided train-
ing corpus with, on the one hand, the data sets
provided for SemEval-2015 Task 11 (Ghosh et al.,
2015) and, on the other hand, the sarcasm cor-
pus composed by Pticek et al. (2014). Alto-
gether, this generated a training corpus of approx-
imately 110,000 tweets. ValenTO took advantage
of irony corpora previously used in irony detection
that were manually annotated or through crowd-
sourcing (e.g. Riloff et al., 2013; Ptacek et al.,
2014). In addition, they extended their corpus
with an unspecified number of self-collected irony
tweets using the hashtags #irony and #sarcasm.
Finally, UTMN developed an SVM classifier ex-
ploiting binary bag-of-words features. They en-
riched the training set with 1,000 humorous tweets
from SemEval-2017 Task 6 (Potash et al., 2017)
and another 1,000 tweets with positive polarity
from SemEval-2016 Task 4 (Nakov et al., 2016),
resulting in a training corpus of 5,834 tweets.

Interestingly, when comparing the best con-
strained with the best unconstrained system for
Task A, we see a difference of 10 points in favour
of the constrained system, which indicates that
adding more training data does not necessarily im-
prove the classification performance.

7 Systems and Results for Task B

While 43 teams competed in Task A, 31 teams
submitted a system for Task B on multiclass irony
classification. Table 6 presents the official rank-
ing with each team’s performance in terms of ac-
curacy, precision, recall and F; score. Similar to
Task A, we discuss the top five systems in the
overall ranking (Table 6) and then zoom in on
the best performing constrained and unconstrained
systems (Tables 7 and 8).

For Task B, the top five is nearly similar to
the top five for Task A and includes the fol-
lowing teams: UCDCC (Ghosh, 2018), NTUA-
SLP (Baziotis et al., 2018), THU_NGN (Wu et al.,
2018), NLPRL-IITBHU (Rangwani et al., 2018)
and NIHRIO (Vu et al., 2018). All of the teams
tackled multiclass irony classification by applying
(mostly) the same architecture as for Task A (see
earlier). Inspired by siamese networks (Brom-
ley et al., 1993) used in image classification, the
UCDCC team developed a siamese architecture
for irony detection in both subtasks. The neu-
ral network architecture makes use of Glove word
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embeddings as features and creates two identical
subnetworks that are each fed with different parts
of a tweet. Under the premise that ironic state-
ments are often characterised by a form of oppo-
sition or contrast, the architecture captures this in-
congruity between two parts in an ironic tweet.

team acc  precision recall F
UCDCC 0.732 0.577 0.504  0.507
NTUA-SLP 0.652 0.496 0.512  0.496
THU_NGN 0.605 0.486 0.541 0.495
NLPRL- 0.603 0.466 0.506 0.474
IITBHU

NIHRIO 0.659 0.545 0.448 0.444
Random De- | 0.633 0.487 0439 0435
cision Syntax

Trees

ELiRF-UPV 0.633 0.412 0.440 0421
WLV 0.671 0.431 0415 0415
#NonDicevo- 0.545 0.409 0441 0413
SulSerio

INGEOTEC- 0.644 0.502 0.385 0.406
IIMAS

ai-ku 0.584 0.422 0.402  0.393
warnikchow 0.598 0412 0410 0.393
UWB 0.626 0.440 0.406  0.390
CJ 0.603 0412 0409 0.384
UTH-SU 0.551 0.383 0.399 0.376
s1998 0.568 0.338 0374 0352
ValenTO 0.560 0.353 0.352 0.352
RM@IT 0.542 0.377 0.371 0.350
Unigram SVM | 0.569 0.416 0.364  0.341
BL

SSN_MLRGI 0.573 0.348 0.361 0.334
Lancaster 0.606 0.280 0.359 0.313
Parallel Com- | 0.416 0.406 0.353 0.310
puting Network

Research

Group

codersTeam 0.492 0.300 0.311 0.301
KLUEnicorn 0.347 0.321 0.353  0.298
DKE_.UM 0.432 0.318 0.305 0.298
TG 0.486 0.336 0.291 0.278
Lovelace 0.434 0.294 0.282 0.276
*YNU-HPCC 0.533 0.438 0.267 0.261
Random BL 0.416 0.241 0.241 0.241
LDR 0.461 0.230 0.250 0.234
ECNU 0.304 0.255 0.249 0.233
NEUROSENT- | 0.441 0.213 0.231  0.219
PDI

INAOE-UPV 0.594 0.217 0.261 0.215

Table 6: Official (Codalab) results for Task B, ranked
by F; score. The highest scores in each column are
shown in bold and the baselines are indicated in purple.

NTUA-SLP, THU_NGN and NIHRIO used the
same system for both subtasks. NLPRL-IITBHU
also used the same architecture, but given the data
skew for Task B, they used SMOTE (Chawla et al.,
2002) as an oversampling technique to make sure
each irony class was equally represented in the
training corpus, which lead to an F; score increase
of 5 points.



NLPRL-IITBHU built a Random Forest classi-
fier making use of pre-trained DeepMoji embed-
dings, character embeddings (using Tweet2Vec)
and sentiment lexicon features.

team acc precision  recall Fy
uCDCC 0.732 0.577 0.504  0.507
NTUA-SLP 0.652 0.496 0.512  0.496
THU_NGN 0.605 0.486 0.541 0495
NLPRL- 0.603 0.466 0.506 0.474
IITBHU

NCL 0.659 0.545 0.448 0.444
Random

Decision-

Syntax Trees 0.633 0.487 0.439 0435
ELiRF-UPV 0.633 0.412 0.440 0421
WLV 0.671 0.431 0.415 0415
AI-KU 0.584 0.422 0.402 0.393

Table 7: Best constrained systems for Task B. The
highest scores in each column are shown in bold.

team acc  precision recall F.
#NonDicevo 0.545 0.409 0441 0413
SulSerio

INGEOTEC- 0.647 0.508 0.386  0.407
I[IMAS

INAOE-UPV 0.495 0.347 0.379  0.350
IITG 0.486 0.336 0.291 0.278

Table 8: Unconstrained systems for Task B. The high-
est scores in each column are shown in bold.

As can be deduced from Table 7, the top five
constrained systems correspond to the five best-
performing systems overall (Table 6). Only four
unconstrained systems were submitted for Task
B. Differently from their Task A submission,
#NonDicevoSulSerio applied a cascaded approach
for this task, i.e. the first algorithm served an
ironic/non-ironic classification, followed by a sys-
tem distinguishing between ironic by clash and
other forms of irony. Lastly, a third classifier
distinguished between situational and other ver-
bal irony. To account for class imbalance in step
two, the team added 869 tweets of the situational
and other verbal irony categories. INAOE-UPV,
INGEOTEC-IIMAS and IITG also added tweets
to the original training corpus, but it is not entirely
clear how many were added and how these extra
tweets were annotated.

Similar to Task A, the unconstrained systems do
not seem to benefit from additional data, as they
do not outperform the constrained submissions for
the task.
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team not ironic situat.  other
ironic by clash irony irony
UCDCC 0.843 0.697 0.376  0.114
NTUA-SLP 0.742 0.648 0460 0.133
THU_NGN 0.704 0.608 0.433  0.233
NLPRL- 0.689 0.636 0.387 0.185
IITBHU
NIHRIO 0.763 0.607 0.317 0.087
Random
Decision-
Syntax Trees 0.742 0.569 0.346  0.085
ELiRF-UPV 0.740 0.298 0.347  0.000
WLV 0.789 0.578 0.294  0.000
#NonDicevo 0.683 0.533 0315 0.121
SulSerio
INGEOTEC- 0.764 0.494 0.211  0.152
IIMAS
ai-ku 0.699 0.529 0.258  0.087
warnikchow 0.717 0.524 0.300  0.028
UWB 0.744 0.557 0.232  0.027
CJ 0.724 0.559 0.202  0.050
*UTH-SU 0.671 0.513 0.254  0.065
$1998 0.711 0.446 0.253  0.000
emotIDM 0.713 0.456 0.165 0.074
RM@IT 0.671 0.481 0.148  0.100
SSN_MLRG1 0.704 0.499 0.105  0.027
Lancaster 0.729 0.523 0.000  0.000
Parallel Com- | 0.547 0.472 0.084 0.137
puting Network
Res. Group
codersTeam 0.646 0.387 0.134  0.039
KLUEnicorn 0.423 0.384 0.200 0.186
DKE_UM 0.582 0.299 0.143  0.168
TG 0.641 0.319 0.095 0.056
Lovelace 0.577 0.306 0.159  0.060
*YNU-HPCC 0.700 0.176 0.075  0.091
LDR 0.632 0.255 0.051  0.000
ECNU 0.444 0.259 0.118 0.110
*NEUROSENT- | 0.612 0.201 0.062  0.000
PDI
INAOE-UPV 0.748 0.000 0.111  0.000

Table 9: Results for Task B, reporting the F; score for
the class labels. The highest scores in each column are
shown in bold.

A closer look at the best and worst-performing
systems for each subtask reveals that Task A
benefits from systems that exploit a variety of
handcrafted features, especially sentiment-based
(e.g. sentiment lexicon values, polarity contrast),
but also bags of words, semantic cluster features
and PoS-based features. Other promising fea-
tures for the task are word embeddings trained
on large Twitter corpora (e.g. SM tweets). The
classifiers and algorithms used are (bidirectional)
LSTMs, Random Forest, Multilayer Perceptron,
and an optimised (i.e. using feature selection)
voting classifier combining Support Vector Ma-
chines with Logistic Regression. Neural network-
based systems exploiting word embeddings de-
rived from the training dataset or generated from
Wikipedia corpora perform less well for the task.



Similarly, Task B seems to benefit from (ensem-
ble) neural-network architectures exploiting large
corpus-based word embeddings and sentiment fea-
tures. Oversampling and adjusting class weights
are used to overcome the class imbalance of labels
2 and 3 versus 1 and 0 and tend to improve the
classification performance. Ensemble classifiers
outperform multi-step approaches and combined
binary classifiers for this task.

Task B challenged the participants to distin-
guish between different types of irony. The class
distributions in the training and test corpus are nat-
ural (i.e. no additional data were added after the
annotation process) and imbalanced. For the eval-
uation of the task, F; scores were macro-averaged;
on the one hand, this gives each label equal weight
in the evaluation, but on the other hand, it does not
show each class contribution to the average score.
Table 9 therefore presents the participating teams’
performance on each of the subtypes of irony in
Task B. As can be deduced from Table 9, all teams
performed best on the non ironic and ironic by
clash classes, while identifying situational irony
and other irony seems to be much more challeng-
ing. Although the scores for these two classes are
the lowest, we observe an important difference be-
tween situational and other verbal irony. This can
probably be explained by the heterogeneous na-
ture of the other category, which collects diverse
realisations of verbal irony. A careful and manual
annotation of this class, which is currently being
conducted, should provide more detailed insights
into this category of ironic tweets.

8 Conclusions

The systems that were submitted for both subtasks
represent a variety of neural-network-based ap-
proaches (i.e. CNNs, RNNs and (bi-)LSTMs) ex-
ploiting word- and character embeddings as well
as handcrafted features. Other popular classi-
fication algorithms include Support Vector Ma-
chines, Maximum Entropy, Random Forest, and
Naive Bayes. While most approaches were based
on one algorithm, some participants experimented
with ensemble learners (e.g. SVM + LR, CNN +
bi-LSTM, stacked LSTMs), implemented a vot-
ing system or built a cascaded architecture (for
Task B) that first distinguished ironic from non-
ironic tweets and subsequently differentiated be-
tween the fine-grained irony categories.

Among the most frequently used features are
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lexical features (e.g. m-grams, punctuation and
hashtag counts, emoji presence) and sentiment-
or emotion- lexicon features (e.g. based on Sen-
ticNet (Cambria et al., 2016), VADER (Hutto
and Gilbert, 2014), aFinn (Nielsen, 2011)). Also
important but to a lesser extent were syntactic
(e.g. PoS-patterns) and semantic features, based
on word, character and emoji embeddings or se-
mantic clusters.

The best systems for Task A and Task B ob-
tained an F; score of respectively 0.705 and 0.507
and clearly outperformed the baselines provided
for this task. When looking at the scores per class
label in Task B, we observe that high scores were
obtained for the nomn-ironic and ironic by clash
classes, and that other irony appears to be the most
challenging irony type. Among all submissions,
a wide variety of preprocessing tools, machine
learning libraries and lexicons were explored.

As the provided datasets were relatively small,
participants were allowed to include additional
training data for both subtasks. Nevertheless, most
submissions were constrained (i.e. only the pro-
vided training data were used): only nine uncon-
strained submissions were made for Task A, and
four for Task B. When comparing constrained to
unconstrained systems, it can be observed that
adding more training data does not necessarily
benefit the classification results. A possible ex-
planation for this is that most unconstrained sys-
tems added training data from related irony re-
search that were annotated differently (e.g. auto-
matically) than the distributed corpus, which pre-
sumably limited the beneficial effect of increasing
the training corpus size.

This paper provides some general insights into
the main methodologies and bottlenecks for binary
and multiclass irony classification. We observed
that, overall, systems performed much better on
Task A than Task B and the classification results
for the subtypes of irony indicate that ironic by
clash is most easily recognised (top Fi= 0.697),
while other types of verbal irony and situational
irony are much harder (top F; scores are 0.114 and
0.376, respectively).
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Abstract

Detecting irony is an important task to mine
fine-grained information from social web mes-
sages. Therefore, the Semeval-2018 task 3
is aimed to detect the ironic tweets (subtask
A) and their irony types (subtask B). In or-
der to address this task, we propose a system
based on a densely connected LSTM network
with multi-task learning strategy. In our dense
LSTM model, each layer will take all outputs
from previous layers as input. The last LSTM
layer will output the hidden representations of
texts, and they will be used in three classifi-
cation task. In addition, we incorporate sev-
eral types of features to improve the model
performance. Our model achieved an F-score
of 70.54 (ranked 2/43) in the subtask A and
49.47 (ranked 3/29) in the subtask B. The ex-
perimental results validate the effectiveness of
our system.

1 Introduction

Figurative languages such as irony are widely used
in web messages such as tweets to convey different
sentiment. Identifying the ironic texts can help to
understand the social web better and has many ap-
plications such as sentiment analysis (Ghosh and
Veale, 2016). Irony detecting techniques are im-
portant to improve the performance of sentiment
analysis. For example, the tweet “Monday morn-
ings are my fave:)# not” is an irony with nega-
tive sentiment, but it will be probably classified
as a positive one by a standard sentiment analysis
model (Van Hee et al., 2016b). Thus, capturing
the ironic information in texts is useful to predict
sentiment more accurately (Van Hee et al., 2016a).

However, determining whether a text is ironic
is a challenging task since the the differences be-
tween ironic and non-ironic texts are usually sub-
tle. For example, the tweet “Love this weather
#not” is ironic, but a similar tweet “Hate this
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weather #not happy” is non-ironic. Different
approaches are proposed to recognize the com-
plex irony in texts. Existing methods to detect
irony are mainly based on rules or machine learn-
ing techniques (Joshi et al., 2017). Rules based
methods usually depend on lexicons to identify
irony (Khattri et al., 2015; Maynard and Green-
wood, 2014). However, these methods cannot uti-
lize the contextual information from texts. Tra-
ditional machine learning based methods such as
SVM (Desai and Dave, 2016) are also effective
in this task, but they usually need manually fea-
ture engineering (Barbieri et al., 2014). Recently,
deep learning techniques are successfully applied
to this task. For example, Ghosh et al. (2016)
propose to use a CNN-LSTM model to classify
the ironic and non-ironic tweets. Their method
can significantly improve the classification perfor-
mance without heavy feature engineering. How-
ever, existing methods are aimed to detect irony
in tweets with explicit irony related hashtags. For
example, tweets with #irony or #sarcasm hashtags
are very likely to be ironic. Therefore, models may
focus on these hashtags rather than the contextual
information.

To fill this gap, the SemEval-2018 task 3' aims
to detect irony of tweets without explicit irony
hashtags (Van Hee et al., 2018). The subtask A is
aimed to determine whether a tweet is ironic. the
subtask B is aimed to identify the irony types of
tweets: Verbal irony by means of a polarity con-
trast, other verbal irony and situational irony. Sev-
eral examples are as follows:

e verbal irony by means of a polarity con-
trast: I love waking up with migraines #not

e other verbal irony: @user Yeah keeping
cricket clean, that’s what he wants #Sarcasm

"https://competitions.codalab.org/competitions/17468
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Figure 1: Architecture of our Dense-LSTM model. The V-irony, O-irony and S-irony denote the three different
irony types respectively (Van Hee et al., 2018).

e situational irony: most of us didn’t focus in  irony clues. Since these words usually have spe-

the #ADHD lecture. #irony cific POS tags, adding these features can help
our model to capture the ironic information bet-
ter. We use tweetokenize® tool to tokenize and the
Ark-Tweet-NLP* tool to obtain the POS tags of
tweets (Owoputi et al., 2013).

The first Bi-LSTM layer takes the sequential
vectors as input. For the j;; Bi-LSTM layer,
its output H; will input all LSTM layers after
it. As shown in Figure 1, the blue dashed lines
represent such over-layer connections. All in-
puts of an LSTM layer will be concatenated to-
gether. Thus, the input of the j, (57 > 1) layer
is [Hy;...; Hj—1]. It indicates that each layer can
learn different levels of information at the same
time. Since the irony information is complex,
jointly using all levels of information is benefi-
cial to predict irony more accurately. The last
2 Densely Connected LSTM with LSTM layer will output the hidden representation

Multi-task Learning H of texts. It will be concatenated with the sen-
timent features and the sentence embedding fea-
tures. The sentiment features can provide addi-
tional sentiment information to detect irony, such
as the sentiment polarity assigned by lexicons.
The sentiment features are generated via the Af-
fectiveTweets® package in weka provided by Mo-
hammad et al. (Mohammad and Bravo-Marquez,
2017). We use the TweetToLexiconFeatureVec-
tor (Bravo-Marquez et al., 2014) and TweetToSen-

In order to address this problem, we propose
a system’ based on a densely connected LSTM
model (Wu et al., 2017) with multitask learning
techniques. In our model, each LSTM layer will
take all outputs of previous LSTM layers as in-
put. Then different levels of contextual informa-
tion can be learned at the same time. Our model is
required to predict in three tasks simultaneously:
1) identifying the missing irony related hashtags;
2) classify ironic or non-ironic; 3) irony type clas-
sification. By using multitask learning strategy,
the model can combine the information in the dif-
ferent tasks to improve the performance. The ex-
perimental results in both subtasks validate the ef-
fectiveness of our method.

The architecture of our densely connected LSTM
model is shown in Figure 1. We denote this model
as Dense-LSTM. The detailed information will be
introduced in the following paragraphs.

In our model, the embedding layer is used to
convert the input tweets into a sequence of dense
vectors. The POS tag features P; are one-hot
encoded and concatenated with the word embed-
ding vectors E;. Usually the affective words

and creative languages in tweets are important — 5 — ) )
https://github.com/jaredks/tweetokenize

Zhttps://github.com/wuch15/SemEval-2018-task3- *http://www.cs.cmu.edu/ ark/TweetNLP
THU_NGN.git Shttps://github.com/felipebravom/Affective Tweets
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tiStrengthFeatureVector (Thelwall et al., 2012) fil-
ters in this package. The embedding of a sentence
is obtained by taking the average of all words in
this sentence using the 100-dim pre-trained em-
bedding weights provided by Bravo et al. (Bravo-
Marquez et al., 2016). By incorporating the vector
representation of tweet sentence, the irony infor-
mation can be easier to be captured.

Three dense layers with ReLLU activation are
used to predict for three different tasks including:
determining the missing ironic hashtags (i.e. #not,
#sarcasm, #irony or none of them) (taskl); identi-
fying ironic or non-ironic (task2) ; identifying the
irony types (task3). Thus, the objective function
of our model can be formulated as:

L=o1Ly + a2l + azls, ey
where £; and «; denote the loss function and its
weight of task ¢. £; and Ly are categorical and
binary cross-entropy respectively. In addition, the
numbers of tweets with different irony types are
very unbalanced. Motivated by the cost-sensitive
entropy used by Santos et al. (2009), we formulate
L3 as follows:

N
Ly == wyyilog(§), )

i=1

where NV is the number of tweets, y; is the irony
type of the iy, tweet, g; is the prediction score,
and w,, is the loss Weigcht of irony type label
Ui Z’};;N’“, where C' is the
number of irony types and Nj is the number of
tweets with irony type label j. Thus, the infre-
quent irony types will gain relatively larger loss
weights. By using this multi-task learning method,
our model can incorporate different information
such as the irony hashtags. In addition, classify-
ing ironic/non-ironic and the irony types are simi-
lar tasks. Therefore, the performance of both tasks
can be improved by combining the information of
both tasks.

In order to improve the performance of our sys-
tem, we use an ensemble strategy by averaging the
classification results predicted by 10 models. Each
model will be trained using a random dropout rate.
Therefore in this way, the classification results will
be voted by different models, which can improve
the model performance.

wy, 1s defined as
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3 Experiment

3.1 Dataset and Experimental Settings

The detailed statistics of the dataset® in this task
are shown in Table 1. V-irony, O-irony and S-irony
represent the three types respectively: verbal irony
by means of a polarity contrast, other types of ver-
bal irony and situational irony (Van Hee et al.,
2018). In subtask A, the performance of systems
is evaluated by F-score for the positive class. In
subtask B, the macro-averaged F-score over all
classes is used as the metric.

Task A B

Label | Ironic Non-ironic | V-irony O-irony S-irony Non-ironic

#train | 1911 1923 1390 316 205 1923

#test 311 473 164 85 62 473

Table 1: The detailed statistics of the dataset.

We combine two pre-trained word embed-
dings: 1) the embeddings provided by Godin et
al. (2015), which are trained on a corpus with 400
million tweets; 2) the embeddings provided by
Barbieri et al. (2016), which are trained on 20 mil-
lion tweets. The dimensions of them are 400 and
300 respectively. They are concatenated together
as the embeddings of words.

In our network, the Dense-LSTM model has 4
LSTM layers with 200-dim hidden states. The
hidden dimensions of dense layers are set to 300.
The dropout rate of each layer is set to a random
number between 0.2 to 0.4, and it will be set to
a fixed value 0.3 in the comparative experiments
without ensemble strategy. In subtask A, the loss
weights « of the three task are set to 0.5, 1 and 0.5
respectively. In subtask B, they are 0.5, 0.5 and 1.
We use RMSProp as the optimizer, and the batch
size is set to 64. In addition, we use 10% training
data for validation to select the hyperparameters
above.

3.2 Performance Evaluation

We compare the performance of different meth-
ods including: 1) SVM, the benchmark system us-
ing SVM and BOW model; 2) CNN, using CNN
with a global average pooling layer to obtain the
hidden vector h, which is used to predict in the
three tasks; 3) LSTM, using one Bi-LSTM layer
in the network to get h; 4) 2-layer LSTM, using
2 Bi-LSTM layers; 5) Dense-LSTM, using our

®https://github.com/Cyvhee/SemEval2018-
Task3/tree/master/datasets



Dense-LSTM model; 6) Dense-LSTM+ens, us-
ing our Dense-LSTM model and ensemble strat-
egy. In addition, we apply multi-task learning
technique to all models except the benchmark sys-
tem based on SVM. The results are shown in Table
1. The experimental results show that our Dense-
LSTM model significantly outperforms the base-
lines. Since the layers in our Dense-LSTM can
learn from all previous outputs, our model can
combine different levels of contextual information
to capture the high-level irony clues. In addition,
our model can predict more accurately via ensem-
ble. Since models with random dropout can ex-
tract different information, we can take advantage
of all models by voting. The ensemble strategy
can reduce the noise in the dataset and make our
system more stable (Xia et al., 2011).

Subtask A Subtask B

Model P R F Macro-F
Baseline 54.78 | 62.70 | 58.47 32.69
CNN 59.32 | 61.41 | 60.35 45.30
LSTM 57.73 | 67.20 | 62.11 45.76
2-layer LSTM 60.34 | 68.49 | 64.16 47.16
Dense-LSTM 62.78 | 72.69 | 67.36 48.28
Dense-LSTM+ens | 63.04 | 80.06 | 70.54 49.47

Table 2: The performance of different methods. P, R, F
represent precision, recall and F-score respectively.

3.3 Effectiveness of Multi-task Learning

The performance of our Dense-LSTM model us-
ing different combinations of training tasks is
shown in Table 3. Note that we don’t apply model
ensemble here. Compared with the models trained
in task2 or task3 only, the combination of both
tasks can improve the performance. It may be be-
cause the two tasks have inherent relatedness and
can share rich mutual information. Learning to
predict the missing ironic hashtags (task1) can also
improve the model performance. Since the ironic
hashtags are often important ironic clues, identify-
ing such clues can help our model to mine ironic
information better.

3.4 Influence of Pre-trained Word
Embedding

We compare the performance using different com-
binations of pre-trained embeddings in our model.
The results are illustrated in Table 4. The results
show that the pre-trained embeddings are impor-
tant to capture irony information, and using the
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L. Subtask A Subtask B
Task Combination P R F MacroF
task2 60.05 | 71.06 | 65.10 -
task3 - - - 44.65
task2+task3 61.81 | 72.34 | 66.67 46.94
taskl +task2 61.33 | 71.38 | 65.97 -
taskl +task3 - - - 45.57
taskl+task2+task3 | 62.78 | 72.69 | 67.36 48.28

Table 3: The performance in two subtasks using differ-
ent combinations of training tasks.

combination of two different word embeddings
can improve the model performance. It proves
that this method can reduce the out-of-vocabulary
words in the single embedding file and provide
richer semantic information.

Feature Subtask A Subtask B

P R F Macro-F
w/o pre-trained | 56.25 | 67.14 | 61.21 42.28
+embl 60.96 | 69.95 | 65.14 47.69
+emb?2 61.77 | 70.59 | 65.89 47.24
+embl +emb2 | 62.78 | 72.69 | 67.36 48.28

Table 4: Influence of pre-trained word embedding. The
embl and emb2 denote the embeddings provided by
Godin et al. (2015) and Barbieri et al. (2016) respec-
tively.

3.5 Influence of Additional Features

The influence of different features on our model is
shown in Table 5. According to this table, all fea-
tures can improve the classification performance
in both subtasks, and the combination of the three
features can achieve better performance. The im-
provement brought by POS tags is most signifi-
cant. Affective words are important irony clues
and they are usually verbs, adjectives or hashtags.
Thus, incorporating the POS tag features can help
to identify these words and capture the ironic in-
formation better. The sentiment features also im-
prove our model, which can be inferred from the
results. The sentiment polarities of ironic tweets
are usually negative, but these texts often contain
positive sentiment words. Since our sentiment fea-
tures are obtained by several different sentiment or
emotion lexicons, they can be used to assign the
sentiment scores of texts, which can provide rich
information to detect irony. The sentence embed-
ding can also slightly improve the performance.
The sentence embedding contains information of
each word in the sentence. Thus, it can help to
capture the word information better, which is ben-



eficial to identify the overall sentiment of texts.
The combination of all three types of features can
take advantage of them and gain significant perfor-
mance improvement. It validates the effectiveness
of each type of features.

Feature Subtask A Subtask B

P R F Macro-F
None 59.84 | 70.42 | 64.70 45.56
+POS tags 61.04 | 72.03 | 66.08 46.61
+Sentiment Features | 61.16 | 71.38 | 65.88 46.37
+Sentence Embedding | 61.39 | 71.06 | 65.87 46.24
+All Features 62.78 | 72.69 | 67.36 48.28

Table 5: Influence of different features on our model.

4 Conclusion

Detecting irony in web texts is an important task
to mine fine-grained sentiment information. In or-
der to address this problem, we develop a sys-
tem based on a densely connected LSTM model
to participate in the SemEval-2018 Task 3. In our
model, every LSTM layer will take all outputs of
previous layers as inputs. Thus, the different lev-
els of information can be learned at the same time.
In addition, we propose to combine three differ-
ent tasks to train our model jointly, which includes
identifying the missing irony hashtags, determin-
ing ironic or non-ironic and classifying the irony
types. These tasks have inherent relatedness thus
the performance can be improved by sharing the
mutual information. Our system achieved an F-
score of 70.54 and 49.47 which ranked the 2nd and
3rd place in the two subtasks. The experimental
results validates the effectiveness of our method.
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Abstract

Character identification is a task of entity link-
ing that finds the global entity of each personal
mention in multiparty dialogue. For this task,
the first two seasons of the popular TV show
Friends are annotated, comprising a total of 448
dialogues, 15,709 mentions, and 401 entities.
The personal mentions are detected from nomi-
nals referring to certain characters in the show,
and the entities are collected from the list of
all characters in those two seasons of the show.
This task is challenging because it requires the
identification of characters that are mentioned
but may not be active during the conversation.
Among 90+ participants, four of them submit-
ted their system outputs and showed strengths
in different aspects about the task. Thorough
analyses of the distributed datasets, system out-
puts, and comparative studies are also provided.
To facilitate the momentum, we create an open-
source project for this task and publicly release
a larger and cleaner dataset, hoping to support
researchers for more enhanced modeling.

1 Introduction

Most of the earlier works in natural language pro-
cessing (NLP) had focused on formal writing such
as newswires, whereas many recent works have tar-
geted at colloquial writing such as text messages or
social media. Since the evolution of Web 2.0, the
amount of user-generated contents involving col-
loquial writing has exceeded the one with formal
writing. NLP tasks are relatively well-explored at
this point for certain types of colloquial writing i.e.,
microblogs and reviews (Ritter et al., 2011; Kong
et al., 2014; Ranganath et al., 2016; Shin et al.,
2017). However, the genre of multiparty dialogue
is still under-explored, even though digital contents
in dialogue forms keep increasing at a faster rate
than any other types of writing.! This inspires us

"https://medium.com/hijiffy/10-graphs-that-show-the-
immense-power-of-messaging-apps-4a41385b24d6
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to create a new task called character identification
that aims to link personal mentions (e.g, she, mom)
to their global entities across multiple dialogues,
where the entities indicate the specific characters
referred by those mentions (e.g., Judy).

Due to the nature of multiparty dialogue where
several speakers take turns to complete a context,
character identification is a crucial step for adapting
higher-end NLP tasks (e.g., summarization, ques-
tion answering, machine translation) to this genre.
It can also bring another level of sophistication to
intelligent personal assistants or tutoring systems.
This task is challenging because it needs to process
through colloquialism that includes slangs, gram-
mar mistakes, and/or rhetorical questions, as well
as to handle cross-document resolution for the iden-
tification of entities that are mentioned but may not
be actively participating during the conversation.
Nonetheless, we believe that models produced by
this task will remarkably enhance inference on di-
alogue contexts (e.g., business meetings, doctor-
patient conversations) by providing finer-grained
information about individual characters.

Section 2 illustrates the task of character identi-
fication and explains the key differences between
it and other types of entity linking tasks. Section 3
describes the corpus, based on TV show transcripts,
used for this task with annotation details. Section 4
gives brief overviews of the systems participated in
this shared task. Section 5 explains the evaluation
metrics and the results produced by those systems.
Finally, Section 6 gives thorough analysis and com-
parative studies between these systems. This task
was originally conducted at CodaLab.? The latest
dataset and the system outputs can be found from
our open source project, Emory NLP.3

https://competitions.codalab.org/
competitions/17310

*https://github.com/emorynlp/
semeval-2018-task4

Proceedings of the 12th International Workshop on Semantic Evaluation (SemEval-2018), pages 57-64
New Orleans, Louisiana, June 5-6, 2018. ©2018 Association for Computational Linguistics



Monica

Ross

Monica never have grandchlldren I'll never have grandchlldféﬁ """ '\X}'as what? A Wrong nurnber“?
Ross Sorry.
Joey

Ross

Figure 1: An example of character identification, excerpted from the Season 1 Episode 1 of Friends, where
mentions are indicated in red boxes and entities are linked by arrows.

2 Task Description

Let a mention be a nominal that refers to a singular
or a collective entity (e.g., she, mom, Judy), and an
entity be the actual person that the mention refers
to. Given a dialogue transcribed in text where all
mentions are detected, the objective is to find the
entity for each mention, who can be either active or
passive in the dialogue. In Figure 1, entities such
as Ross, Monica, and Joey are the active speakers
of the dialogue, whereas Jack and Judy are not
although they are passively mentioned as mom and
dad in this context. Linking such mentions to their
global entities demands inferred knowledge about
the kinship from other dialogues, challenging cross-
document resolution. Thus, character identification
can be viewed as an entity linking task that aims
for holistic understanding in multiparty dialogue.
Most of previous works on entity linking have
focused on Wikification, which links named entity
mentions to their relevant Wikipedia articles (Mi-
halcea and Csomai, 2007; Ratinov et al., 2011; Guo
et al., 2013). Unlike Wikification where most enti-
ties come with structured information from knowl-
edge bases (e.g., Infobox, Freebase, DBPedia), enti-
ties in character identification have no such precom-
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piled information, which makes this task even more
challenging. It is similar to coreference resolution
in a sense that it groups mentions into entities, but
distinguished because this task requires to identify
each mention group as a known person. In Figure 1,
coreference resolution would give a cluster of the
four mentions, {mom, woman, I, I'}; however, it
would not identify that cluster to be the entity Judy,
which in this case is not possible to identify without
getting contexts from other dialogues.

3 Corpus

The character identification corpus was first created
by collecting transcripts from the popular TV show,
Friends (Chen and Choi, 2016). These transcripts
were voluntarily provided by fans who made them
publicly available.* Dialogues in this corpus mimic
daily conversations that are more natural and vari-
ous in topics than other dialogue corpora (Janin
et al., 2003; Danescu-Niculescu-Mizil and Lee,
2011; Hu et al., 2013; Kim et al., 2015; Lowe et al.,
2015). Although they are scripted, the interpreta-
tion of these dialogues is no easier than unscripted

*http://www.livesinabox.com/friends/
scripts.shtml



H Episodes \ Scenes \ Speakers \ Utterances \ Sentences \ Tokens

Season 1 24 229 105 4,725 8,680 | 66,355
Season 2 23 219 101 4,501 7.380 | 65,675
Total || 471 448 ] 171 | 9.226 [ 16,060 | 132,030

Table 1: Distributions from the subset of the character identification corpus used for this shared task.

dialogues; they not only involve as much disfluency
and context switching as real dialogues do, but also
include more humor, sarcasm, or metaphor. Thus,
models evaluated on this corpus should give a gen-
eral sense about the state of character identification
on multiparty dialogue.

The original transcripts collected from the fan
site were formatted in HTML; we converted them
into JSON so that they could be easily processed.
This structured data were then manually checked
for potential errors. Table 1 shows the distributions
from the subset of the character identification cor-
pus used for this shared task. The provided dataset
is divided into two seasons, each season is divided
into episodes, each episode is divided into scenes,
each scene contains utterances, where each utter-
ance indicates a turn of speech.

3.1

For mention annotation, a heuristic-based mention
detector was developed, which utilized dependency
relations (Choi and McCallum, 2013), named en-
tity tags (Choi, 2016), and personal noun gazetteers,
then automatically detected mentions for the entire
corpus. In this heuristic, a noun phrase was consid-
ered a personal mention if it was either:

Mention Annotation

1. A PERSON named entity, or

2. A pronoun or a possessive pronoun excluding
the pronouns it and they, or

One of the personal noun gazetteers that are 603
common and singular personal nouns selected
from Freebase and DBPedia.

Specific mentions such as it and they were excluded
because they often referred to the ambiguous entity
types, collective, general, and other (Section 3.2).
For the quality assurance, about 10% of this pseudo
annotation were randomly sampled and manually
evaluated, showing a precision, a recall, and the F1-
score of 97.58%, 94.34%, and 95.93%, respectively.
Finally, the annotation was manually checked again
while it was systematically corrected for routinely
produced errors. Although mention detection was

59

the foundational step, including it as a part of this
shared task could over-complicate the evaluation.
Thus, gold mentions were provided for this year’s
shared task such that participants could purely con-
centrate on the task of entity linking.

3.2 Entity Annotation

All mentions were double-annotated with their ref-
erent entities, and adjudicated upon disagreements.
Annotation and adjudication tasks were conducted
on Amazon Mechanical Turk. Each mention was
annotated with either a primary character, that are
Ross, Chandler, Joey, Rachel, Monica, and Pheobe,
a secondary character (other frequently recurring
characters across the show), or one of the following
ambiguous types suggested by Chen et al. (2017):

e Generic: indicates actual characters in the show
whose identities are unknown (e.g., That waitress
is really cute, I am going to ask her out). Generic
entities are annotated with their group names and
optional numberings (e.g., Man 1, Woman 1).

Collective: indicates the plural use of the pro-
noun you, which cannot be deterministically dis-
tinguished from the singular use.

General: indicates mentions used in reference to
a general case rather than an specific entity (e.g.,
The ideal guy you look for doesn’t exist).

e Other: indicates all the other kinds of entities.

For this year’s shared task, mentions annotated with
the last three ambiguous types, collective, general,
and other, were excluded from the dataset to reduce
the high complexity of this task (Table 2).

H Primary ‘ Secondary ‘ Generic H Total

Season I [ 5,160 2.526 178 | 7.864
Season2 || 5385 2,340 120 | 7.845
Total | 10545 | 4866 | 298 | 15709

Table 2: Distributions of the annotated entity types
used for this shared task.



Speaker H

Utterance

Yeah. For uss, it’s like the stand-up comedians yous have to sit through before the main dudes starts.

Joey Yeah, right! ... You, serious?
Rachel Everything yous need to know is in that first kiss.
Chandler
Ross

It’s not that we7 don’t like the comedians, it’s that ... that’s not why weg bought the ticket.

{You1} — Rachel, {uss, wez o} — Collective, {youz 5} — General, {comedians,s} — Generic, {dudes} — Other

Table 3: Examples of the entity annotation described in Section 3.2.

H Episodes \ Scenes \ Entities \ Mentions \ Clustersg \ Clustersg \ Singletong \ Singletons

Training 47 374 372 13,280 893 2,051 209 472
Evaluation 7 74 106 2,429 304 370 54 83
Total || 471 448 ] 401 [ 15709 | 1,197 | 2421 | 263 | 555

Table 4: Distributions of the training and the evaluation sets in Section 3.3.

Table 3 shows examples of these ambiguous types.
About 83% were assigned to the primary and sec-
ondary characters, 1.4% were assigned to generic,
and the rest were assigned to the other ambiguous
types, collective, general, and other. To evaluate
the annotation quality, the annotation agreement
scores as well as Cohen’s kappa scores were mea-
sured, showing 82.83% and 79.96%, respectively.

3.3 Data Split

The corpus was split into training and evaluation
sets for this shared task (Table 4). No dedicated
development set was provided; participants were
encouraged to use sub-parts of the training set to
create their own development sets or perform cross-
validation for the optimization of statistical models.
Two types of datasets are provided for both training
and evaluation sets, one treating each episode as
an individual dialogue and the other treating each
scene as an independent dialogue.’

Processing a larger dialogue makes coreference
resolution harder because it needs to link referential
mentions that are farther apart; on the other hand,
each cluster comprises a greater number of men-
tions which can help identifying the global entity
of that cluster. The numbers of clusters grouped in
each dataset are shown as Clustersg and Clustersg,
implying episode-level and scene-level clusters, re-
spectively. Our corpus includes singleton mentions,
which take about 22% of all mentions.

3.4 Data Format

To help participants adapting their existing coref-
erence resolution systems to this task, the original
dataset in JSON was converted into the CoONLL’ 12

SEach episode consists of about 10 scenes on average.
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shared task format (Pradhan et al., 2012), where
each column is delimited by white spaces and rep-
resents the following:

—_

. Season and episode ID.

. Document ID.

. Token ID.

. Word form.

. Part-of-speech tag (auto-generated).

. Phrase structure tag (auto-generated).
Lemma (auto-generated).

Predicate sense (not provided).

© P N L AW N

Word sense (not provided).

—_
=)

. Speaker.

—
[

. Named entity tag (auto-generated).
12. Entity ID.

The part-of-speech tags, lemmas, and named en-
tity tags were automatically generated by NLP4J,
and the phrase structure tags were produced by the
Stanford parser.” Table 5 shows the example of the
first utterance in Figure 1 in the CoNLL’ 12 format.

4 System Description

This section describes the top-2 scoring systems
of this shared task. The AMORE-UPF is a group
of researchers from the Universitat Pompeu Fabra
in Spain (Section 4.1). The KNU ClI is a group of
researchers from Kangwon National University in
South Korea (Section 4.2).
®https://emorynlp.github.io/nlp4-

"https://nlp.stanford.edu/software/
lex-parser.shtml



slelu38 O 0 I PRP (TOP (S (S (NP=*) I - - Ross * (7)
slelu38 O 1 told VBD (VP * tell - - Ross * -
slelu38 O 2 mom NN (NP % mom - — Ross * (9)
slelu38 0 3 and cCc * and - - Ross * -
slelu38 O 4 dad NN *) dad - - Ross * (10)
slelu38 0 5 last JJ (NP—-TMP * last - - Ross (TIME* -
slelu38 O 6 night NN *))) night - - Ross *) -
slelu38 0 7 , , * , — — Ross * -
slelu38 O 8 they PRP (NP *) they - - Ross * -
slelu38 O 9 seemed VBD (VP * seem - - Ross * -
slelu38 0 10 to TO (S (VP* to - - Ross * .
slelu38 0 11 take VB (VP * take - - Ross * -
slelu38 0 12 it PRP (NP *) it - - Ross * -
slelu38 0 13 pretty RB (ADVP* pretty - - Ross * -
slelu38 0 14 well RB *))))) well - - Ross * .
slelu38 0 15 *) ) - — Ross * -

Table 5: Example of the first utterance in Figure 1 annotated in the CoNLL’ 12 format.

4.1 AMORE-UPF System

The AMORE-UPF system approaches this task as
a multi-class classification. It uses a bidirectional
Long Short-Term Memory (LSTM) that processes
the input dialogue and resolves mentions, by means
of a comparison between the LSTM’s hidden state,
for each mention, to vectors in an entity library. In
this model, learned representations of each entity
are stored in the entity library, that is a matrix where
each row represents an entity and whose values are
learned during training (Figure 2).

Inputs:

Ross—Wy——— C)

Ross & Rachel: the
LN JRachel- W——— (D,

Ross & Rachel: guy B
8uy—-W,~( )( )
Ross & Rachel: was ! v
(fictional example) —
taph
v ¥
BiLSTM: [h,,, j:( h; j:[hm }
I
W,
v
Entity library: C(l)S

softmax

Figure 2: The overview of AMORE-UPF system.

Class scores:

4.2 KNU-CI System

The KNU-CI system tackles this task as a sequence-
labeling problem. It uses an attention-based recur-
rent neural network (RNN) encoder-decoder model.
The input dialogue of character identification con-
sists of several conversations, resulting a long se-
quence of text. The RNN encoder-decoder model
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suffers from poor performance when the length of
the input sequence is long. To overcome this issue,
this system applies an attention, position encoding,
and the self-matching network to the original RNN
encoder-decoder model. As a result, the best per-
formance is achieved by the attention-based RNN
depicted in Figure 3.

Youtpur

Hidden Layer

GRU Layer

1apodac]

WA
R

Attention
Layer

Yinput

2 g T

-__- - . - - BiGR;'NLa\'er-'.‘
word L L L L L L Embedding

features

Layer

Taposuy

tellin®
0 1 2 3 4

Monica . 1 ‘m you

Kinpue

Figure 3: The overview of KNU-CI system.

5 Evaluation

Following Chen et al. (2017), the labeling accuracy
(Acc) and the macro-average F1 score (F1) are used
for the evaluation (C'": the total number of charac-
ters, F'1;: the Fl-score for the i’th character):

# of corrected identified mentions
Acc =

# of all mentions

1 &
Fl=— 1

Table 6 shows the overall scores from all submitted
systems. Two types of evaluation are performed for
this task. The first one is based on seven characters
where six of them compose the primary characters



(Section 3.2) and every other character is grouped
as one entity called Others (Main + Others). The
other is based on 78 characters comprising all char-
acters appeared in the dataset, except for the ones
appear either in the training or the evaluation set but
not both, which is grouped to the Others (ALL).

Main + Others ALL
System Acc [ FI1 Acc [ F1
AMORE-UPF 77.23 79.36 || 74.72 | 41.05
KNU-CI 85.10 86.00 || 69.49 | 16.98
Kampfpudding || 73.36 | 73.51 || 59.45 | 37.37
Zuma-AR 46.85 44.68 || 33.06 | 16.09

Table 6: Overall scores from the submitted systems.

Table 7 shows the F1 scores for the primary charac-
ters and Others, illustrating detailed evaluation
for Main + Others. Table 8 gives detailed evalua-
tion for ALL, showing the F1-scores for the top-12
most frequently appeared secondary characters and
Others that appear only in the training or the eval-
uation set but not both. The 18 characters in these
two tables comprise about 85% of all mentions.

6 Analysis

Based on the evaluation results, several interesting
observations can be made for how different system
architectures affect model performance on this task.
The analysis in this section primarily focuses on the
top-2 scoring systems, AMORE-UPF an KNU-CI,
as their results vastly outperform the other two and
the authors of those systems provide more detailed
descriptions to the organizers.

6.1 Overall Performance

It is worth pointing out the significance of the two
evaluation metrics proposed in Section 5 in terms
of the model performance. The labeling accuracy
indicates the raw predicative power of the model.
This metric is biased towards more frequently ap-
pearing characters such as the primary characters, a
total of which compose 70+% of the evaluation set.
Thus, it is possible to achieve a relatively high label-
ing accuracy score without handling referents for
the secondary characters well. On the contrary, the
macro-average F1 score neutralizes the imbalance
between frequently and not so frequently appearing
characters. It reveals the model performance on a
per-entity basis, which tends to favor transient and
extra characters more because every character is
treated equally in this metric.
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For the overall performance, KNU-CI outperforms
for Main + Others with the labeling accuracy of
85.10% and the macro-average F1 score of 86.00%,
whereas AMORE-UPF outperforms for ALL with
the labeling accuracy of 74.72% and the macro-
average F1 of 41.05% (Table 6). All systems pro-
duce better results for Main + Others than ALL,
which is expected due to the fewer number of enti-
ties to classify (7 vs 78). It is possible that KNU-
CI’s attention model is highly optimized for the
identification of the primary characters, whereas
AMORE-UPF’s LSTM model distributes weights
for the secondary characters more evenly, but more
detailed analysis needs to be made to see the com-
parative strengths between these two systems.

6.2 Main + Other Identification

Table 7 depicts the strength of the KNU-CI system
for the primary characters in comparisons to the
others, which is attributed to its unique sequence
labeling architecture and the attention mechanism.
Their encoder-decoder architecture helps consoli-
dating sequential information of the input dialogue
along with the mentions. The hidden units in RNNs
enable the network to aggregate character-related
information and to disambiguate timeline shifts
across utterances. The encoder takes the input dia-
logue and provides the decoder with context-rich
features. Coupled with the attention mechanism,
this model focuses on the primary characters; thus,
it results better performance on Main + Others.
However, this architecture is not as well-adaptive
as the number of characters increases for the identi-
fication, which can be observed from the system’s
low macro-average F1 score for All.

6.3 All Character Identification

Table 8 describes the strength of the AMORE-UPF
system for the secondary characters using the bidi-
rectional LSTM model, leading it to outperform all
the others for All. Although both AMORE-UPF
and KNU-CI utilize variations of RNNs as their un-
derlying architectures, the performance downfall is
not as prominent for AMORE-UPF as the number
of characters increases, thanks to its entity library.
The entity library is consumed and updated as nec-
essary given the mention embeddings. It is used to
regularize training each individual character, which
helps avoiding the bias towards frequently appear-
ing characters. As the result, AMORE-UPF yields
better performance for All while accomplishing
reasonable results for Main + Others as well.



Character H Ross \ Rachel

Chandler \ Joey \ Phoebe \ Monica H Others

Evaluation 18.98 13.96 9.80 9.51 9.02 8.97 29.77
Training 13.93 12.37 11.43 9.43 8.79 10.61 33.44
AMORE-UPF || 78.57 82.98 81.36 | 79.83 86.52 85.22 61.02
KNU-CI 85.86 92.49 84.94 | 79.67 88.09 91.16 79.79
Kampfpudding || 73.48 70.67 79.25 | 63.38 79.79 73.35 74.61
Zuma-AR 38.72 43.05 43.04 | 36.10 42.90 46.43 51.78

Table 7: Detailed evaluation for Main + Others in Table 6. The Evaluation and Training rows show the
percentages of individual characters appeared in the evaluation and the training set, respectively.

Character | Be | Ca | Ed | Pa | Ju | MB | Ri | Sc | Ca | Fr | Ja || ot
Evaluation 3.46 1.73 1.56 1.44 1.32 0.86 0.86 0.78 0.74 0.70 0.62 2.92
Training 1.41 1.46 1.06 0.71 1.15 0.60 1.83 0.21 0.13 0.51 0.43 13.51
AMORE-UPF 50.00 | 57.14 | 80.60 | 35.56 | 72.73 | 64.52 | 80.85 | 10.00 | 61.54 0.00 | 42.11 7.89
KNU-CI 38.46 | 62.79 | 73.02 | 15.38 | 42.55 0.00 | 66.67 | 38.46 0.00 | 18.18 | 16.00 0.00
Kampfpudding 31.86 | 33.33 | 68.85 | 33.33 | 60.32 | 50.00 | 61.22 | 10.00 0.00 0.00 | 23.53 0.00
Zuma-AR 0.00 | 12.24 | 44.44 0.00 | 27.91 | 1538 | 77.78 0.00 | 38.46 0.00 | 12.50 0.00

Table 8: Detailed evaluation for ALL in Table 6. Be: Ben, Ca: Carol, Ed: Eddie, Pa: Paolo, Ju: Julie: MB:
Mrs. Bing, Ri: Richard, Sc: Scott, Ca: Carl, Fr: Frank, Ja: Janice, OT: Others.

7 Conclusion

In this shared task, we propose a novel entity link-
ing task called character identification that aims to
find the global entities for all personal mentions,
representing individual characters in the contexts
of multiparty dialogue. Among 90+ participants
signed up for this task at CodaLab, only four sub-
mitted their system outputs, which is unfortunate.
However, the top-2 scoring systems depict unique
strengths, allowing us to make a good analysis for
this task. It would be interesting to see if the se-
quence labeling architecture from KNU-CI coupled
with the entity library from AMORE-UPF could
produce an even higher performing model for both
the Main + Other and All evaluation.

To facilitate the momentum, we create an open-
source project that will continuously support this
task.® It is worth mentioning that Character Identi-
fication is a part of a bigger project called Charac-
ter Mining that strives for machine comprehension
on dialog.” Currently, this project provides more
and cleaner annotation for character identification
than the corpus described in Section 3, hoping to
engage more researchers to this task.

$https://github.com/emorynlp/
character-identification

*https://github.com/emorynlp/
character-mining
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Abstract

This paper describes our winning contribution
to SemEval 2018 Task 4: Character Identifi-
cation on Multiparty Dialogues. It is a simple,
standard model with one key innovation, an en-
tity library. Our results show that this innova-
tion greatly facilitates the identification of in-
frequent characters. Because of the generic na-
ture of our model, this finding is potentially rel-
evant to any task that requires effective learn-
ing from sparse or unbalanced data.

1 Introduction

SemEval 2018 Task 4 is an entity linking task on
multiparty dialogue.! It consists in predicting the
referents of nominals that refer to a person, such
as she, mom, Judy — henceforth mentions. The set
of possible referents is given beforehand, as well
as the set of mentions to resolve. The dataset used
in this task is based on Chen and Choi (2016) and
Chen et al. (2017), and consists of dialogue from
the TV show Friends in textual form.

Our main interest is whether deep learning mod-
els for tasks like entity linking can benefit from
having an explicit entity library, i.e., a component
of the neural network that stores entity represen-
tations learned during training. To that end, we
add such a component to an otherwise relatively
basic model — a bidirectional LSTM (long short-
term memory; Hochreiter and Schmidhuber 1997),
the standard neural network model for sequential
data like language. Training and evaluating this

*denotes equal contribution.
'https://competitions.codalab.org/
competitions/17310
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model on the task shows that the entity library is
beneficial in the case of infrequent entities.”

2 Related Work

Previous entity linking tasks concentrate on linking
mentions to Wikipedia pages (Bunescu and Pagca
2006; Mihalcea and Csomai 2007 and much sub-
sequent work; for a recent approach see Francis-
Landau et al. 2016). By contrast, in the present
task (based on Chen and Choi 2016; Chen et al.
2017) only a list of entities is given, without any
associated encyclopedic entries. This makes the
task more similar to the way in which a human
audience might watch the TV show, in that they are
initially unfamiliar with the characters. What also
sets the present task apart from most previous tasks
is its focus on multiparty dialogue (as opposed to,
typically, newswire articles).

A task that is closely related to entity linking is
coreference resolution, i.e., the task of clustering
mentions that refer to the same entity (e.g., the
CoNLL shared task of Pradhan et al. 2011). Since
mention clusters essentially correspond to entities
(an insight central to the approaches to coreference
in Haghighi and Klein 2010; Clark and Manning
2016), the present task can be regarded as a type
of coreference resolution, but one where the set of
referents to choose from is given beforehand.

Since our main aim is to test the benefits of
having an entity library, in other respects our
model is kept more basic than existing work
both on entity linking and on coreference reso-

2Source code for our model and for the training procedure

is published on https://github.com/amore-upf/
semeval2018-task4.
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lution (e.g., the aforementioned approaches, as
well as Wiseman et al. 2016; Lee et al. 2017,
Francis-Landau et al. 2016). For instance, we
avoid feature engineering, focusing instead on the
model’s ability to learn meaningful entity repre-
sentations from the dialogue itself. Moreover, we
deviate from the common strategy to entity linking
of incorporating a specialized coreference resolu-
tion module (e.g., Chen et al. 2017).

3 Model Description

We approach the task of character identification
as one of multi-class classification. Our model is
depicted in Figure 1, with inputs in the top left and
outputs at the bottom. In a nutshell, our model is
a bidirectional LSTM (long short-term memory,
Hochreiter and Schmidhuber 1997) that processes
the dialogue text and resolves mentions, through a
comparison between the LSTM’s hidden state (for
each mention) to vectors in a learned entity library.
The model is given chunks of dialogue, which
it processes token by token. The i token t; and
its speakers S; (typically a singleton set) are repre-
sented as one-hot vectors, embedded via two dis-
tinct embedding matrices (W; and Wy, respec-
tively) and finally concatenated to form a vector x;
(Eq. 1; see also Figure 1). In case S; contains
multiple speakers, their embeddings are summed.

xi=Witi[| > Wgs
sES;

)

We apply an activation function f (= tanh). The
hidden state h; of a unidirectional LSTM for the
i input is recursively defined as a combination of
that input with the LSTM’s previous hidden state
ﬁi_l. For a bidirectional LSTM, the hidden state
h; is a concatenation of the hidden states ﬁz and

; of two unidirectional LSTMs which process
the data in opposite directions (Eq. 2; see also
Figure 1). In principle, this enables a bidirectional
LSTM to represent the entire dialogue with a focus
on the current input, including for instance its
relevant dependencies on the context.

h; = BILSTM(f(xi), By_1, his1) ()

In the model, learned representations of each
entity are stored in the entity library E € RV**
(see Figure 1): E is a matrix which represents each
of N entities through a k-dimensional vector, and
whose values are updated (only) during training.
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Figure 1: The AMORE-UPF model (bias not depicted).

For every token t; that is tagged as a mention,? we
map the corresponding hidden state h; to a vector
e; € R This extracted representation is used
to retrieve the (candidate) referent of the mention
from the entity library: The similarity of e; to
each entity representation stored in E is computed
using cosine, and softmax is then applied to the
resulting similarity profile to obtain a probability
distribution o; € [0, 1]'*" over entities (‘class
scores’ in Figure 1):

o; = softmax(cosine(E, (W, h; + b)) (3)
—_——

e;
At testing time, the model’s prediction ¢; for the
i token is the entity with highest probability:

“)

¢; = argmax(0;)

We train the model with backpropagation, using
negative log-likelihood as loss function. Besides
the BiLSTM parameters, we optimize W, W,
W,, E and b. We refer to this model as AMORE-
UPF, our team name in the SemEval competition.
Note that, in order for this architecture to be suc-
cessful, e; needs to be as similar as possible to the
entity vector of the entity to which mention ¢; refers.
Indeed, the mapping W, should effectively special-
ize in “extracting” entity representations from the
hidden state because of the way its output e; is used
in the model—to do entity retrieval. Our entity re-
trieval mechanism is inspired by the attention mech-
anism of Bahdanau et al. (2016), that has been used
in previous work to interact with an external mem-
ory (Sukhbaatar et al., 2015; Boleda et al., 2017).

3For multi-word mentions this is done only for the last
token in the mention.



JOEY TRIBBIANI (183):
”...see Ross, because I think you love her .”

335 183 335 306

Figure 2: Example of the data provided for the Se-
mEval 2018 Task 4. It shows the speaker (first line) of
the utterance (second line) and the ids of the entities to
which the target mentions (underlined) refer (last line).

To assess the contribution of the entity library,
we compare our model to a similar architecture
which does not include it (NoEntLib). This model
directly applies softmax to a linear mapping of the
hidden state (Eq. 5, replacing Eq. 3 above).

o; = softmax(W, h; + b) ®))

4 Experimental Setup

Data We use the training and test data provided
for SemEval 2018 Task 4, which span the first
two seasons of the TV show Friends, divided into
scenes (train: 374 scenes from 47 episodes; test:
74 scenes from 40 episodes).* In total, the train-
ing and test data contain 13,280 and 2,429 nomi-
nal mentions (e.g., Ross, I; Figure 2), respectively,
which are annotated with the ID of the entity to
which they refer (e.g., 335, 183). The utterances
are further annotated with the name of the speaker
(e.g., JOEY TRIBBIANTI). Overall there are 372 enti-
ties in the training data (test data: 106). Our models
do not use any of the provided automatic linguistic
annotations, such as PoS or named entity tags.

We additionally used the publicly available 300-
dimensional word vectors that were pre-trained on
a Google News corpus with the word2vec Skip-
gram model (Mikolov et al., 2013).

Parameter settings Using 5-fold cross-
validation on the training data, we performed
a random search over the hyperparameters and
chose those which yielded the best mean F1-score.
Specifically, our submitted model is trained in
batch mode using the Adam optimizer (Kingma
and Ba, 2014) with a learning rate of 0.0005. Each
batch covers 24 scenes, which are given to the
model in chunks of 757 tokens. The token em-
beddings (W) are initialized with the word2vec
vectors. Dropout rates of 0.008 and 0.0013 are
applied on the input x; and hidden layer h; of
the LSTM, respectively. The size of h; is set to

“The organizers also provided data divided by episodes
rather than scenes, which we didn’t use.

SThe word vectors are available at https://code.
google.com/archive/p/word2vec/.
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all entities main entities
Models F; Acc F, Acc
AMORE-UPF| 41.1**| 74.7**| 79.4 | 77.2
NoEntLib 26.4 71.6 | 79.5 | 77.5

Table 1: Results obtained for the submitted AMORE-
UPF model and a variant of it that does not use an entity
library (NoEntLib). Best results are in boldface. Differ-
ences with respect to the 2nd row marked by “**’ are
significant at the 0.001 probability level (see text).

others

COMmon noun
proper noun

3rd person

1st person

2nd person

Figure 3: Distribution of all 2,429 target mentions in
the test data in terms of their part-of-speech.

459 units, the embeddings of the entity library E
and speakers W are set to k = 134 dimensions.

Other configurations, including randomly initial-
ized token embeddings, weight sharing between
E and W, self-attention (Bahdanau et al., 2016)
on the input layer, a uni-directional LSTM, and
rectifier or linear activation function f on the input
embeddings did not improve performance.

For the final submission of the answers for the
test data, we created an ensemble model by averag-
ing the output (Eq. 3) of the five models trained on
the different folds.

5 Results

Two evaluation conditions were defined by the orga-
nizers — all entities and main entities — with macro-
average F;-score and label accuracy as the official
metrics, and macro-average Fi-score in the all
entities condition applied to the leaderboard. The
all entities evaluation has 67 classes: 66 for entities
that are mentioned at least 3 times in the test set
and one grouping all others. The main entities eval-
uation has 7 classes, 6 for the main characters and
one for all the others. Among all four participating
systems in this SemEval task our model achieved
the highest score on the all entities evaluation, and
second-highest on the main entities evaluation.
Table 1 gives our results in the two evaluations,
comparing the models described in Section 4.
While both models perform on a par on main
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Figure 4: F;-score of the models on all entities depend-
ing on the part-of-speech of the target mentions.

entities, AMORE-UPF outperforms NoEntLib by
a substantial margin when all characters are to
be predicted (+15 points in Fi-score, +3 points
in accuracy; Table 1).° The difference between
the models with/without an entity library are
statistically significant based on approximate
randomization tests (Noreen, 1989), with the
significance level p < 0.001. This shows that the
use of an entity library can be beneficial for the
linking of rarely mentioned characters.

Figure 3 shows that most of the target mentions
in the test data fall into one of five grammatical
categories. The dataset contains mostly pronouns
(83%), with a very high percentage of first person
pronouns (44%). Figures 4 and 5 present the accu-
racy and F;-score which the two models described
above obtain on all entities for different categories
of mentions. The entity library is beneficial when
the mention is a first person pronoun or a proper
noun (with an increase of 30 points in F;-score for
both categories; Figure 4), and closer inspection
revealed that this effect was larger for rare entities.

6 Discussion

The AMORE-UPF model consists of a bidirec-
tional LSTM linked to an entity library. Compared
to an LSTM without entity library, NoEntLib, the
AMORE-UPF model performs particularly well on
rare entities, which explains its top score in the all
entities condition of SemEval 2018 Task 4. This
finding is encouraging, since rare entities are espe-
cially challenging for the usual approaches in NLP,
due to the scarcity of information about them.

We offer the following explanation for this bene-
ficial effect of the entity library, as a hypothesis for

The mean difference between the single models (trained
on a single fold) and the ensemble AMORE-UPF is between
-1.3 points (accuracy main entities, std = 1.3) and -4.2 points
(F1-score all entities, std = 1.3).
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Figure 5: Aaccuracy of the models on all entities de-
pending on the part-of-speech of the target mentions.

future work. Having an entity library requires the
LSTM of our model to output some representation
of the mentioned entity, as opposed to outputting
class scores more or less directly as in the variant
NoEntLib. Outputting a meaningful entity repre-
sentation is particularly easy in the case of first
person pronouns and nominal mentions (where the
effect of the entity library appears to reside; Fig-
ure 4): the LSTM can learn to simply forward the
speaker embedding unchanged in the case of pro-
noun /, and the token embedding in the case of
nominal mentions. This strategy does not discrim-
inate between frequent and rare entities; it works
for both alike. We leave further analyses required
to test this potential explanation for future work.

Future work may also reveal to what extent the
induced entity representations may be useful in oth-
ers, to what extent they encode entities’ attributes
and relations (cf. Gupta et al. 2015), and to what
extent a module like our entity library can be em-
ployed elsewhere, in natural language processing
and beyond.
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Abstract

This paper discusses SemEval-2018 Task 5:
a referential quantification task of counting
events and participants in local, long-tail news
documents with high ambiguity. The com-
plexity of this task challenges systems to es-
tablish the meaning, reference and identity
across documents. The task consists of three
subtasks and spans across three domains. We
detail the design of this referential quantifica-
tion task, describe the participating systems,
and present additional analysis to gain deeper
insight into their performance.

1 Introduction

We present a “referential quantification” task that
requires systems to establish the meaning, refer-
ence and identity of events' and participants in
news articles. By “referential quantification”, we
mean questions concerning the number of inci-
dents of an event type (e.g. How many killing in-
cidents happened in 2016 in Columbus, MS?) or
participants in roles (e.g. How many people were
killed in 2016 in Columbus, MS?), as opposed to
factoid questions for specific properties of indi-
vidual events and entities (e.g. When was 2pac
murdered?). The questions are given with cer-
tain constraints on the location, time, participants,
and event types, which requires understanding of
the meaning of words mentioning these properties
(e.g. Word Sense Disambiguation), but also ad-
equately establishing the identity (e.g. reference
and coreference) across mentions. The task thus
represents both an intrinsic and application-based
evaluation, as systems are forced to resolve ambi-
guity of meaning and reference, as well as varia-
tion in reference in order to answer the questions.

1By event, we denote a specific instance of an event, e.g.

a killing incident happening at a specific location, time, and
involving certain participants.
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Figure 1 shows an overview of our quantifica-
tion task. We provide the participants with a set
of questions and their corresponding news docu-
ments.> Systems are asked to distill event- and
participant-based knowledge from the documents
to answer the question. Systems submit both a nu-
meric answer (3 events in Figure 1), and the corre-
sponding events with their mentions found in the
provided texts (e.g., the leftmost incident in Fig-
ure 1 is referred to by the coreferring mentions
“killed” and “assault” found in two separate doc-
uments). Systems are evaluated on both the nu-
meric answers as well as on the sets of coreferring
mentions. Mentions are represented by tokens and
offsets provided by the organizers.

The incidents and their corresponding news arti-
cles are obtained from structured databases, which
greatly reduces the need for annotation and mainly
requires validation instead. Given this data and
using a metric-driven strategy, we created a task
that further maximizes ambiguity and variation of
the data in relation to the questions. This ambigu-
ity and variation includes a substantial amount of
low-frequent, local events and entities, reflecting
a large variety of long-tail phenomena. As such,
the task is not only highly ambiguous but can also
not be tackled by relying on the most frequent and
popular (head) interpretations.

We see the following contributions of our task:
1. To the best of our knowledge, we propose the
first task that is deliberately designed to address
large ambiguity of meaning and reference over a
high number of infrequent instances.

2. We introduce a methodology for creating large
event-based tasks while avoiding a lot of anno-
tation, since we base the task on structured data.
The remaining annotation concerns targeted men-
tions given the structured data rather than full doc-

2Question parsing is unnecessary, as questions are pro-
vided in a structured format.
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Question: How many killing incidents happened in 2016 in Columbus, Mississippi?

Mississippi § Shooting suspect NEWLYWED Columbus Police High Winds Play 6 killed in Suspect
boy killed charged with ACCUSED OF investigating early Role in 2-Alarm Columbus | arrested in )
in gun domestic SHOOTING NEW W morning shooting District Heights night fatal input
accident [ aggravated assault BRIDE Apartment Fire shooting shooting documents

(1 killed,
Columbus MS, 2016)

(1 killed, (1 injured,

Columbus MS, 2017)
Confusion

Answer Confusion

Columbus GA, 2016)

candidate
incidents

(6 killed,
Columbus MS, 201

(0 killed,
6) Columbus MS, 2016) Columbus MS, 2016)

(3 killed,

Answer Confusion Answer

Figure 1: Task overview. Systems are provided with a question and a set of input documents. Their goal is then to find the
documents that fit the question constraints and reason over them to provide an answer.

uments with open-ended interpretations.

3. We made all of our code to create the task avail-
able,® which may stimulate others to create more
tasks and datasets that tackle long-tail phenomena
for other aspects of language processing, either
within or outside of the SemEval competition.

4. This task provides insights into the strengths
and weaknesses of semantic processing systems
with respect to various long-tail phenomena. We
expect that systems need to innovate by adjusting
(deep) learning techniques to capture the referen-
tial complexity and knowledge sparseness, or by
explicitly modeling aspects of events and entities
to establish identity and reference.

2 Motivation & Target Communities

Expressions can have many different meanings
and possibly an infinite number of references. At
the same time, variation in language is also large,
as we can make reference to the same things
in many ways. This makes the tasks of Word
Sense Disambiguation, Entity Linking, and Event
and Nominal Coreference extremely hard. It also
makes it very difficult to create a task that repre-
sents the problem at its full scale. Any sample
of text will reduce the problem to a small set of
meanings and references, but also to meanings that
are popular at that time excluding many unpopular
ones from the distributional long tail. Given this
Zipfian distribution, a task that is challenging with
respect to ambiguity, reference, and variation, and
that is representative for the long tail as well, needs
to fit certain constraints.

*https://github.com/cltl/
LongTailQATask
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Our task directly relates to the following com-
munities in semantic processing: 1. disambigua-
tion and reference; 2. reading comprehension and
question answering.

2.1 Disambiguation & Reference

Semantic NLP tasks are often limited in terms of
the range of concepts and meanings that are cov-
ered. This is a necessary consequence of the an-
notation effort that is needed to create such tasks.
Likewise, in Ilievski et al. (2016), we observed
that most well-known datasets for semantic tasks
have an extremely low ambiguity and variation.
Even in datasets that tried to increase the ambigu-
ity and temporal diversity for the disambiguation
and reference tasks, we still measured a notable
bias with respect to ambiguity, variance, domi-
nance, and time. Overall, tasks and their datasets
show a strong semantic overfitting to the head
of the distribution (the most popular part of the
world) and are not representative for the diversity
of the long tail.

Our task differs from existing ones in that: 1. we
deliberately created a task with a high number of
event instances per event, many of which with
similar properties, leading to high confusability
2. we present an application-based task which
requires to perform on a combination of intrin-
sic tasks such as reference, disambiguation, and
spatial-temporal reasoning, that are usually tested
separately in existing tasks.

2.2 Reading Comprehension & Question
Answering

In several recent tasks, systems are asked to an-
swer entity-based questions, typically by point-



ing to the correct segment or coreference chain
in text, or by composing an answer by abstract-
ing over multiple paragraphs/text pieces. These
tasks are based on Wikipedia (SQuAD (Ra-
jpurkar et al., 2016), WikiQA (Yang et al., 2015),
QASent (Wang et al., 2007), WIKIREADING
(Hewlett et al., 2016)) or on annotated individual
documents (MARCO (Nguyen et al., 2016), CNN
and DailyMail datasets (Hermann et al., 2015)).
Weston et al. (2015) outlined 20 skill sets,
such as causality, resolving time and loca-
tion, and reasoning over world knowledge, that
are needed to build an intelligent QA sys-
tem. These have been partially captured by the
datasets MCTest (Richardson et al., 2013) and
QuizBowl (Iyyer et al., 2014)), as well as the Se-
mEval task on Answer Selection in Community
Question Answering (Nakov et al., 2015, 2016).4
However, all these datasets avoid representing
real-world referential ambiguity to its full extent
by mainly asking questions that require knowledge
about popular Wikipedia entities and/or text un-
derstanding of a single document.’> Unlike exist-
ing work, our task deliberately addresses the ref-
erential ambiguity of the world beyond Wikipedia,
by asking questions about long-tail events de-
scribed in multiple documents. By doing so, we
require deep processing of text and establishing
identity and reference across single documents.

3 Task Requirements

Our quantification task consists of questions like
How many killing incidents happened in 2016 in
Columbus, MS? on a dataset that maximizes con-
fusability of meaning, reference and identity. To
guide the creation of such task, we defined five re-
quirements that apply to the data for a single event
type, e.g. killing (Postma et al., 2016).

Each event type should contain:
R1 Multiple event instances per event type, e.g.
the killing of Joe Doe and the killing of Joe Roe.
R2 Multiple event mentions per event instance
within the same document.
R3 Multiple documents with varying creation
times that describe the same event.
R4 Event confusability by combining one or mul-
tiple confusion factors:

“The 2017 run can be found at http://alt.qgcri.
org/semeval2017/task3/.

Se.g. the Quiz Bowl dataset deliberately focuses on do-
mains with much training data and frequent answers, thus
avoiding the long tail problem in reference.
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a) ambiguity of event mentions, e.g. John Doe
fires a gun, and John Doe fires a worker.

b) variance of event mentions, e.g. John Doe
kills Joe Roe, and John Doe murders Joe Roe.

c) time, e.g. killing A that happened in January
2013, and killing B in October 2016.

d) participants, e.g. killing A committed by John
Doe, and killing B committed by Joe Roe.

e) location, e.g. killing A that happened in
Columbus, MS, and killing B in Houston, TX.
RS Representation of non-dominant events and
entities, i.e. instances that receive little media cov-
erage. Hence, the entities would not be restricted
to celebrities and the events are not widely dis-
cussed such as general elections.

4 Data & Resources

In this Section, we present our data sources and
an example document. We also discuss considera-
tions of licensing and availability.

4.1 Structured data

The majority of the source texts in this task are
sampled from structured databases that contain
supportive news sources about gun violence inci-
dents. While these texts already contain enough
confusability with respect to the aspects defined
in Section 3, we add confusion through leverag-
ing structured data from two other domains: fire
incidents and business.

As a direct consequence of using these
databases and our exploitation strategy, we are
able to satisfy all requirements we set in Section 3.
These databases contain many event instances per
event type (R1), multiple event mentions in the
same document per event instance (R2), cover a
wide spread of publishing times per event instance
(R3), represent non-dominant events and entities
(RY), and contain rich annotation of event proper-
ties that allows us to create high confusability (R4,
see Section 5.3 for our methodology).

For a large portion of the information in the
structured databases, we manually validated that
this information could be found in the support-
ive news sources, and excluded the documents for
which this was not the case. For the remaining
documents, we performed automatic tests to filter
out low-quality entries.

4.1.1 Gun Violence

The gun violence data is collected from the stan-
dard reports provided by the Gun Violence Archive



(GVA) website.® Each incident contains informa-
tion about: 1. its location 2. its time 3. how many
people were killed 4. how many people were in-
jured 5. its participants. Participant information
includes: (a) the role, i.e. victim or suspect (b) the
name (c) the age 6. the news articles describing
this incident. Table 1 provides a more detailed
overview of the information available in the GVA.

Event Property | Granularity Example value

Address Central Avenue
Location City Waynesboro
State Mississippi
Day 14-3-2017
Incident time Month 3-2017
Year 2017
First name John
Participant Last name Smith
Full name John Smith

Table 1: Overview of the GVA incident properties of loca-
tion, time, and participant.

To prevent systems from cheating (by using the
structured data directly), the set of incidents and
news articles is extended with news articles from
the Signal-1M Dataset (Corney et al., 2016) and
from the Web, that also stem from the gun violence
domain, but are not found in the GVA.

4.1.2 Other domains

For the fire incidents domain, we make use of the
FireRescuel reports,’ which describe the follow-
ing information about 417 incidents: 1. their lo-
cation as a surface form 2. their reporting time
3. one free text summary describing the inci-
dents. 4. no information about participants.
Based on this information, we manually annotated
the incident time and mapped the location to its
representation in Wikipedia.

We further carefully selected a small amount
of news articles from the business domain from
The Signal-1M Dataset. Since these documents
were not semantically annotated with respect to
event information, we manually annotated this
data with the same kind of information as the other
databases: incident location, time, and informa-
tion on the affected participants.

®http://gunviolencearchive.org/
reports/

"nttps://www.firerescuel.com/
incident-reports/
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4.2 Example document

For each document, we provide its title, content
(tokenized), and creation time, e.g.:

Title: $70K reward in deadly shooting near N.
Philadelphia school

Content: A $70,000 reward is being offered for in-
Sformation in a quadruple shooting near a Roman
Catholic school ...

DCT: 2017-4-5

4.3 Licensing & Availability

The news documents in our task are published on a
very diverse set of (commercial) websites. Due to
this diversity, there is no easy mechanism to check
their licenses individually. Instead, we overcome
potential licensing issues by distributing the data
under the Fair Use policy.® °

During the SemEval-2018 period, but also af-
terwards, systems can easily test their submissions
via our competition on Codalab.!”

5 Task Design

For every incident in the task, we have fine-
grained structured data with respect to its event
type, location, time, and participants, and unstruc-
tured data in the form of the news sources that re-
port on it. In this Section, we explain how we ex-
ploited this data in order to create the task. We
present our three subtasks and the question tem-
plate after which we outline the question creation.
Finally, we explain how we divided the data into
trial and test sets and provide some statistics about
the data. For detailed information about the task,
e.g. about the question and answer representation,
we refer to the Codalab website of the task.

5.1 Subtasks

The task contains two event-based subtasks and
one entity-based subtask.

Subtask 1 (S1): Find the single event that an-
swers the question e.g. Which killing incident
happened in Wilmington, CA in June 2014? The
main challenge is not to determine how many in-
cidents satisfy the question, but to identify the doc-
uments that describe the single answer incident.

Subtask 2 (S2): Find all events (if any) that
answer the question. This subtask differs from

8Fair use policy in USA: https://goo.gl/hXiEKL

%Fair use policy in EU: https://goo.gl/s8V5Zs

Yhttps://competitions.codalab.org/
competitions/17285



S1 in that the system now also has to determine
the number of answer incidents, which makes this
subtask harder. To make it more realistic, we also
include questions with zero as an answer.

Subtask 3 (S3): Find all participant-role re-
lations that answer the question e.g. How many
people were killed in Wilmington, CA with the last
name Smith? The goal is to determine the number
of entities that satisfy the question. The system
not only needs to identify the relevant incidents,
but also to reason over the participant roles.

5.2 Question Template

Questions in each subtask consist of an event type
and two event properties.

Event type We consider four event types
in this task described through their representa-
tion in WordNet (Fellbaum, 1998) and FrameNet
(F. Baker et al., 1998). Each question is con-
strained by exactly one event type.

event type description = meanings
killing  atleast wn30:killing.n.02
one person wn30:kill.v.01
is killed fn17:Killing
injuring  at least wn30:injure.v.01
one person wn30:injured.a.01
is injured fn17:Cause_harm
fnl7:Experience-
_bodily_harm
fire_burning the eventof = wn30:fire.n.01

something fn17:Fire_burning
burning

job_firing  terminated wn30:displace.v.03
employment  fn17:Firing

Table 2: Description of the event types. The meanings col-
umn lists meanings that best describe the event type. It con-
tains both FrameNet 1.7 frames (prefixed by fi/7) and Word-
Net 3.0 synsets (prefixed by wn30).

Event properties For each event property in
our task (time, location, participants), we distin-
guish between three levels of granularity (see Ta-
ble 1). In addition, we make a distinction between
the surface form and the meaning of an event prop-
erty value. For example, the surface form Wilm-
ington can denote several meanings: the Wilming-
ton cities in the states of California, North Car-
olina, and Delaware. When composing questions,
for time and location we take the semantic (mean-
ing) level, while for participants we use the surface
form of their names. This is because the vast ma-
jority of the participants in our task are long tail
instances which have no semantic representation
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in a structured knowledge base.

5.3 Question Creation

Our question creation strategy consists of three
consecutive phases: question composition, gener-
ation of answer and confusion sets, and question
scoring. These steps are common for both the
event-based subtasks (S1 and S2) and the entity-
based subtask S3.
1. Question composition We compose questions
based on the template described in Section 5.2.
This entails: 1. choice of a subtask 2. choice of
an event type, e.g. killing 3. choice of two event
properties (e.g. time and location) with their cor-
responding granularities (e.g. month and city) and
concrete values (e.g. June 2014 and Wilmington,
CA). This step generates a vast amount of potential
questions (hundreds of thousands) in a data-driven
way, i.e. we select the event type and properties
per question purely based on the combinations we
find in our data. Example questions are:

Which killing event happened in June 2014 in
Wilmington, CA? (subtask S1)

How many killing events  happened
June 2014 in Wilmington, CA? (subtask S2)

How many people were killed in June 2014 in
Wilmington, CA? (subtask S3)
2. Answer and confusion sets generation For
each generated question, we define a set of answer
and confusion incidents with their corresponding
documents. Answer incidents are the ones which
entirely fit the question parameters, e.g. all killing
incidents that occur in June 2014 and in the city
of Wilmington, CA. Confusion incidents fit some,
but not all, values of the question parameters , i.e.
they differ with respect to an event type or prop-
erty (e.g. all fire incidents in June 2014 in Wilm-
ington, CA; or all killings in June 2014, but not in
Wilmington, CA; or all killings in Wilmington, CA,
but not in June 2014).
3. Question scoring The generated questions
with their corresponding answers and confusion
are next scored with respect to several metrics that
measure their complexity. The per-question scores
allow us to detect and remove the “easy” ones, and
keep those that: 1. have a high number of answer
incidents (only applicable to S2 and S3) 2. have a
high number of confusion incidents 3. have a high
average number of answer and confusion docu-
ments, i.e. news sources describing the answer and
the confusion incidents correspondingly 4. have a

in




high temporal spread with respect to the publish-
ing dates reporting on each incident from the an-
swer and confusion incidents 5. have a high am-
biguity with respect to the surface forms of an
event property value in a granularity level (e.g. we
would favor Wilmington, since it is a city in at least
three US states in our task data).

5.4 Data Partitioning

We divided the overall task data into two parti-
tions: trial and test data. In practice, we separated
these two data partitions by reserving one year of
news documents (2017) from our task for the trial
data, while using all the other data as test data.

The trial data stems from the gun violence do-
main, whereas the test data also contains data from
the fire incidents and business domain. A subset of
the trial and test data has been annotated for event
coreference. Table 3 presents the most important
statistics of the trial and test data.

S #Qs Avg Avg #
answer  answer docs

trial 1 424 1.00 1.68
2 469 422 7.68

3 585 5.48 5.47

test 1 1032 1.00 1.60
2 997 3.79 6.64

3 2456 3.66 3.74

Table 3: General statistics about trial and test data. For each
subtask (S), we show the number of questions (#Qs), the aver-
age answer (Avg answer), and the average number of answer
documents (Avg # answer docs).

We made an effort to make the trial data repre-
sentative for the test data with respect to the main
aspects of our task: its referential complexity, high
confusability, and long-tail instances. Despite the
fact that the trial data contains less questions than
the test data, Table 3 shows that it is similar to the
test data with respect to the core properties, mean-
ing that the trial data can be used as training data.

6 Evaluation

This Section describes the evaluation criteria in
this task and the baselines we compare against.

6.1 Criteria

Evaluation is performed on three levels: incident-
level, document-level, and mention-level.

The incident-level evaluation compares the nu-
meric answer provided by the system to the gold
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answer for each of the questions. The compari-
son is done twofold: by exact matching and by
Root Mean Square Error (RMSE) for difference
scoring. The scores per subtask are then averaged
over all questions to compute a single incident-
level evaluation score.

The document-level evaluation compares the set
of answer documents between the system and the
gold standard, resulting in a value for the custom-
ary metrics of Precision, Recall, and F1 per ques-
tion. The scores per subtask are then averaged
over all questions to compute a single document-
level evaluation score.

The mention-level evaluation is a cross-
document event coreference evaluation. Mention-
level evaluation is only done for questions with
the event types killing or injuring. We apply
the customary metrics to score the event coref-
erence: BCUB (Bagga and Baldwin, 1998),
BLANC (Recasens and Hovy, 2011), entity-based
CEAF (CEAF_E) and mention-based CEAF
(CEAF_M) (Luo, 2005), and MUC (Vilain et al.,
1995). The final Fl-score is the average of
the Fl-scores of the individual metrics. The
set of mentions to annotate should conform
to the schema defined in the task annotation
guidelines.!!

6.2 Baselines

To stimulate participation in general and to stim-
ulate approaches beyond surface form or major-
ity class strategies, we implemented one baseline
to infer incidents per subtask and one baseline for
mention annotation.'?
Incident inference baseline This baseline uses
surface forms based on the question components
to find the answer documents. We only consider
documents that contain the label of the event type
or at least one of its WordNet synonyms. The la-
bels of locations and participants are queried di-
rectly in the document (e.g. if the location re-
quested is the US state of Texas, then we only
consider documents that contain the surface form
Texas, and similarly for participants such as John).
The temporal constraint is handled differently: we
only consider documents whose publishing date
falls within the time requested in the question.
For subtask 1, this baseline assumes that all doc-
uments that fit the created constraints are referring

"Link to the guidelines: https://goo.gl/8JpwCE.
2The code of the baselines can be found here: https:
//goo.gl/MwSqBj.



to the same incident. If there is no such document,
then the baseline does not answer the question (be-
cause S1 always has at least one supporting doc-
ument). For subtask 2, we assume that none of
the documents are coreferential. Hence, if 10 doc-
uments match the constraints, we infer that there
are also 10 corresponding incidents. No baseline
was implemented for subtask 3.

Mention annotation baseline We annotate men-
tions of events of type killing and injuring, when
these surface forms or their synonyms in WordNet
are found as tokens in a document. We assume
that all mentions of the same event type within a
document are coreferential, whereas all mentions
found in different documents are not.

7 Participants

In this Section, we describe the systems that took
part in SemEval-2018 task 5. We refer to the indi-
vidual system papers for further information.

NewsReader (Vossen, 2018) consists of three
steps: 1. the event mentions in the input doc-
uments are represented as Event-Centric Knowl-
edge Graphs (ECKGs). 2. the ECKGs of all docu-
ments are compared to each other to decide which
documents refer to the same incident, resulting in
an incident-document index. 3. the constraints
of each question (its event type, time, participant
names, and location) are matched with the stored
ECKGs, resulting in a number of incidents and
source documents for each question.

NAI-SEA (Liu and Li, 2018) consists of three
components: 1. extraction of basic information
on time, location, and participants with regular
expressions, named entity recognition, and term
matching; 2. event classification with an SVM
classifier; 3. document similarity by applying a
classifier to detect similar documents. In terms
of resources, NAI-SEA combines the training data
with data on American cities, counties, and states.

Team FEUP (Abreu and Oliveira, 2018) devel-
oped an experimental system to extract entities
from news articles for the sake of Question & An-
swering. For this main task, the team proposed a
supervised learning approach to enable the recog-
nition of two different types of entities: Locations
(e.g. Birmingham) and Participants (e.g. John
List). They have also studied the use of distance-
based algorithms (using Levenshtein distance and
Q-grams) for the detection of documents’ close-
ness based on entities extracted.
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Team ID-DE (Mirza et al., 2018) created KOI
(Knowledge of Incidents), a system that builds
a knowledge graph of incidents, given news ar-
ticles as input. The required steps include: 1.
Document preprocessing using various semantic
NLP tasks such as Word Sense Disambiguation,
Named-Entity Recognition, Temporal expression
recognition, and Semantic Role Labeling. 2. In-
cident extraction and document clustering based
on the output of step 1. 3. Ontology construc-
tion to capture the knowledge model from inci-
dents and documents which makes it possible to
run SPARQL queries on the ontology to answer
the questions.

8 Results

R Team s2_inc_acc s2_inc_acc s2_inc
norm (% of Qs answered) rmse

1 FEUP 26.38 26.38 (100.0%)  6.13

2 *NewsReader 21.87 21.87 (100.0%) 43.96

3 Baseline 18.25 18.25 (100.0%) 8.50

4  NAI-SEA 17.35 17.35 (100.0%)  20.59

5 ID-DE 13.74 20.36 (67.5%) 6.15

Table 4: For subtask 2, we report the normalized
incident-level accuracy (s2_inc_acc norm), the accuracy on
the answered questions only (s2_inc_acc), and the RMSE
value (s2_inc rmse). Systems are ordered by their rank (R).

R Team s3_inc_acc s3_inc_acc s3_inc
norm (% of Qs answered) rmse
1 FEUP 30.42 30.42 (100.0%) 478.71
2 *NewsReader 21.05 21.05 (100.0%) 296.45
3  NAI-SEA 20.20 20.2 (100.0%) 13.45
4 ID-DE 12.87 19.32 (66.61%) 7.87

Table 5: For subtask 3, we report the normalized
incident-level accuracy (s3_inc_acc norm), the accuracy on
the answered questions only (s3_inc_acc), and the RMSE
value (s3_inc rmse). Systems are ordered by their rank (R).

Before we report the system results, we introduce
a few clarifications regarding the result tables:

1. For the incident- and document-level evalua-
tion, we report both the performance with respect
to the subset of questions answered and a normal-
ized score, which indicates the performance on all
questions of a subtask. If a submission provides
answers for all questions, the normalized score
will be the same as the non-normalized score.

2. Contrary to the other metrics, a lower RMSE
value indicates better system performance. In ad-
dition, the RMSE scores have not been normalized
since it is not reasonable to set a default value for
non-answered questions.



3. The mention-level evaluation was the same
across all three subtasks. For this reason, results
are only reported once (see Section 8.3).

4. The teams whose member co-organized
SemEval-2018 task 5 are marked explicitly with
an asterisk in the results.

8.1 Incident-level evaluation

The incident-level evaluation assesses whether the
system provided the right numeric answer to a
question. The results of this evaluation are given
in the Tables 4 and 5, for the subtasks 2 and 3 cor-
respondingly.’3 On both subtasks, the order of the
participating systems is identical, team FEUP hav-
ing the highest score.

These tables also show the RMSE values, which
measure the proximity between the system and the
gold answer, punishing cases where the absolute
difference between them is large. While for sub-
task 2 the system with the lowest error rate cor-
responds to the system with the highest accuracy,
this is different for subtask 3. NAI-SEA, ranked
third in terms of accuracy, has the lowest RMSE.
This means that although their answers were not
exactly correct, they were on average much closer
to the correct answer than those of the other sys-
tems. This is more notable in subtask 3 since here
the range of answers is larger than in subtask 2 (the
maximum answer in subtask 3 is 171).

We performed additional analysis to compare
the performance of systems per subtype and per
numeric answer class. Table 6 shows that the
system FEUP is not only superior in terms of
incident-level accuracy overall, but this is also
mirrored for most of the event types, especially
those corresponding to the gun violence domain.
On the other hand, Figure 2 shows the accuracy
distribution of each system per answer class. No-
tably, for most systems the accuracy is highest for
the questions with answer O or 1, and gradually de-
clines for higher answers, forming a Zipfian-like
distribution. The exception here is the team ID-
DE, whose accuracy is almost uniformly spread
across the various answer classes.

8.2 Document-level evaluation

The intent behind document-level evaluation is to
assess the ability of systems to distinguish be-
tween answer and non-answer documents. The ta-
bles 9, 10, and 11 present the Fl-scores for the

BIncident-level evaluation was not performed for subtask
1, because per definition, its answer is always 1.

77

subtasks 1, 2, and 3, respectively. Curiously, the
system ranking is very different and almost oppo-
site compared to the incident-level rankings, with
the system NAI-SEA being the one with the high-
est Fl-score. This can be explained by the multi-
faceted nature of this task, in which different sys-
tems may optimize for different goals.

Next, we investigated the F1-scores of systems
per event property pair. As shown in Table 7, the
best-performing system consistently has the high-
est performance over all pairs of event properties.

R Team s1_doc_f1 s1_doc_f1
norm (% of Qs answered)

1 NAI-SEA 78.33 78.33 (100.0%)

2 ID-DE 36.67 82.99 (44.19%)

3 FEUP 24.65 24.65 (100.0%)

4 *NewsReader 23.82 46.2 (51.55%)

5  Baseline 11.09 67.33 (16.47%)

Table 9: For subtask 1, we report the normalized
document-level F1 (s_doc_fI norm) and the accuracy on the
answered questions only (s/_doc_fI). Systems are ordered

by their rank (R).
R Team s2_doc_f1 s2_doc_fl
norm (% of Qs answered)

1 NAI-SEA 50.52 50.52 (100.0%)
2 ID-DE 37.24 55.16 (67.5%)
3 *NewsReader 36.91 36.91 (100.0%)
4 FEUP 30.51 30.51 (100.0%)
5  Baseline 26.38 26.38 (100.0%)

Table 10: For subtask 2, we report the normalized
document-level F1 (s2_doc_fl norm) and the accuracy on the
answered questions only (s2_doc_f1). Systems are ordered

by their rank (R).
R Team s3_doc_f1 s3_doc_fl1
norm (% of Qs answered)
1 NAI-SEA 63.59 63.59 (100.0%)
2 ID-DE 46.33 69.56 (66.61%)
3 *NewsReader 26.84 26.84 (100.0%)
4 FEUP 26.79 26.79 (100.0%)

Table 11: For subtask 3, we report the normalized
document-level F1 (s3_doc_fI norm) and the accuracy on the
answered questions only (s3_doc_fI). Systems are ordered
by their rank (R).

8.3 Mention-level evaluation

Table 8 shows the event coreference results for the
participating systems: /D-DE and NewsReader, as
well as our baseline. The columns present the F1-
score for the metrics BCUB, BLANC, CEAF_E.
CEAF_M, and MUC. The final column indicates



Event type Subtask  #Qs FEUP ID-DE NAI-SEA *NewsReader Baseline
fire_burning  S2 79 4051 - 31.65 39.24 49.37
S3 0 - - - - -
injuring S2 543 2192 "13.44 1436 21.73 17.68
S3 1502 3049 "8.39 16.78 23.17 -
job_firing S2 4 00 - 25.0 25.0 50.0
S3 26 3077 - 26.92 15.38 -
killing S2 371 30.19 1725 18.6 18.33 12.13
S3 928 30.28 2047 25.54 17.78 -

Table 6: For subtask 2 (S2) and subtask 3 (S3), we report the incident-level accuracy and the number of questions (#Qs) per
event type. The best result per event type for a subtask is marked in bold. **’ indicates that the accuracy is normalized for the
number of answered questions, in cases where a system answered a subset of all questions.
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Figure 2: Incident-level accuracy of all systems per numeric answer class for subtask 2. The class /0 represents all answers

of 10 or higher.
Event properties Subtask  #Qs FEUP ID-DE NAI-SEA  *NewsReader Baseline
location&time S1 594  23.06 "26.64 8291 "26.22 "8.71
S2 680 3095 "41.81 49.99 39.22 28.61
S3 1335 264 "41.55  63.27 36.15 -
participant&location  S1 140 13.48 "43.86 70.22 “11.83 "9.76
S2 49 1466 2126 5041 13.53 10.02
S3 301 142 "4428  62.38 6.65 -
participant&time S1 298 33.06 5328 73.01 "24.65 "16.47
S2 268 3227 "28.55 51.87 35.34 23.71
S3 820 32.06 "54.88  64.56 19.09 -

Table 7: Document-level F1-score and number of questions (#Qs) for each subtask (S/, S2, and $3) and event property pair as
given in the task questions. The best result per property pair for a subtask is marked in bold. “** indicates that the F1-score is
normalized for the number of answered questions, in cases where a system answered a subset of all questions.

R Team BCUB BLANC CEAF.E CEAFM MUC AVG

1 ID-DE 44.61% 31.59% 37.45%  47.23% 53.12% 42.8%
2 *NewsReader 37.28% 28.11% 4215%  46.16% 46.29%  40.0%
3 Baseline 6.14% 0.89% 13.3% 8.45% 3.59% 6.47%

Table 8: Results for mention-level evaluation, scored with the customary event coreference metrics: BCUB (Bagga and
Baldwin, 1998), BLANC (Recasens and Hovy, 2011), entity-based CEAF (CEAF_E) and mention-based CEAF
(CEAF-M) (Luo, 2005), and MUC (Vilain et al., 1995). The individual scores are averaged in a single number (AVG), which is
used to rank (R) the systems.

the mean F1-score over these five metrics, which
is used to rank the participants. The Table shows

coreference score on average over all metrics than
the second-ranked system, NewsReader.

that the system /D-DFE has a slightly better event
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9 Conclusions

In this paper we have introduced SemEval-2018
Task 5, a referential quantification task of count-
ing events and participants in local news articles
with high ambiguity. The complexity of this task
challenges systems to establish the meaning, ref-
erence, and identity across documents. SemEval-
2018 Task 5 consists of two subtasks of counting
events, and one subtask of counting event partic-
ipants in their corresponding roles. We evaluated
system performance with a set of metrics, on three
levels: incident-, document-, and mention-level.
We described the approaches and presented the
results of four participating systems, as well as two
baseline algorithms. All four teams submitted a
result for all three subtasks, and two teams par-
ticipated in the mention-level evaluation. We ob-
served that the ranking of systems differs dramat-
ically per evaluation level. Given the multifaceted
nature of this task, it is not surprising that different
systems optimized for different goals. Although
the systems are able to retrieve many of the an-
swer documents, the highest accuracy of counting
events or participants is 30%. This suggests that
further research is necessary in order to develop
complete and robust models that can natively deal
with the challenge of counting referential units
within sparse and ambiguous textual data.
Out-of-competition participation is enabled by
the Codalab platform, where this task was hosted.
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Abstract

We present KOI (Knowledge of Incidents), a
system that given news articles as input, builds
a knowledge graph (KOI-KG) of incidental
events. KOI-KG can then be used to effi-
ciently answer questions such as “How many
killing incidents happened in 2017 that involve
Sean?” The required steps in building the KG
include: (i) document preprocessing involv-
ing word sense disambiguation, named-entity
recognition, temporal expression recognition
and normalization, and semantic role labeling;
(ii) incidental event extraction and coreference
resolution via document clustering; and (iii)
KG construction and population.

1 Introduction

SemEval-2018! Task 5: Counting Events and Par-
ticipants in the Long Tail (Postma et al., 2018) ad-
dresses the problem of referential quantification
that requires a system to answer numerical ques-
tions about events such as (i) “How many killing
incidents happened in June 2016 in San Antonio,
Texas?” or (ii) “How many people were killed in
June 2016 in San Antonio, Texas?”’

Subtasks S1 and S2 For questions of type (i),
which are asked by the first two subtasks, partic-
ipating systems must be able to identify the type
(e.g., killing, injuring), time, location and partic-
ipants of each event occurring in a given news
article, and establish within- and cross-document
event coreference links. Subtask S1 focuses on
evaluating systems’ performances on identifying
answer incidents, i.e., events whose properties fit
the constraints of the questions, by making sure
that there is only one answer incident per question.

* Both share the same amount of work.
"http://alt.qgcri.org/semeval2018/
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Subtask S3 In order to answer questions of
type (ii), participating systems are also required
to identify participant roles in each identified an-
swer incident (e.g., victim, subject-suspect), and
use such information along with victim-related nu-
merals (“three people were killed”’) mentioned in
the corresponding answer documents, i.e., docu-
ments that report on the answer incident, to deter-
mine the total number of victims.

Datasets The organizers released two datasets:
(i) test data, stemming from three domains of
gun violence, fire disasters and business, and (i)
trial data, covering only the gun violence domain.
Each dataset contains (i) an input document (in
CoNLL format) that comprises news articles, and
(i) a set of questions (in JSON format) to evaluate
the participating systems.”

This paper describes the KOI (Knowledge of
Incidents) system submitted to SemEval-2018
Task 5, which constructs and populates a knowl-
edge graph of incidental events mentioned in news
articles, to be used to retrieve answer incidents
and answer documents given numerical questions
about events. We propose a fully unsupervised
approach to identify events and their properties
in news texts, and to resolve within- and cross-
document event coreference, which will be de-
tailed in the following section.

2 System Description

2.1 Document Preprocessing

Given an input document in CoNLL format (one
token per line), for each news article, we first
split the sentences following the annotation of: (i)
whether a token is part of the article title or con-
tent; (ii) sentence identifier; and (ii) whether a to-

https://competitions.codalab.org/
competitions/17285

Proceedings of the 12th International Workshop on Semantic Evaluation (SemEval-2018), pages 81-87
New Orleans, Louisiana, June 5-6, 2018. ©2018 Association for Computational Linguistics



ken is a newline character. We then ran several
tools on the tokenized sentences to obtain the fol-
lowing NLP annotations.

Word sense disambiguation (WSD) We ran
Babelfy® (Moro et al., 2014) to get disambiguated
concepts (excluding stop-words), which can be
multi-word expressions, e.g., gunshot wound.
Each concept is linked to a sense in Babel-
Net* (Navigli and Ponzetto, 2012), which subse-
quently is also linked to a WordNet sense and a
DBpedia entity (if any).

Named-entity recognition (NER) We relied on
spaCy” for a statistical entity recognition, specifi-
cally for identifying persons and geopolitical enti-
ties (countries, cities, and states).

Time expression recognition and normalization
We used HeidelTime® (Strétgen and Gertz, 2013)
for recognizing textual spans that indicate time,
e.g., this Monday, and normalizing the time ex-
pressions according to a given document creation
time, e.g., 2018-03-05.

Semantic role labeling (SRL) Senna’ (Col-
lobert et al., 2011) was used to run semantic pars-
ing on the input text, for identifying sentence-level
events (i.e., predicates) and their participants.

2.2 Event Extraction and Coreference
Resolution

Identifying document-level events Sentence-
level events, i.e., predicates recognized by the
SRL tool, were considered as the candidates for
the document-level events. Note that predicates
containing other predicates as the patient argu-
ment, e.g., ‘says’ with arguments ‘police’ as its
agent and ‘one man was shot to death’ as its pa-
tient, were not considered as candidate events.
Given a predicate, we simultaneously deter-
mined whether it is part of document-level events
and also identified its type, based on the occur-
rence of BabelNet concepts that are related to four
event types of interest stated in the task guidelines:
killing, injuring, fire burning and job firing. A
predicate is automatically labeled as a sentence-
level event with one of the four types if such re-

*http://babelfy.org/
*nttp://babelnet.org/
Shttps://spacy.io/
*https://github.com/HeidelTime/
heideltime
"nttps://ronan.collobert.com/senna/

82

lated concepts occur either in the predicate itself
or in one of its arguments. For example, a predi-
cate ‘shot’, with arguments ‘one man’ as its patient
and ‘to death’ as its manner, will be considered as
a killing event because of the occurrence of ‘death’
concept.®

Concept relatedness was computed via path-
based WordNet similarity (Hirst et al., 1998)
of a given BabelNet concept, which is linked
to a WordNet sense, with a predefined set of
related WordNet senses for each event type
(e.g., wn30:killing.n.02 and wn30:kill.v.01 for the
killing event), setting 5.0 as the threshold. Related
concepts were also annotated with the correspond-
ing event types, to be used for the mention-level
event coreference evaluation.

We then assumed all identified sentence-level
events in a news article belonging to the same
event type to be automatically regarded as one
document-level event, meaning that each article
may contain at most four document-level events
(i.e., at most one event per event type).

Identifying document-level event participants
Given a predicate as an identified event, its partic-
ipants were simply extracted from the occurrence
of named entities of type person, according to both
Senna and spaCy, in the agent and patient argu-
ments of the predicate. Furthermore, we deter-
mined the role of each participant as victim, perpe-
trator or other, based on its mention in the pred-
icate. For example, if ‘Randall’ is mentioned as
the agent argument of the predicate ‘shot’, then he
is a perpetrator. Note that a participant can have
multiple roles, as is the case for a person who kills
himself.

Taking into account all participants of a set of
identified events (per event type) in a news article,
we extracted document-level event participants by
resolving name coreference. For instance, ‘Ran-
dall’, ‘Randall R. Coffland’, and ‘Randall Cof-
fland’ all refer to the same person.

Identifying document-level number of victims
For each identified predicate in a given document,
we extracted the first existing numeral in the pa-
tient argument of the predicate, e.g., one in ‘one
man’. The normalized value of the numeral was
then taken as the number of victims, as long as
the predicate is not suspect-related predicates such

8We assume that a predicate that is labeled as a killing

event cannot be labeled as an injuring event even though an
injuring-related concept such as ‘shot’ occurs.



as suspected or charged. The number of victims
of document-level events is simply the maximum
value of identified number of victims per predi-
cate.

Identifying document-level event locations To
retrieve candidate event locations given a docu-
ment, we relied on disambiguated DBpedia en-
tities as a result of Babelfy annotation. We uti-
lized SPARQL queries over the DBpedia SPARQL
endpoint’ to identify whether a DBpedia entity
is a city or a state, and whether it is part of
or located in a city or a state. Specifically,
an entity is considered to be a city whenever
it is of type dbo:City or its equivalent types
(e.g., schema:City). Similarly, it is consid-
ered to be a state whenever it is either of type
yago:WikicatStatesOfTheUnitedStates, has a
senator (via the property dbp:senators), or has
dbc:States.of-the United.States as a subject.

Assuming that document-level events identified
in a given news article happen at one certain lo-
cation, we simply ranked the candidate event lo-
cations, i.e., pairs of city and state, based on their
frequencies, and took the one with the highest fre-
quency.

Identifying document-level event times Given
a document D, suppose we have dct as the docu-
ment creation time and 7" as a list of normalized
time expressions returned by HeidelTime, whose
types are either date or time. We considered a
time expression ¢; € 1" as one of candidate event
times 7" C T, if dct — t; is a non-negative integer
less than n days.!? We hypothesize that the event
reported in a news article may have happened sev-
eral days before the news is published.

Assuming that document-level events identified
in a given news article happen at one certain time,
we determine which one is the document-level
event time from the set of candidates 7" by ap-
plying two heuristics: A time expression t; € T”
is considered as the event time, if (i) t; is men-
tioned in sentences containing event-related con-
cepts, and (ii) t; is the earliest time expression in
the candidate set.

Cross-document event coreference resolution
We approached cross-document event coreference
by clustering similar document-level events that

*https://dbpedia.org/sparqgl
1Based on our empirical observations on the trial data we
found n = 7 to be the best parameter.
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Resource Type Properties

IncidentEvent  eventType, eventDate, location,

participant, numOfVictims

Document docDate, docID, event

Participant fullname, firstname, lastname, role
Location city, state

Date value, day, month, year

Table 1: KOI-KG ontology

are of the same type, via their provenance, i.e.,
news articles where they were mentioned. From
each news article we derived TF-IDF-based vec-
tors of (i) BabelNet senses and (ii) spaCy’s per-
sons and geopolitical entities, which are then used
to compute cosine similarities among the articles.

Two news articles will be clustered together
if (i) the computed similarity is above a certain
threshold, which was optimized using the trial
data, and (ii) the event time distance of document-
level events found in the articles does not exceed a
certain threshold, i.e., 3 days. All document-level
events belonging to the same document cluster are
assumed to be coreferring events and to have prop-
erties resulting from the aggregation of locations,
times and participants of contributing events, with
the exception of number of victims where the max-
imum value was taken instead.

2.3 Constructing, Populating and Querying
the Knowledge Graph

We first built an OWL ontology'' to capture the
knowledge model of incidental events and doc-
uments. We rely on reification (Noy and Rec-
tor, 2006) for modeling entities, that is, inci-
dent events, documents, locations, participants
and dates are all resources of their own. Each
resource is described through its corresponding
properties, as shown in Table 1.

An incident event can be of type injuring,
killing, fire_burning, and job_firing. Documents
are linked to incident events through the property
event, and different documents may refer to the
same corresponding incident event. We borrow
URIs from DBpedia for values of the properties
city and state. Participant roles can be either vic-
tim, perpetrator or other. A date has a unified lit-
eral value of the format “yyyy-mm-dd”, as well as
separated values for the day, month, and year.

To build the KOI knowledge graph (KOI-KG)

1 Available at https://koi.cs.ui.ac.id/ns



SELECT Z?event ?document

WHERE {
?event
?event
koi:

koi:eventType koi:killing .

koi:eventDate [

year "2017" ]

?event koi:participant [
koi:firstname "Sean" ]

?document koi:event Z?event

}

Figure 1: A SPARQL query over KOI-KG for “Which
killing events happened in 2017 that involve persons
with Sean as first name?”

we relied on Apache Jena,'> a Java-based Se-
mantic Web framework. The output of the pre-
viously explained event extraction and corefer-
ence resolution steps was imported into the Jena
TDB triple store as RDF triples. This facilitates
SPARQL querying, which can be done using the
Jena ARQ module. The whole dump of KOI-KG
is available for download at https://koi.cs.ui.

ac.id/incidents.

Given a question in JSON format, we applied
mapping rules to transform it into a SPARQL
query, which was then used to retrieve corre-
sponding answer incidents and answer documents.
Constraints of questions such as event type, par-
ticipant, date, and location were mapped into
SPARQL join conditions (that is, triple patterns).
Figure 1 shows a SPARQL representation for the
question “Which killing events happened in 2017
that involve persons with Sean as first name?”.
The prefix koi is for the KOI ontology names-
pace (https://koi.cs.ui.ac.id/ns#). In the
SPARQL query, the join conditions are over the
event type killing, the date 2017’ (as year) and
the participant ‘Sean’ (as firstname).

For Subtask S2, we extended the SPARQL
query with counting feature to retrieve the total
number of unique events. Analogously, for Sub-
task S3, we retrieve number of victims by counting
event participants having victim as their roles, and
by getting the value of the numOfVictims property
(if any). The value of the numOfVictims property
was preferred as the final value for an incident if
it exists, otherwise, KOI relied on counting event
participants.

We also provide a SPARQL query inter-
face for KOI-KG at https://koi.cs.ui.ac.id/
dataset.html?tab=query&ds=/incidents.

Zhttp://jena.apache.org/
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3 Results and Discussion

Evaluation results Participating systems were
evaluated according to three evaluation schemes:
(i) mention-level evaluation, for resolving cross-
document coreference of event mentions, (ii)
document-level evaluation (doc-£1), for identify-
ing events and their properties given a document,
and (iii) incident-level evaluation, for combining
event extraction and within-/cross-document event
coreference resolution to answer numerical ques-
tions in terms of exact matching (inc-acc) and
Root Mean Square Error (inc-rmse). Further-
more, the percentage of questions in each subtask
that can be answered by the systems (%ans) also
contributes to the final ranking.

Regarding the mention-level evaluation, KOI
achieves an average F1-score of 42.8% (36.3 per-
centage point increase over the baseline) from
several established metrics for evaluating corefer-
ence resolution systems. For document-level and
incident-level evaluation schemes, we report in
Table 2 the performance of three different system
runs of KOI:

v1 Submitted version of KOI during the evalua-
tion period.

v2 Similar as v1, however, instead of giving no
answers when we found no matching answer
incidents, KOI simply returns zero as the nu-
merical answer with an empty list of answer

documents.

v3 Submitted version of KOI during the post-
evaluation period, which incorporates im-
provement on document-level event time
identification leading to enhanced cross-

document event coreference.!?

Compared to the baseline provided by the task
organizers, the performance of KOI is consider-
ably better, specifically of KOI v3 for subtask S2
with doc-£1 and inc-acc around twice as much
as of the baseline. Hereafter, our quantitative and
qualitative analyses are based on KOI v3, and
mentions of the KOI system refer to this system
run.

Subtask S1 We detail in Table 3, the perfor-
mance of KOI on retrieving relevant answer doc-
uments given questions with event constraints,

13Submission v1 and v2 did not consider heuristic (i) that
we have discussed in Section 2.2.



subtask S1 subtask S2 subtask S3
system run ] ) ] )

%ans doc-fl %ans doc-fl 1inc-acc inc-rmse %ans doc-fl inc-acc inc-rmse
baseline 16.5 67.3 | 100.0 26.4 18.3 8.5 - - - -
KOI v1* 44.2 83.0 | 675 55.2 20.4 62| 66.6 69.6 19.3 7.9
KOI v2 442 83.0 | 100.0 51.2 25.6 5.2 | 100.0 49.1 24.8 7.1
KOI v3 55.1 85.7 | 100.0 54.8 274 5.3 1 100.0 50.9 23.0 7.7

Table 2: KOI performance results at SemEval-2018 Task 5 (in percentages) for three subtasks, baseline was pro-
vided by the task organizers, *) denotes the system run that we submitted during the evaluation period.

micro-averaged macro-averaged subtask S2 subtask S3
P r fl o) r f1l inc-acc inc-rmse | inc-acc inc-rmse

Overall overall 27.4 53 ‘ 23.0 7.7
answered questions  86.6 740 79.8 | 942 83.6 857
all questions 86.6 41.6 562|517 459 47.1 rzlf)f Jero ?g'g g'é ‘ ﬁ; g‘g
Event type

%‘ﬂhn.g zgg ;‘;i g?; igi 3(8)? 451(1)43& Table 4: KOI performance results for subtasks S2 and

injuring .8 37. . . . . . . . .

job.firing 1000 87 160|154 154 154 .S3,‘ on answering numerlc'al .questlons, i.e., number of

fire_burning 969 662 787|655 662 657  incidentsand number of victims.
Event constraint

participant 84.8 43.0 570 |61.1 51.1 532 .

location 801 394 546|467 428 436 ses are based on the all questions scheme.

time 86.0 424 568|517 463 474 By analyzing the document retrieval per event

Table 3: KOI performance results for subtask S1, on
answer document retrieval (p for precision, r for recall
and £1 for F1-score).

in terms of micro-averaged and macro-averaged
scores. Note that the official doc-£1 scores re-
ported in Table 2 correspond to macro-averaged
F1-scores.

We first analyzed the system performance only
on answered questions, i.e., for which KOI returns
the relevant answer documents (55.1% of all ques-
tions), yielding 79.8% and 85.7% micro-averaged
and macro-averaged F1-scores, respectively.

In order to have a fair comparison with systems
that are able to answer all questions, we also report
the performance of KOI that returns empty sets of
answer documents for unanswered questions. In
this evaluation scheme, the macro-averaged preci-
sion is significantly lower than the micro-averaged
one (51.7% vs 86.6%), because systems are heav-
ily penalized for not retrieving relevant answer
documents per question, i.e., given zero precision
score, which brings the average over all questions
down. Meanwhile, the micro-averaged precision
measures the systems’ ability in returning relevant
documents for all questions regardless of whether
the questions were answered or not. KOI focuses
on yielding high quality answer documents, which
is reflected by high micro-averaged precision of
above 80% in general. The following result analy-
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type, we found that KOI can identify fire_burning
events in documents quite well, yielding the high-
est recall among all event types, but the contrary
for job_firing events. With respect to event con-
straints, answering questions with location con-
straint results in the worst performance, mean-
ing that our method is still lacking in identifying
and/or disambiguating event locations from news
documents. Specifically, questions with city con-
straint are more difficult to answer compared to the
ones with state constraint (49.6% vs 61.5% micro-
averaged F1-scores, respectively).

Subtask S2 The key differences between Sub-
task S1 and S2 are: (i) questions with zero as an
answer are included, and (ii) there can be more
than one answer incidents per question, hence,
systems must be able to cluster answer documents
into the correct number of clusters, i.e., incidents.

As shown in Table 4, KOI is able to answer
questions with zero as the true answer with 96.3%
accuracy. Meanwhile, for questions with non-zero
number of incidents as the answers, KOI gives nu-
merical answers with 18.9% accuracy, resulting in
overall accuracy (inc-acc) of 27.4% and RMSE
incfrmse) of 5.3.

We also analyzed questions (with non-zero an-
swer incidents) for which KOI yields perfect sets
of answer documents with 100% Fl-score, i.e.,
7.7% of all questions. For 61.8% of such answered
questions, KOI returns the perfect number of inci-



Event ID: 22409

2016-06-19

Man playing with gun while riding in a car fatally shoots, kills driver

A man was fatally shot early Sunday morning after the passenger in the car he was driving accidentally discharged the gun, according to the San
Antonio Police Department. The shooting occurred about 3 a.m. when group of four men were driving out of the Iron Horse Apartments at 8800
Village Square on the Northeast Side. The passenger in the front seat was playing with a gun and allegedly shot himself in the hand, according to
officers at the scene. The bullet went through his hand and struck the driver in the abdomen. The men then drove to Northeast Baptist Hospital,
which was nearby, but the driver was pronounced dead at the hospital, according to investigators. Police believe the driver and passenger to be
related and are still investigating the incident. The other two men in the vehicle were detained. No charges have been filed.

2016-06-19

41-year - old man Kkilled in overnight shooting

SAN ANTONIO - A 41-year-old man is dead after a shooting police say may have been accidental. The victim died after another man drove him
to Northeast Baptist Hospital for treatment of that gunshot wound. Police say they got a call at around 2:45 a.m. for the shooting in the 8800 block
of Village Drive. The man told them he and the victim were in a pickup when he fired the shot, but police say it’s not known why the men were in
the truck. Investigators say the man told them he fired the shot accidentally and struck the victim. Police say the shooter took the victim to the
emergency room at Northeast Baptist, where hospital personnel pronounced him dead. Police are questioning the man who did the shooting.

Table 5: An identified ‘killing’ event by KOI for “Which killing incidents happened in June 2016 in San Antonio,
Texas?” with two supporting documents.

dents. For the rest, KOI tends to overestimate the ~ Qualitative Analysis Recalling the example
number of incidents, i.e., for 30.9% of the cases,  questions mentioned in the beginning of Section 1,
KOI fails to establish cross-document event coref-  for the first question, KOI is able to perfectly iden-
erence links with the current document clustering  tify 2 killing incidents with 5 supporting docu-
method. ments pertaining to the event-time and -location

constraints. One of the identified answer incidents

Subtask S3 We also show in Table 4, the KOI with two supporting documents is shown in Ta-
performance on answering numerical questions ble 5, which shows how well the system is able to

about number of victims. KOI is able to answer  ¢Stablish cross-document event coreference, given
correctly 55.2% of questions with zero answers, overlapping concepts and entities. However, in

and 11.9% of the ones with non-zero answers. answering the second question, KOI returns one
less number of victims since it cannot identify the

killed victim in the answer incident shown in Ta-
ble 5, due to the lack of numeral mentions and
named event participants as victims.

Analyzing the questions with zero as the true
answer, for which KOI is able to answer correctly,
in 41.1% of the cases KOI is able to identify the
non-existence of victims when the set of answer
documents is not empty. In 40.0% of the cases,
the correctly predicted zero answers are actually
by chance, i.e., because KOI fails to identify rele-
vant answer documents.

4 Conclusion

We have introduced a system called KOI (Knowl-
edge of Incidents), that is able to build a knowl-

Meanwhile, for questions with gold numerical edge graph (KG) of incidental events by extract-
answers greater than zero, KOI returns wrong an-  jpg refevant event information from news articles.
swers in 88.1% of the cases. Among these an-  The resulting KG can then be used to efficiently
swers, 66.9% of the answers are lower than the  jngwer numerical questions about events such as

true number of victims, and 33.1% are higher. “How many people were killed in June 2016 in
This means that KOI tends to underestimate the San Antonio, Texas?” We have submitted KOI
number of victims with 6.6 RMSE. as a participating system at SemEval-2018 Task 5,

For 22.5% of all questions, KOl is able to iden-  which achieved competitive results. A live demo
tify the perfect sets of answer documents with  of our system is available at https://koi.cs.ui.
100% F1-score. Among these questions, 34.3%  ac.id/. Future directions of this work include the
were answered correctly with the exact number of  incorporation of supervised (or semi-supervised)
victims, for which: 52.7% of correct answers re-  approaches for specific steps of KOI such as the
sult from solely counting participants (as victims),  extraction of numeral information (Mirza et al.,
35.3% were inferred only from numeral mentions,  2017), as well as the investigation of applying our
and the rest of 12.0% were answered by combin-  approach to other domains such as disease out-
ing both victim counting and numeral mentions. breaks and natural disasters.
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Abstract

This paper presents the outcomes of the Pars-
ing Time Normalization shared task held
within SemEval-2018. The aim of the task
is to parse time expressions into the compo-
sitional semantic graphs of the Semantically
Compositional Annotation of Time Expres-
sions (SCATE) schema, which allows the rep-
resentation of a wider variety of time expres-
sions than previous approaches. Two tracks
were included, one to evaluate the parsing
of individual components of the produced
graphs, in a classic information extraction way,
and another one to evaluate the quality of the
time intervals resulting from the interpretation
of those graphs. Though 40 participants reg-
istered for the task, only one team submitted
output, achieving 0.55 F1 in Track 1 (parsing)
and 0.70 F1 in Track 2 (intervals).

1

The task of extracting and normalizing time ex-
pressions (e.g., finding phrases like two days ago
and converting them to a standardized form like
2017-07-17) is a fundamental component of any
time-aware language processing system. TempE-
val 2010 and 2013 (Verhagen et al., 2010; UzZa-
man et al., 2013) included a restricted version of a
time normalization task as part of their shared tasks.
However, the annotation scheme used in these tasks
(TimeML; (ISO, 2012)) has some significant lim-
itations: it assumes times can be described as a
prefix of YYYY-MM-DDTHH:MM:SS (so it
can’t represent, e.g., the past three summers), it
is unable to represent times that are are relative
to events (e.g., three weeks postoperative), and it
fails to reflect the compositional nature of time ex-
pressions (e.g., that following represents a similar
temporal operation in the following day and the
following year). This latter issue especially has
discouraged machine learning approaches to time
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normalization; the most accurate systems for nor-
malizing times are still based on sets of complex,
manually-constructed rules (Bethard, 2013; Lee
et al., 2014; Strotgen and Gertz, 2015).

The Parsing Time Normalizations shared task is
a new approach to time normalization based on the
Semantically Compositional Annotation of Time
Expressions (SCATE) schema (Bethard and Parker,
2016), in which times are annotated as composi-
tional time entities. Such entities are more expres-
sive, being able to represent many more time ex-
pressions, and are more machine-learnable, as they
can naturally be viewed as a semantic parsing task.
The top of Figure 1 shows an example. Each an-
notation in the example corresponds to a formally
defined time entity. For instance, the annotation
on top of since corresponds to a BETWEEN entity
that identifies an interval starting at the most re-
cent March 6 and ending at the document creation
time. The bottom of Figure 1 shows how those time
entities can be composed to identify appropriate in-
tervals on the timeline. Here, the BETWEEN entity
finds the interval on the timeline that is between
the intervals of its two arguments: the LAST and
the Doc-TIME. Formally, this BETWEEN operator
is defined as:

BETWEEN([t1,t2): INTERVAL,
[ts,t4): INTERVAL): INTERVAL

= [ta,t3)

In the proposed task, systems need only to iden-
tify time entities in text and link them correctly to
signal how they are to be composed (i.e., systems
would only need to produce annotation structures
like those at the top of Figure 1). The timeline in-
tervals implied by such system output are inferred
through a time entity interpreter provided to the
participants by the workshop organizers.

Proceedings of the 12th International Workshop on Semantic Evaluation (SemEval-2018), pages 88-96
New Orleans, Louisiana, June 5-6, 2018. ©2018 Association for Computational Linguistics



A

THIS // LAST
INTERVAL * yﬁTERVAL:[)OC—TIME
REPEATING-INTERVALS EPEATING-INTERVAL
v \ v
EVERY-NTH Y BETWEEN MONTH-OF-YEAR Y
VALUE=2 DAY-OF-WEEK START-INTERVAL TYPE=MARCH DAY-OF-MONTH
REPEATING-INTERVAL ¢| | TYPE=SATURDAY || END-INTERVAL=DOC-TIME SUB-INTERVAL ¢ VALUE=6
met every other Saturday since March 6
Doc-TIME I
SATURDAY
EVERY-NTH
MARCH
6
MARCH 6
LAST
BETWEEN
I I I I I I

Figure 1: Example of semantically compositional time annotations and their interpretation.

The remainder of this paper is organized as fol-
lows. We describe the task goal and proposed
tracks in Section 2. Section 3 contains the descrip-
tion of the data annotation schema and the statistics
of our dataset. In Section 4, we explain the two
evaluation metrics used in the task and in Section 5
the models used as baselines. We present the partic-
ipant systems in Section 6 and the results obtained
in Section 7. Finally, we discuss some conclusions
learned in Section 8.

2 Tasks

The ultimate goal of the shared task is to interpret
time expressions, identifying appropriate intervals
that can be placed on a timeline. Given a doc-
ument, a system must identify the time entities
by detecting the spans of characters and labeling
them with the proper SCATE type. Examples of
time entities and their corresponding types in Fig-
ure 1 would be (6, DAY-OF-MONTH), (Saturday,
DAY-OF-WEEK), (March, MONTH-OF-YEAR) or
(since, BETWEEN). Besides the time entities ex-
plicitly expressed in the text, implicit occurrences
must also be identified, like the THIS and LAST
time entities in Figure 1 that do not have any ex-
plicit triggers in the text.

Once time entities have been identified, they
should be linked together using the relations de-
scribed in the SCATE schema. Following with the
example in Figure 1, the time entity 6 should be
linked as a SUB-INTERVAL of March, Saturday

&9

should be a REPEATING-INTERVAL of the time
entity other, and so on. Finally, all the time entities
must be completed with some additional properties
needed for their interpretation. For example, the
time entity other should have a VALUE of 2, the
END-INTERVAL of since is the Document Creation
Time, etc. Once again, the properties required by
each time entity type are defined by the SCATE
schema.!

Every resulting graph, composed of a set of
linked time entities, represents a time expression
that can be semantically interpreted. For this pur-
pose, we provide a Scala library? that reads the
graphs in Anafora XML format (Chen and Styler,
2013) and converts them into intervals on the time-
line.

An example of interpreting the time entities cor-
responding to the expression every Saturday since
March 6 relative to an anchor time of April 21,
2017 is given in Figure 2. In this example, the
values today and result store the entities that repre-
sent the time expressions April 21, 2017 and every
Saturday since March 6 respectively. The Scala
command on the right side interprets the latter and
produces the corresponding time intervals.

The task includes two evaluation methods, one
for the parsing step, i.e. time entity identification

"https://github.com/clulab/
anafora-annotations/blob/master/.schema/
timenorm-schema.xml

2https ://github.com/clulab/timenorm



scala> val today =
| ThisRI (
| ThisRI (
| Year (2017),
| RepeatingField (MONTH_OF_YEAR, 4)),
| RepeatingField (DAY_OF_MONTH, 21)
scala> val result
| ThisRIs (
Between (
LastRI (

today,

Intersection (Set (
RepeatingField (MONTH_OF_YEAR,
RepeatingField (DAY_OF_MONTH,

today) ,
RepeatingField (DAY_OF_WEEK,

3),
))))

|
|
|
|
|
| 6
|

|

6))

scala> for (Interval (start, end) <- result.intervals)
| println(start, end)

(2017-03-11T00:00,2017-03-12T00:
(2017-03-18T00:00,2017-03-19T00:
(2017-03-25T00:00,2017-03-26T00:
(2017-04-01T00:00,2017-04-02T00:
(2017-04-08T00:00,2017-04-09T00:
(2017-04-15T00:00,2017-04-16T00:
(2017-04-22T00:00,2017-04-23T00:

Figure 2: Interpretation of every Saturday since March 6.

and linking, and one to score the resulting time
intervals. For the later, we only consider time ex-
pressions that yield a finite set of bounded intervals,
for example, last Monday. Time expressions that
refer to an infinite set of intervals, like every month,
are not considered in the interval-based part of the
evaluation.

Participants only need to produce Anafora out-
puts with parsed time entities; the interpretation
is carried out by the evaluation system. The eval-
uation system is also able to obtain the intervals
from timestamps in TimeML format. Thus, sys-
tems can be evaluated by both methods or just by
the interval-based one, depending on the output
format.

In summary, the tasks offers two tracks:

Track 1: Parse text to time entities. Systems must
identify time entities in text and link them cor-
rectly to signal how they have to be composed.
The output must be given in Anafora format.
In this track, all time entities and relations of
every time expression are evaluated.

Track 2: Produce time intervals. Systems can
participate through Track 1 or by providing
TimeML annotations. In both cases, the in-
tervals are inferred by our interpreter. In this
track, only bounded time intervals are scored.

3 Data

The Parsing Time Normalization corpus® covers
two different domains: newswire and clinical notes.
For the former, we have annotated a subset of
Tempeval-2013 corpus (UzZaman et al., 2013),
which contains a collection of news articles from

*https://github.com/bethard/
anafora—-annotations/releases
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different sources, such as Wall Street Journal, New
York Times, Cable News Network, Voices of Amer-
ica, etc. For the clinical domain, we have annotated
a subset of the THYME corpus used in the Clini-
cal TempEvals (Bethard et al., 2015, 2016, 2017),
which includes a set of de-identified clinical notes
and pathology reports from cancer patients at the
Mayo Clinic.

The Newswire annotation was performed by
linguistic students at the University of Alabama
at Birmingham, and by linguistics students at
the University of Arizona, funded as part of a
university-sponsored undergraduate research op-
portunity. The clinical portion of the corpus was
annotated by linguistics students at the Univer-
sity of Colorado, funded as part of the United
States National Institutes of Health (NIH) award
ROI1LMO010090.

Documents have been annotated by two anno-
tators and adjudicated by a third, and despite the
complexity of the annotation scheme, high levels
of inter-annotator agreement have been achieved:
0.917 Fy on annotation spans and types, and 0.821
F1 on the complete task of spans, types, and links.
(We use F7 since the x coefficient (Cohen, 1960)
converges to F} in cases where the number of non-
annotations is much larger than the number of an-
notations (Hripcsak and Rothschild, 2005).)

Annotated data is stored in Anafora XML for-
mat (Chen and Styler, 2013), where, for example,
the annotations from Figure 1 look like Figure 3. A
more detailed explanation of the annotation guide-
lines can be found in Bethard and Parker (2016).
Libraries for parsing this format are available to



<data>
<annotations>
<entity>
<id>1l@el@gold</id>
<span>11,19</span><!-- "Saturday" -->
<type>Day—-Of-Week</type>
<properties>
<Type>Saturday</Type>
</properties>
</entity>
<entity>
<id>2@eRgold</id>
<span>10,15</span><!-- "other" -->
<type>This</type>
<properties>
<Interval>4@e@gold</Interval>

<Repeating-Intervals>2@e@gold</Repeating-Intervals>

</properties>
</entity>

<entity>
<id>3@e@gold</id>
<span>10,15</span><!-- "other" -->
<type>Every-Nth</type>
<properties>
<Value>2</Value>
<Repeating-Interval>1Q@e@gold</Repeating-Interval>
</properties>
</entity>

</annotations>
</data>

Figure 3: Snippet of the Anafora XML for Figure 1.

participants in both Python* and Scala®.

Table 1 shows the statistics of the resulting an-
notation. The Newswire portion of the corpus con-
tains 98 documents with 2,428 time entities anno-
tated. These entities compose a total of 968 time
expressions of which 564 correspond to bounded
intervals. The Clinical portions of the corpus in-
cludes 408 documents. The annotation covers
27,362 time entities that compose 8,163 time ex-
pressions. From these, 4,204 yield bounded inter-
vals.

4 Evaluation Metrics

We propose two types of scoring metrics for this
task, one for the evaluation of each track. The
first follows a more traditional information extrac-
tion evaluation: measure the precision and recall
of finding and linking the various time entities.
Specifically, we define:

1S H|
ps, H) =211
( 5]

1S H|
Rr(s, H) = 221

]

2. P(S,H) - R(S, H)
P(S,H) + R(S, H)

Fi(S,H) =

where S is the set of items predicted by the system

and H is the set of items produced by the humans.

For these calculations, each item is an annotation,

*nttps://github.com/bethard/
anaforatools
Shttps://github.com/bethard/timenorm
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and one annotation is considered as equal to an-
other if it has the same character span (offsets),
type, and properties (with the definition applying
recursively for properties that point to other anno-
tations).

The second scoring method evaluates the ac-
curacy of systems with respect to the timeline in
a more direct way. First, annotations, in either
TimeML or SCATE format, are converted into
time intervals. TimeML TIMEX3 (time expres-
sion) annotations are translated into intervals fol-
lowing ISO 8601 semantics of their VALUE at-
tribute. For example, 2010-02-25 is converted
to the interval [2010-02-25T00:00:00, 2018-02-
26T00:00:00), that is, the 24-hour period starting
at the first second of the day on 2010-02-25 and
ending just before the first second of the day on
2010-02-26. SCATE annotations are converted to
intervals according to the formal semantics of each
entity, using the Scala library provided by Bethard
and Parker (2016). For example, Next(Year(2010),
SimplePeriod(YEARS, 4)), is converted to [2011-
01-01T00:00, 2015-01-01T00:00), i.e., the 4 years
following 2010. Note that there may be more than
one interval associated with a single annotation, as
in the every Saturday since March 6 example in
Figure 2. Once all annotations have been converted
into intervals along the timeline, we can calculate
the overlap between the intervals of different anno-
tations.

Given two sets of intervals, we define the in-
terval precision, Py, as the total length of the in-
tervals in common between the two sets, divided
by the total length of the intervals in the first set.
Interval recall, Rj, is defined as the total length
of the intervals in common between the two sets,



Newswire Clinical
Train Dev Test Train Dev  Test
Documents 64 14 20 232 35 141
SCATE entities 1,628 402 398 14,936 2,896 9,530
SCATE time exp. 636 146 186 4,469 879 2,815
SCATE bounded 391 80 93 2,303 430 1,471

Table 1: Number of documents and SCATE annotations for both sections of the corpus following the SCATE

schema.

divided by the total length of the intervals in the
second set. Formally:

ISﬂIH

{inj:ielgnjely}
d
1€COMPACT(Is (N IH)

Pni(Is,In) = )
> il
i€lg
Z( N )|Z-|
{ECOMPACT(I, I
Rin(Is, 1) = S

> il
i€Uly
where Ig and I are sets of intervals, ¢ N j is the
possibly empty interval in common between the
intervals i and j, || is the length of the interval ¢,
and COMPACT takes a set of intervals and merges
any overlapping intervals.

Given two sets of annotations (e.g., one each
from two time normalization systems), we define
the overall precision, P, as the average of interval
precisions where each annotation from the first set
is paired with all annotations that textually overlap
it in the second set. Overall recall is defined as the
average of interval recalls where each annotation
from the second set is paired with all annotations
that textually overlap it in the first set. Formally:

014(B) = U INTERVALS (b)
b€ B:OVERLAPS(a,b)
1
P($,H) = > Pint(INTERVALS(s), OI(H))
‘ ‘ seS
1
R(S,H) = ] > Rint(INTERVALS (h), 015,(S5))

heH

where S and H are sets of annotations,
INTERVALS(z) gives the time intervals associated
with the annotation z, and OVERLAPS(a,b) de-
cides whether the annotations @ and b share at least
one character of text in common.

Note that as defined, P and R can be applied
only to time expressions that yield a finite set of
bounded intervals.
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5 Baseline systems

Two systems were used as baselines to compare
the participating systems against.

Character-based model (Laparra et al., 2018)
is a novel supervised approach for time normaliza-
tion that follows the SCATE schema. This model
decomposes the normalization of time expressions
into two modules:

time entity identification detects the spans of
characters that belong to each time expres-
sion and labels them with their correspond-
ing time entity type. This step is performed
by character-based recurrent neural network
with two stacked bidirectional Gated Recur-
rent Units.

time entity composition links relevant time enti-
ties together while respecting the entity type
constraints imposed by the SCATE schema.
This component is a rule-based algorithm that
iterates over the time entities that are found by
the previous step, linking them and filling in
the required properties. The version used for
the shared task includes some improvements
to the sentence segmentation and Month-Of-
Year normalization of Laparra et al. (2018).

These two tasks are run sequentially using the out-
put of the former as input to the latter. Once identi-
fication and composition steps are completed, the
final product, i.e. the semantic composition of the
time entities, can fed to the SCATE interpreter to
produce time intervals.

HEIDELTIME (Strotgen and Gertz, 2015)° is
rule-based temporal tagger with multilingual sup-
port that includes English, German, Dutch, Viet-
namese, Arabic, Spanish, Italian, French, Chinese
and Russian. HeidelTime identifies temporal ex-
pressions based on language specific patterns and

®https://code.google.com/p/heideltime/



normalizes them according to TIMEX annotations
(Sundheim, 1996). As the output of HeidelTime
follows TimeML format, we use this system as a
baseline only for Track 2.

6 Participating systems

Although 40 people registered to the the evaluation
task, only 1 team submitted results. The team par-
ticipated in Track 1 and, consequently, in Track 2.
The team also submitted improved results just after
the end of the evaluation phase. This improvement
was obtained by solving a few bugs in the original
system, and with no access to the test data, so we
have included the fixed version in this paper as an
additional run.

CHRONO (Olex et al., 2018) is a primarily rule-
based system that performs time normalization by
running the following three steps:

1) Temporal tokens are identified and flagged us-
ing regex expressions to identify formatted
dates/times, and by parsing out specific tem-
poral words and numeric tokens.

2) Temporal phrases are identified by searching
for consecutive numeric/temporal tokens ac-
cording to certain constraints.

3) Temporal phrases are parsed and normalized
into the SCATE schema via detailed rule-
based parsing, including the utilization of part-
of-speech tags, to identify each component of
an expression and link sub-intervals appropri-
ately.

A machine learning approach is taken to disam-
biguate PERIODS and CALENDAR-INTERVALS af-
ter the rule-base parsing has determined it is one
or the other (e.g. if it sees the word week it will
pass it to the ML module for assignment to a PERI-
0DS or CALENDAR-INTERVALS). The ML feature
vector is a boolean vector composed of the target
token’s temporal status (1=temporal, O=not tempo-
ral), the temporal context (1=at least one temporal
token within a window of 45, O=no temporal to-
kens within window), the numeric context (1=a
numeric token exists immediately before of after
the target, O=no numeric tokens in context), and the
lexical context of all words within a 5-word win-
dow of the target (1=word is present, 0=word is not
present). The group explored different supervised
models like naive Bayes, decision trees, support
vector machines, and neural networks. They found
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Domain Model Fy P R
Newswire | Character | 0.51 0.57 0.46
Newswire | Chrono 044 046 042
Newswire | Chrono* | 0.55 0.61 0.50
Clinical Character | 0.57 0.52 0.63

Table 2: Official results in Track 1 (parsing) for the
Newswire and Clinical domains.

that the best results were obtained by the neural
network.

CHRONO* improves the previous version by
solving three bugs in the model. First, the parsing
method for various types of temporal components
were supposed to be executed in a specific order.
However, some of them were swapped and not an-
alyzed in the expected order. Second, the system
was supposed to assume there is only one year, one
month, and one day mentioned per temporal phrase.
This worked for the month and day, however, it was
failing with 4-digit years. Finally, for most parsing
methods the system loops through each token in
the temporal phrase but it skipped the loop when
identifying full numeric expressions, like ”1953”
or ”08091998”. Thus, phrases like "Last 1953”
were not being counted as having any numeric val-
ues in them.

7 Evaluation Results

The official results are presented in Table 2 and Ta-
ble 4. For each track we present the precision (P),
recall (R) and F} score obtained by the metrics pre-
sented in Section 4. The only participant of the task
submitted output just for the Newswire domain,
thus, we only report the performance of this system
in this domain. The results of the Character-based
baseline have been obtained training the model
with the training set of the corresponding domain
(Newswire or Clinical) and a set of randomly gen-
erated dates, as explained in Laparra et al. (2018).

In Track 1 (Table 2) the original version of
CHRONO do not reach the Character-based base-
line, 0.44 F} vs 0.51 F;. However, the fixed ver-
sion of the system (CHRONO*) outperforms the
baseline in terms of I (0.55) as well as in terms
of P (0.61) and R (0.50).

Table 3 shows a more detailed comparison be-
tween the Character-based baseline and CHRONO*.
These figures represent the performances of both
models for each SCATE temporal type. This in-
cludes the identification of the time entity, its prop-



SCATE-type # | Char Chrono*
AMPM-Of-Day 1 | 0.000 0.667
After 19 | 0.000 0.000
Before 20 | 0.105 0.000
Between 7 | 0.000 0.000
Calendar-Interval | 27 | 0.698 0.526
Day-Of-Month 22 1 0917 1.000
Day-Of-Week 16 | 0.812 0.903
Hour-Of-Day 2 | 0.000 0.667
Intersection 3 1 0.000 0.000
Last 40 | 0.500 0.333
Minute-Of-Hour 1| 0.000 0.000
Month-Of-Year 36 | 0.824 0.917
Next 14 | 0.053 0.412
NthFromStart 4 | 0.000 0.000
Number 27 | 0.596 0.522
Part-Of-Day 3 1 0.000 1.000
Period 56 | 0.391 0.409
Season-Of-Year 10 | 0.000 0.182
Sum 1| 0.000 0.000
This 37 | 0.429 0.552
Time-Zone 1] 0.000 0.000
Two-Digit- Year 0.000 0.000
Year 50 | 0.822 0.826

Table 3: Results in Track 1 per SCATE type. Char
stands for Character-based baseline. The number of
gold cases per type is included (#).

Domain Model Fi P R
Newswire | HeidelTime | 0.74 0.71 0.77
Newswire | Character 0.77 0.83 0.72
Newswire | Chrono 0.65 066 0.63
Newswire | Chrono* 0.70 0.65 0.75
Clinical HeidelTime | 0.70 0.60 0.82
Clinical Character 0.72 0.70 0.75

Table 4: Official results in Track 2 (intervals) for the
Newswire and Clinical domains.

erties and links. In general, CHRONO* performs
better or similar for all the types. It is remarkable
that, while the outcomes for the THIS and NEXT
operators are much better, CHRONO* fails to ex-
tract properly the LAST operator.

In Track 2 (Table 4) the best system is the
Character-based baseline with 0.76 F}, followed
by HEIDELTIME with 0.74 Fj. None of the ver-
sions of CHRONO performs better than the base-
lines, although the fixed version (CHRONO*) gets
enhanced results, 0.65 F; vs 0.70 F} , following
the improvement obtained in Track 1. It is re-

94

markable that HEIDELTIME and CHRONO¥*, es-
sentially rule-based systems, obtain better 12 than
the Character-based baseline, that relies strongly
on a supervised model. Specifically, HEIDELTIME
obtains the best R (0.77), but CHRONO* also out-
performs the Character-based baseline in terms of
R, 0.75 vs 0.71. However, the Character-based
baseline obtains a much higher P (0.83) than the
0.71 of HEIDELTIME and the 0.65 of CHRONO*.

As explained in Section 4, the metric for Track
1 evaluates the individual temporal components
extracted by the systems, either time entities or
links between time entity pairs. On the other hand,
the intervals scored by the metric for Track 2 are
produced by interpreting the whole graph. More-
over, not all the time expressions yield a finite set
of bounded intervals, as can be seen in Table 1.
Consequently, better performances in Track 1 do
not necessarily yield better results in Track 2. In
particular, although CHRONO¥* is better than the
Character-based baseline in Track 1 it produces
an excessive number of time expressions yielding
bounded intervals (108), which affects the P in
Track 2. In contrast, the Character-based baseline
is more conservative and accurate in this respect
(85).

Although we didn’t receive any submission for
the Clinical domain, in order to set a reference for
future research, we present in Table 2 and Table 4
the performances of the baseline systems in this
domain.

8 Conclusion

The Parsing Time Normalization task is the first
effort to extend time normalization to richer and
more complex time expressions. We have provided
a complete annotation for two different domains,
newswire and clinical notes, and introduced two
different metrics for evaluation. In particular, the
interval based evaluation for Track 2 is a novelty
for these kind of tasks. The performance of the
systems shows that there is still room for improve-
ment, especially for Track 1.

Although, CHRONOS included a small super-
vised component in its architecture, we were ex-
pecting a higher number of machine learning based
approaches. However, CHRONOS shows that rule-
based models can obtain competitive results. Sadly,
the scarcity of participating systems does not allow
us to form a further judgment.

No submissions were received for the clinical



domain, despite a wider and more complete dataset
for this domain. This was almost certainly the
result of a change in management at the Mayo
Clinic that put on hold the data use agreement
process (which is required for access to the clinical
data) for several months during the practice phase.
Thus, though many people showed interest in the
task (more than 40 people registered) and Mayo
reported several data use agreement applications,
this problem de-motivated the participation.

The CodaL.ab competition for the Parsing Time
Normalizations shared task’ will continue to ac-
cept submissions in its Post-Evaluation phase in-
definitely, so as more researchers make it through
the data use agreement process, we expect we will
see future participation in this task.
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Abstract

Temporal information extraction is a challeng-
ing task. Here we describe Chrono, a hybrid
rule-based and machine learning system that
identifies temporal expressions in text and nor-
malizes them into the SCATE schema. Af-
ter minor parsing logic adjustments, Chrono
has emerged as the top performing system for
SemEval 2018 Task 6: Parsing Time Normal-
izations.

1 Introduction

Understanding and processing temporal informa-
tion is vital for navigating life. The human
mind processes subtle temporal expressions in-
stantly and effortlessly; however, it is difficult for
computers to do the same. Identifying, process-
ing, and utilizing this information requires knowl-
edge and understanding of syntax, semantics, and
context to link temporal information to related
events and order them on a time-line. SemEval
2018 Task 6 (Laparra et al., 2018) aims to nor-
malize fine-grained temporal information and re-
lationships into the Semantically Compositional
Annotations for Temporal Expressions (SCATE)
schema developed by (Bethard and Parker, 2016).
This scheme aims to improve upon the current
TIMEX3/TimeML (Pustejovsky et al., 2003) stan-
dard by representing a wide variety of temporal
expressions, allowing for events to act as anchors,
and using mathematical operations over a time-
line to define the semantics of each annotation.
To address this challenge, we developed Chrono!,
a hybrid rule-based and machine learning (ML)
Python package that normalizes temporal expres-
sions into the SCATE schema.

"https://github.com/AmyOlex/Chrono
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2 The Chrono System

Our approach to building this hybrid system
includes four processing phases: 1) text pre-
processing, 2) flagging numeric and temporal to-
kens, 3) temporal expression identification, and 4)
SCATE normalization.

1) Text Pre-processing: Python’s Natural Lan-
guage Toolkit (NLTK) WhitespaceTokenizer and
part-of-speech (POS) tagger (Bird and Loper,
2004) process raw text files to identify individual
tokens, token spans, and POS tags. Punctuation
is not handled at this phase as it is important for
identifying correct spans.

2) Flagging Numeric and Temporal Tokens:
All numeric tokens are flagged regardless of con-
text. Subsequent phases utilize contextual infor-
mation to determine if a numeric token is part of
a temporal expression. Depending on the task, a
rule may remove all or some punctuation, and/or
convert tokens to lowercase prior to parsing. In
the following, RP and LC denote Removing all
Punctuation and converting to LowerCase, re-
spectively.

Numeric Flagging: Tokens are flagged as nu-
meric if either 1) the token has a POS tag of “CD”
(Cardinal Number), or 2) the text can be converted
to a numeric expression. Textual representations
of numeric expressions are converted to numer-
ics with the Word2Number?> Python module. A
custom method recognizes ordinals from “first” to
“thirty-first” and converts them into the associated
numerics 1 to 31, respectively. LC normalization
is done prior to parsing textual numerics.

Temporal Flagging: Temporal tokens are
flagged through rule-based parsing using lists of
key words and regular expressions. This phase
is more liberal in its identification of a tempo-
ral token than the SCATE normalization phase, so

*https://github.com/akshaynagpal/w2n

Proceedings of the 12th International Workshop on Semantic Evaluation (SemEval-2018), pages 97-101
New Orleans, Louisiana, June 5-6, 2018. ©2018 Association for Computational Linguistics



it identifies a broader range of potential tempo-
ral tokens that are refined in future steps. Tokens
may be numeric and temporal simultaneously. Nu-
meric tokens with the characters ‘$°, ‘#°, or ‘%’
are NOT marked as temporal. The following types
of tokens are flagged as temporal:

(3R

Formatted date patterns using °/° or ‘-’:
mm/dd/yyyy, mm/dd/yy, yyyy/mm/dd, or
yy/mm/dd

e Formatted time patterns matching hh:mm:ss
e Sequence of 4 to 8 consecutive digits match-
ing range criteria for 24-hour times or for
a year, month, and/or day (e.g. 1998 or
08241998).

Spelled out month or abbreviation, e.g.
“Mar.” or “March”, are flagged after RP ex-
cept periods as they are required to retrieve
correct spans.

Days of the week, e.g. “Sat.” or “Saturday”,
are parsed similar to months.

Temporal words indicating periods of time,
e.g. “yesterday” or “decade”, are flagged af-
ter RP and LC.

Mentions of AM and PM in any format are
flagged after RP except periods.

The parts of a week, e.g. “weekend” and
“weekends”, are flagged after RP and LC.
Seasons of the year are flagged after RP and
LC.

Various parts of a day, e.g. “noon” or “morn-
ing”, are flagged after RP and LC.

e Time zones are flagged after RP.

e Other temporal words, e.g. ‘“this”, “now”,
“nearly”, and others, are flagged after RP and
LC.

3) Temporal Expression Identification: A
temporal expression is represented by a remporal
phrase, which we define as two or more consec-
utive temporal/numeric tokens on the same line,
or an isolated temporal token, with some excep-
tions. If a numeric token contains a ‘$’, ‘#’, or
‘%’, or the text ‘million’, ‘billion’, or ‘trillion’ it
is not included in a temporal phrase as these gen-
erally refer to non-temporal values. Additionally,
isolated numeric tokens are not considered a tem-
poral phrase.

4) SCATE Normalization: Chrono parses each
temporal phrase into zero or more SCATE en-
tities, links sub-intervals, and disambiguates the
SCATE entities “Period” and “Calendar-Interval”
via a machine learning module. Chrono imple-
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ments 32 types of entities with 5 parent types
that have been described by (Bethard and Parker,
2016). Parsing strategies differ depending on the
composition of a temporal phrase being parsed.
Each temporal phrase is interrogated by all of the
following parsing strategies.

Formatted Dates and Times:  Formatted
dates/times are parsed using regular expressions.
To identify which format the date/time is in,
Chrono looks for a 2-digit or 4-digit year first, then
uses that position for orientation to identify the re-
maining elements. If a formatted date/time is iden-
tified, then the appropriate sub-intervals are linked
during element parsing. 4-digit years take prece-
dence over 2-digit years.

Numeric Dates and Times: Header and meta-
data for Newswire articles frequently have nu-
meric dates listed with no punctuation (e.g.
“19980218” codes for “Feb, 18 1998”), and iso-
lated 4-digit year mentions are frequent. After
formatted dates and times are parsed, any phrase
containing a numeric token is interrogated for a
potential date or year mention. If a numeric to-
ken is 4-digits it is tested for a year between 1500
and 2050, 6-digit tokens are parsed for 2-digit
year/month/day, and 8-digit strings are parsed for
a 4-digit year and 2-digit month/day. All elements
must be in the proper range, otherwise the token is
skipped. Appropriate sub-intervals are linked dur-
ing element parsing.

24-hour Time: 24-hour times are identified by
either the format hhmmzzz, where zzz is the
time zone, or a 4-digit number that has not been
classified as a year. Hour digits must be less than
24 and minutes less than 60. Sub-intervals are
linked at this time if existing. Time zones are han-
dled separately and are linked back to the hour en-
tity during the final sub-interval linking step.

Temporal Token Search: The majority of textual
temporal entities are identified by looking for spe-
cific tokens. Token categories include days of the
week, months, parts of a day/week, time zones,
and other temporal operators such as “early”,
“this™, “before”, etc. Prior to looking for these to-
kens, text is normalized by RP and LC. Exceptions
to RP include searching for day/month abbrevia-
tions, such as “Sat.” or “Aug.”. In these cases pe-
riods are not removed because they are part of the
SCATE span. Another exception to RP and LC
is identifying mentions of AM or PM where peri-
ods are kept and text is not converted to lowercase



in order to capture variations like “PM” or “p.m.”.
Non-temporal mentions of the months or seasons
of the year “may”, “march”, “spring”, and “fall”
are disambiguated using POS tags, where tokens
that refer to a temporal entity generally have a POS
tag of “NN” or “NP”. Sub-intervals are not linked

during token searches.

Text Year: Another special case of parsing
temporal tokens are textual representations of
years such as “nineteen ninety-seven”.  The
Word2Number Python module was modified to
recognize these phrases. Previously, it would add
19 and 97 together instead of returning 1997.

Periods and Calendar-Intervals: The same tem-
poral token can refer to either a SCATE “Pe-
riod” or “Calendar-Interval”. For example, in the
phrases “in a week” vs “next week” the token
“week” is classified differently. Due to language
intricacies it is difficult to define a rule-base sys-
tem to disambiguate these entities as the classifi-
cation is contingent on the topic being discussed
where phrasing around the entity can be different
for each instance. Thus, Period/Calendar-Interval
tokens are initially identified by a token search us-
ing a defined list of terms, then the identified term
and its span are passed to a ML algorithm for clas-
sification.

Machine Learning Classification: Four ML al-
gorithms are available in Chrono to differentiate
between “Period” and “Calendar-Interval” entities
using contextual information. Chrono implements
Naive Bayes (NB), Neural Network (NN), De-
cision Tree (DT), and Support Vector Machine
(SVM). Binary feature vectors for all implemen-
tations have the following features:

e temporal _self: If the target is flagged as tem-
poral, this feature is set to “1”.
o temporal_context: If there is at least one tem-
poral word within a 5-word window up- or
down-stream of the target this feature is set
to “1”.
numeric: If there is a numeric expression ei-
ther directly before or after (a 1-word win-
dow) the target, this feature is set to “1”.
context: All words within a 5-word window
are identified as features and set to “1” if that
word is present. Prior to identifying these
features all words are normalized with RP
and LC. The 5-word window includes cross-
ing sentence boundaries before and after the
target word.
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We use NLTK with default parameters to imple-
ment NB and DT, NN is a simple feed-forward
network with three hidden layers implemented us-
ing Python’s Keras package ® with epochs set to
5 and batch set to 10, and SVM is implemented
using SciKitLearn (Pedregosa et al., 2011) with C
set to 0.05 and max iterations set to 3.

Ordinals: Ordinals such as “first” or “3rd”
are classified as an “NthFromStart” entity in the
SCATE schema. These mentions are identified by
normalizing with RP and LC before searching for
the ordinal tokens representing the numbers 1-31.

Sub-Interval Linking: After all SCATE entities
are identified, all temporal phrases are re-parsed
to identify sub-intervals within each phrase. For
example, entities in the phrase “August 1998 are
parsed by two different methods leaving the sub-
interval link vacant. During sub-interval linking,
the year “1998” has the “August” entity added as
a sub-interval. Sub-interval linking reviews enti-
ties from the smallest to the largest, adding miss-
ing sub-intervals as needed. This method assumes
each temporal phrase contains zero or one of each
type of SCATE entity.

Next/Last Parsing: Determining whether an en-
tity is referring to a date in the future, “Next”, or
past, “Last”, depends on context and the document
time (doc-time). Next/Last parsing is done after
all other parsing, and checks two cases: 1) if a
temporal phrase contains a year, no additional an-
notation is made, and 2) if specific modifier words
are present (e.g. “next” or “last”) immediately pre-
ceding a temporal expression, the modifier is an-
notated with a sub-interval referencing the follow-
ing temporal entity. If neither of these cases hold,
the year is set as the doc-time year, and the month
and day are compared to the full doc-time to de-
termine if it occurs before or after. Note the year
assumption is not always valid and more complex,
content-based parsing may be required to achieve
higher precision. Finally, if a day of the week (e.g.
“Saturday”) is mentioned, Chrono finds the first
preceding verb in the sentence, and if it is past
tense the temporal entity is annotated as “Last”,
otherwise it is annotated as “Next”.

3 Results

Training and evaluation of Chrono utilizes the
Newswire corpus, consisting of 81 documents,
provided by the task organizers. Average preci-

*https://github.com/keras-team/keras



sion, recall, and F1-measure of 5-fold cross val-
idation for Track 1 (parsing) are reported in Ta-
ble 1 (annotations for “Event” and “Modifier” are
ignored). Scores for “100% Correct Entity” con-
sider the entity location and all properties (like
sub-intervals), and scores for “Correct Span” only
consider the entity location.

On average, all ML algorithms perform simi-
larly for the “100% Correct Entity”. All versions
also obtain a higher F1 score when only consider-
ing correct spans versus getting all entity proper-
ties correct. This indicates that Chrono correctly
identifies the majority of temporal entities, but has
trouble parsing some of the properties.

ChronoNN processed the final evaluation
dataset, which consisted of 20 previously un-
seen Newswire articles, and received a F1 of .44.
The evaluation dataset contained five articles from
BBC that were not represented in the training
dataset. Chrono’s low performance indicates that
it may be over-fit to the the training dataset. This
is one downfall of rule-based systems, where new
rules need to be developed for each new type of
temporal representation. Upon further review we
found the submitted version of Chrono had three
minor parsing flaws that resulted in unintentional
false positives.

1) Formatted dates such as “2013-02-22” were
being parsed twice. The first parse specifically
looked for a 4-digit year and identified all correct
entities, then the second parse looked for a for-
matted date with a 2-digit year, but didn’t check to
see if a year had already been found, so returned a
2-digit year with the value “22”. This was easily
fixed by having the 2-digit year parser check for
a 4-digit year flag before proceeding (month and
day flags were already implemented).

2) 24-hour time priority was incorrectly placed
above 4-digit year. This resulted in any isolated 4-
digit year being parsed as a 24-hour time expres-
sion rather than a year as originally intended. A
simple flip of parsing order resolved this issue.

3) Numeric temporal expressions, such as an
isolated 4-digit year, were being parsed as a whole
phrase rather than breaking out each token within
the phrase. For example, the year in the phrase
“Last 1953” was not being identified because it
was not in a phrase all by itself. To fix this the
parsing function was edited to loop through each
token in a phrase (a method that was already im-
plemented in most other parsers and was just over-
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100% Correct Entity

P R F1
Chrono NB | .686 | .630 | .657
Chrono NN | .684 | .629 | .656
Chrono DT | .687 | .632 | .658
Chrono SVM | .689 | .630 | .660
Correct Span
Chrono NB | .823 | .752 | .786
Chrono NN | .820 | .749 | .783
Chrono DT | .822 | .751 | .785
Chrono SVM | .827 | .755 | .789

Evaluation Results
Chrono NN \ 46 \ 42 \ 44
Post-Evaluation Results
ChronoNN | .61 | .50 | .55

Table 1: Chrono results on Newswire corpus for Track
1. All standard errors are <= 0.03, and no method
performed statistically significantly better than another.

looked here).
ChronoNN received a Post-Evaluation F1 of .55
for Track 1 after implementing these fixes, which

sets ChronoNN as the top performing system for
SemEval 2018 Task 6, Track 1.

4 Conclusions and Future Work

Chrono is currently the top performing system for
Track 1 of Task 6, but there are still many areas
that can be improved. Notably, we plan to im-
plement “Event” and “Between” parsing, as well
as refine current strategies as new temporal ex-
pressions are identified. Utilizing sentence tok-
enization instead of relying on new lines could im-
prove phrase identification; however, this did not
appear to be a major source of error in parsing the
Newswire dataset. Additionally, usability can be
improved by moving all parsing rules to separate,
customizable files. We also plan to expand ML use
to additional disambiguation tasks, and implement
an ensemble system utilizing all four ML methods.
We aim to extract the temporal phrase parser into a
stand-alone system and compare it’s performance
directly to existing programs like SUTime (Chang
and Manning, 2012) and HeidelTime (Strtgen and
Gertz, 2010) as it has done a decent job of iden-
tifying temporal entities in this challenge. Fi-
nally, we will evaluate Chrono’s performance on
the THYME dataset (Styler IV et al., 2014) using
the post-evaluation submission system.
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Abstract

This paper describes the NeuroSent system
that participated in SemEval 2018 Task 1. Our
system takes a supervised approach that builds
on neural networks and word embeddings.
Word embeddings were built by starting from
a repository of user generated reviews. Thus,
they are specific for sentiment analysis tasks.
Then, tweets are converted in the correspond-
ing vector representation and given as input to
the neural network with the aim of learning
the different semantics contained in each emo-
tion taken into account by the SemEval task.
The output layer has been adapted based on
the characteristics of each subtask. Prelimi-
nary results obtained on the provided training
set are encouraging for pursuing the investiga-
tion into this direction.

1 Introduction

Sentiment Analysis is a natural language process-
ing (NLP) task (Dragoni et al., 2015) which aims
at classifying documents according to the opin-
ion expressed about a given subject (Federici and
Dragoni, 2016a,b). Many works available in the
literature address the sentiment analysis problem
without distinguishing domain specific informa-
tion of documents when sentiment models are
built. The necessity of investigating this prob-
lem from a multi-domain perspective is led by the
different influence that a term might have in dif-
ferent contexts. The idea of adapting terms po-
larity to different domains emerged only in the
last decade (Blitzer et al., 2007; Dragoni and
Petrucci, 2017). Multi-domain sentiment analy-
sis approaches discussed in the literature focus on
building models for transferring information be-
tween pairs of domains (Dragoni, 2015; Petrucci
and Dragoni, 2015). While on the one hand such
approaches allow to propagate specific domain in-
formation to others, their drawback is the neces-
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sity of building new transfer models every time a
new domain has to be analyzed. Thus, such ap-
proaches do not have a great generalization capa-
bility of analyzing texts, because transfer models
are limited to the N domains used for building the
models.

The NeuroSent tool applied in SemEval 2018
Task 1 (Mohammad et al., 2018) leverages on the
following pillars: (i) the use of word embeddings
for representing each word contained in raw sen-
tences; (ii) the word embeddings are generated
from an opinion-based corpus instead of a general
purpose one (like news or Wikipedia); (iii) the de-
sign of a deep learning technique exploiting the
generated word embeddings for training the sen-
timent model; and (iv) the use of multiple output
layers for combining domain overlap scores with
domain-specific polarity predictions.

The last point enables the exploitation of lin-
guistic overlaps between domains, which can be
considered one of the pivotal assets of our ap-
proach. This way, the overall polarity of a doc-
ument is computed by aggregating, for each do-
main, the domain-specific polarity value multi-
plied by a belonging degree representing the over-
lap between the embedded representation of the
whole document and the domain itself. Within the
SemEval 2018 Task 1 challenge, we consider with
the term domain one of the emotions that have
been considered into the provided datasets.

2 Related Work

Sentiment analysis from the multi-task and multi-
domain perspective is a research field which
started to be explored only in the last decade. Ac-
cording to the nomenclature widely used in the
literature (see (Blitzer et al., 2007; Dragoni and
Petrucci, 2017)), we call domain a set of docu-
ments about similar topics, e.g. a set of reviews
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about similar products like mobile phones, books,
movies, etc.. The massive availability of multi-
domain corpora in which similar opinions are ex-
pressed about different topics opened the scenario
for new challenges. Researchers tried to train
models capable to acquire knowledge from a spe-
cific domain and then to exploit such a knowledge
for working on documents belonging to different
ones. This strategy was called domain adaptation.
The use of domain adaptation techniques demon-
strated that opinion classification is highly sensi-
tive to the domain from which the training data is
extracted. The reason is that when using the same
words, and even the same language constructs, we
may obtain different opinions, depending on the
domain. The classic scenario occurs when the
same word has positive connotations in one do-
main and negative connotations in another one, as
we showed within the examples presented in Sec-
tion 1.

Several approaches related to multi-domain
sentiment analysis have been proposed. Roughly
speaking, all of these approaches rely on one of the
following ideas: (i) the transfer of learned classi-
fiers across different domains (Blitzer et al., 2007,
Pan et al., 2010; Bollegala et al., August 2013; Xia
et al., May-June 2013), and (ii) the use of propa-
gation of labels through graph structures (Pono-
mareva and Thelwall, 2013; Tsai et al., March
2013; Dragoni et al., April 2015; Dragoni, 2015,
2017; Petrucci and Dragoni, 2017, 2016, 2015;
Dragoni et al., 2014; Dragoni and Petrucci, 2018).

While on the one hand such approaches demon-
strated their effectiveness in working in a multi-
domain environment, on the other hand they suf-
fered by the limitation of being influenced by the
linguistic overlap between domains. Indeed, such
an overlap leads learning algorithms to infer simi-
lar polarity values to domains that are similar from
the linguistic perspective.

The adoption of evolutionary algorithms within
the sentiment analysis research field is quite re-
cent. First studies focused on the use of evo-
lutionary solutions for modeling financial indica-
tors by starting from investors sentiments (Yamada
and Ueda, 2005; Chen and Chang, 2005; Huang
etal., 2012; Yang et al., 2017; Simoes et al., 2017).
Here, the evolutionary component was used for
learning the trend of financial indicators with re-
spect to the sentiment information extracted from
opinions provided by the investors. With respect
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to these papers, we propose an approach adopting
evolutionary computation to a more fine-grained
level where the evolution component affects also
the polarities of opinion concepts.

Studies considering the use of evolutionary al-
gorithms for optimizing the polarity values of
opinion concepts have been proposed only re-
cently (Ferreira et al., 2015; Onan et al., 2016,
2017). However, these works focused on learning
candidate refinements of opinion concepts polarity
without considering the context dimension associ-
ated with them. A variant of this problem is the use
of polarity adaptation strategy in the field of social
media and microblogs (Alahmadi and Zeng, 2015;
Wang et al., 2014; Keshavarz and Abadeh, 2017;
Hu et al., 2016; Fu et al., 2016; Gong et al., 2016).

With respect to state of the art, this work rep-
resents the first exploration of evolutionary algo-
rithms for multi-domain sentiment analysis with
the aim of learning multiple dictionaries of opin-
ion concepts. Moreover, we differ from the lit-
erature by do not considering the propagation of
polarity information across domain (i.e., we keep
them completely separated) in order to avoid trans-
fer learning drawbacks.

3 System Implementation

NeuroSent has been entirely developed in Java
with the support of the Deeplearning4j library !
and it is composed by following two main phases:

e Generation of Word vectors (Section 3.1):
raw text, appropriately tokenized using the
Stanford CoreNLP Toolkit, is provided as in-
put to a 2-layers neural network implement-
ing the skip-gram approach with the aim of
generating word vectors.

Learning of Sentiment Model (Section 3.2):
word vectors are used for training a recur-
rent neural network with an output layer cus-
tomized based on the addressed subtask. The
customizations have been explained in Sec-
tion 4.

In the following subsections, we describe in
more detail each phase by providing also the set-
tings used for managing our data.

3.1 Generation of Word Vectors

The generation of the word vectors has been per-
formed by applying the skip-gram algorithm on

"https://deeplearning4;j.org/



the raw natural language text extracted from the
smaller version of the SNAP dataset (McAuley
and Leskovec, 2013). The rationale behind the
choice of this dataset focuses on three reasons:

o the dataset contains only opinion-based doc-
uments. This way, we are able to build word
embeddings describing only opinion-based
contexts.

the dataset is multi-domain. Information con-
tained into the generated word embeddings
comes from specific domains, thus it is possi-
ble to evaluate how the proposed approach is
general by testing the performance of the cre-
ated model on test sets containing documents
coming from the domains used for building
the model or from other domains.

the dataset is smaller with respect to other
corpora used in the literature for building
other word embeddings that are currently
freely available, like the Google News ones. >
Indeed, as introduced in Section 1, one of our
goal is to demonstrate how we can leverage
the use of dedicated resources for generating
word embeddings, instead of corpora’s size,
for improving the effectiveness of classifica-
tion systems.

The aspect of considering only opinion-based
information for generating word embeddings is
one of the peculiarity of our system. While
embeddings currently available are created from
big corpora of general purpose texts (like news
archives or Wikipedia pages), ours are generated
by using a smaller corpus containing documents
strongly related to the problem that the model will
be thought for. On the one hand, this aspect may
be considered a limitation of the proposed solution
due to the requirement of training a new model in
case of problem change. However, on the other
hand, the usage of dedicated resources would lead
to the construction of more effective models.

Word embeddings have been generated by
the Word2Vec implementation integrated into the
Deeplearning4j library. The algorithm has been
set up with the following parameters: the size of
the vector to 64, the size of the window used as in-
put of the skip-gram algorithm to 5, and the mini-
mum word frequency was set to 1. The reason for

Zhttps://github.com/mmihaltz/word2vec-GoogleNews-
vectors
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which we kept the minimum word frequency set to
1 is to avoid the loss of rare but important words
that can occur in domain specific documents.

3.2 Learning of The Sentiment Model

The sentiment model is built by starting from the
word embeddings generated during the previous
phase.

The first step consists in converting each tex-
tual sentence contained within the dataset into the
corresponding numerical matrix S where we have
in each row the word vector representing a single
word of the sentence, and in each column an em-
bedding feature. Given a sentence s, we extract all
tokens ¢;, with i € [0, n], and we replace each ¢;
with the corresponding embedding w. During the
conversion of each word in its corresponding em-
bedding, if such embedding is not found, the word
is discarded. At the end of this step, each sentence
contained in the training set is converted in a ma-
trix S = [wil), ..., wim)].

Before giving all matrices as input to the neu-
ral network, we need to include both padding and
masking vectors in order to train our model cor-
rectly. Padding and masking allows us to support
different training situations depending on the num-
ber of the input vectors and on the number of pre-
dictions that the network has to provide at each
time step. In our scenario, we work in a many-
to-one situation where our neural network has to
provide one prediction (sentence polarity and do-
main overlap) as result of the analysis of many in-
put vectors (word embeddings).

Padding vectors are required because we have
to deal with the different length of sentences. In-
deed, the neural network needs to know the num-
ber of time steps that the input layer has to import.
This problem is solved by including, if necessary,
into each matrix Sg, with k& € [0, z] and z the
number of sentences contained in the training set,
null word vectors that are used for filling empty
word’s slots. These null vectors are accompanied
by a further vector telling to the neural network
if data contained in a specific positions has to be
considered as an informative embedding or not.

A final note concerns the back propagation
of the error. Training recurrent neural networks
can be quite computationally demanding in cases
when each training instance is composed by many
time steps. A possible optimization is the use of
truncated back propagation through time (BPTT)



that was developed for reducing the computational
complexity of each parameter update in a recur-
rent neural network. On the one hand, this strat-
egy allows to reduce the time needed for training
our model. However, on the other hand, there is
the risk of not flowing backward the gradients for
the full unrolled network. This prevents the full
update of all network parameters. For this rea-
son, even if we work with recurrent neural net-
works, we decided to do not implement a BPTT
approach but to use the default backpropagation
implemented into the DL4]J library.

Concerning information about network struc-
ture, the input layer was composed by 64 neu-
rons (i.e. embedding vector size), the hidden RNN
layer was composed by 128 nodes, and the out-
put layers with a different number of nodes based
on the addressed subtask. The network has been
trained by using the Stochastic Gradient Descent
with 1000 epochs and a learning rate of 0.002.

4 The Tasks

The SemEval 2018 Task 1 is composed by a set
of five subtasks aiming to attract systems able
to automatically determine the intensity of emo-
tions and the intensity of sentiment of tweets’ au-
thors. Then, organizers included also a multi-label
emotion classification task for tweets. For each
task, there were provide separate training and test
datasets for four languages: English, Arabic, and
Spanish. The proposed system implements a strat-
egy only for the English language. Below, we pro-
vide a summary of the five subtasks including how
we configured the output layer of our neural net-
work.

Subtask #1: El-reg Given a tweet and an emo-
tion E, the system has to determine the intensity
of E that best represents the mental state of the
tweet’s author by providing a real-valued score
between 0 and 1. Here, four emotions are con-
sidered: anger, fear, joy, and sadness. Separated
datasets have been provided for training the sys-
tem. The output layer of our neural network is
composed by a single neuron implementing the
SIGMOID activation function.

Subtask #2: El-oc Given a tweet and an emo-
tion E, the system has to classify the tweet into
one of four ordinal classes of intensity of E that
best represents the mental state of the tweet’s au-
thor. Also here, four emotions are considered:
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anger, fear, joy, and sadness. Separated datasets
have been provided for training the system. The
output layer of our neural network is composed
by four neurons and the SOFTMAX strategy has
been implemented for selecting the most candidate
emotion intensity class.

Subtask #3: V-reg Given a tweet, the system
has to determine the valence of a sentiment that
best represents the mental state of tweet’s author
by providing a real-valued score between 0 and
1. The output layer of our neural network is com-
posed by a single neuron implementing the SIG-
MOID activation function.

Subtask #4: V-oc Given a tweet, the system
has to classify it into one of seven ordinal classes
(from —3 to 3) corresponding to various levels of
positive and negative sentiment intensity. The out-
put layer of our neural network is composed by
seven neurons and the SOFTMAX strategy has
been implemented for selecting the most candidate
emotion intensity class.

Subtask #5: E-c  Given a tweet, the system has
to classify it as a neutral, or no emotion or as one,
or more, of eleven given emotions that best rep-
resent the mental state of the tweet’s author. The
eleven emotions are: anger, anticipation, disgust,
fear, joy, love, optimism, pessimism, sadness, sur-
prise, and trust. The output layer of our neural net-
work is composed by eleven neurons implement-
ing the SIGMOID activation function. This way,
each emotion has been managed separately.

The NeuroSent system has been applied to all
five subtasks. In Section 5, we report the prelimi-
nary results obtained by NeuroSent on the train-
ing set compared with a set of baselines.

5 In-Vitro Evaluation

The NeuroSent approach have been preliminar-
ily evaluated by adopting the Dranziera proto-
col (Dragoni et al., 2016).

The validation procedure leverages on a five-
fold cross evaluation setting in order to validate
the robustness of the proposed solution. The ap-
proach has been compared with four baselines:
Support Vector Machine (SVM) (Chang and Lin,
2011), Naive Bayes (NB) and Maximum Entropy
(ME) (McCallum, 2002), and Convolutional Neu-
ral Network (Chaturvedi et al., 2016).

In Table 1, we provide for subtasks two, four,
and five the average Pearson correlation obtained



Approach Task #1.1 | Task #1.2 | Task #1.3 | Task #1.4 | Task #1.5
Support Vector Machine | 0.3189 0.4890 0.3698 0.5145 0.3498
Naive-Bayes 0.2944 0.4956 0.3544 0.5387 0.4167
Maximum Entropy 0.2765 0.5073 0.3025 0.5777 0.4178
CNN Architecture 0.2433 0.6037 0.2466 0.5895 0.5487
NeuroSent 0.2187 0.6687 0.2079 0.6241 0.5814

Table 1: Results obtained on the training set by NeuroSent and by the four baselines.

on the five folds in which the training set has been
split. While, for subtasks one and three, we pro-
vide the average mean square error.

The obtained results demonstrated the suitabil-
ity of NeuroSent with respect to the adopted
baselines. We may also observed how solutions
based on neural networks obtained a significant
improvement with respect to the others for the
Tasks #1.2 and #1.4.

Then, for Tasks #1.2, #1.4, and #1.5, we per-
formed a detailed error analysis concerning the
performance of NeuroSent. In general, we ob-
served how our strategy tends to provide false neg-
ative predictions. An in depth analysis of some in-
correct predictions highlighted that the embedded
representations of some positive opinion words are
very close to the space region of negative opinion
words. Even if we may state that the confidence
about positive predictions is very high, this sce-
nario leads to have a predominant negative classi-
fication for borderline instances.

On the one hand, a possible action for improv-
ing the effectiveness our strategy is to increase
the granularity of the embeddings (i.e. augment-
ing the size of the embedding vectors) in order
to increase the distance between the positive and
negative polarities space regions. On the other
hand, by increasing the size of embedding vectors,
the computational time for building, or updating,
the model and for evaluating a single instance in-
creases as well. Part of the future work, will be
the analysis of more efficient neural network ar-
chitectures able to manage augmented embedding
vectors without negatively affecting the efficiency
of the platform.

6 Conclusion

In this paper, we described the NeuroSent sys-
tem presented at SemEval 2018 Task 1. Our sys-
tem makes use of artificial neural networks to clas-
sify tweets by polarity or for detecting emotion
levels. The results obtained on the training set
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demonstrated that the adopted solution is promis-
ing and worthy of investigation. Therefore, fu-
ture work will focus on improving the system by
exploring the integration of sentiment knowledge
bases (Dragoni et al., 2015) in order to move to-
ward a more cognitive approach.
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Abstract

This paper describes the system used and re-
sults obtained for team FOI DSS at SemEval-
2018 Task 1: Affect In Tweets. The team
participated in all English language subtasks,
with a method utilizing transfer learning from
LSTM nets trained on large sentiment datasets
combined with embeddings and lexical fea-
tures. For four out of five subtasks, the sys-
tem performed in the range of 92-95% of the
winning systems, in terms of the competi-
tion metrics. Analysis of the results suggests
that improved pre-processing and addition of
more lexical features may further elevate per-
formance.

1 Introduction

In the field of automatic emotion detection, many
contributions consider the issue of detecting pres-
ence of emotions (Liu, 2012). The task of de-
tecting intensity of emotion in a given text is
less studied, but is relevant to many applications
in fields such as e.g., brand management, public
health, politics, and disaster handling (Moham-
mad, 2016). When developing prediction sys-
tems, access to suitably annotated data is criti-
cal. Most annotated emotion and affect datasets
are categorical, but examples of sets annotated
with intensity or degree of emotional content in-
clude EmoBank (Buechel and Hahn, 2017a,b),
AFINN (Nielsen, 2011), the Pietro Facebook post
set (Preotiuc-Pietro et al., 2016), and the Warriner-
Kuperman set (Warriner et al., 2013). For tweets,
the Tweet Emotion Intensity Dataset (Mohammad
and Bravo-Marquez, 2017) has recently been pub-
lished, with more than 7000 tweets annotated with
emotion category and intensity.

This paper describes methods used and results
achieved with the FOI DSS contribution to the five
subtasks for English tweets of SemEval 2018 Task
1: Affect in Tweets (Mohammad et al., 2018).

The paper is organized as follows. A descrip-
tion of Task 1 is provided in Section 2. Sec-
tion 3 discusses the provided datasets. Section 4
describes the methods and system used to produce
predictions of scores and labels for all subtasks.
In Sections 5 and 6 results are presented and ana-
lyzed, and suggestions for improvements are out-
lined. Finally, concluding remarks are found in
Section 7.

2 Task formulation

Task 1 consisted of five subtasks, all regarding es-
timation of the mental state of a tweeter, based
on the tweeted text. Valence' intensity, as well
as emotion, and emotion intensity classification,
were covered. The subtasks are summarized be-
low:

1. Emotion intensity regression (EI-reg): For
a given tweet and emotion?, determine the in-
tensity of the emotion as a score € [0, 1].

2. Emotion intensity, ordinal classification
(EI-oc): For a given tweet and emotion?,
classify the tweet into one of four ordinal
classes of intensity.

3. Valence regression (V-reg): For a given
tweet, determine the intensity of valence as
a score € [0, 1].

4. Valence, ordinal classification (V-oc): For a
given tweet, classify it into one of seven ordi-
nal classes corresponding to levels of positive
and negative intensity.

5. Multi-label emotion classification (E-c):
For a given tweet and eleven emotions?, clas-
sify the tweet as neutral, or expressing one or
more of the emotions.

'The intrinsic attractiveness (positive valence) or averse-
ness (negative valence) of an event, object, or situation (Fri-
jda, 1986).

Zanger, joy, fear or sadness.

3anger, anticipation, disgust, fear, joy, love, optimism,
pessimism, sadness, surprise and trust.

109

Proceedings of the 12th International Workshop on Semantic Evaluation (SemEval-2018), pages 109-115
New Orleans, Louisiana, June 5-6, 2018. ©2018 Association for Computational Linguistics



Subtask Train | Val. | Test
EI anger 1701 388 | 1002
EI fear 2252 | 389 | 986
EI joy 1616 | 290 | 1105
El sadness | 1533 397 | 975
v 1181 449 | 937
E-c 6838 886 | 3259

Table 1: Number of tweets in the datasets for different
subtasks. The sets for El-reg and EI-oc were identical,
as was also the case for V-reg and V-oc.

3 Data

The dataset made available for Task 1 was the
AIT Dataset (Mohammad and Kiritchenko, 2018).
For each subtask, labeled datasets for training and
validation were released for the prediction system
development phase. Intensity scores were roughly
normally distributed, and ordinal classes were de-
fined as intervals for the scores. Unlabeled test
data was later released for the evaluation phase.
Table 1 gives a brief overview of the data. Details
on the data and annotation can be found in (Mo-
hammad et al., 2018) and (Mohammad and Kir-
itchenko, 2018).

In addition to the test data, an unlabeled “mys-
tery” set of 16937 short texts was provided for
the regression subtasks. The task organizers asked
that participants in these subtasks use their exist-
ing systems to produce predictions for the mystery
set as well, and the results were used to perform
a bias analysis. This is further discussed in Sec-
tion 5.4.

4 Method

Initially, the team focused on Subtask 4 (V-reg).
Several different approaches were explored, and
evaluated using the official competition metric,
the Pearson Correlation Coefficient (PCC) with
gold ratings. The combination of methods found
to have the best performance on the V-reg task
was chosen. The approach is described in Sec-
tions 4.1 - 4.3. Contributions to Subtasks 1, 2,
3 and 5 were constructed by altering the final
stage model to fit each task, and tuning the hyper-
parameters for best performance.

4.1 Pre-processing

We performed some rudimentary pre-processing
of the tweets prior to feature extraction. Follow-
ing the findings reported in (Zhao, 2015) we ex-
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panded negations such as “can’t” and "n’t” etc.,
into “cannot” and “not”. The hashtag character #
was also removed and we replaced user names and
links with ”usr” and “http://url”, respectively. We
finally mapped unicoded emoticons into their as-
sociated emoticon text description *

4.2 Feature Extraction

The small amount of labeled data prevented us
from automatically discovering optimal features
for the different tasks. Instead, we utilized transfer
learning techniques (i.e., reusing a model trained
on a different but related task where more data is
available) and classical natural language process-
ing features. Three different methods were used
to extract features from the tweet sets; two us-
ing variants of Long Short-Term Memory (LSTM)
nets obtained by training on large sentiment
datasets and extracting the internal model states,
and one utilizing the Weka Affective Tweets pack-
age. The feature vectors from each of the meth-
ods described below were then concatenated to
form one 5265 dimensional feature vector for each
tweet.

4.2.1 Sentiment Neuron

In (Radford et al., 2017), the authors consider
the problem of predicting the next character in a
text given the preceding characters. More specifi-
cally, they predict next byte (each UTF-8 encoded
character constitutes one to four bytes) from the
previous bytes using a single layer multiplicative
LSTM (Krause et al., 2016) with 4096 states. The
model was trained using 82 million Amazon prod-
uct reviews amounting to 38 billion bytes of train-
ing data. The authors show state-of-the-art (or
close to state-of-the-art) sentiment classification
performance on four different datasets when train-
ing a logistic regression classifier with the model’s
states as feature vector. Because of the reported
strong predictive quality of the model’s state we
used that as one of the feature vectors for our
method. We used the authors code for feature ex-
traction available on github >,

4.2.2 Bidirectional-LSTM

Tweets can often be quite different from typical
text seen in novels, news, or product reviews.

“https://apps.timwhitlock.info/emoji/tables/unicode#block-
6a-additional-emoticons

Shttps://github.com/openai/generating-reviews-
discovering-sentiment



The short messages commonly contain intentional
misspelling to express affects (e.g., happpppyyy).
hashtags (e.g., #love), and emoticons (e.g., :-)).
One option to capture the specific characteristics
of tweets would be to fine-tune the sentiment neu-
ron model described in the previous section us-
ing twitter data. We did not explore this direc-
tion in this work. Instead, in an attempt to di-
rectly capture affects, we trained (from scratch) a
bidirectional LSTM on a sentiment labeled (two
classes; positive and negative sentiment) twitter
dataset ®. The dataset contains 1.5 million tweets
and we used 90% for training and 10% for vali-
dation. We used a bidirectional LSTM with 512
states in each direction (1024 in total). The input
characters were first mapped to integers and sub-
sequently fed to the embedding front-end (where
an integer to a dense 64 dimensional embedding
is learned) of the bidirectional LSTM. A dropout
of 50% was used during the training for the sen-
timent prediction. The model achieves approxi-
mately 85% classification accuracy on the valida-
tion set. Similar to the sentiment neuron’s multi-
plicative LSTM we use the bidirectional LSTM’s
state as a feature vector.

4.2.3 Weka Affective Tweets filters

A combination of tweet-level filters from the
Weka Affective Tweets package (Mohammad and
Bravo-Marquez, 2017) was used as the third part
of the feature extraction method. These filters pro-
duce embeddings and lexical features, e.g. counts
of positive and negative sentiment words, from
systems such as the NRC-Canada System’.

To evaluate contributions from different filters,
the final stage model (Section 4.3) was run using
their resulting feature vectors for the V-reg dataset
as input. For combinations of filters, the resulting
feature vectors were concatenated and run through
the final stage model. Details of this evaluation
can be found in Section 5.1

4.3 Final stage

For each of the different subtasks we trained a
fully connected neural network with two hidden
layers mapping the input feature vector (i.e., the
concatenation of the feature vectors described in
Sections 4.2.1 - 4.2.3) to the target value, class, or

Shttp://thinknook.com/twitter-sentiment-analysis-
training-corpus-dataset-2012-09-22/

"http://saifmohammad.com/WebPages/NRC-Canada-
Sentiment.htm

111

classes. The activation function for the two hidden
layers was tanh and the activation functions for
the output layer were set to linear, softmax, and
sigmoid for the V-reg/El-reg, V-oc/El-oc, and E-c
subtasks, respectively.

The Adam optimizer (Kingma and Ba, 2015)
was used for the classification subtasks with cate-
gorical cross-entropy loss for the V-oc/El-oc sub-
tasks and binary cross-entropy loss for the E-c
subtask. For the regression subtasks of V-reg
and El-reg we used mean squared error as loss
function and the ADADELTA optimizer (Zeiler,
2012). However, the performance difference be-
tween Adam and ADADELTA was minor in our
regression subtasks.

We used L2-regularization on the parameters of
the hidden layers. For each subtask, the hyper-
parameters (i.e., the penalty and the layer sizes)
of the neural network were found by a grid search
evaluating the PCC (or the Jaccard similarity score
for E-c subtask) on the validation data.

The hyper-parameter search range was
[0.001,0.05] for the penalty and [5,80] for the
two layer sizes. Many configurations with quite
different hyper-parameter values resulted in very
similar scores. E.g., for the V-reg subtask the
conﬁgurations8 (0.03,10,15), (0.03,15,40), and
(0.0096,70,35) all resulted in PCCs in the range
0.841-0.846.

5 Results

In this section we present a performance analysis
of the set of features used, as well as results on the
different subtasks.

5.1 Feature evaluation

To assess the quality of the feature vectors de-
scribed in Section 4.2 we computed the PCC on
the V-reg subtask using the validation data. For
each set of features listed in Table 2 we performed
a hyper-parameter search to find the parameters
of the final stage model maximizing the PCC (cf.
Section 4.3).

As seen in Table 2 the features provided by the
Weka Affective Tweets package have the strongest
individual predictive power. From the Weka fil-
ters, the feature combination chosen to be included
in the combined method was Wg + Wgs + Wy,
which produced the highest PCC during evalua-
tion.

8configuration = (penalty, layer 1 size, layer 2 size)



Features PCC
Weka
TweetToEmbeddings (Wg)® 0.665
TweetToEmbeddings 400 (Wgso0) 1© | 0.702
TweetToSentiStrength (Wss) 0.675
TweetToLexicon (W) 0.790
TweetTolnputLexicon (W) 0.687
WE + Wss + WL 0.800
WE + Wss + WL+ Wi 0.797
We400 + Wss + WL 0.795
Sentiment Neuron (SN) 0.767
Bi-LSTM 0.738
SN + Bi-LSTM 0.818
Bi-LSTM + Wg + Wss + W 0.820
SN + Wg + Wss + WL 0.838
SN + Bi-LSTM + Wg + Wgs + Wy, 0.846

Table 2: V-reg validation set: PCC of valence inten-
sity score predictions with gold scores for the different
feature vector combinations.

Although the sentiment neuron is not trained
on Twitter specific data it still shows good perfor-
mance. The bidirectional LSTM has the weakest
performance but still has a positive impact on the
final score.

5.2 Results on validation and test data

The official competition metric was PCC for Sub-
tasks 1-4, but as Subtask 5 was a multi-label classi-
fication task, the metric used was multi label accu-
racy, or Jaccard similarity score. The PCC/Jaccard
similarity score for validation and test data for the
FOI DSS system is presented in Table 3. For the
regression tasks, the system’s performance on the
test data is close to the validation data results. For
the classification tasks, the gap between validation
and test scores is somewhat larger, indicating that
the model may be biased for the validation data.
The team’s ranking in different subtasks varied
from 6 (out of 46 and 35 teams, respectively) for
El-reg and V-oc, to 11 of 37 for El-oc. For Sub-
tasks 1,3,4, and 5 the scores of our system was in
the range of 92-95 % of the winning result on each
subtask. The weakest performance was observed
on Subtask 2 (EI-oc), with a PCC corresponding

°The TweetToEmbeddingsFeatureVector ~filter  us-
ing embeddings trained from the small default cor-
pus, yielding a 100-dimensional feature vector.
https://affectivetweets.cms.waikato.ac.nz. .

10The TweetToEmbeddingsFeatureVector filter using em-
beddings trained from the 10 million tweets of the Edinburgh
corpus (Petrovi¢ et al., 2010), yielding a 400-dimensional
feature vector.
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Subtask | Validation | Test | Baseline (Test)
El-reg 0.739 0.737 0.520
El-oc 0.636 0.590 0.394
V-reg 0.846 0.831 0.585
V-oc 0.818 0.777 0.509
E-c 0.554 0.544 0.442
Table 3: PCC/Jaccard similarity score on validation

and test data for the FOI DSS system for all English
subtasks of Task 1. The performance of the organiz-
ers’ SVM unigrams baseline model on the test data is
provided for comparison.

to 84 % of winning PCC. Figure 1 shows results
of the FOI DSS system compared to mean, me-
dian and max competition results for test data on
all English subtasks.

1
B max
® FroIDSS
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® u mean
08" u
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Figure 1: PCC/Jaccard similarity score of test data
score and label predictions with gold scores and labels
for all English subtasks. FOI DSS results compared
to mean, median and max results for all participating
teams.

5.3 Error analysis on the V-reg subtask

As already mentioned, our method achieved a
PCC of 0.831 for the V-reg subtask on the test
data. Figure 2 shows the corresponding scatter
plot of the estimated and gold valence. To get
some insight into potential future improvements of
our system it is of interest to do analysis of tweets
having poor valence estimates.

Some of the tweets from the validation and test
datasets with large absolute error between the es-
timated and gold valence are listed in Table 4.
For the first validation set tweet our method pre-
dicted a fairly low valence whereas the gold score
is fairly high. A possible explanation could be that
our system has problems with the constructions
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Figure 2: Scatter plot showing the estimated versus
gold valence for the V-reg test dataset.

and concatenations such as B4, Thankful4all, and
ImWakingUpHappyNot. Especially not properly
splitting the last concatenation leaves the end of
the tweet “dreading the day” which should result
in a low valence.

The emoticon of the second validation tweet,
\xFO\x9F\x98\xA4, is interesting. It depicts a
face with steam coming out of the nostrils, which
clearly signals anger, but the mapping* we used
describes it (wrongly according to us) as “face
with look of triumph”. In the third tweet we
failed to map the emoticon \xFO\x9F\xA4\xA3
to words. The emoticon shows some sort of laugh-
ing creature.

The top two test set tweets in Table 4 had the
largest prediction errors for this set. They were
both predicted to have a lower valence than the
gold score. Interestingly, they both contain the
hashtag #blessed and include constructions using
the word not, where, if the negation is missed, the
sentiment of the tweet would change from positive
to negative. Possibly, our method has trouble cor-
rectly interpreting the negation and also has failed
to award enough importance to the positive sen-
timent word blessed. Since our pre-processing in-
volved removing hashtag character #, added inten-
sity expressed this way will not be captured.

Finally, the third test set tweet had a high pre-
dicted valence but a low gold score. This text con-
tains both negative words and phrases such as ner-
vous and I could puke, but also expresses laughter.
It would seem our method has deemed the latter
a marker of high valence, while a human reader

would probably interpret it as a nervous laughter,
thus low valence, considering the context provided
by the tweet as a whole.

5.4 Mystery dataset and bias analysis

An analysis for inapproperiate gender and race
bias in scoring and classifications was performed
by the task organizers for the “mystery” dataset
(Section 3). For most teams, the bias was small
(below 3%) but statistically significant, in part
likely due to biases in the AIT dataset. For the FOI
DSS system, the biases were below average for EI-
joy, El-sadness and valence, and 1% or less for all
datasets except gender bias for El-fear (2.3%). Bi-
ases in the datasets used to train our LSTM mod-
els as well as in the lexicons used to extract lexical
features may have contributed to biases in scoring
and classification.

6 Discussion

Designing high performance regression and clas-
sification algorithms using only a small amount
of labeled data is always a challenge. The vari-
ability in tweets is enormous, and thus, there is a
major risk of over-fitting when designing and tun-
ing the algorithms on the the very limited labeled
datasets provided for the competition. We used
transfer learning and classical NLP features to al-
leviate the problem. We believe further improve-
ments can be made by reducing the noise of the
dataset, features, and final prediction. In the fol-
lowing, we discuss some of these ideas.

6.1 Pre-processing extensions

The error analysis in Section 5.3 indicates that the
performance of our method could be improved by
extending and refining the pre-processing. Split-
ting concatenations into separate words and ad-
dressing some common abbreviations would be
one extension. Adjusting the emoticon lookup ta-
bles would be another.

6.2 Weka filter combinations: robustness

The combination of Weka Affective Tweets filters
used in the FOI DSS system, Wg + Wgs +W¢,
achieved the highest PCC during evaluation (Sec-
tion 5.1). However, as results for neural networks
are hard to reproduce, it should be examined what
combinations of filters on average perform bet-
ter. Initial findings from two such evaluations con-
ducted after the end of the competition are re-
ported in this section:
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Dataset Tweet Pred. | Gold
B4 I couldnt get out of bed or look in mirror Thankful4all 0303 | 0.734
the support I have recieved here ImWakingUpHappyNot dreading theday ’ ’

Validation | 3 ;14 4 half hour more \xFO\x9F\x98\xA4 #EXO 0.603 | 0.250
@TheEllenShow I follow you be your TV show keeps me laughing \xFO\x9F\xA4\xA3. 0461 | 0783
When you #startle your guest sitting on that couch...booo... ’ )
i’ll have my own apartment and not have to sneak alcohol into my dorm room
. 0.349 | 0.823
or worry about being loud #blessed
Test mum got out of a rlly bad car crash completely not injured and i found a rlly sentimental
. - . - 0.203 | 0.643
piece of jewellery i thought i’d lost #blessed
I’m so nervous I could puke + my body temp is rising ha ha ha ha ha 0.845 | 0.422

Table 4: Tweets with large prediction errors for the valence validation and test sets.

1. Wg400 : When used on their own, the Wg400
filter, which utilizes a much larger corpus!?,
outperforms Wg (Table 2). Therefore it is of
interest to compare performance of the two
filters combined with Wgg and Wi..

. Wir: Using its default lexicon'!, Wy pro-
duces 4-dimensional feature vectors. We
wanted to investigate whether contributions
from Wi on average increases performance.

The different vector combinations were input to
the final stage model (Section 4.3) for 486 differ-
ent hyper-parameter configurations, and the result-
ing PCC scores were compared. For 59% of the
configurations, Wg + Wgs +Wr still performed
better than Wgq09 + Wss + WL. It would there-
fore seem that the loss of features captured by the
larger WE400 vector is compensated for when com-
bining the smaller Wg vector with Wgs + WL

However, Wg + Wgs +Wr +Wy outperformed
Wg + Wgs +W, for 67% of the configurations. We
may therefore conclude that including the Wy fil-
ter would result in an overall more robust system.

6.3 Final stage: robustness

The purpose of the validation data is to measure
generalization of the method. However, given
the small dataset size there is as well an immi-
nent risk of over-fitting against the validation data
when searching for the optimal hyper-parameters.
The latter might be the reason for the performance
gaps between validation and test PCCs for the EI-
oc and V-oc subtasks in particular. Also, even
when using the same hyper-parameter settings, the

""'The NRC-AffectIntensity lexicon (Mohammad, 2017).
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performance (in terms of PCC/Jaccard similarity
score) of the final stage varies depending on the
random initialization of the network parameters.
Constructing an ensemble estimate, using multiple
final stage models for each subtask, could perhaps
be beneficial for the performance on the test set.

7 Conclusions

This paper presents the method and results for the
FOI DSS contribution to SemEval-2018 Task 1.
A major challenge with this task was the small
amount of available labeled data. We utilized tech-
niques such as transfer learning as well as clas-
sical NLP features. Our system used features
from Weka Affective Tweets combined with two
LSTM-state vectors. Fully connected neural net-
works with two hidden layers were used to map
the features into the target outputs for each of the
subtasks. For subtasks El-reg, V-reg, V-oc, and E-
¢ the PCC/Jaccard similarity score of our system
was in the range of 92-95 % of the winning result.
The weakest performance was observed on sub-
task El-oc. Initial error- and robustness analysis
indicates that performance might be enhanced by
improved pre-processing of the tweets, and by in-
cluding more lexical features. The difference be-
tween our results on validation and test data was
larger for the emotion intensity classification sub-
tasks than for the regression and emotion classifi-
cation subtasks, which would be interesting to in-
vestigate further.
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Abstract

In this paper, we put forward a system that
competed at SemEval-2018 Task 1: “Affect
in Tweets”. Our system uses a simple yet ef-
fective ensemble method which combines sev-
eral neural network components. We partici-
pate in two subtasks for English tweets: El-reg
and V-reg. For two subtasks, different com-
binations of neural components are examined.
For El-reg, our system achieves an accuracy of
0.727 in Pearson Correlation Coefficient (all
instances) and an accuracy of 0.555 in Pear-
son Correlation Coefficient (0.5-1). For V-reg,
the achieved accuracy scores are respectively
0.835 and 0.670.

1 Introduction

Sentiment analysis is a research area in the field
of natural language processing. It aims to detect
the sentiment expressed by the author of some
form of textual data and many deep learning ap-
proaches have been successfully exploited (Cam-
bria, 2016). The goal of SemEval-2018 Task 1
“Affect in Tweets” is to automatically determine
the intensity of emotions and intensity of senti-
ment of the tweeters from their tweets (Moham-
mad et al., 2018). All tweets fall into three lan-
guages: English, Arabic and Spanish. We par-
ticipate in two subtasks for English tweets: EI-
reg and V-reg. For El-reg, all English tweets
are separated into four emotions, anger, fear, joy
and sadness. Every emotion has train, dev and
test datasets. This subtask determines the inten-
sity which is a real-valued score between 0 and
1 of emotion that represents the mental state of
the tweeter. The instances with higher scores cor-
respond to a greater degree of emotion than in-
stances with lower scores. For V-reg, all English
tweets are divided into three datasets: train, dev
and test datasets. It determines the intensity of
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sentiment or valence that best represents the men-
tal state of the tweeter a real-valued score between
0 and 1. The instances with higher scores cor-
respond to a greater degree of positive sentiment
than instances with lower scores. Both the two
subtasks are regression tasks.

For these two subtasks, we have adopted sep-
arate ensemble method with existing neural net-
work components (Brueckner and Schulter, 2014;
Kim, 2014; Li and Qian, 2016; Yang et al., 2017)
(see Figure 1). We use BiLSTM-CNN com-
ponent, BILSTM-Attention component and Deep
BiLSTM-Attention component with different em-
beddings for simple ensemble. In these subtasks,
our final model is just an average of scores pro-
vided by what we select from these single neu-
ral network components. Every emotion or va-
lence employs different ensemble method, so there
are several distinct ensemble methods in the two
subtasks. Experimental results show that our pro-
posed ensemble methods are simple yet effective.

The remainder of the paper is structured as fol-
lows. We provide details of the proposed ensemble
method in Section 2. We present the experimental
result of proposed methods in Section 3. Finally, a
conclusion is drawn in section 4.

2 Methodology

We propose an simple ensemble method of differ-
ent neural network components. We mainly intro-
duce the implementation details of these compo-
nents, including raw tweets preprocessing, lexicon
features and embedding resources we use in these
components, the architecture of these components
and the best parameters of different single com-
ponents. The parameters that can maximize the
Pearson Correlation Coefficient between the pre-
dicted values and real values are chosen to be the
best parameters.

Proceedings of the 12th International Workshop on Semantic Evaluation (SemEval-2018), pages 116-122
New Orleans, Louisiana, June 5-6, 2018. ©2018 Association for Computational Linguistics
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Figure 1: The architecture of our system.

2.1 Data Preprocessing

In general, tweet are not always syntactically well-
structured and the language used does not always
strictly adhere to grammatical rules (Barbosa and
Feng, 2010). So we need to preprocess raw tweets
before feature extraction. Firstly, we perform a
few preprocessing steps, such as remove # and
retain the word itself, remove stop words with
nltk.corpus. Then the tweets are transformed into
lowercase. Finally, we utilize TweetTokenizer' to
process the tweets.

2.2 Feature Extraction

Each tweet is represented as a concatenation of
two different feature vectors, one is lexicon fea-
tures and another is word embedding. In our sys-
tem, each tweet is divided into words, every word
is represented as a d + m dimension vector and
thus each tweet is represented as [(d + m) matrix,
where d is the dimension of word embedding and
m is the dimension of lexicon features. Suppose
each tweet has the same length, so [ is the length

"http://www.nltk.org/

of tweet. We utilize a variety of resources for fea-
ture extraction as follows:

1. AFINN: Calculating positive and negative
sentiment scores from the lexicon (Nielsen,
2011).

2. NRC Affect Intensity Lexicon: The NRC
Affect Intensity Lexicon is a list of English
words and their associations with four basic
emotions (anger, fear, sadness, joy) (Moham-
mad, 2017).

3. NRC Emotion Lexicon: The NRC Emo-
tion Lexicon is a list of English words and
their associations with eight basic emotions
(anger, fear, anticipation, trust, surprise, sad-
ness, joy, and disgust) and two sentiments
(negative and positive) (Mohammad and Tur-
ney, 2010).

4. NRC Hashtag Emotion Lexicon: Associa-
tion of words with eight emotions (anger,
fear, anticipation, trust, surprise, sadness, joy,
and disgust) generated automatically from
tweets with emotion-word hashtags (Moham-
mad, 2012).

5. NRC Emoticon Lexicon: Association of
words with positive (negative) sentiment gen-
erated automatically from tweets with emoti-
cons (Kiritchenko et al., 2014; Mohammad
et al., 2013; Zhu et al., 2014).

6. NRC Emoticon Affirmative Context Lexicon
and NRC Emoticon Negated Context Lex-
icon: Association of words with positive
(negative) sentiment in affirmative or negated
contexts generated automatically from tweets
with emoticons (Kiritchenko et al., 2014;
Mohammad et al., 2013; Zhu et al., 2014).

7. NRC Hashtag Affirmative Context Sentiment
Lexicon and NRC Hashtag Negated Context
Sentiment Lexicon: Association of words
with positive (negative) sentiment in affirma-
tive or negated contexts generated automati-
cally from tweets with sentiment-word hash-
tags (Kiritchenko et al., 2014; Mohammad
etal., 2013; Zhu et al., 2014).

8. NRC Hashtag Sentiment Lexicon: Associa-
tion of words with positive (negative) sen-
timent generated automatically from tweets
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with sentiment-word hashtags (Kiritchenko
et al., 2014; Mohammad et al., 2013; Zhu
et al., 2014).

Emoji: This is a manual classification of the
dictionary, in which each emoji has a corre-
sponding polarity value.

10. Sentiwordnet: Sentiwordnet is a lexical re-
source explicitly devised for supporting sen-
timent classification and opinion mining ap-
plications (Baccianella et al., 2010), through
the wordnet entry in the emotional classifica-
tion, and marked each entry belongs to the

positive and negative categories weight size.

2.3 Neural Networks
2.3.1 Embeddings

The final model combines three neural net-
work components as BiLSTM-CNN, BiLSTM-
Attention, and Deep BiLSTM-Attention. Towards
BiLSTM-CNN and BiLSTM-Attention, we use
glove.twitter.27B.200d which contains pre-trained
word vectors with Glove algorithm (Penning-
ton et al., 2014). For Deep BiLSTM-Attention,
different pre-trained word vectors are used,
such as word2vec-twitter-model, GoogleNews-
vectors-negative300, glove.twitter:27B.200d and
glove.840B.300d.

1. word2vec-twitter-model 2: word2vec model
(Mikolov et al., 2013) is a NLP tool launched
by Google in 2013. It features the quantifica-
tion of all words so that words can be quan-
tified to measure the relationship between
them. word2vec-twitter-model is trained on
tweets and the embedding dimension used in
our system is 400.

. GoogleNews-vectors-negative300 *: Google-
News vectors is trained on Google News cor-
pus. It resembles word2vec-twitter-model
and the embedding dimension is 300.

. glove.840B.300d #: Glove is an unsupervised
learning algorithm for obtaining vector rep-
resentations for words. Training is conducted
on aggregated co-occurrences of words from

“http://www.spark.tc/building-a-word2vec-model-with-
twitter-data/

3https://github.com/mmihaltz/word2vec-GoogleNews-
vectors

*https://nlp.stanford.edu/projects/glove/
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a global corpus, and the resulting represen-
tations showcase interesting linear substruc-
tures of the word vector space. The embed-
ding dimension used in our system is 300.

glove.twitter.27B.200d #: This word embed-
ding is trained on 2 billion tweets from twit-
ter. It is similar to glove.840B.300d, but the
embedding dimension is 200.

2.3.2 Bidirectional LSTM with CNN

The BiLSTM with CNN first transform tweets into
text matrices, the BiLSTM is applied to these ma-
trices to build new text matrices, CNN is applied
to the output of the BILSTM to obtain text vectors
for the prediction of emotional intensity. The BilL-
STM with CNN achieves a rather good result on
the task of emotional analysis (He et al., 2017). so
we choose it for our task.

Model Architecture: Embedding vectors are
fed into a BiLSTM network followed by a CNN
layer. The CNN layer consists of one dimensional
convolutional layer and pooling layer where the
number of filters is 256, the window size of the
filter is 3, and the activation function is Relu. The
input and output shape of convolutional layer are
both 3D tensor. The output of the CNN layer is
flattened after max-pooling operation. After the
Flatten layer, two dense layers are stacked and the
activation functions are respectively configured as
Relu and Sigmoid. Also dropout (Srivastava et al.,
2014) is utilized to avoid potential overfitting, it is
used between two dense layers. The reason why
we select Relu is to prevent the vanishing gradi-
ent problem and accelerate the calculation. Since
the task is a regression problem, we put a dense
projection with sigmoid activation to obtain an in-
tensity value between O and 1.

Model Training: The network parameters are
learned by minimizing the mean squared error
(MSE) between the real and predicted values of
emotion intensity or valence intensity. We opti-
mize this loss function via Adam that is an algo-
rithm for first-order gradient-based optimization
of stochastic objective functions, based on adap-
tive estimates of lower-order moments (Kingma
and Ba, 2014). Batch size and training epochs
may be different for different emotions and va-
lence. To avoid overfitting issues, we use dropout
in this model. Finally, we apply these three param-
eters for system tuning. In addition, we try vari-
ous optimization algorithms with the same param-



ELre Anger Fear Joy Sadness
g BS Epochs Dp | BS Epochs Dp | BS Epochs Dp | BS Epochs Dp
BiLSTM CNN+GT 16 6 0.5 | 32 2 0.5 8 4 0.5 | 32 5 0.5
BiLSTM Attention+GT | 32 3 0.5 | 32 3 0.5 8 7 0.5 | 32 4 0.5
Deep BiLSTM Attention | 32 2 0.3 8 7 03| 16 9 0.1 | 16 5 0.6
Table 1: The best parameters of El-reg.
V-reg Valence The best parameters of El-reg for these models are
BS Epochs Dp . . s
BiLSTM CNN+GT 3 5 05 given in Table 2.3.1 and V-reg’s best parameters
BiLSTM Attention+GT 8 10 0.6 are given in Table 2.3.1.
Deep BiLSTM Attention+WT | 16 8 0.5
Deep BiLSTM Attention+GN | 32 10 0.5
Deep BiLSTM Attention+GL 8 5 0.2 24 Ensemble Methods
Deep BiLSTM Attention+GT | 16 8 0.2 Currently, ensembling is a widely used strategy

Table 2: The best parameters of V-reg.

eters, such as SGD, RMSprop, Adagrad, Adam and
Adamax, and find that Adam works best. So we fix
the optimization algorithm with Adam (Kingma
and Ba, 2014) and tune the parameters, the best
configurations for El-reg and V-reg are respec-
tively given in Tables 2.3.1 and 2.3.1, where BS
is batch size, Dp is dropout.

2.3.3 Bidirectional LSTM with Attention

Bidirectional LSTM with Attention achieves a
good result on the SemEval-2017 Task 4 “Senti-
ment Analysis in Twitter” (Baziotis et al., 2017),
so we exploit Bidirectional LSTM with Attention
model and Deep Bidirectional LSTM with Atten-
tion model for our tasks.

Model Architecture: For Bidirectional LSTM
with attention model, embedding vectors are fed
into a BiLSTM network followed by an attention
layer (Yang et al., 2017). Not all words contribute
equally to the expression of sentiment in a tweet,
so we use an attention layer to find the importance
of each word in tweet. After the attention layer, it
is consistent with Bidirectional LSTM with CNN
model. The difference between the Bidirectional
LSTM with attention model and its deep version
is that, we use two BiLSTM layers followed by an
attention layer in the deep version.

Model Training: We use the same method to
learn the network parameters. In El-reg, we use
the same batch size, training epochs and dropout
to train the Deep BiLSTM Attention model with
different pre-training word embeddings in every
emotion, but in V-reg, batch size, training epochs
and dropout are different in Deep BiLSTM Atten-
tion model with different pre-training word em-
beddings. In these models, we also use dropout.

which combines multiple single components to
improve overall performance, there are many en-
semble methods that have been proposed, such as,
Voting, Blending, Bagging, Boosting, etc °. In
this system, due to time constraint, we choose a
simple average of the scores provided by different
components, as each single component can predict
emotional intensity or valence intensity. It can be
defined as

n

Predictionintensity = E
i=1

model;

(1

n

where n is the number of neural components.
Model; represents the prediction results of ¢-th
component. Suppose three components are ex-
ploited to predict the intensity of anger, and three
prediction values of a same tweet 0.76, 0.72 and
0.7 are suggested, then the final result of this tweet
will be (0.76 + 0.72 4+ 0.74)/3 = 0.74.

3 Experiments

Dataset | train dev test sum
anger 1,701 388 17,939 20,028
fear 2,252 389 17,923 20,564
joy 1,616 290 18,042 19,948
sadness | 1,533 397 17,912 19,842
valence | 1,181 449 17,874 19,504

Table 3: Statistics of the datasets.

For experiments, we use five datasets from two
different subtasks, These datasets, “El-reg-En-
anger (anger)”, “El-reg-En-joy (joy)”, “El-reg-En-
fear (fear)”, “El-reg-En-sadness (sadness)” and
“2018-Valence-reg-En (valence)” are downloaded
from SemEval-2018 Task 1 “Affect in Tweets” ©.
As for the El-reg task dataset format, each tweet

Shttps://mlwave.com/kaggle-ensembling-guide/
®https://competitions.codalab.org/competitions/17751
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El-reg Average Anger Fear Joy Sadness
All 0.5-1 | All 0.5-1 | All 0.5-1 | All 05-1 | All 0.5-1
Baseline 0.520 0.396 | 0.526 0.455 | 0.525 0.302 | 0.575 0.476 | 0.453  0.350
BiLSTM CNN+GT - - - - 0.691 0.508 | 0.701 0.512 | 0.694 0.507
BiLSTM Attention+GT - - 0.701 0.583 | 0.715 0.506 | 0.711 0.513 | 0.720 0.557
Deep BiLSTM Attention+WT - - 0.697 0.582 | 0.709 0.507 | 0.728 0.503 | 0.704 0.541
Deep BiLSTM Attention+GN - - 0.681 0.557 - - - - 0.698 0.535
Deep BiLSTM Attention+GL - - - - - - - - - -
Deep BiLSTM Attention+GT - - - - - - - - 0.717  0.551
Ensemble 0.727 0.555 | 0.716 0.607 | 0.726 0.519 | 0.736 0.529 | 0.729 0.565

Table 4: Performance comparisons of models in different emotions, where the best values are marked in bold.

consists of the id, the tweet, the emotion of the
tweet, the emotion intensity and for the V-reg task,
each tweet consists of the id, the tweet, the sen-
timent of the tweet and the sentiment intensity.
All datasets have been divided into train set, dev
set and test set. Test set’s gold labels are given
only after the evaluation period. Statistics of the
datasets are shown in Table 3.

To measure the performance of selected meth-
ods, two submetrics of Pearson Correlation Co-
efficient (PCC) are used. PCC (all instances) is
Pearson correlation for a subset of test data that
includes all tweets. The value varies between -1
and 1. PCC (0.5-1) is the Pearson correlation for a
subset of test data that includes only those tweets
with intensity score greater or equal to 0.5. For
both metrics, a larger value indicate a better pre-
diction accuracy.

For each dataset, we use dev set to select our
ensemble methods. Firstly we run these six com-
ponents on all dev datasets. Then, combine these
results of different components, different combi-
nations of components lead to different results on
dev set. Finally, we select the combination with a
higher score for testing.

Our system is implemented on Keras with a
Tensorflow backend 7. We present the result of
PCC (all instances) and PCC (0.5-1) for each emo-
tion and valence on the test data, shown in Ta-
bles 3 and 3. For simplicity, we denote WT, GN,
GL and GT for the word vectors of word2vec-
twitter-model, GoogleNews-vectors-negative300,
glove.840B.300d and glove.twitter.27B.200d. We
compare the results of our single components, of-
ficial baseline and our ensemble system. Every
emotion and valence adopts different ensemble
methods, the symbol -’ means that the component
is not used in the ensemble method in this emo-
tion or valence. For example, we only use Bil-
STM Attention+GT, Deep BiLSTM Attention+WT

"https://keras.io/

V-reg Valence
All 0.5-1
Baseline 0.585 0.449

BiLSTM CNN+GT - -

BiLSTM Attention+GT - -
Deep BiLSTM Attention+WT | 0.825  0.665
Deep BiLSTM Attention+GN | 0.820 0.640
Deep BiLSTM Attention+GL | 0.822  0.648
Deep BiLSTM Attention+GT | 0.825 0.659
Ensemble 0.835 0.670

Table 5: Performance comparisons of models in va-
lence, where the best values are marked in bold.

and Deep BiLSTM Attention+GN these three com-
ponents for ensemble on anger dataset. The rea-
son why we don’t use all the six components for
ensemble is that ensemble does not always have
a good effect, a same component can have dif-
ferent effects on different datasets, either good or
bad. The official result for El-reg, our average
PCC reaches 0.727 in all instances and 0.555 in
0.5-1 (both ranked 10 out of 48 participants). For
V-reg, the result is 0.835 in all instances (ranked
7 out of 38) and 0.670 in 0.5-1 (ranked 6 out of
38). The average result of baseline for El-reg is
0.520 and 0.396, for V-reg, the result is 0.585 and
0.449. These results demonstrate that the ensem-
ble approach achieves important improvement in
performance across all the emotions and valence,
and gains the best performance for Anger.

4 Conclusions and Future Works

We have proposed a simple yet effective ensemble
method which integrates various neural compo-
nents to perform the sentiment or emotion analysis
for the tweet. Experimental results reflect that our
method is effective in the prediction tasks of emo-
tional intensity and sentimental intensity. Some
other useful findings can be drawn from the ex-
perimental results: a) The model of integration for
each emotion is different; b) As for lexicon fea-
tures and word embedding, it is important for emo-
tion or sentiment analysis; c¢) ensemble is not al-
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ways valid. Also, we have tried data augmentation
considering insufficient training data, however the
effect is not a good.

As for future works, although our ensemble
method has achieved good results, we would want
to examine the multi-task deep learning approach
on these tasks, by which it would predict the dif-
ferent emotional intensity at the same time, and
improve the generalization effect of the prediction
model.
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Abstract

This paper presents an emotion classification
system for English tweets, submitted for the
SemEval shared task on Affect in Tweets, sub-
task 5: Detecting Emotions. The system com-
bines lexicon, n-gram, style, syntactic and se-
mantic features. For this multi-class multi-
label problem, we created a classifier chain.
This is an ensemble of eleven binary classi-
fiers, one for each possible emotion category,
where each model gets the predictions of the
preceding models as additional features. The
predicted labels are combined to get a multi-
label representation of the predictions. Our
system was ranked eleventh among thirty five
participating teams, with a Jaccard accuracy
of 52.0% and macro- and micro-average F1-
scores of 49.3% and 64.0%, respectively.

1 Introduction

Most research in the domain of sentiment analy-
sis focuses on the automatic prediction of polar-
ity or valence in text, but also the detection of
emotions has attracted growing interest in the last
couple of years (Mohammad and Bravo-Marquez,
2017). Although emotion detection is a rather new
research focus in NLP, the study of emotions has
a long history in fields like psychology and neuro-
imaging. Many different frameworks exist, but the
specific emotion approach, in which emotions are
classified as specific discrete categories, predomi-
nates. In a lot of those approaches, some emotions
are considered more basic than others, with Ek-
man’s theory of six basic emotions (joy, sadness,
anger, fear, disgust, and surprise) (Ekman, 1992)
as the most well-known. Another popular theory is
Plutchik’s wheel of emotions (Plutchik, 1980), in
which joy, sadness, anger, fear, disgust, surprise,
trust, and anticipation are considered most basic.
Emotion analysis in NLP makes use of the
frameworks developed by psychologists, mostly
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by employing categorical models of (basic) emo-
tions. In traditional emotion classification tasks, a
‘document’ or sentence is classified under one or
more emotion classes (or classified as neutral/no
class when no emotions are present). Such emo-
tion classification systems have been developed
and tested on different kinds of data, including
fairy tales (Alm et al., 2005), newspaper head-
lines (Strapparava and Mihalcea, 2007), chat mes-
sages (e.g. Holzman and Pottenger, 2003; Brooks
et al., 2013), and tweets (e.g. Mohammad, 2012;
Wang et al., 2012). The big advantage of using
tweet datasets is the relative ease with which twit-
ter data can be collected and the possibility of us-
ing hashtags as emotion labels (distant supervision
approach).

For this paper, we used the data that was col-
lected for the SemEval shared task on Affect in
Tweets (Mohammad et al., 2018), a collection of
tweets annotated for eleven emotions: anger, an-
ticipation, disgust, fear, joy, love, optimism, pes-
simism, sadness, surprise, and trust (Mohammad
and Kiritchenko, 2018). We participated in Sub-
task 5: Detecting Emotions (English emotion clas-
sification).

The remainder of this paper is structured as fol-
lows: in Section 2 we describe how we first ana-
lyzed the data in order to get more insight in the
task. Section 3 discusses how the data was pre-
processed and which information sources were ex-
tracted. Next, in Section 4 the actual experimental
setup and results are discussed and we end this pa-
per with a conclusion in Section 5.

2 Data analysis

We first analyzed the training data provided by the
task organizers, which consisted of 6838 tweets.
We found that disgust, anger and joy were present
in the largest numbers (present in about 35 to 40%
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Figure 1: Proportion of training tweets in which the
specified emotion is present (%).
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Figure 2: Proportion of training tweets in which a spe-
cific amount of emotion classes is present (%).
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of the tweets), while surprise and trust only occur
in around 5% of the tweets (Figure 1). Only three
percent of the tweets was annotated as neutral.

As can be derived from Figure 2, most tweets
contained two or three emotions (together 70%),
and in only about 1% of the tweets five or more
(max six) emotions were present. We also cal-
culated the correlations and found ten emotion
pairs that were moderately or highly correlated
(|[pht]| > 0.30 for moderate correlation, ||phi| >
0.50 for high correlation, according to Cohen’s
conventions on effect size (Cohen, 1988)). The
correlated pairs are shown in Table 1 and suggest
that the classification performance can be boosted
when correlations between emotion categories are
implemented in the model.

In order to get more insight into the data, we re-
annotated a subset of 500 tweets from the training
set. In Table 2, inter-annotator agreement (IAA)
scores per emotion class between the gold labels
and our annotations are presented. Except for
anger and joy these scores are rather low. Overall,
we assigned less emotion classes to a tweet than
the official annotators. We often disagreed with
the gold labels and had the feeling that the anno-
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Pair phi

anger - joy -0.44 Pair phi
anger - optim. -0.37 anger - disg. 0.68
disg. - optim. -0.41 joy - love 0.40
joy - disg. -0.46 joy - optim. 0.52
joy - sadn. -0.33 sadn. - pessim. | 0.30
surpr. - pessim. | -0.40

Table 1: Phi coefficients for moderate or high negative
(left) and positive (right) correlations between emotion
pairs.

Emotion Kappa Emotion Kappa
Anger 0.678 Optimism  0.436
Anticipation  0.259 Pessimism  0.124
Disgust 0.132 Sadness 0.537
Fear 0.399 Surprise 0.276
Joy 0.717 Trust 0.367
Love 0.470

Table 2: IAA (Kappa) per emotion class based on 500
re-annotated instances.

tators of the official labels focused too much on
lexical clues instead of keeping the context and the
perspective of the writer of the tweet in mind. This
leads us to presume that the threshold to assign an
emotion label to a tweet when two out of seven
annotators agreed (Mohammad and Kiritchenko,
2018) might have been a bit too generous.

We further noticed that some tweets appeared
twice in the data set, but not completely identi-
cally: we suspect that one of them was the original
tweet with emotion hashtag and the other one with
the hashtag removed. An example:

(1) a. Whatever you decide to do make sure it
makes you #happy.

b. Whatever you decide to do make sure it
makes you .

Since labels differed depending on the presence
or absence of the emotion hashtag, we decided to
keep both variants in our training set.

3 Preprocessing & Feature Extraction

3.1 Preprocessing

While we did not remove the ‘almost identical’
tweets from the data set, there were also some
tweets in the training set that were completely
identical but had been assigned other emotion la-
bels. For those tweets, we took the majority class
for each binary emotion category, and removed
all other instances. This reduced our training set
from 6838 to 6782 tweets. No duplicates were
present in the development set, so the amount of



886 tweets was preserved. In the updated training
set, as well as in the development and test set, all
user names were replaced with the generic @ID.
All tweets were processed with Weka (Witten
et al., 2016) using the Affective Tweets pack-
age (Mohammad and Bravo-Marquez, 2017), in
order to extract lexicon and word embedding fea-
tures. We used the default preprocessing set-
tings for each filter. For the other features, we
performed word and sentence tokenization (us-
ing NLTK), stemming (using spaCy), lowercas-
ing, and POS-tagging (simple and detailed, cor-
responding to spaCy’s POS and Tag function).

3.2 Feature extraction

For our supervised classification system, we em-
ployed features that measure different aspects of
the tweet. These can be subsumed under five dif-
ferent categories: lexicon features (see Table 3 for
an overview), n-gram features (binary, n equal to
3, 4 and 5 for characters and n equal to 1 or 2 for
tokens), and various style, syntactic and semantic
features (see Table 4).

Regarding the latter category, both features
from traditional and distributional semantics were
integrated. We first took the synset depth (dis-
tance to root) of all content words (calculated
with WordNet (Miller, 1995)) and averaged the
scores to get a mean synset depth for the tweet.
Furthermore, we included two types of features
from distributional semantics, namely word em-
beddings and word clusters. The word embed-
dings were extracted with Weka Affective Tweets,
using pre-trained embeddings from 10 million
tweets taken from the Edinburgh Twitter Cor-
pus (Petrovic et al., 2010). For the word clusters,
we downloaded a subset of around 1.5M tweets
from the SemEval 2018 AIT DISC corpus (Mo-
hammad et al., 2018). We first created word em-
beddings with word2vec using both skipgram and
continuous bow and afterwards applied k-means
clustering on the resulting word vectors. We ex-
perimented with various cluster sizes (800 of size
100, 1000 of size 100 and 800 of size 300). These
clusters were implemented as binary features.

4 Experiments & Results

4.1 Baseline & Binary Experiments

We trained different models on the training set and
tested them on the development set, using scikit-
learn (Pedregosa et al., 2011). For the baseline ex-
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Lexicon Type

MPQA polarity
Bing Liu polarity
AFINN polarity
Sentiment140 polarity
NRC Hashtag Sentiment ~ polarity

NRC Word-Emotion
NRC-10 Expanded

polarity + Plutchik emotions
polarity + Plutchik emotions

NRC Hashtag Emotion Plutchik emotions
SentiWordNet polarity

Emoticons polarity

Sentistrength polarity sentiment strengths

Warinner et al. 2013 valence, arousal, dominance

Table 3: Lexicons used for feature extraction.

Style Syntax Semantics
avg word/sent. length  POS n-grams synset depth
# words and sents POS freq. embeddings
# capitals POS 1°* token  clusters

# punct. marks
# non-standard words
# connectives

presence imp.
presence fut.

Table 4: Style, syntactic and semantic features.

periments, we used an SVM classifier with linear
kernel (LinearSVC) and used the lexicon features
from the Weka Affective Tweets package. The re-
sults for each binary classifier are shown in Table
5 (second column). Combining the predictions of
these eleven binary classifiers resulted in a jaccard
accuracy of 42.7%.

Before optimizing the separate classifiers, we
took a more detailed look at the lexicon features
and the clusters to assess whether it is beneficial
to use only a part of the lexicons (e.g. only the
emotion lexicons) or whether it is better to use
all lexicons (even polarity lexicons). We found
that the combination of all lexicons (including
the valence-arousal-dominance lexicon of War-
riner et al. (2013)) gave the highest performance.
As regards the clusters, we tried all cluster types
on each emotion category and picked the cluster
that gave the highest performance on that particu-
lar category.

For every emotion category, we tested different
classifiers on different combinations of features.
The classifiers we used, were SVM, SGD (linear
SVM with stochastic gradient descent learning),
Logistic Regression, and Random Forest. Table
5 shows the Fl-scores (in bold) on the positive
class for the best performing classifiers and feature
combinations, which are significantly higher than
the baseline results. We joined the predictions of
these optimized binary classifiers, and achieved a
jaccard accuracy of 47.7%.



BL Optimized Evaluation jaccard micro F1 macro F1
Emotion | F1 Classifier Features F1 dev set 0.524 0.644 0.478
Anger 0.67 | SGD all features 0.73 held-out test set 0.520 0.640 0.493
except clusters
Anticip. | 0.00 | SGD all features 0.30 Table 6: Jaccard accuracy, micro averaged F1-score
Disgust | 0.56 | Log. R. lexicons, 0.67 and macro averaged Fl-score of the optimized model
embeddings, on the development and held-out test set.
clusters
Fear 0.62 | Log. R. lexicons, 0.69
embeddings, P P
n-grams, G 0 1 G |0 1
clusters anger 0 | 0.72 0.28 | optim. 0 | 0.65 0.35
Joy 0.75 | Log. R. lexicons, 0.80 11017 083 1 ]0.16 0.84
embeddings, antic. 0 | 0.89 0.11 | pess. 0 | 0.98 0.02
n-grams, 1] 068 0.32 1| 0.86 0.14
puncts, disg. 0| 0.75 025 | sadn. 0 | 091 0.09
pos n-grams, 1] 021 0.79 1]046 054
pos frequencies, fear 01| 097 0.03 surpr. 0 >0.99 <0.01
clusters 1042 0.58 11098 0.02
Love 0.29 | Log. R. all features 0.55 joy 0] 0.8 011 | wust 0 | 0.94 0.06
Optim. 0.59 | SGD all features 0.68 11020 0.80 110382 0.13
Pessim. 0.04 | SGD lexicons, 0.20 love 0 | 095 0.05
embeddings, 11052 048
clusters
Sadness | 0.52 | Log. R. all features 0.59 Table 7: Confusion matrices for the results on the held
Surprise | 0.00 | SGD all features 0.35 out test set. P = predicted labels; G = gold labels.
except clusters
Trust 0.00 | SGD lexicons 0.12

Table 5: Fl-scores on the positive class for the binary
classifiers in the baseline (BL) setup (italics) and with
the optimal classifier and feature sets (in bold)

4.2 Classifier Chain

Because the emotion categories are highly corre-
lated (see Section 2), we envisaged to implement
these relations in the model by using a classifier
chain. We combined the best performing classifier
per emotion category in a chain that passes pre-
dicted labels on to the next classifiers. We ordered
the classifiers by performance on the positive class
F1-score on the baseline (the emotion that is eas-
iest to predict first, the emotion that is the most
difficult to predict last). On the development set,
this classifier chain approach led to a jaccard accu-
racy of 52.37%, which is significantly higher than
the score without classifier chain (47.7%, see Sec-
tion 4.1).

In our final model, the training and develop-
ment data were joined, resulting in a combined
training set of 7668 tweets. During the evalua-
tion period, we achieved 52.0% jaccard accuracy,
64.0% micro-avg Fl-score and 49.3% macro-avg
F1-score on the held-out test set (see Table 6).

4.3 Discussion

As can be derived from Table 7 the number of false
positives is rather low for all emotion classes (be-

low 20% for most emotions). The model had most
trouble with recognizing positive instances of sur-
prise, pessimism, and trust, but also love and an-
ticipation were more challenging. For these cate-
gories, the false negative rate was thus very high.
We assume that these bad results are mostly due
to a lack of sufficient training data for these cate-
gories.

We evaluated all features by computing the
ANOVA F-values, and extracted the hundred most
predictive features for each emotion category. For
all emotions, the top 100 features consisted exclu-
sively of lexical information. In none of the emo-
tion categories, style or syntactic features occurred
in this top 100. However, features regarding la-
bels of preceding classifiers belonged to the most
predictive features for all emotions except for op-
timism and surprise.

5 Conclusion

Our emotion classification system for English
tweets achieved 52.0% jaccard accuracy on the
held-out test set. We started from binary classi-
fiers which we optimized for each emotion cate-
gory separately, and combined them in a classifier
chain. We proved that passing on labels from pre-
viously predicted emotions categories improves
the performance significantly. For future work,
it would be interesting to investigate the model’s
performance on other datasets than twitter data.
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Abstract

Emotion classification is a new task that com-
bines several disciplines including Artificial
Intelligence and Psychology, although Natural
Language Processing is perhaps the most cha-
llenging area. In this paper, we describe our
participation in SemEval-2018 Taskl: Affect
in Tweets. In particular, we have participated
in El-oc, El-reg and E-c subtasks for English
and Spanish languages.

1. Introduction

Emotions are playing a significant role in the ef-
fective communication of people. In fact, some-
times, emotional intelligence is more important
than cognitive intelligence for successful interac-
tion (Pantic et al., 2005). Therefore, affective com-
puting is a key element to the advancement of Arti-
ficial Intelligence. The basic task of affective com-
puting is emotion recognition. This task consists
of identifying a set of emotions in a document.

The identification of emotions in texts has multi-
ple benefits in different areas, such as psychology
to detect some psychological disorder like depres-
sion (Cherry et al., 2012), e-learning to improve
student motivation (Suero Montero and Suhonen,
2014) or business intelligence to know the prefe-
rences of consumers (Cambria, 2016).

Currently, more and more people express their
emotions on social media, such as Twitter or Fa-
cebook. Therefore, the role of emotion in social
media is becoming more important for the resear-
chers in affective computing.

In this paper, we present the different systems we
developed as part of our participation in SemEval-
2018 Task 1: Affect in Tweets (Mohammad et al.,
2018). We have participated in El-oc, El-reg and
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E-c subtasks for English and Spanish. Below, we
briefly describe these subtasks:

= El-oc is an emotion intensity ordinal classi-
fication task. Given a tweet and an emotion
E, it consists of classifying the tweet into one
of four ordinal classes of intensity of E that
best represents the mental state of the twee-
ter. Separate datasets are provided for anger,
fear, joy, and sadness emotions.

El-reg is an emotion intensity regression
task. Given a tweet and an emotion E, it con-
sists of determining the intensity of E that
best represents the mental state of the tweeter.
The intensity of E is a real-valued score bet-
ween 0 (least emotion) and 1 (most emotion).
Separate datasets are provided for anger, fear,
joy, and sadness emotions.

E-c is an emotion multi-classification task.
Given a tweet, it consists of classifying it as
‘neutral’ or 'no emotion’ or as one, or more,
of eleven given emotions (anger, anticipation,
disgust, fear, joy, love, optimism, pessimism,
sadness, surprise, trust) that best represent the
mental state of the tweeter.

The rest of the paper is organized as follows. In
Section 2 we explain the data used in our methods.
Section 3 describes the resources used by our sys-
tems. Section 4 presents the details of the proposed
systems. Section 5 displays the results and analy-
ses them. We conclude in Section 6 with remarks
on future work.

2. Data

To run our experiments, we used the datasets pro-
vided by the task organizers (Mohammad et al.,
2018) as follows. During pre-evaluation period,
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we trained our models on the frain set, and eva-
luated our different approaches on the dev set. Du-
ring evaluation period, we trained our models on
the train and dev sets, and tested the model on the
test set. Table 1 shows the number of tweets for
each language and subtask dataset.

Subtask-language | train | dev test Total
El-oc-es 4544 | 793 | 2616 | 7953
El-oc-en 7102 | 1465 | 4070 | 12637
El-reg-es 4544 | 793 | 2616 | 7953
El-reg-en 7102 | 1464 | 71816 | 80382

E-c-es 7561 | 679 | 2854 | 11064
E-c-en 6838 | 886 | 3259 | 10983

Table 1: Number of tweets for each language and sub-
task dataset

3. Resources

For the development of the task, we used different
lexicons that we explain in detail below.

= Wordnet-Affect (WNA) (Strapparava et al.,
2004). This resource is an extension of Word-
Net Domains. WNA provides a set of En-
glish emotional words organized in a tree.
The leaf nodes represent specific emotions
that are grouped into general categories (pa-
rent nodes). For example, anger, hate and dis-
like belong to the overall emotion general-
dislike. However, the emotions of WNA are
not the same as the emotions of the SemEval
subtasks. For this reason, each overall emo-
tion of WNA has been mapped with SemEval
subtasks emotions (see Appendix A, Table 8
and Table 9).

In order to use this resource in Spanish, we
have employed the lexical disambiguator Ba-
belfy (Moro et al., 2014) to obtain the corres-
ponding BalbelNet synset id of a term. Next,
we have used the BabelNet API (Navigli and
Ponzetto, 2012) to obtain a corresponden-
ce between the BalbelNet synset id and the
WordNet synset id. WNA includes a subset of
appropriate synsets of WordNet 1.6 to repre-
sent affective concepts. However, the Word-
Net synsets id obtained with BabelNet API
corresponds to the 3.0 version of WordNet.
Therefore, we have obtained the equivalent
synset to the 3.0 version in the 1.6 version.
With this, using the synset of the 1.6 version
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of WordNet, we can map directly the associa-
ted emotion and confident value from WNA.

Spanish Emotion Lexicon (SEL) (Sidorov
et al., 2012). It includes 2,036 Spanish words
that are associated with the measure of Proba-
bility Factor of Affective use (PFA) with res-
pect to at least one basic emotion: joy, anger,
fear, sadness, surprise, and disgust. The hig-
her the value of the PFA, the more probable
the association of the word with the emotion
is.

NRC Affect Intensity Lexicon (Moham-
mad, 2017). It has almost 6,000 entries in En-
glish. Each of them has an intensity score as-
sociated to one of the following basic emo-
tions: anger, fear, sadness and joy. The sco-
res range from O to 1, where 1 indicates that
the word has a high association to the emo-
tion and O that the word has a low association
to the emotion. However, this resource is not
in Spanish. For this reason, we have adapted
it to Spanish in the following way. We have
translated English terms to Spanish and we
have selected the maximum value of intensity
if the translation of some terms is the same.

NRC Word-Emotion Association Lexicon
(EmoLex) (Mohammad and Turney, 2010).
This lexicon has a list of English words asso-
ciated to one or more of the following emo-
tions: anger, fear, anticipation, trust, surpri-
se, sadness, joy. Moreover, the lexicon is also
available for more than one hundred langua-
ges (including Spanish). All these versions
have been generated by translating the En-
glish terms using Google Translate.

4. System description

In this section we describe the systems developed
for the subtasks El-oc, El-reg and E-c.

In first place, we preprocessed the corpus of tweets
provided for each subtask and language (English
and Spanish). We applied the following preproces-
sing steps: the documents were tokenized using
NLTK TweetTokenizer!, stemming was perfor-
med using NLTK Snowball stemmer?, stopwords

"http://www.nltk.org/api/nltk.
tokenize.html
http://www.nltk.org/_modules/nltk/



were removed (only for English), and all letters
were converted to lower-case.

In relation to the resources, we have tested several
combinations. However, for the final SemEval sys-
tems we have used the best systems obtained du-
ring the development phase. For El-oc and El-reg
subtasks in Spanish, we used SEL, NRC Affect In-
tensity and WINA lexicons adapted to the emotions
of these subtasks. On the other hand, for English,
we used NRC Affect Intensity and WNA lexicons
adapted to the emotions of the El-oc and El-reg
subtasks. Regarding to subtask E-c, for Spanish,
we used SEL, EmoLex Spanish version and WNA
lexicons adapted to the emotions of this subtask.
However, for English, we used Emolex and WNA
lexicon adapted to the emotions of the E-c subtask.

Next, it is described the methodology used for
each subtask:

= Subtask El-oc. To perform the classification,
we checked the presence of lexicon terms in
the tweet and then we added the intensity va-
lue of these words grouping them by the emo-
tional category (anger, fear, sadness and joy).
The result is a vector of four values for each
lexicon. Moreover, each tweet is represented
as a vector of unigrams using the TF-IDF
weighting scheme. The union of the lexicon
vectors and the TF-IDF representation of the
tweet are used as features for the classifica-
tion using the SVM algorithm. We selected
the SVM formulation, known as C-SVC, the
value of the C parameter was 1.0 and the ker-
nel chosen was the linear.

= Subtask El-reg. In this case, we checked
the presence of lexicon terms in the tweet
and then we computed the sum, the average
and the maximum of the intensity value of
the words of the tweet grouping them by the
emotional category (anger, fear, sadness and
joy). The result is a vector of twelve values
for each lexicon. The union of the lexicon
vectors and the TF-IDF representation of the
tweet are used as features for the classifica-
tion using the SVM algorithm with the same
configuration as that used in subtask El-oc.

= Subtask E-c. In this subtask, we identified
the presence of lexicon terms in the tweet
and we assigned 1 as confidence value (CV).

stem/snowball.html

Then, we summed the CV of the words who-
se emotion is the same obtaining a vector of
emotions for each lexicon. The union of these
vectors and the TF-IDF representation of the
tweet are used as features for the classifica-
tion using the Random Forest algorithm with
25 as number of trees.

5. Analysis of results

The official competition metric to evaluate the sys-
tems in El-reg and El-oc subtasks is the Pearson
Correlation Coefficient (PCC) between semantic
similarity scores of machine assigned and human
judgments. In the case of the E-c subtask, systems
are evaluated by calculating multi-label accuracy.
Since this is a multi-label classification task, each
tweet can have one or more gold emotion labels,
and one or more predicted emotion labels. Multi-
label accuracy is defined as the size of the intersec-
tion of the predicted and gold label sets divided by
the size of their union. This measure is calculated
for each tweet, and then is averaged over all the
tweets in the dataset.

The results of our participation in the three sub-
tasks and those of the teams that are in the first and
the last position can be seen in Tables 2, 3, 4, 5, 6
and 7. It should be noted that the results of Spanish
subtasks are lower than those obtained for English.
Another important issue is that the participation in
Spanish subtasks is lower than the participation in
English subtasks. These facts are due to most of
the works and resources for textual emotion mi-
ning are in English (Yadollahi et al., 2017).

In relation to our results, in most subtasks we ob-
tained the lowest correlation on anger emotion and
the best correlation on joy emotion. On the con-
trary, in WASSA-2017 Shared Task on Emotion
Intensity (Mohammad and Bravo-Marquez, 2017),
most of the systems performed better on anger
emotion and worse on fear and sadness emotions.
In this competition, it was found that despite using
deep learning techniques, training data, and large
amounts of unlabeled data, the best systems inclu-
ded features from affect lexicons. Given that, we
plan to analyze the recall of the lexicons used in
our experiments and to explore new lexicons in or-
der to improve the classification.

On the other hand, it should be noted that we
achieved higher ranking positions for Spanish sub-
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tasks. In particular, our best participation has been
in the E-c subtask. An important difference found
between the classification in both languages was
that taking stopwords into consideration contribu-
tes to the emotion classification for Spanish while
the opposite occurs for English. Therefore, we will
further study this issue in order to incorporate an
specific treatment to those stopwords that can mo-
dify the meaning of a sentence, such as negators,
intensifiers and diminishers.

Pearson
(r) Team name macro-avg | anger | fear | joy sadness
(1) SeerNet 0.799 0.827 | 0.779 | 0.792 | 0.798
(39) SINAI 0.342 0.263 | 0.361 | 0.444 | 0.300
(48) TweetGroup | -0.016 -0.043 | 0.003 | -0.011 | -0.014

Table 2: Results of subtask El-reg in English language

(r) Team name Pearson

macro-avg | anger | fear | joy sadness
(1) AffectThor 0.738 0.676 | 0.776 | 0.753 | 0.746
(10) SINAT 0.321 0.119 | 0.382 | 0.360 | 0.423
(16) AIT2018 Organizers | -0.012 -0.056 | 0.004 | 0.018 | -0.014

Table 3: Results of subtask El-reg in Spanish language

(r) Team name Pearson

macro-avg | anger | fear joy sadness
(1) SeerNet 0.695 0.706 | 0.637 | 0.720 | 0.717
(24) SINAI 0.449 0.447 | 0.377 | 0.519 | 0.455
(39) TweetGroup | -0.021 0.015 | -0.017 | -0.029 | -0.054

Table 4: Results of subtask EI-oc in English language

6. Conclusions

In this paper, we have presented the systems de-
veloped for our participation in 3 subtasks (EI-oc,
El-reg, E-c) of SemEval-2018 Task 1: Affect in
Tweets. We have addressed these subtasks in two
of the three available languages, English and Spa-
nish. Overall, we have obtained better results in
Spanish subtasks than in English subtasks. In futu-
re works, we plan to continue working on emotion
recognition in Spanish because we have obser-
ved that the participation in this language is very
low, although it is the second most spoken langua-
ge. Our next study will focus on exploring mo-
re affect lexicons because in WASSA-2017 Sha-
red Task on Emotion Intensity (Mohammad and
Bravo-Marquez, 2017), it was demonstrated that
using features from affect lexicons is beneficial for
this task. Moreover, we will study the use of stop-
words in Spanish because in the development pha-
se it was observed that stopwords contribute to the
emotion classification.
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(r) Team name Pearson

macro-avg | anger | fear joy sadness
(1) AffectThor 0.664 0.606 | 0.706 | 0.667 | 0.667
(7) SINAI 0.459 0.378 | 0.496 | 0.510 | 0.453
(16) AIT2018 Organizers | -0.022 0.011 | -0.069 | -0.005 | -0.027

Table 5: Results of subtask EI-oc in Spanish language

(r) Team Name accuracy

(1) NTU-SLP 0.588
(25) SINAI 0.394

(35) emotion17 0.023

Table 6: Results of subtask E-c in English Language

(r) Team Name accuracy
(1) MILAB_SNU 0.469
(5) SINAI 0.318
(14) TeamCEN 0.050

Table 7: Results of subtask E-c in Spanish Language
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A. Mapping SemEval emotions

WNA emotion

apathy, pensiveness, gravity,
compassion, sadness, thing
despair, ingratitude, general-
dislike

ambiguous-fear, ambiguous-
expectation, ambiguos-
agitation, positive-expectation,
daze, shame, anxiety, negative-
fear

humility, surprise, levity,
positive-fear, neutral-unconcern,
gratitude, fearlessness, affec-
tion, self-pride, enthusiasm,
positive-hope, calmness, love,
liking, joy

SemEval emotion

Sadness

Anger

Fear

Joy

Table 8: Mapping of the general emotion of WordNet-
Affect to SemEval emotion subtask El-oc and El-reg

SemEval emotion | WNA emotion
Sadness pensiveness, compassion, sad-
ness
Anger
Fear ambiguous-fear, gravity, daze,
shame, anxiety, negative-fear
Joy levity, positive-fear, enthusiasm,
calmness, joy
Anticipation aml.)ifguous—expe(?tation,
positive-expectation
Disgust n.eutral-unconcer.n,. thing, ingra-
titude, general-dislike
Love gratitude, affection, love, liking
Optimism positive-hope
Pessimism despair
Surprise ambiguos-agitation, surprise
Trust fearlessness, self-pride, humility

Table 9: Mapping of the general emotion of WordNet-
Affect to SemEval emotion subtask E-c
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Abstract

This paper describes our system created for the
SemEval-2018 Task 1: Affect in Tweets (AIT-
2018). We participated in both the regression
and the ordinal classification subtasks for emo-
tion intensity detection in English, Arabic, and
Spanish.

For the regression subtask we use the Affecti-
veTweets system with added features using va-
rious word embeddings, lexicons, and LDA.
For the ordinal classification we additionally
use our Brainy system with features using
parse tree, POS tags, and morphological fea-
tures. The most beneficial features apart from
word and character n-grams include word em-
beddings, POS count and morphological fea-
tures.

1 Introduction

The task of Detecting Emotion Intensity assigns
the intensity to a tweet with given emotion. The
emotions include anger, fear, joy, and sadness.
The intensity is either on a scale of zero to one for
the regression subtask, or one of four classes (0:no,
1: low, 2: moderate, 3: high) for the classification
subtask. The task was prepared in three languages:
English, Arabic, and Spanish. For each language
there are four training and test sets of data — one
for each emotion. The data creation is described
in (Mohammad and Kiritchenko, 2018) and detai-
led description of the task is in (Mohammad et al.,
2018).

We participated in the emotion intensity regres-
sion task (EI-reg) and in the emotion intensity or-
dinal classification task (EI-oc) in English, Arabic
and Spanish.

2 System Description

We used two separate systems for ordinal classi-
fication — AffectiveTweets (Section 3) and Brainy
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(Section 4). For the regression task we just use the
AffectiveTweets system. We train a separate mo-
del for each emotion. The Brainy system perfor-
med better in our pre-evaluation experiments on
the development data for all emotions in Spanish
and for fear and joy emotions in Arabic.

3 AffectiveTweets System

3.1 Tweets Preprocessing

Tweets often contain slang expressions,
misspelled words, emoticons or abbreviati-
ons and it’s needed to make some preprocessing
steps before extracting features. First, every tweet
was tokenized using TweetNLP'(Gimpel et al.,
2011). Then the AffectiveTweets’> (Mohammad
and Bravo-Marquez, 2017) package for Weka
machine learning workbench (Hall et al., 2009)
was used for feature extraction. The following
steps were applied on tokens for every language
in both tasks:

. Tokens were converted to lowercase

URL  links were
http://www.url.com token

replaced  with

. Twitter usernames (tokens starting with @)
were replaced with @user token

Tokens containing sequences of letters
occurring more than two times in a row were
replaced with two occurrences of them (e.g.
huuuungry is reduced to huungry, looooove
to loove)

Common sequences of words and emojis
were divided by space (e.g. token ,nice:D: D"
was divided into two tokens ,nice” and
»D:D")

"http://www.cs.cmu.edu/~ark/TweetNLP/
2https://affectivetweets.cms.waikato.
ac.nz/
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These steps lead to reduction of feature space as
shown in (Go et al., 2009). We also used some
individual preprocessing for Arabic language. Af-
ter the above described steps every token was also
processed via Stanford Word Segmenter’(Monroe
et al., 2014). When using word embeddings, we
transformed Arabic words from regular UTF-8
Arabic to a more ambiguous form*. This was done
only for word embedding features.

3.2 Features

Our AffectiveTweets system used combinations of
features that are described in this section. The sub-
mitted combination of features is shown in Table
1.

Word n-grams (WN?"): word n—gram55 from
iton (fori = 1, n = 2, unigrams and bi-
grams were used).

e Character n-grams (ChN7): character n-
grams® from i to n (for i = 2, n = 3 cha-
racter bigrams and trigrams were used).

¢ Word Embeddings (WE): an average of the
word embeddings of all the words in a tweet.

o Affective Lexicons (L): we used Affective-
Tweets package to extract features from af-
fective lexicons. In every language we also
used SentiStrength (L-se) lexcion-based me-
thod (Thelwall et al., 2012).

e LDA - Latent Dirichlet Allocation (D,,):
topic distribution of tweet, that is obtained
from our pre-trained model, » indicates num-
ber of topics in model (for n = 5, feature
vector with dimension 5 will be produced and
each component of the vector refers to one to-
pic). We used LDA features only in Affecti-
veTweets system.

3.2.1 English Word Embeddings:

e Ultradense Word Embeddings (WE-ue):
Rothe et al. (2016) created embeddings in the
Twitter domain.

¢ Baseline Word Embeddings (WE-b): Mo-
hammad and Bravo-Marquez (2017) created
embeddings from the Edinburgh Twitter Cor-
pus (Petrovié et al., 2010).
Shttps://nlp.stanford.edu/software/
segmenter.shtml
“Some characters were replaced, for more details see
(Soliman et al., 2017).
SValue of each feature is set to its frequency in the tweet

3.2.2 Spanish Word Embeddings:

e Ultradense Word Embeddings (WE-us):
Rothe et al. (2016) created embeddings from
web domain.

o FastText Word Embeddings (WE-ft): Bo-
janowski et al. (2016) trained embeddings on
Wikipedia.

3.2.3 Arabic Word Embeddings:

e Zahran et al. (2015) Word Embeddings

(var-SG, var-GloVe, and var-CBOW)

e Soliman et al. (2017) Word Embeddings
(tw-SG, tw-CBOW, web-SG, web-CBOW,
wiki-SG, and wiki-CBOW)

Mentioned Arabic word embeddings were created
with Global Vectors (GloVe) (Pennington et al.,
2014) and Word2 Vec toolkit (Mikolov et al., 2013)
using skip-gram (SG) model and continuous bag-
of-words (CBOW) model. These Arabic word em-
beddings were trained on different data domains —
Twitter (tw), web pages (web), Wikipedia (wiki),
and their combination (var) for more details see
the cited papers.

3.2.4 English lexicons (L-en):

— We used all affective lexicons from the Af-
fectiveTweets package.

3.2.5 Spanish lexicons (L-es):

— Translated NRC Word-Emotion Association
Lexicon (Mohammad and Turney, 2013)

— Emotion Lexicon (Sidorov et al., 2012)
— Polarity lexicon (Urizar and Roncal, 2013)

— Expanded Word-Emotion Association Lexi-
con (Bravo-Marquez et al., 2016) (we transla-
ted this lexicon to Spanish)

— iSOL (Molina-Gonzalez et al., 2013)

— ML-SentiCon (Cruz et al., 2014)

— Ultradense lexicon (Rothe et al., 2016)

— LYSA Twitter lexicon (Vilares et al., 2014)

3.2.6 Arabic lexicons (L-ar):

— Translated NRC Word-Emotion Association
Lexicon

— Translation of Bing Liu’s Lexicon
— Arabic Emoticon Lexicon

— Arabic Hashtag Lexicon



Regression

English Arabic Spanish
anger L-en, D5qg var-SG, L-ar, Dosg, WN } L-en, L-es, WE-us, WN%
fear L-en, L-se, WE-b var-SG, L-ar, Dasg L-en, L-es, L-se, WE-us, WN}, Diooo
joy L-en, L-se, WE-b var-SG, L-ar D3 L-es, WE-us, WN%, ChN%
sadness L-en, L-se, WE-b var-SG, L-ar L-en, L-es, L-se, WE-us, WN?, Diooo
Classification
anger L-en, Dasg WNi
fear L-en, L-se, WE-b, WN%, Doso
joy L-en, L-se, WE-b, WN?
sadness L-en, L-se, Dasg var-CBOW, L-ar, L-se, WN%, Dosg

Table 1: Used features in the AffectiveTweets system

— Arabic Hashtag Lexicon (dialectal)
— Translated NRC Hashtag Sentiment Lexicon
— SemEval-2016 Arabic Twitter Lexicon

Lexicons are described in (Mohammad and Tur-
ney, 2013; Mohammad et al., 2016a; Salameh
et al., 2015; Mohammad et al., 2016b).

3.3 Model Training

In our AffectiveTweets system we used an Lo-
regularized Ls-loss SVM regression and classi-
fication model with the regularization parameter
C set to 1, implemented in LIBLINEAR Library
(Fan et al., 2008)6.

3.4 LDA Training

To use topics created with LDA (Latent Dirichlet
Allocation) (Blei et al., 2003) as features, we tra-
ined our own models for every language. Tweets
used to train the Arabic and Spanish models
were taken from SemEval-2018 AIT DISC cor-
pus (Mohammad et al., 2018) and tweets for
English model were taken from Sentiment140’
training data (Go et al., 2009). We trained our
LDA models with LDA implementation from
MALLET3(McCallum, 2002).

We used the same preprocessing for LDA as for
regular feature extraction. Additionally we remo-
ved stopwords and following special characters [ ,
. I - ]. Tokens from Spanish tweets were stemmed
with Snowball® stemming algorithm.

4 Brainy System

We use Maximum Entropy classifier from Brainy
machine learning library (Konkol, 2014) and UD-

®https://www.csie.ntu.edu.tw/~cjlin/
liblinear/
"http://help.sentiment140.com/
Shttp://mallet.cs.umass.edu/
*http://snowballstem.org/
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Pipe (Straka et al., 2016) for preprocessing and do-
esn’t use any lexicons, just word embeddings. The
system is based on (Hercig et al., 2016).

4.1 Preprocessing

The same preprocessing has been done for all da-
tasets. We use UDPipe (Straka et al., 2016) with
Spanish Universal Dependencies 1.2 models and
Arabic Universal Dependencies 2.0 models for
POS tagging and lemmatization. Tokenization has
been done by TweetNLP tokenizer (Owoputi et al.,
2013). We further replace all user mentions with
the token “@USER” and all links with the token
“$LINK”.

4.2 Features

The Brainy system used the following features.
The exact combination of features for each emo-
tion and the change in performance caused by its
removal is shown in Table 9.

o Character n-grams (ChN,,): Separate bi-
nary feature for each character n-gram in the
utterance text. We do it separately for diffe-
rent orders n € {1,2,3,4,5} and remove n-
grams with frequency t.

Bag of Words (BoW): We used bag-of-
words representation of a tweet, i.e. separate
binary feature representing the occurrence of
a word in the tweet.

Bag of Morphological features (BoM): for
all verbs in the tweet. The morphological fe-
atures'® include abbreviation, aspect, defini-
teness, degree of comparison, evidentiality,
mood, polarity, politeness, possessive, prono-
minal type, tense, verb form, and voice.

Ohttp://universaldependencies.org/u/
feat/index.html



e Bag of POS (BoPOS): We used bag-of-

Emotion intensity regression — Pearson (all instances)

words representation of a tweet, i.e. separate embeddings | avg anger fear joy sadness
binary feature representing the occurrence of var-SG 0.564 0505 0.569 0.577  0.605
POS tag in the t ¢ var-GloVe 0.523 0.489 0.520 0.529 0.557

a ag n the tweet. var-CBOW | 0.557 0492 0.557 0555 0.622
tw-SG 0.541 0.513 0.520 0.580 0.552

* Bag of Parse Tree Tag_s (BoT): We us_ed tw-CBOW | 0447 0413 0424 0472 0478
bag-of-words representation of a tweet, i.e. web-SG 0492 0419 0465 0.559 0.526
separate binary feature representing the web-CBOW | 0.410 0.339 0.423 0466 0411
occurrence of a parse tree tag in the tweet. wiki-SG 0.440 0.345 0443 0505  0.469
wiki-CBOW | 0.291 0.281 0.244 0.315 0.322

We remove tags with a frequency < 2.

Emotion intensity classification — Pearson (all classes)

e Emoticons (E): We used a list of positive var-SG 0386 0430 0387 0471 0418
. . . . var-GloVe 0.318 0.410 0.383 0430 0.385

and negative emoticons (Montejo-Rdez et al., var-CBOW | 0397 0451 0496 0536 0.470
2012). The feature captures the presence of tw-SG 0360 0480 0386 0439 0416
an emoticon within the text. tw-CBOW 0.338 0368 0301 0369 0.344
web-SG 0.325 0426 0.424 0.375 0.388

e First Words (FW): Bag of first five words web-CBOW | 0.190 0314 0.317 0269 0.273
Wlth at least 2 occurrences. Wlkl-SG 0244 0396 0368 0370 0345
wiki-CBOW | 0.275 0.252 0.284 0.293 0.276

Last Words (LW): Bag of last five words

with at least 2 occurrences. Table 2: Arabic embeddings experiments results

Emotion intensity regression — Pearson (all instances)

e Last BoM (LBoM): Bag of last five mor- beddi ‘ i | 5
. . emoedadings av anger ear [¢) sadaness
phological features (see BoM) with at least £ £ £ oy
2 WE-us 0.559 0.464 0.581 0.581 0.611
occurrences. WE-ft 0.510 0369 0.577 0528 0.565

Emotion intensity classification — Pearson (all classes)
WE-us 0.429 0.422 0.382 0478 0434
WE-ft 0407 0.256 0.428 0.481 0.462

FastText (FT): An average of the FastText
(Bojanowski et al., 2016) word embeddings
of all the words in a tweet.

N-gram Shape (NSh): The occurrence of Table 3: Spanish embeddings experiments results

word shape n-gram in the tweet. Word shape Emotion intensity regression — Pearson (all instances)

assigns words into one of 24 classes'! simi- embeddings | avg anger fear  joy sadness
lar to the function specified in (Bikel et al., WE-ue 0.598 0.594 0595 0.586 0.593
WE-b 0.541 0475 0.549 0456 0.505

1997). We consider unigrams, bigrams, and
trigrams with frequency < 2.

Emotion intensity classification — Pearson (all classes)
WE-ue 0.479 0.412 0.507 0.438 0.459
WE-b 0.456 0.212 0.499 0.336 0.376

POS Count Bins (POS-B): We map the
frequency of POS tags in a tweet into a one-
hot vector with length three and use this
vector as binary features for the classifier.
The frequency belongs to one of three equal-
frequency bins'?. Each bin corresponds to a

Table 4: English embeddings experiments results

o Text Length Bins (TL-B): We map the tweet

position in the vector. We remove POS tags
with frequency ¢ < 5.

TF-IDF: Term frequency — inverse document
frequency of a word computed from the trai-
ning data for words with at least 5 occurren-
ces and at most 50 occurrences.

""We use edu.stanford.nlp.process. WordShapeClassifier

length into a one-hot vector with length three
and use this vector as binary features for the
classifier. The length of a tweet belongs to
one of three equal-frequency bins'2. Each bin
corresponds to a position in the vector.

Verb Bag of Words (V-BoW): Bag of words

for parent, siblings, and children of the verb

with the WORDSHAPECHRIS]1 setting available in Stand-
from the sentence parse tree.

ford CoreNLP library (Manning et al., 2014).
2The frequencies from the training data are split into
three equal-size bins according to 33% quantiles.
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Figure 1: LDA performance based on number of topics, the y-axis denotes Pearson correlation

S Experiments

All presented experiments are evaluated on the test
data for the given task.

We performed ablation experiments to see
which features are the most beneficial (see Table
9, 8, and 10). Numbers represent the performance
change when the given feature is removed'>.

Word embeddings features have a great impact
on system performance, so we compared several
word embeddings for every language (Table 2, 3,
and 4). For English was best WE-ue word em-
beddings, but for submission we used WE-b word
embeddings, because it worked better on dev data.
In Spanish tweets the WE-us word embeddings
outperformed the WE-ft word embeddings in re-
gression and WE-us was better for classification
in anger and on average of all emotions. For clas-
sification in Arabic was var-CBOW best on every
emotion except anger and for regression var-SG
worked best on average and on fear.

We also experimented with only LDA features
to find out how the numbers of topics in LDA mo-
del affect the performance (see Figure 1). We star-

3The lowest number denotes the most beneficial feature

ted with models containing 5 topics and continued
up to 1000 (step was non-equidistantly increased).
Our experiments suggest that the best setting is
around 200-300 topics. We selected the number of
topics based on the performance on the develop-
ment data.

6 Results

Our results in the emotion intensity regression
subtask are in Table 5 and our results in the emo-
tion intensity ordinal classification subtask are in
Table 6 and Table 7. The system settings and fea-
tures for each language and emotion were selected
based on our pre-evaluation experiments with eva-
luation on the development data.

7 Conclusion

We competed in the emotion intensity regression
and ordinal classification tasks in English, Arabic
and Spanish.

Our ranks are 27™ out of 48 for English, 5" out
of 14 for Arabic, and 5" out of 16 for Spanish for
the regression task and 21 out of 39 for English,
5% out of 14 for Arabic, and 5™ out of 16 for Spa-
nish for the ordinal classification task.
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Pearson (all instances)

Pearson (gold in 0.5 1)

Subtask System ‘ macro-avg anger fear joy sadness ‘ macro-avg anger fear joy sadness
El-reg-EN  AffectiveTweets | 0.642 (27) 0.640 (27) 0.642(27) 0.652 (24) 0.636 (23) | 0.478 (25) 0.503 (29) 0.433(27) 0.457(23) 0.517(23)
El-teg-AR  AffectiveTweets | 0.574(5) 0487 (6) 0.559(5) 0.619(6) 0.631(5) | 0417(6) 0.332(6) 0485(3) 0.327(7) 0.523(4)
El-reg-ES  AffectiveTweets | 0.630 (5) 0.542(5) 0.688(3) 0.646(5) 0.644 (4) 0.496 (3) 0435(2) 0517(3) 0.527(3) 0.507 (4)

Table 5: Pearson correlation for the emotion intensity regression task
Pearson (all classes) Pearson (some-emotion)

Subtask System ‘ macro-avg anger fear joy sadness ‘ macro-avg anger fear joy sadness
El-oc-EN  AffectiveTweets | 0.506 (21) 0.477 (23) 0.470(17) 0.555(19) 0.522(22) | 0.346 (23) 0.308 (25) 0.273 (21) 0.452(21) 0.350 (25)
El-oc-AR  AT&Brainy 0.394(5) 0327(5) 0.345(5) 0437(5) 0467(5) | 0280(5) 0246(6) 0246(6) 0351(5) 0.277(7)
El-oc-ES Brainy 0.504 (5) 0.361(7) 0.606 (3) 0.544(5) 0.506 (5) 0.410 (5) 0.267 (6) 0.499(2) 0.420(6) 0.452(5)

Table 6: Pearson correlation for the emotion intensity ordinal classification task
Kappa (all classes) Kappa (some-emotion)

Subtask System ‘ macro-avg anger fear joy sadness ‘ macro-avg anger fear joy sadness
El-oc-EN  AffectiveTweets | 0.494 (21) 0.467 (19) 0.450(14) 0.548 (17) 0.510(19) | 0.290 (23)  0.269 (23) 0.166 (20) 0.420 (20) 0.303 (24)
El-oc-AR  AT&Brainy 0.386(5) 0324(5) 0.327(5) 0428(5) 0464(5) | 0241(5) 0219(5) 0.178(5) 0340(5) 0.226 (5)
El-oc-ES Brainy 0.475 (5) 0432(5) 0.544(6) 0.447(08) 0.477(6) 0.340 (6) 0.299(5) 0.405(5) 0.302(8) 0.353 (6)

Table 7: Cohen’s kappa for the emotion intensity ordinal classification task
Emotion intensity classification — Pearson (all classes) Emotion intensity regression —
Feature Arabic English Pearson (all instances)
anger sadness | anger fear joy sadness Enclish
nglis
ALL* 03278 0467 | 0477 0470 0.555% 0522 Feature £ .

-Di, 0467 | 0.490¢ 0.467¢ 0.497 anger _fear joy  sadness
L-en 0.000 -0.090 -0.007 -0.140 ALL* | 0.640 0.642% 0.652% 0.636
L-se -0.019 -0.023  0.008  -0.030 T

> -Di,, |0.634
WN7 -0.055 -0.028
WEb 0001 0.006 Len | 0000 -0.044 -0.031 -0.087
WNi 0.000  0.098 L-se -0.037 -0.010 -0.013
L-ar -0.038 WE-b -0.020 -0.040 -0.017
var-CBOW -0.106 Arabic
* Results achieved with all used features for given emotion ALL" 1 1 1
t ALL without used LDA feature. Ij[L 0.487 0.559 0.619 0.63
¥ Values used to calculate ablation results. -D250 0.479 0.558 0.604
L-ar 0.020 0.011 -0.027 -0.027
. . 1
Table 8: AffectiveTweets feature ablation study WN; | 0.036
var-SG | -0.010 -0.244 -0.197 -0.196
Emotion intensity classification — Pearson (all classes) "
Arabi Spanish Spanish
Feature rabic panis. "
fear joy anger fear joy sadness ALL 0.542 0.688 0.646 0.644
BoW -0.013 0022 | 0005 -0041 0018 0.003 -D{OOO 0.688 0.639
ChN; t <5 -0.017  0.024 | 0.010 0.009 L-en 0.008 0.006 -0.007
ChNy ¢t <5 0.034  -0.037 | -0.009 0.018  0.014
ChN3 ¢t <5 -0.053  0.011 | 0.016 -0.041 0.011  0.005 L-es -0.016  0.005 -0.042  -0.009
ChNyst <2 | -0.067 -0.036 | -0.008 -0.056 -0.050 -0.011 L-se 0.002 -0.001
BoM -0.022 -0.013 0017 -0.011 WE-us | -0.021 -0.027 -0.017 -0.030
E oot 0007 WN! | -0.033 -0.093
FT -0.027  -0.008 | 0.006 -0.004 5
BoPOS 0015 0.008  -0.010 20,002 WN7 -0.050  -0.013
POS-B -0.008 -0.025 | -0.010 -0.013 0.013 ChN3 -0.006
?l(;TIDF (())'%1177 0.006 'g'ggi -0.010 0,009 0.018 * Results achieved with all used features.
B -0. 0. . i ;
NSh 0010 0006 | -0011 0002  -0.008 ALL without used LDA feature.
FW -0.001 0.002  0.010 ¥ Values used to calculate ablation results
LW -0.007 -0.014  -0.003
TL-B -0.004 . .
LBoM 0.036 0.000 0.005 Table 10: AffectiveTweets feature ablation study.
V-BoW -0.006* -0.005" 0,003
* adverb  adverb, noun, adjective, verb, auxiliary  noun

Table 9: Brainy feature ablation study
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Abstract

In this paper, we propose an attention-based
classifier that predicts multiple emotions of a
given sentence. Our model imitates human’s
two-step procedure of sentence understanding
and it can effectively represent and classify
sentences. With emoji-to-meaning preprocess-
ing and extra lexicon utilization, we further
improve the model performance. We train
and evaluate our model with data provided
by SemEval-2018 task 1-5, each sentence of
which has several labels among 11 given emo-
tions. Our model achieves 5th/1st rank in En-
glish/Spanish respectively.

1 Introduction

Since the revolution in deep neural networks, es-
pecially with the help of Long short-term mem-
ory(Hochreiter and Schmidhuber, 1997), it has
been easy for machines to imitate human’s linguis-
tic activities, such as sentence classification(Kim,
2014), language model(Sundermeyer et al., 2010),
machine translation(Bahdanau et al., 2015).
Emotion classification is a subpart of sentence
classification that predicts the emotion of the
given sentence by understanding the meaning of it.
Multi-label emotion classification requires more
powerful ability to comprehend the sentence in
variety of aspects. For example, given a sen-
tence 'For real? Look what I got for my birth-
day present!!’, it is easy for human to figure out
that the sentence not only expressing “joy’ but also
’surprise’. However, machines may require more
task-specific structure to solve the same problem.
Attention mechanisms are one of the most spot-
lighted trends in deep learning and recently made
their way into NLP. Applied to systems with neu-
ral networks, it functions as visual attention mech-
anisms found in humans(Denil et al., 2012) and
the most effective region of features will be high-
lighted over time, making the system better exploit
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the features related to the training objective. (Bah-
danau et al., 2015) is one of the most significant
footprints of attention mechanism in NLP and they
applied attention mechanisms to machine transla-
tion for the first time. The model generates target
word under the influence of related source words.
Furthermore, Vaswani et al. (2017) proposed a
brand new architecture for neural machine transla-
tion. The model utilizes attention mechanisms not
only as the submodule but also as the main struc-
ture, improving time complexity and performance.

Inspired by (Vaswani et al., 2017), we come
up with attention-based multi-label sentence clas-
sifier that can effectively represent and classify
sentences. Our system is composed of a self-
attention module and multiple CNNs enabling it
to imitate human’s two-step procedure of analyz-
ing sentences: comprehend and classify. Further-
more, our emoji-to-meaning preprocessing and
extra lexicon utilization improve model perfor-
mance on given dataset. We evaluated our system
on the dataset of (Mohammad et al., 2018), where
it ranked 5th/1st rank in English/Spanish respec-
tively.

2 Model

Our system is mainly composed of two parts: self-
attention module and multiple independent CNNs
as depicted in Figure 1. This structure is actually
imitating how human perform the same task. In
general, human firstly read a sentence and try to
comprehend the meaning, which corresponds to
self-attention in our system. Then human catego-
rize the sentence to each emotion separately but
not all at once, and that is the reason why our sys-
tem use 11 independent CNNs. In addition to main
structure, we added the description of preprocess-
ing in the model description because it makes up
a large proportion in NLP tasks, especially when

Proceedings of the 12th International Workshop on Semantic Evaluation (SemEval-2018), pages 141-145
New Orleans, Louisiana, June 5-6, 2018. ©2018 Association for Computational Linguistics
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Figure 1: Overall architecture of the model. Preprocessed data goes through embedding layer, self-attention layer,

Convolution layer and pooling layer step by step.

the dataset is small. Details are described in the
following paragraph step by step.

Preprocessing: For raw data, we applied 3
steps of preprocessing:

(1) Our system mainly deals with limited num-
bers of tweet data, which is very noisy. In
this case, preprocessing of data has crucial
impact on model performance. Emoji may
be referred to as a typical property of tweets
and we found that considerable number of
tweets contain emojis. Each emoji has a
meaning of their own, and we converted ev-
ery emoji in the data to phrase/word that
represents its meaning. We call this pro-
cedure as emoji-to-meaning preprocessing.
Some tweets have too many repetition of cer-
tain emoji that may make the sentence over-
biased to certain emotions. Against expec-
tations, removing overlapped emojis reduced
performance.

(i1) Lower-case and tokenize data with TweetTo-
kenizer in (Bird and Loper, 2002).

(iii)) Remove all of the mentions and *#° symbols
in the beginning of all topics. Unlike men-
tions, topics may include emotional words
and hence we don’t remove the topic itself.

Embedding: It is especially helpful to use pre-
trained word embeddings when dealing with a
small dataset. Among those well-known word em-
beddings such as Word2Vec(Mikolov et al., 2013),

GloVe(Pennington et al., 2014) and fastText(Piotr
et al., 2016), we adopt 300-dimension GloVe
vectors for English ,which is trained on Com-
mon Crawl data of 840 billion tokens and 300-
dimension fastText vectors for Spanish, which is
trained on Wikipedia.

Self-attention: Vaswani et al. (2017) proposed
a non-recurrent machine translation architecture
called Transformer that is based on dot-product
attention module. Usually, attention mechanisms
are used as a submodule of deep learning mod-
els, calculating the importance weight of each po-
sition given a sequence. In our system, we adopt
the self-attention mechanisms in (Vaswani et al.,
2017) to represent sentences. The detailed struc-
ture of self-attention is shown in Figure 2. Dot-
product of every embedded vector and weight ma-
trix W € R34 i5 split through dimension as Q,
K, V of the same size, where d,. is the dimension-
ality of embedded vectors. Then attended vector
is computed as in (3).

E = [emb(x1),emb(x3), ...,emb(zy)] (1)
Q,K,V] = [eW forein E] 2)

Attn(Q, K, V) = softmax(QKT

ﬁ)v 3)

Multi-head attention allows the model to benefit
from ensemble effect only with the same amount
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Figure 2: Inner architecture of self-attention module

of parameter.

Multihead(Q, K, V') = Concat(heady,
“4)
where head; = Attn(Q;, K;, V;)
Q=1[Q1,.,Qn], Qi € R
K =[Ky,... Ky, K; € R™%
V=[Vi, .. Vi), V; € R™%
For each self-attention layer, there are additional

position-wise feed-forward networks right after
the attention submodule.

FFN(z) =max(0,zW; 4+ b1)Wa + ba
where W; € R%*4r 1y, ¢ R *de

(&)
(6)

In addition to these two sub-layers, there is a
residual connection around each sub-layer, fol-
lowed by layer normalization. Also, we can stack
self-attention layers by substituting the embedding
vectors in (1) with the output of the last self-
attention layer.

Convolution & Pooling: Followed by self-
attention layer are 11 independent 1-layer Convo-
lution layers with max-pooling layers. Kim (2014)
has proved that CNNs have lots of potential in sen-
tence processing task and we adopt the CNNs in
the same way.

Output & Loss: Each output of CNNs go
through a fully-connected layer to generate a logit.
Sigmoid activation is applied to calculate the prob-
ability of each emotion, and we use the sum of
each class’ cross-entropy as the final loss function.

3 Experiments & Results

3.1 Data

For the SemEval 2018 shared task, Mohammad
et al.(2018) has provided tweet data with multiple

..., heady)
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labels among 11 pre-set emotions: *angry’, ’antic-
ipation’, disgust’, *fear’, ’joy’, ’love’ ’optimism’,
"pessimism’, ’sadness’, ’surprise’ and ’trust’. We
only use English and Spanish data among three
different languages. The dataset consists of
6838/887/3259 tweets in English, 3561/679/2854
tweets in Spanish for train/validation/test data re-

spectively.

3.2 Setup

We implemented a model with 3-layer self-
attention and 1-layer CNN. With the restriction
of fixed-size GloVe vector, we found that 300-
dimension hidden state is excessive for such a
small dataset that we added a position-wise lin-
ear layer between the embedding layer and self-
attention layers to make d. = 30. We employed
h 2 for multi-head attention and set dy
64. Two regularization techniques are applied to
our system: Dropout with Py, = 0.1 for self-
attention, and L2 regularization for all weight ma-
trix but not bias. We added 0.001 times regulariza-
tion loss to original loss function. We optimized
the loss with Gradient Descent using Adam op-
timization algorithm with additional learning rate
decay.

3.3 Model variants

We conduct experiments with following variants
of our model.

e AC: Self-attention + CNNs, which is our ba-
sic system.

AC - attn: Basic system without self-
attention module.

AC + nrcl: We mainly used NRC Emo-
tion lexicon(Mohammad and Turney, 2013)
to make word-level label of each sentence,
counting the occurence of each emotion in
the sentence. Each of the word-level label
is concatenated to the output vector of each
pooling layer.

AC + nrc2: At evaluation/test step, binarize
the word-level label and add 0.4 times the la-
bel value to the logit.

AC + synth: Inspired by (Sennrich et al.,
2016), we made synthetic data using unla-
beled SemEval-2018 AIT DISC data' with

"https://www.dropbox.com/s/2phcvj300lcdnpl/SemEval2018-

AIT-DISC.zip?dl=0



pre-trained model, and fine-tuned the model
with synthetic data.

3.4 Experimental results

We conduct several experiments to prove the ef-
fectiveness of our model, each to verify the bene-
fit from: (1) tweets specific preprocessing (2) self-
attention representation (3) emotional lexicon uti-
lization. Experimental results are mainly com-
pared with English data.

3.4.1 Impact of emoji-to-meaning

We firstly verify the efficiency of emoji-to-
meaning preprocessing. Table 1 shows the accura-
cies of the same model with different preprocess-
ing. We found that emoji-to-meaning preprocess-
ing can improve the model accuracy by 1%. When
a emoji is converted to its meaning, it can be rep-
resented as a combination of emotional words al-
lowing it to not only reduce redundant vocabulary
but also further emphasize the influence of certain

3.4.3 Impact of extra resources

Lack of data has crucial impact on model general-
ization. Generalization techniques such as dropout
or L2 regularization can relieve over-fitting prob-
lem to a certain extent; however, it can’t totally
substitute the effect of rich data. So we apply
some heuristic methods to exploit extra resources
as described in 3.3. Table 2 shows that model can
slightly benefit from extra lexicon if used prop-
erly. However, adding synthetic data which is
made from pre-trained model didn’t help a lot, and
in some cases even reduce the accuracy of the test
result. Actually, Sennrich et al.(2016) emphasized
that they used the monolingual sentences as the
target sentences, informing that the target-side in-
formation, which corresponds to label in our task,
is not synthetic. However, we made synthetic la-
bels with a pre-trained model and it may only
cause over-fitting problem to the original training
data.

emotions.

Model Accuracy(valid) | Accuracy(test)
AC (w/o) 54.86% 54.91%
AC 55.94% 55.90%

Model Accuracy(valid) | Accuracy(test)
AC 55.94% 55.90%
AC + nrcl 56.13% 56.02%
AC + nrc2 57.16% 56.40%
AC + synth 55.88% 55.90%
| Ensemble || 59.76% 57.40%

Table 1: Experimental results with and without emoji-
to-meaning preprocessing.

3.4.2 Impact of self-attention

To examine the effectiveness of self-attention rep-
resentation, we simply get rid of self-attention lay-
ers. Table 2 shows that by removing the self-
attention layers, both the validation/test accuracy
dropped over 4%. This may be attributed to the
ability of self-attention: It helps the model to bet-
ter learn the long-range dependency of sentences.
Learning long-range dependencies is a key chal-
lenge in NLP tasks and self-attention module can
shorten the length of paths forward and backward
signals have to traverse in the network as described
in (Vaswani et al., 2017).

Model Accuracy(valid) | Accuracy(test)
AC - attn 51.04% 51.60%
AC 55.94% 55.90%

Table 2: Comparison between our basic system and ba-
sic system without self-attention module.
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Table 3: Experimental results with extra resources and
an ensemble result

3.4.4 Ensemble

Our best results are obtained with an ensem-
ble of 9 parameter sets of AC + nrc2 model
that differ in their random initializations. The
ensemble model achieved validation/test accu-
racy of 59.76%/57.40% in English data and
50.00%/46.90% in Spanish data respectively.

4 Conclusion

In this paper, we proposed an attention-based sen-
tence classifier that can classify a sentence into
multiple emotions. Experimental results demon-
strated that our system has effective structure for
sentence understanding. Our system shallowly
follows human’s procedure of classifying sen-
tences into multiple labels. However, some emo-
tions may have some relatedness while our model
treats them independently. In our future work,
we would like to further take those latent relation
among emotions into account.
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Abstract

This paper describes our participation in Affective
Tweets task for emotional intensity and sentiment
intensity subtasks for English, Spanish, and Ara-
bic languages. We used two approaches, 4TC and
EvoMSA. The first one is a generic text catego-
rization and regression system; and the second one
is a two-stage architecture for Sentiment Analysis.
Both approaches are multilingual and domain in-
dependent.

1 Introduction

Sentiment Analysis is a research area where does a
computational analysis of people’s feelings or be-
liefs expressed in texts such as emotions, opinions,
attitudes, appraisals, etc. (Liu and Zhang, 2012).
People communicate not only the emotion or sen-
timent they are feeling, but also the intensity, that
is, the degree of emotion or sentiment. In this con-
text, SemEval is one of the forums that conducts
evaluations on semantics at different levels, for in-
stance, it proposes tasks such as sentiment analy-
sis, the intensity of emotion or sentiment (affective
tweets) (Mohammad et al., 2018), irony detection,
among others (SemEval, 2017).

In this work, we present the results of our par-
ticipation in Affective Tweets task for four of the
five subtasks in English, Spanish, and Arabic lan-
guages and for all emotions available: anger, fear,
joy, and sadness.

The subtasks are A) emotion intensity regres-
sion (EI-REG): given a tweet and an emotion, de-
termine the intensity of the emotion that best rep-
resents the mental state of the tweeter, a real-value
score between 0 and 1.

B) Emotion intensity ordinal classification

Eorresponding author: sabino.miranda@infotec.mx
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(EI-OC): given a tweet and an emotion E, classify
the tweet into one of four ordinal classes of inten-
sity of emotion: anger, fear, joy, and sadness, that
best represents the mental state of the tweeter.

C) A sentiment intensity regression task
(V-REG): given a tweet, determine the intensity
of sentiment, a real-valued score between 0 (most
negative) and 1 (most positive).

D) A sentiment analysis, ordinal classification
(V-0C): given a tweet, classify it into one of seven
ordinal classes, corresponding to several levels of
positive and negative sentiment intensity.

In this context, one crucial step is the procedure
used to transform the data (i.e., tweets) into the
inputs (vectors) of the supervised learning tech-
niques used. Typically, Natural Language Pro-
cessing (NLP) approaches for data representation
use n-grams of words, linguistic information such
as dependency relations, syntactic information,
lexical units (e.g., lemmas, stems), affective lexi-
cons, error correction, etc. However, selecting the
best configuration of those characteristics could
be a cumbersome task, many times disregarded
in favor of some well-known competitive setups.
(Tellez et al., 2017b) studies the dependency be-
tween the performance and the proper selection
of the text model. This selection can be seen as
a combinatorial optimization problem where the
objective is to maximize the performance metric
of the classifier being used; this approach is im-
plemented by pTC, (Tellez et al., 2018). Due to
its combinatorial nature, and the kind of parame-
ters that compose the configuration space, the re-
sulting classifiers are multilingual and domain in-
dependent. Therefore, with a tight dependency
on the training set, it is mandatory to provide ad-
ditional information about the particular task to
avoid overfitting. In this sense, the use of multi-
ple knowledge sources is essential, and combin-
ing them simply and effectively is the idea be-
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hind EvoMSA. EvoMSA (§2.2) is a stacking sys-
tem based on genetic programming, and partic-
ularly on the use of semantic genetic operators,
that focus on sentiment analysis. The core of our
contribution is to use both 4TC and EvoMSA to
learn from different annotated collections and then
use that diverse knowledge to tackle the SemEval
2018 Task 1 challenge.

Looking at systems that obtained the best re-
sults in previous SemEval editions, it can be con-
cluded that it is necessary to include more datasets,
see for instance BB_twtr system (Cliche, 2017) for
Sentiment Analysis in the Twitter task, which uses
more datasets besides the one given in the com-
petition. Here, it was decided to follow a sim-
ilar approach by including an additional human-
annotated dataset publicly available for English,
Spanish, and Arabic to build robust models.

2 System Description

As commented, we use two systems to evaluate
the Affective Tweets task: yTC and EvoMSA. On
the one hand, ©TC is used mainly to evaluate two
tasks for the Arabic language because in our ex-
periments it obtained the best performance in al-
most all subtask in this language both for regres-
sion and classification tasks. On the other hand,
EvoMSA is used to evaluate English and Span-
ish languages, and ordinal sentiment classification
(valence) task for Arabic. In the following para-
graphs, we describe these approaches.

21 uTC

uTC! is a minimalistic and wide system able to
tackle text classification and regression tasks in-
dependent of domain and language a detail. For
complete details of the model see (Tellez et al.,
2018). Essentially, 4 TC creates text classifiers (or
a text regressors) searching for the best models in
a given configuration space. A configuration con-
sists of instructions to enable several preprocess-
ing functions, a combination of tokenizers among
the power set of several possible ones (character
g-grams, n-word grams, skip-grams, etc.), and a
weighting scheme (application of frequency filters
and the use of TF, TFIDF, or several distributional
schemes). uTC seeks the best configurations opti-
mizing a score which is evaluated through a clas-
sifier or a regressor; currently, it uses SVM for
both tasks. In Table 1, we can see details of text

"https://github.com/INGEOTEC/microTC
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transformations used in our solution for detecting
Anger emotion for Arabic. This set of text trans-
formations was selected among millions of possi-
ble configurations through the combinatorial opti-
mization process implemented in ¢ TC. In ordinal
classification tasks the model is found out based
on the training dataset provided for each emotion,
if this is the case.

2.2 EvoMSA

EvoMSA? is a Sentiment Analysis System based
on B4AMSA and EvoDAG. It is an architecture of
two phases to solve classification or regression
tasks, see Figure 1. EvoMSA improves the per-
formance of a global classifier combining the pre-
dictions of a set of classifiers with different mod-
els on the same text to be classified. Roughly
speaking, in the first stage, a set of BAMSA classi-
fiers (see Sec. 2.2.1) are trained with two kind of
datasets; datasets provided by SemEval, and large
datasets annotated by humans for sentiment anal-
ysis for English and Spanish languages (Mozeti¢
et al., 2016), called HA datasets. In the case of
HA datasets, it is split into balanced small datasets
that feed each BAMSA classifier which produces
three real output values, one for each sentiment
(negative, neutral and positive). In the case of Se-
mkEval datasets, for instance, for EI-OC, the clas-
sifier produces one of four ordinal classes of in-
tensity of emotion (0, 1, 2, 3). It creates a deci-
sion functions space with mixtures of values com-
ing from different views of knowledge. Finally,
EvoDAG’s inputs are the concatenation of all the
decision functions predicted by each BAMSA sys-
tem, and EvoDAG produces a final value or pre-
diction. The following subsections describe the in-
ternal parts of EvOMSA. The precise configuration
of our benchmarked system is described in Sec. 4.

BAMSA
HA
- Datasets

—_—

B4MSA

[ Decision
—_ Functions
BAMSA Space

-"‘W'SA EvoDAG

Figure 1: EvoMSA Architecture

b

! SemEval
- Datasets

Zhttps://github.com/INGEOTEC/EvoMSA



2.2.1 B4MSA

B4MSA? is related to 4 TC, but this framework is
mainly focused for multilingual sentiment analy-
sis. For complete details of the model see (Tellez
etal., 2017a,b).

The core idea behind BAMSA is similar to that
of uTC, i.e., it tackles the sentiment analysis prob-
lem as a model selection problem, yet using a dif-
ferent view of the underlying combinatorial prob-
lem. Also, contrarily to uTC, BAMSA takes ad-
vantage of several domain-specific particularities
like emojis and emoticons and makes explicit han-
dling of negation statements expressed in texts.
Nonetheless, EvoMSA avoids the sophisticated
use of B4AMSA fixing the model for each language
in favor of performing an optimization process at
the level of the decision functions of several mod-
els. Table 1 shows text transformation parameters
used in our system for English and Spanish lan-
guages.

2.2.2 EvoDAG

EvoDAG* (Graff et al., 2016, 2017) is a Genetic
Programming system specifically tailored to tackle
classification and regression problems on very
high dimensional vector spaces and large datasets.
In particular, EvoDAG uses the principles of Dar-
winian evolution to create models represented as a
directed acyclic graph (DAG). An EvoDAG model
has three distinct node’s types; the inputs nodes,
that as expected received the independent vari-
ables, the output node that corresponds to the la-
bel, and the inner nodes are the different numerical
functions such as: sum, product, sin, cos, max, and
min, among others. Due to lack of space, we refer
the reader to (Graff et al., 2016) where EvoDAG
is broadly described. In fact, in this research, we
followed the steps explained there. In order to give
an idea of the type of models being evolved, Fig-
ure 2 depicts a model evolved for the Arabic polar-
ity classification at global message task. As can be
seen, the model is represented using a DAG where
direction of the edges indicates the dependency,
e.g., cos depends on X3, i.e., cosine function is ap-
plied to X3. As commented above, there are three
types of nodes; the inputs nodes are colored in red,
the inner nodes are blue (the intensity is related to
the distance to the height, the darker the closer),
and the green node is the output node. As men-

3https://github.com/INGEOTEC/b4msa
*https://github.com/mgraffg/EvoDAG
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tioned previously, EvoDAG uses as inputs the de-
cision functions of B4MSA, then the first three in-
puts (i.e., X, X1, and X5) correspond to the deci-
sion functions values of the negative, neutral, and
positive polarity of B4AMSA model trained with
SemEval Arabic dataset, and the later two (i.e., X3
and X4) correspond to the decision function val-
ues of two B4AMSA systems each one trained with
other dataset for two classes. It is important to
mention that EvoDAG does not have information
regarding whether input X; comes from a partic-
ular polarity decision function, consequently from
EvoDAG point of view all inputs are equivalent.

Figure 2: An evolved model for the Arabic task.

3 Experimental Settings

As we mentioned, to determine the best configu-
ration of parameters for text modeling, 4 TC and
B4MSA integrate a hyper-parameter optimization
phase that ensures the performance of the classi-
fier based on the training data. The text modeling
parameters for BAMSA were set for all process as
we show in Table 1 for English and Spanish lan-
guage for classification and regression tasks. In
the case of the Arabic language, the parameters
were calculated by the optimization phase; an ex-
ample is showed in Table 1. A text transforma-
tion feature could be binary (yes/no) or ternary
(group/delete/none) option. Tokenizers denote
how texts must be split after applying the process
of each text transformation to texts. Tokenizers
generate text chunks in a range of lengths, all to-
kens generated are part of the text representation.
Both, BAMSA and uTC, allow selecting tokeniz-
ers based on n-words, g—grams, and skip-grams,
in any combination. We call n-words to the well-
known word n-grams; in particular, we allow to
use any combination of unigrams, bigrams, and
trigrams. Also, the configuration space allows se-
lecting any combination of character g-grams (or
just g-grams) for ¢ = 1 to 9. Finally, we allow to



use (2,1) and (3, 1) skip-grams (two words sepa-
rated by one word, and three words separated by a
gap).

Table 1 shows the final configurations for En-
glish and Spanish and an example for one emotion
for Arabic. For example, numbers are deleted in
Arabic, but it is grouped in English and Spanish.
In the case of English, it is split in unigrams, bi-
grams, character g-grams of sizes 2, 3, and 4.

Text transformation English  Spanish Arabic

remove diacritics
remove duplicates
remove punctuation
emoticons
lowercase

numbers

urls

yes
yes
yes
group
yes
group
group
group

yes
yes
yes
group
yes
group
group
group

yes
yes
yes
group
false
delete
group

users none

hashtags none none none

entities none none none
Term weighting

TF-IDF yes yes no

Entropy no no yes

Tokenizers

n-words {1,2} {1,2} {1,2}

q-grams {2,3,4} {2,3,4} {2,3,7,9}

skip-grams — — —

Table 1: Example of set of configurations for text modeling

3.1 Datasets

SemEval provides datasets to train systems for
each subtask. For instance, for emotion Anger
in English, subtask emotion intensity ordinal clas-
sification, OC, the training data is distributed for
four classes (class 0 = 445, class 1 = 322, class
2 =507, class 3 = 427). The Arabic datasets for
each emotion have around 800 samples each one,
for English the sizes are between 1500 and 2200
samples, and for Spanish are between 1000 and
1150 samples, for more details of the data distri-
bution and how the datasets were built we refer
the reader to (Mohammad et al., 2018; Moham-
mad and Kiritchenko, 2018). In addition of Se-
mEval data, we use extra datasets annotated by
humans around 73 thousand tweets for English,
223 thousand for Spanish (Mozeti¢ et al., 2016),
and two thousand for Arabic (NRC, 2017). Ta-
ble 2 shows the distribution of classes for datasets.
Those datasets are mainly used for sentiment anal-
ysis; however, we use this extra information to im-
prove the final decision in the approach we imple-
mented (EvoMSA).
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HA-DataSet Positive Neutral Negative Total
English 21,166 33,620 18,454 73,240
Spanish 107,252 89,782 26,272 223,306
Arabic 448 202 1,350 2,000

Table 2: Statistics of Human-Annotated training data. We
used the labeled English and Spanish data from (Mozeti¢
et al., 2016), and the Arabic data from (NRC, 2017).

4 Results

We present the results of our approaches in Table
3 and Table 4. All experiments were tested on the
development dataset provided by SemEval. In the
case of OC tasks, we use the macro-F1 score to
measure the performance, and in the case of Reg
tasks, we use the Pearson correlation coefficient.
Table 3 shows the results of emotional intensity
for ordinal classification (OC) and regression tasks
(Reg) grouped by each emotion and language. Ta-
ble 4 shows the results of sentiment analysis, ordi-
nal classification task (V-OC) and sentiment inten-
sity regression task (V-Reg) group by each emo-
tion and language. We present three system con-
figurations in Table 3 and Table 4. EvoMSA con-
figuration uses only the training datasets provided
by SemEval, and it is used as regressor or clas-
sification system. In addition of SemEval data,
EvoMSA-HA uses extra information comes from
sentiment analysis domain, and this information
improves the performance as we can see. And
uTC uses only the training data provided by the
contest as the knowledge base to calculate the fi-
nal class or real value. As we can see in Table
3, the best performance obtained are grouped by
EvoMSA-HA configuration for both OC and Reg
tasks for English and Spanish languages. For the
Arabic language, TC is quite good with OC and
Reg task. According to the results we obtained, we
decided to use for the evaluation phase the follow-
ing configuration: EvoMSA-HA is used for OC,
Reg, V-OC, and V-Reg tasks for English and Span-
ish; also for OC (Fear and Joy) and V-OC tasks for
Arabic; and pTC is used for Arabic in OC (Anger
and Sadness), Reg, and V-Reg tasks. In the table,
the performance of our configuration systems, on
gold standard, is labeled by subscripts; they stand
for the rank in the general evaluation. For exam-
ple, for Spanish in OC task, we were ranked for
Anger emotion in position 4; Fear, position 2; Joy,
position 3; and Sadness, position 2.



Configuration Anger Fear Joy Sadness
English
(OC) EvoMSA 0.3938 0.3820 0.3983 0.4249
(OC) EvoMSA-HA 0.4188 0.4187 0.3977 0.4389
(OC) uTC 0.3300 0.4120 0.3167 0.3908
(Reg) EvoMSA 0.4948 0.4758 0.5371 0.5714
(Reg) EvoMSA-HA 0.5756 0.5380 0.6249 0.6105
(Reg) uTC 0.3301 0.5158 0.5042 0.5087
Performance on gold standard
(OC) Our Approach ~ 0.560(14y  0.489(15)  0.643(9)  0.584(13)
(Reg) Our Approach  0.643(26)  0.621(29)  0.684(30)  0.62625)
Spanish
(OC) EvoMSA 0.4210 0.5013 0.4811 0.4419
(OC) EvoMSA-HA 0.4405 0.5006 0.5275 0.4835
(OC) uTC 0.3741 0.4070 0.4353 0.3757
(Reg) EvoMSA 0.5487 0.7338 0.7051 0.5965
(Reg) EvoMSA-HA 0.4990 0.7265 0.7129 0.5941
(Reg) uTC 0.5241 0.6568 0.4897 0.5693
Performance on gold standard
(OC) Our Approach ~ 0.468(5y  0.634(2y  0.655(3)  0.628(3)
(Reg) Our Approach  0.543(4) 0.675(4) 0.6823) 0.633(5)
Arabic
(OC) EvoMSA 0.4062 0.3721 0.3688 0.4039
(OC) EvoMSA-HA 0.3805 0.3620 0.3768 0.3637
(OC) uTC 0.4182 0.3092 0.3347 0.4689
(Reg) EvoMSA 0.3661 0.2770 0.3782 0.5142
(Reg) EvoMSA-HA 0.2118 0.1117 0.4279 0.5952
(Reg) uTC 0.4700 0.5011 0.4090 0.6191
Performance on gold standard
(OC) Our Approach  0.387(4y  0.440(4y  0.498(4)  0.425(
(Reg) Our Approach  0.501s5) 0.5016) 0.6285) 0.537(5)

Table 3: Results for Emotion Intensity: Ordinal Classifica-
tion (OC) and Regression (Reg), in terms of macro-F1 (OC)
and Pearson correlation coefficient (Reg).

Configuration English  Spanish  Arabic
(V-OC) EvoMSA 0.3148 0.3367 0.3304
(V-OC) EvoMSA-HA 0.3430 0.3902 0.3251
(V-0C) uTC 0.2848 0.3418 0.2671
(V-Reg) EvoMSA 0.5993 0.6571 0.2977
(V-Reg) EvoMSA-HA 0.6213 0.6693 0.0045
(V-Reg) uTC 0.3440 0.5834 0.6263
Performance on gold standard
(V-OC) Our Approach  0.760(11)  0.749(3)  0.698(4)
(V-Reg) Our Approach  0.761(24y 0.701(5y  0.746(5)

Table 4: Results for Valence: Ordinal Classification (OC)
and Regression (Reg), in terms of macro-F1 (OC) and Pear-
son correlation coefficient (Reg).

5 Conclusions

In this paper was presented our solution for Af-
fective Tweets task combining two approaches
EvoMSA and yTC. Both systems are designed to
be multilingual and language and domain indepen-
dent as much as possible. For the training step, we
use extra human annotated datasets out of any spe-
cific emotion, but related to sentiment-analysis in-
formation; our solution performs well in Spanish
and Arabic languages; however, there is room for
further improvements in performance for tasks in
English language using another sort of knowledge
such as semantic information (word embeddings)
into EvoMSA architecture.
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Abstract

In this paper we present our system for detec-
ting valence task. The major issue was to ap-
ply a state-of-the-art system despite the small
dataset provided : the system would quickly
overfit. The main idea of our proposal is to use
transfer learning, which allows to avoid lear-
ning from scratch. Indeed, we start to train a
first model to predict if a tweet is positive, ne-
gative or neutral. For this we use an external
dataset which is larger and similar to the target
dataset. Then, the pre-trained model is re-used
as the starting point to train a new model that
classifies a tweet into one of the seven various
levels of sentiment intensity.

Our system, trained using transfer learning,
achieves 0.776 and 0.763 respectively for
Pearson correlation coefficient and weighted
quadratic kappa metrics on the subtask evalua-
tion dataset.

1 Introduction

The goal of detecting valence task is to clas-
sify a given tweet into one of seven classes, cor-
responding to various levels of positive and ne-
gative sentiment intensity, that best represents the
mental state of the tweeter. This can be seen
as a multiclass classification problem, in which
each tweet must be classified in one of the follo-
wing classes : very negative (-3), moderately nega-
tive (-2), slightly negative (-1), neutral/mixed (0),
slightly positive (1), moderately positive (2) and
very positive (3) (Mohammad et al., 2018).

Several companies have been interested in cus-
tomer opinion for a given product or service. Sen-
timent analysis is one approach to automatically
detect their emotions from comments posted in so-
cial networks.

With the recent advances in deep learning, the
ability to analyse sentiments has considerably
improved. Indeed, many experiments have used
state-of-the-art systems to achieve high perfor-
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mance. For example, (Baziotis et al., 2017) use Bi-
directional Long Short-Term Memory (B-LSTM)
with attention mechanisms while (Deriu et al.,
2016) use Convolutional Neural Networks (CNN).
Both systems obtained the best performance at the
the 2016 and 2017 SemEval 4-A task respectively.

The amount of data is argued to be the main
condition to train a reliable deep neural network.
However, the dataset provided to build our system
is limited. To address this issue, two solutions can
be considered. The first solution consists in exten-
ding our dataset by either manually labeling new
data, which can be very time consuming, or by
using over-sampling approaches. The second solu-
tion consists in applying a transfer learning, which
allows to avoid learning the model from scratch.

In this paper, we apply a transfer learning
approach, from a model trained on a similar task :
we propose to pre-train a model to predict if a
tweet is positive, negative or neutral. Precisely,
we apply a B-LSTM on an external dataset. Then,
the pre-trained model is re-used to classify a tweet
according to the seven-point scale of positive and
negative sentiment intensity.

The rest of the paper is organized as follows.
Section 2 presents a brief definition of transfer
learning. The description of our proposed system
is presented in Section 3. The experimental set-
up and results are described in Section 4. Finally,
a conclusion is given with a discussion of future
works in Section 5.

2 Transfer Learning

Transfer Learning (TL) consists in transferring
the knowledge learned on one task to a second re-
lated task. In other words, the TL is about trai-
ning a base network and then copy its first n layers
to the first n layers of a target network (Yosinski
et al., 2014). Usually the first n layers of a pre-
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trained model (or source model) are frozen when
training the new model. This means that weights
are not changed during training on the new task.
TL should not be confused with fine-tuning where
the back-propagation error affects the entire neural
network (including the first n layers).

For a limited number of training examples, TL
allows to provide more precise predictions than
the traditional supervised learning approaches.
Moreover, TL significantly speeds up the learning
process as training does not start from scratch. For
example, (Cirean et al., 2012) use a CNN trai-
ned to recognize the Latin handwritten charac-
ters for the detection of Chinese characters. In na-
tural language processing, TL has improved the
performance of several systems from various do-
mains such as : sentiment classification (Glorot
et al., 2011), automatic translation (Zoph et al.,
2016), speech recognition and document classifi-
cation (Wang and Zheng, 2015).

3 Proposed System

In this section, we present the four main steps
of our approach : (1) Text processing to filter the
noise from the raw text data, (2) Feature extrac-
tion to represent words in tweets as vectors of
length 426 by concatenating several features, (3)
Pre-training model to predict the tweet polarity
(positive, negative or neutral) based on external
data and (4) Learning a new model where the pre-
trained model is adapted to our task by removing
the last layer and adding a fully-connected layer
followed by an output layer.

3.1 Text processing

Tweets are processed using ekphrasis' tool
which allows to perform the following tasks : to-
kenization, word normalization, word segmenta-
tion (for splitting hashtags) and spell correction
(i.e replace a misspelled word with the most pro-
bable candidate word). All words are lowercase.
E-mails, URLs and user handles are normalized.
A detailed description of this tool is given in (Ba-
ziotis et al., 2017).

3.2 Feature extraction

Each word in each tweet is represented by a vec-
tor of 426 dimensions which are obtained by the
concatenation of the following features :

1. https://github.com/cbaziotis/
ekphrasis
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— AFINN and Emoji Valence? are two lists of
english words and emojis rated for valence
scoring range from —5 (very negative) to +5
(very positive) (Nielsen, 2011).

Depeche Mood is a lexicon of 37k words as-
sociated with emotion scores (afraid, amu-
sed, angry, annoyed, sad, happy, inspired
and don’t care) (Staiano and Guerini, 2014).
Emoji Sentiment Lexicon is a lexicon of the
969 most frequent emojis. The emojis senti-
ment is computed from the sentiment (posi-
tive, negative or neutral) of tweets in which
they occur. Each emoji is associated with a
unicode, number of occurrences, position in
the tweet [0,1] (0 : start of the tweet, 1 :
end of the tweet), probabilities of negativity,
neutrality, and positivity of the emoji (No-
vak et al., 2015).

Linguistic Inquiry and Word Count is a dic-
tionary containing 5,690 stems associated
with 64 categories, from linguistic dimen-
sions to psychological processes (Tausczik
and Pennebaker, 2010).

— NRC Word-Emotion Association, Hash-
tag Emotion/Sentiment and Affect Intensity
Lexicons are lists of english words and
their associations with eight emotions (an-
ger, fear, anticipation, trust, surprise, sad-
ness, joy, and disgust) and two sentiments
(positive, negative), each with specificities
detailed in (Mohammad and Turney, 2013),
(Mohammad and Kiritchenko, 2015) and
(Mohammad, 2017). The intensity score for
both emotions and sentiments takes a value
between 0 and 1.

Opinion Lexicon English contains around
7k positive and negative sentiment words
for the english language (Hu and Liu, 2004).
Sentiment140 is a list of words and their as-
sociations with positive and negative senti-
ment (Mohammad et al., 2013).

Words embeddings are dense vectors of real
numbers capturing the semantic meanings
of words. We use datastories embeddings
(Baziotis et al., 2017) which were trained on
330M english twitter messages posted from
12/2012 to 07/2016. The embeddings used
in this work are 300 dimensional.

2. https://github.com/words/

emoji-emotion
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Figure 1 — Our transfer learning approach for sentiment analysis. (a) Pre-trained model learned with B-LSTM
network with 2 layers of 150 neurons each to predict if a tweet is positive, negative or neutral. (b) The first layers
of pre-traind model are locked and re-purposed to predict various levels of positive and negative sentiment intensity.

3.3 Pre-training model

The objective is to build a model which allows
to predict the tweeter’s attitude (positive, negative
or neutral). Bidirectional Long Short-Term Me-
mory networks (B-LSTM) (Schuster and Paliwal,
1997) have become a standard for sentiment ana-
lysis (Baziotis et al., 2017) (Mousa and Schul-
ler, 2017) (Moore and Rayson, 2017). B-LSTM
consists in two LSTMs in different directions run-
ning in parallel : the first forward network reads
the input sequence from left to right and the se-
cond backward network reads the sequence from
right to Left. Each LSTM yields a hgden represen-
tation : h (left to right vector) and h (right-to-left
vector) which are then combined to compute the
output sequence. For our problem, capturing the
context of words from both directions allows to
better understand the tweet semantic. We here use
a B-LSTM network with 2 layers of 150 neurons
each. The architecture is shown in Figure 1 (a).

For training, we use the external dataset®> com-
posed of 50333 tweets (7840 negatives, 19903 po-
sitives and 22590 neutrals).
445?%EE;§77/github.com/cbaziotis/

datastories—-semeval20l7-task4d/tree/
master/dataset/Subtask_A/downloaded.
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3.4 Learning model

Let us note that our final objective is to train a
model to classify a tweet into seven classes (very
negative, moderately negative, slightly negative,
neutral, slightly positive, moderately positive and
very positive). To train the model, we use the da-
taset provided for the target task (Mohammad and
Kiritchenko, 2018). The training and development
dataset contain respectively 1180 and 448 tweets.
Since the dataset is small, fine-tuning may result
in overfitting. Therefore, we propose to freeze the
network layers except the final dense layer that is
associated with the three classes sentiment analy-
sis, which is removed after pre-training. Then, we
add a fully-connected layer of 150 neurons follo-
wed by an output layer of 7 neurons, as illustrated
on Figure 1 (b).

4 Results and Analysis

The official * evaluation metric is Pearson Cor-
relation Coefficient (P). Submited systems are
also evaluated with the weighted quadratic kappa
(W). However, the pre-trained model was evalua-
ted using classification accuracy. We implemented
our system using Keras tool with the Tensorflow
backend.

4. https://github.com/felipebravom/
SemEval_2018_Task_1_Eval



4.1 Pre-trained model evaluation

As proposed in (Baziotis et al., 2017), we used
B-LSTM with the following parameters : size of
LSTM layers is 150 (300 for B-LSTM), 2 layers of
B-LSTM, with a dropout of 0.3 and 0.5 for embed-
ding and LSTM layers respectively. Other hyper-
parameters used are : Gaussian noise with o of 0.3,
and Lo regularization of 0.0001. We trained the B-
LSTM over 18 epochs with a learning rate of 0.01
and batch size of 128 sequences.

We trained our model with external data (more
details in section 3.3) but for the evaluation we
adapted the training and development sets provi-
ded for the target task. The various levels of posi-
tive sentiments (i.e slightly, moderately and very
positive) were regrouped in the same class. The
same goes for the various levels of negative senti-
ments. Our model achieves 69.4% of accuracy.

4.2 Model evaluation

We adapted the pre-trained model described
above by removing the last fully-connected layer,
and added a dense layer of 150 neurons followed
by an output layer of 7 neurons. As a reminder,
the pre-trained layers are frozen. We used the trai-
ning and development sets to train our system, and
evaluated by predicting the valence on the evalua-
tion set. We trained our model over 8 epochs with
a learning rate of 0.01 and batch size of 50 se-
quences. Our model achieves 0.776 and 0.763 res-
pectively on P and W.

4.3 Other experiments

Finally, we conducted a set of experiments to
validate our system and approach. We evaluated
more commonly used systems, with and without
transfer learning. These new systems are built by :

— using similar number of layers, parameters
and hyper-parameters.

— replacing B-LSTM layers by LSTM, CNN
and dense layers.

— for the DNN, computing predictions using
the mean of each word-vector of tweets,
since it can not use sequences as input.

— for the CNN, using multiple convolutional
filters of sizes 3, 4 and 5.

— for the combinations of systems, averaging
the output probabilities.

The results are presented on Table 1.

We can observe that TL approach achieves bet-

ter scores, and that B-LSTM is leading the score
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Approach Systems Pearson
DNN 0.683
CNN 0.702
Without TL LSTM 0.721
B-LSTM 0.735
CNN + LSTM 0.742
CNN 0.741
With TL B-LSTM 0.776
CNN + B-LSTM 0.755

Table 1 — Pearson scores on test set with different sys-
tems and combinations.

on both approaches as a single system. Moreo-
ver, combining systems enhances greatly the pre-
diction without TL, but decreases the score with
TL : the combination of independent systems com-
pensates a small lack of data, but becomes useless
with enough training.

5 Conclusion

In this paper, we propose to use a transfer
learning approach for sentiment analysis (SemE-
val2018 task 1). Using B-LSTM networks, we pre-
trained a model to predict the tweet polarity (posi-
tive, negative or neutral) based on an external da-
taset of 50k tweets. To avoid the overfitting, layers
(except the last one) of the pre-trained model were
frozen. A dense layer was then added followed by
a seven neurones output layer. Finally, the new net-
work was trained on the small target dataset. The
system achieves a score of 0.776 on Pearson Cor-
relation Coefficient.

Improvements could be made concerning the
features, and by using attention mechanisms.
However, the future work will focus on multiple
transfers, to increase the amount of data used in
the process. We will perform transfers from two
classes (positive and negative) to three classes
(adding neutral), then five classes and finally
seven classes. Numerous datasets> are currently
available to deploy such a system.
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Abstract
This paper describes our approach to
SemEval-2018 Taskl: Estimation of Af-

fects in Tweet for la and 2a. Our team
KDE-AFFECT employs several methods
including one-dimensional Convolutional
Neural Network for n-grams, together with
word embedding and other preprocessing
such as vocabulary unification and Emoji
conversions into four emotional words.

1 Introduction

With the rapid spread of SNS services (e.g. Twit-
ter, Facebook, Instagram), massive user opinions
have accumulated on the Internet. Among such
opinions, it has been observed that not a few SNS
contents naturally entail the affects (including joy,
anger, sadness, fear) within themselves. Hence,
the need to accurately detect the affects is increas-
ing year by year.

In SemEval-2018 Task 1: Estimation of Affects
in Tweet, we have attempted to extend our hori-
zon from positive, neutral, and negative polarity
estimations in former SemEval sentiment analy-
sis in tweet having been held till 2017, to mul-
tiple emotions (joy, anger, sadness, and fear) in
terms of regression (Task-1 la) and classification
(Task-1 2a). In doing so, we have adopted a stan-
dard one-dimensional Convolutional Neural Net-
work (CNN), which is believed to be effective for
text polarity estimation, where the kernel window
size for 1D convolution is analogous to the con-
cept of word n-gram. In addition, as most peo-
ple have noticed, a tweet has potentially many
Emojis to express emotions. In the following, we
first briefly survey related work on tweet sentiment
analysis including emotion estimation. Then, we
describe our system, followed by showing the re-
sults returned from the organizer, and finally con-
cluding our paper.
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2 Related Work

Sentiment analysis of tweets has been studied
by many researchers from the standpoint of clas-
sifying a tweet into either positive or negative
polarity, and classifying it into multiple emo-
tions (Giachanou and Crestani, 2016; Silva et al.,
2016). A supervised approach to polarity clas-
sification of a tweet was proposed by Go et
al. (2009). They employed Naive Bayes, Maxi-
mum Entropy, Support Vector Machine, and sev-
eral other machine learning methods for their su-
pervised learning. Bravo-Marque et al. (2013) pre-
sented an approach using multiple emotion dic-
tionaries, while Saif et al. (2016) employed co-
occurrence information of words. Severyn et
al. (2015) introduced a deep learning approach.
Lu et al. (2013) proposed a deep learning method
suited for short texts. In SemEval, since 2014, sen-
timent analysis tasks using Twitter have been offi-
cially conducted, where a variety of methods have
been tested (Hagen etal., 2015; Giorgis et al.,
2016; Deriu et al., 2016; Rouvier and Favre, 2016;
Xuet al.,, 2016). In SemEval2017 Rosenthal et
al. (2017), Cliche et al. (2017) and Hamdan et
al. (2017) presented methods for combining mul-
tiple Convolutional Neural Networks (CNNs) and
multiple Long Short-Term Memories (LSTMs).
Mohammad (2017) published an open dictionary
of emotion scores for each word. Mohammad et
al. published a dataset for estimating emotion in-
tensities (Mohammad and Bravo-Marquez, 2017).

3 Methodology

In this section, we focus on our methods and ideas
employed in this task. The fundamental idea of
our method is based on the observation that “n-
grams” seem to have vital effects to represent the
emotion of a tweet, where “n-gram” denotes n
consecutive words (instead of n consecutive char-

Proceedings of the 12th International Workshop on Semantic Evaluation (SemEval-2018), pages 156—-161
New Orleans, Louisiana, June 5-6, 2018. ©2018 Association for Computational Linguistics
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Figure 1: Overall Training Flow of KDE-AFFECT

acters). For instance, if the tweet sentence is “At
last I made it.”, 2-gram includes (At, last) and
(made, it). Similarly, 3-gram includes (At, last,
1) and (I, made, it).

We have adopted the method based on the n-
gram convolution proposed by Kim (2014). Here,
we prepare a matrix corresponding to a sentence
representing an n-gram convolution in which this
filtering process is carried out by the unit of an n-
gram.

The overview of our system is as follows: First
we apply preprocessing with “vocabulary unifica-
tion” including lower case conversion, URL unifi-
cation, two or more consecutive character squeez-
ing, and hashtag elimination. Second, we ap-
ply Emoji conversion into four emotional words,
which will be elaborated later. From Emoji con-
version, we train the model independently for each
emotion. Finally, we predict the emotion score for
an unknown tweet by using the trained model. The
overall system flow is shown in Figure 1.

3.1 Preprocessing with Vocabulary
Unification

This step is applied to all emotions. It consists of
the following processing:

e lower case conversion

e conversion of every instance of a URL string
in a tweet to “<URL>"
collapse of two or more consecutive letters
into two
elimination of hash sign (#)
It should be noted that by a url string we mean
a regular expression starting with either “http”,
“https”, “ftp”, or “www”. Any url string is con-
verted to <URL>. For example, “I want to be
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happy on http://t.co/S6émoxr1U” is converted to “I
want to be happy on <URL>".

3.2 Preprocessing for Emoji

From our observation of real tweets, approxi-
mately more than 20% of them have some kind
of Emojis. Emotions are naturally represented by
many different Emojis. Hence, we introduce the
conversion of possible emotions represented by an
Emoji into each emotional word. Please note that
Emoji preprocessing is applied to all Emoji data,
regardless of emotions. For instance, each anger
Emoji might appear not only in an Anger dataset,
but in Fear, Joy, and Sadness datasets as well. This
is why we have decided to apply the Emoji conver-
sion despite the differences of emotions. In the fol-
lowing, we present Emoji for each emotion, where
Emoji has been taken from a Full Emoji Web site!.
The selection of Emoji has been made by using the
labels (such as “face-positive”) annotated to the
above Web sites.

3.2.1 Anger Emoji

The Anger Emojis we selected are shown in Fig-
ure 2. All of them are replaced by “anger”.

S y A nlat N |
AFV)IKu DwWeR®

Figure 2: Anger Emoji

3.2.2 Fear Emoji

The Fear Emojis we selected are shown in Fig. 3.
All of them are replaced by “fear”.

'https://unicode.org/emoji/charts/full-emoji-list. html
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Figure 3: Fear Emoji

3.2.3 Joy Emoji

The Joy Emojis we selected are shown in Fig. 4.
All of them are replaced by ”joy”.

Figure 4: Joy Emoji

3.2.4 Sadness Emoji

The Sadness Emojis we selected are shown in
Fig. 5. All of them are replaced by ”sadness”.
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Figure 5: Sadness Emoji

3.3 Convolutional Neural Network for
n-gram

Once preprocessing is done, we have a kind of rec-
tified tweet, represented by a matrix. Figure 6 il-
lustrates a word-by-word matrix representation of
a rectified tweet. Here we take a matrix of 80 by
300, where 80 is the maximum number of words
per tweet, and 300 corresponds to our embedding
vector size. If a tweet has less than 80 words, zero
padding is performed to fill the input matrix.

3.3.1 Embedding

In Embedding, each tweet is converted to a matrix.
Specifically, we first divide a tweet into words us-
ing a whitespace, thereby treating a special char-
acter (one of “.h, “,h, “lh, and “?h ) as a separate
word. Second, we transform each word into its
distributed representation of 300 dimensions using
Word2Vec (Mikolov et al., 2013a,b). The train-
ing of Word2Vec itself is done by using approxi-
mately 470 million tweets after the processing de-
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Figure 6: Our n-gram Convolution-based Approach

scribed in 3.1. We finally obtain the embedding by
padding zero values to a fixed size of a 80 by 300
dimensional matrix.

3.3.2 n-gram Convolution Layer

In an n-gram convolutional layer, we perform con-
volution, and generate a length m — n + 1 vec-
tor, where m denotes the maximum word length
(here 80). This is straightforward, since both ends
are trimmed during the n-gram convolution stage
shown in Figure 6. For instance, if 3-gram is con-
cerned, the length in our implementation will be
80-3+1 = 78. Note that we have multiple n-gram
convolutional layers for each emotion. “Joy” neu-
ral network architecture, for example, has 2-gram,
3-gram, 4-gram, and 5-gram convolutional layers,
which will be discussed later in Table 3.

embedding

‘ 2-gram conv ‘ ‘ 3-gram conv ‘ ‘ 4-gram conv ‘ ‘ 5-gram conv ‘

' 1
‘ MaxPooling1D H MaxPooling1D H MaxPooling1D H MaxPooling1D ‘
N\ o

[flatten | [ flatten | [flatten | [ fatten |

Batch Normalization

Dropout(0.5)

‘ Dense(outputs = 30dims,sigmoid) ‘
l

‘ Dense(outputs = 1dim ,sigmoid) ‘

Figure 7: KDE-AFFECT system’s DNN architecture

3.3.3 Max Pooling Layer

In a Max Pooling layer, from each n-gram con-
volutional layer, the maximum value is computed,



Intensity range | Intensity amount

[0.0,0.35) 0 (no E)

[0.35,0.5) 1 (low amount of E)
[0.5,0.65) 2 (moderate amount of E)
[0.65,1.0] 3 (high amount of E)

Table 1: Inferred Intensity Level

and a vector of the length equal to the number of
filters is generated. In our system, the output of
four multiple n-gram convolutional layers are flat-
tened and concatenated in the subsequent layers.
The output dimension is the number of filters mul-
tiplied by the number of n-gram convolutional lay-
ers.

3.3.4 Fully-connected Layers

In our system, we have two fully-connected layers,
where the first hidden fully-connected layer ac-
cepts the input from the concatenation layer con-
nceted from multiple max pooling layers. Em-
pirically, we set 30 outputs for the first fully-
connected layer. The second layer outputs either
the estimated intensity value of an emotion (Task
1a) or the estimated intensity level (Task 2a). The
way to estimate the intensity level (Task 2a) is
elaborated in the next section.

3.4 Estimating Intensity Level (Task 2a)

For Task 2a, we need to estimate the intensity
level. Specifically, participants are required to
classify the emotional intensities into four levels;
high amount, moderate amount, low amount, and
nothing. Our strategy for the amount of emotional
intensity amount level is simple, which is based on
the inferred intensity range as shown in Table 1. In
Table 1, the left column denotes the range of emo-
tional amount that we have defined for this task.
For example, [0.0, 0.35) means that the left bound-
ary 0.0 is inclusive, while the right boundary 0.35
is exclusive in the range of the amount of emotion.

4 Experiments

Here we describe the experimental environment
and our evaluation results.

4.1 dataset

All participants are given SemEval 2018: Task 1
Affect in Tweets (AIT) (Mohammad et al., 2018)
dataset. The details are shown in Table 2.

159

Anger ; Fear | Joy | Sadness
| Training | 1701 | 2252 | 1616 | 1532
Dev. 388 1+ 389 1+ 290 «+ 397
| Test (1a) | 17940 | 17924 | 18043 | 17913 |
| Test(2a) | 1002 ' 986 ' 1105 ' 975 |

Table 2: SemEval 2018: Task 1 dataset (1a and 2a)

4.2 Evaluation Measure

Here, the evaluation measure for a model is cor-
relation coefficient . Given variables x and v,
where x corresponds to a predicted emotion value
and y to a true emotion value, and their associated
sample variances S, Sy, and the covariance Sy
are represented by the following equation:

_ Sl’y
~ 5.5,

r

4.3 Experiment Environment

For our deep learning program for the task,
we used the following list of hyper-parameters:

loss function: Root Mean Square Error (RMSE)
filter number: 200 x n

epochs: 30

dropout rate: 0.5

optimizer: Adam

batch size: 64

The framework we use is Keras with backend
Tensorflow. In our Ubuntu server, it took approxi-
mately 1 second for each epoch.

4.4 Preliminary Experiments for n-gram
Convolutions

For each emotion, our system attempts to find an
empirical optimal combination of n-gram convo-
lutions. Table 3 summarizes the results of prelimi-
nary experiments for this purpose. Here, (A) de-
notes the correlation coefficient for Anger. Sim-
ilarly, r(F') for Fear, r(J) for Joy, and r(S) for
Sadness. From the table, we decided as follows:
For Anger, we chose [1,2,3,4,5,6] (meaning we
took the combination of 1-gram, 2-gram, 3-gram,
4-gram, 5-gram, and 6-gram convolutions). For
Fear, we chose [2,3,4,5,6]. For Joy and Sadness,
we chose [2,3,4,5].

4.5 Experimental Result (Task 1a)

According to the Official Leaderboard for Task 1a,
our team KDE-AFFECT turned out to be 30-th. If



n r(A) r(F) r(J) r(S)
[1,2.3,4,5,6] | 0.5529 05919 05771 0.6349
2,3,4,5,6] | 0.5518 0.5994 0.5464 0.6173
[1,2,3,4,5] | 0.5381 0.5948 0.5730 0.6078
2,3,4,5] | 0.5309 0.5736 0.5906 0.6360

Table 3: Preliminary experiments for n-gram convolustions

Team avg-r r(4A) r(F) r(J) ()
KDE-AFFECT | 0.620 0.630 0.621 0.598 0.630
SeerNet!s! 0.799 0.827 0.799 0.792 0.798
NTUA-SLP?™ | 0.776 0.782 0.758 0.771 0.792
PlusEmo2Vec®? | 0.766 0.811 0.728 0.773 0.753
CrystalFeel'** | 0.717 0.740 0.700 0.708 0.720
EliRF-UPV!# | 0.696 0.705 0.686 0.693 0.700
iit_delhi??t" 0.621 0.633 0.645 0.618 0.588
DeepMiner®'* | 0.575 0.581 0.570 0.575 0.573
Baseline3™ | 0.520 0.526 0.525 0.575 0.453

Table 4: Our result with selected other teams for Task 1a

Team avg-r r(A) r(F) r(J) r(S)
KDE-AFFECT | 0.530 0.530 0.470 0.552 0.567
SeerNet!s! 0.695 0.706 0.637 0.720 0.717
PlusEmo2Vec?"? | 0.659 0.704 0.528 0.720 0.683
psyML?7d 0.653 0.670 0.588 0.686 0.667
UNCCh 0.599 0.604 0.544 0.638 0.610
ECNU!6th 0.531 0.565 0.441 0.581 0.536
CrystalFeel'®" | 0.530 0.576 0.466 0.540 0.538
Baseline?6" | 0.394 0.382 0.355 0.496 0.370

Table 5: Our result with selected other teams for Task 2a

we use similar notations as in Table 3, and pick up
the top-3 ranked teams, as well as randomly cho-
sen teams CrystalFeel (14-th place), ELipRF-UPV
(15-th place), iit_delhi (29-th), DeepMiner (31-th),
and the baseline (37-th), the result looks like Ta-
ble 4.

4.6 Experimental Result (Task 2a)

According to the Official Leaderboard for Task 2a,
our team KDE-AFFECT turned out to be 17-th. If
we use similar notations as in Table 3, and pick up
top-3 ranked teams, as well as randomly chosen
teams UNCC (9-th place), ECNU (16-th place),
CrystalFeel (14-th place), and the baseline (26-th),
the result looks like Table 5.

5 Conclusion

This paper describes the approach we took for
SemEval-2018 Task 1: Affect in Tweets (subtasks

la and 2a). We have chosen a combination of dif-
ferent n-gram convolutions with preprocessing in-
cluding vocabulary unification and Emoji conver-
sion.
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Identification as a Binary Classification Problem
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Abstract

Written communication lacks the multimodal
features such as posture, gesture and gaze that
make it easy to model affective states. Espe-
cially in social media such as Twitter, due to
the space constraints, the sources of informa-
tion that can be mined are even more limited
due to character limitations. These limitations
constitute a challenge for understanding short
social media posts.

In this paper, we present an approach that uti-
lizes multiple binary classifiers that represent
different affective categories to model Twit-
ter posts (e.g., tweets). We train domain-
independent recurrent neural network models
without any outside information such as af-
fect lexicons. We then use these domain-
independent binary ranking models to eval-
uate the applicability of such deep learning
models on the affect identification task. This
approach allows different model architectures
and parameter settings for each affect cate-
gory instead of building one single multi-label
classifier. The contributions of this paper are
two-folds: we show that modeling tweets with
a small training set is possible with the use
of RNNs and we also prove that formulating
affect identification as a binary classification
task is highly effective.

1 Introduction

Social media platforms allow users to share infor-
mation, communicate with other users, learn about
new products, and get latest news. The impor-
tance of social media data is getting larger every
day as social media usage grows every year (Dug-
gan, 2015). Twitter is one such social media plat-
form where users can write short posts as well as
share links. Twitter is also used for getting news
(Center, 2017).

A large body of research has been conducted
using Twitter data including analyzing user inten-
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tions (Java et al., 2007), determining influence of
users (Romero et al., 2011), predicting retweet
counts (Can et al., 2013), classifying sentiments of
tweets (Jansen et al., 2009; Agarwal et al., 2011;
Neethu and Rajasree, 2013; Kontopoulos et al.,
2013; Pak and Paroubek, 2010). All of these
studies have one goal in common: understand-
ing/modeling information diffuse in Twitter.

One aspect of modeling social media posts is
focusing on emotional states of users. There has
been plenty of efforts on determining affective
states (Schwarz and Clore, 1983) and their effects
to human behavior for different domains from ed-
ucation (Sidney et al., 2005) to health care (Lisetti
et al., 2003). For Twitter, this problem is even
more challenging as the information source is lim-
ited to the number of characters allowed in a single
post and multimodal features (e.g., posture, ges-
ture, and eye gaze) are not available.

In this paper, we formulate affect identification
task as a binary classification problem and investi-
gate the applicability and effectiveness of domain-
independent deep learning models as well as fea-
tures. Our dataset includes eleven affect categories
(i.e., anger, anticipation, disgust, fear, joy, love,
optimism, pessimism, sadness, surprise, and trust)
for each tweet. The presence of one affect cat-
egory in a tweet does not stop another category
to be present (e.g., joy and optimisim can both be
present in a tweet). We represent each affect cat-
egory as one class and build binary classifiers for
each class. Recurrent neural networks are trained
for each affect category and no domain-dependent
features such as affect lexicons are used. Our goal
is to evaluate a generic model for different affec-
tive states.

Binary models have been successfully applied
to several applications including action recog-
nition in videos (Can and Manmatha, 2013),
prediction of whether or not a tweet will be

Proceedings of the 12th International Workshop on Semantic Evaluation (SemEval-2018), pages 162-166
New Orleans, Louisiana, June 5-6, 2018. ©2018 Association for Computational Linguistics



Affect Most 274 most | 39 most
frequent frequent | frequent
emoji emoji emoji

anger & (53) @ (42) @ (38)
anticipation & (15) w (10) @ (7)
disgust & (60) @ (40) @ (35)
Sfear & (12) 2 (15 @ (20)
joy & (138) = (39) o (28)
love w (28) = (21) @ (10)
optimism = (62) @ (20) = (13)
pessimism @ (24) 2 (14) = (13)
sadness @ (72) & (46) = (41
surprise & (18) < (6) 2 (6)
trust =4 =3 LX)

Figure 1: Most frequently used emojis and their counts
for each affect category.

retweeted (Hong et al., 2011), and topic classi-
fication (Joachims, 1998). In this paper, we de-
scribe our approach for affect recognition of En-
glish tweets (Task E-c: Detecting Emotions), a
subcategory of Task 1 in the SemEval 2018 chal-
lenge (Mohammad et al., 2018).

2 Corpus

In this paper, we use English tweets that have been
annotated by affect categories (Mohammad et al.,
2018). The dataset contains emojis, hashtags, and
the textual content of tweets; however, it does not
have user ids. The training, validation, and test
splits are done by the task organizers. Figure 1
shows top three mostly used emojis in each class
and their frequencies for the training set.

2.1 Breakdown of Emojis to Classes

Due to the importance of visual cues in predicting
affective states, we pay attention to a form of vi-
sual cues: emojis. Here we present some of our
findings based on different affect categories.

e Trust: emojis are not frequently used. Not
easy to determine through emojis.

Sadness: The sobbing face emoji is expect-
edly the most common one but interestingly
laughing with joy emoji is the second most
common. Weary face emoji is also very com-
mon in sadness: 56.16% of all weary face
emojis are used in this class.
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e Anger and disgust share the same property:
the most common emoji is the laughing with
joy emoji and the second most common is
sobbing face emoji. The fact that a joy emoji
being the most commonly used in these af-
fective classes is quite interesting and can in-
dicate irony. The third most common emoji
in these two classes are also the same: rage
emoji.

An emoji that can be intuitively associated
with love (heart eyes) actually occurs more
in joy tweets than love tweets.

An unexpected finding is on fire emoji where
Jjoy and optimism classes have a large portion
of all fire emojis in the training set (46.7%
and 36.7% respectively).

e The affective class that uses most emojis is
joy.

3 Methodology

Since each tweet in the data contains eleven af-
fect categories (i.e., anger, anticipation, disgust,
fear, joy, love, optimism, pessimism, sadness, sur-
prise, and trust), we created eleven datasets with
the same tweets but with different class informa-
tion. For example, the first dataset has one values
(i.e., positive) for tweets that show anger and zero
(i.e., negative) for those that do not have anger.
Other datasets are created in the same way for
the remaining affects classes. By building one
model for each affect category, we formulated af-
fect identification problem as a binary classifica-
tion task. Then in testing time, we obtained pre-
dictions from every specific model and fused the
results to obtain a unique result for each tweet.

3.1 Training Binary Classification Models

The advantage of using binary classification mod-
els for each affect category is that each model can
be trained by itself, enabling different model ar-
chitectures and parameters. For example, while
one category may benefit from a deeper model,
the other affect category can obtain the best results
with a shallower model. In this way, the models do
not have to be the same for each affect class.

3.2 Model Architecture

We built separate RNN models for each affect
category, resulting with eleven classifiers. For
the classifiers, we used three GRU layers, two of
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Figure 2: Using the unlabeled tweets for training an
auto-encoder and using the trained weights for the af-
fect classification process.

which are bi-directional. To be able to build a
more generalized model, a dropout of 0.2 is used
in each layer. Each bidirectional layer contains
100 neurons and the final encoding layer has 50
neurons.

3.3 Training Auto-Encoder

Because the dataset is not very big, we wanted the
classifiers to learn as much information as possi-
ble without overfitting it. Therefore, we built an
auto-encoder from the tweets’ content (e.g., un-
labeled tweets, no affect categories). The goal
of the auto-encoder is to get weights that can be
used in the classifiers. As shown in Figure 2, we
used the trained weights from the auto-encoder to
start building binary classifiers. To convert a text-
generating auto-encoder into a classifier, we added
a softmax layer.

3.4 Features

For modeling affect categories in tweets, we use
only the words and emojis. No domain-dependent
features, or features that are aware of task in hand
(e.g., affect lexicons) are used as our goal is to de-
termine how well a generic RNN model can per-
form for affect recognition task.

3.4.1 Emojis

To represent emojis as embeddings, we used the
pre-trained embeddings from the emoji2vec pack-
age (Eisner et al., 2016).
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3.4.2 Word Embeddings

For this study, an embedding length of 200 is used.
We utilized pre-trained global vectors trained on
tweets (Pennington et al., 2014)

3.4.3 Hashtags

Hashtags have a lot of semantic information about
the tweets. However, most of that information
is neglected if the hashtags cannot be found in
the words embeddings. Therefore, we followed
a greedy approach for dividing hashtags into their
corresponding words.

Once the # is removed, we take the content of
the hashtag and search if the content is present in
the vocabulary as its entirety. If vocabulary has the
hastag content, we use it. If not, more processing
is done. Starting from the beggining of the word
we keep a pointer, searching for a valid word that
from index=0 to index=pointer. Once 0,j indices
represent a substring that is a valid word, we con-
tinue the recursive search for the rest of the content
(i.e., j+1 to the end of the string). The words that
are found are added to the list of words that rep-
resent the hashtag. Then we use those words and
represent them as embeddings.

Because this approach is greedily finding the
shortest possible words contained within the hash-
tag, it is not guaranteed to represent the correct
semantics all the time. For example, the #feel-
sadforyou is correctly divided to [‘feel’,“sad’,
‘for’, ‘you’], however, #toniteinasheville (‘tonite
in asheville”) becomes [‘tonite’, ’, ‘as’, ‘he’,

ST
‘ville’], which is not correct. Achieving perfect se-
mantics would require human labeling, therefore,
we used the greedy approach and have observed
that utilizing hash tag contents significantly im-

proves the effectiveness of the models.

3.5 Results on Validation Set

The accuracies of binary classification models for
each affect category are presented in Figure 3. We
compare the models’ performances with majority
baselines where the percentage of the class value
that occurs most is taken as the majority baseline
for each class.

4 Results

In this section, we report the results for the test set
as well as discussion on the results.
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Figure 3: Accuracies per affect category. Majority baseline of each class is compared to the performance of the
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Figure 4: The distribution of false positives and false
negatives for observations that are classified incorrectly
in the test set.

4.1 Experimental Results

For all of our experiments, we used SAS Deep
Learning Toolkit. We utilized an environment
with 4 workers, with 24 threads in each worker,
and mini-batch size per thread on each worker was
6. Adam optimizer is used in all experiments.

Using the test set, the proposed model achieved
a 0.398 accuracy, 0.539 micro-avg F1, and 0.358
macro-avg F1. A random baseline achieves 0.185
accuracy, 0.307 micro-avg F1, and 0.285 macro-
avg F1. Compared to the random baseline, the
generic RNN model is quite successful at identi-
fying affect categories.

4.2 Discussion

Some of the affect categories have very few posi-
tive examples, therefore it is very difficult for clas-
sifiers to learn nuances of those affects. For exam-
ple, surprise and trust categories have 96.05% and
95.15% majority baselines respectively. In other
words, only 4-5% of all training set observations
have these affect categories as true.
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As can be seen in Figure 4, when the num-
ber of positive observations are limited, the clas-
sifiers tend to make more false negatives. For af-
fect categories that have a major class value that
is dominant, we experimented with sampling as
well where the number of positive and negative
examples were equal. However, that made the
dataset significantly smaller, further making it dif-
ficult for the RNN models to learn distinctions.
Rather than using smaller datasets or including
external data, we prefer to employ binary mod-
els. One of the main advantages of using binary
models over multi-label models is to better deal
with the uneven distribution of positive examples
across classes.

5 Conclusion

Affect identification without visual cues is a chal-
lenging task, making the text as the only source of
information that can be used for machine learning
models. This problem gets more challenging as
the text data gets limited by the number of charac-
ters in Twitter.

This paper presented a simple yet effective ap-
proach for classifying affect categories of Tweets.
The main motivation of this paper was to evalu-
ate how well a domain-independent RNN model
can perform for classifying affects. Therefore,
no domain-dependent source of information such
as affective lexicons or pre-trained affect features
are used. We built binary classification mod-
els per each affect category. The results showed
that RNNs are powerful enough to outperform the
baselines significantly, even without prior knowl-
edge about the domain and with a relatively small
dataset.
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Abstract

In this paper, we describe our contribution in
SemEval-2018 contest. We tackled task 1 “Af-
fect in Tweets”, subtask E-c “Detecting Emo-
tions (multi-label classification)”. A multi-
label classification system Tw-StAR was de-
veloped to recognize the emotions embedded
in Arabic, English and Spanish tweets. To
handle the multi-label classification problem
via traditional classifiers, we employed the bi-
nary relevance transformation strategy while
a TF-IDF scheme was used to generate the
tweets’ features. We investigated using sin-
gle and combinations of several preprocess-
ing tasks to further improve the performance.
The results showed that specific combinations
of preprocessing tasks could significantly im-
prove the evaluation measures. This has been
later emphasized by the official results as our
system ranked 3™ for both Arabic and Spanish
datasets and 14" for the English dataset.

1 Introduction

Social media platforms and micro-blogging sys-
tems such as Twitter have recently witnessed a
high rate of accessibility (Duggan et al., 2015).
Tweets usually combine multiple emotions ex-
pressed by the appraisal or criticism of a spe-
cific issue. Sentiment analysis represents a coarse-
grained opinion classification as it detects either
the subjectivity (objective/subjective) or the po-
larity orientation (positive, negative or neutral)
(Piryani et al., 2017).

For opinionated texts which are usually rich
of several emotions, a fine-grained analysis is
needed. Through such analysis, specific emotions
can be recognized within a tweet which is crucial
for many applications. For instance, recognizing
anger emotions in the tweets representing the cus-
tomers’ opinions about a specific service in a hotel
would definitely help to take the proper response
to keep the customers satisfied (Li et al., 2016).
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Existing MLC systems are conducted either by
problem transformation approaches or algorithm
adaptation ones. Each of which combines several
methods and has different merits. While problem
transformation methods are simpler and easier to
implement, algorithm adaptation methods have a
more accurate performance but with a high com-
putational cost (Zhang and Zhou, 2014). There-
fore, to develop a multi-label classifier that com-
bines the simplicity of the problem transformation
methods along with accurate performance remains
an interesting issue to investigate.

Since preprocessing tasks have been found of
positive impact on sentiment analysis of differ-
ent languages (Haddi et al., 2013; Yildirim et al.,
2015; El-Beltagy et al., 2017), we hypothesize
that the application of single or combinations of
various preprocessing techniques on tweets before
feeding them to the multi-label emotion classifier,
can improve the classification performance with-
out the need to complex methods that consider the
dependencies between labels.

Here, we describe the participation of our team
“Tw-StAR” (Twitter-Sentiment analysis team for
ARabic) in Task 1, subtask E-c, in Arabic, English
and Spanish tweets (Mohammad et al., 2018). This
task requires classifying the emotions embedded
in tweets into one or more of 11 emotion labels.

To accomplish this mission, we have subjected
tweets to single or combinations of the follow-
ing preprocessing techniques: stopwords removal,
stemming, lemmatization and common emoji
recognition and tagging. Manipulated tweets were
then fed into a multi-label classifier built via one of
the problem transformation approaches called Bi-
nary Relevance (BR) and trained with TF-IDF fea-
tures using the Support Vector Machines (SVM)
algorithm. Experimental study indicated the pos-
itive impact of stopwords removal, emoji tag-
ging and lemmatization on the classification per-
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formance. This was emphasized later through the
contest’s official results as Tw-StAR performed
well in multi-label emotion classification of the
three tackled languages where it was ranked third,
for Arabic and Spanish and 14th for English.

2 Multi-Label Classification Approaches

Unlike single-label classification (binary or multi-
class) which classifies an instance into one of two
or more labels, each instance in MLC can be asso-
ciated with a set of labels at the same time (Zhang
and Zhou, 2014). MLC problems have been tar-
geted either by algorithm adaptation or problem
transformation methods.

2.1 Algorithm Adaptation Methods

Adapt traditional classification algorithms used
in binary and multi-class classification to per-
form MLC such that multi-label outputs are ob-
tained. Using these methods, several machine
learning (ML) algorithms such as k-nearest neigh-
bors (KNN), decision trees (DT) and neural net-
works were extended to address MLC (Tsoumakas
et al., 2009).

2.2 Problem Transformation Methods

Rather than modifying the classification algo-
rithm, these methods alter the MLC problem it-
self by converting it into one or multiple single-
label classification problems that could be handled
by traditional single-label classifiers (Tsoumakas
et al., 2009). The most popular strategies used to
conduct such transformation are:

e Label Powerset (LP): transforms an MLC
problem to a multi-class classification prob-
lem where the classes represent all the possi-
ble combinations of the given training labels.
After transformation, each input instance is
associated with a unique single class contain-
ing a potential combination of labels. Hence,
LP strategy explicitly models label correla-
tions which leads to more accurate classifica-
tion however, it usually suffers from sparsity
and overfitting issues (Alali, 2016).

Binary Relevance (BR): decomposes the
MLC problem into several single-label bi-
nary classification sub-problems; each of
which corresponds to one label. Thus, for
each sub-problem responsible of a specific la-
bel, a separate binary classifier is trained on
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the original dataset with the objective of de-
termining the relevance of its particular la-
bel for a given instance. The predicted labels
by all binary classifiers for a certain instance
are then merged into one vector resulting in
the multi-label class of this instance (Cher-
man et al., 2011). As BR is implemented in
parallel and scales linearly, it forms a low
cost solution to MLC problems (Read et al.,
2011; Luaces et al., 2012). Several ML al-
gorithms were used with BR approach such
as KNN, DT and SVM. According to (Mad-
jarov et al., 2012), SVM-based methods suit
small datasets and perform better than DTs
especially for domains with large number of
features as in text classification since they ex-
ploit the information from all the features,
while DTs use only a (small) subset of fea-
tures and may miss some crucial information.

3 Tw-StAR Framework

To recognize the emotions embedded in the Ara-
bic, English and Spanish datasets (Mohammad
etal., 2018), Tw-StAR was applied on tweets con-
tained in the provided datasets using the following
pipeline:

3.1 Preprocessing

* Initial Preprocessing: for all datasets, a com-
mon initial preprocessing step that includes
removing the non-sentimental content such
as URLs, usernames, dates, digits, hashtags
symbols, and punctuation was performed.

Stopwords Removal (Stop): Stopwords are
function words with high frequency of pres-
ence in texts; they usually do not carry sig-
nificant semantic meaning by themselves.
Therefore, it is preferable to ignore them
while analyzing a textual content. In this task,
Arabic was targeted by a list of 1,661 stop-
words provided by the NLP group at King
Abdulaziz Universityl. For English, we used
a list of 1,012 words resulted from combin-
ing the list published with the Terrier pack-
age® and the list of snowball®. In Spanish, a
list of 731 words from snowball # was used.

"https://github.com/abahanshal/arabic-stop-words-list1

“https://bitbucket.org/kganes2/text-mining-resources/
3http://snowball.tartarus.org/algorithms/english/stop.txt
*http:/snowball.tartarus.org/algorithms/spanish/stop.txt



* Stemming (Stem): concerns about reducing
the variants of a word to their shared ba-
sic form (stem) or root. Therefore, it en-
ables decreasing the vocabulary and increas-
ing the recall (Darwish and Magdy, 2014).
In the current study, we used ISRI stem-
mer (Taghva et al., 2005) for Arabic, Porter2
(Porter, 1980) for english and Snowball for
Spanish®. ISRI stemmer does not use a root
dictionary and provide a normalized form for
words whose root are not found. This is done
through normalizing the hamza, removing di-
acritics representing vowels, remove connec-
tor o if it precedes a word beginning with o,
etc. The English stemmer returns the root of
a word by removing suffixes related to plu-
ral, tenses, adverbs, etc. Finally, the Snowball
stemmer used for Spanish translates the rules
of stemming algorithms expressed in natural
way to an equivalent program.

¢ Lemmatization (Lem): removes inflectional
endings only and returns the base or dictio-
nary form of a word. Farasa (Abdelali et al.,
2016) lemmatizer was employed for Arabic
while Treetagger (Schmid, 1995) was used
for both English and Spanish. Farasa uses
SVMrank to rank possible ways to segment
words to prefixes, stems, and suffixes. On the
other hand, TreeTagger® forms a language-
independent tool for annotating text with
part-of-speech and lemma information in-
cluded.

¢ Common Emoji Recognition (Emo): we fixed
a list of nine categories of the most common
emoji detected in the tweets through UTF-8
encoding. Each emoji is replaced with a tag
that implies the emoji’s emotion. The tags
included: AngryEmoj, HappyEmoj, FearE-
moj, LoveEmoj, SadEmoj, SurpriseEmoj,
DisgustedEmoj, OptimistEmoj and Pessimis-
mEmoj. Thus, a tweet such: “I hung up on my
manager last night ©” will be replaced by: “I
hung up on my manager last night SadEmoj”.

3.2 Feature Extraction

Vector space model (VSM) was used to generate
the features vectors. Each tweet was represented
using a vector containing all corpus words denoted

>http://snowball.tartarus.org/texts/introduction.html

®http://www.cis.uni-muenchen.de/ schmid/tools/Tree Tagger/

by their number of occurrences in this tweet re-
ferred to as term frequency (tf). A larger value
of a term frequency indicates its prominence in a
given tweet, however, if this term appears in too
many tweets it will be less informative such as
stop words (Maas et al., 2011). Therefore, to en-
hance the classification and reduce the dimension-
ality, we focused on the most discriminative terms
through applying Term Frequency-Inverse Docu-
ment Frequency (TF-IDF) weighting scheme. This
scheme increases the weight of a term proportion-
ally to the number of times a term appears in the
document, but is often offset by the frequency of
the term in the corpus, which means how many
documents it appears in (Taha and Tiun, 2016).

3.3 Emotions Classification

Having the data transformed using the BR method
and the TF-IDF features generated, tweets were
fed into a multi-label SVM classifier with the lin-
ear kernel. This classifier adopts one-Vs-All strat-
egy such that each label has its own binary classi-
fier. Consequently, a number of binary SVM clas-
sifiers equals to the number of emotion labels were
trained in parallel to recognize the emotions em-
bedded in a tweet.

4 Results and Discussion

The proposed model Tw-StAR was applied on
Arabic, English and Spanish multi-labeled tweet
datasets; their statistics are listed in Table 1.

Using One-Vs-All SVM classifier from Scikit-
learn’, Tw-StAR was trained to recognize the fol-
lowing emotions: anger, anticipation, disgust, fear,
joy, love, optimism, pessimism, sadness, surprise,
trust in addition to “noEmotion” label that de-
notes tweets that have none of the previous emo-
tions. Within the presented framework, the pre-
processing tasks listed in Section 3 were exam-
ined separately and combined. This enabled defin-
ing the preprocessing technique/combination for
which the MLC performance of each language is
better improved.

Tables 2, 3 and 4 list the results obtained
for each language when applying several sin-
gle/combinations of preprocessing tasks where ac-
curacy, macro average f-measure and micro aver-
age f-measure are referred to as (Acc.), (Mac-F)
and (Mic-F) respectively.

"http://scikit-learn.org
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Language | Train | Dev | Test

Arabic 2,278 | 585 | 1,518
English 6,838 | 886 | 3,259
Spanish 3,559 | 679 | 2,854

Table 1: Statistics of the used datasets.

Preprocessing Acc. | Mic-F | Mac-F
Stop 0.38 | 0.509 | 0.367
Stem 0.431 | 0.559 | 0.424
Emo 0.414 | 0.543 | 0.39
Stem+Stop 0.434 | 0.564 | 0.435
Emo+Lem+Stop | 0.434 | 0.561 | 0.415
Emo+ Stem+Stop | 0.449 | 0.58 0.444

Table 2: Preprocessing impact on Arabic MLC.

Preprocessing Acc. | Mic-F | Mac-F
Stop 0.39 | 0.482 | 0.381
Stem 0.398 | 0.484 | 0.368
Emo 0.402 | 0.501 | 0.384
Stem+Stop 0.409 | 0.492 | 0.379
Emo+Lem+Stop | 0.431 | 0.523 | 0.413
Emo+ Stem+Stop | 0.428 | 0.518 | 0.401

Table 4: Preprocessing impact on Spanish MLC.

L. | Team(R.) Acc. | Mic | Mac
A. | EMA(1) 0.489 | 0.618 | 0.461
Tw-StAR(3) 0.465 | 0.597 | 0.446
E. | NTUA-SLP(1) 0.588 | 0.701 | 0.528
Tw-StAR(14) 0.481 | 0.607 | 0.452
S. | MILAB-SNU(1) | 0.469 | 0.558 | 0.407
Tw-StAR(3) 0.438 | 0.520 | 0.392

Preprocessing Acc. | Mic-F | Mac-F
Stop 0.446 | 0.577 | 0.429
Stem 0.449 | 0.58 0.443
Emo 0.459 | 0.588 | 0.434
Stem+Stop 0.462 | 0.593 | 0.458
Emo+Lem+Stop | 0.48 | 0.606 | 0.461
Emo+ Stem+Stop | 0.475 | 0.602 | 0.466

Table 3: Preprocessing impact on English MLC.

Table 2 clearly suggests that for the Arabic
tweets, stemming using ISRI stemmer improved
the accuracy by 5.1% percentage points com-
pared to that scored by stopwords removal was ap-
plied. Moreover, combining stemming with stop-
words removal could further improve the micro
F-measure as it increased from 55.9% to 56.4%.
This is due to the fact that ISRI can handle wider
range of Arabic vocabulary as it returns a normal-
ized form of words having no stem rather than re-
taining them unchanged (Kreaa et al., 2014).

Unlike Arabic dataset, Table 3 and Table 4 show
that stemming had a different behavior when it
was applied on both English and Spanish tweets.
Compared to the accuracy achieved by stopwords
removal, stemming has slightly increased the ac-
curacy by 0.3% and 0.8% in English and Span-
ish datasets respectively. This could be related to
the insufficiency of the stemming algorithms em-
ployed by both porter2 and snowball stemmers
to handle informal English and Spanish tweets.
Lemmatization by Treetagger, however, was a bet-
ter choice to handle English and Spanish terms as
it forms a language-independent lemmatizer with
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Table 5: Tw-StAR official ranking.

implicitly POS tagger included. Thus, combining
emoji tagging with lemmatization and stopwords
removal could achieve the best performances with
a micro average F-measure of 60.6% and 52.3%
for English and Spanish respectively.

Since the provided tweets were rich of emoji,
emoji tagging could effectively contribute in im-
proving the performance in all datasets espe-
cially when it was combined with the other best-
performed tasks such as stem+stop in Arabic and
lem+stop in both English and Spanish. This led
to the best performances as the achieved micro
F-measure was 58%, 60.2% and 52% in Arabic,
English and Spanish datasets respectively. Hence,
these preprocessing combinations were adopted
for the official submission. Table 5 lists the offi-
cial results of Tw-StAR against the systems ranked
first for each language where (L.), (A.), (E.),
(S.), (R.) Mic) and (Mac) refer to language, Ara-
bic, English, Spanish, rank, micro and macro f-
measure respectively.

5 Conclusion and Future Work

Here we emphasized the key role of preprocessing
in emotion MLC. Stemming, lemmatization and
emoji tagging were found the most effective tasks
for emotion MLC. For the future work, the ob-
tained performances would be further improved if
negation detection was included to infer the nega-
tive emotions. Moreover, other ML methods could
be examined with BR and deep neural models.
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Abstract

The paper describes our approach for
SemEval-2018 Task 1: Affect Detection
in Tweets. We perform experiments with
manually compelled sentiment lexicons and
word embeddings. We test their performance
on twitter affect detection task to determine
which features produce the most informative
representation of a sentence. We demon-
strate that general-purpose word embeddings
produces more informative sentence repre-
sentation than lexicon features. However,
combining lexicon features with embeddings
yields higher performance than embeddings
alone.

1 Introduction

The paper describes our approach for SemEval-
2018 Task 1: Affect Detection in Tweets (Moham-
mad et al., 2018).

The research question we address in this paper
is what are the best features for tweet affect de-
tection. Our solution uses two types of features:
lexicon features obtained from manually compiled
emotion lexicons, and word embeddings built un-
supervisedly from large corpora. We use well
established lexicons, namely DepecheMood and
Vader Sentiment, and most popular Word embed-
dings, namely GloVe and Google News. We sys-
tematically compare all features on two subtasks
and demonstrate that even though lexicon features
produce unsatisfactory results in isolation, they
significantly improve an algorithm performance
when combined with more general embeddings.

In addition, we demonstrate that special treat-
ment of Twitter hash-tags also improves the algo-
rithm performance.

2 Tasks and Data

The paper addresses three subtasks:
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Task Train | Dev Test
El-reg all emotions 7102 | 1464 | 71816
anger 1701 388 | 17939

fear 2252 389 | 17923

joy 1616 | 290 | 18042

sadness 1533 397 | 17912

V-reg 1181 449 | 17874
E-c 6838 886 | 3259

Table 1: Training, development and test set split for
three subtasks

e El-reg—an emotion intensity regression
task: Given a tweet and an emotion E, de-
termine the intensity of E that best repre-
sents the mental state of the tweeter—a real-
valued score between O (no E at all) and 1 (the
highest magnitude of E); separate datasets are
provided for fear, sadness, anger, and joy.

V-reg—a sentiment intensity regression task:
Given a tweet, determine the intensity of sen-
timent or valence (V) that best represents
the mental state of the tweeter—a real-valued
score between 0 (most negative) and 1 (most
positive).

E-c—an emotion classification task: Given a
tweet, classify it as 'neutral or no emotion’
or as one, or more, of eleven given emo-
tions that best represent the mental state of
the tweeter: trust, sadness, disgust, fear, opti-
mism, love, joy, pessimism, anticipation, sur-
prise, and anger.

We use English data for all three subtasks. The
train, development and test set sizes are shown in
Table 1. More details on the data can be found in
the task organizers’ paper (Mohammad and Kir-
itchenko, 2018).
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3 Approach

3.1 Baseline

As a baseline we use the Text-Processing API!.
The API uses a Naive Bayes model trained us-
ing movie reviews and NLTK. The model returns
probabilities for negative, positive and neutral la-
bels. Negative and positive probabilities sum to 1
while neutral probability stands alone.

3.2 Lexicon Features

3.2.1 DepecheMood

DepecheMood (Staiano and Guerini, 2014) is
an emotion lexicon collected using crowdsourc-
ing. The respondents annotated news articles with
eight predefined emotions: afraid, amused, angry,
annoyed, dont_care, happy, inspired, sad. Docu-
ment annotations were then used in a dimension-
ality reduction algorithm to obtain word emotional
scores. The lexicon contains approximately 37
thousand entry. Each entry consists of a word and
eight values between 0 and 1, one value for each
emotion.

3.2.2 Vader

Vader (Valence Aware Dictionary and sEntiment
Reasoner) is a rule-based sentiment analysis tool
and a lexicon specifically attuned to sentiments ex-
pressed in social media, such as Twitte (Hutto and
Gilbert, 2014). The lexicon consists of more than
7000 term, which were compelled from other lexi-
cons and then manualy annotated. Git repository?
of Vader Sentiment toolkit provides function po-
larity_scores which takes as an input a text and re-
turns 4-dimensional feature vector, which contains
negative, positive, neutral and compound scores.

3.3 Embeddings
3.3.1 GloVe

GloVe (Pennington et al., 2014) is an unsupervised
algorithm that constructs embeddings from large
corpora. The GloVe project * provides a number
of models trained on various collections. We use
the following two models:

1. Common Crawl: 300-dimensional vectors
trained on huge Internet corpus of 840 billion
tokens and 2.2 million distinct words.

"http://text-processing.com/api/sentiment/
2https://github.com/cjhutto/vaderSentiment
3https://nlp.stanford.edu/projects/glove/
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2. Twitter Crawl: 200-dimensional vectors
trained on 2 billion tweets with 27 billion to-
kens and 1.2 million distinct words.

3.3.2 Google News

We use word2vecs (Mikolov et al., 2013) embed-
ding trained on Google News collection*, which
have become almost standard embeddings since
they are most frequently used in various research
tasks. These embeddings are 300-dimensional
vectors built using Google News dataset of 100
billion tokens and 3 million distinct words and
phrases.

3.4 Method

We use various combinations of baseline, lexicon
and embedding features, described above. Text-
processing API and Vader return text-level fea-
tures. For other sources a tweet representation is
built by averaging the word vectors. Concatena-
tion is used to combine features obtained from var-
ious sources.

We run several preliminary experiments with V-
reg task to compare several algorithms, namely
Gradient Boosting Regressor and Random For-
est. We use sklearn implementations . Gradient
Boosting Regressor yields the best performance
for all feature combinations (Table 2). In our of-
ficial submission we apply Gradient Boosting Re-
gressor for tasks El-reg and V-reg, and Gradient
Boosting Classifier for task E-c.

Hash-tags are special types of tokens in Twitter
used to specify a topic or a context for a given mes-
sage. They frequently contain emotional words.
Here are several examples from the dataset:

o @leesyatt you are a cruel, cruel man.

#therewillbeblood #revenge.
e can'’t believe Achilles killed me! #angry.

o Worst juror ever? Michelle. You were
Nicole’s biggest threat. #bitter #bbl8.

o All hell is breaking loose in Charlotte.
#CharlotteProtest #anger #looting.

e straight people are canoodling on the quad

and I'm #offended .

Thus, we try two different setting: first, process-
ing hash-tags similar to all other words in the text;

“https://code.google.com/archive/p/word2vec/
Shttp://scikit-learn.org



Feature set Task
El-reg V-reg
anger  fear joy  sadness || Boost ‘ RF
Baseline | 30.83 [ 30.76 [ 43.07 | 31.67 || 50.02 | 40.66 |
Lexicon
DepecheMood 16.08 | 19.00 | 27.69 10.15 || 24.57 | 18.34
Vader 39.89 | 42.07 | 46.58 34.39 || 52.51 | 45.40
All Lexicons 4291 | 42.31 | 45.20 33.56 || 54.02 | 50.43
Embeddings
Glove Twitter 54.55 | 51.38 | 43.44 52.21 || 65.97 | 56.90
GloVe Common Crawl 46.93 | 53.98 | 43.66 56.31 || 66.38 | 59.26
Google News 51.32 | 5445 | 42.24 54.10 || 64.54 | 54.30
Glove Twitter + # 58.15 | 60.32 | 54.60 57.20 || 69.92 | 59.19
GloVe Common Crawl + # 54.92 | 61.33 | 53.73 59.00 || 70.43 | 64.05
Google News + # 53.09 | 59.42 | 55.77 57.15 || 67.44 | 56.38
All Embeddings 59.01 | 62.97 | 56.42 60.33 | 70.48 | 60.38
Combined features

Lexicons + Baseline 4493 | 48.63 | 50.40 41.70 || 60.12 | 56.03
Lexicons + Embeddings 65.89 | 65.82 | 59.90 65.64 || 73.00 | 64.96
Lexicons + Embeddings + Baseline | 64.09 | 66.95 | 63.80 65.73 || 72.35 | 65.93

Table 2: Experimental results for on development set for two subtasks. Pearson correlation. Gradient Boosting
Regressor is used for the El-reg subtask. Gradient Boosting Regressor (Boost) and Random Forest (RF) is used
for V-reg. # means that hash-tags are used separately as additional features.

second processing hash-tags separately to preserve
authors’ encoding of their emotions. The second
strategy consistently yields better results as can be
seen from Table 2.

4 Discussion

Comparisons of feature sets and algorithms are
presented in Table 2. As can be seen from the ta-
ble, results are consistent: emeddings yield higher
performance than lexicon features for all tasks.
DepechMode, even though it has five times more
entries than Vader, seems to be less suitable for
tweet emotion prediction and yields performance
much lower than the baseline. Moreover, using
both lexicons in combination not always improves
performance and in some cases works even worse
than Vader alone.

There is no significant difference between dif-
ferent embeddings. Various embeddings achieve
better performance depending on the task, though
the best results obtained by using all three in com-
bination.

It can also be seen from Table 2 that sepa-
rate treatment of hash tags improves model per-
formance. For example, for joy detection task the
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difference is about 10%, which means that joy is
frequently expressed explicitly in hash tags.

The best results for all tasks obtained by using
all feature sets in combination (with the only ex-
ception of angry intensity detection subtask). This
makes an improvement in 5.5% for anger detec-
tion subtask, 4% for fear, 7.5% for joy, 5.4% for
sadness, and about 2% for sentiment intensity de-
tection subtask. This means that even though lexi-
cons cannot be used by themselves to detect emo-
tions, they provide important features that can-
not be extracted from embeddings. We hypothe-
size that the main reason for that is low coverage,
meaning that many tweets have few lexicon fea-
tures or no such features at all.

The coverage of the task corpora by various fea-
ture sets is presented in Table 3. It can be seen
from the table that embeddings have much higher
coverage than DepecheMood lexicon. Another in-
teresting observation is that GloVe Twitter does
not have a higher coverage than GloVe Common
Crawl though GloVe Twitter has higher coverage
of hash-tags.



Feature set Task
El-reg V-reg

anger fear joy sadness

<1 #| <[ #] <] #]| <] #] <] #
DepecheMood 534 52.5 53.6 54.74 53.1
GloVe Common Crawl | 86.0 | 6.2 | 85.1 | 6.2 | 85.2 | 49 | 874 | 48 | 85.3 | 4.5
GloVe Twitter 80.1 | 6.5 |80.1 | 6.5|820 52827 |51 ]|817 |47
Google News 74.6 | 57 |74.6 |58 |75.1|45|769 |45 |755 |42

Table 3: Data coverage for various feature sets, percent of word usages. Legend: # - coverage of hash tags, < -

coverage of all other words.

Baseline ‘ 3
Lexicon features
DepecheMood 8
Vader 4
Embeddings
GloVe Common Crawl | 300
Glove Twitter 200
Google News 300

Table 4: Feature sets and their dimensionality.

5 Results

The best model, used in our officially submitted
solution, exploits all six feature sets plus separate
embedding vectors for hash-tags. The list of fea-
ture sets and their dimensionality is presented in
Table 4.

The official results for El-reg and V-reg tasks
are presented in Table 5. We report results for all
instances and for instance with highest emotion in-
tensity. The numerical values are similar to what
we obtained on the development set. The official
results for E-c classification task are presented in
Table 6.

6 Conclusion

In this paper we presented our approach for Se-
mEval Affect Detection in Tweets Task. We com-
pare manually collected lexical features with em-
beddings automatically extracted from huge cor-
pora. We demonstrated that even though lexi-
cons are less suitable for affect detection in tweets
due to low coverage they can improve model per-
formance when lexical features are used together
with more general embeddings.

In addition, we demonstrated that hash tags are
important features for tweet affection detection,
since they frequently include emotional words.
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\ All instances \ Gold in 0.5-1

El-reg
Anger | 65.4/82.7 52.6/70.8
Fear | 67.2/77.9 49.7/60.8
Joy | 64.8/79.2 42.0/56.8
Sadness | 63.5/79.8 51.7/66.6
Macro-avg | 65.3/79.9 49.0/63.8
V-reg
| 78.2/873 [ 62.1/69.7

Table 5: Official results for El-reg (emotion intensity
regression) and V-reg (valence intensity regression).
Scores are given in the format X /Y , where X is our
result, and Y is the best official result on the task. Pear-
son correlation.

Accuracy
47.7/58.8

micro-avg F1
61.0/70.1

macro-avg F1
41.6/52.8

Table 6: Official results for E-c (emotion classification)
task. Scores are given in the format X /Y , where X is
our result, and Y is the best official result on the task.

In this paper we used rather simplistic methods
to combine various features, i.e., vector concatena-
tion. In the future we plan to try another approach:
to build a separate classifier for each feature set
and then use a meta classifier on top of their re-
sults.

Repository

Repository with the code is located on the fol-
lowing URL link: https://github.com/
dmikrav/SemEval2018AffectsTweets

The web-site to this project is on the following
URL  link: https://dmikrav.github.io/
SemEval2018AffectsTweets/
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Abstract

The ,,Affect in Tweets” task is centered on
emotions categorization and evaluation
matrix  using multi-language  tweets
(English and Spanish). In this research,
SemEval Affect dataset was preprocessed,
categorized, and evaluated accordingly
(precision, recall, and accuracy). The
system described in this paper is based on
the implementation of supervised machine
learning (Naive Bayes, KNN and SVM),
deep learning (NN Tensor Flow model),
and decision trees algorithms.

1 Introduction

Emotion Analysis is still a challenging task in
NLP (Natural Language Processing); the
researchers try to recognize not only emotions
“generally speaking” but also their intensity.
Because the level of subjectivity is particularly
high in this matter, prediction of emotions,
mainly in text, demands for continuous research
and  improvement  strategies. SemEval
competition has already a tradition in
developing tasks to address this subject. This
year proposed an even more challenging task:
emotion intensity prediction in tweets.

Within this context, this present study aims
to develop a system that can not only detect
emotions but also their intensities, namely
emotion intensity regression and emotion

daniela.gifu,

dtrandabat}@info.uaic.ro

flescan.alexandra}@gmail.com

intensity ordinal classification tasks for fear,
joy, sadness and anger. Better results are finally
provided thanks to the combination between
neural network and proper decision tree
algorithms.

From the four tasks, namely: El-reg, El-oc,
VAD-reg, and VAD-oc, the system focuses on
the first two of them, for both English and
Spanish datasets, according to their relation
with the emotion concept.

While tweets annotation, emotion intensity
regression and emotion intensity ordinal
classification is an active field of emotion
analysis, we believe that a supervised machine
learning (Naive Bayes, KNN and SVM), deep
learning approach (NN Tensor Flow model), and
decision trees would increase the effectiveness
of this system.

2 State of the Art

Some of the most used technologies which led
to considerable results and step forwards in the
domain of sentiment analysis are mainly
represented by machine learning algorithms
which already have led to impressive results can
be thoroughly analyzed in several studies such
as: the work of Bac Huy Nguyen (2015); latent
semantic analysis (LSA) by Andrew et al
(2014), support vector machines in the work of
Rohini S. Rahate and Emmanuel M, (2013),
grammatical dependency relations, Support
Vector Regression (SVR), and Neural Networks.
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An important work has been done by the
tool IZU-NLP at EmoInt-2017 (Yuanye He et al.,
2017), meant to determine numerical values that
would represent the emotion intensity in a
tweet. There are researchers who prefer to
combine several methods in order to achieve
better results. For instance, in the paper of
Sreekanth Maunendra and  Sankar Desarkar
(2017) there were implemented three regression
methods: (1) content-based features (ex.
hashtags, emoticons); (2) training based on
word and character n-grams; and finally (3)
lexicons, word embeddings, word n-grams and
character n-grams all together.

Best-Worst Scaling (BWS) was highly
valued in the work of Saif M. Mohammad and
Felipe Bravo-Marquez (2017) when producing
the first datasets of tweets annotated for
sentiment intensities (anger, fear, joy, and
sadness).

Some existing tools and resources that
enlarged the perspective and built the basis of
sentiment analysis are: Emo-Int2017, NRC
Emotion lexicon, Best-Worst Scaling resources;
VADER-Sentiment-Analysis, SentiWordNet
(Andrea Esuli et al, 2010), NLTK Sentiment
Analyze, and Affective Tweets. All these works
prove the interest of researchers on this subject
and the fast evolution of this specific domain in
time.

In the context of the Semeval Competition,
we developed a system for emotion intensity
and ordinal classification of the subtasks
already stated above.

3 Dataset and method

3.1 Data set

The SemEval affect dataset used in this work
contains an annotated set multi-language tweets
(English and Spanish).

For each emotion (anger, fear, sadness, joy) we
had 3 sets of data (for train, developing and
test).

The English data set was revised by Hardik
Meisheri Dec 5, 2017 consisting of ~100
million English tweet ids and for Spanish the
data set released on Dec 5, 2017 containing
~1.2 million Spanish tweet ids.

3.2 Method

This research is oriented towards the first two
tasks of SemEval so it will contain two

components, one for Task El-reg and the other
one for Task El-oc. The first step was to
preprocess the development data set in multiple
stages as follows: basic cleaning (Ids, useless
stopwords, emoticons), tokenization and parsing
to make data less repetitive. Then we apply the
NN Tensor Flow model, the basic one, offered
by Python with 600 neurons and with a layer of
1 to 1000.

The neural network was trained separately
for each language using the same configuration.
Once we obtained the results, we applied a
Decision Tree Algorithm in order to refine them.
For all subtasks we use Neural Network Tensor
Flow (NNTF): Analyzing Tweet's Sentiment
with Character-Level LSTMs NN Tensor Flow -
python implemented neuronal network with the
same parameters for the El-oc subtask, we
improved our results by implementing also the
classifiers from pattern.vector. The algorithms
are based on three big approaches - they
implement the Naive Bayes, KNN and SVM
classifiers respectively. Even though machine
learning and neural networks gave decent result,
the difficulty in controlling the actual reasoning
implied the necessity of adding a refining
algorithm that would improve final results. An
algorithm that would meet this condition is the
Decision Tree Classification, a Weka J48
implementation that was improved by adding an
algorithm used to generate same decision trees:
check for base classification (this classification
should be done by the first method described in
this paper - NN Tensor Flow); for each
score/class; find the normalized score;
best_score will be the highest normalized score,
this will be the root; create a decision node that
splits on best score; search on the sublists
obtained by splitting on best score; add those
nodes as child of node.

For development and training we used the
results from the first method for both English
and French.

4 Results and Observations

In both sets of results we will notice that the
best results were obtained in the single positive
feeling dataset - the one for joy. For El-reg, the
lowest result was registered for anger
(accuracy), while the highest was the recall for
joy. For El-oc the best result is in the precision
of joy, the lowest result being again in accuracy,
but this time for sadness.
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The implementation of the Decision Tree identifying manually certain patterns and
Algorithm leads to growth and uniformization indices about intensity = and/or  their
of the results in the El-reg subtask, while it classification.
NNTF + Classification Algorithm
El-reg El-oc
Anger Fear Sadness Joy Anger Fear Sadness Joy

a | (.386667 | 0.595735 | 0.530067 | 0.684391 | 0.672700 | 0.66000 | 0.612000 | 0.734700
r| 0478723 | 0764934 | 0573668 | 0.873777 | 0.673000 | 0659000 | 0.620100 | 0.735000
P | 0424373 | 0.449689 | 0.524746 | 0.524566 | 0.709000 | 0.68700 | 0.646300 ( 0.747000

Table 1. NNTF and Classification Algoithm Results (a-accuracy, r-recall, p-precission)

lowers those from El-oc.

This being said, it becomes clear that for
ordinal classification (El-oc) NNTF is
preferred, while the additional Decision Tree

It would have been rather interesting to

have a balance between the negative and
positive emotions (the Semeval Competition
providing us with three negative and only one

Decision Tree Classification
El-reg El-oc
Anger Fear Sadness Joy Anger Fear Sadness Joy
a| (0.41986 | 0.502864 | 0.545383 | 0.634932 | 0.410097 | 0.438484 | 0.408765 | 0.510735
r| 0.437653( 0338493 | 0535273 | 0.669248 | 0418998 | 0.440084 | 0.408763 | 0.510374
p| 0436753 0.527790 [ 0.530400 | 0.659200| 0.418843 | 0.430864 | 0.403659 0.511037

Table 2. Results obtained after implementing the Decission Tree Algorithm (a-accuracy, r-recall, p-precission)

Algorithm helps the improvement of intensity
detection.

5 Conclusions

Within our project, we succeeded to obtain
relevant results as participants in Semeval-Task
1 Affect in Tweets, by implementing machine
learning and decision tree algorithms.

A constant concern relates to the modalities
of sentiment summarization and visualization.
When the results of sentiment analysis tasks
need to be presented to an end user, a
corresponding level of uncertainty should be
taken into account (uncertain results shown as
certain may lead to incorrect conclusions). Of
course it is clear that we may increase it by

positive emotion.) Much and interesting work is
to be done as we speak about such a subjective
part and manifestation of human mind -
emotions.
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Abstract

We propose a novel attentive hybrid GRU-
based network (SAHGN), which we used at
SemEval-2018 Task 1: Affect in Tweets.
Our network has two main characteristics,
1) has the ability to internally optimize its
feature representation wusing attention
mechanisms, and 2) provides a hybrid rep-
resentation using a character-level Convo-
lutional Neural Network (CNN), as well as
a self-attentive word-level encoder. The key
advantage of our model is its ability to sig-
nify the relevant and important information
that enables self-optimization. Results are
reported on the valence intensity regression
task.

1 Introduction

Affect analysis is one of the main topics of nat-
ural language processing (NLP). It involves many
sub-tasks such as sentiment and valence analyses
expressed in text. We focus on the task of determin-
ing valence intensity.

Hand-crafted features and/or sentiment lexicons
are commonly wused for affect analysis
(Mohammad, Kiritchenko, & Zhu, 2013; Taboada,
Brooke, Tofiloski, Voll, & Stede, 2011) with clas-
sifiers such as random forest and support vector
machines (SVM).

Affect in tweets (AIT) is a challenging task as it
requires handling an informal writing style, which
typically has many grammar mistakes, slangs, and
misspellings.

In this paper, we present a self-attentive hybrid
GRU-based network (SAHGN) that competed at
SemEval-2018 Task 1 (Mohammad, Bravo-
Marquez, Salameh, & Kiritchenko, 2018;
Mohammad & Kiritchenko, 2018).

Our contributions can be summarized as below.

* Theimplementation of a social media text
processor: A library to help process social
media text such as short-forms, emoticons,
emojis, misspellings, hash tags, and slangs,
as well as tokenization, word normalization,
and sentence encoding.

* The implementation of a self-attentive
deep learning system: This system can pre-
dict valence and intensity with limited cor-
pora and vocabulary, and yet can have ac-
ceptable performance.

2 High-Level Description of Our System

Our goal is to provide a system that can predict va-

lence and intensity for short text. Figure 1 shows a

high-level description of our solution, which con-

sists of two main components, social media text

processor (Section 3) and self-attentive hybrid

GRU-based network (Section 4.2).
N
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Figure 1: System architecture.

Classification
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3 Social Media Text Processor

The social media text processor aims to provide

a reliable and fast tokenization. It involves the fol-

lowing preprocessing steps:

e Use a named entity recognizer (NER) (Finkel,
Grenager, & Manning, 2005) to identify enti-
ties such as persons, names, and places, and
then replace them accordingly.

e Build a vocabulary using an NGram tokenizer.
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Figure 2: The architecture of Self-Attentive Hybrid GRU-Based Network.

o Tokenize sentences into a set of tokens, and
then use them to encode text into a sequence of
indices (Table 1), which are fed into the net-
work.

e (Clean text from accents, punctuations, and
non-Latin characters.

e |dentify emoticons and emojis, and then re-
place them with meaningful text; e.g., replace
the happy face emoticon :) with <happy>.

e Recognize hashtags, URLs, and then briefly
describe them; e.g. replace #depressed by
<hashtag_start>depressed<hashtag_end>.

o Identify user reference mentions, and then re-
place them with a person entity; e.g. <person>.

Text @name | am feeling under the weather af-
ter I met with Carl :”( #sick \u0001F600

Pro- <SOS> <reference> | am feeling under the

cessed weather after | met with <person> <cry-

ing> <hashtag_start> sick <hashtag_end>
<grinning_face> <EOS>

Table 1: Example of processed text.

4 Model Description

The overall architecture of our SAHGN model is
shown in Figure 2. The main components include
1) a word sequence encoder, 2) a bidirectional
GRU-based layer that applies a self-attentive
mechanism on the word level, 3) a character-level
CNN feature extractor, and 4) an attention with
context-aware mechanism.

4.1 Word Sequence Encoder

A network input is described as a sequence (S) of
tokens (such as words), where S = [sq, S, ..., S¢]

and t denotes the timestep. S; is a one-hot input (i)
vector of a fixed length (T) of tokens. A sequence
that exceeds this length is truncated.

Word encoding. We use a W word vocabulary
to encode a sequence. W has fixed terms to deter-
mine the start and end of the sequence, as well as
the out of vocabulary (OOV) words. We handle the
variable length through padding for short se-
quences and truncating for long sequences.

Embedding layer. We apply a pretrained GloVe
word embedding (Pennington, Socher, & Manning,
2014) on S;. GloVe projects these words into a low-
dimensional vector representation (x;), where x; €
R and W is the word weight embedding matrix.
W is used to initialize the word embedding layer.

We used the official training and development
corpora to train the GloVe word embedding with a
dimension of 100. The vocabulary size of this
model is 8145 words, which is small and poses a
major challenge to training, as well as to perfor-
mance.

4.2 Self-attentive GRU-based Mechanism

Recurrent neural network (RNN) is commonly
used for NLP problems (Yin, Kann, Yu, & Schiitze,
2017; Young, Hazarika, Poria, & Cambria, 2017),
as it enables remembering values over arbitrary
time durations. RNN processes every element of an
input embedding (x;) sequentially, such that h; =
tanh( Wy, + Wy, ). W is the weight matrix be-
tween an input and hidden states, while h; is the
hidden state of the recurrent connection at timestep
(t). The design of the RNN enables variable length
processing while preserving the sequence order.

182



However, RNN has many limitations with long
sequences, in particular the exponentially growing
or decaying gradients. A common way to resolve
these issues is by using gating mechanisms, such as
LSTM and GRU (Gers, Schmidhuber, &
Cummins, 2000; Hochreiter & Schmidhuber,
1997). We use GRU as it is faster to converge, in
addition to being memory efficient.

Bidirectional GRU layer. In our model, we use
bidirectional GRU layers. GRU receives a se-
quence of tokens as inputs, and then projects word
information H = (hy, h,, ..., hy), Where h; de-
notes the hidden state of GRU at a timestep (t). It
captures the temporal and abstract information of
sequences in a forward (h/) or reverse (h?) man-
ner. After that, we concatenate forward and back-
ward representations; e.g. h; = h[|| hb.

Attention mechanism. Words do not have
equal valence weights in sentences. Towards that,
we use an attention mechanism to signify the rela-
tively important words.

Attention is used to compute the compatibility
between a given source (x;) and query (q). It uses
an alignment function f (x;, q) to measure the level
of dependency of g to x;. This function produces
an attention weight a = f(x;,q)7—,. Then, a soft-
max function is applied to produce a probability
distribution p(z|x, q) for each word (t) of an input
(x). Hence, a bigger weight of x; indicates a higher
importance than other words.

The attention alignment approaches have the
same implementation, but they mainly differ on
how they compute weights. This can be either in an
additive manner f(x;,q) = tanh(W™B(W,, +
Wy) (Bahdanau, Cho, & Bengio, 2014), or amul-
tiplicative manner £ (x;, q) = tanh((W,. W;))
(Vaswani et al., 2017). In our model training, we
use an additive attention mechanism, as it helped
improve the prediction performance.

Self-Attention mechanism. In our model train-
ing, we have a small number of corpora, which are
not sufficient to train an efficient word embedding
or alleviate well-known problems such as poly-
semy. In an effort to overcome such limitations, we
use a self-attention mechanism. This approach
measures the dependency of different tokens in the
same input embedding (x;). It mainly computes at-
tention for each word by replacing g and x; with a
set of token pairs (x;, x;).

4.3 Character-level CNN

The CNN encoding layer (Figure 3) takes an input
of a sequence (S) of characters, where S =
[s1,S2, ..., S¢] such that t denotes the timestep. S;
is a one-hot input (i) vector of a fixed length (T) of
characters.

3 W
/

- - om -

MARH-PooRg laver over Concateanted pocling
time -

Figure 3: Chéracter—level CNN.

CNN usually uses temporal convolutions
(timestep-based) rather than spatial convolutions
with text analysis.

We mainly use convolutions to extract low-level
character information such as misspellings, slangs,
and so on.

Character encoding. We define a charset of the
size 95, including the upper and lower cases of the
English alphabet, special characters, padding, and
the start and end of a given input sequence. We
need this charset to build a vocabulary, which is
used to encode a character sequence. Similarly to
the word embedding, we handle the variable length
through padding and truncating (Section 4.1).

Character embedding layer. We build a char-
acter embedding of 32 dimensions. We use a uni-
form distribution scheme of a range (-0.5 to +0.5)
to initialize its weight matrix.

We apply 3 convolutions of 100 features, as well
as different filter lengths 2, 3, and 4. Each one-di-
mensional operation is used, where C('=
Conv1d(S;), and n is the filter length. After that,
a max-pooling layer is applied on the feature map
to extract abstract information, C** = max(C").
Then, we concatenate these feature representations
into one output.

As opposed to recurrent layers (Section 4.2),
convolutional operations with max-pooling are
helpful to extract word features without paying at-
tention to their sequence order (Kalchbrenner,
Grefenstette, & Blunsom, 2014). These features are
combined with recurrent features to improve the
performance of our model.
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4.4  Attention with Context

Output vectors received from previous steps are
concatenated, and then fed into an attention with
context.

We use a context-aware attention mechanism
(ang et al., 2016) to compute a fixed representa-
tion (r = ¥.T_, a;h;) of a sequence as the weighted
sum of all tokens in that sequence. This representa-
tion is used as a classification feature vector to be
fed to the final fully-connected sigmoid layer. This
layer outputs a continuous value representing the
valence of a given sentence.

45 Training

In our training, we use mini batch stochastic gra-
dient of the size 32, to minimize the mean-squared
error using back-propagation. We use Adam opti-
mizer with a learning rate of 0.001 (Kingma & Ba,
2014). For training, we use 80% of the training set
and 20% for validation. We test and report our re-
sults on both development and test sets.

Regularization. We use dropout to randomly
drop neurons off the network, which helps prevent-
ing co-adaptation of neurons (Srivastava, Hinton,
Krizhevsky, Sutskever, & Salakhutdinov, 2014).
Dropout is also applied on the recurrent connection
of our GRU-based layers. Additionally, we apply a
weight decay approach through setting an L2 regu-
larization ~ penalty  (Cortes,  Mohri, &
Rostamizadeh, 2012).

Hyperparameters. The size of the embedding
layer is 200, and of the GRU layers is 150, which
becomes 300 for bidirectional GRU. We apply a
dropout of 0.4, and a dropout of 0.2 on the recurrent
connections. Finally, an L2 regularization of
0.00001 is applied at the loss function.

5 Results

We report our results using the Pearson correla-
tion between the prediction and gold rating sets on
the test set (all instances). The other one (gold in
0.5-1 shown in Table 2) differs in including tweets
only with intensity greater than or equal to 0.5.

Our model performed well on the development
set scoring 0.869, while on the testing set, the per-
formance degraded to 0.752. This degradation
could be related to the size of the corpus we used
to train our word embedding. We also trained only
on 80% of the training set.

Valence task
Dataset Pearsqn Pearsqn
correlation correlation
(all instances) (gold in 0.5-1)
Development | 0.869 0.692
Testing 0.752 0.559

Table 2: Results of valence intensity regression (Eng-
lish).

6 Conclusion

In this paper, we presented a self-attentive hybrid
GRU-based network for predicting valence in-
tensity for short text.

We used a hybrid approach combining low-char-
acter-level features with self-attentive word em-
bedding. Our network uses two different attention
mechanisms to signify the relevant and important
words, and hence optimize feature representation.

With limited corpora and vocabulary of the size
8152, our model still managed to achieve an opti-
mized feature representation, which achieved ex-
cellent results on the development set. However,
our model failed to maintain the same performance
on the testing set.

For future work, we will explore the perfor-
mance of our model with larger corpora against the
testing set. It would also be interesting to see if the
model performs well on other long-text NLP tasks
such as topic classification.
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Abstract

Traditional sentiment analysis approaches
mainly focus on classifying the sentiment po-
larities or emotion categories of texts. How-
ever, they can’t exploit the sentiment inten-
sity information. Therefore, the SemEval-
2018 Task 1 is aimed to automatically deter-
mine the intensity of emotions or sentiment
of tweets to mine fine-grained sentiment in-
formation. In order to address this task, we
propose a system based on an attention CNN-
LSTM model. In our model, LSTM is used
to extract the long-term contextual informa-
tion from texts. We apply attention techniques
to selecting this information. A CNN layer
with different kernel sizes is used to extract lo-
cal features. The dense layers take the pooled
CNN feature maps and predict the intensity
scores. Our system achieves an average Pear-
son correlation score of 0.722 (ranked 12/48)
in the emotion intensity regression task, and
0.810 in the valence regression task (ranked
15/38). It indicates that our system can be fur-
ther extended.

1 Introduction

Detecting the intensity of sentiment is an impor-
tant task for fine-grained sentiment analysis (Kir-
itchenko et al., 2016; Mohammad and Bravo-
Marquez, 2017). Intensity refers to the degree or
amount of an emotion or degree of sentiment. For
example, we can express our emotion by “very
happy” or “a little angry”. The intensity can be
analysis in multiple categories (i.e. low, moderate
and high) or real-valued. Identifying the intensity
information of sentiment has potential to applica-
tions such as electronic business, social computing
and public health (Wilson, 2008).

Twitter is a social platform which contains rich
textual content. There have been many approaches
to twitter sentiment analysis (Khan et al., 2015;
Severyn and Moschitti, 2015; Philander et al.,
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2016). However, twitter sentiment analysis is
challenging because tweets usually contain non-
standard languages, including emoticons, emojis,
creatively spelled words, and hash tags (Moham-
mad and Bravo-Marquez, 2017). In order to im-
prove the collective techniques on tweet sentiment
intensity analysis, the SemEval-2018 Task 1 is
aimed to identify the categorical and real-valued
intensity of emotions or sentiment for English,
Arabic, and Spanish (Mohammad et al., 2018).
Existing approaches to analysis the intensity
of emotions or sentiment are mainly based on
lexicons and supervised learning. Lexicon-based
methods usually rely on lexicons to assign the
intensity scores of affective words in texts (Mo-
hammad and Bravo-Marquez, 2017). However,
these method can’t utilize the contextual informa-
tion from texts. Supervised methods are mainly
based on SVR (Madisetty and Desarkar, 2017),
linear regression (John and Vechtomova, 2017)
and neural networks (Goel et al., 2017; Koper
et al., 2017). Usually neural network-based meth-
ods outperform SVR and linear regression-based
methods siginificantly. Motivated by the success-
ful applications of neural models in this task, we
propose a system using a CNN-LSTM model with
attention mechanism. Firstly, a tweet will be con-
verted into a sequence of dense vectors by an em-
bedding layer. Next, we use a Bi-LSTM layer to
extract contextual information from them. The se-
quential features will be selected by an attention
layer. Then we apply a CNN with different ker-
nel sizes to extracting different local information.
Thus, our model can exploit both local and long-
term information by combining CNN and LSTM.
Finally, two dense layers are used to predict the
intensity scores. The system performance quan-
tified by an average Pearson correlation score is
0.722 in the emotion intensity regression task (EI-
reg) and 0.810 in the valence regression task (V-
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reg). Our model outperforms several baseline neu-
ral networks, which proves that our model can
identify the intensity of emotions and sentiment
effectively.

2 Related Work

Sentiment analysis in social media such as Twitter
is an important task for opinion mining (Severyn
and Moschitti, 2015). Traditional Twitter senti-
ment analysis methods mainly focus on identify-
ing the polarities (Da Silva et al., 2014; dos San-
tos and Gatti, 2014) or emotion categories (Dini
and Bittar, 2016) of tweets. However, it’s a diffi-
cult task to analysis the noisy tweets. They usually
contain various nonstandard languages including
emoticons, emojis, creatively spelled words and
hash tags. In addition, these languages usually
contain rich sentiment information. In order to
capture such information, several lexicon-based
methods are proposed. Nielsen et al. (2011) pro-
posed to use a dictionary to incorporate emoticon
information into tweet analysis models. Moham-
mad et al. proposed to use hash tags to iden-
tify emotion categories of tweets (2015). These
lexicon-based methods are free from manual an-
notation, but they rely on the emotion lexicons and
can’t mine high-level contextual information from
tweets. Supervised methods such as neural net-
works are also applied to tweet sentiment analysis.
For example, Dos et al. (2014) propose to classify
tweets using a deep convolutional neural network.
Approaches based on deep neural networks need
sufficient samples to train, but they usually out-
performs lexicon-based methods in these tasks.

However, these approaches usually ignore the
intensity of emotions and sentiment, which pro-
vides important information for fine-grained sen-
timent analysis. Therefore, in order to capture
such information, Mohammad et al. proposed to
identify the emotion and sentiment intensity (va-
lence) of texts (2016). Different approaches have
been proposed to detect the tweet emotion inten-
sity in the Emolnt-2017 shared task (Mohammad
and Bravo-Marquez, 2017). For example, Madis-
etty et al. (2017) proposed an ensemble model
based on SVR. Goel et al. (2017) and Koper et
al. (2017) applied CNN-LSTM architecture to this
task. These systems reached the top ranks in the
Emolnt shared task.

Motivated by the successful application of
CNN-LSTM model (Zhou et al., 2015; Chen et al.,
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2016) and the attention mechanism for text classi-
fication (Yin et al., 2015), we propose a system
using attention-based CNN-LSTM model to ad-
dress this task. In our model, we first use LSTM to
extract sequential information, and select features
via attention layer. Then we combine CNN with
different kernel sizes to learn local information.
Finally the dense layers are used to predict the in-
tensity scores. In addition, several features are in-
corporated into our model. The evaluation results
show that our system outperform several baseline
neural networks and can be further extended.

3 Attention CNN-LSTM Model

Our network architecture is shown in Figure 1. We
will explain the detailed information of our system
in the following subsections.

3.1 Network Architecture

As shown in Figure 1, an embedding layer is used
to provide word embedding and one-hot encoded
part-of-speech (POS) tags of the input tweets. The
Bi-LSTM layer takes the concatenated word em-
bedding and POS tags as input, and output each
hidden states. Let h; be the output hidden state at
time step ¢. Then its attention weight a; can be
formulated as follows:

m; = tanh(h;),
a; = wim; + bi,
exp(di)
> exp(d;)’
where w;m; + b; denote a linear transformation

of m;. Therefore, the output representation r; is
given by:

(D

7

2)

Based on such text representation, the sequence
of features will be assigned with different atten-
tion weights. Thus, important information such
as affective words can be identified more easily.
The convolutional layer takes the text representa-
tion r; as input. We use CNN with four different
kernel sizes to learn local information with differ-
ent contextual length. Based on this architecture,
our model can combine both long-term and local
information, which can help to identify sentiment
information better. The output CNN feature maps
are concatenated together, and will be squeezed by
a global max pooling layer. They are concatenated
with the lexicon features. We use two dense layers

ri = agh;.
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Figure 1: The architecture of our attention CNN-LSTM
model.

with ReLU and sigmoid activation respectively to
predict the final intensity score. In order to mit-
igate overfitting, we apply dropout technique at
each layer to regularize our model.

3.2 Word Embedding

We use Word2Vec (Mikolov et al., 2013) as the
vector representation of the words in tweets. We
combine two kinds of word embeddings: The first
embeddings are provided by Godin et al. (2015).
They are trained on a corpus with 400 million
tweets. The second embeddings are provided by
Barbier et al. (2016). They are trained on 20 mil-
lion geolocalized tweets. The dimensions of two
embeddings are 400 and 300 respectively. We
fine-tune the word embeddings during the network
training.
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3.3 Additional Features

We incorporate POS tags and lexicon features into
our model. POS tags usually contain rich seman-
tic information. For example, sentiment intensity
can be expressed by adjectives like “very” and
“slight”. POS tags can help the neural model to
identify such words. We use the Ark-Tweet-NLP!
tool to obtain the POS tags of tweets (Owoputi
et al., 2013). The POS tag feature of each word
is concatenated with the word embedding.

Usually affective words in tweets such as spe-
cific hashtags express sentiment explicitly. There-
fore, incorporating lexicon information can help
our model to predict intensity more accurately. We
use the AffectiveTweets?> (Mohammad and Bravo-
Marquez, 2017) package in Weka® to obtain the
lexicon features of tweets. We use the Tweet-
ToLexiconFeatureVector (Bravo-Marquez et al.,
2014), TweetToSentiStrengthFeature Vector (Thel-
wall et al., 2012) and TweetTolnputLexiconFea-
tureVector filters in AffectiveTweets. In our ex-
periment, the lexicon features are 49-dim. These
lexicon features are concatenated with the pooled
CNN feature maps.

3.4 Model Ensemble

We use an ensemble strategy to improve the model
performance. Our model is trained for 10 times by
using randomly selected dropout rate. Then the
final predictions on the test set are given by the
average of all model predictions. In this way, the
random error of our system can be reduced.

4 Experiment

4.1 Preprocess

In order to process the noisy tweet texts, we use
tweetokenize® for tokenizing, and use Ark-Tweet-
NLP tool for POS tagging. In addition, we refine
the texts and POS tags using several rules: 1) all
URLs will be replaced with the word “URL”, and
their POS tags will be set to “URL”; 2) all @users
will be replaced with “USERNAME”, and their
POS tags will be set to @; 3) POS tags of hashtags
are set to “#”; 4) POS tags of emojis and emoti-
cons are set to “E”.

http://www.cs.cmu.edu/ ark/TweetNLP
Zhttps://github.com/felipebravom/Affective Tweets
3https://www.cs.waikato.ac.nz/ml/weka
*https://github.com/jaredks/tweetokenize



4.2 Experiment Settings

The details of English datasets® we use is shown
in Table 1. The intensity in both task is annotated
between 0 and 1. In the El-reg task, the Pearson
correlation scores across all four emotions will be
averaged as the final score. In the V-reg task, the
correlation score for valence is used as the compe-
tition metric.

Task El-reg V-reg
Category | anger fear joy  sadness | valence
#train 1,701 2,252 1,616 1,533 1,174
#dev 388 389 290 397 449
#test 1,002 986 1,105 975 937

Table 1: Detailed statistics of the English datasets in
our experiment

In our network, the dimension of word embed-
dings is 400 + 300. The hidden states of Bi-LSTM
are 2 X 300-dim. The kernel sizes of CNN are 3, 5,
7 and 9 respectively. The number of feature maps
are 4 x 200. The dimension of the first dense layer
is set to 200. The padding length of tweets is set to
50. The dropout rate is a random number between
0.1 and 0.3. The loss function we use is MAE, and
the batch size is set to 8. We combine the training
and development sets in our experiment. We use
90% for training and reserve 10% for cross vali-
dation. In our official submissions, we use the full
training and development sets to train models.

4.3 Evaluation Results

We compare the performance of our model
and several baselines. The models to be
compared include: 1) CNN, using CNN and
dense layers. 2) LSTM, using LSTM and
dense layers. 3) CNN+LSTM, combing CNN
with LSTM to predict. 4) CNN+LSTM-+att,
adding attention mechanism to CNN-LSTM
model. 5) CNN+LSTM-+att+ensemble, using
ensemble strategy in the attention-based CNN-
LSTM model. The results in the El-reg and V-reg
tasks are shown in Table 2. In comparison, we
also present the cross validation results. Our sys-
tem reaches average Pearson correlation score of
0.722 in the El-reg task and 0.810 in the V-reg
task. The results indicate that our CNN-LSTM
model outperforms the CNN and LSTM baselines.
It proves that CNN-LSTM model can combine

Shttp://www.saifmohammad.com/WebDocs/AIT-
2018/AIT2018-DATA
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the long-term information and local information
in texts. The attention mechanism can also im-
prove the model performance. Since the attention
layer can select important information, our model
can focus on important words in texts (e.g. af-
fective words) to predict the intensity of emotions
and sentiment more accurately. Although our sys-
tem still needs to be improved compared with the
top systems, our model outperforms the common
baseline models, which validates the effectiveness
of our model.

4.4 Influence of Pre-trained Word
Embedding

We compare the performance using different pre-
trained embeddings in the El-reg task. The re-
sults are shown in Table 3. The results show
that the pre-trained embeddings are important, and
combining different word embedding can improve
the model performance. It may be because the
combination of embedding can cover more out-of-
vocabulary words and provide rich semantic infor-
mation.

4.5 Influence of Additional Features

The influence of the POS tag features and lexicon
features is shown in Table 4. The results show that
POS tags can improve the model performance sig-
nificantly. Affective words, emojis and hashtags
usually contain rich sentiment information. POS
tags can be used to identify such words. Therefore,
incorporating the POS information into our neural
model can help to identify these words in tweets
better. The lexicon features can also improve our
model. The lexicon features are obtained by the
sentiment words in tweets. Thus, incorporating
these features into neural networks can improve
the performance of our system.

4.6 Analysis of Inappropriate Biases

In the El-reg and V-reg tasks, an automatically
generated mystery set is used for testing the in-
appropriate biases in NLP systems, such as gen-
der and race (i.e. African American and European
American names). For example, the pairs of sen-
tences “She is happy.” and “He is happy.”; “Jamel
feels angry.” and “Harry feels angry.” should be
assigned wit the same intensity by an unbiased
NLP system. The score differences are calculated
for such sentence pairs. The average score dif-
ference, the p-value, and whether the score differ-
ences are statistically significant are shown in Ta-



El-reg V-reg
Model macro-avg anger fear joy sadness valence
val test val test val test val test val test val test

CNN 0.743 0.710 | 0.700 0.726 0.759 0.701 0.771 0.727 0.742 0.686 | 0.809 0.790
LSTM 0.741 0.706 | 0.701 0.720 0.751 0.694 0.766 0.726 0.746 0.683 | 0.802 0.785
CNN+LSTM 0.743 0.713 | 0.705 0.730 0.758 0.701 0.770 0.735 0.740 0.687 | 0.815 0.796
CNN+LSTM+att 0.749 0.718 | 0.706 0.731 0.760 0.706 0.774 0.739 0.756 0.695 | 0.828 0.801
CNN+LSTM+att+ensemble | 0.758 0.722 | 0.720 0.734 0.771 0.710 0.782 0.743 0.760 0.700 | 0.845 0.810

Table 2: Evaluation and cross validation performance of our model ande baselines.

tive words (e.g. Happy) and hashtags (e.g. #funny)

Embedding avg | anger fear joy sadness
w/o pre-trained | 0.669 | 0.678 0.672 0.682  0.645
+embl 0.717 | 0.728 0.706 0.737  0.695
+emb2 0.709 | 0.716 0.702 0.728  0.691
+embl+emb2 | 0.722 | 0.734 0.710 0.743  0.700

have high attention weights. It indicates that our
attention-based model can capture important senti-
ment information to predict the intensity of tweets

Table 3: Influence of using different combinations of
pre-trained word embeddings. The emb1 and emb2 de-
note the embeddings provided by Godin et al. (2015)
and Barbieri et al. (2016) respectively.

Feature avg | anger fear joy sadness
None 0.704 | 0.715 0.698 0.722  0.679
+POS 0.715 | 0.729 0.705 0.737  0.690

+Lexicon 0.708 | 0.721 0.700 0.726  0.684

+POS+Lexicon | 0.722 | 0.734 0.710 0.743  0.700

Table 4: Influence of POS tags and lexicon features.

ble 5. Although the average differences are small,
but they are statistical significant in most tasks.
Our system is based on word embedding, and we
fine-tune the weights during the network training.
Thus, our system will be influenced by the distri-
bution of training data, which may lead to these
biases.

Task Gender Race
Avg-D p Sig | Avg-D | p-value | Sig
Anger | -0.002 | 0.00003 | / | 0.002 | 0.01553 | x
Fear | -0.023 0 Vv | 0.023 0 Vv
Joy 0.02 0 Vv | -0.04 0 Vv
Sadness | -0.001 | 0.09654 | x | 0.011 0 Vv
Valence | 0.001 | 0.00382 | x | -0.021 0 Vv

Table 5: The average differences, p-value and statistical
significance of predictions on the mystery set in each
task. We denote them as Avg-D, p and Sig respectively.

4.7 Visualization of Attention Mechanism

Attention mechanism can encourage the neural
model to focus on important words in texts. In or-
der to prove its effectiveness of the attention layer,
we present several examples in Table 6. The green
color represents low attention, while red color rep-
resents high attention. We can see that the affec-

better.

5 Conclusion

Identifying the intensity of emotions or sentiment
is important for fine-grained sentiment analysis.
Thus, the Semeval-2018 task 1 is aimed to ana-
lyze the affective intensity of tweets. In this paper,
we introduce the system participating in this task.
We apply an attention-based CNN-LSTM model
to predict the intensity scores of emotions and sen-
timent. We also use additional features to improve
the performance of our system. Our system ranked
12/48 and 15/38 in the El-reg and V-reg subtasks
respectively. It indicates that our system can be
further extended.
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Abstract

This paper describes our system that has been
used in Taskl Affect in Tweets. We combine
two different approaches. The first one called
N-Stream ConvNets, which is a deep learning
approach where the second one is XGboost re-
gressor based on a set of embedding and lexi-
cons based features. Our system was evaluated
on the testing sets of the tasks outperforming
all other approaches for the Arabic version of
valence intensity regression task and valence
ordinal classification task.

1 Introduction

Sentiment Analysis is the task of automatically
identifying the valence or polarity of a piece of
text. This piece of text can be a user review, a doc-
ument, an SMS message, a tweet, etc. According
to (Mohammad, 2016), the term sentiment analy-
sis also refers to determining the attitude towards
a particular target or topic. The attitude can be the
polarity (positive or negative), or an emotional or
effectual attitude such as joy, anger, sadness and
SO on.

Most of the researchers in sentiment analysis
have focused on developing systems to determine
the polarity of a given text. This involves design-
ing classifiers based on a set of examples with a
manually annotated sentiment polarity. Although
developing systems that automatically determine
the intensity (i.e. the degree or the amount) of
emotions that are communicated in a text has a
wide range of applications in commerce, public
health, social welfare, etc., most of the work has
focused on categorical classification (whether a
given piece of text communicates anger, joy, sad-
ness, etc.). This can be attributed to the lack of
suitable annotated data (Mohammad and Bravo-
Marquez, 2017) .

In taskl: Affect in Tweets, the organizers pro-
vide an array of tasks where systems have to au-
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tomatically determine the intensity of emotions
(anger, fear, joy, and sadness) and the intensity
of the sentiment (aka valence) of the tweeters
from their tweets. They provide annotated datasets
for each task with English, Arabic, and Spanish
tweets (Mohammad et al., 2018). We define the
tasks below:

El-reg (an emotion intensity regression task):
Given a tweet and an emotion E, determine the
intensity of E that best represents the mental state
of the tweeter with a real-valued score between 0
(least £) and 1 (most E).

EI-oc (an emotion intensity ordinal classifica-
tion task): Given a tweet and an emotion F, clas-
sify the tweet into one of four ordinal classes of
intensity of E that best represents the mental state
of the tweeter.

V-reg (a sentiment intensity regression task):
Given a tweet, determine the intensity of sentiment
or valence V' that best represents the mental state
of the tweeter with a real-valued score between 0
(most negative) and 1 (most positive).

V-oc (a sentiment analysis, ordinal classifica-
tion, task): Given a tweet, classify it into one
of seven ordinal classes, corresponding to various
levels of positive and negative sentiment intensity,
that best represents the mental state of the tweeter.

We proposed one system to solve the intensity
regression tasks (i.e. El-reg and V-reg) and use
it as a feature extractor to train Decision Trees to
solve the ordinal classification tasks (i.e. El-oc
and V-oc). We developed two versions of the pro-
posed system for the English and the Arabic lan-
guage tweets.

Our system is an ensemble of two different ap-
proaches. The first one, called N-Channels Con-
vNet, is a deep learning approach where the sec-
ond one is an XGboost regressor based on a set of
embedding and lexicons-based features.

The rest of the paper is organized as follows:

Proceedings of the 12th International Workshop on Semantic Evaluation (SemEval-2018), pages 193-199
New Orleans, Louisiana, June 5-6, 2018. ©2018 Association for Computational Linguistics



Section 2 presents the tools and the resources that
are used. Section 3 describes the proposed sys-
tem. In Section 4 we report the experimental re-
sults, whereas in Section 5 the conclusions and the
future work are presented.

2 Resources

This section explains the tools and the resources
that have been used in our system.

2.1 Sentiment Lexicons

We used the following lexicons for the English
version of our system:

AFINN (Nielsen, 2011), General Inquirer
(Stone et al., 1968), Bing-Liu opinion lexicon
(HL) (Hu and Liu, 2004), MPQA (Choi and
Wiebe, 2014), NRC hashtag sentiment lexicon
(Mohammad et al., 2013), NRC emotion lexicon
(EmoLex), NRC affect intensity lexicon, NRC
hashtag emotion lexicon and Vader lexicon. More
details about each lexicon, such as how it was cre-
ated, the polarity score for each term, and the sta-
tistical distribution of the lexicon, can be found in
(Jabreel and Moreno, 2016).

For the Arabic version we used the following
lexicons:

Arabic Hashtag lexicon, Dialectal Arabic Hash-
tag lexicon, Arabic Bing Liu lexicon, Arabic Sen-
timent140 lexicon and Arabic translation of the
NRC emotion lexicon. The first two were created
manually, whereas the rest were translated to Ara-
bic from the English version using Google Trans-
lator. (Mohammad et al., 2016).

2.2 Embeddings

Word embeddings are an approach for distribu-
tional semantics which represents words as vec-
tors of real numbers. Such representation has use-
ful clustering properties, since the words that are
semantically and syntactically related are repre-
sented by similar vectors (Mikolov et al., 2013).
For example, the words “coffee” and “tea” will be
very close in the created space.

We used two publicly available pre-trained em-
bedding models in the English version of our sys-
tem. The first one was used in (Rouvier and Favre,
2016). It was trained using word2vec (skipgram
model) on an unannotated corpus of 20 million
English tweets containing at least one emoticon.
The second one was provided by (Baziotis et al.,
2017). It was trained on a big dataset of 330M
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English Twitter messages, gathered from 12/2012
to 07/2016 and a vocabulary size of 660K words
using Glove algorithm.

Additionally, we have trained two embedding
models on 60M English tweets(30M contain pos-
itive emoticons, 30M negative ones). The first
one was trained by applying word2vec skipgram
of window size 5 and filtering words that occur
less than 4 times. The dimensionality of the vec-
tor was set to 300. The second one was trained
using fastText (Bojanowski et al., 2016). The di-
mensionality of the vector was set to 300.

Similarly, we used two publicly available pre-
trained embedding models in the Arabic version
of our system and trained two. The first one is the
model Arabic-SKIP-G300, provided by (Zahran
et al., 2015). Arabic-SKIP-G300 was trained on
a large corpus of Arabic text collected from dif-
ferent sources such as Arabic Wikipedia, Arabic
Gigaword Corpus, Ksucorpus, King Saud Univer-
sity Corpus, Microsoft crawled Arabic Corpus,
etc. It contains 300-dimensional vectors for 6M
words and phrases. The second one is Twitter-SG-
AraVec (Soliman et al., 2017), which was trained
using word2vec skipgram algorithm on 66M Ara-
bic tweets and 1B tokens. The dimensionality of
the vector was set to 300.

Our embedding models were trained on the dis-
tant supervision corpus (about 16M Arabic tweets)
provided by the organizers. We were able to find
about 12M tweets. Again, similar to our English
embeddings, we trained the two Arabic embed-
ding models.

3 System Description

This section explains the proposed system, whose
architecture is shown in Figure 1. First, we pre-
process the tweets (Subsection 3.1). Afterwards,
we pass them to the N-Channels ConvNet and the
XGboost regressors (Subsections 3.2 and 3.3). Fi-
nally we ensemble the output of the two systems to
get the final result as described in subsection 3.4.
The proposed system is also used as feature ex-
tractor to train an ordinal Decision Tree classifier.
as described in subsection 3.5.

3.1 Preprocessing
Some standard pre-processing methods were ap-
plied on the tweets:

o Normalization: Each tweet in English was
converted to the lowercase. URLSs and user-



Embedding
Features

o /
Features

s

Channel

Channel

§
g
5
8
5
3
s
g
5
8
5
3

Channel

Channel

\___ XGBoost Regressor
Lexicon-Based %
Features

\__N-Stream ConvNet

Figure 1: System Architecture.

names were omitted. Non-Arabic letters
were removed from each tweet in the Arabic-
language sets. Words with repeated letters
(i.e. elongated) are corrected.

Tokenization: All English-language tweets
were tokenized using Ark Tweet NLP (Gim-
pel et al., 2011), while all Arabic-language
tweets were tokenized using Stanford Tok-
enizer (Green and Manning, 2010).

3.2 N-Channels ConvNet

Convolutional Neural Networks (ConvNets) have
achieved remarkable results in computer vision
and speech recognition tasks in recent years. The
next subsection explains the architecture of our
proposed ConvNet.

3.2.1 Architecture

The N-Channels ConvNet model architecture,
shown in the bottom box in figure 1, is inspired by
Inception-Net (Szegedy et al., 2016) and the CNN
proposed by (Kim, 2014). It is composed of multi-
ple channels followed by a logistic regressor. Fig-
ure 2 shows the channel architecture. The input to
each channel is a sequence of words w1, wa, ...wy,
where 7 is the number of words. We pass the in-
put through an embedding layer to map each word
w; into a real-valued vector. Each channel has
its own embedding layer which is initialized by
a specific pre-trained embedding model. We use
five channels with the four pre-trained embedding
models described in subsection 2.2 and a character
based one. The result from the embedding layer
is a matrix n x d. where d.. is the vector dimen-
sion. This matrix is passed to a projection or pre-
activation layer. The projection layer is nothing
but a fully-connected or dense layer whereas the
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pre-activation layer can be any non-linear function
such rectified linear unit (ReLU). Afterward, we
feed the projected matrix to three ConvlD. Each
one has a different kernel (1, 2, and 3) and 200 fil-
ters. To get more details about the architecture of
this Conv1D please check (Kim, 2014). We pass
the output of each Conv1D through a global max-
pooling layer which produces a vector with dimen-
sionality of 200. Finally, the three vectors are con-
catenated. This yields a vector with dimensional-
ity of 600 that represents the tweet (i.e. the input
sequence of words).

Wy w2 Ws Wn
Y Y Y Y
]
>
[}
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o
£
T
T
[7}
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£
w
L J
Y
Projection OR Pre-Activation
Y
Conv 1D Conv 1D Conv 1D
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Figure 2: Channel Architecture.

Finally, the outputs of all channels are concate-
nated with a lexicon-based vector (see next sec-
tion) and fed to a single sigmoid neuron which
gives the intensity of the emotion/valence.



3.2.2 Training

The proposed model was trained by minimizing
the mean squared error between the real and pre-
dicted intensities. The optimization was done
by applying back-propagation through layers via
minibatch gradient descent. The training param-
eters were the following: batch size of 32, 100
epochs and Adam optimization method with learn-
ing rate of 0.001, 51 = 0.9 and B2 = 0.999 and € =
1079. To prevent the over-fitting, we used dropout
and early stopping methods.

3.3 XGBoost Regressor

XGBoost (Chen and Guestrin, 2016) has become
a widely used and really popular tool among Data
Scientists in industry, as it shows great perfor-
mance on large-scale problems. It is a highly flex-
ible and versatile tool that can work through most
regression, classification and ranking problems as
well as user-built objective functions.

We trained an XGBoost regressor to give the in-
tensity of the emotion/valence based on the two
types of features explained in the next subsection.

3.3.1 Features

Each tweet is represented with a vector by con-
catenating the following two feature vectors:
Lexicon Features: For each lexicon, we used
the sum of the scores provided by the lexicon for
each word in the tweet. Let L denote the set of
lexicons and f!(w) the score of the word w based
on the feature ¢ in the lexicon [ (note that some
lexicons have only one feature like the sentiment
score and some of them have multiple features like
anger emotion score, positive score, etc). Then,
the set of features that represent a given tweet I’
and a lexicon ! € L can be obtained as follows:

Vg =Vyep > fiw) (1)

weT

Here, F] denotes the set of features in lexicon (.

Embedding Features: We used the sum pool-
ing function to obtain the tweet representation in
the embedding space. More formally, let us con-
sider an embedding matrix £ € RVl and a
tweet T = wq, wa, ..., wy,, where d is the dimen-
sion size, |V| is the length of the vocabulary (i.e.
the number of words in the embedding model), w;
is ¢-th the word in the tweet and n is the number
of words. First, each word w; is substituted by the
corresponding vector vf in the matrix E where j
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is the index of the word w; in the vocabulary. This
step ends with the matrix W € R®*". The vec-
tor Vr g that represents the tweet 7' is computed
by aggregating the matrix . This aggregation is
done by taking the summation over its columns.
The sum spooling function is an element-wise
function, and it converts texts with various lengths
into a fixed-length vector allowing to capture the
information throughout the entire text.

3.3.2 Training

The XGBoost regressor has some parameters that
need to be tuned. Table 1 shows the values of each
parameter we chose for the different emotions. All
those values were chosen using the grid-search on
the development sets.

P #Est. | S M| O
Anger 300 0.75 | 5 | Logistic
Fear 300 0.75 | 5 | Linear
Eng. | Sadness | 300 0.75 | 5 | Logistic
Joy 300 0.75 | 7 | Linear
Valence | 300 0.75 | 5 | Linear
Anger 200 0.9 |9 | Logistic
Fear 200 0.9 |5 | Logistic
Ara. | Sadness | 200 0.9 |5 | Logistic
Joy 200 0.9 |5 | Logistic
Valence | 200 0.9 |9 | Logistic
Table 1: The XGBoost regressors parameters. #Est.

refers to the number of estimators, S is the subsample,
M is the maximum depth and O refers to the objective
function.

3.4 Ensemble

We combined the results of the two systems de-
scribed above with the intention of improving the
performance and increasing the generalizability of
the final system. We used the weighted average
method to achieve that. Let 1 and r respectively
denote the output of the XGBoost regressor and
the N-Channels ConvNet system. The final output
r was obtained as follows:

r=ax*xri+(l—a)xry; a€l0,1] (2)

Table 2 shows the value of « for each individ-
ual model. All these values were obtained by grid
search on the development set.

3.5 Decision Tree for Ordinal Classification
Tasks

To solve the problem of ordinal classification we
simply used the proposed model as feature extrac-



Emotion | «
Anger 0.3
Fear 0.5
Eng. | Sadness | 0.6
Joy 0.2
Valence | 0.6
Anger 0.5
Fear 0.0
Ara. | Sadness | 0.5
Joy 0.4
Valence | 0.7

Table 2: The value of « for each individual model.

tor and trained a Decision Tree. The idea is to use
the emotion/intensity as input feature and use rules
generated from the Decision Tree to get the ap-
propriate class. Figure 3 shows as an example the
Decision Tree classifier of the fear emotion.

Intensity Score <= 0.581

True False

Intensity Score <= 0.687

class 0: no fear can
be inferred

True False

class 1: low amount of

T (B (] Intensity Score <= 0.796

N

class 2: moderate amount
of fear can be inferred

class 3: high amount
of fear can be inferred

Figure 3: An example of a decision tree classifier.

4 Results

We trained and validated our models on the train-
ing and validation sets provided by the organiz-
ers. More details about the data and the evaluation
metrics can be found in (Mohammad et al., 2018;
Mohammad and Kiritchenko, 2018).

Tables 3 and 4 show the results of the emo-
tion and valence intensity regression tasks of our
two systems and their combination (the ensem-
ble model). It also shows the baseline results.
The evaluation metrics are the Pearson correla-
tion for all samples and for a subset of the test
set that includes only those tweets with intensity
score greater or equal to 0.5. The values in the ta-
bles show the superiority of the N-Channels Con-
vNet over the XGBoost regressor. For instance,
the results of the English version of the emotion
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intensity task show that the N-Channels ConvNet
outperforms the XGBoost regressor by 5.9% with
respect to macro-avg measure. The performance
of N-Channels Convnet is very close to the en-
semble model. The improvement is only 1.2%.
The improvement in the final system of the Ara-
bic version is very small (0.3%). The results of
the Pearson correlation of samples whose inten-
sity score is greater or equal to 0.5 show that our
system can be used as a classifier. This conclusion
is confirmed by the results of the ordinal classifi-
cation tasks, shown in Tables 5 and 6.

As we described in subsection 3.5, our approach
to design a system to solve the ordinal classifica-
tion tasks was to use the intensity score as input
feature to train a Decision Tree. During the in-
ference phase we used our system to produce the
intensity score for the new (unseen) samples (i.e.
use it as feature extractor). Thus, the performance
in this phase heavily relies on the performance of
the proposed system. This is clearly shown in the
results reported in tables 5 and 6. For example,
our system gives very good results in the valence
intensity regression task for both the English and
Arabic versions (the Pearson correlation is 0.828
for both). This affects positively the performance
of our system for the valence ordinal classifica-
tion tasks (the Pearson correlation is about 0.80
for both).

5 Conclusion

We have presented an ensemble model of two
different approaches. The first one, called N-
Channels ConvNet, is a deep learning approach
whereas the second one is an XGBoost regressor
based on a set of embedding and lexicons-based
features. The ensemble technique helped to im-
prove the performance of the final model in all
subtasks. We have realized that The N-Channels
ConvNet gives a performance very close to the en-
semble model. This observation confirms the fact
that deep learning models, and especially Con-
vNets, have achieved remarkable results in many
fields such as computer vision, speech recognition
and natural language processing. Distant Super-
vision is an approach of transfer learning which
aims to train a model on a large amount of semi-
labeled data and use it as a pre-trained model for
training another model on a small amount of fully-
labeled data. This approach has been shown to be
very efficient. Thus, the authors are considering



Pearson (all instances) Pearson5 (gold in 0.5-1)
macro-avg | anger | fear | joy sadness | macro-avg | anger | fear joy sadness
N-Channels ConvNet | 0.712 0.713 | 0.725 | 0.718 | 0.692 0.538 0.575 | 0.502 | 0.519 | 0.555
XGBoost Regressor | 0.653 0.674 | 0.644 | 0.625 | 0.668 0.503 0.563 | 0.455 | 0.437 | 0.555
Eng. | Ensemble Model 0.724 0.731 | 0.733 | 0.722 | 0.711 0.560 0.606 | 0.522 | 0.525 | 0.587
SVM Unigrams 0.520 0.526 | 0.525 | 0.575 | 0.453 0.396 0.455 | 0302 | 0476 | 0.350
Random Baseline -0.008 -0.018 | 0.024 | -0.058 | 0.020 -0.048 -0.088 | -0.011 | -0.032 | -0.059
N-Channels ConvNet | 0,655 0.639 | 0.628 | 0.705 | 0.648 0,516 0.473 | 0.605 | 0.465 | 0.520
XGBoost Regressor | 0.596 0.494 | 0.540 | 0.713 | 0.637 0.464 0.376 | 0.492 | 0.449 | 0.540
Ara. | Ensemble Model 0.667 0.627 | 0.627 | 0.738 | 0.675 0.533 0.479 | 0.604 | 0.490 | 0.560
SVM Unigrams 0.455 0.406 | 0.435 | 0.530 | 0.450 0.353 0.344 | 0.366 | 0.332 | 0.367
Random Baseline 0.013 -0.006 | 0.016 | -0.010 | 0.052 -0.007 0.002 | 0.007 | 0.011 | -0.048
Table 3: El-reg task results.
Pearson | Pearson5 opinion inference. In Proceedings of the 2014 Con-
N-Channels ConvNet | 0.825 0.645 ference on Empirical Methods in Natural Language
XGBoost Regressor | 0.768 | 0.598 Processing (EMNLP), pages 1181-1191.
Eng. Ensembl? Model 0.828 0.658 Kevin Gimpel, Nathan Schneider, Brendan O’Connor,
SVM Unigrams 0.585 0.449 Dipani . - . .
; ipanjan Das, Daniel Mills, Jacob Eisenstein,
Random Baseline 0.031 0.012 Michael Heilman, Dani Yogatama, Jeffrey Flanigan,
N-Channels ConvNet | 0.817 0.550 and Noah A. Smith. 2011. Part-of-speech Tagging
XGBoost Regressor | 0.774 0.571 for Twitter: Annotation, Features, and Experiments.
Ara. | Ensemble Model 0.828 0.578 In Proceedings of the 49th Annual Meeting of the
SVM Unigrams 0571 0.423 Association for Comgumtional Linguistics: Human
Random Baseline 0,052 1002 Language Technologies: Short Papers - Volume 2,

Table 4: V-reg task results.

the possibility of using this technique to improve
the proposed system.
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Abstract

In this paper we present our contribution
to SemEval-2018, a classifier for classifying
multi-label emotions of Arabic and English
tweets. We attempted “Affect in Tweets”,
specifically Task E-c: Detecting Emotions
(multi-label classification). Our method is
based on preprocessing the tweets and creat-
ing word vectors combined with a self cor-
rection step to remove noise. We also make
use of emotion specific thresholds. The final
submission was selected upon the best perfor-
mance achieved, selected when using a range
of thresholds. Our system was evaluated on
the Arabic and English datasets provided for
the task by the competition organisers, where
it ranked 2nd for the Arabic dataset (out of 14
entries) and 12th for the English dataset (out
of 35 entries).

1 Introduction

Social network platforms such as Facebook,
LinkedIn and Twitter are now at the hub of ev-
erything we do. Twitter is one of the most popu-
lar social network platforms; as recently as 2013
an incredible 21% of the global internet popu-
lation used Twitter actively on a monthly basis
(globalwebindex, accessed 05/2016). Twitter is
used by celebrities, movie stars, politicians, sports
stars and everyday people. Every day, millions of
users share their opinions about themselves, news,
sports, movies and many many other topics. This
makes platforms like Twitter rich sources of data
for public opinion mining and sentiment analy-
sis (Pak and Paroubek, 2010). However, although
these corpora are rich, they are somewhat noisy
because tweets can be informal, misspelt and con-
tain slang, emoticons (Albogamy and Ramsay,
2015) and made-up words. Furthermore, Arabic
tweets have the added complication of dialects in
which the same words or expressions can have dif-
ferent connotations.
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Multi-label classification of tweets is a clas-
sification problem where tweets are assigned to
two or more classes. It is considered more com-
plex than traditional classification tasks because
the classifier has to predict several classes.

There has been much work in the areas of sen-
timent detection (Rosenthal et al., 2017), emotion
intensity (Mohammad and Bravo-Marquez, 2017)
and emotion categorisation (Hasan et al., 2014).
Sentiment analysis aims to classify tweets into
positive, negative, and neutral categories, emotion
intensity is determining the intensity or degree of
an emotion felt by the speaker and emotion cate-
gorisation is the classification of tweets based on
their emotions. The most commonly used clas-
sification techniques are Naive Bayes and Sup-
port Vector Machines (SVM). Some researchers
report that SVMs (Barbosa and Feng, 2010) per-
form better while others support Naive Bayes (Pak
and Paroubek, 2010). Furthermore, sophisticated
techniques such as deep neural networks have also
been proposed but such techniques are rarely used
by non-experts of machine learning in practice
(Sarker and Gonzalez, 2017) and they also take a
long time to train.

We propose a simple and effective method to
classify tweets that performs reasonably well. Our
system does not make use of any lexicons or stop
word lists and is quick to train.

2 Methods

The SemEval Task E-c requires the classification
of tweets into either a neutral emotion or one
of eleven emotions (Mohammad et al., 2018).
Datasets for tweets are made available in three
languages; Arabic, English and Spanish. We
focus firstly on Arabic and then English because
this links well with our existing work. Datasets
from previous SemEval tasks are also available if

Proceedings of the 12th International Workshop on Semantic Evaluation (SemEval-2018), pages 200-204
New Orleans, Louisiana, June 5-6, 2018. ©2018 Association for Computational Linguistics



required. We use the SemEval-2018 development
and training data for training our system, with no
external resources such as sentiment dictionaries
or other corpora. We use the training set to com-
pute scores for each of the classes in conjunction
with a self correction stage and a multi-threshold
stage to obtain an optimal set of scores. Apart
from the preprocessing steps, notably stemming,
we use exactly the same machinery for the two
languages. We now briefly discuss our approach.

Preprocessing.  Tweets are preprocessed by
lowercasing (English tweets only), identifying
and replacing emojis with emojis identifiers,
tokenising and then stemming. We developed
two tokenisers; one that is NLTK based and does
not preserve hashtags, emoticons, punctuation
and other content and one that is “tweet-friendly”
because it preserves these items. Emojis cause
us technical problems due to their surrogate-pair
nature so we replace emojis with emoji identifiers
(e.g. -45)). We also separate out contiguous
emojis because we want, for example, the indi-
vidual emojis in a group of repeating unhappy
face emojis to be recognised, and processed, as
being the same emoji as a single unhappy face
emoji. We remove usernames because we believe
they are noise since, by and large, they will not
reappear in the test set, are not helpful to us and if
not removed will compromise our ability to detect
useful information. Arabic tweets are stemmed
using a stemmer developed specifically for Arabic
tweets by Albogamy and Ramsay (Albogamy and
Ramsay, 2016). English tweets are stemmed by
taking the shortest result from Morphy (Fellbaum,
1998) when tokens are stemmed as nouns, verbs,
adjectives and adverbs.  Although there are
surprisingly few examples of these, we believe
that multi-word hashtags, joined by underscore
or a dash, also contain useful information so we
leave the hashtag as is but also take a copy of
the hashtag and split it into its constituent words.
This is so that where possible we improve the
quality of information in the tweet. Stop word
lists are not used at any stage. We debated using
stop words vs insignificant words and, as in our
previous work (Ahmad and Ramsay, 2016), we
prefer to let our algorithms exclude these words.
We do however remove less common words on the
grounds that if they do not appear very often then
we are unlikely to learn anything from them. The

201

English training dataset contains approximately
6300 distinct words after preprocessing, we find
that taking the top 2500 of these gives us the most
common words and the best results.

Our approach is not to collect scores for indi-
vidual emotions, instead we collect scores relative
to the other emotions. Constructing scores in this
manner allows us to observe that words such as
“blessed” are much more significant for emotions
such as “joy”, “love” and “optimism” than they are
for “anger” and “anticipation”. Words that are in-
significant will have small scores, words that are
significant will have large scores and by using a
varying threshold we can determine a best set.

Base set. Every tweet in the training dataset is
tokenised and we count how many tweets each to-
ken in the tweet occurs in. We also remove sin-
gletons and calculate an IDF for each token. We
iterate through the tokens for each tweet to cre-
ate a base set of scores and obtain a count of how
many times each token occurs in each of the 11
emotions as well as a count of the total number of
tokens in each emotion. In a later stage we iter-
ate over a range of thresholds, this base set is the
starting point in each and is modified by the vari-
ous processes as described below.

Conditional probabilities. We now use this base
set to create a set of emotion probabilities for each
token. One, common, way of using probabilities
is in conjunction with Bayes Theorem. However,
this does not seem to work very well for this task
hence we perform the following steps. We cal-
culate the probability of each token appearing in
each emotion using P(T|E). We do this only on the
top 2500 most important tokens in the dataset, i.e.
those with the highest IDF scores. We normalise
these probabilities by dividing each value by the
sum of all the probabilities for this token for all
emotions. We get an average value for these val-
ues and subtract this from each of the scores to
calculate the distance from the mean. This is, es-
sentially, a local IDF step to ensure that if a token
is equally common for all emotions then we do not
allow it to contribute to any of them, and if it is be-
low the overall average for a emotion we want it to
be allowed to vote against it.

We want to assign extra weight to tokens that
have very skewed distributions, hence we multiply
each score by the standard deviation. This empha-



sises the contribution of such tokens to the emo-
tion and allows us to remove unhelpful tokens. In
this way we create a set of emotion scores for each
token for every emotion.

Self-correction. We want to remove tokens that
we have incorrectly assigned to emotions. We
classify each tweet to determine which emotions
it demonstrates and we identify the tokens that led
us to these conclusions. A tweet is classified for
each emotion by adding the scores for each token
for each emotion. These scores are normalised and
compared to a threshold z. If the value is less than ¢
we deduce the tweet did not demonstrate the emo-
tion, otherwise it did demonstrate the emotion. We
are unsure what a good threshold is so we use a
range of values for ¢ from O to 1 (in steps of 0.1)
to create score sets. We calculate the Jaccard for
each of these and use the best one of these for clas-
sification. This approach is based on Brills (Brill,
1995) suggestion that one should attempt to learn
from ones own mistakes.

As each tweet is classified we compare our
prediction to the gold standard. For the ones
that we predict correctly we increment a counter
for each token against the correctly classified
emotion. Similarly, for the ones where we failed
to classify the tweet correctly we decrement the
counter for each token against the incorrectly
classified emotion. When all tweets have been
classified we examine these counters. For each
token, if we have an overall negative score for an
emotion we deduce that the token is unhelpful
in classifying tweets for that emotion and we
downplay its significance in further calculations.
Using this technique we are able to remove tokens
such as “terrifying” from contributing to emotions
such as “love”. We have tried repeating this
process multiple times, but we find that beyond
one iteration the improvement is insignificant.
A possible explanation for this may be because
the actual numbers of tokens that are removed
are quite small; 1% for Arabic and 5% for English.

Per-emotion thresholds. The raw data for
each emotion is different and, hence, we find
that a single fixed threshold across all emotions
produces poor results. We therefore try a range of
thresholds from O to 1 in increments of 0.1 to clas-
sify tweets, using the same mechanism described
above, but this time on an emotion-by-emotion
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basis to generate an individual threshold for each
emotion.

SemEval results. We classify the training data us-
ing our sets of scores and per-emotion thresholds.
We identify the set with the best Jaccard score and
use it to classify the test data to generate our even-
tual submission file.

2.1 Other Strategies

Increased training data. We believe that hav-
ing more training data might improve our clas-
sifer. One of the obvious places to get more data
is from the datasets for some of the other tasks,
specifically El-reg and El-oc. A key problem with
this data is that both of these tasks only supply
datasets for anger, fear, joy and sadness. The El-
reg dataset is marked up with a per-tweet inten-
sity value between 0-1 that represents the men-
tal state of the tweeter. The El-oc dataset tweets
are marked up with one of four ordinal classes
(0,1,2,3). To expand our training dataset we ex-
tract tweets with values of 0.5 and above from
the El-reg datasets and tweets with a value of 3
from the El-oc dataset. The best Jaccard score we
obtain with this expanded dataset is 0.417 (En-
glish). When we extract tweets with values of
0.9 or above from the El-reg dataset we improve
the quality of tweets, at the cost of decreasing the
number of tweets extracted, and this slightly im-
proves our Jaccard to 0.429.

Similarly, the competition organisers also make
available a corpus of 100 million English tweet
IDs.  We download 10,000 of these filtered
on words that we believe are representative of
the emotions we are looking for e.g. “angry”,
“elated”, “trusting”. A serious weakness with this
technique, however, is that the accuracy of this
data is compromised, we therefore classify this
data using our classifier. We then combine this
data with the standard English dataset and clas-
sify it again. We do not want this data to be more
relevant than the real data, so we weight down the
scores from this data. The best Jaccard score we
obtain with this expanded dataset is 0.430.

Latent semantic analysis (LSA). Latent Seman-
tic Analysis (LSA) is a theory and method for
extracting and representing the contextual-usage
meaning of words by statistical computations
applied to a large corpus of text (Landauer and



Tweet tokeniser  Split hashtags Stem Tune Multi-threshold Jaccard (AR) Jaccard (EN)
0.324 0.340
v’ 0.318 0.340
v’ v’ 0.333 0.349
v’ v’ v’ 0.342 0.401
Vv’ v’ v’ v’ 0.370 0.431
v’ v’ v’ v’ v’ 0.452 0.455

Table 1: Results.

Dumais, 1997). Essentially, to improve our
classifier we need to improve the quality of our
tweets. We use LSA to find words in tweets
that are similar to other words, e.g. “car” and
“automobile”. We do not have the computing
power to do this on a per-tweet basis so we do
this on a per-emotion basis. The concepts we find,
however, are not very reliable, e.g. “blessed” and
“happiness”. We expand our tweets with these
words but find that this does not improve our
scores. A possible explanation for this might be
because of the relatively small numbers of tweets
in the datasets.

Duplicate tweets. @ We note that there are
tweets in the English dataset that are semantically
similar, e.g. “You offend me, @Tansorma” and
“@SunandBeachBum ’you people’ infuriate
me!”. It may be possible to use clustering
(Sarker and Gonzalez, 2017) to relate tweets
like these as a means to removing duplicates.
We further note that there are many cases of
tweets that differ only by hashtags or emojis,
e.g. “@britishairways term 5 security queues at
arrivals” and “@britishairways term 5 security
queues at arrivals #shocking”. A further study
could assess the impact of using Minimum
Edit Distance (Wagner and Fischer, 1974) on
this later data to improve the quality of the dataset.

Emoticon weighting. Emoticons have proved
crucial in the automated emotion classification of
informal texts (Novak et al., 2015). To increase
their significance we double their raw count
values. We find that this increases the accuracy
of our classifier by 0.44% for both Arabic and
English.

Word frequencies. We try to use the word
frequency as an extra weight to further dampen
the contribution of words that are low frequency
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because low frequency words do not contribute
very much. However, because we have earlier
taken only the 2500 commonest words we find
that this does not improve our scores.

2.2 Computing Resources

The system was written in Python on a MacBook
Pro, 2.7 GHz Intel Core 15, 8 GB RAM. The train-
ing and classification phase takes approximately
15 minutes.

3 Results, Comments and Conclusion

We described a self-correcting, multi-threshold,
classifier to solve the problem of multi-label clas-
sification of tweets.

We find that due to the nature of the data it is
difficult to accurately distinguish between emo-
tions such as “joy” and “love” because many of the
words that score highly for “joy ” also score highly
for “love”, e.g. “rejoice”, “birthday” and “cheer-
ful”. Consequently when a tweet is labelled as
“love” it is highly likely that it will also be labelled
as “joy”. We find similar issues with “anger” and
“disgust”, although not to the same extent, because
words like “shit” and “hate” score highly for both
emotions. Overall, we believe that we score much
higher on emotions such as “anger”, “joy”, “love”
and “disgust”, than on “trust” “ op-
timism” and “pessimism”.

Our results, given in Table 1, show that al-
though processes such as lowercasing, tokenising
and stemming do contribute, the tuning stage and
the introduction of multiple thresholds yield the
biggest improvements. This is because removing
words which are implicit in the classifier mak-
ing wrong decisions and allowing each emotion
to have its own threshold are obviously sensible
things to do.

One unanticipated finding was that our tweet-
friendly tokeniser has an adverse effect decreasing
the Jaccard score when it is used. A possible ex-
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planation for this is that the simple tokeniser re-
moves # and @ symbols, thus modifying hashtags
such as “#sleep” into “sleep” and allowing them
to combine with the word “sleep” in other tweets.
On the other hand the tweet-friendly tokeniser pre-
serves the “#sleep” hashtag and it therefore cannot
combine with the word “sleep”. We want the best
of both worlds so we preserve our hashtag but also
take a copy and split it into its constituent words.

Contrary to expectations, the performance im-
provement gained from using our Arabic stem-
mer is disappointingly low at just 2.67%. We be-
lieved that our Arabic stemmer would have a big-
ger impact than demonstrated because the stem-
mer is aimed at, and specifically developed for,
Arabic tweets. In fact our simplistic Morphy En-
glish stemmer produced a better improvement of
14.8% for English than our carefully tuned Arabic
stemmer did for Arabic.

The scores we achieved put us 2nd for the Ara-
bic dataset and 12th for the English dataset despite
the fact that we use no external resources, we sim-
ply train on the basis of the SemEval data. We will
be carrying out further experiments to see whether
adding external resources would give us further
improvement.
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Abstract

This paper describes the performing
system for SemEval-2018 Task 1 subtask
3 - Given a tweet, determine the intensity
of sentiment or valence (V) that best
represents the mental state of the
tweeter—a real-valued score between 0
(most negative) and 1 (most positive). The
proposed system gets features in tweets
from the existing emotional dictionary and
represents the word using word emb-
edding, then utilizes the joint repre-
sentations as the inputs of the bidire-
ctional long short-term memory (BiL-
STM) to learn and get the regression result.
To boost performance we ensem- ble
several BiLSTMs together. We ranked
6th in subtask 3 among all teams. Our
approach achieves the Pearson(All
instances) score 0.836 and Pearson(gold
in 0.5-1) score 0.667, we outperform the
baseline model of this task by 25.1% and
21.8% of Pearson(All instances) and
Pearson(gold in 0.5-1) scoresrespectively.

1 Introduction

Sentiment analysis (SA) is a field of knowledge
which deals with the analysis of people’s
opinions, sentiments, evaluations, appraisals,
attitudes and emotions towards particular entities
(Liu, 2012). Emolnt (Mohammad and Bravo-
Marquez, 2017) is a shared task hosted by
WASSA 2017, aiming to predict the emotion
intensity in tweets. SemEval 2018 Task 1 subtask 3
(Mohammad et al, 2018) is similar to Emolnt,
however the goal of subtask 3 is to detect valenc-

e or sentiment intensity, in which scores are
floating point values between 0 and 1,
representing low and high intensities of the
emotion  being  expressed,  respectively.
Obviously we don’t know in advance whether
twitter’s emotional intensity is positive or
negative, but in Emolnt task we can determine
whether twitter emotions are positive or negative
based on one of four datasets: anger, fearness,
joy, sadness. This is still a challenging task and
remains active areas of research. These setbacks
are: extensive usage of hashtags, slang,
abbreviations, and emoticons. And tweets are
usually typed on mobile devices like mobile
phone, laptop or iPad which can result in a
substantial amount of typos.

Existing methods for modeling emotion
intensity rely vastly on manually constructed
lexicons, which contain information about
intensity weights for each available word
(Mohammad and Bravo-Marquez, 2017a;
Neviarouskaya et al., 2007). The intensity for
the whole tweet can be deduced by combining
individual scores of words, which is easy and
ignores the word order compositionality of the
language. Building such lexicons is a labour-
intensive procedure. We can learn from these
models the skills of combining feature
extraction and classification or regression stages
given a sufficient amount of training data.

Some deep learning methods are used to
process the same question. Deep neural archit-
ectures for emotion intensity prediction in
tweets (Goel et al., 2017) and character- and
word-level recurrent neural models for tweet
emotion intensity detection (Lakomkin et al.,
2017).
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In our work, we firstly clean tweets, then build I-

exical features and find optimal combinations of
features to produce a final vector representation of
a tweet, next train a neural network regression
model and finally get the tweet’s intensity scores.
In addition, we adjust our models’ parameters and
through the ensemble models to get the best
performing results.

2 Data cleaning

We use the dataset provided by the official
organizers to train our system, there are 1181
labeled training tweets, 449 labeled dev tweets.
Test set are unlabeled 17874 tweets and the gold
labels were given only after the evaluation period.
Before training model or predicting test set we
firstly clean the tweets, this is imperative. We
utilize the following prep- rocessing steps.

(1) Hashtags are crucial markers for deter-
mining sentiment. The “#” symbol is removed and
the word itself is retained. Eg, a hashtag like
“#the_best_one”, finally we get “the best one”.

(2) Username mentions, we replace it with
“usename”.

(3) Shortening, we transform word “don’t”,
“T’'ve”, “T’ll” et al into “do” “n’t”, “’ve”,“’11”.

(4) Punctuations, only “!” and “?” are retained,
others like «;” “>" «)” < “-” are deleted.

(5) Numerical symbols, considering that the
data in the dataset is relatively standardized and
there are few numbers, so we remove the all
digitals and only keep English words.

(6) Extra spaces are removed and all words
become lowercase letters.

3 Feature Extraction

In order to completely extract features from
tweets, we consider two characteristics which
are annotated lexicons and pre-trained word
embedding.

3.1 Annotated Lexicon

For extracting lexicon features, we follow the
procedure as per the baseline system provided in
the WASSA Emotion Intensity Task. The know-
ledge sources that have been used are: MPQA
subjective lexicon (Wilson et al., 2005), Bing Liu
lexicon (Ding et al., 2008), AFINN (Nielsen,
2011), Sentiment140 (Kiritchenko et al., 2014),
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NRC Hashtag Sentiment Lexicon
(Mohammad and Kiritchenko, 2015), NRC
Hashtag Emotion  Association Lexicon
(Mohammad et al.,, 2013), NRC Word-

Emotion Association Lexicon(, 2013), NRC-
10 Expanded Lexicon (Bravo Marquez et al.,
2016) and the SentiWordNet (Esuli and
Sebastiani, 2007). Two more features are
calculated on the basis of emoticons (obtained
from AFINN (Nielsen, 2011)) and negations
present in the text. We use several of the
above lexicons as following:

« Emoji Valence (EV): This is a hand
classified lexicon of Unicode emojis, rated on
a scale of -5 (negative) to 5 (positive).

» SentiWordNet (SWN): Calculates positive
and negative sentiment score  using
SentiWordNet, which is an opinion mining
resource available through NLTK.

» Depeche Mood (DM) (Staiano and
Guerini, 2014): This is a lexicon comprised
of about 37,000 unigrams annotated with
real-valued scores for the emotional states
afraid, amused, angry, annoyed, don’t care,
happy, inspired and sad.

» Emoticon Sentiment Lexicon: Note that
this is a sentiment lexicon drawn from
emoticons, and is not an emotionlexicon.

* NRC-Emoticon-AffLexNegLex-v1.0: E-
ach line of this lexicon represents a real-
valued sentiment score: score = PMI(w, pos) -
PMI(w, neg), where PMI stands for Point-
wise Mutual Information between a term w
and the positive/negative class.
NRC-Hashtag-Sentiment-Lexicon-v1.0

(Moh-ammad and Turney, 2013): The
lexicon is an association of words with
positive (negative) sentiment generated

automatically from tweets with sentiment-
word hashtags.

« NRC-Hashtag-Sentiment-AffLexNegLex-
1.0: The same lexicon as Sentiment 140, but
here tw- eets with only emotional hashtags
are considered during training.

3.2 Word Embedding

The text can be converted into word
embedding, which represents each word of
the text with a d dimensional vector (Mikolov
et al., 2013). Considering that we have to deal
with tweets, we use GloVe word embedding



trained on 2 billion tweets from twitter
(Pennington et al., 2014), vectors of 100, 200
and 300 dimensions are provided as part of the
pre- trained model. For this work, we use the
300 dimensional vectors of 42B tokens. We also
considered GoogleNews- vectors-negative300 in
our expe-riments but the effects was not as
good as the GloVe word embedding.

4 Model Training

Based on the application of features extractions
and word embedding, we can represent each
word in a tweet as a high dimensional space
vector, and the dimension of the vector is d + | .
d represents the dimension of GloVe word
embedding 300 and | stands for the length of the
additional lexical dictionary. After representing
the tweets, we need to train models. Since the task
requires the computation of a real valued
emotion intensity score for the tweets in the test
set, we explore several regression methods. Our
system is implemented in Keras and we finally
choose the best single BIiLSTM model, which
contains two layers of BIiLSTM following the
embedding layer and, we add a dropout layer.
Some parameters of our model are: dropout
probability 0.25 and 0.5 respectively; units of the
BiLSTM layers are 512 and 256 respectively;
units of the full connection layer is 256. The
complete model structure is shown below Figure
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5 System tuning

When training model on Keras so there only
some parameters need to change, we tune the
parameters such as the choice of loss function,
dropout probability, dimension of the BiLSTM
layer. As for feature combination we use all the

annotated lexicons mentioned in section 3.1 so

as to control the variables and we don’t consider
the impact of different dictionary combinations on
the results, which may be discussed in the future
work. Note that all of our tuning processes are
done on the development set, each time we
finished a model we record the results.
Ensembling of some models is universal used
method to improve the performance of the overall
system by combining predictions of several
classifiers. Our system ensembles ten exactly the
same BiLSTMs models and average the results, it
turns out that the ensemble result is better than
that of a single model. That is to say when we
ensemble the model, the weight of each single
BIiLSTM is the same.

6 Experiment and results

All our experiments have been developed using
Keras deep learning library with Theano
backend, and with CUDA enabled. And all our
experiments are performed on a computer with
Intel Core(TM) i3 @3.4GHz 16GB of RAM
and GeForce GTX 1060 GPU. After testing
many neural network models, we finally find
the best results on LSTM and BiLSTM models.
Table 1 shows the results of a single layer
LSTM changing the loss function and word
embedding, we can learn that MAE loss
function can get the best result with Glove word
embedding, in general the performance on
Glove word embedding is better than word2vec
embedding. Table 2 shows the results of a
single BILSTM changing the loss function and
integrating ten models under different loss
functions and different word embedding we can
learn that MAPE loss function can get the best
result with Glove word embedding, in general
the performance on Glove word embedding is
better than word2vec embedding. Table 3 is the
result of double layers BiLSTM changing the
loss function and integrating ten models under
different loss functions and different word
embedding we can learn that MAPE loss
function can get the best result with Glove word
embedding, in general the performance on
Glove word embedding is better than word2vec

embedding.

The system in this subtask are evaluated
using the Pearson correlation coefficient, which
computes a bivariate linear coefficient, and the
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secondary evaluation metrics, which is
Pearson correlation for a subset of the test set
that includes only those tweets with intensity
score greater or equal to 0.5. We present the
results of the system submitted to the
competition leaderboard in Table 4. The score
of our system is 0.836 (Pearson) and 0.667
(Pearson gold in 0.5-1). Note that the model
we used on the test set is the best model on the
development set, i.e., in Table 3 the third line.

Loss function Pearson score
MSE(Glove) 0.804
MAE(Glove) 0.818
MAPE(Glove) 0.815
MSLE(Glove) 0.801
MSE(w2v) 0.801
MAE(w2v) 0.798
MAPE(w2v) 0.799
MSLE(w2v) 0.786

Table 1: Performance on development dataset. Single
layer LSTM under different loss functions and
different word embedding.

Loss function Pearson score
MSE(Glove) 0.799
MAE(Glove) 0.820
MAPE(Glove) 0.822
MSLE(Glove) 0.801
MSE(W2v) 0.797
MAE(w2v) 0.810
MAPE(w2v) 0.799
MSLE(W2v) 0.784
Table 2: Performance on development dataset.

Ensemble result of single layer BiLSTM under diff-
erent loss functions and different word embedding.

Loss function Pearson score
MSE(Glove) 0.805
MAE(Glove) 0.826

MAPE(Glove) 0.827

MSLE(Glove) 0.806
MSE(W2v) 0.796
MAE(w2v) 0.785
MAPE(W2v) 0.794
MSLE(w2v) 0.783

Table 3: Performance on development data-set.
Ensemble result of double layers BiLSTM under diff-
erent loss functions and different word embedding.
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# Team P P (gold
0.5-1)

1 SeerNet 0.873 0.697
2 | TCS Research 0.861 0.680
3 PlusEmo2Vec 0.860 0.691
4 NTUA-SLP 0.851 0.688
5 Amobee 0.843 0.644
6 Yuan 0.836 0.667
7 nlpzzx 0.835 0.670

Table 4: Performance on test dataset. Final results in about
test set on leaderboard and our system ranks 6th overall.

7 Conclusions

In this paper, we propose a deep learning
framework to predict the emotion intensity in
tweets. The proposed system is based on two
layers BILSTM and the last layer of model
using a linear regression so that we can get the
intensity score, which is a consecutive
emotional value. Before training model we
implement features extraction and represent the
tweets by word embedding. Both single model
and ensemble model are described in detail
with a view of making our experiments
replicable. The optimal parameters are
mentioned along with our method of bringing
the approaches together. Our submitted system
beats the baseline system by about 25.1% on
the test set. Our source code is in here
https://github.com/ynuwm/SemEval-2018
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Abstract

In this paper we describe our submission to
SemEval-2018 Task 1: Affects in Tweets. The
model which we present is an ensemble of var-
ious neural architectures and gradient boosted
trees, and employs three different types of vec-
torial tweet representations. Furthermore, our
system is language-independent and ranked
first in 5 out of the 12 subtasks in which we
participated, while achieving competitive re-
sults in the remaining ones. Comparatively re-
markable performance is observed on both the
Arabic and Spanish languages.

1 Introduction

The Affects in Tweets shared task (Mohammad
et al., 2018) is the second iteration of a task which
offers a new approach to Sentiment Analysis - one
that concerns itself with emotion and sentiment
intensity, rather than simple categorical classifi-
cation. The shared task is divided into a set of
subtasks, where the aim is to predict the emotion
intensity of a predetermined emotion (fear, anger,
sadness, joy) or sentiment (valence) intensity of a
given set of tweets. Such predictions are either for-
mulated as a regression problem where the output
is a continuous-valued score in the interval (0, 1),
or as ordinal classification into a given number of
classes representing intensity. Additionally, each
one of the subtasks targets a particular language:
English, Arabic or Spanish.

In total, we participated in 12 different subtasks
and our system achieved the best performance on
the test set out of all participants in 5 out of those,
ranked second in 3 others, and performed compet-
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itively in the rest. Moreover, our system can ar-
guably be considered the best overall performing
system for both Arabic and Spanish'. It should be
noted, however, that the shared task includes tradi-
tional emotion classification subtasks in which we
did not participate.

The system described in this paper builds upon
a survey of some of the best performing systems
from previous related shared tasks (Mohammad
and Bravo-Marquez, 2017; Rosenthal et al., 2017).
In particular, we draw inspiration from the systems
described in (John and Vechtomova, 2017), which
makes use of gradient boosted trees for regres-
sion; (Goel et al., 2017), which employs an ensem-
ble of various neural models; and (Baziotis et al.,
2017), which features Long Short Term Memory
(LSTM) networks with an attention mechanism.
Our work contributes to the aforementioned ap-
proaches by further developing a variety of neu-
ral architectures, using transfer learning via pre-
trained sentence encoders, testing methods of en-
sembling neural and non-neural models, and gaug-
ing the performance and stability of a regressor
across languages.

The rest of this paper describes the pipeline of
the system used for our submission, which is an
ensemble of neural and non-neural models.

2 Data and features

The provided training and development data is
comprised of tweets, an emotion or sentiment, and
labels describing the intensity of the emotion or

'nttps://competitions.codalab.org/
competitions/17751#results

Proceedings of the 12th International Workshop on Semantic Evaluation (SemEval-2018), pages 210-217
New Orleans, Louisiana, June 5-6, 2018. ©2018 Association for Computational Linguistics
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Figure 1: Graphical visualization of various feature vectors used in our ensemble model. These are from
left to right: character embedding, word embedding, In fer Rep and AvgLex Rep representations.

sentiment. We refer readers interested in an ex-
haustive description of the data to (Mohammad
et al., 2018; Mohammad and Kiritchenko, 2018).
In this work, we convert each tweet into a com-
bination of three types of vector representations:
character and word-level vectors for Arabic and
Spanish; and character, word, and sentence-level
vectors for English. This section describes the pro-
cedure that allows us to obtain these varied repre-
sentations, which are later employed by our clas-
sification and regression models.

2.1 Preprocessing

The syntactic and orthographic form of tweets of-
ten differs substantially from text belonging to
other domains (John and Vechtomova, 2017). As
such, pre-processing procedures are as important
as the architecture of any given model.

In pre-processing our data, we first replace all
same-character sequences of length 3 or more with
only 2 occurrences. We also replace all user men-
tions with a unique common token, as well as all
control characters with whitespaces. Emojis are
surrounded with spaces, enforcing that any two
emojis are not consecutive characters. Finally, all
text is lowercased. In the case of Spanish text,
we further remove the characters ; and ;, and re-
place accented characters with their unaccented
versions, as well as 77 with z. In the case of Arabic
text, we remove quotation marks as well.

Following the cleaning process, we tokenize the
resulting text by applying the twokenize tool
(Krieger and Ahn, 2010), as provided in the CMU
Tweet NLP software (Owoputi et al., 2013), which
is, by design, able to cope with the noise that ap-
pears in social media. Once the tokenization is
completed, we filter all stopwords 2.

2We employ the stopword lists available from https :
//www.ranks.nl/stopwords
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2.2 Lexicons

Lexicons are one of the resources which we em-
ploy in order to compute features. In short, a lex-
icon is a collection of words that are associated
with a value for an arbitrary number of affective
categories. In our case, given a tweet, we produce
several features per lexicon which are the result
of aggregating individual matching word values
in each category, adding the numerical values and
counting those which are nominal. We provide an
overview of the lexicons used per language below,
with the number of features contributed by each
individual lexicon in parenthesis. In the case of
English, the following lexicons and extracted val-
ues jointly produce a feature vector of dimension
43:

MPQA lexicon (2): Number of positive and
negative words (Wilson et al., 2005).

Bing Liu lexicon (2): Number of positive and
negative words (Hu and Liu, 2004).

Emoticons (2): Positive and negative aggre-
gated scores for emoticons (Nielsen, 2011).

Sentiment140 lexicon (2): Positive and neg-
ative aggregated scores (Kiritchenko et al.,
2014).

NRC Word-Emotion Association Lexicon
(10): Number of words matching each cat-
egory (Mohammad and Turney, 2013).

NRC Hashtag Sentiment lexicon (2): Positive
and negative aggregated scores (Kiritchenko
etal., 2014).

NRC Hashtag Emotion Association Lexicon
(8): Aggregated scores for each category
(Mohammad and Kiritchenko, 2015).



e NRC-10-Expanded lexicon (10): Aggregated
scores for each category (Bravo-Marquez
et al., 2016).

e SentiWordnet (2): Positive and negative ag-
gregated scores (Baccianella et al., 2010).

e AFINN lexicon (2): Positive and negative ag-
gregated scores (Nielsen, 2011).

e Negations (1): Number of negative words
(Mohammad and Bravo-Marquez, 2017).

In the case of Arabic we also employ the same
first 6 lexicons which we listed for English, but
with the content words automatically translated
(Salameh et al., 2015). However, we extract 4
scores from the MPQA lexicon (on the affective
categories positive, negative, neutral and both),
an a single combined score from the Bing Liu
and Emoticons lexicons. Furthermore, we employ
3 lexicons generated by distant supervision tech-
niques on Arabic tweets as follows (Mohammad
et al., 2016), in order to obtain a feature vector of
dimension 26:

e Arabic Emoticon Lexicon (2): Number of
positive and negative words.

e Arabic Hashtag Lexicon (2): Number of pos-
itive and negative words.

e Arabic dialectal Hashtag Lexicon (2): Num-
ber of positive and negative words.

Finally, the following lexicons are used in Span-
ish to produce a feature vector of dimension 14.
In contrast to the Arabic language, the majority of
the lexicons here listed are manually annotated or
semi-automatically generated from Spanish data:

e Emoticons (1): Combination of positive and
negative aggregated scores for emoticons
(Nielsen, 2011).

e El Huyar dictionary (2): Positive and nega-
tive aggregated scores (Saralegi and San Vi-
cente, 2013).

e ISOL lexicon (2): Number of positive
and negative words (Martinez-Cdmara et al.,
2014).

e SDAL lexicon (3): Aggregated scores for
each category (Dell’ Amerlina Rios and Gra-
vano, 2013).
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e Spanish Sentiment lexicon (2): Number of
positive and negative words (Perez Rosas
etal., 2012).

e ML Senticon (1): Aggregated score for po-
larity (Cruz et al., 2014).

e Sentwords (3): Aggregated score for each
category in an automatically translated ver-
sion of the lexicon described in (Beth War-
riner et al., 2013).

Note that the lexicons are not directly used on
tweet data, but rather that lexical features are ex-
tracted after applying the same data cleaning and
tokenization process which we described for the
training data to each one of the lexicons listed.

2.3 Word embeddings

Word embeddings are another popular choice for
feature extraction. We employ pre-trained word
embeddings for English and train our own embed-
dings on separated Arabic and Spanish tweet data
that we manually collected. All sets of embed-
dings comprise 400 dimensions and are detailed
below for each language:

e English: Word2vec skip-gram embeddings,
trained on the Edinburgh Twitter Corpus
(Petrovi¢ et al., 2010).

e Arabic: Word2vec skip-gram embeddings,
trained on 4.38 million tweets>.

e Spanish: Word2vec skip-gram embeddings,
trained on 3.02 million tweets®.

2.4 Manually-crafted representations

In the Arabic and Spanish subtasks, some model
components in our ensemble use a combination of
the two types of representations described so far
(lexical features and word embeddings) as an in-
put feature vector. To obtain this, we average the
embeddings corresponding to each word in a given
tweet up to a maximum of 25 words, and append
the computed lexical features to the result. These
features are extracted using the filters provided
in the Affective Tweets package (Mohammad and
Bravo-Marquez, 2017) available for WEKA (Hall
et al., 2009). In this paper, we will refer to this
combined representation as Av ngxRep.
?Available for download from akulmizev.com/
embeddings/ar_tweets.csv.

4Available for download from akulmizev.com/
embeddings/es_tweets.csv.
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Figure 2: Diagram of our system which describes how the different models used are ensembled. The
outputs of each component in the ensemble are averaged into a single score.

2.5 Learned representations

Engineering a representation of the data (such as
a the one described in Section 2.4) that can sup-
port effective machine learning is a complex task,
requiring human ingenuity and domain-specific
knowledge. Representation learning techniques
(Bengio et al., 2003) enable machine learning al-
gorithms to automatically extract and organize dis-
criminative features, thereby mapping raw data
into forms that make it easier to extract useful in-
formation. Some model components in our en-
semble employ this kind of representation, which
we obtain using 2 different methods:

e Encoding a tweet using (Conneau et al.,
2017)’s BiLSTM-max pooling encoder,
which is pre-trained on a natural language
inference dataset® and produces representa-
tions that perform well on a wide variety of
NLP tasks. This approach in particular em-
ploys GloVe word embeddings (Pennington
et al., 2014) as input and produces a vector
containing 4096 dimensions, to which we
will refer with the name In fe;Rep. How-
ever, note that we only produce this feature
vector for the English language subtasks.

e Encoding a tweet using one or a combina-
tion of three neural architectures which use
skip-gram word embeddings (Mikolov et al.,
2013) as input and are trained on the shared

SStanford Natural Language Inference dataset (Bowman
et al., 2015). This is only available for English.

task’s training data for regression subtasks.
These correspond to the CNN, Bi-LSTM and
CHAR-LSTM models described in Section
3. Representations produced by the CHAR-
LSTM model are of dimension 612°, and the
ones obtained via the Bi-LSTM model are of
dimension 512. Representations produced by
the CNN model have different dimensional-
ity depending on the number and size of fil-
ters used. We will collectively refer to such
representations with the name Reg_Rep.

3 System architecture

While Reg_Rep is produced as part of end-to-
end trainable regression and classification models,
AngEwRep and In fe?‘Rep are generated inde-
pendently. Thus, Angngep and Inf e_f“Rep are
fed separately into these models after being gener-
ated. The pipeline of our ensemble is represented
schematically in Figure 2.

3.1 Neural models

We implement three varieties of neural network ar-
chitectures which are commonly used in text clas-
sification tasks using Keras (Chollet et al., 2015)
with a TensorFlow backend. In all of them, our ob-
jective function is Mean Squared Error (MSE) and
dropout (Srivastava et al., 2014) is used for regu-
larization at various levels. These architectures are
listed below:

6512 dimensions correspond to word final hidden states
and 100 dimensions to character hidden states.

213



e Convolutional Neural Network (CNN) with
max pooling.

¢ Bidirectional Long-Short Term Memory (Bi-
LSTM) with attention.

e Combined character and word features bi-
LSTMs (CHAR-LSTM).

3.2 Regression

For AvgLexRep and InferRep, which are not part of
an end-to-end trainable model, we perform regres-
sion using either a feed-forward Deep Neural Net-
work (DNN) or Gradient Boosted Trees (GBT)’.
The depth of the feed-forward network is deter-
mined constructively, starting with one layer and
adding layers which are half the size of the pre-
vious one until performance on cross-validation
stops improving.

3.3 Model selection for regression

We perform model selection using 5-fold cross-
validation on the training data from the shared
task. In each subtask that involves regression, the
possible models are ranked according to their indi-
vidual performance and ensembled through simple
averaging. The ensemble itself is built construc-
tively based on the ordering defined by the rank-
ing, starting from a single component and adding
components in order whenever the average perfor-
mance on cross-validation improves.

Ensembling has long been shown to be an ef-
fective method of variance reduction for complex
models (Perrone, 1993), and we indeed find in our
experiments that averaging predictions leads to re-
sults better than those of any individual model®.

Furthermore, we also find predictions obtained
via simple averaging to be more accurate (on
cross-validation) compared to those obtained via
feeding the outputs from all model components
into a sigmoid layer. Although such a finding
might appear counter-intuitive, it can perhaps be
explained through the fact that the training dataset
is relatively small, and therefore ensembling via a
non-linear function of the outputs can potentially
lead to overfitting.

"We use the GBT implementation provided in scikit-learn
(Pedregosa et al., 2011).

8We refer the reader to (Hashem and Schmeiser, 1993) for
an explanation of why this is the case.
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3.4 Ordinal classification

Our system for each ordinal classification subtask
makes use of the ensemble model which we build
for the corresponding regression subtask in the
same language, and model selection is performed
using the same procedure described in Section 3.3.
However, instead of averaging the predictions, the
best model’s predictions are concatenated and fed
as features to an ordinal meta-classifier (Antoniuk
et al., 2013).

3.5 Hyperparameter tuning

Hyper-parameter optimization is carried out us-
ing 5-fold cross-validation. At first, a reason-
able range is determined manually, and then grid-
search is performed within that range. For Gra-
dient Boosted Trees, the hyper-parameters opti-
mized are maximum tree depth, number of estima-
tors, and maximum leaf nodes. For neural models,
the parameters optimized are batch size, number
of epochs, size of the layers or filters, and whether
or not dropout is used at different levels. Dropout
is by default always set at 0.2. Furthermore, we
use a fixed random seed to enable replicability.

4 Evaluation

‘ Anger ‘ Sadness ‘ Joy ‘ Fear
System ‘ CV Test ‘ CV Test ‘ CV  Test ‘ CV  Test
DNN (Infer.) | 0.707 0.703 | 0.755 0.654 | 0.713 0.667 | 0.742 0.701
GBT (Infer.) | 0.716 0.707 | 0.739  0.677 | 0.708 0.688 | 0.748 0.697
CHAR-LSTM | 0.698 0.682 | 0.716 0.626 | 0.722 0.700 | 0.727 0.663
CNN 0.642 0.636 | 0.521 0.4316 | 0.637 0.628 | 0.615 0.459

Ensemble | 0.756 0.749 | 0.770  0.699 | 0.758 0.740 | 0.773 0.726

Table 1: Comparison of Pearson correlation
cross-validation (CV) and official results (Test)
scores in the Emotion Intensity regression
(El-reg) English subtasks. Results are given for
both the ensemble and its individual models.

Table 1 displays the scores (both 5-fold cross-
validation and test scores) of the individual models
and the ensemble model for the Emotion Intensity
English regression subtasks. The ensemble model
in this case is always for the best three models.
Table 2 shows the results obtained using 5-fold
cross-validation on the combined training and de-
velopment data and the official test set results for
each subtask. All scores are reported as the Pear-
son correlation coefficient between our system’s
predictions and the provided gold-labels (i.e. hu-
man judgments).



. English Arabic Spanish
Task Emotion Ccv Test CvV Test Ccv Test
Anger 0.756 0.749 | 0.620 0.647 | 0.731 0.676
Joy 0.758 0.740 | 0.690 0.756 | 0.712 0.753
El-reg | Fear 0.773 0.726 | 0.619 0.642 | 0.720 0.776
Sadness 0.770 0.669 | 0.717 0.694 | 0.728 0.746
Macro-avg. | 0.764 0.728 | 0.662 0.685 | 0.723 0.738
V-reg | Valence 0.800 0.829 | 0.820 0.816 | 0.775 0.795
Anger 0.670 0.620 | 0.620 0.551 | 0.635 0.606
Joy 0.701 0.686 | 0.610 0.631 | 0.668 0.667
El-oc | Fear 0.635 0.528 | 0.565 0.551 | 0.658 0.706
Sadness 0.738 0.622 | 0.682 0.618 | 0.655 0.677
Macro-avg. | 0.691 0.616 | 0.619 0.587 | 0.654 0.664
V-oc Valence 0.770 0.776 | 0.778 0.752 | 0.749 0.756

Table 2: Pearson correlation using cross-validation (CV) on the trainining data and official results of the
shared task (Test) obtained with our system, for each one of the Emotion Intensity (EI), Valence (V),
regression (reg) and ordinal classification (oc) subtasks.

5 Analysis

It can be observed in Table 2 that the test and
cross-validation scores are similar, meaning that
cross-validation provided an accurate estimate of
the generalization error and that our system’s over-
fitting of the different combined training and de-
velopment sets is minimal. In fact, for the En-
glish valence subtasks, the Arabic Emotion Inten-
sity regression subtask and all Spanish subtasks
except the ones involving anger as the target emo-
tion, the test scores are higher or equal than the
cross-validation scores. This indicates both that
our system generalizes appropriately and that the
test sets are not substantially different than the
training sets.

Overall performance is higher for English,
likely due to the availability of better quality lexi-
cons and word embeddings. Nonetheless, it is in-
teresting to note that on average, cross-validation
provided an optimistic estimate of the generaliza-
tion error for English and a pessimistic one for
Spanish and Arabic.

Furthermore, as shown in Table 1 for various
English regression subtasks, it is clear that the en-
semble outperforms all individual models on both
cross-validation and the test set. This points to-
wards the success of our ensembling method in
reducing the variance of individual models. We
omit similar results for other subtasks because the
trend displayed by those is comparable.

Finally, it is interesting to note that the mod-

els using Inf e;Rep (DNN and GBT), which rely
on tweet representations produced through trans-
fer learning from Natural Language Inference,
outperformed the models using the task-specific
RegRep (CNN, Bi-LSTM and CHAR-LSTM) for
all emotions except Sadness.

6 Conclusion and future work

In this paper we have described AffecThor, the sys-
tem which we submitted to the SemEval-2018 Af-
fects in Tweets shared task. AffecThor uses three
different types of learned and manually-crafted
representations and is an ensemble of neural and
non-neural models. It is the best performing sys-
tem on 5 out of 12 subtasks, and the second best
performing in 3 others. Furthermore, it is arguably
the best overall performer for Spanish and Arabic.

Our work explored two methods of ensembling
regressors: simple averaging and using a non-
linearity (sigmoid) layer on top of the different
sub-models as part of an end-to-end trainable neu-
ral model, and found that simple averaging is
more robust. However, we believe that ensembling
using a linear combination (weighted-averaging)
where the weights are learned could lead to bet-
ter results, as is shown in (Perrone, 1993; Hashem
and Schmeiser, 1993).

Finally, the availability of fine-grained labeled
data across emotions and languages opens up the
possibility of investigating multi-task and multi-
lingual learning objectives. In the future, we
would like to extend this work in that direction.
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Abstract

This paper describes the participation of
Amobee in the shared sentiment analysis task
at SemEval 2018. We participated in all
the English sub-tasks and the Spanish va-
lence tasks. Our system consists of three
parts: training task-specific word embeddings,
training a model consisting of gated-recurrent-
units (GRU) with a convolution neural net-
work (CNN) attention mechanism and training
stacking-based ensembles for each of the sub-
tasks. Our algorithm reached 3rd and Ist
places in the valence ordinal classification sub-
tasks in English and Spanish, respectively.

1 Introduction

Sentiment analysis is a collection of methods and
algorithms used to infer and measure affection
expressed by a writer. The main motivation is
enabling computers to better understand human
language, particularly sentiment carried by the
speaker. Among the popular sources of textual
data for NLP is Twitter, a social network service
where users communicate by posting short mes-
sages, no longer than 280 characters long—called
tweets. Tweets can carry sentimental information
when talking about events, public figures, brands
or products. Unique linguistic features, such as
the use of slang, emojis, misspelling and sarcasm,
make Twitter a challenging source for NLP re-
search, attracting the interest of both academia and
the industry.

Semeval is a yearly event in which international
teams of researchers work on tasks in a com-
petition format where they tackle open research
questions in the field of semantic analysis. We par-
ticipated in Semeval 2018 task 1, which focuses
on sentiment and emotions evaluation in tweets.
There were three main problems: identifying the

*These authors contributed equally to this work.
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presence of a given emotion in a tweet (sub-tasks
El-reg, El-oc), identifying the general sentiment
(valence) in a tweet (sub-tasks V-reg, V-oc) and
identifying which emotions are expressed in a
tweet (sub-task E-c). For a complete description
of Semeval 2018 task 1, see the official task
description (Mohammad et al., 2018).

We developed an architecture based on gated-
recurrent-units (GRU, Cho et al. (2014)). We
used a bi-directional GRU layer, together with
a convolutional neural network (CNN) attention-
mechanism, where its input is the hidden states
of the GRU layer; lastly there were two fully
connected layers. We will refer to this architecture
as the Amobee sentiment classifier (ASC). We
used ASC to train word embeddings to incorporate
sentiment information and to classify sentiment
using annotated tweets. We participated in all the
English sub-tasks and in the valence Spanish sub-
tasks, achieving competitive results.

The paper is organized as follows: section 2
describes our data sources, section 3 describes the
data pre-processing pipeline. A description of the
main architecture is in section 4. Section 5 de-
scribes the word embeddings generation; section
6 describes the extraction of features. In section
7 we describe the performance of our models;
finally, in section 8 we review and summarize the
results.

2 Data Sources

We used four sources of data:

1. Twitter Firehose: we randomly sampled 200
million tweets using the Twitter Firehose ser-
vice. They were used for training word em-
beddings and for distant supervision learning.

2. Semeval 2017 task 4 datasets of tweets, an-
notated according to their general sentiment

Proceedings of the 12th International Workshop on Semantic Evaluation (SemEval-2018), pages 218-225
New Orleans, Louisiana, June 5-6, 2018. ©2018 Association for Computational Linguistics



on 3 and 5 level scales; used to train the ASC
model.

. Annotated tweets from an external sourcel,

annotated on a 3-level scale; used to train the
ASC model.

Official Semeval 2018 task 1 datasets: used
to train task specific models.

Datasets of Semeval 2017 and the external source
were combined with compression?; the resulting
dataset contained 88,623 tweets with the following
distribution: positive: 30097 sentences (34%),
neutral: 35818 (40%), negative: 22708 (26%).
Description of the official Semeval 2018 task 1
datasets can be found in Mohammad et al. (2018);
Mohammad and Kiritchenko (2018).

3 Preprocessing

We started by defining a cleaning pipeline that pro-
duces two cleaned version of an original text; we
refer to them as “simple” and “complex” versions.
Both versions share the same initial cleaning steps:

1. Word tokenization using the CoreNLP library

(Manning et al., 2014).

Parts of speech (POS) tagging using the
Tweet NLP tagger, trained on Twitter data
(Owoputi et al., 2013).

. Grouping similar emojis and replacing them
with representative keywords.

Regex: replacing URLs with a special
keyword, removing duplications, break-
ing #CamelCasingHashtags into individual
words.

The complex version contains these additional
steps:

1. Word lemmatization, using CoreNLP.

2. Named entity recognition (NER) using
CoreNLP and replacing the entities with
representative keywords, e.g. _date.,
_number_, brand._, etc.

. Synonym replacement, based on a manually-
created dictionary.

Word replacement using a Wikipedia dictio-
nary, created by crawling and extracting lists
of places, brands and names.

Uhttps://github.com/monkeylearn/sentiment-analysis-

benchmark
> Transformed 5 labels to 3: {—2,—-1} — {-1},

{1,2} — {1}, {0} — {0}.
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As an example, table 1 shows a fictitious tweet and
the results after the simple and complex cleaning
stages.

4 ASC Architecture

Our main contribution is an RNN network, based
on GRU units with a CNN-based attention mecha-
nism; we will refer to it as the Amobee sentiment
classifier (ASC). It is comprised of four identical
sub-models, which differ by the input data each
of them receives. Sub-model inputs are composed
of word embeddings and embeddings of the POS
tags—see section 5 for a description of our embed-
ding procedure. The words were embedded in a
200 or 150 dimensional vector spaces and the POS
tags were embedded in a 8 dimensional vector
space. We pruned the tweets to have 40 words,
padding shorter sentences with a zero vector. The
embeddings form the input layer.

Next we describe the sub-model architecture;
the embeddings were fed to a bi-directional GRU
layer of dimension 200. Inspired by the attention
mechanism introduced in Bahdanau et al. (2014),
we extracted the hidden states of the GRU layer;
each state corresponds to a decoded word in the
GRU as it reads each tweet word by word. The
hidden states were arranged in a matrix of dimen-
sion 40 x 400 for each tweet (bi-directionality of
the GRU layer contributes a factor of 2). We fed
the hidden states to a CNN layer, instead of a
weighted sum as in the original paper. We used 6
filter sizes [1, 2, 3,4, 5, 6], with 100 filters for each
size. After a max-pooling layer we concatenated
all outputs, creating a 600 dimensional vector.
Next was a fully connected layer of size 30 with
tanh activation, and finally a fully connected layer
of size 3 with a softmax activation function.

We defined 4 such sub-models with embedding
inputs of the following settings: w2v-200, w2v-
150, ft-200, ft-150 (ft=FastText, w2v=Word2Vec,
see discussion in the next section). We combined
the four sub-models by extracting their hidden d =
30 layer and concatenating them. Next we added a
fully connected d = 25 layer with tanh activation
and a final fully connected layer of size 3. See
figure 1 for an illustration of the entire architec-
ture. We used the AdaGrad optimizer (Duchi et al.,
2011) and a cross-entropy loss function. We used
the Keras library (Chollet et al., 2015) and the
TensorFlow framework (Abadi et al., 2016).
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Original

@USAIRWAYS is right :-) ! Flying in September #NiceToFly

Simple Cleaning

twitter-entity is right happy-smily ! flying in september nice to fly

Complex Cleaning

twitter-entity be right happy-smily ! fly in _date_ pleasant to fly

Table 1: An example of a tweet processing, producing two cleaned versions.

S Embeddings Training

Word embedding is a family of techniques in
which words are encoded as real-valued vectors of
lower dimensionality. These word representations
have been used successfully in sentiment analysis
tasks in recent years. Among the popular algo-
rithms are Word2Vec (Mikolov et al., 2013) and
FastText (Bojanowski et al., 2016).

Word embeddings are useful representations
of words and can uncover hidden relationships.
However, one disadvantage they have is the typical
lack of sentiment information. For example, the
word vector “good” can be very close to the
word vector “bad” in some trained, off-the-shelf
word embeddings. Our goal was to train word
embeddings based on Twitter data and then re-
learn them so they will contain emotion-specific
sentiment.

We started with our 200 million tweets dataset;
we cleaned them using the pre-processing pipeline
(described in section 3) and then trained generic
embeddings using the Gensim package (Rehiifek
and Sojka, 2010); we created four embeddings for
the words and two embeddings for the POS tags:
for each sentence we created a list of correspond-
ing POS tags (there are 25 tags offered by the tag-
ger we used); treating the tags as words, we trained
d = 8 embeddings using the word2vec algorithm
on the simple and complex cleaned datasets. The
embeddings parameters are specified in table 2.

Following Tang et al. (2014); Cliche (2017),
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who explored training word embeddings for sen-
timent classification, we employed a similar ap-
proach. We created distant supervision datasets,
first, by manually compiling 4 lists of represen-
tative words for each emotion: anger, fear, joy
and sadness; then, we built two datasets for each
emotion: the first containing tweets with the rep-
resentative words and the second does not. Each
list contained about 40 words and each dataset
contained roughly 2 million tweets. We used the
ASC sub-model architecture (section 4) to train
as following: training for one epoch with embed-
dings set to be untrainable (fixed). Then train for
6 epochs where the embeddings can change.

Overall we trained 16 word embeddings—4
embedding configurations for each emotion. In
addition, we decided to use the trained models’
final hidden layer (d = 15) as a feature vector in
the task-specific architectures; our motivation was
using them as emotion and intensity classifiers via
transfer learning.

Algorithm | Dimension | Dataset
Word2Vec 200 Simple
';'3 Word2Vec 150 Complex
§ FastText 200 Simple
FastText 150 Complex
g | Word2Vec 200 Simple
S Word2Vec 150 Complex

Table 2: Parameters for the word and POS tag embeddings.



6 Features Description

In addition to our ASC models, we extracted
semantic and syntactic features, based on domain
knowledge:

Number of magnifier and diminisher words,
e.g. “incredibly”, “hardly” in each tweet.

’

e Logarithm of length of sentences.

e Existence of elongated words, e.g.
“wowww”.

e Fully capitalized words.

The symbols #,@ appearing in the sentence.

Predictions of external packages: Vader (part
of the NLTK library, Hutto and Gilbert, 2014)
and TextBlob (Loria et al., 2014).

Additionally, we compiled a list of 338 emojis
and words in 16 categories of emotion, annotated
with scores from the set {0.5,1,1.5,2}. For each
sentence, we summed up the scores in each cate-
gory, up to a maximum value of 5, generating 16
features. The categories are: anger, disappointed,
fear, hopeful, joy, lonely, love, negative, neutral,
positive, sadness and surprise. Finally, we used
the NRC Affect Intensity lexicon (Mohammad,
2017) containing 5814 entries; each entry is a
word with a score between 0 and 1 for a given
emotion out of the following: anger, fear, joy and
sadness. We used the lexicon to produce 4 emotion
features from hashtags in the tweets; each feature
contained the largest score of all the hashtags in
the tweet. For a summary of all features used, see
table 6 in the appendix.

7 Experiments

Our general workflow for the tasks is as follows:
for each sub-task, we started by cleaning the
datasets, obtaining two cleaned versions. We
ran a pipeline that produced all the features we
designed: the ASC predictions and the features
described in section 6. We removed sparse fea-
tures (less than 8 samples). Next, we defined
a shallow neural network with a soft-voting en-
semble. We chose the best features and meta-
parameters—such as learning rate, batch size and
number of epochs—based on the dev dataset. Fi-
nally, we generated predictions for the regression
tasks. For the classification tasks, we used a
grid search method on the regression predictions
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Task ‘ Metric ‘ Score ‘ Ranking
V-oc-Spanish 0.765 1/14
V-reg-Spanish 0.770 2/14
V-oc Pearson | 0.813 3/37
El-oc Average 0.646 4/39
V-reg 0.843 5/38
E-c Jaccard | 0.566 6/35
El-reg Average | Pearson | 0.721 13/48

Table 3: Summary of results.

to optimize the loss. Most model trainings were
conducted on a local machine equipped with a
Nvidia GTX 1080 Ti GPU. Our official results are
summarized in table 3.

7.1 Valence Prediction

In the valence sub-tasks, we identified how intense
a general sentiment (valence) is; the score is either
in a continuous scale between 0 and 1 or classified
into 7 ordinal classes {—3,—2,—1,0, 1,2, 3}, and
is evaluated using the Pearson correlation coeffi-
cient.

We started with the regression task and defined
the following model: first, we normalized the
features to have zero mean and SD = 1. Then, we
inserted 300 instances of fully connected layers of
size 3, with a softmax activation and no bias term.
For each copy, we applied the function f(z) =
(xo — x2) /2 + 0.5 where z, x9 are the Ist and
3rd component of each hidden layer. Our aim was
transforming the label predictions of the ASCs
(trained on 3-label based sentiment annotation)
into a regression score such that high certainty in
either label (negative, neutral or positive) would
produce scores close to 0, 0.5 or 1, respectively.
Finally, we calculated the mean of all 300 predic-
tion to get the final node; this is also known as
a soft-voting ensemble. We used the Adam opti-
mizer (Kingma and Ba, 2014) with default values,
mean-square-error loss function, batch size of 400
and 65 epochs of training. For an illustration of
the network, see figure 2. We experimented with
the dev dataset, testing different subsets of the
features. Finally we produced predictions for the
regression sub-task V-reg.

We analyzed the relative contribution of each
feature by measuring variable importance using
Pratt (1987) approach. We calculated scores d; for
each feature using the following formula: d; =
Bl- pi/ R? where Bl denotes the sample estimation
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Figure 2: Architecture of the final classifier in the valence
sub-tasks, where f = (xo —x2)/2 + 0.5 and the input
dimension is 212 for the V-reg sub-task.

of the feature, p; is the simple correlation be-
tween the labels and the ith feature and R? is
the coefficient of determination (see Thomas et al.
1998). We present the relative contribution of each
feature in figure 3 and the top 10 features in table
4. We can see that the ASC models, both general
and emotion-specific, contributed about 72% of
the total contribution made by all features, in this
sub-task.

For the ordinal classification task, we used the
predictions of the regression task on the sentences,
which were the same in both tasks. Using a
grid search method, we partitioned the regression
scores into 7 categories such that the Pearson cor-
relation coefficient was maximized. We submitted
the classes predictions as sub-task V-oc. Our final
scores were 0.843, 0.813 in the regression and
classification sub-tasks, respectively.

Name ‘ Dim. ‘ %0 ‘
ASC_anger 25 31.38%
ASC 25 18.92%
ASC fear 25 10.63%
ASC_joy 25 8.13%
W2V_200_sadness 15 7.10%
W2V_200_fear 15 3.82%
ASC_sadness 25 3.46%
W2V_200_joy 15 1.74%
Blob 1 1.64%
Joy 1 1.60%

Table 4: Relative contribution of features in the valence
regression sub-task.

El-reg ‘ Anger ‘ Fear ‘ Joy ‘ Sadness
Features 204 274 150 181
Learning rate | 10~* 107° | 107° | 3-107°
Epochs 330 700 700 1000

Table 5: Summary of training parameters for the emotion
intensity regression tasks.

7.2 Emotion Intensity

In the emotion intensity sub-tasks, we identified
how intense a given emotion is in the given
tweets. The four emotions were: anger, fear,
joy and sadness; the score is either in a scale
between 0 and 1 or classified into 4 ordinal classes
{0,1,2,3}. Performance was evaluated using the
Pearson correlation coefficient. Our approach was
similar to the valence tasks; first we generated
features, then we used the same architecture as
in the valence sub-tasks, depicted in figure 2.
However, in these sub-tasks we used the emotion-
specific embeddings for each emotion sub-task.
We generated regression predictions and submit-
ted them as the El-reg sub-tasks; finally we carried
a grid search for the best partition, maximizing
the Pearson correlation and submitted the classes
predictions as sub-tasks El-oc. For a summary of
the training parameters used in the regression sub-
tasks, see table 5.

Our system performed as following: in the
regression tasks, the scores were: 0.748, 0.670,
0.748, 0.721 for the anger, fear, joy and sadness,
respectively, with a macro-average of 0.721. In the
classification tasks, the scores were: 0.667, 0.536,
0.705, 0.673 for the anger, fear, joy and sadness,
respectively, with a macro-average of 0.646.

7.3 Multi-label Classification

In the multi-label classification sub-task, we had
to label tweets with respect to 11 emotions: anger,
anticipation, disgust, fear, joy, love, optimism,
pessimism, sadness, surprise and trust. The score
was evaluated using the Jaccard similarity coef-
ficient. We started with the same cleaning and
feature-generation pipelines as before, creating
an input layer of size 217. We added a fully
connected layer of size 100 with tanh activation.
Next there were 300 instances of fully connected
layers of size 11 with sigmoid activation function.
We calculated the mean of all d = 11 vectors,
producing the final d = 11 vector. For an illus-
tration, see figure 4 for an illustration. We used
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Figure 4: Architecture of the multi-label sub-task E-c.

the following loss function, based on Tanimoto

; . A Y-y .
distance: L(y,y) =1 il =y 57e Where 111
is an L' norm and € = 10~ is used for numerical
stability. We trained with a batch size of 10, for
40 epochs with Adam optimization with default

parameters. Our final score was 0.566.

7.4 Spanish Valence Tasks

We participated in the Spanish valence tasks to
examine the current state of neural machine trans-
lation (NMT) algorithms. We used the Google
Cloud Translation API to translate the Spanish
training, development and test datasets for the two
valence tasks from Spanish to English. We then
treated the tasks the same way as the English
valence tasks, using the same cleaning and feature
extraction pipelines and the same architecture de-
scribed in section 7.1 to generate regression and
classification predictions. We reached 1st and
2nd places in the classification and regression sub-
tasks, with scores of 0.765, 0.770, respectively.
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8 Review and Conclusions

In this paper we described the system developed
to participate in the Semeval 2018 task 1 work-
shop. We reached 3rd place in the valence ordinal
classification sub-task and 5th place in the valence
regression sub-task. In the Spanish valence tasks,
we reached 1st and 2nd places in the classification
and regression sub-tasks, respectively. In the
emotions intensity sub-tasks we reached 4th and
13th places in the classification and regression
sub-tasks, respectively.

Summarizing the methods used: training of
word embeddings based on a Twitter corpus
(200M tweets), developing and using Amobee
sentiment classifier (ASC) architecture—a bi-
directional GRU layer with a CNN-based attention
mechanism and an additional hidden layer—used
to adjust the embeddings to include emotional
context, and finally a shallow feed-forward NN
with a stack-based ensemble of final hidden layers
from all previous classifiers we trained. This form
of transfer learning proved to be important, as
the hidden layers features achieved a significant
contribution to minimizing the loss.

Overall, we had better performance in the va-
lence tasks, both in English and Spanish. We posit
this is due to the fact our annotated supervised
training dataset (non task-specific) was based on
Semeval 2017 task 4, which focused on valence
classification. In addition, the annotations in Se-
meval 2017 were label-based, lending themselves
more easily to the ordinal classification tasks. In
the Spanish tasks, we used external translation
(Google API) and achieved good results without
the use of Spanish-specific features.
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A Features List

List of features used as inputs for the task-specific models.

Name Description Dim.
ASC ASC model hidden layer. 25
ASC x {anger,fear,joy,sadness} Emotion specific ASC hidden layers. 4 x 25
at ‘@’ symbol in tweet. 1
blob TextBlob sentiment library. 1
caps Occurrence of all capitalized words. 1
dim Diminisher words. 1
{ft,w2v} x {150,200} x {anger.fear,joy,sadness} | Hidden layers of models used to re-train the 4x4x15
embeddings.
hash “# symbol in tweet. 1
hash x {anger.fear,joy,sadness} Affection lexicon of hashtags. 4
irony Occurrence of #irony or #sarcasm hashtags. 1
length Logarithm of sentence length. 1
long Elongated words, ‘wowwww’. 1
mag Magnifiers. 1
vader Vader sentiment library. 3
negative Negative emojis. 1
neutral Neutral emojis. 1
positive Positive emojis. 1
anger/1 2
fear/1 2
joy/1 2
sadness/1 Detection of emojis and words related to the 2
love given emotion, taken from a manually 1
surprise annotated list. 1
disappointed 1
lonely 1
hopeful 1

Table 6: Complete list of features generated from datasets.
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Abstract

This paper describes our system implementa-
tion for subtask V-oc of SemEval-2018 Task
1: affect in tweets. We use multi-task learn-
ing method to learn shared representation, then
learn the features for each task. There are five
classification models in the proposed multi-
task learning approach. These classification
models are trained sequentially to learn differ-
ent features for different classification tasks.
In addition to the data released for SemEval-
2018, we use datasets from previous SemEvals
during system construction. Our Pearson cor-
relation score is 0.638 on the official SemEval-
2018 Task 1 test set.

1 Introduction

In recent years, people began to study how to cre-
ate computational systems that process and under-
stand the human languages. Today, people share
their thoughts on social networks of the Internet,
e.g. Facebook, Line, Twitter and so on. Thus, if
the messages in the textual contents of social net-
works can be extracted and summarized automat-
ically via algorithms, it is possible to learn what
people are interested in or are concerned with,
and use such information to predict future market
trends.

Here we continue our previous works on the
task 4 of SemEval-2017: Sentiment Analysis in
Twitter (Rosenthal et al., 2017). SemEval-2017
subtask 4A is similar to task 1 of SemEval-2018:
Affect in Tweets (Mohammad et al., 2018). They
are challenging tasks as the messages on Twitter,
called tweets, are short and informal. Further-
more, in addition to noisy or incomplete texts, the
emotional content of a tweet can be ambiguous
and subjective.

Affect in Tweets is an expanded version
of WASSA-2017 shared task (Mohammad and
Bravo-Marquez, 2017). The best system in
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WASSA-2017 is an ensemble of three sets of ap-
proaches, including feed-forward neural network,
multi-task deep learning and sequence modeling
using CNNs and LSTMs (Goel et al., 2017). They
attempt to use the idea of multi-task learning to ex-
plore the notion of generalized or shared learning
across different emotions. In this paper, we extend
the idea with different label methods.

The rest of this paper is organized as follows. In
Section 2, we introduce our system. In Section 3,
we describe the details of training and experimen-
tal settings. In Section 4, we present the evaluation
results along with our comments.

2 System Description

2.1 Baseline System

Using RNN has become a very common tech-
nique for various NLP tasks. There are many units
for RNN-based model like simple RNN, gated
recurrent units (GRU) (Chung et al., 2014), and
long short-term memory (LSTM) (Hochreiter and
Schmidhuber, 1997). For the baseline, we use
LSTM as unit for its long-range dependency.

Figure 1 shows the architecture of our baseline
system. Our baseline system contains an input
layer, an embedding layer, Bi-LSTM layers and
an output layer. At the input layer, the words of
tweet are pre-processed, and they are treated as
a sequence of words wy, wa, ...w,. Each word is
represented by a one-hot vector, and the size of in-
put layer is equal to the size of word list.

At the embedding layer, each word is converted
to a word vector. We use pre-trained word vector
which are stored in a matrix. Words are mapped
to word vectors by the word embedding matrix. A
word not in the word embedding matrix is repre-
sented by a zero vector.

A Bi-LSTM layer contains A units. We use bidi-
rectional (Schuster and Paliwal, 1997) structure

Proceedings of the 12th International Workshop on Semantic Evaluation (SemEval-2018), pages 226-230
New Orleans, Louisiana, June 5-6, 2018. ©2018 Association for Computational Linguistics



to gather two-way contextual information at each
point. The hidden states from the first word to the
penultimate word in a tweet are connected to the
hidden states of the next word. The state values in
both directions are combined with sum. Only the
last Bi-LSTM states of the last word are connected
to the output layer. Finally, the network output is
converted to probability by a soft-max function.
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Figure 1: LSTM-RNN architecture.

2.2 Multi-task Learning

Multi-task learning has been used with success
in applications of machine learning, from natu-
ral language processing (Collobert and Weston,
2008) and speech recognition (Deng et al., 2013).
By sharing representations with related tasks, a
model tends to generalize better on the original
task (Ruder, 2017). In this work, different labels
for the same data are exploited in multi-task learn-
ing.

Figure 2 shows our multi-task learning frame-
work. The overall system is divided into five mod-
els. The Three-class model is trained first, and its
trained parameters are used to initialize the param-
eters in other models. Then we train the Negative,
Neutral, Positive class models, and their trained
parameters are used to initialize the parameters of
the Seven class model. The final output is obtained
from the Seven class model.

Negative class model Positive class model Seven class model

Three class model | Neutral class model |

[ Output ] [ Output ] [ Output ]
1

((output ] [ Hidden ] ( Hidden ) [Hid:en]
(ridden ) (Bitstm) (Bitstm) (Bitstm) (Bi-LsTv] (Bi-LsTv] (BisTM)
)

L)
(Bitstm] (BitsTm) (BiLsTm] (BitsTv

Bi-LSTM

t
(Cinput ) (gt ) (oot ) (it )

Figure 2: Multi-task learning of sentiment classifica-
tion.
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Three class model In Three class model, the
tweets are converted to the word vector and
used as the input to Bi-LSTM layer. The
output layer has three units for three classes
{-1,0,1}.

Negative class model The Negative class model
has one more Bi-LSTM layer than Three
class model. The output layer has four units
for four classes {—3, —2, —1, other}.

Neutral class model The Neutral class model has
the same architecture as the Negative class
model. The output layer has two units for two
classes {0, other}.

Positive class model The Positive class model
has the same architecture as the Negative
class model. The output layer has four units
for four classes {other, 1,2, 3}.

Seven class model The Seven class model com-
bines the Bi-LSTM layers of the Negative
class, Neutral class, and Positive class mod-
els. Further, it has one additional Bi-LSTM
layer. The output layer has seven units for
seven classes {—3,—2,—1,0,1,2,3}. Note
that attention mechanism (Luong et al., 2015;
Wang et al., 2016) is incorporated in this
model.

3 Training

3.1 Data

We use the dataset provided for the SemEval-2018
shared task (Mohammad et al., 2018), which in-
cludes a new dataset and the datasets provided for
SemEval-2017 (Rosenthal et al., 2017). Table 1
summarizes the statistics of these datasets.

3.2 Different Labeling

The SemEval-2017 dataset consists of three-class
data, which is different from the new SemEval-
2018 dataset. In order to exploit SemEval-2017
dataset, we modify the data labels. In the base-
line system, we change the label to 1, +2, or +3.
Adding a lot of data lead to imbalance problem, so
we apply two methods of data balance. Method 1
is that adding data to positive and negative classes
randomly such that they have same size respec-
tively. Method 2 is that adding data to all classes
randomly such that they have 3,000 tweets. Ta-
ble 1 shows the numbers of data points after these
different labeling methods.



Negative Neutral Positive
dataset labels 3 & P q 0 1 ) 3 total
train-18 - 129 249 78 341 167 92 125 1,181
train-17 - 8,581 18,186 15,219 41,986
train-all to +1 129 249 | 8,659 | 18,527 | 15,386 92 125 | 43,167
train-all to +2 129 | 8,830 78 | 18,527 167 | 15,311 125 | 43,167
train-all to &3 8,710 249 78 | 18,527 167 92 | 15,344 | 43,167
train-all | bal-method 1 | 3,013 | 3,012 | 3,012 | 18,527 | 5,201 5,201 5,201 | 43,167
train-all | bal-method 2 | 3,000 | 3,000 | 3,000 3,000 | 3,000 | 3,000 | 3,000 | 21,000
dev-18 - | 69| 95| 34| 105 58 35 53 449
Table 1: Statistics of our different labeling methods and datasets. train-18 and dev-18 are from SemEval-2018

Task 1. train-17 is from SemEval-2017 task 4. train-all means the merger of the train-18 and train-17 datasets.

3.3 Pre-processing

We begin with basic pre-processing methods
(Yang et al., 2017), e.g. splitting a tweet into
word, replacing URLs and USERs with normal-
ization patterns <URL> and <USER>, and con-
verting uppercase letters to lowercase letters. As
tweets are informal and complex, the basic pre-
processing is too simple to convey enough impor-
tant information.

Tweets often have emoticons and hashtags,
which could be instrumental to sentiment analy-
sis. Thus, we use text processing tool! (Bazio-
tis et al., 2017) to improve text normalization, in-
cluding sentiment-aware tokenization, spell cor-
rection, word normalization, word segmentation
(for splitting hashtags). and word annotation.

3.4 Early Stopping

The early stopping method is used to prevent over-
fitting when the loss of a development set ceases to
decrease for a few epochs. We randomly take 20%
of SemEval-2018 train data as the development set
for early stopping and the remaining 80% data as
the train set.

3.5 Settings

The maximum length for any tweet in the used
datasets is n = 99. The embedding is based on
a publicly available set of word vectors learned
from 400 million tweets for the ACL WNUT 2015
shared task (Baldwin et al., 2015).

The baseline system uses 4 hidden Bi-LSTM
layers, with 300 neurons in each layer. Dropout
method with probability 0.3 is used to prevent the
model from overfitting (Srivastava et al., 2014).

! github.com/cbaziotis/ekphrasis
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In the multi-task learning approach, the num-
bers of neurons in the Bi-LSTM and hidden layers
are [200,200], [200,150,200], [200,150,100],
[200, 150, 200],  [200, [150, 150, 150], 200, 200]
for the 5 different class models, respectively.

4 Results
4.1 Baseline System

First, we compare the experiments of different la-
beling in baseline system to decide how to use the
train-17 dataset. In baseline system, we use the
basic pre-processing for text normalization. The
results are shown in Table 2. The calculation of
Pearson correlation coefficient (Pcc.) requires cal-
culating the mean value of the data, which is often
close to zero. From the results, labeling to more
distant from zero get the higher Pcc. Therefore,
we use labeling to £3 method in the multi-task
learning system.

train set labels Pcc. | Acc.
train-18 - 0.515 | 0.298
train-all to £1 0.572 | 0.261
train-all to £2 0.629 | 0.323
train-all to +3 0.649 | 0.347
train-all | bal-method 1 | 0.548 | 0.303
train-all | bal-method 2 | 0.553 | 0.347
Table 2: Results of different labeling. Pcc. means

the pearson correlation coefficient (all classes). Acc.
means the accuracy.

4.2 Multi-task Learning System

Table 3 shows the results of multi-task learning.
With basic pre-processing for text normalization,
the multi-task learning system is better than the



model training set | Pcc. | Pcc.(s-m) | Kappa | Kappa(s-m) | Acc.

baseline train-18 | 0.515 0.567 0.499 0.534 0.298

baseline train-all | 0.649 0.712 0.628 0.700 0.347
multi-task train-18 | 0.603 0.660 0.579 0.623 0.312
multi-task train-all | 0.689 0.760 0.671 0.753 0.350
multi-task* train-18 | 0.622 0.667 0.616 0.653 0.361
multi-task* | train-all | 0.691 0.770 0.665 0.757 0.323
multi-task* | train-all | 0.638 | 0.698 [ 0.606 | 0.643 | - |

Table 3:

Results of multi-task learning. Final row is the official SemEval-2018 test set result and others are

development set results. Here * means using the ekphrasis tool for pre-processing and s-m means some-emotion.

baseline system. When the basic pre-processing
method is replaced by using ekphrasis tool, the
performance is further improved. Finally, we sub-
mit the results from our best system for the unseen
test set to SemEval-2018, getting 0.638 for Pcc.
eventually. We note this is significantly lower than
0.691 on the development data.

5 Conclusion

The proposed method improves performance on
SemEval-2018 over baseline systems without
multi-task learning. External dataset can signifi-
cantly improve the Pcc. performance, but not the
Acc. performance. The possible reason is that all
the labels of external dataset are marked as +3, re-
sulting in data imbalance problem. In the future,
we will use skewness-robust weights to solve this
problem and use more resources to improve the
system as sentiment lexicons.
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Abstract

In this paper we describe our systems submit-
ted to Semeval 2018 Task 1 “Affect in Tweet”
(Mohammad et al., 2018). We participated in
all subtasks of English tweets, including emo-
tion intensity classification and quantification,
valence intensity classification and quantifica-
tion. In our systems, we extracted four type-
s of features, including linguistic, sentiment
lexicon, emotion lexicon and domain-specific
features, then fed them to different regressors,
finally combined the models to create an en-
semble for the better performance. Officially
released results showed that our system can be
further extended.

1 Introduction

The Semeval 2018 Task 1 aims to automatically
determine the intensity of emotions of the tweeters
from their tweets, including five subtasks. That is,
given a tweet and one of the four emotions (anger,
fear, joy, sadness), the subtask 1 and 2 are to deter-
mine the intensity and classify the tweet into one
of the four ordinal classes of intensity of the e-
motion respectively. Similarly, the subtask 3 and
4 determine the intensity and classify the tweet
into one of seven ordinal classes of intensity of
valance. Subtask 5 is a multi-label emotion clas-
sification task which classifies the tweets as neu-
tral or no emotion or as one, or more, of eleven
given emotions (anger, anticipation, disgust, fear,
joy, love, optimism, pessimism, sadness, surprise,
trust) that best represent the mental state of the
tweeter. For each task, training and test dataset-
s are divided into English, Arabic, and Spanish
tweets. We participated in all subtasks of English
tweets.

Traditional sentiment classification is a coarse-
grained task in sentiment analysis which focuses
on sentiment polarity classification of the whole
sentence (i.e., positive, negative, neutral, mixed).
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Semeval 2018 Task 1 subtask 5 takes basic human
emotion proposed by Ekman (Ekman, 1999) into
consideration, including Anger, Anticipation, Dis-
gust, Fear, Joy, Sadness, Surprise, and Trust.

The difference between these subtasks lies in
the emotion granularity and classification or quan-
tification, so in our work, the similar method is
adopted for five subtasks. We extracted a rich set
of elaborately designed features. In addition to lin-
guistic features, sentiment lexicon features and e-
motion lexicon features, we also extracted some
domain specific features. Also, we conducted a
series of experiments on different machine learn-
ing algorithms and ensemble methods to obtain the
better performing for each subtask. For subask 5,
we adopted multiple binary classification and con-
structed a model for each emotion.

2 System Description

We first performed data preprocessing, then ex-
tracted several types of features from tweets and
constructed supervised models for this task.

2.1 Data Preprocessing

Firstly, all words are converted to lower case,
URLs are replaced by “url”, abbreviations, s-
langs and elongated words are transformed to
their normal format. Then, emojis are replaced
by corresponding emojis names by “Emoji Li-
brary”!. Finally, we use Stanford CoreNLP tools
(Manning et al., 2014) for tokenization, POS tag-
ging, named entity recognizing (NER) and pars-
ing.

2.2 Feature Engineering

We extracted a set of features to construct super-
vised models for five subtasks, that is linguistic

"https://github.com/fvancesco/emoji/
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features, sentiment lexicon features, emotion lexi-
con features and domain-specific features.

2.2.1 Linguistic Features

e Lemma unigram Considering there is sim-
ilar emotion intensity expressed by “anger”
and “angers”, we choose word lemma uni-
gram features from tweets rather than word
unigram features.

e Negation Negation in a sentence often affect-
s its sentiment orientation, and conveys it-
s intensity of the sentiment. For example, a
sentence with several negation words is more
inclined to negative sentiment polarity. Fol-
lowing previous work (Zhang et al., 2015),
we manually collected 29 negations® and de-
signed two binary features. One is to indicate
whether there is any negation in the tweet and
the other is to record whether this tweet con-
tains more than one negation.

e NER Given a tweet “@JackHoward the
Christmas episode genuinely had me in tears
of laughter”, it has useful information like
person name and festival which may con-
vey tweeter’s happiness. So we extracted 12
types of named entities (DURATION, SET,
NUMBER, LOCATION, PERSON, ORGA-
NIZATION, PERCENT, MISC, ORDINAL,
TIME, DATE, MONEY) from the sentence
and represented each type of named entity as
a binary feature to check whether it appears
in the sentence.

2.2.2 Sentiment Lexicon Features

Many tasks related to sentiment or emotion anal-
ysis depend upon affect, opinion, sentiment, sense
and emotion lexicons. So we employ eight sen-
timent lexicons to capture the sentiment informa-
tion of the given sentence. The eight sentiment
lexicons are as follows: Bing Liu lexicon®, Gener-
al Inquirer lexicon®, IMDB’, MPQA®, NRC Emo-
tion Sentiment Lexicon’, AFINN®, NRC Hashtag

Zhttps://github.com/haierlord/resource
3http://www.cs.uic.edu/liub/FBS/sentiment-

analysis.html#lexicon
*http://www.wjh.harvard.edu/inquirer/homecat.htm
Shttp://www.aclweb.org/anthology/S13-2067
®http://mpqa.cs.pitt.edu/

"http://www.saifmohammad.com/WebPages/lexicons.html

8http://www2.imm.dtu.dk/pubdb/views/publication
details.php?id=6010

Sentiment Lexicon®, and NRC Sentiment140 Lexi-
con'?.

There is not a unified form among the eight-
s lexicons. For example, Bing Liu lexicon use t-
wo values for each word to represent its sentiment
scores which one for positive sentiment and the
other for negative sentiment. In order to unify the
form, we transformed the two scores into a one-
dimensional value by subtracting negative emo-
tion scores from positive emotion scores. Given
a tweet, we calculated the following six scores:

the ratio of positive words to all words.

the ratio of negative words to all words.

the maximum sentiment scores.

— the minimum sentiment scores.
— the sum of sentiment scores.

the sentiment score of the last word in tweet.

2.2.3 Emotion Lexicon Features

Considering subtask 1, 2, 5 are related to e-
motion intensity prediction, subtask 3, 4 are
related valence intensity prediction, three e-
motion lexicons and one valence lexion are
adopted. =~ That is NRC Hashtag Sentimen-
t Lexicon (Mohammad and Kiritchenko, 2015),
NRC Affect Intensity Lexicon (Mohammad,
2017), NRC Word-Emotion Association Lexicon
(Bravo-Marquez et al., 2017) and ANEW-1999
Lexicon (Bradley and Lang, 1999). Given a tweet,
we calculate three scores for each lexicon to con-
struct emotion lexicon features: the maximum s-
cores, the sum of scores, the number of words ex-
ist in lexicons.

2.2.4 Domain-specific Features

e Punctuation People often use exclamation
mark(!) and question mark(?) to express sur-
prise or emphasis. Therefore, we extract the
following 6 features:

— whether the tweet contains an exclama-
tion mark.
— whether the tweet contains more than
one exclamation mark.
— whether the tweet has a question mark.
*http://www.umiacs.umd.edu/saif/WebDocs/NRC-

Hashtag-Sentiment-Lexicon-v0.1.zip
"http://help.sentiment140.com/for-students/



— whether the tweet contains more than
one question mark.

— whether the tweet contains both excla-
mation marks and question marks.

— whether the last token of this tweet is an
exclamation or question mark.

e Bag-of-Hashtags Hashtags reflect emotion
orientation of tweets directly, so we con-
structed a vocabulary of hashtags appearing
in the training set and development set, then
adopted the bag-of-hashtags method for each
tweet.

e Emoticon We collected 67 emoticons from
Internet'!, including 34 positive emoticons
and 33 negative emoticons, then designed the
following 4 binary features:

— to record whether the positive and nega-
tive emoticons are present in the tweet,
respectively (1 for yes, O for no).

— to record whether the last token is a pos-
itive or a negative emoticon.

o Intensity Words Some words appeared more
frequently in tweets with higher intensity,
some words has higher score in emotion lex-
icons, these words may contain information
that express strong emotion intensity. So we
extracted this type words in two ways:

— Pick up words whose emotion score is
greater than threshold from emotion lex-
icons.

— Calculate the probability of each word
appearing at different intensity for sub-
task 2 and 4, then pick up words whose
probability greater than threshold(i.e.,
0.5).

Finally, for each word in intensity words list,
we use a binary feature to check whether it
appears in the given tweet.

2.3 Learning Algorithms

We explore six algorithms as follows: Logis-
tic Regression (LR) and Support Vector Regres-
sion (SVR) implemented in Liblinear'?, Bagging
Regressor (BR), AdaBoost Regressor (ABR) and

"https://github.com/haierlord/resource/blob/master/
Emoticon.txt
Phttps://www.csie.ntu.edu.tw/ cjlin/liblinear/
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Gradient Boosting Regressor (GBR) implement-
ed in scikit-learn tools'® and XGBoost Regressor
(XGB)'*. All these algorithms are used with de-
fault parameters.

3 Experiments

3.1 Dataset

The statistics of the English datasets provided by
Semeval 2018 Task 1 are shown in Table 1 and
2. How the English data created is described in
(Mohammad and Kiritchenko, 2018).

Datasets anger fear joy sadness
train 1,701 2,252 1,616 1,533

dev 388 689 290 397

test subtask 1 | 17,939 17,923 18,042 17,912
subtask 2 1,002 986 1,105 975

Table 1: The statistics of data sets for subtask 1 and 2.

Subtask | train dev test
3 1,181 449 17,874
4 1,181 449 937
5 6,838 886 3,259

Table 2: The statistics of data sets for subtask 3, 4, 5.

3.2 Evaluation Metric

To evaluate the performance of different system-
s, the official evaluation measure Pearson Corre-
lation Coefficient with the Gold ratings/labels is
adopted for the first four subtasks. The correlation
scores across all four emotions will be averaged
(macro-average) to determine the final system per-
formance.

As for the last subtask, systems are evaluated by
calculating multi-label accuracy namely Jaccard
index, the formula are follow:

Y Gun

teT

|G P

Accuracy = G, U B,
t U B

\TI

where Gy is the set of the gold labels for tweet ¢,
P, is the set of the predicted labels for tweet ¢, and
T is the set of tweets.

3.3 Experiments on Training and Test Data

Firstly, we performed a series of experiments in
order to explore the effectiveness of each feature
type. Table 3 lists the performance contributed by

Bhttp://scikit-learn.org/stable/
“https://github.com/dmlc/xgboost



Features macro-avg anger fear joy sadness
Linguistic 0.393 0.398 0.402 0.485 0.286
+Sentilexi | 0.594(+20.1%) 0.606 0.532 0.634 0.603
+EmoLexi | 0.635(+4.1%) 0.689 0.632 0.612 0.606
.+domain 0.657(+2.2%) 0.691 0.658 0.642 0.638

Table 3: Performance of different features on development set for subtask 1. “.4+” means to add current features to
the previous feature set. The numbers in the brackets are the performance increments compared with the previous

results.
Algorithm macro-avg anger fear joy sadness
BR 0.602 0.609 0.618 0.584 0.597
XGBOOST 0.628 0.663 0.656 0.576 0.618
ABR 0.635 0.664 0.666 0.573 0.637
SVR 0.657 0.691 0.658 0.642 0.638
GBR 0.667 0.694 0.675 0.630 0.668
XGBOOST+ABR+SVR+GBR 0.680 0.715 0.689 0.647 0.670

Table 4: Performance of different learning algorithm on development set for subtask 1.

Subtask System macro-avg anger fear joy sadness
rank 1 0.799 (1) 0.827(1) 0.779 (1) 0.792(1) 0.798 (1)

our system | 0.695(14) 0.713(15) 0.677(18) 0.693(16) 0.697(14)

baseline 0.520(36) 0.526(33) 0.525(34) 0.575(33) 0.453(36)

rank 1 0.695 (1) 0.706 (1) 0.637(1) 0.720(2) 0.717 (1)

our system | 0.531(16) 0.565(13) 0.441(21) 0.581(15) 0.536(20)

baseline 0.394(26) 0.382(27) 0.355(26) 0.469(26) 0.370(29)

Table 5: Performance of our system, top-ranked system and baseline on test set for subtask 1, 2. SVM and unigrams
are adopted in baseline. The numbers in the brackets are the official rankings.

System Subtask3 Subtask4 Subtask5
rank 1 0.873 (1) 0.836(1) 0.588 (1)
our system | 0.813(14) 0.686(17) 0.501(11)
baseline | 0.585(28) 0.509(24) 0.442(19)

Table 6: Performance of our system, top-ranked system
and baseline on test set for subtask 3, 4, 5. SVM and
unigrams are adopted in baseline. The numbers in the
brackets are the official rankings.

different features on development set with Support
Vector Regression algorithm for subtask 1. We
find that:

(1) All feature types make contribution to the
performance of emotion intensity prediction and
their combination achieves the best performance.

(2) Linguistic features act as baseline and have
shown poor performance for emotion intensity
prediction. However, we find the system perfor-
mance drops once we remove the Linguistic fea-
tures.
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(3) Sentiment lexicon features make a consid-
erable contribution to the performance, which in-
dicates that sentiment lexicon features are benefi-
cial not only in traditional sentiment polarity anal-
ysis tasks, but also in emotion intensity prediction
tasks.

(4) Beside, we find that the system performance
only drops by 0.2% if we remove intensity words
features. This indicates that these intensity words
fail to distinguish emotion intensity. The reason
may be that their function have overlap with senti-
ment and emotion lexicon features.

Also, we explored the performance of differen-
t learning algorithms. Table 4 shows the results
of different algorithms for subtask 1 based on all
features described before. From table 4, we find
that GBR outperforms other single algorithm, and
the ensemble model are superior to the models us-
ing single algorithm. The ensemble model use the
four algorithms to build the ensemble regression
models, which averages the output scores of al-



1 regression algorithm.

Therefore, the system configurations for test da-
ta are: using all features for five subtasks, ensem-
ble model for subtask 1 and 3, Logistic Regression
for subtask 2, 4 and 5.

Based on the system configurations described
above, we train separate model for each subtask
and evaluate them against the test set in SemEval
2018 Task 1. Table 5 and Table 6 shows the results
with ranks on test set for subtask 1 to 5. Compared
with the top ranked systems, there is much room
for improvement in our work. First, the biggest is-
sue is that we only used hand-craft features but ig-
noring deep learning method. Second, we find that
our system achieves greater performance on test
set compared with the development set, the possi-
ble reason might be the different data distribution
held between them.

4 Conclusion

In this paper, we extracted several traditional NLP,
sentiment lexicon, emotion lexicon and domain
specific features from tweets, adopted supervised
machine learning algorithms to perform emotion
intensity prediction. The system performance
ranks above average. In future work, we consid-
er to use deep learning method to model sentence
with the aid of sentiment word vectors.
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Abstract

While significant progress has been achieved
for Opinion Mining in Arabic (OMA), very
limited efforts have been put towards the task
of Emotion mining in Arabic. In fact, busi-
nesses are interested in learning a fine-grained
representation of how users are feeling to-
wards their products or services. In this work,
we describe the methods used by the team
Emotion Mining in Arabic (EMA), as part of
the SemEval-2018 Task 1 for Affect Mining
for Arabic tweets. EMA participated in all 5
subtasks. For the five tasks, several prepro-
cessing steps were evaluated and eventually
the best system included diacritics removal,
elongation adjustment, replacement of emojis
by the corresponding Arabic word, character
normalization and light stemming. Moreover,
several features were evaluated along with dif-
ferent classification and regression techniques.
For the 5 subtasks, word embeddings feature
turned out to perform best along with Ensem-
ble technique. EMA achieved the 1% place in
subtask 5, and 3 place in subtasks 1 and 3.

1 Introduction

Emotion recognition has captured the interest of
researchers for many years. Different models
have been used to detect people’s emotions such
as human computer interaction (HCI) (Hibbeln
et al., 2017; Patwardhan and Knapp, 2017; Con-
stantine et al., 2016) and their facial expressions
(Trad et al., 2012; Wegrzyn et al., 2017). Re-
cently, with Web 2.0, the size of textual data
charged with opinions and emotions on the web
has tremendously increased. Thus, researchers
have been looking at automatically performing
sentiment and emotion analysis from textual data.
In fact, learning emotions of users is critical
for different applications such as shaping mar-
keting strategies (Bougie et al., 2003), providing
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customers with better personalized recommenda-
tions for advertisements and products (Moham-
mad and Yang, 2011), improving recommendation
of typical recommender systems (Badaro et al.,
2013, 2014c,d), tracking emotions of users to-
wards politicians, movies, music, products, etc,
(Pang et al., 2008), or accurately predicting stock
market prices (Bollen et al., 2011).

Some efforts have already been placed in de-
veloping emotion classification models from text
(Shaheen et al., 2014; Houjeij et al., 2012; Abdul-
Mageed and Ungar, 2017). Since sentiment lex-
icons helped in improving the accuracy of senti-
ment classification models (Liu and Zhang, 2012;
Taboada et al.,, 2011), several researchers are
working on developing emotion lexicons for dif-
ferent languages such as English, French, Chinese
(Mohammad, 2017; Bandhakavi et al., 2017; Yang
et al., 2007; Poria et al., 2012; Das et al., 2012;
Mohammad et al., 2013; Abdaoui et al., 2017;
Staiano and Guerini, 2014; Badaro et al., 2018a).
There were also couple of attempts for developing
Arabic emotion lexicons (Mohammad and Turney,
2013; Mohammad et al., 2013; El Gohary et al.,
2013; Badaro et al., 2018b).

Building on our previous work on opinion min-
ing which involved development of sentiment lex-
icons (ArSenL (Badaro et al., 2014a)), opinion
mining models (Baly et al., 2014; Al Sallab et al.,
2015; Al-Sallab et al., 2017; Baly et al., 2017b)
and applications (Badaro et al., 2014b, 2015), and
building on our analysis and characterization for
Twitter Data (Baly et al., 2017a,c), we participate
in SemEval 2018 Task 1 (Mohammad et al., 2018):
Affect in Arabic Tweets. In fact, analyzing senti-
ment and emotions from dialectal Arabic such as
text data from Twitter is of great importance given
the tremendous increase of Arabic speaking users
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on Twitter.!

In this paper, we describe our approaches to
SemEval 2018 Task 1 (Mohammad et al., 2018):
Affect in Arabic Tweets, along with the achieved
results for each of the subtasks where we em-
ployed preprocessing steps, features and classifi-
cation models based on our prior work on senti-
ment analysis. In section 2, we present a brief
overview of related work to emotion classification
for English and Arabic. In section 3, we describe
the five subtasks that are part of Affect in Tweet
task. In section 4, we present our proposed ap-
proach and finally, we conclude in section 5.

2 Related Work

There have been extensive efforts for extracting
emotions from different modalities including HCI
(Constantine et al., 2016; Hibbeln et al., 2017;
Patwardhan and Knapp, 2017), facial expressions
(Trad et al., 2012; Wegrzyn et al., 2017) and
speech (Houjeij et al., 2012). The related work
for text emotion classification can be categorized
into approaches for Emotion classification in En-
glish, that are leading the advances, versus re-
search progress in Emotion in Arabic texts.

Emotion detection task from text is usually de-
fined as a categorical classification task, where
given a text, the classifier needs to predict the emo-
tion label corresponding to the input text. Two typ-
ical categorical representations for emotions ex-
ist: Ekman representation (Ekman, 1992) which
includes anger, happiness, surprise, disgust, sad-
ness and fear and Plutchik model (Plutchik, 1980,
1994) which includes Ekman’s six emotions in ad-
dition to two labels: trust and anticipation.

2.1 English Emotion Analysis

In general, there are three different approaches
for emotion classification: keyword-based detec-
tion, learning-based detection, and hybrid detec-
tion (Avetisyan et al., 2016).

Keyword-based techniques, also known as
lexicon-based, depend on identifying emotional
keywords in the input sentence (Strapparava et al.,
2004; Mohammad and Turney, 2010, 2013).
These models rely on the existence of large scale
emotion lexicons and their accuracy is correlated
with the accuracy of the emotion lexicon that is be-
ing utilized. On the other hand, they do not require

"https://weedoo.tech/twitter-arab-world-statistics-feb-
2017/
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the existence of training data.

Learning-based approaches or feature-based ap-
proaches depend on the existence of annotated
training data that are processed in order to ex-
tract several features such as syntactic, stylistic
and semantic features (Ho and Cao, 2012; Band-
hakavi et al., 2017). Additionally, in hybrid meth-
ods, emotions are detected by using a combination
of emotional keywords and learning patterns col-
lected from training datasets.

Due to the notable lack of resources related to
emotion (annotated data and lexicons), progress
on automatic affect intensity is still lagging. Mo-
hammad and Bravo-Marquez (2017) created not
only the first datasets of tweets annotated with
emotion intensities, but also developed an emotion
regression system with benchmark results. Abdul-
Mageed and Ungar (2017) developed a large scale
English dataset with fine grained emotion labels
and trained deep learning models on top of it
achieving an average accuracy of 87.58%.

2.2 Arabic Emotion Analysis

Emotion recognition for Arabic text has been gain-
ing more attention recently. El Gohary et al.
(2013) applied a knowledge-based approach to
achieve 65% accuracy on the six basic Ekman
emotions. Rabie and Sturm (2014) extracted a
sample Arabic emotion lexicon and demonstrated
how it enhanced the emotion detection results.
Sayed et al. (2016) utilized Conditional Random
Fields (CRF) and AdaBoost classifiers for clas-
sifying emotions of tweets and expression levels
in which CRF achieved the best results. Alsharif
et al. (2013) used Naive Bayes and SVM to clas-
sify Arabic poems into four emotion classes.

While some attempts were performed for Emo-
tion recognition from Arabic text, there is still a lot
of area for improvement as for example, develop-
ing large scale emotion lexicon for more accurate
emotion recognition model, developing highly ac-
curate emotion mining models for MSA as well as
dialectal Arabic whether through the use of feature
based approaches or deep learning.

3 SemkEval 2018 Task 1: Affect in Arabic
Tweets

We describe in this section the subtasks of Se-
mEval 2018 task 1.



3.1 Subtasks’ Descriptions

SemEval 2018 Task 1 Affect in Tweets (Moham-
mad et al., 2018) included five subtasks each with
annotated dataset for English, Arabic and Spanish.
The tasks were as follows:

1. El-reg (Emotion Intensity Regression Task):
Given a tweet and an emotion E (anger, fear, joy
or sadness), determine the intensity of E that best
represents the emotion intensity of the tweeter by
predicting a real-valued score between O (least E)
and 1 (most E).

2. El-oc (Emotion Intensity Ordinal Classifica-
tion): Given a tweet and an emotion E, classify
the tweet into one of four ordinal classes of inten-
sity of E, from 0 (low amount) to 3 (high amount),
that best represents the mental state of the tweeter.

3. V-reg (a sentiment intensity regression task):
Given a tweet, determine the valence (V) that best
represents the mental state of the tweeter by pre-
dicting a real-valued score between 0 (most nega-
tive) and 1 (most positive).

4. V-oc (a sentiment analysis, ordinal classifi-
cation, task): Given a tweet, classify it into one
of seven ordinal classes, from -3 (very negative) to
+3 (very positive), corresponding to various levels
of positive and negative sentiment intensity, that
best represents the sentiment of the tweeter.

5. E-c (an emotion classification task): Given
a tweet, classify it as neutral (no emotion) or as
one, or more, of eleven given emotions that best
represent the tweeter.

3.2 Datasets

For each of the 5 tasks, 3 sets of datasets were re-
leased, each set corresponding to a language (En-
glish, Arabic and Spanish). For each language, 3
datasets were released (training, development and
test). For subtasks 1 and 2 Arabic, each emotion
of the four emotions had a training set of around
800 tweets on average and a development set of
around 200 tweets. Subtasks 3 and 4 Arabic had
a dataset consisting of 932 tweets for training and
138 tweets for development. For subtask 5 Arabic,
2278 tweets were used for training and 585 tweets
for development.

4 Explored Models for Competition

We present a description of EMA system covering
preprocessing steps, features used, machine learn-
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ing models employed and results achieved. An
overview of the system is show in Figure 1.

Tweet

v

Preprocessing
Diacritics and non Arabic words
Removal, Normalization,
Elongation Adjustment, Emojis
Transcription, Stemming

AraVec

Feature

Word Generation

embeddings

Vector
Representation
of Tweet

y

Machine Learning Model
Subtask Dependent

Prediction

Figure 1: Overview of EMA System.

4.1 Preprocessing

The provided datasets contained raw tweets that
included different properties used in Twitter such
as hashtags, user mentions, urls, images, Ara-
bizi and emojis. Thus, preprocessing steps were
needed to enhance the analysis of the tweet. We
experimented with different preprocessing config-
urations that led to mixed results. For example,
using stems instead of lemmas proved to be bet-
ter. One justification is that tweets are mostly in
dialectal Arabic while most Arabic morphological
analyzers are trained on MSA data. We present
next the steps that led to the best performance.
We first applied the normalization rules fol-
lowed by Shoukry and Rafea (2012): Diacritics
were removed, the “hamza” on characters was



normalized in addition to normalizing some word
ending characters such as the “t marbouta” and
“ya’ maqsoura”. We then removed elongations
as well as non Arabic letters. We manually cre-
ated a lexicon containing the most frequent emojis
in tweets and transcribed each emoji to its corre-
sponding Arabic word. The lexicon consisted of
100 emojis. The tweets were finally stemmed us-
ing A Robust Arabic Light Stemmer (ARLSTEM)
(Abainia et al., 2017).

4.2 Features

We have tried different features separately includ-
ing unigrams, bigrams, trigrams, scores from emo-
tion lexicon, ArSEL (Badaro et al., 2018b), senti-
ment lexicon, ArSenL ((Badaro et al., 2014a) and
word embeddings from AraVec (Soliman et al.,
2017) and FastText by Facebook (Bojanowski
etal., 2016). AraVec was trained on three different
datasets (Wikipedia, Text data from Web and Twit-
ter) while FastText was trained on Wikipedia. Us-
ing word embeddings from AraVec outperformed
significantly all other features including word em-
beddings trained on Wikipedia provided by Face-
book. This is likely due to the fact that AraVec is a
large scale dataset (around 205,000 words) trained
on the same data domain (twitter), and includes
several Arabic dialects. Word embeddings over-
come the problem of sparsity present with n-grams
and also reduce semantic complexity by providing
similar representations to words that can appear in
the same context. Each word was represented by a
vector of real numbers of dimension 300. The sen-
tence embeddings were computed by taking the
average of its word embeddings. If a word did
not have a vector representation, we tried using
its stem’s representation. If neither the word nor
its stem had a vector representation in AraVec, the
average of the embeddings of closest words was
utilized. By closest words, we mean words that
had the smallest minimum edit distance (Leven-
shtein distance) with the target term. Eventually,
each tweet was represented by a vector consisting
of 300 real valued numbers. The same feature is
used for all subtasks. For feature extraction, we
used Python with NLTK, gensim and Numpy li-
braries.

4.3 Classification and Regression Models

Overall, we tried different learning models includ-
ing Ridge regression, support vector machines,
random forests, ensemble methods and deep neu-
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ral networks such as convolutional neural net-
works with long short term memory layer. Deep
neural networks performed poorly compared to
other models. One possible explanation was that
the training data size was very small and deep neu-
ral networks perform best when trained on a large
scale data to ensure a well representation of the
data (Beleites et al., 2013).

For regression subtasks 1 and 3, we tried dif-
ferent machine learning models including Ridge,
Elastic Net, Decision Trees, random forest, xg-
boost and support vector regressor with (rbf ker-
nel). The best was an Ensemble of Ridge regres-
sion (RR), Support Vector Regressor (SVR), and
Random Forests (RF). In fact, the 3 models per-
formed reasonably well on their own. For clas-
sification subtasks 2 and 4, we also tried different
classification models including Ridge, Elastic Net,
Decision Trees, Random Forest, Support Vector
Classifier (SVC) with linear and non linear kernels
and convolutional neural nets. For subtask 2, SVC
performed best. As for subtask 4, an ensemble of
SVC and Ridge Classifier performed best. Ridge
Classifier allows defining a linear mapping with-
out allowing weights to be large thanks to regular-
ization effect for generalization while SVM tries
to find the best classification margins. Adding
ElasticNet did not help much since L1 and L2
errors were already covered by optimized using
the ensemble of Ridge and SVM. Moreover, Zhou
et al. (2015) shows that ElasticNet can be reduced
to SVM. Random Forest with its large number of
estimators had a better generalization than regu-
lar decision trees. Combining all these models in
an ensemble model ensured a better generalization
and accuracy on the test data.

For subtask 5, we tested SVC (with both penal-
ties L1 and L2), RC, RF and Ensemble. SVC
with L1 performed best. While Pearson correla-
tion measure was used for evaluating subtasks 1 to
4, Accuracy was used to evaluate subtask 5.

For all subtasks, we utilized the training data for
training the different models and the development
set was treated as unseen data in order to make
sure that comparison across the different models is
fair. The best model was selected based on its per-
formance on the development set. Our focus was
on feature extraction and preprocessing, SO most
feature-based models performed well. One main
problem faced in all problems was sparsity, since
most tweets were in Dialectical Arabic.



4.4 Experimental Results

All experiments were conducted using Python
with scikit-learn and Keras libraries. A grid search
mechanism was utilized to optimize the hyperpa-
rameters of the different learning models used and
whose performances are reported in below tables:
alpha parameter for Ridge, penalty C, kernel and
gamma for Support Vectors, and, number trees,
maximum tree depth and number of features per
tree for Random Forests. Rows 2 to 5 in tables
1 and 2 show the results (Pearson Score) of the
different regression techniques used for subtasks 1
and 3 respectively on the corresponding develop-
ment sets for each of the four emotions (Joy, Sad-
ness, Poor and Anger). Average performance is
also reported in the last column. The last two rows
in table 1 show the result on the test set of our
Ensemble model on average and per each emotion
and the performance of the best team for subtask1
respectively. The last two rows in table 2 show the
performance of Ridge Regression on the test set
and the performance of the best team respectively.
In both subtasks, EMA ranked 3™ among partic-
ipants. By examining the results of the different
participants in subtask 1, we can observe that the
proposed systems perform best for the Joy emo-
tion. Tables 3 and 4 show the hyperparameters for
each technique employed. For Random Forest, the
number of estimators was set to 1000.

In Tables 5 and 6, we show the results of sub-
tasks 2 and 4 respectively. SVC was the best per-
forming model on the development set in subtask 2
and Ensemble methods performed best in subtask
4. The last column in table 5 shows the perfor-
mance of SVC on the test set on average and per
each of the four emotions. The last row in table 6
represents the Pearson score achieved by the En-
semble of RC and SVC on the test set. EMA was
ranked 8" and 5™ in subtasks 2 and 4 respectively.
Tables 7 and 8 show the best hyperparameters of
the classification models used.

Regression Joy Sadness Fear Anger | Avg
Model

RR 0.610 0.635 0.481 | 0.566 | 0.573
SVR 0.615 0.628 0.484 | 0567 | 0.574
RF 0.578 0.547 0413 | 0458 | 0.499
Ensemble 0.624 0.630 04838 | 0.563 | 0.576

Ensemble on | 0.709 0.656 0.593 | 0.615 | 0.643
Test
Best  (Affec- | 0.756 0.694 0.642 | 0.647 | 0.685
Thor)

Table 1: Subtask 1 Pearson Correlation Results on Dev
and Test Sets. RR = Ridge Regression; SVR = Support
Vector Regressor; RF = Random Forest.
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Regression Model | Pearson Correlation
RR 0.746
SVR 0.744
RF 0.609
Ensemble 0.737
Ensemble on Test 0.804
Best (EiTAKA) 0.8284

Table 2: Subtask 3 Pearson Correlation Results on Dev
and Test Sets. RR = Ridge Regression; SVR = Support
Vector Regressor; RF = Random Forest.

Regression Model | Joy | Sadness | Fear | Anger
Ridge (alpha) 7.1 5.9 3.7 4.9
SVR (C) 44 4.7 10 4.9
RF (depth) 10 10 10 10

Table 3: Subtask 1 Regression Models’ Hyperparam-
eters.

Regression Model

Parameter Value

Ridge (alpha)
SVR (C)
RF (depth)

3.9
5.6
10

Table 4: Subtask 3 Regression Models’ Hyperparam-
eters.

Model RC SvC Ens SVC on Best (Af-
Test fecThor)
Joy 0502 | 0484 | 0480 | 0.215 0.631
Sadness | 0.587 | 0.594 | 0.589 | 0.535 0.618
Fear 0373 | 0431 | 0390 | 0.242 0.551
Anger 0472 | 0518 | 0497 | 0.077 0.551
Average | 0484 | 0.507 | 0489 | 0.267 0.587
Table 5: Subtask 2 Pearson Correlation Results on

Dev and Test Sets. RC = Ridge Classification; SVC =
Support Vector Classifier; Ens = Ensemble.

Classification Model | Pearson Correlation
RC 0.611
SvC 0.623
Ensemble 0.625
Ensemble on Test 0.643
Best (EiTAKA) 0.809

Table 6: Subtask 4 Pearson Correlation Results on
Dev and Test Sets. RC = Ridge Classification; SVC =
Support Vector Classifier.

Model | RC (alpha) | SVC (C)
Joy 182 195
Sadness 33 29.4
Fear 20.6 17.1
Anger 15.4 19.5
Table 7: Subtask 2 Classification Models’ Hyperpa-
rameters.

Finally, Table 9 shows the results of subtask 5
on the development and the test sets where for a
given tweet, the tweet is classified either as neutral



Classification Model | Par ter Value
RC (alpha) 272
SVC () 10.7
Table 8: Subtask 4 Classification Models’ Hyperpa-
rameters.

or as one or more of 11 emotions (anger, anticipa-
tion, disgust, fear, joy, love, optimism, pessimism,
sadness, surprise, trust). Linear SVC performed
best among all classifiers. EMA ranked 1% in sub-
task 5. Table 10 shows the best hyperparameters
for each classification model used. The number of
estimators for Random Forest was set to 1000.

Classification Model | Accuracy
SVCL1 0.488
SVCL2 0.484

RC 0.443

RF 0.370
Ensemble 0.401
SVC L1 on Test 0.489

Table 9: Subtask 5 Accuracy Results on Dev and Test
Sets. RC = Ridge Classification; SVC = Support Vector
Classifier; RF = Random Forest.

Classification Model Parameter Value
SVCL1 (C) 1.98
SVCL2 (C) 0.3
RC (alpha) 7.9
RF (depth) 14

Table 10: Subtask 5 Classification Models’ Hyperpa-
rameters.

5 Conclusion and Future Work

In this paper, we presented EMA (Emotion Min-
ing in Arabic) at SemEval 2018 Task 1 Affect in
Tweets to perform Arabic Emotion and Sentiment
mining. Several methods were tested for decid-
ing on features, regression and classification tech-
niques. Word embeddings provided the best fea-
ture while the choice of the predictor was task de-
pendent. EMA ranked 1% in subtask 5 and 3™ in
subtasks 1 and 3. As future work, we suggest find-
ing the best combination of the different features
that were employed in separate models. Other fu-
ture work includes dealing with sparsity caused by
dialectal Arabic.
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Abstract

In this paper we present deep-learning mod-
els that submitted to the SemEval-2018 Task 1
competition: “Affect in Tweets”. We par-
ticipated in all subtasks for English tweets.
We propose a Bi-LSTM architecture equipped
with a multi-layer self attention mechanism.
The attention mechanism improves the model
performance and allows us to identify salient
words in tweets, as well as gain insight into
the models making them more interpretable.
Our model utilizes a set of word2vec word em-
beddings trained on a large collection of 550
million Twitter messages, augmented by a set
of word affective features. Due to the limited
amount of task-specific training data, we opted
for a transfer learning approach by pretrain-
ing the Bi-LSTMs on the dataset of Semeval
2017, Task 4A. The proposed approach ranked
1*" in Subtask E “Multi-Label Emotion Classi-
fication”, 2" in Subtask A “Emotion Intensity
Regression” and achieved competitive results
in other subtasks.

1 Introduction

Social media content has dominated online com-
munication, enriching and changing language with
new syntactic and semantic constructs that allow
users to express facts, opinions and emotions in
short amount of text. The analysis of such con-
tent has received great attention in NLP research
due to the wide availability of data and the inter-
esting language novelties. Specifically the study
of affective content in Twitter has resulted in a va-
riety of novel applications, such as tracking prod-
uct perception (Chamlertwat et al., 2012), public
opinion detection about political tendencies (Pla

ell2074@central.ntua.gr
akolovou@di.uoa.gr
nellinas@central.ntua.gr

potam@central.ntua.gr

<user> has forever changed my life ‘_’

<hashtag> blessed </hashtag>

Emotions: joy, love, optimism

seriously about to smack someone in the
face %< <hashtag> arsehole </hashtag>

Emotions: anger, disgust

Figure 1: Attention heat-map visualization. The
color intensity corresponds to the weight given to
each word by the self-attention mechanism.

and Hurtado, 2014; Tumasjan et al., 2010), stock
market monitoring (Si et al., 2013; Bollen et al.,
2011b) etc. The wide usage of figurative language,
such as emojis and special language forms like ab-
breviations, hashtags, slang and other social me-
dia markers, which do not align with the conven-
tional language structure, make natural language
processing in Twitter even more challenging.

In the past, sentiment analysis was tackled by
extracting hand-crafted features or features from
sentiment lexicons (Nielsen, 2011; Mohammad
and Turney, 2010, 2013; Go et al., 2009) that were
fed to classifiers such as Naive Bayes or Sup-
port Vector Machines (SVM) (Bollen et al., 2011a;
Mohammad et al., 2013; Kiritchenko et al., 2014).
The downside of such approaches is that they re-
quire extensive feature engineering from experts
and thus they cannot keep up with rapid language
evolution (Mudinas et al., 2012), especially in
social media/micro-blogging context. However,
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Figure 2: High-level overview of our approach

recent advances in artificial neural networks for
text classification have shown to outperform con-
ventional approaches (Deriu et al., 2016; Rouvier
and Favre, 2016; Rosenthal et al., 2017a). This
can be attributed to their ability to learn features
directly from data and also utilize hand-crafted
features where needed. Most of aforementioned
works focus on sentiment analysis, but similar ap-
proaches have been applied to emotion detection
(Canales and Martinez-Barco, 2014) leading to
similar conclusions. SemEval 2018 Task 1: “Af-
fect in Tweets” (Mohammad et al., 2018) focuses
on exploring emotional content of tweets for both
classification and regression tasks concerning the
four basic emotions (joy, sadness, anger, fear) and
the presence of more fine-grained emotions such
as disgust or optimism.

In this paper, we present a deep-learning sys-
tem that competed in SemEval 2018 Task 1: “Af-
fect in Tweets”. We explore a transfer learning
approach to compensate for limited training data
that uses the sentiment analysis dataset of Semeval
Task 4A (Rosenthal et al., 2017b) for pretraining a
model and then further fine-tune it on data for each
subtask. Our model operates at the word-level
and uses a Bidirectional LSTM equipped with a
deep self-attention mechanism (Pavlopoulos et al.,
2017). Moreover, to help interpret the inner work-
ings of our model, we provide visualizations of
tweets with annotations of the salient tokens as
predicted by the attention layer.

2 Overview

Figure 2 provides a high-level overview of our
approach, which consists of three main steps:

(1) the word embeddings pretraining, where we
train word2vec and affective word embeddings
on our unlabeled Twitter dataset, (2) the trans-
fer learning step, where we pretrain a deep-learn-
ing model on a sentiment analysis task, (3) the
fine-tuning step, where we fine-tune the pretrained
model on each subtask.

Task definitions. Given a tweet we are asked to:
Subtask El-reg: determine the intensity of a cer-
tain emotion (joy, fear, sadness, anger), as a real-
valued number between in the [0, 1] interval.
Subtask El-oc: classify its intensity towards a cer-
tain emotion (joy, fear, sadness, anger) across a
4-point scale.

Subtask V-oc: classify its valence intensity (i.e
sentiment intensity) across a 7-point scale [—3, 3].
Subtask V-reg: determine its valence intensity as a
real-valued number between in the [0, 1] interval.
Subtask E-c: determine the existence of none, one
or more out of eleven emotions: anger, anticipa-
tion, disgust, fear, joy, love, optimism, pessimism,
sadness, surprise, trust.

2.1 Data

Unlabeled Dataset. We collected a big dataset
of 550 million English tweets, from April 2014 to
June 2017. This dataset is used for (1) calculating
word statistics needed in our text preprocessing
pipeline (Section 2.3) and (2) training word2vec
and affective word embeddings (Section 2.2).
Pretraining Dataset. For transfer learning, we
utilized the dataset of Semeval-2017 Task4A.
The dataset consists of 61,854 tweets with
{positive, neutral, negative} sentiment (va-
lence) annotations. To our knowledge, this is the
largest Twitter dataset with affective annotations.

2.2 Word Embeddings

Word embeddings are dense vector representa-
tions of words (Collobert and Weston, 2008;
Mikolov et al., 2013), capturing their semantic
and syntactic information. To this end, we train
word2vec word embeddings, to which we add 10
affective dimensions. We use our pretrained em-
beddings, to initialize the first layer (embedding
layer) of our neural networks.

Word2vec Embeddings. We leverage our unla-
beled dataset to train Twitter-specific word em-
beddings. We use the word2vec (Mikolov et al.,
2013) algorithm, with the skip-gram model, nega-
tive sampling of 5 and minimum word count of 20,
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utilizing Gensim’s (Rehifek and Sojka, 2010) im-
plementation. The resulting vocabulary contains
800, 000 words.

Affective Embeddings. Starting from small man-
ually annotated lexica, continuous norms (within
the [—1, 1] interval) for new words are estimated
using semantic similarity and a linear model along
ten affect-related dimensions, namely: valence,
dominance, arousal, pleasantness, anger, sad-
ness, fear, disgust, concreteness, familiarity. The
method of generating word level norms is detailed
in (Malandrakis et al., 2013) and relies on the as-
sumption that given a similarity metric between
two words, one may derive the similarity between
their affective ratings. This approach uses a set
of N words with known affective ratings (seed
words), as a starting point. Concretely, we cal-
culate the affective rating of a word w as follows:

N
d(w) =ag+ Y _a(t)S(ti,w), (1)
=1

where t;...t 5 are the seed words, v(t;) is the af-
fective rating for seed word ¢;, «; is a trainable
weight corresponding to seed ¢; and .S () stands for
the semantic similarity metric between ¢; and w.
The seed words ¢; are selected separately for each
dimension, from the words available in the orig-
inal manual annotations (see 2.2). The S() met-
ric is estimated as shown in (Palogiannidi et al.,
2015) using word-level contextual feature vectors
and adopting a scheme based on mutual informa-
tion for feature weighting.

Manually annotated norms. To generate affec-
tive norms, we need to start from some manual
annotations, so we use ten dimensions from four
sources. From the Affective Norms for English
Words (Bradley and Lang, 1999) we use norms for
valence, arousal and dominance. From the MRC
Psycholinguistic database (Coltheart, 1981), we
use norms for concreteness and familiarity. From
the Paivio norms (Clark and Paivio, 2004) we use
norms for pleasantness. Finally from (Stevenson
et al., 2007) we use norms for anger, sadness, fear
and disgust.

2.3 Preprocessing'

We utilized the ekphrasis®> (Baziotis et al., 2017)
tool as a tweet preprocessor. The preprocessing
steps included in ekphrasis are: Twitter-specific
tokenization, spell correction, word normaliza-
tion, word segmentation (for splitting hashtags)
and word annotation.

Tokenization. Tokenization is the first fundamen-
tal preprocessing step and since it is the basis for
the other steps, it immediately affects the qual-
ity of the features learned by the network. Tok-
enization on Twitter is challenging, since there is
large variation in the vocabulary and the expres-
sions which are used. There are certain expres-
sions which are better kept as one token (e.g. anti-
american) and others that should be split into sepa-
rate tokens. Ekphrasis recognizes Twitter markup,
emoticons, emojis, dates (e.g. 07/11/2011, April
23rd), times (e.g. 4:30pm, 11:00 am), currencies
(e.g. $10, 25mil, 50€), acronyms, censored words
(e.g. s**t), words with emphasis (e.g. *very*) and
more using an extensive list of regular expressions.
Normalization. After tokenization, we apply a se-
ries of modifications on the extracted tokens, such
as spell correction, word normalization and seg-
mentation. Specifically for word normalization
we use lowercase words, normalize URLs, emails,
numbers, dates, times and user handles (@user).
This helps reducing the vocabulary size without
losing information. For spell correction (Jurafsky
and James, 2000) and word segmentation (Segaran
and Hammerbacher, 2009) we use the Viterbi al-
gorithm. The prior probabilities are obtained from
word statistics from the unlabeled dataset.

The benefits of the aforementioned procedure
are the reduction of the vocabulary size, without
removing any words, and the preservation of in-
formation that is usually lost during tokenization.
Table 1 shows an example text snippet and the re-
sulting preprocessed tokens.

!Significant portions of the systems submitted to SemEval
2018 in Tasks 1, 2 and 3, by the NTUA-SLP team are shared,
specifically the preprocessing and portions of the DNN archi-
tecture. Their description is repeated here for completeness.

2github.com/cbaziotis/ekphrasis

original

The *new* season of #TwinPeaks is coming on May 21, 2017. CANT WAIT \o/ !!! #tvseries #davidlynch :D

processed

the new <emphasis> season of <hashtag> twin peaks </hashtag> is coming on <date> . cant <allcaps> wait
<allcaps> <happy> ! <repeated> <hashtag> tv series </hashtag> <hashtag> david lynch </hashtag> <laugh>

Table 1: Example of our text processor
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2.4 Neural Transfer Learning for NLP

Transfer learning aims to make use of the knowl-
edge from a source domain, to improve the perfor-
mance of a model in a different, but related, tar-
get domain. It has been applied with great success
in computer vision (CV) (Razavian et al., 2014;
Long et al., 2014). Deep neural networks in CV
are rarely trained from scratch and instead are ini-
tialized with pretrained models. Notable examples
include face recognition (Taigman et al., 2014)
and visual QA (Agrawal et al., 2017), where im-
age features trained on ImageNet (Deng et al.,
2009) and word embeddings estimated on large
corpora via unsupervised training are combined.
Although model transfer has seen widespread suc-
cess in computer vision, transfer learning beyond
pretrained word vectors is less pervasive in NLP.

In our system, we explore the approach of pre-
training a network in a sentiment analysis task in
Twitter and use it to initialize the weights of the
models of each subtask. We chose the dataset of
Semeval 2017 Task4A (SA2017) (Rosenthal et al.,
2017b), which is a semantically similar dataset to
the emotion datasets of this task. By pretraining
on a dataset in a similar domain, it is more likely
that the source and target dataset will have similar
distributions.

To build our pretrained model, we initialize
the weights of the embedding layer with the
word2vec Twitter embeddings and train a bidirec-
tional LSTM (BiLSTM) with a deep self-attention
mechanism (Pavlopoulos et al., 2017) on SA2017,
similar to (Baziotis et al., 2017). Afterwards, we
utilize the encoding part of the network, which
is the BILSTM and the attention layer, throwing
away the last layer. This pretrained model is used
for all subtasks, with the addition of a subtask-
specific final layer for classification/regression.

2.5 Recurrent Neural Networks

We model the Twitter messages using Recurrent
Neural Networks (RNN). RNNs process their in-
puts sequentially, performing the same operation,
ht = fw(x¢, he—1), on every element in a se-
quence, where h; is the hidden state t the time
step, and W the network weights. We can see that
the hidden state at each time step depends on the
previous hidden states, thus the order of elements
(words) is important. This process also enables
RNNS to handle inputs of variable length.

RNNs are difficult to train (Pascanu et al.,
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Figure 3: Comparison between regular RNN and
attentive RNN.

2013), because gradients may grow or decay ex-
ponentially over long sequences (Bengio et al.,
1994; Hochreiter et al., 2001). A way to overcome
these problems is to use more sophisticated vari-
ants of regular RNNss, like Long Short-Term Mem-
ory (LSTM) networks (Hochreiter and Schmidhu-
ber, 1997) or Gated Recurrent Units (GRU) (Cho
et al., 2014), introducing a gating mechanism to
ensure proper gradient flow through the network.

2.6 Self-Attention Mechanism

RNNs update their hidden state h; as they process
a sequence and the final hidden state holds a sum-
mary of the information in the sequence. In or-
der to amplify the contribution of important words
in the final representation, a self-attention mecha-
nism (Bahdanau et al., 2014) is used as shown in
Fig. 3. By employing an attention mechanism, the
representation of the input sequence r is no longer
limited to just the final state hp, but rather it is
a combination of all the hidden states h;. This is
done by computing the sequence representation,
as the convex combination of all ;. The weights
a; are learned by the network and their magnitude
signifies the importance of each h; in the final rep-
resentation. Formally:

N N
T:Zaihi where Zaizl, a; >0
i=1 i=1

3 Model Description

Next, we present in detail the submitted models.
For all subtasks, we adopted a transfer learning
approach, by pretraining a BiLSTM network with
a deep attention mechanism on SA2017 dataset.
Afterwards, we replaced the last layer of the pre-
trained model with a task-specific layer and fine-
tuned the whole network for each subtask.
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Figure 4: The proposed model, composed of a 2-layer BILSTM with a deep self-attention mechanism.

3.1 Transfer Learning Model (TF)

Our transfer learning model is based on the sen-
timent analysis model in (Baziotis et al., 2017).
It consists of a 2-layer bidirectional LSTM (BiL-
STM) with a deep self-attention mechanism.
Embedding Layer. The input to the network is a
Twitter message, treated as a sequence of words.
We use an embedding layer to project the words
wi, Wy, ..., wy to a low-dimensional vector space
RW, where W is the size of the embedding layer
and N the number of words in a tweet. We initial-
ize the weights of the embedding layer with our
pre-trained word embeddings (Section 2.2).
BiLSTM Layer. An LSTM takes as input a se-
quence of word embeddings and produces word
annotations h1, ho, ..., hyy, where h; is the hid-
den state of the LSTM at time-step ¢, summariz-
ing all the information of the sentence up to w;.
We use bidirectional LSTMs (BiLSTM) in order
to get word annotations that summarize the infor-
mation from both directions. A BiLSTM consists
of 2 LSTMs, a forward LSTM f that parses the
sentence from w1 to wy and a backward LSTM f
that parses the sentence from wy to w;. We obtain
the final annotation for each word h;, by concate-
nating the annotations from both directions,

hi=h | he, By € R )

where || denotes the concatenation operation and
L the size of each LSTM.

Attention Layer. To amplify the contribution of
the most informative words, we augment our Bil-
STM with a self-attention mechanism. We use a
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deep self-attention mechanism (Pavlopoulos et al.,
2017), to obtain a more accurate estimation of the
importance of each word. The attention weight in
the simple self-attention mechanism, is replaced
with a multilayer perceptron (MLP), composed
of [ layers with a non-linear activation function
(tanh). The MLP learns the attention function g.
The attention weights a; are then computed as a
probability distribution over the hidden states h;.
The final representation r is the convex combina-
tion of h; with weights a;.

e; = g(hi) (3)
exp(e;)
Gi= (4)
Sy expler)
N
r= Zaihi, re R 5)
i=1

Output Layer. We use vector r as the feature rep-
resentation, which we feed to a final task-specific
layer. For the regression tasks, we use a fully-
connected layer with one neuron and a sigmoid
activation function. For the ordinal classification
tasks, we use a fully-connected layer, followed by
a softmax operation, which outputs a probability
distribution over the classes. Finally, for the multi-
label classification task, we use a fully-connected
layer with 11 neurons (number of labels) and a sig-
moid activation function, performing binary clas-
sification for each label.

3.2 Fine-Tuning

After training a network on the pretraining dataset
(SA2017), we fine-tune it on each subtask, by re-



placing its final layer with a task-specific layer.
We experimented with two fine-tuning schemes.
The first approach is to fine-tune the whole net-
work, that is, both the pretrained encoder (BiL-
STM) and the task-specific layer. The second ap-
proach is to use the pretrained model only for
weight initialization, freeze its weights during
training and just fine-tune the final layer. Based
on the experimental results, the first approach ob-
tains significantly better results in all tasks.

3.3 Regularization

In both models, we add Gaussian noise to the
embedding layer, which can be interpreted as a
random data augmentation technique, that makes
models more robust to overfitting. In addition
to that, we use dropout (Srivastava et al., 2014)
and we stop training after the validation loss has
stopped decreasing (early-stopping).

Furthermore, we do not fine-tune the embed-
ding layers. Words occurring in the training set,
are projected in the embedding space and the clas-
sifier correlates certain regions of the embedding
space to certain emotions. However, words in-
cluded only in the test set, remain at their initial
position which may no longer reflect their “true”
emotion, leading to mis-classifications.

4 Experiments and Results

4.1 Experimental Setup

Training We use Adam algorithm (Kingma and
Ba, 2014) for optimizing our networks, with mini-
batches of size 32 and we clip the norm of the gra-
dients (Pascanu et al., 2013) at 1, as an extra safety
measure against exploding gradients. For devel-
oping our models we used PyTorch (Paszke et al.,
2017) and Scikit-learn (Pedregosa et al., 2011).
Class Weights. In subtasks El-oc and V-oc, some
classes have more training examples than oth-
ers, introducing bias in our models. To deal
with this problem, we apply class weights to the
loss function, penalizing more the misclassifica-
tion of under-represented classes. These weights
are computed as the inverse frequencies of the
classes in the training set.

Hyper-parameters. In order to tune the hyper-
parameter of our model, we adopt a Bayesian op-
timization (Bergstra et al., 2013) approach, per-
forming a more time-efficient search in the high
dimensional space of all the possible values, com-
pared to grid or random search. We set size of the
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embedding layer to 310 (300 word2vec + 10 affec-
tive dimensions), which we regularize by adding
Gaussian noise with ¢ = 0.2 and dropout of 0.1.
The sentence encoder is composed of 2 BiLSTM
layers, each of size 250 (per direction) with a 2-
layer self-attention mechanism. Finally, we apply
dropout of 0.3 to the encoded representation.

4.2 Experiments

In Table 2, we compare the proposed transfer
learning models against 3 strong baselines. Pear-
son correlation is the metric used for the first
four subtasks, whereas Jaccard index is used for
the E-c multi-label classification subtask. The
first baseline is a unigram Bag-of-Words (BOW)
model with TF-IDF weighting. The second base-
line is a Neural Bag-of-Words (N-BOW) model,
where we retrieve the word2vec embeddings of
the words in a tweet and compute the tweet rep-
resentation as the average (centroid) of the con-
stituent word2vec embeddings. Finally, the third
baseline is similar to the second one, but with
the addition of 10-dimensional affective embed-
dings that model affect-related dimensions (va-
lence, dominance, arousal, etc). Both BOW and
N-BOW features are then fed to a linear SVM
classifier, with tuned C' = 0.6. In order to as-
sess the impact of transfer learning, we evalu-
ate the performance of each model in 3 different
settings: (1) random weight initialization (LST-
M-RD), (2) transfer learning with frozen weights
(LSTM-TL-FR), (3) transfer learning with fine-
tuning (LSTM-TL-FT). The results of our neural
models in Table 2 are computed by averaging the
results of 10 runs to account for model variability.

Baselines. Our first observation is that N-BOW
baselines significantly outperform BOW in sub-
tasks El-reg, El-oc, V-reg and V-oc, in which we
have to predict the intensity of an emotion, or the
tweet’s valence. However, BOW achieves slightly
better performance in subtask E-c, in which we
have to recognize the emotions expressed in each
tweet. This can be attributed to the fact that BOW
models perform well in tasks where we the occur-
rence of certain words is sufficient, to accurately
determine the classification result. This suggests
that in subtask E-c, certain words are highly in-
dicative of some emotions. Word embeddings,
though, that encode the correlation of each word
with different dimensions, enable NBOW to better
predict the intensity of various emotions. Further-



El-reg (pearson) El-oc (pearson) V-Reg V-oc E-c

anger | fear joy | sadness | anger | fear joy | sadness | (pearson) | (pearson) | (jaccard)
BOW 0.5249 [ 0.5227 | 0.5716 | 0.4721|0.3996 | 0.3491 | 0.4456 | 0.3835 0.5963 0.4954 0.4572
NBOW 0.6539 | 0.6318 | 0.6355 | 0.6305 | 0.5573 | 0.3796 | 0.5044 | 0.5009 0.7501 0.6527 0.4541
NBOW+A* 0.656 | 0.6359 [ 0.6384 | 0.6341 | 0.5367 | 0.3906 | 0.4803 | 0.5005 0.7457 0.6578 0.4478
LSTM-RD 0.7568 | 0.7357 | 0.7313 | 0.7479 | 0.6387 | 0.5874 | 0.6226 | 0.6343 0.8462 0.7722 0.5788
LSTM-TL-FR | 0.7347 | 0.6509 | 0.7321 | 0.7269 | 0.5999 | 0.4666 | 0.6264 | 0.6030 0.8275 0.7331 0.5243
LSTM-TL-FT | 0.7717 | 0.7273 | 0.7638 | 0.7665 | 0.6329 | 0.5702 | 0.6351 | 0.6400 0.8390 0.7652 0.5788

Table 2: Results of our experiments across all subtasks on the official evaluation metrics. For subtasks
El-reg, El-oc, V-reg, V-oc, the evaluation metric is Pearson correlation. For subtask E-c, the evaluation
metric is multi-label accuracy (Jaccard index). BOW stands for Bag-of-Words baseline, N-BOW stands
for Neural Bag-of-Words baseline and N-BOW+A indicates the inclusion of the affective word features.
As for the neural models, RD stands for random initialization, TL for Transfer Learning, FR for Frozen
pretrained layers (without fine-tuning) and FT for Fine-Tuning. For our deep-learning models, the results
are computed by averaging 10 runs to account for the variability in training performance.

Ave.diff. Overall | Ave.diff. | p-value
Anger 0.001 0 | 0.02223
Fear -0.003 -0.003 0
Joy 0.004 0.010 0
Sadness 0.002 -0.002 0
Valence 0.005 0.005 0

Table 3: Analysis for inappropriate biases

more, regarding the affective embeddings, we can
directly observe their impact by the performance
gain over the NBOW baseline.

Transfer Learning. We observe that our neural
models achieved better performance than all base-
lines by a large margin. Moreover, we can see that
our transfer learning model yielded higher perfor-
mance over the non-transfer model in most of the
Emotion Intensity (EI) subtasks. In the Emotion
multi-label classification subtask (E-c), transfer
learning did not outperform the random initializa-
tion model. This can be attributed to the fact that
our source dataset (SA17) was not diverse enough
to boost the model performance when classifying
the tweets into none, one or more of a set of 11
emotions. As for fine-tuning or freezing the pre-
trained layers, the overall results show that en-
abling the model to fine-tune always results in sig-
nificant gains. This is consistent with our intuition
that allowing the weights of the model to adapt to
the target dataset, thus encoding task-specific in-
formation, results in performance gains. Regard-
ing the emotion of joy, we observe that in El-reg
and El-oc subtasks, LSTM-RD matches the per-
formance of LSTM-TL-FR. We interpret this re-
sult as an indication of the semantic similarity be-
tween the source and the target task.

Mystery dataset. The submitted models were
also evaluated against a mystery dataset, in order
to investigate if there is statistically significant so-
cial bias in them. This is a very important exper-
iment, especially when automated machine learn-
ing algorithms are interacting with social media
content and users in the wild. The mystery dataset
consists of pairs of sentences that differ only in
the social context (e.g. gender or race). Submitted
models are expected to predict the same affective
values for both sentences in the pair. The evalua-
tion metric is the average difference in prediction
scores per class, along with the p-value score indi-
cating if the difference is statistically significant.
Results are summarized in Table 3.

4.3 Attention visualizations

Fig. 10 shows a heat-map of the attention weights
on top of 8 example tweets (2 tweets per emo-
tion). The color intensity corresponds to the
weight given to each word by the self-attention
mechanism and signifies the importance of this
word for the final prediction. We can see that the
salient words correspond to the predicted emotion
(e.g. “irritated” for anger, “mourn” for sadness
etc.). An interesting observation is that when emo-
jis are present they are almost always selected as
important, which indicates their function as weak
annotations. Also note that the attention mecha-
nism can hint to dependencies between words even
if they far in a sentence, like the “why” and “mad”
in the sadness example.

4.4 Competition Results

Our official ranking was 2/48 in subtask 1A (EI-
reg), 5/39 in subtask 2A (EI-oc), 4/38 in subtask
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<user> such an amazing pic

0.114 0.177  0.133 0.192 0.192 0.192

beautiful *»

0.233

the golden temple is !

0.042 0.110 0.040 0.110 0233 0.233

Figure 5: Examples of intensity of joy

why do 1 get mad so ecasily &

0.133 0.123 0.120 0.124 0.133 0.114  0.124  0.129

how long will they mourn me ?

0.123  0.148 0.160 0.159  0.188  0.122 0.100

Figure 6: Examples of intensity of sadness

totally scare for this upcoming results

0.157 0.159 0.154 0.128 0.103 0.155  0.143

fuckfuckfuck my hands are shaking

0.239 0.166 0213 0.144 0.239

Figure 7: Examples of intensity of fear

i am actually very irritated .

0.162  0.165 0.167 0.168 0.169 0.169

i really hate the morning shift »¢

0.132  0.142  0.146 0.143 0.145 0.146  0.146

Figure 8: Examples of intensity of anger

it ! s been <number> weeks and

0.043 0.031 0.037 0.088 0.087 0.113  0.063

still

0.074 0.113 0.090

i go through depression smh

0.120 0.123 0.019

Emotions: pessimism, sadness

everything i order online just comes
0.093  0.028 0035 0.050 0.043 0.036
. . . . hld
looking like a piece of | shit @ 7=

0.029 0.068 0.082 0.141 0.106 0.145 0.145

Emotions: anger, disgust

i have never been so |excited to

0.031 0.031 0.032 0.031 0.031 0.224 0.229

start a semester !

0.228 0.059 0.038 0.065

Emotions: anticipation, joy, optimism
the

0.028 0.166

best revenge ever <repeated>

0.166  0.099 0.023 0.023

is success

0.024  0.165 0.089 0.141 0.075

Emotions: joy, optimism

Figure 9: Examples of emotion recognition

Figure 10: Attention heat-map visualization. The color intensity of each word corresponds to its weight
(importance), given by the self-attention mechanism (Section 2.6).

3A (V-reg), 8/37 (tie with 6 and 7 place) in sub-
task 4A (V-oc) and 1/35 in subtask 5A (E-c). All
of our models achieved competitive results. We
used the same transfer learning approach in all
subtasks (LSTM-TL-FT), utilizing the same pre-
trained model.

5 Conclusion

In this paper we present a deep-learning system
for short text emotion intensity, valence estimation
for both regression and classification and multi-
class emotion classification. We used Bidirec-
tional LSTMs, with a deep attention mechanism
and took advantage of transfer learning in order to
address the problem of limited training data.

Our models achieved excellent results in sin-
gle and multi-label classification tasks, but mixed
results in emotion and valence intensity tasks.
Future work can follow two directions. Firstly,
we aim to revisit the task with different transfer
learning approaches, such as (Felbo et al., 2017;
Howard and Ruder, 2018; Hashimoto et al., 2016).
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Secondly, we would like to introduce character-
level information in our models, based on (Wiet-
ing etal., 2016; Labeau and Allauzen, 2017), in or-
der to overcome the problem of out-of-vocabulary
(OOV) words and learn syntactic and stylistic fea-
tures (Peters et al., 2018), which are highly indica-
tive of emotions and their intensity.

Finally, we make both our pretrained word
embeddings and the source code of our models
available to the community?, in order to make our
results easily reproducible and facilitate further
experimentation in the field.
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