
NAACL HLT 2018

The International Workshop on Semantic Evaluation

Proceedings of the Twelfth Workshop

June 5–June 6, 2018
New Orleans, Louisiana

c©2018 The Association for Computational Linguistics

Order copies of this and other ACL proceedings from:

Association for Computational Linguistics (ACL)
209 N. Eighth Street
Stroudsburg, PA 18360
USA
Tel: +1-570-476-8006
Fax: +1-570-476-0860
acl@aclweb.org

ISBN 978-1-948087-20-9

ii

Introduction

Welcome to SemEval-2018!

The Semantic Evaluation (SemEval) series of workshops focuses on the evaluation and comparison of
systems that can analyse diverse semantic phenomena in text with the aim of extending the current state
of the art in semantic analysis and creating high quality annotated datasets in a range of increasingly
challenging problems in natural language semantics. SemEval provides an exciting forum for researchers
to propose challenging research problems in semantics and to build systems/techniques to address such
research problems.

SemEval-2018 is the twelfth workshop in the series of International Workshops on Semantic Evaluation.
The first three workshops, SensEval-1 (1998), SensEval-2 (2001), and SensEval-3 (2004), focused on
word sense disambiguation, each time growing in the number of languages offered, in the number of
tasks, and also in the number of participating teams. In 2007, the workshop was renamed to SemEval,
and the subsequent SemEval workshops evolved to include semantic analysis tasks beyond word sense
disambiguation. In 2012, SemEval turned into a yearly event. It currently runs every year, but on a
two-year cycle, i.e., the tasks for SemEval-2018 were proposed in 2017.

SemEval-2018 was co-located with the 16th Annual Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technologies (NAACL HLT 2018) in New
Orleans, Louisiana, US. It included the following 12 shared tasks organized in five tracks:

• Affect and Creative Language in Tweets

– Task 1: Affect in Tweets

– Task 2: Multilingual Emoji Prediction

– Task 3: Irony Detection in English Tweets

• Coreference

– Task 4: Character Identification on Multiparty Dialogues

– Task 5: Counting Events and Participants within Highly Ambiguous Data covering a very
long tail

• Information Extraction

– Task 6: Parsing Time Normalizations

– Task 7: Semantic Relation Extraction and Classification in Scientific Papers

– Task 8: Semantic Extraction from CybersecUrity REports using Natural Language
Processing (SecureNLP)

• Lexical Semantics

– Task 9: Hypernym Discovery

– Task 10: Capturing Discriminative Attributes

• Reading Comprehension and Reasoning

– Task 11: Machine Comprehension using Commonsense Knowledge

– Task 12: Argument Reasoning Comprehension Task

iii

This volume contains both Task Description papers that describe each of the above tasks, and System
Description papers that present the systems that participated in these tasks. A total of 12 task description
papers and 184 system description papers are included in this volume.

We are grateful to all task organizers as well as to the large number of participants whose enthusiastic
participation has made SemEval once again a successful event. We are thankful to the task organizers
who also served as area chairs, and to task organizers and participants who reviewed paper submissions.
These proceedings have greatly benefited from their detailed and thoughtful feedback. We also thank the
NAACL HLT 2018 conference organizers for their support. Finally, we most gratefully acknowledge the
support of our sponsor, the ACL Special Interest Group on the Lexicon (SIGLEX).

The SemEval-2018 organizers, Marianna Apidianaki, Saif M. Mohammad, Jonathan May, Ekaterina
Shutova, Marine Carpuat, Steven Bethard

iv

Organizers:

Marianna Apidianaki, LIMSI, CNRS, Université Paris-Saclay & University of Pennsylvania
Saif M. Mohammad, National Research Council Canada
Jonathan May, University of Southern California Information Sciences Institute
Ekaterina Shutova, University of Cambridge
Steven Bethard, University of Alabama at Birmingham
Marine Carpuat, University of Maryland

Task Selection Committee:

Eneko Agirre, University of the Basque Country
Isabelle Augenstein, University of Copenhagen
Timothy Baldwin, University of Melbourne
Paul Buitelaar, National University of Ireland
Alberto Barrón-Cedeño, Qatar Computing Research Institute
Yonatan Belinkov, MIT
Kalina Bontcheva, University of Sheffield
Georgeta Bordea, National University of Ireland
Daniel Cer, Google
Wanxiang Che, Harbin Institute of Technology
Keith Cortis, University of Passau
Danilo Croce, University of Rome Tor Vergata
Mrinal Das, University of Massachusetts Amherst
Noura Farra, Columbia University
Dimitris Galanis, ILSP, “Athena" Research Center
Christian Hempelmann, Texas A&M University-Commerce
Anders Johannsen, University of Copenhagen
Maria Liakata, University of Warwick
Montse Maritxalar, University of the Basque Country
Jonathan May, University of Southern California Information Sciences Institute
Rada Mihalcea, University of Michigan
Tristan Miller, Technische Universität Darmstadt
Hamdy Mubarak, Qatar Computing Research Institute
Haris Papageorgiou, ILSP, “Athena" Research Center
Mohammad Taher Pilehvar
Maria Pontiki, ILSP, “Athena" Research Center
Peter Potash, University of Massachusetts Lowell
Alan Ritter, The Ohio State University
Alexey Romanov, University of Massachusetts Lowell
Sara Rosenthal, IBM Watson
Nathan Schneider, University of Edinburgh
Parinaz Sobhani, University of Ottawa
Xiaodan Zhu, National Research Council Canada
Arkaitz Zubiaga, University of Warwick

v

Task Organizers:

Miguel Ballesteros, IBM Watson, USA
Francesco Barbieri, Universitat Pompeu Fabra, LaSTUS lab, Spain
Valerio Basile, Sapienza University, Italy
Steven Bethard, University of Arizona
Felipe Bravo-Marquez, The University of Waikato
Davide Buscaldi, LIPN, UMR CNRS, Université Paris 13
Jose Camacho-Collados, Sapienza University of Rome
Thierry Charnois, LIPN, UMR CNRS, Université Paris 13
Henry Y. Chen, Snap Inc.
Jinho D. Choi, Emory Univesrity
Claudio Delli Bovi, Sapienza University of Rome
Ahmed S. Elsayed, University of Colorado
Luis Espinoza-Anke, Universitat Pompeu Fabra, LaSTUS lab, Spain
Kata Gábor, LIPN, UMR CNRS, Université Paris 13
Iryna Gurevych, UKP TU-Darmstadt
Ivan Habernal, UKP TU-Darmstadt
Véronique Hoste, LT3, Faculty of Arts and Philosophy, Ghent University
Filip Ilievski, Vrije Universiteit Amsterdam
Svetlana Kiritchenko, National Research Council Canada
Alicia Krebs, Textkernel BV, Amsterdam, Netherlands
Egoitz Laparra, University of Arizona
Els Lefever, LT3, Faculty of Arts and Philosophy, Ghent University
Alessandro Lenci, Department of Philology, Literature, and Linguistics of the University of Pisa,
Italy
Wei Lu, Singapore University of Technology and Design
Ashutosh Modi, Saarland University
Saif M. Mohammad, National Research Council Canada
Roberto Navigli, Sapienza University of Rome
Sergio Oramas, Universitat Pompeu Fabra
Simon Ostermann, Saarland University
Martha Palmer, University of Colorado
Denis Paperno, Lorraine Laboratory of Computer Science and its Applications, CNRS, France
Tommaso Pasini, Sapienza University of Rome
Viviana Patti, University of Torino, Italy
Peter Phandi, Singapore University of Technology and Design
Manfred Pinkal, Saarland University
Marten Postma, Vrije Universiteit Amsterdam
Behrang QasemiZadeh, DFG Collaborative Research Centre 991, Heinrich-Heine University Düs-
seldorf
Francesco Ronzano, Universitat Pompeu Fabra, LaSTUS lab, Spain
Michael Roth, Saarland University
Horacio Saggion, Universitat Pompeu Fabra, LaSTUS lab, Spain
Mohammad Salameh, Carnegie Mellon University, Qatar
Enrico Santus, Singapore University
Anne-Kathrin Schumann, ProTechnology GmbH, Dresden, former: Department of Applied Lin-
guistics, Translation and Interpreting, Saarland University
Vered Shwartz, Bar-Ilan University
Benno Stein, Webis, Bauhaus-Universität Weimar
Isabelle Tellier, Laboratoire Lattice, CNRS and Université Sorbonne Nouvelle
Stefan Thater, Saarland University

vi

Cynthia Van Hee, LT3, Faculty of Arts and Philosophy, Ghent University
Piek Vossen, Vrije Universiteit Amsterdam
Henning Wachsmuth, Webis, Bauhaus-Universität Weimar
Dongfang Xu, University of Arizona
Haïfa Zargayouna, LIPN, UMR CNRS, Université Paris 13

Invited Speaker:

Ellie Pavlick, Brown University

vii

Invited Talk: Why should we care about linguistics?
Ellie Pavlick

(Joint Invited Speaker with *SEM 2018)

Brown University

Abstract

In just the past few months, a flurry of adversarial studies have pushed back on the apparent progress of
neural networks, with multiple analyses suggesting that deep models of text fail to capture even basic
properties of language, such as negation, word order, and compositionality. Alongside this wave of
negative results, our field has stated ambitions to move beyond task-specific models and toward "general
purpose" word, sentence, and even document embeddings. This is a tall order for the field of NLP,
and, I argue, marks a significant shift in the way we approach our research. I will discuss what we
can learn from the field of linguistics about the challenges of codifying all of language in a "general
purpose" way. Then, more importantly, I will discuss what we cannot learn from linguistics. I will argue
that the state-of-the-art of NLP research is operating close to the limits of what we know about natural
language semantics, both within our field and outside it. I will conclude with thoughts on why this opens
opportunities for NLP to advance both technology and basic science as it relates to language, and the
implications for the way we should conduct empirical research.

Biography

Ellie Pavlick is currently a Post Doc at Google Research in NY. She will join Brown University as an
Assistant Professor in July. Ellie received her PhD from University of Pennsylvania under the super-
vision of Chris Callison-Burch. Her current research focus is on semantics, pragmatics, and building
cognitively-plausible computational models of natural language inference.

viii

Table of Contents

SemEval-2018 Task 1: Affect in Tweets
Saif Mohammad, Felipe Bravo-Marquez, Mohammad Salameh and Svetlana Kiritchenko 1

SeerNet at SemEval-2018 Task 1: Domain Adaptation for Affect in Tweets
Venkatesh Duppada, Royal Jain and Sushant Hiray . 18

SemEval 2018 Task 2: Multilingual Emoji Prediction
Francesco Barbieri, Jose Camacho-Collados, Francesco Ronzano, Luis Espinosa Anke, Miguel

Ballesteros, Valerio Basile, Viviana Patti and Horacio Saggion . 24

Tübingen-Oslo at SemEval-2018 Task 2: SVMs perform better than RNNs in Emoji Prediction
Çağrı Çöltekin and Taraka Rama . 34

SemEval-2018 Task 3: Irony Detection in English Tweets
Cynthia Van Hee, Els Lefever and Veronique Hoste . 39

THU_NGN at SemEval-2018 Task 3: Tweet Irony Detection with Densely connected LSTM and Multi-
task Learning

Chuhan Wu, Fangzhao Wu, Sixing Wu, Junxin Liu, Zhigang Yuan and Yongfeng Huang 51

SemEval 2018 Task 4: Character Identification on Multiparty Dialogues
Jinho D. Choi and Henry Y. Chen . 57

AMORE-UPF at SemEval-2018 Task 4: BiLSTM with Entity Library
Laura Aina, Carina Silberer, Ionut-Teodor Sorodoc, Matthijs Westera and Gemma Boleda 65

SemEval-2018 Task 5: Counting Events and Participants in the Long Tail
Marten Postma, Filip Ilievski and Piek Vossen . 70

KOI at SemEval-2018 Task 5: Building Knowledge Graph of Incidents
Paramita Mirza, Fariz Darari and Rahmad Mahendra . 81

SemEval 2018 Task 6: Parsing Time Normalizations
Egoitz Laparra, Dongfang Xu, Ahmed Elsayed, Steven Bethard and Martha Palmer 88

Chrono at SemEval-2018 Task 6: A System for Normalizing Temporal Expressions
Amy Olex, Luke Maffey, Nicholas Morgan and Bridget McInnes . 97

NEUROSENT-PDI at SemEval-2018 Task 1: Leveraging a Multi-Domain Sentiment Model for Inferring
Polarity in Micro-blog Text

Mauro Dragoni . 102

FOI DSS at SemEval-2018 Task 1: Combining LSTM States, Embeddings, and Lexical Features for
Affect Analysis

Maja Karasalo, Mattias Nilsson, Magnus Rosell and Ulrika Wickenberg Bolin 109

NLPZZX at SemEval-2018 Task 1: Using Ensemble Method for Emotion and Sentiment Intensity Deter-
mination

Zhengxin Zhang, Qimin Zhou and Hao Wu. .116

LT3 at SemEval-2018 Task 1: A classifier chain to detect emotions in tweets
Luna De Bruyne, Orphee De Clercq and Veronique Hoste . 123

ix

SINAI at SemEval-2018 Task 1: Emotion Recognition in Tweets
Flor Miriam Plaza del Arco, Salud María Jiménez-Zafra, Maite Martin and L. Alfonso Urena Lopez

128

UWB at SemEval-2018 Task 1: Emotion Intensity Detection in Tweets
Pavel Přibáň, Tomáš Hercig and Ladislav Lenc . 133

AttnConvnet at SemEval-2018 Task 1: Attention-based Convolutional Neural Networks for Multi-label
Emotion Classification

Yanghoon Kim, Hwanhee Lee and Kyomin Jung . 141

INGEOTEC at SemEval-2018 Task 1: EvoMSA and µTC for Sentiment Analysis
Mario Graff, Sabino Miranda-Jiménez, Eric S. Tellez and Daniela Moctezuma 146

Epita at SemEval-2018 Task 1: Sentiment Analysis Using Transfer Learning Approach
Guillaume Daval-Frerot, Abdesselam Bouchekif and Anatole Moreau. .151

KDE-AFFECT at SemEval-2018 Task 1: Estimation of Affects in Tweet by Using Convolutional Neural
Network for n-gram

Masaki Aono and Shinnosuke Himeno . 156

RNN for Affects at SemEval-2018 Task 1: Formulating Affect Identification as a Binary Classification
Problem

Aysu Ezen-Can and Ethem F. Can . 162

Tw-StAR at SemEval-2018 Task 1: Preprocessing Impact on Multi-label Emotion Classification
Hala Mulki, Chedi Bechikh Ali, Hatem Haddad and Ismail Babaoglu . 167

DL Team at SemEval-2018 Task 1: Tweet Affect Detection using Sentiment Lexicons and Embeddings
Dmitry Kravchenko and Lidia Pivovarova . 172

EmoIntens Tracker at SemEval-2018 Task 1: Emotional Intensity Levels in #Tweets
Ramona-Andreea Turcu, Sandra Maria Amarandei, Iuliana-Alexandra Fles, can-Lovin-Arseni, Daniela

Gifu and Diana Trandabat . 177

uOttawa at SemEval-2018 Task 1: Self-Attentive Hybrid GRU-Based Network
Ahmed Husseini Orabi, Mahmoud Husseini Orabi, Diana Inkpen and David Van Bruwaene . . . 181

THU_NGN at SemEval-2018 Task 1: Fine-grained Tweet Sentiment Intensity Analysis with Attention
CNN-LSTM

Chuhan Wu, Fangzhao Wu, Junxin Liu, Zhigang Yuan, Sixing Wu and Yongfeng Huang 186

EiTAKA at SemEval-2018 Task 1: An Ensemble of N-Channels ConvNet and XGboost Regressors for
Emotion Analysis of Tweets

Mohammed Jabreel and Antonio Moreno . 193

CENTEMENT at SemEval-2018 Task 1: Classification of Tweets using Multiple Thresholds with Self-
correction and Weighted Conditional Probabilities

Tariq Ahmad, Allan Ramsay and Hanady Ahmed . 200

Yuan at SemEval-2018 Task 1: Tweets Emotion Intensity Prediction using Ensemble Recurrent Neural
Network

Min Wang and Xiaobing Zhou . 205

x

AffecThor at SemEval-2018 Task 1: A cross-linguistic approach to sentiment intensity quantification in
tweets

Mostafa Abdou, Artur Kulmizev and Joan Ginés i Ametllé . 210

Amobee at SemEval-2018 Task 1: GRU Neural Network with a CNN Attention Mechanism for Sentiment
Classification

Alon Rozental and Daniel Fleischer . 218

deepSA2018 at SemEval-2018 Task 1: Multi-task Learning of Different Label for Affect in Tweets
Zi Yuan Gao and Chia-Ping Chen . 226

ECNU at SemEval-2018 Task 1: Emotion Intensity Prediction Using Effective Features and Machine
Learning Models

Huimin Xu, Man Lan and Yuanbin Wu . 231

EMA at SemEval-2018 Task 1: Emotion Mining for Arabic
Gilbert Badaro, Obeida El Jundi, Alaa Khaddaj, Alaa Maarouf, Raslan Kain, Hazem Hajj and

Wassim El-Hajj . 236

NTUA-SLP at SemEval-2018 Task 1: Predicting Affective Content in Tweets with Deep Attentive RNNs
and Transfer Learning

Christos Baziotis, Athanasiou Nikolaos, Alexandra Chronopoulou, Athanasia Kolovou, Georgios
Paraskevopoulos, Nikolaos Ellinas, Shrikanth Narayanan and Alexandros Potamianos 245

CrystalFeel at SemEval-2018 Task 1: Understanding and Detecting Emotion Intensity using Affective
Lexicons

Raj Kumar Gupta and Yinping Yang . 256

PlusEmo2Vec at SemEval-2018 Task 1: Exploiting emotion knowledge from emoji and #hashtags
Ji Ho Park, Peng Xu and Pascale Fung . 264

YNU-HPCC at SemEval-2018 Task 1: BiLSTM with Attention based Sentiment Analysis for Affect in
Tweets

You Zhang, Jin Wang and Xuejie Zhang . 273

UG18 at SemEval-2018 Task 1: Generating Additional Training Data for Predicting Emotion Intensity
in Spanish

Marloes Kuijper, Mike van Lenthe and Rik van Noord . 279

ISCLAB at SemEval-2018 Task 1: UIR-Miner for Affect in Tweets
Meng Li, Zhenyuan Dong, Zhihao Fan, Kongming Meng, Jinghua Cao, Guanqi Ding, Yuhan Liu,

Jiawei Shan and Binyang Li . 286

TCS Research at SemEval-2018 Task 1: Learning Robust Representations using Multi-Attention Archi-
tecture

Hardik Meisheri and Lipika Dey . 291

DMCB at SemEval-2018 Task 1: Transfer Learning of Sentiment Classification Using Group LSTM for
Emotion Intensity prediction

Youngmin Kim and Hyunju Lee . 300

DeepMiner at SemEval-2018 Task 1: Emotion Intensity Recognition Using Deep Representation Learn-
ing

Habibeh Naderi, Behrouz Haji Soleimani, Saif Mohammad, Svetlana Kiritchenko and Stan Matwin
305

xi

Zewen at SemEval-2018 Task 1: An Ensemble Model for Affect Prediction in Tweets
Zewen Chi, Heyan Huang, Jiangui Chen, Hao Wu and Ran Wei . 313

Amrita_student at SemEval-2018 Task 1: Distributed Representation of Social Media Text for Affects in
Tweets

Nidhin A Unnithan, Shalini K, Barathi Ganesh H. B., Anand Kumar M and Soman K P 319

SSN MLRG1 at SemEval-2018 Task 1: Emotion and Sentiment Intensity Detection Using Rule Based
Feature Selection

Angel Deborah S, Rajalakshmi S, S Milton Rajendram and Mirnalinee T T 324

CENNLP at SemEval-2018 Task 1: Constrained Vector Space Model in Affects in Tweets
Naveen J R, Barathi Ganesh H. B., Anand Kumar M and Soman K P . 329

TeamCEN at SemEval-2018 Task 1: Global Vectors Representation in Emotion Detection
Anon George, Barathi Ganesh H. B., Anand Kumar M and Soman K P. .334

IIT Delhi at SemEval-2018 Task 1 : Emotion Intensity Prediction
Bhaskar Kotakonda, Prashanth Gowda and Brejesh Lall . 339

Mutux at SemEval-2018 Task 1: Exploring Impacts of Context Information On Emotion Detection
Pan Du and Jian-Yun Nie . 345

TeamUNCC at SemEval-2018 Task 1: Emotion Detection in English and Arabic Tweets using Deep
Learning

Malak Abdullah and Samira Shaikh . 350

RIDDL at SemEval-2018 Task 1: Rage Intensity Detection with Deep Learning
Venkatesh Elango and Karan Uppal . 358

ARB-SEN at SemEval-2018 Task1: A New Set of Features for Enhancing the Sentiment Intensity Predic-
tion in Arabic Tweets

El Moatez Billah Nagoudi . 364

psyML at SemEval-2018 Task 1: Transfer Learning for Sentiment and Emotion Analysis
Grace Gee and Eugene Wang . 369

UIUC at SemEval-2018 Task 1: Recognizing Affect with Ensemble Models
Abhishek Avinash Narwekar and Roxana Girju . 377

KU-MTL at SemEval-2018 Task 1: Multi-task Identification of Affect in Tweets
Thomas Nyegaard-Signori, Casper Veistrup Helms, Johannes Bjerva and Isabelle Augenstein . 385

EmoNLP at SemEval-2018 Task 2: English Emoji Prediction with Gradient Boosting Regression Tree
Method and Bidirectional LSTM

Man Liu . 390

UMDSub at SemEval-2018 Task 2: Multilingual Emoji Prediction Multi-channel Convolutional Neural
Network on Subword Embedding

Zhenduo Wang and Ted Pedersen . 395

UMDuluth-CS8761 at SemEval-2018 Task 2: Emojis: Too many Choices?
Jonathan Beaulieu and Dennis Asamoah Owusu . 400

The Dabblers at SemEval-2018 Task 2: Multilingual Emoji Prediction
Larisa Alexa, Alina Lorent, Daniela Gifu and Diana Trandabat . 405

xii

THU_NGN at SemEval-2018 Task 2: Residual CNN-LSTM Network with Attention for English Emoji
Prediction

Chuhan Wu, Fangzhao Wu, Sixing Wu, Zhigang Yuan, Junxin Liu and Yongfeng Huang 410

#TeamINF at SemEval-2018 Task 2: Emoji Prediction in Tweets
Alison Ribeiro and Nádia Silva . 415

EICA Team at SemEval-2018 Task 2: Semantic and Metadata-based Features for Multilingual Emoji
Prediction

Yufei Xie and Qingqing Song . 419

EmojiIt at SemEval-2018 Task 2: An Effective Attention-Based Recurrent Neural Network Model for
Emoji Prediction with Characters Gated Words

Chen Shiyun, Wang Maoquan and He Liang . 423

Peperomia at SemEval-2018 Task 2: Vector Similarity Based Approach for Emoji Prediction
Jing Chen, Dechuan Yang, Xilian Li, Wei Chen and Tengjiao Wang. 428

ECNU at SemEval-2018 Task 2: Leverage Traditional NLP Features and Neural Networks Methods to
Address Twitter Emoji Prediction Task

Xingwu Lu, Xin Mao, Man Lan and Yuanbin Wu . 433

NTUA-SLP at SemEval-2018 Task 2: Predicting Emojis using RNNs with Context-aware Attention
Christos Baziotis, Athanasiou Nikolaos, Athanasia Kolovou, Georgios Paraskevopoulos, Nikolaos

Ellinas and Alexandros Potamianos . 438

Hatching Chick at SemEval-2018 Task 2: Multilingual Emoji Prediction
Joël Coster, Reinder Gerard van Dalen and Nathalie Adriënne Jacqueline Stierman 445

EPUTION at SemEval-2018 Task 2: Emoji Prediction with User Adaption
Liyuan Zhou, Qiongkai Xu, Hanna Suominen and Tom Gedeon . 449

PickleTeam! at SemEval-2018 Task 2: English and Spanish Emoji Prediction from Tweets
Daphne Groot, Rémon Kruizinga, Hennie Veldthuis, Simon de Wit and Hessel Haagsma.454

YNU-HPCC at SemEval-2018 Task 2: Multi-ensemble Bi-GRU Model with Attention Mechanism for
Multilingual Emoji Prediction

Nan Wang, Jin Wang and Xuejie Zhang . 459

DUTH at SemEval-2018 Task 2: Emoji Prediction in Tweets
Dimitrios Effrosynidis, Georgios Peikos, Symeon Symeonidis and Avi Arampatzis 466

TAJJEB at SemEval-2018 Task 2: Traditional Approaches Just Do the Job with Emoji Prediction
Angelo Basile and Kenny W. Lino . 470

SyntNN at SemEval-2018 Task 2: is Syntax Useful for Emoji Prediction? Embedding Syntactic Trees in
Multi Layer Perceptrons

Fabio Massimo Zanzotto and Andrea Santilli . 477

Duluth UROP at SemEval-2018 Task 2: Multilingual Emoji Prediction with Ensemble Learning and
Oversampling

Shuning Jin and Ted Pedersen. .482

xiii

CENNLP at SemEval-2018 Task 2: Enhanced Distributed Representation of Text using Target Classes
for Emoji Prediction Representation

Naveen J R, Hariharan V, Barathi Ganesh H. B., Anand Kumar M and Soman K P 486

Manchester Metropolitan at SemEval-2018 Task 2: Random Forest with an Ensemble of Features for
Predicting Emoji in Tweets

Luciano Gerber and Matthew Shardlow . 491

Tweety at SemEval-2018 Task 2: Predicting Emojis using Hierarchical Attention Neural Networks and
Support Vector Machine

Daniel Kopev, Atanas Atanasov, Dimitrina Zlatkova, Momchil Hardalov, Ivan Koychev, Ivelina
Nikolova and Galia Angelova . 497

LIS at SemEval-2018 Task 2: Mixing Word Embeddings and Bag of Features for Multilingual Emoji
Prediction

Gaël Guibon, Magalie Ochs and Patrice Bellot .502

ALANIS at SemEval-2018 Task 3: A Feature Engineering Approach to Irony Detection in English Tweets
Kevin Swanberg, Madiha Mirza, Ted Pedersen and Zhenduo Wang . 507

NEUROSENT-PDI at SemEval-2018 Task 3: Understanding Irony in Social Networks Through a Multi-
Domain Sentiment Model

Mauro Dragoni . 512

UWB at SemEval-2018 Task 3: Irony detection in English tweets
Tomáš Hercig . 520

NIHRIO at SemEval-2018 Task 3: A Simple and Accurate Neural Network Model for Irony Detection in
Twitter

Thanh Vu, Dat Quoc Nguyen, Xuan-Son Vu, Dai Quoc Nguyen, Michael Catt and Michael Trenell
525

LDR at SemEval-2018 Task 3: A Low Dimensional Text Representation for Irony Detection
Bilal Ghanem, Francisco Rangel and Paolo Rosso. .531

IIIDYT at SemEval-2018 Task 3: Irony detection in English tweets
Edison Marrese-Taylor, Suzana Ilic, Jorge Balazs, Helmut Prendinger and Yutaka Matsuo 537

PunFields at SemEval-2018 Task 3: Detecting Irony by Tools of Humor Analysis
Elena Mikhalkova, Yuri Karyakin, Alexander Voronov, Dmitry Grigoriev and Artem Leoznov . 541

HashCount at SemEval-2018 Task 3: Concatenative Featurization of Tweet and Hashtags for Irony
Detection

Won Ik Cho, Woo Hyun Kang and Nam Soo Kim . 546

WLV at SemEval-2018 Task 3: Dissecting Tweets in Search of Irony
Omid Rohanian, Shiva Taslimipoor, Richard Evans and Ruslan Mitkov . 553

Random Decision Syntax Trees at SemEval-2018 Task 3: LSTMs and Sentiment Scores for Irony Detec-
tion

Aidan San . 560

ELiRF-UPV at SemEval-2018 Tasks 1 and 3: Affect and Irony Detection in Tweets
José-Ángel González, Lluís-F. Hurtado and Ferran Pla . 565

xiv

IronyMagnet at SemEval-2018 Task 3: A Siamese network for Irony detection in Social media
Aniruddha Ghosh and Tony Veale . 570

CTSys at SemEval-2018 Task 3: Irony in Tweets
Myan Sherif, Sherine Mamdouh and Wegdan Ghazi . 576

Irony Detector at SemEval-2018 Task 3: Irony Detection in English Tweets using Word Graph
Usman Ahmed, Lubna Zafar, Faiza Qayyum and Muhammad Arshad Islam 581

Lancaster at SemEval-2018 Task 3: Investigating Ironic Features in English Tweets
Edward Dearden and Alistair Baron . 587

INAOE-UPV at SemEval-2018 Task 3: An Ensemble Approach for Irony Detection in Twitter
Delia Irazú Hernández Farías, Fernando Sánchez-Vega, Manuel Montes-y-Gómez and Paolo Rosso

594

ECNU at SemEval-2018 Task 3: Exploration on Irony Detection from Tweets via Machine Learning and
Deep Learning Methods

Zhenghang Yin, Feixiang Wang, Man Lan and Wenting Wang . 600

KLUEnicorn at SemEval-2018 Task 3: A Naive Approach to Irony Detection
Luise Dürlich . 607

NTUA-SLP at SemEval-2018 Task 3: Tracking Ironic Tweets using Ensembles of Word and Character
Level Attentive RNNs

Christos Baziotis, Athanasiou Nikolaos, Pinelopi Papalampidi, Athanasia Kolovou, Georgios Paraskevopou-
los, Nikolaos Ellinas and Alexandros Potamianos . 613

YNU-HPCC at SemEval-2018 Task 3: Ensemble Neural Network Models for Irony Detection on Twitter
Bo Peng, Jin Wang and Xuejie Zhang . 622

Binarizer at SemEval-2018 Task 3: Parsing dependency and deep learning for irony detection
Nishant Nikhil and Muktabh Mayank Srivastava . 628

SSN MLRG1 at SemEval-2018 Task 3: Irony Detection in English Tweets Using MultiLayer Perceptron
Rajalakshmi S, Angel Deborah S, S Milton Rajendram and Mirnalinee T T 633

NLPRL-IITBHU at SemEval-2018 Task 3: Combining Linguistic Features and Emoji pre-trained CNN
for Irony Detection in Tweets

Harsh Rangwani, Devang Kulshreshtha and Anil Kumar Singh . 638

ValenTO at SemEval-2018 Task 3: Exploring the Role of Affective Content for Detecting Irony in English
Tweets

Delia Irazú Hernández Farías, Viviana Patti and Paolo Rosso . 643

#NonDicevoSulSerio at SemEval-2018 Task 3: Exploiting Emojis and Affective Content for Irony Detec-
tion in English Tweets

Endang Wahyu Pamungkas and Viviana Patti . 649

KNU CI System at SemEval-2018 Task4: Character Identification by Solving Sequence-Labeling Prob-
lem

Cheoneum Park, Heejun Song and Changki Lee . 655

xv

NewsReader at SemEval-2018 Task 5: Counting events by reasoning over event-centric-knowledge-
graphs

Piek Vossen . 660

FEUP at SemEval-2018 Task 5: An Experimental Study of a Question Answering System
Carla Abreu and Eugénio Oliveira . 667

NAI-SEA at SemEval-2018 Task 5: An Event Search System
Yingchi Liu, Quanzhi Li and Luo Si . 674

SemEval-2018 Task 7: Semantic Relation Extraction and Classification in Scientific Papers
Kata Gábor, Davide Buscaldi, Anne-Kathrin Schumann, Behrang QasemiZadeh, Haifa Zargayouna

and Thierry Charnois . 679

ETH-DS3Lab at SemEval-2018 Task 7: Effectively Combining Recurrent and Convolutional Neural Net-
works for Relation Classification and Extraction

Jonathan Rotsztejn, Nora Hollenstein and Ce Zhang . 689

SemEval-2018 Task 8: Semantic Extraction from CybersecUrity REports using Natural Language Pro-
cessing (SecureNLP)

Peter Phandi, Amila Silva and Wei Lu . 697

DM_NLP at SemEval-2018 Task 8: neural sequence labeling with linguistic features
Chunping Ma, Huafei Zheng, Pengjun Xie, Chen Li, Linlin Li and Luo Si 707

SemEval-2018 Task 9: Hypernym Discovery
Jose Camacho-Collados, Claudio Delli Bovi, Luis Espinosa Anke, Sergio Oramas, Tommaso Pasini,

Enrico Santus, Vered Shwartz, Roberto Navigli and Horacio Saggion . 712

CRIM at SemEval-2018 Task 9: A Hybrid Approach to Hypernym Discovery
Gabriel Bernier-Colborne and Caroline Barriere . 725

SemEval-2018 Task 10: Capturing Discriminative Attributes
Alicia Krebs, Alessandro Lenci and Denis Paperno. .732

SUNNYNLP at SemEval-2018 Task 10: A Support-Vector-Machine-Based Method for Detecting Seman-
tic Difference using Taxonomy and Word Embedding Features

Sunny Lai, Kwong Sak Leung and Yee Leung . 741

SemEval-2018 Task 11: Machine Comprehension Using Commonsense Knowledge
Simon Ostermann, Michael Roth, Ashutosh Modi, Stefan Thater and Manfred Pinkal747

Yuanfudao at SemEval-2018 Task 11: Three-way Attention and Relational Knowledge for Commonsense
Machine Comprehension

Liang Wang, Meng Sun, Wei Zhao, Kewei Shen and Jingming Liu .758

SemEval-2018 Task 12: The Argument Reasoning Comprehension Task
Ivan Habernal, Henning Wachsmuth, Iryna Gurevych and Benno Stein . 763

GIST at SemEval-2018 Task 12: A network transferring inference knowledge to Argument Reasoning
Comprehension task

HongSeok Choi and Hyunju Lee . 773

LightRel at SemEval-2018 Task 7: Lightweight and Fast Relation Classification
Tyler Renslow and Günter Neumann. .778

xvi

OhioState at SemEval-2018 Task 7: Exploiting Data Augmentation for Relation Classification in Scien-
tific Papers Using Piecewise Convolutional Neural Networks

Dushyanta Dhyani . 783

The UWNLP system at SemEval-2018 Task 7: Neural Relation Extraction Model with Selectively Incor-
porated Concept Embeddings

Yi Luan, Mari Ostendorf and Hannaneh Hajishirzi . 788

UC3M-NII Team at SemEval-2018 Task 7: Semantic Relation Classification in Scientific Papers via
Convolutional Neural Network

Víctor Suárez-Paniagua, Isabel Segura-Bedmar and Akiko Aizawa . 793

MIT-MEDG at SemEval-2018 Task 7: Semantic Relation Classification via Convolution Neural Network
Di Jin, Franck Dernoncourt, Elena Sergeeva, Matthew McDermott and Geeticka Chauhan 798

SIRIUS-LTG-UiO at SemEval-2018 Task 7: Convolutional Neural Networks with Shortest Dependency
Paths for Semantic Relation Extraction and Classification in Scientific Papers

Farhad Nooralahzadeh, Lilja Øvrelid and Jan Tore Lønning . 805

IRCMS at SemEval-2018 Task 7 : Evaluating a basic CNN Method and Traditional Pipeline Method for
Relation Classification

Zhongbo Yin, Zhunchen Luo, Luo Wei, Mao Bin, Tian Changhai, Ye Yuming and Wu Shuai . . 811

Bf3R at SemEval-2018 Task 7: Evaluating Two Relation Extraction Tools for Finding Semantic Relations
in Biomedical Abstracts

Mariana Neves, Daniel Butzke, Gilbert Schönfelder and Barbara Grune . 816

Texterra at SemEval-2018 Task 7: Exploiting Syntactic Information for Relation Extraction and Classi-
fication in Scientific Papers

Andrey Sysoev and Vladimir Mayorov. .821

UniMa at SemEval-2018 Task 7: Semantic Relation Extraction and Classification from Scientific Publi-
cations

Thorsten Keiper, Zhonghao Lyu, Sara Pooladzadeh, Yuan Xu, Jingyi Zhang, Anne Lauscher and
Simone Paolo Ponzetto . 826

GU IRLAB at SemEval-2018 Task 7: Tree-LSTMs for Scientific Relation Classification
Sean MacAvaney, Luca Soldaini, Arman Cohan and Nazli Goharian . 831

ClaiRE at SemEval-2018 Task 7: Classification of Relations using Embeddings
Lena Hettinger, Alexander Dallmann, Albin Zehe, Thomas Niebler and Andreas Hotho 836

TakeLab at SemEval-2018 Task 7: Combining Sparse and Dense Features for Relation Classification in
Scientific Texts

Martin Gluhak, Maria Pia di Buono, Abbas Akkasi and Jan Šnajder .842

NEUROSENT-PDI at SemEval-2018 Task 7: Discovering Textual Relations With a Neural Network
Model

Mauro Dragoni . 848

SciREL at SemEval-2018 Task 7: A System for Semantic Relation Extraction and Classification
Darshini Mahendran, Chathurika Brahmana and Bridget McInnes . 853

xvii

NTNU at SemEval-2018 Task 7: Classifier Ensembling for Semantic Relation Identification and Classi-
fication in Scientific Papers

Biswanath Barik, Utpal Kumar Sikdar and Björn Gambäck . 858

Talla at SemEval-2018 Task 7: Hybrid Loss Optimization for Relation Classification using Convolutional
Neural Networks

Bhanu Pratap, Daniel Shank, Oladipo Ositelu and Byron Galbraith . 863

TeamDL at SemEval-2018 Task 8: Cybersecurity Text Analysis using Convolutional Neural Network and
Conditional Random Fields

Manikandan R, Krishna Madgula and Snehanshu Saha . 868

HCCL at SemEval-2018 Task 8: An End-to-End System for Sequence Labeling from Cybersecurity Re-
ports

Mingming Fu, Xuemin Zhao and Yonghong Yan . 874

UMBC at SemEval-2018 Task 8: Understanding Text about Malware
Ankur Padia, Arpita Roy, Taneeya Satyapanich, Francis Ferraro, Shimei Pan, Youngja Park, Anu-

pam Joshi and Tim Finin . 878

Villani at SemEval-2018 Task 8: Semantic Extraction from Cybersecurity Reports using Representation
Learning

Pablo Loyola, Kugamoorthy Gajananan, Yuji Watanabe and Fumiko Satoh 885

Flytxt_NTNU at SemEval-2018 Task 8: Identifying and Classifying Malware Text Using Conditional
Random Fields and Naïve Bayes Classifiers

Utpal Kumar Sikdar, Biswanath Barik and Björn Gambäck . 890

Digital Operatives at SemEval-2018 Task 8: Using dependency features for malware NLP
Chris Brew. .894

Apollo at SemEval-2018 Task 9: Detecting Hypernymy Relations Using Syntactic Dependencies
Mihaela Onofrei, Ionut Hulub, Diana Trandabat and Daniela Gifu . 898

SJTU-NLP at SemEval-2018 Task 9: Neural Hypernym Discovery with Term Embeddings
Zhuosheng Zhang, Jiangtong Li, Hai Zhao and Bingjie Tang . 903

NLP_HZ at SemEval-2018 Task 9: a Nearest Neighbor Approach
Wei Qiu, Mosha Chen, Linlin Li and Luo Si . 909

UMDuluth-CS8761 at SemEval-2018 Task9: Hypernym Discovery using Hearst Patterns, Co-occurrence
frequencies and Word Embeddings

Arshia Zernab Hassan, Manikya Swathi Vallabhajosyula and Ted Pedersen 914

EXPR at SemEval-2018 Task 9: A Combined Approach for Hypernym Discovery
Ahmad Issa Alaa Aldine, Mounira Harzallah, Giuseppe Berio, Nicolas Béchet and Ahmad Faour

919

ADAPT at SemEval-2018 Task 9: Skip-Gram Word Embeddings for Unsupervised Hypernym Discovery
in Specialised Corpora

Alfredo Maldonado and Filip Klubička . 924

300-sparsans at SemEval-2018 Task 9: Hypernymy as interaction of sparse attributes
Gábor Berend, Márton Makrai and Péter Földiák. .928

xviii

UWB at SemEval-2018 Task 10: Capturing Discriminative Attributes from Word Distributions
Tomáš Brychcín, Tomáš Hercig, Josef Steinberger and Michal Konkol . 935

Meaning_space at SemEval-2018 Task 10: Combining explicitly encoded knowledge with information
extracted from word embeddings

Pia Sommerauer, Antske Fokkens and Piek Vossen . 940

GHH at SemEval-2018 Task 10: Discovering Discriminative Attributes in Distributional Semantics
Mohammed Attia, Younes Samih, Manaal Faruqui and Wolfgang Maier . 947

CitiusNLP at SemEval-2018 Task 10: The Use of Transparent Distributional Models and Salient Contexts
to Discriminate Word Attributes

Pablo Gamallo . 953

THU_NGN at SemEval-2018 Task 10: Capturing Discriminative Attributes with MLP-CNN model
Chuhan Wu, Fangzhao Wu, Sixing Wu, Zhigang Yuan and Yongfeng Huang 958

ALB at SemEval-2018 Task 10: A System for Capturing Discriminative Attributes
Bogdan Dumitru, Alina Maria Ciobanu and Liviu P. Dinu. .963

ELiRF-UPV at SemEval-2018 Task 10: Capturing Discriminative Attributes with Knowledge Graphs
and Wikipedia

José-Ángel González, Lluís-F. Hurtado, Encarna Segarra and Ferran Pla . 968

Wolves at SemEval-2018 Task 10: Semantic Discrimination based on Knowledge and Association
Shiva Taslimipoor, Omid Rohanian, Le An Ha, Gloria Corpas Pastor and Ruslan Mitkov 972

UNAM at SemEval-2018 Task 10: Unsupervised Semantic Discriminative Attribute Identification in Neu-
ral Word Embedding Cones

Ignacio Arroyo-Fernández, Ivan Meza and Carlos-Francisco Meéndez-Cruz 977

Luminoso at SemEval-2018 Task 10: Distinguishing Attributes Using Text Corpora and Relational
Knowledge

Robert Speer and Joanna Lowry-Duda . 985

BomJi at SemEval-2018 Task 10: Combining Vector-, Pattern- and Graph-based Information to Identify
Discriminative Attributes

Enrico Santus, Chris Biemann and Emmanuele Chersoni . 990

Igevorse at SemEval-2018 Task 10: Exploring an Impact of Word Embeddings Concatenation for Cap-
turing Discriminative Attributes

Maxim Grishin . 995

ECNU at SemEval-2018 Task 10: Evaluating Simple but Effective Features on Machine Learning Meth-
ods for Semantic Difference Detection

Yunxiao Zhou, Man Lan and Yuanbin Wu . 999

AmritaNLP at SemEval-2018 Task 10: Capturing discriminative attributes using convolution neural
network over global vector representation.

Vivek Vinayan, Anand Kumar M and Soman K P . 1003

Discriminator at SemEval-2018 Task 10: Minimally Supervised Discrimination
Artur Kulmizev, Mostafa Abdou, Vinit Ravishankar and Malvina Nissim 1008

xix

UNBNLP at SemEval-2018 Task 10: Evaluating unsupervised approaches to capturing discriminative
attributes

Milton King, Ali Hakimi Parizi and Paul Cook . 1013

ABDN at SemEval-2018 Task 10: Recognising Discriminative Attributes using Context Embeddings and
WordNet

Rui Mao, Guanyi Chen, Ruizhe Li and Chenghua Lin . 1017

UMD at SemEval-2018 Task 10: Can Word Embeddings Capture Discriminative Attributes?
Alexander Zhang and Marine Carpuat . 1022

NTU NLP Lab System at SemEval-2018 Task 10: Verifying Semantic Differences by Integrating Distri-
butional Information and Expert Knowledge

Yow-Ting Shiue, Hen-Hsen Huang and Hsin-Hsi Chen . 1027

ELiRF-UPV at SemEval-2018 Task 11: Machine Comprehension using Commonsense Knowledge
José-Ángel González, Lluís-F. Hurtado, Encarna Segarra and Ferran Pla 1034

YNU_AI1799 at SemEval-2018 Task 11: Machine Comprehension using Commonsense Knowledge of
Different model ensemble

Liu Qingxun, Yao Hongdou, Zhou Xaobing and Xie Ge . 1038

YNU_Deep at SemEval-2018 Task 11: An Ensemble of Attention-based BiLSTM Models for Machine
Comprehension

Peng Ding and Xiaobing Zhou . 1043

ECNU at SemEval-2018 Task 11: Using Deep Learning Method to Address Machine Comprehension
Task

Yixuan Sheng, Man Lan and Yuanbin Wu . 1048

CSReader at SemEval-2018 Task 11: Multiple Choice Question Answering as Textual Entailment
Zhengping Jiang and Qi Sun . 1053

YNU-HPCC at Semeval-2018 Task 11: Using an Attention-based CNN-LSTM for Machine Comprehen-
sion using Commonsense Knowledge

Hang Yuan, Jin Wang and Xuejie Zhang . 1058

Jiangnan at SemEval-2018 Task 11: Deep Neural Network with Attention Method for Machine Compre-
hension Task

Jiangnan Xia . 1063

IUCM at SemEval-2018 Task 11: Similar-Topic Texts as a Comprehension Knowledge Source
Sofia Reznikova and Leon Derczynski . 1068

Lyb3b at SemEval-2018 Task 11: Machine Comprehension Task using Deep Learning Models
Yongbin Li and Xiaobing Zhou . 1073

MITRE at SemEval-2018 Task 11: Commonsense Reasoning without Commonsense Knowledge
Elizabeth Merkhofer, John Henderson, David Bloom, Laura Strickhart and Guido Zarrella . . . 1078

SNU_IDS at SemEval-2018 Task 12: Sentence Encoder with Contextualized Vectors for Argument Rea-
soning Comprehension

Taeuk Kim, Jihun Choi and Sang-goo Lee . 1083

xx

ITNLP-ARC at SemEval-2018 Task 12: Argument Reasoning Comprehension with Attention
Wenjie Liu, Chengjie Sun, Lei Lin and Bingquan Liu . 1089

ECNU at SemEval-2018 Task 12: An End-to-End Attention-based Neural Network for the Argument
Reasoning Comprehension Task

Junfeng Tian, Man Lan and Yuanbin Wu . 1094

NLITrans at SemEval-2018 Task 12: Transfer of Semantic Knowledge for Argument Comprehension
Timothy Niven and Hung-Yu Kao . 1099

BLCU_NLP at SemEval-2018 Task 12: An Ensemble Model for Argument Reasoning Based on Hierar-
chical Attention

Meiqian Zhao, Chunhua Liu, Lu Liu, Yan Zhao and Dong Yu . 1104

YNU-HPCC at SemEval-2018 Task 12: The Argument Reasoning Comprehension Task Using a Bi-
directional LSTM with Attention Model

Quanlei Liao, Xutao Yang, Jin Wang and Xuejie Zhang . 1109

HHU at SemEval-2018 Task 12: Analyzing an Ensemble-based Deep Learning Approach for the Argu-
ment Mining Task of Choosing the Correct Warrant

Matthias Liebeck, Andreas Funke and Stefan Conrad. .1114

YNU Deep at SemEval-2018 Task 12: A BiLSTM Model with Neural Attention for Argument Reasoning
Comprehension

Peng Ding and Xiaobing Zhou . 1120

UniMelb at SemEval-2018 Task 12: Generative Implication using LSTMs, Siamese Networks and Se-
mantic Representations with Synonym Fuzzing

Anirudh Joshi, Tim Baldwin, Richard O. Sinnott and Cecile Paris . 1124

Joker at SemEval-2018 Task 12: The Argument Reasoning Comprehension with Neural Attention
Sui Guobin, Chao Wenhan and Luo Zhunchen . 1129

TakeLab at SemEval-2018 Task12: Argument Reasoning Comprehension with Skip-Thought Vectors
Ana Brassard, Tin Kuculo, Filip Boltuzic and Jan Šnajder . 1133

Lyb3b at SemEval-2018 Task 12: Ensemble-based Deep Learning Models for Argument Reasoning Com-
prehension Task

Yongbin Li and Xiaobing Zhou . 1137

TRANSRW at SemEval-2018 Task 12: Transforming Semantic Representations for Argument Reasoning
Comprehension

Zhimin Chen, Wei Song and Lizhen Liu . 1142

xxi

Workshop Program

5 June 2018

09:00–09:15 Welcome / Opening Remarks

09:15–10:30 Invited Talk: Why should we care about linguistics?
Ellie Pavlick

10:30–11:00 Coffee

11:00–12:30 Tasks 1, 2 and 3

11:00–11:15 SemEval-2018 Task 1: Affect in Tweets
Saif Mohammad, Felipe Bravo-Marquez, Mohammad Salameh and Svetlana Kir-
itchenko

11:15–11:30 SeerNet at SemEval-2018 Task 1: Domain Adaptation for Affect in Tweets
Venkatesh Duppada, Royal Jain and Sushant Hiray

11:30–11:45 SemEval 2018 Task 2: Multilingual Emoji Prediction
Francesco Barbieri, Jose Camacho-Collados, Francesco Ronzano, Luis Espinosa
Anke, Miguel Ballesteros, Valerio Basile, Viviana Patti and Horacio Saggion

11:45–12:00 Tübingen-Oslo at SemEval-2018 Task 2: SVMs perform better than RNNs in Emoji
Prediction
Çağrı Çöltekin and Taraka Rama

12:00–12:15 SemEval-2018 Task 3: Irony Detection in English Tweets
Cynthia Van Hee, Els Lefever and Veronique Hoste

12:15–12:30 THU_NGN at SemEval-2018 Task 3: Tweet Irony Detection with Densely connected
LSTM and Multi-task Learning
Chuhan Wu, Fangzhao Wu, Sixing Wu, Junxin Liu, Zhigang Yuan and Yongfeng
Huang

12:30–14:00 Lunch

xxiii

5 June 2018 (continued)

14:00–15:30 Tasks 4, 5 and 6

14:00–14:15 SemEval 2018 Task 4: Character Identification on Multiparty Dialogues
Jinho D. Choi and Henry Y. Chen

14:15–14:30 AMORE-UPF at SemEval-2018 Task 4: BiLSTM with Entity Library
Laura Aina, Carina Silberer, Ionut-Teodor Sorodoc, Matthijs Westera and Gemma
Boleda

14:30–14:45 SemEval-2018 Task 5: Counting Events and Participants in the Long Tail
Marten Postma, Filip Ilievski and Piek Vossen

14:45–15:00 KOI at SemEval-2018 Task 5: Building Knowledge Graph of Incidents
Paramita Mirza, Fariz Darari and Rahmad Mahendra

15:00–15:15 SemEval 2018 Task 6: Parsing Time Normalizations
Egoitz Laparra, Dongfang Xu, Ahmed Elsayed, Steven Bethard and Martha Palmer

15:15–15:30 Chrono at SemEval-2018 Task 6: A System for Normalizing Temporal Expressions
Amy Olex, Luke Maffey, Nicholas Morgan and Bridget McInnes

15:30–16:00 Coffee

16:00–16:30 Discussion

xxiv

5 June 2018 (continued)

16:30–17:30 Poster Session

16:30–17:30 NEUROSENT-PDI at SemEval-2018 Task 1: Leveraging a Multi-Domain Sentiment
Model for Inferring Polarity in Micro-blog Text
Mauro Dragoni

16:30–17:30 FOI DSS at SemEval-2018 Task 1: Combining LSTM States, Embeddings, and Lex-
ical Features for Affect Analysis
Maja Karasalo, Mattias Nilsson, Magnus Rosell and Ulrika Wickenberg Bolin

16:30–17:30 NLPZZX at SemEval-2018 Task 1: Using Ensemble Method for Emotion and Senti-
ment Intensity Determination
Zhengxin Zhang, Qimin Zhou and Hao Wu

16:30–17:30 LT3 at SemEval-2018 Task 1: A classifier chain to detect emotions in tweets
Luna De Bruyne, Orphee De Clercq and Veronique Hoste

16:30–17:30 SINAI at SemEval-2018 Task 1: Emotion Recognition in Tweets
Flor Miriam Plaza del Arco, Salud María Jiménez-Zafra, Maite Martin and L. Al-
fonso Urena Lopez

16:30–17:30 UWB at SemEval-2018 Task 1: Emotion Intensity Detection in Tweets
Pavel Přibáň, Tomáš Hercig and Ladislav Lenc

16:30–17:30 AttnConvnet at SemEval-2018 Task 1: Attention-based Convolutional Neural Net-
works for Multi-label Emotion Classification
Yanghoon Kim, Hwanhee Lee and Kyomin Jung

16:30–17:30 INGEOTEC at SemEval-2018 Task 1: EvoMSA and µTC for Sentiment Analysis
Mario Graff, Sabino Miranda-Jiménez, Eric S. Tellez and Daniela Moctezuma

16:30–17:30 Epita at SemEval-2018 Task 1: Sentiment Analysis Using Transfer Learning Ap-
proach
Guillaume Daval-Frerot, Abdesselam Bouchekif and Anatole Moreau

16:30–17:30 KDE-AFFECT at SemEval-2018 Task 1: Estimation of Affects in Tweet by Using
Convolutional Neural Network for n-gram
Masaki Aono and Shinnosuke Himeno

16:30–17:30 RNN for Affects at SemEval-2018 Task 1: Formulating Affect Identification as a
Binary Classification Problem
Aysu Ezen-Can and Ethem F. Can

xxv

5 June 2018 (continued)

16:30–17:30 Tw-StAR at SemEval-2018 Task 1: Preprocessing Impact on Multi-label Emotion
Classification
Hala Mulki, Chedi Bechikh Ali, Hatem Haddad and Ismail Babaoglu

16:30–17:30 DL Team at SemEval-2018 Task 1: Tweet Affect Detection using Sentiment Lexicons
and Embeddings
Dmitry Kravchenko and Lidia Pivovarova

16:30–17:30 EmoIntens Tracker at SemEval-2018 Task 1: Emotional Intensity Levels in #Tweets
Ramona-Andreea Turcu, Sandra Maria Amarandei, Iuliana-Alexandra Fles, can-
Lovin-Arseni, Daniela Gifu and Diana Trandabat

16:30–17:30 uOttawa at SemEval-2018 Task 1: Self-Attentive Hybrid GRU-Based Network
Ahmed Husseini Orabi, Mahmoud Husseini Orabi, Diana Inkpen and David Van
Bruwaene

16:30–17:30 THU_NGN at SemEval-2018 Task 1: Fine-grained Tweet Sentiment Intensity Anal-
ysis with Attention CNN-LSTM
Chuhan Wu, Fangzhao Wu, Junxin Liu, Zhigang Yuan, Sixing Wu and Yongfeng
Huang

16:30–17:30 EiTAKA at SemEval-2018 Task 1: An Ensemble of N-Channels ConvNet and XG-
boost Regressors for Emotion Analysis of Tweets
Mohammed Jabreel and Antonio Moreno

16:30–17:30 CENTEMENT at SemEval-2018 Task 1: Classification of Tweets using Multiple
Thresholds with Self-correction and Weighted Conditional Probabilities
Tariq Ahmad, Allan Ramsay and Hanady Ahmed

16:30–17:30 Yuan at SemEval-2018 Task 1: Tweets Emotion Intensity Prediction using Ensemble
Recurrent Neural Network
Min Wang and Xiaobing Zhou

16:30–17:30 AffecThor at SemEval-2018 Task 1: A cross-linguistic approach to sentiment inten-
sity quantification in tweets
Mostafa Abdou, Artur Kulmizev and Joan Ginés i Ametllé

16:30–17:30 Amobee at SemEval-2018 Task 1: GRU Neural Network with a CNN Attention
Mechanism for Sentiment Classification
Alon Rozental and Daniel Fleischer

16:30–17:30 deepSA2018 at SemEval-2018 Task 1: Multi-task Learning of Different Label for
Affect in Tweets
Zi Yuan Gao and Chia-Ping Chen

16:30–17:30 ECNU at SemEval-2018 Task 1: Emotion Intensity Prediction Using Effective Fea-
tures and Machine Learning Models
Huimin Xu, Man Lan and Yuanbin Wu

xxvi

5 June 2018 (continued)

16:30–17:30 EMA at SemEval-2018 Task 1: Emotion Mining for Arabic
Gilbert Badaro, Obeida El Jundi, Alaa Khaddaj, Alaa Maarouf, Raslan Kain, Hazem
Hajj and Wassim El-Hajj

16:30–17:30 NTUA-SLP at SemEval-2018 Task 1: Predicting Affective Content in Tweets with
Deep Attentive RNNs and Transfer Learning
Christos Baziotis, Athanasiou Nikolaos, Alexandra Chronopoulou, Athanasia
Kolovou, Georgios Paraskevopoulos, Nikolaos Ellinas, Shrikanth Narayanan and
Alexandros Potamianos

16:30–17:30 CrystalFeel at SemEval-2018 Task 1: Understanding and Detecting Emotion Inten-
sity using Affective Lexicons
Raj Kumar Gupta and Yinping Yang

16:30–17:30 PlusEmo2Vec at SemEval-2018 Task 1: Exploiting emotion knowledge from emoji
and #hashtags
Ji Ho Park, Peng Xu and Pascale Fung

16:30–17:30 YNU-HPCC at SemEval-2018 Task 1: BiLSTM with Attention based Sentiment
Analysis for Affect in Tweets
You Zhang, Jin Wang and Xuejie Zhang

16:30–17:30 UG18 at SemEval-2018 Task 1: Generating Additional Training Data for Predicting
Emotion Intensity in Spanish
Marloes Kuijper, Mike van Lenthe and Rik van Noord

16:30–17:30 ISCLAB at SemEval-2018 Task 1: UIR-Miner for Affect in Tweets
Meng Li, Zhenyuan Dong, Zhihao Fan, Kongming Meng, Jinghua Cao, Guanqi
Ding, Yuhan Liu, Jiawei Shan and Binyang Li

16:30–17:30 TCS Research at SemEval-2018 Task 1: Learning Robust Representations using
Multi-Attention Architecture
Hardik Meisheri and Lipika Dey

16:30–17:30 DMCB at SemEval-2018 Task 1: Transfer Learning of Sentiment Classification Us-
ing Group LSTM for Emotion Intensity prediction
Youngmin Kim and Hyunju Lee

16:30–17:30 DeepMiner at SemEval-2018 Task 1: Emotion Intensity Recognition Using Deep
Representation Learning
Habibeh Naderi, Behrouz Haji Soleimani, Saif Mohammad, Svetlana Kiritchenko
and Stan Matwin

16:30–17:30 Zewen at SemEval-2018 Task 1: An Ensemble Model for Affect Prediction in Tweets
Zewen Chi, Heyan Huang, Jiangui Chen, Hao Wu and Ran Wei

16:30–17:30 Amrita_student at SemEval-2018 Task 1: Distributed Representation of Social Me-
dia Text for Affects in Tweets
Nidhin A Unnithan, Shalini K, Barathi Ganesh H. B., Anand Kumar M and Soman
K P

xxvii

5 June 2018 (continued)

16:30–17:30 SSN MLRG1 at SemEval-2018 Task 1: Emotion and Sentiment Intensity Detection
Using Rule Based Feature Selection
Angel Deborah S, Rajalakshmi S, S Milton Rajendram and Mirnalinee T T

16:30–17:30 CENNLP at SemEval-2018 Task 1: Constrained Vector Space Model in Affects in
Tweets
Naveen J R, Barathi Ganesh H. B., Anand Kumar M and Soman K P

16:30–17:30 TeamCEN at SemEval-2018 Task 1: Global Vectors Representation in Emotion De-
tection
Anon George, Barathi Ganesh H. B., Anand Kumar M and Soman K P

16:30–17:30 IIT Delhi at SemEval-2018 Task 1 : Emotion Intensity Prediction
Bhaskar Kotakonda, Prashanth Gowda and Brejesh Lall

16:30–17:30 Mutux at SemEval-2018 Task 1: Exploring Impacts of Context Information On Emo-
tion Detection
Pan Du and Jian-Yun Nie

16:30–17:30 TeamUNCC at SemEval-2018 Task 1: Emotion Detection in English and Arabic
Tweets using Deep Learning
Malak Abdullah and Samira Shaikh

16:30–17:30 RIDDL at SemEval-2018 Task 1: Rage Intensity Detection with Deep Learning
Venkatesh Elango and Karan Uppal

16:30–17:30 ARB-SEN at SemEval-2018 Task1: A New Set of Features for Enhancing the Senti-
ment Intensity Prediction in Arabic Tweets
El Moatez Billah Nagoudi

16:30–17:30 psyML at SemEval-2018 Task 1: Transfer Learning for Sentiment and Emotion
Analysis
Grace Gee and Eugene Wang

16:30–17:30 UIUC at SemEval-2018 Task 1: Recognizing Affect with Ensemble Models
Abhishek Avinash Narwekar and Roxana Girju

16:30–17:30 KU-MTL at SemEval-2018 Task 1: Multi-task Identification of Affect in Tweets
Thomas Nyegaard-Signori, Casper Veistrup Helms, Johannes Bjerva and Isabelle
Augenstein

16:30–17:30 EmoNLP at SemEval-2018 Task 2: English Emoji Prediction with Gradient Boost-
ing Regression Tree Method and Bidirectional LSTM
Man Liu

xxviii

5 June 2018 (continued)

16:30–17:30 UMDSub at SemEval-2018 Task 2: Multilingual Emoji Prediction Multi-channel
Convolutional Neural Network on Subword Embedding
Zhenduo Wang and Ted Pedersen

16:30–17:30 UMDuluth-CS8761 at SemEval-2018 Task 2: Emojis: Too many Choices?
Jonathan Beaulieu and Dennis Asamoah Owusu

16:30–17:30 The Dabblers at SemEval-2018 Task 2: Multilingual Emoji Prediction
Larisa Alexa, Alina Lorent, Daniela Gifu and Diana Trandabat

16:30–17:30 THU_NGN at SemEval-2018 Task 2: Residual CNN-LSTM Network with Attention
for English Emoji Prediction
Chuhan Wu, Fangzhao Wu, Sixing Wu, Zhigang Yuan, Junxin Liu and Yongfeng
Huang

16:30–17:30 #TeamINF at SemEval-2018 Task 2: Emoji Prediction in Tweets
Alison Ribeiro and Nádia Silva

16:30–17:30 EICA Team at SemEval-2018 Task 2: Semantic and Metadata-based Features for
Multilingual Emoji Prediction
Yufei Xie and Qingqing Song

16:30–17:30 EmojiIt at SemEval-2018 Task 2: An Effective Attention-Based Recurrent Neural
Network Model for Emoji Prediction with Characters Gated Words
Chen Shiyun, Wang Maoquan and He Liang

16:30–17:30 Peperomia at SemEval-2018 Task 2: Vector Similarity Based Approach for Emoji
Prediction
Jing Chen, Dechuan Yang, Xilian Li, Wei Chen and Tengjiao Wang

16:30–17:30 ECNU at SemEval-2018 Task 2: Leverage Traditional NLP Features and Neural
Networks Methods to Address Twitter Emoji Prediction Task
Xingwu Lu, Xin Mao, Man Lan and Yuanbin Wu

16:30–17:30 NTUA-SLP at SemEval-2018 Task 2: Predicting Emojis using RNNs with Context-
aware Attention
Christos Baziotis, Athanasiou Nikolaos, Athanasia Kolovou, Georgios
Paraskevopoulos, Nikolaos Ellinas and Alexandros Potamianos

16:30–17:30 Hatching Chick at SemEval-2018 Task 2: Multilingual Emoji Prediction
Joël Coster, Reinder Gerard van Dalen and Nathalie Adriënne Jacqueline Stierman

16:30–17:30 EPUTION at SemEval-2018 Task 2: Emoji Prediction with User Adaption
Liyuan Zhou, Qiongkai Xu, Hanna Suominen and Tom Gedeon

xxix

5 June 2018 (continued)

16:30–17:30 PickleTeam! at SemEval-2018 Task 2: English and Spanish Emoji Prediction from
Tweets
Daphne Groot, Rémon Kruizinga, Hennie Veldthuis, Simon de Wit and Hessel
Haagsma

16:30–17:30 YNU-HPCC at SemEval-2018 Task 2: Multi-ensemble Bi-GRU Model with Atten-
tion Mechanism for Multilingual Emoji Prediction
Nan Wang, Jin Wang and Xuejie Zhang

16:30–17:30 DUTH at SemEval-2018 Task 2: Emoji Prediction in Tweets
Dimitrios Effrosynidis, Georgios Peikos, Symeon Symeonidis and Avi Arampatzis

16:30–17:30 TAJJEB at SemEval-2018 Task 2: Traditional Approaches Just Do the Job with
Emoji Prediction
Angelo Basile and Kenny W. Lino

16:30–17:30 SyntNN at SemEval-2018 Task 2: is Syntax Useful for Emoji Prediction? Embed-
ding Syntactic Trees in Multi Layer Perceptrons
Fabio Massimo Zanzotto and Andrea Santilli

16:30–17:30 Duluth UROP at SemEval-2018 Task 2: Multilingual Emoji Prediction with Ensem-
ble Learning and Oversampling
Shuning Jin and Ted Pedersen

16:30–17:30 CENNLP at SemEval-2018 Task 2: Enhanced Distributed Representation of Text
using Target Classes for Emoji Prediction Representation
Naveen J R, Hariharan V, Barathi Ganesh H. B., Anand Kumar M and Soman K P

16:30–17:30 Manchester Metropolitan at SemEval-2018 Task 2: Random Forest with an Ensem-
ble of Features for Predicting Emoji in Tweets
Luciano Gerber and Matthew Shardlow

16:30–17:30 Tweety at SemEval-2018 Task 2: Predicting Emojis using Hierarchical Attention
Neural Networks and Support Vector Machine
Daniel Kopev, Atanas Atanasov, Dimitrina Zlatkova, Momchil Hardalov, Ivan Koy-
chev, Ivelina Nikolova and Galia Angelova

16:30–17:30 LIS at SemEval-2018 Task 2: Mixing Word Embeddings and Bag of Features for
Multilingual Emoji Prediction
Gaël Guibon, Magalie Ochs and Patrice Bellot

16:30–17:30 ALANIS at SemEval-2018 Task 3: A Feature Engineering Approach to Irony Detec-
tion in English Tweets
Kevin Swanberg, Madiha Mirza, Ted Pedersen and Zhenduo Wang

16:30–17:30 NEUROSENT-PDI at SemEval-2018 Task 3: Understanding Irony in Social Net-
works Through a Multi-Domain Sentiment Model
Mauro Dragoni

xxx

5 June 2018 (continued)

16:30–17:30 UWB at SemEval-2018 Task 3: Irony detection in English tweets
Tomáš Hercig

16:30–17:30 NIHRIO at SemEval-2018 Task 3: A Simple and Accurate Neural Network Model
for Irony Detection in Twitter
Thanh Vu, Dat Quoc Nguyen, Xuan-Son Vu, Dai Quoc Nguyen, Michael Catt and
Michael Trenell

16:30–17:30 LDR at SemEval-2018 Task 3: A Low Dimensional Text Representation for Irony
Detection
Bilal Ghanem, Francisco Rangel and Paolo Rosso

16:30–17:30 IIIDYT at SemEval-2018 Task 3: Irony detection in English tweets
Edison Marrese-Taylor, Suzana Ilic, Jorge Balazs, Helmut Prendinger and Yutaka
Matsuo

16:30–17:30 PunFields at SemEval-2018 Task 3: Detecting Irony by Tools of Humor Analysis
Elena Mikhalkova, Yuri Karyakin, Alexander Voronov, Dmitry Grigoriev and Artem
Leoznov

16:30–17:30 HashCount at SemEval-2018 Task 3: Concatenative Featurization of Tweet and
Hashtags for Irony Detection
Won Ik Cho, Woo Hyun Kang and Nam Soo Kim

16:30–17:30 WLV at SemEval-2018 Task 3: Dissecting Tweets in Search of Irony
Omid Rohanian, Shiva Taslimipoor, Richard Evans and Ruslan Mitkov

16:30–17:30 Random Decision Syntax Trees at SemEval-2018 Task 3: LSTMs and Sentiment
Scores for Irony Detection
Aidan San

16:30–17:30 ELiRF-UPV at SemEval-2018 Tasks 1 and 3: Affect and Irony Detection in Tweets
José-Ángel González, Lluís-F. Hurtado and Ferran Pla

16:30–17:30 IronyMagnet at SemEval-2018 Task 3: A Siamese network for Irony detection in
Social media
Aniruddha Ghosh and Tony Veale

16:30–17:30 CTSys at SemEval-2018 Task 3: Irony in Tweets
Myan Sherif, Sherine Mamdouh and Wegdan Ghazi

16:30–17:30 Irony Detector at SemEval-2018 Task 3: Irony Detection in English Tweets using
Word Graph
Usman Ahmed, Lubna Zafar, Faiza Qayyum and Muhammad Arshad Islam

xxxi

5 June 2018 (continued)

16:30–17:30 Lancaster at SemEval-2018 Task 3: Investigating Ironic Features in English Tweets
Edward Dearden and Alistair Baron

16:30–17:30 INAOE-UPV at SemEval-2018 Task 3: An Ensemble Approach for Irony Detection
in Twitter
Delia Irazú Hernández Farías, Fernando Sánchez-Vega, Manuel Montes-y-Gómez
and Paolo Rosso

16:30–17:30 ECNU at SemEval-2018 Task 3: Exploration on Irony Detection from Tweets via
Machine Learning and Deep Learning Methods
Zhenghang Yin, Feixiang Wang, Man Lan and Wenting Wang

16:30–17:30 KLUEnicorn at SemEval-2018 Task 3: A Naive Approach to Irony Detection
Luise Dürlich

16:30–17:30 NTUA-SLP at SemEval-2018 Task 3: Tracking Ironic Tweets using Ensembles of
Word and Character Level Attentive RNNs
Christos Baziotis, Athanasiou Nikolaos, Pinelopi Papalampidi, Athanasia Kolovou,
Georgios Paraskevopoulos, Nikolaos Ellinas and Alexandros Potamianos

16:30–17:30 YNU-HPCC at SemEval-2018 Task 3: Ensemble Neural Network Models for Irony
Detection on Twitter
Bo Peng, Jin Wang and Xuejie Zhang

16:30–17:30 Binarizer at SemEval-2018 Task 3: Parsing dependency and deep learning for irony
detection
Nishant Nikhil and Muktabh Mayank Srivastava

16:30–17:30 SSN MLRG1 at SemEval-2018 Task 3: Irony Detection in English Tweets Using
MultiLayer Perceptron
Rajalakshmi S, Angel Deborah S, S Milton Rajendram and Mirnalinee T T

16:30–17:30 NLPRL-IITBHU at SemEval-2018 Task 3: Combining Linguistic Features and
Emoji pre-trained CNN for Irony Detection in Tweets
Harsh Rangwani, Devang Kulshreshtha and Anil Kumar Singh

16:30–17:30 ValenTO at SemEval-2018 Task 3: Exploring the Role of Affective Content for De-
tecting Irony in English Tweets
Delia Irazú Hernández Farías, Viviana Patti and Paolo Rosso

16:30–17:30 #NonDicevoSulSerio at SemEval-2018 Task 3: Exploiting Emojis and Affective
Content for Irony Detection in English Tweets
Endang Wahyu Pamungkas and Viviana Patti

16:30–17:30 KNU CI System at SemEval-2018 Task4: Character Identification by Solving
Sequence-Labeling Problem
Cheoneum Park, Heejun Song and Changki Lee

xxxii

5 June 2018 (continued)

16:30–17:30 NewsReader at SemEval-2018 Task 5: Counting events by reasoning over event-
centric-knowledge-graphs
Piek Vossen

16:30–17:30 FEUP at SemEval-2018 Task 5: An Experimental Study of a Question Answering
System
Carla Abreu and Eugénio Oliveira

16:30–17:30 NAI-SEA at SemEval-2018 Task 5: An Event Search System
Yingchi Liu, Quanzhi Li and Luo Si

6 June 2018

09:00–09:30 SemEval 2019 Tasks

09:30–10:30 State of SemEval Discussion

10:30–11:00 Coffee

11:00–12:30 Tasks 7, 8 and 9

11:00–11:15 SemEval-2018 Task 7: Semantic Relation Extraction and Classification in Scientific
Papers
Kata Gábor, Davide Buscaldi, Anne-Kathrin Schumann, Behrang QasemiZadeh,
Haifa Zargayouna and Thierry Charnois

11:15–11:30 ETH-DS3Lab at SemEval-2018 Task 7: Effectively Combining Recurrent and Con-
volutional Neural Networks for Relation Classification and Extraction
Jonathan Rotsztejn, Nora Hollenstein and Ce Zhang

11:30–11:45 SemEval-2018 Task 8: Semantic Extraction from CybersecUrity REports using Nat-
ural Language Processing (SecureNLP)
Peter Phandi, Amila Silva and Wei Lu

11:45–12:00 DM_NLP at SemEval-2018 Task 8: neural sequence labeling with linguistic fea-
tures
Chunping Ma, Huafei Zheng, Pengjun Xie, Chen Li, Linlin Li and Luo Si

12:00–12:15 SemEval-2018 Task 9: Hypernym Discovery
Jose Camacho-Collados, Claudio Delli Bovi, Luis Espinosa Anke, Sergio Oramas,
Tommaso Pasini, Enrico Santus, Vered Shwartz, Roberto Navigli and Horacio Sag-
gion

xxxiii

6 June 2018 (continued)

12:15–12:30 CRIM at SemEval-2018 Task 9: A Hybrid Approach to Hypernym Discovery
Gabriel Bernier-Colborne and Caroline Barriere

12:30–14:00 Lunch

14:00–15:30 Tasks 10, 11 and 12

14:00–14:15 SemEval-2018 Task 10: Capturing Discriminative Attributes
Alicia Krebs, Alessandro Lenci and Denis Paperno

14:15–14:30 SUNNYNLP at SemEval-2018 Task 10: A Support-Vector-Machine-Based Method
for Detecting Semantic Difference using Taxonomy and Word Embedding Features
Sunny Lai, Kwong Sak Leung and Yee Leung

14:30–14:45 SemEval-2018 Task 11: Machine Comprehension Using Commonsense Knowledge
Simon Ostermann, Michael Roth, Ashutosh Modi, Stefan Thater and Manfred
Pinkal

14:45–15:00 Yuanfudao at SemEval-2018 Task 11: Three-way Attention and Relational Knowl-
edge for Commonsense Machine Comprehension
Liang Wang, Meng Sun, Wei Zhao, Kewei Shen and Jingming Liu

15:00–15:15 SemEval-2018 Task 12: The Argument Reasoning Comprehension Task
Ivan Habernal, Henning Wachsmuth, Iryna Gurevych and Benno Stein

15:15–15:30 GIST at SemEval-2018 Task 12: A network transferring inference knowledge to
Argument Reasoning Comprehension task
HongSeok Choi and Hyunju Lee

15:30–16:00 Coffee

16:00–16:30 Discussion

xxxiv

6 June 2018 (continued)

16:30–17:30 Poster Session

16:30–17:30 LightRel at SemEval-2018 Task 7: Lightweight and Fast Relation Classification
Tyler Renslow and Günter Neumann

16:30–17:30 OhioState at SemEval-2018 Task 7: Exploiting Data Augmentation for Relation
Classification in Scientific Papers Using Piecewise Convolutional Neural Networks
Dushyanta Dhyani

16:30–17:30 The UWNLP system at SemEval-2018 Task 7: Neural Relation Extraction Model
with Selectively Incorporated Concept Embeddings
Yi Luan, Mari Ostendorf and Hannaneh Hajishirzi

16:30–17:30 UC3M-NII Team at SemEval-2018 Task 7: Semantic Relation Classification in Sci-
entific Papers via Convolutional Neural Network
Víctor Suárez-Paniagua, Isabel Segura-Bedmar and Akiko Aizawa

16:30–17:30 MIT-MEDG at SemEval-2018 Task 7: Semantic Relation Classification via Convo-
lution Neural Network
Di Jin, Franck Dernoncourt, Elena Sergeeva, Matthew McDermott and Geeticka
Chauhan

16:30–17:30 SIRIUS-LTG-UiO at SemEval-2018 Task 7: Convolutional Neural Networks with
Shortest Dependency Paths for Semantic Relation Extraction and Classification in
Scientific Papers
Farhad Nooralahzadeh, Lilja Øvrelid and Jan Tore Lønning

16:30–17:30 IRCMS at SemEval-2018 Task 7 : Evaluating a basic CNN Method and Traditional
Pipeline Method for Relation Classification
Zhongbo Yin, Zhunchen Luo, Luo Wei, Mao Bin, Tian Changhai, Ye Yuming and
Wu Shuai

16:30–17:30 Bf3R at SemEval-2018 Task 7: Evaluating Two Relation Extraction Tools for Find-
ing Semantic Relations in Biomedical Abstracts
Mariana Neves, Daniel Butzke, Gilbert Schönfelder and Barbara Grune

16:30–17:30 Texterra at SemEval-2018 Task 7: Exploiting Syntactic Information for Relation
Extraction and Classification in Scientific Papers
Andrey Sysoev and Vladimir Mayorov

16:30–17:30 UniMa at SemEval-2018 Task 7: Semantic Relation Extraction and Classification
from Scientific Publications
Thorsten Keiper, Zhonghao Lyu, Sara Pooladzadeh, Yuan Xu, Jingyi Zhang, Anne
Lauscher and Simone Paolo Ponzetto

16:30–17:30 GU IRLAB at SemEval-2018 Task 7: Tree-LSTMs for Scientific Relation Classifica-
tion
Sean MacAvaney, Luca Soldaini, Arman Cohan and Nazli Goharian

xxxv

6 June 2018 (continued)

16:30–17:30 ClaiRE at SemEval-2018 Task 7: Classification of Relations using Embeddings
Lena Hettinger, Alexander Dallmann, Albin Zehe, Thomas Niebler and Andreas
Hotho

16:30–17:30 TakeLab at SemEval-2018 Task 7: Combining Sparse and Dense Features for Rela-
tion Classification in Scientific Texts
Martin Gluhak, Maria Pia di Buono, Abbas Akkasi and Jan Šnajder

16:30–17:30 NEUROSENT-PDI at SemEval-2018 Task 7: Discovering Textual Relations With a
Neural Network Model
Mauro Dragoni

16:30–17:30 SciREL at SemEval-2018 Task 7: A System for Semantic Relation Extraction and
Classification
Darshini Mahendran, Chathurika Brahmana and Bridget McInnes

16:30–17:30 NTNU at SemEval-2018 Task 7: Classifier Ensembling for Semantic Relation Iden-
tification and Classification in Scientific Papers
Biswanath Barik, Utpal Kumar Sikdar and Björn Gambäck

16:30–17:30 Talla at SemEval-2018 Task 7: Hybrid Loss Optimization for Relation Classification
using Convolutional Neural Networks
Bhanu Pratap, Daniel Shank, Oladipo Ositelu and Byron Galbraith

16:30–17:30 TeamDL at SemEval-2018 Task 8: Cybersecurity Text Analysis using Convolutional
Neural Network and Conditional Random Fields
Manikandan R, Krishna Madgula and Snehanshu Saha

16:30–17:30 HCCL at SemEval-2018 Task 8: An End-to-End System for Sequence Labeling from
Cybersecurity Reports
Mingming Fu, Xuemin Zhao and Yonghong Yan

16:30–17:30 UMBC at SemEval-2018 Task 8: Understanding Text about Malware
Ankur Padia, Arpita Roy, Taneeya Satyapanich, Francis Ferraro, Shimei Pan,
Youngja Park, Anupam Joshi and Tim Finin

16:30–17:30 Villani at SemEval-2018 Task 8: Semantic Extraction from Cybersecurity Reports
using Representation Learning
Pablo Loyola, Kugamoorthy Gajananan, Yuji Watanabe and Fumiko Satoh

16:30–17:30 Flytxt_NTNU at SemEval-2018 Task 8: Identifying and Classifying Malware Text
Using Conditional Random Fields and Naïve Bayes Classifiers
Utpal Kumar Sikdar, Biswanath Barik and Björn Gambäck

16:30–17:30 Digital Operatives at SemEval-2018 Task 8: Using dependency features for mal-
ware NLP
Chris Brew

xxxvi

6 June 2018 (continued)

16:30–17:30 Apollo at SemEval-2018 Task 9: Detecting Hypernymy Relations Using Syntactic
Dependencies
Mihaela Onofrei, Ionut Hulub, Diana Trandabat and Daniela Gifu

16:30–17:30 SJTU-NLP at SemEval-2018 Task 9: Neural Hypernym Discovery with Term Em-
beddings
Zhuosheng Zhang, Jiangtong Li, Hai Zhao and Bingjie Tang

16:30–17:30 NLP_HZ at SemEval-2018 Task 9: a Nearest Neighbor Approach
Wei Qiu, Mosha Chen, Linlin Li and Luo Si

16:30–17:30 UMDuluth-CS8761 at SemEval-2018 Task9: Hypernym Discovery using Hearst
Patterns, Co-occurrence frequencies and Word Embeddings
Arshia Zernab Hassan, Manikya Swathi Vallabhajosyula and Ted Pedersen

16:30–17:30 EXPR at SemEval-2018 Task 9: A Combined Approach for Hypernym Discovery
Ahmad Issa Alaa Aldine, Mounira Harzallah, Giuseppe Berio, Nicolas Béchet and
Ahmad Faour

16:30–17:30 ADAPT at SemEval-2018 Task 9: Skip-Gram Word Embeddings for Unsupervised
Hypernym Discovery in Specialised Corpora
Alfredo Maldonado and Filip Klubička

16:30–17:30 300-sparsans at SemEval-2018 Task 9: Hypernymy as interaction of sparse at-
tributes
Gábor Berend, Márton Makrai and Péter Földiák

16:30–17:30 UWB at SemEval-2018 Task 10: Capturing Discriminative Attributes from Word
Distributions
Tomáš Brychcín, Tomáš Hercig, Josef Steinberger and Michal Konkol

16:30–17:30 Meaning_space at SemEval-2018 Task 10: Combining explicitly encoded knowl-
edge with information extracted from word embeddings
Pia Sommerauer, Antske Fokkens and Piek Vossen

16:30–17:30 GHH at SemEval-2018 Task 10: Discovering Discriminative Attributes in Distribu-
tional Semantics
Mohammed Attia, Younes Samih, Manaal Faruqui and Wolfgang Maier

16:30–17:30 CitiusNLP at SemEval-2018 Task 10: The Use of Transparent Distributional Models
and Salient Contexts to Discriminate Word Attributes
Pablo Gamallo

16:30–17:30 THU_NGN at SemEval-2018 Task 10: Capturing Discriminative Attributes with
MLP-CNN model
Chuhan Wu, Fangzhao Wu, Sixing Wu, Zhigang Yuan and Yongfeng Huang

xxxvii

6 June 2018 (continued)

16:30–17:30 ALB at SemEval-2018 Task 10: A System for Capturing Discriminative Attributes
Bogdan Dumitru, Alina Maria Ciobanu and Liviu P. Dinu

16:30–17:30 ELiRF-UPV at SemEval-2018 Task 10: Capturing Discriminative Attributes with
Knowledge Graphs and Wikipedia
José-Ángel González, Lluís-F. Hurtado, Encarna Segarra and Ferran Pla

16:30–17:30 Wolves at SemEval-2018 Task 10: Semantic Discrimination based on Knowledge
and Association
Shiva Taslimipoor, Omid Rohanian, Le An Ha, Gloria Corpas Pastor and Ruslan
Mitkov

16:30–17:30 UNAM at SemEval-2018 Task 10: Unsupervised Semantic Discriminative Attribute
Identification in Neural Word Embedding Cones
Ignacio Arroyo-Fernández, Ivan Meza and Carlos-Francisco Meéndez-Cruz

16:30–17:30 Luminoso at SemEval-2018 Task 10: Distinguishing Attributes Using Text Corpora
and Relational Knowledge
Robert Speer and Joanna Lowry-Duda

16:30–17:30 BomJi at SemEval-2018 Task 10: Combining Vector-, Pattern- and Graph-based
Information to Identify Discriminative Attributes
Enrico Santus, Chris Biemann and Emmanuele Chersoni

16:30–17:30 Igevorse at SemEval-2018 Task 10: Exploring an Impact of Word Embeddings Con-
catenation for Capturing Discriminative Attributes
Maxim Grishin

16:30–17:30 ECNU at SemEval-2018 Task 10: Evaluating Simple but Effective Features on Ma-
chine Learning Methods for Semantic Difference Detection
Yunxiao Zhou, Man Lan and Yuanbin Wu

16:30–17:30 AmritaNLP at SemEval-2018 Task 10: Capturing discriminative attributes using
convolution neural network over global vector representation.
Vivek Vinayan, Anand Kumar M and Soman K P

16:30–17:30 Discriminator at SemEval-2018 Task 10: Minimally Supervised Discrimination
Artur Kulmizev, Mostafa Abdou, Vinit Ravishankar and Malvina Nissim

16:30–17:30 UNBNLP at SemEval-2018 Task 10: Evaluating unsupervised approaches to cap-
turing discriminative attributes
Milton King, Ali Hakimi Parizi and Paul Cook

16:30–17:30 ABDN at SemEval-2018 Task 10: Recognising Discriminative Attributes using Con-
text Embeddings and WordNet
Rui Mao, Guanyi Chen, Ruizhe Li and Chenghua Lin

xxxviii

6 June 2018 (continued)

16:30–17:30 UMD at SemEval-2018 Task 10: Can Word Embeddings Capture Discriminative
Attributes?
Alexander Zhang and Marine Carpuat

16:30–17:30 NTU NLP Lab System at SemEval-2018 Task 10: Verifying Semantic Differences by
Integrating Distributional Information and Expert Knowledge
Yow-Ting Shiue, Hen-Hsen Huang and Hsin-Hsi Chen

16:30–17:30 ELiRF-UPV at SemEval-2018 Task 11: Machine Comprehension using Common-
sense Knowledge
José-Ángel González, Lluís-F. Hurtado, Encarna Segarra and Ferran Pla

16:30–17:30 YNU_AI1799 at SemEval-2018 Task 11: Machine Comprehension using Common-
sense Knowledge of Different model ensemble
Liu Qingxun, Yao Hongdou, Zhou Xaobing and Xie Ge

16:30–17:30 YNU_Deep at SemEval-2018 Task 11: An Ensemble of Attention-based BiLSTM
Models for Machine Comprehension
Peng Ding and Xiaobing Zhou

16:30–17:30 ECNU at SemEval-2018 Task 11: Using Deep Learning Method to Address Machine
Comprehension Task
Yixuan Sheng, Man Lan and Yuanbin Wu

16:30–17:30 CSReader at SemEval-2018 Task 11: Multiple Choice Question Answering as Tex-
tual Entailment
Zhengping Jiang and Qi Sun

16:30–17:30 YNU-HPCC at Semeval-2018 Task 11: Using an Attention-based CNN-LSTM for
Machine Comprehension using Commonsense Knowledge
Hang Yuan, Jin Wang and Xuejie Zhang

16:30–17:30 Jiangnan at SemEval-2018 Task 11: Deep Neural Network with Attention Method
for Machine Comprehension Task
Jiangnan Xia

16:30–17:30 IUCM at SemEval-2018 Task 11: Similar-Topic Texts as a Comprehension Knowl-
edge Source
Sofia Reznikova and Leon Derczynski

16:30–17:30 Lyb3b at SemEval-2018 Task 11: Machine Comprehension Task using Deep Learn-
ing Models
Yongbin Li and Xiaobing Zhou

16:30–17:30 MITRE at SemEval-2018 Task 11: Commonsense Reasoning without Commonsense
Knowledge
Elizabeth Merkhofer, John Henderson, David Bloom, Laura Strickhart and Guido
Zarrella

xxxix

6 June 2018 (continued)

16:30–17:30 SNU_IDS at SemEval-2018 Task 12: Sentence Encoder with Contextualized Vectors
for Argument Reasoning Comprehension
Taeuk Kim, Jihun Choi and Sang-goo Lee

16:30–17:30 ITNLP-ARC at SemEval-2018 Task 12: Argument Reasoning Comprehension with
Attention
Wenjie Liu, Chengjie Sun, Lei Lin and Bingquan Liu

16:30–17:30 ECNU at SemEval-2018 Task 12: An End-to-End Attention-based Neural Network
for the Argument Reasoning Comprehension Task
Junfeng Tian, Man Lan and Yuanbin Wu

16:30–17:30 NLITrans at SemEval-2018 Task 12: Transfer of Semantic Knowledge for Argument
Comprehension
Timothy Niven and Hung-Yu Kao

16:30–17:30 BLCU_NLP at SemEval-2018 Task 12: An Ensemble Model for Argument Reason-
ing Based on Hierarchical Attention
Meiqian Zhao, Chunhua Liu, Lu Liu, Yan Zhao and Dong Yu

16:30–17:30 YNU-HPCC at SemEval-2018 Task 12: The Argument Reasoning Comprehension
Task Using a Bi-directional LSTM with Attention Model
Quanlei Liao, Xutao Yang, Jin Wang and Xuejie Zhang

16:30–17:30 HHU at SemEval-2018 Task 12: Analyzing an Ensemble-based Deep Learning Ap-
proach for the Argument Mining Task of Choosing the Correct Warrant
Matthias Liebeck, Andreas Funke and Stefan Conrad

16:30–17:30 YNU Deep at SemEval-2018 Task 12: A BiLSTM Model with Neural Attention for
Argument Reasoning Comprehension
Peng Ding and Xiaobing Zhou

16:30–17:30 UniMelb at SemEval-2018 Task 12: Generative Implication using LSTMs, Siamese
Networks and Semantic Representations with Synonym Fuzzing
Anirudh Joshi, Tim Baldwin, Richard O. Sinnott and Cecile Paris

16:30–17:30 Joker at SemEval-2018 Task 12: The Argument Reasoning Comprehension with
Neural Attention
Sui Guobin, Chao Wenhan and Luo Zhunchen

16:30–17:30 TakeLab at SemEval-2018 Task12: Argument Reasoning Comprehension with Skip-
Thought Vectors
Ana Brassard, Tin Kuculo, Filip Boltuzic and Jan Šnajder

16:30–17:30 Lyb3b at SemEval-2018 Task 12: Ensemble-based Deep Learning Models for Argu-
ment Reasoning Comprehension Task
Yongbin Li and Xiaobing Zhou

xl

6 June 2018 (continued)

16:30–17:30 TRANSRW at SemEval-2018 Task 12: Transforming Semantic Representations for
Argument Reasoning Comprehension
Zhimin Chen, Wei Song and Lizhen Liu

xli

Proceedings of the 12th International Workshop on Semantic Evaluation (SemEval-2018), pages 1–17
New Orleans, Louisiana, June 5–6, 2018. ©2018 Association for Computational Linguistics

SemEval-2018 Task 1: Affect in Tweets

Saif M. Mohammad
National Research Council Canada
saif.mohammad@nrc-cnrc.gc.ca

Felipe Bravo-Marquez
The University of Waikato, New Zealand

fbravoma@waikato.ac.nz

Mohammad Salameh
Carnegie Mellon University in Qatar

msalameh@qatar.cmu.edu

Svetlana Kiritchenko
National Research Council Canada

svetlana.kiritchenko@nrc-cnrc.gc.ca

Abstract
We present the SemEval-2018 Task 1: Affect
in Tweets, which includes an array of subtasks
on inferring the affectual state of a person from
their tweet. For each task, we created labeled
data from English, Arabic, and Spanish tweets.
The individual tasks are: 1. emotion intensity
regression, 2. emotion intensity ordinal classi-
fication, 3. valence (sentiment) regression, 4.
valence ordinal classification, and 5. emotion
classification. Seventy-five teams (about 200
team members) participated in the shared task.
We summarize the methods, resources, and
tools used by the participating teams, with a
focus on the techniques and resources that are
particularly useful. We also analyze systems
for consistent bias towards a particular race or
gender. The data is made freely available to
further improve our understanding of how peo-
ple convey emotions through language.

1 Introduction

Emotions are central to language and thought.
They are familiar and commonplace, yet they are
complex and nuanced. Humans are known to per-
ceive hundreds of different emotions. Accord-
ing to the basic emotion model (aka the categor-
ical model) (Ekman, 1992; Plutchik, 1980; Par-
rot, 2001; Frijda, 1988), some emotions, such
as joy, sadness, and fear, are more basic than
others—physiologically, cognitively, and in terms
of the mechanisms to express these emotions.
Each of these emotions can be felt or expressed
in varying intensities. For example, our ut-
terances can convey that we are very angry,
slightly sad, absolutely elated, etc. Here, inten-
sity refers to the degree or amount of an emo-
tion such as anger or sadness.1 As per the
valence–arousal–dominance (VAD) model (Rus-
sell, 1980, 2003), emotions are points in a

1Intensity is different from arousal, which refers to the
extent to which an emotion is calming or exciting.

three-dimensional space of valence (positiveness–
negativeness), arousal (active–passive), and domi-
nance (dominant–submissive). We use the term af-
fect to refer to various emotion-related categories
such as joy, fear, valence, and arousal.

Natural language applications in commerce,
public health, disaster management, and public
policy can benefit from knowing the affectual
states of people—both the categories and the
intensities of the emotions they feel. We thus
present the SemEval-2018 Task 1: Affect in
Tweets, which includes an array of subtasks where
automatic systems have to infer the affectual state
of a person from their tweet.2 We will refer to
the author of a tweet as the tweeter. Some of the
tasks are on the intensities of four basic emotions
common to many proposals of basic emotions:
anger, fear, joy, and sadness. Some of the tasks
are on valence or sentiment intensity. Finally, we
include an emotion classification task over eleven
emotions commonly expressed in tweets.3 For
each task, we provide separate training, develop-
ment, and test datasets for English, Arabic, and
Spanish tweets. The tasks are as follows:

1. Emotion Intensity Regression (EI-reg): Given
a tweet and an emotion E, determine the inten-
sity of E that best represents the mental state
of the tweeter—a real-valued score between 0
(least E) and 1 (most E);

2. Emotion Intensity Ordinal Classification (EI-
oc): Given a tweet and an emotion E, classify
the tweet into one of four ordinal classes of
intensity of E that best represents the mental
state of the tweeter;

3. Valence (Sentiment) Regression (V-reg): Given
a tweet, determine the intensity of sentiment or
valence (V) that best represents the mental state

2https://competitions.codalab.org/competitions/17751
3Determined through pilot annotations.

1

of the tweeter—a real-valued score between 0
(most negative) and 1 (most positive);

4. Valence Ordinal Classification (V-oc): Given
a tweet, classify it into one of seven ordinal
classes, corresponding to various levels of
positive and negative sentiment intensity, that
best represents the mental state of the tweeter;

5. Emotion Classification (E-c): Given a tweet,
classify it as ‘neutral or no emotion’ or as one,
or more, of eleven given emotions that best
represent the mental state of the tweeter.

Here, E refers to emotion, EI refers to emotion
intensity, V refers to valence, reg refers to regres-
sion, oc refers to ordinal classification, c refers to
classification.

For each language, we create a large single tex-
tual dataset, subsets of which are annotated for
many emotion (or affect) dimensions (from both
the basic emotion model and the VAD model). For
each emotion dimension, we annotate the data not
just for coarse classes (such as anger or no anger)
but also for fine-grained real-valued scores indi-
cating the intensity of emotion. We use Best–
Worst Scaling (BWS), a comparative annotation
method, to address the limitations of traditional
rating scale methods such as inter- and intra-
annotator inconsistency. We show that the fine-
grained intensity scores thus obtained are reliable
(repeat annotations lead to similar scores). In to-
tal, about 700,000 annotations were obtained from
about 22,000 English, Arabic, and Spanish tweets.

Seventy-five teams (about 200 team members)
participated in the shared task, making this the
largest SemEval shared task to date. In total, 319
submissions were made to the 15 task–language
pairs. Each team was allowed only one official
submission for each task–language pair. We sum-
marize the methods, resources, and tools used by
the participating teams, with a focus on the tech-
niques and resources that are particularly useful.
We also analyze system predictions for consistent
bias towards a particular race or gender using a
corpus specifically compiled for that purpose. We
find that a majority of systems consistently assign
higher scores to sentences involving one race or
gender. We also find that the bias may change
depending on the specific affective dimension be-
ing predicted. All of the tweet data (labeled and
unlabeled), annotation questionnaires, evaluation
scripts, and the bias evaluation corpus are made
freely available on the task website.

2 Building on Past Work

There is a large body of prior work on sen-
timent and emotion classification (Mohammad,
2016). There is also growing work on related
tasks such as stance detection (Mohammad et al.,
2017) and argumentation mining (Wojatzki et al.,
2018; Palau and Moens, 2009). However, there is
little work on detecting the intensity of affect in
text. Mohammad and Bravo-Marquez (2017) cre-
ated the first datasets of tweets annotated for anger,
fear, joy, and sadness intensities. Given a focus
emotion, each tweet was annotated for intensity of
the emotion felt by the speaker using a technique
called Best–Worst Scaling (BWS) (Louviere, 1991;
Kiritchenko and Mohammad, 2016, 2017).

BWS is an annotation scheme that addresses
the limitations of traditional rating scale methods,
such as inter- and intra-annotator inconsistency, by
employing comparative annotations. Note that at
its simplest, comparative annotations involve giv-
ing people pairs of items and asking which item is
greater in terms of the property of interest. How-
ever, such a method requires annotations for N2

items, which can be prohibitively large.
In BWS, annotators are given n items (an n-

tuple, where n > 1 and commonly n = 4). They
are asked which item is the best (highest in terms
of the property of interest) and which is the worst
(lowest in terms of the property of interest). When
working on 4-tuples, best–worst annotations are
particularly efficient because each best and worst
annotation will reveal the order of five of the six
item pairs. For example, for a 4-tuple with items
A, B, C, and D, if A is the best, and D is the
worst, then A > B, A > C, A > D, B > D, and
C > D. Real-valued scores of association between
the items and the property of interest can be de-
termined using simple arithmetic on the number
of times an item was chosen best and number of
times it was chosen worst (as described in Section
3.4.2) (Orme, 2009; Flynn and Marley, 2014).

It has been empirically shown that annotations
for 2N 4-tuples is sufficient for obtaining reliable
scores (where N is the number of items) (Louviere,
1991; Kiritchenko and Mohammad, 2016). Kir-
itchenko and Mohammad (2017) showed through
empirical experiments that BWS produces more
reliable and more discriminating scores than those
obtained using rating scales. (See (Kiritchenko
and Mohammad, 2016, 2017) for further details on
BWS.)

2

Mohammad and Bravo-Marquez (2017) col-
lected and annotated 7,100 English tweets posted
in 2016. We will refer to the tweets alone
as Tweets-2016, and the tweets and annotations
together as the Emotion Intensity Dataset (or,
EmoInt Dataset). This dataset was used in the
2017 WASSA Shared Task on Emotion Intensity.4

We build on that earlier work by first compiling
a new set of English, Arabic, and Spanish tweets
posted in 2017 and annotating the new tweets for
emotion intensity in a similar manner. We will re-
fer to this new set of tweets as Tweets-2017. Simi-
lar to the work by Mohammad and Bravo-Marquez
(2017), we create four subsets annotated for inten-
sity of fear, joy, sadness, and anger, respectively.
However, unlike the earlier work, here a common
dataset of tweets is annotated for all three negative
emotions: fear, anger, and sadness. This allows
one to study the relationship between the three ba-
sic negative emotions.

We also annotate tweets sampled from each of
the four basic emotion subsets (of both Tweets-
2016 and Tweets-2017) for degree of valence. An-
notations for arousal, dominance, and other basic
emotions such as surprise and anticipation are left
for future work.

In addition to knowing a fine-grained score
indicating degree of intensity, it is also useful to
qualitatively ground the information on whether
the intensity is high, medium, low, etc. Thus, we
manually identify ranges in intensity scores that
correspond to these coarse classes. For each of the
four emotions E, the 0 to 1 range is partitioned
into the classes: no E can be inferred, low E
can be inferred, moderate E can be inferred,
and high E can be inferred. This data can be
used for developing systems that predict the
ordinal class of emotion intensity (EI ordinal
classification, or EI-oc, systems). We partition
the 0 to 1 interval of valence into: very negative,
moderately negative, slightly negative, neutral
or mixed, slightly positive, moderately positive,
and very positive mental state of the tweeter can
be inferred. This data can be used to develop
systems that predict the ordinal class of valence
(valence ordinal classification, or V-oc, systems).5

4 http://saifmohammad.com/WebPages/EmoInt2017.html
5Note that valence ordinal classification is the traditional

sentiment analysis task most commonly explored in NLP lit-
erature. The classes may vary from just three (positive, nega-
tive, and neutral) to five, seven, or nine finer classes.

Annotated In
Dataset Source of Tweets 2016 2017
E-c Tweets-2016 - X

Tweets-2017 - X
EI-reg, EI-oc Tweets-2016 X -

Tweets-2017 - X
V-reg, V-oc Tweets-2016 - X

Tweets-2017 - X

Table 1: The annotations of English Tweets.

Finally, the full Tweets-2016 and Tweets-2017
datasets are annotated for the presence of eleven
emotions: anger, anticipation, disgust, fear, joy,
love, optimism, pessimism, sadness, surprise, and
trust. This data can be used for developing multi-
label emotion classification, or E-c, systems. Ta-
ble 1 shows the two stages in which the anno-
tations for English tweets were done. The Ara-
bic and Spanish tweets were all only from 2017.
Together, we will refer to the joint set of tweets
from Tweets-2016 and Tweets-2017 along with all
the emotion-related annotations described above
as the SemEval-2018 Affect in Tweets Dataset (or
AIT Dataset for short).

3 The Affect in Tweets Dataset

We now present how we created the Affect in
Tweets Dataset. We present only the key details
here; a detailed description of the English datasets
and the analysis of various affect dimensions is
available in Mohammad and Kiritchenko (2018).

3.1 Compiling English Tweets

We first compiled tweets to be included in the four
EI-reg datasets corresponding to anger, fear, joy,
and sadness. The EI-oc datasets include the same
tweets as in EI-reg, that is, the Anger EI-oc dataset
has the same tweets as in the Anger EI-reg dataset,
the Fear EI-oc dataset has the same tweets as in the
Fear EI-reg dataset, and so on. However, the labels
for EI-oc tweets are ordinal classes instead of real-
valued intensity scores. The V-reg dataset includes
a subset of tweets from each of the four EI-reg
emotion datasets. The V-oc dataset has the same
tweets as in the V-reg dataset. The E-c dataset in-
cludes all the tweets from the four EI-reg datasets.
The total number of instances in the E-c, EI-reg,
EI-oc, V-reg, and V-oc datasets is shown in the last
column of Table 3.

3.1.1 Basic Emotion Tweets
To create a dataset of tweets rich in a particu-
lar emotion, we used the following methodology.

3

For each emotion X, we selected 50 to 100 terms
that were associated with that emotion at differ-
ent intensity levels. For example, for the anger
dataset, we used the terms: angry, mad, frustrated,
annoyed, peeved, irritated, miffed, fury, antago-
nism, and so on. We will refer to these terms as
the query terms. The query terms we selected in-
cluded emotion words listed in the Roget’s The-
saurus, nearest neighbors of these emotion words
in a word-embeddings space, as well as commonly
used emoji and emoticons. The full list of the
query terms is available on the task website.

We polled the Twitter API, over the span of two
months (June and July, 2017), for tweets that in-
cluded the query terms. We randomly selected
1,400 tweets from the joy set for annotation of in-
tensity of joy. For the three negative emotions,
we first randomly selected 200 tweets each from
their corresponding tweet collections. These 600
tweets were annotated for all three negative emo-
tions so that we could study the relationships be-
tween fear and anger, between anger and sadness,
and between sadness and fear. For each of the
negative emotions, we also chose 800 additional
tweets, from their corresponding tweet sets, that
were annotated only for the corresponding emo-
tion. Thus, the number of tweets annotated for
each of the negative emotions was also 1,400 (the
600 included in all three negative emotions + 800
unique to the focus emotion). For each emotion,
100 tweets that had an emotion-word hashtag,
emoticon, or emoji query term at the end (trailing
query term) were randomly chosen. We removed
the trailing query terms from these tweets. As a
result, the dataset also included some tweets with
no clear emotion-indicative terms.

Thus, the EI-reg dataset included 1,400 new
tweets for each of the four emotions. These were
annotated for intensity of emotion. Note that the
EmoInt dataset already included 1,500 to 2,300
tweets per emotion annotated for intensity. Those
tweets were not re-annotated. The EmoInt EI-reg
tweets as well as the new EI-reg tweets were both
annotated for ordinal classes of emotion (EI-oc) as
described in Section 3.4.3

The new EI-reg tweets formed the EI-reg de-
velopment (dev) and test sets in the AIT task; the
number of instances in each is shown in the third
and fourth columns of Table 3. The EmoInt tweets
formed the training set.6

6Manual examination of the new EI-reg tweets later re-

3.1.2 Valence Tweets
The valence dataset included tweets from the new
EI-reg set and the EmoInt set. The new EI-reg
tweets included were all 600 tweets common to
the three negative emotion tweet sets and 600 ran-
domly chosen joy tweets. The EmoInt tweets in-
cluded were 600 randomly chosen joy tweets and
200 each, randomly chosen tweets, for anger, fear,
and sadness. To study valence in sarcastic tweets,
we also included 200 tweets that had hashtags
#sarcastic, #sarcasm, #irony, or #ironic (tweets
that are likely to be sarcastic). Thus the V-reg
set included 2,600 tweets in total. The V-oc set is
comprised of the same tweets as in the V-reg set.

3.1.3 Multi-Label Emotion Tweets
We selected all of the 2016 and 2017 tweets in the
four EI-reg datasets to form the E-c dataset, which
is annotated for presence/absence of 11 emotions.

3.2 Compiling Arabic Tweets
We compiled the Arabic tweets in a similar
manner to the English dataset. We obtained the
the Arabic query terms as follows:

• We translated the English query terms for the
four emotions to Arabic using Google Translate.
• All words associated with the four emotions in

the NRC Emotion Lexicon were translated into
Arabic. (We discarded incorrect translations.)
• We trained word embeddings on a tweet corpus

collected using dialectal function words as
queries. We used nearest neighbors of the
emotion query terms in the word-embedding
space as additional query terms.
• We included the same emoji used in English for

anger, fear, joy and sadness. However, most of
the fear emoji were not included, as they were
rarely associated with fear in Arabic tweets.

In total, we used 550 Arabic query terms and
emoji to poll the Twitter API to collect around
17 million tweets between March and July 2017.
For each of the four emotions, we randomly se-
lected 1,400 tweets to form the EI-reg datasets.
The same tweets were used for building the EI-
oc datasets. The sets of tweets for the negative
emotions included 800 tweets unique to the focus
emotion and 600 tweets common to the three neg-
ative emotions.
vealed that it included some near-duplicate tweets. We kept
only one copy of such pairs. Thus the dev. and test set num-
bers add up to a little lower than 1,400.

4

The V-reg dataset was formed by including
about 900 tweets from the three negative emotions
(including the 600 tweets common to the three
negative emotion datasets), and about 900 tweets
for joy. The same tweets were used to form the V-
oc dataset. The multi-label emotion classification
dataset was created by taking all the tweets in the
EI-reg datasets.

3.3 Compiling Spanish Tweets
The Spanish query terms were obtained as fol-
lows:

• The English query terms were translated into
Spanish using Google Translate. The transla-
tions were manually examined by a Spanish
native speaker, and incorrect translations were
discarded.

• The resulting set was expanded using synonyms
taken from a Spanish lexicographic resource,
Wordreference7.

• We made sure that both masculine and fem-
inine forms of the nouns and adjectives were
included.

• We included the same emoji used in English
for anger, sadness, and joy. The emoji for
fear where not included, as tweets contain-
ing those emoji were rarely associated with fear.

We collected about 1.2 million tweets between
July and September 2017. We annotated close to
2,000 tweets for each emotion. The sets of tweets
for the negative emotions included ∼1,500 tweets
unique to the focus emotion and ∼500 tweets
common to the two remaining negative emotions.
The same tweets were used for building the Span-
ish EI-oc dataset.

The V-reg dataset was formed by including
about 1,100 tweets from the three negative emo-
tions (including the 750 tweets common to the
three negative emotion datasets), about 1,100
tweets for joy, and 268 tweets with sarcastic hash-
tags (#sarcasmo, #ironia). The same tweets were
used to build the V-oc dataset. The multi-label
emotion classification dataset was created by tak-
ing all the tweets in the EI-reg and V-reg datasets.

3.4 Annotating Tweets
We describe below how we annotated the English
tweets. The same procedure was used for Arabic
and Spanish annotations.

7http://www.wordreference.com/sinonimos/

We annotated all of our data by crowdsourcing.
The tweets and annotation questionnaires were
uploaded on the crowdsourcing platform, Figure
Eight (earlier called CrowdFlower).8 All the anno-
tation tasks described in this paper were approved
by the National Research Council Canada’s Insti-
tutional Review Board.

About 5% of the tweets in each task were an-
notated internally beforehand (by the authors of
this paper). These tweets are referred to as gold
tweets. The gold tweets were interspersed with
other tweets. If a crowd-worker got a gold tweet
question wrong, they were immediately notified of
the error. If the worker’s accuracy on the gold
tweet questions fell below 70%, they were re-
fused further annotation, and all of their annota-
tions were discarded. This served as a mechanism
to avoid malicious annotations.

3.4.1 Multi-Label Emotion Annotation
We presented one tweet at a time to the annotators
and asked which of the following options best de-
scribed the emotional state of the tweeter:
– anger (also includes annoyance, rage)

– anticipation (also includes interest, vigilance)

– disgust (also includes disinterest, dislike, loathing)

– fear (also includes apprehension, anxiety, terror)

– joy (also includes serenity, ecstasy)

– love (also includes affection)

– optimism (also includes hopefulness, confidence)

– pessimism (also includes cynicism, no confidence)

– sadness (also includes pensiveness, grief)

– surprise (also includes distraction, amazement)

– trust (also includes acceptance, liking, admiration)

– neutral or no emotion

Example tweets were provided in advance with ex-
amples of suitable responses.

On the Figure Eight task settings, we specified
that we needed annotations from seven people for
each tweet. However, because of the way the gold
tweets were set up, they were annotated by more
than seven people. The median number of anno-
tations was still seven. In total, 303 people anno-
tated between 10 and 4,670 tweets each. A total of
174,356 responses were obtained.
Annotation Aggregation: One of the criticisms
for several natural language annotation projects
has been that they keep only the instances with
high agreement, and discard instances that obtain
low agreements. The high agreement instances

8https://www.figure-eight.com

5

anger antic. disg. fear joy love optim. pessi. sadn. surp. trust neutral
English 36.1 13.9 36.6 16.8 39.3 12.3 31.3 11.6 29.4 5.2 5.0 2.7
Arabic 39.4 9.6 19.6 17.8 26.9 25.2 24.5 22.8 37.4 2.2 5.3 0.6
Spanish 32.2 11.7 14.7 10.5 30.5 7.9 10.2 16.7 23.0 4.6 4.6 4.7

Table 2: Percentage of tweets that were labeled with a given emotion (after aggregation of votes).

tend to be simple instantiations of the classes of
interest, and are easier to model by automatic sys-
tems. However, when deployed in the real world,
natural language systems have to recognize and
process more complex and subtle instantiations of
a natural language phenomenon. Thus, discarding
all but the high agreement instances does not fa-
cilitate the development of systems that are able to
handle the difficult instances appropriately.

Therefore, we chose a somewhat generous ag-
gregation criterion: if more than 25% of the re-
sponses (two out of seven people) indicated that a
certain emotion applies, then that label was cho-
sen. We will refer to this aggregation as Ag2. If no
emotion got at least 40% of the responses (three
out of seven people) and more than 50% of the re-
sponses indicated that the tweet was neutral, then
the tweet was marked as neutral. In the vast ma-
jority of the cases, a tweet was labeled either as
neutral or with one or more of the eleven emotion
labels. 107 English tweets, 14 Arabic tweets, and
88 Spanish tweets did not receive sufficient votes
to be labeled a particular emotion or to be labeled
neutral. These very-low-agreement tweets were
set aside. We will refer to the remaining dataset
as E-c (Ag2), or simply E-c, data.
Class Distribution: Table 2 shows the percent-
age of tweets that were labeled with a given emo-
tion using Ag2 aggregation. The numbers in these
rows sum up to more than 100% because a tweet
may be labeled with more than one emotion. Ob-
serve that joy, anger, disgust, sadness, and opti-
mism get a high number of the votes. Trust and
surprise are two of the lowest voted emotions.

3.4.2 Annotating Intensity with BWS

We followed the procedure described by Kir-
itchenko and Mohammad (2016) to obtain best–
worst scaling (BWS) annotations.

Every 4-tuple was annotated by four indepen-
dent annotators. The questionnaires were devel-
oped through internal discussions and pilot anno-
tations. They are available on the SemEval-2018
AIT Task webpage.

Between 118 and 220 people residing in the
United States annotated the 4-tuples for each of

the four emotions and valence. In total, around
27K responses for each of the four emotions and
around 50K responses for valence were obtained.9

Annotation Aggregation: The intensity scores
were calculated from the BWS responses using
a simple counting procedure (Orme, 2009; Flynn
and Marley, 2014): For each item, the score is the
proportion of times the item was chosen as having
the most intensity minus the percentage of times
the item was chosen as having the least intensity.10

We linearly transformed the scores to lie in the 0
(lowest intensity) to 1 (highest intensity) range.
Distribution of Scores: Figure 1 shows the his-
togram of the V-reg tweets. The tweets are
grouped into bins of scores 0–0.05, 0.05–0.1, and
so on until 0.95–1. The colors for the bins corre-
spond to their ordinal classes as determined from
the manual annotation described in the next sub-
section. The histograms for the four emotions are
shown in Figure 5 in the Appendix.

3.4.3 Identifying Ordinal Classes
For each of the EI-reg emotions, the authors of
this paper independently examined the ordered list
of tweets to identify suitable boundaries that par-
titioned the 0–1 range into four ordinal classes:
no emotion, low emotion, moderate emotion, and
high emotion. Similarly the V-reg tweets were
examined and the 0–1 range was partitioned into
seven classes: very negative, moderately negative,
slightly negative, neutral or mixed, slightly posi-
tive, moderately positive, and very positive mental
state can be inferred.11

Annotation Aggregation: The authors discussed
their individual annotations to obtain consensus on
the class intervals. The V-oc and EI-oc datasets
were thus labeled.
Class Distribution: The legend of Figure 1 shows
the intervals of V-reg scores that make up the
seven V-oc classes. The intervals of EI-reg scores
that make up each of the four EI-oc classes are
shown in Figure 5 in the Appendix.

9Gold tweets were annotated more than four times.
10Code for generating tuples from items as well

as for generating scores from BWS annotations:
http://saifmohammad.com/WebPages/BestWorst.html

11Valence is a bi-polar scale; hence, more classes.

6

Figure 1: Valence score (V-reg), class (V-oc) distribution.

3.4.4 Annotating Arabic and Spanish Tweets
The annotations for Arabic and Spanish tweets fol-
lowed the same process as the one described for
English above. We manually translated the En-
glish questionnaire into Arabic and Spanish.

On Figure Eight, we used similar settings as for
English. For Arabic, we set the country of annota-
tors to fourteen Arab countries available in Crowd-
flower as well as the United States of America.12

For Spanish, we set the country of annotators to
USA, Mexico, and Spain.

Annotation aggregation was done the same way
for Arabic and Spanish, as for English. Table 2
shows the distributions for different emotions in
the E-c annotations for Arabic and Spanish (in ad-
dition to English).

3.5 Training, Development, and Test Sets

Table 14 in Appendix summarizes key details
of the current set of annotations done for the
SemEval-2018 Affect in Tweets (AIT) Dataset.
AIT was partitioned into training, development,
and test sets for machine learning experiments as
described in Table 3. All of the English tweets
that came from Tweets-2016 were part of the train-
ing sets. All of the English tweets that came from
Tweets-2017 were split into development and test
sets.13 The Arabic and Spanish tweets are all from
2017 and were split into train, dev, and test sets.

12 Algeria, Bahrain, Egypt, Jordan, Kuwait, Morocco,
Oman, Palestine, Qatar, Saudi Arabia, Tunisia, UAE, Yemen.

13This split of Tweets-2017 was first done such that 20% of
the tweets formed the dev. set and 80% formed the test set—
independently for EI-reg, EI-oc, V-reg, V-oc, and E-c. Then
we moved some tweets from the test sets to the dev. sets such
that a tweet in any dev. set does not occur in any test set.

Dataset Train Dev Test Total
English

E-c 6,838 886 3,259 10,983
EI-reg, EI-oc

anger 1,701 388 1,002 3,091
fear 2,252 389 986 3,627
joy 1,616 290 1,105 3,011
sadness 1,533 397 975 2,905

V-reg, V-oc 1,181 449 937 2,567
Arabic

E-c 2,278 585 1,518 4,381
EI-reg, EI-oc

anger 877 150 373 1,400
fear 882 146 372 1,400
joy 728 224 448 1,400
sadness 889 141 370 1,400

V-reg, V-oc 932 138 730 1,800
Spanish

E-c 3,561 679 2,854 7,094
EI-reg, EI-oc

anger 1,166 193 627 1,986
fear 1,166 202 618 1,986
joy 1,058 202 730 1,990
sadness 1,154 196 641 1,991

V-reg, V-oc 1,566 229 648 2,443

Table 3: The number of tweets in the SemEval-2018
Affect in Tweets Dataset.

4 Agreement and Reliability of
Annotations

It is challenging to obtain consistent annotations
for affect due to a number of reasons, including:
the subtle ways in which people can express affect,
fuzzy boundaries of affect categories, and differ-
ences in human experience that impact how they
perceive emotion in text. In the subsections below
we analyze the AIT dataset to determine the extent
of agreement and the reliability of the annotations.

4.1 E-c Annotations

Table 4 shows the inter-rater agreement and Fleiss’
κ for the multi-label emotion annotations. The
inter-rater agreement (IRA) is calculated as the
percentage of times each pair of annotators agree.
For the sake of comparison, we also show the
scores obtained by randomly choosing whether a
particular emotion applies or not. Observe that the
scores obtained through the actual annotations are
markedly higher than the scores obtained by ran-
dom guessing.

4.2 EI-reg and V-reg Annotations

For real-valued score annotations, a commonly
used measure of quality is reproducibility of the
end result—if repeated independent manual anno-
tations from multiple respondents result in similar

7

IRA Fleiss’ κ
Random 41.67 0.00
English avg. for all 12 classes 83.38 0.21

avg. for 4 basic emotions 81.22 0.40

Arabic avg. for all 12 classes 86.69 0.29
avg. for 4 basic emotions 83.38 0.48

Spanish avg. for all 12 classes 88.60 0.28
avg. for 4 basic emotions 85.91 0.45

Table 4: Annotator agreement for the Multi-label
Emotion Classification (E-c) Datasets.

Language Affect Dimension Spearman Pearson
English Emotion Intensity

anger 0.89 0.90
fear 0.84 0.85
joy 0.90 0.91
sadness 0.82 0.83

Valence 0.92 0.92
Arabic Emotion Intensity

anger 0.88 0.89
fear 0.85 0.87
joy 0.88 0.89
sadness 0.86 0.87

Valence 0.94 0.94
Spanish Emotion Intensity

anger 0.88 0.88
fear 0.85 0.86
joy 0.89 0.89
sadness 0.86 0.86

Valence 0.89 0.89

Table 5: Split-half reliabilities in the AIT Dataset.

intensity rankings (and scores), then one can be
confident that the scores capture the true emotion
intensities. To assess this reproducibility, we cal-
culate average split-half reliability (SHR), a com-
monly used approach to determine consistency
(Kuder and Richardson, 1937; Cronbach, 1946;
Mohammad and Bravo-Marquez, 2017). The in-
tuition behind SHR is as follows. All annotations
for an item (in our case, tuples) are randomly split
into two halves. Two sets of scores are produced
independently from the two halves. Then the cor-
relation between the two sets of scores is calcu-
lated. The process is repeated 100 times, and the
correlations are averaged. If the annotations are of
good quality, then the average correlation between
the two halves will be high.

Table 5 shows the split-half reliabilities for the
AIT data. Observe that correlations lie between
0.82 and 0.92, indicating a high degree of repro-
ducibility.14

14Past work has found the SHR for sentiment intensity an-
notations for words, with 6 to 8 annotations per tuple to be
0.95 to 0.98 (Mohammad, 2018b; Kiritchenko and Moham-
mad, 2016). In contrast, here SHR is calculated from whole
sentences, which is a more complex annotation task and thus
the SHR is expected to be lower than 0.95.

5 Evaluation for Automatic Predictions

5.1 For EI-reg, EI-oc, V-reg, and V-oc

The official competition metric for EI-reg, EI-oc,
V-reg, and V-oc was the Pearson Correlation
Coefficient with the Gold ratings/labels. For
EI-reg and EI-oc, the correlation scores across
all four emotions were averaged (macro-average)
to determine the bottom-line competition met-
ric. Apart from the official competition metric
described above, some additional metrics were
also calculated for each submission. These were
intended to provide a different perspective on
the results. The secondary metric used for the
regression tasks was:

• Pearson correlation for a subset of the test set
that includes only those tweets with intensity
score greater or equal to 0.5.

The secondary metrics used for the ordinal classi-
fication tasks were:

• Pearson correlation for a subset of the test set
that includes only those tweets with intensity
classes low X, moderate X, or high X (where
X is an emotion). We will refer to this set of
tweets as the some-emotion subset.

• Weighted quadratic kappa on the full test set.

• Weighted quadratic kappa on the some-emotion
subset of the test set.

5.2 For E-c

The official competition metric used for E-c was
multi-label accuracy (or Jaccard index). Since
this is a multi-label classification task, each tweet
can have one or more gold emotion labels, and
one or more predicted emotion labels. Multi-label
accuracy is defined as the size of the intersection
of the predicted and gold label sets divided by the
size of their union. This measure is calculated for
each tweet t, and then is averaged over all tweets
T in the dataset:

Accuracy =
1

|T |
∑

t∈T

Gt ∩ Pt

Gt ∪ Pt

where Gt is the set of the gold labels for tweet t, Pt

is the set of the predicted labels for tweet t, and T
is the set of tweets. Apart from the official compe-
tition metric (multi-label accuracy), we also calcu-
lated micro-averaged F-score and macro-averaged
F-score.15

15Formulae are provided on the task webpage.

8

Task English Arabic Spanish All
EI-reg 48 13 15 76
EI-oc 37 12 14 63
V-reg 37 13 13 63
V-oc 35 13 12 60
E-c 33 12 12 57
Total 190 63 66 319

Table 6: Number of teams in each task–language pair.

6 Systems

Seventy-five teams (about 200 team members)
participated in the shared task, submitting to one
or more of the five subtasks. The numbers
of teams submitting predictions for each task–
language pair are shown in Table 6. The English
tasks were the most popular (33 to 48 teams for
each task); however, the Arabic and Spanish tasks
also got a fair amount of participation (about 13
teams for each task). Emotion intensity regression
attracted the most teams.

Figure 2 shows how frequently various ma-
chine learning algorithms were used in the five
tasks. Observe that SVM/SVR, LSTMs and Bi-
LSTMs were some of the most widely used al-
gorithms. Understandably, regression algorithms
such as Linear Regression were more common in
the regression tasks than in the classification tasks.

Figure 3 shows how frequently various features
were used. Observe that word embeddings, af-
fect lexicon features, and word n-grams were some
of the most widely used features. Many teams
also used sentence embeddings and affect-specific
word embeddings. A number of teams also made
use of distant supervision corpora (usually tweets
with emoticons or hashtagged emotion words).
Several teams made use of the AIT2018 Dis-
tant Supervision Corpus—a corpus of about 100M
tweets containing emotion query words—that we
provided. A small number of teams used training
data from one task to supplement the training data
for another task. (See row ‘AIT-2018 train-dev (other

task)’.)
Figure 4 shows how frequently features from

various affect lexicons were used. Observe that
several of the NRC emotion and sentiment lexi-
cons as well as AFINN and Bing Liu Lexicon were
widely used (Mohammad and Turney, 2013; Mo-
hammad, 2018b; Kiritchenko et al., 2014; Nielsen,
2011; Hu and Liu, 2004). Several teams used
the AffectiveTweets package to obtain lexicon fea-
tures (Mohammad and Bravo-Marquez, 2017).16

16https://affectivetweets.cms.waikato.ac.nz/

Figure 2: Machine learning algorithms used by teams.

Figure 3: Features and resources used by teams.

6.1 Results and Discussion
Tables 7 through 11 show the results obtained by
the top three teams on EI-reg, EI-oc, V-reg, V-oc,
and E-c, respectively. The tables also show: (a) the
results obtained by the median rank team for each
task–language pair, (b) the results obtained by a
baseline SVM system using just word unigrams as
features, and (c) the results obtained by a system
that randomly guesses the prediction—the random
baseline.17 Observe that the top teams obtained
markedly higher results than the SVM unigrams
baselines.

Most of the top-performing teams relied on
both deep neural network representations of
tweets (sentence embeddings) as well as features
derived from existing sentiment and emotion
lexicons. Since many of the teams used similar
models when participating in different tasks, we
present further details of the systems grouped by
the language for which they submitted predictions.

17The results for each of the 75 participating teams are
shown on the task website and also in the supplementary ma-
terial file. (Not shown here due to space constraints.)

9

Pearson r (all instances) Pearson r (gold in 0.5-1)
Test Set Rank Team Name avg. anger fear joy sadness avg. anger fear joy sadness
English

1 SeerNet 79.9 82.7 77.9 79.2 79.8 63.8 70.8 60.8 56.8 66.6
2 NTUA-SLP 77.6 78.2 75.8 77.1 79.2 61.0 63.6 59.5 55.4 65.4
3 PlusEmo2Vec 76.6 81.1 72.8 77.3 75.3 57.9 66.3 49.7 54.2 61.3

23 Median Team 65.3 65.4 67.2 64.8 63.5 49.0 52.6 49.7 42.0 51.7
37 SVM-Unigrams 52.0 52.6 52.5 57.5 45.3 39.6 45.5 30.2 47.6 35.0
46 Random Baseline -0.8 -1.8 2.4 -5.8 2.0 -4.8 -8.8 -1.1 -3.2 -5.9

Arabic
1 AffecThor 68.5 64.7 64.2 75.6 69.4 53.7 46.9 54.1 57.0 56.9
2 EiTAKA 66.7 62.7 62.7 73.8 67.5 53.3 47.9 60.4 49.0 56.0
3 EMA 64.3 61.5 59.3 70.9 65.6 49.0 44.4 45.7 49.7 56.2
6 Median Team 54.2 50.1 50.1 62.8 53.7 44.6 39.1 43.0 45.4 51.0
7 SVM-Unigrams 45.5 40.6 43.5 53.0 45.0 35.3 34.4 36.6 33.2 36.7

13 Random Baseline 1.3 -0.6 1.6 -1.0 5.2 -0.7 0.2 0.7 1.1 -4.8
Spanish

1 AffecThor 73.8 67.6 77.6 75.3 74.6 58.7 54.9 60.4 59.1 60.4
2 UG18 67.7 59.5 68.9 71.2 71.2 51.6 42.2 52.1 54.0 58.1
3 ELiRF-UPV 64.8 59.1 63.2 66.3 70.5 44.0 41.0 37.5 45.6 51.7
6 SVM-Unigrams 54.3 45.7 61.9 53.6 56.0 46.2 42.9 47.4 47.9 46.4
8 Median Team 44.1 34.8 53.3 41.4 47.1 38.2 24.6 42.5 44.8 41.0

15 Random Baseline -1.2 -5.6 0.4 1.8 -1.4 -0.5 0.1 -4.6 1.8 0.8

Table 7: Task 1 emotion intensity regression (EI-reg): Results.

Figure 4: Lexicons used by teams.

High-Ranking English Systems: The best per-
forming system for regression (EI-reg, V-reg) and
ordinal classification (EI-oc,V-oc) sub-tasks in
English was SeerNet. The team proposed a unified
architecture for regression and ordinal classifica-
tion based on the fusion of heterogeneous features
and the ensemble of multiple predictive models.
The following models or resources were used for
feature extraction:

• DeepMoji (Felbo et al., 2017): a neural network
for predicting emoji for tweets trained from a
very large distant supervision corpus. The last
two layers of the network were used as features.

• Skip thoughts: an unsupervised neural network
for encoding sentences (Kiros et al., 2015).

• Sentiment neurons (Radford et al., 2017): a
byte-level recurrent language model for learn-
ing sentence representations.

• Features derived from affective lexicons.

These feature vectors were used for training XG
Boost and Random Forest models (using both re-
gression and classification variants), which were
later stacked using ordinal logistic regression and
ridge regression models for the corresponding or-
dinal classification and regression tasks.

Other teams also relied on both deep neural net-
work representations of tweets and lexicon fea-
tures to learn a model with either a traditional
machine learning algorithm, such as SVM/SVR
(PlusEmo2Vec, TCS Research) and Logistic Re-
gression (PlusEmo2Vec), or a deep neural network
(NTUA-SLP, psyML). The sentence embeddings
were obtained by training a neural network on the
provided training data, a distant supervision cor-
pus (e.g., AIT2018 Distant Supervision Corpus
that has tweets with emotion-related query terms),
sentiment-labeled tweet corpora (e.g., Semeval-
2017 Task4A dataset on sentiment analysis in
Twitter), or by using pre-trained models.

10

Pearson r (all classes) Pearson r (some-emotion)
Test Set Rank Team Name avg anger fear joy sadness avg anger fear joy sadness
English

1 SeerNet 69.5 70.6 63.7 72.0 71.7 54.7 55.9 45.8 61.0 56.0
2 PlusEmo2Vec 65.9 70.4 52.8 72.0 68.3 50.1 54.8 32.0 60.4 53.3
3 psyML 65.3 67.0 58.8 68.6 66.7 50.5 51.7 46.8 57.0 46.3

17 Median Team 53.0 53.0 47.0 55.2 56.7 41.5 40.8 31.0 49.4 44.8
26 SVM-Unigrams 39.4 38.2 35.5 46.9 37.0 29.6 31.5 18.3 39.6 28.9
37 Random Baseline -1.6 -6.2 4.7 1.4 -6.1 -1.1 -3.8 -0.7 -0.2 0.1

Arabic
1 AffecThor 58.7 55.1 55.1 63.1 61.8 43.7 42.6 47.2 44.6 40.4
2 EiTAKA 57.4 57.2 52.9 63.4 56.3 46.0 48.8 47.6 50.9 36.6
3 UNCC 51.7 45.9 48.3 53.8 58.7 36.3 34.1 33.1 38.3 39.8
6 SVM-Unigrams 31.5 28.1 28.1 39.6 30.2 23.6 25.1 25.2 24.1 20.1
7 Median Team 30.5 30.1 24.2 36.0 31.5 24.8 24.2 17.2 28.3 29.4

11 Random Baseline 0.6 -5.7 -1.9 0.8 9.2 1.2 0.2 -2.0 2.9 3.7
Spanish

1 AffecThor 66.4 60.6 70.6 66.7 67.7 54.2 47.4 58.8 53.5 57.2
2 UG18 59.9 49.9 60.6 66.5 62.5 48.5 38.0 49.3 53.1 53.4
3 INGEOTEC 59.6 46.8 63.4 65.5 62.8 46.3 33.0 49.8 53.3 49.2
6 SVM-Unigrams 48.1 44.4 54.6 45.1 48.3 40.8 37.1 46.1 37.1 42.7
8 Median Team 36.0 26.3 28.3 51.3 38.0 33.1 24.0 26.1 50.5 31.6

15 Random Baseline -2.2 1.1 -6.9 -0.5 -2.7 1.6 0.2 -1.8 4.4 3.6

Table 8: Task 2 emotion intensity ordinal classification (EI-oc): Results.

Rank Team Name r (all) r (0.5-1)
English

1 SeerNet 87.3 69.7
2 TCS Research 86.1 68.0
3 PlusEmo2Vec 86.0 69.1

18 Median Team 78.4 59.1
31 SVM-Unigrams 58.5 44.9
35 Random Baseline 3.1 1.2

Arabic
1 EiTAKA 82.8 57.8
2 AffecThor 81.6 59.7
3 EMA 80.4 57.6
6 Median Team 72.0 36.2
9 SVM-Unigrams 57.1 42.3

13 Random Baseline -5.2 2.2
Spanish

1 AffecThor 79.5 65.9
2 Amobee 77.0 64.2
3 ELiRF-UPV 74.2 57.1
6 Median Team 60.9 50.9
9 SVM-Unigrams 57.4 51.5

13 Random Baseline -2.3 2.3

Table 9: Task 3 valence regression (V-reg): Results.

High-Ranking Arabic Systems: Top teams
trained their systems using deep learning tech-
niques, such as CNN, LSTM and Bi-LSTM (Af-
fecThor, EiTAKA, UNCC). Traditional machine
learning approaches, such as Logistic Regression,
Ridge Regression, Random Forest and SVC/SVM,
were also employed (EMA, INGEOTEC, PARTNA,
Tw-StAR). Many teams relied on Arabic pre-
processing and normalization techniques in an
attempt to decrease the sparsity due to mor-
phological complexity in the Arabic language.
EMA applied stemming and lemmatization us-
ing MADAMIRA (a morphological analysis and

Rank Team Name r (all) r (some emo)
English

1 SeerNet 83.6 88.4
2 PlusEmo2Vec 83.3 87.8
3 Amobee 81.3 86.5

18 Median Team 68.2 75.4
24 SVM-Unigrams 50.9 56.0
36 Random Baseline -1.0 -1.2

Arabic
1 EiTAKA 80.9 84.7
2 AffecThor 75.2 79.2
3 INGEOTEC 74.9 78.9
7 Median Team 55.2 59.6
8 SVM-Unigrams 47.1 50.5

14 Random Baseline 1.1 0.9
Spanish

1 Amobee 76.5 80.4
2 AffecThor 75.6 79.2
3 ELiRF-UPV 72.9 76.5
6 Median Team 55.6 59.1
8 SVM-Unigrams 41.8 46.1

13 Random Baseline -4.2 -4.3

Table 10: Task 4 valence ord. classifn. (V-oc): Results.

disambiguation tool for Arabic), while TwStar
and PARTNA used stemmer designed for handling
tweets. In addition, top systems applied addi-
tional pre-processing, such as dropping punctua-
tions, mentions, stop words, and hashtag symbols.

Many teams (e.g., AffecThor, EiTAKA and
EMA) utilized Arabic sentiment lexicons (Mo-
hammad et al., 2016; Badaro et al., 2014). Some
teams (e.g., EMA) used Arabic translations of the
NRC Emotion Lexicon (Mohammad and Turney,
2013). Pre-trained Arabic word embeddings
(AraVec) generated from a large set of tweets
were also used as additional input features by

11

EMA and UNCC. AffecThor collected 4.4 million
Arabic tweets to train their own word embeddings.
Traditional machine learning algorithms (Random
Forest, SVR and Ridge regression) used by EMA
obtained results rivaling those obtained by deep
learning approaches.

High-Ranking Spanish Systems: Convolutional
neural networks and recurrent neural networks
with gated units such as LSTM and GRU were em-
ployed by the winning Spanish teams (AffecThor,
Amobee, ELIRF-UPV, UG18). Word embeddings
trained from Spanish tweets, such as the ones pro-
vided by Rothe et al. (2016), were used as the basis
for training deep learning models. They were also
employed as features for more traditional learning
schemes such as SVMs (UG18). Spanish Affec-
tive Lexicons such as the Spanish Emotion Lexi-
con (SEL) (Sidorov et al., 2012) and ML-SentiCon
(Cruz et al., 2014) were also used to build the fea-
ture space (UWB, SINAI). Translation was used in
two different ways: 1) automatic translation of En-
glish affective lexicons into Spanish (SINAI), and
2): training set augmentation via automatic trans-
lation of English tweets (Amobee, UG18).

6.2 Summary

In the standard deep learning or representation
learning approach, data representations (tweets in
our case) are jointly trained for the task at hand via
neural networks with convolution or recurrent lay-
ers (LeCun et al., 2015). The claim is that this can
lead to more robust representations than relying on
manually-engineered features. In contrast, here,
most of the top-performing systems employed
manually-engineered representations for tweets.
These representations combine trained representa-
tions, models trained on distant supervision cor-
pora, and unsupervised word and sentence embed-
dings, with manually-engineered features, such as
features derived from affect lexicons. This shows
that despite being rather powerful, representation
learning can benefit from working in tandem with
task-specific features. For emotion intensity tasks,
lexicons such as the Affect Intensity Lexicon (Mo-
hammad, 2018b) that provide intensity scores are
particularly helpful. Similarly, tasks on valence,
arousal, and dominance can benefit from lexicons
such as ANEW (Bradley and Lang, 1999) and the
newly created NRC Valence-Arousal-Dominance
Lexicon (Mohammad, 2018a), which has entries
for about 20,000 English terms.

micro macro
Rank Team Name acc. F1 F1

English
1 NTUA-SLP 58.8 70.1 52.8
2 TCS Research 58.2 69.3 53.0
3 PlusEmo2Vec 57.6 69.2 49.7

17 Median Team 47.1 59.9 46.4
21 SVM-Unigrams 44.2 57.0 44.3
28 Random Baseline 18.5 30.7 28.5

Arabic
1 EMA 48.9 61.8 46.1
2 PARTNA 48.4 60.8 47.5
3 Tw-StAR 46.5 59.7 44.6
6 SVM-Unigrams 38.0 51.6 38.4
7 Median Team 25.4 37.9 25.0
9 Random Baseline 17.7 29.4 27.5

Spanish
1 MILAB SNU 46.9 55.8 40.7
2 ELiRF-UPV 45.8 53.5 44.0
3 Tw-StAR 43.8 52.0 39.2
4 SVM-Unigrams 39.3 47.8 38.2
7 Median Team 16.7 27.5 18.7
8 Random Baseline 13.4 22.8 21.3

Table 11: Task 5 emotion classification (E-c): Results.

7 Examining Gender and Race Bias in
Sentiment Analysis Systems

Automatic systems can benefit society by pro-
moting equity, diversity, and fairness. Nonethe-
less, as machine learning systems become more
human-like in their predictions, they are inadver-
tently accentuating and perpetuating inappropriate
human biases. Examples include, loan eligibility
and crime recidivism prediction systems that nega-
tively assess people belonging to a certain pin/zip
code (which may disproportionately impact peo-
ple of a certain race) (Chouldechova, 2017), and
resumé sorting systems that believe that men are
more qualified to be programmers than women
(Bolukbasi et al., 2016). Similarly, sentiment and
emotion analysis systems can also perpetuate and
accentuate inappropriate human biases, e.g., sys-
tems that consider utterances from one race or
gender to be less positive simply because of their
race or gender, or customer support systems that
prioritize a call from an angry male user over a
call from the equally angry female user.

Discrimination-aware data mining focuses on
measuring discrimination in data (Zliobaite, 2015;
Pedreshi et al., 2008; Hajian and Domingo-Ferrer,
2013). In that spirit, we carried out an analysis
of the systems’ outputs for biases towards cer-
tain races and genders. In particular, we wanted
to test a hypothesis that a system should equally
rate the intensity of the emotion expressed by two
sentences that differ only in the gender/race of a
person mentioned. Note that here the term system

12

refers to the combination of a machine learning ar-
chitecture trained on a labeled dataset, and possi-
bly using additional language resources. The bias
can originate from any or several of these parts.

We used Equity Evaluation Corpus (EEC), a re-
cently created dataset of 8,640 English sentences
carefully chosen to tease out gender and race bi-
ases (Kiritchenko and Mohammad, 2018). We
used the EEC as a supplementary test set in the
EI-reg and V-reg English tasks. Specifically, we
compare emotion and sentiment intensity scores
that the systems predict on pairs of sentences in the
EEC that differ only in one word corresponding to
race or gender (e.g., ‘This man made me feel an-
gry’ vs. ‘This woman made me feel angry’). Com-
plete details on how the EEC was created, its con-
stituent sentences, and the analysis of automatic
systems for race and gender bias is available in
Kiritchenko and Mohammad (2018); we summa-
rize the key results below.

Despite the work we describe here and that pro-
posed by others, it should be noted that mecha-
nisms to detect bias can often be circumvented.
Nonetheless, as developers of sentiment analysis
systems, and NLP systems more broadly, we can-
not absolve ourselves of the ethical implications
of the systems we build. Thus, the Equity Evalu-
ation Corpus is not meant to be a catch-all for all
inappropriate biases, but rather just one of the sev-
eral ways by which we can examine the fairness
of sentiment analysis systems. The EEC corpus is
freely available so that both developers and users
can use it, and build on it.18

7.1 Methodology
The race and gender bias evaluation was carried
out on the EI-reg and V-reg predictions of 219
automatic systems (by 50 teams) on the EEC
sentences. The EEC sentences were created from
simple templates such as ‘<noun phrase> feels
devastated’, where <noun phrase> is replaced
with one of the following:

• common African American (AA) female and
male first names,
• common European American (EA) female and

male first names,
• noun phrases referring to females and males,

such as ‘my daughter’ and ‘my son’.

Notably, one can derive pairs of sentences from the
EEC such that they differ only in one phrase cor-

18http://saifmohammad.com/WebPages/Biases-SA.html

responding to gender or race (e.g., ‘My daughter
feels devastated’ and ‘My son feels devastated’).
For the full lists of names, noun phrases, and sen-
tence templates see (Kiritchenko and Mohammad,
2018). In total, 1,584 pairs of scores were com-
pared for gender and 144 pairs of scores were
compared for race.

For each submission, we performed the paired
two sample t-test to determine whether the mean
difference between the two sets of scores (across
the two races and across the two genders) is signif-
icant. We set the significance level to 0.05. How-
ever, since we performed 438 assessments (219
submissions evaluated for biases in both gender
and race), we applied Bonferroni correction. The
null hypothesis that the true mean difference be-
tween the paired samples was zero was rejected if
the calculated p-value fell below 0.05/438.

7.2 Results
7.2.1 Gender Bias Results
Individual submission results were communicated
to the participants. Here, we present the summary
results across all the teams. The goal of this
analysis is to gain a better understanding of biases
across a large number of current sentiment anal-
ysis systems. Thus, we partition the submissions
into three groups according to the bias they show:
• F = M: submissions that showed no statistically

significant difference in intensity scores pre-
dicted for corresponding female and male noun
phrase sentences,
• F↑–M↓: submissions that consistently gave

higher scores for sentences with female noun
phrases than for corresponding sentences with
male noun phrases,
• F↓–M↑: submissions that consistently gave

lower scores for sentences with female noun
phrases than for corresponding sentences with
male noun phrases,

Table 12 shows the number of submissions in each
group. If all the systems are unbiased, then the
number of submissions for the group F = M would
be the maximum, and the number of submissions
in all other groups would be zero.

Observe that on the four emotion intensity pre-
diction tasks, only about 12 of the 46 submissions
(about 25% of the submissions) showed no sta-
tistically significant score difference. On the va-
lence prediction task, only 5 of the 36 submissions
(14% of the submissions) showed no statistically

13

Task F = M F↑–M↓ F↓–M↑ all
EI-reg

anger 12 21 13 46
fear 11 12 23 46
joy 12 25 8 45
sadness 12 18 16 46

V-reg 5 22 9 36

Table 12: Analysis of gender bias: The number of
submissions in each of the three bias groups.

significant score difference. Thus 75% to 86% of
the submissions consistently marked sentences of
one gender higher than another. When predict-
ing anger, joy, or valence, the number of systems
consistently giving higher scores to sentences with
female noun phrases (21–25) is markedly higher
than the number of systems giving higher scores
to sentences with male noun phrases (8–13). (Re-
call that higher valence means more positive sen-
timent.)

In contrast, on the fear task, most submissions
tended to assign higher scores to sentences with
male noun phrases (23) as compared to the num-
ber of systems giving higher scores to sentences
with female noun phrases (12). When predicting
sadness, the number of submissions that mostly
assigned higher scores to sentences with female
noun phrases (18) is close to the number of
submissions that mostly assigned higher scores to
sentences with male noun phrases (16).

7.2.2 Race Bias Results
We did a similar analysis as for gender, for race.
For each submission on each task, we calculated
the difference between the average predicted score
on the set of sentences with African American
(AA) names and the average predicted score on
the set of sentences with European American (EA)
names. Then, we aggregated the results over all
such sentence pairs in the EEC.

Table 13 shows the results. The table has the
same form and structure as the gender result ta-
ble. Observe that the number of submissions with
no statistically significant score difference for sen-
tences pertaining to the two races is about 5–11
(about 11% to 24%) for the four emotions and 3
(about 8%) for valence. These numbers are even
lower than what was found for gender.

The majority of the systems assigned higher
scores to sentences with African American names
on the tasks of anger, fear, and sadness intensity
prediction. On the joy and valence tasks, most
submissions tended to assign higher scores to sen-

Task AA = EA AA↑–EA↓ AA↓–EA↑ All
EI-reg

anger 11 28 7 46
fear 5 29 12 46
joy 8 7 30 45
sadness 6 35 5 46

V-reg 3 4 29 36

Table 13: Analysis of race bias: The number of sub-
missions in each of the three bias groups.

tences with European American names.
We found the score differences across genders

and across races to be somewhat small (< 0.03 in
magnitude, which is 3% of the 0 to 1 score range).
However, what impact a consistent bias, even with
a magnitude < 3%, might have in downstream ap-
plications merits further investigation.

8 Summary

We organized the SemEval-2018 Task 1: Affect
in Tweets, which included five subtasks on infer-
ring the affectual state of a person from their tweet.
For each task, we provided training, development,
and test datasets for English, Arabic, and Span-
ish tweets. This involved creating a new Affect
in Tweets dataset of more than 22,000 tweets such
that subsets are annotated for a number of emotion
dimensions. For each emotion dimension, we an-
notated the data not just for coarse classes (such
as anger or no anger) but also for fine-grained
real-valued scores indicating the intensity of emo-
tion. We used Best–Worst Scaling to obtain fine-
grained real-valued intensity scores and showed
that the annotations are reliable (split-half reliabil-
ity scores > 0.8).

Seventy-five teams made 319 submissions to
the fifteen task–language pairs. Most of the top-
performing teams relied on both deep neural net-
work representations of tweets (sentence embed-
dings) as well as features derived from existing
sentiment and emotion lexicons. Apart from the
usual evaluations for the quality of predictions,
we also examined 219 EI-reg and V-reg English
submissions for bias towards particular races and
genders using the Equity Evaluation Corpus. We
found that a majority of the systems consistently
provided slightly higher scores for one race or gen-
der. All of the data is made freely available.19

19https://competitions.codalab.org/competitions/17751

14

References
Gilbert Badaro, Ramy Baly, Hazem M. Hajj, Nizar

Habash, and Wassim El-Hajj. 2014. A large scale
arabic sentiment lexicon for arabic opinion mining.
In Proceedings of the EMNLP 2014 Workshop on
Arabic Natural Language Processing, pages 165–
173, Doha, Qatar.

Tolga Bolukbasi, Kai-Wei Chang, James Y Zou,
Venkatesh Saligrama, and Adam T Kalai. 2016.
Man is to computer programmer as woman is to
homemaker? debiasing word embeddings. In Pro-
ceedings of the Annual Conference on Neural In-
formation Processing Systems (NIPS), pages 4349–
4357.

Margaret M Bradley and Peter J Lang. 1999. Affective
norms for English words (ANEW): Instruction man-
ual and affective ratings. Technical report, The Cen-
ter for Research in Psychophysiology, University of
Florida.

Alexandra Chouldechova. 2017. Fair prediction with
disparate impact: A study of bias in recidivism pre-
diction instruments. Big data, 5(2):153–163.

LJ Cronbach. 1946. A case study of the splithalf reli-
ability coefficient. Journal of educational psychol-
ogy, 37(8):473.

Fermı́n L Cruz, José A Troyan, Beatriz Pontes, and
F Javier Ortega. 2014. Ml-senticon: Un lexicón
multilingüe de polaridades semánticas a nivel de
lemas. Procesamiento del Lenguaje Natural, (53).

Paul Ekman. 1992. An argument for basic emotions.
Cognition and Emotion, 6(3):169–200.

Bjarke Felbo, Alan Mislove, Anders Søgaard, Iyad
Rahwan, and Sune Lehmann. 2017. Using millions
of emoji occurrences to learn any-domain represen-
tations for detecting sentiment, emotion and sar-
casm. In Proceedings of the 2017 Conference on
Empirical Methods in Natural Language Process-
ing, 2017, Copenhagen, Denmark, September 9-11,
2017, pages 1615–1625.

T. N. Flynn and A. A. J. Marley. 2014. Best-worst scal-
ing: theory and methods. In Stephane Hess and An-
drew Daly, editors, Handbook of Choice Modelling,
pages 178–201. Edward Elgar Publishing.

Nico H Frijda. 1988. The laws of emotion. American
psychologist, 43(5):349.

Sara Hajian and Josep Domingo-Ferrer. 2013. A
methodology for direct and indirect discrimination
prevention in data mining. IEEE Transactions
on Knowledge and Data Engineering, 25(7):1445–
1459.

Minqing Hu and Bing Liu. 2004. Mining and summa-
rizing customer reviews. In Proceedings of the tenth
ACM SIGKDD international conference on Knowl-
edge discovery and data mining, pages 168–177,
New York, NY, USA. ACM.

Svetlana Kiritchenko and Saif M. Mohammad. 2016.
Capturing reliable fine-grained sentiment associa-
tions by crowdsourcing and best–worst scaling. In
Proceedings of The 15th Annual Conference of the
North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies (NAACL), San Diego, California.

Svetlana Kiritchenko and Saif M. Mohammad. 2017.
Best-worst scaling more reliable than rating scales:
A case study on sentiment intensity annotation. In
Proceedings of The Annual Meeting of the Associa-
tion for Computational Linguistics (ACL), Vancou-
ver, Canada.

Svetlana Kiritchenko and Saif M. Mohammad. 2018.
Examining gender and race bias in two hundred sen-
timent analysis systems. In Proceedings of the 7th
Joint Conference on Lexical and Computational Se-
mantics (*SEM).

Svetlana Kiritchenko, Xiaodan Zhu, and Saif M. Mo-
hammad. 2014. Sentiment analysis of short in-
formal texts. Journal of Artificial Intelligence Re-
search, 50:723–762.

Ryan Kiros, Yukun Zhu, Ruslan R Salakhutdinov,
Richard Zemel, Raquel Urtasun, Antonio Torralba,
and Sanja Fidler. 2015. Skip-thought vectors. In
Advances in neural information processing systems,
pages 3294–3302.

G Frederic Kuder and Marion W Richardson. 1937.
The theory of the estimation of test reliability. Psy-
chometrika, 2(3):151–160.

Yann LeCun, Yoshua Bengio, and Geoffrey Hinton.
2015. Deep learning. Nature, 521(7553):436.

Jordan J. Louviere. 1991. Best-worst scaling: A model
for the largest difference judgments. Working Paper.

Saif Mohammad, Mohammad Salameh, and Svetlana
Kiritchenko. 2016. Sentiment lexicons for arabic
social media. In Proceedings of the Tenth Interna-
tional Conference on Language Resources and Eval-
uation (LREC 2016), Paris, France. European Lan-
guage Resources Association (ELRA).

Saif M. Mohammad. 2016. Sentiment analysis: De-
tecting valence, emotions, and other affectual states
from text. In Herb Meiselman, editor, Emotion Mea-
surement. Elsevier.

Saif M. Mohammad. 2018a. Obtaining reliable hu-
man ratings of valence, arousal, and dominance for
20,000 english words. In Proceedings of The An-
nual Meeting of the Association for Computational
Linguistics (ACL), Melbourne, Australia.

Saif M. Mohammad. 2018b. Word affect intensities. In
Proceedings of the 11th Edition of the Language Re-
sources and Evaluation Conference (LREC-2018),
Miyazaki, Japan.

15

Saif M. Mohammad and Felipe Bravo-Marquez. 2017.
WASSA-2017 shared task on emotion intensity. In
Proceedings of the Workshop on Computational Ap-
proaches to Subjectivity, Sentiment and Social Me-
dia Analysis (WASSA), Copenhagen, Denmark.

Saif M. Mohammad and Svetlana Kiritchenko. 2018.
Understanding emotions: A dataset of tweets to
study interactions between affect categories. In Pro-
ceedings of the 11th Edition of the Language Re-
sources and Evaluation Conference (LREC-2018),
Miyazaki, Japan.

Saif M. Mohammad, Parinaz Sobhani, and Svetlana
Kiritchenko. 2017. Stance and sentiment in tweets.
Special Section of the ACM Transactions on Inter-
net Technology on Argumentation in Social Media,
17(3).

Saif M. Mohammad and Peter D. Turney. 2013.
Crowdsourcing a word–emotion association lexicon.
Computational Intelligence, 29(3):436–465.

Finn Årup Nielsen. 2011. A new ANEW: Evaluation
of a word list for sentiment analysis in microblogs.
In Proceedings of the ESWC Workshop on ’Mak-
ing Sense of Microposts’: Big things come in small
packages, pages 93–98, Heraklion, Crete.

Bryan Orme. 2009. Maxdiff analysis: Simple count-
ing, individual-level logit, and HB. Sawtooth Soft-
ware, Inc.

Raquel Mochales Palau and Marie-Francine Moens.
2009. Argumentation mining: the detection, clas-
sification and structure of arguments in text. In Pro-
ceedings of the 12th international conference on ar-
tificial intelligence and law, pages 98–107.

W Parrot. 2001. Emotions in Social Psychology. Psy-
chology Press.

Dino Pedreshi, Salvatore Ruggieri, and Franco Turini.
2008. Discrimination-aware data mining. In Pro-
ceedings of the 14th ACM SIGKDD International
Conference on Knowledge Discovery and Data Min-
ing, pages 560–568.

Robert Plutchik. 1980. A general psychoevolutionary
theory of emotion. Emotion: Theory, research, and
experience, 1(3):3–33.

Alec Radford, Rafal Jozefowicz, and Ilya Sutskever.
2017. Learning to generate reviews and discovering
sentiment. arXiv preprint arXiv:1704.01444.

Sascha Rothe, Sebastian Ebert, and Hinrich Schütze.
2016. Ultradense word embeddings by orthogonal
transformation. In HLT-NAACL.

James A Russell. 1980. A circumplex model of af-
fect. Journal of personality and social psychology,
39(6):1161.

James A Russell. 2003. Core affect and the psycholog-
ical construction of emotion. Psychological review,
110(1):145.

Grigori Sidorov, Sabino Miranda-Jiménez, Francisco
Viveros-Jiménez, Alexander Gelbukh, Noé Castro-
Sánchez, Francisco Velásquez, Ismael Dı́az-Rangel,
Sergio Suárez-Guerra, Alejandro Treviño, and Juan
Gordon. 2012. Empirical study of machine learn-
ing based approach for opinion mining in tweets. In
Mexican international conference on Artificial intel-
ligence, pages 1–14. Springer.

Michael Wojatzki, Saif M. Mohammad, Torsten Zesch,
and Svetlana Kiritchenko. 2018. Quantifying quali-
tative data for understanding controversial issues. In
Proceedings of the 11th Edition of the Language Re-
sources and Evaluation Conference (LREC-2018),
Miyazaki, Japan.

Indre Zliobaite. 2015. A survey on measuring indirect
discrimination in machine learning. arXiv preprint
arXiv:1511.00148.

Appendix

Table 14 shows the summary details of the
annotations done for the SemEval-2018 Affect in
Tweets dataset. Figure 5 shows the histograms
of the EI-reg tweets in the anger, joy, sadness,
and fear datasets. The tweets are grouped into
bins of scores 0–0.05, 0.05–0.1, and so on until
0.95–1. The colors for the bins correspond to
their ordinal classes: no emotion, low emotion,
moderate emotion, and high emotion. The ordinal
classes were determined from the EI-oc manual
annotations.

Supplementary Material: The supplementary
pdf associated with this paper includes longer ver-
sions of tables included in this paper. Tables 1
to 15 in the supplementary pdf show result tables
that include the scores of each of the 319 systems
participating in the tasks. Table 16 in the supple-
mentary pdf shows the annotator agreement for
each of the twelve classes, for each of the three
languages, in the Multi-label Emotion Classifica-
tion (E-c) Dataset. We observe that the Fleiss’ κ
scores are markedly higher for the frequently oc-
curring four basic emotions (joy, sadness, fear, and
anger), and lower for the less frequent emotions.
(Frequencies for the emotions are shown in Table
2.) Also, agreement is low for the neutral class.
This is not surprising because the boundary be-
tween neutral (or no emotion) and slight emotion
is fuzzy. This means that often at least one or two
annotators indicate that the person is feeling some
joy or some sadness, even if most others indicate
that the person is not feeling any emotion.

16

Figure 5: Emotion intensity score (EI-reg) and ordinal class (EI-oc) distributions for the four basic emotions in the SemEval-
2018 AIT development and test sets combined. The distribution is similar for the training set (annotated in earlier work).

Dataset Scheme Location Item #Items #Annotators MAI #Q/Item #Annotat.
English

E-c categorical World tweet 11,090 303 7 2 174,356
EI-reg

anger BWS USA 4-tuple of tweets 2,780 168 4 2 27,046
fear BWS USA 4-tuple of tweets 2,750 220 4 2 26,908
joy BWS USA 4-tuple of tweets 2,790 132 4 2 26,676
sadness BWS USA 4-tuple of tweets 2,744 118 4 2 26,260

V-reg BWS USA 4-tuple of tweets 5,134 175 4 2 49,856
Total 331,102

Arabic
E-c categorical World tweet 4,400 175 7 1 36,274
EI-reg

anger BWS World 4-tuple of tweets 2,800 221 4 2 25,960
fear BWS World 4-tuple of tweets 2,800 197 4 2 25,872
joy BWS World 4-tuple of tweets 2,800 133 4 2 24,690
sadness BWS World 4-tuple of tweets 2,800 177 4 2 25,834

V-reg BWS World 4-tuple of tweets 3,600 239 4 2 36,824
Total 175,454

Spanish
E-c categorical World tweet 7,182 160 7 1 56,274
EI-reg

anger BWS World 4-tuple of tweets 3,972 157 3 2 27,456
fear BWS World 4-tuple of tweets 3,972 388 3 2 29,530
joy BWS World 4-tuple of tweets 3,980 323 3 2 28,300
sadness BWS World 4-tuple of tweets 3,982 443 3 2 28,462

V-reg BWS World 4-tuple of tweets 4,886 220 3 2 38,680
Total 208,702

Table 14: Summary details of the current annotations done for the SemEval-2018 Affect in Tweets Dataset. MAI
= Median Annotations per Item. Q = annotation questions.

17

Proceedings of the 12th International Workshop on Semantic Evaluation (SemEval-2018), pages 18–23
New Orleans, Louisiana, June 5–6, 2018. ©2018 Association for Computational Linguistics

SeerNet at SemEval-2018 Task 1: Domain Adaptation for Affect in Tweets

Venkatesh Duppada, Royal Jain, Sushant Hiray
Seernet Technologies, LLC

{venkatesh.duppada, royal.jain, sushant.hiray}@seernet.io

Abstract
The paper describes the best performing sys-
tem for the SemEval-2018 Affect in Tweets
(English) sub-tasks. The system focuses on the
ordinal classification and regression sub-tasks
for valence and emotion. For ordinal classi-
fication valence is classified into 7 different
classes ranging from -3 to 3 whereas emotion
is classified into 4 different classes 0 to 3 sep-
arately for each emotion namely anger, fear,
joy and sadness. The regression sub-tasks es-
timate the intensity of valence and each emo-
tion. The system performs domain adaptation
of 4 different models and creates an ensem-
ble to give the final prediction. The proposed
system achieved 1st position out of 75 teams
which participated in the fore-mentioned sub-
tasks. We outperform the baseline model by
margins ranging from 49.2% to 76.4%, thus,
pushing the state-of-the-art significantly.

1 Introduction

Twitter is one of the most popular micro-blogging
platforms that has attracted over 300M daily
users1 with over 500M 2 tweets sent every day.
Tweet data has attracted NLP researchers because
of the ease of access to large data-source of peo-
ple expressing themselves online. Tweets are
micro-texts comprising of emoticons, hashtags as
well as location data, making them feature rich
for performing various kinds of analysis. Tweets
provide an interesting challenge as users tend to
write grammatically incorrect and use informal
and slang words.

In domain of natural language processing, emo-
tion recognition is the task of associating words,
phrases or documents with emotions from prede-
fined using psychological models. The classifica-
tion of emotions has mainly been researched from

1https://www.statista.com/statistics/282087/number-of-
monthly-active-twitter-users/

2http://www.internetlivestats.com/twitter-statistics/

two fundamental viewpoints. (Ekman, 1992) and
(Plutchik, 2001) proposed that emotions are dis-
crete with each emotion being a distinct entity.
On the contrary, (Mehrabian, 1980) and (Russell,
1980) propose that emotions can be categorized
into dimensional groupings.

Affect in Tweets (Mohammad et al., 2018) -
shared task in SemEval-2018 focuses on extract-
ing affect from tweets confirming to both vari-
ants of the emotion models, extracting valence (di-
mensional) and emotion (discrete). Previous ver-
sion of the task (Mohammad and Bravo-Marquez,
2017) focused on estimating the emotion intensity
in tweets. We participated in 4 sub-tasks of Affect
in Tweets, all dealing with English tweets. The
sub-tasks were: EI-oc: Ordinal classification of
emotion intensity of 4 different emotions (anger,
joy, sadness, fear), EI-reg: to determine the inten-
sity of emotions (anger, joy, sadness, fear) into a
real-valued scale of 0-1, V-oc: Ordinal classifica-
tion of valence into one of 7 ordinal classes [-3,
3], V-reg: determine the intensity of valence on
the scale of 0-1.

Prior work in extracting Valence, Arousal,
Dominance (VAD) from text primarily relied
on using and extending lexicons (Bestgen and
Vincze, 2012) (Turney et al., 2011). Recent ad-
vancements in deep learning have been applied
in detecting sentiments from tweets (Tang et al.,
2014), (Liu et al., 2012), (Mohammad et al.,
2013).

In this work, we use various state-of-the-art ma-
chine learning models and perform domain adap-
tation (Pan and Yang, 2010) from their source task
to the target task. We use multi-view ensemble
learning technique (Kumar and Minz, 2016) to
produce the optimal feature-set partitioning for the
classifier. Finally, results from multiple such clas-
sifiers are stacked together to create an ensemble
(Polikar, 2012).

18

In this paper, we describe our approach and ex-
periments to solve this problem. The rest of the
paper is laid out as follows: Section 2 describes
the system architecture, Section 3 reports results
and inference from different experiments. Finally
we conclude in Section 4 along with a discussion
about future work.

2 System Description

2.1 Pipeline

Figure 1 details the System Architecture. We now
describe how all the different modules are tied to-
gether. The input raw tweet is pre-processed as
described in Section 2.2. The processed tweet is
passed through all the feature extractors described
in Section 2.3. At the end of this step, we extract
5 different feature vectors corresponding to each
tweet. Each feature vector is passed through the
model zoo where classifiers with different hyper
parameters are tuned. The models are described in
Section 2.4. For each vector, the results of top-2
performing models (based on cross-validation) are
retained. At the end of this step, we’ve 10 differ-
ent results corresponding to each tweet. All these
results are ensembled together via stacking as de-
scribed in Section 2.4.3. Finally, the output from
the ensembler is the output returned by the system.

2.2 Pre-processing

The pre-processing step modifies the raw tweets
to prepare for feature extraction. Tweets are
pre-processed using tweettokenize 3 tool. Twit-
ter specific keywords are replaced with tokens,
namely, USERNAME, PHONENUMBER, URLs,
timestamps. All characters are converted to
lowercase. A contiguous sequence of emojis is
first split into individual emojis. We then replace
an emoji with its description. The descriptions
were scraped from EmojiPedia4.

2.3 Feature Extraction

As mentioned in Section 1, we perform transfer
learning from various state-of-the-art deep learn-
ing techniques. We will go through the following
sub-sections to understand these models in detail.

2.3.1 DeepMoji
DeepMoji (Felbo et al., 2017) performs distant su-
pervision on a very large dataset (1246 million

3https://github.com/jaredks/tweetokenize
4https://emojipedia.org/

tweets) comprising of noisy labels (emojis). Deep-
Moji was able to obtain state-of-the-art results in
various downstream tasks using transfer learning.
This makes it an ideal candidate for domain adap-
tation into related target tasks. We extract 2 differ-
ent feature sets by extracting the embeddings from
the softmax and the attention layer from the pre-
trained DeepMoji model. The vector from soft-
max layer is of dimension 64 and the vector from
attention layer is of dimension 2304.

2.3.2 Skip-Thought Vectors
Skip-Thought vectors (Kiros et al., 2015) is an off-
the-shelf encoder that can produce highly generic
sentence representations. Since tweets are re-
stricted by character limit, skip-thought vectors
can create a good semantic representation. This
representation is then passed to the classifier. The
representation is of dimension 4800.

2.3.3 Unsupervised Sentiment Neuron
(Radford et al., 2017) developed an unsupervised
system which learned an excellent representation
of sentiment. The original model was trained to
generate amazon reviews, this makes the senti-
ment neuron an ideal candidate for transfer learn-
ing. The representation extracted from Sentiment
Neuron is of size 4096.

2.3.4 EmoInt
Apart from all the pre-trained embeddings, we
choose to also include various lexical features bun-
dled through the EmoInt package 5 (Duppada and
Hiray, 2017) The lexical features include AFINN
(Nielsen, 2011), NRC Affect Intensities (Moham-
mad, 2017), NRC-Word-Affect Emotion Lexi-
con (Mohammad and Turney, 2010), NRC Hash-
tag Sentiment Lexicon and Sentiment140 Lexicon
(Mohammad et al., 2013). The final feature vector
is the concatenation of all the individual features.
This feature vector is of size (141, 1).

This gives us five different feature vector vari-
ants. All of these feature vectors are passed indi-
vidually to the underlying models. The pipeline is
explained in detail in Section 2.1

2.4 Machine Learning Models

We participated in 4 sub-tasks, namely, EI-oc, EI-
reg, V-oc, V-reg. Two of the sub-tasks are ordi-
nal classification and the remaining two are regres-
sions. We describe our approach for building ML

5https://github.com/SEERNET/EmoInt

19

Figure 1: System Architecture.

models for both the variants in the upcoming sec-
tions.

2.4.1 Ordinal Classification
We participated in the emotion intensity ordinal
classification where the task was to predict the
intensity of emotions from the categories anger,
fear, joy, and, sadness. Separate datasets were pro-
vided for each emotion class. The goal of the sub-
task of valence ordinal classification was to clas-
sify the tweet into one of 7 ordinal classes [-3, 3].
We experimented with XG Boost Classifier, Ran-
dom Forest Classifier of sklearn (Pedregosa et al.,
2011).

2.4.2 Regression
For the regression tasks (E-reg, V-reg), the goal
was to predict the intensity on a scale of 0-1.
We experimented with XG Boost Regressor, Ran-
dom Forest Regressor of sklearn (Pedregosa et al.,
2011).

The hyper-parameters of each model were tuned
separately for each sub-task. The top-2 best mod-
els corresponding to each feature vector type were
chosen after performing 7-fold cross-validation.

2.4.3 Stacking
Once we get the results from all the classi-
fiers/regressors for a given tweet, we use stack-
ing ensemble technique to combine the results. In
this case, we pass the results from the models to
a meta classifier/regressor as input. The output of
this meta model is treated as the final output of the
system.

We observed that using ordinal regressors gave
us better performance than using classifiers which
treat each output class as disjoint. Ordinal Re-
gression is a family of statistical learning meth-

Task Baseline 2nd best Our Results
EI-reg 0.520 0.776 0.799
EI-oc 0.394 0.659 0.695
V-reg 0.585 0.861 0.873
V-oc 0.509 0.833 0.836

Table 1: Primary metrics across various sub-tasks.

ods where the output variable is discrete and or-
dered. We use the ordinal logistic classification
with squared error (Rennie and Srebro, 2005) from
the python library Mord. 6 (Rennie and Srebro,
2005)

In case of regression sub-tasks we observed the
best cross validation results with Ridge Regres-
sion. Hence, we chose Ridge Regression as the
meta regressor.

3 Results and Analysis

3.1 Task Results
The metrics used for ranking various systems are
discussed in this section.

3.1.1 Primary Metrics
Pearson correlation with gold labels was used as
a primary metric for ranking the systems. For EI-
reg and EI-oc tasks Pearson correlation is macro-
averaged (MA Pearson) over the four emotion cat-
egories.

Table 1 describes the results based on primary
metrics for various sub-tasks in English language.
Our system achieved the best performance in each
of the four sub-tasks. We have also included the
results of the baseline and second best perform-
ing system for comparison. As we can observe,

6https://github.com/fabianp/mord

20

Task Pearson (SE) Kappa Kappa (SE)
V-oc 0.884 (1) 0.831 (1) 0.873 (1)
EI-oc 0.547 (1) 0.669 (1) 0.503 (1)

Table 2: Secondary metrics for ordinal classification
sub-tasks. System rank is mentioned in the brackets.

Task Pearson (gold in 0.5-1)
V-reg 0.697 (1)
EI-reg 0.638 (1)

Table 3: Secondary metrics for regression sub-tasks.
System rank is mentioned in brackets.

our system vastly outperforms the baseline and is a
significant improvement over the second best sys-
tem, especially, in the emotion sub-tasks.

3.1.2 Secondary Metrics
The competition also uses some secondary met-
rics to provide a different perspective on the re-
sults. Pearson correlation for a subset of the test
set that includes only those tweets with intensity
score greater or equal to 0.5 is used as the sec-
ondary metric for the regression tasks. For ordi-
nal classification tasks following secondary met-
rics were used:

• Pearson correlation for a subset of the test
set that includes only those tweets with in-
tensity classes low X, moderate X, or high X
(where X is an emotion). The organizers re-
fer to this set of tweets as the some-emotion
subset (SE).

• Weighted quadratic kappa on the full test set

• Weighted quadratic kappa on the some-
emotion subset of the test set

The results for secondary metrics are listed in
Table 2 and 3. We have also included the ranking
in brackets along with the score. We see that our
system achieves the top rank according to all the
secondary metrics, thus, proving its robustness.

3.2 Feature Importance
The performance of the system is highly depen-
dent on the discriminative ability of the tweet rep-
resentation generated by the featurizers. We mea-
sure the predictive power for each of the featurizer
used by calculating the pearson correlation of the
system using only that featurizer. We describe the
results for each sub task separately in tables 4-7.

Feature Set Pearson
Deepmoji (softmax layer) 0.808
Deepmoji (attention layer) 0.843
EmoInt 0.823
Unsupervised sentiment Neuron 0.714
Skip-Thought Vectors 0.777
Combined 0.873

Table 4: Pearson Correlation for V-reg task. Best re-
sults are highlighted in bold.

Feature Set Pearson
Deepmoji (softmax layer) 0.780
Deepmoji (attention layer) 0.813
EmoInt 0.785
Unsupervised sentiment Neuron 0.685
Skip-Thought Vectors 0.748
Combined 0.836

Table 5: Pearson Correlation for V-oc task. Best re-
sults are highlighted in bold.

Feature Set Pearson
Deepmoji (softmax layer) 0.703
Deepmoji (attention layer) 0.756
EmoInt 0.694
Unsupervised sentiment Neuron 0.548
Skip-Thought Vectors 0.656
Combined 0.799

Table 6: Macro-Averaged Pearson Correlation for EI-
reg task. Best results are highlighted in bold.

Feature Set Pearson
Deepmoji softmax layer 0.611
Deepmoji attention layer 0.664
EmoInt 0.596
Unsupervised sentiment Neuron 0.445
Skip-Thought Vectors 0.557
Combined 0.695

Table 7: Macro-Averaged Pearson Correlation for EI-
oc task. Best results are highlighted in bold.

We observe that deepmoji featurizer is the most
powerful featurizer of all the ones that we’ve used.
Also, we can see that stacking ensembles of mod-
els trained on the outputs of multiple featurizers
gives a significant improvement in performance.

21

3.3 System Limitations

We analyze the data points where our model’s pre-
diction is far from the ground truth. We observed
some limitations of the system, such as, some-
times understanding a tweet’s requires contextual
knowledge about the world. Such examples can
be very confusing for the model. We use deepmoji
pre-trained model which uses emojis as proxy for
labels, however partly due to the nature of twitter
conversations same emojis can be used for mul-
tiple emotions, for example, joy emojis can be
sometimes used to express joy, sometimes for sar-
casm or for insulting someone. One such example
is ’Your club is a laughing stock’. Such cases are
sometimes incorrectly predicted by our system.

4 Future Work & Conclusion

The paper studies the effectiveness of various rep-
resentations of tweets and proposes ways to com-
bine them to obtain state-of-the-art results. We
also show that stacking ensemble of various clas-
sifiers learnt using different representations can
vastly improve the robustness of the system.

Further improvements can be made in the pre-
processing stage. Instead of discarding various
tokens such as punctuation’s, incorrectly spelled
words, etc, we can utilize the information by learn-
ing their semantic representations. Also, we can
improve the system performance by employing
multi-task learning techniques as various emotions
are not independent of each other and information
about one emotion can aid in predicting the other.
Furthermore, more robust techniques can be em-
ployed for distant supervision which are less prone
to noisy labels to get better quality training data.

References
Yves Bestgen and Nadja Vincze. 2012. Checking

and bootstrapping lexical norms by means of word
similarity indexes. Behavior research methods,
44(4):998–1006.

Venkatesh Duppada and Sushant Hiray. 2017. Seernet
at emoint-2017: Tweet emotion intensity estimator.
In Proceedings of the 8th Workshop on Computa-
tional Approaches to Subjectivity, Sentiment and So-
cial Media Analysis, pages 205–211.

Paul Ekman. 1992. An argument for basic emotions.
Cognition & emotion, 6(3-4):169–200.

Bjarke Felbo, Alan Mislove, Anders Søgaard, Iyad
Rahwan, and Sune Lehmann. 2017. Using millions

of emoji occurrences to learn any-domain represen-
tations for detecting sentiment, emotion and sar-
casm. In Proceedings of the 2017 Conference on
Empirical Methods in Natural Language Process-
ing, pages 1615–1625.

Ryan Kiros, Yukun Zhu, Ruslan R Salakhutdinov,
Richard Zemel, Raquel Urtasun, Antonio Torralba,
and Sanja Fidler. 2015. Skip-thought vectors. In
Advances in neural information processing systems,
pages 3294–3302.

Vipin Kumar and Sonajharia Minz. 2016. Multi-view
ensemble learning: an optimal feature set partition-
ing for high-dimensional data classification. Knowl-
edge and Information Systems, 49(1):1–59.

Kun-Lin Liu, Wu-Jun Li, and Minyi Guo. 2012.
Emoticon smoothed language models for twitter
sentiment analysis. In Aaai.

Albert Mehrabian. 1980. Basic dimensions for a gen-
eral psychological theory implications for personal-
ity, social, environmental, and developmental stud-
ies.

Saif M Mohammad. 2017. Word affect intensities.
arXiv preprint arXiv:1704.08798.

Saif M Mohammad and Felipe Bravo-Marquez. 2017.
Wassa-2017 shared task on emotion intensity. arXiv
preprint arXiv:1708.03700.

Saif M. Mohammad, Felipe Bravo-Marquez, Mo-
hammad Salameh, and Svetlana Kiritchenko. 2018.
Semeval-2018 Task 1: Affect in tweets. In Proceed-
ings of International Workshop on Semantic Evalu-
ation (SemEval-2018), New Orleans, LA, USA.

Saif M Mohammad, Svetlana Kiritchenko, and Xiao-
dan Zhu. 2013. Nrc-canada: Building the state-
of-the-art in sentiment analysis of tweets. arXiv
preprint arXiv:1308.6242.

Saif M Mohammad and Peter D Turney. 2010. Emo-
tions evoked by common words and phrases: Us-
ing mechanical turk to create an emotion lexicon. In
Proceedings of the NAACL HLT 2010 workshop on
computational approaches to analysis and genera-
tion of emotion in text, pages 26–34. Association for
Computational Linguistics.

Finn Årup Nielsen. 2011. A new anew: Evaluation of a
word list for sentiment analysis in microblogs. arXiv
preprint arXiv:1103.2903.

Sinno Jialin Pan and Qiang Yang. 2010. A survey on
transfer learning. IEEE Transactions on knowledge
and data engineering, 22(10):1345–1359.

Fabian Pedregosa, Gaël Varoquaux, Alexandre Gram-
fort, Vincent Michel, Bertrand Thirion, Olivier
Grisel, Mathieu Blondel, Peter Prettenhofer, Ron
Weiss, Vincent Dubourg, et al. 2011. Scikit-learn:
Machine learning in python. Journal of machine
learning research, 12(Oct):2825–2830.

22

Robert Plutchik. 2001. The nature of emotions: Hu-
man emotions have deep evolutionary roots, a fact
that may explain their complexity and provide tools
for clinical practice. American scientist, 89(4):344–
350.

Robi Polikar. 2012. Ensemble learning. In Ensemble
machine learning, pages 1–34. Springer.

Alec Radford, Rafal Jozefowicz, and Ilya Sutskever.
2017. Learning to generate reviews and discovering
sentiment. arXiv preprint arXiv:1704.01444.

Jason DM Rennie and Nathan Srebro. 2005. Loss func-
tions for preference levels: Regression with discrete
ordered labels. In Proceedings of the IJCAI mul-
tidisciplinary workshop on advances in preference
handling, pages 180–186. Kluwer Norwell, MA.

James A Russell. 1980. A circumplex model of af-
fect. Journal of personality and social psychology,
39(6):1161.

Duyu Tang, Furu Wei, Nan Yang, Ming Zhou, Ting
Liu, and Bing Qin. 2014. Learning sentiment-
specific word embedding for twitter sentiment clas-
sification. In Proceedings of the 52nd Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), volume 1, pages 1555–
1565.

Peter D Turney, Yair Neuman, Dan Assaf, and Yohai
Cohen. 2011. Literal and metaphorical sense iden-
tification through concrete and abstract context. In
Proceedings of the Conference on Empirical Meth-
ods in Natural Language Processing, pages 680–
690. Association for Computational Linguistics.

23

Proceedings of the 12th International Workshop on Semantic Evaluation (SemEval-2018), pages 24–33
New Orleans, Louisiana, June 5–6, 2018. ©2018 Association for Computational Linguistics

SemEval 2018 Task 2: Multilingual Emoji Prediction
Francesco Barbieri♦ Jose Camacho-Collados♣ Francesco Ronzano♥

Luis Espinosa-Anke♣ Miguel Ballesteros♠ Valerio Basile♥
Viviana Patti♥ Horacio Saggion♦

♦ Large Scale Text Understanding Systems Lab, TALN. UPF. Barcelona, Spain
♣School of Computer Science and Informatics, Cardiff University

♠IBM Research, U.S
♥ Integrative Biomedical Informatics Group, GRIB, IMIM-UPF, Barcelona, Spain

♥Dipartimento di Informatica, University of Turin, Italy
♦♥{name.surname}@upf.edu, ♠miguel.ballesteros@ibm.com,

♣{espinosa-ankel,camachocolladosj}@cardiff.ac.uk,
♥{patti,basile}@di.unito.it

Abstract

This paper describes the results of the first
shared task on Multilingual Emoji Prediction,
organized as part of SemEval 2018. Given the
text of a tweet, the task consists of predicting
the most likely emoji to be used along such
tweet. Two subtasks were proposed, one for
English and one for Spanish, and participants
were allowed to submit a system run to one or
both subtasks. In total, 49 teams participated
in the English subtask and 22 teams submitted
a system run to the Spanish subtask. Evalua-
tion was carried out emoji-wise, and the final
ranking was based on macro F-Score. Data
and further information about this task can
be found at https://competitions.
codalab.org/competitions/17344.

1 Introduction

Emojis are small ideograms depicting objects,
people, and scenes (Cappallo et al., 2015). Emojis
are one of the main components of a novel way of
communication emerging from the advent of so-
cial media. They complement (usually) short text
messages with a visual enhancement which is, as
of now, a de-facto standard for online communi-
cation (Barbieri et al., 2017). Figure 1 shows an
example of a social media message displaying an
emoji.

Sometimes I think I wanna change the
world... and I forget it just starts with
changing me.

Figure 1: Message from Twitter including a single red
heart emoji.

Emojis1 can be considered somehow an evolu-
tion of character-based emoticons (Pavalanathan
and Eisenstein, 2015), and currently they represent
a widespread and pervasive global communication
device largely adopted by almost any social media
service and instant messaging platforms.

Any system targeting the task of modeling so-
cial media communication is expected to tackle
the usage of emojis. In fact, their semantic load is
sufficiently rich that oversimplifying them to sen-
timent carriers or boosters would be to neglect
the semantic richness of these ideograms, which
in addition to mood () include in their vocabu-
lary references to food (), sports (), scenery
(), etc2. In general, however, effectively predict-
ing the emoji associated with a piece of content
may help to improve different NLP tasks (Novak
et al., 2015), such as information retrieval, gener-
ation of emoji-enriched social media content, sug-
gestion of emojis when writing text messages or
sharing pictures online. Given that emojis may
also mislead humans (Barbieri et al., 2017; Miller
et al., 2017), the automated prediction of emojis
may help to achieve better language understand-
ing. As a consequence, by modeling the semantics
of emojis, we can improve highly-subjective tasks
like sentiment analysis, emotion recognition and
irony detection (Felbo et al., 2017).

In this context, Barbieri et al. (2017) introduced
the task of emoji prediction in Twitter by training
several models based on bidirectional Long Short-
Term Memory networks (LSTMs) (Graves, 2012),
and showing they can outperform humans in solv-

1https://unicode.org/emoji/charts/
full-emoji-list.html

2https://unicode.org/emoji/charts/
emoji-ordering.html

24

ing the same task. These promising results moti-
vated us to propose the first shared task on Mul-
tilingual Emoji Prediction. Following the experi-
mental setting proposed by Barbieri et al. (2017),
the task consists of predicting most likely emoji
associated of a given text-only Twitter message.
Only tweets with a single emoji are included in
the task datasets (trial, train and test sets), so that
the challenge can be cast as a single label classifi-
cation problem.

In this paper, we first motivate and describe the
main elements of this shared task (Section 2 and
3). Then, we cover the dataset compilation, cura-
tion and release process (Section 4). In Section 5
we detail the evaluation metrics and describe the
overall results obtained by participating systems.
Finally, we wrap this task description paper up
with the main conclusions drawn from the orga-
nization of this challenge, as well as outlining po-
tential avenues for future work, in Section 6.

2 Related Work

Modeling the semantics of emojis, and their ap-
plications thereof, is a relatively novel research
problem with direct applications in any social me-
dia task. By explicitly modeling emojis as self-
containing semantic units, the goal is to allevi-
ate the lack of an associated grammar. This con-
text, which makes it difficult to encode a clear
and univocous single meaning for each emoji, has
given rise to work considering emojis as function
words or even affective markers (Na’aman et al.,
2017), potentially affecting the overall semantics
of longer utterances like sentences (Monti et al.,
2016; Donato and Paggio, 2017).

The polysemy of emoji has been explored user-
wise (Miller et al., 2017), location-wise, specifi-
cally in countries (Barbieri et al., 2016b) and cities
(Barbieri et al., 2016a), gender-wise, time-wise
(Barbieri et al., 2018b; Chen et al., 2017), and
even device-wise, due to the fact that emojis may
have different pictorial characteristics (and there-
fore, different interpretations), depending on the
device (e.g., Iphone, Android, Samsung, etc.) or
app (Whatsapp, Twitter, Facebook, and so forth)3

(Tigwell and Flatla, 2016; Miller et al., 2016).

3The image that represents the same emoji can vary, e.g.,
for the emoji U+1F40F, the following are over different ren-
derings by platform in Unicode v11 (up to April 2018): Ap-
ple , Google , Twitter , EmojiOne , Facebook ,
Samsung , Windows .

Today, modeling emoji semantics via vec-
tor representations is a well defined avenue of
work. Contributions in this respect include mod-
els trained on Twitter data (Barbieri et al., 2016c),
Twitter data together with the official unicode de-
scription (Eisner et al., 2016), or using text from a
popular keyboard app Ai et al. (2017). In the lat-
ter contribution it is argued that emojis used in an
affective context are more likely to become popu-
lar, and in general, the most important factor for an
emoji to become popular is to have a clear mean-
ing. In fact, the area of emoji vector evaluation has
also experienced a significant growth as of recent.
For instance, Wijeratne et al. (2017a) propose a
platform for exploring emoji semantics. Further
studies on evaluating emoji semantics may now
be carried out by leveraging two recently intro-
duced datasets with pairwise emoji similarity, with
human annotations, namely EmoTwi50 (Barbieri
et al., 2016c) and EmoSim508 (Wijeratne et al.,
2017b). In the application avenue, emoji similarity
has been studied for proposing efficient keyboard
emoji organization, essentially for placing similar
emojis close in the keyboard (Pohl et al., 2017).

An aspect related with emoji semantic mod-
eling in which awareness is increasing dramati-
cally is the inherent bias existing in these repre-
sentations. For example, Barbieri and Camacho-
Collados (2018) show that emoji modifiers can af-
fect the semantics of emojis (they looked specif-
ically into skin tones and gender). This recent
line of research has also been explored in Robert-
son et al. (2018) who argue, for example, that
users with darker-skinned profile photos employ
skin modifiers more often than users with lighter-
skinned profile photos, and that the vast majority
of skin tone usage matches the color of a user’s
profile photo.

The application of well defined emoji represen-
tations in extrinsic tasks is, an open area of re-
search. A natural application, however, lies in
the context of sentiment analysis. This has fos-
tered research, for example, in creating sentiment
lexicons for emojis (Novak et al., 2015; Kimura
and Katsurai, 2017; Rodrigues et al., 2018), or
in studying how emojis may be used to retrieve
tweets with specific emotional content (Wood and
Ruder, 2016). Moreover, Hu et al. (2017) study
how emojis affect the sentiment of a text message,
and show that not all emojis have the same im-
pact. Finally, the fact that emojis carry sentiment

25

and emotion information is verified in the study
by Felbo et al. (2017), where an emoji prediction
classifier is used as pre-trained system, and then is
fine-tuned for predicting sentiment, emotions and
irony.

The last item to be covered in this review in-
volves multimodality. Recently, emojis have been
also studied from a prism where visual signals are
incorporated, taking advantage of existing social
media platforms like Instagram, with a strong fo-
cus on visual content. Recent contributions show
that the usage of emojis depends on both textual
and visual content, but seem to agree in that, in
general, textual information is more relevant for
the task of emoji prediction (Cappallo et al., 2015,
2018; Barbieri et al., 2018a).

3 Task Description

Given a text message including an emoji, the emoji
prediction task consists of predicting that emoji by
relying exclusively on the textual content of that
message. In particular, in this task we focused on
the one emoji occurring inside tweets, thus relying
on Twitter data.

Last hike in our awesome camping
weekend!

Figure 2: Example of tweet with an emoji at the end,
considered in the emoji prediction task.

The task is divided into two subtasks respec-
tively dealing with the prediction of the emoji as-
sociated to English and Spanish tweets. The mo-
tivation for providing a multilingual setting stems
from previous findings about the idiosyncrasy of
use of emojis across languages (Barbieri et al.,
2016b) (see Figure 3): one emoji may be used with
completely different meanings depending not only
on the language of the speaker, but also on regional
dialects (Barbieri et al., 2016a).

For each subtask we selected the tweets that in-
cluded one of the twenty emojis that occur most
frequently in the Twitter data we collected (Table
1). Therefore, the task can be viewed as a multi-
label classification problem with twenty labels.

Twitter datasets were shared among participants
by providing a list of tweet IDs4 or directly the

4Participants were provided with a Java-
based crawler (https://github.com/fra82/
twitter-crawler) to ease the download of the textual

It’s flipping hot out here!

Iniciamos el nuevo año con ilusión!

Figure 3: Example of distinct use of the fire emoji
across languages: the first tweet (English) comments
on the torrid weather, while the second one (Spanish)
exploits the same emoji to wish an happy new year
(’We start the new year with enthusiasm!’).

English
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Spanish
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

-

Table 1: The 20 most frequent emojis of each language
(due to a data processing issue we only considered 19
emojis in the Spanish task).

text of each tweet. The last approach was adopted
to share the test sets (more details are provided in
Section 4).

4 Task Data

The data for the task consists of a list of tweets
associated with a given emoji (i.e. label). As
explained in the previous section, the dataset in-
cludes tweets that contain one and only one emoji,
of the 20 most frequent emojis. We split the data
in trial5, training and test data. The quantity of
tweets per set is displayed in Table 2.

The tweets were retrieved with the Twitter APIs
and geolocalized in United States and Spain for
subtasks 1 and 2, respectively. As for the trial and
training data, the tweets were gathered from Oc-
tober 2015 to February 2017, whereas for the test
data we decided to gather the tweets correspond-
ing to the last months until the evaluation period
started (from May 2017 to Jan 2018). This would
prevent participants from gathering these tweets
before-hand and also would enable us to test the
emoji prediction task on a more realistic setting,
as the test data is subsequent to the training data.

content of tweets from the ID list.
5Trial data was used as development by participants.

26

Trial Training Test
English 50,000 500,000 50,000
Spanish 10,000 100,000 10,000

Table 2: Number of tweets for trial, training and test
for each of the subtasks.

5 Evaluation

This section introduces the overall evaluation set-
ting of this shared task. We first describe briefly
the evaluation metrics used and then provide a suc-
cinct description of the baseline system.

5.1 Evaluation Metrics
As this was a single label classification problem,
the classic precision (Prec.), recall (Recall), f-
score (F1) and accuracy (Acc.) were used as of-
ficial evaluation metrics. Note that because of the
skewed distribution of the label set we opted for
macro average over all labels.

5.2 Baseline
The baseline system for this task was a classifier
based on FastText6 (Joulin et al., 2017). Given a
set of N documents, the loss that the model at-
tempts to minimize is the negative log-likelihood
over the labels (in our case, the emojis):

loss = − 1

N

n=1∑

N

en log(softmax (BAxn))

where en is the emoji included in the n-th Twitter
post, represented as hot vector, and used as label.
Hyperparameters were set as default7.

5.3 Participant Systems
Due to the overwhelming number of participants,
we cannot describe all systems.8 We do, however,

6github.com/facebookresearch/fastText
7https://github.com/facebookresearch/

fastText#full-documentation
8This is the list of systems that ranked below the base-

line in either of the subtasks: #TeamINF (Ribeiro and Silva,
2018), CENNLP (J R et al., 2018), DUTH (Effrosynidis
et al., 2018), ECNU (Lu et al., 2018), EICA (Xie and
Song, 2018), EPUTION (Zhou et al., 2018), LIS (Guibon
et al., 2018), Manchester Metropolitan (Gerber and Shard-
low, 2018), Peperomia (Chen et al., 2018), PickleTeam!
(Groot et al., 2018), Shi (Shiyun et al., 2018), SyntNN (Zan-
zotto and Santilli, 2018), TAJJEB (Basile and Lino, 2018),
The Dabblers (Alexa et al., 2018), THU NGN (Wu et al.,
2018), Tweety (Kopev et al., 2018), UMDSub (Wang and
Pedersen, 2018), YNU-HPCC (Wang et al., 2018). Note that
some participants did not submit a final paper but they are
included in the results table.

briefly mention the main features of some signif-
icant systems ranked above the baseline in either
of the subtasks.

• Tübingen-Oslo (Çöltekin and Rama, 2018).
This supervised system consists of an SVM
classifier with bag-of-n-grams features (both
characters and words). Tübingen-Oslo is the
top performing system in both tasks.

• NTUA-SLP (Baziotis et al., 2018). This sys-
tem uses a Bi-LSTM with attention, and pre-
trained word2vec vectors. They used external
resources for associating each tweet with in-
formation on emotions, concreteness, famil-
iarity, and others. They only participated in
the English subtask but they classified second
(according to the F1 score) with the highest
recall.

• EmoNLP (Liu, 2018). This system is based
on a Gradient Boosting Regression Tree Ap-
proach combined with a Bi-LSTM on char-
acter and word ngrams. It is complemented
with several lexicons as well as learning sen-
timent specific word embeddings.

• UMDuluth-CS8761 (Beaulieu and
Asamoah Owusu, 2018) This supervised sys-
tem combines an SVM with a bag-of-words
approach for extracting salient features. This
is one of the most competitive systems with
the highest precision in English and the third
best result in Spanish.

• Hatching Chick (Coster et al., 2018). This
system builds an SVM classifier (with gradi-
ent descent optimization) on words and char-
acter ngrams. They obtained the second best
result in the Spanish subtask, but their En-
glish system performed worse than the base-
line.

• TAJJEB (Basile and Lino, 2018). This sys-
tem made use of an SVM classifier over wide
variety of features such as tf-idf, part-of-
speech tags and bigrams. The system was
competitive on both languages, outperform-
ing the baseline on the Spanish dataset.

• Duluth UROP (Jin and Pedersen, 2018).
This system consists of a soft voting en-
semble approach combining different ma-
chine learning algorithms (Naı̈ve Bayes, Lo-

27

gistic Regression, Random Forests, etc.). In-
frequent classes are oversampled using the
SMOTE algorithm. As for features, they use
both unigrams and bigrams.

English Spanish
Emo F1 % Emo F1 %

87.8 21.6 69.6 21.4
37.8 9.7 37.3 14.1
47.1 9.1 53.4 15
26.9 5.2 8.5 3.5
55.5 7.4 14.9 5.1
16.2 3.2 26.9 4
22.6 4 39.8 3.1
36.2 5.5 16.3 4.5
24 3.1 13 1.8

22.2 2.4 49.9 4.2
40 2.9 14.7 3.4

64.7 3.9 14.2 4.1
63.7 2.5 6.8 2.4
17.1 2.2 7.7 2.7
13 2.6 5.6 0.9

29.2 2.5 20 4.2
14.3 2.3 23.7 2.1
73.6 3.1 8.6 1.3
38.4 4.8 5.1 2.1

9 2 - - -

Table 4: Best F1 measure (among all the teams) for
each emoji in English (20) and Spanish (19). We also
report the relative frequency percentage of each emoji
in the test set.

5.4 Results
Each system was evaluated according to its capac-
ity to perform well across all emojis under consid-
eration. As mentioned, and due to the skewed dis-
tribution of the label set, we evaluated each partic-
ipating system according to Macro F-Score (F1).

The overall results are provided in Table 3,
and already several interesting conclusions can be
drawn from them. For instance, it is noteworthy
the fact that the best systems for both subtasks
are more than 10 points apart (English better),
which suggests that a one-size-fits-all model may
be suboptimal for this task, and that indeed the

particularities of each individual language should
be taken into consideration for best performance.
The most precise systems were EmoNLP and
Tübingen-Oslo, whereas the highest Recall was
obtained by NTUA-SLP and again Tübingen-Oslo
(English and Spanish respectively, in both cases).
Clearly, the Tübingen-Oslo system shows a fine
balance between precision and recall, perhaps due
to its little preprocessing, fine-tuning and reliance
on external libraries. It seems reasonable to as-
sume, thus, that combining word and ngram em-
beddings as features, with SVMs and NN classi-
fiers, provides a robust and high performing archi-
tecture for emoji prediction, with the added value
of being resource/knowledge agnostic.

5.5 Analysis
This evaluation is finally complemented with the
overall emoji-wise performance across all systems
(Table 4). The lexical notion of near synonymy
seems to clearly apply to emojis as well, as we can
clearly see a worse performance on those emojis
which are pictorically similar (e.g., the photo cam-
era with and without flash, or the expected con-
fusion between least frequent hearts and the red
heart, which accounts for over 20% of the whole
label set in the test data).

Finally, emojis with several interpretations and
less frequent seem to be much more difficult to
predict (e.g., the face in the English and Span-
ish dataset, and in the Spanish dataset). Zhou
et al. (2018) showed in their system description
paper how exploiting user-specific features may
provide significance performance boosts.9 This
additional user-specific information may clearly
help in these difficult cases which proved to be
hard for all systems.

6 Conclusions

In this paper we have described the SemEval 2018
shared task in multilingual emoji prediction. The
task, consisting in predicting the most likely emoji
given the text of a tweet, was well received, with
almost 50 system runs submitted to the English
subtask and more than 20 to the Spanish subtask.
One of the main conclusions that can be drawn is
that the baseline we used (FastText) was highly
competitive, with only 6 and 5 system runs per-
forming better in English and Spanish.

9The use of user-specific data was not allowed by the main
competition regulations and therefore none of the systems in
the final ranking made use of it.

28

ENGLISH SPANISH
Team F1 Prec. Recall Acc. Team F1 Prec. Recall Acc.

Tübingen-Oslo 35.99 36.55 36.22 47.09 Tübingen-Oslo 22.36 23.49 22.80 37.27
NTUA-SLP 35.36 34.53 38.00 44.74 Hatching Chick 18.73 20.66 19.16 37.23
hgsgnlp 34.02 35 33.57 45.55 UMDuluth-CS8761 18.18 19.02 18.6 34.83
EmoNLP 33.67 39.43 33.7 47.46 TAJJEB 17.08 18.99 20.36 25.13
ECNU 33.35 35.17 33.11 46.3 Duluth UROP 16.75 17.11 18.1 28.51
UMDuluth-CS8761 31.83 39.80 31.37 45.73 BASELINE 16.72 16.84 17.52 31.63
BASELINE 30.98 30.34 33 42.56 Nova 16.7 17.2 17.07 26.50
THU NGN 30.25 31.85 29.81 42.18 ECNU 16.41 16.91 16.48 30.82
TAJJEB 30.13 29.91 33.02 38.09 MMU - Computing 16.34 17.83 16.4 28.92
EmojiIt 29.5 35.17 29.91 39.21 PickleTeam! 15.86 17.57 16.76 29.70
Reborn 29.24 33.67 28.94 42.43 ART @ Tor Vergata 14.91 15.81 15.51 30.68
freeze 29.13 31.54 29.23 37.14 CENNLP 14.68 16.32 16.2 34.85
csy 28.93 31.12 29 36.85 YNU-HPCC 14.25 17.51 15.98 31.19
Nova 27.89 28.49 28.2 34.83 Amrita CEN NLP1 12.13 12.46 12.41 21.64
Sheffield 27.18 28.57 26.61 37.69 erai 11.36 12.72 11.39 23.38
YNU-HPCC 26.89 26.97 29.71 32.53 Lips Eggplant 10.89 15.78 10.62 23.88
mboyanov 26.77 32.82 27.42 36.79 thelonewolf190694 10.87 11.13 12.55 27.04
kaka manData 26.59 30 26.97 36.34 The Dabblers 9.2 17.28 9.92 27.72
Duluth UROP 26.59 27.18 27.87 33.8 LIS 8.81 15.16 10.14 28.53
CENNLP 26.45 31.62 26.87 41.18 jogonba2 7.99 17.81 9.85 29.99
UMDSub 25.99 33.01 26.71 41 hjpwhu 3.9 7.46 6.81 13.81
THU HCSI 25.83 32.38 25.9 35.34
Peperomia 25.68 28.98 26.04 35.34
MMU - Computing 24.98 28.94 25.04 34.59
NoEmotionsAttached 23.3 25.27 24.47 32.76
PickleTeam! 22.86 26.17 24.37 34.09
Reborn 21.97 26.52 22.06 30.64
PALM gzy 21.97 26.52 22.06 30.64
#TeamINF 21.5 26.21 20.84 31.59
Hatching Chick 21.44 25.97 21.48 36.52
CORAL 21.35 32.82 22.48 34.05
Meisele 20.02 25.74 19.54 30.71
erai 19.96 22.1 19.62 28.36
SBIG 19.44 25.41 16.12 19.84
The Dabblers 18.92 25.02 18.96 30.45
ART @ Tor Vergata 18.39 24.49 17.25 29.45
Amrita CEN NLP1 17.96 19.47 17.75 24.41
Lips Eggplant 17.69 21.81 17.19 26.81
XSSX 16.45 31.56 16.77 30.99
Kno.e.sis 14.42 18.72 18.49 18.99
thelonewolf190694 14.21 13.66 17.35 30.7
LIS 13.53 25.58 14.14 29.42
uaic2018 11.06 13.65 11.24 19.61
jogonba2 8.52 24.16 9.51 25.6
SBIG2 6.44 18.76 8.49 12.64
alsu wh 3.73 4.38 5.06 9.83
Innovating world 3.09 18.47 5.73 22.74
hjpwhu 2.04 2.63 3.22 3.92

Table 3: Ranking of the participating systems by precision, recall, F1 and accuracy for the English track and the
Spanish track. Those above the horizontal line ranked above the task baseline.

29

In terms of participating systems, and accord-
ing to the post-participation survey the participants
completed, we can see a high prevalence of neu-
ral approaches, with only 9 systems opting for
more traditional linear models (6 SVMs, 3 Ran-
dom Forests). Among the chosen neural architec-
tures, LSTMs and CNNs are by far the preferred
ones. It is noteworthy, however, the excellent per-
formance of SVMs as used in the best performing
system on both English and Spanish datasets.

This task has set the foundations for upcoming
work on modeling emoji semantics, first, by pro-
viding a standardized testbed for emoji prediction
in two languages, and second, by providing a com-
prehensive evaluation with a wide range of ideas,
which we hope are of use for future research.
Emojis, undoubtedly, are becoming increasingly
important in understanding social media commu-
nication and in human-computer interaction, and
thus we believe the problem of modeling emoji
semantics can be further extended as follows. (1)
Leveraging multimodal information (e.g., associ-
ated images (Barbieri et al., 2018a)); (2) incorpo-
rating more and more diverse languages (one step
in this direction will be the re-run of this task for
Italian at the Evalita 2018 evaluation campaign10);
and (3) considering individual and communicative
contexts for overall performance improvements.

Acknowledgments

We thank all the participants of the task. Francesco
B. and Horacio S. acknowledge support from
the TUNER project (TIN2015-65308-C5-5-R,
MINECO/FEDER, UE) and the Maria de Maeztu
Units of Excellence Programme (MDM-2015-
0502). The work of V. Patti and V. Basile was
partially funded by the IHatePrejudice project
(S1618 L2 BOSC 01).

References
Wei Ai, Xuan Lu, Xuanzhe Liu, Ning Wang, Gang

Huang, and Qiaozhu Mei. 2017. Untangling
emoji popularity through semantic embeddings. In
ICWSM, pages 2–11.

Larisa Alexa, Alina Lorent, Daniela Gifu, and Diana
Trandabat. 2018. The dabblers at semeval-2018 task
2: Multilingual emoji prediction. In Proceedings of
The 12th International Workshop on Semantic Eval-
uation, pages 402–406, New Orleans, Louisiana.
Association for Computational Linguistics.

10http://www.evalita.it/2018

Francesco Barbieri, Miguel Ballesteros, Francesco
Ronzano, and Horacio Saggion. 2018a. Multimodal
emoji prediction. In Proceedings of NAACL: Short
Papers, New Orleans, US. Association for Compu-
tational Linguistics.

Francesco Barbieri, Miguel Ballesteros, and Horacio
Saggion. 2017. Are emojis predictable? In Pro-
ceedings of the 15th Conference of the European
Chapter of the Association for Computational Lin-
guistics: Volume 2, Short Papers, pages 105–111,
Valencia, Spain. Association for Computational Lin-
guistics.

Francesco Barbieri and Jose Camacho-Collados. 2018.
How Gender and Skin Tone Modifiers Affect Emoji
Semantics in Twitter. In Proceedings of the 7th Joint
Conference on Lexical and Computational Seman-
tics (*SEM 2018), New Orleans, LA, United States.

Francesco Barbieri, Luis Espinosa-Anke, and Horacio
Saggion. 2016a. Revealing patterns of Twitter emoji
usage in Barcelona and Madrid. Frontiers in Artifi-
cial Intelligence and Applications. 2016;(Artificial
Intelligence Research and Development) 288: 239-
44.

Francesco Barbieri, German Kruszewski, Francesco
Ronzano, and Horacio Saggion. 2016b. How cos-
mopolitan are emojis?: Exploring emojis usage and
meaning over different languages with distributional
semantics. In Proceedings of the 2016 ACM on Mul-
timedia Conference, pages 531–535. ACM.

Francesco Barbieri, Luis Marujo, William Brendel,
Pradeep Karuturim, and Horacio Saggion. 2018b.
Exploring Emoji Usage and Prediction Through a
Temporal Variation Lens. In 1st International Work-
shop on Emoji Understanding and Applications in
Social Media (at ICWSM 2018).

Francesco Barbieri, Francesco Ronzano, and Horacio
Saggion. 2016c. What does this emoji mean? a vec-
tor space skip-gram model for Twitter emojis. In
Proc. of LREC 2016.

Angelo Basile and Kenny W. Lino. 2018. Tajjeb at
semeval-2018 task 2: Traditional approaches just do
the job with emoji prediction. In Proceedings of The
12th International Workshop on Semantic Evalua-
tion, pages 467–473, New Orleans, Louisiana. As-
sociation for Computational Linguistics.

Christos Baziotis, Athanasiou Nikolaos, Athanasia
Kolovou, Georgios Paraskevopoulos, Nikolaos Elli-
nas, and Alexandros Potamianos. 2018. Ntua-slp at
semeval-2018 task 2: Predicting emojis using rnns
with context-aware attention. In Proceedings of The
12th International Workshop on Semantic Evalua-
tion, pages 435–441, New Orleans, Louisiana. As-
sociation for Computational Linguistics.

Jonathan Beaulieu and Dennis Asamoah Owusu. 2018.
Umduluth-cs8761 at semeval-2018 task 2: Emo-
jis: Too many choices? In Proceedings of The

30

12th International Workshop on Semantic Evalua-
tion, pages 397–401, New Orleans, Louisiana. As-
sociation for Computational Linguistics.

Spencer Cappallo, Thomas Mensink, and Cees GM
Snoek. 2015. Image2emoji: Zero-shot emoji pre-
diction for visual media. In Proceedings of the 23rd
ACM international conference on Multimedia, pages
1311–1314. ACM.

Spencer Cappallo, Stacey Svetlichnaya, Pierre Gar-
rigues, Thomas Mensink, and Cees GM Snoek.
2018. The new modality: Emoji challenges in pre-
diction, anticipation, and retrieval. arXiv preprint
arXiv:1801.10253.

Jing Chen, Dechuan Yang, Xilian Li, Wei Chen, and
Tengjiao Wang. 2018. Peperomia at semeval-2018
task 2: Vector similarity based approach for emoji
prediction. In Proceedings of The 12th International
Workshop on Semantic Evaluation, pages 425–429,
New Orleans, Louisiana. Association for Computa-
tional Linguistics.

Zhenpeng Chen, Xuan Lu, Sheng Shen, Wei Ai, Xu-
anzhe Liu, and Qiaozhu Mei. 2017. Through
a gender lens: An empirical study of emoji us-
age over large-scale android users. arXiv preprint
arXiv:1705.05546.

Çağrı Çöltekin and Taraka Rama. 2018. Tübingen-
oslo at semeval-2018 task 2: Svms perform better
than rnns in emoji prediction. In Proceedings of The
12th International Workshop on Semantic Evalua-
tion, pages 32–36, New Orleans, Louisiana. Associ-
ation for Computational Linguistics.

Jol Coster, Reinder Gerard van Dalen, and Nathalie
Adrinne Jacqueline Stierman. 2018. Hatching chick
at semeval-2018 task 2: Multilingual emoji pre-
diction. In Proceedings of The 12th International
Workshop on Semantic Evaluation, pages 442–445,
New Orleans, Louisiana. Association for Computa-
tional Linguistics.

Giulia Donato and Patrizia Paggio. 2017. Investigat-
ing redundancy in emoji use: Study on a Twitter
based corpus. In Proceedings of the 8th Workshop
on Computational Approaches to Subjectivity, Senti-
ment and Social Media Analysis, pages 118–126.

Dimitrios Effrosynidis, Georgios Peikos, Symeon
Symeonidis, and Avi Arampatzis. 2018. Duth at
semeval-2018 task 2: Emoji prediction in tweets. In
Proceedings of The 12th International Workshop on
Semantic Evaluation, pages 463–466, New Orleans,
Louisiana. Association for Computational Linguis-
tics.

Ben Eisner, Tim Rocktäschel, Isabelle Augenstein,
Matko Bošnjak, and Sebastian Riedel. 2016.
emoji2vec: Learning emoji representations from
their description. arXiv preprint arXiv:1609.08359.

Bjarke Felbo, Alan Mislove, Anders Søgaard, Iyad
Rahwan, and Sune Lehmann. 2017. Using millions
of emoji occurrences to learn any-domain represen-
tations for detecting sentiment, emotion and sar-
casm. Proc. of EMNLP 2017.

Luciano Gerber and Matthew Shardlow. 2018. Manch-
ester metropolitan at semeval-2018 task 2: Random
forest with an ensemble of features for predicting
emoji in tweets. In Proceedings of The 12th Inter-
national Workshop on Semantic Evaluation, pages
488–493, New Orleans, Louisiana. Association for
Computational Linguistics.

Alex Graves. 2012. Supervised Sequence Labelling
with Recurrent Neural Networks, volume 385 of
Studies in Computational Intelligence. Springer.

Daphne Groot, Rémon Kruizinga, Hennie Veldthuis,
Simon de Wit, and Hessel Haagsma. 2018. Pick-
leteam! at semeval-2018 task 2: English and spanish
emoji prediction from tweets. In Proceedings of The
12th International Workshop on Semantic Evalua-
tion, pages 451–455, New Orleans, Louisiana. As-
sociation for Computational Linguistics.

Gaël Guibon, Magalie Ochs, and Patrice Bellot. 2018.
Lis at semeval-2018 task 2: Mixing word embed-
dings and bag of features for multilingual emoji pre-
diction. In Proceedings of The 12th International
Workshop on Semantic Evaluation, pages 499–503,
New Orleans, Louisiana. Association for Computa-
tional Linguistics.

Tianran Hu, Han Guo, Hao Sun, Thuy-vy Thi Nguyen,
and Jiebo Luo. 2017. Spice up Your Chat: The
Intentions and Sentiment Effects of Using Emoji.
Proc. of ICWSM 2017.

Naveen J R, Hariharan V, Barathi Ganesh H. B., Anand
Kumar M, and Soman K P. 2018. Cennlp@semeval-
2018 task 2: Enhanced distributed representation of
text using target classes for emoji prediction repre-
sentation. In Proceedings of The 12th International
Workshop on Semantic Evaluation, pages 483–487,
New Orleans, Louisiana. Association for Computa-
tional Linguistics.

Shuning Jin and Ted Pedersen. 2018. Duluth urop at
semeval-2018 task 2: Multilingual emoji prediction
with ensemble learning and oversampling. In Pro-
ceedings of The 12th International Workshop on Se-
mantic Evaluation, pages 479–482, New Orleans,
Louisiana. Association for Computational Linguis-
tics.

Armand Joulin, Edouard Grave, Piotr Bojanowski, and
Tomas Mikolov. 2017. Bag of tricks for efficient text
classification. In European Chapter of the Associa-
tion for Computational Linguistics, Valencia, Spain.

Mayu Kimura and Marie Katsurai. 2017. Automatic
construction of an emoji sentiment lexicon. In Pro-
ceedings of the 2017 IEEE/ACM International Con-
ference on Advances in Social Networks Analysis
and Mining 2017, pages 1033–1036. ACM.

31

Daniel Kopev, Atanas Atanasov, Dimitrina Zlatkova,
Momchil Hardalov, Ivan Koychev, Ivelina Nikolova,
and Galia Angelova. 2018. Tweety at semeval-2018
task 2: Predicting emojis using hierarchical atten-
tion neural networks and support vector machine. In
Proceedings of The 12th International Workshop on
Semantic Evaluation, pages 494–498, New Orleans,
Louisiana. Association for Computational Linguis-
tics.

Man Liu. 2018. Emonlp at semeval-2018 task 2: En-
glish emoji prediction with gradient boosting regres-
sion tree method and bidirectional lstm. In Pro-
ceedings of The 12th International Workshop on Se-
mantic Evaluation, pages 387–391, New Orleans,
Louisiana. Association for Computational Linguis-
tics.

Xingwu Lu, Xin Mao, Man Lan, and Yuanbin Wu.
2018. Ecnu at semeval-2018 task 2: Leverage tra-
ditional nlp features and neural networks methods
to address twitter emoji prediction task. In Pro-
ceedings of The 12th International Workshop on Se-
mantic Evaluation, pages 430–434, New Orleans,
Louisiana. Association for Computational Linguis-
tics.

Hannah Miller, Daniel Kluver, Jacob Thebault-Spieker,
Loren Terveen, and Brent Hecht. 2017. Understand-
ing emoji ambiguity in context: The role of text
in emoji-related miscommunication. In 11th In-
ternational Conference on Web and Social Media,
ICWSM 2017. AAAI Press.

Hannah Miller, Jacob Thebault-Spieker, Shuo Chang,
Isaac Johnson, Loren Terveen, and Brent Hecht.
2016. “Blissfully happy” or “ready to fight”: Vary-
ing interpretations of emoji. Proc. of ICWSM16.

Johanna Monti, Federico Sangati, Francesca
Chiusaroli, Martin Benjamin, and Sina Man-
sour. 2016. Emojitalianobot and emojiworldbot
- new online tools and digital environments for
translation into emoji. In Proceedings of Third
Italian Conference on Computational Linguistics
(CLiC-it 2016), Napoli, Italy, December 5-7, 2016.,
volume 1749 of CEUR Workshop Proceedings.

Noa Na’aman, Hannah Provenza, and Orion Montoya.
2017. Varying linguistic purposes of emoji in (Twit-
ter) context. In Proceedings of ACL 2017, Student
Research Workshop, pages 136–141.

Petra Kralj Novak, Jasmina Smailović, Borut Sluban,
and Igor Mozetič. 2015. Sentiment of emojis. PloS
one, 10(12):e0144296.

Umashanthi Pavalanathan and Jacob Eisenstein. 2015.
Emoticons vs. emojis on Twitter: A causal inference
approach. arXiv preprint arXiv:1510.08480.

Henning Pohl, Christian Domin, and Michael Rohs.
2017. Beyond just text: Semantic emoji similar-
ity modeling to support expressive communication.
ACM Transactions on Computer-Human Interaction
(TOCHI), 24(1):6.

Alison Ribeiro and Ndia Silva. 2018. #teaminf at
semeval-2018 task 2: Emoji prediction in tweets. In
Proceedings of The 12th International Workshop on
Semantic Evaluation, pages 412–415, New Orleans,
Louisiana. Association for Computational Linguis-
tics.

Alexander Robertson, Walid Magdy, and Sharon Gold-
water. 2018. Self-Representation on Twitter Using
Emoji Skin Color Modifiers. Proc. of ICWSM 2018.

David Rodrigues, Marı́lia Prada, Rui Gaspar, Mar-
garida V Garrido, and Diniz Lopes. 2018. Lis-
bon emoji and emoticon database (leed): Norms
for emoji and emoticons in seven evaluative dimen-
sions. Behavior research methods, pages 392–405.

Chen Shiyun, Wang Maoquan, and He Liang. 2018.
Shi at semeval-2018 task 2: An effective attention-
based recurrent neural network model for emoji pre-
diction with characters gated words. In Proceed-
ings of The 12th International Workshop on Se-
mantic Evaluation, pages 420–424, New Orleans,
Louisiana. Association for Computational Linguis-
tics.

Garreth W Tigwell and David R Flatla. 2016. Oh that’s
what you meant!: reducing emoji misunderstanding.
In Proceedings of the 18th International Conference
on Human-Computer Interaction with Mobile De-
vices and Services Adjunct, pages 859–866. ACM.

Nan Wang, Jin Wang, and Xuejie Zhang. 2018. Ynu-
hpcc at semeval-2018 task 2: Multi-ensemble bi-gru
model with attention mechanism for multilingual
emoji prediction. In Proceedings of The 12th Inter-
national Workshop on Semantic Evaluation, pages
456–462, New Orleans, Louisiana. Association for
Computational Linguistics.

Zhenduo Wang and Ted Pedersen. 2018. Umdsub at
semeval-2018 task 2: Multilingual emoji prediction
multi-channel convolutional neural network on sub-
word embedding. In Proceedings of The 12th Inter-
national Workshop on Semantic Evaluation, pages
392–396, New Orleans, Louisiana. Association for
Computational Linguistics.

Sanjaya Wijeratne, Lakshika Balasuriya, Amit Sheth,
and Derek Doran. 2017a. Emojinet: An open ser-
vice and api for emoji sense discovery. International
AAAI Conference on Web and Social Media (ICWSM
2017). Montreal, Canada.

Sanjaya Wijeratne, Lakshika Balasuriya, Amit Sheth,
and Derek Doran. 2017b. A semantics-based mea-
sure of emoji similarity. International Confer-
ence on Web Intelligence (Web Intelligence 2017).
Leipzig, Germany.

Ian Wood and Sebastian Ruder. 2016. Emoji as emo-
tion tags for tweets. Emotion and Sentiment Analy-
sis Workshop, LREC.

32

Chuhan Wu, Fangzhao Wu, Sixing Wu, Zhigang Yuan,
Junxin Liu, and Yongfeng Huang. 2018. Thu ngn
at semeval-2018 task 2: Residual cnn-lstm network
with attention for english emoji prediction. In Pro-
ceedings of The 12th International Workshop on Se-
mantic Evaluation, pages 407–411, New Orleans,
Louisiana. Association for Computational Linguis-
tics.

Yufei Xie and Qingqing Song. 2018. Eica team at
semeval-2018 task 2: Semantic and metadata-based
features for multilingual emoji prediction. In Pro-
ceedings of The 12th International Workshop on Se-
mantic Evaluation, pages 416–419, New Orleans,
Louisiana. Association for Computational Linguis-
tics.

Fabio Massimo Zanzotto and Andrea Santilli. 2018.
Syntnn at semeval-2018 task 2: is syntax useful for
emoji prediction? embedding syntactic trees in multi
layer perceptrons. In Proceedings of The 12th Inter-
national Workshop on Semantic Evaluation, pages
474–478, New Orleans, Louisiana. Association for
Computational Linguistics.

Liyuan Zhou, Qiongkai Xu, Hanna Suominen, and
Tom Gedeon. 2018. Epution at semeval-2018 task
2: Emoji prediction with user adaption. In Pro-
ceedings of The 12th International Workshop on Se-
mantic Evaluation, pages 446–450, New Orleans,
Louisiana. Association for Computational Linguis-
tics.

33

Proceedings of the 12th International Workshop on Semantic Evaluation (SemEval-2018), pages 34–38
New Orleans, Louisiana, June 5–6, 2018. ©2018 Association for Computational Linguistics

Tübingen-Oslo at SemEval-2018 Task 2:
SVMs perform better than RNNs at Emoji Prediction

Çağrı Çöltekin
Department of Linguistics

University of Tübingen, Germany
ccoltekin@sfs.uni-tuebingen.de

Taraka Rama
Department of Informatics
University of Oslo, Norway

tarakark@ifi.uio.no

Abstract

This paper describes our participation in the
SemEval-2018 task Multilingual Emoji Pre-
diction. We participated in both English and
Spanish subtasks, experimenting with support
vector machines (SVMs) and recurrent neural
networks. Our SVM classifier obtained the top
rank in both subtasks with macro-averaged F1-
measures of 35.99% for English and 22.36%
for Spanish data sets. Similar to a few earlier
attempts, the results with neural networks were
not on par with linear SVMs.

1 Introduction

Emojis are graphical symbols that represent an
idea or emotion. The use of emojis has become
popular over the last decade, particularly in in-
formal communication in the social media. Their
popularity kindled a recent interest in investigating
many aspects of emojis, including their interaction
with natural language (e.g., Barbieri et al., 2016,
2017; Felbo et al., 2017; Kralj Novak et al., 2015).
Although the emojis are presumably language-
independent, their use typically goes together with
linguistic text. In this context, the SemEval 2018
task 2, Multilingual Emoji Prediction (Barbieri
et al., 2018), aims predicting the emoji from the
surrounding micro-blogging (Twitter) text for En-
glish and Spanish.
The task at hand is to predict a label, an emoji,

from a short text that it accompanies. This is es-
sentially a text/document classification problem,
and shares many aspects of other text classifica-
tion problems such as topic classification, senti-
ment analysis, language identification and author-
ship attribution – just to name a few. Although
each of these problems have some task-specific as-
pects, the same models can be used for all of them.
In this study, we experiment with and compare two
well-known methods: support vector machines

(SVMs) with bag of word/character n-gram fea-
tures and recurrent neural networks (RNNs) with
word and character sequences as input. The meth-
ods and implementations are similar to our earlier
attempts in other text classification tasks (Çöltekin
and Rama, 2016; Rama and Çöltekin, 2017; Çöl-
tekin and Rama, 2017).1 In the remainder of this
paper, we describe our methods and experiments,
present and discuss our results.

2 Experiments and Results

We participated in both subtasks using the same
architectures. However, we trained and tuned
the model parameters on each data set separately.
The training set for the competition consisted of
500 000 tweets for English and 100 000 tweets for
Spanish subtask. The data sets contained most
frequent 20 emojis for English and 19 emojis for
Spanish. Joining late to the party, our training set
consisted of 485 151 English tweets, and 97 765

Spanish tweets, since about 3% of the tweets were
not available by the time we crawled them. As pre-
sented in Figure 1, the label distribution is simi-
lar and quite skewed for both languages. We in-
cluded pre-processing steps of case normalization
and discarding low-frequency features as part of
our hyperparameter optimization. In all our exper-
iments, we use only the data supplied by the orga-
nizers. We did not use any external sources (e.g.,
pre-trained word embeddings), nor did we perform
any further linguistic processing (e.g., POS tag-
ging, or parsing). The test size for English and
Spanish is 50 000 and 10 000 respectively.

2.1 Support Vector Machines

The best results obtained in the shared task are
based on multi-class (one-vs-rest) linear support

1 The source code of our implementation is available at
https://github.com/coltekin/emoji2018.

34

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

0

10

20

Rank

Pe
rc
en
t

English

Spanish

Figure 1: Label distribution in both data sets. Ratio of
each label is plotted against its rank. Note that the emo-
jis sharing the same rank are not necessarily identical in
both languages.

vector machines (SVM). We use ‘bag of n-grams’
as features, combining both character n-grams and
word n-grams of different sizes, weighted by sub-
linear TF-IDF scaling applied globally to all n-
grams (character and word n-grams with varying
sizes). Although we also experimented with logis-
tic regression and random forests using the same
feature set, the results were consistently inferior to
the SVMs. Therefore, we will not discuss the re-
sults of logistic regression and random forests. The
models discussed in this section were implemented
with scikit-learn package (Pedregosa et al., 2011)
using liblinear back end (Fan et al., 2008).
We optimized the models for best macro F1-

score on each language data set through a grid
search using 5-fold cross validation. The hyper-
parameters considered during optimization were
maximum character/word n-gram size, case nor-
malization, minimum document frequency thresh-
old for excluding low-frequency features, and
SVM margin (or regularization) parameter ‘C’.
Although there has been other parameter settings
with competitive scores, we used maximum char-
acter n-grams size of 6, maximum word n-gram
size of 4, minimum document frequency threshold
of 2, SVM parameter C of 0.10, and we case nor-
malized only word (not character) n-grams. Our
submitted system achieved 36.55 precision, 36.22
recall and 35.99 F1-score on the English test set,
and 23.49 precision, 22.80 recall and 22.36 F1-
score on the Spanish test set. These figures were
about 1% lower than the figures we obtained in
5-fold cross validation results on the training data.
Figure 2 presents the effects of character and

word n-grams of different sizes. For all results pre-
sented in Figure 2, n-grams from size 1 up to the in-
dicated number are included as features. Although
both combining character and word n-grams, and

0 1 2 3 4

0

1

2

3

4

5

6

7

8

9

21.35

13.49

22.75

23.41 23.59

Word n-grams

C
ha
ra
ct
er

n-
gr
am

s

Spanish

0 1 2 3 4

0

1

2

3

4

5

6

7

8

9

17.65

33.64 35.96

36.55 36.8

Word n-grams

English

Figure 2: The effect of maximum character and word n-
gram size combinations to F1-measure. Darker shades
indicate higher F1-measure.

larger n-gram sizes increase the performance, the
gains from higher n-gram values are rather small.
The effects of other hyperparameters are smaller.
In general, however, excluding features based on
frequency seems to hurt the performance. Case
normalization is useful if applied to word n-grams,
but its effects are often negative if it is applied to
both character and word n-grams. The optimum
regularization parameter ‘C’ is stable over both
languages and different training sizes.

2.2 Recurrent Neural Networks
Gaining popularity relatively recently, neural
models are another common approach to text clas-
sification. Fully-connected networks are compu-
tationally impractical. However, convolutional
networks (CNNs) and recurrent neural networks
(RNNs) offer reasonably efficient computation, as
well as better modeling of sequences. RNNs, par-
ticularly gated RNNs, have been used in many di-
verse natural language processing tasks success-
fully, and text classification is not an exception.
Our neural model includes two bidirectional

RNN components: one taking a sequence of words
as input and another taking a sequence of charac-
ters as input. The recurrent components of the net-
work builds two representations for the text (one
based on characters, the other based on words), the
representations are concatenated and passed to a
fully connected softmax layer that assigns an emoji
to the document based on the RNN representa-
tions. Since the tweets are relatively short, we did
not truncate the input documents. For both char-
acter and word inputs, we used embedding layers
before the RNN layers. All neural network exper-
iments were implemented with Tensorflow (Abadi
et al., 2015) using Keras API (Chollet et al., 2015).

35

Although the history/context is not a parameter
for recurrent networks, the architecture has many
hyperparameters. We optimized the hyperparame-
ters of the architecture through a random search for
the embedding size of both characters and words,
the hidden representation size of the RNN cells,
the dropout parameter for each component of the
network, frequency threshold for excluding fea-
tures, RNN architecture, GRU (Cho et al., 2014)
or LSTM (Hochreiter and Schmidhuber, 1997),
and case normalization. For the RNN models,
we used a random training–validation split (80%–
20% for Spanish, and 90%–10% for English) dur-
ing hyperparameter tuning. We used early stop-
ping based on macro F1-measure, and picked the
epoch with the best F1-measure for each hyperpa-
rameter setting. Besides these parameters – used
for systematic random search – we also experi-
mented with deeper architectures, both by stack-
ing RNNs and by multiple fully-connected layers.
Deeper networks, however, yielded worse results.
We obtained F1-scores of 33.02% for English

data and 17.98% for the Spanish data on the (ran-
domly split) development set. For both subtasks,
we submitted results with the hyperparameter set-
ting that worked best on the English data set (al-
though it yielded a slightly lower F1-score than
the best one obtained for Spanish). For both lan-
guages, the RNN results submitted used a model
with embedding layers of size 32 (for characters)
and 128 (for words). In the case of bidirectional
GRU networks we used hidden units of sizes 32
and 128 for character and word input, respectively,
minimum frequency threshold of 4 for characters
and 1 for words, dropout parameter of 0.50 at the
embedding layers and 0.10 at the RNN layers, and
no case normalization.

2.3 Effect of training set size
The performance with different training set sizes is
an important consideration in model choice. Fur-
thermore, since the training set sizes for the two
languages in present study are different, it is also
be a plausible explanation for the fact that sub-
stantially lower performance of both models on the
Spanish task. To shed light into these two issues,
we present incremental results on (only) the En-
glish data set. In this experiment, we randomly set
aside 10% of the English training data for testing,
we split the remaining 90% into 10 splits, and train
both systems by starting with one of splits, and in-
crementally adding another one in each iteration.

0 100 200 300 400

20

25

30

35

Training set size (×1 000 instances)

F 1
(m

ac
ro
)

SVM
RNN

Figure 3: Learning curve for the SVM and RNN mod-
els on the English training set. The error bars indicate
maximum and minimum values in 10 trials.

Figure 3 shows the F1-score against training set
size, for both SVM and RNN models.

3 Discussion and conclusions

In this paper, we described our submitted systems
at SemEval-2018 Task 2 on Multilingual Emoji
Prediction. Besides providing details on our sys-
tems, this paper also intends to provide a com-
parison between two text classification methods:
RNNs and linear SVMs. The comparison is mo-
tivated by the fact that, despite their popularity
and argued superiority, we and others found lin-
ear models, particularly SVMs, yield better re-
sults than (deep) neural models in a series of other
text classification tasks (e.g., Çöltekin and Rama,
2016; Rama and Çöltekin, 2017; Çöltekin and
Rama, 2017; Medvedeva et al., 2017).
One plausible explanation is the fact that neu-

ral networks typically require more data to train.
Indeed, the previous shared tasks cited above of-
ten provided modest-size training sets, mainly due
to the cost of labeling. Emoji classification task
has an advantage in this respect as the labeling
is relatively cheap compared to many other text
classification tasks. As a result, at least for En-
glish, the shared task included a rather large train-
ing set. However, our current findings also indi-
cate that the linear SVMs still perform better than
the RNN counterparts. Although the results pre-
sented in Figure 3 indicate that more data is, in-
deed, helpful for RNNs, the performance gap in
favor of SVMs persists. Another interesting (but
expected due to model complexity) observation in

36

Predicted label

Tr
ue

la
be
l

(a) English

0

2,000

4,000

6,000

8,000

Predicted label

Tr
ue

la
be
l

(b) Spanish

0

200

400

600

800

1,000

1,200

Figure 4: Confusion matrices for both data sets. The labels are sorted by frequency.

Figure 3 is that the RNNs also exhibit larger vari-
ation, especially with smaller data sizes.
Our findings seem to contradict with the major-

ity of recent NLP literature, where RNNs are of-
ten claimed to be superior to linear models, and
emoji classification is not an exception (e.g., Bar-
bieri et al., 2017). Part of this impression comes
from the fact that, in most studies, the linear base-
lines used in comparison are simple bag-of-words
models. As words in a text are not independent,
simple bag-of-words is deemed to fail. The sim-
ple addition of word n-gram features, however, cir-
cumvents this problem to a large extent, enabling
the linear models to capture some local dependen-
cies. RNNs, however, still have a potential advan-
tage since they can, at least in theory, capture long-
range dependencies as well. However, it seems ei-
ther local dependencies are enough in many text
classification tasks, or the data sets are (still) small
for RNNs to generalize over useful long-range de-
pendencies. Furthermore, character n-gram fea-
tures are also useful, particularly for morphologi-
cally rich languages, as they also capture informa-
tion present in sub-word units. Although including
many overlapping character and word n-gram fea-
tures result in large feature vectors, the sparse im-
plementations of these models are computationally
feasible and easy to tune – often more than corre-
sponding deep neural network models.
A curious finding from our experiments is that

despite the language-agnostic nature of our meth-
ods, both models yielded a rather large perfor-
mance difference (13.63% F1-measure on the test
set) between English and Spanish. The possible
explanation based on training set size is not sup-

ported by the experiments presented in Section 2.3.
Figure 3 shows that, at about the training set size
of Spanish data (100 000 instances), one can ob-
tain about 32% F1-score on the English data set,
which is substantially higher than the best test and
development set results we obtained using the full
training data for Spanish (22.36% and 23.59% re-
spectively). Hence, the difference is likely to be ei-
ther due to differences between the languages, or
due to some inherent confusability of the emojis
in the Spanish data set. The confusion matrices
in Figure 4 indicate higher majority class bias for
Spanish. More experiments are needed for a better
understanding of the differences.

3.1 Future directions

Past research has found that ensemble methods
that combine multiple classifiers yield better per-
formance compared to each individual classifier
(Malmasi and Dras, 2015). Besides the differences
in the learning algorithms, the models we com-
pare in this work exploit rather different types of
information. Hence, a combination of classifiers
may result in better performance. Even though we
did not experiment with ensemble methods in this
work, the number of test instances that were pre-
dicted correctly by one of the models (but not by
both) was 17.28% and 19.95% for English and the
Spanish data respectively, indicating a promising
upper bound for an ensemble approach.
Although we did not use any external resources

in this task, another potential source of improve-
ment is to use external information (e.g., embed-
dings or cluster labels) extracted from large unla-
beled texts.

37

References
Martín Abadi, Ashish Agarwal, Paul Barham, Eugene

Brevdo, Zhifeng Chen, Craig Citro, Greg S. Cor-
rado, Andy Davis, Jeffrey Dean, Matthieu Devin,
Sanjay Ghemawat, Ian Goodfellow, Andrew Harp,
Geoffrey Irving, Michael Isard, Yangqing Jia, Rafal
Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh
Levenberg, Dan Mané, Rajat Monga, Sherry Moore,
Derek Murray, Chris Olah, Mike Schuster, Jonathon
Shlens, Benoit Steiner, Ilya Sutskever, Kunal Tal-
war, Paul Tucker, Vincent Vanhoucke, Vijay Vasude-
van, Fernanda Viégas, Oriol Vinyals, Pete Warden,
Martin Wattenberg, Martin Wicke, Yuan Yu, and Xi-
aoqiang Zheng. 2015. TensorFlow: Large-scale ma-
chine learning on heterogeneous systems. Software
available from tensorflow.org.

Francesco Barbieri, Miguel Ballesteros, and Horacio
Saggion. 2017. Are emojis predictable? InProceed-
ings of the 15th Conference of the European Chap-
ter of the Association for Computational Linguistics:
Volume 2, Short Papers, pages 105–111, Valencia,
Spain. Association for Computational Linguistics.

Francesco Barbieri, Jose Camacho-Collados,
Francesco Ronzano, Luis Espinosa-Anke, Miguel
Ballesteros, Valerio Basile, Viviana Patti, and
Horacio Saggion. 2018. SemEval-2018 Task 2:
Multilingual Emoji Prediction. In Proceedings of
the 12th International Workshop on Semantic Eval-
uation (SemEval-2018), New Orleans, LA, United
States. Association for Computational Linguistics.

Francesco Barbieri, Francesco Ronzano, and Horacio
Saggion. 2016. What does this emoji mean? a vector
space skip-gram model for twitter emojis. In Pro-
ceedings of the Tenth International Conference on
Language Resources and Evaluation (LREC 2016),
Paris, France. European Language Resources Asso-
ciation (ELRA).

Kyunghyun Cho, Bart van Merrienboer, Dzmitry Bah-
danau, and Yoshua Bengio. 2014. On the properties
of neural machine translation: Encoder–decoder ap-
proaches. In Proceedings of SSST-8, Eighth Work-
shop on Syntax, Semantics and Structure in Statisti-
cal Translation, pages 103–111.

François Chollet et al. 2015. Keras. https://
github.com/keras-team/keras.

Çağrı Çöltekin and Taraka Rama. 2016. Discriminat-
ing similar languages with linear SVMs and neural
networks. In Proceedings of the Third Workshop on
NLP for Similar Languages, Varieties and Dialects
(VarDial3), pages 15–24, Osaka, Japan.

Çağrı Çöltekin and Taraka Rama. 2017. Tübingen
system in VarDial 2017 shared task: experiments
with language identification and cross-lingual pars-
ing. In Proceedings of the Fourth Workshop on NLP
for Similar Languages, Varieties and Dialects (Var-
Dial), pages 146–155, Valencia, Spain. Association
for Computational Linguistics.

Rong-En Fan, Kai-Wei Chang, Cho-Jui Hsieh, Xiang-
Rui Wang, and Chih-Jen Lin. 2008. LIBLINEAR:
A library for large linear classification. Journal of
Machine Learning Research, 9:1871–1874.

Bjarke Felbo, Alan Mislove, Anders Søgaard, Iyad
Rahwan, and Sune Lehmann. 2017. Using millions
of emoji occurrences to learn any-domain represen-
tations for detecting sentiment, emotion and sar-
casm. In Proceedings of the 2017 Conference on
Empirical Methods in Natural Language Process-
ing, pages 1615–1625, Copenhagen, Denmark. As-
sociation for Computational Linguistics.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural computation,
9(8):1735–1780.

Petra Kralj Novak, Jasmina Smailović, Borut Sluban,
and Igor Mozetič. 2015. Sentiment of emojis. PLOS
ONE, 10(12):1–22.

Shervin Malmasi and Mark Dras. 2015. Language
identification using classifier ensembles. In Pro-
ceedings of the Joint Workshop on Language Tech-
nology for Closely Related Languages, Varieties and
Dialects, pages 35–43.

Maria Medvedeva, Martin Kroon, and Barbara Plank.
2017. When sparse traditional models outperform
dense neural networks: the curious case of discrim-
inating between similar languages. In Proceedings
of the Fourth Workshop on NLP for Similar Lan-
guages, Varieties andDialects (VarDial), pages 156–
163, Valencia, Spain. Association for Computational
Linguistics.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,
R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-
esnay. 2011. Scikit-learn: Machine learning in
Python. Journal of Machine Learning Research,
12:2825–2830.

Taraka Rama and Çağrı Çöltekin. 2017. Fewer features
perform well at native language identification task.
In Proceedings of the 12th Workshop on Innovative
Use of NLP for Building Educational Applications,
pages 255–260, Copenhagen, Denmark. Association
for Computational Linguistics.

38

Proceedings of the 12th International Workshop on Semantic Evaluation (SemEval-2018), pages 39–50
New Orleans, Louisiana, June 5–6, 2018. ©2018 Association for Computational Linguistics

SemEval-2018 Task 3: Irony Detection in English Tweets

Cynthia Van Hee, Els Lefever and Véronique Hoste
LT3 Language and Translation Technology Team

Ghent University
Groot-Brittanniëlaan 45, 9000 Ghent

firstname.lastname@ugent.be

Abstract

This paper presents the first shared task on
irony detection: given a tweet, automatic nat-
ural language processing systems should de-
termine whether the tweet is ironic (Task A)
and which type of irony (if any) is expressed
(Task B). The ironic tweets were collected us-
ing irony-related hashtags (i.e. #irony, #sar-
casm, #not) and were subsequently manually
annotated to minimise the amount of noise in
the corpus. Prior to distributing the data, hash-
tags that were used to collect the tweets were
removed from the corpus. For both tasks, a
training corpus of 3,834 tweets was provided,
as well as a test set containing 784 tweets.
Our shared tasks received submissions from
43 teams for the binary classification Task A
and from 31 teams for the multiclass Task B.
The highest classification scores obtained for
both subtasks are respectively F1= 0.71 and
F1= 0.51 and demonstrate that fine-grained
irony classification is much more challenging
than binary irony detection.

1 Introduction

The development of the social web has stimulated
the use of figurative and creative language, includ-
ing irony, in public (Ghosh et al., 2015). From a
philosophical/psychological perspective, discern-
ing the mechanisms that underlie ironic speech im-
proves our understanding of human reasoning and
communication, and more and more, this interest
in understanding irony also emerges in the ma-
chine learning community (Wallace, 2015). Al-
though an unanimous definition of irony is still
lacking in the literature, it is often identified as a
trope whose actual meaning differs from what is
literally enunciated. Due to its nature, irony has
important implications for natural language pro-
cessing (NLP) tasks, which aim to understand and
produce human language. In fact, automatic irony

detection has a large potential for various appli-
cations in the domain of text mining, especially
those that require semantic analysis, such as au-
thor profiling, detecting online harassment, and,
maybe the most well-known example, sentiment
analysis.

Due to its importance in industry, sentiment
analysis research is abundant and significant
progress has been made in the field (e.g. in the con-
text of SemEval (Rosenthal et al., 2017)). How-
ever, the SemEval-2014 shared task Sentiment
Analysis in Twitter (Rosenthal et al., 2014) demon-
strated the impact of irony on automatic senti-
ment classification by including a test set of ironic
tweets. The results revealed that, while senti-
ment classification performance on regular tweets
reached up to F1= 0.71, scores on the ironic
tweets varied between F1= 0.29 and F1= 0.57. In
fact, it has been demonstrated that several applica-
tions struggle to maintain high performance when
applied to ironic text (e.g. Liu, 2012; Maynard
and Greenwood, 2014; Ghosh and Veale, 2016).
Like other types of figurative language, ironic text
should not be interpreted in its literal sense; it re-
quires a more complex understanding based on as-
sociations with the context or world knowledge.
Examples 1 and 2 are sentences that regular senti-
ment analysis systems would probably classify as
positive, whereas the intended sentiment is unde-
niably negative.

(1) I feel so blessed to get ocular migraines.

(2) Go ahead drop me hate, I’m looking for-
ward to it.

For human readers, it is clear that the author of
example 1 does not feel blessed at all, which can
be inferred from the contrast between the positive
sentiment expression “I feel so blessed”, and the
negative connotation associated with getting ocu-
lar migraines. Although such connotative infor-

39

mation is easily understood by most people, it is
difficult to access by machines. Example 2 illus-
trates implicit cyberbullying; instances that typi-
cally lack explicit profane words and where the
offense is often made through irony. Similarly to
example 1, a contrast can be perceived between a
positive statement (“I’m looking forward to”) and
a negative situation (i.e. experiencing hate). To be
able to interpret the above examples correctly, ma-
chines need, similarly to humans, to be aware that
irony is used, and that the intended sentiment is
opposite to what is literally enunciated.

The irony detection task1 we propose is formu-
lated as follows: given a single post (i.e. a tweet),
participants are challenged to automatically de-
termine whether irony is used and which type of
irony is expressed. We thus defined two subtasks:

• Task A describes a binary irony classifica-
tion task to define, for a given tweet, whether
irony is expressed.

• Task B describes a multiclass irony classi-
fication task to define whether it contains a
specific type of irony (verbal irony by means
of a polarity clash, situational irony, or an-
other type of verbal irony, see further) or is
not ironic. Concretely, participants should
define which one out of four categories a
tweet contains: ironic by clash, situational
irony, other verbal irony or not ironic.

It is important to note that by a tweet, we under-
stand the actual text it contains, without metadata
(e.g. user id, time stamp, location). Although such
metadata could help to recognise irony, the objec-
tive of this task is to learn, at message level, how
irony is linguistically realised.

2 Automatic Irony Detection

As described by Joshi et al. (2017), recent ap-
proaches to irony can roughly be classified as ei-
ther rule-based or (supervised and unsupervised)
machine learning-based. While rule-based ap-
proaches mostly rely upon lexical information and
require no training, machine learning invariably
makes use of training data and exploits different
types of information sources (or features), such as
bags of words, syntactic patterns, sentiment infor-
mation or semantic relatedness.

1All practical information, data download links and the
final results can be consulted via the CodaLab website of our
task: https://competitions.codalab.org/competitions/17468.

Previous work on irony detection mostly ap-
plied supervised machine learning mainly exploit-
ing lexical features. Other features often include
punctuation mark/interjection counts (e.g Davi-
dov et al., 2010), sentiment lexicon scores (e.g.
Bouazizi and Ohtsuki, 2016; Farı́as et al., 2016),
emoji (e.g. González-Ibáñez et al., 2011), writ-
ing style, emotional scenarios, part of speech-
patterns (e.g. Reyes et al., 2013), and so on. Also
beneficial for this task are combinations of differ-
ent feature types (e.g. Van Hee et al., 2016b), au-
thor information (e.g. Bamman and Smith, 2015),
features based on (semantic or factual) opposi-
tions (e.g Karoui et al., 2015; Gupta and Yang,
2017; Van Hee, 2017) and even eye-movement
patterns of human readers (Mishra et al., 2016).
While a wide range of features are and have been
used extensively over the past years, deep learning
techniques have recently gained increasing popu-
larity for this task. Such systems often rely on se-
mantic relatedness (i.e. through word and charac-
ter embeddings (e.g. Amir et al., 2016; Ghosh and
Veale, 2016)) deduced by the network and reduce
feature engineering efforts.

Regardless of the methodology and algorithm
used, irony detection often involves binary clas-
sification where irony is defined as instances that
express the opposite of what is meant (e.g. Riloff
et al., 2013; Joshi et al., 2017). Twitter has been
a popular data genre for this task, as it is eas-
ily accessible and provides a rapid and convenient
method to find (potentially) ironic messages by
looking for hashtags like #irony, #not and #sar-
casm. As a consequence, irony detection research
often relies on automatically annotated (i.e. based
on irony-related hashtags) corpora, which contain
noise (Kunneman et al., 2015; Van Hee, 2017).

3 Task Description

We propose two subtasks A and B for the auto-
matic detection of irony on Twitter, for which we
provide more details below.

3.1 Task A: Binary Irony Classification
The first subtask is a two-class (or binary) classi-
fication task where submitted systems have to pre-
dict whether a tweet is ironic or not. The following
examples respectively present an ironic and non-
ironic tweet.

(3) I just love when you test my patience!!
#not.

40

(4) Had no sleep and have got school now
#not happy

Note that the examples contain irony-related
hashtags (e.g. #irony) that were removed from the
corpus prior to distributing the data for the task.

3.2 Task B: Multiclass Irony Classification
The second subtask is a multiclass classification
task where submitted systems have to predict one
out of four labels describing i) verbal irony re-
alised through a polarity contrast, ii) verbal irony
without such a polarity contrast (i.e. other verbal
irony), iii) descriptions of situational irony, and iv)
non-irony. The following paragraphs present a de-
scription and a number of examples for each label.

Verbal irony by means of a polarity contrast
This category applies to instances containing an
evaluative expression whose polarity (positive,
negative) is inverted between the literal and the in-
tended evaluation, as shown in examples 5 and 6:

(5) I love waking up with migraines #not

(6) I really love this year’s summer; weeks
and weeks of awful weather

In the above examples, the irony results from a
polarity inversion between two evaluations. For
instance, in example 6, the literal evaluation (“I
really love this year’s summer”) is positive, while
the intended one, which is implied by the context
(“weeks and weeks of awful weather”), is nega-
tive.

Other verbal irony This category contains in-
stances that show no polarity contrast between the
literal and the intended evaluation, but are never-
theless ironic.

(7) @someuser Yeah keeping cricket clean,
that’s what he wants #Sarcasm

(8) Human brains disappear every day. Some
of them have never even appeared.
http://t.co/Fb0Aq5Frqs #brain #human-
brain #Sarcasm

Situational irony This class label is reserved for
instances describing situational irony, or situations
that fail to meet some expectations. As explained
by Shelley (2001), firefighters who have a fire in
their kitchen while they are out to answer a fire
alarm would be a typically ironic situation. Some
other examples of situational irony are the follow-
ing:

(9) Most of us didn’t focus in the #ADHD lec-
ture. #irony

(10) Event technology session is having Inter-
net problems. #irony #HSC2024

Non-ironic This class contains instances that are
clearly not ironic, or which lack context to be sure
that they are ironic, as shown in the following ex-
amples:

(11) And then my sister should be home from
college by time I get home from babysit-
ting. And it’s payday. THIS IS A GOOD
FRIDAY

(12) Is Obamacare Slowing Health Care
Spending? #NOT

4 Corpus Construction and Annotation

A data set of 3,000 English tweets was constructed
by searching Twitter for the hashtags #irony, #sar-
casm and #not (hereafter referred to as the ‘hash-
tag corpus’), which could occur anywhere in the
tweet that was finally included in the corpus.
All tweets were collected between 01/12/2014
and 04/01/2015 and represent 2,676 unique users.
To minimise the noise introduced by ground-
less irony hashtags, all tweets were manually la-
belled using a fine-grained annotation scheme for
irony (Van Hee et al., 2016a). Prior to data anno-
tation, the entire corpus was cleaned by removing
retweets, duplicates and non-English tweets and
replacing XML-escaped characters (e.g. &).

The corpus was entirely annotated by three stu-
dents in linguistics and second-language speak-
ers of English, with each student annotating one
third of the whole corpus. All annotations were
done using the brat rapid annotation tool (Stene-
torp et al., 2012). To assess the reliability of
the annotations, and whether the guidelines al-
lowed to carry out the task consistently, an inter-
annotator agreement study was set up in two
rounds. Firstly, inter-rater agreement was calcu-
lated between the authors of the guidelines to test
the guidelines for usability and to assess whether
changes or additional clarifications were recom-
mended prior annotating the entire corpus. For
this purpose, a subset of 100 instances from the
SemEval-2015 Task Sentiment Analysis of Figu-
rative Language in Twitter (Ghosh et al., 2015)
dataset were annotated. Based on the results,
some clarifications and refinements were added to

41

the annotation scheme, which are thoroughly de-
scribed in Van Hee (2017). Next, a second agree-
ment study was carried out on a subset (i.e. 100
randomly chosen instances) of the corpus. As
metric, we used Fleiss’ Kappa (Fleiss, 1971),
a widespread statistical measure in the field of
computational linguistics for assessing annotator
agreement on categorical ratings (Carletta, 1996).
The measure calculates the degree of agreement
in classification over the agreement which would
be expected by chance, i.e. when annotators would
randomly assign class labels.

annotation Kappa κ Kappa κ
round 1 round 2

ironic / not ironic 0.65 0.72
ironic by clash / other / not ironic 0.55 0.72

Table 1: Inter-annotator agreement scores (Kappa) in
two annotation rounds.

Table 1 presents the inter-rater scores for the bi-
nary irony distinction and for three-way irony clas-
sification (‘other’ includes both situational irony
and other forms of verbal irony). We see that better
inter-annotator agreement is obtained after the re-
finement of the annotation scheme, especially for
the binary irony distinction. Given the difficulty
of the task, a Kappa score of 0.72 for recognising
irony can be interpreted as good reliability2.

The distribution if the different irony types in
the experimental corpus are presented in Table 2.

class label # instances
Verbal irony by means of a polarity contrast 1,728
Other types of verbal irony 267
Situational irony 401
Non-ironic 604

Table 2: Distribution of the different irony categories
in the corpus

Based on the annotations, 2,396 instances out of
the 3,000 are ironic, while 604 are not. To balance
the class distribution in our experimental corpus,
1,792 non-ironic tweets were added from a back-
ground corpus. The tweets in this corpus were
collected from the same set of Twitter users as
in the hashtag corpus, and within the same time
span. It is important to note that these tweets do
not contain irony-related hashtags (as opposed to
the non-ironic tweets in the hashtag corpus), and
were manually filtered from ironic tweets. Adding

2According to magnitude guidelines by Landis and Koch
(1977).

these non-ironic tweets to the experimental cor-
pus brought the total amount of data to 4,792
tweets (2,396 ironic + 2,396 non-ironic). For
this shared task, the corpus was randomly split
into a class-balanced training (80% or 3,833 in-
stances) and test (20%, or 958 instances) set. In
an additional cleaning step, we removed ambigu-
ous tweets (i.e. where additional context was re-
quired to understand their ironic nature), from the
test corpus, resulting in a test set containing 784
tweets (consisting of 40% ironic and 60% non-
ironic tweets).

To train their systems, participants were not re-
stricted to the provided training corpus. They were
allowed to use additional training data that was
collected and annotated at their own initiative. In
the latter case, the submitted system was consid-
ered unconstrained, as opposed to constrained if
only the distributed training data were used for
training.

It is important to note that participating teams
were allowed ten submissions at CodaLab, and
that they could submit a constrained and uncon-
strained system for each subtask. However, only
their last submission was considered for the offi-
cial ranking (see Table 3).

5 Evaluation

For both subtasks, participating systems were
evaluated using standard evaluation metrics, in-
cluding accuracy, precision, recall and F1 score,
calculated as follows:

accuracy =
true positives + true negatives

total number of instances
(1)

precision =
true positives

true positives + false positives
(2)

recall =
true positives

true positives + false negatives
(3)

F1 = 2 · precision · recall
precision + recall

(4)

While accuracy provides insights into the sys-
tem performance for all classes, the latter three
measures were calculated for the positive class
only (Task A) or were macro-averaged over four
class labels (Task B). Macro-averaging of the
F1 score implies that all class labels have equal
weight in the final score.

42

For both subtasks, two baselines were provided
against which to compare the systems’ perfor-
mance. The first baseline randomly assigns irony
labels and the second one is a linear SVM classi-
fier with standard hyperparameter settings exploit-
ing tf-idf word unigram features (implemented
with scikit-learn (Pedregosa et al., 2011)). The
second baseline system is made available to the
task participants via GitHub3.

6 Systems and results for Task A

In total, 43 teams competed in Task A on binary
irony classification. Table 3 presents each team’s
performance in terms of accuracy, precision, re-
call and F1 score. In all tables, the systems are
ranked by the official F1 score (shown in the fifth
column). Scores from teams that are marked with
an asterisk should be interpreted carefully, as the
number of predictions they submitted does not
correspond to the number of test instances.

As can be observed from the table, the SVM
unigram baseline clearly outperforms the random
class baseline and generally performs well for
the task. Below we discuss the top five best-
performing teams for Task A, which all built a
constrained (i.e. only the provided training data
were used) system. The best system yielded
an F1 score of 0.705 and was developed by
THU NGN (Wu et al., 2018). Their architec-
ture consists of densely connected LSTMs based
on (pre-trained) word embeddings, sentiment fea-
tures using the AffectiveTweet package (Moham-
mad and Bravo-Marquez, 2017) and syntactic fea-
tures (e.g. PoS-tag features + sentence embedding
features). Hypothesising that the presence of a cer-
tain irony hashtag correlates with the type of irony
that is used, they constructed a multi-task model
able to predict simultaneously 1) the missing irony
hashtag, 2) whether a tweet is ironic or not and 3)
which fine-grained type of irony is used in a tweet.

Also in the top five are the teams NTUA-
SLP (F1= 0.672), WLV (F1= 0.650), NLPRL-
IITBHU (F1= 0.648) and NIHRIO (F1= 0.648).
NTUA-SLP (Baziotis et al., 2018) built an en-
semble classifier of two deep learning models: a
word- and character-based (bi-directional) LSTM
to capture semantic and syntactic information in
tweets, respectively. As features, the team used
pre-trained character and word embeddings on
a corpus of 550 million tweets. Their ensem-

3https://github.com/Cyvhee/SemEval2018-Task3/

ble classifier applied majority voting to combine
the outcomes of the two models. WLV (Roha-
nian et al., 2018) developed an ensemble vot-
ing classifier with logistic regression (LR) and
a support vector machine (SVM) as component
models. They combined (through averaging) pre-
trained word and emoji embeddings with hand-
crafted features, including sentiment contrasts be-
tween elements in a tweet (i.e. left vs. right sec-
tions, hashtags vs. text, emoji vs. text), senti-
ment intensity and word-based features like flood-
ing and capitalisation). For Task B, they used
a slightly altered (i.e. ensemble LR models and
concatenated word embeddings instead of aver-
aged) model. NLPRL-IITBHU (Rangwani et al.,
2018) ranked fourth and used an XGBoost Classi-
fier to tackle Task A. They combined pre-trained
CNN activations using DeepMoji (Felbo et al.,
2017) with ten types of handcrafted features.
These were based on polarity contrast information,
readability metrics, context incongruity, charac-
ter flooding, punctuation counts, discourse mark-
ers/intensifiers/interjections/swear words counts,
general token counts, WordNet similarity, polarity
scores and URL counts. The fifth best system for
Task A was built by NIHRIO (Vu et al., 2018) and
consists of a neural-networks-based architecture
(i.e. Multilayer Perceptron). The system exploited
lexical (word- and character-level unigrams, bi-
grams and trigrams), syntactic (PoS-tags with tf-
idf values), semantic features (word embeddings
using GloVe (Pennington et al., 2014), LSI fea-
tures and Brown cluster features (Brown et al.,
1992)) and polarity features derived from the Hu
and Liu Opinion Lexicon (Hu and Liu, 2004).

As such, all teams in the top five approached the
task differently, by exploiting various algorithms
and features, but all of them clearly outperformed
the baselines. Like most other teams, they also
showed a better performance in terms of recall
compared to precision.

Table 3 displays the results of each team’s of-
ficial submission for Task A, i.e. no distinction is
made between constrained and unconstrained sys-
tems. By contrast, Tables 4 and 5 present the rank-
ings of the best (i.e. not necessarily the last, and
hence official submission) constrained and uncon-
strained submissions for Task A.

As can be deduced from Table 4, when consid-
ering all constrained submissions from each team
and ranking them based on performance, we see

43

team acc precision recall F1

THU NGN 0.735 0.630 0.801 0.705
NTUA-SLP 0.732 0.654 0.691 0.672
WLV 0.643 0.532 0.836 0.650
NLPRL-
IITBHU

0.661 0.551 0.788 0.648

NIHRIO 0.702 0.609 0.691 0.648
DLUTNLP-1 0.628 0.520 0.797 0.629
ELiRF-UPV 0.611 0.506 0.833 0.629
liangxh16 0.659 0.555 0.714 0.625
CJ 0.667 0.565 0.695 0.623
#NonDicevo-
SulSerio

0.679 0.583 0.666 0.622

UWB 0.688 0.599 0.643 0.620
INAOE-UPV 0.651 0.546 0.714 0.618
RM@IT 0.649 0.544 0.714 0.618
DUTQS 0.601 0.498 0.794 0.612
ISP RAS 0.565 0.473 0.849 0.608
ValenTO 0.598 0.496 0.781 0.607
4binarizer 0.666 0.553 0.647 0.596
SIRIUS LC 0.684 0.604 0.588 0.596
warnikchow 0.644 0.543 0.656 0.594
ECNU 0.596 0.494 0.743 0.593
Parallel
Computing-
Network Re-
search Group

0.617 0.513 0.701 0.592

Lancaster 0.635 0.532 0.666 0.591
Unigram SVM
BL

0.635 0.532 0.659 0.589

IITBHU-NLP 0.566 0.472 0.778 0.587
s1998 0.629 0.526 0.653 0.583
Random Deci-
sion -
Syntax Trees 0.617 0.514 0.672 0.582
textbflyreact 0.628 0.525 0.640 0.577
UTH-SU 0.639 0.540 0.605 0.571
KLUEnicorn 0.594 0.491 0.643 0.557
ai-ku 0.643 0.555 0.502 0.527
UTMN 0.603 0.500 0.556 0.527
UCDCC 0.682 0.645 0.444 0.526
IITG 0.556 0.450 0.540 0.491
MI&T–LAB 0.614 0.514 0.463 0.487
*NEUROSENT-
PDI

0.504 0.409 0.560 0.472

Lovelace 0.512 0.412 0.543 0.469
codersTeam 0.509 0.410 0.543 0.468
WHLL 0.580 0.469 0.437 0.453
DKE UM 0.561 0.447 0.450 0.449
LDR 0.564 0.446 0.415 0.430
*YNU-HPCC 0.509 0.391 0.428 0.408
Random BL 0.503 0.373 0.373 0.373
ACMK-
POZNAN

0.620 0.550 0.232 0.326

iiidyt 0.352 0.257 0.334 0.291
milkstout 0.584 0.427 0.142 0.213
INGEOTEC-
IIMAS

0.628 0.880 0.071 0.131

Table 3: Official (CodaLab) results for Task A, ranked
by F1 score. The highest scores in each column are
shown in bold and the baselines are indicated in purple.

that the UCDCC team ranks first (F1= 0.724),
followed by THU NGN, NTUA-SLP, WLV and
NLPRL-IITBHU, whose approach was discussed
earlier in this paper. The UCDCC-system is an
LSTM model exploiting Glove word embedding
features.

team acc precision recall F1

UCDCC 0.797 0.788 0.669 0.724
THU NGN 0.735 0.630 0.801 0.705
NTUA-SLP 0.732 0.654 0.691 0.672
WLV 0.643 0.532 0.836 0.650
NLPRL-
IITBHU

0.661 0.551 0.788 0.648

NCL 0.702 0.609 0.691 0.648
RM@IT 0.691 0.598 0.679 0.636
#NonDicevo-
SulSerio

0.666 0.562 0.717 0.630

DLUTNLP-1 0.628 0.520 0.797 0.629
ELiRF-UPV 0.611 0.506 0.833 0.629

Table 4: Best constrained systems for Task A.

team acc precision recall F1

#NonDicevo-
SulSerio

0.679 0.583 0.666 0.622

INAOE-UPV 0.651 0.546 0.714 0.618
RM@IT 0.649 0.544 0.714 0.618
ValenTO 0.598 0.496 0.781 0.607
UTMN 0.603 0.500 0.556 0.527
IITG 0.556 0.450 0.540 0.491
LDR 0.571 0.455 0.408 0.431
milkstouts 0.584 0.427 0.142 0.213
INGEOTEC-
IIMAS

0.643 0.897 0.113 0.200

Table 5: Best unconstrained systems for Task A.

In the top five unconstrained (i.e. using ad-
ditional training data) systems for Task A are
#NonDicevoSulSerio, INAOE-UPV, RM@IT, Va-
lenTO and UTMN, with F1 scores ranging be-
tween 0.622 and 0.527. #NonDicevoSulserio ex-
tended the training corpus with 3,500 tweets from
existing irony corpora (e.g. Riloff et al. (2013);
Barbieri and Saggion (2014); Ptáček et al. (2014)
and built an SVM classifier exploiting struc-
tural features (e.g. hashtag count, text length),
sentiment- (e.g. contrast between text and emoji
sentiment), and emotion-based (i.e. emotion lexi-
con scores) features. INAOE-UPV combined pre-
trained word embeddings from the Google News
corpus with word-based features (e.g. n-grams).
They also extended the official training data with
benchmark corpora previously used in irony re-
search and trained their system with a total of
165,000 instances. RM@IT approached the task
using an ensemble classifier based on attention-
based recurrent neural networks and the Fast-

44

Text (Joulin et al., 2017) library for learning word
representations. They enriched the provided train-
ing corpus with, on the one hand, the data sets
provided for SemEval-2015 Task 11 (Ghosh et al.,
2015) and, on the other hand, the sarcasm cor-
pus composed by Ptáček et al. (2014). Alto-
gether, this generated a training corpus of approx-
imately 110,000 tweets. ValenTO took advantage
of irony corpora previously used in irony detection
that were manually annotated or through crowd-
sourcing (e.g. Riloff et al., 2013; Ptáček et al.,
2014). In addition, they extended their corpus
with an unspecified number of self-collected irony
tweets using the hashtags #irony and #sarcasm.
Finally, UTMN developed an SVM classifier ex-
ploiting binary bag-of-words features. They en-
riched the training set with 1,000 humorous tweets
from SemEval-2017 Task 6 (Potash et al., 2017)
and another 1,000 tweets with positive polarity
from SemEval-2016 Task 4 (Nakov et al., 2016),
resulting in a training corpus of 5,834 tweets.

Interestingly, when comparing the best con-
strained with the best unconstrained system for
Task A, we see a difference of 10 points in favour
of the constrained system, which indicates that
adding more training data does not necessarily im-
prove the classification performance.

7 Systems and Results for Task B

While 43 teams competed in Task A, 31 teams
submitted a system for Task B on multiclass irony
classification. Table 6 presents the official rank-
ing with each team’s performance in terms of ac-
curacy, precision, recall and F1 score. Similar to
Task A, we discuss the top five systems in the
overall ranking (Table 6) and then zoom in on
the best performing constrained and unconstrained
systems (Tables 7 and 8).

For Task B, the top five is nearly similar to
the top five for Task A and includes the fol-
lowing teams: UCDCC (Ghosh, 2018), NTUA-
SLP (Baziotis et al., 2018), THU NGN (Wu et al.,
2018), NLPRL-IITBHU (Rangwani et al., 2018)
and NIHRIO (Vu et al., 2018). All of the teams
tackled multiclass irony classification by applying
(mostly) the same architecture as for Task A (see
earlier). Inspired by siamese networks (Brom-
ley et al., 1993) used in image classification, the
UCDCC team developed a siamese architecture
for irony detection in both subtasks. The neu-
ral network architecture makes use of Glove word

embeddings as features and creates two identical
subnetworks that are each fed with different parts
of a tweet. Under the premise that ironic state-
ments are often characterised by a form of oppo-
sition or contrast, the architecture captures this in-
congruity between two parts in an ironic tweet.

team acc precision recall F1

UCDCC 0.732 0.577 0.504 0.507
NTUA-SLP 0.652 0.496 0.512 0.496
THU NGN 0.605 0.486 0.541 0.495
NLPRL-
IITBHU

0.603 0.466 0.506 0.474

NIHRIO 0.659 0.545 0.448 0.444
Random De-
cision Syntax
Trees

0.633 0.487 0.439 0.435

ELiRF-UPV 0.633 0.412 0.440 0.421
WLV 0.671 0.431 0.415 0.415
#NonDicevo-
SulSerio

0.545 0.409 0.441 0.413

INGEOTEC-
IIMAS

0.644 0.502 0.385 0.406

ai-ku 0.584 0.422 0.402 0.393
warnikchow 0.598 0.412 0.410 0.393
UWB 0.626 0.440 0.406 0.390
CJ 0.603 0.412 0.409 0.384
UTH-SU 0.551 0.383 0.399 0.376
s1998 0.568 0.338 0.374 0.352
ValenTO 0.560 0.353 0.352 0.352
RM@IT 0.542 0.377 0.371 0.350
Unigram SVM
BL

0.569 0.416 0.364 0.341

SSN MLRG1 0.573 0.348 0.361 0.334
Lancaster 0.606 0.280 0.359 0.313
Parallel Com-
puting Network
Research
Group

0.416 0.406 0.353 0.310

codersTeam 0.492 0.300 0.311 0.301
KLUEnicorn 0.347 0.321 0.353 0.298
DKE UM 0.432 0.318 0.305 0.298
IITG 0.486 0.336 0.291 0.278
Lovelace 0.434 0.294 0.282 0.276
*YNU-HPCC 0.533 0.438 0.267 0.261
Random BL 0.416 0.241 0.241 0.241
LDR 0.461 0.230 0.250 0.234
ECNU 0.304 0.255 0.249 0.233
NEUROSENT-
PDI

0.441 0.213 0.231 0.219

INAOE-UPV 0.594 0.217 0.261 0.215

Table 6: Official (CodaLab) results for Task B, ranked
by F1 score. The highest scores in each column are
shown in bold and the baselines are indicated in purple.

NTUA-SLP, THU NGN and NIHRIO used the
same system for both subtasks. NLPRL-IITBHU
also used the same architecture, but given the data
skew for Task B, they used SMOTE (Chawla et al.,
2002) as an oversampling technique to make sure
each irony class was equally represented in the
training corpus, which lead to an F1 score increase
of 5 points.

45

NLPRL-IITBHU built a Random Forest classi-
fier making use of pre-trained DeepMoji embed-
dings, character embeddings (using Tweet2Vec)
and sentiment lexicon features.

team acc precision recall F1

UCDCC 0.732 0.577 0.504 0.507
NTUA-SLP 0.652 0.496 0.512 0.496
THU NGN 0.605 0.486 0.541 0.495
NLPRL-
IITBHU

0.603 0.466 0.506 0.474

NCL 0.659 0.545 0.448 0.444
Random
Decision-
Syntax Trees 0.633 0.487 0.439 0.435
ELiRF-UPV 0.633 0.412 0.440 0.421
WLV 0.671 0.431 0.415 0.415
AI-KU 0.584 0.422 0.402 0.393

Table 7: Best constrained systems for Task B. The
highest scores in each column are shown in bold.

team acc precision recall F1

#NonDicevo
SulSerio

0.545 0.409 0.441 0.413

INGEOTEC-
IIMAS

0.647 0.508 0.386 0.407

INAOE-UPV 0.495 0.347 0.379 0.350
IITG 0.486 0.336 0.291 0.278

Table 8: Unconstrained systems for Task B. The high-
est scores in each column are shown in bold.

As can be deduced from Table 7, the top five
constrained systems correspond to the five best-
performing systems overall (Table 6). Only four
unconstrained systems were submitted for Task
B. Differently from their Task A submission,
#NonDicevoSulSerio applied a cascaded approach
for this task, i.e. the first algorithm served an
ironic/non-ironic classification, followed by a sys-
tem distinguishing between ironic by clash and
other forms of irony. Lastly, a third classifier
distinguished between situational and other ver-
bal irony. To account for class imbalance in step
two, the team added 869 tweets of the situational
and other verbal irony categories. INAOE-UPV,
INGEOTEC-IIMAS and IITG also added tweets
to the original training corpus, but it is not entirely
clear how many were added and how these extra
tweets were annotated.

Similar to Task A, the unconstrained systems do
not seem to benefit from additional data, as they
do not outperform the constrained submissions for
the task.

team not ironic situat. other
ironic by clash irony irony

UCDCC 0.843 0.697 0.376 0.114
NTUA-SLP 0.742 0.648 0.460 0.133
THU NGN 0.704 0.608 0.433 0.233
NLPRL-
IITBHU

0.689 0.636 0.387 0.185

NIHRIO 0.763 0.607 0.317 0.087
Random
Decision-
Syntax Trees 0.742 0.569 0.346 0.085
ELiRF-UPV 0.740 0.298 0.347 0.000
WLV 0.789 0.578 0.294 0.000
#NonDicevo
SulSerio

0.683 0.533 0.315 0.121

INGEOTEC-
IIMAS

0.764 0.494 0.211 0.152

ai-ku 0.699 0.529 0.258 0.087
warnikchow 0.717 0.524 0.300 0.028
UWB 0.744 0.557 0.232 0.027
CJ 0.724 0.559 0.202 0.050
*UTH-SU 0.671 0.513 0.254 0.065
s1998 0.711 0.446 0.253 0.000
emotIDM 0.713 0.456 0.165 0.074
RM@IT 0.671 0.481 0.148 0.100
SSN MLRG1 0.704 0.499 0.105 0.027
Lancaster 0.729 0.523 0.000 0.000
Parallel Com-
puting Network
Res. Group

0.547 0.472 0.084 0.137

codersTeam 0.646 0.387 0.134 0.039
KLUEnicorn 0.423 0.384 0.200 0.186
DKE UM 0.582 0.299 0.143 0.168
IITG 0.641 0.319 0.095 0.056
Lovelace 0.577 0.306 0.159 0.060
*YNU-HPCC 0.700 0.176 0.075 0.091
LDR 0.632 0.255 0.051 0.000
ECNU 0.444 0.259 0.118 0.110
*NEUROSENT-
PDI

0.612 0.201 0.062 0.000

INAOE-UPV 0.748 0.000 0.111 0.000

Table 9: Results for Task B, reporting the F1 score for
the class labels. The highest scores in each column are
shown in bold.

A closer look at the best and worst-performing
systems for each subtask reveals that Task A
benefits from systems that exploit a variety of
handcrafted features, especially sentiment-based
(e.g. sentiment lexicon values, polarity contrast),
but also bags of words, semantic cluster features
and PoS-based features. Other promising fea-
tures for the task are word embeddings trained
on large Twitter corpora (e.g. 5M tweets). The
classifiers and algorithms used are (bidirectional)
LSTMs, Random Forest, Multilayer Perceptron,
and an optimised (i.e. using feature selection)
voting classifier combining Support Vector Ma-
chines with Logistic Regression. Neural network-
based systems exploiting word embeddings de-
rived from the training dataset or generated from
Wikipedia corpora perform less well for the task.

46

Similarly, Task B seems to benefit from (ensem-
ble) neural-network architectures exploiting large
corpus-based word embeddings and sentiment fea-
tures. Oversampling and adjusting class weights
are used to overcome the class imbalance of labels
2 and 3 versus 1 and 0 and tend to improve the
classification performance. Ensemble classifiers
outperform multi-step approaches and combined
binary classifiers for this task.

Task B challenged the participants to distin-
guish between different types of irony. The class
distributions in the training and test corpus are nat-
ural (i.e. no additional data were added after the
annotation process) and imbalanced. For the eval-
uation of the task, F1 scores were macro-averaged;
on the one hand, this gives each label equal weight
in the evaluation, but on the other hand, it does not
show each class contribution to the average score.
Table 9 therefore presents the participating teams’
performance on each of the subtypes of irony in
Task B. As can be deduced from Table 9, all teams
performed best on the non ironic and ironic by
clash classes, while identifying situational irony
and other irony seems to be much more challeng-
ing. Although the scores for these two classes are
the lowest, we observe an important difference be-
tween situational and other verbal irony. This can
probably be explained by the heterogeneous na-
ture of the other category, which collects diverse
realisations of verbal irony. A careful and manual
annotation of this class, which is currently being
conducted, should provide more detailed insights
into this category of ironic tweets.

8 Conclusions

The systems that were submitted for both subtasks
represent a variety of neural-network-based ap-
proaches (i.e. CNNs, RNNs and (bi-)LSTMs) ex-
ploiting word- and character embeddings as well
as handcrafted features. Other popular classi-
fication algorithms include Support Vector Ma-
chines, Maximum Entropy, Random Forest, and
Naı̈ve Bayes. While most approaches were based
on one algorithm, some participants experimented
with ensemble learners (e.g. SVM + LR, CNN +
bi-LSTM, stacked LSTMs), implemented a vot-
ing system or built a cascaded architecture (for
Task B) that first distinguished ironic from non-
ironic tweets and subsequently differentiated be-
tween the fine-grained irony categories.

Among the most frequently used features are

lexical features (e.g. n-grams, punctuation and
hashtag counts, emoji presence) and sentiment-
or emotion- lexicon features (e.g. based on Sen-
ticNet (Cambria et al., 2016), VADER (Hutto
and Gilbert, 2014), aFinn (Nielsen, 2011)). Also
important but to a lesser extent were syntactic
(e.g. PoS-patterns) and semantic features, based
on word, character and emoji embeddings or se-
mantic clusters.

The best systems for Task A and Task B ob-
tained an F1 score of respectively 0.705 and 0.507
and clearly outperformed the baselines provided
for this task. When looking at the scores per class
label in Task B, we observe that high scores were
obtained for the non-ironic and ironic by clash
classes, and that other irony appears to be the most
challenging irony type. Among all submissions,
a wide variety of preprocessing tools, machine
learning libraries and lexicons were explored.

As the provided datasets were relatively small,
participants were allowed to include additional
training data for both subtasks. Nevertheless, most
submissions were constrained (i.e. only the pro-
vided training data were used): only nine uncon-
strained submissions were made for Task A, and
four for Task B. When comparing constrained to
unconstrained systems, it can be observed that
adding more training data does not necessarily
benefit the classification results. A possible ex-
planation for this is that most unconstrained sys-
tems added training data from related irony re-
search that were annotated differently (e.g. auto-
matically) than the distributed corpus, which pre-
sumably limited the beneficial effect of increasing
the training corpus size.

This paper provides some general insights into
the main methodologies and bottlenecks for binary
and multiclass irony classification. We observed
that, overall, systems performed much better on
Task A than Task B and the classification results
for the subtypes of irony indicate that ironic by
clash is most easily recognised (top F1= 0.697),
while other types of verbal irony and situational
irony are much harder (top F1 scores are 0.114 and
0.376, respectively).

References
Silvio Amir, Byron C. Wallace, Hao Lyu, Paula Car-

valho, and Mário J. Silva. 2016. Modelling Context
with User Embeddings for Sarcasm Detection in So-
cial Media. CoRR, abs/1607.00976.

47

David Bamman and Noah A. Smith. 2015. Contextual-
ized Sarcasm Detection on Twitter. In Proceedings
of the Ninth International Conference on Web and
Social Media (ICWSM’15), pages 574–577, Oxford,
UK. AAAI.

Francesco Barbieri and Horacio Saggion. 2014. Mod-
elling Irony in Twitter. In Proceedings of the Stu-
dent Research Workshop at the 14th Conference of
the European Chapter of the ACL, pages 56–64,
Gothenburg, Sweden. ACL.

Christos Baziotis, Nikolaos Athanasiou, Pinelopi
Papalampidi, Athanasia Kolovou, Georgios
Paraskevopoulos, Nikolaos Ellinas, and Alexandros
Potamianos. 2018. NTUA-SLP at SemEval-2018
Task 3: Deep Character and Word-level RNNs
with Attention for Irony Detection in Twitter. In
Proceedings of the 12th International Workshop on
Semantic Evaluation, SemEval-2018, New Orleans,
LA, USA. ACL.

Mondher Bouazizi and Tomoaki Ohtsuki. 2016. Sar-
casm detection in twitter: “all your products are in-
credibly amazing!!!” - are they really? In Global
Communications Conference, GLOBECOM 2015,
pages 1–6. IEEE.

Jane Bromley, Isabelle Guyon, Yann LeCun, Eduard
Säckinger, and Roopak Shah. 1993. Signature ver-
ification using a ”siamese” time delay neural net-
work. In Proceedings of the 6th International Con-
ference on Neural Information Processing Systems,
NIPS’93, pages 737–744, San Francisco, CA, USA.
Morgan Kaufmann Publishers Inc.

Peter F. Brown, Peter V. deSouza, Robert L. Mercer,
Vincent J. Della Pietra, and Jenifer C. Lai. 1992.
Class-based N-gram Models of Natural Language.
Computational Linguistics, 18(4):467–479.

Erik Cambria, Soujanya Poria, Rajiv Bajpai, and Bjo-
ern Schuller. 2016. SenticNet 4: A Semantic Re-
source for Sentiment Analysis Based on Concep-
tual Primitives. In Proceedings of COLING 2016,
26th International Conference on Computational
Linguistics, pages 2666–2677, Osaka, Japan. ACL.

Jean Carletta. 1996. Assessing Agreement on Classi-
fication Tasks: The Kappa Statistic. Computational
Linguistics, 22(2):249–254.

Nitesh V. Chawla, Kevin W. Bowyer, Lawrence O.
Hall, and W. Philip Kegelmeyer. 2002. SMOTE:
Synthetic Minority Over-sampling Technique. Jour-
nal of Artificial Intelligence Research, 16(1):321–
357.

Dmitry Davidov, Oren Tsur, and Ari Rappoport. 2010.
Semi-supervised Recognition of Sarcastic Sentences
in Twitter and Amazon. In Proceedings of the Four-
teenth Conference on Computational Natural Lan-
guage Learning (CoNLL’10), pages 107–116, Upp-
sala, Sweden. ACL.

Delia Irazú Hernańdez Farı́as, Viviana Patti, and Paolo
Rosso. 2016. Irony detection in twitter: The role
of affective content. ACM Transactions on Internet
Technology, 16(3):19:1–19:24.

Bjarke Felbo, Alan Mislove, Anders Søgaard, Iyad
Rahwan, and Sune Lehmann. 2017. Using mil-
lions of emoji occurrences to learn any-domain rep-
resentations for detecting sentiment, emotion and
sarcasm. In Proceedings of the 2017 Conference
on Empirical Methods in Natural Language Pro-
cessing, pages 1615–1625, Copenhagen, Denmark.
ACL.

Joseph L. Fleiss. 1971. Measuring nominal scale
agreement among many raters. Psychological Bul-
letin, 76(5):378–382.

Aniruddha Ghosh. 2018. IronyMagnet at SemEval-
2018 Task 3: A Siamese network for Irony detection
in Social media. In Proceedings of the 12th Interna-
tional Workshop on Semantic Evaluation, SemEval-
2018, New Orleans, LA, USA. ACL.

Aniruddha Ghosh, Guofu Li, Tony Veale, Paolo Rosso,
Ekaterina Shutova, John Barnden, and Antonio
Reyes. 2015. SemEval-2015 Task 11: Sentiment
Analysis of Figurative Language in Twitter. In Pro-
ceedings of the 9th International Workshop on Se-
mantic Evaluation (SemEval 2015), pages 470–478,
Denver, Colorado. ACL.

Aniruddha Ghosh and Tony Veale. 2016. Fracking
Sarcasm using Neural Network. In Proceedings of
the 7th Workshop on Computational Approaches to
Subjectivity, Sentiment and Social Media Analysis,
pages 161–169, San Diego, California. ACL.

Roberto González-Ibáñez, Smaranda Muresan, and
Nina Wacholder. 2011. Identifying Sarcasm in Twit-
ter: A Closer Look. In Proceedings of the 49th An-
nual Meeting of the ACL: Human Language Tech-
nologies (HLT’11), pages 581–586, Portland, Ore-
gon. ACL.

Raj Kumar Gupta and Yinping Yang. 2017. Crys-
talNest at SemEval-2017 Task 4: Using Sarcasm De-
tection for Enhancing Sentiment Classification and
Quantification. In Proceedings of the 11th Interna-
tional Workshop on Semantic Evaluation (SemEval-
2017), pages 626–633. ACL.

Minqing Hu and Bing Liu. 2004. Mining and summa-
rizing customer reviews. In Proceedings of the Tenth
ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining, KDD ’04, pages
168–177, New York, NY, USA. ACM.

Clayton J. Hutto and Eric Gilbert. 2014. VADER:
A Parsimonious Rule-based Model for Sentiment
Analysis of Social Media Text. In Proceedings of
the 8th International Conference on Weblogs and
Social Media (ICWSM-14), pages 216–225. AAAI.

48

Aditya Joshi, Pushpak Bhattacharyya, and Mark J. Car-
man. 2017. Automatic Sarcasm Detection:A Sur-
vey. ACM Computing Surveys (CSUR), 50(5):73:1–
73:22.

Armand Joulin, Edouard Grave, Piotr Bojanowski, and
Tomas Mikolov. 2017. Bag of Tricks for Efficient
Text Classification. In Proceedings of the 15th Con-
ference of the European Chapter of the Association
for Computational Linguistics: Volume 2, Short Pa-
pers, pages 427–431, Valencia, Spain. ACL.

Jihen Karoui, Benamara Farah, Véronique
MORICEAU, Nathalie Aussenac-Gilles, and
Lamia Hadrich-Belguith. 2015. Towards a Contex-
tual Pragmatic Model to Detect Irony in Tweets.
In Proceedings of the 53rd Annual Meeting of the
Association for Computational Linguistics and
the 7th International Joint Conference on Natural
Language Processing (Volume 2: Short Papers),
pages 644–650, Beijing, China. ACL.

Florian Kunneman, Christine Liebrecht, Margot van
Mulken, and Antal van den Bosch. 2015. Signaling
sarcasm: From hyperbole to hashtag. Information
Processing Management, 51(4):500–509.

J. Richard Landis and Gary G. Koch. 1977. The mea-
surement of observer agreement for categorical data.
Biometrics, 33(1).

Bing Liu. 2012. Sentiment Analysis and Opinion Min-
ing. Synthesis Lectures on Human Language Tech-
nologies. Morgan & Claypool Publishers.

Diana Maynard and Mark Greenwood. 2014. Who
cares about Sarcastic Tweets? Investigating the Im-
pact of Sarcasm on Sentiment Analysis. In Pro-
ceedings of the Ninth International Conference on
Language Resources and Evaluation (LREC’14),
pages 4238–4243, Reykjavik, Iceland. European
Language Resources Association.

Abhijit Mishra, Diptesh Kanojia, Seema Nagar, Kuntal
Dey, and Pushpak Bhattacharyya. 2016. Harnessing
Cognitive Features for Sarcasm Detection. In Pro-
ceedings of the 54th Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 1: Long
Papers), pages 1095–1104, Berlin, Germany. ACL.

Saif Mohammad and Felipe Bravo-Marquez. 2017.
Emotion Intensities in Tweets. In Proceedings of the
6th Joint Conference on Lexical and Computational
Semantics, *SEM @ACM 2017, pages 65–77.

Preslav Nakov, Alan Ritter, Sara Rosenthal, Fabrizio
Sebastiani, and Veselin Stoyanov. 2016. SemEval-
2016 Task 4: Sentiment Analysis in Twitter. In
Proceedings of the 10th International Workshop on
Semantic Evaluation (SemEval-2016), pages 1–18,
San Diego, California. ACL.

Finn Årup Nielsen. 2011. A new ANEW: evaluation of
a word list for sentiment analysis in microblogs. In
Proceedings of the ESWC2011 Workshop on ‘Mak-
ing Sense of Microposts’: Big things come in small
packages, volume 718, pages 93–98.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Pretten-
hofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Pas-
sos, D. Cournapeau, M. Brucher, M. Perrot, and
E. Duchesnay. 2011. Scikit-learn: Machine Learn-
ing in Python. Journal of Machine Learning Re-
search, 12:2825–2830.

Jeffrey Pennington, Richard Socher, and Christo-
pher D. Manning. 2014. GloVe: Global Vectors
for Word Representation. In Proceedings of the
2014 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 1532–1543,
Doha, Qatar. ACL.

Peter Potash, Alexey Romanov, and Anna Rumshisky.
2017. SemEval-2017 Task 6: #HashtagWars:
Learning a Sense of Humor. In Proceedings of the
11th International Workshop on Semantic Evalua-
tion (SemEval-2017), pages 49–57. ACL.

Tomáš Ptáček, Ivan Habernal, and Jun Hong. 2014.
Sarcasm detection on czech and english twitter.
In Proceedings of COLING 2014, the 25th Inter-
national Conference on Computational Linguistics:
Technical Papers, pages 213–223, Dublin, Ireland.
Dublin City University and ACL.

Harsh Rangwani, Devang Kulshreshtha, and Anil Ku-
mar Sing. 2018. NLPRL-IITBHU at SemEval-2018
Task 3: Combining Linguistic Features and Emoji
pre-trained CNN for Irony Detection in Tweets. In
Proceedings of the 12th International Workshop on
Semantic Evaluation, SemEval-2018, New Orleans,
LA, USA. ACL.

Antonio Reyes, Paolo Rosso, and Tony Veale. 2013.
A Multidimensional Approach for Detecting Irony
in Twitter. Language Resources and Evaluation,
47(1):239–268.

Ellen Riloff, Ashequl Qadir, Prafulla Surve, Lalin-
dra De Silva, Nathan Gilbert, and Ruihong Huang.
2013. Sarcasm as Contrast between a Positive Sen-
timent and Negative Situation. In Proceedings of
the Conference on Empirical Methods in Natural
Language Processing (EMNLP’13), pages 704–714,
Seattle, Washington, USA. ACL.

Omid Rohanian, Shiva Taslimipoor, Richard Evans,
and Ruslan Mitkov. 2018. WLV at SemEval-2018
Task 3: Dissecting Tweets in Search of Irony. In
Proceedings of the 12th International Workshop on
Semantic Evaluation, SemEval-2018, New Orleans,
LA, USA. ACL.

Sara Rosenthal, Noura Farra, and Preslav Nakov.
2017. SemEval-2017 Task 4: Sentiment Analysis
in Twitter. In Proceedings of the 11th International
Workshop on Semantic Evaluation (SemEval-2017),
pages 502–518, Vancouver, Canada. ACL.

Sara Rosenthal, Alan Ritter, Preslav Nakov, and
Veselin Stoyanov. 2014. SemEval-2014 Task 9:
Sentiment Analysis in Twitter. In Proceedings of the

49

8th International Workshop on Semantic Evaluation
(SemEval 2014), pages 73–80, Dublin, Ireland. ACL
and Dublin City University.

Cameron Shelley. 2001. The bicoherence theory of sit-
uational irony. Cognitive Science, 25(5):775–818.

Pontus Stenetorp, Sampo Pyysalo, Goran Topić,
Tomoko Ohta, Sophia Ananiadou, and Jun’ichi Tsu-
jii. 2012. BRAT: A Web-based Tool for NLP-
assisted Text Annotation. In Proceedings of the 13th
Conference of the European Chapter of the ACL,
EACL’12, pages 102–107, Avignon, France. ACL.

Cynthia Van Hee. 2017. Can machines sense irony?
Exploring automatic irony detection on social me-
dia. Ph.D. thesis, Ghent University.

Cynthia Van Hee, Els Lefever, and Véronique Hoste.
2016a. Guidelines for Annotating Irony in Social
Media Text, version 2.0. Technical Report 16-01,
LT3, Language and Translation Technology Team–
Ghent University.

Cynthia Van Hee, Els Lefever, and Véronique Hoste.
2016b. Monday mornings are my fave #not: Explor-
ing the Automatic Recognition of Irony in English
tweets. In Proceedings of COLING 2016, 26th In-
ternational Conference on Computational Linguis-
tics, pages 2730–2739, Osaka, Japan.

Thanh Vu, Dat Quoc Nguyen, Xuan-Son Vu, Dai Quoc
Nguyen, Michael Catt, and Michael Trenell. 2018.
NIHRIO at SemEval-2018 Task 3: A Simple and
Accurate Neural Network Model for Irony Detection
in Twitter. In Proceedings of the 12th International
Workshop on Semantic Evaluation, SemEval-2018,
New Orleans, LA, USA. ACL.

Byron C. Wallace. 2015. Computational irony: A sur-
vey and new perspectives. Artificial Intelligence Re-
view, 43(4):467–483.

Chuhan Wu, Fangzhao Wu, Sixing Wu, Junxin
Liu, Zhigang Yuan, and Yongfeng Huang. 2018.
THU NGN at SemEval-2018 Task 3: Tweet Irony
Detection with Densely Connected LSTM and
Multi-task Learning. In Proceedings of the 12th
International Workshop on Semantic Evaluation,
SemEval-2018, New Orleans, LA, USA. ACL.

50

Proceedings of the 12th International Workshop on Semantic Evaluation (SemEval-2018), pages 51–56
New Orleans, Louisiana, June 5–6, 2018. ©2018 Association for Computational Linguistics

THU NGN at SemEval-2018 Task 3: Tweet Irony Detection with Densely
Connected LSTM and Multi-task Learning

Chuhan Wu1, Fangzhao Wu2, Sixing Wu1, Junxin Liu1,
Zhigang Yuan1 and Yongfeng Huang1

1Tsinghua National Laboratory for Information Science and Technology,
Department of Electronic Engineering, Tsinghua University Beijing 100084, China

2Microsoft Research Asia
{wuch15,wu-sx15,ljx16,yuanzg14,yfhuang}@mails.tsinghua.edu.cn

wufangzhao@gmail.com

Abstract

Detecting irony is an important task to mine
fine-grained information from social web mes-
sages. Therefore, the Semeval-2018 task 3
is aimed to detect the ironic tweets (subtask
A) and their irony types (subtask B). In or-
der to address this task, we propose a system
based on a densely connected LSTM network
with multi-task learning strategy. In our dense
LSTM model, each layer will take all outputs
from previous layers as input. The last LSTM
layer will output the hidden representations of
texts, and they will be used in three classifi-
cation task. In addition, we incorporate sev-
eral types of features to improve the model
performance. Our model achieved an F-score
of 70.54 (ranked 2/43) in the subtask A and
49.47 (ranked 3/29) in the subtask B. The ex-
perimental results validate the effectiveness of
our system.

1 Introduction

Figurative languages such as irony are widely used
in web messages such as tweets to convey different
sentiment. Identifying the ironic texts can help to
understand the social web better and has many ap-
plications such as sentiment analysis (Ghosh and
Veale, 2016). Irony detecting techniques are im-
portant to improve the performance of sentiment
analysis. For example, the tweet “Monday morn-
ings are my fave:)# not” is an irony with nega-
tive sentiment, but it will be probably classified
as a positive one by a standard sentiment analysis
model (Van Hee et al., 2016b). Thus, capturing
the ironic information in texts is useful to predict
sentiment more accurately (Van Hee et al., 2016a).

However, determining whether a text is ironic
is a challenging task since the the differences be-
tween ironic and non-ironic texts are usually sub-
tle. For example, the tweet “Love this weather
#not” is ironic, but a similar tweet “Hate this

weather #not happy” is non-ironic. Different
approaches are proposed to recognize the com-
plex irony in texts. Existing methods to detect
irony are mainly based on rules or machine learn-
ing techniques (Joshi et al., 2017). Rules based
methods usually depend on lexicons to identify
irony (Khattri et al., 2015; Maynard and Green-
wood, 2014). However, these methods cannot uti-
lize the contextual information from texts. Tra-
ditional machine learning based methods such as
SVM (Desai and Dave, 2016) are also effective
in this task, but they usually need manually fea-
ture engineering (Barbieri et al., 2014). Recently,
deep learning techniques are successfully applied
to this task. For example, Ghosh et al. (2016)
propose to use a CNN-LSTM model to classify
the ironic and non-ironic tweets. Their method
can significantly improve the classification perfor-
mance without heavy feature engineering. How-
ever, existing methods are aimed to detect irony
in tweets with explicit irony related hashtags. For
example, tweets with #irony or #sarcasm hashtags
are very likely to be ironic. Therefore, models may
focus on these hashtags rather than the contextual
information.

To fill this gap, the SemEval-2018 task 31 aims
to detect irony of tweets without explicit irony
hashtags (Van Hee et al., 2018). The subtask A is
aimed to determine whether a tweet is ironic. the
subtask B is aimed to identify the irony types of
tweets: Verbal irony by means of a polarity con-
trast, other verbal irony and situational irony. Sev-
eral examples are as follows:

• verbal irony by means of a polarity con-
trast: I love waking up with migraines #not

• other verbal irony: @user Yeah keeping
cricket clean, that’s what he wants #Sarcasm

1https://competitions.codalab.org/competitions/17468

51

Word
Embedding

𝑬𝑬𝒊𝒊

POS
Tag
𝑷𝑷𝒊𝒊

Sentiment
Features

𝒇𝒇

Embedding
Layer

love

exams

I

Bi-LSTM
Layer

dense

#kidding

Bi-LSTM
Layer

Bi-LSTM
Layer

Sentence
Embedding

s

Hidden
vector H

Bi-LSTM
Layer

None
#not
#sarcasm
#irony

Irony Hashtag
Classification

𝐻𝐻1 𝐻𝐻2 𝐻𝐻3

softmax

softmax

softmax

Ironic
Non-ironic

V-irony
O-irony
S-irony
None

Irony
Detection

Ironic Type
Classification

Dense
Layers

dense

dense

Figure 1: Architecture of our Dense-LSTM model. The V-irony, O-irony and S-irony denote the three different
irony types respectively (Van Hee et al., 2018).

• situational irony: most of us didn’t focus in
the #ADHD lecture. #irony

In order to address this problem, we propose
a system2 based on a densely connected LSTM
model (Wu et al., 2017) with multitask learning
techniques. In our model, each LSTM layer will
take all outputs of previous LSTM layers as in-
put. Then different levels of contextual informa-
tion can be learned at the same time. Our model is
required to predict in three tasks simultaneously:
1) identifying the missing irony related hashtags;
2) classify ironic or non-ironic; 3) irony type clas-
sification. By using multitask learning strategy,
the model can combine the information in the dif-
ferent tasks to improve the performance. The ex-
perimental results in both subtasks validate the ef-
fectiveness of our method.

2 Densely Connected LSTM with
Multi-task Learning

The architecture of our densely connected LSTM
model is shown in Figure 1. We denote this model
as Dense-LSTM. The detailed information will be
introduced in the following paragraphs.

In our model, the embedding layer is used to
convert the input tweets into a sequence of dense
vectors. The POS tag features Pi are one-hot
encoded and concatenated with the word embed-
ding vectors Ei. Usually the affective words
and creative languages in tweets are important

2https://github.com/wuch15/SemEval-2018-task3-
THU NGN.git

irony clues. Since these words usually have spe-
cific POS tags, adding these features can help
our model to capture the ironic information bet-
ter. We use tweetokenize3 tool to tokenize and the
Ark-Tweet-NLP4 tool to obtain the POS tags of
tweets (Owoputi et al., 2013).

The first Bi-LSTM layer takes the sequential
vectors as input. For the jth Bi-LSTM layer,
its output Hj will input all LSTM layers after
it. As shown in Figure 1, the blue dashed lines
represent such over-layer connections. All in-
puts of an LSTM layer will be concatenated to-
gether. Thus, the input of the jth (j > 1) layer
is [H1; ...;Hj−1]. It indicates that each layer can
learn different levels of information at the same
time. Since the irony information is complex,
jointly using all levels of information is benefi-
cial to predict irony more accurately. The last
LSTM layer will output the hidden representation
H of texts. It will be concatenated with the sen-
timent features and the sentence embedding fea-
tures. The sentiment features can provide addi-
tional sentiment information to detect irony, such
as the sentiment polarity assigned by lexicons.
The sentiment features are generated via the Af-
fectiveTweets5 package in weka provided by Mo-
hammad et al. (Mohammad and Bravo-Marquez,
2017). We use the TweetToLexiconFeatureVec-
tor (Bravo-Marquez et al., 2014) and TweetToSen-

3https://github.com/jaredks/tweetokenize
4http://www.cs.cmu.edu/ ark/TweetNLP
5https://github.com/felipebravom/AffectiveTweets

52

tiStrengthFeatureVector (Thelwall et al., 2012) fil-
ters in this package. The embedding of a sentence
is obtained by taking the average of all words in
this sentence using the 100-dim pre-trained em-
bedding weights provided by Bravo et al. (Bravo-
Marquez et al., 2016). By incorporating the vector
representation of tweet sentence, the irony infor-
mation can be easier to be captured.

Three dense layers with ReLU activation are
used to predict for three different tasks including:
determining the missing ironic hashtags (i.e. #not,
#sarcasm, #irony or none of them) (task1); identi-
fying ironic or non-ironic (task2) ; identifying the
irony types (task3). Thus, the objective function
of our model can be formulated as:

L = α1L1 + α2L2 + α3L3, (1)

where Li and αi denote the loss function and its
weight of task i. L1 and L2 are categorical and
binary cross-entropy respectively. In addition, the
numbers of tweets with different irony types are
very unbalanced. Motivated by the cost-sensitive
entropy used by Santos et al. (2009), we formulate
L3 as follows:

L3 = −
N∑

i=1

wyiyi log(ŷi), (2)

where N is the number of tweets, yi is the irony
type of the ith tweet, ŷi is the prediction score,
and wyi is the loss weight of irony type label

yi. wyi is defined as
∑C

k=1 Nk

Nyi
, where C is the

number of irony types and Nj is the number of
tweets with irony type label j. Thus, the infre-
quent irony types will gain relatively larger loss
weights. By using this multi-task learning method,
our model can incorporate different information
such as the irony hashtags. In addition, classify-
ing ironic/non-ironic and the irony types are simi-
lar tasks. Therefore, the performance of both tasks
can be improved by combining the information of
both tasks.

In order to improve the performance of our sys-
tem, we use an ensemble strategy by averaging the
classification results predicted by 10 models. Each
model will be trained using a random dropout rate.
Therefore in this way, the classification results will
be voted by different models, which can improve
the model performance.

3 Experiment

3.1 Dataset and Experimental Settings

The detailed statistics of the dataset6 in this task
are shown in Table 1. V-irony, O-irony and S-irony
represent the three types respectively: verbal irony
by means of a polarity contrast, other types of ver-
bal irony and situational irony (Van Hee et al.,
2018). In subtask A, the performance of systems
is evaluated by F-score for the positive class. In
subtask B, the macro-averaged F-score over all
classes is used as the metric.

Task A B
Label Ironic Non-ironic V-irony O-irony S-irony Non-ironic
#train 1911 1923 1390 316 205 1923
#test 311 473 164 85 62 473

Table 1: The detailed statistics of the dataset.

We combine two pre-trained word embed-
dings: 1) the embeddings provided by Godin et
al. (2015), which are trained on a corpus with 400
million tweets; 2) the embeddings provided by
Barbieri et al. (2016), which are trained on 20 mil-
lion tweets. The dimensions of them are 400 and
300 respectively. They are concatenated together
as the embeddings of words.

In our network, the Dense-LSTM model has 4
LSTM layers with 200-dim hidden states. The
hidden dimensions of dense layers are set to 300.
The dropout rate of each layer is set to a random
number between 0.2 to 0.4, and it will be set to
a fixed value 0.3 in the comparative experiments
without ensemble strategy. In subtask A, the loss
weights α of the three task are set to 0.5, 1 and 0.5
respectively. In subtask B, they are 0.5, 0.5 and 1.
We use RMSProp as the optimizer, and the batch
size is set to 64. In addition, we use 10% training
data for validation to select the hyperparameters
above.

3.2 Performance Evaluation

We compare the performance of different meth-
ods including: 1) SVM, the benchmark system us-
ing SVM and BOW model; 2) CNN, using CNN
with a global average pooling layer to obtain the
hidden vector h, which is used to predict in the
three tasks; 3) LSTM, using one Bi-LSTM layer
in the network to get h; 4) 2-layer LSTM, using
2 Bi-LSTM layers; 5) Dense-LSTM, using our

6https://github.com/Cyvhee/SemEval2018-
Task3/tree/master/datasets

53

Dense-LSTM model; 6) Dense-LSTM+ens, us-
ing our Dense-LSTM model and ensemble strat-
egy. In addition, we apply multi-task learning
technique to all models except the benchmark sys-
tem based on SVM. The results are shown in Table
1. The experimental results show that our Dense-
LSTM model significantly outperforms the base-
lines. Since the layers in our Dense-LSTM can
learn from all previous outputs, our model can
combine different levels of contextual information
to capture the high-level irony clues. In addition,
our model can predict more accurately via ensem-
ble. Since models with random dropout can ex-
tract different information, we can take advantage
of all models by voting. The ensemble strategy
can reduce the noise in the dataset and make our
system more stable (Xia et al., 2011).

Model
Subtask A Subtask B

P R F Macro-F
Baseline 54.78 62.70 58.47 32.69

CNN 59.32 61.41 60.35 45.30
LSTM 57.73 67.20 62.11 45.76

2-layer LSTM 60.34 68.49 64.16 47.16
Dense-LSTM 62.78 72.69 67.36 48.28

Dense-LSTM+ens 63.04 80.06 70.54 49.47

Table 2: The performance of different methods. P, R, F
represent precision, recall and F-score respectively.

3.3 Effectiveness of Multi-task Learning

The performance of our Dense-LSTM model us-
ing different combinations of training tasks is
shown in Table 3. Note that we don’t apply model
ensemble here. Compared with the models trained
in task2 or task3 only, the combination of both
tasks can improve the performance. It may be be-
cause the two tasks have inherent relatedness and
can share rich mutual information. Learning to
predict the missing ironic hashtags (task1) can also
improve the model performance. Since the ironic
hashtags are often important ironic clues, identify-
ing such clues can help our model to mine ironic
information better.

3.4 Influence of Pre-trained Word
Embedding

We compare the performance using different com-
binations of pre-trained embeddings in our model.
The results are illustrated in Table 4. The results
show that the pre-trained embeddings are impor-
tant to capture irony information, and using the

Task Combination
Subtask A Subtask B

P R F Macro-F
task2 60.05 71.06 65.10 -
task3 - - - 44.65

task2+task3 61.81 72.34 66.67 46.94
task1+task2 61.33 71.38 65.97 -
task1+task3 - - - 45.57

task1+task2+task3 62.78 72.69 67.36 48.28

Table 3: The performance in two subtasks using differ-
ent combinations of training tasks.

combination of two different word embeddings
can improve the model performance. It proves
that this method can reduce the out-of-vocabulary
words in the single embedding file and provide
richer semantic information.

Feature
Subtask A Subtask B

P R F Macro-F
w/o pre-trained 56.25 67.14 61.21 42.28

+emb1 60.96 69.95 65.14 47.69
+emb2 61.77 70.59 65.89 47.24

+emb1 +emb2 62.78 72.69 67.36 48.28

Table 4: Influence of pre-trained word embedding. The
emb1 and emb2 denote the embeddings provided by
Godin et al. (2015) and Barbieri et al. (2016) respec-
tively.

3.5 Influence of Additional Features
The influence of different features on our model is
shown in Table 5. According to this table, all fea-
tures can improve the classification performance
in both subtasks, and the combination of the three
features can achieve better performance. The im-
provement brought by POS tags is most signifi-
cant. Affective words are important irony clues
and they are usually verbs, adjectives or hashtags.
Thus, incorporating the POS tag features can help
to identify these words and capture the ironic in-
formation better. The sentiment features also im-
prove our model, which can be inferred from the
results. The sentiment polarities of ironic tweets
are usually negative, but these texts often contain
positive sentiment words. Since our sentiment fea-
tures are obtained by several different sentiment or
emotion lexicons, they can be used to assign the
sentiment scores of texts, which can provide rich
information to detect irony. The sentence embed-
ding can also slightly improve the performance.
The sentence embedding contains information of
each word in the sentence. Thus, it can help to
capture the word information better, which is ben-

54

eficial to identify the overall sentiment of texts.
The combination of all three types of features can
take advantage of them and gain significant perfor-
mance improvement. It validates the effectiveness
of each type of features.

Feature
Subtask A Subtask B

P R F Macro-F
None 59.84 70.42 64.70 45.56

+POS tags 61.04 72.03 66.08 46.61
+Sentiment Features 61.16 71.38 65.88 46.37

+Sentence Embedding 61.39 71.06 65.87 46.24
+All Features 62.78 72.69 67.36 48.28

Table 5: Influence of different features on our model.

4 Conclusion

Detecting irony in web texts is an important task
to mine fine-grained sentiment information. In or-
der to address this problem, we develop a sys-
tem based on a densely connected LSTM model
to participate in the SemEval-2018 Task 3. In our
model, every LSTM layer will take all outputs of
previous layers as inputs. Thus, the different lev-
els of information can be learned at the same time.
In addition, we propose to combine three differ-
ent tasks to train our model jointly, which includes
identifying the missing irony hashtags, determin-
ing ironic or non-ironic and classifying the irony
types. These tasks have inherent relatedness thus
the performance can be improved by sharing the
mutual information. Our system achieved an F-
score of 70.54 and 49.47 which ranked the 2nd and
3rd place in the two subtasks. The experimental
results validates the effectiveness of our method.

Acknowledgments

The authors thank the reviewers for their in-
sightful comments and constructive suggestions
on improving this work. This work was sup-
ported in part by the National Key Research
and Development Program of China under Grant
2016YFB0800402 and in part by the National Nat-
ural Science Foundation of China under Grant
U1705261, Grant U1536207, Grant U1536201
and U1636113.

References
Francesco Barbieri, German Kruszewski, Francesco

Ronzano, and Horacio Saggion. 2016. How cos-
mopolitan are emojis?: Exploring emojis usage and

meaning over different languages with distributional
semantics. In Proceedings of the 2016 ACM on Mul-
timedia Conference, pages 531–535. ACM.

Francesco Barbieri, Horacio Saggion, and Francesco
Ronzano. 2014. Modelling sarcasm in twitter, a
novel approach. In Proceedings of the 5th Work-
shop on Computational Approaches to Subjectivity,
Sentiment and Social Media Analysis, pages 50–58.

Felipe Bravo-Marquez, Eibe Frank, Saif M Moham-
mad, and Bernhard Pfahringer. 2016. Determining
word-emotion associations from tweets by multi-
label classification. In Web Intelligence (WI), 2016
IEEE/WIC/ACM International Conference on, pages
536–539. IEEE.

Felipe Bravo-Marquez, Marcelo Mendoza, and Bar-
bara Poblete. 2014. Meta-level sentiment models for
big social data analysis. Knowledge-Based Systems,
69:86–99.

Nikita Desai and Anandkumar D Dave. 2016. Sar-
casm detection in hindi sentences using support vec-
tor machine. International Journal, 4(7):8–15.

Aniruddha Ghosh and Tony Veale. 2016. Fracking
sarcasm using neural network. In Proceedings of
the 7th Workshop on Computational Approaches to
Subjectivity, Sentiment and Social Media Analysis,
pages 161–169.

Fréderic Godin, Baptist Vandersmissen, Wesley
De Neve, and Rik Van de Walle. 2015. Multimedia
lab @ acl wnut ner shared task: Named entity recog-
nition for twitter microposts using distributed word
representations. In Proceedings of the Workshop on
Noisy User-generated Text, pages 146–153.

Aditya Joshi, Pushpak Bhattacharyya, and Mark J Car-
man. 2017. Automatic sarcasm detection: A survey.
ACM Computing Surveys (CSUR), 50(5):73.

Anupam Khattri, Aditya Joshi, Pushpak Bhat-
tacharyya, and Mark Carman. 2015. Your sentiment
precedes you: Using an authors historical tweets to
predict sarcasm. In Proceedings of the 6th Work-
shop on Computational Approaches to Subjectivity,
Sentiment and Social Media Analysis, pages 25–30.

Diana Maynard and Mark A Greenwood. 2014. Who
cares about sarcastic tweets? investigating the im-
pact of sarcasm on sentiment analysis. In Lrec,
pages 4238–4243.

Saif M Mohammad and Felipe Bravo-Marquez. 2017.
Wassa-2017 shared task on emotion intensity. arXiv
preprint arXiv:1708.03700.

Olutobi Owoputi, Brendan O’Connor, Chris Dyer,
Kevin Gimpel, Nathan Schneider, and Noah A
Smith. 2013. Improved part-of-speech tagging for
online conversational text with word clusters. Asso-
ciation for Computational Linguistics.

55

Raúl Santos-Rodrı́guez, Darı́o Garcı́a-Garcı́a, and
Jesús Cid-Sueiro. 2009. Cost-sensitive classifi-
cation based on bregman divergences for medi-
cal diagnosis. In Machine Learning and Applica-
tions, 2009. ICMLA’09. International Conference
on, pages 551–556. IEEE.

Mike Thelwall, Kevan Buckley, and Georgios Pal-
toglou. 2012. Sentiment strength detection for the
social web. Journal of the Association for Informa-
tion Science and Technology, 63(1):163–173.

Cynthia Van Hee, Els Lefever, and Véronique Hoste.
2016a. Exploring the realization of irony in twitter
data. In LREC.

Cynthia Van Hee, Els Lefever, and Véronique Hoste.
2016b. Monday mornings are my fave:)# not ex-
ploring the automatic recognition of irony in en-
glish tweets. In Proceedings of COLING 2016,
the 26th International Conference on Computational
Linguistics: Technical Papers, pages 2730–2739.

Cynthia Van Hee, Els Lefever, and Véronique Hoste.
2018. SemEval-2018 Task 3: Irony Detection in
English Tweets. In Proceedings of the 12th Interna-
tional Workshop on Semantic Evaluation, SemEval-
2018, New Orleans, LA, USA. Association for
Computational Linguistics.

Chuhan Wu, Fangzhao Wu, Yongfeng Huang, Sixing
Wu, and Zhigang Yuan. 2017. Thu ngn at ijcnlp-
2017 task 2: Dimensional sentiment analysis for chi-
nese phrases with deep lstm. Proceedings of the
IJCNLP 2017, Shared Tasks, pages 47–52.

Rui Xia, Chengqing Zong, and Shoushan Li. 2011. En-
semble of feature sets and classification algorithms
for sentiment classification. Information Sciences,
181(6):1138–1152.

56

Proceedings of the 12th International Workshop on Semantic Evaluation (SemEval-2018), pages 57–64
New Orleans, Louisiana, June 5–6, 2018. ©2018 Association for Computational Linguistics

SemEval 2018 Task 4: Character Identification on Multiparty Dialogues

Jinho D. Choi
Computer Science
Emory University
Atlanta, GA 30322

jinho.choi@emory.edu

Henry Y. Chen
Information Security

Snap Inc.
Santa Monica, CA 90405

henry.chen@snapchat.com

Abstract
Character identification is a task of entity link-
ing that finds the global entity of each personal
mention in multiparty dialogue. For this task,
the first two seasons of the popular TV show
Friends are annotated, comprising a total of 448
dialogues, 15,709 mentions, and 401 entities.
The personal mentions are detected from nomi-
nals referring to certain characters in the show,
and the entities are collected from the list of
all characters in those two seasons of the show.
This task is challenging because it requires the
identification of characters that are mentioned
but may not be active during the conversation.
Among 90+ participants, four of them submit-
ted their system outputs and showed strengths
in different aspects about the task. Thorough
analyses of the distributed datasets, system out-
puts, and comparative studies are also provided.
To facilitate the momentum, we create an open-
source project for this task and publicly release
a larger and cleaner dataset, hoping to support
researchers for more enhanced modeling.

1 Introduction

Most of the earlier works in natural language pro-
cessing (NLP) had focused on formal writing such
as newswires, whereas many recent works have tar-
geted at colloquial writing such as text messages or
social media. Since the evolution of Web 2.0, the
amount of user-generated contents involving col-
loquial writing has exceeded the one with formal
writing. NLP tasks are relatively well-explored at
this point for certain types of colloquial writing i.e.,
microblogs and reviews (Ritter et al., 2011; Kong
et al., 2014; Ranganath et al., 2016; Shin et al.,
2017). However, the genre of multiparty dialogue
is still under-explored, even though digital contents
in dialogue forms keep increasing at a faster rate
than any other types of writing.1 This inspires us
1https://medium.com/hijiffy/10-graphs-that-show-the-
immense-power-of-messaging-apps-4a41385b24d6

to create a new task called character identification
that aims to link personal mentions (e.g, she, mom)
to their global entities across multiple dialogues,
where the entities indicate the specific characters
referred by those mentions (e.g., Judy).

Due to the nature of multiparty dialogue where
several speakers take turns to complete a context,
character identification is a crucial step for adapting
higher-end NLP tasks (e.g., summarization, ques-
tion answering, machine translation) to this genre.
It can also bring another level of sophistication to
intelligent personal assistants or tutoring systems.
This task is challenging because it needs to process
through colloquialism that includes slangs, gram-
mar mistakes, and/or rhetorical questions, as well
as to handle cross-document resolution for the iden-
tification of entities that are mentioned but may not
be actively participating during the conversation.
Nonetheless, we believe that models produced by
this task will remarkably enhance inference on di-
alogue contexts (e.g., business meetings, doctor-
patient conversations) by providing finer-grained
information about individual characters.

Section 2 illustrates the task of character identi-
fication and explains the key differences between
it and other types of entity linking tasks. Section 3
describes the corpus, based on TV show transcripts,
used for this task with annotation details. Section 4
gives brief overviews of the systems participated in
this shared task. Section 5 explains the evaluation
metrics and the results produced by those systems.
Finally, Section 6 gives thorough analysis and com-
parative studies between these systems. This task
was originally conducted at CodaLab.2 The latest
dataset and the system outputs can be found from
our open source project, Emory NLP.3

2https://competitions.codalab.org/
competitions/17310

3https://github.com/emorynlp/
semeval-2018-task4

57

Ross I told mom and dad last night, they seemed to take it pretty well.

Monica Oh really, so that hysterical phone call I got from a woman at sobbing 3:00 A.M., "I'll
never have grandchildren, I'll never have grandchildren." was what? A wrong number?

Ross Sorry.

Joey Alright Ross, look. You're feeling a lot of pain right now. You're angry. You're hurting.  
Can I tell you what the answer is?

MonicaJack Judy

Ross Joey

Figure 1: An example of character identification, excerpted from the Season 1 Episode 1 of Friends, where
mentions are indicated in red boxes and entities are linked by arrows.

2 Task Description

Let a mention be a nominal that refers to a singular
or a collective entity (e.g., she, mom, Judy), and an
entity be the actual person that the mention refers
to. Given a dialogue transcribed in text where all
mentions are detected, the objective is to find the
entity for each mention, who can be either active or
passive in the dialogue. In Figure 1, entities such
as Ross, Monica, and Joey are the active speakers
of the dialogue, whereas Jack and Judy are not
although they are passively mentioned as mom and
dad in this context. Linking such mentions to their
global entities demands inferred knowledge about
the kinship from other dialogues, challenging cross-
document resolution. Thus, character identification
can be viewed as an entity linking task that aims
for holistic understanding in multiparty dialogue.

Most of previous works on entity linking have
focused on Wikification, which links named entity
mentions to their relevant Wikipedia articles (Mi-
halcea and Csomai, 2007; Ratinov et al., 2011; Guo
et al., 2013). Unlike Wikification where most enti-
ties come with structured information from knowl-
edge bases (e.g., Infobox, Freebase, DBPedia), enti-
ties in character identification have no such precom-

piled information, which makes this task even more
challenging. It is similar to coreference resolution
in a sense that it groups mentions into entities, but
distinguished because this task requires to identify
each mention group as a known person. In Figure 1,
coreference resolution would give a cluster of the
four mentions, {mom, woman, I, I}; however, it
would not identify that cluster to be the entity Judy,
which in this case is not possible to identify without
getting contexts from other dialogues.

3 Corpus

The character identification corpus was first created
by collecting transcripts from the popular TV show,
Friends (Chen and Choi, 2016). These transcripts
were voluntarily provided by fans who made them
publicly available.4 Dialogues in this corpus mimic
daily conversations that are more natural and vari-
ous in topics than other dialogue corpora (Janin
et al., 2003; Danescu-Niculescu-Mizil and Lee,
2011; Hu et al., 2013; Kim et al., 2015; Lowe et al.,
2015). Although they are scripted, the interpreta-
tion of these dialogues is no easier than unscripted

4http://www.livesinabox.com/friends/
scripts.shtml

58

Episodes Scenes Speakers Utterances Sentences Tokens
Season 1 24 229 105 4,725 8,680 66,355
Season 2 23 219 101 4,501 7,380 65,675

Total 47 448 171 9,226 16,060 132,030

Table 1: Distributions from the subset of the character identification corpus used for this shared task.

dialogues; they not only involve as much disfluency
and context switching as real dialogues do, but also
include more humor, sarcasm, or metaphor. Thus,
models evaluated on this corpus should give a gen-
eral sense about the state of character identification
on multiparty dialogue.

The original transcripts collected from the fan
site were formatted in HTML; we converted them
into JSON so that they could be easily processed.
This structured data were then manually checked
for potential errors. Table 1 shows the distributions
from the subset of the character identification cor-
pus used for this shared task. The provided dataset
is divided into two seasons, each season is divided
into episodes, each episode is divided into scenes,
each scene contains utterances, where each utter-
ance indicates a turn of speech.

3.1 Mention Annotation

For mention annotation, a heuristic-based mention
detector was developed, which utilized dependency
relations (Choi and McCallum, 2013), named en-
tity tags (Choi, 2016), and personal noun gazetteers,
then automatically detected mentions for the entire
corpus. In this heuristic, a noun phrase was consid-
ered a personal mention if it was either:

1. A PERSON named entity, or

2. A pronoun or a possessive pronoun excluding
the pronouns it and they, or

3. One of the personal noun gazetteers that are 603
common and singular personal nouns selected
from Freebase and DBPedia.

Specific mentions such as it and they were excluded
because they often referred to the ambiguous entity
types, collective, general, and other (Section 3.2).
For the quality assurance, about 10% of this pseudo
annotation were randomly sampled and manually
evaluated, showing a precision, a recall, and the F1-
score of 97.58%, 94.34%, and 95.93%, respectively.
Finally, the annotation was manually checked again
while it was systematically corrected for routinely
produced errors. Although mention detection was

the foundational step, including it as a part of this
shared task could over-complicate the evaluation.
Thus, gold mentions were provided for this year’s
shared task such that participants could purely con-
centrate on the task of entity linking.

3.2 Entity Annotation

All mentions were double-annotated with their ref-
erent entities, and adjudicated upon disagreements.
Annotation and adjudication tasks were conducted
on Amazon Mechanical Turk. Each mention was
annotated with either a primary character, that are
Ross, Chandler, Joey, Rachel, Monica, and Pheobe,
a secondary character (other frequently recurring
characters across the show), or one of the following
ambiguous types suggested by Chen et al. (2017):

• Generic: indicates actual characters in the show
whose identities are unknown (e.g., That waitress
is really cute, I am going to ask her out). Generic
entities are annotated with their group names and
optional numberings (e.g., Man 1, Woman 1).

• Collective: indicates the plural use of the pro-
noun you, which cannot be deterministically dis-
tinguished from the singular use.

• General: indicates mentions used in reference to
a general case rather than an specific entity (e.g.,
The ideal guy you look for doesn’t exist).

• Other: indicates all the other kinds of entities.

For this year’s shared task, mentions annotated with
the last three ambiguous types, collective, general,
and other, were excluded from the dataset to reduce
the high complexity of this task (Table 2).

Primary Secondary Generic Total
Season 1 5,160 2,526 178 7,864
Season 2 5,385 2,340 120 7,845

Total 10,545 4,866 298 15,709

Table 2: Distributions of the annotated entity types
used for this shared task.

59

Speaker Utterance
Joey Yeah, right! ... You1 serious?

Rachel Everything you2 need to know is in that first kiss.
Chandler Yeah. For us3, it’s like the stand-up comedian4 you5 have to sit through before the main dude6 starts.

Ross It’s not that we7 don’t like the comedian8, it’s that ... that’s not why we9 bought the ticket.

{You1} → Rachel, {us3, we7,9} → Collective, {you2,5} → General, {comedian4,8} → Generic, {dude6} → Other

Table 3: Examples of the entity annotation described in Section 3.2.

Episodes Scenes Entities Mentions ClustersE ClustersS SingletonE SingletonS

Training 47 374 372 13,280 893 2,051 209 472
Evaluation 7 74 106 2,429 304 370 54 83

Total 47 448 401 15,709 1,197 2,421 263 555

Table 4: Distributions of the training and the evaluation sets in Section 3.3.

Table 3 shows examples of these ambiguous types.
About 83% were assigned to the primary and sec-
ondary characters, 1.4% were assigned to generic,
and the rest were assigned to the other ambiguous
types, collective, general, and other. To evaluate
the annotation quality, the annotation agreement
scores as well as Cohen’s kappa scores were mea-
sured, showing 82.83% and 79.96%, respectively.

3.3 Data Split

The corpus was split into training and evaluation
sets for this shared task (Table 4). No dedicated
development set was provided; participants were
encouraged to use sub-parts of the training set to
create their own development sets or perform cross-
validation for the optimization of statistical models.
Two types of datasets are provided for both training
and evaluation sets, one treating each episode as
an individual dialogue and the other treating each
scene as an independent dialogue.5

Processing a larger dialogue makes coreference
resolution harder because it needs to link referential
mentions that are farther apart; on the other hand,
each cluster comprises a greater number of men-
tions which can help identifying the global entity
of that cluster. The numbers of clusters grouped in
each dataset are shown as ClustersE and ClustersS ,
implying episode-level and scene-level clusters, re-
spectively. Our corpus includes singleton mentions,
which take about 22% of all mentions.

3.4 Data Format

To help participants adapting their existing coref-
erence resolution systems to this task, the original
dataset in JSON was converted into the CoNLL’12
5Each episode consists of about 10 scenes on average.

shared task format (Pradhan et al., 2012), where
each column is delimited by white spaces and rep-
resents the following:

1. Season and episode ID.

2. Document ID.

3. Token ID.

4. Word form.

5. Part-of-speech tag (auto-generated).

6. Phrase structure tag (auto-generated).

7. Lemma (auto-generated).

8. Predicate sense (not provided).

9. Word sense (not provided).

10. Speaker.

11. Named entity tag (auto-generated).

12. Entity ID.

The part-of-speech tags, lemmas, and named en-
tity tags were automatically generated by NLP4J,6

and the phrase structure tags were produced by the
Stanford parser.7 Table 5 shows the example of the
first utterance in Figure 1 in the CoNLL’12 format.

4 System Description

This section describes the top-2 scoring systems
of this shared task. The AMORE-UPF is a group
of researchers from the Universitat Pompeu Fabra
in Spain (Section 4.1). The KNU CI is a group of
researchers from Kangwon National University in
South Korea (Section 4.2).
6https://emorynlp.github.io/nlp4j
7https://nlp.stanford.edu/software/
lex-parser.shtml

60

s1e1u38 0 0 I PRP (TOP(S(S(NP*) I - - Ross * (7)
s1e1u38 0 1 told VBD (VP* tell - - Ross * -
s1e1u38 0 2 mom NN (NP* mom - - Ross * (9)
s1e1u38 0 3 and CC * and - - Ross * -
s1e1u38 0 4 dad NN *) dad - - Ross * (10)
s1e1u38 0 5 last JJ (NP-TMP* last - - Ross (TIME* -
s1e1u38 0 6 night NN *))) night - - Ross *) -
s1e1u38 0 7 , , * , - - Ross * -
s1e1u38 0 8 they PRP (NP*) they - - Ross * -
s1e1u38 0 9 seemed VBD (VP* seem - - Ross * -
s1e1u38 0 10 to TO (S(VP* to - - Ross * -
s1e1u38 0 11 take VB (VP* take - - Ross * -
s1e1u38 0 12 it PRP (NP*) it - - Ross * -
s1e1u38 0 13 pretty RB (ADVP* pretty - - Ross * -
s1e1u38 0 14 well RB *))))) well - - Ross * -
s1e1u38 0 15 . . *)) . - - Ross * -

Table 5: Example of the first utterance in Figure 1 annotated in the CoNLL’12 format.

4.1 AMORE-UPF System

The AMORE-UPF system approaches this task as
a multi-class classification. It uses a bidirectional
Long Short-Term Memory (LSTM) that processes
the input dialogue and resolves mentions, by means
of a comparison between the LSTM’s hidden state,
for each mention, to vectors in an entity library. In
this model, learned representations of each entity
are stored in the entity library, that is a matrix where
each row represents an entity and whose values are
learned during training (Figure 2).

lution (e.g., the aforementioned approaches, as
well as Wiseman et al. 2016; Lee et al. 2017,
Francis-Landau et al. 2016). For instance, we
avoid feature engineering, focusing instead on the
model’s ability to learn meaningful entity repre-
sentations from the dialogue itself. Moreover, we
deviate from the common strategy to entity linking
of incorporating a specialized coreference resolu-
tion module (e.g., Chen et al. 2017).

3 Model description

We approach the task of character identification
as one of multi-class classification. Our model is
depicted in Figure 1, with inputs in the top left and
outputs at the bottom. In a nutshell, our model
is a bidirectional LSTM (long short-term memory,
Hochreiter and Schmidhuber 1997) that processes
the dialogue text and resolves mentions, by means
of a comparison between the LSTM’s hidden state
(for each mention) to vectors in a learned entity
library.

The model is given chunks of dialogue, which
it processes token by token. The ith token ti and
its speakers Si (typically a singleton set) are repre-
sented as one-hot vectors, embedded via two dis-
tinct embedding matrices (Wt and Ws, respec-
tively) and finally concatenated (Eq. 1; see also xi

in Figure 1). In case Si contains multiple speakers,
their embeddings are summed.

xi = Wt ti k
X

s2Si

Ws s (1)

The resulting embedding xi of a token with its
speakers is passed on to a bidirectional LSTM. The
hidden state

�!
hi of a unidirectional LSTM for the

ith input is recursively defined as a combination of
that input with the LSTM’s previous hidden state�!
hi�1. For a bidirectional LSTM, the hidden state
hi is a concatenation of the hidden states

�!
hi and �

hi of two unidirectional LSTMs which process
the data in opposite directions (Eq. 2; see also Fig-
ure 1). In principle, this enables a bidirectional
LSTM to represent the entire dialogue with a focus
on the current input, including for instance its rele-
vant dependencies on the context (e.g., coreference,
agreement).

hi = BiLSTM(xi,
�!
hi�1,

 �
hi+1) (2)

In the model, learned representations of each en-
tity are stored in the entity library E (see Figure 1).

Ross
Rachel

guy
+

tanh

...

softmax

Ws

Wt

Ws
Ross & Rachel: the
Ross & Rachel: guy
Ross & Rachel: was

{

EEntity library:

...

(fictional example)

...

...

Inputs:

Class scores:

e

o

BiLSTM: hihi-1 hi+1

i

i

xi

Wo

cos

...
...

Figure 1: The AMORE-UPF model.

This is a matrix where each row vector represents
an entity, and whose values are updated (only) dur-
ing training. For tokens ti that are tagged as men-
tions, we map the hidden state to a representation
that has the same dimensionality as the vectors in
the entity library.3 Its similarity to each entity rep-
resentation is computed using cosine. Softmax is
then applied to the resulting similarity profile to
obtain a probability distribution oi over entities
(‘class scores’ in Figure 1):

oi = softmax(cosine(E, (Wo hi + b)| {z }
ei

) (3)

We train the model with backpropagation, using
negative log-likelihood as loss function. Besides
the BiLSTM parameters, we optimize Wt, Ws,
Wo, E and b. At testing time, the model’s predic-
tion ĉi for the ith token is the entity with highest
probability:

ĉi = argmax(oi) (4)

In order for this architecture to be successful, ei

needs to be as similar as possible to the entity vector
of the entity to which mention i refers. We refer
to this model as AMORE-UPF, our team name in
the SemEval competition.

In order to assess the contribution of the entity
library, we compare our model to a similar architec-
ture which does not include it (NoEntLib). This
model obtains scores by directly applying softmax

3For multi-word mentions this is done only for the last
token in the mention.

Figure 2: The overview of AMORE-UPF system.

4.2 KNU-CI System

The KNU-CI system tackles this task as a sequence-
labeling problem. It uses an attention-based recur-
rent neural network (RNN) encoder-decoder model.
The input dialogue of character identification con-
sists of several conversations, resulting a long se-
quence of text. The RNN encoder-decoder model

suffers from poor performance when the length of
the input sequence is long. To overcome this issue,
this system applies an attention, position encoding,
and the self-matching network to the original RNN
encoder-decoder model. As a result, the best per-
formance is achieved by the attention-based RNN
depicted in Figure 3.

NAACL-HLT 2018 Submission ***. Confidential review Copy. DO NOT DISTRIBUTE.

 2

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149

150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199

the decoder and the hidden state of the encoder
when performing decoding.

2.1 Model 1: Attention-based Enc–Dec
model

The first model proposed in this paper is a general
attention mechanism-based Enc–Dec model, as
shown in Figure 1.

The input of the encoder is one document that
contains 𝑆 sentences (multiparty dialogue). Each
sentence 𝑆 consists of 𝑛𝑆 words, and the input se-
quence 𝑋𝑖𝑛𝑝𝑢𝑡 is 𝑋𝑖𝑛𝑝𝑢𝑡 = {𝑥1, 𝑥2, … , 𝑥𝑛𝑆} . The
input to the decoder is 𝑌𝑖𝑛𝑝𝑢𝑡 = {𝑦𝑖0, 𝑦𝑖1,… , 𝑦𝑖𝑚}
consisting of the positions of the words given in
the gold mentions, and the output sequence ac-

cordingly becomes 𝑌𝑜𝑢𝑡𝑝𝑢𝑡 = {𝑦𝑜0, 𝑦𝑜1,… , 𝑦𝑜𝑚}
consisting of the character number, which is cor-
responded with the decoder’s input mentions.

 We use word embedding and adopt the K-
dimensional word embedding 𝑒𝑖

𝑘, 𝑘 ∈ [1, 𝐾] for
all input words, where 𝑖 is the word index in the
input sequence. We perform feature embedding
for three features — speaker, named entity recog-
nition (NER) tags, and capitalization — and con-
catenate them to make �̃�𝑖. The uppercase feature
is a binary feature (1 or 0) that verifies whether
the uppercase is included in the word. 10-
dimensional speaker embedding for a total of 205
different types of speakers included by “un-
known”. 19-dimensional NER embedding for a
total of 19 different types of NER tags.

We use bidirectional gated recurrent unit
(BiGRU) (Cho et al., 2014) for the encoder. The
hidden state of the encoder for the input (word)
sequence is defined as ℎ𝑖

𝑁.

 𝑒𝑖 = 𝑊𝑒𝑥𝑖 (1)

 �̃�𝑖 = [𝑒𝑖; 𝑢𝑐𝑖; 𝑠𝑝𝑘𝑖; 𝑁𝐸𝑅𝑖] (2)

 ℎ𝑖 = 𝑏𝑖𝐺𝑅𝑈(�̃�𝑖 , ℎ𝑖−1) (3)

where ℎ⃗ 𝑖 and ℎ⃗⃖𝑖 are forward and backward net-
works, respectively, and ℎ𝑖

𝑁 concatenates ℎ⃗ 𝑖 and ℎ⃗⃖𝑖.
The decoder of our model uses the GRU as fol-

lows.

 ℎ𝑡 = 𝐺𝑅𝑈(ℎ𝑦𝑖𝑡
𝑁 , ℎ𝑡−1) (4)

The input of the decoder is the hidden state ℎ𝑖
𝑁

generated by the encoder corresponding to each
position of 𝑌𝑖𝑛𝑝𝑢𝑡 which is the gold mention se-
quence. The hidden state ℎ𝑡 of the current decoder
receives the hidden state ℎ𝑖

𝑁 of the encoder corre-
sponding to the output position of the previous de-
coder and the previous hidden state of the decoder.

 𝛼𝑖
𝑡 =

exp(𝑠𝑐𝑜𝑟𝑒𝑎(ℎ𝑡,ℎ𝑦𝑖𝑖
𝑁))

∑ exp(𝑠𝑐𝑜𝑟𝑒𝑎(ℎ𝑡,ℎ𝑦𝑖𝑗
𝑁))𝑗

 (5)

𝑠𝑐𝑜𝑟𝑒𝑎 (ℎ𝑡, ℎ𝑦𝑖
𝑁

𝑖
) = vt

𝑇tanh⁡(𝑊𝑎 [ℎ𝑡; ℎ𝑦𝑖
𝑁

𝑖
; ℎ𝑦𝑖𝑡

𝑁]) (6)

 𝑦𝑡 = argmax𝑖(𝑎𝑖
𝑡) (7)

 𝑐𝑡 = ℎ𝑦𝑡
𝑁 ,⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡ℎ𝑎𝑟𝑑⁡𝑎𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 (8)

At the attention layer of the decoder, we use the
attention weight 𝛼𝑖

𝑡 to compute the alignment
score for the gold mention input into the decoder
and the encoder hidden state ℎ𝑖

𝑁 input. The atten-
tion layer acts as a coreference resolution for each
gold mention and input sequence. After calculat-
ing the attention weights, we create the context
vector 𝑐𝑡. We use hard attention in Eq. (8). Hard
attention 𝑐𝑡 = ℎ𝑦𝑡

𝑁 is an attention-pooling vector,
which is based on the argmax function Eq. (7) for
attention weight 𝛼𝑖

𝑡 to choose the position with
high score for the decoder input as the gold men-
tion.

𝑠𝑐𝑜𝑟𝑒𝑧(ℎ𝑡, 𝑐𝑡, ℎ𝑦𝑖𝑡
𝑁) = 𝑊𝑧2

𝑇 ReLU⁡(𝑊𝑧[ℎ𝑡; 𝑐𝑡; ℎ𝑦𝑖𝑡
𝑁]) (9)

𝑦𝑜𝑡 = argmax𝑡 (𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (𝑠𝑐𝑜𝑟𝑒𝑧(ℎ𝑡, 𝑐𝑡, ℎ𝑦𝑖𝑡
𝑁))) (10)

After calculating the context vector between the
input of the encoder and the input of the decoder,
we calculate 𝑠𝑐𝑜𝑟𝑒𝑧, using which the context vec-
tor 𝑐𝑡, decode hidden state ℎ𝑡 and encoder hidden
state ℎ𝑁 are concatenated in the decoder hidden
layer. Next, the softmax function is used to calcu-
late the alignment score for 𝑠𝑐𝑜𝑟𝑒𝑧, and then the
character index (𝑌𝑜𝑢𝑡𝑝𝑢𝑡) for the CI task corre-
sponding to the input of the decoder is obtained
using the argmax function.

Figure 1: Attention-based Enc-Dec. Figure 3: The overview of KNU-CI system.

5 Evaluation

Following Chen et al. (2017), the labeling accuracy
(Acc) and the macro-average F1 score (F1) are used
for the evaluation (C: the total number of charac-
ters, F1i: the F1-score for the i’th character):

Acc =
of corrected identified mentions

of all mentions

F1 =
1

C

C∑

i=1

F1i

Table 6 shows the overall scores from all submitted
systems. Two types of evaluation are performed for
this task. The first one is based on seven characters
where six of them compose the primary characters

61

(Section 3.2) and every other character is grouped
as one entity called Others (Main + Others). The
other is based on 78 characters comprising all char-
acters appeared in the dataset, except for the ones
appear either in the training or the evaluation set but
not both, which is grouped to the Others (ALL).

Main + Others ALL
System Acc F1 Acc F1

AMORE-UPF 77.23 79.36 74.72 41.05
KNU-CI 85.10 86.00 69.49 16.98
Kampfpudding 73.36 73.51 59.45 37.37
Zuma-AR 46.85 44.68 33.06 16.09

Table 6: Overall scores from the submitted systems.

Table 7 shows the F1 scores for the primary charac-
ters and Others, illustrating detailed evaluation
for Main + Others. Table 8 gives detailed evalua-
tion for ALL, showing the F1-scores for the top-12
most frequently appeared secondary characters and
Others that appear only in the training or the eval-
uation set but not both. The 18 characters in these
two tables comprise about 85% of all mentions.

6 Analysis

Based on the evaluation results, several interesting
observations can be made for how different system
architectures affect model performance on this task.
The analysis in this section primarily focuses on the
top-2 scoring systems, AMORE-UPF an KNU-CI,
as their results vastly outperform the other two and
the authors of those systems provide more detailed
descriptions to the organizers.

6.1 Overall Performance

It is worth pointing out the significance of the two
evaluation metrics proposed in Section 5 in terms
of the model performance. The labeling accuracy
indicates the raw predicative power of the model.
This metric is biased towards more frequently ap-
pearing characters such as the primary characters, a
total of which compose 70+% of the evaluation set.
Thus, it is possible to achieve a relatively high label-
ing accuracy score without handling referents for
the secondary characters well. On the contrary, the
macro-average F1 score neutralizes the imbalance
between frequently and not so frequently appearing
characters. It reveals the model performance on a
per-entity basis, which tends to favor transient and
extra characters more because every character is
treated equally in this metric.

For the overall performance, KNU-CI outperforms
for Main + Others with the labeling accuracy of
85.10% and the macro-average F1 score of 86.00%,
whereas AMORE-UPF outperforms for ALL with
the labeling accuracy of 74.72% and the macro-
average F1 of 41.05% (Table 6). All systems pro-
duce better results for Main + Others than ALL,
which is expected due to the fewer number of enti-
ties to classify (7 vs 78). It is possible that KNU-
CI’s attention model is highly optimized for the
identification of the primary characters, whereas
AMORE-UPF’s LSTM model distributes weights
for the secondary characters more evenly, but more
detailed analysis needs to be made to see the com-
parative strengths between these two systems.

6.2 Main + Other Identification
Table 7 depicts the strength of the KNU-CI system
for the primary characters in comparisons to the
others, which is attributed to its unique sequence
labeling architecture and the attention mechanism.
Their encoder-decoder architecture helps consoli-
dating sequential information of the input dialogue
along with the mentions. The hidden units in RNNs
enable the network to aggregate character-related
information and to disambiguate timeline shifts
across utterances. The encoder takes the input dia-
logue and provides the decoder with context-rich
features. Coupled with the attention mechanism,
this model focuses on the primary characters; thus,
it results better performance on Main + Others.
However, this architecture is not as well-adaptive
as the number of characters increases for the identi-
fication, which can be observed from the system’s
low macro-average F1 score for All.

6.3 All Character Identification
Table 8 describes the strength of the AMORE-UPF
system for the secondary characters using the bidi-
rectional LSTM model, leading it to outperform all
the others for All. Although both AMORE-UPF
and KNU-CI utilize variations of RNNs as their un-
derlying architectures, the performance downfall is
not as prominent for AMORE-UPF as the number
of characters increases, thanks to its entity library.
The entity library is consumed and updated as nec-
essary given the mention embeddings. It is used to
regularize training each individual character, which
helps avoiding the bias towards frequently appear-
ing characters. As the result, AMORE-UPF yields
better performance for All while accomplishing
reasonable results for Main + Others as well.

62

Character Ross Rachel Chandler Joey Phoebe Monica Others

Evaluation 18.98 13.96 9.80 9.51 9.02 8.97 29.77
Training 13.93 12.37 11.43 9.43 8.79 10.61 33.44
AMORE-UPF 78.57 82.98 81.36 79.83 86.52 85.22 61.02
KNU-CI 85.86 92.49 84.94 79.67 88.09 91.16 79.79
Kampfpudding 73.48 70.67 79.25 63.38 79.79 73.35 74.61
Zuma-AR 38.72 43.05 43.04 36.10 42.90 46.43 51.78

Table 7: Detailed evaluation for Main + Others in Table 6. The Evaluation and Training rows show the
percentages of individual characters appeared in the evaluation and the training set, respectively.

Character Be Ca Ed Pa Ju MB Ri Sc Ca Fr Ja OT

Evaluation 3.46 1.73 1.56 1.44 1.32 0.86 0.86 0.78 0.74 0.70 0.62 2.92
Training 1.41 1.46 1.06 0.71 1.15 0.60 1.83 0.21 0.13 0.51 0.43 13.51
AMORE-UPF 50.00 57.14 80.60 35.56 72.73 64.52 80.85 10.00 61.54 0.00 42.11 7.89
KNU-CI 38.46 62.79 73.02 15.38 42.55 0.00 66.67 38.46 0.00 18.18 16.00 0.00
Kampfpudding 31.86 33.33 68.85 33.33 60.32 50.00 61.22 10.00 0.00 0.00 23.53 0.00
Zuma-AR 0.00 12.24 44.44 0.00 27.91 15.38 77.78 0.00 38.46 0.00 12.50 0.00

Table 8: Detailed evaluation for ALL in Table 6. Be: Ben, Ca: Carol, Ed: Eddie, Pa: Paolo, Ju: Julie: MB:
Mrs. Bing, Ri: Richard, Sc: Scott, Ca: Carl, Fr: Frank, Ja: Janice, OT: Others.

7 Conclusion

In this shared task, we propose a novel entity link-
ing task called character identification that aims to
find the global entities for all personal mentions,
representing individual characters in the contexts
of multiparty dialogue. Among 90+ participants
signed up for this task at CodaLab, only four sub-
mitted their system outputs, which is unfortunate.
However, the top-2 scoring systems depict unique
strengths, allowing us to make a good analysis for
this task. It would be interesting to see if the se-
quence labeling architecture from KNU-CI coupled
with the entity library from AMORE-UPF could
produce an even higher performing model for both
the Main + Other and All evaluation.

To facilitate the momentum, we create an open-
source project that will continuously support this
task.8 It is worth mentioning that Character Identi-
fication is a part of a bigger project called Charac-
ter Mining that strives for machine comprehension
on dialog.9 Currently, this project provides more
and cleaner annotation for character identification
than the corpus described in Section 3, hoping to
engage more researchers to this task.

8https://github.com/emorynlp/
character-identification

9https://github.com/emorynlp/
character-mining

References
Henry Yu-Hsin Chen and Jinho D. Choi. 2016. Charac-

ter Identification on Multiparty Conversation: Iden-
tifying Mentions of Characters in TV Shows. In
Proceedings of the 17th Annual Meeting of the Spe-
cial Interest Group on Discourse and Dialogue. SIG-
DIAL’16, pages 90–100.

Henry Yu-Hsin Chen, Ethan Zhou, and Jinho D. Choi.
2017. Robust Coreference Resolution and Entity
Linking on Dialogues: Character Identification on
TV Show Transcripts. In Proceedings of the 21st
Conference on Computational Natural Language
Learning. Vancouver, Canada, CoNLL’17, pages 216–
225. http://www.conll.org/2017.

Jinho D. Choi. 2016. Dynamic Feature Induction: The
Last Gist to the State-of-the-Art. In Proceedings of
the Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies. NAACL’16.

Jinho D. Choi and Andrew McCallum. 2013. Transition-
based Dependency Parsing with Selectional Branch-
ing. In Proceedings of the 51st Annual Meeting of the
Association for Computational Linguistics. ACL’13,
pages 1052–1062.

Cristian Danescu-Niculescu-Mizil and Lillian Lee. 2011.
Chameleons in Imagined Conversations: A New Ap-
proach to Understanding Coordination of Linguistic
Style in Dialogs. In Proceedings of the 2nd Workshop
on Cognitive Modeling and Computational Linguis-
tics. CMCL’11, pages 76–87.

Stephen Guo, Ming-Wei Chang, and Emre Kiciman.
2013. To Link or Not to Link? A Study on End-
to-End Tweet Entity Linking. In Proceedings of the
Conference of the North American Chapter of the

63

Association for Computational Linguistics on Human
Language Technology. NAACL, pages 1020–1030.

Zhichao Hu, Elahe Rahimtoroghi, Larissa Munishkina,
Reid Swanson, and Marilyn A. Walker. 2013. Unsu-
pervised Induction of Contingent Event Pairs from
Film Scenes. In Proceedings of the 2013 Conference
on Empirical Methods in Natural Language Process-
ing. EMNLP’13, pages 369–379.

Adam Janin, Don Baron, Jane Edwards, Dan Ellis,
David Gelbart, Nelson Morgan, Barbara Peskin,
Thilo Pfau, Elizabeth Shriberg, Andreas Stolcke,
and Chuck Wooters. 2003. The ICSI Meeting Cor-
pus. In Proceedings of IEEE International Confer-
ence on Acoustics, Speech, and Signal Processing.
ICASSP’03, pages 364–367.

Seokhwan Kim, Luis Fernando D́Haro, Rafael E.
Banchs, Jason D. Williams, and Matthew Henderson.
2015. The Fourth Dialog State Tracking Challenge.
In Proceedings of the 4th Dialog State Tracking Chal-
lenge. DSTC4.

Lingpeng Kong, Nathan Schneider, Swabha
Swayamdipta, Archna Bhatia, Chris Dyer, and
Noah A. Smith. 2014. A Dependency Parser for
Tweets. In Proceedings of the 2014 Conference on
Empirical Methods in Natural Language Processing.
EMNLP, pages 1001–1012.

Ryan Lowe, Nissan Pow, Iulian Serban, and Joelle
Pineau. 2015. The Ubuntu Dialogue Corpus: A
Large Dataset for Research in Unstructured Multi-
Turn Dialogue Systems. In Proceedings of the 16th
Annual Meeting of the Special Interest Group on Dis-
course and Dialogue. SIGDIAL’15, pages 285–294.

Rada Mihalcea and Andras Csomai. 2007. Wikify!:
Linking Documents to Encyclopedic Knowledge. In
Proceedings of the Sixteenth ACM Conference on
Conference on Information and Knowledge Manage-
ment. CIKM’07, pages 233–242.

Sameer Pradhan, Alessandro Moschitti, Nianwen Xue,
Olga Uryupina, and Yuchen Zhang. 2012. CoNLL-
2012 Shared Task: Modeling Multilingual Unre-
stricted Coreference in OntoNotes. In Proceedings of
the Sixteenth Conference on Computational Natural
Language Learning: Shared Task. CoNLL’12, pages
1–40.

Suhas Ranganath, Xia Hu, Jiliang Tang, Suhang Wang,
and Huan Liu. 2016. Identifying Rhetorical Ques-
tions in Social Media. In Proceedings of the 10th
International Conference on Web and Social Media.
pages 667–670.

Lev Ratinov, Dan Roth, Doug Downey, and Mike An-
derson. 2011. Local and Global Algorithms for Dis-
ambiguation to Wikipedia. In Proceedings of the
49th Annual Meeting of the Association for Compu-
tational Linguistics: Human Language Technologies.
ACL’11, pages 1375–1384.

Alan Ritter, Sam Clark, Mausam, and Oren Etzioni.
2011. Named Entity Recognition in Tweets: An Ex-
perimental Study. In Proceedings of the Conference
on Empirical Methods in Natural Language Process-
ing. EMNLP, pages 1524–1534.

Bonggun Shin, Timothy Lee, and Jinho D. Choi. 2017.
Lexicon Integrated CNN Models with Attention
for Sentiment Analysis. In Proceedings of the
EMNLP Workshop on Computational Approaches
to Subjectivity, Sentiment and Social Media Analysis.
Copenhagen, Denmark, WASSA’17, pages 149–158.
http://optima.jrc.it/wassa2017/.

64

Proceedings of the 12th International Workshop on Semantic Evaluation (SemEval-2018), pages 65–69
New Orleans, Louisiana, June 5–6, 2018. ©2018 Association for Computational Linguistics

AMORE-UPF at SemEval-2018 Task 4: BiLSTM with Entity Library

Laura Aina∗ Carina Silberer∗ Ionut-Teodor Sorodoc∗

Matthijs Westera∗ Gemma Boleda

Universitat Pompeu Fabra
Barcelona, Spain

{firstname.lastname}@upf.edu

Abstract

This paper describes our winning contribution
to SemEval 2018 Task 4: Character Identifi-
cation on Multiparty Dialogues. It is a simple,
standard model with one key innovation, an en-
tity library. Our results show that this innova-
tion greatly facilitates the identification of in-
frequent characters. Because of the generic na-
ture of our model, this finding is potentially rel-
evant to any task that requires effective learn-
ing from sparse or unbalanced data.

1 Introduction

SemEval 2018 Task 4 is an entity linking task on
multiparty dialogue.1 It consists in predicting the
referents of nominals that refer to a person, such
as she, mom, Judy – henceforth mentions. The set
of possible referents is given beforehand, as well
as the set of mentions to resolve. The dataset used
in this task is based on Chen and Choi (2016) and
Chen et al. (2017), and consists of dialogue from
the TV show Friends in textual form.

Our main interest is whether deep learning mod-
els for tasks like entity linking can benefit from
having an explicit entity library, i.e., a component
of the neural network that stores entity represen-
tations learned during training. To that end, we
add such a component to an otherwise relatively
basic model – a bidirectional LSTM (long short-
term memory; Hochreiter and Schmidhuber 1997),
the standard neural network model for sequential
data like language. Training and evaluating this

∗denotes equal contribution.
1https://competitions.codalab.org/

competitions/17310

model on the task shows that the entity library is
beneficial in the case of infrequent entities.2

2 Related Work

Previous entity linking tasks concentrate on linking
mentions to Wikipedia pages (Bunescu and Paşca
2006; Mihalcea and Csomai 2007 and much sub-
sequent work; for a recent approach see Francis-
Landau et al. 2016). By contrast, in the present
task (based on Chen and Choi 2016; Chen et al.
2017) only a list of entities is given, without any
associated encyclopedic entries. This makes the
task more similar to the way in which a human
audience might watch the TV show, in that they are
initially unfamiliar with the characters. What also
sets the present task apart from most previous tasks
is its focus on multiparty dialogue (as opposed to,
typically, newswire articles).

A task that is closely related to entity linking is
coreference resolution, i.e., the task of clustering
mentions that refer to the same entity (e.g., the
CoNLL shared task of Pradhan et al. 2011). Since
mention clusters essentially correspond to entities
(an insight central to the approaches to coreference
in Haghighi and Klein 2010; Clark and Manning
2016), the present task can be regarded as a type
of coreference resolution, but one where the set of
referents to choose from is given beforehand.

Since our main aim is to test the benefits of
having an entity library, in other respects our
model is kept more basic than existing work
both on entity linking and on coreference reso-

2Source code for our model and for the training procedure
is published on https://github.com/amore-upf/
semeval2018-task4.

65

lution (e.g., the aforementioned approaches, as
well as Wiseman et al. 2016; Lee et al. 2017,
Francis-Landau et al. 2016). For instance, we
avoid feature engineering, focusing instead on the
model’s ability to learn meaningful entity repre-
sentations from the dialogue itself. Moreover, we
deviate from the common strategy to entity linking
of incorporating a specialized coreference resolu-
tion module (e.g., Chen et al. 2017).

3 Model Description

We approach the task of character identification
as one of multi-class classification. Our model is
depicted in Figure 1, with inputs in the top left and
outputs at the bottom. In a nutshell, our model is
a bidirectional LSTM (long short-term memory,
Hochreiter and Schmidhuber 1997) that processes
the dialogue text and resolves mentions, through a
comparison between the LSTM’s hidden state (for
each mention) to vectors in a learned entity library.

The model is given chunks of dialogue, which
it processes token by token. The ith token ti and
its speakers Si (typically a singleton set) are repre-
sented as one-hot vectors, embedded via two dis-
tinct embedding matrices (Wt and Ws, respec-
tively) and finally concatenated to form a vector xi

(Eq. 1; see also Figure 1). In case Si contains
multiple speakers, their embeddings are summed.

xi = Wt ti ‖
∑

s∈Si

Ws s (1)

We apply an activation function f (= tanh). The
hidden state

−→
hi of a unidirectional LSTM for the

ith input is recursively defined as a combination of
that input with the LSTM’s previous hidden state−→
hi−1. For a bidirectional LSTM, the hidden state
hi is a concatenation of the hidden states

−→
hi and←−

hi of two unidirectional LSTMs which process
the data in opposite directions (Eq. 2; see also
Figure 1). In principle, this enables a bidirectional
LSTM to represent the entire dialogue with a focus
on the current input, including for instance its
relevant dependencies on the context.

hi = BiLSTM(f(xi),
−→
hi−1,

←−
hi+1) (2)

In the model, learned representations of each
entity are stored in the entity library E ∈ RN×k

(see Figure 1): E is a matrix which represents each
of N entities through a k-dimensional vector, and
whose values are updated (only) during training.

Ross
Rachel

guy
+

tanh

...

softmax

Ws

Wt

Ws
Ross & Rachel: the
Ross & Rachel: guy
Ross & Rachel: was

{

EEntity library:

...

(fictional example)

...

...

Inputs:

Class scores:

e

o

BiLSTM: hihi-1 hi+1

i

i

xi

Wo

cos
...

...

Figure 1: The AMORE-UPF model (bias not depicted).

For every token ti that is tagged as a mention,3 we
map the corresponding hidden state hi to a vector
ei ∈ R1×k. This extracted representation is used
to retrieve the (candidate) referent of the mention
from the entity library: The similarity of ei to
each entity representation stored in E is computed
using cosine, and softmax is then applied to the
resulting similarity profile to obtain a probability
distribution oi ∈ [0, 1]1×N over entities (‘class
scores’ in Figure 1):

oi = softmax(cosine(E, (Wo hi + b)︸ ︷︷ ︸
ei

) (3)

At testing time, the model’s prediction ĉi for the
ith token is the entity with highest probability:

ĉi = argmax(oi) (4)

We train the model with backpropagation, using
negative log-likelihood as loss function. Besides
the BiLSTM parameters, we optimize Wt, Ws,
Wo, E and b. We refer to this model as AMORE-
UPF, our team name in the SemEval competition.
Note that, in order for this architecture to be suc-
cessful, ei needs to be as similar as possible to the
entity vector of the entity to which mention ti refers.
Indeed, the mapping Wo should effectively special-
ize in “extracting” entity representations from the
hidden state because of the way its output ei is used
in the model—to do entity retrieval. Our entity re-
trieval mechanism is inspired by the attention mech-
anism of Bahdanau et al. (2016), that has been used
in previous work to interact with an external mem-
ory (Sukhbaatar et al., 2015; Boleda et al., 2017).

3For multi-word mentions this is done only for the last
token in the mention.

66

JOEY TRIBBIANI (183):
”. . . see Ross, because I think you love her .”

335 183 335 306

Figure 2: Example of the data provided for the Se-
mEval 2018 Task 4. It shows the speaker (first line) of
the utterance (second line) and the ids of the entities to
which the target mentions (underlined) refer (last line).

To assess the contribution of the entity library,
we compare our model to a similar architecture
which does not include it (NoEntLib). This model
directly applies softmax to a linear mapping of the
hidden state (Eq. 5, replacing Eq. 3 above).

oi = softmax(Wo hi + b) (5)

4 Experimental Setup

Data We use the training and test data provided
for SemEval 2018 Task 4, which span the first
two seasons of the TV show Friends, divided into
scenes (train: 374 scenes from 47 episodes; test:
74 scenes from 40 episodes).4 In total, the train-
ing and test data contain 13,280 and 2,429 nomi-
nal mentions (e.g., Ross, I ; Figure 2), respectively,
which are annotated with the ID of the entity to
which they refer (e.g., 335, 183). The utterances
are further annotated with the name of the speaker
(e.g., JOEY TRIBBIANI). Overall there are 372 enti-
ties in the training data (test data: 106). Our models
do not use any of the provided automatic linguistic
annotations, such as PoS or named entity tags.

We additionally used the publicly available 300-
dimensional word vectors that were pre-trained on
a Google News corpus with the word2vec Skip-
gram model (Mikolov et al., 2013).5

Parameter settings Using 5-fold cross-
validation on the training data, we performed
a random search over the hyperparameters and
chose those which yielded the best mean F1-score.
Specifically, our submitted model is trained in
batch mode using the Adam optimizer (Kingma
and Ba, 2014) with a learning rate of 0.0005. Each
batch covers 24 scenes, which are given to the
model in chunks of 757 tokens. The token em-
beddings (Wt) are initialized with the word2vec
vectors. Dropout rates of 0.008 and 0.0013 are
applied on the input xi and hidden layer hi of
the LSTM, respectively. The size of hi is set to

4The organizers also provided data divided by episodes
rather than scenes, which we didn’t use.

5The word vectors are available at https://code.
google.com/archive/p/word2vec/.

all entities main entities
Models F1 Acc F1 Acc
AMORE-UPF 41.1∗∗ 74.7∗∗ 79.4 77.2
NoEntLib 26.4 71.6 79.5 77.5

Table 1: Results obtained for the submitted AMORE-
UPF model and a variant of it that does not use an entity
library (NoEntLib). Best results are in boldface. Differ-
ences with respect to the 2nd row marked by ‘**’ are
significant at the 0.001 probability level (see text).

Figure 3: Distribution of all 2, 429 target mentions in
the test data in terms of their part-of-speech.

459 units, the embeddings of the entity library E
and speakers Ws are set to k = 134 dimensions.

Other configurations, including randomly initial-
ized token embeddings, weight sharing between
E and Ws, self-attention (Bahdanau et al., 2016)
on the input layer, a uni-directional LSTM, and
rectifier or linear activation function f on the input
embeddings did not improve performance.

For the final submission of the answers for the
test data, we created an ensemble model by averag-
ing the output (Eq. 3) of the five models trained on
the different folds.

5 Results

Two evaluation conditions were defined by the orga-
nizers – all entities and main entities – with macro-
average F1-score and label accuracy as the official
metrics, and macro-average F1-score in the all
entities condition applied to the leaderboard. The
all entities evaluation has 67 classes: 66 for entities
that are mentioned at least 3 times in the test set
and one grouping all others. The main entities eval-
uation has 7 classes, 6 for the main characters and
one for all the others. Among all four participating
systems in this SemEval task our model achieved
the highest score on the all entities evaluation, and
second-highest on the main entities evaluation.

Table 1 gives our results in the two evaluations,
comparing the models described in Section 4.
While both models perform on a par on main

67

Figure 4: F1-score of the models on all entities depend-
ing on the part-of-speech of the target mentions.

entities, AMORE-UPF outperforms NoEntLib by
a substantial margin when all characters are to
be predicted (+15 points in F1-score, +3 points
in accuracy; Table 1).6 The difference between
the models with/without an entity library are
statistically significant based on approximate
randomization tests (Noreen, 1989), with the
significance level p < 0.001. This shows that the
use of an entity library can be beneficial for the
linking of rarely mentioned characters.

Figure 3 shows that most of the target mentions
in the test data fall into one of five grammatical
categories. The dataset contains mostly pronouns
(83%), with a very high percentage of first person
pronouns (44%). Figures 4 and 5 present the accu-
racy and F1-score which the two models described
above obtain on all entities for different categories
of mentions. The entity library is beneficial when
the mention is a first person pronoun or a proper
noun (with an increase of 30 points in F1-score for
both categories; Figure 4), and closer inspection
revealed that this effect was larger for rare entities.

6 Discussion

The AMORE-UPF model consists of a bidirec-
tional LSTM linked to an entity library. Compared
to an LSTM without entity library, NoEntLib, the
AMORE-UPF model performs particularly well on
rare entities, which explains its top score in the all
entities condition of SemEval 2018 Task 4. This
finding is encouraging, since rare entities are espe-
cially challenging for the usual approaches in NLP,
due to the scarcity of information about them.

We offer the following explanation for this bene-
ficial effect of the entity library, as a hypothesis for

6The mean difference between the single models (trained
on a single fold) and the ensemble AMORE-UPF is between
-1.3 points (accuracy main entities, std = 1.3) and -4.2 points
(F1-score all entities, std = 1.3).

Figure 5: Aaccuracy of the models on all entities de-
pending on the part-of-speech of the target mentions.

future work. Having an entity library requires the
LSTM of our model to output some representation
of the mentioned entity, as opposed to outputting
class scores more or less directly as in the variant
NoEntLib. Outputting a meaningful entity repre-
sentation is particularly easy in the case of first
person pronouns and nominal mentions (where the
effect of the entity library appears to reside; Fig-
ure 4): the LSTM can learn to simply forward the
speaker embedding unchanged in the case of pro-
noun I, and the token embedding in the case of
nominal mentions. This strategy does not discrim-
inate between frequent and rare entities; it works
for both alike. We leave further analyses required
to test this potential explanation for future work.

Future work may also reveal to what extent the
induced entity representations may be useful in oth-
ers, to what extent they encode entities’ attributes
and relations (cf. Gupta et al. 2015), and to what
extent a module like our entity library can be em-
ployed elsewhere, in natural language processing
and beyond.

Acknowledgments

This project has received funding from the Euro-
pean Research Council (ERC) under the European
Unions Horizon 2020 research and innovation pro-
gramme (grant agreement No 715154), and from
the Spanish Ramón y Cajal programme (grant RYC-
2015-18907). We are grateful to the NVIDIA Cor-
poration for the donation of GPUs used for this
research. We are also very grateful to the Pytorch
developers. This paper reflects the authors’ view
only, and the EU is not responsible for any use that
may be made of the information it contains.

68

References
Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-

gio. 2016. Neural Machine Translation by Jointly
Learning to Align and Translate. Computing Re-
search Repository, abs/1409.0473v7.

Gemma Boleda, Sebastian Padó, Nghia The Pham, and
Marco Baroni. 2017. Living a Discrete Life in a
Continuous World: Reference in Cross-modal En-
tity Tracking. In IWCS 2017 — 12th International
Conference on Computational Semantics — Short
papers.

Razvan Bunescu and Marius Paşca. 2006. Using Ency-
clopedic Knowledge for Named Entity Disambigua-
tion. In 11th conference of the European Chapter of
the Association for Computational Linguistics.

Henry Y. Chen, Ethan Zhou, and Jinho D. Choi. 2017.
Robust Coreference Resolution and Entity Linking
on Dialogues: Character Identification on TV Show
Transcripts. In Proceedings of the 21st Confer-
ence on Computational Natural Language Learning
(CoNLL 2017), pages 216–225.

Yu-Hsin Chen and Jinho D Choi. 2016. Character Iden-
tification on Multiparty Conversation: Identifying
Mentions of Characters in TV Shows. In Proceed-
ings of the 17th Annual Meeting of the Special In-
terest Group on Discourse and Dialogue, pages 90–
100.

Kevin Clark and Christopher D. Manning. 2016. Im-
proving Coreference Resolution by Learning Entity-
Level Distributed Representations. In Proceedings
of the 54th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 643–653.

Matthew Francis-Landau, Greg Durrett, and Dan Klein.
2016. Capturing Semantic Similarity for Entity
Linking with Convolutional Neural Networks. Com-
puting Research Repository, abs/1604.00734.

Abhijeet Gupta, Gemma Boleda, Marco Baroni, and
Sebastian Padó. 2015. Distributional Vectors En-
code Referential Attributes. In Proceedings of the
2015 Conference on Empirical Methods in Natural
Language Processing, pages 12–21.

Aria Haghighi and Dan Klein. 2010. Coreference Res-
olution in a Modular, Entity-Centered Model. In Hu-
man Language Technologies: The 2010 Annual Con-
ference of the North American Chapter of the Associ-
ation for Computational Linguistics, pages 385–393.
Association for Computational Linguistics.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long Short-Term Memory. Neural Computation,
9(8):1735–1780.

Diederik P. Kingma and Jimmy Ba. 2014. Adam: A
Method for Stochastic Optimization. Computing Re-
search Repository, abs/1412.6980.

Kenton Lee, Luheng He, Mike Lewis, and Luke
Zettlemoyer. 2017. End-to-End Neural Corefer-
ence Resolution. Computing Research Repository,
abs/1707.07045.

Rada Mihalcea and Andras Csomai. 2007. Wikify!:
Linking Documents to Encyclopedic Knowledge. In
Proceedings of the sixteenth ACM Conference on In-
formation and Knowledge Management, pages 233–
242.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Cor-
rado, and Jeffrey Dean. 2013. Distributed Represen-
tations of Words and Phrases and Their Composi-
tionality. In Proceedings of the 26th International
Conference on Neural Information Processing Sys-
tems - Volume 2, pages 3111–3119.

E.W. Noreen. 1989. Computer-Intensive Methods for
Testing Hypotheses: An Introduction. Wiley.

Sameer Pradhan, Lance Ramshaw, Mitchell Marcus,
Martha Palmer, Ralph Weischedel, and Nianwen
Xue. 2011. CoNLL-2011 Shared Task: Modeling
Unrestricted Coreference in OntoNotes. In Proceed-
ings of the Fifteenth Conference on Computational
Natural Language Learning: Shared Task, pages 1–
27. Association for Computational Linguistics.

Sainbayar Sukhbaatar, Arthur Szlam, Jason Weston,
and Rob Fergus. 2015. End-To-End Memory Net-
works. arXiv, pages 1–11.

Sam Wiseman, Alexander M Rush, and Stuart M
Shieber. 2016. Learning Global Features for Coref-
erence Resolution. Computing Research Repository,
abs/1604.03035.

69

Proceedings of the 12th International Workshop on Semantic Evaluation (SemEval-2018), pages 70–80
New Orleans, Louisiana, June 5–6, 2018. ©2018 Association for Computational Linguistics

SemEval-2018 Task 5: Counting Events and Participants in the Long Tail

Marten Postma, Filip Ilievski, Piek Vossen
Vrije Universiteit Amsterdam

The Netherlands
{m.c.postma, f.ilievski, piek.vossen}@vu.nl

Abstract

This paper discusses SemEval-2018 Task 5:
a referential quantification task of counting
events and participants in local, long-tail news
documents with high ambiguity. The com-
plexity of this task challenges systems to es-
tablish the meaning, reference and identity
across documents. The task consists of three
subtasks and spans across three domains. We
detail the design of this referential quantifica-
tion task, describe the participating systems,
and present additional analysis to gain deeper
insight into their performance.

1 Introduction

We present a “referential quantification” task that
requires systems to establish the meaning, refer-
ence and identity of events1 and participants in
news articles. By “referential quantification”, we
mean questions concerning the number of inci-
dents of an event type (e.g. How many killing in-
cidents happened in 2016 in Columbus, MS?) or
participants in roles (e.g. How many people were
killed in 2016 in Columbus, MS?), as opposed to
factoid questions for specific properties of indi-
vidual events and entities (e.g. When was 2pac
murdered?). The questions are given with cer-
tain constraints on the location, time, participants,
and event types, which requires understanding of
the meaning of words mentioning these properties
(e.g. Word Sense Disambiguation), but also ad-
equately establishing the identity (e.g. reference
and coreference) across mentions. The task thus
represents both an intrinsic and application-based
evaluation, as systems are forced to resolve ambi-
guity of meaning and reference, as well as varia-
tion in reference in order to answer the questions.

1By event, we denote a specific instance of an event, e.g.
a killing incident happening at a specific location, time, and
involving certain participants.

Figure 1 shows an overview of our quantifica-
tion task. We provide the participants with a set
of questions and their corresponding news docu-
ments.2 Systems are asked to distill event- and
participant-based knowledge from the documents
to answer the question. Systems submit both a nu-
meric answer (3 events in Figure 1), and the corre-
sponding events with their mentions found in the
provided texts (e.g., the leftmost incident in Fig-
ure 1 is referred to by the coreferring mentions
“killed” and “assault” found in two separate doc-
uments). Systems are evaluated on both the nu-
meric answers as well as on the sets of coreferring
mentions. Mentions are represented by tokens and
offsets provided by the organizers.

The incidents and their corresponding news arti-
cles are obtained from structured databases, which
greatly reduces the need for annotation and mainly
requires validation instead. Given this data and
using a metric-driven strategy, we created a task
that further maximizes ambiguity and variation of
the data in relation to the questions. This ambigu-
ity and variation includes a substantial amount of
low-frequent, local events and entities, reflecting
a large variety of long-tail phenomena. As such,
the task is not only highly ambiguous but can also
not be tackled by relying on the most frequent and
popular (head) interpretations.

We see the following contributions of our task:
1. To the best of our knowledge, we propose the
first task that is deliberately designed to address
large ambiguity of meaning and reference over a
high number of infrequent instances.
2. We introduce a methodology for creating large
event-based tasks while avoiding a lot of anno-
tation, since we base the task on structured data.
The remaining annotation concerns targeted men-
tions given the structured data rather than full doc-

2Question parsing is unnecessary, as questions are pro-
vided in a structured format.

70

Answer: 3

Question: How many killing incidents happened in 2016 in Columbus, Mississippi?

Mississippi
boy killed

in gun
accident

Shooting suspect
charged with

domestic
aggravated assault

NEWLYWED
ACCUSED OF

SHOOTING NEW
BRIDE

Columbus Police
investigating early
morning shooting

High Winds Play
Role in 2-Alarm
District Heights
Apartment Fire

input
documents

(1 killed,
Columbus MS, 2016)

Answer

(1 killed,
Columbus MS, 2017)

Confusion

(1 injured,
Columbus GA, 2016)

Confusion

(6 killed,
Columbus MS, 2016)

Answer

candidate
incidents

(0 killed,
Columbus MS, 2016)

Confusion

6 killed in
Columbus

night
shooting

Suspect
arrested in

fatal
shooting

(3 killed,
 Columbus MS, 2016)

Answer

Figure 1: Task overview. Systems are provided with a question and a set of input documents. Their goal is then to find the
documents that fit the question constraints and reason over them to provide an answer.

uments with open-ended interpretations.
3. We made all of our code to create the task avail-
able,3 which may stimulate others to create more
tasks and datasets that tackle long-tail phenomena
for other aspects of language processing, either
within or outside of the SemEval competition.
4. This task provides insights into the strengths
and weaknesses of semantic processing systems
with respect to various long-tail phenomena. We
expect that systems need to innovate by adjusting
(deep) learning techniques to capture the referen-
tial complexity and knowledge sparseness, or by
explicitly modeling aspects of events and entities
to establish identity and reference.

2 Motivation & Target Communities

Expressions can have many different meanings
and possibly an infinite number of references. At
the same time, variation in language is also large,
as we can make reference to the same things
in many ways. This makes the tasks of Word
Sense Disambiguation, Entity Linking, and Event
and Nominal Coreference extremely hard. It also
makes it very difficult to create a task that repre-
sents the problem at its full scale. Any sample
of text will reduce the problem to a small set of
meanings and references, but also to meanings that
are popular at that time excluding many unpopular
ones from the distributional long tail. Given this
Zipfian distribution, a task that is challenging with
respect to ambiguity, reference, and variation, and
that is representative for the long tail as well, needs
to fit certain constraints.

3https://github.com/cltl/
LongTailQATask

Our task directly relates to the following com-
munities in semantic processing: 1. disambigua-
tion and reference; 2. reading comprehension and
question answering.

2.1 Disambiguation & Reference
Semantic NLP tasks are often limited in terms of
the range of concepts and meanings that are cov-
ered. This is a necessary consequence of the an-
notation effort that is needed to create such tasks.
Likewise, in Ilievski et al. (2016), we observed
that most well-known datasets for semantic tasks
have an extremely low ambiguity and variation.
Even in datasets that tried to increase the ambigu-
ity and temporal diversity for the disambiguation
and reference tasks, we still measured a notable
bias with respect to ambiguity, variance, domi-
nance, and time. Overall, tasks and their datasets
show a strong semantic overfitting to the head
of the distribution (the most popular part of the
world) and are not representative for the diversity
of the long tail.

Our task differs from existing ones in that: 1. we
deliberately created a task with a high number of
event instances per event, many of which with
similar properties, leading to high confusability
2. we present an application-based task which
requires to perform on a combination of intrin-
sic tasks such as reference, disambiguation, and
spatial-temporal reasoning, that are usually tested
separately in existing tasks.

2.2 Reading Comprehension & Question
Answering

In several recent tasks, systems are asked to an-
swer entity-based questions, typically by point-

71

ing to the correct segment or coreference chain
in text, or by composing an answer by abstract-
ing over multiple paragraphs/text pieces. These
tasks are based on Wikipedia (SQuAD (Ra-
jpurkar et al., 2016), WikiQA (Yang et al., 2015),
QASent (Wang et al., 2007), WIKIREADING
(Hewlett et al., 2016)) or on annotated individual
documents (MARCO (Nguyen et al., 2016), CNN
and DailyMail datasets (Hermann et al., 2015)).

Weston et al. (2015) outlined 20 skill sets,
such as causality, resolving time and loca-
tion, and reasoning over world knowledge, that
are needed to build an intelligent QA sys-
tem. These have been partially captured by the
datasets MCTest (Richardson et al., 2013) and
QuizBowl (Iyyer et al., 2014)), as well as the Se-
mEval task on Answer Selection in Community
Question Answering (Nakov et al., 2015, 2016).4

However, all these datasets avoid representing
real-world referential ambiguity to its full extent
by mainly asking questions that require knowledge
about popular Wikipedia entities and/or text un-
derstanding of a single document.5 Unlike exist-
ing work, our task deliberately addresses the ref-
erential ambiguity of the world beyond Wikipedia,
by asking questions about long-tail events de-
scribed in multiple documents. By doing so, we
require deep processing of text and establishing
identity and reference across single documents.

3 Task Requirements

Our quantification task consists of questions like
How many killing incidents happened in 2016 in
Columbus, MS? on a dataset that maximizes con-
fusability of meaning, reference and identity. To
guide the creation of such task, we defined five re-
quirements that apply to the data for a single event
type, e.g. killing (Postma et al., 2016).

Each event type should contain:
R1 Multiple event instances per event type, e.g.
the killing of Joe Doe and the killing of Joe Roe.
R2 Multiple event mentions per event instance
within the same document.
R3 Multiple documents with varying creation
times that describe the same event.
R4 Event confusability by combining one or mul-
tiple confusion factors:

4The 2017 run can be found at http://alt.qcri.
org/semeval2017/task3/.

5e.g. the Quiz Bowl dataset deliberately focuses on do-
mains with much training data and frequent answers, thus
avoiding the long tail problem in reference.

a) ambiguity of event mentions, e.g. John Doe
fires a gun, and John Doe fires a worker.

b) variance of event mentions, e.g. John Doe
kills Joe Roe, and John Doe murders Joe Roe.

c) time, e.g. killing A that happened in January
2013, and killing B in October 2016.

d) participants, e.g. killing A committed by John
Doe, and killing B committed by Joe Roe.

e) location, e.g. killing A that happened in
Columbus, MS, and killing B in Houston, TX.
R5 Representation of non-dominant events and
entities, i.e. instances that receive little media cov-
erage. Hence, the entities would not be restricted
to celebrities and the events are not widely dis-
cussed such as general elections.

4 Data & Resources

In this Section, we present our data sources and
an example document. We also discuss considera-
tions of licensing and availability.

4.1 Structured data
The majority of the source texts in this task are
sampled from structured databases that contain
supportive news sources about gun violence inci-
dents. While these texts already contain enough
confusability with respect to the aspects defined
in Section 3, we add confusion through leverag-
ing structured data from two other domains: fire
incidents and business.

As a direct consequence of using these
databases and our exploitation strategy, we are
able to satisfy all requirements we set in Section 3.
These databases contain many event instances per
event type (R1), multiple event mentions in the
same document per event instance (R2), cover a
wide spread of publishing times per event instance
(R3), represent non-dominant events and entities
(R5), and contain rich annotation of event proper-
ties that allows us to create high confusability (R4,
see Section 5.3 for our methodology).

For a large portion of the information in the
structured databases, we manually validated that
this information could be found in the support-
ive news sources, and excluded the documents for
which this was not the case. For the remaining
documents, we performed automatic tests to filter
out low-quality entries.

4.1.1 Gun Violence
The gun violence data is collected from the stan-
dard reports provided by the Gun Violence Archive

72

(GVA) website.6 Each incident contains informa-
tion about: 1. its location 2. its time 3. how many
people were killed 4. how many people were in-
jured 5. its participants. Participant information
includes: (a) the role, i.e. victim or suspect (b) the
name (c) the age 6. the news articles describing
this incident. Table 1 provides a more detailed
overview of the information available in the GVA.

Event Property Granularity Example value
Address Central Avenue

Location City Waynesboro
State Mississippi

Day 14-3-2017
Incident time Month 3-2017

Year 2017

First name John
Participant Last name Smith

Full name John Smith

Table 1: Overview of the GVA incident properties of loca-
tion, time, and participant.

To prevent systems from cheating (by using the
structured data directly), the set of incidents and
news articles is extended with news articles from
the Signal-1M Dataset (Corney et al., 2016) and
from the Web, that also stem from the gun violence
domain, but are not found in the GVA.

4.1.2 Other domains

For the fire incidents domain, we make use of the
FireRescue1 reports,7 which describe the follow-
ing information about 417 incidents: 1. their lo-
cation as a surface form 2. their reporting time
3. one free text summary describing the inci-
dents. 4. no information about participants.
Based on this information, we manually annotated
the incident time and mapped the location to its
representation in Wikipedia.

We further carefully selected a small amount
of news articles from the business domain from
The Signal-1M Dataset. Since these documents
were not semantically annotated with respect to
event information, we manually annotated this
data with the same kind of information as the other
databases: incident location, time, and informa-
tion on the affected participants.

6http://gunviolencearchive.org/
reports/

7https://www.firerescue1.com/
incident-reports/

4.2 Example document

For each document, we provide its title, content
(tokenized), and creation time, e.g.:
Title: $70K reward in deadly shooting near N.
Philadelphia school
Content: A $70,000 reward is being offered for in-
formation in a quadruple shooting near a Roman
Catholic school ...
DCT: 2017-4-5

4.3 Licensing & Availability

The news documents in our task are published on a
very diverse set of (commercial) websites. Due to
this diversity, there is no easy mechanism to check
their licenses individually. Instead, we overcome
potential licensing issues by distributing the data
under the Fair Use policy.8 9

During the SemEval-2018 period, but also af-
terwards, systems can easily test their submissions
via our competition on Codalab.10

5 Task Design

For every incident in the task, we have fine-
grained structured data with respect to its event
type, location, time, and participants, and unstruc-
tured data in the form of the news sources that re-
port on it. In this Section, we explain how we ex-
ploited this data in order to create the task. We
present our three subtasks and the question tem-
plate after which we outline the question creation.
Finally, we explain how we divided the data into
trial and test sets and provide some statistics about
the data. For detailed information about the task,
e.g. about the question and answer representation,
we refer to the CodaLab website of the task.

5.1 Subtasks

The task contains two event-based subtasks and
one entity-based subtask.

Subtask 1 (S1): Find the single event that an-
swers the question e.g. Which killing incident
happened in Wilmington, CA in June 2014? The
main challenge is not to determine how many in-
cidents satisfy the question, but to identify the doc-
uments that describe the single answer incident.

Subtask 2 (S2): Find all events (if any) that
answer the question. This subtask differs from

8Fair use policy in USA: https://goo.gl/hXiEKL
9Fair use policy in EU: https://goo.gl/s8V5Zs

10https://competitions.codalab.org/
competitions/17285

73

S1 in that the system now also has to determine
the number of answer incidents, which makes this
subtask harder. To make it more realistic, we also
include questions with zero as an answer.

Subtask 3 (S3): Find all participant-role re-
lations that answer the question e.g. How many
people were killed in Wilmington, CA with the last
name Smith? The goal is to determine the number
of entities that satisfy the question. The system
not only needs to identify the relevant incidents,
but also to reason over the participant roles.

5.2 Question Template

Questions in each subtask consist of an event type
and two event properties.

Event type We consider four event types
in this task described through their representa-
tion in WordNet (Fellbaum, 1998) and FrameNet
(F. Baker et al., 1998). Each question is con-
strained by exactly one event type.

event type description meanings
killing at least wn30:killing.n.02

one person wn30:kill.v.01
is killed fn17:Killing

injuring at least wn30:injure.v.01
one person wn30:injured.a.01
is injured fn17:Cause harm

fn17:Experience-
bodily harm

fire burning the event of wn30:fire.n.01
something fn17:Fire burning
burning

job firing terminated wn30:displace.v.03
employment fn17:Firing

Table 2: Description of the event types. The meanings col-
umn lists meanings that best describe the event type. It con-
tains both FrameNet 1.7 frames (prefixed by fn17) and Word-
Net 3.0 synsets (prefixed by wn30).

Event properties For each event property in
our task (time, location, participants), we distin-
guish between three levels of granularity (see Ta-
ble 1). In addition, we make a distinction between
the surface form and the meaning of an event prop-
erty value. For example, the surface form Wilm-
ington can denote several meanings: the Wilming-
ton cities in the states of California, North Car-
olina, and Delaware. When composing questions,
for time and location we take the semantic (mean-
ing) level, while for participants we use the surface
form of their names. This is because the vast ma-
jority of the participants in our task are long tail
instances which have no semantic representation

in a structured knowledge base.

5.3 Question Creation

Our question creation strategy consists of three
consecutive phases: question composition, gener-
ation of answer and confusion sets, and question
scoring. These steps are common for both the
event-based subtasks (S1 and S2) and the entity-
based subtask S3.
1. Question composition We compose questions
based on the template described in Section 5.2.
This entails: 1. choice of a subtask 2. choice of
an event type, e.g. killing 3. choice of two event
properties (e.g. time and location) with their cor-
responding granularities (e.g. month and city) and
concrete values (e.g. June 2014 and Wilmington,
CA). This step generates a vast amount of potential
questions (hundreds of thousands) in a data-driven
way, i.e. we select the event type and properties
per question purely based on the combinations we
find in our data. Example questions are:

Which killing event happened in June 2014 in
Wilmington, CA? (subtask S1)

How many killing events happened in
June 2014 in Wilmington, CA? (subtask S2)

How many people were killed in June 2014 in
Wilmington, CA? (subtask S3)
2. Answer and confusion sets generation For
each generated question, we define a set of answer
and confusion incidents with their corresponding
documents. Answer incidents are the ones which
entirely fit the question parameters, e.g. all killing
incidents that occur in June 2014 and in the city
of Wilmington, CA. Confusion incidents fit some,
but not all, values of the question parameters , i.e.
they differ with respect to an event type or prop-
erty (e.g. all fire incidents in June 2014 in Wilm-
ington, CA; or all killings in June 2014, but not in
Wilmington, CA; or all killings in Wilmington, CA,
but not in June 2014).
3. Question scoring The generated questions
with their corresponding answers and confusion
are next scored with respect to several metrics that
measure their complexity. The per-question scores
allow us to detect and remove the “easy” ones, and
keep those that: 1. have a high number of answer
incidents (only applicable to S2 and S3) 2. have a
high number of confusion incidents 3. have a high
average number of answer and confusion docu-
ments, i.e. news sources describing the answer and
the confusion incidents correspondingly 4. have a

74

high temporal spread with respect to the publish-
ing dates reporting on each incident from the an-
swer and confusion incidents 5. have a high am-
biguity with respect to the surface forms of an
event property value in a granularity level (e.g. we
would favor Wilmington, since it is a city in at least
three US states in our task data).

5.4 Data Partitioning

We divided the overall task data into two parti-
tions: trial and test data. In practice, we separated
these two data partitions by reserving one year of
news documents (2017) from our task for the trial
data, while using all the other data as test data.

The trial data stems from the gun violence do-
main, whereas the test data also contains data from
the fire incidents and business domain. A subset of
the trial and test data has been annotated for event
coreference. Table 3 presents the most important
statistics of the trial and test data.

S #Qs Avg Avg #
answer answer docs

trial 1 424 1.00 1.68
2 469 4.22 7.68
3 585 5.48 5.47

test 1 1032 1.00 1.60
2 997 3.79 6.64
3 2456 3.66 3.74

Table 3: General statistics about trial and test data. For each
subtask (S), we show the number of questions (#Qs), the aver-
age answer (Avg answer), and the average number of answer
documents (Avg # answer docs).

We made an effort to make the trial data repre-
sentative for the test data with respect to the main
aspects of our task: its referential complexity, high
confusability, and long-tail instances. Despite the
fact that the trial data contains less questions than
the test data, Table 3 shows that it is similar to the
test data with respect to the core properties, mean-
ing that the trial data can be used as training data.

6 Evaluation

This Section describes the evaluation criteria in
this task and the baselines we compare against.

6.1 Criteria

Evaluation is performed on three levels: incident-
level, document-level, and mention-level.
The incident-level evaluation compares the nu-
meric answer provided by the system to the gold

answer for each of the questions. The compari-
son is done twofold: by exact matching and by
Root Mean Square Error (RMSE) for difference
scoring. The scores per subtask are then averaged
over all questions to compute a single incident-
level evaluation score.
The document-level evaluation compares the set
of answer documents between the system and the
gold standard, resulting in a value for the custom-
ary metrics of Precision, Recall, and F1 per ques-
tion. The scores per subtask are then averaged
over all questions to compute a single document-
level evaluation score.
The mention-level evaluation is a cross-
document event coreference evaluation. Mention-
level evaluation is only done for questions with
the event types killing or injuring. We apply
the customary metrics to score the event coref-
erence: BCUB (Bagga and Baldwin, 1998),
BLANC (Recasens and Hovy, 2011), entity-based
CEAF (CEAF E) and mention-based CEAF
(CEAF M) (Luo, 2005), and MUC (Vilain et al.,
1995). The final F1-score is the average of
the F1-scores of the individual metrics. The
set of mentions to annotate should conform
to the schema defined in the task annotation
guidelines.11

6.2 Baselines
To stimulate participation in general and to stim-
ulate approaches beyond surface form or major-
ity class strategies, we implemented one baseline
to infer incidents per subtask and one baseline for
mention annotation.12

Incident inference baseline This baseline uses
surface forms based on the question components
to find the answer documents. We only consider
documents that contain the label of the event type
or at least one of its WordNet synonyms. The la-
bels of locations and participants are queried di-
rectly in the document (e.g. if the location re-
quested is the US state of Texas, then we only
consider documents that contain the surface form
Texas, and similarly for participants such as John).
The temporal constraint is handled differently: we
only consider documents whose publishing date
falls within the time requested in the question.

For subtask 1, this baseline assumes that all doc-
uments that fit the created constraints are referring

11Link to the guidelines: https://goo.gl/8JpwCE.
12The code of the baselines can be found here: https:

//goo.gl/MwSqBj.

75

to the same incident. If there is no such document,
then the baseline does not answer the question (be-
cause S1 always has at least one supporting doc-
ument). For subtask 2, we assume that none of
the documents are coreferential. Hence, if 10 doc-
uments match the constraints, we infer that there
are also 10 corresponding incidents. No baseline
was implemented for subtask 3.
Mention annotation baseline We annotate men-
tions of events of type killing and injuring, when
these surface forms or their synonyms in WordNet
are found as tokens in a document. We assume
that all mentions of the same event type within a
document are coreferential, whereas all mentions
found in different documents are not.

7 Participants

In this Section, we describe the systems that took
part in SemEval-2018 task 5. We refer to the indi-
vidual system papers for further information.

NewsReader (Vossen, 2018) consists of three
steps: 1. the event mentions in the input doc-
uments are represented as Event-Centric Knowl-
edge Graphs (ECKGs). 2. the ECKGs of all docu-
ments are compared to each other to decide which
documents refer to the same incident, resulting in
an incident-document index. 3. the constraints
of each question (its event type, time, participant
names, and location) are matched with the stored
ECKGs, resulting in a number of incidents and
source documents for each question.

NAI-SEA (Liu and Li, 2018) consists of three
components: 1. extraction of basic information
on time, location, and participants with regular
expressions, named entity recognition, and term
matching; 2. event classification with an SVM
classifier; 3. document similarity by applying a
classifier to detect similar documents. In terms
of resources, NAI-SEA combines the training data
with data on American cities, counties, and states.

Team FEUP (Abreu and Oliveira, 2018) devel-
oped an experimental system to extract entities
from news articles for the sake of Question & An-
swering. For this main task, the team proposed a
supervised learning approach to enable the recog-
nition of two different types of entities: Locations
(e.g. Birmingham) and Participants (e.g. John
List). They have also studied the use of distance-
based algorithms (using Levenshtein distance and
Q-grams) for the detection of documents’ close-
ness based on entities extracted.

Team ID-DE (Mirza et al., 2018) created KOI
(Knowledge of Incidents), a system that builds
a knowledge graph of incidents, given news ar-
ticles as input. The required steps include: 1.
Document preprocessing using various semantic
NLP tasks such as Word Sense Disambiguation,
Named-Entity Recognition, Temporal expression
recognition, and Semantic Role Labeling. 2. In-
cident extraction and document clustering based
on the output of step 1. 3. Ontology construc-
tion to capture the knowledge model from inci-
dents and documents which makes it possible to
run SPARQL queries on the ontology to answer
the questions.

8 Results

R Team s2 inc acc s2 inc acc s2 inc
norm (% of Qs answered) rmse

1 FEUP 26.38 26.38 (100.0%) 6.13
2 *NewsReader 21.87 21.87 (100.0%) 43.96
3 Baseline 18.25 18.25 (100.0%) 8.50
4 NAI-SEA 17.35 17.35 (100.0%) 20.59
5 ID-DE 13.74 20.36 (67.5%) 6.15

Table 4: For subtask 2, we report the normalized
incident-level accuracy (s2 inc acc norm), the accuracy on
the answered questions only (s2 inc acc), and the RMSE

value (s2 inc rmse). Systems are ordered by their rank (R).

R Team s3 inc acc s3 inc acc s3 inc
norm (% of Qs answered) rmse

1 FEUP 30.42 30.42 (100.0%) 478.71
2 *NewsReader 21.05 21.05 (100.0%) 296.45
3 NAI-SEA 20.20 20.2 (100.0%) 13.45
4 ID-DE 12.87 19.32 (66.61%) 7.87

Table 5: For subtask 3, we report the normalized
incident-level accuracy (s3 inc acc norm), the accuracy on
the answered questions only (s3 inc acc), and the RMSE

value (s3 inc rmse). Systems are ordered by their rank (R).

Before we report the system results, we introduce
a few clarifications regarding the result tables:
1. For the incident- and document-level evalua-
tion, we report both the performance with respect
to the subset of questions answered and a normal-
ized score, which indicates the performance on all
questions of a subtask. If a submission provides
answers for all questions, the normalized score
will be the same as the non-normalized score.
2. Contrary to the other metrics, a lower RMSE
value indicates better system performance. In ad-
dition, the RMSE scores have not been normalized
since it is not reasonable to set a default value for
non-answered questions.

76

3. The mention-level evaluation was the same
across all three subtasks. For this reason, results
are only reported once (see Section 8.3).
4. The teams whose member co-organized
SemEval-2018 task 5 are marked explicitly with
an asterisk in the results.

8.1 Incident-level evaluation
The incident-level evaluation assesses whether the
system provided the right numeric answer to a
question. The results of this evaluation are given
in the Tables 4 and 5, for the subtasks 2 and 3 cor-
respondingly.13 On both subtasks, the order of the
participating systems is identical, team FEUP hav-
ing the highest score.

These tables also show the RMSE values, which
measure the proximity between the system and the
gold answer, punishing cases where the absolute
difference between them is large. While for sub-
task 2 the system with the lowest error rate cor-
responds to the system with the highest accuracy,
this is different for subtask 3. NAI-SEA, ranked
third in terms of accuracy, has the lowest RMSE.
This means that although their answers were not
exactly correct, they were on average much closer
to the correct answer than those of the other sys-
tems. This is more notable in subtask 3 since here
the range of answers is larger than in subtask 2 (the
maximum answer in subtask 3 is 171).

We performed additional analysis to compare
the performance of systems per subtype and per
numeric answer class. Table 6 shows that the
system FEUP is not only superior in terms of
incident-level accuracy overall, but this is also
mirrored for most of the event types, especially
those corresponding to the gun violence domain.
On the other hand, Figure 2 shows the accuracy
distribution of each system per answer class. No-
tably, for most systems the accuracy is highest for
the questions with answer 0 or 1, and gradually de-
clines for higher answers, forming a Zipfian-like
distribution. The exception here is the team ID-
DE, whose accuracy is almost uniformly spread
across the various answer classes.

8.2 Document-level evaluation
The intent behind document-level evaluation is to
assess the ability of systems to distinguish be-
tween answer and non-answer documents. The ta-
bles 9, 10, and 11 present the F1-scores for the

13Incident-level evaluation was not performed for subtask
1, because per definition, its answer is always 1.

subtasks 1, 2, and 3, respectively. Curiously, the
system ranking is very different and almost oppo-
site compared to the incident-level rankings, with
the system NAI-SEA being the one with the high-
est F1-score. This can be explained by the multi-
faceted nature of this task, in which different sys-
tems may optimize for different goals.

Next, we investigated the F1-scores of systems
per event property pair. As shown in Table 7, the
best-performing system consistently has the high-
est performance over all pairs of event properties.

R Team s1 doc f1 s1 doc f1
norm (% of Qs answered)

1 NAI-SEA 78.33 78.33 (100.0%)
2 ID-DE 36.67 82.99 (44.19%)
3 FEUP 24.65 24.65 (100.0%)
4 *NewsReader 23.82 46.2 (51.55%)
5 Baseline 11.09 67.33 (16.47%)

Table 9: For subtask 1, we report the normalized
document-level F1 (s1 doc f1 norm) and the accuracy on the

answered questions only (s1 doc f1). Systems are ordered
by their rank (R).

R Team s2 doc f1 s2 doc f1
norm (% of Qs answered)

1 NAI-SEA 50.52 50.52 (100.0%)
2 ID-DE 37.24 55.16 (67.5%)
3 *NewsReader 36.91 36.91 (100.0%)
4 FEUP 30.51 30.51 (100.0%)
5 Baseline 26.38 26.38 (100.0%)

Table 10: For subtask 2, we report the normalized
document-level F1 (s2 doc f1 norm) and the accuracy on the

answered questions only (s2 doc f1). Systems are ordered
by their rank (R).

R Team s3 doc f1 s3 doc f1
norm (% of Qs answered)

1 NAI-SEA 63.59 63.59 (100.0%)
2 ID-DE 46.33 69.56 (66.61%)
3 *NewsReader 26.84 26.84 (100.0%)
4 FEUP 26.79 26.79 (100.0%)

Table 11: For subtask 3, we report the normalized
document-level F1 (s3 doc f1 norm) and the accuracy on the

answered questions only (s3 doc f1). Systems are ordered
by their rank (R).

8.3 Mention-level evaluation

Table 8 shows the event coreference results for the
participating systems: ID-DE and NewsReader, as
well as our baseline. The columns present the F1-
score for the metrics BCUB, BLANC, CEAF E.
CEAF M, and MUC. The final column indicates

77

Event type Subtask #Qs FEUP ID-DE NAI-SEA *NewsReader Baseline

fire burning S2 79 40.51 - 31.65 39.24 49.37
S3 0 - - - - -

injuring S2 543 21.92 ˆ13.44 14.36 21.73 17.68
S3 1502 30.49 ˆ8.39 16.78 23.17 -

job firing S2 4 0.0 - 25.0 25.0 50.0
S3 26 30.77 - 26.92 15.38 -

killing S2 371 30.19 ˆ17.25 18.6 18.33 12.13
S3 928 30.28 ˆ20.47 25.54 17.78 -

Table 6: For subtask 2 (S2) and subtask 3 (S3), we report the incident-level accuracy and the number of questions (#Qs) per
event type. The best result per event type for a subtask is marked in bold. ‘ˆ’ indicates that the accuracy is normalized for the

number of answered questions, in cases where a system answered a subset of all questions.
.

0 1 2 3 4 5 6 7 8 910
numeric answer class

0

20

40

60

80

In
ci

de
nt

 a
cc

ur
ac

y
no

rm
al

iz
ed

team = FEUP

0 1 2 3 4 5 6 7 8 910
numeric answer class

0

20

40

60

80

team = ID-DE

0 1 2 3 4 5 6 7 8 910
numeric answer class

0

20

40

60

80

team = NAI-SEA

0 1 2 3 4 5 6 7 8 910
numeric answer class

0

20

40

60

80

team = *NewsReader

Figure 2: Incident-level accuracy of all systems per numeric answer class for subtask 2. The class 10 represents all answers
of 10 or higher.

Event properties Subtask #Qs FEUP ID-DE NAI-SEA *NewsReader Baseline

location&time S1 594 23.06 ˆ26.64 82.91 ˆ26.22 ˆ8.71
S2 680 30.95 ˆ41.81 49.99 39.22 28.61
S3 1335 26.4 ˆ41.55 63.27 36.15 -

participant&location S1 140 13.48 ˆ43.86 70.22 ˆ11.83 ˆ9.76
S2 49 14.66 ˆ21.26 50.41 13.53 10.02
S3 301 14.2 ˆ44.28 62.38 6.65 -

participant&time S1 298 33.06 ˆ53.28 73.01 ˆ24.65 ˆ16.47
S2 268 32.27 ˆ28.55 51.87 35.34 23.71
S3 820 32.06 ˆ54.88 64.56 19.09 -

Table 7: Document-level F1-score and number of questions (#Qs) for each subtask (S1, S2, and S3) and event property pair as
given in the task questions. The best result per property pair for a subtask is marked in bold. ‘ˆ’ indicates that the F1-score is

normalized for the number of answered questions, in cases where a system answered a subset of all questions.

R Team BCUB BLANC CEAF E CEAF M MUC AVG

1 ID-DE 44.61% 31.59% 37.45% 47.23% 53.12% 42.8%
2 *NewsReader 37.28% 28.11% 42.15% 46.16% 46.29% 40.0%
3 Baseline 6.14% 0.89% 13.3% 8.45% 3.59% 6.47%

Table 8: Results for mention-level evaluation, scored with the customary event coreference metrics: BCUB (Bagga and
Baldwin, 1998), BLANC (Recasens and Hovy, 2011), entity-based CEAF (CEAF E) and mention-based CEAF

(CEAF M) (Luo, 2005), and MUC (Vilain et al., 1995). The individual scores are averaged in a single number (AVG), which is
used to rank (R) the systems.

the mean F1-score over these five metrics, which
is used to rank the participants. The Table shows
that the system ID-DE has a slightly better event

coreference score on average over all metrics than
the second-ranked system, NewsReader.

78

9 Conclusions

In this paper we have introduced SemEval-2018
Task 5, a referential quantification task of count-
ing events and participants in local news articles
with high ambiguity. The complexity of this task
challenges systems to establish the meaning, ref-
erence, and identity across documents. SemEval-
2018 Task 5 consists of two subtasks of counting
events, and one subtask of counting event partic-
ipants in their corresponding roles. We evaluated
system performance with a set of metrics, on three
levels: incident-, document-, and mention-level.

We described the approaches and presented the
results of four participating systems, as well as two
baseline algorithms. All four teams submitted a
result for all three subtasks, and two teams par-
ticipated in the mention-level evaluation. We ob-
served that the ranking of systems differs dramat-
ically per evaluation level. Given the multifaceted
nature of this task, it is not surprising that different
systems optimized for different goals. Although
the systems are able to retrieve many of the an-
swer documents, the highest accuracy of counting
events or participants is 30%. This suggests that
further research is necessary in order to develop
complete and robust models that can natively deal
with the challenge of counting referential units
within sparse and ambiguous textual data.

Out-of-competition participation is enabled by
the Codalab platform, where this task was hosted.

References
Carla Abreu and Eugénio Oliveira. 2018. FEUP at

SemEval-2018 Task 5: An Experimental Study of
a Question Answering System. In Proceedings of
the 12th International Workshop on Semantic Eval-
uation (SemEval-2018). Association for Computa-
tional Linguistics.

Amit Bagga and Breck Baldwin. 1998. Algorithms
for scoring coreference chains. In The first in-
ternational conference on language resources and
evaluation workshop on linguistics coreference, vol-
ume 1, pages 563–566. Granada.

David Corney, Dyaa Albakour, Miguel Martinez, and
Samir Moussa. 2016. What do a million news ar-
ticles look like? In Proceedings of the First In-
ternational Workshop on Recent Trends in News In-
formation Retrieval co-located with 38th European
Conference on Information Retrieval (ECIR 2016),
Padua, Italy, March 20, 2016., pages 42–47.

Collin F. Baker, Charles J. Fillmore, and John B. Lowe.
1998. The Berkeley FrameNet Project. In COLING

1998 Volume 1: The 17th International Conference
on Computational Linguistics.

Christiane Fellbaum, editor. 1998. WordNet: An Elec-
tronic Lexical Database . The MIT Press, Cam-
bridge, MA ; London.

Karl Moritz Hermann, Tomas Kocisky, Edward
Grefenstette, Lasse Espeholt, Will Kay, Mustafa Su-
leyman, and Phil Blunsom. 2015. Teaching ma-
chines to read and comprehend. In Advances in Neu-
ral Information Processing Systems, pages 1693–
1701.

Daniel Hewlett, Alexandre Lacoste, Llion Jones, Illia
Polosukhin, Andrew Fandrianto, Jay Han, Matthew
Kelcey, and David Berthelot. 2016. WikiReading:
A Novel Large-scale Language Understanding Task
over Wikipedia. In Proceedings of the 54th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1535–
1545. Association for Computational Linguistics.

Filip Ilievski, Marten Postma, and Piek Vossen. 2016.
Semantic overfitting: what ’world’ do we consider
when evaluating disambiguation of text? In Pro-
ceedings of COLING 2016, the 26th International
Conference on Computational Linguistics: Techni-
cal Papers, pages 1180–1191. The COLING 2016
Organizing Committee.

Mohit Iyyer, Jordan L Boyd-Graber, Leonardo
Max Batista Claudino, Richard Socher, and Hal
Daumé III. 2014. A Neural Network for Factoid
Question Answering over Paragraphs. In EMNLP,
pages 633–644.

Yingchi Liu and Quanzhi Li. 2018. NAI-SEA at
SemEval-2018 Task 5: An Event Search System.
In Proceedings of the 12th International Workshop
on Semantic Evaluation (SemEval-2018). Associa-
tion for Computational Linguistics.

Xiaoqiang Luo. 2005. On coreference resolution per-
formance metrics. In Proceedings of the conference
on human language technology and empirical meth-
ods in natural language processing, pages 25–32.
Association for Computational Linguistics.

Paramita Mirza, Fariz Darari, and Rahmad Mahen-
dra. 2018. KOI at SemEval-2018 Task 5: Building
Knowledge Graph of Incidents. In Proceedings of
the 12th International Workshop on Semantic Eval-
uation (SemEval-2018). Association for Computa-
tional Linguistics.

Preslav Nakov, Lluı́s Màrquez, Walid Magdy, Alessan-
dro Moschitti, Jim Glass, and Bilal Randeree. 2015.
Semeval-2015 task 3: Answer selection in com-
munity question answering. In Proceedings of the
9th International Workshop on Semantic Evaluation
(SemEval 2015), pages 269–281. Association for
Computational Linguistics.

79

Preslav Nakov, Lluı́s Màrquez, Alessandro Moschitti,
Walid Magdy, Hamdy Mubarak, abed Alhakim Frei-
hat, Jim Glass, and Bilal Randeree. 2016. Semeval-
2016 task 3: Community question answering. In
Proceedings of the 10th International Workshop on
Semantic Evaluation (SemEval-2016), pages 525–
545. Association for Computational Linguistics.

Tri Nguyen, Mir Rosenberg, Xia Song, Jianfeng Gao,
Saurabh Tiwary, Rangan Majumder, and Li Deng.
2016. MS MARCO: A Human Generated MA-
chine Reading COmprehension Dataset. CoRR,
abs/1611.09268.

Marten Postma, Filip Ilievski, Piek Vossen, and
Marieke van Erp. 2016. Moving away from seman-
tic overfitting in disambiguation datasets. In Pro-
ceedings of the Workshop on Uphill Battles in Lan-
guage Processing: Scaling Early Achievements to
Robust Methods, pages 17–21, Austin, TX. Associ-
ation for Computational Linguistics.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev,
and Percy Liang. 2016. SQuAD: 100, 000+ Ques-
tions for Machine Comprehension of Text. CoRR,
abs/1606.05250.

Marta Recasens and Eduard Hovy. 2011. BLANC: Im-
plementing the Rand index for coreference evalu-
ation. Natural Language Engineering, 17(4):485–
510.

Matthew Richardson, Christopher JC Burges, and Erin
Renshaw. 2013. MCTest: A Challenge Dataset for
the Open-Domain Machine Comprehension of Text.
In EMNLP, volume 3, page 4.

Marc Vilain, John Burger, John Aberdeen, Dennis Con-
nolly, and Lynette Hirschman. 1995. A model-
theoretic coreference scoring scheme. In Proceed-
ings of the 6th conference on Message understand-
ing, pages 45–52. Association for Computational
Linguistics.

Piek Vossen. 2018. NewsReader at SemEval-2018
Task 5: Counting events by reasoning over event-
centric-knowledge-graphs. In Proceedings of the
12th International Workshop on Semantic Evalu-
ation (SemEval-2018). Association for Computa-
tional Linguistics.

Mengqiu Wang, Noah A Smith, and Teruko Mitamura.
2007. What is the Jeopardy Model? A Quasi-
Synchronous Grammar for QA. In EMNLP-CoNLL,
volume 7, pages 22–32.

Jason Weston, Antoine Bordes, Sumit Chopra, Alexan-
der M Rush, Bart van Merriënboer, Armand Joulin,
and Tomas Mikolov. 2015. Towards AI-complete
question answering: A set of prerequisite toy tasks.
arXiv preprint arXiv:1502.05698.

Yi Yang, Wen-tau Yih, and Christopher Meek. 2015.
WikiQA: A Challenge Dataset for Open-Domain
Question Answering. In Proceedings of EMNLP,
pages 2013–2018. Citeseer.

80

Proceedings of the 12th International Workshop on Semantic Evaluation (SemEval-2018), pages 81–87
New Orleans, Louisiana, June 5–6, 2018. ©2018 Association for Computational Linguistics

KOI at SemEval-2018 Task 5: Building Knowledge Graph of Incidents

Paramita Mirza,1 Fariz Darari,2∗ Rahmad Mahendra2∗

1 Max Planck Institute for Informatics, Germany
2 Faculty of Computer Science, Universitas Indonesia, Indonesia

{paramita}@mpi-inf.mpg.de
{fariz,rahmad.mahendra}@cs.ui.ac.id

Abstract

We present KOI (Knowledge of Incidents), a
system that given news articles as input, builds
a knowledge graph (KOI-KG) of incidental
events. KOI-KG can then be used to effi-
ciently answer questions such as “How many
killing incidents happened in 2017 that involve
Sean?” The required steps in building the KG
include: (i) document preprocessing involv-
ing word sense disambiguation, named-entity
recognition, temporal expression recognition
and normalization, and semantic role labeling;
(ii) incidental event extraction and coreference
resolution via document clustering; and (iii)
KG construction and population.

1 Introduction

SemEval-20181 Task 5: Counting Events and Par-
ticipants in the Long Tail (Postma et al., 2018) ad-
dresses the problem of referential quantification
that requires a system to answer numerical ques-
tions about events such as (i) “How many killing
incidents happened in June 2016 in San Antonio,
Texas?” or (ii) “How many people were killed in
June 2016 in San Antonio, Texas?”

Subtasks S1 and S2 For questions of type (i),
which are asked by the first two subtasks, partic-
ipating systems must be able to identify the type
(e.g., killing, injuring), time, location and partic-
ipants of each event occurring in a given news
article, and establish within- and cross-document
event coreference links. Subtask S1 focuses on
evaluating systems’ performances on identifying
answer incidents, i.e., events whose properties fit
the constraints of the questions, by making sure
that there is only one answer incident per question.

∗ Both share the same amount of work.
1http://alt.qcri.org/semeval2018/

Subtask S3 In order to answer questions of
type (ii), participating systems are also required
to identify participant roles in each identified an-
swer incident (e.g., victim, subject-suspect), and
use such information along with victim-related nu-
merals (“three people were killed”) mentioned in
the corresponding answer documents, i.e., docu-
ments that report on the answer incident, to deter-
mine the total number of victims.

Datasets The organizers released two datasets:
(i) test data, stemming from three domains of
gun violence, fire disasters and business, and (ii)
trial data, covering only the gun violence domain.
Each dataset contains (i) an input document (in
CoNLL format) that comprises news articles, and
(ii) a set of questions (in JSON format) to evaluate
the participating systems.2

This paper describes the KOI (Knowledge of
Incidents) system submitted to SemEval-2018
Task 5, which constructs and populates a knowl-
edge graph of incidental events mentioned in news
articles, to be used to retrieve answer incidents
and answer documents given numerical questions
about events. We propose a fully unsupervised
approach to identify events and their properties
in news texts, and to resolve within- and cross-
document event coreference, which will be de-
tailed in the following section.

2 System Description

2.1 Document Preprocessing

Given an input document in CoNLL format (one
token per line), for each news article, we first
split the sentences following the annotation of: (i)
whether a token is part of the article title or con-
tent; (ii) sentence identifier; and (iii) whether a to-

2https://competitions.codalab.org/
competitions/17285

81

ken is a newline character. We then ran several
tools on the tokenized sentences to obtain the fol-
lowing NLP annotations.

Word sense disambiguation (WSD) We ran
Babelfy3 (Moro et al., 2014) to get disambiguated
concepts (excluding stop-words), which can be
multi-word expressions, e.g., gunshot wound.
Each concept is linked to a sense in Babel-
Net4 (Navigli and Ponzetto, 2012), which subse-
quently is also linked to a WordNet sense and a
DBpedia entity (if any).

Named-entity recognition (NER) We relied on
spaCy5 for a statistical entity recognition, specifi-
cally for identifying persons and geopolitical enti-
ties (countries, cities, and states).

Time expression recognition and normalization
We used HeidelTime6 (Strötgen and Gertz, 2013)
for recognizing textual spans that indicate time,
e.g., this Monday, and normalizing the time ex-
pressions according to a given document creation
time, e.g., 2018-03-05.

Semantic role labeling (SRL) Senna7 (Col-
lobert et al., 2011) was used to run semantic pars-
ing on the input text, for identifying sentence-level
events (i.e., predicates) and their participants.

2.2 Event Extraction and Coreference
Resolution

Identifying document-level events Sentence-
level events, i.e., predicates recognized by the
SRL tool, were considered as the candidates for
the document-level events. Note that predicates
containing other predicates as the patient argu-
ment, e.g., ‘says’ with arguments ‘police’ as its
agent and ‘one man was shot to death’ as its pa-
tient, were not considered as candidate events.

Given a predicate, we simultaneously deter-
mined whether it is part of document-level events
and also identified its type, based on the occur-
rence of BabelNet concepts that are related to four
event types of interest stated in the task guidelines:
killing, injuring, fire burning and job firing. A
predicate is automatically labeled as a sentence-
level event with one of the four types if such re-

3http://babelfy.org/
4http://babelnet.org/
5https://spacy.io/
6https://github.com/HeidelTime/

heideltime
7https://ronan.collobert.com/senna/

lated concepts occur either in the predicate itself
or in one of its arguments. For example, a predi-
cate ‘shot’, with arguments ‘one man’ as its patient
and ‘to death’ as its manner, will be considered as
a killing event because of the occurrence of ‘death’
concept.8

Concept relatedness was computed via path-
based WordNet similarity (Hirst et al., 1998)
of a given BabelNet concept, which is linked
to a WordNet sense, with a predefined set of
related WordNet senses for each event type
(e.g., wn30:killing.n.02 and wn30:kill.v.01 for the
killing event), setting 5.0 as the threshold. Related
concepts were also annotated with the correspond-
ing event types, to be used for the mention-level
event coreference evaluation.

We then assumed all identified sentence-level
events in a news article belonging to the same
event type to be automatically regarded as one
document-level event, meaning that each article
may contain at most four document-level events
(i.e., at most one event per event type).

Identifying document-level event participants
Given a predicate as an identified event, its partic-
ipants were simply extracted from the occurrence
of named entities of type person, according to both
Senna and spaCy, in the agent and patient argu-
ments of the predicate. Furthermore, we deter-
mined the role of each participant as victim, perpe-
trator or other, based on its mention in the pred-
icate. For example, if ‘Randall’ is mentioned as
the agent argument of the predicate ‘shot’, then he
is a perpetrator. Note that a participant can have
multiple roles, as is the case for a person who kills
himself.

Taking into account all participants of a set of
identified events (per event type) in a news article,
we extracted document-level event participants by
resolving name coreference. For instance, ‘Ran-
dall’, ‘Randall R. Coffland’, and ‘Randall Cof-
fland’ all refer to the same person.

Identifying document-level number of victims
For each identified predicate in a given document,
we extracted the first existing numeral in the pa-
tient argument of the predicate, e.g., one in ‘one
man’. The normalized value of the numeral was
then taken as the number of victims, as long as
the predicate is not suspect-related predicates such

8We assume that a predicate that is labeled as a killing
event cannot be labeled as an injuring event even though an
injuring-related concept such as ‘shot’ occurs.

82

as suspected or charged. The number of victims
of document-level events is simply the maximum
value of identified number of victims per predi-
cate.

Identifying document-level event locations To
retrieve candidate event locations given a docu-
ment, we relied on disambiguated DBpedia en-
tities as a result of Babelfy annotation. We uti-
lized SPARQL queries over the DBpedia SPARQL
endpoint9 to identify whether a DBpedia entity
is a city or a state, and whether it is part of
or located in a city or a state. Specifically,
an entity is considered to be a city whenever
it is of type dbo:City or its equivalent types
(e.g., schema:City). Similarly, it is consid-
ered to be a state whenever it is either of type
yago:WikicatStatesOfTheUnitedStates, has a
senator (via the property dbp:senators), or has
dbc:States of the United States as a subject.

Assuming that document-level events identified
in a given news article happen at one certain lo-
cation, we simply ranked the candidate event lo-
cations, i.e., pairs of city and state, based on their
frequencies, and took the one with the highest fre-
quency.

Identifying document-level event times Given
a document D, suppose we have dct as the docu-
ment creation time and T as a list of normalized
time expressions returned by HeidelTime, whose
types are either date or time. We considered a
time expression ti ∈ T as one of candidate event
times T ′ ⊆ T , if dct− ti is a non-negative integer
less than n days.10 We hypothesize that the event
reported in a news article may have happened sev-
eral days before the news is published.

Assuming that document-level events identified
in a given news article happen at one certain time,
we determine which one is the document-level
event time from the set of candidates T ′ by ap-
plying two heuristics: A time expression tj ∈ T ′

is considered as the event time, if (i) tj is men-
tioned in sentences containing event-related con-
cepts, and (ii) tj is the earliest time expression in
the candidate set.

Cross-document event coreference resolution
We approached cross-document event coreference
by clustering similar document-level events that

9https://dbpedia.org/sparql
10Based on our empirical observations on the trial data we

found n = 7 to be the best parameter.

Resource Type Properties

IncidentEvent eventType, eventDate, location,
participant, numOfVictims

Document docDate, docID, event
Participant fullname, firstname, lastname, role
Location city, state
Date value, day, month, year

Table 1: KOI-KG ontology

are of the same type, via their provenance, i.e.,
news articles where they were mentioned. From
each news article we derived TF-IDF-based vec-
tors of (i) BabelNet senses and (ii) spaCy’s per-
sons and geopolitical entities, which are then used
to compute cosine similarities among the articles.

Two news articles will be clustered together
if (i) the computed similarity is above a certain
threshold, which was optimized using the trial
data, and (ii) the event time distance of document-
level events found in the articles does not exceed a
certain threshold, i.e., 3 days. All document-level
events belonging to the same document cluster are
assumed to be coreferring events and to have prop-
erties resulting from the aggregation of locations,
times and participants of contributing events, with
the exception of number of victims where the max-
imum value was taken instead.

2.3 Constructing, Populating and Querying
the Knowledge Graph

We first built an OWL ontology11 to capture the
knowledge model of incidental events and doc-
uments. We rely on reification (Noy and Rec-
tor, 2006) for modeling entities, that is, inci-
dent events, documents, locations, participants
and dates are all resources of their own. Each
resource is described through its corresponding
properties, as shown in Table 1.

An incident event can be of type injuring,
killing, fire burning, and job firing. Documents
are linked to incident events through the property
event, and different documents may refer to the
same corresponding incident event. We borrow
URIs from DBpedia for values of the properties
city and state. Participant roles can be either vic-
tim, perpetrator or other. A date has a unified lit-
eral value of the format “yyyy-mm-dd”, as well as
separated values for the day, month, and year.

To build the KOI knowledge graph (KOI-KG)

11Available at https://koi.cs.ui.ac.id/ns

83

SELECT ?event ?document
WHERE {

?event koi:eventType koi:killing .
?event koi:eventDate [

koi:year "2017"] .
?event koi:participant [

koi:firstname "Sean"] .
?document koi:event ?event .

}

Figure 1: A SPARQL query over KOI-KG for “Which
killing events happened in 2017 that involve persons
with Sean as first name?”

we relied on Apache Jena,12 a Java-based Se-
mantic Web framework. The output of the pre-
viously explained event extraction and corefer-
ence resolution steps was imported into the Jena
TDB triple store as RDF triples. This facilitates
SPARQL querying, which can be done using the
Jena ARQ module. The whole dump of KOI-KG
is available for download at https://koi.cs.ui.
ac.id/incidents.

Given a question in JSON format, we applied
mapping rules to transform it into a SPARQL
query, which was then used to retrieve corre-
sponding answer incidents and answer documents.
Constraints of questions such as event type, par-
ticipant, date, and location were mapped into
SPARQL join conditions (that is, triple patterns).
Figure 1 shows a SPARQL representation for the
question “Which killing events happened in 2017
that involve persons with Sean as first name?”.
The prefix koi is for the KOI ontology names-
pace (https://koi.cs.ui.ac.id/ns#). In the
SPARQL query, the join conditions are over the
event type killing, the date ‘2017’ (as year) and
the participant ‘Sean’ (as firstname).

For Subtask S2, we extended the SPARQL
query with counting feature to retrieve the total
number of unique events. Analogously, for Sub-
task S3, we retrieve number of victims by counting
event participants having victim as their roles, and
by getting the value of the numOfVictims property
(if any). The value of the numOfVictims property
was preferred as the final value for an incident if
it exists, otherwise, KOI relied on counting event
participants.

We also provide a SPARQL query inter-
face for KOI-KG at https://koi.cs.ui.ac.id/
dataset.html?tab=query&ds=/incidents.

12http://jena.apache.org/

3 Results and Discussion

Evaluation results Participating systems were
evaluated according to three evaluation schemes:
(i) mention-level evaluation, for resolving cross-
document coreference of event mentions, (ii)
document-level evaluation (doc-f1), for identify-
ing events and their properties given a document,
and (iii) incident-level evaluation, for combining
event extraction and within-/cross-document event
coreference resolution to answer numerical ques-
tions in terms of exact matching (inc-acc) and
Root Mean Square Error (inc-rmse). Further-
more, the percentage of questions in each subtask
that can be answered by the systems (%ans) also
contributes to the final ranking.

Regarding the mention-level evaluation, KOI
achieves an average F1-score of 42.8% (36.3 per-
centage point increase over the baseline) from
several established metrics for evaluating corefer-
ence resolution systems. For document-level and
incident-level evaluation schemes, we report in
Table 2 the performance of three different system
runs of KOI:

v1 Submitted version of KOI during the evalua-
tion period.

v2 Similar as v1, however, instead of giving no
answers when we found no matching answer
incidents, KOI simply returns zero as the nu-
merical answer with an empty list of answer
documents.

v3 Submitted version of KOI during the post-
evaluation period, which incorporates im-
provement on document-level event time
identification leading to enhanced cross-
document event coreference.13

Compared to the baseline provided by the task
organizers, the performance of KOI is consider-
ably better, specifically of KOI v3 for subtask S2
with doc-f1 and inc-acc around twice as much
as of the baseline. Hereafter, our quantitative and
qualitative analyses are based on KOI v3, and
mentions of the KOI system refer to this system
run.

Subtask S1 We detail in Table 3, the perfor-
mance of KOI on retrieving relevant answer doc-
uments given questions with event constraints,

13Submission v1 and v2 did not consider heuristic (i) that
we have discussed in Section 2.2.

84

system run
subtask S1 subtask S2 subtask S3

%ans doc-f1 %ans doc-f1 inc-acc inc-rmse %ans doc-f1 inc-acc inc-rmse

baseline 16.5 67.3 100.0 26.4 18.3 8.5 - - - -
KOI v1* 44.2 83.0 67.5 55.2 20.4 6.2 66.6 69.6 19.3 7.9
KOI v2 44.2 83.0 100.0 51.2 25.6 5.2 100.0 49.1 24.8 7.1
KOI v3 55.1 85.7 100.0 54.8 27.4 5.3 100.0 50.9 23.0 7.7

Table 2: KOI performance results at SemEval-2018 Task 5 (in percentages) for three subtasks, baseline was pro-
vided by the task organizers, *) denotes the system run that we submitted during the evaluation period.

micro-averaged macro-averaged
p r f1 p r f1

Overall
answered questions 86.6 74.0 79.8 94.2 83.6 85.7
all questions 86.6 41.6 56.2 51.7 45.9 47.1

Event type
killing 88.5 43.2 58.1 56.8 48.6 50.3
injuring 82.8 37.4 51.5 46.4 40.1 41.4
job firing 100.0 8.7 16.0 15.4 15.4 15.4
fire burning 96.9 66.2 78.7 65.5 66.2 65.7

Event constraint
participant 84.8 43.0 57.0 61.1 51.1 53.2
location 89.1 39.4 54.6 46.7 42.8 43.6
time 86.0 42.4 56.8 51.7 46.3 47.4

Table 3: KOI performance results for subtask S1, on
answer document retrieval (p for precision, r for recall
and f1 for F1-score).

in terms of micro-averaged and macro-averaged
scores. Note that the official doc-f1 scores re-
ported in Table 2 correspond to macro-averaged
F1-scores.

We first analyzed the system performance only
on answered questions, i.e., for which KOI returns
the relevant answer documents (55.1% of all ques-
tions), yielding 79.8% and 85.7% micro-averaged
and macro-averaged F1-scores, respectively.

In order to have a fair comparison with systems
that are able to answer all questions, we also report
the performance of KOI that returns empty sets of
answer documents for unanswered questions. In
this evaluation scheme, the macro-averaged preci-
sion is significantly lower than the micro-averaged
one (51.7% vs 86.6%), because systems are heav-
ily penalized for not retrieving relevant answer
documents per question, i.e., given zero precision
score, which brings the average over all questions
down. Meanwhile, the micro-averaged precision
measures the systems’ ability in returning relevant
documents for all questions regardless of whether
the questions were answered or not. KOI focuses
on yielding high quality answer documents, which
is reflected by high micro-averaged precision of
above 80% in general. The following result analy-

subtask S2 subtask S3
inc-acc inc-rmse inc-acc inc-rmse

overall 27.4 5.3 23.0 7.7

zero 96.3 0.2 55.2 6.8
non-zero 18.9 5.6 11.9 8.0

Table 4: KOI performance results for subtasks S2 and
S3, on answering numerical questions, i.e., number of
incidents and number of victims.

ses are based on the all questions scheme.
By analyzing the document retrieval per event

type, we found that KOI can identify fire burning
events in documents quite well, yielding the high-
est recall among all event types, but the contrary
for job firing events. With respect to event con-
straints, answering questions with location con-
straint results in the worst performance, mean-
ing that our method is still lacking in identifying
and/or disambiguating event locations from news
documents. Specifically, questions with city con-
straint are more difficult to answer compared to the
ones with state constraint (49.6% vs 61.5% micro-
averaged F1-scores, respectively).

Subtask S2 The key differences between Sub-
task S1 and S2 are: (i) questions with zero as an
answer are included, and (ii) there can be more
than one answer incidents per question, hence,
systems must be able to cluster answer documents
into the correct number of clusters, i.e., incidents.

As shown in Table 4, KOI is able to answer
questions with zero as the true answer with 96.3%
accuracy. Meanwhile, for questions with non-zero
number of incidents as the answers, KOI gives nu-
merical answers with 18.9% accuracy, resulting in
overall accuracy (inc-acc) of 27.4% and RMSE
inc-rmse) of 5.3.

We also analyzed questions (with non-zero an-
swer incidents) for which KOI yields perfect sets
of answer documents with 100% F1-score, i.e.,
7.7% of all questions. For 61.8% of such answered
questions, KOI returns the perfect number of inci-

85

Event ID: 22409

2016-06-19
Man playing with gun while riding in a car fatally shoots, kills driver
A man was fatally shot early Sunday morning after the passenger in the car he was driving accidentally discharged the gun, according to the San
Antonio Police Department. The shooting occurred about 3 a.m. when group of four men were driving out of the Iron Horse Apartments at 8800
Village Square on the Northeast Side. The passenger in the front seat was playing with a gun and allegedly shot himself in the hand, according to
officers at the scene. The bullet went through his hand and struck the driver in the abdomen. The men then drove to Northeast Baptist Hospital,
which was nearby, but the driver was pronounced dead at the hospital, according to investigators. Police believe the driver and passenger to be
related and are still investigating the incident. The other two men in the vehicle were detained. No charges have been filed.

2016-06-19
41-year - old man killed in overnight shooting
SAN ANTONIO - A 41-year-old man is dead after a shooting police say may have been accidental. The victim died after another man drove him
to Northeast Baptist Hospital for treatment of that gunshot wound. Police say they got a call at around 2:45 a.m. for the shooting in the 8800 block
of Village Drive. The man told them he and the victim were in a pickup when he fired the shot, but police say it’s not known why the men were in
the truck. Investigators say the man told them he fired the shot accidentally and struck the victim. Police say the shooter took the victim to the
emergency room at Northeast Baptist, where hospital personnel pronounced him dead. Police are questioning the man who did the shooting.

Table 5: An identified ‘killing’ event by KOI for “Which killing incidents happened in June 2016 in San Antonio,
Texas?” with two supporting documents.

dents. For the rest, KOI tends to overestimate the
number of incidents, i.e., for 30.9% of the cases,
KOI fails to establish cross-document event coref-
erence links with the current document clustering
method.

Subtask S3 We also show in Table 4, the KOI
performance on answering numerical questions
about number of victims. KOI is able to answer
correctly 55.2% of questions with zero answers,
and 11.9% of the ones with non-zero answers.

Analyzing the questions with zero as the true
answer, for which KOI is able to answer correctly,
in 41.1% of the cases KOI is able to identify the
non-existence of victims when the set of answer
documents is not empty. In 40.0% of the cases,
the correctly predicted zero answers are actually
by chance, i.e., because KOI fails to identify rele-
vant answer documents.

Meanwhile, for questions with gold numerical
answers greater than zero, KOI returns wrong an-
swers in 88.1% of the cases. Among these an-
swers, 66.9% of the answers are lower than the
true number of victims, and 33.1% are higher.
This means that KOI tends to underestimate the
number of victims with 6.6 RMSE.

For 22.5% of all questions, KOI is able to iden-
tify the perfect sets of answer documents with
100% F1-score. Among these questions, 34.3%
were answered correctly with the exact number of
victims, for which: 52.7% of correct answers re-
sult from solely counting participants (as victims),
35.3% were inferred only from numeral mentions,
and the rest of 12.0% were answered by combin-
ing both victim counting and numeral mentions.

Qualitative Analysis Recalling the example
questions mentioned in the beginning of Section 1,
for the first question, KOI is able to perfectly iden-
tify 2 killing incidents with 5 supporting docu-
ments pertaining to the event-time and -location
constraints. One of the identified answer incidents
with two supporting documents is shown in Ta-
ble 5, which shows how well the system is able to
establish cross-document event coreference, given
overlapping concepts and entities. However, in
answering the second question, KOI returns one
less number of victims since it cannot identify the
killed victim in the answer incident shown in Ta-
ble 5, due to the lack of numeral mentions and
named event participants as victims.

4 Conclusion

We have introduced a system called KOI (Knowl-
edge of Incidents), that is able to build a knowl-
edge graph (KG) of incidental events by extract-
ing relevant event information from news articles.
The resulting KG can then be used to efficiently
answer numerical questions about events such as
“How many people were killed in June 2016 in
San Antonio, Texas?” We have submitted KOI
as a participating system at SemEval-2018 Task 5,
which achieved competitive results. A live demo
of our system is available at https://koi.cs.ui.
ac.id/. Future directions of this work include the
incorporation of supervised (or semi-supervised)
approaches for specific steps of KOI such as the
extraction of numeral information (Mirza et al.,
2017), as well as the investigation of applying our
approach to other domains such as disease out-
breaks and natural disasters.

86

References
Ronan Collobert, Jason Weston, Léon Bottou, Michael

Karlen, Koray Kavukcuoglu, and Pavel Kuksa.
2011. Natural language processing (almost) from
scratch. J. Mach. Learn. Res., 12:2493–2537.

Graeme Hirst, David St-Onge, et al. 1998. Lexical
chains as representations of context for the detec-
tion and correction of malapropisms. WordNet: An
electronic lexical database, 305:305–332.

Paramita Mirza, Simon Razniewski, Fariz Darari, and
Gerhard Weikum. 2017. Cardinal virtues: Extract-
ing relation cardinalities from text. In Proceedings
of the 55th Annual Meeting of the Association for
Computational Linguistics, ACL 2017, Vancouver,
Canada, July 30 - August 4, Volume 2: Short Papers,
pages 347–351.

Andrea Moro, Alessandro Raganato, and Roberto Nav-
igli. 2014. Entity Linking meets Word Sense Disam-
biguation: a Unified Approach. Transactions of the
Association for Computational Linguistics (TACL),
2:231–244.

Roberto Navigli and Simone Paolo Ponzetto. 2012.
BabelNet: The automatic construction, evaluation
and application of a wide-coverage multilingual se-
mantic network. Artificial Intelligence, 193:217–
250.

Natasha Noy and Alan Rector, editors. 2006. Defin-
ing N-ary Relations on the Semantic Web. W3C
Working Group Note. Retrieved Jan 10, 2017
from https://www.w3.org/TR/2006/NOTE-swbp-n-
aryRelations-20060412/.

Marten Postma, Filip Ilievski, and Piek Vossen. 2018.
Semeval-2018 task 5: Counting events and par-
ticipants in the long tail. In Proceedings of the
12th International Workshop on Semantic Evalu-
ation (SemEval-2018). Association for Computa-
tional Linguistics.

Jannik Strötgen and Michael Gertz. 2013. Multilingual
and cross-domain temporal tagging. Language Re-

sources and Evaluation, 47(2):269–298.

87

Proceedings of the 12th International Workshop on Semantic Evaluation (SemEval-2018), pages 88–96
New Orleans, Louisiana, June 5–6, 2018. ©2018 Association for Computational Linguistics

SemEval 2018 Task 6: Parsing Time Normalizations
Egoitz Laparra

University of Arizona
Tucson, AZ 85721, USA

laparra@email.arizona.edu

Dongfang Xu
University of Arizona

Tucson, AZ 85721, USA
dongfangxu9@email.arizona.edu

Steven Bethard
University of Arizona

Tucson, AZ 85721, USA
bethard@email.arizona.edu

Ahmed S. Elsayed
University of Colorado Boulder

Boulder, CO 80309
ahmed.s.elsayed@colorado.edu

Martha Palmer
University of Colorado Boulder

Boulder, CO 80309
martha.palmer@colorado.edu

Abstract

This paper presents the outcomes of the Pars-
ing Time Normalization shared task held
within SemEval-2018. The aim of the task
is to parse time expressions into the compo-
sitional semantic graphs of the Semantically
Compositional Annotation of Time Expres-
sions (SCATE) schema, which allows the rep-
resentation of a wider variety of time expres-
sions than previous approaches. Two tracks
were included, one to evaluate the parsing
of individual components of the produced
graphs, in a classic information extraction way,
and another one to evaluate the quality of the
time intervals resulting from the interpretation
of those graphs. Though 40 participants reg-
istered for the task, only one team submitted
output, achieving 0.55 F1 in Track 1 (parsing)
and 0.70 F1 in Track 2 (intervals).

1 Introduction
The task of extracting and normalizing time ex-
pressions (e.g., finding phrases like two days ago
and converting them to a standardized form like
2017-07-17) is a fundamental component of any
time-aware language processing system. TempE-
val 2010 and 2013 (Verhagen et al., 2010; UzZa-
man et al., 2013) included a restricted version of a
time normalization task as part of their shared tasks.
However, the annotation scheme used in these tasks
(TimeML; (ISO, 2012)) has some significant lim-
itations: it assumes times can be described as a
prefix of YYYY-MM-DDTHH:MM:SS (so it
can’t represent, e.g., the past three summers), it
is unable to represent times that are are relative
to events (e.g., three weeks postoperative), and it
fails to reflect the compositional nature of time ex-
pressions (e.g., that following represents a similar
temporal operation in the following day and the
following year). This latter issue especially has
discouraged machine learning approaches to time

normalization; the most accurate systems for nor-
malizing times are still based on sets of complex,
manually-constructed rules (Bethard, 2013; Lee
et al., 2014; Strötgen and Gertz, 2015).

The Parsing Time Normalizations shared task is
a new approach to time normalization based on the
Semantically Compositional Annotation of Time
Expressions (SCATE) schema (Bethard and Parker,
2016), in which times are annotated as composi-
tional time entities. Such entities are more expres-
sive, being able to represent many more time ex-
pressions, and are more machine-learnable, as they
can naturally be viewed as a semantic parsing task.
The top of Figure 1 shows an example. Each an-
notation in the example corresponds to a formally
defined time entity. For instance, the annotation
on top of since corresponds to a BETWEEN entity
that identifies an interval starting at the most re-
cent March 6 and ending at the document creation
time. The bottom of Figure 1 shows how those time
entities can be composed to identify appropriate in-
tervals on the timeline. Here, the BETWEEN entity
finds the interval on the timeline that is between
the intervals of its two arguments: the LAST and
the DOC-TIME. Formally, this BETWEEN operator
is defined as:

BETWEEN([t1, t2) : INTERVAL,

[t3, t4) : INTERVAL) : INTERVAL

= [t2, t3)

In the proposed task, systems need only to iden-
tify time entities in text and link them correctly to
signal how they are to be composed (i.e., systems
would only need to produce annotation structures
like those at the top of Figure 1). The timeline in-
tervals implied by such system output are inferred
through a time entity interpreter provided to the
participants by the workshop organizers.

88

met every

THIS

INTERVAL

REPEATING-INTERVALS

EVERY-NTH

VALUE=2

REPEATING-INTERVAL

other

DAY-OF-WEEK

TYPE=SATURDAY

Saturday

BETWEEN

START-INTERVAL

END-INTERVAL=DOC-TIME

since

LAST

INTERVAL=DOC-TIME

REPEATING-INTERVAL

MONTH-OF-YEAR

TYPE=MARCH

SUB-INTERVAL

March

DAY-OF-MONTH

VALUE=6

6

DOC-TIME

SATURDAY

EVERY-NTH

MARCH

6

MARCH 6
LAST

BETWEEN

THIS

Figure 1: Example of semantically compositional time annotations and their interpretation.

The remainder of this paper is organized as fol-
lows. We describe the task goal and proposed
tracks in Section 2. Section 3 contains the descrip-
tion of the data annotation schema and the statistics
of our dataset. In Section 4, we explain the two
evaluation metrics used in the task and in Section 5
the models used as baselines. We present the partic-
ipant systems in Section 6 and the results obtained
in Section 7. Finally, we discuss some conclusions
learned in Section 8.

2 Tasks
The ultimate goal of the shared task is to interpret
time expressions, identifying appropriate intervals
that can be placed on a timeline. Given a doc-
ument, a system must identify the time entities
by detecting the spans of characters and labeling
them with the proper SCATE type. Examples of
time entities and their corresponding types in Fig-
ure 1 would be (6, DAY-OF-MONTH), (Saturday,
DAY-OF-WEEK), (March, MONTH-OF-YEAR) or
(since, BETWEEN). Besides the time entities ex-
plicitly expressed in the text, implicit occurrences
must also be identified, like the THIS and LAST

time entities in Figure 1 that do not have any ex-
plicit triggers in the text.

Once time entities have been identified, they
should be linked together using the relations de-
scribed in the SCATE schema. Following with the
example in Figure 1, the time entity 6 should be
linked as a SUB-INTERVAL of March, Saturday

should be a REPEATING-INTERVAL of the time
entity other, and so on. Finally, all the time entities
must be completed with some additional properties
needed for their interpretation. For example, the
time entity other should have a VALUE of 2, the
END-INTERVAL of since is the Document Creation
Time, etc. Once again, the properties required by
each time entity type are defined by the SCATE
schema.1

Every resulting graph, composed of a set of
linked time entities, represents a time expression
that can be semantically interpreted. For this pur-
pose, we provide a Scala library2 that reads the
graphs in Anafora XML format (Chen and Styler,
2013) and converts them into intervals on the time-
line.

An example of interpreting the time entities cor-
responding to the expression every Saturday since
March 6 relative to an anchor time of April 21,
2017 is given in Figure 2. In this example, the
values today and result store the entities that repre-
sent the time expressions April 21, 2017 and every
Saturday since March 6 respectively. The Scala
command on the right side interprets the latter and
produces the corresponding time intervals.

The task includes two evaluation methods, one
for the parsing step, i.e. time entity identification

1https://github.com/clulab/
anafora-annotations/blob/master/.schema/
timenorm-schema.xml

2https://github.com/clulab/timenorm

89

scala> val today =
| ThisRI(
| ThisRI(
| Year(2017),
| RepeatingField(MONTH_OF_YEAR, 4)),
| RepeatingField(DAY_OF_MONTH, 21))

scala> val result =
| ThisRIs(
| Between(
| LastRI(
| today,
| Intersection(Set(
| RepeatingField(MONTH_OF_YEAR, 3),
| RepeatingField(DAY_OF_MONTH, 6)))),
| today),
| RepeatingField(DAY_OF_WEEK, 6))

scala> for (Interval(start, end) <- result.intervals)
| println(start, end)

(2017-03-11T00:00,2017-03-12T00:00)
(2017-03-18T00:00,2017-03-19T00:00)
(2017-03-25T00:00,2017-03-26T00:00)
(2017-04-01T00:00,2017-04-02T00:00)
(2017-04-08T00:00,2017-04-09T00:00)
(2017-04-15T00:00,2017-04-16T00:00)
(2017-04-22T00:00,2017-04-23T00:00)
...

Figure 2: Interpretation of every Saturday since March 6.

and linking, and one to score the resulting time
intervals. For the later, we only consider time ex-
pressions that yield a finite set of bounded intervals,
for example, last Monday. Time expressions that
refer to an infinite set of intervals, like every month,
are not considered in the interval-based part of the
evaluation.

Participants only need to produce Anafora out-
puts with parsed time entities; the interpretation
is carried out by the evaluation system. The eval-
uation system is also able to obtain the intervals
from timestamps in TimeML format. Thus, sys-
tems can be evaluated by both methods or just by
the interval-based one, depending on the output
format.

In summary, the tasks offers two tracks:

Track 1: Parse text to time entities. Systems must
identify time entities in text and link them cor-
rectly to signal how they have to be composed.
The output must be given in Anafora format.
In this track, all time entities and relations of
every time expression are evaluated.

Track 2: Produce time intervals. Systems can
participate through Track 1 or by providing
TimeML annotations. In both cases, the in-
tervals are inferred by our interpreter. In this
track, only bounded time intervals are scored.

3 Data

The Parsing Time Normalization corpus3 covers
two different domains: newswire and clinical notes.
For the former, we have annotated a subset of
Tempeval-2013 corpus (UzZaman et al., 2013),
which contains a collection of news articles from

3https://github.com/bethard/
anafora-annotations/releases

different sources, such as Wall Street Journal, New
York Times, Cable News Network, Voices of Amer-
ica, etc. For the clinical domain, we have annotated
a subset of the THYME corpus used in the Clini-
cal TempEvals (Bethard et al., 2015, 2016, 2017),
which includes a set of de-identified clinical notes
and pathology reports from cancer patients at the
Mayo Clinic.

The Newswire annotation was performed by
linguistic students at the University of Alabama
at Birmingham, and by linguistics students at
the University of Arizona, funded as part of a
university-sponsored undergraduate research op-
portunity. The clinical portion of the corpus was
annotated by linguistics students at the Univer-
sity of Colorado, funded as part of the United
States National Institutes of Health (NIH) award
R01LM010090.

Documents have been annotated by two anno-
tators and adjudicated by a third, and despite the
complexity of the annotation scheme, high levels
of inter-annotator agreement have been achieved:
0.917 F1 on annotation spans and types, and 0.821
F1 on the complete task of spans, types, and links.
(We use F1 since the κ coefficient (Cohen, 1960)
converges to F1 in cases where the number of non-
annotations is much larger than the number of an-
notations (Hripcsak and Rothschild, 2005).)

Annotated data is stored in Anafora XML for-
mat (Chen and Styler, 2013), where, for example,
the annotations from Figure 1 look like Figure 3. A
more detailed explanation of the annotation guide-
lines can be found in Bethard and Parker (2016).
Libraries for parsing this format are available to

90

<data>
<annotations>
<entity>
<id>1@e@gold</id>
11,19<!-- "Saturday" -->
<type>Day-Of-Week</type>
<properties>
<Type>Saturday</Type>
</properties>
</entity>
<entity>
<id>2@e@gold</id>
10,15<!-- "other" -->
<type>This</type>
<properties>
<Interval>4@e@gold</Interval>
<Repeating-Intervals>2@e@gold</Repeating-Intervals>
</properties>
</entity>

<entity>
<id>3@e@gold</id>
10,15<!-- "other" -->
<type>Every-Nth</type>
<properties>
<Value>2</Value>
<Repeating-Interval>1@e@gold</Repeating-Interval>
</properties>

</entity>

...

</annotations>
</data>

Figure 3: Snippet of the Anafora XML for Figure 1.

participants in both Python4 and Scala5.
Table 1 shows the statistics of the resulting an-

notation. The Newswire portion of the corpus con-
tains 98 documents with 2,428 time entities anno-
tated. These entities compose a total of 968 time
expressions of which 564 correspond to bounded
intervals. The Clinical portions of the corpus in-
cludes 408 documents. The annotation covers
27,362 time entities that compose 8,163 time ex-
pressions. From these, 4,204 yield bounded inter-
vals.

4 Evaluation Metrics
We propose two types of scoring metrics for this
task, one for the evaluation of each track. The
first follows a more traditional information extrac-
tion evaluation: measure the precision and recall
of finding and linking the various time entities.
Specifically, we define:

P (S,H) =
|S ∩H|
|S|

R(S,H) =
|S ∩H|
|H|

F1(S,H) =
2 · P (S,H) ·R(S,H)

P (S,H) +R(S,H)

where S is the set of items predicted by the system
and H is the set of items produced by the humans.
For these calculations, each item is an annotation,

4https://github.com/bethard/
anaforatools

5https://github.com/bethard/timenorm

and one annotation is considered as equal to an-
other if it has the same character span (offsets),
type, and properties (with the definition applying
recursively for properties that point to other anno-
tations).

The second scoring method evaluates the ac-
curacy of systems with respect to the timeline in
a more direct way. First, annotations, in either
TimeML or SCATE format, are converted into
time intervals. TimeML TIMEX3 (time expres-
sion) annotations are translated into intervals fol-
lowing ISO 8601 semantics of their VALUE at-
tribute. For example, 2010-02-25 is converted
to the interval [2010-02-25T00:00:00, 2018-02-
26T00:00:00), that is, the 24-hour period starting
at the first second of the day on 2010-02-25 and
ending just before the first second of the day on
2010-02-26. SCATE annotations are converted to
intervals according to the formal semantics of each
entity, using the Scala library provided by Bethard
and Parker (2016). For example, Next(Year(2010),
SimplePeriod(YEARS, 4)), is converted to [2011-
01-01T00:00, 2015-01-01T00:00), i.e., the 4 years
following 2010. Note that there may be more than
one interval associated with a single annotation, as
in the every Saturday since March 6 example in
Figure 2. Once all annotations have been converted
into intervals along the timeline, we can calculate
the overlap between the intervals of different anno-
tations.

Given two sets of intervals, we define the in-
terval precision, Pint, as the total length of the in-
tervals in common between the two sets, divided
by the total length of the intervals in the first set.
Interval recall, Rint is defined as the total length
of the intervals in common between the two sets,

91

Newswire Clinical
Train Dev Test Train Dev Test

Documents 64 14 20 232 35 141
SCATE entities 1,628 402 398 14,936 2,896 9,530
SCATE time exp. 636 146 186 4,469 879 2,815
SCATE bounded 391 80 93 2,303 430 1,471

Table 1: Number of documents and SCATE annotations for both sections of the corpus following the SCATE
schema.

divided by the total length of the intervals in the
second set. Formally:

IS
⋂
IH = {i ∩ j : i ∈ IS ∧ j ∈ IH}

Pint(IS , IH) =

∑
i∈COMPACT(IS

⋂
IH)

|i|
∑
i∈IS
|i|

Rint(IS , IH) =

∑
i∈COMPACT(IS

⋂
IH)

|i|
∑

i∈∪IH
|i|

where IS and IH are sets of intervals, i ∩ j is the
possibly empty interval in common between the
intervals i and j, |i| is the length of the interval i,
and COMPACT takes a set of intervals and merges
any overlapping intervals.

Given two sets of annotations (e.g., one each
from two time normalization systems), we define
the overall precision, P , as the average of interval
precisions where each annotation from the first set
is paired with all annotations that textually overlap
it in the second set. Overall recall is defined as the
average of interval recalls where each annotation
from the second set is paired with all annotations
that textually overlap it in the first set. Formally:

OIa(B) =
⋃

b∈B:OVERLAPS(a,b)

INTERVALS(b)

P (S,H) =
1

|S|
∑

s∈S
Pint(INTERVALS(s), OIs(H))

R(S,H) =
1

|H|
∑

h∈H
Rint(INTERVALS(h), OIh(S))

where S and H are sets of annotations,
INTERVALS(x) gives the time intervals associated
with the annotation x, and OVERLAPS(a, b) de-
cides whether the annotations a and b share at least
one character of text in common.

Note that as defined, P and R can be applied
only to time expressions that yield a finite set of
bounded intervals.

5 Baseline systems
Two systems were used as baselines to compare
the participating systems against.

Character-based model (Laparra et al., 2018)
is a novel supervised approach for time normaliza-
tion that follows the SCATE schema. This model
decomposes the normalization of time expressions
into two modules:

time entity identification detects the spans of
characters that belong to each time expres-
sion and labels them with their correspond-
ing time entity type. This step is performed
by character-based recurrent neural network
with two stacked bidirectional Gated Recur-
rent Units.

time entity composition links relevant time enti-
ties together while respecting the entity type
constraints imposed by the SCATE schema.
This component is a rule-based algorithm that
iterates over the time entities that are found by
the previous step, linking them and filling in
the required properties. The version used for
the shared task includes some improvements
to the sentence segmentation and Month-Of-
Year normalization of Laparra et al. (2018).

These two tasks are run sequentially using the out-
put of the former as input to the latter. Once identi-
fication and composition steps are completed, the
final product, i.e. the semantic composition of the
time entities, can fed to the SCATE interpreter to
produce time intervals.

HEIDELTIME (Strötgen and Gertz, 2015)6 is
rule-based temporal tagger with multilingual sup-
port that includes English, German, Dutch, Viet-
namese, Arabic, Spanish, Italian, French, Chinese
and Russian. HeidelTime identifies temporal ex-
pressions based on language specific patterns and

6https://code.google.com/p/heideltime/

92

normalizes them according to TIMEX annotations
(Sundheim, 1996). As the output of HeidelTime
follows TimeML format, we use this system as a
baseline only for Track 2.

6 Participating systems
Although 40 people registered to the the evaluation
task, only 1 team submitted results. The team par-
ticipated in Track 1 and, consequently, in Track 2.
The team also submitted improved results just after
the end of the evaluation phase. This improvement
was obtained by solving a few bugs in the original
system, and with no access to the test data, so we
have included the fixed version in this paper as an
additional run.

CHRONO (Olex et al., 2018) is a primarily rule-
based system that performs time normalization by
running the following three steps:

1) Temporal tokens are identified and flagged us-
ing regex expressions to identify formatted
dates/times, and by parsing out specific tem-
poral words and numeric tokens.

2) Temporal phrases are identified by searching
for consecutive numeric/temporal tokens ac-
cording to certain constraints.

3) Temporal phrases are parsed and normalized
into the SCATE schema via detailed rule-
based parsing, including the utilization of part-
of-speech tags, to identify each component of
an expression and link sub-intervals appropri-
ately.

A machine learning approach is taken to disam-
biguate PERIODS and CALENDAR-INTERVALS af-
ter the rule-base parsing has determined it is one
or the other (e.g. if it sees the word week it will
pass it to the ML module for assignment to a PERI-
ODS or CALENDAR-INTERVALS). The ML feature
vector is a boolean vector composed of the target
token’s temporal status (1=temporal, 0=not tempo-
ral), the temporal context (1=at least one temporal
token within a window of ±5, 0=no temporal to-
kens within window), the numeric context (1=a
numeric token exists immediately before of after
the target, 0=no numeric tokens in context), and the
lexical context of all words within a 5-word win-
dow of the target (1=word is present, 0=word is not
present). The group explored different supervised
models like naive Bayes, decision trees, support
vector machines, and neural networks. They found

Domain Model F1 P R

Newswire Character 0.51 0.57 0.46
Newswire Chrono 0.44 0.46 0.42
Newswire Chrono* 0.55 0.61 0.50
Clinical Character 0.57 0.52 0.63

Table 2: Official results in Track 1 (parsing) for the
Newswire and Clinical domains.

that the best results were obtained by the neural
network.

CHRONO* improves the previous version by
solving three bugs in the model. First, the parsing
method for various types of temporal components
were supposed to be executed in a specific order.
However, some of them were swapped and not an-
alyzed in the expected order. Second, the system
was supposed to assume there is only one year, one
month, and one day mentioned per temporal phrase.
This worked for the month and day, however, it was
failing with 4-digit years. Finally, for most parsing
methods the system loops through each token in
the temporal phrase but it skipped the loop when
identifying full numeric expressions, like ”1953”
or ”08091998”. Thus, phrases like ”Last 1953”
were not being counted as having any numeric val-
ues in them.

7 Evaluation Results
The official results are presented in Table 2 and Ta-
ble 4. For each track we present the precision (P),
recall (R) and F1 score obtained by the metrics pre-
sented in Section 4. The only participant of the task
submitted output just for the Newswire domain,
thus, we only report the performance of this system
in this domain. The results of the Character-based
baseline have been obtained training the model
with the training set of the corresponding domain
(Newswire or Clinical) and a set of randomly gen-
erated dates, as explained in Laparra et al. (2018).

In Track 1 (Table 2) the original version of
CHRONO do not reach the Character-based base-
line, 0.44 F1 vs 0.51 F1. However, the fixed ver-
sion of the system (CHRONO*) outperforms the
baseline in terms of F1 (0.55) as well as in terms
of P (0.61) and R (0.50).

Table 3 shows a more detailed comparison be-
tween the Character-based baseline and CHRONO*.
These figures represent the performances of both
models for each SCATE temporal type. This in-
cludes the identification of the time entity, its prop-

93

SCATE-type # Char Chrono*
AMPM-Of-Day 1 0.000 0.667
After 19 0.000 0.000
Before 20 0.105 0.000
Between 7 0.000 0.000
Calendar-Interval 27 0.698 0.526
Day-Of-Month 22 0.917 1.000
Day-Of-Week 16 0.812 0.903
Hour-Of-Day 2 0.000 0.667
Intersection 3 0.000 0.000
Last 40 0.500 0.333
Minute-Of-Hour 1 0.000 0.000
Month-Of-Year 36 0.824 0.917
Next 14 0.053 0.412
NthFromStart 4 0.000 0.000
Number 27 0.596 0.522
Part-Of-Day 3 0.000 1.000
Period 56 0.391 0.409
Season-Of-Year 10 0.000 0.182
Sum 1 0.000 0.000
This 37 0.429 0.552
Time-Zone 1 0.000 0.000
Two-Digit-Year 1 0.000 0.000
Year 50 0.822 0.826

Table 3: Results in Track 1 per SCATE type. Char
stands for Character-based baseline. The number of
gold cases per type is included (#).

Domain Model F1 P R

Newswire HeidelTime 0.74 0.71 0.77
Newswire Character 0.77 0.83 0.72
Newswire Chrono 0.65 0.66 0.63
Newswire Chrono* 0.70 0.65 0.75
Clinical HeidelTime 0.70 0.60 0.82
Clinical Character 0.72 0.70 0.75

Table 4: Official results in Track 2 (intervals) for the
Newswire and Clinical domains.

erties and links. In general, CHRONO* performs
better or similar for all the types. It is remarkable
that, while the outcomes for the THIS and NEXT

operators are much better, CHRONO* fails to ex-
tract properly the LAST operator.

In Track 2 (Table 4) the best system is the
Character-based baseline with 0.76 F1, followed
by HEIDELTIME with 0.74 F1. None of the ver-
sions of CHRONO performs better than the base-
lines, although the fixed version (CHRONO*) gets
enhanced results, 0.65 F1 vs 0.70 F1 , following
the improvement obtained in Track 1. It is re-

markable that HEIDELTIME and CHRONO*, es-
sentially rule-based systems, obtain better R than
the Character-based baseline, that relies strongly
on a supervised model. Specifically, HEIDELTIME

obtains the best R (0.77), but CHRONO* also out-
performs the Character-based baseline in terms of
R, 0.75 vs 0.71. However, the Character-based
baseline obtains a much higher P (0.83) than the
0.71 of HEIDELTIME and the 0.65 of CHRONO*.

As explained in Section 4, the metric for Track
1 evaluates the individual temporal components
extracted by the systems, either time entities or
links between time entity pairs. On the other hand,
the intervals scored by the metric for Track 2 are
produced by interpreting the whole graph. More-
over, not all the time expressions yield a finite set
of bounded intervals, as can be seen in Table 1.
Consequently, better performances in Track 1 do
not necessarily yield better results in Track 2. In
particular, although CHRONO* is better than the
Character-based baseline in Track 1 it produces
an excessive number of time expressions yielding
bounded intervals (108), which affects the P in
Track 2. In contrast, the Character-based baseline
is more conservative and accurate in this respect
(85).

Although we didn’t receive any submission for
the Clinical domain, in order to set a reference for
future research, we present in Table 2 and Table 4
the performances of the baseline systems in this
domain.

8 Conclusion

The Parsing Time Normalization task is the first
effort to extend time normalization to richer and
more complex time expressions. We have provided
a complete annotation for two different domains,
newswire and clinical notes, and introduced two
different metrics for evaluation. In particular, the
interval based evaluation for Track 2 is a novelty
for these kind of tasks. The performance of the
systems shows that there is still room for improve-
ment, especially for Track 1.

Although, CHRONOS included a small super-
vised component in its architecture, we were ex-
pecting a higher number of machine learning based
approaches. However, CHRONOS shows that rule-
based models can obtain competitive results. Sadly,
the scarcity of participating systems does not allow
us to form a further judgment.

No submissions were received for the clinical
94

domain, despite a wider and more complete dataset
for this domain. This was almost certainly the
result of a change in management at the Mayo
Clinic that put on hold the data use agreement
process (which is required for access to the clinical
data) for several months during the practice phase.
Thus, though many people showed interest in the
task (more than 40 people registered) and Mayo
reported several data use agreement applications,
this problem de-motivated the participation.

The CodaLab competition for the Parsing Time
Normalizations shared task7 will continue to ac-
cept submissions in its Post-Evaluation phase in-
definitely, so as more researchers make it through
the data use agreement process, we expect we will
see future participation in this task.

Acknowledgements

The work is funded by the THYME project
(R01LM010090) from the National Library Of
Medicine. The content is solely the responsibil-
ity of the authors and does not necessarily repre-
sent the official views of the National Library Of
Medicine or the National Institutes of Health.

References
Steven Bethard. 2013. A synchronous context free

grammar for time normalization. In Proceedings of
the 2013 Conference on Empirical Methods in Natu-
ral Language Processing, pages 821–826, Seattle,
Washington, USA. Association for Computational
Linguistics.

Steven Bethard, Leon Derczynski, Guergana Savova,
James Pustejovsky, and Marc Verhagen. 2015.
Semeval-2015 task 6: Clinical tempeval. In Pro-
ceedings of the 9th International Workshop on Se-
mantic Evaluation (SemEval 2015), pages 806–814,
Denver, Colorado. Association for Computational
Linguistics.

Steven Bethard and Jonathan Parker. 2016. A semanti-
cally compositional annotation scheme for time nor-
malization. In Proceedings of the Tenth Interna-
tional Conference on Language Resources and Eval-
uation (LREC 2016), Paris, France. European Lan-
guage Resources Association (ELRA). [Acceptance
rate 60%].

Steven Bethard, Guergana Savova, Wei-Te Chen, Leon
Derczynski, James Pustejovsky, and Marc Verhagen.
2016. Semeval-2016 task 12: Clinical tempeval. In
Proceedings of the 10th International Workshop on

7https://competitions.codalab.org/
competitions/17286

Semantic Evaluation (SemEval-2016), pages 1052–
1062, San Diego, California. Association for Com-
putational Linguistics.

Steven Bethard, Guergana Savova, Martha Palmer,
and James Pustejovsky. 2017. Semeval-2017 task
12: Clinical tempeval. In Proceedings of the
11th International Workshop on Semantic Evalua-
tion (SemEval-2017), pages 565–572, Vancouver,
Canada. Association for Computational Linguistics.

Wei-Te Chen and Will Styler. 2013. Anafora: A web-
based general purpose annotation tool. In Proceed-
ings of the 2013 NAACL HLT Demonstration Ses-
sion, pages 14–19, Atlanta, Georgia. Association for
Computational Linguistics.

Jacob Cohen. 1960. A coefficient of agreement for
nominal scales. Educational and Psychological
Measurement, 20(1):37–46.

George Hripcsak and Adam S. Rothschild. 2005.
Agreement, the f-measure, and reliability in infor-
mation retrieval. Journal of the American Medical
Informatics Association, 12(3):296–298.

ISO. 2012. Language resource management – seman-
tic annotation framework (semaf) – part 1: Time and
events (semaf-time, iso-timeml). Technical report.
24617-1:2012.

Egoitz Laparra, Dongfang Xu, and Steven Bethard.
2018. From characters to time intervals: New
paradigms for evaluation and neural parsing of time
normalizations. Transactions of the Association for
Computational Linguistics.

Kenton Lee, Yoav Artzi, Jesse Dodge, and Luke Zettle-
moyer. 2014. Context-dependent semantic parsing
for time expressions. In Proceedings of the 52nd An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1437–
1447, Baltimore, Maryland. Association for Compu-
tational Linguistics.

Amy Olex, Luke Maffey, Nicholas Morgan, and Brid-
get McInnes. 2018. Chrono at semeval-2018 task
6: A system for normalizing temporal expressions.
In Proceedings of the 12th International Workshop
on Semantic Evaluation (SemEval-2018), New Or-
leans, Luisiana. Association for Computational Lin-
guistics.

Jannik Strötgen and Michael Gertz. 2015. A baseline
temporal tagger for all languages. In Proceedings
of the 2015 Conference on Empirical Methods in
Natural Language Processing, pages 541–547, Lis-
bon, Portugal. Association for Computational Lin-
guistics.

Beth M. Sundheim. 1996. Overview of results of the
muc-6 evaluation. In Proceedings of a Workshop on
Held at Vienna, Virginia: May 6-8, 1996, TIPSTER
’96, pages 423–442, Stroudsburg, PA, USA. Associ-
ation for Computational Linguistics.

95

Naushad UzZaman, Hector Llorens, Leon Derczyn-
ski, James Allen, Marc Verhagen, and James Puste-
jovsky. 2013. Semeval-2013 task 1: Tempeval-3:
Evaluating time expressions, events, and temporal
relations. In Second Joint Conference on Lexical
and Computational Semantics (*SEM), Volume 2:
Proceedings of the Seventh International Workshop
on Semantic Evaluation (SemEval 2013), pages 1–
9, Atlanta, Georgia, USA. Association for Compu-
tational Linguistics.

Marc Verhagen, Roser Sauri, Tommaso Caselli, and
James Pustejovsky. 2010. Semeval-2010 task 13:
Tempeval-2. In Proceedings of the 5th International
Workshop on Semantic Evaluation, pages 57–62,
Uppsala, Sweden. Association for Computational
Linguistics.

96

Proceedings of the 12th International Workshop on Semantic Evaluation (SemEval-2018), pages 97–101
New Orleans, Louisiana, June 5–6, 2018. ©2018 Association for Computational Linguistics

Chrono at SemEval-2018 Task 6:
A System for Normalizing Temporal Expressions

Amy L. Olex, Luke G. Maffey, Nicholas Morton, Bridget T. McInnes
Virginia Commonwealth University, Department of Computer Science

Richmond, Virginia, USA
{alolex, maffeyl, mortonn, btmcinnes}@vcu.edu

Abstract

Temporal information extraction is a challeng-
ing task. Here we describe Chrono, a hybrid
rule-based and machine learning system that
identifies temporal expressions in text and nor-
malizes them into the SCATE schema. Af-
ter minor parsing logic adjustments, Chrono
has emerged as the top performing system for
SemEval 2018 Task 6: Parsing Time Normal-
izations.

1 Introduction

Understanding and processing temporal informa-
tion is vital for navigating life. The human
mind processes subtle temporal expressions in-
stantly and effortlessly; however, it is difficult for
computers to do the same. Identifying, process-
ing, and utilizing this information requires knowl-
edge and understanding of syntax, semantics, and
context to link temporal information to related
events and order them on a time-line. SemEval
2018 Task 6 (Laparra et al., 2018) aims to nor-
malize fine-grained temporal information and re-
lationships into the Semantically Compositional
Annotations for Temporal Expressions (SCATE)
schema developed by (Bethard and Parker, 2016).
This scheme aims to improve upon the current
TIMEX3/TimeML (Pustejovsky et al., 2003) stan-
dard by representing a wide variety of temporal
expressions, allowing for events to act as anchors,
and using mathematical operations over a time-
line to define the semantics of each annotation.
To address this challenge, we developed Chrono1,
a hybrid rule-based and machine learning (ML)
Python package that normalizes temporal expres-
sions into the SCATE schema.

1https://github.com/AmyOlex/Chrono

2 The Chrono System

Our approach to building this hybrid system
includes four processing phases: 1) text pre-
processing, 2) flagging numeric and temporal to-
kens, 3) temporal expression identification, and 4)
SCATE normalization.

1) Text Pre-processing: Python’s Natural Lan-
guage Toolkit (NLTK) WhitespaceTokenizer and
part-of-speech (POS) tagger (Bird and Loper,
2004) process raw text files to identify individual
tokens, token spans, and POS tags. Punctuation
is not handled at this phase as it is important for
identifying correct spans.

2) Flagging Numeric and Temporal Tokens:
All numeric tokens are flagged regardless of con-
text. Subsequent phases utilize contextual infor-
mation to determine if a numeric token is part of
a temporal expression. Depending on the task, a
rule may remove all or some punctuation, and/or
convert tokens to lowercase prior to parsing. In
the following, RP and LC denote Removing all
Punctuation and converting to LowerCase, re-
spectively.

Numeric Flagging: Tokens are flagged as nu-
meric if either 1) the token has a POS tag of “CD”
(Cardinal Number), or 2) the text can be converted
to a numeric expression. Textual representations
of numeric expressions are converted to numer-
ics with the Word2Number2 Python module. A
custom method recognizes ordinals from “first” to
“thirty-first” and converts them into the associated
numerics 1 to 31, respectively. LC normalization
is done prior to parsing textual numerics.

Temporal Flagging: Temporal tokens are
flagged through rule-based parsing using lists of
key words and regular expressions. This phase
is more liberal in its identification of a tempo-
ral token than the SCATE normalization phase, so

2https://github.com/akshaynagpal/w2n

97

it identifies a broader range of potential tempo-
ral tokens that are refined in future steps. Tokens
may be numeric and temporal simultaneously. Nu-
meric tokens with the characters ‘$’, ‘#’, or ‘%’
are NOT marked as temporal. The following types
of tokens are flagged as temporal:

• Formatted date patterns using ‘/’ or ‘-’:
mm/dd/yyyy, mm/dd/yy, yyyy/mm/dd, or
yy/mm/dd
• Formatted time patterns matching hh:mm:ss
• Sequence of 4 to 8 consecutive digits match-

ing range criteria for 24-hour times or for
a year, month, and/or day (e.g. 1998 or
08241998).
• Spelled out month or abbreviation, e.g.

“Mar.” or “March”, are flagged after RP ex-
cept periods as they are required to retrieve
correct spans.
• Days of the week, e.g. “Sat.” or “Saturday”,

are parsed similar to months.
• Temporal words indicating periods of time,

e.g. “yesterday” or “decade”, are flagged af-
ter RP and LC.
• Mentions of AM and PM in any format are

flagged after RP except periods.
• The parts of a week, e.g. “weekend” and

“weekends”, are flagged after RP and LC.
• Seasons of the year are flagged after RP and

LC.
• Various parts of a day, e.g. “noon” or “morn-

ing”, are flagged after RP and LC.
• Time zones are flagged after RP.
• Other temporal words, e.g. “this”, “now”,

“nearly”, and others, are flagged after RP and
LC.

3) Temporal Expression Identification: A
temporal expression is represented by a temporal
phrase, which we define as two or more consec-
utive temporal/numeric tokens on the same line,
or an isolated temporal token, with some excep-
tions. If a numeric token contains a ‘$’, ‘#’, or
‘%’, or the text ‘million’, ‘billion’, or ‘trillion’ it
is not included in a temporal phrase as these gen-
erally refer to non-temporal values. Additionally,
isolated numeric tokens are not considered a tem-
poral phrase.

4) SCATE Normalization: Chrono parses each
temporal phrase into zero or more SCATE en-
tities, links sub-intervals, and disambiguates the
SCATE entities “Period” and “Calendar-Interval”
via a machine learning module. Chrono imple-

ments 32 types of entities with 5 parent types
that have been described by (Bethard and Parker,
2016). Parsing strategies differ depending on the
composition of a temporal phrase being parsed.
Each temporal phrase is interrogated by all of the
following parsing strategies.

Formatted Dates and Times: Formatted
dates/times are parsed using regular expressions.
To identify which format the date/time is in,
Chrono looks for a 2-digit or 4-digit year first, then
uses that position for orientation to identify the re-
maining elements. If a formatted date/time is iden-
tified, then the appropriate sub-intervals are linked
during element parsing. 4-digit years take prece-
dence over 2-digit years.

Numeric Dates and Times: Header and meta-
data for Newswire articles frequently have nu-
meric dates listed with no punctuation (e.g.
“19980218” codes for “Feb, 18 1998”), and iso-
lated 4-digit year mentions are frequent. After
formatted dates and times are parsed, any phrase
containing a numeric token is interrogated for a
potential date or year mention. If a numeric to-
ken is 4-digits it is tested for a year between 1500
and 2050, 6-digit tokens are parsed for 2-digit
year/month/day, and 8-digit strings are parsed for
a 4-digit year and 2-digit month/day. All elements
must be in the proper range, otherwise the token is
skipped. Appropriate sub-intervals are linked dur-
ing element parsing.

24-hour Time: 24-hour times are identified by
either the format hhmmzzz, where zzz is the
time zone, or a 4-digit number that has not been
classified as a year. Hour digits must be less than
24 and minutes less than 60. Sub-intervals are
linked at this time if existing. Time zones are han-
dled separately and are linked back to the hour en-
tity during the final sub-interval linking step.

Temporal Token Search: The majority of textual
temporal entities are identified by looking for spe-
cific tokens. Token categories include days of the
week, months, parts of a day/week, time zones,
and other temporal operators such as “early”,
“this”, “before”, etc. Prior to looking for these to-
kens, text is normalized by RP and LC. Exceptions
to RP include searching for day/month abbrevia-
tions, such as “Sat.” or “Aug.”. In these cases pe-
riods are not removed because they are part of the
SCATE span. Another exception to RP and LC
is identifying mentions of AM or PM where peri-
ods are kept and text is not converted to lowercase

98

in order to capture variations like “PM” or “p.m.”.
Non-temporal mentions of the months or seasons
of the year “may”, “march”, “spring”, and “fall”
are disambiguated using POS tags, where tokens
that refer to a temporal entity generally have a POS
tag of “NN” or “NP”. Sub-intervals are not linked
during token searches.

Text Year: Another special case of parsing
temporal tokens are textual representations of
years such as “nineteen ninety-seven”. The
Word2Number Python module was modified to
recognize these phrases. Previously, it would add
19 and 97 together instead of returning 1997.

Periods and Calendar-Intervals: The same tem-
poral token can refer to either a SCATE “Pe-
riod” or “Calendar-Interval”. For example, in the
phrases “in a week” vs “next week” the token
“week” is classified differently. Due to language
intricacies it is difficult to define a rule-base sys-
tem to disambiguate these entities as the classifi-
cation is contingent on the topic being discussed
where phrasing around the entity can be different
for each instance. Thus, Period/Calendar-Interval
tokens are initially identified by a token search us-
ing a defined list of terms, then the identified term
and its span are passed to a ML algorithm for clas-
sification.

Machine Learning Classification: Four ML al-
gorithms are available in Chrono to differentiate
between “Period” and “Calendar-Interval” entities
using contextual information. Chrono implements
Naive Bayes (NB), Neural Network (NN), De-
cision Tree (DT), and Support Vector Machine
(SVM). Binary feature vectors for all implemen-
tations have the following features:

• temporal self: If the target is flagged as tem-
poral, this feature is set to “1”.
• temporal context: If there is at least one tem-

poral word within a 5-word window up- or
down-stream of the target this feature is set
to “1”.
• numeric: If there is a numeric expression ei-

ther directly before or after (a 1-word win-
dow) the target, this feature is set to “1”.
• context: All words within a 5-word window

are identified as features and set to “1” if that
word is present. Prior to identifying these
features all words are normalized with RP
and LC. The 5-word window includes cross-
ing sentence boundaries before and after the
target word.

We use NLTK with default parameters to imple-
ment NB and DT, NN is a simple feed-forward
network with three hidden layers implemented us-
ing Python’s Keras package 3 with epochs set to
5 and batch set to 10, and SVM is implemented
using SciKitLearn (Pedregosa et al., 2011) with C
set to 0.05 and max iterations set to 3.

Ordinals: Ordinals such as “first” or “3rd”
are classified as an “NthFromStart” entity in the
SCATE schema. These mentions are identified by
normalizing with RP and LC before searching for
the ordinal tokens representing the numbers 1-31.

Sub-Interval Linking: After all SCATE entities
are identified, all temporal phrases are re-parsed
to identify sub-intervals within each phrase. For
example, entities in the phrase “August 1998” are
parsed by two different methods leaving the sub-
interval link vacant. During sub-interval linking,
the year “1998” has the “August” entity added as
a sub-interval. Sub-interval linking reviews enti-
ties from the smallest to the largest, adding miss-
ing sub-intervals as needed. This method assumes
each temporal phrase contains zero or one of each
type of SCATE entity.

Next/Last Parsing: Determining whether an en-
tity is referring to a date in the future, “Next”, or
past, “Last”, depends on context and the document
time (doc-time). Next/Last parsing is done after
all other parsing, and checks two cases: 1) if a
temporal phrase contains a year, no additional an-
notation is made, and 2) if specific modifier words
are present (e.g. “next” or “last”) immediately pre-
ceding a temporal expression, the modifier is an-
notated with a sub-interval referencing the follow-
ing temporal entity. If neither of these cases hold,
the year is set as the doc-time year, and the month
and day are compared to the full doc-time to de-
termine if it occurs before or after. Note the year
assumption is not always valid and more complex,
content-based parsing may be required to achieve
higher precision. Finally, if a day of the week (e.g.
“Saturday”) is mentioned, Chrono finds the first
preceding verb in the sentence, and if it is past
tense the temporal entity is annotated as “Last”,
otherwise it is annotated as “Next”.

3 Results

Training and evaluation of Chrono utilizes the
Newswire corpus, consisting of 81 documents,
provided by the task organizers. Average preci-

3https://github.com/keras-team/keras

99

sion, recall, and F1-measure of 5-fold cross val-
idation for Track 1 (parsing) are reported in Ta-
ble 1 (annotations for “Event” and “Modifier” are
ignored). Scores for “100% Correct Entity” con-
sider the entity location and all properties (like
sub-intervals), and scores for “Correct Span” only
consider the entity location.

On average, all ML algorithms perform simi-
larly for the “100% Correct Entity”. All versions
also obtain a higher F1 score when only consider-
ing correct spans versus getting all entity proper-
ties correct. This indicates that Chrono correctly
identifies the majority of temporal entities, but has
trouble parsing some of the properties.

ChronoNN processed the final evaluation
dataset, which consisted of 20 previously un-
seen Newswire articles, and received a F1 of .44.
The evaluation dataset contained five articles from
BBC that were not represented in the training
dataset. Chrono’s low performance indicates that
it may be over-fit to the the training dataset. This
is one downfall of rule-based systems, where new
rules need to be developed for each new type of
temporal representation. Upon further review we
found the submitted version of Chrono had three
minor parsing flaws that resulted in unintentional
false positives.

1) Formatted dates such as “2013-02-22” were
being parsed twice. The first parse specifically
looked for a 4-digit year and identified all correct
entities, then the second parse looked for a for-
matted date with a 2-digit year, but didn’t check to
see if a year had already been found, so returned a
2-digit year with the value “22”. This was easily
fixed by having the 2-digit year parser check for
a 4-digit year flag before proceeding (month and
day flags were already implemented).

2) 24-hour time priority was incorrectly placed
above 4-digit year. This resulted in any isolated 4-
digit year being parsed as a 24-hour time expres-
sion rather than a year as originally intended. A
simple flip of parsing order resolved this issue.

3) Numeric temporal expressions, such as an
isolated 4-digit year, were being parsed as a whole
phrase rather than breaking out each token within
the phrase. For example, the year in the phrase
“Last 1953” was not being identified because it
was not in a phrase all by itself. To fix this the
parsing function was edited to loop through each
token in a phrase (a method that was already im-
plemented in most other parsers and was just over-

100% Correct Entity
P R F1

Chrono NB .686 .630 .657
Chrono NN .684 .629 .656
Chrono DT .687 .632 .658

Chrono SVM .689 .630 .660
Correct Span

Chrono NB .823 .752 .786
Chrono NN .820 .749 .783
Chrono DT .822 .751 .785

Chrono SVM .827 .755 .789
Evaluation Results

Chrono NN .46 .42 .44
Post-Evaluation Results

Chrono NN .61 .50 .55

Table 1: Chrono results on Newswire corpus for Track
1. All standard errors are <= 0.03, and no method
performed statistically significantly better than another.

looked here).
ChronoNN received a Post-Evaluation F1 of .55

for Track 1 after implementing these fixes, which
sets ChronoNN as the top performing system for
SemEval 2018 Task 6, Track 1.

4 Conclusions and Future Work

Chrono is currently the top performing system for
Track 1 of Task 6, but there are still many areas
that can be improved. Notably, we plan to im-
plement “Event” and “Between” parsing, as well
as refine current strategies as new temporal ex-
pressions are identified. Utilizing sentence tok-
enization instead of relying on new lines could im-
prove phrase identification; however, this did not
appear to be a major source of error in parsing the
Newswire dataset. Additionally, usability can be
improved by moving all parsing rules to separate,
customizable files. We also plan to expand ML use
to additional disambiguation tasks, and implement
an ensemble system utilizing all four ML methods.
We aim to extract the temporal phrase parser into a
stand-alone system and compare it’s performance
directly to existing programs like SUTime (Chang
and Manning, 2012) and HeidelTime (Strtgen and
Gertz, 2010) as it has done a decent job of iden-
tifying temporal entities in this challenge. Fi-
nally, we will evaluate Chrono’s performance on
the THYME dataset (Styler IV et al., 2014) using
the post-evaluation submission system.

100

References
Steven Bethard and Jonathan Parker. 2016. A semanti-

cally compositional annotation scheme for time nor-
malization. In Lrec, volume 2016, pages 3779–
3786.

Steven Bird and Edward Loper. 2004. Nltk: the nat-
ural language toolkit. In Proceedings of the ACL
2004 on Interactive poster and demonstration ses-
sions, page 31. Association for Computational Lin-
guistics.

Angel X. Chang and Christopher D. Manning. 2012.
Sutime: A library for recognizing and normaliz-
ing time expressions. In Lrec, volume 2012, pages
3735–3740.

Egoitz Laparra, Dongfang Xu, Steven Bethard,
Ahmed S. Elsayed, and Martha Palmer. 2018. Sem-
eval 2018 task 6: Parsing time normalization. In
Proceedings of the 12th International Workshop on
Semantic Evaluation, SemEval ’18, New Orleans,
LA, USA. Association for Computational Linguis-
tics.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Pretten-
hofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Pas-
sos, D. Cournapeau, M. Brucher, M. Perrot, and
E. Duchesnay. 2011. Scikit-learn: Machine learning
in Python. Journal of Machine Learning Research,
12:2825–2830.

James Pustejovsky, José M Castano, Robert Ingria,
Roser Sauri, Robert J Gaizauskas, Andrea Set-
zer, Graham Katz, and Dragomir R Radev. 2003.
Timeml: Robust specification of event and tempo-
ral expressions in text. New directions in question
answering, 3:28–34.

Jannik Strtgen and Michael Gertz. 2010. Heideltime:
High quality rule-based extraction and normaliza-
tion of temporal expressions. In Proceedings of
the 5th International Workshop on Semantic Evalua-
tion, SemEval ’10, pages 321–324, Stroudsburg, PA,
USA. Association for Computational Linguistics.

William F. Styler IV, Steven Bethard, Sean Finan,
Martha Palmer, Sameer Pradhan, Piet C. de Groen,
Brad Erickson, Timothy Miller, Chen Lin, and Guer-
gana Savova. 2014. Temporal annotation in the clin-
ical domain. Transactions of the Association for
Computational Linguistics, 2:143.

101

Proceedings of the 12th International Workshop on Semantic Evaluation (SemEval-2018), pages 102–108
New Orleans, Louisiana, June 5–6, 2018. ©2018 Association for Computational Linguistics

NEUROSENT-PDI at SemEval-2018 Task 1: Leveraging a Multi-Domain
Sentiment Model for Inferring Polarity in Micro-blog Text

Mauro Dragoni
Fondazione Bruno Kessler

Via Sommarive 18
Povo, Trento, Italy
dragoni@fbk.eu

Abstract

This paper describes the NeuroSent system
that participated in SemEval 2018 Task 1. Our
system takes a supervised approach that builds
on neural networks and word embeddings.
Word embeddings were built by starting from
a repository of user generated reviews. Thus,
they are specific for sentiment analysis tasks.
Then, tweets are converted in the correspond-
ing vector representation and given as input to
the neural network with the aim of learning
the different semantics contained in each emo-
tion taken into account by the SemEval task.
The output layer has been adapted based on
the characteristics of each subtask. Prelimi-
nary results obtained on the provided training
set are encouraging for pursuing the investiga-
tion into this direction.

1 Introduction

Sentiment Analysis is a natural language process-
ing (NLP) task (Dragoni et al., 2015) which aims
at classifying documents according to the opin-
ion expressed about a given subject (Federici and
Dragoni, 2016a,b). Many works available in the
literature address the sentiment analysis problem
without distinguishing domain specific informa-
tion of documents when sentiment models are
built. The necessity of investigating this prob-
lem from a multi-domain perspective is led by the
different influence that a term might have in dif-
ferent contexts. The idea of adapting terms po-
larity to different domains emerged only in the
last decade (Blitzer et al., 2007; Dragoni and
Petrucci, 2017). Multi-domain sentiment analy-
sis approaches discussed in the literature focus on
building models for transferring information be-
tween pairs of domains (Dragoni, 2015; Petrucci
and Dragoni, 2015). While on the one hand such
approaches allow to propagate specific domain in-
formation to others, their drawback is the neces-

sity of building new transfer models every time a
new domain has to be analyzed. Thus, such ap-
proaches do not have a great generalization capa-
bility of analyzing texts, because transfer models
are limited to the N domains used for building the
models.

The NeuroSent tool applied in SemEval 2018
Task 1 (Mohammad et al., 2018) leverages on the
following pillars: (i) the use of word embeddings
for representing each word contained in raw sen-
tences; (ii) the word embeddings are generated
from an opinion-based corpus instead of a general
purpose one (like news or Wikipedia); (iii) the de-
sign of a deep learning technique exploiting the
generated word embeddings for training the sen-
timent model; and (iv) the use of multiple output
layers for combining domain overlap scores with
domain-specific polarity predictions.

The last point enables the exploitation of lin-
guistic overlaps between domains, which can be
considered one of the pivotal assets of our ap-
proach. This way, the overall polarity of a doc-
ument is computed by aggregating, for each do-
main, the domain-specific polarity value multi-
plied by a belonging degree representing the over-
lap between the embedded representation of the
whole document and the domain itself. Within the
SemEval 2018 Task 1 challenge, we consider with
the term domain one of the emotions that have
been considered into the provided datasets.

2 Related Work

Sentiment analysis from the multi-task and multi-
domain perspective is a research field which
started to be explored only in the last decade. Ac-
cording to the nomenclature widely used in the
literature (see (Blitzer et al., 2007; Dragoni and
Petrucci, 2017)), we call domain a set of docu-
ments about similar topics, e.g. a set of reviews

102

about similar products like mobile phones, books,
movies, etc.. The massive availability of multi-
domain corpora in which similar opinions are ex-
pressed about different topics opened the scenario
for new challenges. Researchers tried to train
models capable to acquire knowledge from a spe-
cific domain and then to exploit such a knowledge
for working on documents belonging to different
ones. This strategy was called domain adaptation.
The use of domain adaptation techniques demon-
strated that opinion classification is highly sensi-
tive to the domain from which the training data is
extracted. The reason is that when using the same
words, and even the same language constructs, we
may obtain different opinions, depending on the
domain. The classic scenario occurs when the
same word has positive connotations in one do-
main and negative connotations in another one, as
we showed within the examples presented in Sec-
tion 1.

Several approaches related to multi-domain
sentiment analysis have been proposed. Roughly
speaking, all of these approaches rely on one of the
following ideas: (i) the transfer of learned classi-
fiers across different domains (Blitzer et al., 2007;
Pan et al., 2010; Bollegala et al., August 2013; Xia
et al., May-June 2013), and (ii) the use of propa-
gation of labels through graph structures (Pono-
mareva and Thelwall, 2013; Tsai et al., March
2013; Dragoni et al., April 2015; Dragoni, 2015,
2017; Petrucci and Dragoni, 2017, 2016, 2015;
Dragoni et al., 2014; Dragoni and Petrucci, 2018).

While on the one hand such approaches demon-
strated their effectiveness in working in a multi-
domain environment, on the other hand they suf-
fered by the limitation of being influenced by the
linguistic overlap between domains. Indeed, such
an overlap leads learning algorithms to infer simi-
lar polarity values to domains that are similar from
the linguistic perspective.

The adoption of evolutionary algorithms within
the sentiment analysis research field is quite re-
cent. First studies focused on the use of evo-
lutionary solutions for modeling financial indica-
tors by starting from investors sentiments (Yamada
and Ueda, 2005; Chen and Chang, 2005; Huang
et al., 2012; Yang et al., 2017; Simoes et al., 2017).
Here, the evolutionary component was used for
learning the trend of financial indicators with re-
spect to the sentiment information extracted from
opinions provided by the investors. With respect

to these papers, we propose an approach adopting
evolutionary computation to a more fine-grained
level where the evolution component affects also
the polarities of opinion concepts.

Studies considering the use of evolutionary al-
gorithms for optimizing the polarity values of
opinion concepts have been proposed only re-
cently (Ferreira et al., 2015; Onan et al., 2016,
2017). However, these works focused on learning
candidate refinements of opinion concepts polarity
without considering the context dimension associ-
ated with them. A variant of this problem is the use
of polarity adaptation strategy in the field of social
media and microblogs (Alahmadi and Zeng, 2015;
Wang et al., 2014; Keshavarz and Abadeh, 2017;
Hu et al., 2016; Fu et al., 2016; Gong et al., 2016).

With respect to state of the art, this work rep-
resents the first exploration of evolutionary algo-
rithms for multi-domain sentiment analysis with
the aim of learning multiple dictionaries of opin-
ion concepts. Moreover, we differ from the lit-
erature by do not considering the propagation of
polarity information across domain (i.e., we keep
them completely separated) in order to avoid trans-
fer learning drawbacks.

3 System Implementation

NeuroSent has been entirely developed in Java
with the support of the Deeplearning4j library 1

and it is composed by following two main phases:

• Generation of Word vectors (Section 3.1):
raw text, appropriately tokenized using the
Stanford CoreNLP Toolkit, is provided as in-
put to a 2-layers neural network implement-
ing the skip-gram approach with the aim of
generating word vectors.

• Learning of Sentiment Model (Section 3.2):
word vectors are used for training a recur-
rent neural network with an output layer cus-
tomized based on the addressed subtask. The
customizations have been explained in Sec-
tion 4.

In the following subsections, we describe in
more detail each phase by providing also the set-
tings used for managing our data.

3.1 Generation of Word Vectors
The generation of the word vectors has been per-
formed by applying the skip-gram algorithm on

1https://deeplearning4j.org/

103

the raw natural language text extracted from the
smaller version of the SNAP dataset (McAuley
and Leskovec, 2013). The rationale behind the
choice of this dataset focuses on three reasons:

• the dataset contains only opinion-based doc-
uments. This way, we are able to build word
embeddings describing only opinion-based
contexts.

• the dataset is multi-domain. Information con-
tained into the generated word embeddings
comes from specific domains, thus it is possi-
ble to evaluate how the proposed approach is
general by testing the performance of the cre-
ated model on test sets containing documents
coming from the domains used for building
the model or from other domains.

• the dataset is smaller with respect to other
corpora used in the literature for building
other word embeddings that are currently
freely available, like the Google News ones. 2

Indeed, as introduced in Section 1, one of our
goal is to demonstrate how we can leverage
the use of dedicated resources for generating
word embeddings, instead of corpora’s size,
for improving the effectiveness of classifica-
tion systems.

The aspect of considering only opinion-based
information for generating word embeddings is
one of the peculiarity of our system. While
embeddings currently available are created from
big corpora of general purpose texts (like news
archives or Wikipedia pages), ours are generated
by using a smaller corpus containing documents
strongly related to the problem that the model will
be thought for. On the one hand, this aspect may
be considered a limitation of the proposed solution
due to the requirement of training a new model in
case of problem change. However, on the other
hand, the usage of dedicated resources would lead
to the construction of more effective models.

Word embeddings have been generated by
the Word2Vec implementation integrated into the
Deeplearning4j library. The algorithm has been
set up with the following parameters: the size of
the vector to 64, the size of the window used as in-
put of the skip-gram algorithm to 5, and the mini-
mum word frequency was set to 1. The reason for

2https://github.com/mmihaltz/word2vec-GoogleNews-
vectors

which we kept the minimum word frequency set to
1 is to avoid the loss of rare but important words
that can occur in domain specific documents.

3.2 Learning of The Sentiment Model

The sentiment model is built by starting from the
word embeddings generated during the previous
phase.

The first step consists in converting each tex-
tual sentence contained within the dataset into the
corresponding numerical matrix S where we have
in each row the word vector representing a single
word of the sentence, and in each column an em-
bedding feature. Given a sentence s, we extract all
tokens ti, with i ∈ [0, n], and we replace each ti
with the corresponding embedding w. During the
conversion of each word in its corresponding em-
bedding, if such embedding is not found, the word
is discarded. At the end of this step, each sentence
contained in the training set is converted in a ma-
trix S = [w〈1〉, . . . ,w〈n〉].

Before giving all matrices as input to the neu-
ral network, we need to include both padding and
masking vectors in order to train our model cor-
rectly. Padding and masking allows us to support
different training situations depending on the num-
ber of the input vectors and on the number of pre-
dictions that the network has to provide at each
time step. In our scenario, we work in a many-
to-one situation where our neural network has to
provide one prediction (sentence polarity and do-
main overlap) as result of the analysis of many in-
put vectors (word embeddings).

Padding vectors are required because we have
to deal with the different length of sentences. In-
deed, the neural network needs to know the num-
ber of time steps that the input layer has to import.
This problem is solved by including, if necessary,
into each matrix Sk, with k ∈ [0, z] and z the
number of sentences contained in the training set,
null word vectors that are used for filling empty
word’s slots. These null vectors are accompanied
by a further vector telling to the neural network
if data contained in a specific positions has to be
considered as an informative embedding or not.

A final note concerns the back propagation
of the error. Training recurrent neural networks
can be quite computationally demanding in cases
when each training instance is composed by many
time steps. A possible optimization is the use of
truncated back propagation through time (BPTT)

104

that was developed for reducing the computational
complexity of each parameter update in a recur-
rent neural network. On the one hand, this strat-
egy allows to reduce the time needed for training
our model. However, on the other hand, there is
the risk of not flowing backward the gradients for
the full unrolled network. This prevents the full
update of all network parameters. For this rea-
son, even if we work with recurrent neural net-
works, we decided to do not implement a BPTT
approach but to use the default backpropagation
implemented into the DL4J library.

Concerning information about network struc-
ture, the input layer was composed by 64 neu-
rons (i.e. embedding vector size), the hidden RNN
layer was composed by 128 nodes, and the out-
put layers with a different number of nodes based
on the addressed subtask. The network has been
trained by using the Stochastic Gradient Descent
with 1000 epochs and a learning rate of 0.002.

4 The Tasks

The SemEval 2018 Task 1 is composed by a set
of five subtasks aiming to attract systems able
to automatically determine the intensity of emo-
tions and the intensity of sentiment of tweets’ au-
thors. Then, organizers included also a multi-label
emotion classification task for tweets. For each
task, there were provide separate training and test
datasets for four languages: English, Arabic, and
Spanish. The proposed system implements a strat-
egy only for the English language. Below, we pro-
vide a summary of the five subtasks including how
we configured the output layer of our neural net-
work.

Subtask #1: EI-reg Given a tweet and an emo-
tion E, the system has to determine the intensity
of E that best represents the mental state of the
tweet’s author by providing a real-valued score
between 0 and 1. Here, four emotions are con-
sidered: anger, fear, joy, and sadness. Separated
datasets have been provided for training the sys-
tem. The output layer of our neural network is
composed by a single neuron implementing the
SIGMOID activation function.

Subtask #2: EI-oc Given a tweet and an emo-
tion E, the system has to classify the tweet into
one of four ordinal classes of intensity of E that
best represents the mental state of the tweet’s au-
thor. Also here, four emotions are considered:

anger, fear, joy, and sadness. Separated datasets
have been provided for training the system. The
output layer of our neural network is composed
by four neurons and the SOFTMAX strategy has
been implemented for selecting the most candidate
emotion intensity class.

Subtask #3: V-reg Given a tweet, the system
has to determine the valence of a sentiment that
best represents the mental state of tweet’s author
by providing a real-valued score between 0 and
1. The output layer of our neural network is com-
posed by a single neuron implementing the SIG-
MOID activation function.

Subtask #4: V-oc Given a tweet, the system
has to classify it into one of seven ordinal classes
(from −3 to 3) corresponding to various levels of
positive and negative sentiment intensity. The out-
put layer of our neural network is composed by
seven neurons and the SOFTMAX strategy has
been implemented for selecting the most candidate
emotion intensity class.

Subtask #5: E-c Given a tweet, the system has
to classify it as a neutral, or no emotion or as one,
or more, of eleven given emotions that best rep-
resent the mental state of the tweet’s author. The
eleven emotions are: anger, anticipation, disgust,
fear, joy, love, optimism, pessimism, sadness, sur-
prise, and trust. The output layer of our neural net-
work is composed by eleven neurons implement-
ing the SIGMOID activation function. This way,
each emotion has been managed separately.

The NeuroSent system has been applied to all
five subtasks. In Section 5, we report the prelimi-
nary results obtained by NeuroSent on the train-
ing set compared with a set of baselines.

5 In-Vitro Evaluation

The NeuroSent approach have been preliminar-
ily evaluated by adopting the Dranziera proto-
col (Dragoni et al., 2016).

The validation procedure leverages on a five-
fold cross evaluation setting in order to validate
the robustness of the proposed solution. The ap-
proach has been compared with four baselines:
Support Vector Machine (SVM) (Chang and Lin,
2011), Naive Bayes (NB) and Maximum Entropy
(ME) (McCallum, 2002), and Convolutional Neu-
ral Network (Chaturvedi et al., 2016).

In Table 1, we provide for subtasks two, four,
and five the average Pearson correlation obtained

105

Approach Task #1.1 Task #1.2 Task #1.3 Task #1.4 Task #1.5
Support Vector Machine 0.3189 0.4890 0.3698 0.5145 0.3498

Naive-Bayes 0.2944 0.4956 0.3544 0.5387 0.4167
Maximum Entropy 0.2765 0.5073 0.3025 0.5777 0.4178
CNN Architecture 0.2433 0.6037 0.2466 0.5895 0.5487

NeuroSent 0.2187 0.6687 0.2079 0.6241 0.5814

Table 1: Results obtained on the training set by NeuroSent and by the four baselines.

on the five folds in which the training set has been
split. While, for subtasks one and three, we pro-
vide the average mean square error.

The obtained results demonstrated the suitabil-
ity of NeuroSent with respect to the adopted
baselines. We may also observed how solutions
based on neural networks obtained a significant
improvement with respect to the others for the
Tasks #1.2 and #1.4.

Then, for Tasks #1.2, #1.4, and #1.5, we per-
formed a detailed error analysis concerning the
performance of NeuroSent. In general, we ob-
served how our strategy tends to provide false neg-
ative predictions. An in depth analysis of some in-
correct predictions highlighted that the embedded
representations of some positive opinion words are
very close to the space region of negative opinion
words. Even if we may state that the confidence
about positive predictions is very high, this sce-
nario leads to have a predominant negative classi-
fication for borderline instances.

On the one hand, a possible action for improv-
ing the effectiveness our strategy is to increase
the granularity of the embeddings (i.e. augment-
ing the size of the embedding vectors) in order
to increase the distance between the positive and
negative polarities space regions. On the other
hand, by increasing the size of embedding vectors,
the computational time for building, or updating,
the model and for evaluating a single instance in-
creases as well. Part of the future work, will be
the analysis of more efficient neural network ar-
chitectures able to manage augmented embedding
vectors without negatively affecting the efficiency
of the platform.

6 Conclusion

In this paper, we described the NeuroSent sys-
tem presented at SemEval 2018 Task 1. Our sys-
tem makes use of artificial neural networks to clas-
sify tweets by polarity or for detecting emotion
levels. The results obtained on the training set

demonstrated that the adopted solution is promis-
ing and worthy of investigation. Therefore, fu-
ture work will focus on improving the system by
exploring the integration of sentiment knowledge
bases (Dragoni et al., 2015) in order to move to-
ward a more cognitive approach.

References
Dimah Hussain Alahmadi and Xiao-Jun Zeng. 2015.

Twitter-based recommender system to address cold-
start: A genetic algorithm based trust modelling and
probabilistic sentiment analysis. In 27th IEEE Inter-
national Conference on Tools with Artificial Intelli-
gence, ICTAI 2015, Vietri sul Mare, Italy, November
9-11, 2015, pages 1045–1052. IEEE Computer So-
ciety.

John Blitzer, Mark Dredze, and Fernando Pereira.
2007. Biographies, bollywood, boom-boxes and
blenders: Domain adaptation for sentiment classi-
fication. In ACL 2007, Proceedings of the 45th An-
nual Meeting of the Association for Computational
Linguistics, June 23-30, 2007, Prague, Czech Re-
public. The Association for Computational Linguis-
tics.

Danushka Bollegala, David J. Weir, and John A. Car-
roll. August 2013. Cross-domain sentiment classifi-
cation using a sentiment sensitive thesaurus. IEEE
Trans. Knowl. Data Eng., 25(8):1719–1731.

Chih-Chung Chang and Chih-Jen Lin. 2011. Libsvm:
A library for support vector machines. ACM TIST,
2(3):27:1–27:27.

Iti Chaturvedi, Erik Cambria, and David Vilares. 2016.
Lyapunov filtering of objectivity for spanish senti-
ment model. In 2016 International Joint Conference
on Neural Networks, IJCNN 2016, Vancouver, BC,
Canada, July 24-29, 2016, pages 4474–4481. IEEE.

An-Pin Chen and Yung-Hua Chang. 2005. Using
extended classifier system to forecast s&p futures
based on contrary sentiment indicators. In Proceed-
ings of the IEEE Congress on Evolutionary Compu-
tation, CEC 2005, 2-4 September 2005, Edinburgh,
UK, pages 2084–2090. IEEE.

Mauro Dragoni. 2015. Shellfbk: An information
retrieval-based system for multi-domain sentiment

106

analysis. In Proceedings of the 9th International
Workshop on Semantic Evaluation, SemEval ’2015,
pages 502–509, Denver, Colorado. Association for
Computational Linguistics.

Mauro Dragoni. 2017. Extracting linguistic features
from opinion data streams for multi-domain senti-
ment analysis. In Proceedings of the 3rd Interna-
tional Workshop at ESWC on Emotions, Modality,
Sentiment Analysis and the Semantic Web co-located
with 14th ESWC 2017, Portroz, Slovenia, May 28,
2017., volume 1874 of CEUR Workshop Proceed-
ings. CEUR-WS.org.

Mauro Dragoni and Giulio Petrucci. 2017. A neural
word embeddings approach for multi-domain sen-
timent analysis. IEEE Trans. Affective Computing,
8(4):457–470.

Mauro Dragoni and Giulio Petrucci. 2018. A fuzzy-
based strategy for multi-domain sentiment analysis.
Int. J. Approx. Reasoning, 93:59–73.

Mauro Dragoni, Andrea Tettamanzi, and Célia
da Costa Pereira. 2016. DRANZIERA: an eval-
uation protocol for multi-domain opinion mining.
In Proceedings of the Tenth International Confer-
ence on Language Resources and Evaluation LREC
2016, Portorož, Slovenia, May 23-28, 2016. Euro-
pean Language Resources Association (ELRA).

Mauro Dragoni, Andrea G. B. Tettamanzi, and Célia
da Costa Pereira. 2014. A fuzzy system for concept-
level sentiment analysis. In Semantic Web Evalua-
tion Challenge - SemWebEval 2014 at ESWC 2014,
Anissaras, Crete, Greece, May 25-29, 2014, Revised
Selected Papers, volume 475 of Communications in
Computer and Information Science, pages 21–27.
Springer.

Mauro Dragoni, Andrea G. B. Tettamanzi, and Célia
da Costa Pereira. 2015. Propagating and aggregat-
ing fuzzy polarities for concept-level sentiment anal-
ysis. Cognitive Computation, 7(2):186–197.

Mauro Dragoni, Andrea Giovanni Battista Tettamanzi,
and Célia da Costa Pereira. April 2015. Propagat-
ing and aggregating fuzzy polarities for concept-
level sentiment analysis. Cognitive Computation,
7(2):186–197.

Marco Federici and Mauro Dragoni. 2016a. A
knowledge-based approach for aspect-based opin-
ion mining. In Semantic Web Challenges - Third
SemWebEval Challenge at ESWC 2016, Heraklion,
Crete, Greece, May 29 - June 2, 2016, Revised Se-
lected Papers, volume 641 of Communications in
Computer and Information Science, pages 141–152.
Springer.

Marco Federici and Mauro Dragoni. 2016b. Towards
unsupervised approaches for aspects extraction. In
Joint Proceedings of the 2th Workshop on Emo-
tions, Modality, Sentiment Analysis and the Seman-
tic Web and the 1st International Workshop on Ex-
traction and Processing of Rich Semantics from

Medical Texts co-located with ESWC 2016, Herak-
lion, Greece, May 29, 2016., volume 1613 of CEUR
Workshop Proceedings. CEUR-WS.org.

Lohann Ferreira, Mariza Dosciatti, Júlio C. Nievola,
and Emerson Cabrera Paraiso. 2015. Using a ge-
netic algorithm approach to study the impact of im-
balanced corpora in sentiment analysis. In Pro-
ceedings of the Twenty-Eighth International Florida
Artificial Intelligence Research Society Conference,
FLAIRS 2015, Hollywood, Florida. May 18-20,
2015., pages 163–168. AAAI Press.

Peng Fu, Zheng Lin, Hailun Lin, Fengcheng Yuan,
Weiping Wang, and Dan Meng. 2016. Quantifying
the effect of sentiment on topic evolution in chinese
microblog. In Web Technologies and Applications
- 18th Asia-Pacific Web Conference, APWeb 2016,
Suzhou, China, September 23-25, 2016. Proceed-
ings, Part I, volume 9931 of Lecture Notes in Com-
puter Science, pages 531–542. Springer.

Lin Gong, Mohammad Al Boni, and Hongning Wang.
2016. Modeling social norms evolution for per-
sonalized sentiment classification. In Proceedings
of the 54th Annual Meeting of the Association for
Computational Linguistics, ACL 2016, August 7-12,
2016, Berlin, Germany, Volume 1: Long Papers. The
Association for Computer Linguistics.

Yan Hu, Xiaofei Xu, and Li Li. 2016. Analyzing topic-
sentiment and topic evolution over time from so-
cial media. In Knowledge Science, Engineering and
Management - 9th International Conference, KSEM
2016, Passau, Germany, October 5-7, 2016, Pro-
ceedings, volume 9983 of Lecture Notes in Com-
puter Science, pages 97–109.

Chien-Feng Huang, Tsung-Nan Hsieh, Bao Rong
Chang, and Chih-Hsiang Chang. 2012. A compar-
ative study of regression and evolution-based stock
selection models for investor sentiment. In 2012
Third International Conference on Innovations in
Bio-Inspired Computing and Applications, Kaohsi-
ung City, Taiwan, September 26-28, 2012, pages 73–
78. IEEE.

Hamidreza Keshavarz and Mohammad Saniee Abadeh.
2017. ALGA: adaptive lexicon learning using
genetic algorithm for sentiment analysis of mi-
croblogs. Knowl.-Based Syst., 122:1–16.

Julian J. McAuley and Jure Leskovec. 2013. Hidden
factors and hidden topics: understanding rating di-
mensions with review text. In Seventh ACM Confer-
ence on Recommender Systems, RecSys ’13, Hong
Kong, China, October 12-16, 2013, pages 165–172.
ACM.

Andrew Kachites McCallum. 2002. Mallet: A machine
learning for language toolkit. http://mallet.
cs.umass.edu.

Saif M. Mohammad, Felipe Bravo-Marquez, Mo-
hammad Salameh, and Svetlana Kiritchenko. 2018.

107

Semeval-2018 Task 1: Affect in tweets. In Proceed-
ings of International Workshop on Semantic Evalu-
ation (SemEval-2018), New Orleans, LA, USA.

Aytug Onan, Serdar Korukoglu, and Hasan Bulut.
2016. A multiobjective weighted voting ensemble
classifier based on differential evolution algorithm
for text sentiment classification. Expert Syst. Appl.,
62:1–16.

Aytug Onan, Serdar Korukoglu, and Hasan Bulut.
2017. A hybrid ensemble pruning approach based
on consensus clustering and multi-objective evolu-
tionary algorithm for sentiment classification. Inf.
Process. Manage., 53(4):814–833.

Sinno Jialin Pan, Xiaochuan Ni, Jian-Tao Sun, Qiang
Yang, and Zheng Chen. 2010. Cross-domain sen-
timent classification via spectral feature alignment.
In Proceedings of the 19th International Conference
on World Wide Web, WWW 2010, Raleigh, North
Carolina, USA, April 26-30, 2010, pages 751–760.
ACM.

Giulio Petrucci and Mauro Dragoni. 2015. An infor-
mation retrieval-based system for multi-domain sen-
timent analysis. In Semantic Web Evaluation Chal-
lenges - Second SemWebEval Challenge at ESWC
2015, Portorož, Slovenia, May 31 - June 4, 2015,
Revised Selected Papers, volume 548 of Communi-
cations in Computer and Information Science, pages
234–243. Springer.

Giulio Petrucci and Mauro Dragoni. 2016. The IRMU-
DOSA system at ESWC-2016 challenge on seman-
tic sentiment analysis. In Semantic Web Challenges
- Third SemWebEval Challenge at ESWC 2016, Her-
aklion, Crete, Greece, May 29 - June 2, 2016, Re-
vised Selected Papers, volume 641 of Communica-
tions in Computer and Information Science, pages
126–140. Springer.

Giulio Petrucci and Mauro Dragoni. 2017. The IR-
MUDOSA system at ESWC-2017 challenge on se-
mantic sentiment analysis. In Semantic Web Chal-
lenges - 4th SemWebEval Challenge at ESWC 2017,
Portoroz, Slovenia, May 28 - June 1, 2017, Revised
Selected Papers, volume 769 of Communications in
Computer and Information Science, pages 148–165.
Springer.

Natalia Ponomareva and Mike Thelwall. 2013. Semi-
supervised vs. cross-domain graphs for sentiment
analysis. In Recent Advances in Natural Language
Processing, RANLP 2013, 9-11 September, 2013,
Hissar, Bulgaria, pages 571–578. RANLP 2013 Or-
ganising Committee/ACL.

Carlos Simoes, Rui Ferreira Neves, and Nuno Horta.
2017. Using sentiment from twitter optimized by
genetic algorithms to predict the stock market. In
2017 IEEE Congress on Evolutionary Computation,
CEC 2017, Donostia, San Sebastián, Spain, June 5-
8, 2017, pages 1303–1310. IEEE.

Angela Charng-Rurng Tsai, Chi-En Wu, Richard
Tzong-Han Tsai, and Jane Yung jen Hsu. March
2013. Building a concept-level sentiment dictionary
based on commonsense knowledge. IEEE Int. Sys-
tems, 28(2):22–30.

Zhitao Wang, Zhiwen Yu, Zhu Wang, and Bin Guo.
2014. Investigating sentiment impact on informa-
tion propagation and its evolution in microblog. In
2014 International Conference on Behavioral, Eco-
nomic, and Socio-Cultural Computing, BESC 2014,
Shanghai, China, October 30 - November 1, 2014,
pages 33–39. IEEE.

Rui Xia, Chengqing Zong, Xuelei Hu, and Erik Cam-
bria. May-June 2013. Feature ensemble plus sample
selection: Domain adaptation for sentiment classifi-
cation. IEEE Int. Systems, 28(3):10–18.

Takashi Yamada and Kazuhiro Ueda. 2005. Explana-
tion of binarized time series using genetic learning
model of investor sentiment. In Proceedings of the
IEEE Congress on Evolutionary Computation, CEC
2005, 2-4 September 2005, Edinburgh, UK, pages
2437–2444. IEEE.

Steve Y. Yang, Sheung Yin Kevin Mo, Anqi Liu, and
Andrei Kirilenko. 2017. Genetic programming op-
timization for a sentiment feedback strength based
trading strategy. Neurocomputing, 264:29–41.

108

Proceedings of the 12th International Workshop on Semantic Evaluation (SemEval-2018), pages 109–115
New Orleans, Louisiana, June 5–6, 2018. ©2018 Association for Computational Linguistics

FOI DSS at SemEval-2018 Task 1: Combining LSTM States,
Embeddings, and Lexical Features for Affect Analysis

Maja Karasalo Mattias Nilsson Magnus Rosell Ulrika Wickenberg Bolin
FOI - Swedish Defence Research Agency

{majkar, matnil, magros, ulrwic}@foi.se

Abstract

This paper describes the system used and re-
sults obtained for team FOI DSS at SemEval-
2018 Task 1: Affect In Tweets. The team
participated in all English language subtasks,
with a method utilizing transfer learning from
LSTM nets trained on large sentiment datasets
combined with embeddings and lexical fea-
tures. For four out of five subtasks, the sys-
tem performed in the range of 92-95% of the
winning systems, in terms of the competi-
tion metrics. Analysis of the results suggests
that improved pre-processing and addition of
more lexical features may further elevate per-
formance.

1 Introduction

In the field of automatic emotion detection, many
contributions consider the issue of detecting pres-
ence of emotions (Liu, 2012). The task of de-
tecting intensity of emotion in a given text is
less studied, but is relevant to many applications
in fields such as e.g., brand management, public
health, politics, and disaster handling (Moham-
mad, 2016). When developing prediction sys-
tems, access to suitably annotated data is criti-
cal. Most annotated emotion and affect datasets
are categorical, but examples of sets annotated
with intensity or degree of emotional content in-
clude EmoBank (Buechel and Hahn, 2017a,b),
AFINN (Nielsen, 2011), the Pietro Facebook post
set (Preoţiuc-Pietro et al., 2016), and the Warriner-
Kuperman set (Warriner et al., 2013). For tweets,
the Tweet Emotion Intensity Dataset (Mohammad
and Bravo-Marquez, 2017) has recently been pub-
lished, with more than 7000 tweets annotated with
emotion category and intensity.

This paper describes methods used and results
achieved with the FOI DSS contribution to the five
subtasks for English tweets of SemEval 2018 Task
1: Affect in Tweets (Mohammad et al., 2018).

The paper is organized as follows. A descrip-
tion of Task 1 is provided in Section 2. Sec-
tion 3 discusses the provided datasets. Section 4
describes the methods and system used to produce
predictions of scores and labels for all subtasks.
In Sections 5 and 6 results are presented and ana-
lyzed, and suggestions for improvements are out-
lined. Finally, concluding remarks are found in
Section 7.

2 Task formulation

Task 1 consisted of five subtasks, all regarding es-
timation of the mental state of a tweeter, based
on the tweeted text. Valence1 intensity, as well
as emotion, and emotion intensity classification,
were covered. The subtasks are summarized be-
low:

1. Emotion intensity regression (EI-reg): For
a given tweet and emotion2, determine the in-
tensity of the emotion as a score ∈ [0, 1].

2. Emotion intensity, ordinal classification
(EI-oc): For a given tweet and emotion2,
classify the tweet into one of four ordinal
classes of intensity.

3. Valence regression (V-reg): For a given
tweet, determine the intensity of valence as
a score ∈ [0, 1].

4. Valence, ordinal classification (V-oc): For a
given tweet, classify it into one of seven ordi-
nal classes corresponding to levels of positive
and negative intensity.

5. Multi-label emotion classification (E-c):
For a given tweet and eleven emotions3, clas-
sify the tweet as neutral, or expressing one or
more of the emotions.

1The intrinsic attractiveness (positive valence) or averse-
ness (negative valence) of an event, object, or situation (Fri-
jda, 1986).

2anger, joy, fear or sadness.
3anger, anticipation, disgust, fear, joy, love, optimism,

pessimism, sadness, surprise and trust.

109

Subtask Train Val. Test
EI anger 1701 388 1002
EI fear 2252 389 986
EI joy 1616 290 1105
EI sadness 1533 397 975
V 1181 449 937
E-c 6838 886 3259

Table 1: Number of tweets in the datasets for different
subtasks. The sets for EI-reg and EI-oc were identical,
as was also the case for V-reg and V-oc.

3 Data

The dataset made available for Task 1 was the
AIT Dataset (Mohammad and Kiritchenko, 2018).
For each subtask, labeled datasets for training and
validation were released for the prediction system
development phase. Intensity scores were roughly
normally distributed, and ordinal classes were de-
fined as intervals for the scores. Unlabeled test
data was later released for the evaluation phase.
Table 1 gives a brief overview of the data. Details
on the data and annotation can be found in (Mo-
hammad et al., 2018) and (Mohammad and Kir-
itchenko, 2018).

In addition to the test data, an unlabeled ”mys-
tery” set of 16937 short texts was provided for
the regression subtasks. The task organizers asked
that participants in these subtasks use their exist-
ing systems to produce predictions for the mystery
set as well, and the results were used to perform
a bias analysis. This is further discussed in Sec-
tion 5.4.

4 Method

Initially, the team focused on Subtask 4 (V-reg).
Several different approaches were explored, and
evaluated using the official competition metric,
the Pearson Correlation Coefficient (PCC) with
gold ratings. The combination of methods found
to have the best performance on the V-reg task
was chosen. The approach is described in Sec-
tions 4.1 - 4.3. Contributions to Subtasks 1, 2,
3 and 5 were constructed by altering the final
stage model to fit each task, and tuning the hyper-
parameters for best performance.

4.1 Pre-processing

We performed some rudimentary pre-processing
of the tweets prior to feature extraction. Follow-
ing the findings reported in (Zhao, 2015) we ex-

panded negations such as ”can’t” and ”n’t” etc.,
into ”cannot” and ”not”. The hashtag character #
was also removed and we replaced user names and
links with ”usr” and ”http://url”, respectively. We
finally mapped unicoded emoticons into their as-
sociated emoticon text description 4.

4.2 Feature Extraction

The small amount of labeled data prevented us
from automatically discovering optimal features
for the different tasks. Instead, we utilized transfer
learning techniques (i.e., reusing a model trained
on a different but related task where more data is
available) and classical natural language process-
ing features. Three different methods were used
to extract features from the tweet sets; two us-
ing variants of Long Short-Term Memory (LSTM)
nets obtained by training on large sentiment
datasets and extracting the internal model states,
and one utilizing the Weka Affective Tweets pack-
age. The feature vectors from each of the meth-
ods described below were then concatenated to
form one 5265 dimensional feature vector for each
tweet.

4.2.1 Sentiment Neuron
In (Radford et al., 2017), the authors consider
the problem of predicting the next character in a
text given the preceding characters. More specifi-
cally, they predict next byte (each UTF-8 encoded
character constitutes one to four bytes) from the
previous bytes using a single layer multiplicative
LSTM (Krause et al., 2016) with 4096 states. The
model was trained using 82 million Amazon prod-
uct reviews amounting to 38 billion bytes of train-
ing data. The authors show state-of-the-art (or
close to state-of-the-art) sentiment classification
performance on four different datasets when train-
ing a logistic regression classifier with the model’s
states as feature vector. Because of the reported
strong predictive quality of the model’s state we
used that as one of the feature vectors for our
method. We used the authors code for feature ex-
traction available on github 5.

4.2.2 Bidirectional-LSTM
Tweets can often be quite different from typical
text seen in novels, news, or product reviews.

4https://apps.timwhitlock.info/emoji/tables/unicode#block-
6a-additional-emoticons

5https://github.com/openai/generating-reviews-
discovering-sentiment

110

The short messages commonly contain intentional
misspelling to express affects (e.g., happpppyyy),
hashtags (e.g., #love), and emoticons (e.g., :-)).
One option to capture the specific characteristics
of tweets would be to fine-tune the sentiment neu-
ron model described in the previous section us-
ing twitter data. We did not explore this direc-
tion in this work. Instead, in an attempt to di-
rectly capture affects, we trained (from scratch) a
bidirectional LSTM on a sentiment labeled (two
classes; positive and negative sentiment) twitter
dataset 6. The dataset contains 1.5 million tweets
and we used 90% for training and 10% for vali-
dation. We used a bidirectional LSTM with 512
states in each direction (1024 in total). The input
characters were first mapped to integers and sub-
sequently fed to the embedding front-end (where
an integer to a dense 64 dimensional embedding
is learned) of the bidirectional LSTM. A dropout
of 50% was used during the training for the sen-
timent prediction. The model achieves approxi-
mately 85% classification accuracy on the valida-
tion set. Similar to the sentiment neuron’s multi-
plicative LSTM we use the bidirectional LSTM’s
state as a feature vector.

4.2.3 Weka Affective Tweets filters
A combination of tweet-level filters from the
Weka Affective Tweets package (Mohammad and
Bravo-Marquez, 2017) was used as the third part
of the feature extraction method. These filters pro-
duce embeddings and lexical features, e.g. counts
of positive and negative sentiment words, from
systems such as the NRC-Canada System7.

To evaluate contributions from different filters,
the final stage model (Section 4.3) was run using
their resulting feature vectors for the V-reg dataset
as input. For combinations of filters, the resulting
feature vectors were concatenated and run through
the final stage model. Details of this evaluation
can be found in Section 5.1

4.3 Final stage

For each of the different subtasks we trained a
fully connected neural network with two hidden
layers mapping the input feature vector (i.e., the
concatenation of the feature vectors described in
Sections 4.2.1 - 4.2.3) to the target value, class, or

6http://thinknook.com/twitter-sentiment-analysis-
training-corpus-dataset-2012-09-22/

7http://saifmohammad.com/WebPages/NRC-Canada-
Sentiment.htm

classes. The activation function for the two hidden
layers was tanh and the activation functions for
the output layer were set to linear, softmax, and
sigmoid for the V-reg/EI-reg, V-oc/EI-oc, and E-c
subtasks, respectively.

The Adam optimizer (Kingma and Ba, 2015)
was used for the classification subtasks with cate-
gorical cross-entropy loss for the V-oc/EI-oc sub-
tasks and binary cross-entropy loss for the E-c
subtask. For the regression subtasks of V-reg
and EI-reg we used mean squared error as loss
function and the ADADELTA optimizer (Zeiler,
2012). However, the performance difference be-
tween Adam and ADADELTA was minor in our
regression subtasks.

We used L2-regularization on the parameters of
the hidden layers. For each subtask, the hyper-
parameters (i.e., the penalty and the layer sizes)
of the neural network were found by a grid search
evaluating the PCC (or the Jaccard similarity score
for E-c subtask) on the validation data.

The hyper-parameter search range was
[0.001, 0.05] for the penalty and [5, 80] for the
two layer sizes. Many configurations with quite
different hyper-parameter values resulted in very
similar scores. E.g., for the V-reg subtask the
configurations8 (0.03,10,15), (0.03,15,40), and
(0.0096,70,35) all resulted in PCCs in the range
0.841-0.846.

5 Results

In this section we present a performance analysis
of the set of features used, as well as results on the
different subtasks.

5.1 Feature evaluation

To assess the quality of the feature vectors de-
scribed in Section 4.2 we computed the PCC on
the V-reg subtask using the validation data. For
each set of features listed in Table 2 we performed
a hyper-parameter search to find the parameters
of the final stage model maximizing the PCC (cf.
Section 4.3).

As seen in Table 2 the features provided by the
Weka Affective Tweets package have the strongest
individual predictive power. From the Weka fil-
ters, the feature combination chosen to be included
in the combined method was WE + WSS + WL,
which produced the highest PCC during evalua-
tion.

8configuration = (penalty, layer 1 size, layer 2 size)

111

Features PCC
Weka

TweetToEmbeddings (WE)9 0.665
TweetToEmbeddings 400 (WE400) 10 0.702
TweetToSentiStrength (WSS) 0.675
TweetToLexicon (WL) 0.790
TweetToInputLexicon (WIL) 0.687

WE + WSS + WL 0.800
WE + WSS + WL+ WIL 0.797
WE400 + WSS + WL 0.795
Sentiment Neuron (SN) 0.767
Bi-LSTM 0.738
SN + Bi-LSTM 0.818
Bi-LSTM + WE + WSS + WL 0.820
SN + WE + WSS + WL 0.838
SN + Bi-LSTM + WE + WSS + WL 0.846

Table 2: V-reg validation set: PCC of valence inten-
sity score predictions with gold scores for the different
feature vector combinations.

Although the sentiment neuron is not trained
on Twitter specific data it still shows good perfor-
mance. The bidirectional LSTM has the weakest
performance but still has a positive impact on the
final score.

5.2 Results on validation and test data
The official competition metric was PCC for Sub-
tasks 1-4, but as Subtask 5 was a multi-label classi-
fication task, the metric used was multi label accu-
racy, or Jaccard similarity score. The PCC/Jaccard
similarity score for validation and test data for the
FOI DSS system is presented in Table 3. For the
regression tasks, the system’s performance on the
test data is close to the validation data results. For
the classification tasks, the gap between validation
and test scores is somewhat larger, indicating that
the model may be biased for the validation data.

The team’s ranking in different subtasks varied
from 6 (out of 46 and 35 teams, respectively) for
EI-reg and V-oc, to 11 of 37 for EI-oc. For Sub-
tasks 1,3,4, and 5 the scores of our system was in
the range of 92-95 % of the winning result on each
subtask. The weakest performance was observed
on Subtask 2 (EI-oc), with a PCC corresponding

9The TweetToEmbeddingsFeatureVector filter us-
ing embeddings trained from the small default cor-
pus, yielding a 100-dimensional feature vector.
https://affectivetweets.cms.waikato.ac.nz. .

10The TweetToEmbeddingsFeatureVector filter using em-
beddings trained from the 10 million tweets of the Edinburgh
corpus (Petrović et al., 2010), yielding a 400-dimensional
feature vector.

Subtask Validation Test Baseline (Test)
EI-reg 0.739 0.737 0.520
EI-oc 0.636 0.590 0.394
V-reg 0.846 0.831 0.585
V-oc 0.818 0.777 0.509
E-c 0.554 0.544 0.442

Table 3: PCC/Jaccard similarity score on validation
and test data for the FOI DSS system for all English
subtasks of Task 1. The performance of the organiz-
ers’ SVM unigrams baseline model on the test data is
provided for comparison.

to 84 % of winning PCC. Figure 1 shows results
of the FOI DSS system compared to mean, me-
dian and max competition results for test data on
all English subtasks.

Figure 1: PCC/Jaccard similarity score of test data
score and label predictions with gold scores and labels
for all English subtasks. FOI DSS results compared
to mean, median and max results for all participating
teams.

5.3 Error analysis on the V-reg subtask
As already mentioned, our method achieved a
PCC of 0.831 for the V-reg subtask on the test
data. Figure 2 shows the corresponding scatter
plot of the estimated and gold valence. To get
some insight into potential future improvements of
our system it is of interest to do analysis of tweets
having poor valence estimates.

Some of the tweets from the validation and test
datasets with large absolute error between the es-
timated and gold valence are listed in Table 4.
For the first validation set tweet our method pre-
dicted a fairly low valence whereas the gold score
is fairly high. A possible explanation could be that
our system has problems with the constructions

112

Figure 2: Scatter plot showing the estimated versus
gold valence for the V-reg test dataset.

and concatenations such as B4, Thankful4all, and
ImWakingUpHappyNot. Especially not properly
splitting the last concatenation leaves the end of
the tweet ”dreading the day” which should result
in a low valence.

The emoticon of the second validation tweet,
\xF0\x9F\x98\xA4, is interesting. It depicts a
face with steam coming out of the nostrils, which
clearly signals anger, but the mapping4 we used
describes it (wrongly according to us) as ”face
with look of triumph”. In the third tweet we
failed to map the emoticon \xF0\x9F\xA4\xA3
to words. The emoticon shows some sort of laugh-
ing creature.

The top two test set tweets in Table 4 had the
largest prediction errors for this set. They were
both predicted to have a lower valence than the
gold score. Interestingly, they both contain the
hashtag #blessed and include constructions using
the word not, where, if the negation is missed, the
sentiment of the tweet would change from positive
to negative. Possibly, our method has trouble cor-
rectly interpreting the negation and also has failed
to award enough importance to the positive sen-
timent word blessed. Since our pre-processing in-
volved removing hashtag character #, added inten-
sity expressed this way will not be captured.

Finally, the third test set tweet had a high pre-
dicted valence but a low gold score. This text con-
tains both negative words and phrases such as ner-
vous and I could puke, but also expresses laughter.
It would seem our method has deemed the latter
a marker of high valence, while a human reader

would probably interpret it as a nervous laughter,
thus low valence, considering the context provided
by the tweet as a whole.

5.4 Mystery dataset and bias analysis
An analysis for inapproperiate gender and race
bias in scoring and classifications was performed
by the task organizers for the ”mystery” dataset
(Section 3). For most teams, the bias was small
(below 3%) but statistically significant, in part
likely due to biases in the AIT dataset. For the FOI
DSS system, the biases were below average for EI-
joy, EI-sadness and valence, and 1% or less for all
datasets except gender bias for EI-fear (2.3%). Bi-
ases in the datasets used to train our LSTM mod-
els as well as in the lexicons used to extract lexical
features may have contributed to biases in scoring
and classification.

6 Discussion

Designing high performance regression and clas-
sification algorithms using only a small amount
of labeled data is always a challenge. The vari-
ability in tweets is enormous, and thus, there is a
major risk of over-fitting when designing and tun-
ing the algorithms on the the very limited labeled
datasets provided for the competition. We used
transfer learning and classical NLP features to al-
leviate the problem. We believe further improve-
ments can be made by reducing the noise of the
dataset, features, and final prediction. In the fol-
lowing, we discuss some of these ideas.

6.1 Pre-processing extensions
The error analysis in Section 5.3 indicates that the
performance of our method could be improved by
extending and refining the pre-processing. Split-
ting concatenations into separate words and ad-
dressing some common abbreviations would be
one extension. Adjusting the emoticon lookup ta-
bles would be another.

6.2 Weka filter combinations: robustness
The combination of Weka Affective Tweets filters
used in the FOI DSS system, WE + WSS +WL,
achieved the highest PCC during evaluation (Sec-
tion 5.1). However, as results for neural networks
are hard to reproduce, it should be examined what
combinations of filters on average perform bet-
ter. Initial findings from two such evaluations con-
ducted after the end of the competition are re-
ported in this section:

113

Dataset Tweet Pred. Gold

Validation

B4 I couldnt get out of bed or look in mirror Thankful4all
the support I have recieved here ImWakingUpHappyNot dreading theday 0.303 0.734

3 and a half hour more \xF0\x9F\x98\xA4 #EXO 0.603 0.250

@TheEllenShow I follow you bc your TV show keeps me laughing \xF0\x9F\xA4\xA3.
When you #startle your guest sitting on that couch...booo... 0.461 0.783

Test

i’ll have my own apartment and not have to sneak alcohol into my dorm room
or worry about being loud #blessed 0.349 0.823

mum got out of a rlly bad car crash completely not injured and i found a rlly sentimental
piece of jewellery i thought i’d lost #blessed 0.203 0.643

I’m so nervous I could puke + my body temp is rising ha ha ha ha ha 0.845 0.422

Table 4: Tweets with large prediction errors for the valence validation and test sets.

1. WE400 : When used on their own, the WE400
filter, which utilizes a much larger corpus10,
outperforms WE (Table 2). Therefore it is of
interest to compare performance of the two
filters combined with WSS and WL.

2. WIL: Using its default lexicon11, WIL pro-
duces 4-dimensional feature vectors. We
wanted to investigate whether contributions
from WIL on average increases performance.

The different vector combinations were input to
the final stage model (Section 4.3) for 486 differ-
ent hyper-parameter configurations, and the result-
ing PCC scores were compared. For 59% of the
configurations, WE + WSS +WL still performed
better than WE400 + WSS + WL. It would there-
fore seem that the loss of features captured by the
larger WE400 vector is compensated for when com-
bining the smaller WE vector with WSS + WL.

However, WE + WSS +WL +WIL outperformed
WE + WSS +WL for 67% of the configurations. We
may therefore conclude that including the WIL fil-
ter would result in an overall more robust system.

6.3 Final stage: robustness

The purpose of the validation data is to measure
generalization of the method. However, given
the small dataset size there is as well an immi-
nent risk of over-fitting against the validation data
when searching for the optimal hyper-parameters.
The latter might be the reason for the performance
gaps between validation and test PCCs for the EI-
oc and V-oc subtasks in particular. Also, even
when using the same hyper-parameter settings, the

11The NRC-AffectIntensity lexicon (Mohammad, 2017).

performance (in terms of PCC/Jaccard similarity
score) of the final stage varies depending on the
random initialization of the network parameters.
Constructing an ensemble estimate, using multiple
final stage models for each subtask, could perhaps
be beneficial for the performance on the test set.

7 Conclusions

This paper presents the method and results for the
FOI DSS contribution to SemEval-2018 Task 1.
A major challenge with this task was the small
amount of available labeled data. We utilized tech-
niques such as transfer learning as well as clas-
sical NLP features. Our system used features
from Weka Affective Tweets combined with two
LSTM-state vectors. Fully connected neural net-
works with two hidden layers were used to map
the features into the target outputs for each of the
subtasks. For subtasks EI-reg, V-reg, V-oc, and E-
c the PCC/Jaccard similarity score of our system
was in the range of 92-95 % of the winning result.
The weakest performance was observed on sub-
task EI-oc. Initial error- and robustness analysis
indicates that performance might be enhanced by
improved pre-processing of the tweets, and by in-
cluding more lexical features. The difference be-
tween our results on validation and test data was
larger for the emotion intensity classification sub-
tasks than for the regression and emotion classifi-
cation subtasks, which would be interesting to in-
vestigate further.

Acknowledgments

We would like to thank Magnus Sahlgren for valu-
able input on the algorithmic design.

114

References
Sven Buechel and Udo Hahn. 2017a. Emobank:

Studying the impact of annotation perspective and
representation format on dimensional emotion anal-
ysis. In Proceedings of the 15th Conference of the
European Chapter of the Association for Compu-
tational Linguistics: Volume 2, Short Papers, vol-
ume 2, pages 578–585.

Sven Buechel and Udo Hahn. 2017b. Readers vs. writ-
ers vs. texts: Coping with different perspectives of
text understanding in emotion annotation. In Pro-
ceedings of the 11th Linguistic Annotation Work-
shop, pages 1–12.

Nico H Frijda. 1986. The emotions. Cambridge Uni-
versity Press.

Diederik P. Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. In Proceedings
of the International Conference for Learning Repre-
sentations ICLR.

Ben Krause, Iain Murray, Steve Renals, and Liang Lu.
2016. Multiplicative LSTM for sequence modelling.
arXiv preprint arXiv:1609.07959.

Bing Liu. 2012. Sentiment analysis and opinion min-
ing. Synthesis lectures on human language tech-
nologies, 5(1):1–167.

Saif M Mohammad. 2016. Sentiment analysis: de-
tecting valence, emotions, and other affectual states
from text. Emotion Measurement, pages 201–237.

Saif M. Mohammad. 2017. Word affect intensities.
CoRR, abs/1704.08798.

Saif M Mohammad and Felipe Bravo-Marquez. 2017.
Emotion intensities in tweets. arXiv preprint
arXiv:1708.03696.

Saif M. Mohammad, Felipe Bravo-Marquez, Mo-
hammad Salameh, and Svetlana Kiritchenko. 2018.
Semeval-2018 Task 1: Affect in tweets. In Proceed-
ings of International Workshop on Semantic Evalu-
ation (SemEval-2018), New Orleans, LA, USA.

Saif M. Mohammad and Svetlana Kiritchenko. 2018.
Understanding emotions: A dataset of tweets to
study interactions between affect categories. In
Proceedings of the 11th Edition of the Language
Resources and Evaluation Conference, Miyazaki,
Japan.

Finn Årup Nielsen. 2011. A new anew: Evaluation of a
word list for sentiment analysis in microblogs. arXiv
preprint arXiv:1103.2903.

Saša Petrović, Miles Osborne, and Victor Lavrenko.
2010. The edinburgh twitter corpus. In Proceed-
ings of the NAACL HLT 2010 Workshop on Com-
putational Linguistics in a World of Social Media,
pages 25–26.

Daniel Preoţiuc-Pietro, H Andrew Schwartz, Gregory
Park, Johannes Eichstaedt, Margaret Kern, Lyle Un-
gar, and Elisabeth Shulman. 2016. Modelling va-
lence and arousal in facebook posts. In Proceedings
of the 7th Workshop on Computational Approaches
to Subjectivity, Sentiment and Social Media Analy-
sis, pages 9–15.

Alec Radford, Rafal Jozefowicz, and Ilya Sutskever.
2017. Learning to generate reviews and discovering
sentiment. arXiv preprint arXiv:1704.01444.

Amy Beth Warriner, Victor Kuperman, and Marc Brys-
baert. 2013. Norms of valence, arousal, and dom-
inance for 13,915 english lemmas. Behavior re-
search methods, 45(4):1191–1207.

Matthew D. Zeiler. 2012. ADADELTA: An adap-
tive learning rate method. arXiv preprint
arXiv:1212.5701.

Jianqiang Zhao. 2015. Pre-processing boosting twit-
ter sentiment analysis? In IEEE International
Conference on Smart City/SocialCom/SustainCom
(SmartCity), pages 748–753.

115

Proceedings of the 12th International Workshop on Semantic Evaluation (SemEval-2018), pages 116–122
New Orleans, Louisiana, June 5–6, 2018. ©2018 Association for Computational Linguistics

NLPZZX at SemEval-2018 Task 1: Using Ensemble Method for Emotion
and Sentiment Intensity Determination

Zhengxin Zhang, Qimin Zhou, Hao Wu
School of Information Science and Engineering, Yunnan University

Chenggong Campus, Kunming, P.R. China
{zzxynu,zqmynu}@gmail.com, haowu@ynu.edu.cn

Abstract

In this paper, we put forward a system that
competed at SemEval-2018 Task 1: “Affect
in Tweets”. Our system uses a simple yet ef-
fective ensemble method which combines sev-
eral neural network components. We partici-
pate in two subtasks for English tweets: EI-reg
and V-reg. For two subtasks, different com-
binations of neural components are examined.
For EI-reg, our system achieves an accuracy of
0.727 in Pearson Correlation Coefficient (all
instances) and an accuracy of 0.555 in Pear-
son Correlation Coefficient (0.5-1). For V-reg,
the achieved accuracy scores are respectively
0.835 and 0.670.

1 Introduction

Sentiment analysis is a research area in the field
of natural language processing. It aims to detect
the sentiment expressed by the author of some
form of textual data and many deep learning ap-
proaches have been successfully exploited (Cam-
bria, 2016). The goal of SemEval-2018 Task 1
“Affect in Tweets” is to automatically determine
the intensity of emotions and intensity of senti-
ment of the tweeters from their tweets (Moham-
mad et al., 2018). All tweets fall into three lan-
guages: English, Arabic and Spanish. We par-
ticipate in two subtasks for English tweets: EI-
reg and V-reg. For EI-reg, all English tweets
are separated into four emotions, anger, fear, joy
and sadness. Every emotion has train, dev and
test datasets. This subtask determines the inten-
sity which is a real-valued score between 0 and
1 of emotion that represents the mental state of
the tweeter. The instances with higher scores cor-
respond to a greater degree of emotion than in-
stances with lower scores. For V-reg, all English
tweets are divided into three datasets: train, dev
and test datasets. It determines the intensity of

sentiment or valence that best represents the men-
tal state of the tweeter a real-valued score between
0 and 1. The instances with higher scores cor-
respond to a greater degree of positive sentiment
than instances with lower scores. Both the two
subtasks are regression tasks.

For these two subtasks, we have adopted sep-
arate ensemble method with existing neural net-
work components (Brueckner and Schulter, 2014;
Kim, 2014; Li and Qian, 2016; Yang et al., 2017)
(see Figure 1). We use BiLSTM-CNN com-
ponent, BiLSTM-Attention component and Deep
BiLSTM-Attention component with different em-
beddings for simple ensemble. In these subtasks,
our final model is just an average of scores pro-
vided by what we select from these single neu-
ral network components. Every emotion or va-
lence employs different ensemble method, so there
are several distinct ensemble methods in the two
subtasks. Experimental results show that our pro-
posed ensemble methods are simple yet effective.

The remainder of the paper is structured as fol-
lows. We provide details of the proposed ensemble
method in Section 2. We present the experimental
result of proposed methods in Section 3. Finally, a
conclusion is drawn in section 4.

2 Methodology

We propose an simple ensemble method of differ-
ent neural network components. We mainly intro-
duce the implementation details of these compo-
nents, including raw tweets preprocessing, lexicon
features and embedding resources we use in these
components, the architecture of these components
and the best parameters of different single com-
ponents. The parameters that can maximize the
Pearson Correlation Coefficient between the pre-
dicted values and real values are chosen to be the
best parameters.

116

Figure 1: The architecture of our system.

2.1 Data Preprocessing

In general, tweet are not always syntactically well-
structured and the language used does not always
strictly adhere to grammatical rules (Barbosa and
Feng, 2010). So we need to preprocess raw tweets
before feature extraction. Firstly, we perform a
few preprocessing steps, such as remove # and
retain the word itself, remove stop words with
nltk.corpus. Then the tweets are transformed into
lowercase. Finally, we utilize TweetTokenizer1 to
process the tweets.

2.2 Feature Extraction

Each tweet is represented as a concatenation of
two different feature vectors, one is lexicon fea-
tures and another is word embedding. In our sys-
tem, each tweet is divided into words, every word
is represented as a d + m dimension vector and
thus each tweet is represented as l(d+m) matrix,
where d is the dimension of word embedding and
m is the dimension of lexicon features. Suppose
each tweet has the same length, so l is the length

1http://www.nltk.org/

of tweet. We utilize a variety of resources for fea-
ture extraction as follows:

1. AFINN: Calculating positive and negative
sentiment scores from the lexicon (Nielsen,
2011).

2. NRC Affect Intensity Lexicon: The NRC
Affect Intensity Lexicon is a list of English
words and their associations with four basic
emotions (anger, fear, sadness, joy) (Moham-
mad, 2017).

3. NRC Emotion Lexicon: The NRC Emo-
tion Lexicon is a list of English words and
their associations with eight basic emotions
(anger, fear, anticipation, trust, surprise, sad-
ness, joy, and disgust) and two sentiments
(negative and positive) (Mohammad and Tur-
ney, 2010).

4. NRC Hashtag Emotion Lexicon: Associa-
tion of words with eight emotions (anger,
fear, anticipation, trust, surprise, sadness, joy,
and disgust) generated automatically from
tweets with emotion-word hashtags (Moham-
mad, 2012).

5. NRC Emoticon Lexicon: Association of
words with positive (negative) sentiment gen-
erated automatically from tweets with emoti-
cons (Kiritchenko et al., 2014; Mohammad
et al., 2013; Zhu et al., 2014).

6. NRC Emoticon Affirmative Context Lexicon
and NRC Emoticon Negated Context Lex-
icon: Association of words with positive
(negative) sentiment in affirmative or negated
contexts generated automatically from tweets
with emoticons (Kiritchenko et al., 2014;
Mohammad et al., 2013; Zhu et al., 2014).

7. NRC Hashtag Affirmative Context Sentiment
Lexicon and NRC Hashtag Negated Context
Sentiment Lexicon: Association of words
with positive (negative) sentiment in affirma-
tive or negated contexts generated automati-
cally from tweets with sentiment-word hash-
tags (Kiritchenko et al., 2014; Mohammad
et al., 2013; Zhu et al., 2014).

8. NRC Hashtag Sentiment Lexicon: Associa-
tion of words with positive (negative) sen-
timent generated automatically from tweets

117

with sentiment-word hashtags (Kiritchenko
et al., 2014; Mohammad et al., 2013; Zhu
et al., 2014).

9. Emoji: This is a manual classification of the
dictionary, in which each emoji has a corre-
sponding polarity value.

10. Sentiwordnet: Sentiwordnet is a lexical re-
source explicitly devised for supporting sen-
timent classification and opinion mining ap-
plications (Baccianella et al., 2010), through
the wordnet entry in the emotional classifica-
tion, and marked each entry belongs to the
positive and negative categories weight size.

2.3 Neural Networks

2.3.1 Embeddings
The final model combines three neural net-
work components as BiLSTM-CNN, BiLSTM-
Attention, and Deep BiLSTM-Attention. Towards
BiLSTM-CNN and BiLSTM-Attention, we use
glove.twitter.27B.200d which contains pre-trained
word vectors with Glove algorithm (Penning-
ton et al., 2014). For Deep BiLSTM-Attention,
different pre-trained word vectors are used,
such as word2vec-twitter-model, GoogleNews-
vectors-negative300, glove.twitter.27B.200d and
glove.840B.300d.

1. word2vec-twitter-model 2: word2vec model
(Mikolov et al., 2013) is a NLP tool launched
by Google in 2013. It features the quantifica-
tion of all words so that words can be quan-
tified to measure the relationship between
them. word2vec-twitter-model is trained on
tweets and the embedding dimension used in
our system is 400.

2. GoogleNews-vectors-negative300 3: Google-
News vectors is trained on Google News cor-
pus. It resembles word2vec-twitter-model
and the embedding dimension is 300.

3. glove.840B.300d 4: Glove is an unsupervised
learning algorithm for obtaining vector rep-
resentations for words. Training is conducted
on aggregated co-occurrences of words from

2http://www.spark.tc/building-a-word2vec-model-with-
twitter-data/

3https://github.com/mmihaltz/word2vec-GoogleNews-
vectors

4https://nlp.stanford.edu/projects/glove/

a global corpus, and the resulting represen-
tations showcase interesting linear substruc-
tures of the word vector space. The embed-
ding dimension used in our system is 300.

4. glove.twitter.27B.200d 4: This word embed-
ding is trained on 2 billion tweets from twit-
ter. It is similar to glove.840B.300d, but the
embedding dimension is 200.

2.3.2 Bidirectional LSTM with CNN
The BiLSTM with CNN first transform tweets into
text matrices, the BiLSTM is applied to these ma-
trices to build new text matrices, CNN is applied
to the output of the BiLSTM to obtain text vectors
for the prediction of emotional intensity. The BiL-
STM with CNN achieves a rather good result on
the task of emotional analysis (He et al., 2017). so
we choose it for our task.

Model Architecture: Embedding vectors are
fed into a BiLSTM network followed by a CNN
layer. The CNN layer consists of one dimensional
convolutional layer and pooling layer where the
number of filters is 256, the window size of the
filter is 3, and the activation function is Relu. The
input and output shape of convolutional layer are
both 3D tensor. The output of the CNN layer is
flattened after max-pooling operation. After the
Flatten layer, two dense layers are stacked and the
activation functions are respectively configured as
Relu and Sigmoid. Also dropout (Srivastava et al.,
2014) is utilized to avoid potential overfitting, it is
used between two dense layers. The reason why
we select Relu is to prevent the vanishing gradi-
ent problem and accelerate the calculation. Since
the task is a regression problem, we put a dense
projection with sigmoid activation to obtain an in-
tensity value between 0 and 1.

Model Training: The network parameters are
learned by minimizing the mean squared error
(MSE) between the real and predicted values of
emotion intensity or valence intensity. We opti-
mize this loss function via Adam that is an algo-
rithm for first-order gradient-based optimization
of stochastic objective functions, based on adap-
tive estimates of lower-order moments (Kingma
and Ba, 2014). Batch size and training epochs
may be different for different emotions and va-
lence. To avoid overfitting issues, we use dropout
in this model. Finally, we apply these three param-
eters for system tuning. In addition, we try vari-
ous optimization algorithms with the same param-

118

EI-reg Anger Fear Joy Sadness
BS Epochs Dp BS Epochs Dp BS Epochs Dp BS Epochs Dp

BiLSTM CNN+GT 16 6 0.5 32 2 0.5 8 4 0.5 32 5 0.5
BiLSTM Attention+GT 32 3 0.5 32 3 0.5 8 7 0.5 32 4 0.5
Deep BiLSTM Attention 32 2 0.3 8 7 0.3 16 9 0.1 16 5 0.6

Table 1: The best parameters of EI-reg.

V-reg Valence
BS Epochs Dp

BiLSTM CNN+GT 8 5 0.5
BiLSTM Attention+GT 8 10 0.6

Deep BiLSTM Attention+WT 16 8 0.5
Deep BiLSTM Attention+GN 32 10 0.5
Deep BiLSTM Attention+GL 8 5 0.2
Deep BiLSTM Attention+GT 16 8 0.2

Table 2: The best parameters of V-reg.

eters, such as SGD, RMSprop, Adagrad, Adam and
Adamax, and find that Adam works best. So we fix
the optimization algorithm with Adam (Kingma
and Ba, 2014) and tune the parameters, the best
configurations for EI-reg and V-reg are respec-
tively given in Tables 2.3.1 and 2.3.1, where BS
is batch size, Dp is dropout.

2.3.3 Bidirectional LSTM with Attention
Bidirectional LSTM with Attention achieves a
good result on the SemEval-2017 Task 4 “Senti-
ment Analysis in Twitter” (Baziotis et al., 2017),
so we exploit Bidirectional LSTM with Attention
model and Deep Bidirectional LSTM with Atten-
tion model for our tasks.

Model Architecture: For Bidirectional LSTM
with attention model, embedding vectors are fed
into a BiLSTM network followed by an attention
layer (Yang et al., 2017). Not all words contribute
equally to the expression of sentiment in a tweet,
so we use an attention layer to find the importance
of each word in tweet. After the attention layer, it
is consistent with Bidirectional LSTM with CNN
model. The difference between the Bidirectional
LSTM with attention model and its deep version
is that, we use two BiLSTM layers followed by an
attention layer in the deep version.

Model Training: We use the same method to
learn the network parameters. In EI-reg, we use
the same batch size, training epochs and dropout
to train the Deep BiLSTM Attention model with
different pre-training word embeddings in every
emotion, but in V-reg, batch size, training epochs
and dropout are different in Deep BiLSTM Atten-
tion model with different pre-training word em-
beddings. In these models, we also use dropout.

The best parameters of EI-reg for these models are
given in Table 2.3.1 and V-reg’s best parameters
are given in Table 2.3.1.

2.4 Ensemble Methods

Currently, ensembling is a widely used strategy
which combines multiple single components to
improve overall performance, there are many en-
semble methods that have been proposed, such as,
Voting, Blending, Bagging, Boosting, etc 5. In
this system, due to time constraint, we choose a
simple average of the scores provided by different
components, as each single component can predict
emotional intensity or valence intensity. It can be
defined as

Predictionintensity =
n∑

i=1

modeli
n

(1)

where n is the number of neural components.
Modeli represents the prediction results of i-th
component. Suppose three components are ex-
ploited to predict the intensity of anger, and three
prediction values of a same tweet 0.76, 0.72 and
0.7 are suggested, then the final result of this tweet
will be (0.76 + 0.72 + 0.74)/3 = 0.74.

3 Experiments

Dataset train dev test sum
anger 1,701 388 17,939 20,028
fear 2,252 389 17,923 20,564
joy 1,616 290 18,042 19,948

sadness 1,533 397 17,912 19,842
valence 1,181 449 17,874 19,504

Table 3: Statistics of the datasets.

For experiments, we use five datasets from two
different subtasks, These datasets, “EI-reg-En-
anger (anger)”, “EI-reg-En-joy (joy)”, “EI-reg-En-
fear (fear)”, “EI-reg-En-sadness (sadness)” and
“2018-Valence-reg-En (valence)” are downloaded
from SemEval-2018 Task 1 “Affect in Tweets” 6.
As for the EI-reg task dataset format, each tweet

5https://mlwave.com/kaggle-ensembling-guide/
6https://competitions.codalab.org/competitions/17751

119

EI-reg Average Anger Fear Joy Sadness
All 0.5-1 All 0.5-1 All 0.5-1 All 0.5-1 All 0.5-1

Baseline 0.520 0.396 0.526 0.455 0.525 0.302 0.575 0.476 0.453 0.350
BiLSTM CNN+GT - - - - 0.691 0.508 0.701 0.512 0.694 0.507

BiLSTM Attention+GT - - 0.701 0.583 0.715 0.506 0.711 0.513 0.720 0.557
Deep BiLSTM Attention+WT - - 0.697 0.582 0.709 0.507 0.728 0.503 0.704 0.541
Deep BiLSTM Attention+GN - - 0.681 0.557 - - - - 0.698 0.535
Deep BiLSTM Attention+GL - - - - - - - - - -
Deep BiLSTM Attention+GT - - - - - - - - 0.717 0.551

Ensemble 0.727 0.555 0.716 0.607 0.726 0.519 0.736 0.529 0.729 0.565

Table 4: Performance comparisons of models in different emotions, where the best values are marked in bold.

consists of the id, the tweet, the emotion of the
tweet, the emotion intensity and for the V-reg task,
each tweet consists of the id, the tweet, the sen-
timent of the tweet and the sentiment intensity.
All datasets have been divided into train set, dev
set and test set. Test set’s gold labels are given
only after the evaluation period. Statistics of the
datasets are shown in Table 3.

To measure the performance of selected meth-
ods, two submetrics of Pearson Correlation Co-
efficient (PCC) are used. PCC (all instances) is
Pearson correlation for a subset of test data that
includes all tweets. The value varies between -1
and 1. PCC (0.5-1) is the Pearson correlation for a
subset of test data that includes only those tweets
with intensity score greater or equal to 0.5. For
both metrics, a larger value indicate a better pre-
diction accuracy.

For each dataset, we use dev set to select our
ensemble methods. Firstly we run these six com-
ponents on all dev datasets. Then, combine these
results of different components, different combi-
nations of components lead to different results on
dev set. Finally, we select the combination with a
higher score for testing.

Our system is implemented on Keras with a
Tensorflow backend 7. We present the result of
PCC (all instances) and PCC (0.5-1) for each emo-
tion and valence on the test data, shown in Ta-
bles 3 and 3. For simplicity, we denote WT, GN,
GL and GT for the word vectors of word2vec-
twitter-model, GoogleNews-vectors-negative300,
glove.840B.300d and glove.twitter.27B.200d. We
compare the results of our single components, of-
ficial baseline and our ensemble system. Every
emotion and valence adopts different ensemble
methods, the symbol ‘-’ means that the component
is not used in the ensemble method in this emo-
tion or valence. For example, we only use BiL-
STM Attention+GT, Deep BiLSTM Attention+WT

7https://keras.io/

V-reg Valence
All 0.5-1

Baseline 0.585 0.449
BiLSTM CNN+GT - -

BiLSTM Attention+GT - -
Deep BiLSTM Attention+WT 0.825 0.665
Deep BiLSTM Attention+GN 0.820 0.640
Deep BiLSTM Attention+GL 0.822 0.648
Deep BiLSTM Attention+GT 0.825 0.659

Ensemble 0.835 0.670

Table 5: Performance comparisons of models in va-
lence, where the best values are marked in bold.

and Deep BiLSTM Attention+GN these three com-
ponents for ensemble on anger dataset. The rea-
son why we don’t use all the six components for
ensemble is that ensemble does not always have
a good effect, a same component can have dif-
ferent effects on different datasets, either good or
bad. The official result for EI-reg, our average
PCC reaches 0.727 in all instances and 0.555 in
0.5-1 (both ranked 10 out of 48 participants). For
V-reg, the result is 0.835 in all instances (ranked
7 out of 38) and 0.670 in 0.5-1 (ranked 6 out of
38). The average result of baseline for EI-reg is
0.520 and 0.396, for V-reg, the result is 0.585 and
0.449. These results demonstrate that the ensem-
ble approach achieves important improvement in
performance across all the emotions and valence,
and gains the best performance for Anger.

4 Conclusions and Future Works

We have proposed a simple yet effective ensemble
method which integrates various neural compo-
nents to perform the sentiment or emotion analysis
for the tweet. Experimental results reflect that our
method is effective in the prediction tasks of emo-
tional intensity and sentimental intensity. Some
other useful findings can be drawn from the ex-
perimental results: a) The model of integration for
each emotion is different; b) As for lexicon fea-
tures and word embedding, it is important for emo-
tion or sentiment analysis; c) ensemble is not al-

120

ways valid. Also, we have tried data augmentation
considering insufficient training data, however the
effect is not a good.

As for future works, although our ensemble
method has achieved good results, we would want
to examine the multi-task deep learning approach
on these tasks, by which it would predict the dif-
ferent emotional intensity at the same time, and
improve the generalization effect of the prediction
model.

Acknowledgment

This work is partially supported by the National
Natural Science Foundation of China (61562090)
and the Graduate Research Innovation Fund
Project of Yunnan University (YDY17113).

References
Stefano Baccianella, Andrea Esuli, and Fabrizio Sebas-

tiani. 2010. Sentiwordnet 3.0: An enhanced lexical
resource for sentiment analysis and opinion mining.
In International Conference on Language Resources
and Evaluation, Lrec 2010, 17-23 May 2010, Val-
letta, Malta, pages 83–90.

Luciano Barbosa and Junlan Feng. 2010. Robust sen-
timent detection on twitter from biased and noisy
data. In International Conference on Computational
Linguistics: Posters, pages 36–44.

Christos Baziotis, Nikos Pelekis, and Christos Doulk-
eridis. 2017. Datastories at semeval-2017 task 4:
Deep LSTM with attention for message-level and
topic-based sentiment analysis. In Proceedings of
the 10th International Workshop on Semantic Eval-
uation, SemEval@NAACL-HLT 2016, San Diego,
CA, USA, June 16-17, 2016, pages 747–754.

Raymond Brueckner and Bjorn Schulter. 2014. So-
cial signal classification using deep blstm recurrent
neural networks. In IEEE International Conference
on Acoustics, Speech and Signal Processing, pages
4823–4827.

Erik Cambria. 2016. Affective computing and senti-
ment analysis. IEEE Intelligent Systems, 31(2):102–
107.

Yuanye He, Liang-Chih Yu, K. Robert Lai, and Weiyi
Liu. 2017. YZU-NLP at emoint-2017: Determin-
ing emotion intensity using a bi-directional LSTM-
CNN model. In Proceedings of the 8th Workshop
on Computational Approaches to Subjectivity, Senti-
ment and Social Media Analysis, WASSA@EMNLP
2017, Copenhagen, Denmark, September 8, 2017,
pages 238–242.

Yoon Kim. 2014. Convolutional neural networks for
sentence classification. In Proceedings of the 2014

Conference on Empirical Methods in Natural Lan-
guage Processing, EMNLP 2014, October 25-29,
2014, Doha, Qatar, A meeting of SIGDAT, a Special
Interest Group of the ACL, pages 1746–1751.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Svetlana Kiritchenko, Xiaodan Zhu, and Saif M Mo-
hammad. 2014. Sentiment analysis of short in-
formal texts. Journal of Artificial Intelligence Re-
search, 50:723–762.

Dan Li and Jiang Qian. 2016. Text sentiment analysis
based on long short-term memory. In IEEE Interna-
tional Conference on Computer Communication and
the Internet, pages 471–475.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jef-
frey Dean. 2013. Efficient estimation of word
representations in vector space. arXiv preprint
arXiv:1301.3781.

Saif Mohammad, Svetlana Kiritchenko, and Xiaodan
Zhu. 2013. Nrc-canada: Building the state-of-the-
art in sentiment analysis of tweets. In Second Joint
Conference on Lexical and Computational Seman-
tics (* SEM), Volume 2: Proceedings of the Sev-
enth International Workshop on Semantic Evalua-
tion (SemEval 2013), volume 2, pages 321–327.

Saif M Mohammad. 2012. # emotional tweets. In Pro-
ceedings of the First Joint Conference on Lexical
and Computational Semantics-Volume 1: Proceed-
ings of the main conference and the shared task, and
Volume 2: Proceedings of the Sixth International
Workshop on Semantic Evaluation, pages 246–255.
Association for Computational Linguistics.

Saif M Mohammad. 2017. Word affect intensities.
arXiv preprint arXiv:1704.08798.

Saif M. Mohammad, Felipe Bravo-Marquez, Mo-
hammad Salameh, and Svetlana Kiritchenko. 2018.
Semeval-2018 Task 1: Affect in tweets. In Proceed-
ings of International Workshop on Semantic Evalu-
ation (SemEval-2018), New Orleans, LA, USA.

Saif M. Mohammad and Peter D. Turney. 2010. Emo-
tions evoked by common words and phrases: using
mechanical turk to create an emotion lexicon. In
NAACL Hlt 2010 Workshop on Computational Ap-
proaches To Analysis and Generation of Emotion in
Text, pages 26–34.

Finn Årup Nielsen. 2011. A new anew: Evaluation
of a word list for sentiment analysis in microblogs.
In Workshop on’Making Sense of Microposts: Big
things come in small packages, pages 93–98.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. Glove: Global vectors for word
representation. In Conference on Empirical Meth-
ods in Natural Language Processing, pages 1532–
1543.

121

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky,
Ilya Sutskever, and Ruslan Salakhutdinov. 2014.
Dropout: a simple way to prevent neural networks
from overfitting. Journal of Machine Learning Re-
search, 15(1):1929–1958.

Zichao Yang, Diyi Yang, Chris Dyer, Xiaodong He,
Alex Smola, and Eduard Hovy. 2017. Hierarchical
attention networks for document classification. In
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, pages 1480–1489.

Xiaodan Zhu, Svetlana Kiritchenko, and Saif Moham-
mad. 2014. Nrc-canada-2014: Recent improve-
ments in the sentiment analysis of tweets. In Inter-
national Workshop on Semantic Evaluation, pages
443–447.

122

Proceedings of the 12th International Workshop on Semantic Evaluation (SemEval-2018), pages 123–127
New Orleans, Louisiana, June 5–6, 2018. ©2018 Association for Computational Linguistics

LT3 at SemEval-2018 Task 1: A classifier chain to detect emotions in
tweets

Luna De Bruyne, Orphée De Clercq and Véronique Hoste
LT3, Language and Translation Technology Team, Ghent University

Groot-Brittanniëlaan 45, 9000 Ghent, Belgium
{luna.debruyne, orphee.declercq, veronique.hoste}@ugent.be

Abstract

This paper presents an emotion classification
system for English tweets, submitted for the
SemEval shared task on Affect in Tweets, sub-
task 5: Detecting Emotions. The system com-
bines lexicon, n-gram, style, syntactic and se-
mantic features. For this multi-class multi-
label problem, we created a classifier chain.
This is an ensemble of eleven binary classi-
fiers, one for each possible emotion category,
where each model gets the predictions of the
preceding models as additional features. The
predicted labels are combined to get a multi-
label representation of the predictions. Our
system was ranked eleventh among thirty five
participating teams, with a Jaccard accuracy
of 52.0% and macro- and micro-average F1-
scores of 49.3% and 64.0%, respectively.

1 Introduction

Most research in the domain of sentiment analy-
sis focuses on the automatic prediction of polar-
ity or valence in text, but also the detection of
emotions has attracted growing interest in the last
couple of years (Mohammad and Bravo-Marquez,
2017). Although emotion detection is a rather new
research focus in NLP, the study of emotions has
a long history in fields like psychology and neuro-
imaging. Many different frameworks exist, but the
specific emotion approach, in which emotions are
classified as specific discrete categories, predomi-
nates. In a lot of those approaches, some emotions
are considered more basic than others, with Ek-
man’s theory of six basic emotions (joy, sadness,
anger, fear, disgust, and surprise) (Ekman, 1992)
as the most well-known. Another popular theory is
Plutchik’s wheel of emotions (Plutchik, 1980), in
which joy, sadness, anger, fear, disgust, surprise,
trust, and anticipation are considered most basic.

Emotion analysis in NLP makes use of the
frameworks developed by psychologists, mostly

by employing categorical models of (basic) emo-
tions. In traditional emotion classification tasks, a
‘document’ or sentence is classified under one or
more emotion classes (or classified as neutral/no
class when no emotions are present). Such emo-
tion classification systems have been developed
and tested on different kinds of data, including
fairy tales (Alm et al., 2005), newspaper head-
lines (Strapparava and Mihalcea, 2007), chat mes-
sages (e.g. Holzman and Pottenger, 2003; Brooks
et al., 2013), and tweets (e.g. Mohammad, 2012;
Wang et al., 2012). The big advantage of using
tweet datasets is the relative ease with which twit-
ter data can be collected and the possibility of us-
ing hashtags as emotion labels (distant supervision
approach).

For this paper, we used the data that was col-
lected for the SemEval shared task on Affect in
Tweets (Mohammad et al., 2018), a collection of
tweets annotated for eleven emotions: anger, an-
ticipation, disgust, fear, joy, love, optimism, pes-
simism, sadness, surprise, and trust (Mohammad
and Kiritchenko, 2018). We participated in Sub-
task 5: Detecting Emotions (English emotion clas-
sification).

The remainder of this paper is structured as fol-
lows: in Section 2 we describe how we first ana-
lyzed the data in order to get more insight in the
task. Section 3 discusses how the data was pre-
processed and which information sources were ex-
tracted. Next, in Section 4 the actual experimental
setup and results are discussed and we end this pa-
per with a conclusion in Section 5.

2 Data analysis

We first analyzed the training data provided by the
task organizers, which consisted of 6838 tweets.
We found that disgust, anger and joy were present
in the largest numbers (present in about 35 to 40%

123

Figure 1: Proportion of training tweets in which the
specified emotion is present (%).

Figure 2: Proportion of training tweets in which a spe-
cific amount of emotion classes is present (%).

of the tweets), while surprise and trust only occur
in around 5% of the tweets (Figure 1). Only three
percent of the tweets was annotated as neutral.

As can be derived from Figure 2, most tweets
contained two or three emotions (together 70%),
and in only about 1% of the tweets five or more
(max six) emotions were present. We also cal-
culated the correlations and found ten emotion
pairs that were moderately or highly correlated
(‖phi‖ ≥ 0.30 for moderate correlation, ‖phi‖ ≥
0.50 for high correlation, according to Cohen’s
conventions on effect size (Cohen, 1988)). The
correlated pairs are shown in Table 1 and suggest
that the classification performance can be boosted
when correlations between emotion categories are
implemented in the model.

In order to get more insight into the data, we re-
annotated a subset of 500 tweets from the training
set. In Table 2, inter-annotator agreement (IAA)
scores per emotion class between the gold labels
and our annotations are presented. Except for
anger and joy these scores are rather low. Overall,
we assigned less emotion classes to a tweet than
the official annotators. We often disagreed with
the gold labels and had the feeling that the anno-

Pair phi
anger - joy -0.44
anger - optim. -0.37
disg. - optim. -0.41
joy - disg. -0.46
joy - sadn. -0.33
surpr. - pessim. -0.40

Pair phi
anger - disg. 0.68
joy - love 0.40
joy - optim. 0.52
sadn. - pessim. 0.30

Table 1: Phi coefficients for moderate or high negative
(left) and positive (right) correlations between emotion
pairs.

Emotion Kappa Emotion Kappa
Anger 0.678 Optimism 0.436
Anticipation 0.259 Pessimism 0.124
Disgust 0.132 Sadness 0.537
Fear 0.399 Surprise 0.276
Joy 0.717 Trust 0.367
Love 0.470

Table 2: IAA (Kappa) per emotion class based on 500
re-annotated instances.

tators of the official labels focused too much on
lexical clues instead of keeping the context and the
perspective of the writer of the tweet in mind. This
leads us to presume that the threshold to assign an
emotion label to a tweet when two out of seven
annotators agreed (Mohammad and Kiritchenko,
2018) might have been a bit too generous.

We further noticed that some tweets appeared
twice in the data set, but not completely identi-
cally: we suspect that one of them was the original
tweet with emotion hashtag and the other one with
the hashtag removed. An example:

(1) a. Whatever you decide to do make sure it
makes you #happy.

b. Whatever you decide to do make sure it
makes you .

Since labels differed depending on the presence
or absence of the emotion hashtag, we decided to
keep both variants in our training set.

3 Preprocessing & Feature Extraction

3.1 Preprocessing
While we did not remove the ‘almost identical’
tweets from the data set, there were also some
tweets in the training set that were completely
identical but had been assigned other emotion la-
bels. For those tweets, we took the majority class
for each binary emotion category, and removed
all other instances. This reduced our training set
from 6838 to 6782 tweets. No duplicates were
present in the development set, so the amount of

124

886 tweets was preserved. In the updated training
set, as well as in the development and test set, all
user names were replaced with the generic @ID.

All tweets were processed with Weka (Witten
et al., 2016) using the Affective Tweets pack-
age (Mohammad and Bravo-Marquez, 2017), in
order to extract lexicon and word embedding fea-
tures. We used the default preprocessing set-
tings for each filter. For the other features, we
performed word and sentence tokenization (us-
ing NLTK), stemming (using spaCy), lowercas-
ing, and POS-tagging (simple and detailed, cor-
responding to spaCy’s POS and Tag function).

3.2 Feature extraction

For our supervised classification system, we em-
ployed features that measure different aspects of
the tweet. These can be subsumed under five dif-
ferent categories: lexicon features (see Table 3 for
an overview), n-gram features (binary, n equal to
3, 4 and 5 for characters and n equal to 1 or 2 for
tokens), and various style, syntactic and semantic
features (see Table 4).

Regarding the latter category, both features
from traditional and distributional semantics were
integrated. We first took the synset depth (dis-
tance to root) of all content words (calculated
with WordNet (Miller, 1995)) and averaged the
scores to get a mean synset depth for the tweet.
Furthermore, we included two types of features
from distributional semantics, namely word em-
beddings and word clusters. The word embed-
dings were extracted with Weka Affective Tweets,
using pre-trained embeddings from 10 million
tweets taken from the Edinburgh Twitter Cor-
pus (Petrovic et al., 2010). For the word clusters,
we downloaded a subset of around 1.5M tweets
from the SemEval 2018 AIT DISC corpus (Mo-
hammad et al., 2018). We first created word em-
beddings with word2vec using both skipgram and
continuous bow and afterwards applied k-means
clustering on the resulting word vectors. We ex-
perimented with various cluster sizes (800 of size
100, 1000 of size 100 and 800 of size 300). These
clusters were implemented as binary features.

4 Experiments & Results

4.1 Baseline & Binary Experiments

We trained different models on the training set and
tested them on the development set, using scikit-
learn (Pedregosa et al., 2011). For the baseline ex-

Lexicon Type
MPQA polarity
Bing Liu polarity
AFINN polarity
Sentiment140 polarity
NRC Hashtag Sentiment polarity
NRC Word-Emotion polarity + Plutchik emotions
NRC-10 Expanded polarity + Plutchik emotions
NRC Hashtag Emotion Plutchik emotions
SentiWordNet polarity
Emoticons polarity
Sentistrength polarity sentiment strengths
Warinner et al. 2013 valence, arousal, dominance

Table 3: Lexicons used for feature extraction.

Style Syntax Semantics
avg word/sent. length POS n-grams synset depth
words and sents POS freq. embeddings
capitals POS 1st token clusters
punct. marks presence imp.
non-standard words presence fut.
connectives

Table 4: Style, syntactic and semantic features.

periments, we used an SVM classifier with linear
kernel (LinearSVC) and used the lexicon features
from the Weka Affective Tweets package. The re-
sults for each binary classifier are shown in Table
5 (second column). Combining the predictions of
these eleven binary classifiers resulted in a jaccard
accuracy of 42.7%.

Before optimizing the separate classifiers, we
took a more detailed look at the lexicon features
and the clusters to assess whether it is beneficial
to use only a part of the lexicons (e.g. only the
emotion lexicons) or whether it is better to use
all lexicons (even polarity lexicons). We found
that the combination of all lexicons (including
the valence-arousal-dominance lexicon of War-
riner et al. (2013)) gave the highest performance.
As regards the clusters, we tried all cluster types
on each emotion category and picked the cluster
that gave the highest performance on that particu-
lar category.

For every emotion category, we tested different
classifiers on different combinations of features.
The classifiers we used, were SVM, SGD (linear
SVM with stochastic gradient descent learning),
Logistic Regression, and Random Forest. Table
5 shows the F1-scores (in bold) on the positive
class for the best performing classifiers and feature
combinations, which are significantly higher than
the baseline results. We joined the predictions of
these optimized binary classifiers, and achieved a
jaccard accuracy of 47.7%.

125

BL Optimized
Emotion F1 Classifier Features F1
Anger 0.67 SGD all features 0.73

except clusters
Anticip. 0.00 SGD all features 0.30
Disgust 0.56 Log. R. lexicons, 0.67

embeddings,
clusters

Fear 0.62 Log. R. lexicons, 0.69
embeddings,
n-grams,
clusters

Joy 0.75 Log. R. lexicons, 0.80
embeddings,
n-grams,
puncts,
pos n-grams,
pos frequencies,
clusters

Love 0.29 Log. R. all features 0.55
Optim. 0.59 SGD all features 0.68
Pessim. 0.04 SGD lexicons, 0.20

embeddings,
clusters

Sadness 0.52 Log. R. all features 0.59
Surprise 0.00 SGD all features 0.35

except clusters
Trust 0.00 SGD lexicons 0.12

Table 5: F1-scores on the positive class for the binary
classifiers in the baseline (BL) setup (italics) and with
the optimal classifier and feature sets (in bold)

.

4.2 Classifier Chain

Because the emotion categories are highly corre-
lated (see Section 2), we envisaged to implement
these relations in the model by using a classifier
chain. We combined the best performing classifier
per emotion category in a chain that passes pre-
dicted labels on to the next classifiers. We ordered
the classifiers by performance on the positive class
F1-score on the baseline (the emotion that is eas-
iest to predict first, the emotion that is the most
difficult to predict last). On the development set,
this classifier chain approach led to a jaccard accu-
racy of 52.37%, which is significantly higher than
the score without classifier chain (47.7%, see Sec-
tion 4.1).

In our final model, the training and develop-
ment data were joined, resulting in a combined
training set of 7668 tweets. During the evalua-
tion period, we achieved 52.0% jaccard accuracy,
64.0% micro-avg F1-score and 49.3% macro-avg
F1-score on the held-out test set (see Table 6).

4.3 Discussion

As can be derived from Table 7 the number of false
positives is rather low for all emotion classes (be-

Evaluation jaccard micro F1 macro F1
dev set 0.524 0.644 0.478
held-out test set 0.520 0.640 0.493

Table 6: Jaccard accuracy, micro averaged F1-score
and macro averaged F1-score of the optimized model
on the development and held-out test set.

P P
G 0 1 G 0 1

anger 0 0.72 0.28 optim. 0 0.65 0.35
1 0.17 0.83 1 0.16 0.84

antic. 0 0.89 0.11 pess. 0 0.98 0.02
1 0.68 0.32 1 0.86 0.14

disg. 0 0.75 0.25 sadn. 0 0.91 0.09
1 0.21 0.79 1 0.46 0.54

fear 0 0.97 0.03 surpr. 0 >0.99 <0.01
1 0.42 0.58 1 0.98 0.02

joy 0 0.89 0.11 trust 0 0.94 0.06
1 0.20 0.80 1 0.82 0.18

love 0 0.95 0.05
1 0.52 0.48

Table 7: Confusion matrices for the results on the held
out test set. P = predicted labels; G = gold labels.

low 20% for most emotions). The model had most
trouble with recognizing positive instances of sur-
prise, pessimism, and trust, but also love and an-
ticipation were more challenging. For these cate-
gories, the false negative rate was thus very high.
We assume that these bad results are mostly due
to a lack of sufficient training data for these cate-
gories.

We evaluated all features by computing the
ANOVA F-values, and extracted the hundred most
predictive features for each emotion category. For
all emotions, the top 100 features consisted exclu-
sively of lexical information. In none of the emo-
tion categories, style or syntactic features occurred
in this top 100. However, features regarding la-
bels of preceding classifiers belonged to the most
predictive features for all emotions except for op-
timism and surprise.

5 Conclusion

Our emotion classification system for English
tweets achieved 52.0% jaccard accuracy on the
held-out test set. We started from binary classi-
fiers which we optimized for each emotion cate-
gory separately, and combined them in a classifier
chain. We proved that passing on labels from pre-
viously predicted emotions categories improves
the performance significantly. For future work,
it would be interesting to investigate the model’s
performance on other datasets than twitter data.

126

References
Cecilia Ovesdotter Alm, Dan Roth, and Richard

Sproat. 2005. Emotions from text: machine learning
for text-based emotion prediction. In Proceedings of
the conference on human language technology and
empirical methods in natural language processing,
pages 579–586. Association for Computational Lin-
guistics.

Michael Brooks, Katie Kuksenok, Megan K Torkild-
son, Daniel Perry, John J Robinson, Taylor J Scott,
Ona Anicello, Ariana Zukowski, Paul Harris, and
Cecilia R Aragon. 2013. Statistical affect detec-
tion in collaborative chat. In Proceedings of the
2013 conference on Computer supported coopera-
tive work, pages 317–328. ACM.

Jacob Cohen. 1988. Statistical power analysis for the
behavioral sciences . hilsdale. NJ: Lawrence Earl-
baum Associates, 2.

Paul Ekman. 1992. An argument for basic emotions.
Cognition & emotion, 6(3-4):169–200.

Lars E Holzman and William M Pottenger. 2003. Clas-
sification of emotions in internet chat: An applica-
tion of machine learning using speech phonemes.
Technical report, Leigh University.

George A Miller. 1995. Wordnet: a lexical database for
english. Communications of the ACM, 38(11):39–
41.

Saif Mohammad and Felipe Bravo-Marquez. 2017.
Emotion intensities in tweets. In Proceedings of the
6th Joint Conference on Lexical and Computational
Semantics, *SEM @ACM 2017, Vancouver, Canada,
August 3-4, 2017, pages 65–77.

Saif M Mohammad. 2012. # emotional tweets. In Pro-
ceedings of the First Joint Conference on Lexical
and Computational Semantics-Volume 1: Proceed-
ings of the main conference and the shared task, and
Volume 2: Proceedings of the Sixth International
Workshop on Semantic Evaluation, pages 246–255.
Association for Computational Linguistics.

Saif M. Mohammad and Felipe Bravo-Marquez. 2017.
Wassa-2017 Shared Task on Emotion Intensity. In
Proceedings of the 8th Workshop on Computational
Approaches to Subjectivity, Sentiment and Social
Media Analysis (WASSA-2017), Copenhagen, Den-
mark.

Saif M. Mohammad, Felipe Bravo-Marquez, Mo-
hammad Salameh, and Svetlana Kiritchenko. 2018.
Semeval-2018 Task 1: Affect in tweets. In Proceed-
ings of International Workshop on Semantic Evalu-
ation (SemEval-2018), New Orleans, LA, USA.

Saif M. Mohammad and Svetlana Kiritchenko. 2018.
Understanding emotions: A dataset of tweets to
study interactions between affect categories. In
Proceedings of the 11th Edition of the Language
Resources and Evaluation Conference, Miyazaki,
Japan.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Pretten-
hofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Pas-
sos, D. Cournapeau, M. Brucher, M. Perrot, and
E. Duchesnay. 2011. Scikit-learn: Machine learning
in Python. Journal of Machine Learning Research,
12:2825–2830.

Sasa Petrovic, Miles Osborne, and Victor Lavrenko.
2010. The edinburgh twitter corpus. In Proceedings
of the NAACL HLT 2010 Workshop on Computa-
tional Linguistics in a World of Social Media, pages
25–26. Association for Computational Linguistics.

Robert Plutchik. 1980. A general psychoevolutionary
theory of emotion. In Robert Plutchik and Henry
Kellerman, editors, Emotion: Theory, research, and
experience: Vol. 1. Theories of emotion, pages 3–33.
Academic Press, New York.

Carlo Strapparava and Rada Mihalcea. 2007. Semeval-
2007 task 14: Affective text. In Proceedings of
the 4th International Workshop on Semantic Evalu-
ations, pages 70–74. Association for Computational
Linguistics.

Wenbo Wang, Lu Chen, Krishnaprasad Thirunarayan,
and Amit P Sheth. 2012. Harnessing twitter ”big
data” for automatic emotion identification. In Pro-
ceedings of the 2012 ASE/IEEE international con-
ference on social computing and 2012 ASE/IEEE
international conference on privacy, security, risk
and trust, SOCIALCOM-PASSAT’12, pages 587–
592, Washington, DC. IEEE Computer Society.

Amy Beth Warriner, Victor Kuperman, and Marc Brys-
baert. 2013. Norms of valence, arousal, and dom-
inance for 13,915 english lemmas. Behavior Re-
search Methods, 45(4):1191–1207.

Ian H Witten, Eibe Frank, Mark A Hall, and Christo-
pher J Pal. 2016. Data Mining: Practical machine
learning tools and techniques. Morgan Kaufmann.

127

Proceedings of the 12th International Workshop on Semantic Evaluation (SemEval-2018), pages 128–132
New Orleans, Louisiana, June 5–6, 2018. ©2018 Association for Computational Linguistics

SINAI at SemEval-2018 Task 1: Emotion Recognition in Tweets

Flor Miriam Plaza-del-Arco, Salud Marı́a Jiménez-Zafra,
M. Teresa Martı́n-Valdivia, L. Alfonso Ureña-López

Department of Computer Science, Advanced Studies Center in ICT (CEATIC)
Universidad de Jaén, Campus Las Lagunillas, 23071, Jaén, Spain
{fmplaza, sjzafra, maite, laurena}@ujaen.es

Abstract

Emotion classification is a new task that com-
bines several disciplines including Artificial
Intelligence and Psychology, although Natural
Language Processing is perhaps the most cha-
llenging area. In this paper, we describe our
participation in SemEval-2018 Task1: Affect
in Tweets. In particular, we have participated
in EI-oc, EI-reg and E-c subtasks for English
and Spanish languages.

1. Introduction

Emotions are playing a significant role in the ef-
fective communication of people. In fact, some-
times, emotional intelligence is more important
than cognitive intelligence for successful interac-
tion (Pantic et al., 2005). Therefore, affective com-
puting is a key element to the advancement of Arti-
ficial Intelligence. The basic task of affective com-
puting is emotion recognition. This task consists
of identifying a set of emotions in a document.

The identification of emotions in texts has multi-
ple benefits in different areas, such as psychology
to detect some psychological disorder like depres-
sion (Cherry et al., 2012), e-learning to improve
student motivation (Suero Montero and Suhonen,
2014) or business intelligence to know the prefe-
rences of consumers (Cambria, 2016).

Currently, more and more people express their
emotions on social media, such as Twitter or Fa-
cebook. Therefore, the role of emotion in social
media is becoming more important for the resear-
chers in affective computing.

In this paper, we present the different systems we
developed as part of our participation in SemEval-
2018 Task 1: Affect in Tweets (Mohammad et al.,
2018). We have participated in EI-oc, EI-reg and

E-c subtasks for English and Spanish. Below, we
briefly describe these subtasks:

EI-oc is an emotion intensity ordinal classi-
fication task. Given a tweet and an emotion
E, it consists of classifying the tweet into one
of four ordinal classes of intensity of E that
best represents the mental state of the twee-
ter. Separate datasets are provided for anger,
fear, joy, and sadness emotions.

EI-reg is an emotion intensity regression
task. Given a tweet and an emotion E, it con-
sists of determining the intensity of E that
best represents the mental state of the tweeter.
The intensity of E is a real-valued score bet-
ween 0 (least emotion) and 1 (most emotion).
Separate datasets are provided for anger, fear,
joy, and sadness emotions.

E-c is an emotion multi-classification task.
Given a tweet, it consists of classifying it as
’neutral’ or ’no emotion’ or as one, or more,
of eleven given emotions (anger, anticipation,
disgust, fear, joy, love, optimism, pessimism,
sadness, surprise, trust) that best represent the
mental state of the tweeter.

The rest of the paper is organized as follows. In
Section 2 we explain the data used in our methods.
Section 3 describes the resources used by our sys-
tems. Section 4 presents the details of the proposed
systems. Section 5 displays the results and analy-
ses them. We conclude in Section 6 with remarks
on future work.

2. Data

To run our experiments, we used the datasets pro-
vided by the task organizers (Mohammad et al.,
2018) as follows. During pre-evaluation period,

128

we trained our models on the train set, and eva-
luated our different approaches on the dev set. Du-
ring evaluation period, we trained our models on
the train and dev sets, and tested the model on the
test set. Table 1 shows the number of tweets for
each language and subtask dataset.

Subtask-language train dev test Total
EI-oc-es 4544 793 2616 7953
EI-oc-en 7102 1465 4070 12637
EI-reg-es 4544 793 2616 7953
EI-reg-en 7102 1464 71816 80382

E-c-es 7561 679 2854 11064
E-c-en 6838 886 3259 10983

Table 1: Number of tweets for each language and sub-
task dataset

3. Resources

For the development of the task, we used different
lexicons that we explain in detail below.

Wordnet-Affect (WNA) (Strapparava et al.,
2004). This resource is an extension of Word-
Net Domains. WNA provides a set of En-
glish emotional words organized in a tree.
The leaf nodes represent specific emotions
that are grouped into general categories (pa-
rent nodes). For example, anger, hate and dis-
like belong to the overall emotion general-
dislike. However, the emotions of WNA are
not the same as the emotions of the SemEval
subtasks. For this reason, each overall emo-
tion of WNA has been mapped with SemEval
subtasks emotions (see Appendix A, Table 8
and Table 9).

In order to use this resource in Spanish, we
have employed the lexical disambiguator Ba-
belfy (Moro et al., 2014) to obtain the corres-
ponding BalbelNet synset id of a term. Next,
we have used the BabelNet API (Navigli and
Ponzetto, 2012) to obtain a corresponden-
ce between the BalbelNet synset id and the
WordNet synset id. WNA includes a subset of
appropriate synsets of WordNet 1.6 to repre-
sent affective concepts. However, the Word-
Net synsets id obtained with BabelNet API
corresponds to the 3.0 version of WordNet.
Therefore, we have obtained the equivalent
synset to the 3.0 version in the 1.6 version.
With this, using the synset of the 1.6 version

of WordNet, we can map directly the associa-
ted emotion and confident value from WNA.

Spanish Emotion Lexicon (SEL) (Sidorov
et al., 2012). It includes 2,036 Spanish words
that are associated with the measure of Proba-
bility Factor of Affective use (PFA) with res-
pect to at least one basic emotion: joy, anger,
fear, sadness, surprise, and disgust. The hig-
her the value of the PFA, the more probable
the association of the word with the emotion
is.

NRC Affect Intensity Lexicon (Moham-
mad, 2017). It has almost 6,000 entries in En-
glish. Each of them has an intensity score as-
sociated to one of the following basic emo-
tions: anger, fear, sadness and joy. The sco-
res range from 0 to 1, where 1 indicates that
the word has a high association to the emo-
tion and 0 that the word has a low association
to the emotion. However, this resource is not
in Spanish. For this reason, we have adapted
it to Spanish in the following way. We have
translated English terms to Spanish and we
have selected the maximum value of intensity
if the translation of some terms is the same.

NRC Word-Emotion Association Lexicon
(EmoLex) (Mohammad and Turney, 2010).
This lexicon has a list of English words asso-
ciated to one or more of the following emo-
tions: anger, fear, anticipation, trust, surpri-
se, sadness, joy. Moreover, the lexicon is also
available for more than one hundred langua-
ges (including Spanish). All these versions
have been generated by translating the En-
glish terms using Google Translate.

4. System description

In this section we describe the systems developed
for the subtasks EI-oc, EI-reg and E-c.

In first place, we preprocessed the corpus of tweets
provided for each subtask and language (English
and Spanish). We applied the following preproces-
sing steps: the documents were tokenized using
NLTK TweetTokenizer1, stemming was perfor-
med using NLTK Snowball stemmer2, stopwords

1http://www.nltk.org/api/nltk.
tokenize.html

2http://www.nltk.org/_modules/nltk/

129

were removed (only for English), and all letters
were converted to lower-case.

In relation to the resources, we have tested several
combinations. However, for the final SemEval sys-
tems we have used the best systems obtained du-
ring the development phase. For EI-oc and EI-reg
subtasks in Spanish, we used SEL, NRC Affect In-
tensity and WNA lexicons adapted to the emotions
of these subtasks. On the other hand, for English,
we used NRC Affect Intensity and WNA lexicons
adapted to the emotions of the EI-oc and EI-reg
subtasks. Regarding to subtask E-c, for Spanish,
we used SEL, EmoLex Spanish version and WNA
lexicons adapted to the emotions of this subtask.
However, for English, we used Emolex and WNA
lexicon adapted to the emotions of the E-c subtask.

Next, it is described the methodology used for
each subtask:

Subtask EI-oc. To perform the classification,
we checked the presence of lexicon terms in
the tweet and then we added the intensity va-
lue of these words grouping them by the emo-
tional category (anger, fear, sadness and joy).
The result is a vector of four values for each
lexicon. Moreover, each tweet is represented
as a vector of unigrams using the TF-IDF
weighting scheme. The union of the lexicon
vectors and the TF-IDF representation of the
tweet are used as features for the classifica-
tion using the SVM algorithm. We selected
the SVM formulation, known as C-SVC, the
value of the C parameter was 1.0 and the ker-
nel chosen was the linear.

Subtask EI-reg. In this case, we checked
the presence of lexicon terms in the tweet
and then we computed the sum, the average
and the maximum of the intensity value of
the words of the tweet grouping them by the
emotional category (anger, fear, sadness and
joy). The result is a vector of twelve values
for each lexicon. The union of the lexicon
vectors and the TF-IDF representation of the
tweet are used as features for the classifica-
tion using the SVM algorithm with the same
configuration as that used in subtask EI-oc.

Subtask E-c. In this subtask, we identified
the presence of lexicon terms in the tweet
and we assigned 1 as confidence value (CV).

stem/snowball.html

Then, we summed the CV of the words who-
se emotion is the same obtaining a vector of
emotions for each lexicon. The union of these
vectors and the TF-IDF representation of the
tweet are used as features for the classifica-
tion using the Random Forest algorithm with
25 as number of trees.

5. Analysis of results

The official competition metric to evaluate the sys-
tems in EI-reg and EI-oc subtasks is the Pearson
Correlation Coefficient (PCC) between semantic
similarity scores of machine assigned and human
judgments. In the case of the E-c subtask, systems
are evaluated by calculating multi-label accuracy.
Since this is a multi-label classification task, each
tweet can have one or more gold emotion labels,
and one or more predicted emotion labels. Multi-
label accuracy is defined as the size of the intersec-
tion of the predicted and gold label sets divided by
the size of their union. This measure is calculated
for each tweet, and then is averaged over all the
tweets in the dataset.

The results of our participation in the three sub-
tasks and those of the teams that are in the first and
the last position can be seen in Tables 2, 3, 4, 5, 6
and 7. It should be noted that the results of Spanish
subtasks are lower than those obtained for English.
Another important issue is that the participation in
Spanish subtasks is lower than the participation in
English subtasks. These facts are due to most of
the works and resources for textual emotion mi-
ning are in English (Yadollahi et al., 2017).

In relation to our results, in most subtasks we ob-
tained the lowest correlation on anger emotion and
the best correlation on joy emotion. On the con-
trary, in WASSA-2017 Shared Task on Emotion
Intensity (Mohammad and Bravo-Marquez, 2017),
most of the systems performed better on anger
emotion and worse on fear and sadness emotions.
In this competition, it was found that despite using
deep learning techniques, training data, and large
amounts of unlabeled data, the best systems inclu-
ded features from affect lexicons. Given that, we
plan to analyze the recall of the lexicons used in
our experiments and to explore new lexicons in or-
der to improve the classification.

On the other hand, it should be noted that we
achieved higher ranking positions for Spanish sub-

130

tasks. In particular, our best participation has been
in the E-c subtask. An important difference found
between the classification in both languages was
that taking stopwords into consideration contribu-
tes to the emotion classification for Spanish while
the opposite occurs for English. Therefore, we will
further study this issue in order to incorporate an
specific treatment to those stopwords that can mo-
dify the meaning of a sentence, such as negators,
intensifiers and diminishers.

(r) Team name
Pearson

macro-avg anger fear joy sadness
(1) SeerNet 0.799 0.827 0.779 0.792 0.798
(39) SINAI 0.342 0.263 0.361 0.444 0.300
(48) TweetGroup -0.016 -0.043 0.003 -0.011 -0.014

Table 2: Results of subtask EI-reg in English language

(r) Team name Pearson
macro-avg anger fear joy sadness

(1) AffectThor 0.738 0.676 0.776 0.753 0.746
(10) SINAI 0.321 0.119 0.382 0.360 0.423
(16) AIT2018 Organizers -0.012 -0.056 0.004 0.018 -0.014

Table 3: Results of subtask EI-reg in Spanish language

(r) Team name Pearson
macro-avg anger fear joy sadness

(1) SeerNet 0.695 0.706 0.637 0.720 0.717
(24) SINAI 0.449 0.447 0.377 0.519 0.455
(39) TweetGroup -0.021 0.015 -0.017 -0.029 -0.054

Table 4: Results of subtask EI-oc in English language

6. Conclusions

In this paper, we have presented the systems de-
veloped for our participation in 3 subtasks (EI-oc,
EI-reg, E-c) of SemEval-2018 Task 1: Affect in
Tweets. We have addressed these subtasks in two
of the three available languages, English and Spa-
nish. Overall, we have obtained better results in
Spanish subtasks than in English subtasks. In futu-
re works, we plan to continue working on emotion
recognition in Spanish because we have obser-
ved that the participation in this language is very
low, although it is the second most spoken langua-
ge. Our next study will focus on exploring mo-
re affect lexicons because in WASSA-2017 Sha-
red Task on Emotion Intensity (Mohammad and
Bravo-Marquez, 2017), it was demonstrated that
using features from affect lexicons is beneficial for
this task. Moreover, we will study the use of stop-
words in Spanish because in the development pha-
se it was observed that stopwords contribute to the
emotion classification.

(r) Team name Pearson
macro-avg anger fear joy sadness

(1) AffectThor 0.664 0.606 0.706 0.667 0.667
(7) SINAI 0.459 0.378 0.496 0.510 0.453
(16) AIT2018 Organizers -0.022 0.011 -0.069 -0.005 -0.027

Table 5: Results of subtask EI-oc in Spanish language

(r) Team Name accuracy
(1) NTU-SLP 0.588
(25) SINAI 0.394

(35) emotion17 0.023

Table 6: Results of subtask E-c in English Language

(r) Team Name accuracy
(1) MILAB SNU 0.469

(5) SINAI 0.318
(14) TeamCEN 0.050

Table 7: Results of subtask E-c in Spanish Language

Acknowledgements

This work has been partially supported by a grant
from the Ministerio de Educación Cultura y De-
porte (MECD - scholarship FPU014/00983), Fon-
do Europeo de Desarrollo Regional (FEDER) and
REDES project (TIN2015-65136-C2-1-R) from
the Spanish Government.

References

Erik Cambria. 2016. Affective computing and senti-
ment analysis. IEEE Intelligent Systems, 31(2):102–
107.

Colin Cherry, Saif M Mohammad, and Berry
De Bruijn. 2012. Binary classifiers and latent se-
quence models for emotion detection in suicide notes.
Biomedical informatics insights, 5(Suppl 1):147.

Saif M Mohammad. 2017. Word affect intensities. ar-
Xiv preprint arXiv:1704.08798.

Saif M Mohammad and Felipe Bravo-Marquez. 2017.
Wassa-2017 shared task on emotion intensity. arXiv
preprint arXiv:1708.03700.

Saif M. Mohammad, Felipe Bravo-Marquez, Moham-
mad Salameh, and Svetlana Kiritchenko. 2018.
Semeval-2018 Task 1: Affect in tweets. In Procee-
dings of International Workshop on Semantic Evalua-
tion (SemEval-2018), New Orleans, LA, USA.

Saif M Mohammad and Peter D Turney. 2010. Emo-
tions evoked by common words and phrases: Using me-
chanical turk to create an emotion lexicon. In Procee-
dings of the NAACL HLT 2010 workshop on compu-
tational approaches to analysis and generation of emo-
tion in text, pages 26–34. Association for Computatio-
nal Linguistics.

131

Andrea Moro, Alessandro Raganato, and Roberto Na-
vigli. 2014. Entity linking meets word sense disambi-
guation: a unified approach. Transactions of the Asso-
ciation for Computational Linguistics, 2:231–244.

Roberto Navigli and Simone Paolo Ponzetto. 2012.
Babelnet: The automatic construction, evaluation and
application of a wide-coverage multilingual semantic
network. Artificial Intelligence, 193:217–250.

Maja Pantic, Nicu Sebe, Jeffrey F Cohn, and Thomas
Huang. 2005. Affective multimodal human-computer
interaction. In Proceedings of the 13th annual ACM in-
ternational conference on Multimedia, pages 669–676.
ACM.

Grigori Sidorov, Sabino Miranda-Jiménez, Francis-
co Viveros-Jiménez, Alexander Gelbukh, Noé Castro-
Sánchez, Francisco Velásquez, Ismael Dı́az-Rangel,
Sergio Suárez-Guerra, Alejandro Treviño, and Juan
Gordon. 2012. Empirical study of machine learning
based approach for opinion mining in tweets. In Mexi-
can international conference on Artificial intelligence,
pages 1–14. Springer.

Carlo Strapparava, Alessandro Valitutti, et al. 2004.
Wordnet affect: an affective extension of wordnet. In
Lrec, volume 4, pages 1083–1086. Citeseer.

Calkin Suero Montero and Jarkko Suhonen. 2014.
Emotion analysis meets learning analytics: online lear-
ner profiling beyond numerical data. In Proceedings of
the 14th Koli calling international conference on com-
puting education research, pages 165–169. ACM.

Ali Yadollahi, Ameneh Gholipour Shahraki, and Os-
mar R Zaiane. 2017. Current state of text sentiment
analysis from opinion to emotion mining. ACM Com-
puting Surveys (CSUR), 50(2):25.

A. Mapping SemEval emotions

SemEval emotion WNA emotion

Sadness
apathy, pensiveness, gravity,
compassion, sadness, thing

Anger
despair, ingratitude, general-
dislike

Fear

ambiguous-fear, ambiguous-
expectation, ambiguos-
agitation, positive-expectation,
daze, shame, anxiety, negative-
fear

Joy

humility, surprise, levity,
positive-fear, neutral-unconcern,
gratitude, fearlessness, affec-
tion, self-pride, enthusiasm,
positive-hope, calmness, love,
liking, joy

Table 8: Mapping of the general emotion of WordNet-
Affect to SemEval emotion subtask EI-oc and EI-reg

SemEval emotion WNA emotion

Sadness
pensiveness, compassion, sad-
ness

Anger

Fear
ambiguous-fear, gravity, daze,
shame, anxiety, negative-fear

Joy
levity, positive-fear, enthusiasm,
calmness, joy

Anticipation
ambiguous-expectation,
positive-expectation

Disgust
neutral-unconcern, thing, ingra-
titude, general-dislike

Love gratitude, affection, love, liking
Optimism positive-hope
Pessimism despair
Surprise ambiguos-agitation, surprise

Trust fearlessness, self-pride, humility

Table 9: Mapping of the general emotion of WordNet-
Affect to SemEval emotion subtask E-c

132

Proceedings of the 12th International Workshop on Semantic Evaluation (SemEval-2018), pages 133–140
New Orleans, Louisiana, June 5–6, 2018. ©2018 Association for Computational Linguistics

UWB at SemEval-2018 Task 1: Emotion Intensity Detection in Tweets

Pavel Přibáň1,2, Tomáš Hercig1,2, and Ladislav Lenc1

1NTIS – New Technologies for the Information Society,
Faculty of Applied Sciences, University of West Bohemia, Czech Republic

2Department of Computer Science and Engineering,
Faculty of Applied Sciences, University of West Bohemia, Czech Republic

{pribanp,tigi,llenc}@kiv.zcu.cz
http://nlp.kiv.zcu.cz

Abstract

This paper describes our system created for the
SemEval-2018 Task 1: Affect in Tweets (AIT-
2018). We participated in both the regression
and the ordinal classification subtasks for emo-
tion intensity detection in English, Arabic, and
Spanish.

For the regression subtask we use the Affecti-
veTweets system with added features using va-
rious word embeddings, lexicons, and LDA.
For the ordinal classification we additionally
use our Brainy system with features using
parse tree, POS tags, and morphological fea-
tures. The most beneficial features apart from
word and character n-grams include word em-
beddings, POS count and morphological fea-
tures.

1 Introduction

The task of Detecting Emotion Intensity assigns
the intensity to a tweet with given emotion. The
emotions include anger, fear, joy, and sadness.
The intensity is either on a scale of zero to one for
the regression subtask, or one of four classes (0:no,
1: low, 2: moderate, 3: high) for the classification
subtask. The task was prepared in three languages:
English, Arabic, and Spanish. For each language
there are four training and test sets of data – one
for each emotion. The data creation is described
in (Mohammad and Kiritchenko, 2018) and detai-
led description of the task is in (Mohammad et al.,
2018).

We participated in the emotion intensity regres-
sion task (EI-reg) and in the emotion intensity or-
dinal classification task (EI-oc) in English, Arabic
and Spanish.

2 System Description

We used two separate systems for ordinal classi-
fication – AffectiveTweets (Section 3) and Brainy

(Section 4). For the regression task we just use the
AffectiveTweets system. We train a separate mo-
del for each emotion. The Brainy system perfor-
med better in our pre-evaluation experiments on
the development data for all emotions in Spanish
and for fear and joy emotions in Arabic.

3 AffectiveTweets System

3.1 Tweets Preprocessing

Tweets often contain slang expressions,
misspelled words, emoticons or abbreviati-
ons and it’s needed to make some preprocessing
steps before extracting features. First, every tweet
was tokenized using TweetNLP1(Gimpel et al.,
2011). Then the AffectiveTweets2 (Mohammad
and Bravo-Marquez, 2017) package for Weka
machine learning workbench (Hall et al., 2009)
was used for feature extraction. The following
steps were applied on tokens for every language
in both tasks:

1. Tokens were converted to lowercase

2. URL links were replaced with
http://www.url.com token

3. Twitter usernames (tokens starting with @)
were replaced with @user token

4. Tokens containing sequences of letters
occurring more than two times in a row were
replaced with two occurrences of them (e.g.
huuuungry is reduced to huungry, looooove
to loove)

5. Common sequences of words and emojis
were divided by space (e.g. token ”nice:D:D“
was divided into two tokens ”nice“ and

”:D:D“)

1http://www.cs.cmu.edu/˜ark/TweetNLP/
2https://affectivetweets.cms.waikato.

ac.nz/

133

These steps lead to reduction of feature space as
shown in (Go et al., 2009). We also used some
individual preprocessing for Arabic language. Af-
ter the above described steps every token was also
processed via Stanford Word Segmenter3(Monroe
et al., 2014). When using word embeddings, we
transformed Arabic words from regular UTF-8
Arabic to a more ambiguous form4. This was done
only for word embedding features.

3.2 Features
Our AffectiveTweets system used combinations of
features that are described in this section. The sub-
mitted combination of features is shown in Table
1.

• Word n-grams (WNn
i): word n-grams5from

i to n (for i = 1, n = 2, unigrams and bi-
grams were used).

• Character n-grams (ChNn
i): character n-

grams5 from i to n (for i = 2, n = 3 cha-
racter bigrams and trigrams were used).

• Word Embeddings (WE): an average of the
word embeddings of all the words in a tweet.

• Affective Lexicons (L): we used Affective-
Tweets package to extract features from af-
fective lexicons. In every language we also
used SentiStrength (L-se) lexcion-based me-
thod (Thelwall et al., 2012).

• LDA – Latent Dirichlet Allocation (Dn):
topic distribution of tweet, that is obtained
from our pre-trained model, n indicates num-
ber of topics in model (for n = 5, feature
vector with dimension 5 will be produced and
each component of the vector refers to one to-
pic). We used LDA features only in Affecti-
veTweets system.

3.2.1 English Word Embeddings:
• Ultradense Word Embeddings (WE-ue):

Rothe et al. (2016) created embeddings in the
Twitter domain.

• Baseline Word Embeddings (WE-b): Mo-
hammad and Bravo-Marquez (2017) created
embeddings from the Edinburgh Twitter Cor-
pus (Petrović et al., 2010).

3https://nlp.stanford.edu/software/
segmenter.shtml

4Some characters were replaced, for more details see
(Soliman et al., 2017).

5Value of each feature is set to its frequency in the tweet

3.2.2 Spanish Word Embeddings:
• Ultradense Word Embeddings (WE-us):

Rothe et al. (2016) created embeddings from
web domain.

• FastText Word Embeddings (WE-ft): Bo-
janowski et al. (2016) trained embeddings on
Wikipedia.

3.2.3 Arabic Word Embeddings:
• Zahran et al. (2015) Word Embeddings

(var-SG, var-GloVe, and var-CBOW)

• Soliman et al. (2017) Word Embeddings
(tw-SG, tw-CBOW, web-SG, web-CBOW,
wiki-SG, and wiki-CBOW)

Mentioned Arabic word embeddings were created
with Global Vectors (GloVe) (Pennington et al.,
2014) and Word2Vec toolkit (Mikolov et al., 2013)
using skip-gram (SG) model and continuous bag-
of-words (CBOW) model. These Arabic word em-
beddings were trained on different data domains –
Twitter (tw), web pages (web), Wikipedia (wiki),
and their combination (var) for more details see
the cited papers.

3.2.4 English lexicons (L-en):
– We used all affective lexicons from the Af-

fectiveTweets package.

3.2.5 Spanish lexicons (L-es):
– Translated NRC Word-Emotion Association

Lexicon (Mohammad and Turney, 2013)

– Emotion Lexicon (Sidorov et al., 2012)

– Polarity lexicon (Urizar and Roncal, 2013)

– Expanded Word-Emotion Association Lexi-
con (Bravo-Marquez et al., 2016) (we transla-
ted this lexicon to Spanish)

– iSOL (Molina-González et al., 2013)

– ML-SentiCon (Cruz et al., 2014)

– Ultradense lexicon (Rothe et al., 2016)

– LYSA Twitter lexicon (Vilares et al., 2014)

3.2.6 Arabic lexicons (L-ar):
– Translated NRC Word-Emotion Association

Lexicon

– Translation of Bing Liu’s Lexicon

– Arabic Emoticon Lexicon

– Arabic Hashtag Lexicon

134

Regression
English Arabic Spanish

anger L-en, D500 var-SG, L-ar, D250, WN1
1 L-en, L-es, WE-us, WN1

1

fear L-en, L-se, WE-b var-SG, L-ar, D250 L-en, L-es, L-se, WE-us, WN1
1, D1000

joy L-en, L-se, WE-b var-SG, L-ar D250 L-es, WE-us, WN2
1, ChN3

2

sadness L-en, L-se, WE-b var-SG, L-ar L-en, L-es, L-se, WE-us, WN2
1, D1000

Classification
anger L-en, D250 WN1

1

fear L-en, L-se, WE-b, WN2
1, D250

joy L-en, L-se, WE-b, WN2
1

sadness L-en, L-se, D250 var-CBOW, L-ar, L-se, WN1
1, D250

Table 1: Used features in the AffectiveTweets system

– Arabic Hashtag Lexicon (dialectal)

– Translated NRC Hashtag Sentiment Lexicon

– SemEval-2016 Arabic Twitter Lexicon

Lexicons are described in (Mohammad and Tur-
ney, 2013; Mohammad et al., 2016a; Salameh
et al., 2015; Mohammad et al., 2016b).

3.3 Model Training
In our AffectiveTweets system we used an L2-
regularized L2-loss SVM regression and classi-
fication model with the regularization parameter
C set to 1, implemented in LIBLINEAR Library
(Fan et al., 2008)6.

3.4 LDA Training
To use topics created with LDA (Latent Dirichlet
Allocation) (Blei et al., 2003) as features, we tra-
ined our own models for every language. Tweets
used to train the Arabic and Spanish models
were taken from SemEval-2018 AIT DISC cor-
pus (Mohammad et al., 2018) and tweets for
English model were taken from Sentiment1407

training data (Go et al., 2009). We trained our
LDA models with LDA implementation from
MALLET8(McCallum, 2002).

We used the same preprocessing for LDA as for
regular feature extraction. Additionally we remo-
ved stopwords and following special characters [,
. ! -]. Tokens from Spanish tweets were stemmed
with Snowball9 stemming algorithm.

4 Brainy System

We use Maximum Entropy classifier from Brainy
machine learning library (Konkol, 2014) and UD-

6https://www.csie.ntu.edu.tw/˜cjlin/
liblinear/

7http://help.sentiment140.com/
8http://mallet.cs.umass.edu/
9http://snowballstem.org/

Pipe (Straka et al., 2016) for preprocessing and do-
esn’t use any lexicons, just word embeddings. The
system is based on (Hercig et al., 2016).

4.1 Preprocessing

The same preprocessing has been done for all da-
tasets. We use UDPipe (Straka et al., 2016) with
Spanish Universal Dependencies 1.2 models and
Arabic Universal Dependencies 2.0 models for
POS tagging and lemmatization. Tokenization has
been done by TweetNLP tokenizer (Owoputi et al.,
2013). We further replace all user mentions with
the token “@USER” and all links with the token
“$LINK”.

4.2 Features

The Brainy system used the following features.
The exact combination of features for each emo-
tion and the change in performance caused by its
removal is shown in Table 9.

• Character n-grams (ChNn): Separate bi-
nary feature for each character n-gram in the
utterance text. We do it separately for diffe-
rent orders n ∈ {1, 2, 3, 4, 5} and remove n-
grams with frequency t.

• Bag of Words (BoW): We used bag-of-
words representation of a tweet, i.e. separate
binary feature representing the occurrence of
a word in the tweet.

• Bag of Morphological features (BoM): for
all verbs in the tweet. The morphological fe-
atures10 include abbreviation, aspect, defini-
teness, degree of comparison, evidentiality,
mood, polarity, politeness, possessive, prono-
minal type, tense, verb form, and voice.

10http://universaldependencies.org/u/
feat/index.html

135

• Bag of POS (BoPOS): We used bag-of-
words representation of a tweet, i.e. separate
binary feature representing the occurrence of
a POS tag in the tweet.

• Bag of Parse Tree Tags (BoT): We used
bag-of-words representation of a tweet, i.e.
separate binary feature representing the
occurrence of a parse tree tag in the tweet.
We remove tags with a frequency ≤ 2.

• Emoticons (E): We used a list of positive
and negative emoticons (Montejo-Ráez et al.,
2012). The feature captures the presence of
an emoticon within the text.

• First Words (FW): Bag of first five words
with at least 2 occurrences.

• Last Words (LW): Bag of last five words
with at least 2 occurrences.

• Last BoM (LBoM): Bag of last five mor-
phological features (see BoM) with at least
2 occurrences.

• FastText (FT): An average of the FastText
(Bojanowski et al., 2016) word embeddings
of all the words in a tweet.

• N-gram Shape (NSh): The occurrence of
word shape n-gram in the tweet. Word shape
assigns words into one of 24 classes11 simi-
lar to the function specified in (Bikel et al.,
1997). We consider unigrams, bigrams, and
trigrams with frequency ≤ 2.

• POS Count Bins (POS-B): We map the
frequency of POS tags in a tweet into a one-
hot vector with length three and use this
vector as binary features for the classifier.
The frequency belongs to one of three equal-
frequency bins12. Each bin corresponds to a
position in the vector. We remove POS tags
with frequency t ≤ 5.

• TF-IDF: Term frequency – inverse document
frequency of a word computed from the trai-
ning data for words with at least 5 occurren-
ces and at most 50 occurrences.

11We use edu.stanford.nlp.process.WordShapeClassifier
with the WORDSHAPECHRIS1 setting available in Stand-
ford CoreNLP library (Manning et al., 2014).

12The frequencies from the training data are split into
three equal-size bins according to 33% quantiles.

Emotion intensity regression – Pearson (all instances)
embeddings avg anger fear joy sadness
var-SG 0.564 0.505 0.569 0.577 0.605
var-GloVe 0.523 0.489 0.520 0.529 0.557
var-CBOW 0.557 0.492 0.557 0.555 0.622
tw-SG 0.541 0.513 0.520 0.580 0.552
tw-CBOW 0.447 0.413 0.424 0.472 0.478
web-SG 0.492 0.419 0.465 0.559 0.526
web-CBOW 0.410 0.339 0.423 0.466 0.411
wiki-SG 0.440 0.345 0.443 0.505 0.469
wiki-CBOW 0.291 0.281 0.244 0.315 0.322
Emotion intensity classification – Pearson (all classes)

var-SG 0.386 0.430 0.387 0.471 0.418
var-GloVe 0.318 0.410 0.383 0.430 0.385
var-CBOW 0.397 0.451 0.496 0.536 0.470
tw-SG 0.360 0.480 0.386 0.439 0.416
tw-CBOW 0.338 0.368 0.301 0.369 0.344
web-SG 0.325 0.426 0.424 0.375 0.388
web-CBOW 0.190 0.314 0.317 0.269 0.273
wiki-SG 0.244 0.396 0.368 0.370 0.345
wiki-CBOW 0.275 0.252 0.284 0.293 0.276

Table 2: Arabic embeddings experiments results

Emotion intensity regression – Pearson (all instances)
embeddings avg anger fear joy sadness
WE-us 0.559 0.464 0.581 0.581 0.611
WE-ft 0.510 0.369 0.577 0.528 0.565
Emotion intensity classification – Pearson (all classes)

WE-us 0.429 0.422 0.382 0.478 0.434
WE-ft 0.407 0.256 0.428 0.481 0.462

Table 3: Spanish embeddings experiments results

Emotion intensity regression – Pearson (all instances)
embeddings avg anger fear joy sadness
WE-ue 0.598 0.594 0.595 0.586 0.593
WE-b 0.541 0.475 0.549 0.456 0.505
Emotion intensity classification – Pearson (all classes)

WE-ue 0.479 0.412 0.507 0.438 0.459
WE-b 0.456 0.212 0.499 0.336 0.376

Table 4: English embeddings experiments results

• Text Length Bins (TL-B): We map the tweet
length into a one-hot vector with length three
and use this vector as binary features for the
classifier. The length of a tweet belongs to
one of three equal-frequency bins12. Each bin
corresponds to a position in the vector.

• Verb Bag of Words (V-BoW): Bag of words
for parent, siblings, and children of the verb
from the sentence parse tree.

136

5 10 20 40 60 80 10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Number of topics

anger fear
joy sadness

average

(a) Arabic regression

5 10 20 40 60 80 10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Number of topics

anger fear
joy sadness

average

(b) Spanish regression

5 10 20 40 60 80 10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Number of topics

anger fear
joy sadness

average

(c) English regression

5 10 20 40 60 80 10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Number of topics

anger fear
joy sadness

average

(d) Arabic classification

5 10 20 40 60 80 10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Number of topics

anger fear
joy sadness

average

(e) Spanish classification

5 10 20 40 60 80 10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Number of topics

anger fear
joy sadness

average

(f) English classification

Figure 1: LDA performance based on number of topics, the y-axis denotes Pearson correlation

5 Experiments

All presented experiments are evaluated on the test
data for the given task.

We performed ablation experiments to see
which features are the most beneficial (see Table
9, 8, and 10). Numbers represent the performance
change when the given feature is removed13.

Word embeddings features have a great impact
on system performance, so we compared several
word embeddings for every language (Table 2, 3,
and 4). For English was best WE-ue word em-
beddings, but for submission we used WE-b word
embeddings, because it worked better on dev data.
In Spanish tweets the WE-us word embeddings
outperformed the WE-ft word embeddings in re-
gression and WE-us was better for classification
in anger and on average of all emotions. For clas-
sification in Arabic was var-CBOW best on every
emotion except anger and for regression var-SG
worked best on average and on fear.

We also experimented with only LDA features
to find out how the numbers of topics in LDA mo-
del affect the performance (see Figure 1). We star-

13The lowest number denotes the most beneficial feature

ted with models containing 5 topics and continued
up to 1000 (step was non-equidistantly increased).
Our experiments suggest that the best setting is
around 200-300 topics. We selected the number of
topics based on the performance on the develop-
ment data.

6 Results

Our results in the emotion intensity regression
subtask are in Table 5 and our results in the emo-
tion intensity ordinal classification subtask are in
Table 6 and Table 7. The system settings and fea-
tures for each language and emotion were selected
based on our pre-evaluation experiments with eva-
luation on the development data.

7 Conclusion

We competed in the emotion intensity regression
and ordinal classification tasks in English, Arabic
and Spanish.

Our ranks are 27th out of 48 for English, 5th out
of 14 for Arabic, and 5th out of 16 for Spanish for
the regression task and 21st out of 39 for English,
5th out of 14 for Arabic, and 5th out of 16 for Spa-
nish for the ordinal classification task.

137

Pearson (all instances) Pearson (gold in 0.5 – 1)
Subtask System macro-avg anger fear joy sadness macro-avg anger fear joy sadness

EI-reg-EN AffectiveTweets 0.642 (27) 0.640 (27) 0.642 (27) 0.652 (24) 0.636 (23) 0.478 (25) 0.503 (29) 0.433 (27) 0.457 (23) 0.517 (23)
EI-reg-AR AffectiveTweets 0.574 (5) 0.487 (6) 0.559 (5) 0.619 (6) 0.631 (5) 0.417 (6) 0.332 (6) 0.485 (3) 0.327 (7) 0.523 (4)
EI-reg-ES AffectiveTweets 0.630 (5) 0.542 (5) 0.688 (3) 0.646 (5) 0.644 (4) 0.496 (3) 0.435 (2) 0.517 (3) 0.527 (3) 0.507 (4)

Table 5: Pearson correlation for the emotion intensity regression task
Pearson (all classes) Pearson (some-emotion)

Subtask System macro-avg anger fear joy sadness macro-avg anger fear joy sadness
EI-oc-EN AffectiveTweets 0.506 (21) 0.477 (23) 0.470 (17) 0.555 (19) 0.522 (22) 0.346 (23) 0.308 (25) 0.273 (21) 0.452 (21) 0.350 (25)
EI-oc-AR AT&Brainy 0.394 (5) 0.327 (5) 0.345 (5) 0.437 (5) 0.467 (5) 0.280 (5) 0.246 (6) 0.246 (6) 0.351 (5) 0.277 (7)
EI-oc-ES Brainy 0.504 (5) 0.361 (7) 0.606 (3) 0.544 (5) 0.506 (5) 0.410 (5) 0.267 (6) 0.499 (2) 0.420 (6) 0.452 (5)

Table 6: Pearson correlation for the emotion intensity ordinal classification task
Kappa (all classes) Kappa (some-emotion)

Subtask System macro-avg anger fear joy sadness macro-avg anger fear joy sadness
EI-oc-EN AffectiveTweets 0.494 (21) 0.467 (19) 0.450 (14) 0.548 (17) 0.510 (19) 0.290 (23) 0.269 (23) 0.166 (20) 0.420 (20) 0.303 (24)
EI-oc-AR AT&Brainy 0.386 (5) 0.324 (5) 0.327 (5) 0.428 (5) 0.464 (5) 0.241 (5) 0.219 (5) 0.178 (5) 0.340 (5) 0.226 (5)
EI-oc-ES Brainy 0.475 (5) 0.432 (5) 0.544 (6) 0.447 (8) 0.477 (6) 0.340 (6) 0.299 (5) 0.405 (5) 0.302 (8) 0.353 (6)

Table 7: Cohen’s kappa for the emotion intensity ordinal classification task

Emotion intensity classification – Pearson (all classes)

Feature
Arabic English

anger sadness anger fear joy sadness

ALL∗ 0.327‡ 0.467 0.477 0.470 0.555‡ 0.522
-D†250 0.467‡ 0.490‡ 0.467‡ 0.497‡

L-en 0.000 -0.090 -0.007 -0.140
L-se -0.019 -0.023 0.008 -0.030
WN2

1 -0.055 -0.028
WE-b 0.001 0.006
WN1

1 0.000 0.098
L-ar -0.038
var-CBOW -0.106
∗ Results achieved with all used features for given emotion
† ALL without used LDA feature.
‡ Values used to calculate ablation results.

Table 8: AffectiveTweets feature ablation study

Emotion intensity classification – Pearson (all classes)

Feature
Arabic Spanish

fear joy anger fear joy sadness

BoW -0.013 0.022 0.005 -0.041 0.018 0.003
ChN1 t ≤ 5 -0.017 0.024 0.010 0.009
ChN2 t ≤ 5 0.034 -0.037 -0.009 0.018 0.014
ChN3 t ≤ 5 -0.053 0.011 0.016 -0.041 0.011 0.005
ChN4,5 t ≤ 2 -0.067 -0.036 -0.008 -0.056 -0.050 -0.011
BoM -0.022 -0.013 0.017 -0.011
E 0.011 -0.007
FT -0.027 -0.008 0.006 -0.004
BoPOS -0.015 0.008 -0.010 -0.002
POS-B -0.008 -0.025 -0.010 -0.013 0.013
BoT 0.017 0.006 -0.003 -0.010 0.018
TF-IDF -0.017 -0.004 0.009
NSh 0.010 0.006 -0.011 0.002 -0.008
FW -0.001 0.002 0.010
LW -0.007 -0.014 -0.003
TL-B -0.004
LBoM 0.036 0.000 0.005
V-BoW -0.006∗ -0.005† 0,003‡
∗ adverb † adverb, noun, adjective, verb, auxiliary ‡ noun

Table 9: Brainy feature ablation study

Emotion intensity regression –
Pearson (all instances)

Feature
English

anger fear joy sadness

ALL∗ 0.640 0.642‡ 0.652‡ 0.636‡

-D†500 0.634‡

L-en 0.000 -0.044 -0.031 -0.087
L-se -0.037 -0.010 -0.013
WE-b -0.020 -0.040 -0.017

Arabic
ALL∗ 0.487 0.559 0.619 0.631
-D†250 0.479 0.558 0.604
L-ar 0.020 0.011 -0.027 -0.027
WN1

1 0.036
var-SG -0.010 -0.244 -0.197 -0.196

Spanish
ALL∗ 0.542 0.688 0.646 0.644
-D†1000 0.688 0.639
L-en 0.008 0.006 -0.007
L-es -0.016 0.005 -0.042 -0.009
L-se 0.002 -0.001
WE-us -0.021 -0.027 -0.017 -0.030
WN1

1 -0.033 -0.093
WN2

1 -0.050 -0.013
ChN3

2 -0.006
∗ Results achieved with all used features.
† ALL without used LDA feature.
‡ Values used to calculate ablation results

Table 10: AffectiveTweets feature ablation study.

Acknowledgments

This publication was supported by the project
LO1506 of the Czech Ministry of Education,
Youth and Sports under the program NPU I and

138

by university specific research project SGS-2016-
018 Data and Software Engineering for Advanced
Applications.

References
Daniel M Bikel, Scott Miller, Richard Schwartz,

and Ralph Weischedel. 1997. Nymble: a high-
performance learning name-finder. In Proceedings
of the fifth conference on Applied natural language
processing, pages 194–201. Association for Compu-
tational Linguistics.

D. M. Blei, A. Y. Ng, M. I. Jordan, and J. Lafferty.
2003. Latent dirichlet allocation. Journal of Ma-
chine Learning Research, 3:2003.

Piotr Bojanowski, Edouard Grave, Armand Joulin,
and Tomas Mikolov. 2016. Enriching word vec-
tors with subword information. arXiv preprint ar-
Xiv:1607.04606.

Felipe Bravo-Marquez, Eibe Frank, Saif M Moham-
mad, and Bernhard Pfahringer. 2016. Determining
word-emotion associations from tweets by multi-
label classification. In Web Intelligence (WI), 2016
IEEE/WIC/ACM International Conference on, pages
536–539. IEEE.

Fermı́n L Cruz, José A Troyano, Beatriz Pontes, and
F Javier Ortega. 2014. Building layered, multilin-
gual sentiment lexicons at synset and lemma levels.
Expert Systems with Applications, 41(13):5984–
5994.

Rong-En Fan, Kai-Wei Chang, Cho-Jui Hsieh, Xiang-
Rui Wang, and Chih-Jen Lin. 2008. Liblinear: A
library for large linear classification. Journal of ma-
chine learning research, 9(Aug):1871–1874.

Kevin Gimpel, Nathan Schneider, Brendan O’Connor,
Dipanjan Das, Daniel Mills, Jacob Eisenstein, Mi-
chael Heilman, Dani Yogatama, Jeffrey Flanigan,
and Noah A. Smith. 2011. Part-of-speech tagging
for twitter: Annotation, features, and experiments.
In Proceedings of the 49th Annual Meeting of the
Association for Computational Linguistics: Human
Language Technologies: Short Papers - Volume 2,
HLT ’11, pages 42–47, Stroudsburg, PA, USA. As-
sociation for Computational Linguistics.

Alec Go, Richa Bhayani, and Lei Huang. 2009. Twit-
ter sentiment classification using distant supervision.
CS224N Project Report, Stanford, 1(12).

Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard
Pfahringer, Peter Reutemann, and Ian H. Witten.
2009. The WEKA data mining software: An update.
SIGKDD Explorations, 11(1):10–18.

Tomáš Hercig, Tomáš Brychcı́n, Lukáš Svoboda, and
Michal Konkol. 2016. UWB at SemEval-2016 Task

5: Aspect Based Sentiment Analysis. In Procee-
dings of the 10th International Workshop on Seman-
tic Evaluation (SemEval-2016), pages 342–349. As-
sociation for Computational Linguistics.

Michal Konkol. 2014. Brainy: A machine learning lib-
rary. In Leszek Rutkowski, Marcin Korytkowski,
Rafal Scherer, Ryszard Tadeusiewicz, Lotfi Zadeh,
and Jacek Zurada, editors, Artificial Intelligence and
Soft Computing, volume 8468 of Lecture Notes in
Computer Science, pages 490–499. Springer Inter-
national Publishing.

Christopher D. Manning, Mihai Surdeanu, John Bauer,
Jenny Finkel, Steven J. Bethard, and David McClo-
sky. 2014. The Stanford CoreNLP natural language
processing toolkit. In Association for Computatio-
nal Linguistics (ACL) System Demonstrations, pages
55–60.

Andrew Kachites McCallum. 2002. Mallet:
A machine learning for language toolkit.
Http://mallet.cs.umass.edu.

Tomas Mikolov, Kai Chen, Greg Corrado, and Je-
ffrey Dean. 2013. Efficient estimation of word re-
presentations in vector space. arXiv preprint ar-
Xiv:1301.3781.

Saif Mohammad and Felipe Bravo-Marquez. 2017.
Emotion intensities in tweets. In Proceedings of the
6th Joint Conference on Lexical and Computational
Semantics, *SEM @ACM 2017, Vancouver, Canada,
August 3-4, 2017, pages 65–77.

Saif Mohammad and Felipe Bravo-Marquez. 2017.
Wassa-2017 shared task on emotion intensity. In
Proceedings of the 8th Workshop on Computatio-
nal Approaches to Subjectivity, Sentiment and So-
cial Media Analysis, pages 34–49, Copenhagen, De-
nmark. Association for Computational Linguistics.

Saif Mohammad, Mohammad Salameh, and Svetlana
Kiritchenko. 2016a. Sentiment lexicons for arabic
social media. In Proceedings of the Tenth Internati-
onal Conference on Language Resources and Eva-
luation (LREC 2016), Paris, France. European Lan-
guage Resources Association (ELRA).

Saif M. Mohammad, Felipe Bravo-Marquez, Moha-
mmad Salameh, and Svetlana Kiritchenko. 2018.
Semeval-2018 Task 1: Affect in tweets. In Proce-
edings of International Workshop on Semantic Eva-
luation (SemEval-2018), New Orleans, LA, USA.

Saif M. Mohammad and Svetlana Kiritchenko. 2018.
Understanding emotions: A dataset of tweets to
study interactions between affect categories. In Pro-
ceedings of the 11th Edition of the Language Re-
sources and Evaluation Conference, Miyazaki, Ja-
pan.

Saif M Mohammad, Mohammad Salameh, and
Svetlana Kiritchenko. 2016b. How translation alters
sentiment. J. Artif. Intell. Res.(JAIR), 55:95–130.

139

Saif M. Mohammad and Peter D. Turney. 2013.
Crowdsourcing a word-emotion association lexicon.
29(3):436–465.

M Dolores Molina-González, Eugenio Martı́nez-
Cámara, Marı́a-Teresa Martı́n-Valdivia, and José M
Perea-Ortega. 2013. Semantic orientation for pola-
rity classification in spanish reviews. Expert Sys-
tems with Applications, 40(18):7250–7257.

Will Monroe, Spence Green, and Christopher D Man-
ning. 2014. Word segmentation of informal arabic
with domain adaptation. In Proceedings of the 52nd
Annual Meeting of the Association for Computatio-
nal Linguistics (Volume 2: Short Papers), volume 2,
pages 206–211.

A. Montejo-Ráez, E. Martı́nez-Cámara, M. T. Martı́n-
Valdivia, and L. A. Ureña López. 2012. Random
walk weighting over sentiwordnet for sentiment po-
larity detection on twitter. In Proceedings of the 3rd
Workshop in Computational Approaches to Subjecti-
vity and Sentiment Analysis, WASSA ’12, pages 3–
10, Stroudsburg, PA, USA. Association for Compu-
tational Linguistics.

Olutobi Owoputi, Brendan O’Connor, Chris Dyer, Ke-
vin Gimpel, Nathan Schneider, and Noah A. Smith.
2013. Improved part-of-speech tagging for online
conversational text with word clusters. In Procee-
dings of the 2013 Conference of the North Ameri-
can Chapter of the Association for Computational
Linguistics: Human Language Technologies, pages
380–390, Atlanta, Georgia. Association for Compu-
tational Linguistics.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. Glove: Global vectors for word
representation. In Proceedings of the 2014 Confe-
rence on Empirical Methods in Natural Language
Processing (EMNLP), pages 1532–1543, Doha, Qa-
tar. Association for Computational Linguistics.

Saša Petrović, Miles Osborne, and Victor Lavrenko.
2010. Streaming first story detection with appli-
cation to twitter. In Human Language Technologies:
The 2010 Annual Conference of the North Ameri-
can Chapter of the Association for Computational
Linguistics, pages 181–189, Los Angeles, Califor-
nia. Association for Computational Linguistics.

Sascha Rothe, Sebastian Ebert, and Hinrich Schütze.
2016. Ultradense word embeddings by orthogonal
transformation. In Proceedings of the 2016 Confe-
rence of the North American Chapter of the Associ-
ation for Computational Linguistics: Human Langu-
age Technologies, pages 767–777, San Diego, Cali-
fornia. Association for Computational Linguistics.

Mohammad Salameh, Saif Mohammad, and Svetlana
Kiritchenko. 2015. Sentiment after translation: A
case-study on arabic social media posts. In Procee-
dings of the 2015 conference of the North American
chapter of the association for computational linguis-
tics: Human language technologies, pages 767–777.

Grigori Sidorov, Sabino Miranda-Jiménez, Francisco
Viveros-Jiménez, Alexander Gelbukh, Noé Castro-
Sánchez, Francisco Velásquez, Ismael Dı́az-Rangel,
Sergio Suárez-Guerra, Alejandro Treviño, and Juan
Gordon. 2012. Empirical study of machine learning
based approach for opinion mining in tweets. In Me-
xican international conference on Artificial intelli-
gence, pages 1–14. Springer.

Abu Bakr Soliman, Kareem Eissa, and Samhaa R. El-
Beltagy. 2017. AraVec: A set of Arabic word em-
bedding models for use in Arabic NLP. Procedia
Computer Science, 117(Supplement C):256–265.

Milan Straka, Jan Hajič, and Jana Straková. 2016. UD-
Pipe: trainable pipeline for processing CoNLL-U
files performing tokenization, morphological ana-
lysis, pos tagging and parsing. In Proceedings
of the Tenth International Conference on Langu-
age Resources and Evaluation (LREC’16), Paris,
France. European Language Resources Association
(ELRA).

Mike Thelwall, Kevan Buckley, and Georgios Palto-
glou. 2012. Sentiment strength detection for the so-
cial web. JASIST, 63(1):163–173.

Xabier Saralegi Urizar and Iñaki San Vicente Roncal.
2013. Elhuyar at tass 2013. In Proceedings of the
Workshop on Sentiment Analysis at SEPLN (TASS
2013), pages 143–150.

David Vilares, Yerai Doval, Miguel A Alonso, and
Carlos Gómez-Rodrıguez. 2014. Lys at tass 2014:
A prototype for extracting and analysing aspects
from spanish tweets. In Proceedings of the TASS
workshop at SEPLN.

Mohamed A Zahran, Ahmed Magooda, Ashraf Y Mah-
goub, Hazem Raafat, Mohsen Rashwan, , and Amir
Atyia. 2015. Word representations in vector space
and their applications for arabic. In International
Conference on Intelligent Text Processing and Com-
putational Linguistics, pages 430–443. Springer.

140

Proceedings of the 12th International Workshop on Semantic Evaluation (SemEval-2018), pages 141–145
New Orleans, Louisiana, June 5–6, 2018. ©2018 Association for Computational Linguistics

AttnConvnet at SemEval-2018 Task 1: Attention-based Convolutional
Neural Networks for Multi-label Emotion Classification

Yanghoon Kim1,2, Hwanhee Lee1 and Kyomin Jung1,2

1Seoul National University, Seoul, Korea
2Automation and Systems Research Institute, Seoul National University, Seoul, Korea

{ad26kr,wanted1007,kjung}@snu.ac.kr

Abstract
In this paper, we propose an attention-based
classifier that predicts multiple emotions of a
given sentence. Our model imitates human’s
two-step procedure of sentence understanding
and it can effectively represent and classify
sentences. With emoji-to-meaning preprocess-
ing and extra lexicon utilization, we further
improve the model performance. We train
and evaluate our model with data provided
by SemEval-2018 task 1-5, each sentence of
which has several labels among 11 given emo-
tions. Our model achieves 5th/1st rank in En-
glish/Spanish respectively.

1 Introduction

Since the revolution in deep neural networks, es-
pecially with the help of Long short-term mem-
ory(Hochreiter and Schmidhuber, 1997), it has
been easy for machines to imitate human’s linguis-
tic activities, such as sentence classification(Kim,
2014), language model(Sundermeyer et al., 2010),
machine translation(Bahdanau et al., 2015).

Emotion classification is a subpart of sentence
classification that predicts the emotion of the
given sentence by understanding the meaning of it.
Multi-label emotion classification requires more
powerful ability to comprehend the sentence in
variety of aspects. For example, given a sen-
tence ’For real? Look what I got for my birth-
day present!!’, it is easy for human to figure out
that the sentence not only expressing ’joy’ but also
’surprise’. However, machines may require more
task-specific structure to solve the same problem.

Attention mechanisms are one of the most spot-
lighted trends in deep learning and recently made
their way into NLP. Applied to systems with neu-
ral networks, it functions as visual attention mech-
anisms found in humans(Denil et al., 2012) and
the most effective region of features will be high-
lighted over time, making the system better exploit

the features related to the training objective. (Bah-
danau et al., 2015) is one of the most significant
footprints of attention mechanism in NLP and they
applied attention mechanisms to machine transla-
tion for the first time. The model generates target
word under the influence of related source words.
Furthermore, Vaswani et al. (2017) proposed a
brand new architecture for neural machine transla-
tion. The model utilizes attention mechanisms not
only as the submodule but also as the main struc-
ture, improving time complexity and performance.

Inspired by (Vaswani et al., 2017), we come
up with attention-based multi-label sentence clas-
sifier that can effectively represent and classify
sentences. Our system is composed of a self-
attention module and multiple CNNs enabling it
to imitate human’s two-step procedure of analyz-
ing sentences: comprehend and classify. Further-
more, our emoji-to-meaning preprocessing and
extra lexicon utilization improve model perfor-
mance on given dataset. We evaluated our system
on the dataset of (Mohammad et al., 2018), where
it ranked 5th/1st rank in English/Spanish respec-
tively.

2 Model

Our system is mainly composed of two parts: self-
attention module and multiple independent CNNs
as depicted in Figure 1. This structure is actually
imitating how human perform the same task. In
general, human firstly read a sentence and try to
comprehend the meaning, which corresponds to
self-attention in our system. Then human catego-
rize the sentence to each emotion separately but
not all at once, and that is the reason why our sys-
tem use 11 independent CNNs. In addition to main
structure, we added the description of preprocess-
ing in the model description because it makes up
a large proportion in NLP tasks, especially when

141

Figure 1: Overall architecture of the model. Preprocessed data goes through embedding layer, self-attention layer,
Convolution layer and pooling layer step by step.

the dataset is small. Details are described in the
following paragraph step by step.

Preprocessing: For raw data, we applied 3
steps of preprocessing:

(i) Our system mainly deals with limited num-
bers of tweet data, which is very noisy. In
this case, preprocessing of data has crucial
impact on model performance. Emoji may
be referred to as a typical property of tweets
and we found that considerable number of
tweets contain emojis. Each emoji has a
meaning of their own, and we converted ev-
ery emoji in the data to phrase/word that
represents its meaning. We call this pro-
cedure as emoji-to-meaning preprocessing.
Some tweets have too many repetition of cer-
tain emoji that may make the sentence over-
biased to certain emotions. Against expec-
tations, removing overlapped emojis reduced
performance.

(ii) Lower-case and tokenize data with TweetTo-
kenizer in (Bird and Loper, 2002).

(iii) Remove all of the mentions and ’#’ symbols
in the beginning of all topics. Unlike men-
tions, topics may include emotional words
and hence we don’t remove the topic itself.

Embedding: It is especially helpful to use pre-
trained word embeddings when dealing with a
small dataset. Among those well-known word em-
beddings such as Word2Vec(Mikolov et al., 2013),

GloVe(Pennington et al., 2014) and fastText(Piotr
et al., 2016), we adopt 300-dimension GloVe
vectors for English ,which is trained on Com-
mon Crawl data of 840 billion tokens and 300-
dimension fastText vectors for Spanish, which is
trained on Wikipedia.

Self-attention: Vaswani et al. (2017) proposed
a non-recurrent machine translation architecture
called Transformer that is based on dot-product
attention module. Usually, attention mechanisms
are used as a submodule of deep learning mod-
els, calculating the importance weight of each po-
sition given a sequence. In our system, we adopt
the self-attention mechanisms in (Vaswani et al.,
2017) to represent sentences. The detailed struc-
ture of self-attention is shown in Figure 2. Dot-
product of every embedded vector and weight ma-
trix W ∈ Rde×3de is split through dimension as Q,
K, V of the same size, where de is the dimension-
ality of embedded vectors. Then attended vector
is computed as in (3).

E = [emb(x1), emb(x2), ..., emb(xn)] (1)

[Q,K, V] = [eW for e in E] (2)

Attn(Q,K, V) = softmax(
QKT

√
de

)V (3)

Multi-head attention allows the model to benefit
from ensemble effect only with the same amount

142

Figure 2: Inner architecture of self-attention module

of parameter.

Multihead(Q,K, V) = Concat(head1, ..., headh)
(4)

where headi = Attn(Qi,Ki, Vi)

Q = [Q1, ..., Qh], Qi ∈ Rn× de
h

K = [K1, ...,Kh], Ki ∈ Rn× de
h

V = [V1, ..., Vh], Vi ∈ Rn× de
h

For each self-attention layer, there are additional
position-wise feed-forward networks right after
the attention submodule.

FFN(x) = max(0, xW1 + b1)W2 + b2 (5)

where W1 ∈ Rde×df , W2 ∈ Rdf×de (6)

In addition to these two sub-layers, there is a
residual connection around each sub-layer, fol-
lowed by layer normalization. Also, we can stack
self-attention layers by substituting the embedding
vectors in (1) with the output of the last self-
attention layer.

Convolution & Pooling: Followed by self-
attention layer are 11 independent 1-layer Convo-
lution layers with max-pooling layers. Kim (2014)
has proved that CNNs have lots of potential in sen-
tence processing task and we adopt the CNNs in
the same way.

Output & Loss: Each output of CNNs go
through a fully-connected layer to generate a logit.
Sigmoid activation is applied to calculate the prob-
ability of each emotion, and we use the sum of
each class’ cross-entropy as the final loss function.

3 Experiments & Results

3.1 Data
For the SemEval 2018 shared task, Mohammad
et al.(2018) has provided tweet data with multiple

labels among 11 pre-set emotions: ’angry’, ’antic-
ipation’, ’disgust’, ’fear’, ’joy’, ’love’ ’optimism’,
’pessimism’, ’sadness’, ’surprise’ and ’trust’. We
only use English and Spanish data among three
different languages. The dataset consists of
6838/887/3259 tweets in English, 3561/679/2854
tweets in Spanish for train/validation/test data re-
spectively.

3.2 Setup
We implemented a model with 3-layer self-
attention and 1-layer CNN. With the restriction
of fixed-size GloVe vector, we found that 300-
dimension hidden state is excessive for such a
small dataset that we added a position-wise lin-
ear layer between the embedding layer and self-
attention layers to make de = 30. We employed
h = 2 for multi-head attention and set df =
64. Two regularization techniques are applied to
our system: Dropout with Pdrop = 0.1 for self-
attention, and L2 regularization for all weight ma-
trix but not bias. We added 0.001 times regulariza-
tion loss to original loss function. We optimized
the loss with Gradient Descent using Adam op-
timization algorithm with additional learning rate
decay.

3.3 Model variants
We conduct experiments with following variants
of our model.

• AC: Self-attention + CNNs, which is our ba-
sic system.

• AC - attn: Basic system without self-
attention module.

• AC + nrc1: We mainly used NRC Emo-
tion lexicon(Mohammad and Turney, 2013)
to make word-level label of each sentence,
counting the occurence of each emotion in
the sentence. Each of the word-level label
is concatenated to the output vector of each
pooling layer.

• AC + nrc2: At evaluation/test step, binarize
the word-level label and add 0.4 times the la-
bel value to the logit.

• AC + synth: Inspired by (Sennrich et al.,
2016), we made synthetic data using unla-
beled SemEval-2018 AIT DISC data1 with

1https://www.dropbox.com/s/2phcvj300lcdnpl/SemEval2018-
AIT-DISC.zip?dl=0

143

pre-trained model, and fine-tuned the model
with synthetic data.

3.4 Experimental results

We conduct several experiments to prove the ef-
fectiveness of our model, each to verify the bene-
fit from: (1) tweets specific preprocessing (2) self-
attention representation (3) emotional lexicon uti-
lization. Experimental results are mainly com-
pared with English data.

3.4.1 Impact of emoji-to-meaning

We firstly verify the efficiency of emoji-to-
meaning preprocessing. Table 1 shows the accura-
cies of the same model with different preprocess-
ing. We found that emoji-to-meaning preprocess-
ing can improve the model accuracy by 1%. When
a emoji is converted to its meaning, it can be rep-
resented as a combination of emotional words al-
lowing it to not only reduce redundant vocabulary
but also further emphasize the influence of certain
emotions.

Model Accuracy(valid) Accuracy(test)
AC (w/o) 54.86% 54.91%
AC 55.94% 55.90%

Table 1: Experimental results with and without emoji-
to-meaning preprocessing.

3.4.2 Impact of self-attention

To examine the effectiveness of self-attention rep-
resentation, we simply get rid of self-attention lay-
ers. Table 2 shows that by removing the self-
attention layers, both the validation/test accuracy
dropped over 4%. This may be attributed to the
ability of self-attention: It helps the model to bet-
ter learn the long-range dependency of sentences.
Learning long-range dependencies is a key chal-
lenge in NLP tasks and self-attention module can
shorten the length of paths forward and backward
signals have to traverse in the network as described
in (Vaswani et al., 2017).

Model Accuracy(valid) Accuracy(test)
AC - attn 51.04% 51.60%
AC 55.94% 55.90%

Table 2: Comparison between our basic system and ba-
sic system without self-attention module.

3.4.3 Impact of extra resources
Lack of data has crucial impact on model general-
ization. Generalization techniques such as dropout
or L2 regularization can relieve over-fitting prob-
lem to a certain extent; however, it can’t totally
substitute the effect of rich data. So we apply
some heuristic methods to exploit extra resources
as described in 3.3. Table 2 shows that model can
slightly benefit from extra lexicon if used prop-
erly. However, adding synthetic data which is
made from pre-trained model didn’t help a lot, and
in some cases even reduce the accuracy of the test
result. Actually, Sennrich et al.(2016) emphasized
that they used the monolingual sentences as the
target sentences, informing that the target-side in-
formation, which corresponds to label in our task,
is not synthetic. However, we made synthetic la-
bels with a pre-trained model and it may only
cause over-fitting problem to the original training
data.

Model Accuracy(valid) Accuracy(test)
AC 55.94% 55.90%
AC + nrc1 56.13% 56.02%
AC + nrc2 57.16% 56.40%
AC + synth 55.88% 55.90%
Ensemble 59.76% 57.40%

Table 3: Experimental results with extra resources and
an ensemble result

3.4.4 Ensemble
Our best results are obtained with an ensem-
ble of 9 parameter sets of AC + nrc2 model
that differ in their random initializations. The
ensemble model achieved validation/test accu-
racy of 59.76%/57.40% in English data and
50.00%/46.90% in Spanish data respectively.

4 Conclusion

In this paper, we proposed an attention-based sen-
tence classifier that can classify a sentence into
multiple emotions. Experimental results demon-
strated that our system has effective structure for
sentence understanding. Our system shallowly
follows human’s procedure of classifying sen-
tences into multiple labels. However, some emo-
tions may have some relatedness while our model
treats them independently. In our future work,
we would like to further take those latent relation
among emotions into account.

144

Acknowledgments

This work was supported by the National Research
Foundation of Korea(NRF) funded by the Korea
government(MSIT) (No. 2016M3C4A7952632),
Industrial Strategic Technology Development
Program(No. 10073144) funded by the Ministry
of Trade, Industry & Energy(MOTIE, Korea)

References
Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-

gio. 2015. Neural machine translation by jointly
learning to align and translate. International Con-
ference on Learning Representations Workshop.

Steven Bird and Edward Loper. 2002. Nltk: the natu-
ral language toolkit. In Proceedings of the ACL-02
Workshop on Effective tools and methodologies for
teaching natural language processing and computa-
tional linguistics.

Misha Denil, Loris Bazzani, Hugo Larochelle, and
Nando de Freitas. 2012. Learning where to attend
with deep architectures for image tracking. Neural
Computation.

Sepp Hochreiter and Jrgen Schmidhuber. 1997.
Long short-term memory. Neural computation,
9(8):1735–1780.

Yoon Kim. 2014. Convolutional neural networks for
sentence classification. In Proceedings of the 2014
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 1746–1751. Association
for Computational Linguistics.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Cor-
rado, and Jeff Dean. 2013. Distributed representa-
tions of words and phrases and their composition-
ality. Advances in Neural Information Processing
Systems, 26:3111–3119.

Saif Mohammad and Peter Turney. 2013. Crowdsourc-
ing a word-emotion association lexicon. Computa-
tional Intelligence, 29(3):436–465.

Saif M. Mohammad, Felipe Bravo-Marquez, Mo-
hammad Salameh, and Svetlana Kiritchenko. 2018.
Semeval-2018 Task 1: Affect in tweets. In Proceed-
ings of International Workshop on Semantic Evalu-
ation (SemEval-2018), New Orleans, LA, USA.

Jeffrey Pennington, Richard Socher, and Christopher
D.Manning. 2014. Glove: Global vectors for word
representation. In Proceedings of the Conference on
Empirical Methods in Natural Language Process-
ing.

Bojanowski Piotr, Grave Edouard, Joulin Armand,
and Mikolov Tomas. 2016. Enriching word vec-
tors with subword information. arXiv preprint
arXiv:1607.04606.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Improving neural machine translation mod-
els with monolingual data. In Proceedings of the
54th Annual Meeting of the Association for Compu-
tational Linguistics, volume 1, pages 86–96.

Martin Sundermeyer, Ralf Schluter, and Hermann Ney.
2010. Lstm neural networks for language modeling.
Interspeech, pages 194–197.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Annual Conference on Neural Informa-
tion Processing Systems.

145

Proceedings of the 12th International Workshop on Semantic Evaluation (SemEval-2018), pages 146–150
New Orleans, Louisiana, June 5–6, 2018. ©2018 Association for Computational Linguistics

INGEOTEC at SemEval-2018 Task 1:
EvoMSA and µTC for Sentiment Analysis

Mario Graff and Sabino Miranda-Jiménez∗ and Eric S. Tellez
CONACyT - INFOTEC, Aguascalientes, México

{mario.graff,sabino.miranda,eric.tellez}@infotec.mx

Daniela Moctezuma
CONACyT - CentroGEO, Aguascalientes, México

dmoctezuma@centrogeo.edu.mx

Abstract

This paper describes our participation in Affective
Tweets task for emotional intensity and sentiment
intensity subtasks for English, Spanish, and Ara-
bic languages. We used two approaches, µTC and
EvoMSA. The first one is a generic text catego-
rization and regression system; and the second one
is a two-stage architecture for Sentiment Analysis.
Both approaches are multilingual and domain in-
dependent.

1 Introduction

Sentiment Analysis is a research area where does a
computational analysis of people’s feelings or be-
liefs expressed in texts such as emotions, opinions,
attitudes, appraisals, etc. (Liu and Zhang, 2012).
People communicate not only the emotion or sen-
timent they are feeling, but also the intensity, that
is, the degree of emotion or sentiment. In this con-
text, SemEval is one of the forums that conducts
evaluations on semantics at different levels, for in-
stance, it proposes tasks such as sentiment analy-
sis, the intensity of emotion or sentiment (affective
tweets) (Mohammad et al., 2018), irony detection,
among others (SemEval, 2017).

In this work, we present the results of our par-
ticipation in Affective Tweets task for four of the
five subtasks in English, Spanish, and Arabic lan-
guages and for all emotions available: anger, fear,
joy, and sadness.

The subtasks are A) emotion intensity regres-
sion (EI-REG): given a tweet and an emotion, de-
termine the intensity of the emotion that best rep-
resents the mental state of the tweeter, a real-value
score between 0 and 1.

B) Emotion intensity ordinal classification
∗corresponding author: sabino.miranda@infotec.mx

(EI-OC): given a tweet and an emotion E, classify
the tweet into one of four ordinal classes of inten-
sity of emotion: anger, fear, joy, and sadness, that
best represents the mental state of the tweeter.

C) A sentiment intensity regression task
(V-REG): given a tweet, determine the intensity
of sentiment, a real-valued score between 0 (most
negative) and 1 (most positive).

D) A sentiment analysis, ordinal classification
(V-OC): given a tweet, classify it into one of seven
ordinal classes, corresponding to several levels of
positive and negative sentiment intensity.

In this context, one crucial step is the procedure
used to transform the data (i.e., tweets) into the
inputs (vectors) of the supervised learning tech-
niques used. Typically, Natural Language Pro-
cessing (NLP) approaches for data representation
use n-grams of words, linguistic information such
as dependency relations, syntactic information,
lexical units (e.g., lemmas, stems), affective lexi-
cons, error correction, etc. However, selecting the
best configuration of those characteristics could
be a cumbersome task, many times disregarded
in favor of some well-known competitive setups.
(Tellez et al., 2017b) studies the dependency be-
tween the performance and the proper selection
of the text model. This selection can be seen as
a combinatorial optimization problem where the
objective is to maximize the performance metric
of the classifier being used; this approach is im-
plemented by µTC, (Tellez et al., 2018). Due to
its combinatorial nature, and the kind of parame-
ters that compose the configuration space, the re-
sulting classifiers are multilingual and domain in-
dependent. Therefore, with a tight dependency
on the training set, it is mandatory to provide ad-
ditional information about the particular task to
avoid overfitting. In this sense, the use of multi-
ple knowledge sources is essential, and combin-
ing them simply and effectively is the idea be-

146

hind EvoMSA. EvoMSA (§2.2) is a stacking sys-
tem based on genetic programming, and partic-
ularly on the use of semantic genetic operators,
that focus on sentiment analysis. The core of our
contribution is to use both µTC and EvoMSA to
learn from different annotated collections and then
use that diverse knowledge to tackle the SemEval
2018 Task 1 challenge.

Looking at systems that obtained the best re-
sults in previous SemEval editions, it can be con-
cluded that it is necessary to include more datasets,
see for instance BB twtr system (Cliche, 2017) for
Sentiment Analysis in the Twitter task, which uses
more datasets besides the one given in the com-
petition. Here, it was decided to follow a sim-
ilar approach by including an additional human-
annotated dataset publicly available for English,
Spanish, and Arabic to build robust models.

2 System Description

As commented, we use two systems to evaluate
the Affective Tweets task: µTC and EvoMSA. On
the one hand, µTC is used mainly to evaluate two
tasks for the Arabic language because in our ex-
periments it obtained the best performance in al-
most all subtask in this language both for regres-
sion and classification tasks. On the other hand,
EvoMSA is used to evaluate English and Span-
ish languages, and ordinal sentiment classification
(valence) task for Arabic. In the following para-
graphs, we describe these approaches.

2.1 µTC

µTC1 is a minimalistic and wide system able to
tackle text classification and regression tasks in-
dependent of domain and language a detail. For
complete details of the model see (Tellez et al.,
2018). Essentially, µTC creates text classifiers (or
a text regressors) searching for the best models in
a given configuration space. A configuration con-
sists of instructions to enable several preprocess-
ing functions, a combination of tokenizers among
the power set of several possible ones (character
q-grams, n-word grams, skip-grams, etc.), and a
weighting scheme (application of frequency filters
and the use of TF, TFIDF, or several distributional
schemes). µTC seeks the best configurations opti-
mizing a score which is evaluated through a clas-
sifier or a regressor; currently, it uses SVM for
both tasks. In Table 1, we can see details of text

1https://github.com/INGEOTEC/microTC

transformations used in our solution for detecting
Anger emotion for Arabic. This set of text trans-
formations was selected among millions of possi-
ble configurations through the combinatorial opti-
mization process implemented in µTC. In ordinal
classification tasks the model is found out based
on the training dataset provided for each emotion,
if this is the case.

2.2 EvoMSA

EvoMSA2 is a Sentiment Analysis System based
on B4MSA and EvoDAG. It is an architecture of
two phases to solve classification or regression
tasks, see Figure 1. EvoMSA improves the per-
formance of a global classifier combining the pre-
dictions of a set of classifiers with different mod-
els on the same text to be classified. Roughly
speaking, in the first stage, a set of B4MSA classi-
fiers (see Sec. 2.2.1) are trained with two kind of
datasets; datasets provided by SemEval, and large
datasets annotated by humans for sentiment anal-
ysis for English and Spanish languages (Mozetič
et al., 2016), called HA datasets. In the case of
HA datasets, it is split into balanced small datasets
that feed each B4MSA classifier which produces
three real output values, one for each sentiment
(negative, neutral and positive). In the case of Se-
mEval datasets, for instance, for EI-OC, the clas-
sifier produces one of four ordinal classes of in-
tensity of emotion (0, 1, 2, 3). It creates a deci-
sion functions space with mixtures of values com-
ing from different views of knowledge. Finally,
EvoDAG’s inputs are the concatenation of all the
decision functions predicted by each B4MSA sys-
tem, and EvoDAG produces a final value or pre-
diction. The following subsections describe the in-
ternal parts of EvoMSA. The precise configuration
of our benchmarked system is described in Sec. 4.

Figure 1: EvoMSA Architecture

2https://github.com/INGEOTEC/EvoMSA

147

2.2.1 B4MSA
B4MSA3 is related to µTC, but this framework is
mainly focused for multilingual sentiment analy-
sis. For complete details of the model see (Tellez
et al., 2017a,b).

The core idea behind B4MSA is similar to that
of µTC, i.e., it tackles the sentiment analysis prob-
lem as a model selection problem, yet using a dif-
ferent view of the underlying combinatorial prob-
lem. Also, contrarily to µTC, B4MSA takes ad-
vantage of several domain-specific particularities
like emojis and emoticons and makes explicit han-
dling of negation statements expressed in texts.
Nonetheless, EvoMSA avoids the sophisticated
use of B4MSA fixing the model for each language
in favor of performing an optimization process at
the level of the decision functions of several mod-
els. Table 1 shows text transformation parameters
used in our system for English and Spanish lan-
guages.

2.2.2 EvoDAG
EvoDAG4 (Graff et al., 2016, 2017) is a Genetic
Programming system specifically tailored to tackle
classification and regression problems on very
high dimensional vector spaces and large datasets.
In particular, EvoDAG uses the principles of Dar-
winian evolution to create models represented as a
directed acyclic graph (DAG). An EvoDAG model
has three distinct node’s types; the inputs nodes,
that as expected received the independent vari-
ables, the output node that corresponds to the la-
bel, and the inner nodes are the different numerical
functions such as: sum, product, sin, cos, max, and
min, among others. Due to lack of space, we refer
the reader to (Graff et al., 2016) where EvoDAG
is broadly described. In fact, in this research, we
followed the steps explained there. In order to give
an idea of the type of models being evolved, Fig-
ure 2 depicts a model evolved for the Arabic polar-
ity classification at global message task. As can be
seen, the model is represented using a DAG where
direction of the edges indicates the dependency,
e.g., cos depends onX3, i.e., cosine function is ap-
plied to X3. As commented above, there are three
types of nodes; the inputs nodes are colored in red,
the inner nodes are blue (the intensity is related to
the distance to the height, the darker the closer),
and the green node is the output node. As men-

3https://github.com/INGEOTEC/b4msa
4https://github.com/mgraffg/EvoDAG

tioned previously, EvoDAG uses as inputs the de-
cision functions of B4MSA, then the first three in-
puts (i.e., X0, X1, andX2) correspond to the deci-
sion functions values of the negative, neutral, and
positive polarity of B4MSA model trained with
SemEval Arabic dataset, and the later two (i.e.,X3

and X4) correspond to the decision function val-
ues of two B4MSA systems each one trained with
other dataset for two classes. It is important to
mention that EvoDAG does not have information
regarding whether input Xi comes from a partic-
ular polarity decision function, consequently from
EvoDAG point of view all inputs are equivalent.

Figure 2: An evolved model for the Arabic task.

3 Experimental Settings

As we mentioned, to determine the best configu-
ration of parameters for text modeling, µTC and
B4MSA integrate a hyper-parameter optimization
phase that ensures the performance of the classi-
fier based on the training data. The text modeling
parameters for B4MSA were set for all process as
we show in Table 1 for English and Spanish lan-
guage for classification and regression tasks. In
the case of the Arabic language, the parameters
were calculated by the optimization phase; an ex-
ample is showed in Table 1. A text transforma-
tion feature could be binary (yes/no) or ternary
(group/delete/none) option. Tokenizers denote
how texts must be split after applying the process
of each text transformation to texts. Tokenizers
generate text chunks in a range of lengths, all to-
kens generated are part of the text representation.
Both, B4MSA and µTC, allow selecting tokeniz-
ers based on n-words, q−grams, and skip-grams,
in any combination. We call n-words to the well-
known word n-grams; in particular, we allow to
use any combination of unigrams, bigrams, and
trigrams. Also, the configuration space allows se-
lecting any combination of character q-grams (or
just q-grams) for q = 1 to 9. Finally, we allow to

148

use (2, 1) and (3, 1) skip-grams (two words sepa-
rated by one word, and three words separated by a
gap).

Table 1 shows the final configurations for En-
glish and Spanish and an example for one emotion
for Arabic. For example, numbers are deleted in
Arabic, but it is grouped in English and Spanish.
In the case of English, it is split in unigrams, bi-
grams, character q-grams of sizes 2, 3, and 4.

Text transformation English Spanish Arabic

remove diacritics yes yes yes
remove duplicates yes yes yes
remove punctuation yes yes yes
emoticons group group group
lowercase yes yes false
numbers group group delete
urls group group group
users group group none
hashtags none none none
entities none none none

Term weighting

TF-IDF yes yes no
Entropy no no yes

Tokenizers

n-words {1, 2} {1, 2} {1, 2}
q-grams {2, 3, 4} {2, 3, 4} {2, 3, 7, 9}
skip-grams — — —

Table 1: Example of set of configurations for text modeling

3.1 Datasets

SemEval provides datasets to train systems for
each subtask. For instance, for emotion Anger
in English, subtask emotion intensity ordinal clas-
sification, OC, the training data is distributed for
four classes (class 0 = 445, class 1 = 322, class
2 = 507, class 3 = 427). The Arabic datasets for
each emotion have around 800 samples each one,
for English the sizes are between 1500 and 2200
samples, and for Spanish are between 1000 and
1150 samples, for more details of the data distri-
bution and how the datasets were built we refer
the reader to (Mohammad et al., 2018; Moham-
mad and Kiritchenko, 2018). In addition of Se-
mEval data, we use extra datasets annotated by
humans around 73 thousand tweets for English,
223 thousand for Spanish (Mozetič et al., 2016),
and two thousand for Arabic (NRC, 2017). Ta-
ble 2 shows the distribution of classes for datasets.
Those datasets are mainly used for sentiment anal-
ysis; however, we use this extra information to im-
prove the final decision in the approach we imple-
mented (EvoMSA).

HA-DataSet Positive Neutral Negative Total

English 21,166 33,620 18,454 73,240
Spanish 107,252 89,782 26,272 223,306
Arabic 448 202 1,350 2,000

Table 2: Statistics of Human-Annotated training data. We
used the labeled English and Spanish data from (Mozetič
et al., 2016), and the Arabic data from (NRC, 2017).

4 Results

We present the results of our approaches in Table
3 and Table 4. All experiments were tested on the
development dataset provided by SemEval. In the
case of OC tasks, we use the macro-F1 score to
measure the performance, and in the case of Reg
tasks, we use the Pearson correlation coefficient.
Table 3 shows the results of emotional intensity
for ordinal classification (OC) and regression tasks
(Reg) grouped by each emotion and language. Ta-
ble 4 shows the results of sentiment analysis, ordi-
nal classification task (V-OC) and sentiment inten-
sity regression task (V-Reg) group by each emo-
tion and language. We present three system con-
figurations in Table 3 and Table 4. EvoMSA con-
figuration uses only the training datasets provided
by SemEval, and it is used as regressor or clas-
sification system. In addition of SemEval data,
EvoMSA-HA uses extra information comes from
sentiment analysis domain, and this information
improves the performance as we can see. And
µTC uses only the training data provided by the
contest as the knowledge base to calculate the fi-
nal class or real value. As we can see in Table
3, the best performance obtained are grouped by
EvoMSA-HA configuration for both OC and Reg
tasks for English and Spanish languages. For the
Arabic language, µTC is quite good with OC and
Reg task. According to the results we obtained, we
decided to use for the evaluation phase the follow-
ing configuration: EvoMSA-HA is used for OC,
Reg, V-OC, and V-Reg tasks for English and Span-
ish; also for OC (Fear and Joy) and V-OC tasks for
Arabic; and µTC is used for Arabic in OC (Anger
and Sadness), Reg, and V-Reg tasks. In the table,
the performance of our configuration systems, on
gold standard, is labeled by subscripts; they stand
for the rank in the general evaluation. For exam-
ple, for Spanish in OC task, we were ranked for
Anger emotion in position 4; Fear, position 2; Joy,
position 3; and Sadness, position 2.

149

Configuration Anger Fear Joy Sadness

English

(OC) EvoMSA 0.3938 0.3820 0.3983 0.4249
(OC) EvoMSA-HA 0.4188 0.4187 0.3977 0.4389
(OC) µTC 0.3300 0.4120 0.3167 0.3908

(Reg) EvoMSA 0.4948 0.4758 0.5371 0.5714
(Reg) EvoMSA-HA 0.5756 0.5380 0.6249 0.6105
(Reg) µTC 0.3301 0.5158 0.5042 0.5087

Performance on gold standard

(OC) Our Approach 0.560(14) 0.489(15) 0.643(9) 0.584(13)
(Reg) Our Approach 0.643(26) 0.621(29) 0.684(20) 0.626(28)

Spanish

(OC) EvoMSA 0.4210 0.5013 0.4811 0.4419
(OC) EvoMSA-HA 0.4405 0.5006 0.5275 0.4835
(OC) µTC 0.3741 0.4070 0.4353 0.3757

(Reg) EvoMSA 0.5487 0.7338 0.7051 0.5965
(Reg) EvoMSA-HA 0.4990 0.7265 0.7129 0.5941
(Reg) µTC 0.5241 0.6568 0.4897 0.5693

Performance on gold standard

(OC) Our Approach 0.468(4) 0.634(2) 0.655(3) 0.628(2)
(Reg) Our Approach 0.543(4) 0.675(4) 0.682(3) 0.633(5)

Arabic

(OC) EvoMSA 0.4062 0.3721 0.3688 0.4039
(OC) EvoMSA-HA 0.3805 0.3620 0.3768 0.3637
(OC) µTC 0.4182 0.3092 0.3347 0.4689

(Reg) EvoMSA 0.3661 0.2770 0.3782 0.5142
(Reg) EvoMSA-HA 0.2118 0.1117 0.4279 0.5952
(Reg) µTC 0.4700 0.5011 0.4090 0.6191

Performance on gold standard

(OC) Our Approach 0.387(4) 0.440(4) 0.498(4) 0.425(6)
(Reg) Our Approach 0.501(5) 0.501(6) 0.628(5) 0.537(6)

Table 3: Results for Emotion Intensity: Ordinal Classifica-
tion (OC) and Regression (Reg), in terms of macro-F1 (OC)
and Pearson correlation coefficient (Reg).

Configuration English Spanish Arabic

(V-OC) EvoMSA 0.3148 0.3367 0.3304
(V-OC) EvoMSA-HA 0.3430 0.3902 0.3251
(V-OC) µTC 0.2848 0.3418 0.2671

(V-Reg) EvoMSA 0.5993 0.6571 0.2977
(V-Reg) EvoMSA-HA 0.6213 0.6693 0.0045
(V-Reg) µTC 0.3440 0.5834 0.6263

Performance on gold standard

(V-OC) Our Approach 0.760(11) 0.749(3) 0.698(4)
(V-Reg) Our Approach 0.761(24) 0.701(5) 0.746(5)

Table 4: Results for Valence: Ordinal Classification (OC)
and Regression (Reg), in terms of macro-F1 (OC) and Pear-
son correlation coefficient (Reg).

5 Conclusions

In this paper was presented our solution for Af-
fective Tweets task combining two approaches
EvoMSA and µTC. Both systems are designed to
be multilingual and language and domain indepen-
dent as much as possible. For the training step, we
use extra human annotated datasets out of any spe-
cific emotion, but related to sentiment-analysis in-
formation; our solution performs well in Spanish
and Arabic languages; however, there is room for
further improvements in performance for tasks in
English language using another sort of knowledge
such as semantic information (word embeddings)
into EvoMSA architecture.

References
Mathieu Cliche. 2017. Bb twtr at semeval-2017 task 4: Twit-

ter sentiment analysis with cnns and lstms. In Proceedings
of the 11th International Workshop on Semantic Evalua-
tion (SemEval-2017), pages 573–580.

M. Graff, E. S. Tellez, S. Miranda-Jiménez, and H. J. Es-
calante. 2016. Evodag: A semantic genetic programming
python library. In 2016 IEEE International Autumn Meet-
ing on Power, Electronics and Computing (ROPEC), pages
1–6.

Mario Graff, Eric S. Tellez, Hugo Jair Escalante, and Sabino
Miranda-Jiménez. 2017. Semantic Genetic Programming
for Sentiment Analysis. In Oliver Schtze, Leonardo Tru-
jillo, Pierrick Legrand, and Yazmin Maldonado, editors,
NEO 2015, number 663 in Studies in Computational Intel-
ligence, pages 43–65. Springer International Publishing.
DOI: 10.1007/978-3-319-44003-3 2.

Bing Liu and Lei Zhang. 2012. A Survey of Opinion Mining
and Sentiment Analysis. Springer US, Boston, MA.

Saif M. Mohammad, Felipe Bravo-Marquez, Mohammad
Salameh, and Svetlana Kiritchenko. 2018. Semeval-2018
Task 1: Affect in tweets. In Proceedings of International
Workshop on Semantic Evaluation (SemEval-2018), New
Orleans, LA, USA.

Saif M. Mohammad and Svetlana Kiritchenko. 2018. Un-
derstanding emotions: A dataset of tweets to study inter-
actions between affect categories. In Proceedings of the
11th Edition of the Language Resources and Evaluation
Conference, Miyazaki, Japan.

Igor Mozetič, Miha Grčar, and Jasmina Smailović. 2016.
Multilingual twitter sentiment classification: The role of
human annotators. PloS one, 11(5):e0155036.

NRC. 2017. Syrian tweets arabic sentiment analysis dataset.
http://saifmohammad.com/WebPages/
ArabicSA.html. Accessed 17-Feb-2017.

SemEval. 2017. Semeval-2017: Sentiment analysis
task 4. http://alt.qcri.org/semeval2017/
task4/. Accessed 17-Feb-2017.

Eric S. Tellez, Sabino Miranda-Jiménez, Mario Graff,
Daniela Moctezuma, Ranyart R. Suárez, and Oscar S.
Siordia. 2017a. A simple approach to multilingual polar-
ity classification in Twitter. Pattern Recognition Letters,
94:68–74.

Eric S. Tellez, Sabino Miranda-Jimnez, Mario Graff, Daniela
Moctezuma, Oscar S. Siordia, and Elio A. Villaseor.
2017b. A case study of spanish text transformations for
twitter sentiment analysis. Expert Systems with Applica-
tions, 81:457 – 471.

Eric S. Tellez, Daniela Moctezuma, Sabino Miranda-
Jiménez, and Mario Graff. 2018. An automated text cate-
gorization framework based on hyperparameter optimiza-
tion. Knowledge-Based Systems, 149:110–123.

150

Proceedings of the 12th International Workshop on Semantic Evaluation (SemEval-2018), pages 151–155
New Orleans, Louisiana, June 5–6, 2018. ©2018 Association for Computational Linguistics

Epita at SemEval-2018 Task 1: Sentiment Analysis Using Transfer
Learning Approach

Guillaume Daval-Frerot Abdessalam Bouchekif

Graduate school of computer science, EPITA, France
firstname.lastname@epita.fr

Anatole Moreau

Abstract
In this paper we present our system for detec-
ting valence task. The major issue was to ap-
ply a state-of-the-art system despite the small
dataset provided : the system would quickly
overfit. The main idea of our proposal is to use
transfer learning, which allows to avoid lear-
ning from scratch. Indeed, we start to train a
first model to predict if a tweet is positive, ne-
gative or neutral. For this we use an external
dataset which is larger and similar to the target
dataset. Then, the pre-trained model is re-used
as the starting point to train a new model that
classifies a tweet into one of the seven various
levels of sentiment intensity.
Our system, trained using transfer learning,
achieves 0.776 and 0.763 respectively for
Pearson correlation coefficient and weighted
quadratic kappa metrics on the subtask evalua-
tion dataset.

1 Introduction
The goal of detecting valence task is to clas-

sify a given tweet into one of seven classes, cor-
responding to various levels of positive and ne-
gative sentiment intensity, that best represents the
mental state of the tweeter. This can be seen
as a multiclass classification problem, in which
each tweet must be classified in one of the follo-
wing classes : very negative (-3), moderately nega-
tive (-2), slightly negative (-1), neutral/mixed (0),
slightly positive (1), moderately positive (2) and
very positive (3) (Mohammad et al., 2018).

Several companies have been interested in cus-
tomer opinion for a given product or service. Sen-
timent analysis is one approach to automatically
detect their emotions from comments posted in so-
cial networks.

With the recent advances in deep learning, the
ability to analyse sentiments has considerably
improved. Indeed, many experiments have used
state-of-the-art systems to achieve high perfor-

mance. For example, (Baziotis et al., 2017) use Bi-
directional Long Short-Term Memory (B-LSTM)
with attention mechanisms while (Deriu et al.,
2016) use Convolutional Neural Networks (CNN).
Both systems obtained the best performance at the
the 2016 and 2017 SemEval 4-A task respectively.

The amount of data is argued to be the main
condition to train a reliable deep neural network.
However, the dataset provided to build our system
is limited. To address this issue, two solutions can
be considered. The first solution consists in exten-
ding our dataset by either manually labeling new
data, which can be very time consuming, or by
using over-sampling approaches. The second solu-
tion consists in applying a transfer learning, which
allows to avoid learning the model from scratch.

In this paper, we apply a transfer learning
approach, from a model trained on a similar task :
we propose to pre-train a model to predict if a
tweet is positive, negative or neutral. Precisely,
we apply a B-LSTM on an external dataset. Then,
the pre-trained model is re-used to classify a tweet
according to the seven-point scale of positive and
negative sentiment intensity.

The rest of the paper is organized as follows.
Section 2 presents a brief definition of transfer
learning. The description of our proposed system
is presented in Section 3. The experimental set-
up and results are described in Section 4. Finally,
a conclusion is given with a discussion of future
works in Section 5.

2 Transfer Learning
Transfer Learning (TL) consists in transferring

the knowledge learned on one task to a second re-
lated task. In other words, the TL is about trai-
ning a base network and then copy its first n layers
to the first n layers of a target network (Yosinski
et al., 2014). Usually the first n layers of a pre-

151

trained model (or source model) are frozen when
training the new model. This means that weights
are not changed during training on the new task.
TL should not be confused with fine-tuning where
the back-propagation error affects the entire neural
network (including the first n layers).

For a limited number of training examples, TL
allows to provide more precise predictions than
the traditional supervised learning approaches.
Moreover, TL significantly speeds up the learning
process as training does not start from scratch. For
example, (Cirean et al., 2012) use a CNN trai-
ned to recognize the Latin handwritten charac-
ters for the detection of Chinese characters. In na-
tural language processing, TL has improved the
performance of several systems from various do-
mains such as : sentiment classification (Glorot
et al., 2011), automatic translation (Zoph et al.,
2016), speech recognition and document classifi-
cation (Wang and Zheng, 2015).

3 Proposed System
In this section, we present the four main steps

of our approach : (1) Text processing to filter the
noise from the raw text data, (2) Feature extrac-
tion to represent words in tweets as vectors of
length 426 by concatenating several features, (3)
Pre-training model to predict the tweet polarity
(positive, negative or neutral) based on external
data and (4) Learning a new model where the pre-
trained model is adapted to our task by removing
the last layer and adding a fully-connected layer
followed by an output layer.

3.1 Text processing
Tweets are processed using ekphrasis 1 tool

which allows to perform the following tasks : to-
kenization, word normalization, word segmenta-
tion (for splitting hashtags) and spell correction
(i.e replace a misspelled word with the most pro-
bable candidate word). All words are lowercase.
E-mails, URLs and user handles are normalized.
A detailed description of this tool is given in (Ba-
ziotis et al., 2017).

3.2 Feature extraction
Each word in each tweet is represented by a vec-

tor of 426 dimensions which are obtained by the
concatenation of the following features :

1. https://github.com/cbaziotis/
ekphrasis

— AFINN and Emoji Valence 2 are two lists of
english words and emojis rated for valence
scoring range from−5 (very negative) to +5
(very positive) (Nielsen, 2011).

— Depeche Mood is a lexicon of 37k words as-
sociated with emotion scores (afraid, amu-
sed, angry, annoyed, sad, happy, inspired
and don’t care) (Staiano and Guerini, 2014).

— Emoji Sentiment Lexicon is a lexicon of the
969 most frequent emojis. The emojis senti-
ment is computed from the sentiment (posi-
tive, negative or neutral) of tweets in which
they occur. Each emoji is associated with a
unicode, number of occurrences, position in
the tweet [0, 1] (0 : start of the tweet, 1 :
end of the tweet), probabilities of negativity,
neutrality, and positivity of the emoji (No-
vak et al., 2015).

— Linguistic Inquiry and Word Count is a dic-
tionary containing 5,690 stems associated
with 64 categories, from linguistic dimen-
sions to psychological processes (Tausczik
and Pennebaker, 2010).

— NRC Word-Emotion Association, Hash-
tag Emotion/Sentiment and Affect Intensity
Lexicons are lists of english words and
their associations with eight emotions (an-
ger, fear, anticipation, trust, surprise, sad-
ness, joy, and disgust) and two sentiments
(positive, negative), each with specificities
detailed in (Mohammad and Turney, 2013),
(Mohammad and Kiritchenko, 2015) and
(Mohammad, 2017). The intensity score for
both emotions and sentiments takes a value
between 0 and 1.

— Opinion Lexicon English contains around
7k positive and negative sentiment words
for the english language (Hu and Liu, 2004).

— Sentiment140 is a list of words and their as-
sociations with positive and negative senti-
ment (Mohammad et al., 2013).

— Words embeddings are dense vectors of real
numbers capturing the semantic meanings
of words. We use datastories embeddings
(Baziotis et al., 2017) which were trained on
330M english twitter messages posted from
12/2012 to 07/2016. The embeddings used
in this work are 300 dimensional.

2. https://github.com/words/
emoji-emotion

152

Figure 1 – Our transfer learning approach for sentiment analysis. (a) Pre-trained model learned with B-LSTM
network with 2 layers of 150 neurons each to predict if a tweet is positive, negative or neutral. (b) The first layers
of pre-traind model are locked and re-purposed to predict various levels of positive and negative sentiment intensity.

3.3 Pre-training model
The objective is to build a model which allows

to predict the tweeter’s attitude (positive, negative
or neutral). Bidirectional Long Short-Term Me-
mory networks (B-LSTM) (Schuster and Paliwal,
1997) have become a standard for sentiment ana-
lysis (Baziotis et al., 2017) (Mousa and Schul-
ler, 2017) (Moore and Rayson, 2017). B-LSTM
consists in two LSTMs in different directions run-
ning in parallel : the first forward network reads
the input sequence from left to right and the se-
cond backward network reads the sequence from
right to left. Each LSTM yields a hidden represen-
tation : ~h (left to right vector) and

←−
h (right-to-left

vector) which are then combined to compute the
output sequence. For our problem, capturing the
context of words from both directions allows to
better understand the tweet semantic. We here use
a B-LSTM network with 2 layers of 150 neurons
each. The architecture is shown in Figure 1 (a).

For training, we use the external dataset 3 com-
posed of 50333 tweets (7840 negatives, 19903 po-
sitives and 22590 neutrals).

3. https://github.com/cbaziotis/
datastories-semeval2017-task4/tree/
master/dataset/Subtask_A/downloaded.

3.4 Learning model
Let us note that our final objective is to train a

model to classify a tweet into seven classes (very
negative, moderately negative, slightly negative,
neutral, slightly positive, moderately positive and
very positive). To train the model, we use the da-
taset provided for the target task (Mohammad and
Kiritchenko, 2018). The training and development
dataset contain respectively 1180 and 448 tweets.
Since the dataset is small, fine-tuning may result
in overfitting. Therefore, we propose to freeze the
network layers except the final dense layer that is
associated with the three classes sentiment analy-
sis, which is removed after pre-training. Then, we
add a fully-connected layer of 150 neurons follo-
wed by an output layer of 7 neurons, as illustrated
on Figure 1 (b).

4 Results and Analysis
The official 4 evaluation metric is Pearson Cor-

relation Coefficient (P). Submited systems are
also evaluated with the weighted quadratic kappa
(W). However, the pre-trained model was evalua-
ted using classification accuracy. We implemented
our system using Keras tool with the Tensorflow
backend.

4. https://github.com/felipebravom/
SemEval_2018_Task_1_Eval

153

4.1 Pre-trained model evaluation
As proposed in (Baziotis et al., 2017), we used

B-LSTM with the following parameters : size of
LSTM layers is 150 (300 for B-LSTM), 2 layers of
B-LSTM, with a dropout of 0.3 and 0.5 for embed-
ding and LSTM layers respectively. Other hyper-
parameters used are : Gaussian noise with σ of 0.3,
and L2 regularization of 0.0001. We trained the B-
LSTM over 18 epochs with a learning rate of 0.01
and batch size of 128 sequences.

We trained our model with external data (more
details in section 3.3) but for the evaluation we
adapted the training and development sets provi-
ded for the target task. The various levels of posi-
tive sentiments (i.e slightly, moderately and very
positive) were regrouped in the same class. The
same goes for the various levels of negative senti-
ments. Our model achieves 69.4% of accuracy.

4.2 Model evaluation
We adapted the pre-trained model described

above by removing the last fully-connected layer,
and added a dense layer of 150 neurons followed
by an output layer of 7 neurons. As a reminder,
the pre-trained layers are frozen. We used the trai-
ning and development sets to train our system, and
evaluated by predicting the valence on the evalua-
tion set. We trained our model over 8 epochs with
a learning rate of 0.01 and batch size of 50 se-
quences. Our model achieves 0.776 and 0.763 res-
pectively on P and W .

4.3 Other experiments
Finally, we conducted a set of experiments to

validate our system and approach. We evaluated
more commonly used systems, with and without
transfer learning. These new systems are built by :

— using similar number of layers, parameters
and hyper-parameters.

— replacing B-LSTM layers by LSTM, CNN
and dense layers.

— for the DNN, computing predictions using
the mean of each word-vector of tweets,
since it can not use sequences as input.

— for the CNN, using multiple convolutional
filters of sizes 3, 4 and 5.

— for the combinations of systems, averaging
the output probabilities.

The results are presented on Table 1.
We can observe that TL approach achieves bet-

ter scores, and that B-LSTM is leading the score

Approach Systems Pearson

DNN 0.683
CNN 0.702

Without TL LSTM 0.721
B-LSTM 0.735

CNN + LSTM 0.742
CNN 0.741

With TL B-LSTM 0.776
CNN + B-LSTM 0.755

Table 1 – Pearson scores on test set with different sys-
tems and combinations.

on both approaches as a single system. Moreo-
ver, combining systems enhances greatly the pre-
diction without TL, but decreases the score with
TL : the combination of independent systems com-
pensates a small lack of data, but becomes useless
with enough training.

5 Conclusion
In this paper, we propose to use a transfer

learning approach for sentiment analysis (SemE-
val2018 task 1). Using B-LSTM networks, we pre-
trained a model to predict the tweet polarity (posi-
tive, negative or neutral) based on an external da-
taset of 50k tweets. To avoid the overfitting, layers
(except the last one) of the pre-trained model were
frozen. A dense layer was then added followed by
a seven neurones output layer. Finally, the new net-
work was trained on the small target dataset. The
system achieves a score of 0.776 on Pearson Cor-
relation Coefficient.

Improvements could be made concerning the
features, and by using attention mechanisms.
However, the future work will focus on multiple
transfers, to increase the amount of data used in
the process. We will perform transfers from two
classes (positive and negative) to three classes
(adding neutral), then five classes and finally
seven classes. Numerous datasets 5 are currently
available to deploy such a system.

Acknowledgments

We thank Dr. Yassine Nair Benrekia for interes-
ting scientific discussions.

5. http://alt.qcri.org/semeval2016/
task4/

154

References
Christos Baziotis, Nikos Pelekis, and Christos Doulke-

ridis. 2017. Datastories at semeval-2017 task 6 : Sia-
mese LSTM with attention for humorous text com-
parison. In Proceedings of the 11th International
Workshop on Semantic Evaluation, SemEval@ACL
2017, Vancouver, Canada.

D. C. Cirean, U. Meier, and J. Schmidhuber. 2012.
Transfer learning for latin and chinese characters
with deep neural networks. In The 2012 Internatio-
nal Joint Conference on Neural Networks (IJCNN).

Jan Deriu, Maurice Gonzenbach, Fatih Uzdilli,
Aurélien Lucchi, Valeria De Luca, and Martin Jaggi.
2016. Swisscheese at semeval-2016 task 4 : Senti-
ment classification using an ensemble of convolu-
tional neural networks with distant supervision. In
Proceedings of the 10th International Workshop on
Semantic Evaluation, SemEval@NAACL-HLT, USA.

Xavier Glorot, Antoine Bordes, and Yoshua Bengio.
2011. Domain adaptation for large-scale sentiment
classification : A deep learning approach. In Procee-
dings of the 28th International Conference on Ma-
chine Learning, USA.

Minqing Hu and Bing Liu. 2004. Mining and summari-
zing customer reviews. In Proceedings of the Tenth
ACM SIGKDD International Conference on Know-
ledge Discovery and Data Mining, Seattle, Washing-
ton, USA, pages 168–177.

Saif Mohammad, Svetlana Kiritchenko, and Xiaodan
Zhu. 2013. Nrc-canada : Building the state-of-the-
art in sentiment analysis of tweets. In Proceedings
of the seventh international workshop on Semantic
Evaluation Exercises (SemEval-2013).

Saif Mohammad and Peter D. Turney. 2013. Crowd-
sourcing a word-emotion association lexicon. Com-
putational Intelligence, 29(3) :436–465.

Saif M. Mohammad. 2017. Word affect intensities.
CoRR, abs/1704.08798.

Saif M. Mohammad, Felipe Bravo-Marquez, Moham-
mad Salameh, and Svetlana Kiritchenko. 2018.
Semeval-2018 Task 1 : Affect in tweets. In Procee-
dings of International Workshop on Semantic Eva-
luation (SemEval-2018), New Orleans, LA, USA.

Saif M. Mohammad and Svetlana Kiritchenko. 2015.
Using hashtags to capture fine emotion catego-
ries from tweets. Computational Intelligence,
31(2) :301–326.

Saif M. Mohammad and Svetlana Kiritchenko. 2018.
Understanding emotions : A dataset of tweets to
study interactions between affect categories. In Pro-
ceedings of the 11th Edition of the Language Re-
sources and Evaluation Conference, Miyazaki, Ja-
pan.

Andrew Moore and Paul Rayson. 2017. Lancaster A
at semeval-2017 task 5 : Evaluation metrics matter :
predicting sentiment from financial news headlines.
In Proceedings of the 11th International Workshop
on Semantic Evaluation, SemEval@ACL 2017, Ca-
nada.

Amr Mousa and Bjrn Schuller. 2017. Contextual bi-
directional long short term memory recurrent neural
network language models : A generative approach
to sentiment analysis. In Proceedings of the 15th
Conference of the European Chapter of the Associa-
tion for Computational Linguistics.

Finn Årup Nielsen. 2011. A new evaluation of a word
list for sentiment analysis in microblogs. In Procee-
dings of the ESWC2011 Workshop on ’Making Sense
of Microposts’ : Big things come in small packages
Crete, Greece, pages 93–98.

Petra Kralj Novak, Jasmina Smailovic, Borut Sluban,
and Igor Mozetic. 2015. Sentiment of emojis.
CoRR, abs/1509.07761.

Mike Schuster and Kuldip K. Paliwal. 1997. Bidirec-
tional recurrent neural networks. IEEE Trans. Si-
gnal Processing.

Jacopo Staiano and Marco Guerini. 2014. Depeche
mood : a lexicon for emotion analysis from crowd
annotated news. In Proceedings of the 52nd Annual
Meeting of the Association for Computational Lin-
guistics, ACL, Baltimore, USA, pages 427–433.

Yla R. Tausczik and James W. Pennebaker. 2010. The
psychological meaning of words : Liwc and compu-
terized text analysis methods. Journal of Language
and Social Psychology, 29 :24–54.

Dong Wang and Thomas Fang Zheng. 2015. Trans-
fer learning for speech and language processing. In
Asia-Pacific Signal and Information Processing As-
sociation Annual Summit and Conference.

Jason Yosinski, Jeff Clune, Yoshua Bengio, and Hod
Lipson. 2014. How transferable are features in deep
neural networks? In Proceedings of the 27th Inter-
national Conference on Neural Information Proces-
sing Systems.

Barret Zoph, Deniz Yuret, Jonathan May, and Kevin
Knight. 2016. Transfer learning for low-resource
neural machine translation. In Proceedings of the
2016 Conference on Empirical Methods in Natural
Language Processing, USA.

155

Proceedings of the 12th International Workshop on Semantic Evaluation (SemEval-2018), pages 156–161
New Orleans, Louisiana, June 5–6, 2018. ©2018 Association for Computational Linguistics

KDE-AFFECT at SemEval-2018 Task 1: Estimation of Affects
in Tweet by Using Convolutional Neural Network for n-gram

Shinnosuke Himeno and Masaki Aono
Department of Computer Science and Engineering

Toyohashi University of Technology
himeno@kde.cs.tut.ac.jp, aono@tut.jp

Abstract

This paper describes our approach to
SemEval-2018 Task1: Estimation of Af-
fects in Tweet for 1a and 2a. Our team
KDE-AFFECT employs several methods
including one-dimensional Convolutional
Neural Network for n-grams, together with
word embedding and other preprocessing
such as vocabulary unification and Emoji
conversions into four emotional words.

1 Introduction

With the rapid spread of SNS services (e.g. Twit-
ter, Facebook, Instagram), massive user opinions
have accumulated on the Internet. Among such
opinions, it has been observed that not a few SNS
contents naturally entail the affects (including joy,
anger, sadness, fear) within themselves. Hence,
the need to accurately detect the affects is increas-
ing year by year.

In SemEval-2018 Task 1: Estimation of Affects
in Tweet, we have attempted to extend our hori-
zon from positive, neutral, and negative polarity
estimations in former SemEval sentiment analy-
sis in tweet having been held till 2017, to mul-
tiple emotions (joy, anger, sadness, and fear) in
terms of regression (Task-1 1a) and classification
(Task-1 2a). In doing so, we have adopted a stan-
dard one-dimensional Convolutional Neural Net-
work (CNN), which is believed to be effective for
text polarity estimation, where the kernel window
size for 1D convolution is analogous to the con-
cept of word n-gram. In addition, as most peo-
ple have noticed, a tweet has potentially many
Emojis to express emotions. In the following, we
first briefly survey related work on tweet sentiment
analysis including emotion estimation. Then, we
describe our system, followed by showing the re-
sults returned from the organizer, and finally con-
cluding our paper.

2 Related Work

Sentiment analysis of tweets has been studied
by many researchers from the standpoint of clas-
sifying a tweet into either positive or negative
polarity, and classifying it into multiple emo-
tions (Giachanou and Crestani, 2016; Silva et al.,
2016). A supervised approach to polarity clas-
sification of a tweet was proposed by Go et
al. (2009). They employed Naive Bayes, Maxi-
mum Entropy, Support Vector Machine, and sev-
eral other machine learning methods for their su-
pervised learning. Bravo-Marque et al. (2013) pre-
sented an approach using multiple emotion dic-
tionaries, while Saif et al. (2016) employed co-
occurrence information of words. Severyn et
al. (2015) introduced a deep learning approach.
Lu et al. (2013) proposed a deep learning method
suited for short texts. In SemEval, since 2014, sen-
timent analysis tasks using Twitter have been offi-
cially conducted, where a variety of methods have
been tested (Hagen et al., 2015; Giorgis et al.,
2016; Deriu et al., 2016; Rouvier and Favre, 2016;
Xu et al., 2016). In SemEval2017 Rosenthal et
al. (2017), Cliche et al. (2017) and Hamdan et
al. (2017) presented methods for combining mul-
tiple Convolutional Neural Networks (CNNs) and
multiple Long Short-Term Memories (LSTMs).
Mohammad (2017) published an open dictionary
of emotion scores for each word. Mohammad et
al. published a dataset for estimating emotion in-
tensities (Mohammad and Bravo-Marquez, 2017).

3 Methodology

In this section, we focus on our methods and ideas
employed in this task. The fundamental idea of
our method is based on the observation that “n-
grams” seem to have vital effects to represent the
emotion of a tweet, where “n-gram” denotes n
consecutive words (instead of n consecutive char-

156

trained
Anger NN

Anger
Training data

Training Anger NN

trained
Fear NN

Fear
Training data

Training Fear NN

trained
Joy NN

Joy
Training data

Training Joy NN

trained
Sadness NN

Sadness
Training data

Training Sadness NN

Vocabulary Unification preprocessing

Emoji preprocessing (Anger/Fear/Joy/Sadness)

Figure 1: Overall Training Flow of KDE-AFFECT

acters). For instance, if the tweet sentence is “At
last I made it.”, 2-gram includes (At, last) and
(made, it). Similarly, 3-gram includes (At, last,
I) and (I, made, it).

We have adopted the method based on the n-
gram convolution proposed by Kim (2014). Here,
we prepare a matrix corresponding to a sentence
representing an n-gram convolution in which this
filtering process is carried out by the unit of an n-
gram.

The overview of our system is as follows: First
we apply preprocessing with “vocabulary unifica-
tion” including lower case conversion, URL unifi-
cation, two or more consecutive character squeez-
ing, and hashtag elimination. Second, we ap-
ply Emoji conversion into four emotional words,
which will be elaborated later. From Emoji con-
version, we train the model independently for each
emotion. Finally, we predict the emotion score for
an unknown tweet by using the trained model. The
overall system flow is shown in Figure 1.

3.1 Preprocessing with Vocabulary
Unification

This step is applied to all emotions. It consists of
the following processing:

• lower case conversion
• conversion of every instance of a URL string

in a tweet to “<URL>”
• collapse of two or more consecutive letters

into two
• elimination of hash sign (#)

It should be noted that by a url string we mean
a regular expression starting with either “http”,
“https”, “ftp”, or “www”. Any url string is con-
verted to <URL>. For example, “I want to be

happy on http://t.co/S6moxr1U” is converted to “I
want to be happy on <URL>”.

3.2 Preprocessing for Emoji

From our observation of real tweets, approxi-
mately more than 20% of them have some kind
of Emojis. Emotions are naturally represented by
many different Emojis. Hence, we introduce the
conversion of possible emotions represented by an
Emoji into each emotional word. Please note that
Emoji preprocessing is applied to all Emoji data,
regardless of emotions. For instance, each anger
Emoji might appear not only in an Anger dataset,
but in Fear, Joy, and Sadness datasets as well. This
is why we have decided to apply the Emoji conver-
sion despite the differences of emotions. In the fol-
lowing, we present Emoji for each emotion, where
Emoji has been taken from a Full Emoji Web site1.
The selection of Emoji has been made by using the
labels (such as “face-positive”) annotated to the
above Web sites.

3.2.1 Anger Emoji
The Anger Emojis we selected are shown in Fig-
ure 2. All of them are replaced by ”anger”.

Figure 2: Anger Emoji

3.2.2 Fear Emoji
The Fear Emojis we selected are shown in Fig. 3.
All of them are replaced by ”fear”.

1https://unicode.org/emoji/charts/full-emoji-list.html

157

Figure 3: Fear Emoji

3.2.3 Joy Emoji
The Joy Emojis we selected are shown in Fig. 4.
All of them are replaced by ”joy”.

Figure 4: Joy Emoji

3.2.4 Sadness Emoji
The Sadness Emojis we selected are shown in
Fig. 5. All of them are replaced by ”sadness”.

Figure 5: Sadness Emoji

3.3 Convolutional Neural Network for
n-gram

Once preprocessing is done, we have a kind of rec-
tified tweet, represented by a matrix. Figure 6 il-
lustrates a word-by-word matrix representation of
a rectified tweet. Here we take a matrix of 80 by
300, where 80 is the maximum number of words
per tweet, and 300 corresponds to our embedding
vector size. If a tweet has less than 80 words, zero
padding is performed to fill the input matrix.

3.3.1 Embedding
In Embedding, each tweet is converted to a matrix.
Specifically, we first divide a tweet into words us-
ing a whitespace, thereby treating a special char-
acter (one of “.h, “,h, “!h, and “?h) as a separate
word. Second, we transform each word into its
distributed representation of 300 dimensions using
Word2Vec (Mikolov et al., 2013a,b). The train-
ing of Word2Vec itself is done by using approxi-
mately 470 million tweets after the processing de-

Embedding

at
last

i
made

it
.
-
-

n-gram convolution

Fully connect

Max pooling

Softmax

Figure 6: Our n-gram Convolution-based Approach

scribed in 3.1. We finally obtain the embedding by
padding zero values to a fixed size of a 80 by 300
dimensional matrix.

3.3.2 n-gram Convolution Layer
In an n-gram convolutional layer, we perform con-
volution, and generate a length m − n + 1 vec-
tor, where m denotes the maximum word length
(here 80). This is straightforward, since both ends
are trimmed during the n-gram convolution stage
shown in Figure 6. For instance, if 3-gram is con-
cerned, the length in our implementation will be
80-3+1 = 78. Note that we have multiple n-gram
convolutional layers for each emotion. “Joy” neu-
ral network architecture, for example, has 2-gram,
3-gram, 4-gram, and 5-gram convolutional layers,
which will be discussed later in Table 3.

input

embedding

2-gram conv 3-gram conv 4-gram conv 5-gram conv

MaxPooling1D MaxPooling1D MaxPooling1D MaxPooling1D

flattenflattenflatten flatten

concatenate

Batch Normalization

Dropout(0.5)

Dense(outputs = 30dims,sigmoid)

Dense(outputs = 1dim ,sigmoid)

Figure 7: KDE-AFFECT system’s DNN architecture

3.3.3 Max Pooling Layer
In a Max Pooling layer, from each n-gram con-
volutional layer, the maximum value is computed,

158

Intensity range Intensity amount
[0.0, 0.35) 0 (no E)
[0.35, 0.5) 1 (low amount of E)
[0.5, 0.65) 2 (moderate amount of E)
[0.65, 1.0] 3 (high amount of E)

Table 1: Inferred Intensity Level

and a vector of the length equal to the number of
filters is generated. In our system, the output of
four multiple n-gram convolutional layers are flat-
tened and concatenated in the subsequent layers.
The output dimension is the number of filters mul-
tiplied by the number of n-gram convolutional lay-
ers.

3.3.4 Fully-connected Layers

In our system, we have two fully-connected layers,
where the first hidden fully-connected layer ac-
cepts the input from the concatenation layer con-
nceted from multiple max pooling layers. Em-
pirically, we set 30 outputs for the first fully-
connected layer. The second layer outputs either
the estimated intensity value of an emotion (Task
1a) or the estimated intensity level (Task 2a). The
way to estimate the intensity level (Task 2a) is
elaborated in the next section.

3.4 Estimating Intensity Level (Task 2a)

For Task 2a, we need to estimate the intensity
level. Specifically, participants are required to
classify the emotional intensities into four levels;
high amount, moderate amount, low amount, and
nothing. Our strategy for the amount of emotional
intensity amount level is simple, which is based on
the inferred intensity range as shown in Table 1. In
Table 1, the left column denotes the range of emo-
tional amount that we have defined for this task.
For example, [0.0, 0.35) means that the left bound-
ary 0.0 is inclusive, while the right boundary 0.35
is exclusive in the range of the amount of emotion.

4 Experiments

Here we describe the experimental environment
and our evaluation results.

4.1 dataset

All participants are given SemEval 2018: Task 1
Affect in Tweets (AIT) (Mohammad et al., 2018)
dataset. The details are shown in Table 2.

Anger Fear Joy Sadness
Training 1701 2252 1616 1532

Dev. 388 389 290 397
Test (1a) 17940 17924 18043 17913
Test (2a) 1002 986 1105 975

Table 2: SemEval 2018: Task 1 dataset (1a and 2a)

4.2 Evaluation Measure
Here, the evaluation measure for a model is cor-
relation coefficient r. Given variables x and y,
where x corresponds to a predicted emotion value
and y to a true emotion value, and their associated
sample variances Sx, Sy, and the covariance Sxy

are represented by the following equation:

r =
Sxy

SxSy

4.3 Experiment Environment
For our deep learning program for the task,
we used the following list of hyper-parameters:

loss function: Root Mean Square Error (RMSE)
filter number: 200 × n
epochs: 30
dropout rate: 0.5
optimizer: Adam
batch size: 64

The framework we use is Keras with backend
Tensorflow. In our Ubuntu server, it took approxi-
mately 1 second for each epoch.

4.4 Preliminary Experiments for n-gram
Convolutions

For each emotion, our system attempts to find an
empirical optimal combination of n-gram convo-
lutions. Table 3 summarizes the results of prelimi-
nary experiments for this purpose. Here, r(A) de-
notes the correlation coefficient for Anger. Sim-
ilarly, r(F) for Fear, r(J) for Joy, and r(S) for
Sadness. From the table, we decided as follows:
For Anger, we chose [1,2,3,4,5,6] (meaning we
took the combination of 1-gram, 2-gram, 3-gram,
4-gram, 5-gram, and 6-gram convolutions). For
Fear, we chose [2,3,4,5,6]. For Joy and Sadness,
we chose [2,3,4,5].

4.5 Experimental Result (Task 1a)
According to the Official Leaderboard for Task 1a,
our team KDE-AFFECT turned out to be 30-th. If

159

n r(A) r(F) r(J) r(S)

[1, 2, 3, 4, 5, 6] 0.5529 0.5919 0.5771 0.6349
[2, 3, 4, 5, 6] 0.5518 0.5994 0.5464 0.6173
[1, 2, 3, 4, 5] 0.5381 0.5948 0.5730 0.6078
[2, 3, 4, 5] 0.5309 0.5736 0.5906 0.6360

Table 3: Preliminary experiments for n-gram convolustions

Team avg-r r(A) r(F) r(J) r(S)

KDE-AFFECT 0.620 0.630 0.621 0.598 0.630
SeerNet1st 0.799 0.827 0.799 0.792 0.798

NTUA-SLP2nd 0.776 0.782 0.758 0.771 0.792
PlusEmo2Vec3rd 0.766 0.811 0.728 0.773 0.753
CrystalFeel14th 0.717 0.740 0.700 0.708 0.720
EliRF-UPV15th 0.696 0.705 0.686 0.693 0.700

iit delhi29th 0.621 0.633 0.645 0.618 0.588
DeepMiner31th 0.575 0.581 0.570 0.575 0.573

Baseline37th 0.520 0.526 0.525 0.575 0.453

Table 4: Our result with selected other teams for Task 1a

Team avg-r r(A) r(F) r(J) r(S)

KDE-AFFECT 0.530 0.530 0.470 0.552 0.567
SeerNet1st 0.695 0.706 0.637 0.720 0.717

PlusEmo2Vec2nd 0.659 0.704 0.528 0.720 0.683
psyML3rd 0.653 0.670 0.588 0.686 0.667
UNCC9th 0.599 0.604 0.544 0.638 0.610
ECNU16th 0.531 0.565 0.441 0.581 0.536

CrystalFeel18th 0.530 0.576 0.466 0.540 0.538
Baseline26th 0.394 0.382 0.355 0.496 0.370

Table 5: Our result with selected other teams for Task 2a

we use similar notations as in Table 3, and pick up
the top-3 ranked teams, as well as randomly cho-
sen teams CrystalFeel (14-th place), ELipRF-UPV
(15-th place), iit delhi (29-th), DeepMiner (31-th),
and the baseline (37-th), the result looks like Ta-
ble 4.

4.6 Experimental Result (Task 2a)
According to the Official Leaderboard for Task 2a,
our team KDE-AFFECT turned out to be 17-th. If
we use similar notations as in Table 3, and pick up
top-3 ranked teams, as well as randomly chosen
teams UNCC (9-th place), ECNU (16-th place),
CrystalFeel (14-th place), and the baseline (26-th),
the result looks like Table 5.

5 Conclusion

This paper describes the approach we took for
SemEval-2018 Task 1: Affect in Tweets (subtasks

1a and 2a). We have chosen a combination of dif-
ferent n-gram convolutions with preprocessing in-
cluding vocabulary unification and Emoji conver-
sion.

Acknowledgments

Part of this research is supported by MEXT KAK-
ENHI, Grant-in-Aid for Scientific Research (B),
Grant Number 17H01746.

References

Felipe Bravo-Marquez, Marcelo Mendoza, and Bar-
bara Poblete. 2013. Combining strengths, emo-
tions and polarities for boosting twitter sentiment
analysis. In Proceedings of the Second Interna-
tional Workshop on Issues of Sentiment Discovery
and Opinion Mining, WISDOM ’13, pages 2:1–2:9,
Chicago, Illinois.

160

Mathieu Cliche. 2017. Bb twtr at semeval-2017 task 4:
Twitter sentiment analysis with cnns and lstms. In
Proceedings of the 11th International Workshop on
Semantic Evaluation (SemEval-2017), pages 573–
580, Vancouver, Canada. Association for Computa-
tional Linguistics.

Jan Deriu, Maurice Gonzenbach, Fatih Uzdilli, Au-
relien Lucchi, Valeria De Luca, and Martin Jaggi.
2016. Swisscheese at semeval-2016 task 4: Senti-
ment classification using an ensemble of convolu-
tional neural networks with distant supervision. In
Proceedings of the 10th International Workshop on
Semantic Evaluation (SemEval-2016), pages 1124–
1128, San Diego, California. Association for Com-
putational Linguistics.

Anastasia Giachanou and Fabio Crestani. 2016. Like it
or not: A survey of twitter sentiment analysis meth-
ods. ACM Computing Surveys, 49(2):28:1–28:41.

Stavros Giorgis, Apostolos Rousas, John Pavlopoulos,
Prodromos Malakasiotis, and Ion Androutsopoulos.
2016. aueb.twitter.sentiment at semeval-2016 task
4: A weighted ensemble of svms for twitter senti-
ment analysis. In Proceedings of the 10th Interna-
tional Workshop on Semantic Evaluation (SemEval-
2016), pages 96–99, San Diego, California. Associ-
ation for Computational Linguistics.

Alec Go, Richa Bhayani, and Lei Huang. 2009. Twit-
ter sentiment classification using distant supervision.
Processing, pages 1–6.

Matthias Hagen, Martin Potthast, Michel Büchner, and
Benno Stein. 2015. Webis: An ensemble for twitter
sentiment detection. In Proceedings of the 9th In-
ternational Workshop on Semantic Evaluation (Se-
mEval 2015), pages 582–589, Denver, Colorado.
Association for Computational Linguistics.

Hussam Hamdan. 2017. Senti17 at semeval-2017
task 4: Ten convolutional neural network voters for
tweet polarity classification. In Proceedings of the
11th International Workshop on Semantic Evalua-
tion (SemEval-2017), pages 700–703, Vancouver,
Canada. Association for Computational Linguistics.

Yoon Kim. 2014. Convolutional neural networks for
sentence classification. In Proceedings of the 2014
Conference on Empirical Methods in Natural Lan-
guage Processing, EMNLP 2014, October 25-29,
2014, Doha, Qatar, A meeting of SIGDAT, a Special
Interest Group of the ACL, pages 1746–1751.

Zhengdong Lu and Hang Li. 2013. A deep architecture
for matching short texts. In Advances in Neural In-
formation Processing Systems 26, pages 1367–1375.
Curran Associates, Inc.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey
Dean. 2013a. Efficient estimation of word represen-
tations in vector space. CoRR, abs/1301.3781.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013b. Distributed represen-
tations of words and phrases and their composition-
ality. In C. J. C. Burges, L. Bottou, M. Welling,
Z. Ghahramani, and K. Q. Weinberger, editors, Ad-
vances in Neural Information Processing Systems
26, pages 3111–3119. Curran Associates, Inc.

Saif Mohammad and Felipe Bravo-Marquez. 2017.
Emotion intensities in tweets. In Proceedings of the
6th Joint Conference on Lexical and Computational
Semantics (*SEM 2017), pages 65–77. Association
for Computational Linguistics.

Saif M. Mohammad. 2017. Word affect intensities.
CoRR, abs/1704.08798.

Saif M. Mohammad, Felipe Bravo-Marquez, Mo-
hammad Salameh, and Svetlana Kiritchenko. 2018.
Semeval-2018 Task 1: Affect in tweets. In Proceed-
ings of International Workshop on Semantic Evalu-
ation (SemEval-2018), New Orleans, LA, USA.

Sara Rosenthal, Noura Farra, and Preslav Nakov.
2017. Semeval-2017 task 4: Sentiment analysis in
twitter. In Proceedings of the 11th International
Workshop on Semantic Evaluation (SemEval-2017),
pages 502–518. Association for Computational Lin-
guistics.

Mickael Rouvier and Benoit Favre. 2016. Sensei-lif
at semeval-2016 task 4: Polarity embedding fusion
for robust sentiment analysis. In Proceedings of the
10th International Workshop on Semantic Evalua-
tion (SemEval-2016), pages 202–208, San Diego,
California. Association for Computational Linguis-
tics.

Hassan Saif, Yulan He, Miriam Fernandez, and Harith
Alani. 2016. Contextual semantics for sentiment
analysis of twitter. Information Processing and
Management, 52(1):5–19.

Aliaksei Severyn and Alessandro Moschitti. 2015.
Twitter sentiment analysis with deep convolutional
neural networks. In Proceedings of the 38th Inter-
national ACM SIGIR Conference on Research and
Development in Information Retrieval, SIGIR ’15,
pages 959–962, Santiago, Chile. ACM.

Nadia Felix F. Da Silva, Luiz F. S. Coletta, and Ed-
uardo R. Hruschka. 2016. A survey and com-
parative study of tweet sentiment analysis via
semi-supervised learning. ACM Comput. Surv.,
49(1):15:1–15:26.

Steven Xu, HuiZhi Liang, and Timothy Baldwin. 2016.
Unimelb at semeval-2016 tasks 4a and 4b: An en-
semble of neural networks and a word2vec based
model for sentiment classification. In Proceed-
ings of the 10th International Workshop on Seman-
tic Evaluation (SemEval-2016), pages 183–189, San
Diego, California. Association for Computational
Linguistics.

161

Proceedings of the 12th International Workshop on Semantic Evaluation (SemEval-2018), pages 162–166
New Orleans, Louisiana, June 5–6, 2018. ©2018 Association for Computational Linguistics

RNN for Affects at SemEval-2018 Task 1: Formulating Affect
Identification as a Binary Classification Problem

Aysu Ezen-Can
SAS Inst.

aysu.e.can@gmail.com

Ethem F. Can
SAS Inst.

ethfcan@gmail.com

Abstract

Written communication lacks the multimodal
features such as posture, gesture and gaze that
make it easy to model affective states. Espe-
cially in social media such as Twitter, due to
the space constraints, the sources of informa-
tion that can be mined are even more limited
due to character limitations. These limitations
constitute a challenge for understanding short
social media posts.

In this paper, we present an approach that uti-
lizes multiple binary classifiers that represent
different affective categories to model Twit-
ter posts (e.g., tweets). We train domain-
independent recurrent neural network models
without any outside information such as af-
fect lexicons. We then use these domain-
independent binary ranking models to eval-
uate the applicability of such deep learning
models on the affect identification task. This
approach allows different model architectures
and parameter settings for each affect cate-
gory instead of building one single multi-label
classifier. The contributions of this paper are
two-folds: we show that modeling tweets with
a small training set is possible with the use
of RNNs and we also prove that formulating
affect identification as a binary classification
task is highly effective.

1 Introduction

Social media platforms allow users to share infor-
mation, communicate with other users, learn about
new products, and get latest news. The impor-
tance of social media data is getting larger every
day as social media usage grows every year (Dug-
gan, 2015). Twitter is one such social media plat-
form where users can write short posts as well as
share links. Twitter is also used for getting news
(Center, 2017).

A large body of research has been conducted
using Twitter data including analyzing user inten-

tions (Java et al., 2007), determining influence of
users (Romero et al., 2011), predicting retweet
counts (Can et al., 2013), classifying sentiments of
tweets (Jansen et al., 2009; Agarwal et al., 2011;
Neethu and Rajasree, 2013; Kontopoulos et al.,
2013; Pak and Paroubek, 2010). All of these
studies have one goal in common: understand-
ing/modeling information diffuse in Twitter.

One aspect of modeling social media posts is
focusing on emotional states of users. There has
been plenty of efforts on determining affective
states (Schwarz and Clore, 1983) and their effects
to human behavior for different domains from ed-
ucation (Sidney et al., 2005) to health care (Lisetti
et al., 2003). For Twitter, this problem is even
more challenging as the information source is lim-
ited to the number of characters allowed in a single
post and multimodal features (e.g., posture, ges-
ture, and eye gaze) are not available.

In this paper, we formulate affect identification
task as a binary classification problem and investi-
gate the applicability and effectiveness of domain-
independent deep learning models as well as fea-
tures. Our dataset includes eleven affect categories
(i.e., anger, anticipation, disgust, fear, joy, love,
optimism, pessimism, sadness, surprise, and trust)
for each tweet. The presence of one affect cat-
egory in a tweet does not stop another category
to be present (e.g., joy and optimisim can both be
present in a tweet). We represent each affect cat-
egory as one class and build binary classifiers for
each class. Recurrent neural networks are trained
for each affect category and no domain-dependent
features such as affect lexicons are used. Our goal
is to evaluate a generic model for different affec-
tive states.

Binary models have been successfully applied
to several applications including action recog-
nition in videos (Can and Manmatha, 2013),
prediction of whether or not a tweet will be

162

Figure 1: Most frequently used emojis and their counts
for each affect category.

retweeted (Hong et al., 2011), and topic classi-
fication (Joachims, 1998). In this paper, we de-
scribe our approach for affect recognition of En-
glish tweets (Task E-c: Detecting Emotions), a
subcategory of Task 1 in the SemEval 2018 chal-
lenge (Mohammad et al., 2018).

2 Corpus

In this paper, we use English tweets that have been
annotated by affect categories (Mohammad et al.,
2018). The dataset contains emojis, hashtags, and
the textual content of tweets; however, it does not
have user ids. The training, validation, and test
splits are done by the task organizers. Figure 1
shows top three mostly used emojis in each class
and their frequencies for the training set.

2.1 Breakdown of Emojis to Classes

Due to the importance of visual cues in predicting
affective states, we pay attention to a form of vi-
sual cues: emojis. Here we present some of our
findings based on different affect categories.

• Trust: emojis are not frequently used. Not
easy to determine through emojis.

• Sadness: The sobbing face emoji is expect-
edly the most common one but interestingly
laughing with joy emoji is the second most
common. Weary face emoji is also very com-
mon in sadness: 56.16% of all weary face
emojis are used in this class.

• Anger and disgust share the same property:
the most common emoji is the laughing with
joy emoji and the second most common is
sobbing face emoji. The fact that a joy emoji
being the most commonly used in these af-
fective classes is quite interesting and can in-
dicate irony. The third most common emoji
in these two classes are also the same: rage
emoji.

• An emoji that can be intuitively associated
with love (heart eyes) actually occurs more
in joy tweets than love tweets.

• An unexpected finding is on fire emoji where
joy and optimism classes have a large portion
of all fire emojis in the training set (46.7%
and 36.7% respectively).

• The affective class that uses most emojis is
joy.

3 Methodology

Since each tweet in the data contains eleven af-
fect categories (i.e., anger, anticipation, disgust,
fear, joy, love, optimism, pessimism, sadness, sur-
prise, and trust), we created eleven datasets with
the same tweets but with different class informa-
tion. For example, the first dataset has one values
(i.e., positive) for tweets that show anger and zero
(i.e., negative) for those that do not have anger.
Other datasets are created in the same way for
the remaining affects classes. By building one
model for each affect category, we formulated af-
fect identification problem as a binary classifica-
tion task. Then in testing time, we obtained pre-
dictions from every specific model and fused the
results to obtain a unique result for each tweet.

3.1 Training Binary Classification Models
The advantage of using binary classification mod-
els for each affect category is that each model can
be trained by itself, enabling different model ar-
chitectures and parameters. For example, while
one category may benefit from a deeper model,
the other affect category can obtain the best results
with a shallower model. In this way, the models do
not have to be the same for each affect class.

3.2 Model Architecture
We built separate RNN models for each affect
category, resulting with eleven classifiers. For
the classifiers, we used three GRU layers, two of

163

Figure 2: Using the unlabeled tweets for training an
auto-encoder and using the trained weights for the af-
fect classification process.

which are bi-directional. To be able to build a
more generalized model, a dropout of 0.2 is used
in each layer. Each bidirectional layer contains
100 neurons and the final encoding layer has 50
neurons.

3.3 Training Auto-Encoder
Because the dataset is not very big, we wanted the
classifiers to learn as much information as possi-
ble without overfitting it. Therefore, we built an
auto-encoder from the tweets’ content (e.g., un-
labeled tweets, no affect categories). The goal
of the auto-encoder is to get weights that can be
used in the classifiers. As shown in Figure 2, we
used the trained weights from the auto-encoder to
start building binary classifiers. To convert a text-
generating auto-encoder into a classifier, we added
a softmax layer.

3.4 Features
For modeling affect categories in tweets, we use
only the words and emojis. No domain-dependent
features, or features that are aware of task in hand
(e.g., affect lexicons) are used as our goal is to de-
termine how well a generic RNN model can per-
form for affect recognition task.

3.4.1 Emojis
To represent emojis as embeddings, we used the
pre-trained embeddings from the emoji2vec pack-
age (Eisner et al., 2016).

3.4.2 Word Embeddings

For this study, an embedding length of 200 is used.
We utilized pre-trained global vectors trained on
tweets (Pennington et al., 2014)

3.4.3 Hashtags

Hashtags have a lot of semantic information about
the tweets. However, most of that information
is neglected if the hashtags cannot be found in
the words embeddings. Therefore, we followed
a greedy approach for dividing hashtags into their
corresponding words.

Once the # is removed, we take the content of
the hashtag and search if the content is present in
the vocabulary as its entirety. If vocabulary has the
hastag content, we use it. If not, more processing
is done. Starting from the beggining of the word
we keep a pointer, searching for a valid word that
from index=0 to index=pointer. Once 0,j indices
represent a substring that is a valid word, we con-
tinue the recursive search for the rest of the content
(i.e., j+1 to the end of the string). The words that
are found are added to the list of words that rep-
resent the hashtag. Then we use those words and
represent them as embeddings.

Because this approach is greedily finding the
shortest possible words contained within the hash-
tag, it is not guaranteed to represent the correct
semantics all the time. For example, the #feel-
sadforyou is correctly divided to [‘feel’,“sad’,
‘for’, ‘you’], however, #toniteinasheville (‘tonite
in asheville”) becomes [‘tonite’, ‘in’, ‘as’, ‘he’,
‘ville’], which is not correct. Achieving perfect se-
mantics would require human labeling, therefore,
we used the greedy approach and have observed
that utilizing hash tag contents significantly im-
proves the effectiveness of the models.

3.5 Results on Validation Set

The accuracies of binary classification models for
each affect category are presented in Figure 3. We
compare the models’ performances with majority
baselines where the percentage of the class value
that occurs most is taken as the majority baseline
for each class.

4 Results

In this section, we report the results for the test set
as well as discussion on the results.

164

Figure 3: Accuracies per affect category. Majority baseline of each class is compared to the performance of the
RNN classifier for that class.

Figure 4: The distribution of false positives and false
negatives for observations that are classified incorrectly
in the test set.

4.1 Experimental Results

For all of our experiments, we used SAS Deep
Learning Toolkit. We utilized an environment
with 4 workers, with 24 threads in each worker,
and mini-batch size per thread on each worker was
6. Adam optimizer is used in all experiments.

Using the test set, the proposed model achieved
a 0.398 accuracy, 0.539 micro-avg F1, and 0.358
macro-avg F1. A random baseline achieves 0.185
accuracy, 0.307 micro-avg F1, and 0.285 macro-
avg F1. Compared to the random baseline, the
generic RNN model is quite successful at identi-
fying affect categories.

4.2 Discussion

Some of the affect categories have very few posi-
tive examples, therefore it is very difficult for clas-
sifiers to learn nuances of those affects. For exam-
ple, surprise and trust categories have 96.05% and
95.15% majority baselines respectively. In other
words, only 4-5% of all training set observations
have these affect categories as true.

As can be seen in Figure 4, when the num-
ber of positive observations are limited, the clas-
sifiers tend to make more false negatives. For af-
fect categories that have a major class value that
is dominant, we experimented with sampling as
well where the number of positive and negative
examples were equal. However, that made the
dataset significantly smaller, further making it dif-
ficult for the RNN models to learn distinctions.
Rather than using smaller datasets or including
external data, we prefer to employ binary mod-
els. One of the main advantages of using binary
models over multi-label models is to better deal
with the uneven distribution of positive examples
across classes.

5 Conclusion

Affect identification without visual cues is a chal-
lenging task, making the text as the only source of
information that can be used for machine learning
models. This problem gets more challenging as
the text data gets limited by the number of charac-
ters in Twitter.

This paper presented a simple yet effective ap-
proach for classifying affect categories of Tweets.
The main motivation of this paper was to evalu-
ate how well a domain-independent RNN model
can perform for classifying affects. Therefore,
no domain-dependent source of information such
as affective lexicons or pre-trained affect features
are used. We built binary classification mod-
els per each affect category. The results showed
that RNNs are powerful enough to outperform the
baselines significantly, even without prior knowl-
edge about the domain and with a relatively small
dataset.

165

References
Apoorv Agarwal, Boyi Xie, Ilia Vovsha, Owen Ram-

bow, and Rebecca Passonneau. 2011. Sentiment
analysis of twitter data. In Proceedings of the work-
shop on languages in social media, pages 30–38.
Association for Computational Linguistics.

Ethem F Can and R Manmatha. 2013. Formulating
action recognition as a ranking problem. In Com-
puter Vision and Pattern Recognition Workshops
(CVPRW), 2013 IEEE Conference on, pages 251–
256. IEEE.

Ethem F. Can, Hüseyin Oktay, and R. Manmatha. 2013.
Predicting retweet count using visual cues. In Pro-
ceedings of the 22Nd ACM International Conference
on Information & Knowledge Management, CIKM
’13, pages 1481–1484, New York, NY, USA. ACM.

Pew Research Center. 2017. News use across social
media platforms 2017.

Maeve Duggan. 2015. Mobile messaging and social
media. Pew Research Center.

Ben Eisner, Tim Rocktäschel, Isabelle Augenstein,
Matko Bošnjak, and Sebastian Riedel. 2016.
emoji2vec: Learning emoji representations from
their description. arXiv preprint arXiv:1609.08359.

Liangjie Hong, Ovidiu Dan, and Brian D. Davison.
2011. Predicting popular messages in twitter. In
Proceedings of the 20th International Conference
Companion on World Wide Web, WWW ’11, pages
57–58, New York, NY, USA. ACM.

Bernard J Jansen, Mimi Zhang, Kate Sobel, and Abdur
Chowdury. 2009. Twitter power: Tweets as elec-
tronic word of mouth. Journal of the Association for
Information Science and Technology, 60(11):2169–
2188.

Akshay Java, Xiaodan Song, Tim Finin, and Belle
Tseng. 2007. Why we twitter: understanding mi-
croblogging usage and communities. In Proceed-
ings of the 9th WebKDD and 1st SNA-KDD 2007
workshop on Web mining and social network analy-
sis, pages 56–65. ACM.

Thorsten Joachims. 1998. Text categorization with
support vector machines: Learning with many rel-
evant features. In European conference on machine
learning, pages 137–142. Springer.

Efstratios Kontopoulos, Christos Berberidis, The-
ologos Dergiades, and Nick Bassiliades. 2013.
Ontology-based sentiment analysis of twitter posts.
Expert systems with applications, 40(10):4065–
4074.

Christina Lisetti, Fatma Nasoz, Cynthia LeRouge,
Onur Ozyer, and Kaye Alvarez. 2003. Developing
multimodal intelligent affective interfaces for tele-
home health care. International Journal of Human-
Computer Studies, 59(1-2):245–255.

Saif M. Mohammad, Felipe Bravo-Marquez, Mo-
hammad Salameh, and Svetlana Kiritchenko. 2018.
Semeval-2018 Task 1: Affect in tweets. In Proceed-
ings of International Workshop on Semantic Evalu-
ation (SemEval-2018), New Orleans, LA, USA.

MS Neethu and R Rajasree. 2013. Sentiment analy-
sis in twitter using machine learning techniques. In
Computing, Communications and Networking Tech-
nologies (ICCCNT), 2013 Fourth International Con-
ference on, pages 1–5. IEEE.

Alexander Pak and Patrick Paroubek. 2010. Twitter as
a corpus for sentiment analysis and opinion mining.
In LREc, volume 10.

Jeffrey Pennington, Richard Socher, and Christo-
pher D. Manning. 2014. Glove: Global vectors for
word representation. In Empirical Methods in Nat-
ural Language Processing (EMNLP), pages 1532–
1543.

Daniel M Romero, Wojciech Galuba, Sitaram Asur,
and Bernardo A Huberman. 2011. Influence and
passivity in social media. In Joint European Con-
ference on Machine Learning and Knowledge Dis-
covery in Databases, pages 18–33. Springer.

Norbert Schwarz and Gerald L Clore. 1983. Mood,
misattribution, and judgments of well-being: Infor-
mative and directive functions of affective states.
Journal of personality and social psychology,
45(3):513.

K Dmello Sidney, Scotty D Craig, Barry Gholson, Stan
Franklin, Rosalind Picard, and Arthur C Graesser.
2005. Integrating affect sensors in an intelligent tu-
toring system. In Affective Interactions: The Com-
puter in the Affective Loop Workshop at, pages 7–13.

166

Proceedings of the 12th International Workshop on Semantic Evaluation (SemEval-2018), pages 167–171
New Orleans, Louisiana, June 5–6, 2018. ©2018 Association for Computational Linguistics

Tw-StAR at SemEval-2018 Task 1: Preprocessing Impact on Multi-label
Emotion Classification

Hala Mulki1, Chedi Bechikh Ali2, Hatem Haddad3 and Ismail Babaoğlu1

1 Department of Computer Engineering, Selcuk University, Turkey
2 LISI laboratory, INSAT, Carthage University, Tunisia

3 Department of Computer and Decision Engineering, Université Libre de Bruxelles, Belgium
halamulki@selcuk.edu.tr,chedi.bechikh@gmail.com
Hatem.Haddad@ulb.ac.be,ibabaoglu@selcuk.edu.tr

Abstract
In this paper, we describe our contribution in
SemEval-2018 contest. We tackled task 1 “Af-
fect in Tweets”, subtask E-c “Detecting Emo-
tions (multi-label classification)”. A multi-
label classification system Tw-StAR was de-
veloped to recognize the emotions embedded
in Arabic, English and Spanish tweets. To
handle the multi-label classification problem
via traditional classifiers, we employed the bi-
nary relevance transformation strategy while
a TF-IDF scheme was used to generate the
tweets’ features. We investigated using sin-
gle and combinations of several preprocess-
ing tasks to further improve the performance.
The results showed that specific combinations
of preprocessing tasks could significantly im-
prove the evaluation measures. This has been
later emphasized by the official results as our
system ranked 3rd for both Arabic and Spanish
datasets and 14th for the English dataset.

1 Introduction

Social media platforms and micro-blogging sys-
tems such as Twitter have recently witnessed a
high rate of accessibility (Duggan et al., 2015).
Tweets usually combine multiple emotions ex-
pressed by the appraisal or criticism of a spe-
cific issue. Sentiment analysis represents a coarse-
grained opinion classification as it detects either
the subjectivity (objective/subjective) or the po-
larity orientation (positive, negative or neutral)
(Piryani et al., 2017).

For opinionated texts which are usually rich
of several emotions, a fine-grained analysis is
needed. Through such analysis, specific emotions
can be recognized within a tweet which is crucial
for many applications. For instance, recognizing
anger emotions in the tweets representing the cus-
tomers’ opinions about a specific service in a hotel
would definitely help to take the proper response
to keep the customers satisfied (Li et al., 2016).

Existing MLC systems are conducted either by
problem transformation approaches or algorithm
adaptation ones. Each of which combines several
methods and has different merits. While problem
transformation methods are simpler and easier to
implement, algorithm adaptation methods have a
more accurate performance but with a high com-
putational cost (Zhang and Zhou, 2014). There-
fore, to develop a multi-label classifier that com-
bines the simplicity of the problem transformation
methods along with accurate performance remains
an interesting issue to investigate.

Since preprocessing tasks have been found of
positive impact on sentiment analysis of differ-
ent languages (Haddi et al., 2013; Yıldırım et al.,
2015; El-Beltagy et al., 2017), we hypothesize
that the application of single or combinations of
various preprocessing techniques on tweets before
feeding them to the multi-label emotion classifier,
can improve the classification performance with-
out the need to complex methods that consider the
dependencies between labels.

Here, we describe the participation of our team
“Tw-StAR” (Twitter-Sentiment analysis team for
ARabic) in Task 1, subtask E-c, in Arabic, English
and Spanish tweets (Mohammad et al., 2018). This
task requires classifying the emotions embedded
in tweets into one or more of 11 emotion labels.

To accomplish this mission, we have subjected
tweets to single or combinations of the follow-
ing preprocessing techniques: stopwords removal,
stemming, lemmatization and common emoji
recognition and tagging. Manipulated tweets were
then fed into a multi-label classifier built via one of
the problem transformation approaches called Bi-
nary Relevance (BR) and trained with TF-IDF fea-
tures using the Support Vector Machines (SVM)
algorithm. Experimental study indicated the pos-
itive impact of stopwords removal, emoji tag-
ging and lemmatization on the classification per-

167

formance. This was emphasized later through the
contest’s official results as Tw-StAR performed
well in multi-label emotion classification of the
three tackled languages where it was ranked third,
for Arabic and Spanish and 14th for English.

2 Multi-Label Classification Approaches

Unlike single-label classification (binary or multi-
class) which classifies an instance into one of two
or more labels, each instance in MLC can be asso-
ciated with a set of labels at the same time (Zhang
and Zhou, 2014). MLC problems have been tar-
geted either by algorithm adaptation or problem
transformation methods.

2.1 Algorithm Adaptation Methods

Adapt traditional classification algorithms used
in binary and multi-class classification to per-
form MLC such that multi-label outputs are ob-
tained. Using these methods, several machine
learning (ML) algorithms such as k-nearest neigh-
bors (KNN), decision trees (DT) and neural net-
works were extended to address MLC (Tsoumakas
et al., 2009).

2.2 Problem Transformation Methods

Rather than modifying the classification algo-
rithm, these methods alter the MLC problem it-
self by converting it into one or multiple single-
label classification problems that could be handled
by traditional single-label classifiers (Tsoumakas
et al., 2009). The most popular strategies used to
conduct such transformation are:

• Label Powerset (LP): transforms an MLC
problem to a multi-class classification prob-
lem where the classes represent all the possi-
ble combinations of the given training labels.
After transformation, each input instance is
associated with a unique single class contain-
ing a potential combination of labels. Hence,
LP strategy explicitly models label correla-
tions which leads to more accurate classifica-
tion however, it usually suffers from sparsity
and overfitting issues (Alali, 2016).

• Binary Relevance (BR): decomposes the
MLC problem into several single-label bi-
nary classification sub-problems; each of
which corresponds to one label. Thus, for
each sub-problem responsible of a specific la-
bel, a separate binary classifier is trained on

the original dataset with the objective of de-
termining the relevance of its particular la-
bel for a given instance. The predicted labels
by all binary classifiers for a certain instance
are then merged into one vector resulting in
the multi-label class of this instance (Cher-
man et al., 2011). As BR is implemented in
parallel and scales linearly, it forms a low
cost solution to MLC problems (Read et al.,
2011; Luaces et al., 2012). Several ML al-
gorithms were used with BR approach such
as KNN, DT and SVM. According to (Mad-
jarov et al., 2012), SVM-based methods suit
small datasets and perform better than DTs
especially for domains with large number of
features as in text classification since they ex-
ploit the information from all the features,
while DTs use only a (small) subset of fea-
tures and may miss some crucial information.

3 Tw-StAR Framework

To recognize the emotions embedded in the Ara-
bic, English and Spanish datasets (Mohammad
et al., 2018), Tw-StAR was applied on tweets con-
tained in the provided datasets using the following
pipeline:

3.1 Preprocessing

• Initial Preprocessing: for all datasets, a com-
mon initial preprocessing step that includes
removing the non-sentimental content such
as URLs, usernames, dates, digits, hashtags
symbols, and punctuation was performed.

• Stopwords Removal (Stop): Stopwords are
function words with high frequency of pres-
ence in texts; they usually do not carry sig-
nificant semantic meaning by themselves.
Therefore, it is preferable to ignore them
while analyzing a textual content. In this task,
Arabic was targeted by a list of 1,661 stop-
words provided by the NLP group at King
Abdulaziz University1. For English, we used
a list of 1,012 words resulted from combin-
ing the list published with the Terrier pack-
age2 and the list of snowball3. In Spanish, a
list of 731 words from snowball 4 was used.

1https://github.com/abahanshal/arabic-stop-words-list1
2https://bitbucket.org/kganes2/text-mining-resources/
3http://snowball.tartarus.org/algorithms/english/stop.txt
4http://snowball.tartarus.org/algorithms/spanish/stop.txt

168

• Stemming (Stem): concerns about reducing
the variants of a word to their shared ba-
sic form (stem) or root. Therefore, it en-
ables decreasing the vocabulary and increas-
ing the recall (Darwish and Magdy, 2014).
In the current study, we used ISRI stem-
mer (Taghva et al., 2005) for Arabic, Porter2
(Porter, 1980) for english and Snowball for
Spanish5. ISRI stemmer does not use a root
dictionary and provide a normalized form for
words whose root are not found. This is done
through normalizing the hamza, removing di-
acritics representing vowels, remove connec-
tor ¤ if it precedes a word beginning with ¤,
etc. The English stemmer returns the root of
a word by removing suffixes related to plu-
ral, tenses, adverbs, etc. Finally, the Snowball
stemmer used for Spanish translates the rules
of stemming algorithms expressed in natural
way to an equivalent program.

• Lemmatization (Lem): removes inflectional
endings only and returns the base or dictio-
nary form of a word. Farasa (Abdelali et al.,
2016) lemmatizer was employed for Arabic
while Treetagger (Schmid, 1995) was used
for both English and Spanish. Farasa uses
SVMrank to rank possible ways to segment
words to prefixes, stems, and suffixes. On the
other hand, TreeTagger6 forms a language-
independent tool for annotating text with
part-of-speech and lemma information in-
cluded.

• Common Emoji Recognition (Emo): we fixed
a list of nine categories of the most common
emoji detected in the tweets through UTF-8
encoding. Each emoji is replaced with a tag
that implies the emoji’s emotion. The tags
included: AngryEmoj, HappyEmoj, FearE-
moj, LoveEmoj, SadEmoj, SurpriseEmoj,
DisgustedEmoj, OptimistEmoj and Pessimis-
mEmoj. Thus, a tweet such: “I hung up on my
manager last night§” will be replaced by: “I
hung up on my manager last night SadEmoj”.

3.2 Feature Extraction

Vector space model (VSM) was used to generate
the features vectors. Each tweet was represented
using a vector containing all corpus words denoted

5http://snowball.tartarus.org/texts/introduction.html
6http://www.cis.uni-muenchen.de/ schmid/tools/TreeTagger/

by their number of occurrences in this tweet re-
ferred to as term frequency (tf). A larger value
of a term frequency indicates its prominence in a
given tweet, however, if this term appears in too
many tweets it will be less informative such as
stop words (Maas et al., 2011). Therefore, to en-
hance the classification and reduce the dimension-
ality, we focused on the most discriminative terms
through applying Term Frequency-Inverse Docu-
ment Frequency (TF-IDF) weighting scheme. This
scheme increases the weight of a term proportion-
ally to the number of times a term appears in the
document, but is often offset by the frequency of
the term in the corpus, which means how many
documents it appears in (Taha and Tiun, 2016).

3.3 Emotions Classification

Having the data transformed using the BR method
and the TF-IDF features generated, tweets were
fed into a multi-label SVM classifier with the lin-
ear kernel. This classifier adopts one-Vs-All strat-
egy such that each label has its own binary classi-
fier. Consequently, a number of binary SVM clas-
sifiers equals to the number of emotion labels were
trained in parallel to recognize the emotions em-
bedded in a tweet.

4 Results and Discussion

The proposed model Tw-StAR was applied on
Arabic, English and Spanish multi-labeled tweet
datasets; their statistics are listed in Table 1.

Using One-Vs-All SVM classifier from Scikit-
learn7, Tw-StAR was trained to recognize the fol-
lowing emotions: anger, anticipation, disgust, fear,
joy, love, optimism, pessimism, sadness, surprise,
trust in addition to “noEmotion” label that de-
notes tweets that have none of the previous emo-
tions. Within the presented framework, the pre-
processing tasks listed in Section 3 were exam-
ined separately and combined. This enabled defin-
ing the preprocessing technique/combination for
which the MLC performance of each language is
better improved.

Tables 2, 3 and 4 list the results obtained
for each language when applying several sin-
gle/combinations of preprocessing tasks where ac-
curacy, macro average f-measure and micro aver-
age f-measure are referred to as (Acc.), (Mac-F)
and (Mic-F) respectively.

7http://scikit-learn.org

169

Language Train Dev Test
Arabic 2,278 585 1,518
English 6,838 886 3,259
Spanish 3,559 679 2,854

Table 1: Statistics of the used datasets.

Preprocessing Acc. Mic-F Mac-F
Stop 0.38 0.509 0.367
Stem 0.431 0.559 0.424
Emo 0.414 0.543 0.39
Stem+Stop 0.434 0.564 0.435
Emo+Lem+Stop 0.434 0.561 0.415
Emo+ Stem+Stop 0.449 0.58 0.444

Table 2: Preprocessing impact on Arabic MLC.

Preprocessing Acc. Mic-F Mac-F
Stop 0.446 0.577 0.429
Stem 0.449 0.58 0.443
Emo 0.459 0.588 0.434
Stem+Stop 0.462 0.593 0.458
Emo+Lem+Stop 0.48 0.606 0.461
Emo+ Stem+Stop 0.475 0.602 0.466

Table 3: Preprocessing impact on English MLC.

Table 2 clearly suggests that for the Arabic
tweets, stemming using ISRI stemmer improved
the accuracy by 5.1% percentage points com-
pared to that scored by stopwords removal was ap-
plied. Moreover, combining stemming with stop-
words removal could further improve the micro
F-measure as it increased from 55.9% to 56.4%.
This is due to the fact that ISRI can handle wider
range of Arabic vocabulary as it returns a normal-
ized form of words having no stem rather than re-
taining them unchanged (Kreaa et al., 2014).

Unlike Arabic dataset, Table 3 and Table 4 show
that stemming had a different behavior when it
was applied on both English and Spanish tweets.
Compared to the accuracy achieved by stopwords
removal, stemming has slightly increased the ac-
curacy by 0.3% and 0.8% in English and Span-
ish datasets respectively. This could be related to
the insufficiency of the stemming algorithms em-
ployed by both porter2 and snowball stemmers
to handle informal English and Spanish tweets.
Lemmatization by Treetagger, however, was a bet-
ter choice to handle English and Spanish terms as
it forms a language-independent lemmatizer with

Preprocessing Acc. Mic-F Mac-F
Stop 0.39 0.482 0.381
Stem 0.398 0.484 0.368
Emo 0.402 0.501 0.384
Stem+Stop 0.409 0.492 0.379
Emo+Lem+Stop 0.431 0.523 0.413
Emo+ Stem+Stop 0.428 0.518 0.401

Table 4: Preprocessing impact on Spanish MLC.

L. Team(R.) Acc. Mic Mac
A. EMA(1) 0.489 0.618 0.461

Tw-StAR(3) 0.465 0.597 0.446
E. NTUA-SLP(1) 0.588 0.701 0.528

Tw-StAR(14) 0.481 0.607 0.452
S. MILAB-SNU(1) 0.469 0.558 0.407

Tw-StAR(3) 0.438 0.520 0.392

Table 5: Tw-StAR official ranking.

implicitly POS tagger included. Thus, combining
emoji tagging with lemmatization and stopwords
removal could achieve the best performances with
a micro average F-measure of 60.6% and 52.3%
for English and Spanish respectively.

Since the provided tweets were rich of emoji,
emoji tagging could effectively contribute in im-
proving the performance in all datasets espe-
cially when it was combined with the other best-
performed tasks such as stem+stop in Arabic and
lem+stop in both English and Spanish. This led
to the best performances as the achieved micro
F-measure was 58%, 60.2% and 52% in Arabic,
English and Spanish datasets respectively. Hence,
these preprocessing combinations were adopted
for the official submission. Table 5 lists the offi-
cial results of Tw-StAR against the systems ranked
first for each language where (L.), (A.), (E.),
(S.), (R.) (Mic) and (Mac) refer to language, Ara-
bic, English, Spanish, rank, micro and macro f-
measure respectively.

5 Conclusion and Future Work

Here we emphasized the key role of preprocessing
in emotion MLC. Stemming, lemmatization and
emoji tagging were found the most effective tasks
for emotion MLC. For the future work, the ob-
tained performances would be further improved if
negation detection was included to infer the nega-
tive emotions. Moreover, other ML methods could
be examined with BR and deep neural models.

170

References
Ahmed Abdelali, Kareem Darwish, Nadir Durrani, and

Hamdy Mubarak. 2016. Farasa: A fast and furious
segmenter for arabic. In Proceedings of the Demon-
strations Session, NAACL HLT 2016, The 2016 Con-
ference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies, San Diego California, USA,
June 12-17, 2016, pages 11–16.

Abdulaziz Alali. 2016. A novel stacking method for
multi-label classification. Ph.D. thesis, University
of Miami.

Everton Alvares Cherman, Maria Carolina Monard,
and Jean Metz. 2011. Multi-label problem trans-
formation methods: a case study. CLEI Electronic
Journal, 14(1):4–4.

Kareem Darwish and Walid Magdy. 2014. Arabic in-
formation retrieval. Foundations and Trends in In-
formation Retrieval, 7(4):239–342.

Maeve Duggan, Nicole B Ellison, Cliff Lampe,
Amanda Lenhart, and Mary Madden. 2015. Social
media update 2014. Pew research center, 19.

Samhaa R. El-Beltagy, Mona El kalamawy, and
Abu Bakr Soliman. 2017. Niletmrg at semeval-2017
task 4: Arabic sentiment analysis. In Proceedings of
the 11th International Workshop on Semantic Evalu-
ation (SemEval-2017), pages 790–795. Association
for Computational Linguistics.

Emma Haddi, Xiaohui Liu, and Yong Shi. 2013. The
role of text pre-processing in sentiment analysis.
Procedia Computer Science, 17:26–32.

Abdel Hamid Kreaa, Ahmad S Ahmad, and Kassem
Kabalan. 2014. Arabic words stemming approach
using arabic wordnet. International Journal of Data
Mining & Knowledge Management Process, 4(6):1.

Jun Li, Yanghui Rao, Fengmei Jin, Huijun Chen, and
Xiyun Xiang. 2016. Multi-label maximum entropy
model for social emotion classification over short
text. Neurocomputing, 210:247–256.

Oscar Luaces, Jorge Dı́ez, José Barranquero, Juan José
del Coz, and Antonio Bahamonde. 2012. Bi-
nary relevance efficacy for multilabel classification.
Progress in Artificial Intelligence, 1(4):303–313.

Andrew L Maas, Raymond E Daly, Peter T Pham, Dan
Huang, Andrew Y Ng, and Christopher Potts. 2011.
Learning word vectors for sentiment analysis. In
Proceedings of the 49th annual meeting of the as-
sociation for computational linguistics: Human lan-
guage technologies-volume 1, pages 142–150. Asso-
ciation for Computational Linguistics.

Gjorgji Madjarov, Dragi Kocev, Dejan Gjorgjevikj, and
Sašo Džeroski. 2012. An extensive experimen-
tal comparison of methods for multi-label learning.
Pattern recognition, 45(9):3084–3104.

Saif M. Mohammad, Felipe Bravo-Marquez, Mo-
hammad Salameh, and Svetlana Kiritchenko. 2018.
Semeval-2018 Task 1: Affect in tweets. In Proceed-
ings of International Workshop on Semantic Evalu-
ation (SemEval-2018), New Orleans, LA, USA.

Rajesh Piryani, D Madhavi, and Vivek Kumar Singh.
2017. Analytical mapping of opinion mining and
sentiment analysis research during 2000–2015. In-
formation Processing & Management, 53(1):122–
150.

Martin F. Porter. 1980. An algorithm for suffix strip-
ping. Program, 14(3):130–137.

Jesse Read, Bernhard Pfahringer, Geoff Holmes, and
Eibe Frank. 2011. Classifier chains for multi-label
classification. Machine learning, 85(3):333.

Helmut Schmid. 1995. Improvements in part-of-
speech tagging with an application to german. In
In proceedings of the acl sigdat-workshop. Citeseer.

Kazem Taghva, Rania Elkhoury, and Jeffrey Coombs.
2005. Arabic stemming without a root dictionary.
In Proceedings of the International Conference on
Information Technology: Coding and Computing
(ITCC’05) - Volume I - Volume 01, ITCC ’05, pages
152–157, Washington, DC, USA. IEEE Computer
Society.

Adil Yaseen Taha and Sabrina Tiun. 2016. Binary rel-
evance (br) method classifier of multi-label classi-
fication for arabic text. Journal of Theoretical and
Applied Information Technology, 84(3):414.

Grigorios Tsoumakas, Ioannis Katakis, and Ioannis
Vlahavas. 2009. Mining multi-label data. In Data
mining and knowledge discovery handbook, pages
667–685. Springer.

Ezgi Yıldırım, Fatih Samet Çetin, Gülşen Eryiğit, and
Tanel Temel. 2015. The impact of nlp on turkish
sentiment analysis. Türkiye Bilişim Vakfı Bilgisayar
Bilimleri ve Mühendisliği Dergisi, 7(1):43–51.

Min-Ling Zhang and Zhi-Hua Zhou. 2014. A re-
view on multi-label learning algorithms. IEEE
transactions on knowledge and data engineering,
26(8):1819–1837.

171

Proceedings of the 12th International Workshop on Semantic Evaluation (SemEval-2018), pages 172–176
New Orleans, Louisiana, June 5–6, 2018. ©2018 Association for Computational Linguistics

DL Team at SemEval-2018 Task 1: Tweet Affect Detection using
Sentiment Lexicons and Embeddings

Dmitry Kravchenko
Ben-Gurion University of the Negev / Israel

to.dmitry.kravchenko@gmail.com

Lidia Pivovarova
University of Helsinki / Finland
lidia.pivovarova@cs.helsinki.fi

Abstract

The paper describes our approach for
SemEval-2018 Task 1: Affect Detection
in Tweets. We perform experiments with
manually compelled sentiment lexicons and
word embeddings. We test their performance
on twitter affect detection task to determine
which features produce the most informative
representation of a sentence. We demon-
strate that general-purpose word embeddings
produces more informative sentence repre-
sentation than lexicon features. However,
combining lexicon features with embeddings
yields higher performance than embeddings
alone.

1 Introduction

The paper describes our approach for SemEval-
2018 Task 1: Affect Detection in Tweets (Moham-
mad et al., 2018).

The research question we address in this paper
is what are the best features for tweet affect de-
tection. Our solution uses two types of features:
lexicon features obtained from manually compiled
emotion lexicons, and word embeddings built un-
supervisedly from large corpora. We use well
established lexicons, namely DepecheMood and
Vader Sentiment, and most popular Word embed-
dings, namely GloVe and Google News. We sys-
tematically compare all features on two subtasks
and demonstrate that even though lexicon features
produce unsatisfactory results in isolation, they
significantly improve an algorithm performance
when combined with more general embeddings.

In addition, we demonstrate that special treat-
ment of Twitter hash-tags also improves the algo-
rithm performance.

2 Tasks and Data

The paper addresses three subtasks:

Task Train Dev Test
EI-reg all emotions 7102 1464 71816

anger 1701 388 17939
fear 2252 389 17923
joy 1616 290 18042
sadness 1533 397 17912

V-reg 1181 449 17874
E-c 6838 886 3259

Table 1: Training, development and test set split for
three subtasks

• EI-reg—an emotion intensity regression
task: Given a tweet and an emotion E, de-
termine the intensity of E that best repre-
sents the mental state of the tweeter—a real-
valued score between 0 (no E at all) and 1 (the
highest magnitude of E); separate datasets are
provided for fear, sadness, anger, and joy.

• V-reg—a sentiment intensity regression task:
Given a tweet, determine the intensity of sen-
timent or valence (V) that best represents
the mental state of the tweeter—a real-valued
score between 0 (most negative) and 1 (most
positive).

• E-c—an emotion classification task: Given a
tweet, classify it as ’neutral or no emotion’
or as one, or more, of eleven given emo-
tions that best represent the mental state of
the tweeter: trust, sadness, disgust, fear, opti-
mism, love, joy, pessimism, anticipation, sur-
prise, and anger.

We use English data for all three subtasks. The
train, development and test set sizes are shown in
Table 1. More details on the data can be found in
the task organizers’ paper (Mohammad and Kir-
itchenko, 2018).

172

3 Approach

3.1 Baseline

As a baseline we use the Text-Processing API1.
The API uses a Naive Bayes model trained us-
ing movie reviews and NLTK. The model returns
probabilities for negative, positive and neutral la-
bels. Negative and positive probabilities sum to 1
while neutral probability stands alone.

3.2 Lexicon Features

3.2.1 DepecheMood
DepecheMood (Staiano and Guerini, 2014) is
an emotion lexicon collected using crowdsourc-
ing. The respondents annotated news articles with
eight predefined emotions: afraid, amused, angry,
annoyed, dont care, happy, inspired, sad. Docu-
ment annotations were then used in a dimension-
ality reduction algorithm to obtain word emotional
scores. The lexicon contains approximately 37
thousand entry. Each entry consists of a word and
eight values between 0 and 1, one value for each
emotion.

3.2.2 Vader
Vader (Valence Aware Dictionary and sEntiment
Reasoner) is a rule-based sentiment analysis tool
and a lexicon specifically attuned to sentiments ex-
pressed in social media, such as Twitte (Hutto and
Gilbert, 2014). The lexicon consists of more than
7000 term, which were compelled from other lexi-
cons and then manualy annotated. Git repository2

of Vader Sentiment toolkit provides function po-
larity scores which takes as an input a text and re-
turns 4-dimensional feature vector, which contains
negative, positive, neutral and compound scores.

3.3 Embeddings

3.3.1 GloVe
GloVe (Pennington et al., 2014) is an unsupervised
algorithm that constructs embeddings from large
corpora. The GloVe project 3 provides a number
of models trained on various collections. We use
the following two models:

1. Common Crawl: 300-dimensional vectors
trained on huge Internet corpus of 840 billion
tokens and 2.2 million distinct words.

1http://text-processing.com/api/sentiment/
2https://github.com/cjhutto/vaderSentiment
3https://nlp.stanford.edu/projects/glove/

2. Twitter Crawl: 200-dimensional vectors
trained on 2 billion tweets with 27 billion to-
kens and 1.2 million distinct words.

3.3.2 Google News
We use word2vecs (Mikolov et al., 2013) embed-
ding trained on Google News collection4, which
have become almost standard embeddings since
they are most frequently used in various research
tasks. These embeddings are 300-dimensional
vectors built using Google News dataset of 100
billion tokens and 3 million distinct words and
phrases.

3.4 Method
We use various combinations of baseline, lexicon
and embedding features, described above. Text-
processing API and Vader return text-level fea-
tures. For other sources a tweet representation is
built by averaging the word vectors. Concatena-
tion is used to combine features obtained from var-
ious sources.

We run several preliminary experiments with V-
reg task to compare several algorithms, namely
Gradient Boosting Regressor and Random For-
est. We use sklearn implementations 5. Gradient
Boosting Regressor yields the best performance
for all feature combinations (Table 2). In our of-
ficial submission we apply Gradient Boosting Re-
gressor for tasks EI-reg and V-reg, and Gradient
Boosting Classifier for task E-c.

Hash-tags are special types of tokens in Twitter
used to specify a topic or a context for a given mes-
sage. They frequently contain emotional words.
Here are several examples from the dataset:

• @leesyatt you are a cruel, cruel man.
#therewillbeblood #revenge.

• can’t believe Achilles killed me! #angry.

• Worst juror ever? Michelle. You were
Nicole’s biggest threat. #bitter #bb18.

• All hell is breaking loose in Charlotte.
#CharlotteProtest #anger #looting.

• straight people are canoodling on the quad
and I’m #offended .

Thus, we try two different setting: first, process-
ing hash-tags similar to all other words in the text;

4https://code.google.com/archive/p/word2vec/
5http://scikit-learn.org

173

Feature set Task
EI-reg V-reg

anger fear joy sadness Boost RF
Baseline 30.83 30.76 43.07 31.67 50.02 40.66
Lexicon

DepecheMood 16.08 19.00 27.69 10.15 24.57 18.34
Vader 39.89 42.07 46.58 34.39 52.51 45.40
All Lexicons 42.91 42.31 45.20 33.56 54.02 50.43

Embeddings
Glove Twitter 54.55 51.38 43.44 52.21 65.97 56.90
GloVe Common Crawl 46.93 53.98 43.66 56.31 66.38 59.26
Google News 51.32 54.45 42.24 54.10 64.54 54.30
Glove Twitter + # 58.15 60.32 54.60 57.20 69.92 59.19
GloVe Common Crawl + # 54.92 61.33 53.73 59.00 70.43 64.05
Google News + # 53.09 59.42 55.77 57.15 67.44 56.38
All Embeddings 59.01 62.97 56.42 60.33 70.48 60.38

Combined features
Lexicons + Baseline 44.93 48.63 50.40 41.70 60.12 56.03
Lexicons + Embeddings 65.89 65.82 59.90 65.64 73.00 64.96
Lexicons + Embeddings + Baseline 64.09 66.95 63.80 65.73 72.35 65.93

Table 2: Experimental results for on development set for two subtasks. Pearson correlation. Gradient Boosting
Regressor is used for the EI-reg subtask. Gradient Boosting Regressor (Boost) and Random Forest (RF) is used
for V-reg. # means that hash-tags are used separately as additional features.

second processing hash-tags separately to preserve
authors’ encoding of their emotions. The second
strategy consistently yields better results as can be
seen from Table 2.

4 Discussion

Comparisons of feature sets and algorithms are
presented in Table 2. As can be seen from the ta-
ble, results are consistent: emeddings yield higher
performance than lexicon features for all tasks.
DepechMode, even though it has five times more
entries than Vader, seems to be less suitable for
tweet emotion prediction and yields performance
much lower than the baseline. Moreover, using
both lexicons in combination not always improves
performance and in some cases works even worse
than Vader alone.

There is no significant difference between dif-
ferent embeddings. Various embeddings achieve
better performance depending on the task, though
the best results obtained by using all three in com-
bination.

It can also be seen from Table 2 that sepa-
rate treatment of hash tags improves model per-
formance. For example, for joy detection task the

difference is about 10%, which means that joy is
frequently expressed explicitly in hash tags.

The best results for all tasks obtained by using
all feature sets in combination (with the only ex-
ception of angry intensity detection subtask). This
makes an improvement in 5.5% for anger detec-
tion subtask, 4% for fear, 7.5% for joy, 5.4% for
sadness, and about 2% for sentiment intensity de-
tection subtask. This means that even though lexi-
cons cannot be used by themselves to detect emo-
tions, they provide important features that can-
not be extracted from embeddings. We hypothe-
size that the main reason for that is low coverage,
meaning that many tweets have few lexicon fea-
tures or no such features at all.

The coverage of the task corpora by various fea-
ture sets is presented in Table 3. It can be seen
from the table that embeddings have much higher
coverage than DepecheMood lexicon. Another in-
teresting observation is that GloVe Twitter does
not have a higher coverage than GloVe Common
Crawl though GloVe Twitter has higher coverage
of hash-tags.

174

Feature set Task
EI-reg V-reg

anger fear joy sadness
≺ # ≺ # ≺ # ≺ # ≺ #

DepecheMood 53.4 52.5 53.6 54.74 53.1
GloVe Common Crawl 86.0 6.2 85.1 6.2 85.2 4.9 87.4 4.8 85.3 4.5
GloVe Twitter 80.1 6.5 80.1 6.5 82.0 5.2 82.7 5.1 81.7 4.7
Google News 74.6 5.7 74.6 5.8 75.1 4.5 76.9 4.5 75.5 4.2

Table 3: Data coverage for various feature sets, percent of word usages. Legend: # - coverage of hash tags, ≺ -
coverage of all other words.

Baseline 3
Lexicon features

DepecheMood 8
Vader 4

Embeddings
GloVe Common Crawl 300
Glove Twitter 200
Google News 300

Table 4: Feature sets and their dimensionality.

5 Results

The best model, used in our officially submitted
solution, exploits all six feature sets plus separate
embedding vectors for hash-tags. The list of fea-
ture sets and their dimensionality is presented in
Table 4.

The official results for EI-reg and V-reg tasks
are presented in Table 5. We report results for all
instances and for instance with highest emotion in-
tensity. The numerical values are similar to what
we obtained on the development set. The official
results for E-c classification task are presented in
Table 6.

6 Conclusion

In this paper we presented our approach for Se-
mEval Affect Detection in Tweets Task. We com-
pare manually collected lexical features with em-
beddings automatically extracted from huge cor-
pora. We demonstrated that even though lexi-
cons are less suitable for affect detection in tweets
due to low coverage they can improve model per-
formance when lexical features are used together
with more general embeddings.

In addition, we demonstrated that hash tags are
important features for tweet affection detection,
since they frequently include emotional words.

All instances Gold in 0.5-1
EI-reg

Anger 65.4 / 82.7 52.6 / 70.8
Fear 67.2 / 77.9 49.7 / 60.8
Joy 64.8 / 79.2 42.0 / 56.8

Sadness 63.5 / 79.8 51.7 / 66.6
Macro-avg 65.3 / 79.9 49.0 / 63.8

V-reg
78.2 / 87.3 62.1 / 69.7

Table 5: Official results for EI-reg (emotion intensity
regression) and V-reg (valence intensity regression).
Scores are given in the format X / Y , where X is our
result, and Y is the best official result on the task. Pear-
son correlation.

Accuracy micro-avg F1 macro-avg F1
47.7 / 58.8 61.0 / 70.1 41.6 / 52.8

Table 6: Official results for E-c (emotion classification)
task. Scores are given in the format X / Y , where X is
our result, and Y is the best official result on the task.

In this paper we used rather simplistic methods
to combine various features, i.e., vector concatena-
tion. In the future we plan to try another approach:
to build a separate classifier for each feature set
and then use a meta classifier on top of their re-
sults.

Repository
Repository with the code is located on the fol-
lowing URL link: https://github.com/
dmikrav/SemEval2018AffectsTweets
The web-site to this project is on the following
URL link: https://dmikrav.github.io/
SemEval2018AffectsTweets/

References
Clayton J. Hutto and Eric Gilbert. 2014. VADER: A parsi-

monious rule-based model for sentiment analysis of social

175

media text. In Proceedings of the Eighth International
Conference on Weblogs and Social Media, ICWSM 2014,
Ann Arbor, Michigan, USA, June 1-4, 2014.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado,
and Jeff Dean. 2013. Distributed representations of words
and phrases and their compositionality. In Advances in
neural information processing systems, pages 3111–3119.

Saif M. Mohammad, Felipe Bravo-Marquez, Mohammad
Salameh, and Svetlana Kiritchenko. 2018. Semeval-2018
Task 1: Affect in tweets. In Proceedings of International
Workshop on Semantic Evaluation (SemEval-2018), New
Orleans, LA, USA.

Saif M. Mohammad and Svetlana Kiritchenko. 2018. Un-
derstanding emotions: A dataset of tweets to study inter-
actions between affect categories. In Proceedings of the
11th Edition of the Language Resources and Evaluation
Conference, Miyazaki, Japan.

Jeffrey Pennington, Richard Socher, and Christopher D.
Manning. 2014. Glove: Global vectors for word represen-
tation. In Empirical Methods in Natural Language Pro-
cessing (EMNLP), pages 1532–1543.

Jacopo Staiano and Marco Guerini. 2014. Depeche mood: a
lexicon for emotion analysis from crowd annotated news.
In Proceedings of the 52nd Annual Meeting of the Asso-
ciation for Computational Linguistics (Volume 2: Short
Papers), volume 2, pages 427–433.

176

Proceedings of the 12th International Workshop on Semantic Evaluation (SemEval-2018), pages 177–180
New Orleans, Louisiana, June 5–6, 2018. ©2018 Association for Computational Linguistics

EmoIntens Tracker at SemEval-2018 Task 1: Emotional Intensity

Levels in #Tweets

Ramona-Andreea

Turcu

1
, Sandra Maria Amarandei

1
,

 Iuliana-Alexandra Flescan-Lovin-Arseni
1
, Daniela Gifu

1,2
, Diana Trandabat

1

1Faculty of Computer Science, “Alexandru Ioan Cuza” University of Iasi,
2
Institute of Computer Science, Romanian Academy - Iasi Branch

{ramona.turcu, daniela.gifu, dtrandabat}@info.uaic.ro

{maria.amarandei, flescan.alexandra}@gmail.com

1 Introduction

Emotion Analysis is still a challenging task in

NLP (Natural Language Processing); the

researchers try to recognize not only emotions

“generally speaking” but also their intensity.

Because the level of subjectivity is particularly

high in this matter, prediction of emotions,

mainly in text, demands for continuous research

and improvement strategies. SemEval

competition has already a tradition in

developing tasks to address this subject. This

year proposed an even more challenging task:

emotion intensity prediction in tweets.

Within this context, this present study aims

to develop a system that can not only detect

emotions but also their intensities, namely

emotion intensity regression and emotion

intensity ordinal classification tasks for fear,

joy, sadness and anger. Better results are finally

provided thanks to the combination between

neural network and proper decision tree

algorithms.

From the four tasks, namely: EI-reg, EI-oc,

VAD-reg, and VAD-oc, the system focuses on

the first two of them, for both English and

Spanish datasets, according to their relation

with the emotion concept.

While tweets annotation, emotion intensity

regression and emotion intensity ordinal

classification is an active field of emotion

analysis, we believe that a supervised machine

learning (Naive Bayes, KNN and SVM), deep

learning approach (NN Tensor Flow model), and

decision trees would increase the effectiveness

of this system.

2 State of the Art

Some of the most used technologies which led

to considerable results and step forwards in the

domain of sentiment analysis are mainly

represented by machine learning algorithms

which already have led to impressive results can

be thoroughly analyzed in several studies such

as: the work of Bac Huy Nguyen (2015); latent

semantic analysis (LSA) by Andrew et al.
(2014), support vector machines in the work of

Rohini S. Rahate and Emmanuel M, (2013),

grammatical dependency relations, Support

Vector Regression (SVR), and Neural Networks.

Abstract

The „Affect in Tweets” task is centered on

emotions categorization and evaluation

matrix using multi-language tweets

(English and Spanish). In this research,

SemEval Affect dataset was preprocessed,

categorized, and evaluated accordingly

(precision, recall, and accuracy). The

system described in this paper is based on

the implementation of supervised machine

learning (Naive Bayes, KNN and SVM),

deep learning (NN Tensor Flow model),

and decision trees algorithms.

177

An important work has been done by the

tool IZU-NLP at EmoInt-2017 (Yuanye He et al.,

2017), meant to determine numerical values that

would represent the emotion intensity in a

tweet. There are researchers who prefer to

combine several methods in order to achieve

better results. For instance, in the paper of

Sreekanth Maunendra and Sankar Desarkar

(2017) there were implemented three regression

methods: (1) content-based features (ex.
hashtags, emoticons); (2) training based on

word and character n-grams; and finally (3)

lexicons, word embeddings, word n-grams and

character n-grams all together.

Best–Worst Scaling (BWS) was highly

valued in the work of Saif M. Mohammad and

Felipe Bravo-Marquez (2017) when producing

the first datasets of tweets annotated for

sentiment intensities (anger, fear, joy, and

sadness).

Some existing tools and resources that

enlarged the perspective and built the basis of

sentiment analysis are: Emo-Int2017, NRC

Emotion lexicon, Best-Worst Scaling resources;

VADER-Sentiment-Analysis, SentiWordNet

(Andrea Esuli et al., 2010), NLTK Sentiment

Analyze, and Affective Tweets. All these works

prove the interest of researchers on this subject

and the fast evolution of this specific domain in

time.

In the context of the Semeval Competition,

we developed a system for emotion intensity

and ordinal classification of the subtasks

already stated above.

3 Dataset and method

3.1 Data set

The SemEval affect dataset used in this work

contains an annotated set multi-language tweets

(English and Spanish).

For each emotion (anger, fear, sadness, joy) we
had 3 sets of data (for train, developing and

test).

The English data set was revised by Hardik

Meisheri Dec 5, 2017 consisting of ~100

million English tweet ids and for Spanish the

data set released on Dec 5, 2017 containing

~1.2 million Spanish tweet ids.

3.2 Method

This research is oriented towards the first two

tasks of SemEval so it will contain two

components, one for Task EI-reg and the other

one for Task EI-oc. The first step was to

preprocess the development data set in multiple

stages as follows: basic cleaning (Ids, useless

stopwords, emoticons), tokenization and parsing

to make data less repetitive. Then we apply the

NN Tensor Flow model, the basic one, offered

by Python with 600 neurons and with a layer of

1 to 1000.

The neural network was trained separately
for each language using the same configuration.

Once we obtained the results, we applied a

Decision Tree Algorithm in order to refine them.

For all subtasks we use Neural Network Tensor

Flow (NNTF): Analyzing Tweet's Sentiment

with Character-Level LSTMs NN Tensor Flow -

python implemented neuronal network with the

same parameters for the EI-oc subtask, we

improved our results by implementing also the

classifiers from pattern.vector. The algorithms

are based on three big approaches - they

implement the Naive Bayes, KNN and SVM

classifiers respectively. Even though machine

learning and neural networks gave decent result,

the difficulty in controlling the actual reasoning

implied the necessity of adding a refining

algorithm that would improve final results. An

algorithm that would meet this condition is the

Decision Tree Classification, a Weka J48

implementation that was improved by adding an

algorithm used to generate same decision trees:

check for base classification (this classification

should be done by the first method described in

this paper - NN Tensor Flow); for each

score/class; find the normalized score;

best_score will be the highest normalized score,

this will be the root; create a decision node that
splits on best_score; search on the sublists

obtained by splitting on best_score; add those

nodes as child of node.

For development and training we used the

results from the first method for both English

and French.

4 Results and Observations

In both sets of results we will notice that the
best results were obtained in the single positive

feeling dataset - the one for joy. For EI-reg, the

lowest result was registered for anger

(accuracy), while the highest was the recall for

joy. For EI-oc the best result is in the precision

of joy, the lowest result being again in accuracy,

but this time for sadness.

178

The implementation of the Decision Tree

Algorithm leads to growth and uniformization

of the results in the EI-reg subtask, while it

lowers those from EI-oc.

This being said, it becomes clear that for

ordinal classification (EI-oc) NNTF is
preferred, while the additional Decision Tree

Algorithm helps the improvement of intensity

detection.

5 Conclusions

Within our project, we succeeded to obtain

relevant results as participants in Semeval-Task

1 Affect in Tweets, by implementing machine

learning and decision tree algorithms.

A constant concern relates to the modalities

of sentiment summarization and visualization.

When the results of sentiment analysis tasks

need to be presented to an end user, a

corresponding level of uncertainty should be

taken into account (uncertain results shown as

certain may lead to incorrect conclusions). Of

course it is clear that we may increase it by

identifying manually certain patterns and

indices about intensity and/or their

classification.

It would have been rather interesting to

have a balance between the negative and

positive emotions (the Semeval Competition
providing us with three negative and only one

positive emotion.) Much and interesting work is

to be done as we speak about such a subjective

part and manifestation of human mind -

emotions.

Acknowledgments

This survey was published with the support by

two grants of the Romanian National Authority

for Scientific Research and Innovation,

UEFISCDI, project number PN-III-P2-2.1-BG-

2016-0390, contract 126BG/2016 and project

number PN-III-P1-1.2-PCCDI-2017-0818,

contract 73PCCDI/2018 within PNCDI III, and

partially by the README project "Interactive

and Innovative application for evaluating the

readability of texts in Romanian Language and

Table 1. NNTF and Classification Algoithm Results (a-accuracy, r-recall, p-precission)

Table 2. Results obtained after implementing the Decission Tree Algorithm (a-accuracy, r-recall, p-precission)

179

for improving users' writing styles", contract no.

114/15.09.2017, MySMIS 2014 code 119286.

References
 Amir Zadeh, Rowan Zellers. 2016. Multimodal

Sentiment Intensity Analysis in Videos: Facial

Gestures and Verbal Messages, - Affective

Computing and Sentiment Analysis.

http://sentic.net/multimodal-sentiment-intensity-

analysis-in-videos.pdf

Andrea Esuli, Fabrizio Sebastiani. 2010.

SentiWordNet: A Publicly Available Lexical

Resource for Opinion Mining.

http://nmis.isti.cnr.it/sebastiani/Publications/LRE

C06.pdf

Andrew L. Maas, Raymond E. Daly, Peter T. Pham,

Dan Huang, Andrew Y. Ng, and Christopher

Potts, Learning Word Vectors for Sentiment

Analysis, Stanford, CA 94305.

http://www.aclweb.org/anthology/P11-1015

Cecilia Ovesdotter Alm, Dan Roth, Richard Sproat,

Emotions from text: machine learning for text-

based emotion prediction,

https://pdfs.semanticscholar.org/4db0/80cc272c68

fb45df65eccdde6317edc44c28.pdf

Carlo Strapparava, Rada Mihalcea. 2007. SemEval-

2007 Task 14 Affective Tweets,

https://pdfs.semanticscholar.org/5b19/cdfecffbcd2

d82b57407863f95c42bb1f720.pdf

Hutto, C.J. & Gilbert, E.E. 2014. VADER: A

Parsimonious Rule-based Model for Sentiment

Analysis of Social Media Text. Eighth

International Conference on Weblogs and Social

Media (ICWSM-14). Ann Arbor, MI.

https://pdfs.semanticscholar.org/a6e4/a253251036

9b8f55c68f049ff11a892fefeb.pdf

Saif M. Mohammad and Felipe Bravo-Marquez,

Emotion Intensities in Tweets, In Proceedings of

the sixth joint conference on lexical and

computational semantics (*Sem), Vancouver,

Canada.

Le B., Nguyen H. 2015. Twitter Sentiment Analysis

Using Machine Learning Techniques. In: Le Thi

H., Nguyen N., Do T. (eds) Advanced

Computational Methods for Knowledge

Engineering. Advances in Intelligent Systems and

Computing, vol 358. Springer, Cham

Saif M. Mohammad and Felipe Bravo-Marquez.

2017. WASSA-2017 Shared Task on Emotion

Intensity, In Proceedings of the EMNLP 2017

Workshop on Computational Approaches to

Subjectivity, Sentiment, and Social Media

(WASSA), Copenhagen, Denmark.

Saif M. Mohammad, Felipe Bravo-Marquez,

Mohammad Salameh, and Svetlana Kiritchenko.

2018. Semeval-2018 Task 1: Affect in tweets. In

Proceedings of International Workshop on

Semantic Evaluation (SemEval-2018), New

Orleans, LA, USA

Sreekanth Maunendra, Sankar Desarkar. 2017.

NSEmo at EmoInt-2017. An Ensemble to Predict

Emotion Intensity in Tweets,

http://www.aclweb.org/anthology/W17-5230

Vineet, John, Olga, Vechtomova. 2017. UWat-Emote

at EmoInt-2017: Emotion Intensity Detection

using Affect Clues, Sentiment Polarity and Word

Embeddings.

http://www.aclweb.org/anthology/W17-5235

Yuanye He, Liang-Chih Yu, K.Robert Lai, Weiyi Liu.

2017. Determinng Emotion Intensity Using a Bi-

directional LSTM-CNN Model.

http://www.aclweb.org/anthology/W17-5233

Rohini S. Rahate, Emmanuel M. 2013. Feature

Selection for Sentiment Analysis by using SVM,

International Journal of Computer Applications

(0975–8887) Volume 84–No5, December

180

Proceedings of the 12th International Workshop on Semantic Evaluation (SemEval-2018), pages 181–185
New Orleans, Louisiana, June 5–6, 2018. ©2018 Association for Computational Linguistics

uOttawa at SemEval-2018 Task 1: Self-Attentive Hybrid GRU-Based
Network

Ahmed Husseini Orabi1, Mahmoud Husseini Orabi1, Diana Inkpen1, David Van Bruwaene2

1EECS, University of Ottawa, 800 King Edward Avenue, Ottawa, Canada
2VISR inc., 10 Dundas St E. Suite 600, Toronto, Canada

{ahuss045, mhuss092, diana.inkpen}@uottawa.ca, d@visr.co

Abstract

We propose a novel attentive hybrid GRU-
based network (SAHGN), which we used at
SemEval-2018 Task 1: Affect in Tweets.
Our network has two main characteristics,
1) has the ability to internally optimize its
feature representation using attention
mechanisms, and 2) provides a hybrid rep-
resentation using a character-level Convo-
lutional Neural Network (CNN), as well as
a self-attentive word-level encoder. The key
advantage of our model is its ability to sig-
nify the relevant and important information
that enables self-optimization. Results are
reported on the valence intensity regression
task.

1 Introduction

Affect analysis is one of the main topics of nat-
ural language processing (NLP). It involves many
sub-tasks such as sentiment and valence analyses
expressed in text. We focus on the task of determin-
ing valence intensity.

Hand-crafted features and/or sentiment lexicons
are commonly used for affect analysis
(Mohammad, Kiritchenko, & Zhu, 2013; Taboada,
Brooke, Tofiloski, Voll, & Stede, 2011) with clas-
sifiers such as random forest and support vector
machines (SVM).

Affect in tweets (AIT) is a challenging task as it
requires handling an informal writing style, which
typically has many grammar mistakes, slangs, and
misspellings.

In this paper, we present a self-attentive hybrid
GRU-based network (SAHGN) that competed at
SemEval-2018 Task 1 (Mohammad, Bravo-
Marquez, Salameh, & Kiritchenko, 2018;
Mohammad & Kiritchenko, 2018).

Our contributions can be summarized as below.

• The implementation of a social media text
processor: A library to help process social
media text such as short-forms, emoticons,
emojis, misspellings, hash tags, and slangs,
as well as tokenization, word normalization,
and sentence encoding.

• The implementation of a self-attentive
deep learning system: This system can pre-
dict valence and intensity with limited cor-
pora and vocabulary, and yet can have ac-
ceptable performance.

2 High-Level Description of Our System

Our goal is to provide a system that can predict va-
lence and intensity for short text. Figure 1 shows a
high-level description of our solution, which con-
sists of two main components, social media text
processor (Section 3) and self-attentive hybrid
GRU-based network (Section 4.2).

Figure 1: System architecture.

3 Social Media Text Processor

The social media text processor aims to provide
a reliable and fast tokenization. It involves the fol-
lowing preprocessing steps:
• Use a named entity recognizer (NER) (Finkel,

Grenager, & Manning, 2005) to identify enti-
ties such as persons, names, and places, and
then replace them accordingly.

• Build a vocabulary using an NGram tokenizer.

181

• Tokenize sentences into a set of tokens, and
then use them to encode text into a sequence of
indices (Table 1), which are fed into the net-
work.

• Clean text from accents, punctuations, and
non-Latin characters.

• Identify emoticons and emojis, and then re-
place them with meaningful text; e.g., replace
the happy face emoticon :) with <happy>.

• Recognize hashtags, URLs, and then briefly
describe them; e.g. replace #depressed by
<hashtag_start>depressed<hashtag_end>.

• Identify user reference mentions, and then re-
place them with a person entity; e.g. <person>.

Text @name I am feeling under the weather af-
ter I met with Carl :’(#sick \\u0001F600

Pro-
cessed

<SOS> <reference> I am feeling under the
weather after I met with <person> <cry-
ing> <hashtag_start> sick <hashtag_end>
<grinning_face> <EOS>

Table 1: Example of processed text.

4 Model Description

The overall architecture of our SAHGN model is
shown in Figure 2. The main components include
1) a word sequence encoder, 2) a bidirectional
GRU-based layer that applies a self-attentive
mechanism on the word level, 3) a character-level
CNN feature extractor, and 4) an attention with
context-aware mechanism.

4.1 Word Sequence Encoder

A network input is described as a sequence (𝑆𝑆) of
tokens (such as words), where 𝑆𝑆 = [𝑠𝑠1, 𝑠𝑠2, … . , 𝑠𝑠𝑡𝑡]

and 𝑡𝑡 denotes the timestep. 𝑆𝑆𝑖𝑖 is a one-hot input (𝑖𝑖)
vector of a fixed length (𝑇𝑇) of tokens. A sequence
that exceeds this length is truncated.

Word encoding. We use a 𝑊𝑊 word vocabulary
to encode a sequence. 𝑊𝑊 has fixed terms to deter-
mine the start and end of the sequence, as well as
the out of vocabulary (OOV) words. We handle the
variable length through padding for short se-
quences and truncating for long sequences.

Embedding layer. We apply a pretrained GloVe
word embedding (Pennington, Socher, & Manning,
2014) on 𝑆𝑆𝑖𝑖. GloVe projects these words into a low-
dimensional vector representation (𝑥𝑥𝑖𝑖), where 𝑥𝑥𝑖𝑖 ∈
𝑅𝑅𝑊𝑊 and 𝑊𝑊 is the word weight embedding matrix.
𝑊𝑊 is used to initialize the word embedding layer.

We used the official training and development
corpora to train the GloVe word embedding with a
dimension of 100. The vocabulary size of this
model is 8145 words, which is small and poses a
major challenge to training, as well as to perfor-
mance.

4.2 Self-attentive GRU-based Mechanism

Recurrent neural network (RNN) is commonly
used for NLP problems (Yin, Kann, Yu, & Schütze,
2017; Young, Hazarika, Poria, & Cambria, 2017),
as it enables remembering values over arbitrary
time durations. RNN processes every element of an
input embedding (𝑥𝑥𝑖𝑖) sequentially, such that ℎ𝑡𝑡 =
tanh (𝑊𝑊𝑥𝑥𝑖𝑖 + 𝑊𝑊ℎ𝑡𝑡−1). 𝑊𝑊 is the weight matrix be-
tween an input and hidden states, while ℎ𝑡𝑡 is the
hidden state of the recurrent connection at timestep
(𝑡𝑡). The design of the RNN enables variable length
processing while preserving the sequence order.

Figure 2: The architecture of Self-Attentive Hybrid GRU-Based Network.

182

However, RNN has many limitations with long
sequences, in particular the exponentially growing
or decaying gradients. A common way to resolve
these issues is by using gating mechanisms, such as
LSTM and GRU (Gers, Schmidhuber, &
Cummins, 2000; Hochreiter & Schmidhuber,
1997). We use GRU as it is faster to converge, in
addition to being memory efficient.

Bidirectional GRU layer. In our model, we use
bidirectional GRU layers. GRU receives a se-
quence of tokens as inputs, and then projects word
information 𝐻𝐻 = (ℎ1,ℎ2, … . , ℎ𝑇𝑇), where ℎ𝑡𝑡 de-
notes the hidden state of GRU at a timestep (𝑡𝑡). It
captures the temporal and abstract information of
sequences in a forward (ℎ𝑓𝑓) or reverse (ℎ𝑏𝑏) man-
ner. After that, we concatenate forward and back-
ward representations; e.g. ℎ𝑡𝑡 = ℎ𝑡𝑡

𝑓𝑓|| ℎ𝑡𝑡𝑏𝑏.
Attention mechanism. Words do not have

equal valence weights in sentences. Towards that,
we use an attention mechanism to signify the rela-
tively important words.

Attention is used to compute the compatibility
between a given source (𝑥𝑥𝑖𝑖) and query (𝑞𝑞). It uses
an alignment function 𝑓𝑓(𝑥𝑥𝑖𝑖 , 𝑞𝑞) to measure the level
of dependency of 𝑞𝑞 to 𝑥𝑥𝑖𝑖. This function produces
an attention weight 𝑎𝑎 = 𝑓𝑓(𝑥𝑥𝑖𝑖 , 𝑞𝑞)𝑖𝑖=1𝑇𝑇 . Then, a soft-
max function is applied to produce a probability
distribution 𝑝𝑝(𝑧𝑧|𝑥𝑥, 𝑞𝑞) for each word (𝑡𝑡) of an input
(𝑥𝑥). Hence, a bigger weight of 𝑥𝑥𝑖𝑖 indicates a higher
importance than other words.

The attention alignment approaches have the
same implementation, but they mainly differ on
how they compute weights. This can be either in an
additive manner 𝑓𝑓(𝑥𝑥𝑖𝑖 ,𝑞𝑞) = tanh (𝑊𝑊𝑇𝑇𝐵𝐵(𝑊𝑊𝑥𝑥𝑖𝑖 +
 𝑊𝑊𝑞𝑞)) (Bahdanau, Cho, & Bengio, 2014), or a mul-
tiplicative manner 𝑓𝑓(𝑥𝑥𝑖𝑖 , 𝑞𝑞) = tanh (�𝑊𝑊𝑥𝑥𝑖𝑖 .𝑊𝑊𝑞𝑞�)
(Vaswani et al., 2017). In our model training, we
use an additive attention mechanism, as it helped
improve the prediction performance.

Self-Attention mechanism. In our model train-
ing, we have a small number of corpora, which are
not sufficient to train an efficient word embedding
or alleviate well-known problems such as poly-
semy. In an effort to overcome such limitations, we
use a self-attention mechanism. This approach
measures the dependency of different tokens in the
same input embedding (𝑥𝑥𝑖𝑖). It mainly computes at-
tention for each word by replacing 𝑞𝑞 and 𝑥𝑥𝑖𝑖 with a
set of token pairs (𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑗𝑗).

4.3 Character-level CNN

The CNN encoding layer (Figure 3) takes an input
of a sequence (𝑆𝑆) of characters, where 𝑆𝑆 =
 [𝑠𝑠1, 𝑠𝑠2, … . , 𝑠𝑠𝑡𝑡] such that 𝑡𝑡 denotes the timestep. 𝑆𝑆𝑖𝑖
is a one-hot input (𝑖𝑖) vector of a fixed length (𝑇𝑇) of
characters.

Figure 3: Character-level CNN.

CNN usually uses temporal convolutions

(timestep-based) rather than spatial convolutions
with text analysis.

We mainly use convolutions to extract low-level
character information such as misspellings, slangs,
and so on.

Character encoding. We define a charset of the
size 95, including the upper and lower cases of the
English alphabet, special characters, padding, and
the start and end of a given input sequence. We
need this charset to build a vocabulary, which is
used to encode a character sequence. Similarly to
the word embedding, we handle the variable length
through padding and truncating (Section 4.1).

Character embedding layer. We build a char-
acter embedding of 32 dimensions. We use a uni-
form distribution scheme of a range (-0.5 to +0.5)
to initialize its weight matrix.

We apply 3 convolutions of 100 features, as well
as different filter lengths 2, 3, and 4. Each one-di-
mensional operation is used, where 𝐶𝐶𝑖𝑖𝑛𝑛 =
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶1𝑑𝑑(𝑆𝑆𝑖𝑖), and 𝐶𝐶 is the filter length. After that,
a max-pooling layer is applied on the feature map
to extract abstract information, 𝐶𝐶𝚤𝚤𝑛𝑛� = max(𝐶𝐶𝑖𝑖𝑛𝑛).
Then, we concatenate these feature representations
into one output.

As opposed to recurrent layers (Section 4.2),
convolutional operations with max-pooling are
helpful to extract word features without paying at-
tention to their sequence order (Kalchbrenner,
Grefenstette, & Blunsom, 2014). These features are
combined with recurrent features to improve the
performance of our model.

183

4.4 Attention with Context

Output vectors received from previous steps are
concatenated, and then fed into an attention with
context.

We use a context-aware attention mechanism
(Yang et al., 2016) to compute a fixed representa-
tion (𝑟𝑟 = ∑ 𝑎𝑎𝑖𝑖ℎ𝑖𝑖𝑇𝑇

𝑖𝑖=1) of a sequence as the weighted
sum of all tokens in that sequence. This representa-
tion is used as a classification feature vector to be
fed to the final fully-connected sigmoid layer. This
layer outputs a continuous value representing the
valence of a given sentence.

4.5 Training

In our training, we use mini batch stochastic gra-
dient of the size 32, to minimize the mean-squared
error using back-propagation. We use Adam opti-
mizer with a learning rate of 0.001 (Kingma & Ba,
2014). For training, we use 80% of the training set
and 20% for validation. We test and report our re-
sults on both development and test sets.

Regularization. We use dropout to randomly
drop neurons off the network, which helps prevent-
ing co-adaptation of neurons (Srivastava, Hinton,
Krizhevsky, Sutskever, & Salakhutdinov, 2014).
Dropout is also applied on the recurrent connection
of our GRU-based layers. Additionally, we apply a
weight decay approach through setting an L2 regu-
larization penalty (Cortes, Mohri, &
Rostamizadeh, 2012).

Hyperparameters. The size of the embedding
layer is 200, and of the GRU layers is 150, which
becomes 300 for bidirectional GRU. We apply a
dropout of 0.4, and a dropout of 0.2 on the recurrent
connections. Finally, an L2 regularization of
0.00001 is applied at the loss function.

5 Results

We report our results using the Pearson correla-
tion between the prediction and gold rating sets on
the test set (all instances). The other one (gold in
0.5-1 shown in Table 2) differs in including tweets
only with intensity greater than or equal to 0.5.

Our model performed well on the development
set scoring 0.869, while on the testing set, the per-
formance degraded to 0.752. This degradation
could be related to the size of the corpus we used
to train our word embedding. We also trained only
on 80% of the training set.

Dataset

Valence task
Pearson

correlation
(all instances)

Pearson
correlation

(gold in 0.5-1)
Development 0.869 0.692
Testing 0.752 0.559

Table 2: Results of valence intensity regression (Eng-
lish).

6 Conclusion

In this paper, we presented a self-attentive hybrid
GRU-based network for predicting valence in-
tensity for short text.

We used a hybrid approach combining low-char-
acter-level features with self-attentive word em-
bedding. Our network uses two different attention
mechanisms to signify the relevant and important
words, and hence optimize feature representation.

With limited corpora and vocabulary of the size
8152, our model still managed to achieve an opti-
mized feature representation, which achieved ex-
cellent results on the development set. However,
our model failed to maintain the same performance
on the testing set.

For future work, we will explore the perfor-
mance of our model with larger corpora against the
testing set. It would also be interesting to see if the
model performs well on other long-text NLP tasks
such as topic classification.

Acknowledgments
This research is funded by Natural Sciences and
Engineering Research Council of Canada
(NSERC), Ontario Centres of Excellence (OCE)
and VISR.co.

References
Bahdanau, D., Cho, K., & Bengio, Y. (2014). Neural
Machine Translation by Jointly Learning to Align
and Translate. Retrieved from
http://arxiv.org/abs/1409.0473

Cortes, C., Mohri, M., & Rostamizadeh, A. (2012).
L2 Regularization for Learning Kernels. Retrieved
from http://arxiv.org/abs/1205.2653

Finkel, J. R., Grenager, T., & Manning, C. (2005).
Incorporating non-local information into information
extraction systems by Gibbs sampling. In
Proceedings of the 43rd Annual Meeting on
Association for Computational Linguistics - ACL
’05 (pp. 363–370). Morristown, NJ, USA:
Association for Computational Linguistics.
https://doi.org/10.3115/1219840.1219885

184

Gers, F. A., Schmidhuber, J., & Cummins, F. (2000).
Learning to Forget: Continual Prediction with
LSTM. Neural Computation, 12(10), 2451–2471.
https://doi.org/10.1162/089976600300015015

Hochreiter, S., & Schmidhuber, J. (1997). Long
Short-Term Memory. Neural Computation, 9(8),
1735–1780.
https://doi.org/10.1162/neco.1997.9.8.1735

Kalchbrenner, N., Grefenstette, E., & Blunsom, P.
(2014). A Convolutional Neural Network for
Modelling Sentences. In Proceedings of the 52nd
Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers)
(pp. 655–665). Stroudsburg, PA, USA: Association
for Computational Linguistics.
https://doi.org/10.3115/v1/P14-1062

Kingma, D. P., & Ba, J. (2014). Adam: A Method for
Stochastic Optimization. Retrieved from
http://arxiv.org/abs/1412.6980

Mohammad, S. M., Bravo-Marquez, F., Salameh, M.,
& Kiritchenko, S. (2018). Semeval-2018 Task 1:
Affect in tweets. In International Workshop on
Semantic Evaluation (SemEval-2018), New Orleans,
LA, USA.

Mohammad, S. M., & Kiritchenko, S. (2018).
Understanding Emotions: A Dataset of Tweets to
Study Interactions between Affect Categories. In
Proceedings of the 11th Edition of the Language
Resources and Evaluation Conference (LREC-2018).

Mohammad, S. M., Kiritchenko, S., & Zhu, X.
(2013). NRC-Canada: Building the State-of-the-Art
in Sentiment Analysis of Tweets. Retrieved from
http://arxiv.org/abs/1308.6242

Pennington, J., Socher, R., & Manning, C. (2014).
Glove: Global Vectors for Word Representation. In
Proceedings of the 2014 Conference on Empirical
Methods in Natural Language Processing (EMNLP)
(pp. 1532–1543). Stroudsburg, PA, USA:
Association for Computational Linguistics.
https://doi.org/10.3115/v1/D14-1162

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever,
I., & Salakhutdinov, R. (2014). Dropout: a simple
way to prevent neural networks from overfitting. The
Journal of Machine Learning Research, 15(1), 1929–
1958.

Taboada, M., Brooke, J., Tofiloski, M., Voll, K., &
Stede, M. (2011). Lexicon-Based Methods for
Sentiment Analysis. Computational Linguistics,
37(2), 267–307.
https://doi.org/10.1162/COLI_a_00049

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J.,
Jones, L., Gomez, A. N., … Polosukhin, I. (2017).
Attention is All you Need. In Advances in Neural
Information Processing Systems 30 (NIPS).

Yang, Z., Yang, D., Dyer, C., He, X., Smola, A., &

Hovy, E. (2016). Hierarchical Attention Networks
for Document Classification. In Proceedings of the
2016 Conference of the North American Chapter of
the Association for Computational Linguistics:
Human Language Technologies (pp. 1480–1489).
Stroudsburg, PA, USA: Association for
Computational Linguistics.
https://doi.org/10.18653/v1/N16-1174

Yin, W., Kann, K., Yu, M., & Schütze, H. (2017).
Comparative Study of CNN and RNN for Natural
Language Processing. Retrieved from
http://arxiv.org/abs/1702.01923

Young, T., Hazarika, D., Poria, S., & Cambria, E.
(2017). Recent Trends in Deep Learning Based
Natural Language Processing. Retrieved from
http://arxiv.org/abs/1708.02709

185

Proceedings of the 12th International Workshop on Semantic Evaluation (SemEval-2018), pages 186–192
New Orleans, Louisiana, June 5–6, 2018. ©2018 Association for Computational Linguistics

THU NGN at SemEval-2018 Task 1: Fine-grained Tweet Sentiment
Intensity Analysis with Attention CNN-LSTM

Chuhan Wu1, Fangzhao Wu2, Junxin Liu1,Zhigang Yuan1,
Sixing Wu1 and Yongfeng Huang1

1Tsinghua National Laboratory for Information Science and Technology,
Department of Electronic Engineering, Tsinghua University Beijing 100084, China

2Microsoft Research Asia
{wuch15,wu-sx15,ljx16,yuanzg14,yfhuang}@mails.tsinghua.edu.cn

wufangzhao@gmail.com

Abstract

Traditional sentiment analysis approaches
mainly focus on classifying the sentiment po-
larities or emotion categories of texts. How-
ever, they can’t exploit the sentiment inten-
sity information. Therefore, the SemEval-
2018 Task 1 is aimed to automatically deter-
mine the intensity of emotions or sentiment
of tweets to mine fine-grained sentiment in-
formation. In order to address this task, we
propose a system based on an attention CNN-
LSTM model. In our model, LSTM is used
to extract the long-term contextual informa-
tion from texts. We apply attention techniques
to selecting this information. A CNN layer
with different kernel sizes is used to extract lo-
cal features. The dense layers take the pooled
CNN feature maps and predict the intensity
scores. Our system achieves an average Pear-
son correlation score of 0.722 (ranked 12/48)
in the emotion intensity regression task, and
0.810 in the valence regression task (ranked
15/38). It indicates that our system can be fur-
ther extended.

1 Introduction

Detecting the intensity of sentiment is an impor-
tant task for fine-grained sentiment analysis (Kir-
itchenko et al., 2016; Mohammad and Bravo-
Marquez, 2017). Intensity refers to the degree or
amount of an emotion or degree of sentiment. For
example, we can express our emotion by “very
happy” or “a little angry”. The intensity can be
analysis in multiple categories (i.e. low, moderate
and high) or real-valued. Identifying the intensity
information of sentiment has potential to applica-
tions such as electronic business, social computing
and public health (Wilson, 2008).

Twitter is a social platform which contains rich
textual content. There have been many approaches
to twitter sentiment analysis (Khan et al., 2015;
Severyn and Moschitti, 2015; Philander et al.,

2016). However, twitter sentiment analysis is
challenging because tweets usually contain non-
standard languages, including emoticons, emojis,
creatively spelled words, and hash tags (Moham-
mad and Bravo-Marquez, 2017). In order to im-
prove the collective techniques on tweet sentiment
intensity analysis, the SemEval-2018 Task 1 is
aimed to identify the categorical and real-valued
intensity of emotions or sentiment for English,
Arabic, and Spanish (Mohammad et al., 2018).

Existing approaches to analysis the intensity
of emotions or sentiment are mainly based on
lexicons and supervised learning. Lexicon-based
methods usually rely on lexicons to assign the
intensity scores of affective words in texts (Mo-
hammad and Bravo-Marquez, 2017). However,
these method can’t utilize the contextual informa-
tion from texts. Supervised methods are mainly
based on SVR (Madisetty and Desarkar, 2017),
linear regression (John and Vechtomova, 2017)
and neural networks (Goel et al., 2017; Köper
et al., 2017). Usually neural network-based meth-
ods outperform SVR and linear regression-based
methods siginificantly. Motivated by the success-
ful applications of neural models in this task, we
propose a system using a CNN-LSTM model with
attention mechanism. Firstly, a tweet will be con-
verted into a sequence of dense vectors by an em-
bedding layer. Next, we use a Bi-LSTM layer to
extract contextual information from them. The se-
quential features will be selected by an attention
layer. Then we apply a CNN with different ker-
nel sizes to extracting different local information.
Thus, our model can exploit both local and long-
term information by combining CNN and LSTM.
Finally, two dense layers are used to predict the
intensity scores. The system performance quan-
tified by an average Pearson correlation score is
0.722 in the emotion intensity regression task (EI-
reg) and 0.810 in the valence regression task (V-

186

reg). Our model outperforms several baseline neu-
ral networks, which proves that our model can
identify the intensity of emotions and sentiment
effectively.

2 Related Work

Sentiment analysis in social media such as Twitter
is an important task for opinion mining (Severyn
and Moschitti, 2015). Traditional Twitter senti-
ment analysis methods mainly focus on identify-
ing the polarities (Da Silva et al., 2014; dos San-
tos and Gatti, 2014) or emotion categories (Dini
and Bittar, 2016) of tweets. However, it’s a diffi-
cult task to analysis the noisy tweets. They usually
contain various nonstandard languages including
emoticons, emojis, creatively spelled words and
hash tags. In addition, these languages usually
contain rich sentiment information. In order to
capture such information, several lexicon-based
methods are proposed. Nielsen et al. (2011) pro-
posed to use a dictionary to incorporate emoticon
information into tweet analysis models. Moham-
mad et al. proposed to use hash tags to iden-
tify emotion categories of tweets (2015). These
lexicon-based methods are free from manual an-
notation, but they rely on the emotion lexicons and
can’t mine high-level contextual information from
tweets. Supervised methods such as neural net-
works are also applied to tweet sentiment analysis.
For example, Dos et al. (2014) propose to classify
tweets using a deep convolutional neural network.
Approaches based on deep neural networks need
sufficient samples to train, but they usually out-
performs lexicon-based methods in these tasks.

However, these approaches usually ignore the
intensity of emotions and sentiment, which pro-
vides important information for fine-grained sen-
timent analysis. Therefore, in order to capture
such information, Mohammad et al. proposed to
identify the emotion and sentiment intensity (va-
lence) of texts (2016). Different approaches have
been proposed to detect the tweet emotion inten-
sity in the EmoInt-2017 shared task (Mohammad
and Bravo-Marquez, 2017). For example, Madis-
etty et al. (2017) proposed an ensemble model
based on SVR. Goel et al. (2017) and Koper et
al. (2017) applied CNN-LSTM architecture to this
task. These systems reached the top ranks in the
EmoInt shared task.

Motivated by the successful application of
CNN-LSTM model (Zhou et al., 2015; Chen et al.,

2016) and the attention mechanism for text classi-
fication (Yin et al., 2015), we propose a system
using attention-based CNN-LSTM model to ad-
dress this task. In our model, we first use LSTM to
extract sequential information, and select features
via attention layer. Then we combine CNN with
different kernel sizes to learn local information.
Finally the dense layers are used to predict the in-
tensity scores. In addition, several features are in-
corporated into our model. The evaluation results
show that our system outperform several baseline
neural networks and can be further extended.

3 Attention CNN-LSTM Model

Our network architecture is shown in Figure 1. We
will explain the detailed information of our system
in the following subsections.

3.1 Network Architecture

As shown in Figure 1, an embedding layer is used
to provide word embedding and one-hot encoded
part-of-speech (POS) tags of the input tweets. The
Bi-LSTM layer takes the concatenated word em-
bedding and POS tags as input, and output each
hidden states. Let hi be the output hidden state at
time step i. Then its attention weight αi can be
formulated as follows:

mi = tanh(hi),

α̂i = wimi + bi,

αi =
exp(α̂i)∑
j exp(α̂j)

,

(1)

where wimi + bi denote a linear transformation
of mi. Therefore, the output representation ri is
given by:

ri = αihi. (2)

Based on such text representation, the sequence
of features will be assigned with different atten-
tion weights. Thus, important information such
as affective words can be identified more easily.
The convolutional layer takes the text representa-
tion ri as input. We use CNN with four different
kernel sizes to learn local information with differ-
ent contextual length. Based on this architecture,
our model can combine both long-term and local
information, which can help to identify sentiment
information better. The output CNN feature maps
are concatenated together, and will be squeezed by
a global max pooling layer. They are concatenated
with the lexicon features. We use two dense layers

187

Embedding

Bi-LSTM

Attention

layer

CNN

Dense

layers

Output

Love you #smile 😊 😊

𝑤

𝛼1

h1 h2 h3 h4 h5

𝛼2 𝛼5𝛼3 𝛼4

Gloabal Max Pooling

sigmoid

𝑟1 𝑟2 𝑟3 𝑟4 𝑟5

Lexical

features

Word

embedding

POS tag

(V) (D) (#) (E) (E)

ReLU

Figure 1: The architecture of our attention CNN-LSTM
model.

with ReLU and sigmoid activation respectively to
predict the final intensity score. In order to mit-
igate overfitting, we apply dropout technique at
each layer to regularize our model.

3.2 Word Embedding

We use Word2Vec (Mikolov et al., 2013) as the
vector representation of the words in tweets. We
combine two kinds of word embeddings: The first
embeddings are provided by Godin et al. (2015).
They are trained on a corpus with 400 million
tweets. The second embeddings are provided by
Barbier et al. (2016). They are trained on 20 mil-
lion geolocalized tweets. The dimensions of two
embeddings are 400 and 300 respectively. We
fine-tune the word embeddings during the network
training.

3.3 Additional Features

We incorporate POS tags and lexicon features into
our model. POS tags usually contain rich seman-
tic information. For example, sentiment intensity
can be expressed by adjectives like “very” and
“slight”. POS tags can help the neural model to
identify such words. We use the Ark-Tweet-NLP1

tool to obtain the POS tags of tweets (Owoputi
et al., 2013). The POS tag feature of each word
is concatenated with the word embedding.

Usually affective words in tweets such as spe-
cific hashtags express sentiment explicitly. There-
fore, incorporating lexicon information can help
our model to predict intensity more accurately. We
use the AffectiveTweets2 (Mohammad and Bravo-
Marquez, 2017) package in Weka3 to obtain the
lexicon features of tweets. We use the Tweet-
ToLexiconFeatureVector (Bravo-Marquez et al.,
2014), TweetToSentiStrengthFeatureVector (Thel-
wall et al., 2012) and TweetToInputLexiconFea-
tureVector filters in AffectiveTweets. In our ex-
periment, the lexicon features are 49-dim. These
lexicon features are concatenated with the pooled
CNN feature maps.

3.4 Model Ensemble

We use an ensemble strategy to improve the model
performance. Our model is trained for 10 times by
using randomly selected dropout rate. Then the
final predictions on the test set are given by the
average of all model predictions. In this way, the
random error of our system can be reduced.

4 Experiment

4.1 Preprocess

In order to process the noisy tweet texts, we use
tweetokenize4 for tokenizing, and use Ark-Tweet-
NLP tool for POS tagging. In addition, we refine
the texts and POS tags using several rules: 1) all
URLs will be replaced with the word “URL”, and
their POS tags will be set to “URL”; 2) all @users
will be replaced with “USERNAME”, and their
POS tags will be set to @; 3) POS tags of hashtags
are set to “#”; 4) POS tags of emojis and emoti-
cons are set to “E”.

1http://www.cs.cmu.edu/ ark/TweetNLP
2https://github.com/felipebravom/AffectiveTweets
3https://www.cs.waikato.ac.nz/ml/weka
4https://github.com/jaredks/tweetokenize

188

4.2 Experiment Settings

The details of English datasets5 we use is shown
in Table 1. The intensity in both task is annotated
between 0 and 1. In the EI-reg task, the Pearson
correlation scores across all four emotions will be
averaged as the final score. In the V-reg task, the
correlation score for valence is used as the compe-
tition metric.

Task EI-reg V-reg
Category anger fear joy sadness valence

#train 1,701 2,252 1,616 1,533 1,174
#dev 388 389 290 397 449
#test 1,002 986 1,105 975 937

Table 1: Detailed statistics of the English datasets in
our experiment

In our network, the dimension of word embed-
dings is 400+300. The hidden states of Bi-LSTM
are 2×300-dim. The kernel sizes of CNN are 3, 5,
7 and 9 respectively. The number of feature maps
are 4×200. The dimension of the first dense layer
is set to 200. The padding length of tweets is set to
50. The dropout rate is a random number between
0.1 and 0.3. The loss function we use is MAE, and
the batch size is set to 8. We combine the training
and development sets in our experiment. We use
90% for training and reserve 10% for cross vali-
dation. In our official submissions, we use the full
training and development sets to train models.

4.3 Evaluation Results

We compare the performance of our model
and several baselines. The models to be
compared include: 1) CNN, using CNN and
dense layers. 2) LSTM, using LSTM and
dense layers. 3) CNN+LSTM, combing CNN
with LSTM to predict. 4) CNN+LSTM+att,
adding attention mechanism to CNN-LSTM
model. 5) CNN+LSTM+att+ensemble, using
ensemble strategy in the attention-based CNN-
LSTM model. The results in the EI-reg and V-reg
tasks are shown in Table 2. In comparison, we
also present the cross validation results. Our sys-
tem reaches average Pearson correlation score of
0.722 in the EI-reg task and 0.810 in the V-reg
task. The results indicate that our CNN-LSTM
model outperforms the CNN and LSTM baselines.
It proves that CNN-LSTM model can combine

5http://www.saifmohammad.com/WebDocs/AIT-
2018/AIT2018-DATA

the long-term information and local information
in texts. The attention mechanism can also im-
prove the model performance. Since the attention
layer can select important information, our model
can focus on important words in texts (e.g. af-
fective words) to predict the intensity of emotions
and sentiment more accurately. Although our sys-
tem still needs to be improved compared with the
top systems, our model outperforms the common
baseline models, which validates the effectiveness
of our model.

4.4 Influence of Pre-trained Word
Embedding

We compare the performance using different pre-
trained embeddings in the EI-reg task. The re-
sults are shown in Table 3. The results show
that the pre-trained embeddings are important, and
combining different word embedding can improve
the model performance. It may be because the
combination of embedding can cover more out-of-
vocabulary words and provide rich semantic infor-
mation.

4.5 Influence of Additional Features
The influence of the POS tag features and lexicon
features is shown in Table 4. The results show that
POS tags can improve the model performance sig-
nificantly. Affective words, emojis and hashtags
usually contain rich sentiment information. POS
tags can be used to identify such words. Therefore,
incorporating the POS information into our neural
model can help to identify these words in tweets
better. The lexicon features can also improve our
model. The lexicon features are obtained by the
sentiment words in tweets. Thus, incorporating
these features into neural networks can improve
the performance of our system.

4.6 Analysis of Inappropriate Biases
In the EI-reg and V-reg tasks, an automatically
generated mystery set is used for testing the in-
appropriate biases in NLP systems, such as gen-
der and race (i.e. African American and European
American names). For example, the pairs of sen-
tences “She is happy.” and “He is happy.”; “Jamel
feels angry.” and “Harry feels angry.” should be
assigned wit the same intensity by an unbiased
NLP system. The score differences are calculated
for such sentence pairs. The average score dif-
ference, the p-value, and whether the score differ-
ences are statistically significant are shown in Ta-

189

Model
EI-reg V-reg

macro-avg anger fear joy sadness valence
val test val test val test val test val test val test

CNN 0.743 0.710 0.700 0.726 0.759 0.701 0.771 0.727 0.742 0.686 0.809 0.790
LSTM 0.741 0.706 0.701 0.720 0.751 0.694 0.766 0.726 0.746 0.683 0.802 0.785

CNN+LSTM 0.743 0.713 0.705 0.730 0.758 0.701 0.770 0.735 0.740 0.687 0.815 0.796
CNN+LSTM+att 0.749 0.718 0.706 0.731 0.760 0.706 0.774 0.739 0.756 0.695 0.828 0.801

CNN+LSTM+att+ensemble 0.758 0.722 0.720 0.734 0.771 0.710 0.782 0.743 0.760 0.700 0.845 0.810

Table 2: Evaluation and cross validation performance of our model ande baselines.

Embedding avg anger fear joy sadness
w/o pre-trained 0.669 0.678 0.672 0.682 0.645

+emb1 0.717 0.728 0.706 0.737 0.695
+emb2 0.709 0.716 0.702 0.728 0.691

+emb1+emb2 0.722 0.734 0.710 0.743 0.700

Table 3: Influence of using different combinations of
pre-trained word embeddings. The emb1 and emb2 de-
note the embeddings provided by Godin et al. (2015)
and Barbieri et al. (2016) respectively.

Feature avg anger fear joy sadness
None 0.704 0.715 0.698 0.722 0.679
+POS 0.715 0.729 0.705 0.737 0.690

+Lexicon 0.708 0.721 0.700 0.726 0.684
+POS+Lexicon 0.722 0.734 0.710 0.743 0.700

Table 4: Influence of POS tags and lexicon features.

ble 5. Although the average differences are small,
but they are statistical significant in most tasks.
Our system is based on word embedding, and we
fine-tune the weights during the network training.
Thus, our system will be influenced by the distri-
bution of training data, which may lead to these
biases.

Task Gender Race
Avg-D p Sig Avg-D p-value Sig

Anger -0.002 0.00003
√

0.002 0.01553 ×
Fear -0.023 0

√
0.023 0

√

Joy 0.02 0
√

-0.04 0
√

Sadness -0.001 0.09654 × 0.011 0
√

Valence 0.001 0.00382 × -0.021 0
√

Table 5: The average differences, p-value and statistical
significance of predictions on the mystery set in each
task. We denote them as Avg-D, p and Sig respectively.

4.7 Visualization of Attention Mechanism
Attention mechanism can encourage the neural
model to focus on important words in texts. In or-
der to prove its effectiveness of the attention layer,
we present several examples in Table 6. The green
color represents low attention, while red color rep-
resents high attention. We can see that the affec-

tive words (e.g. Happy) and hashtags (e.g. #funny)
have high attention weights. It indicates that our
attention-based model can capture important senti-
ment information to predict the intensity of tweets
better.

5 Conclusion

Identifying the intensity of emotions or sentiment
is important for fine-grained sentiment analysis.
Thus, the Semeval-2018 task 1 is aimed to ana-
lyze the affective intensity of tweets. In this paper,
we introduce the system participating in this task.
We apply an attention-based CNN-LSTM model
to predict the intensity scores of emotions and sen-
timent. We also use additional features to improve
the performance of our system. Our system ranked
12/48 and 15/38 in the EI-reg and V-reg subtasks
respectively. It indicates that our system can be
further extended.

Acknowledgments

The authors thank the reviewers for their in-
sightful comments and constructive suggestions
on improving this work. This work was sup-
ported in part by the National Key Research
and Development Program of China under Grant
2016YFB0800402 and in part by the National Nat-
ural Science Foundation of China under Grant
U1705261, Grant U1536207, Grant U1536201
and U1636113.

References
Francesco Barbieri, German Kruszewski, Francesco

Ronzano, and Horacio Saggion. 2016. How cos-
mopolitan are emojis?: Exploring emojis usage and
meaning over different languages with distributional
semantics. In Proceedings of the 2016 ACM on Mul-
timedia Conference, pages 531–535. ACM.

Felipe Bravo-Marquez, Marcelo Mendoza, and Bar-
bara Poblete. 2014. Meta-level sentiment models for
big social data analysis. Knowledge-Based Systems,
69:86–99.

190

Tweets with visual attention weights
someone cheer me up
Happy birthday to me ¤ #blessed
What are some good #funny #entertaining #interesting accounts I should follow ? My twitter is dry

Table 6: Visualization of the attention weights of tweets. Red denotes high attention and green denotes low
attention.

Xinchi Chen, Xipeng Qiu, and Xuanjing Huang.
2016. A feature-enriched neural model for joint chi-
nese word segmentation and part-of-speech tagging.
arXiv preprint arXiv:1611.05384.

Nadia FF Da Silva, Eduardo R Hruschka, and Este-
vam R Hruschka Jr. 2014. Tweet sentiment analy-
sis with classifier ensembles. Decision Support Sys-
tems, 66:170–179.

Luca Dini and André Bittar. 2016. Emotion analysis
on twitter: The hidden challenge. In LREC.

Fréderic Godin, Baptist Vandersmissen, Wesley
De Neve, and Rik Van de Walle. 2015. Multimedia
lab @ acl wnut ner shared task: Named entity recog-
nition for twitter microposts using distributed word
representations. In Proceedings of the Workshop on
Noisy User-generated Text, pages 146–153.

Pranav Goel, Devang Kulshreshtha, Prayas Jain, and
Kaushal Kumar Shukla. 2017. Prayas at emoint
2017: An ensemble of deep neural architectures
for emotion intensity prediction in tweets. In Pro-
ceedings of the 8th Workshop on Computational Ap-
proaches to Subjectivity, Sentiment and Social Me-
dia Analysis, pages 58–65.

Vineet John and Olga Vechtomova. 2017. Uwat-emote
at emoint-2017: Emotion intensity detection us-
ing affect clues, sentiment polarity and word em-
beddings. In Proceedings of the 8th Workshop on
Computational Approaches to Subjectivity, Senti-
ment and Social Media Analysis, pages 249–254.

Aamera ZH Khan, Mohammad Atique, and
VM Thakare. 2015. Combining lexicon-based
and learning-based methods for twitter sentiment
analysis. International Journal of Electronics,
Communication and Soft Computing Science &
Engineering (IJECSCSE), page 89.

Svetlana Kiritchenko, Saif Mohammad, and Moham-
mad Salameh. 2016. Semeval-2016 task 7: De-
termining sentiment intensity of english and arabic
phrases. In Proceedings of the 10th International
Workshop on Semantic Evaluation (SemEval-2016),
pages 42–51.

Maximilian Köper, Evgeny Kim, and Roman Klinger.
2017. Ims at emoint-2017: emotion intensity pre-
diction with affective norms, automatically extended
resources and deep learning. In Proceedings of
the 8th Workshop on Computational Approaches to
Subjectivity, Sentiment and Social Media Analysis,
pages 50–57.

Sreekanth Madisetty and Maunendra Sankar Desarkar.
2017. Nsemo at emoint-2017: an ensemble to pre-
dict emotion intensity in tweets. In Proceedings of
the 8th Workshop on Computational Approaches to
Subjectivity, Sentiment and Social Media Analysis,
pages 219–224.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jef-
frey Dean. 2013. Efficient estimation of word
representations in vector space. arXiv preprint
arXiv:1301.3781.

Saif M Mohammad. 2016. Sentiment analysis: De-
tecting valence, emotions, and other affectual states
from text. In Emotion measurement, pages 201–237.
Elsevier.

Saif M Mohammad and Felipe Bravo-Marquez. 2017.
Wassa-2017 shared task on emotion intensity. arXiv
preprint arXiv:1708.03700.

Saif M. Mohammad, Felipe Bravo-Marquez, Mo-
hammad Salameh, and Svetlana Kiritchenko. 2018.
Semeval-2018 Task 1: Affect in tweets. In Proceed-
ings of International Workshop on Semantic Evalu-
ation (SemEval-2018), New Orleans, LA, USA.

Saif M Mohammad and Svetlana Kiritchenko. 2015.
Using hashtags to capture fine emotion cate-
gories from tweets. Computational Intelligence,
31(2):301–326.

Finn Årup Nielsen. 2011. A new anew: Evaluation of a
word list for sentiment analysis in microblogs. arXiv
preprint arXiv:1103.2903.

Olutobi Owoputi, Brendan O’Connor, Chris Dyer,
Kevin Gimpel, Nathan Schneider, and Noah A
Smith. 2013. Improved part-of-speech tagging for
online conversational text with word clusters. Asso-
ciation for Computational Linguistics.

Kahlil Philander, YunYing Zhong, et al. 2016. Twitter
sentiment analysis: capturing sentiment from inte-
grated resort tweets. International Journal of Hos-
pitality Management, 55:16–24.

Cicero dos Santos and Maira Gatti. 2014. Deep con-
volutional neural networks for sentiment analysis
of short texts. In Proceedings of COLING 2014,
the 25th International Conference on Computational
Linguistics: Technical Papers, pages 69–78.

Aliaksei Severyn and Alessandro Moschitti. 2015.
Twitter sentiment analysis with deep convolutional

191

neural networks. In Proceedings of the 38th Inter-
national ACM SIGIR Conference on Research and
Development in Information Retrieval, pages 959–
962. ACM.

Mike Thelwall, Kevan Buckley, and Georgios Pal-
toglou. 2012. Sentiment strength detection for the
social web. Journal of the Association for Informa-
tion Science and Technology, 63(1):163–173.

Theresa Ann Wilson. 2008. Fine-grained subjectiv-
ity and sentiment analysis: recognizing the intensity,
polarity, and attitudes of private states. University
of Pittsburgh.

Wenpeng Yin, Hinrich Schütze, Bing Xiang, and
Bowen Zhou. 2015. Abcnn: Attention-based convo-
lutional neural network for modeling sentence pairs.
arXiv preprint arXiv:1512.05193.

Chunting Zhou, Chonglin Sun, Zhiyuan Liu, and Fran-
cis Lau. 2015. A c-lstm neural network for text clas-
sification. arXiv preprint arXiv:1511.08630.

192

Proceedings of the 12th International Workshop on Semantic Evaluation (SemEval-2018), pages 193–199
New Orleans, Louisiana, June 5–6, 2018. ©2018 Association for Computational Linguistics

EiTAKA at SemEval-2018 Task 1: An Ensemble of N-Channels ConvNet
and XGboost Regressors for Emotion Analysis of Tweets

Mohammed Jabreel Antonio Moreno
Intelligent Technologies for Advanced Knowledge Acquisition (ITAKA),

Departament d’Enginyeria Informàtica i Matemàtiques,
Universitat Rovira i Virgili,

Av. Paı̈sos Catalans, 26, 43007 Tarragona, Spain
<first name>.<last name>@urv.cat

Abstract
This paper describes our system that has been
used in Task1 Affect in Tweets. We combine
two different approaches. The first one called
N-Stream ConvNets, which is a deep learning
approach where the second one is XGboost re-
gressor based on a set of embedding and lexi-
cons based features. Our system was evaluated
on the testing sets of the tasks outperforming
all other approaches for the Arabic version of
valence intensity regression task and valence
ordinal classification task.

1 Introduction

Sentiment Analysis is the task of automatically
identifying the valence or polarity of a piece of
text. This piece of text can be a user review, a doc-
ument, an SMS message, a tweet, etc. According
to (Mohammad, 2016), the term sentiment analy-
sis also refers to determining the attitude towards
a particular target or topic. The attitude can be the
polarity (positive or negative), or an emotional or
effectual attitude such as joy, anger, sadness and
so on.

Most of the researchers in sentiment analysis
have focused on developing systems to determine
the polarity of a given text. This involves design-
ing classifiers based on a set of examples with a
manually annotated sentiment polarity. Although
developing systems that automatically determine
the intensity (i.e. the degree or the amount) of
emotions that are communicated in a text has a
wide range of applications in commerce, public
health, social welfare, etc., most of the work has
focused on categorical classification (whether a
given piece of text communicates anger, joy, sad-
ness, etc.). This can be attributed to the lack of
suitable annotated data (Mohammad and Bravo-
Márquez, 2017) .

In task1: Affect in Tweets, the organizers pro-
vide an array of tasks where systems have to au-

tomatically determine the intensity of emotions
(anger, fear, joy, and sadness) and the intensity
of the sentiment (aka valence) of the tweeters
from their tweets. They provide annotated datasets
for each task with English, Arabic, and Spanish
tweets (Mohammad et al., 2018). We define the
tasks below:

EI-reg (an emotion intensity regression task):
Given a tweet and an emotion E, determine the
intensity of E that best represents the mental state
of the tweeter with a real-valued score between 0
(least E) and 1 (most E).

EI-oc (an emotion intensity ordinal classifica-
tion task): Given a tweet and an emotion E, clas-
sify the tweet into one of four ordinal classes of
intensity of E that best represents the mental state
of the tweeter.

V-reg (a sentiment intensity regression task):
Given a tweet, determine the intensity of sentiment
or valence V that best represents the mental state
of the tweeter with a real-valued score between 0
(most negative) and 1 (most positive).

V-oc (a sentiment analysis, ordinal classifica-
tion, task): Given a tweet, classify it into one
of seven ordinal classes, corresponding to various
levels of positive and negative sentiment intensity,
that best represents the mental state of the tweeter.

We proposed one system to solve the intensity
regression tasks (i.e. EI-reg and V-reg) and use
it as a feature extractor to train Decision Trees to
solve the ordinal classification tasks (i.e. EI-oc
and V-oc). We developed two versions of the pro-
posed system for the English and the Arabic lan-
guage tweets.

Our system is an ensemble of two different ap-
proaches. The first one, called N-Channels Con-
vNet, is a deep learning approach where the sec-
ond one is an XGboost regressor based on a set of
embedding and lexicons-based features.

The rest of the paper is organized as follows:

193

Section 2 presents the tools and the resources that
are used. Section 3 describes the proposed sys-
tem. In Section 4 we report the experimental re-
sults, whereas in Section 5 the conclusions and the
future work are presented.

2 Resources

This section explains the tools and the resources
that have been used in our system.

2.1 Sentiment Lexicons

We used the following lexicons for the English
version of our system:

AFINN (Nielsen, 2011), General Inquirer
(Stone et al., 1968), Bing-Liu opinion lexicon
(HL) (Hu and Liu, 2004), MPQA (Choi and
Wiebe, 2014), NRC hashtag sentiment lexicon
(Mohammad et al., 2013), NRC emotion lexicon
(EmoLex), NRC affect intensity lexicon, NRC
hashtag emotion lexicon and Vader lexicon. More
details about each lexicon, such as how it was cre-
ated, the polarity score for each term, and the sta-
tistical distribution of the lexicon, can be found in
(Jabreel and Moreno, 2016).

For the Arabic version we used the following
lexicons:

Arabic Hashtag lexicon, Dialectal Arabic Hash-
tag lexicon, Arabic Bing Liu lexicon, Arabic Sen-
timent140 lexicon and Arabic translation of the
NRC emotion lexicon. The first two were created
manually, whereas the rest were translated to Ara-
bic from the English version using Google Trans-
lator. (Mohammad et al., 2016).

2.2 Embeddings

Word embeddings are an approach for distribu-
tional semantics which represents words as vec-
tors of real numbers. Such representation has use-
ful clustering properties, since the words that are
semantically and syntactically related are repre-
sented by similar vectors (Mikolov et al., 2013).
For example, the words ”coffee” and ”tea” will be
very close in the created space.

We used two publicly available pre-trained em-
bedding models in the English version of our sys-
tem. The first one was used in (Rouvier and Favre,
2016). It was trained using word2vec (skipgram
model) on an unannotated corpus of 20 million
English tweets containing at least one emoticon.
The second one was provided by (Baziotis et al.,
2017). It was trained on a big dataset of 330M

English Twitter messages, gathered from 12/2012
to 07/2016 and a vocabulary size of 660K words
using Glove algorithm.

Additionally, we have trained two embedding
models on 60M English tweets(30M contain pos-
itive emoticons, 30M negative ones). The first
one was trained by applying word2vec skipgram
of window size 5 and filtering words that occur
less than 4 times. The dimensionality of the vec-
tor was set to 300. The second one was trained
using fastText (Bojanowski et al., 2016). The di-
mensionality of the vector was set to 300.

Similarly, we used two publicly available pre-
trained embedding models in the Arabic version
of our system and trained two. The first one is the
model Arabic-SKIP-G300, provided by (Zahran
et al., 2015). Arabic-SKIP-G300 was trained on
a large corpus of Arabic text collected from dif-
ferent sources such as Arabic Wikipedia, Arabic
Gigaword Corpus, Ksucorpus, King Saud Univer-
sity Corpus, Microsoft crawled Arabic Corpus,
etc. It contains 300-dimensional vectors for 6M
words and phrases. The second one is Twitter-SG-
AraVec (Soliman et al., 2017), which was trained
using word2vec skipgram algorithm on 66M Ara-
bic tweets and 1B tokens. The dimensionality of
the vector was set to 300.

Our embedding models were trained on the dis-
tant supervision corpus (about 16M Arabic tweets)
provided by the organizers. We were able to find
about 12M tweets. Again, similar to our English
embeddings, we trained the two Arabic embed-
ding models.

3 System Description

This section explains the proposed system, whose
architecture is shown in Figure 1. First, we pre-
process the tweets (Subsection 3.1). Afterwards,
we pass them to the N-Channels ConvNet and the
XGboost regressors (Subsections 3.2 and 3.3). Fi-
nally we ensemble the output of the two systems to
get the final result as described in subsection 3.4.
The proposed system is also used as feature ex-
tractor to train an ordinal Decision Tree classifier.
as described in subsection 3.5.

3.1 Preprocessing
Some standard pre-processing methods were ap-
plied on the tweets:

• Normalization: Each tweet in English was
converted to the lowercase. URLs and user-

194

Figure 1: System Architecture.

names were omitted. Non-Arabic letters
were removed from each tweet in the Arabic-
language sets. Words with repeated letters
(i.e. elongated) are corrected.

• Tokenization: All English-language tweets
were tokenized using Ark Tweet NLP (Gim-
pel et al., 2011), while all Arabic-language
tweets were tokenized using Stanford Tok-
enizer (Green and Manning, 2010).

3.2 N-Channels ConvNet

Convolutional Neural Networks (ConvNets) have
achieved remarkable results in computer vision
and speech recognition tasks in recent years. The
next subsection explains the architecture of our
proposed ConvNet.

3.2.1 Architecture
The N-Channels ConvNet model architecture,
shown in the bottom box in figure 1, is inspired by
Inception-Net (Szegedy et al., 2016) and the CNN
proposed by (Kim, 2014). It is composed of multi-
ple channels followed by a logistic regressor. Fig-
ure 2 shows the channel architecture. The input to
each channel is a sequence of words w1, w2, ...wn

where n is the number of words. We pass the in-
put through an embedding layer to map each word
wi into a real-valued vector. Each channel has
its own embedding layer which is initialized by
a specific pre-trained embedding model. We use
five channels with the four pre-trained embedding
models described in subsection 2.2 and a character
based one. The result from the embedding layer
is a matrix n × dc where dc is the vector dimen-
sion. This matrix is passed to a projection or pre-
activation layer. The projection layer is nothing
but a fully-connected or dense layer whereas the

pre-activation layer can be any non-linear function
such rectified linear unit (ReLU). Afterward, we
feed the projected matrix to three Conv1D. Each
one has a different kernel (1, 2, and 3) and 200 fil-
ters. To get more details about the architecture of
this Conv1D please check (Kim, 2014). We pass
the output of each Conv1D through a global max-
pooling layer which produces a vector with dimen-
sionality of 200. Finally, the three vectors are con-
catenated. This yields a vector with dimensional-
ity of 600 that represents the tweet (i.e. the input
sequence of words).

Figure 2: Channel Architecture.

Finally, the outputs of all channels are concate-
nated with a lexicon-based vector (see next sec-
tion) and fed to a single sigmoid neuron which
gives the intensity of the emotion/valence.

195

3.2.2 Training
The proposed model was trained by minimizing
the mean squared error between the real and pre-
dicted intensities. The optimization was done
by applying back-propagation through layers via
minibatch gradient descent. The training param-
eters were the following: batch size of 32, 100
epochs and Adam optimization method with learn-
ing rate of 0.001, β1 = 0.9 and β2 = 0.999 and ε =
10−9. To prevent the over-fitting, we used dropout
and early stopping methods.

3.3 XGBoost Regressor

XGBoost (Chen and Guestrin, 2016) has become
a widely used and really popular tool among Data
Scientists in industry, as it shows great perfor-
mance on large-scale problems. It is a highly flex-
ible and versatile tool that can work through most
regression, classification and ranking problems as
well as user-built objective functions.

We trained an XGBoost regressor to give the in-
tensity of the emotion/valence based on the two
types of features explained in the next subsection.

3.3.1 Features
Each tweet is represented with a vector by con-
catenating the following two feature vectors:

Lexicon Features: For each lexicon, we used
the sum of the scores provided by the lexicon for
each word in the tweet. Let L denote the set of
lexicons and f li (w) the score of the word w based
on the feature i in the lexicon l (note that some
lexicons have only one feature like the sentiment
score and some of them have multiple features like
anger emotion score, positive score, etc). Then,
the set of features that represent a given tweet T
and a lexicon l ∈ L can be obtained as follows:

VT,l = ∀f l
i∈Fl

∑

w∈T
f li (w) (1)

Here, Fl denotes the set of features in lexicon l.
Embedding Features: We used the sum pool-

ing function to obtain the tweet representation in
the embedding space. More formally, let us con-
sider an embedding matrix E ∈ Rd×|V | and a
tweet T = w1, w2, ..., wn, where d is the dimen-
sion size, |V | is the length of the vocabulary (i.e.
the number of words in the embedding model), wi

is i-th the word in the tweet and n is the number
of words. First, each word wi is substituted by the
corresponding vector vji in the matrix E where j

is the index of the word wi in the vocabulary. This
step ends with the matrix W ∈ Rd×n. The vec-
tor VT,E that represents the tweet T is computed
by aggregating the matrix W . This aggregation is
done by taking the summation over its columns.
The sum spooling function is an element-wise
function, and it converts texts with various lengths
into a fixed-length vector allowing to capture the
information throughout the entire text.

3.3.2 Training
The XGBoost regressor has some parameters that
need to be tuned. Table 1 shows the values of each
parameter we chose for the different emotions. All
those values were chosen using the grid-search on
the development sets.

P # Est. S M O

Eng.

Anger 300 0.75 5 Logistic
Fear 300 0.75 5 Linear
Sadness 300 0.75 5 Logistic
Joy 300 0.75 7 Linear
Valence 300 0.75 5 Linear

Ara.

Anger 200 0.9 9 Logistic
Fear 200 0.9 5 Logistic
Sadness 200 0.9 5 Logistic
Joy 200 0.9 5 Logistic
Valence 200 0.9 9 Logistic

Table 1: The XGBoost regressors parameters. #Est.
refers to the number of estimators, S is the subsample,
M is the maximum depth and O refers to the objective
function.

3.4 Ensemble
We combined the results of the two systems de-
scribed above with the intention of improving the
performance and increasing the generalizability of
the final system. We used the weighted average
method to achieve that. Let r1 and r2 respectively
denote the output of the XGBoost regressor and
the N-Channels ConvNet system. The final output
r was obtained as follows:

r = α ∗ r1 + (1− α) ∗ r2; α ∈ [0, 1] (2)

Table 2 shows the value of α for each individ-
ual model. All these values were obtained by grid
search on the development set.

3.5 Decision Tree for Ordinal Classification
Tasks

To solve the problem of ordinal classification we
simply used the proposed model as feature extrac-

196

Emotion α

Eng.

Anger 0.3
Fear 0.5
Sadness 0.6
Joy 0.2
Valence 0.6

Ara.

Anger 0.5
Fear 0.0
Sadness 0.5
Joy 0.4
Valence 0.7

Table 2: The value of α for each individual model.

tor and trained a Decision Tree. The idea is to use
the emotion/intensity as input feature and use rules
generated from the Decision Tree to get the ap-
propriate class. Figure 3 shows as an example the
Decision Tree classifier of the fear emotion.

Figure 3: An example of a decision tree classifier.

4 Results

We trained and validated our models on the train-
ing and validation sets provided by the organiz-
ers. More details about the data and the evaluation
metrics can be found in (Mohammad et al., 2018;
Mohammad and Kiritchenko, 2018).

Tables 3 and 4 show the results of the emo-
tion and valence intensity regression tasks of our
two systems and their combination (the ensem-
ble model). It also shows the baseline results.
The evaluation metrics are the Pearson correla-
tion for all samples and for a subset of the test
set that includes only those tweets with intensity
score greater or equal to 0.5. The values in the ta-
bles show the superiority of the N-Channels Con-
vNet over the XGBoost regressor. For instance,
the results of the English version of the emotion

intensity task show that the N-Channels ConvNet
outperforms the XGBoost regressor by 5.9% with
respect to macro-avg measure. The performance
of N-Channels Convnet is very close to the en-
semble model. The improvement is only 1.2%.
The improvement in the final system of the Ara-
bic version is very small (0.3%). The results of
the Pearson correlation of samples whose inten-
sity score is greater or equal to 0.5 show that our
system can be used as a classifier. This conclusion
is confirmed by the results of the ordinal classifi-
cation tasks, shown in Tables 5 and 6.

As we described in subsection 3.5, our approach
to design a system to solve the ordinal classifica-
tion tasks was to use the intensity score as input
feature to train a Decision Tree. During the in-
ference phase we used our system to produce the
intensity score for the new (unseen) samples (i.e.
use it as feature extractor). Thus, the performance
in this phase heavily relies on the performance of
the proposed system. This is clearly shown in the
results reported in tables 5 and 6. For example,
our system gives very good results in the valence
intensity regression task for both the English and
Arabic versions (the Pearson correlation is 0.828
for both). This affects positively the performance
of our system for the valence ordinal classifica-
tion tasks (the Pearson correlation is about 0.80
for both).

5 Conclusion

We have presented an ensemble model of two
different approaches. The first one, called N-
Channels ConvNet, is a deep learning approach
whereas the second one is an XGBoost regressor
based on a set of embedding and lexicons-based
features. The ensemble technique helped to im-
prove the performance of the final model in all
subtasks. We have realized that The N-Channels
ConvNet gives a performance very close to the en-
semble model. This observation confirms the fact
that deep learning models, and especially Con-
vNets, have achieved remarkable results in many
fields such as computer vision, speech recognition
and natural language processing. Distant Super-
vision is an approach of transfer learning which
aims to train a model on a large amount of semi-
labeled data and use it as a pre-trained model for
training another model on a small amount of fully-
labeled data. This approach has been shown to be
very efficient. Thus, the authors are considering

197

Pearson (all instances) Pearson5 (gold in 0.5-1)
macro-avg anger fear joy sadness macro-avg anger fear joy sadness

Eng.

N-Channels ConvNet 0.712 0.713 0.725 0.718 0.692 0.538 0.575 0.502 0.519 0.555
XGBoost Regressor 0.653 0.674 0.644 0.625 0.668 0.503 0.563 0.455 0.437 0.555
Ensemble Model 0.724 0.731 0.733 0.722 0.711 0.560 0.606 0.522 0.525 0.587
SVM Unigrams 0.520 0.526 0.525 0.575 0.453 0.396 0.455 0.302 0.476 0.350
Random Baseline -0.008 -0.018 0.024 -0.058 0.020 -0.048 -0.088 -0.011 -0.032 -0.059

Ara.

N-Channels ConvNet 0,655 0.639 0.628 0.705 0.648 0,516 0.473 0.605 0.465 0.520
XGBoost Regressor 0.596 0.494 0.540 0.713 0.637 0.464 0.376 0.492 0.449 0.540
Ensemble Model 0.667 0.627 0.627 0.738 0.675 0.533 0.479 0.604 0.490 0.560
SVM Unigrams 0.455 0.406 0.435 0.530 0.450 0.353 0.344 0.366 0.332 0.367
Random Baseline 0.013 -0.006 0.016 -0.010 0.052 -0.007 0.002 0.007 0.011 -0.048

Table 3: EI-reg task results.

Pearson Pearson5

Eng.

N-Channels ConvNet 0.825 0.645
XGBoost Regressor 0.768 0.598
Ensemble Model 0.828 0.658
SVM Unigrams 0.585 0.449
Random Baseline 0.031 0.012

Ara.

N-Channels ConvNet 0.817 0.550
XGBoost Regressor 0.774 0.571
Ensemble Model 0.828 0.578
SVM Unigrams 0.571 0.423
Random Baseline -0.052 0.022

Table 4: V-reg task results.

the possibility of using this technique to improve
the proposed system.

Acknowledgment

This work was partially supported by URV Re-
search Support Funds (2017PFR-URV-B2-61 and
Martı́ i Franqués PhD grant).

References
Christos Baziotis, Nikos Pelekis, and Christos Doulk-

eridis. 2017. Datastories at semeval-2017 task
4: Deep lstm with attention for message-level and
topic-based sentiment analysis. In Proceedings of
the 11th International Workshop on Semantic Eval-
uation (SemEval-2017), pages 747–754, Vancouver,
Canada. Association for Computational Linguistics.

Piotr Bojanowski, Edouard Grave, Armand Joulin,
and Tomas Mikolov. 2016. Enriching word vec-
tors with subword information. arXiv preprint
arXiv:1607.04606.

Tianqi Chen and Carlos Guestrin. 2016. XG-
Boost: A Scalable Tree Boosting System. CoRR,
abs/1603.02754.

Yoonjung Choi and Janyce Wiebe. 2014. +/-
effectwordnet: Sense-level lexicon acquisition for

opinion inference. In Proceedings of the 2014 Con-
ference on Empirical Methods in Natural Language
Processing (EMNLP), pages 1181–1191.

Kevin Gimpel, Nathan Schneider, Brendan O’Connor,
Dipanjan Das, Daniel Mills, Jacob Eisenstein,
Michael Heilman, Dani Yogatama, Jeffrey Flanigan,
and Noah A. Smith. 2011. Part-of-speech Tagging
for Twitter: Annotation, Features, and Experiments.
In Proceedings of the 49th Annual Meeting of the
Association for Computational Linguistics: Human
Language Technologies: Short Papers - Volume 2,
HLT ’11, pages 42–47, Stroudsburg, PA, USA. As-
sociation for Computational Linguistics.

Spence Green and Christopher D Manning. 2010. Bet-
ter arabic parsing: Baselines, evaluations, and anal-
ysis. In Proceedings of the 23rd International Con-
ference on Computational Linguistics, pages 394–
402. Association for Computational Linguistics.

Minqing Hu and Bing Liu. 2004. Mining and summa-
rizing customer reviews. In Proceedings of the tenth
ACM SIGKDD international conference on Knowl-
edge discovery and data mining, pages 168–177.
ACM.

Mohammed Jabreel and Antonio Moreno. 2016. Sen-
tirich: Sentiment analysis of tweets based on a rich
set of features. In Artificial Intelligence Research
and Development - Proceedings of the 19th Inter-
national Conference of the Catalan Association for
Artificial Intelligence, Barcelona, Catalonia, Spain,
October 19-21, 2016, pages 137–146.

Yoon Kim. 2014. Convolutional neural net-
works for sentence classification. arXiv preprint
arXiv:1408.5882.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jef-
frey Dean. 2013. Efficient estimation of word
representations in vector space. arXiv preprint
arXiv:1301.3781.

Saif Mohammad, Svetlana Kiritchenko, and Xiaodan
Zhu. 2013. NRC-Canada: Building the State-of-
the-Art in Sentiment Analysis of Tweets. In Pro-
ceedings of the seventh international workshop on
Semantic Evaluation Exercises (SemEval-2013), At-
lanta, Georgia, USA.

198

Pearson Kappa
macro-avg anger fear joy sadness macro-avg anger fear joy sadness

Eng.
Our system 0.633 (6) 0.651 (5) 0.595 (2) 0.651 (8) 0.636 (6) 0.608 (3) 0.619 (4) 0.574 (3) 0.607 (10) 0.632 (4)
SVM Unigrams 0.394 (26) 0.382 (27) 0.355 (26) 0.469 (26) 0.370 (29) 0.385 (26) 0.375 (26) 0.331 (25) 0.465 (25) 0.370 (28)
Random Baseline -0.016 (37) -0.062 (38) 0.047 (33) 0.014 (35) -0.061 (37) -0.017 (38) -0.058 (38) 0.035 (32) 0.014 (35) -0.057 (37)

Ara.
Our system 0.574 (2) 0.572 (1) 0.529 (2) 0.634 (1) 0.563 (3) 0.542 (2) 0.547 (1) 0.516 (2) 0.588 (2) 0.518 (3)
SVM Unigrams 0.542 (2) 0.315 (6) 0.281 (7) 0.281 (6) 0.396 (6) 0.299 (6) 0.276 (7) 0.249 (6) 0.385 (6) 0.287 (7)
Random Baseline 0.006 (12) -0.057 (12) -0.019 (12) 0.008 (12) 0.092 (11) 0.006 (12) -0.057 (14) -0.019 (12) 0.007 (12) 0.091 (10)

Table 5: EI-oc task results.

Pearson Kappa

Eng.
Our system 0.796 0.791
SVM Unigrams 0.509 0.504
Random Baseline -0.010 -0.010

Ara.
Ensemble Model 0.809 0.783
SVM Unigrams 0.471 0.470
Random Baseline 0.011 0.011

Table 6: V-oc task results.

Saif Mohammad, Mohammad Salameh, and Svetlana
Kiritchenko. 2016. Sentiment lexicons for arabic
social media. In Proceedings of 10th edition of the
the Language Resources and Evaluation Conference
(LREC), Portorož, Slovenia.

Saif M. Mohammad. 2016. Sentiment analysis: De-
tecting valence, emotions, and other affectual states
from text. In Herb Meiselman, editor, Emotion Mea-
surement. Elsevier.

Saif M. Mohammad and Felipe Bravo-Márquez. 2017.
WASSA-2017 shared task on emotion intensity.
CoRR, abs/1708.03700.

Saif M. Mohammad, Felipe Bravo-Marquez, Mo-
hammad Salameh, and Svetlana Kiritchenko. 2018.
Semeval-2018 Task 1: Affect in tweets. In Proceed-
ings of International Workshop on Semantic Evalu-
ation (SemEval-2018), New Orleans, LA, USA.

Saif M. Mohammad and Svetlana Kiritchenko. 2018.
Understanding emotions: A dataset of tweets to
study interactions between affect categories. In
Proceedings of the 11th Edition of the Language
Resources and Evaluation Conference, Miyazaki,
Japan.

Finn rup Nielsen. 2011. A new anew: Evaluation of
a word list for sentiment analysis in microblogs.
CoRR, abs/1103.2903.

Mickael Rouvier and Benoit Favre. 2016. Sensei-lif
at semeval-2016 task 4: Polarity embedding fusion
for robust sentiment analysis. In Proceedings of the
10th International Workshop on Semantic Evalua-
tion (SemEval 2016), San Diego, US.

Abu Bakr Soliman, Kareem Eissa, and Samhaa R. El-
Beltagy. 2017. Aravec: A set of arabic word embed-
ding models for use in arabic nlp. Procedia Com-
puter Science, 117:256 – 265. Arabic Computa-
tional Linguistics.

Philip Stone, Dexter C Dunphy, Marshall S Smith, and
DM Ogilvie. 1968. The general inquirer: A com-
puter approach to content analysis. Journal of Re-
gional Science, 8(1):113–116.

Christian Szegedy, Sergey Ioffe, and Vincent Van-
houcke. 2016. Inception-v4, Inception-ResNet and
the Impact of Residual Connections on Learning.
CoRR, abs/1602.07261.

Mohamed A Zahran, Ahmed Magooda, Ashraf Y Mah-
goub, Hazem Raafat, Mohsen Rashwan, and Amir
Atyia. 2015. Word representations in vector space
and their applications for arabic. In International
Conference on Intelligent Text Processing and Com-
putational Linguistics, pages 430–443. Springer.

199

Proceedings of the 12th International Workshop on Semantic Evaluation (SemEval-2018), pages 200–204
New Orleans, Louisiana, June 5–6, 2018. ©2018 Association for Computational Linguistics

CENTEMENT at SemEval-2018 Task 1: Classification of Tweets using
Multiple Thresholds with Self-correction and Weighted Conditional

Probabilities
Tariq Ahmad

School of Computer Science
University of Manchester
Oxford Road, Manchester

M13 9PL, U.K.
tariq.ahmad@postgrad
.manchester.ac.uk

Allan Ramsay
School of Computer Science

University of Manchester
Oxford Road, Manchester

M13 9PL, U.K.
allan.ramsay@

manchester.ac.uk

Hanady Ahmed
CAS, Arabic Department

Qatar University
2713, Al Hala St

Doha, Qatar
hanadyma@
qu.edu.qa

Abstract
In this paper we present our contribution
to SemEval-2018, a classifier for classifying
multi-label emotions of Arabic and English
tweets. We attempted “Affect in Tweets”,
specifically Task E-c: Detecting Emotions
(multi-label classification). Our method is
based on preprocessing the tweets and creat-
ing word vectors combined with a self cor-
rection step to remove noise. We also make
use of emotion specific thresholds. The final
submission was selected upon the best perfor-
mance achieved, selected when using a range
of thresholds. Our system was evaluated on
the Arabic and English datasets provided for
the task by the competition organisers, where
it ranked 2nd for the Arabic dataset (out of 14
entries) and 12th for the English dataset (out
of 35 entries).

1 Introduction

Social network platforms such as Facebook,
LinkedIn and Twitter are now at the hub of ev-
erything we do. Twitter is one of the most popu-
lar social network platforms; as recently as 2013
an incredible 21% of the global internet popu-
lation used Twitter actively on a monthly basis
(globalwebindex, accessed 05/2016). Twitter is
used by celebrities, movie stars, politicians, sports
stars and everyday people. Every day, millions of
users share their opinions about themselves, news,
sports, movies and many many other topics. This
makes platforms like Twitter rich sources of data
for public opinion mining and sentiment analy-
sis (Pak and Paroubek, 2010). However, although
these corpora are rich, they are somewhat noisy
because tweets can be informal, misspelt and con-
tain slang, emoticons (Albogamy and Ramsay,
2015) and made-up words. Furthermore, Arabic
tweets have the added complication of dialects in
which the same words or expressions can have dif-
ferent connotations.

Multi-label classification of tweets is a clas-
sification problem where tweets are assigned to
two or more classes. It is considered more com-
plex than traditional classification tasks because
the classifier has to predict several classes.

There has been much work in the areas of sen-
timent detection (Rosenthal et al., 2017), emotion
intensity (Mohammad and Bravo-Marquez, 2017)
and emotion categorisation (Hasan et al., 2014).
Sentiment analysis aims to classify tweets into
positive, negative, and neutral categories, emotion
intensity is determining the intensity or degree of
an emotion felt by the speaker and emotion cate-
gorisation is the classification of tweets based on
their emotions. The most commonly used clas-
sification techniques are Naive Bayes and Sup-
port Vector Machines (SVM). Some researchers
report that SVMs (Barbosa and Feng, 2010) per-
form better while others support Naive Bayes (Pak
and Paroubek, 2010). Furthermore, sophisticated
techniques such as deep neural networks have also
been proposed but such techniques are rarely used
by non-experts of machine learning in practice
(Sarker and Gonzalez, 2017) and they also take a
long time to train.

We propose a simple and effective method to
classify tweets that performs reasonably well. Our
system does not make use of any lexicons or stop
word lists and is quick to train.

2 Methods

The SemEval Task E-c requires the classification
of tweets into either a neutral emotion or one
of eleven emotions (Mohammad et al., 2018).
Datasets for tweets are made available in three
languages; Arabic, English and Spanish. We
focus firstly on Arabic and then English because
this links well with our existing work. Datasets
from previous SemEval tasks are also available if

200

required. We use the SemEval-2018 development
and training data for training our system, with no
external resources such as sentiment dictionaries
or other corpora. We use the training set to com-
pute scores for each of the classes in conjunction
with a self correction stage and a multi-threshold
stage to obtain an optimal set of scores. Apart
from the preprocessing steps, notably stemming,
we use exactly the same machinery for the two
languages. We now briefly discuss our approach.

Preprocessing. Tweets are preprocessed by
lowercasing (English tweets only), identifying
and replacing emojis with emojis identifiers,
tokenising and then stemming. We developed
two tokenisers; one that is NLTK based and does
not preserve hashtags, emoticons, punctuation
and other content and one that is “tweet-friendly”
because it preserves these items. Emojis cause
us technical problems due to their surrogate-pair
nature so we replace emojis with emoji identifiers
(e.g. 45). We also separate out contiguous
emojis because we want, for example, the indi-
vidual emojis in a group of repeating unhappy
face emojis to be recognised, and processed, as
being the same emoji as a single unhappy face
emoji. We remove usernames because we believe
they are noise since, by and large, they will not
reappear in the test set, are not helpful to us and if
not removed will compromise our ability to detect
useful information. Arabic tweets are stemmed
using a stemmer developed specifically for Arabic
tweets by Albogamy and Ramsay (Albogamy and
Ramsay, 2016). English tweets are stemmed by
taking the shortest result from Morphy (Fellbaum,
1998) when tokens are stemmed as nouns, verbs,
adjectives and adverbs. Although there are
surprisingly few examples of these, we believe
that multi-word hashtags, joined by underscore
or a dash, also contain useful information so we
leave the hashtag as is but also take a copy of
the hashtag and split it into its constituent words.
This is so that where possible we improve the
quality of information in the tweet. Stop word
lists are not used at any stage. We debated using
stop words vs insignificant words and, as in our
previous work (Ahmad and Ramsay, 2016), we
prefer to let our algorithms exclude these words.
We do however remove less common words on the
grounds that if they do not appear very often then
we are unlikely to learn anything from them. The

English training dataset contains approximately
6300 distinct words after preprocessing, we find
that taking the top 2500 of these gives us the most
common words and the best results.

Our approach is not to collect scores for indi-
vidual emotions, instead we collect scores relative
to the other emotions. Constructing scores in this
manner allows us to observe that words such as
“blessed” are much more significant for emotions
such as “joy”, “love” and “optimism” than they are
for “anger” and “anticipation”. Words that are in-
significant will have small scores, words that are
significant will have large scores and by using a
varying threshold we can determine a best set.

Base set. Every tweet in the training dataset is
tokenised and we count how many tweets each to-
ken in the tweet occurs in. We also remove sin-
gletons and calculate an IDF for each token. We
iterate through the tokens for each tweet to cre-
ate a base set of scores and obtain a count of how
many times each token occurs in each of the 11
emotions as well as a count of the total number of
tokens in each emotion. In a later stage we iter-
ate over a range of thresholds, this base set is the
starting point in each and is modified by the vari-
ous processes as described below.

Conditional probabilities. We now use this base
set to create a set of emotion probabilities for each
token. One, common, way of using probabilities
is in conjunction with Bayes Theorem. However,
this does not seem to work very well for this task
hence we perform the following steps. We cal-
culate the probability of each token appearing in
each emotion using P(T|E). We do this only on the
top 2500 most important tokens in the dataset, i.e.
those with the highest IDF scores. We normalise
these probabilities by dividing each value by the
sum of all the probabilities for this token for all
emotions. We get an average value for these val-
ues and subtract this from each of the scores to
calculate the distance from the mean. This is, es-
sentially, a local IDF step to ensure that if a token
is equally common for all emotions then we do not
allow it to contribute to any of them, and if it is be-
low the overall average for a emotion we want it to
be allowed to vote against it.

We want to assign extra weight to tokens that
have very skewed distributions, hence we multiply
each score by the standard deviation. This empha-

201

sises the contribution of such tokens to the emo-
tion and allows us to remove unhelpful tokens. In
this way we create a set of emotion scores for each
token for every emotion.

Self-correction. We want to remove tokens that
we have incorrectly assigned to emotions. We
classify each tweet to determine which emotions
it demonstrates and we identify the tokens that led
us to these conclusions. A tweet is classified for
each emotion by adding the scores for each token
for each emotion. These scores are normalised and
compared to a threshold t. If the value is less than t
we deduce the tweet did not demonstrate the emo-
tion, otherwise it did demonstrate the emotion. We
are unsure what a good threshold is so we use a
range of values for t from 0 to 1 (in steps of 0.1)
to create score sets. We calculate the Jaccard for
each of these and use the best one of these for clas-
sification. This approach is based on Brills (Brill,
1995) suggestion that one should attempt to learn
from ones own mistakes.

As each tweet is classified we compare our
prediction to the gold standard. For the ones
that we predict correctly we increment a counter
for each token against the correctly classified
emotion. Similarly, for the ones where we failed
to classify the tweet correctly we decrement the
counter for each token against the incorrectly
classified emotion. When all tweets have been
classified we examine these counters. For each
token, if we have an overall negative score for an
emotion we deduce that the token is unhelpful
in classifying tweets for that emotion and we
downplay its significance in further calculations.
Using this technique we are able to remove tokens
such as “terrifying” from contributing to emotions
such as “love”. We have tried repeating this
process multiple times, but we find that beyond
one iteration the improvement is insignificant.
A possible explanation for this may be because
the actual numbers of tokens that are removed
are quite small; 1% for Arabic and 5% for English.

Per-emotion thresholds. The raw data for
each emotion is different and, hence, we find
that a single fixed threshold across all emotions
produces poor results. We therefore try a range of
thresholds from 0 to 1 in increments of 0.1 to clas-
sify tweets, using the same mechanism described
above, but this time on an emotion-by-emotion

basis to generate an individual threshold for each
emotion.

SemEval results. We classify the training data us-
ing our sets of scores and per-emotion thresholds.
We identify the set with the best Jaccard score and
use it to classify the test data to generate our even-
tual submission file.

2.1 Other Strategies

Increased training data. We believe that hav-
ing more training data might improve our clas-
sifer. One of the obvious places to get more data
is from the datasets for some of the other tasks,
specifically EI-reg and EI-oc. A key problem with
this data is that both of these tasks only supply
datasets for anger, fear, joy and sadness. The El-
reg dataset is marked up with a per-tweet inten-
sity value between 0-1 that represents the men-
tal state of the tweeter. The EI-oc dataset tweets
are marked up with one of four ordinal classes
(0,1,2,3). To expand our training dataset we ex-
tract tweets with values of 0.5 and above from
the El-reg datasets and tweets with a value of 3
from the EI-oc dataset. The best Jaccard score we
obtain with this expanded dataset is 0.417 (En-
glish). When we extract tweets with values of
0.9 or above from the EI-reg dataset we improve
the quality of tweets, at the cost of decreasing the
number of tweets extracted, and this slightly im-
proves our Jaccard to 0.429.

Similarly, the competition organisers also make
available a corpus of 100 million English tweet
IDs. We download 10,000 of these filtered
on words that we believe are representative of
the emotions we are looking for e.g. “angry”,
“elated”, “trusting”. A serious weakness with this
technique, however, is that the accuracy of this
data is compromised, we therefore classify this
data using our classifier. We then combine this
data with the standard English dataset and clas-
sify it again. We do not want this data to be more
relevant than the real data, so we weight down the
scores from this data. The best Jaccard score we
obtain with this expanded dataset is 0.430.

Latent semantic analysis (LSA). Latent Seman-
tic Analysis (LSA) is a theory and method for
extracting and representing the contextual-usage
meaning of words by statistical computations
applied to a large corpus of text (Landauer and

202

Tweet tokeniser Split hashtags Stem Tune Multi-threshold Jaccard (AR) Jaccard (EN)
0.324 0.340
0.318 0.340
0.333 0.349
0.342 0.401
0.370 0.431
0.452 0.455

Table 1: Results.

Dumais, 1997). Essentially, to improve our
classifier we need to improve the quality of our
tweets. We use LSA to find words in tweets
that are similar to other words, e.g. “car” and
“automobile”. We do not have the computing
power to do this on a per-tweet basis so we do
this on a per-emotion basis. The concepts we find,
however, are not very reliable, e.g. “blessed” and
“happiness”. We expand our tweets with these
words but find that this does not improve our
scores. A possible explanation for this might be
because of the relatively small numbers of tweets
in the datasets.

Duplicate tweets. We note that there are
tweets in the English dataset that are semantically
similar, e.g. “You offend me, @Tansorma” and
“@SunandBeachBum ’you people’ infuriate
me!”. It may be possible to use clustering
(Sarker and Gonzalez, 2017) to relate tweets
like these as a means to removing duplicates.
We further note that there are many cases of
tweets that differ only by hashtags or emojis,
e.g. “@britishairways term 5 security queues at
arrivals” and “@britishairways term 5 security
queues at arrivals #shocking”. A further study
could assess the impact of using Minimum
Edit Distance (Wagner and Fischer, 1974) on
this later data to improve the quality of the dataset.

Emoticon weighting. Emoticons have proved
crucial in the automated emotion classification of
informal texts (Novak et al., 2015). To increase
their significance we double their raw count
values. We find that this increases the accuracy
of our classifier by 0.44% for both Arabic and
English.

Word frequencies. We try to use the word
frequency as an extra weight to further dampen
the contribution of words that are low frequency

because low frequency words do not contribute
very much. However, because we have earlier
taken only the 2500 commonest words we find
that this does not improve our scores.

2.2 Computing Resources

The system was written in Python on a MacBook
Pro, 2.7 GHz Intel Core i5, 8 GB RAM. The train-
ing and classification phase takes approximately
15 minutes.

3 Results, Comments and Conclusion

We described a self-correcting, multi-threshold,
classifier to solve the problem of multi-label clas-
sification of tweets.

We find that due to the nature of the data it is
difficult to accurately distinguish between emo-
tions such as “joy” and “love” because many of the
words that score highly for “joy ” also score highly
for “love”, e.g. “rejoice”, “birthday” and “cheer-
ful”. Consequently when a tweet is labelled as
“love” it is highly likely that it will also be labelled
as “joy”. We find similar issues with “anger” and
“disgust”, although not to the same extent, because
words like “shit” and “hate” score highly for both
emotions. Overall, we believe that we score much
higher on emotions such as “anger”, “joy”, “love”
and “disgust”, than on “trust” “anticipation”, “op-
timism” and “pessimism”.

Our results, given in Table 1, show that al-
though processes such as lowercasing, tokenising
and stemming do contribute, the tuning stage and
the introduction of multiple thresholds yield the
biggest improvements. This is because removing
words which are implicit in the classifier mak-
ing wrong decisions and allowing each emotion
to have its own threshold are obviously sensible
things to do.

One unanticipated finding was that our tweet-
friendly tokeniser has an adverse effect decreasing
the Jaccard score when it is used. A possible ex-

203

planation for this is that the simple tokeniser re-
moves # and @ symbols, thus modifying hashtags
such as “#sleep” into “sleep” and allowing them
to combine with the word “sleep” in other tweets.
On the other hand the tweet-friendly tokeniser pre-
serves the “#sleep” hashtag and it therefore cannot
combine with the word “sleep”. We want the best
of both worlds so we preserve our hashtag but also
take a copy and split it into its constituent words.

Contrary to expectations, the performance im-
provement gained from using our Arabic stem-
mer is disappointingly low at just 2.67%. We be-
lieved that our Arabic stemmer would have a big-
ger impact than demonstrated because the stem-
mer is aimed at, and specifically developed for,
Arabic tweets. In fact our simplistic Morphy En-
glish stemmer produced a better improvement of
14.8% for English than our carefully tuned Arabic
stemmer did for Arabic.

The scores we achieved put us 2nd for the Ara-
bic dataset and 12th for the English dataset despite
the fact that we use no external resources, we sim-
ply train on the basis of the SemEval data. We will
be carrying out further experiments to see whether
adding external resources would give us further
improvement.

Acknowledgments

This publication was made possible by the NPRP
award [NPRP 7-1334-6-039 PR3] from the Qatar
National Research Fund (a member of The Qatar
Foundation). The statements made herein are
solely the responsibility of the author[s].

References
Apoorv Agarwal, Boyi Xie, Ilia Vovsha, Owen Ram-

bow, and Rebecca Passonneau. 2011. Sentiment
analysis of twitter data. In Proceedings of the work-
shop on languages in social media, pages 30–38.
Association for Computational Linguistics.

Tariq Ahmad and Allan Ramsay. 2016. Linking tweets
to news: Is all news of interest? In International
Conference on Artificial Intelligence: Methodol-
ogy, Systems, and Applications, pages 151–161.
Springer.

Fahad Albogamy and Allan Ramsay. 2015. POS tag-
ging for arabic tweets. Recent Advances in Natural
Language Processing, page 1.

Fahad Albogamy and Allan Ramsay. 2016. Unsuper-
vised stemmer for arabic tweets. In Proceedings
of the 2nd Workshop on Noisy User-generated Text
(WNUT), pages 78–84.

Anil Bandhakavi, Nirmalie Wiratunga, Deepak Pad-
manabhan, and Stewart Massie. 2017. Lexicon
based feature extraction for emotion text classifica-
tion. Pattern recognition letters, 93:133–142.

Luciano Barbosa and Junlan Feng. 2010. Robust sen-
timent detection on twitter from biased and noisy
data. In Proceedings of the 23rd international con-
ference on computational linguistics: posters, pages
36–44. Association for Computational Linguistics.

Eric Brill. 1995. Transformation-based error-driven
learning and natural language processing: A case
study in part-of-speech tagging. Computational lin-
guistics, 21(4):543–565.

Christiane Fellbaum. 1998. WordNet. Wiley Online
Library.

globalwebindex. accessed 05/2016. Twitter now the
fastest growing social platform in the world.

Maryam Hasan, Elke Rundensteiner, and Emmanuel
Agu. 2014. Emotex: Detecting emotions in twitter
messages.

Thomas K Landauer and Susan T Dumais. 1997. A
solution to plato’s problem: The latent semantic
analysis theory of acquisition, induction, and rep-
resentation of knowledge. Psychological review,
104(2):211.

Saif M. Mohammad and Felipe Bravo-Marquez. 2017.
Emotion intensities in tweets. In Proceedings of the
sixth joint conference on lexical and computational
semantics (*Sem), Vancouver, Canada.

Saif M. Mohammad, Felipe Bravo-Marquez, Mo-
hammad Salameh, and Svetlana Kiritchenko. 2018.
Semeval-2018 Task 1: Affect in tweets. In Proceed-
ings of International Workshop on Semantic Evalu-
ation (SemEval-2018), New Orleans, LA, USA.

Petra Kralj Novak, Jasmina Smailović, Borut Sluban,
and Igor Mozetič. 2015. Sentiment of emojis. PLOS
ONE, 10(12):1–22.

Alexander Pak and Patrick Paroubek. 2010. Twitter as
a corpus for sentiment analysis and opinion mining.
In LREc, volume 10, pages 1320–1326.

Sara Rosenthal, Noura Farra, and Preslav Nakov.
2017. Semeval-2017 task 4: Sentiment analysis in
twitter. In Proceedings of the 11th International
Workshop on Semantic Evaluation (SemEval-2017),
pages 502–518.

Abeed Sarker and Graciela Gonzalez. 2017. HLP
@ UPenn at SemEval-2017 Task 4A: A simple,
self-optimizing text classification system combining
dense and sparse vectors. In Proceedings of the
11th International Workshop on Semantic Evalua-
tion (SemEval-2017), pages 640–643.

Robert A Wagner and Michael J Fischer. 1974. The
string-to-string correction problem. Journal of the
ACM (JACM), 21(1):168–173.

204

Proceedings of the 12th International Workshop on Semantic Evaluation (SemEval-2018), pages 205–209
New Orleans, Louisiana, June 5–6, 2018. ©2018 Association for Computational Linguistics

Yuan at SemEval-2018 Task 1: Tweets Emotion Intensity

Prediction using Ensemble Recurrent Neural Network

Min Wang, Xiaobing Zhou*

School of Information Science and Engineering

Yunnan University, Yunnan, P.R. China

*Corresponding author, zhouxb.cn@gmail.com

Abstract

This paper describes the performing

system for SemEval-2018 Task 1 subtask

3 - Given a tweet, determine the intensity

of sentiment or valence (V) that best

represents the mental state of the

tweeter—a real-valued score between 0

(most negative) and 1 (most positive). The

proposed system gets features in tweets

from the existing emotional dictionary and

represents the word using word emb-

edding, then utilizes the joint repre-

sentations as the inputs of the bidire-

ctional long short-term memory (BiL-

STM) to learn and get the regression result.

To boost performance we ensem- ble

several BiLSTMs together. We ranked

6th in subtask 3 among all teams. Our

approach achieves the Pearson(All

instances) score 0.836 and Pearson(gold

in 0.5-1) score 0.667, we outperform the

baseline model of this task by 25.1% and

21.8% of Pearson(All instances) and

Pearson(gold in 0.5-1) scores respectively.

1 Introduction

Sentiment analysis (SA) is a field of knowledge

which deals with the analysis of people’s

opinions, sentiments, evaluations, appraisals,

attitudes and emotions towards particular entities

(Liu, 2012). EmoInt (Mohammad and Bravo-

Marquez, 2017) is a shared task hosted by

WASSA 2017, aiming to predict the emotion

intensity in tweets. SemEval 2018 Task 1 subtask 3

(Mohammad et al, 2018) is similar to EmoInt,

however the goal of subtask 3 is to detect valenc-

e or sentiment intensity, in which scores are

floating point values between 0 and 1,

representing low and high intensities of the

emotion being expressed, respectively.

Obviously we don’t know in advance whether

twitter’s emotional intensity is positive or

negative, but in EmoInt task we can determine

whether twitter emotions are positive or negative

based on one of four datasets: anger, fearness,

joy, sadness. This is still a challenging task and

remains active areas of research. These setbacks

are: extensive usage of hashtags, slang,

abbreviations, and emoticons. And tweets are

usually typed on mobile devices like mobile

phone, laptop or iPad which can result in a

substantial amount of typos.

Existing methods for modeling emotion

intensity rely vastly on manually constructed

lexicons, which contain information about

intensity weights for each available word

(Mohammad and Bravo-Marquez, 2017a;

Neviarouskaya et al., 2007). The intensity for

the whole tweet can be deduced by combining

individual scores of words, which is easy and

ignores the word order compositionality of the

language. Building such lexicons is a labour-

intensive procedure. We can learn from these

models the skills of combining feature

extraction and classification or regression stages

given a sufficient amount of training data.

Some deep learning methods are used to

process the same question. Deep neural archit-

ectures for emotion intensity prediction in

tweets (Goel et al., 2017) and character- and

word-level recurrent neural models for tweet

emotion intensity detection (Lakomkin et al.,

2017).

205

In our work, we firstly clean tweets, then build l-

exical features and find optimal combinations of

features to produce a final vector representation of

a tweet, next train a neural network regression

model and finally get the tweet’s intensity scores.

In addition, we adjust our models’ parameters and

through the ensemble models to get the best

performing results.

2 Data cleaning

We use the dataset provided by the official

organizers to train our system, there are 1181

labeled training tweets, 449 labeled dev tweets.

Test set are unlabeled 17874 tweets and the gold

labels were given only after the evaluation period.

Before training model or predicting test set we

firstly clean the tweets, this is imperative. We

utilize the following prep- rocessing steps.

(1) Hashtags are crucial markers for deter-

mining sentiment. The “#” symbol is removed and

the word itself is retained. Eg, a hashtag like

“#the_best_one”, finally we get “the best one”.

(2) Username mentions, we replace it with

“usename”.

(3) Shortening, we transform word “don’t”,

“I’ve”, “I’ll” et al into “do” “n’t”, “’ve”, “’ll”.

(4) Punctuations, only “!” and “?” are retained,

others like “;” “>” “)” “,” “-” are deleted.

(5) Numerical symbols, considering that the

data in the dataset is relatively standardized and

there are few numbers, so we remove the all

digitals and only keep English words.

(6) Extra spaces are removed and all words

become lowercase letters.

3 Feature Extraction

In order to completely extract features from

tweets, we consider two characteristics which

are annotated lexicons and pre-trained word

embedding.

3.1 Annotated Lexicon

For extracting lexicon features, we follow the

procedure as per the baseline system provided in

the WASSA Emotion Intensity Task. The know-

ledge sources that have been used are: MPQA

subjective lexicon (Wilson et al., 2005), Bing Liu

lexicon (Ding et al., 2008), AFINN (Nielsen,

2011), Sentiment140 (Kiritchenko et al., 2014),

NRC Hashtag Sentiment Lexicon

(Mohammad and Kiritchenko, 2015), NRC

Hashtag Emotion Association Lexicon

(Mohammad et al., 2013), NRC Word-

Emotion Association Lexicon(, 2013), NRC-

10 Expanded Lexicon (Bravo Marquez et al.,

2016) and the SentiWordNet (Esuli and

Sebastiani, 2007). Two more features are

calculated on the basis of emoticons (obtained

from AFINN (Nielsen, 2011)) and negations

present in the text. We use several of the

above lexicons as following:

• Emoji Valence (EV): This is a hand

classified lexicon of Unicode emojis, rated on

a scale of -5 (negative) to 5 (positive).

• SentiWordNet (SWN): Calculates positive

and negative sentiment score using

SentiWordNet, which is an opinion mining

resource available through NLTK.

• Depeche Mood (DM) (Staiano and

Guerini, 2014): This is a lexicon comprised

of about 37,000 unigrams annotated with

real-valued scores for the emotional states

afraid, amused, angry, annoyed, don’t care,

happy, inspired and sad.

• Emoticon Sentiment Lexicon: Note that

this is a sentiment lexicon drawn from

emoticons, and is not an emotion lexicon.

• NRC-Emoticon-AffLexNegLex-v1.0: E-

ach line of this lexicon represents a real-

valued sentiment score: score = PMI(w, pos) -

PMI(w, neg), where PMI stands for Point-

wise Mutual Information between a term w

and the positive/negative class.

• NRC-Hashtag-Sentiment-Lexicon-v1.0

(Moh-ammad and Turney, 2013): The

lexicon is an association of words with

positive (negative) sentiment generated

automatically from tweets with sentiment-

word hashtags.

• NRC-Hashtag-Sentiment-AffLexNegLex-

1.0: The same lexicon as Sentiment 140, but

here tw- eets with only emotional hashtags

are considered during training.

3.2 Word Embedding

The text can be converted into word
embedding, which represents each word of
the text with a d dimensional vector (Mikolov
et al., 2013). Considering that we have to deal
with tweets, we use GloVe word embedding

206

trained on 2 billion tweets from twitter
(Pennington et al., 2014), vectors of 100, 200
and 300 dimensions are provided as part of the
pre- trained model. For this work, we use the
300 dimensional vectors of 42B tokens. We also
considered GoogleNews- vectors-negative300 in
our expe-riments but the effects was not as
good as the GloVe word embedding.

4 Model Training

Based on the application of features extractions

and word embedding, we can represent each

word in a tweet as a high dimensional space

vector, and the dimension of the vector is d  l .

d represents the dimension of GloVe word

embedding 300 and l stands for the length of the

additional lexical dictionary. After representing

the tweets, we need to train models. Since the task

requires the computation of a real valued

emotion intensity score for the tweets in the test

set, we explore several regression methods. Our

system is implemented in Keras and we finally

choose the best single BiLSTM model, which

contains two layers of BiLSTM following the

embedding layer and, we add a dropout layer.

Some parameters of our model are: dropout

probability 0.25 and 0.5 respectively; units of the

BiLSTM layers are 512 and 256 respectively;

units of the full connection layer is 256. The

complete model structure is shown below Figure

1:

Figure 1: A two layer bidirectional LSTM model.

5 System tuning

When training model on Keras so there only

some parameters need to change, we tune the

parameters such as the choice of loss function,

dropout probability, dimension of the BiLSTM

layer. As for feature combination we use all the

annotated lexicons mentioned in section 3.1 so

as to control the variables and we don’t consider

the impact of different dictionary combinations on

the results, which may be discussed in the future

work. Note that all of our tuning processes are

done on the development set, each time we

finished a model we record the results.

Ensembling of some models is universal used

method to improve the performance of the overall

system by combining predictions of several

classifiers. Our system ensembles ten exactly the

same BiLSTMs models and average the results, it

turns out that the ensemble result is better than

that of a single model. That is to say when we

ensemble the model, the weight of each single

BiLSTM is the same.

6 Experiment and results

All our experiments have been developed using

Keras deep learning library with Theano

backend, and with CUDA enabled. And all our

experiments are performed on a computer with

Intel Core(TM) i3 @3.4GHz 16GB of RAM

and GeForce GTX 1060 GPU. After testing

many neural network models, we finally find

the best results on LSTM and BiLSTM models.

Table 1 shows the results of a single layer

LSTM changing the loss function and word

embedding, we can learn that MAE loss

function can get the best result with Glove word

embedding, in general the performance on

Glove word embedding is better than word2vec

embedding. Table 2 shows the results of a

single BiLSTM changing the loss function and

integrating ten models under different loss

functions and different word embedding we can

learn that MAPE loss function can get the best

result with Glove word embedding, in general

the performance on Glove word embedding is

better than word2vec embedding. Table 3 is the

result of double layers BiLSTM changing the

loss function and integrating ten models under

different loss functions and different word

embedding we can learn that MAPE loss

function can get the best result with Glove word

embedding, in general the performance on

Glove word embedding is better than word2vec

embedding.
The system in this subtask are evaluated

using the Pearson correlation coefficient, which

computes a bivariate linear coefficient, and the

207

secondary evaluation metrics, which is

Pearson correlation for a subset of the test set

that includes only those tweets with intensity

score greater or equal to 0.5. We present the

results of the system submitted to the

competition leaderboard in Table 4. The score

of our system is 0.836 (Pearson) and 0.667

(Pearson gold in 0.5-1). Note that the model

we used on the test set is the best model on the

development set, i.e., in Table 3 the third line.

Loss function Pearson score

MSE(Glove) 0.804

MAE(Glove) 0.818

MAPE(Glove) 0.815

MSLE(Glove) 0.801

MSE(w2v) 0.801

MAE(w2v) 0.798

MAPE(w2v) 0.799

MSLE(w2v) 0.786

Table 1: Performance on development dataset. Single

layer LSTM under different loss functions and

different word embedding.

Loss function Pearson score

MSE(Glove) 0.799

MAE(Glove) 0.820

MAPE(Glove) 0.822

MSLE(Glove) 0.801

MSE(w2v) 0.797

MAE(w2v) 0.810

MAPE(w2v) 0.799

MSLE(w2v) 0.784

Table 2: Performance on development dataset.

Ensemble result of single layer BiLSTM under diff-

erent loss functions and different word embedding.

Loss function Pearson score

MSE(Glove) 0.805

MAE(Glove) 0.826

MAPE(Glove) 0.827

MSLE(Glove) 0.806

MSE(w2v) 0.796

MAE(w2v) 0.785

MAPE(w2v) 0.794

MSLE(w2v) 0.783

Table 3: Performance on development data-set.

Ensemble result of double layers BiLSTM under diff-

erent loss functions and different word embedding.

Team P P (gold

0.5-1)

1 SeerNet 0.873 0.697

2 TCS Research 0.861 0.680

3 PlusEmo2Vec 0.860 0.691

4 NTUA-SLP 0.851 0.688

5 Amobee 0.843 0.644

6 Yuan 0.836 0.667

7 nlpzzx 0.835 0.670

Table 4: Performance on test dataset. Final results in about

test set on leaderboard and our system ranks 6th overall.

7 Conclusions

In this paper, we propose a deep learning

framework to predict the emotion intensity in

tweets. The proposed system is based on two

layers BiLSTM and the last layer of model

using a linear regression so that we can get the

intensity score, which is a consecutive

emotional value. Before training model we

implement features extraction and represent the

tweets by word embedding. Both single model

and ensemble model are described in detail

with a view of making our experiments

replicable. The optimal parameters are

mentioned along with our method of bringing

the approaches together. Our submitted system

beats the baseline system by about 25.1% on

the test set. Our source code is in here

https://github.com/ynuwm/SemEval-2018

Acknowledgments

This work was supported by the Natural

Science Foundations of China No.61463050,

No.61702443, No.61762091, the NSF of Yunn

an Province No. 2015FB113, the Project of

Innovative Research Team of Yunnan Province.

References

Bing Liu. 2012. Sentiment analysis and opinion

mining Synthesis Lectures on Human Language
Technologies. Morgan &Claypool publishers.

Saif M. Mohammad and Felipe Bravo-Marquez.
2017.WASSA-2017 shared task on emotion
intensity. In Proceedings of the Workshop on
Computational Approaches to Subjectivity,
Sentiment and Social Media Analysis (WASSA).

208

Copenhagen, Denmark. Santos C D, Tan M, Xiang
et al. 2016. Attentive Pooling Networks.

Alena Neviarouskaya, Helmut Prendinger, and
Mitsuru Ishizuka. 2007. Textual affect sensing for
sociable and expressive online comm- unication.
Affective Computing and Intelligent Interaction
pages 218–229.

Ozan Irsoy and Claire Cardie. 2014. Opinion mining
with deep recurrent neural networks. In the
Proceedings of the Conference on EMLNP. pages
720–728.

Richard Socher, Alex Perelygin, Jean Y Wu, Jason
Chuang, Christopher D Manning, Andrew Y Ng,
and Christopher Potts. 2013. Recursive deep
models for semantic compositionality over a
sentimenttreebank. In the Proceedings of the
Conference on EMLNP. volume 1631, pages
1631–1642.

Theresa Wilson, Janyce Wiebe, and Paul
Hoffmann.2005. Recognizing contextual polarity
in phraselevel sentiment analysis. In HLT/EMNLP
2005,Human Language Technology Conference
and Conference on Empirical Methods in Natural
Language Processing, Proceedings of the
Conference, 6- 8 October 2005, Vancouver, British
Columbia, Canada. The Association for
Computational Linguistics, pages 347–354.

Finn Arup Nielsen. 2011. A new ANEW: evaluation
of a word list for sentiment analysis in microblogs.
In Matthew Rowe, Milan Stankovic, Aba-
SahDadzie, and Mariann Hardey, editors,
Proceedings of the ESWC2011Workshop
on ’Making Sense of Microposts’: Big things come
in small packages, Heraklion, Crete, Greece, May
30, 2011. CEUR-WS.org,volume 718 of CEUR
Workshop Proceedings, pages 93–98.

Mohammad Saif and Svetlana Kiritchenko. 2015.
Using hashtags to capture fine emotion categories
from tweets. Computational Inte- lligence
31(2):301–326.

Saif M. Mohammad and Peter D. Turney. 2013.
Crowd sourcing a word-emotion association
lexicon 29(3):436–465.

Jacopo Staiano and Marco Guerini. 2014. Depeche
mood: A lexicon for emotion analysis from crowd-
annotated news. arXiv preprint arXiv:1405.1605 .

Saif M Mohammad and Peter D Turney. 2013.
Crowdsourcing a word–emotion association
lexicon. Computational Intelligence 29(3):436–
465.

Jeffrey Pennington, Richard Socher, and Christopher
D. Manning. 2014. Glove: Global vectors for word
representation. In Empirical Methods in Natural
Language Processing (EMNLP). Pages 1532–1543.

Saif M. Mohammad, Felipe Bravo-Marquez, Moh-
ammad Salameh, and Svetlana Kiritchenko.

2018.Semeval-2018 Task 1: Affect in tweets.
In Proceedings of International Workshop on S-
emantic Evaluation (SemEval2018), New Orl-
eans, LA, USA.

209

Proceedings of the 12th International Workshop on Semantic Evaluation (SemEval-2018), pages 210–217
New Orleans, Louisiana, June 5–6, 2018. ©2018 Association for Computational Linguistics

AffecThor at SemEval-2018 Task 1: A cross-linguistic approach to
sentiment intensity quantification in tweets

Mostafa Abdou and Artur Kulmizev and Joan Ginés i Ametllé
{m.abdou, a.kulmizev, j.gines.i.ametlle}@student.rug.nl

CLCG, University of Groningen

Abstract

In this paper we describe our submission to
SemEval-2018 Task 1: Affects in Tweets. The
model which we present is an ensemble of var-
ious neural architectures and gradient boosted
trees, and employs three different types of vec-
torial tweet representations. Furthermore, our
system is language-independent and ranked
first in 5 out of the 12 subtasks in which we
participated, while achieving competitive re-
sults in the remaining ones. Comparatively re-
markable performance is observed on both the
Arabic and Spanish languages.

1 Introduction

The Affects in Tweets shared task (Mohammad
et al., 2018) is the second iteration of a task which
offers a new approach to Sentiment Analysis - one
that concerns itself with emotion and sentiment
intensity, rather than simple categorical classifi-
cation. The shared task is divided into a set of
subtasks, where the aim is to predict the emotion
intensity of a predetermined emotion (fear, anger,
sadness, joy) or sentiment (valence) intensity of a
given set of tweets. Such predictions are either for-
mulated as a regression problem where the output
is a continuous-valued score in the interval (0, 1),
or as ordinal classification into a given number of
classes representing intensity. Additionally, each
one of the subtasks targets a particular language:
English, Arabic or Spanish.

In total, we participated in 12 different subtasks
and our system achieved the best performance on
the test set out of all participants in 5 out of those,
ranked second in 3 others, and performed compet-

itively in the rest. Moreover, our system can ar-
guably be considered the best overall performing
system for both Arabic and Spanish1. It should be
noted, however, that the shared task includes tradi-
tional emotion classification subtasks in which we
did not participate.

The system described in this paper builds upon
a survey of some of the best performing systems
from previous related shared tasks (Mohammad
and Bravo-Marquez, 2017; Rosenthal et al., 2017).
In particular, we draw inspiration from the systems
described in (John and Vechtomova, 2017), which
makes use of gradient boosted trees for regres-
sion; (Goel et al., 2017), which employs an ensem-
ble of various neural models; and (Baziotis et al.,
2017), which features Long Short Term Memory
(LSTM) networks with an attention mechanism.
Our work contributes to the aforementioned ap-
proaches by further developing a variety of neu-
ral architectures, using transfer learning via pre-
trained sentence encoders, testing methods of en-
sembling neural and non-neural models, and gaug-
ing the performance and stability of a regressor
across languages.

The rest of this paper describes the pipeline of
the system used for our submission, which is an
ensemble of neural and non-neural models.

2 Data and features

The provided training and development data is
comprised of tweets, an emotion or sentiment, and
labels describing the intensity of the emotion or

1https://competitions.codalab.org/
competitions/17751#results

210

Figure 1: Graphical visualization of various feature vectors used in our ensemble model. These are from
left to right: character embedding, word embedding, ~InferRep and ~AvgLexRep representations.

sentiment. We refer readers interested in an ex-
haustive description of the data to (Mohammad
et al., 2018; Mohammad and Kiritchenko, 2018).
In this work, we convert each tweet into a com-
bination of three types of vector representations:
character and word-level vectors for Arabic and
Spanish; and character, word, and sentence-level
vectors for English. This section describes the pro-
cedure that allows us to obtain these varied repre-
sentations, which are later employed by our clas-
sification and regression models.

2.1 Preprocessing

The syntactic and orthographic form of tweets of-
ten differs substantially from text belonging to
other domains (John and Vechtomova, 2017). As
such, pre-processing procedures are as important
as the architecture of any given model.

In pre-processing our data, we first replace all
same-character sequences of length 3 or more with
only 2 occurrences. We also replace all user men-
tions with a unique common token, as well as all
control characters with whitespaces. Emojis are
surrounded with spaces, enforcing that any two
emojis are not consecutive characters. Finally, all
text is lowercased. In the case of Spanish text,
we further remove the characters ¿ and ¡, and re-
place accented characters with their unaccented
versions, as well as ñ with n. In the case of Arabic
text, we remove quotation marks as well.

Following the cleaning process, we tokenize the
resulting text by applying the twokenize tool
(Krieger and Ahn, 2010), as provided in the CMU
Tweet NLP software (Owoputi et al., 2013), which
is, by design, able to cope with the noise that ap-
pears in social media. Once the tokenization is
completed, we filter all stopwords 2.

2We employ the stopword lists available from https:
//www.ranks.nl/stopwords

2.2 Lexicons

Lexicons are one of the resources which we em-
ploy in order to compute features. In short, a lex-
icon is a collection of words that are associated
with a value for an arbitrary number of affective
categories. In our case, given a tweet, we produce
several features per lexicon which are the result
of aggregating individual matching word values
in each category, adding the numerical values and
counting those which are nominal. We provide an
overview of the lexicons used per language below,
with the number of features contributed by each
individual lexicon in parenthesis. In the case of
English, the following lexicons and extracted val-
ues jointly produce a feature vector of dimension
43:

• MPQA lexicon (2): Number of positive and
negative words (Wilson et al., 2005).

• Bing Liu lexicon (2): Number of positive and
negative words (Hu and Liu, 2004).

• Emoticons (2): Positive and negative aggre-
gated scores for emoticons (Nielsen, 2011).

• Sentiment140 lexicon (2): Positive and neg-
ative aggregated scores (Kiritchenko et al.,
2014).

• NRC Word-Emotion Association Lexicon
(10): Number of words matching each cat-
egory (Mohammad and Turney, 2013).

• NRC Hashtag Sentiment lexicon (2): Positive
and negative aggregated scores (Kiritchenko
et al., 2014).

• NRC Hashtag Emotion Association Lexicon
(8): Aggregated scores for each category
(Mohammad and Kiritchenko, 2015).

211

• NRC-10-Expanded lexicon (10): Aggregated
scores for each category (Bravo-Marquez
et al., 2016).

• SentiWordnet (2): Positive and negative ag-
gregated scores (Baccianella et al., 2010).

• AFINN lexicon (2): Positive and negative ag-
gregated scores (Nielsen, 2011).

• Negations (1): Number of negative words
(Mohammad and Bravo-Marquez, 2017).

In the case of Arabic we also employ the same
first 6 lexicons which we listed for English, but
with the content words automatically translated
(Salameh et al., 2015). However, we extract 4
scores from the MPQA lexicon (on the affective
categories positive, negative, neutral and both),
an a single combined score from the Bing Liu
and Emoticons lexicons. Furthermore, we employ
3 lexicons generated by distant supervision tech-
niques on Arabic tweets as follows (Mohammad
et al., 2016), in order to obtain a feature vector of
dimension 26:

• Arabic Emoticon Lexicon (2): Number of
positive and negative words.

• Arabic Hashtag Lexicon (2): Number of pos-
itive and negative words.

• Arabic dialectal Hashtag Lexicon (2): Num-
ber of positive and negative words.

Finally, the following lexicons are used in Span-
ish to produce a feature vector of dimension 14.
In contrast to the Arabic language, the majority of
the lexicons here listed are manually annotated or
semi-automatically generated from Spanish data:

• Emoticons (1): Combination of positive and
negative aggregated scores for emoticons
(Nielsen, 2011).

• El Huyar dictionary (2): Positive and nega-
tive aggregated scores (Saralegi and San Vi-
cente, 2013).

• ISOL lexicon (2): Number of positive
and negative words (Martı́nez-Cámara et al.,
2014).

• SDAL lexicon (3): Aggregated scores for
each category (Dell’ Amerlina Rı́os and Gra-
vano, 2013).

• Spanish Sentiment lexicon (2): Number of
positive and negative words (Perez Rosas
et al., 2012).

• ML Senticon (1): Aggregated score for po-
larity (Cruz et al., 2014).

• Sentwords (3): Aggregated score for each
category in an automatically translated ver-
sion of the lexicon described in (Beth War-
riner et al., 2013).

Note that the lexicons are not directly used on
tweet data, but rather that lexical features are ex-
tracted after applying the same data cleaning and
tokenization process which we described for the
training data to each one of the lexicons listed.

2.3 Word embeddings
Word embeddings are another popular choice for
feature extraction. We employ pre-trained word
embeddings for English and train our own embed-
dings on separated Arabic and Spanish tweet data
that we manually collected. All sets of embed-
dings comprise 400 dimensions and are detailed
below for each language:

• English: Word2vec skip-gram embeddings,
trained on the Edinburgh Twitter Corpus
(Petrović et al., 2010).

• Arabic: Word2vec skip-gram embeddings,
trained on 4.38 million tweets3.

• Spanish: Word2vec skip-gram embeddings,
trained on 3.02 million tweets4.

2.4 Manually-crafted representations
In the Arabic and Spanish subtasks, some model
components in our ensemble use a combination of
the two types of representations described so far
(lexical features and word embeddings) as an in-
put feature vector. To obtain this, we average the
embeddings corresponding to each word in a given
tweet up to a maximum of 25 words, and append
the computed lexical features to the result. These
features are extracted using the filters provided
in the Affective Tweets package (Mohammad and
Bravo-Marquez, 2017) available for WEKA (Hall
et al., 2009). In this paper, we will refer to this
combined representation as ~AvgLexRep.

3Available for download from akulmizev.com/
embeddings/ar_tweets.csv.

4Available for download from akulmizev.com/
embeddings/es_tweets.csv.

212

Figure 2: Diagram of our system which describes how the different models used are ensembled. The
outputs of each component in the ensemble are averaged into a single score.

2.5 Learned representations
Engineering a representation of the data (such as
a the one described in Section 2.4) that can sup-
port effective machine learning is a complex task,
requiring human ingenuity and domain-specific
knowledge. Representation learning techniques
(Bengio et al., 2003) enable machine learning al-
gorithms to automatically extract and organize dis-
criminative features, thereby mapping raw data
into forms that make it easier to extract useful in-
formation. Some model components in our en-
semble employ this kind of representation, which
we obtain using 2 different methods:

• Encoding a tweet using (Conneau et al.,
2017)’s BiLSTM-max pooling encoder,
which is pre-trained on a natural language
inference dataset5 and produces representa-
tions that perform well on a wide variety of
NLP tasks. This approach in particular em-
ploys GloVe word embeddings (Pennington
et al., 2014) as input and produces a vector
containing 4096 dimensions, to which we
will refer with the name ~InferRep. How-
ever, note that we only produce this feature
vector for the English language subtasks.

• Encoding a tweet using one or a combina-
tion of three neural architectures which use
skip-gram word embeddings (Mikolov et al.,
2013) as input and are trained on the shared

5Stanford Natural Language Inference dataset (Bowman
et al., 2015). This is only available for English.

task’s training data for regression subtasks.
These correspond to the CNN, Bi-LSTM and
CHAR-LSTM models described in Section
3. Representations produced by the CHAR-
LSTM model are of dimension 6126, and the
ones obtained via the Bi-LSTM model are of
dimension 512. Representations produced by
the CNN model have different dimensional-
ity depending on the number and size of fil-
ters used. We will collectively refer to such
representations with the name ~RegRep.

3 System architecture

While ~RegRep is produced as part of end-to-
end trainable regression and classification models,

~AvgLexRep and ~InferRep are generated inde-
pendently. Thus, ~AvgLexRep and ~InferRep are
fed separately into these models after being gener-
ated. The pipeline of our ensemble is represented
schematically in Figure 2.

3.1 Neural models

We implement three varieties of neural network ar-
chitectures which are commonly used in text clas-
sification tasks using Keras (Chollet et al., 2015)
with a TensorFlow backend. In all of them, our ob-
jective function is Mean Squared Error (MSE) and
dropout (Srivastava et al., 2014) is used for regu-
larization at various levels. These architectures are
listed below:

6512 dimensions correspond to word final hidden states
and 100 dimensions to character hidden states.

213

• Convolutional Neural Network (CNN) with
max pooling.

• Bidirectional Long-Short Term Memory (Bi-
LSTM) with attention.

• Combined character and word features bi-
LSTMs (CHAR-LSTM).

3.2 Regression

For AvgLexRep and InferRep, which are not part of
an end-to-end trainable model, we perform regres-
sion using either a feed-forward Deep Neural Net-
work (DNN) or Gradient Boosted Trees (GBT)7.
The depth of the feed-forward network is deter-
mined constructively, starting with one layer and
adding layers which are half the size of the pre-
vious one until performance on cross-validation
stops improving.

3.3 Model selection for regression

We perform model selection using 5-fold cross-
validation on the training data from the shared
task. In each subtask that involves regression, the
possible models are ranked according to their indi-
vidual performance and ensembled through simple
averaging. The ensemble itself is built construc-
tively based on the ordering defined by the rank-
ing, starting from a single component and adding
components in order whenever the average perfor-
mance on cross-validation improves.

Ensembling has long been shown to be an ef-
fective method of variance reduction for complex
models (Perrone, 1993), and we indeed find in our
experiments that averaging predictions leads to re-
sults better than those of any individual model8.

Furthermore, we also find predictions obtained
via simple averaging to be more accurate (on
cross-validation) compared to those obtained via
feeding the outputs from all model components
into a sigmoid layer. Although such a finding
might appear counter-intuitive, it can perhaps be
explained through the fact that the training dataset
is relatively small, and therefore ensembling via a
non-linear function of the outputs can potentially
lead to overfitting.

7We use the GBT implementation provided in scikit-learn
(Pedregosa et al., 2011).

8We refer the reader to (Hashem and Schmeiser, 1993) for
an explanation of why this is the case.

3.4 Ordinal classification

Our system for each ordinal classification subtask
makes use of the ensemble model which we build
for the corresponding regression subtask in the
same language, and model selection is performed
using the same procedure described in Section 3.3.
However, instead of averaging the predictions, the
best model’s predictions are concatenated and fed
as features to an ordinal meta-classifier (Antoniuk
et al., 2013).

3.5 Hyperparameter tuning

Hyper-parameter optimization is carried out us-
ing 5-fold cross-validation. At first, a reason-
able range is determined manually, and then grid-
search is performed within that range. For Gra-
dient Boosted Trees, the hyper-parameters opti-
mized are maximum tree depth, number of estima-
tors, and maximum leaf nodes. For neural models,
the parameters optimized are batch size, number
of epochs, size of the layers or filters, and whether
or not dropout is used at different levels. Dropout
is by default always set at 0.2. Furthermore, we
use a fixed random seed to enable replicability.

4 Evaluation

Anger Sadness Joy Fear
System

CV Test CV Test CV Test CV Test

DNN (Infer.) 0.707 0.703 0.755 0.654 0.713 0.667 0.742 0.701
GBT (Infer.) 0.716 0.707 0.739 0.677 0.708 0.688 0.748 0.697

CHAR-LSTM 0.698 0.682 0.716 0.626 0.722 0.700 0.727 0.663
CNN 0.642 0.636 0.521 0.4316 0.637 0.628 0.615 0.459

Ensemble 0.756 0.749 0.770 0.699 0.758 0.740 0.773 0.726

Table 1: Comparison of Pearson correlation
cross-validation (CV) and official results (Test)
scores in the Emotion Intensity regression
(EI-reg) English subtasks. Results are given for
both the ensemble and its individual models.

Table 1 displays the scores (both 5-fold cross-
validation and test scores) of the individual models
and the ensemble model for the Emotion Intensity
English regression subtasks. The ensemble model
in this case is always for the best three models.
Table 2 shows the results obtained using 5-fold
cross-validation on the combined training and de-
velopment data and the official test set results for
each subtask. All scores are reported as the Pear-
son correlation coefficient between our system’s
predictions and the provided gold-labels (i.e. hu-
man judgments).

214

Task Emotion
English Arabic Spanish

CV Test CV Test CV Test

El-reg

Anger 0.756 0.749 0.620 0.647 0.731 0.676
Joy 0.758 0.740 0.690 0.756 0.712 0.753
Fear 0.773 0.726 0.619 0.642 0.720 0.776
Sadness 0.770 0.669 0.717 0.694 0.728 0.746
Macro-avg. 0.764 0.728 0.662 0.685 0.723 0.738

V-reg Valence 0.800 0.829 0.820 0.816 0.775 0.795

El-oc

Anger 0.670 0.620 0.620 0.551 0.635 0.606
Joy 0.701 0.686 0.610 0.631 0.668 0.667
Fear 0.635 0.528 0.565 0.551 0.658 0.706
Sadness 0.738 0.622 0.682 0.618 0.655 0.677
Macro-avg. 0.691 0.616 0.619 0.587 0.654 0.664

V-oc Valence 0.770 0.776 0.778 0.752 0.749 0.756

Table 2: Pearson correlation using cross-validation (CV) on the trainining data and official results of the
shared task (Test) obtained with our system, for each one of the Emotion Intensity (EI), Valence (V),
regression (reg) and ordinal classification (oc) subtasks.

5 Analysis

It can be observed in Table 2 that the test and
cross-validation scores are similar, meaning that
cross-validation provided an accurate estimate of
the generalization error and that our system’s over-
fitting of the different combined training and de-
velopment sets is minimal. In fact, for the En-
glish valence subtasks, the Arabic Emotion Inten-
sity regression subtask and all Spanish subtasks
except the ones involving anger as the target emo-
tion, the test scores are higher or equal than the
cross-validation scores. This indicates both that
our system generalizes appropriately and that the
test sets are not substantially different than the
training sets.

Overall performance is higher for English,
likely due to the availability of better quality lexi-
cons and word embeddings. Nonetheless, it is in-
teresting to note that on average, cross-validation
provided an optimistic estimate of the generaliza-
tion error for English and a pessimistic one for
Spanish and Arabic.

Furthermore, as shown in Table 1 for various
English regression subtasks, it is clear that the en-
semble outperforms all individual models on both
cross-validation and the test set. This points to-
wards the success of our ensembling method in
reducing the variance of individual models. We
omit similar results for other subtasks because the
trend displayed by those is comparable.

Finally, it is interesting to note that the mod-

els using ~InferRep (DNN and GBT), which rely
on tweet representations produced through trans-
fer learning from Natural Language Inference,
outperformed the models using the task-specific

~RegRep (CNN, Bi-LSTM and CHAR-LSTM) for
all emotions except Sadness.

6 Conclusion and future work

In this paper we have described AffecThor, the sys-
tem which we submitted to the SemEval-2018 Af-
fects in Tweets shared task. AffecThor uses three
different types of learned and manually-crafted
representations and is an ensemble of neural and
non-neural models. It is the best performing sys-
tem on 5 out of 12 subtasks, and the second best
performing in 3 others. Furthermore, it is arguably
the best overall performer for Spanish and Arabic.

Our work explored two methods of ensembling
regressors: simple averaging and using a non-
linearity (sigmoid) layer on top of the different
sub-models as part of an end-to-end trainable neu-
ral model, and found that simple averaging is
more robust. However, we believe that ensembling
using a linear combination (weighted-averaging)
where the weights are learned could lead to bet-
ter results, as is shown in (Perrone, 1993; Hashem
and Schmeiser, 1993).

Finally, the availability of fine-grained labeled
data across emotions and languages opens up the
possibility of investigating multi-task and multi-
lingual learning objectives. In the future, we
would like to extend this work in that direction.

215

References
Kostiantyn Antoniuk, Vojtěch Franc, and Václav

Hlaváč. 2013. Mord: Multi-class Classifier for Or-
dinal Regression. In Joint European Conference
on Machine Learning and Knowledge Discovery in
Databases, pages 96–111. Springer.

Stefano Baccianella, Andrea Esuli, and Fabrizio Sebas-
tiani. 2010. Sentiwordnet 3.0: An Enhanced Lexical
Resource for Sentiment Analysis and Opinion Min-
ing. In Proceedings of the International Conference
on Language Resources and Evaluation.

Christos Baziotis, Nikos Pelekis, and Christos Doulk-
eridis. 2017. Datastories at SemEval-2017 Task 4:
Deep LSTM with Attention for Message-level and
Topic-based Sentiment Analysis. In Proceedings of
the 11th International Workshop on Semantic Eval-
uation (SemEval-2017), pages 747–754.

Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and
Christian Janvin. 2003. A Neural Probabilistic Lan-
guage Model. J. Mach. Learn. Res., 3:1137–1155.

Amy Beth Warriner, Victor Kuperman, and Marc Brys-
baert. 2013. Norms of valence, arousal, and domi-
nance for 13,915 English lemmas. 45:1191–1207.

Samuel R Bowman, Gabor Angeli, Christopher Potts,
and Christopher D Manning. 2015. A large anno-
tated corpus for learning natural language inference.
arXiv preprint arXiv:1508.05326.

Felipe Bravo-Marquez, Eibe Frank, Saif M. Moham-
mad, and Bernhard Pfahringer. 2016. Determining
Word-Emotion Associations from Tweets by Multi-
label Classification. In 2016 IEEE/WIC/ACM In-
ternational Conference on Web Intelligence, pages
536–539.

François Chollet et al. 2015. Keras. https://
github.com/keras-team/keras.

Alexis Conneau, Douwe Kiela, Holger Schwenk, Loic
Barrault, and Antoine Bordes. 2017. Supervised
Learning of Universal Sentence Representations
from Natural Language Inference Data. arXiv
preprint arXiv:1705.02364.

Fe.L. Cruz, J.A. Troyano, Beatriz Pontes, and F. Javier
Ortega. 2014. ML-SentiCon: A multilingual,
lemma-level sentiment lexicon. 53:113–120.

Matı́as Dell’ Amerlina Rı́os and Agustı́n Gravano.
2013. Spanish DAL: A Spanish Dictionary of Af-
fect in Language. In Proceedings of the 4th Work-
shop on Computational Approaches to Subjectivity,
Sentiment & Social Media Analysis (WASSA 2013),
pages 21–28.

Pranav Goel, Devang Kulshreshtha, Prayas Jain, and
Kaushal Kumar Shukla. 2017. Prayas at EmoInt
2017: An Ensemble of Deep Neural Architectures
for Emotion Intensity Prediction in Tweets. In Pro-
ceedings of the 8th Workshop on Computational Ap-
proaches to Subjectivity, Sentiment and Social Me-
dia Analysis, pages 58–65.

Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard
Pfahringer, Peter Reutemann, and Ian H. Witten.
2009. The WEKA Data Mining Software: An Up-
date. SIGKDD Explor. Newsl., 11(1):10–18.

Sherif Hashem and Bruce Schmeiser. 1993. Approxi-
mating a Function and its Derivatives Using MSE-
Optimal Linear Combinations of Trained Feedfor-
ward Neural Networks. In In Proceedings of the
Joint Conference on Neural Networks, pages 617–
620.

Minqing Hu and Bing Liu. 2004. Mining and Sum-
marizing Customer Reviews. In Proceedings of the
Tenth ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pages 168–
177.

Vineet John and Olga Vechtomova. 2017. UWat-
Emote at EmoInt-2017: Emotion Intensity Detec-
tion using Affect Clues, Sentiment Polarity and
Word Embeddings. In Proceedings of the 8th Work-
shop on Computational Approaches to Subjectivity,
Sentiment and Social Media Analysis, pages 249–
254.

Svetlana Kiritchenko, Xiaodan Zhu, and Saif M. Mo-
hammad. 2014. Sentiment Analysis of Short In-
formal Texts. Journal of Artificial Intelligence Re-
search (JAIR), 50:723–762.

Michel Krieger and David Ahn. 2010. TweetMotif:
Exploratory Search and Topic Summarization for
Twitter. In In Proceedings of AAAI Conference on
Weblogs and Social Media.

Eugenio Martı́nez-Cámara, M. Teresa Martı́n-Valdivia,
M. Dolores Molina-González, and José M. Perea-
Ortega. 2014. Integrating Spanish Lexical Re-
sources by Meta-classifiers for Polarity Classifica-
tion. J. Inf. Sci., 40(4):538–554.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jef-
frey Dean. 2013. Efficient Estimation of Word
Representations in Vector Space. arXiv preprint
arXiv:1301.3781.

Saif M. Mohammad and Felipe Bravo-Marquez. 2017.
Emotion Intensities in Tweets. In Proceedings of the
6th Joint Conference on Lexical and Computational
Semantics, *SEM @ACM 2017, Vancouver, Canada,
August 3-4, 2017, pages 65–77.

Saif M. Mohammad and Felipe Bravo-Marquez. 2017.
WASSA-2017 Shared Task on Emotion Intensity. In
Proceedings of the Workshop on Computational Ap-
proaches to Subjectivity, Sentiment and Social Me-
dia Analysis (WASSA), Copenhagen, Denmark.

Saif M. Mohammad, Felipe Bravo-Marquez, Mo-
hammad Salameh, and Svetlana Kiritchenko. 2018.
Semeval-2018 Task 1: Affect in tweets. In Proceed-
ings of International Workshop on Semantic Evalu-
ation (SemEval-2018), New Orleans, LA, USA.

216

Saif M. Mohammad and Svetlana Kiritchenko. 2015.
Using Hashtags to Capture Fine Emotion Cate-
gories from Tweets. Computational Intelligence,
31(2):301–326.

Saif M. Mohammad and Svetlana Kiritchenko. 2018.
Understanding Emotions: A Dataset of Tweets to
Study Interactions between Affect Categories. In
Proceedings of the 11th Edition of the Language
Resources and Evaluation Conference, Miyazaki,
Japan.

Saif M. Mohammad, Mohammad Salameh, and Svet-
lana Kiritchenko. 2016. Sentiment Lexicons for
Arabic Social Media. In Proceedings of the Tenth
International Conference on Language Resources
and Evaluation (LREC 2016). European Language
Resources Association (ELRA).

Saif M. Mohammad and Peter D. Turney. 2013.
Crowdsourcing a Word-Emotion Association Lex-
icon. 29(3):436–465.

Årup Nielsen. 2011. A New ANEW: Evaluation of a
Word List for Sentiment Analysis in Microblogs. In
Proceedings of the ESWC2011 Workshop on ’Mak-
ing Sense of Microposts’: Big things come in small
packages, pages 93–98.

Olutobi Owoputi, Chris Dyer, Kevin Gimpel, Nathan
Schneider, and Noah A. Smith. 2013. Improved
Part-Of-Speech Tagging for Online Conversational
Text with Word Clusters. In In Proceedings of
NAACL.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Pretten-
hofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Pas-
sos, D. Cournapeau, M. Brucher, M. Perrot, and
E. Duchesnay. 2011. Scikit-learn: Machine Learn-
ing in Python. Journal of Machine Learning Re-
search, 12:2825–2830.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. Glove: Global Vectors for Word
Representation. In Proceedings of the 2014 confer-
ence on empirical methods in natural language pro-
cessing (EMNLP), pages 1532–1543.

Veronica Perez Rosas, Carmen Banea, and Rada Mi-
halcea. 2012. Learning Sentiment Lexicons in Span-
ish. In Proceedings of the international conference
on Language Resources and Evaluation (LREC).

Michael Peter Perrone. 1993. Improving Regression
Estimation: Averaging Methods for Variance Re-
duction with Extensions to General Convex Measure
Optimization. Ph.D. thesis.

Saša Petrović, Miles Osborne, and Victor Lavrenko.
2010. The Edinburgh Twitter Corpus. In Proceed-
ings of the NAACL HLT 2010 Workshop on Com-
putational Linguistics in a World of Social Media,
pages 25–26.

Sara Rosenthal, Noura Farra, and Preslav Nakov.
2017. SemEval-2017 Task 4: Sentiment Analysis
in Twitter. In Proceedings of the 11th International
Workshop on Semantic Evaluation (SemEval-2017),
pages 502–518.

Mohammad Salameh, Saif M. Mohammad, and Svet-
lana Kiritchenko. 2015. Sentiment after Translation:
A Case-Study on Arabic Social Media Posts. In
HLT-NAACL, pages 767–777. The Association for
Computational Linguistics.

Xabier Saralegi and Iaki San Vicente. 2013. Workshop
on Sentiment Analysis at SEPLN (TASS2013).

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky,
Ilya Sutskever, and Ruslan Salakhutdinov. 2014.
Dropout: A Simple Way to Prevent Neural Net-
works from Overfitting. The Journal of Machine
Learning Research, 15(1):1929–1958.

Theresa Wilson, Janyce Wiebe, and Paul Hoffmann.
2005. Recognizing Contextual Polarity in Phrase-
Level Sentiment Analysis. In HLT/EMNLP 2005,
Human Language Technology Conference and Con-
ference on Empirical Methods in Natural Language
Processing, pages 347–354.

217

Proceedings of the 12th International Workshop on Semantic Evaluation (SemEval-2018), pages 218–225
New Orleans, Louisiana, June 5–6, 2018. ©2018 Association for Computational Linguistics

Amobee at SemEval-2018 Task 1: GRU Neural Network with a CNN
Attention Mechanism for Sentiment Classification

Alon Rozental∗ , Daniel Fleischer∗
Amobee, Tel Aviv, Israel

alon.rozental@amobee.com
daniel.fleischer@amobee.com

Abstract

This paper describes the participation of
Amobee in the shared sentiment analysis task
at SemEval 2018. We participated in all
the English sub-tasks and the Spanish va-
lence tasks. Our system consists of three
parts: training task-specific word embeddings,
training a model consisting of gated-recurrent-
units (GRU) with a convolution neural net-
work (CNN) attention mechanism and training
stacking-based ensembles for each of the sub-
tasks. Our algorithm reached 3rd and 1st
places in the valence ordinal classification sub-
tasks in English and Spanish, respectively.

1 Introduction

Sentiment analysis is a collection of methods and
algorithms used to infer and measure affection
expressed by a writer. The main motivation is
enabling computers to better understand human
language, particularly sentiment carried by the
speaker. Among the popular sources of textual
data for NLP is Twitter, a social network service
where users communicate by posting short mes-
sages, no longer than 280 characters long—called
tweets. Tweets can carry sentimental information
when talking about events, public figures, brands
or products. Unique linguistic features, such as
the use of slang, emojis, misspelling and sarcasm,
make Twitter a challenging source for NLP re-
search, attracting the interest of both academia and
the industry.

Semeval is a yearly event in which international
teams of researchers work on tasks in a com-
petition format where they tackle open research
questions in the field of semantic analysis. We par-
ticipated in Semeval 2018 task 1, which focuses
on sentiment and emotions evaluation in tweets.
There were three main problems: identifying the

∗These authors contributed equally to this work.

presence of a given emotion in a tweet (sub-tasks
EI-reg, EI-oc), identifying the general sentiment
(valence) in a tweet (sub-tasks V-reg, V-oc) and
identifying which emotions are expressed in a
tweet (sub-task E-c). For a complete description
of Semeval 2018 task 1, see the official task
description (Mohammad et al., 2018).

We developed an architecture based on gated-
recurrent-units (GRU, Cho et al. (2014)). We
used a bi-directional GRU layer, together with
a convolutional neural network (CNN) attention-
mechanism, where its input is the hidden states
of the GRU layer; lastly there were two fully
connected layers. We will refer to this architecture
as the Amobee sentiment classifier (ASC). We
used ASC to train word embeddings to incorporate
sentiment information and to classify sentiment
using annotated tweets. We participated in all the
English sub-tasks and in the valence Spanish sub-
tasks, achieving competitive results.

The paper is organized as follows: section 2
describes our data sources, section 3 describes the
data pre-processing pipeline. A description of the
main architecture is in section 4. Section 5 de-
scribes the word embeddings generation; section
6 describes the extraction of features. In section
7 we describe the performance of our models;
finally, in section 8 we review and summarize the
results.

2 Data Sources

We used four sources of data:

1. Twitter Firehose: we randomly sampled 200
million tweets using the Twitter Firehose ser-
vice. They were used for training word em-
beddings and for distant supervision learning.

2. Semeval 2017 task 4 datasets of tweets, an-
notated according to their general sentiment

218

on 3 and 5 level scales; used to train the ASC
model.

3. Annotated tweets from an external source1,
annotated on a 3-level scale; used to train the
ASC model.

4. Official Semeval 2018 task 1 datasets: used
to train task specific models.

Datasets of Semeval 2017 and the external source
were combined with compression2; the resulting
dataset contained 88,623 tweets with the following
distribution: positive: 30097 sentences (34%),
neutral: 35818 (40%), negative: 22708 (26%).
Description of the official Semeval 2018 task 1
datasets can be found in Mohammad et al. (2018);
Mohammad and Kiritchenko (2018).

3 Preprocessing

We started by defining a cleaning pipeline that pro-
duces two cleaned version of an original text; we
refer to them as “simple” and “complex” versions.
Both versions share the same initial cleaning steps:

1. Word tokenization using the CoreNLP library
(Manning et al., 2014).

2. Parts of speech (POS) tagging using the
Tweet NLP tagger, trained on Twitter data
(Owoputi et al., 2013).

3. Grouping similar emojis and replacing them
with representative keywords.

4. Regex: replacing URLs with a special
keyword, removing duplications, break-
ing #CamelCasingHashtags into individual
words.

The complex version contains these additional
steps:

1. Word lemmatization, using CoreNLP.

2. Named entity recognition (NER) using
CoreNLP and replacing the entities with
representative keywords, e.g. date ,
number , brand , etc.

3. Synonym replacement, based on a manually-
created dictionary.

4. Word replacement using a Wikipedia dictio-
nary, created by crawling and extracting lists
of places, brands and names.

1 https://github.com/monkeylearn/sentiment-analysis-
benchmark

2 Transformed 5 labels to 3: {−2,−1} → {−1},
{1, 2} → {1}, {0} → {0}.

As an example, table 1 shows a fictitious tweet and
the results after the simple and complex cleaning
stages.

4 ASC Architecture

Our main contribution is an RNN network, based
on GRU units with a CNN-based attention mecha-
nism; we will refer to it as the Amobee sentiment
classifier (ASC). It is comprised of four identical
sub-models, which differ by the input data each
of them receives. Sub-model inputs are composed
of word embeddings and embeddings of the POS
tags—see section 5 for a description of our embed-
ding procedure. The words were embedded in a
200 or 150 dimensional vector spaces and the POS
tags were embedded in a 8 dimensional vector
space. We pruned the tweets to have 40 words,
padding shorter sentences with a zero vector. The
embeddings form the input layer.

Next we describe the sub-model architecture;
the embeddings were fed to a bi-directional GRU
layer of dimension 200. Inspired by the attention
mechanism introduced in Bahdanau et al. (2014),
we extracted the hidden states of the GRU layer;
each state corresponds to a decoded word in the
GRU as it reads each tweet word by word. The
hidden states were arranged in a matrix of dimen-
sion 40 × 400 for each tweet (bi-directionality of
the GRU layer contributes a factor of 2). We fed
the hidden states to a CNN layer, instead of a
weighted sum as in the original paper. We used 6
filter sizes [1, 2, 3, 4, 5, 6], with 100 filters for each
size. After a max-pooling layer we concatenated
all outputs, creating a 600 dimensional vector.
Next was a fully connected layer of size 30 with
tanh activation, and finally a fully connected layer
of size 3 with a softmax activation function.

We defined 4 such sub-models with embedding
inputs of the following settings: w2v-200, w2v-
150, ft-200, ft-150 (ft=FastText, w2v=Word2Vec,
see discussion in the next section). We combined
the four sub-models by extracting their hidden d =
30 layer and concatenating them. Next we added a
fully connected d = 25 layer with tanh activation
and a final fully connected layer of size 3. See
figure 1 for an illustration of the entire architec-
ture. We used the AdaGrad optimizer (Duchi et al.,
2011) and a cross-entropy loss function. We used
the Keras library (Chollet et al., 2015) and the
TensorFlow framework (Abadi et al., 2016).

219

GRU
(F)

GRU
(F)

GRU
(F)

GRU
(F)

GRU
(B)

GRU
(B)

GRU
(B)

GRU
(B)

What
a

wonderful

day

Sentence Embedding
40x208

d=200 d=8

Bi-directional GRU
d=200

Hidden States
(40x2)x200

100 Filters
6 Sizes

d=600

Pool-Max +
Concat.

d=30

d=3

Fully connected
layers

Mini Amobee Sentiment Classifier (ASC)

Mini-ASC
FT-200

Mini-ASC
FT-150

Mini-ASC
W2V-200

Mini-ASC
W2V-150

d=25

d=3

d=120

Concatenation
of hidden layers

Fully connected
layers

Figure 1: Architecture of the ASC nework. Each of the four sub-models on the right has the same structure as depicted in the
central region.

Original @USAIRWAYS is right :-) ! Flying in September #NiceToFly

Simple Cleaning twitter-entity is right happy-smily ! flying in september nice to fly

Complex Cleaning twitter-entity be right happy-smily ! fly in date pleasant to fly

Table 1: An example of a tweet processing, producing two cleaned versions.

5 Embeddings Training

Word embedding is a family of techniques in
which words are encoded as real-valued vectors of
lower dimensionality. These word representations
have been used successfully in sentiment analysis
tasks in recent years. Among the popular algo-
rithms are Word2Vec (Mikolov et al., 2013) and
FastText (Bojanowski et al., 2016).

Word embeddings are useful representations
of words and can uncover hidden relationships.
However, one disadvantage they have is the typical
lack of sentiment information. For example, the
word vector “good” can be very close to the
word vector “bad” in some trained, off-the-shelf
word embeddings. Our goal was to train word
embeddings based on Twitter data and then re-
learn them so they will contain emotion-specific
sentiment.

We started with our 200 million tweets dataset;
we cleaned them using the pre-processing pipeline
(described in section 3) and then trained generic
embeddings using the Gensim package (Řehůřek
and Sojka, 2010); we created four embeddings for
the words and two embeddings for the POS tags:
for each sentence we created a list of correspond-
ing POS tags (there are 25 tags offered by the tag-
ger we used); treating the tags as words, we trained
d = 8 embeddings using the word2vec algorithm
on the simple and complex cleaned datasets. The
embeddings parameters are specified in table 2.

Following Tang et al. (2014); Cliche (2017),

who explored training word embeddings for sen-
timent classification, we employed a similar ap-
proach. We created distant supervision datasets,
first, by manually compiling 4 lists of represen-
tative words for each emotion: anger, fear, joy
and sadness; then, we built two datasets for each
emotion: the first containing tweets with the rep-
resentative words and the second does not. Each
list contained about 40 words and each dataset
contained roughly 2 million tweets. We used the
ASC sub-model architecture (section 4) to train
as following: training for one epoch with embed-
dings set to be untrainable (fixed). Then train for
6 epochs where the embeddings can change.

Overall we trained 16 word embeddings—4
embedding configurations for each emotion. In
addition, we decided to use the trained models’
final hidden layer (d = 15) as a feature vector in
the task-specific architectures; our motivation was
using them as emotion and intensity classifiers via
transfer learning.

Algorithm Dimension Dataset

W
or

ds

Word2Vec 200 Simple

Word2Vec 150 Complex

FastText 200 Simple

FastText 150 Complex

Ta
gs Word2Vec 200 Simple

Word2Vec 150 Complex

Table 2: Parameters for the word and POS tag embeddings.

220

6 Features Description

In addition to our ASC models, we extracted
semantic and syntactic features, based on domain
knowledge:

• Number of magnifier and diminisher words,
e.g. “incredibly”, “hardly” in each tweet.

• Logarithm of length of sentences.

• Existence of elongated words, e.g.
“wowww”.

• Fully capitalized words.

• The symbols #,@ appearing in the sentence.

• Predictions of external packages: Vader (part
of the NLTK library, Hutto and Gilbert, 2014)
and TextBlob (Loria et al., 2014).

Additionally, we compiled a list of 338 emojis
and words in 16 categories of emotion, annotated
with scores from the set {0.5, 1, 1.5, 2}. For each
sentence, we summed up the scores in each cate-
gory, up to a maximum value of 5, generating 16
features. The categories are: anger, disappointed,
fear, hopeful, joy, lonely, love, negative, neutral,
positive, sadness and surprise. Finally, we used
the NRC Affect Intensity lexicon (Mohammad,
2017) containing 5814 entries; each entry is a
word with a score between 0 and 1 for a given
emotion out of the following: anger, fear, joy and
sadness. We used the lexicon to produce 4 emotion
features from hashtags in the tweets; each feature
contained the largest score of all the hashtags in
the tweet. For a summary of all features used, see
table 6 in the appendix.

7 Experiments

Our general workflow for the tasks is as follows:
for each sub-task, we started by cleaning the
datasets, obtaining two cleaned versions. We
ran a pipeline that produced all the features we
designed: the ASC predictions and the features
described in section 6. We removed sparse fea-
tures (less than 8 samples). Next, we defined
a shallow neural network with a soft-voting en-
semble. We chose the best features and meta-
parameters—such as learning rate, batch size and
number of epochs—based on the dev dataset. Fi-
nally, we generated predictions for the regression
tasks. For the classification tasks, we used a
grid search method on the regression predictions

Task Metric Score Ranking

V-oc-Spanish

Pearson

0.765 1/14

V-reg-Spanish 0.770 2/14

V-oc 0.813 3/37

EI-oc Average 0.646 4/39

V-reg 0.843 5/38

E-c Jaccard 0.566 6/35

EI-reg Average Pearson 0.721 13/48

Table 3: Summary of results.

to optimize the loss. Most model trainings were
conducted on a local machine equipped with a
Nvidia GTX 1080 Ti GPU. Our official results are
summarized in table 3.

7.1 Valence Prediction

In the valence sub-tasks, we identified how intense
a general sentiment (valence) is; the score is either
in a continuous scale between 0 and 1 or classified
into 7 ordinal classes {−3,−2,−1, 0, 1, 2, 3}, and
is evaluated using the Pearson correlation coeffi-
cient.

We started with the regression task and defined
the following model: first, we normalized the
features to have zero mean and SD = 1. Then, we
inserted 300 instances of fully connected layers of
size 3, with a softmax activation and no bias term.
For each copy, we applied the function f(x) =
(x0 − x2) /2 + 0.5 where x0, x2 are the 1st and
3rd component of each hidden layer. Our aim was
transforming the label predictions of the ASCs
(trained on 3-label based sentiment annotation)
into a regression score such that high certainty in
either label (negative, neutral or positive) would
produce scores close to 0, 0.5 or 1, respectively.
Finally, we calculated the mean of all 300 predic-
tion to get the final node; this is also known as
a soft-voting ensemble. We used the Adam opti-
mizer (Kingma and Ba, 2014) with default values,
mean-square-error loss function, batch size of 400
and 65 epochs of training. For an illustration of
the network, see figure 2. We experimented with
the dev dataset, testing different subsets of the
features. Finally we produced predictions for the
regression sub-task V-reg.

We analyzed the relative contribution of each
feature by measuring variable importance using
Pratt (1987) approach. We calculated scores di for
each feature using the following formula: di =
β̂i ρ̂i/R

2 where β̂i denotes the sample estimation

221

N=300
d=3

mean

d=212

f
<latexit sha1_base64="wWRcYJ4yewmD9i11Lh20yCHTR8M=">AAAB53icbZDNSsNAFIVv6l+tVasu3QyK4KoktcV2V3DjsgVrC20ok+mkHTuZhJmJUEKfwI0LFbe+hc/hzp2P4jQp4t+BgY9z7+XeOV7EmdK2/W7lVlbX1jfym4Wt4vbObmlv/1qFsSS0Q0Ieyp6HFeVM0I5mmtNeJCkOPE673vRiUe/eUqlYKK70LKJugMeC+Yxgbay2Pywd22U7FfoLzhKOm8XX9gcAtIalt8EoJHFAhSYcK9V37Ei7CZaaEU7nhUGsaITJFI9p36DAAVVukh46RyfGGSE/lOYJjVL3+0SCA6VmgWc6A6wn6ndtYf5X68far7sJE1GsqSDZIj/mSIdo8Ws0YpISzWcGMJHM3IrIBEtMtMmmkIZw5jTsWh1lUG0soVb9CqFTKTfKdtuEUYFMeTiEIzgFB86hCZfQgg4QoHAHD/Bo3Vj31pP1nLXmrOXMAfyQ9fIJSSmPJQ==</latexit><latexit sha1_base64="tbz6j6jREQMPDdobucsXKste27U=">AAAB53icbZBNSwJBGMeftTczK6tjEEMSdJLVlPQmdOmo0Kagi8yOszo5+8LMbCCLx05dOlR07Vv4Obr1GfoSjbsSvf1h4Mf/eR6eZ/5OyJlUpvluZFZW19Y3spu5rfz2zm5hb/9aBpEg1CIBD0TXwZJy5lNLMcVpNxQUew6nHWdysah3bqmQLPCv1DSktodHPnMZwUpbbXdQKJolMxH6C+UlFJv5efvj7mjeGhTe+sOARB71FeFYyl7ZDJUdY6EY4XSW60eShphM8Ij2NPrYo9KOk0Nn6EQ7Q+QGQj9focT9PhFjT8qp5+hOD6ux/F1bmP/VepFy63bM/DBS1CfpIjfiSAVo8Ws0ZIISxacaMBFM34rIGAtMlM4ml4RwVm6YtTpKodpYQq36FYJVKTVKZluHUYFUWTiEYziFMpxDEy6hBRYQoHAPj/Bk3BgPxrPxkrZmjOXMAfyQ8foJJgiQiw==</latexit><latexit sha1_base64="tbz6j6jREQMPDdobucsXKste27U=">AAAB53icbZBNSwJBGMeftTczK6tjEEMSdJLVlPQmdOmo0Kagi8yOszo5+8LMbCCLx05dOlR07Vv4Obr1GfoSjbsSvf1h4Mf/eR6eZ/5OyJlUpvluZFZW19Y3spu5rfz2zm5hb/9aBpEg1CIBD0TXwZJy5lNLMcVpNxQUew6nHWdysah3bqmQLPCv1DSktodHPnMZwUpbbXdQKJolMxH6C+UlFJv5efvj7mjeGhTe+sOARB71FeFYyl7ZDJUdY6EY4XSW60eShphM8Ij2NPrYo9KOk0Nn6EQ7Q+QGQj9focT9PhFjT8qp5+hOD6ux/F1bmP/VepFy63bM/DBS1CfpIjfiSAVo8Ws0ZIISxacaMBFM34rIGAtMlM4ml4RwVm6YtTpKodpYQq36FYJVKTVKZluHUYFUWTiEYziFMpxDEy6hBRYQoHAPj/Bk3BgPxrPxkrZmjOXMAfyQ8foJJgiQiw==</latexit><latexit sha1_base64="tbz6j6jREQMPDdobucsXKste27U=">AAAB53icbZBNSwJBGMeftTczK6tjEEMSdJLVlPQmdOmo0Kagi8yOszo5+8LMbCCLx05dOlR07Vv4Obr1GfoSjbsSvf1h4Mf/eR6eZ/5OyJlUpvluZFZW19Y3spu5rfz2zm5hb/9aBpEg1CIBD0TXwZJy5lNLMcVpNxQUew6nHWdysah3bqmQLPCv1DSktodHPnMZwUpbbXdQKJolMxH6C+UlFJv5efvj7mjeGhTe+sOARB71FeFYyl7ZDJUdY6EY4XSW60eShphM8Ij2NPrYo9KOk0Nn6EQ7Q+QGQj9focT9PhFjT8qp5+hOD6ux/F1bmP/VepFy63bM/DBS1CfpIjfiSAVo8Ws0ZIISxacaMBFM34rIGAtMlM4ml4RwVm6YtTpKodpYQq36FYJVKTVKZluHUYFUWTiEYziFMpxDEy6hBRYQoHAPj/Bk3BgPxrPxkrZmjOXMAfyQ8foJJgiQiw==</latexit><latexit sha1_base64="tbz6j6jREQMPDdobucsXKste27U=">AAAB53icbZBNSwJBGMeftTczK6tjEEMSdJLVlPQmdOmo0Kagi8yOszo5+8LMbCCLx05dOlR07Vv4Obr1GfoSjbsSvf1h4Mf/eR6eZ/5OyJlUpvluZFZW19Y3spu5rfz2zm5hb/9aBpEg1CIBD0TXwZJy5lNLMcVpNxQUew6nHWdysah3bqmQLPCv1DSktodHPnMZwUpbbXdQKJolMxH6C+UlFJv5efvj7mjeGhTe+sOARB71FeFYyl7ZDJUdY6EY4XSW60eShphM8Ij2NPrYo9KOk0Nn6EQ7Q+QGQj9focT9PhFjT8qp5+hOD6ux/F1bmP/VepFy63bM/DBS1CfpIjfiSAVo8Ws0ZIISxacaMBFM34rIGAtMlM4ml4RwVm6YtTpKodpYQq36FYJVKTVKZluHUYFUWTiEYziFMpxDEy6hBRYQoHAPj/Bk3BgPxrPxkrZmjOXMAfyQ8foJJgiQiw==</latexit>

f
<latexit sha1_base64="wWRcYJ4yewmD9i11Lh20yCHTR8M=">AAAB53icbZDNSsNAFIVv6l+tVasu3QyK4KoktcV2V3DjsgVrC20ok+mkHTuZhJmJUEKfwI0LFbe+hc/hzp2P4jQp4t+BgY9z7+XeOV7EmdK2/W7lVlbX1jfym4Wt4vbObmlv/1qFsSS0Q0Ieyp6HFeVM0I5mmtNeJCkOPE673vRiUe/eUqlYKK70LKJugMeC+Yxgbay2Pywd22U7FfoLzhKOm8XX9gcAtIalt8EoJHFAhSYcK9V37Ei7CZaaEU7nhUGsaITJFI9p36DAAVVukh46RyfGGSE/lOYJjVL3+0SCA6VmgWc6A6wn6ndtYf5X68far7sJE1GsqSDZIj/mSIdo8Ws0YpISzWcGMJHM3IrIBEtMtMmmkIZw5jTsWh1lUG0soVb9CqFTKTfKdtuEUYFMeTiEIzgFB86hCZfQgg4QoHAHD/Bo3Vj31pP1nLXmrOXMAfyQ9fIJSSmPJQ==</latexit><latexit sha1_base64="tbz6j6jREQMPDdobucsXKste27U=">AAAB53icbZBNSwJBGMeftTczK6tjEEMSdJLVlPQmdOmo0Kagi8yOszo5+8LMbCCLx05dOlR07Vv4Obr1GfoSjbsSvf1h4Mf/eR6eZ/5OyJlUpvluZFZW19Y3spu5rfz2zm5hb/9aBpEg1CIBD0TXwZJy5lNLMcVpNxQUew6nHWdysah3bqmQLPCv1DSktodHPnMZwUpbbXdQKJolMxH6C+UlFJv5efvj7mjeGhTe+sOARB71FeFYyl7ZDJUdY6EY4XSW60eShphM8Ij2NPrYo9KOk0Nn6EQ7Q+QGQj9focT9PhFjT8qp5+hOD6ux/F1bmP/VepFy63bM/DBS1CfpIjfiSAVo8Ws0ZIISxacaMBFM34rIGAtMlM4ml4RwVm6YtTpKodpYQq36FYJVKTVKZluHUYFUWTiEYziFMpxDEy6hBRYQoHAPj/Bk3BgPxrPxkrZmjOXMAfyQ8foJJgiQiw==</latexit><latexit sha1_base64="tbz6j6jREQMPDdobucsXKste27U=">AAAB53icbZBNSwJBGMeftTczK6tjEEMSdJLVlPQmdOmo0Kagi8yOszo5+8LMbCCLx05dOlR07Vv4Obr1GfoSjbsSvf1h4Mf/eR6eZ/5OyJlUpvluZFZW19Y3spu5rfz2zm5hb/9aBpEg1CIBD0TXwZJy5lNLMcVpNxQUew6nHWdysah3bqmQLPCv1DSktodHPnMZwUpbbXdQKJolMxH6C+UlFJv5efvj7mjeGhTe+sOARB71FeFYyl7ZDJUdY6EY4XSW60eShphM8Ij2NPrYo9KOk0Nn6EQ7Q+QGQj9focT9PhFjT8qp5+hOD6ux/F1bmP/VepFy63bM/DBS1CfpIjfiSAVo8Ws0ZIISxacaMBFM34rIGAtMlM4ml4RwVm6YtTpKodpYQq36FYJVKTVKZluHUYFUWTiEYziFMpxDEy6hBRYQoHAPj/Bk3BgPxrPxkrZmjOXMAfyQ8foJJgiQiw==</latexit><latexit sha1_base64="tbz6j6jREQMPDdobucsXKste27U=">AAAB53icbZBNSwJBGMeftTczK6tjEEMSdJLVlPQmdOmo0Kagi8yOszo5+8LMbCCLx05dOlR07Vv4Obr1GfoSjbsSvf1h4Mf/eR6eZ/5OyJlUpvluZFZW19Y3spu5rfz2zm5hb/9aBpEg1CIBD0TXwZJy5lNLMcVpNxQUew6nHWdysah3bqmQLPCv1DSktodHPnMZwUpbbXdQKJolMxH6C+UlFJv5efvj7mjeGhTe+sOARB71FeFYyl7ZDJUdY6EY4XSW60eShphM8Ij2NPrYo9KOk0Nn6EQ7Q+QGQj9focT9PhFjT8qp5+hOD6ux/F1bmP/VepFy63bM/DBS1CfpIjfiSAVo8Ws0ZIISxacaMBFM34rIGAtMlM4ml4RwVm6YtTpKodpYQq36FYJVKTVKZluHUYFUWTiEYziFMpxDEy6hBRYQoHAPj/Bk3BgPxrPxkrZmjOXMAfyQ8foJJgiQiw==</latexit><latexit sha1_base64="tbz6j6jREQMPDdobucsXKste27U=">AAAB53icbZBNSwJBGMeftTczK6tjEEMSdJLVlPQmdOmo0Kagi8yOszo5+8LMbCCLx05dOlR07Vv4Obr1GfoSjbsSvf1h4Mf/eR6eZ/5OyJlUpvluZFZW19Y3spu5rfz2zm5hb/9aBpEg1CIBD0TXwZJy5lNLMcVpNxQUew6nHWdysah3bqmQLPCv1DSktodHPnMZwUpbbXdQKJolMxH6C+UlFJv5efvj7mjeGhTe+sOARB71FeFYyl7ZDJUdY6EY4XSW60eShphM8Ij2NPrYo9KOk0Nn6EQ7Q+QGQj9focT9PhFjT8qp5+hOD6ux/F1bmP/VepFy63bM/DBS1CfpIjfiSAVo8Ws0ZIISxacaMBFM34rIGAtMlM4ml4RwVm6YtTpKodpYQq36FYJVKTVKZluHUYFUWTiEYziFMpxDEy6hBRYQoHAPj/Bk3BgPxrPxkrZmjOXMAfyQ8foJJgiQiw==</latexit>

f
<latexit sha1_base64="wWRcYJ4yewmD9i11Lh20yCHTR8M=">AAAB53icbZDNSsNAFIVv6l+tVasu3QyK4KoktcV2V3DjsgVrC20ok+mkHTuZhJmJUEKfwI0LFbe+hc/hzp2P4jQp4t+BgY9z7+XeOV7EmdK2/W7lVlbX1jfym4Wt4vbObmlv/1qFsSS0Q0Ieyp6HFeVM0I5mmtNeJCkOPE673vRiUe/eUqlYKK70LKJugMeC+Yxgbay2Pywd22U7FfoLzhKOm8XX9gcAtIalt8EoJHFAhSYcK9V37Ei7CZaaEU7nhUGsaITJFI9p36DAAVVukh46RyfGGSE/lOYJjVL3+0SCA6VmgWc6A6wn6ndtYf5X68far7sJE1GsqSDZIj/mSIdo8Ws0YpISzWcGMJHM3IrIBEtMtMmmkIZw5jTsWh1lUG0soVb9CqFTKTfKdtuEUYFMeTiEIzgFB86hCZfQgg4QoHAHD/Bo3Vj31pP1nLXmrOXMAfyQ9fIJSSmPJQ==</latexit><latexit sha1_base64="tbz6j6jREQMPDdobucsXKste27U=">AAAB53icbZBNSwJBGMeftTczK6tjEEMSdJLVlPQmdOmo0Kagi8yOszo5+8LMbCCLx05dOlR07Vv4Obr1GfoSjbsSvf1h4Mf/eR6eZ/5OyJlUpvluZFZW19Y3spu5rfz2zm5hb/9aBpEg1CIBD0TXwZJy5lNLMcVpNxQUew6nHWdysah3bqmQLPCv1DSktodHPnMZwUpbbXdQKJolMxH6C+UlFJv5efvj7mjeGhTe+sOARB71FeFYyl7ZDJUdY6EY4XSW60eShphM8Ij2NPrYo9KOk0Nn6EQ7Q+QGQj9focT9PhFjT8qp5+hOD6ux/F1bmP/VepFy63bM/DBS1CfpIjfiSAVo8Ws0ZIISxacaMBFM34rIGAtMlM4ml4RwVm6YtTpKodpYQq36FYJVKTVKZluHUYFUWTiEYziFMpxDEy6hBRYQoHAPj/Bk3BgPxrPxkrZmjOXMAfyQ8foJJgiQiw==</latexit><latexit sha1_base64="tbz6j6jREQMPDdobucsXKste27U=">AAAB53icbZBNSwJBGMeftTczK6tjEEMSdJLVlPQmdOmo0Kagi8yOszo5+8LMbCCLx05dOlR07Vv4Obr1GfoSjbsSvf1h4Mf/eR6eZ/5OyJlUpvluZFZW19Y3spu5rfz2zm5hb/9aBpEg1CIBD0TXwZJy5lNLMcVpNxQUew6nHWdysah3bqmQLPCv1DSktodHPnMZwUpbbXdQKJolMxH6C+UlFJv5efvj7mjeGhTe+sOARB71FeFYyl7ZDJUdY6EY4XSW60eShphM8Ij2NPrYo9KOk0Nn6EQ7Q+QGQj9focT9PhFjT8qp5+hOD6ux/F1bmP/VepFy63bM/DBS1CfpIjfiSAVo8Ws0ZIISxacaMBFM34rIGAtMlM4ml4RwVm6YtTpKodpYQq36FYJVKTVKZluHUYFUWTiEYziFMpxDEy6hBRYQoHAPj/Bk3BgPxrPxkrZmjOXMAfyQ8foJJgiQiw==</latexit><latexit sha1_base64="tbz6j6jREQMPDdobucsXKste27U=">AAAB53icbZBNSwJBGMeftTczK6tjEEMSdJLVlPQmdOmo0Kagi8yOszo5+8LMbCCLx05dOlR07Vv4Obr1GfoSjbsSvf1h4Mf/eR6eZ/5OyJlUpvluZFZW19Y3spu5rfz2zm5hb/9aBpEg1CIBD0TXwZJy5lNLMcVpNxQUew6nHWdysah3bqmQLPCv1DSktodHPnMZwUpbbXdQKJolMxH6C+UlFJv5efvj7mjeGhTe+sOARB71FeFYyl7ZDJUdY6EY4XSW60eShphM8Ij2NPrYo9KOk0Nn6EQ7Q+QGQj9focT9PhFjT8qp5+hOD6ux/F1bmP/VepFy63bM/DBS1CfpIjfiSAVo8Ws0ZIISxacaMBFM34rIGAtMlM4ml4RwVm6YtTpKodpYQq36FYJVKTVKZluHUYFUWTiEYziFMpxDEy6hBRYQoHAPj/Bk3BgPxrPxkrZmjOXMAfyQ8foJJgiQiw==</latexit><latexit sha1_base64="tbz6j6jREQMPDdobucsXKste27U=">AAAB53icbZBNSwJBGMeftTczK6tjEEMSdJLVlPQmdOmo0Kagi8yOszo5+8LMbCCLx05dOlR07Vv4Obr1GfoSjbsSvf1h4Mf/eR6eZ/5OyJlUpvluZFZW19Y3spu5rfz2zm5hb/9aBpEg1CIBD0TXwZJy5lNLMcVpNxQUew6nHWdysah3bqmQLPCv1DSktodHPnMZwUpbbXdQKJolMxH6C+UlFJv5efvj7mjeGhTe+sOARB71FeFYyl7ZDJUdY6EY4XSW60eShphM8Ij2NPrYo9KOk0Nn6EQ7Q+QGQj9focT9PhFjT8qp5+hOD6ux/F1bmP/VepFy63bM/DBS1CfpIjfiSAVo8Ws0ZIISxacaMBFM34rIGAtMlM4ml4RwVm6YtTpKodpYQq36FYJVKTVKZluHUYFUWTiEYziFMpxDEy6hBRYQoHAPj/Bk3BgPxrPxkrZmjOXMAfyQ8foJJgiQiw==</latexit>

Figure 2: Architecture of the final classifier in the valence
sub-tasks, where f = (x0 − x2) /2 + 0.5 and the input
dimension is 212 for the V-reg sub-task.

of the feature, ρ̂i is the simple correlation be-
tween the labels and the ith feature and R2 is
the coefficient of determination (see Thomas et al.
1998). We present the relative contribution of each
feature in figure 3 and the top 10 features in table
4. We can see that the ASC models, both general
and emotion-specific, contributed about 72% of
the total contribution made by all features, in this
sub-task.

For the ordinal classification task, we used the
predictions of the regression task on the sentences,
which were the same in both tasks. Using a
grid search method, we partitioned the regression
scores into 7 categories such that the Pearson cor-
relation coefficient was maximized. We submitted
the classes predictions as sub-task V-oc. Our final
scores were 0.843, 0.813 in the regression and
classification sub-tasks, respectively.

Name Dim. %

ASC anger 25 31.38%

ASC 25 18.92%

ASC fear 25 10.63%

ASC joy 25 8.13%

W2V 200 sadness 15 7.10%

W2V 200 fear 15 3.82%

ASC sadness 25 3.46%

W2V 200 joy 15 1.74%

Blob 1 1.64%

Joy 1 1.60%

Table 4: Relative contribution of features in the valence
regression sub-task.

EI-reg Anger Fear Joy Sadness

Features 204 274 150 181

Learning rate 10−4 10−5 10−5 3 · 10−5

Epochs 330 700 700 1000

Table 5: Summary of training parameters for the emotion
intensity regression tasks.

7.2 Emotion Intensity

In the emotion intensity sub-tasks, we identified
how intense a given emotion is in the given
tweets. The four emotions were: anger, fear,
joy and sadness; the score is either in a scale
between 0 and 1 or classified into 4 ordinal classes
{0, 1, 2, 3}. Performance was evaluated using the
Pearson correlation coefficient. Our approach was
similar to the valence tasks; first we generated
features, then we used the same architecture as
in the valence sub-tasks, depicted in figure 2.
However, in these sub-tasks we used the emotion-
specific embeddings for each emotion sub-task.
We generated regression predictions and submit-
ted them as the EI-reg sub-tasks; finally we carried
a grid search for the best partition, maximizing
the Pearson correlation and submitted the classes
predictions as sub-tasks EI-oc. For a summary of
the training parameters used in the regression sub-
tasks, see table 5.

Our system performed as following: in the
regression tasks, the scores were: 0.748, 0.670,
0.748, 0.721 for the anger, fear, joy and sadness,
respectively, with a macro-average of 0.721. In the
classification tasks, the scores were: 0.667, 0.536,
0.705, 0.673 for the anger, fear, joy and sadness,
respectively, with a macro-average of 0.646.

7.3 Multi-label Classification

In the multi-label classification sub-task, we had
to label tweets with respect to 11 emotions: anger,
anticipation, disgust, fear, joy, love, optimism,
pessimism, sadness, surprise and trust. The score
was evaluated using the Jaccard similarity coef-
ficient. We started with the same cleaning and
feature-generation pipelines as before, creating
an input layer of size 217. We added a fully
connected layer of size 100 with tanh activation.
Next there were 300 instances of fully connected
layers of size 11 with sigmoid activation function.
We calculated the mean of all d = 11 vectors,
producing the final d = 11 vector. For an illus-
tration, see figure 4 for an illustration. We used

222

ASC_an
ger ASC

ASC_fe
ar

ASC_jo
y

w2v_2
00_sa

dness

w2v_2
00_fe

ar

ASC_sa
dness

w2v_2
00_jo

y
blob joy

hash
_jo

y

hash
_sa

dness

posi
tive

sad
ness

hash
_an

ger
anger

w2v_2
00_an

ger

hash
_fe

ar

negativ
e

lov
e

joy
1

fea
r

disa
ppoin

ted
neutra

l
vad

er
lon

ely hash cap
s

mag dim
len

gth at
iron

y
lon

g

Features

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Pe
rc

en
ta

ge

Figure 3: Relative contribution of features in the valence regression sub-task.

300 copies
d=11

mean

d=217

d=100

d=11

Figure 4: Architecture of the multi-label sub-task E-c.

the following loss function, based on Tanimoto
distance: L(y, ỹ) = 1− y·ỹ

‖y+ỹ‖1−y·ỹ+ε ,where ‖·‖1
is an L1 norm and ε = 10−7 is used for numerical
stability. We trained with a batch size of 10, for
40 epochs with Adam optimization with default
parameters. Our final score was 0.566.

7.4 Spanish Valence Tasks

We participated in the Spanish valence tasks to
examine the current state of neural machine trans-
lation (NMT) algorithms. We used the Google
Cloud Translation API to translate the Spanish
training, development and test datasets for the two
valence tasks from Spanish to English. We then
treated the tasks the same way as the English
valence tasks, using the same cleaning and feature
extraction pipelines and the same architecture de-
scribed in section 7.1 to generate regression and
classification predictions. We reached 1st and
2nd places in the classification and regression sub-
tasks, with scores of 0.765, 0.770, respectively.

8 Review and Conclusions

In this paper we described the system developed
to participate in the Semeval 2018 task 1 work-
shop. We reached 3rd place in the valence ordinal
classification sub-task and 5th place in the valence
regression sub-task. In the Spanish valence tasks,
we reached 1st and 2nd places in the classification
and regression sub-tasks, respectively. In the
emotions intensity sub-tasks we reached 4th and
13th places in the classification and regression
sub-tasks, respectively.

Summarizing the methods used: training of
word embeddings based on a Twitter corpus
(200M tweets), developing and using Amobee
sentiment classifier (ASC) architecture—a bi-
directional GRU layer with a CNN-based attention
mechanism and an additional hidden layer—used
to adjust the embeddings to include emotional
context, and finally a shallow feed-forward NN
with a stack-based ensemble of final hidden layers
from all previous classifiers we trained. This form
of transfer learning proved to be important, as
the hidden layers features achieved a significant
contribution to minimizing the loss.

Overall, we had better performance in the va-
lence tasks, both in English and Spanish. We posit
this is due to the fact our annotated supervised
training dataset (non task-specific) was based on
Semeval 2017 task 4, which focused on valence
classification. In addition, the annotations in Se-
meval 2017 were label-based, lending themselves
more easily to the ordinal classification tasks. In
the Spanish tasks, we used external translation
(Google API) and achieved good results without
the use of Spanish-specific features.

Acknowledgment

We thank Zohar Kelrich for assisting in translating
the Spanish datasets to English.

223

References
Martı́n Abadi, Paul Barham, Jianmin Chen, Zhifeng

Chen, Andy Davis, Jeffrey Dean, Matthieu Devin,
Sanjay Ghemawat, Geoffrey Irving, Michael Isard,
et al. 2016. Tensorflow: A system for large-scale
machine learning. In OSDI, volume 16, pages 265–
283.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua
Bengio. 2014. Neural machine translation by
jointly learning to align and translate. CoRR,
abs/1409.0473.

Piotr Bojanowski, Edouard Grave, Armand Joulin,
and Tomas Mikolov. 2016. Enriching word vec-
tors with subword information. arXiv preprint
arXiv:1607.04606.

KyungHyun Cho, Bart van Merrienboer, Dzmitry Bah-
danau, and Yoshua Bengio. 2014. On the properties
of neural machine translation: Encoder-decoder ap-
proaches. CoRR, abs/1409.1259.

François Chollet et al. 2015. Keras. https://
github.com/keras-team/keras.

Mathieu Cliche. 2017. Bb twtr at semeval-2017 task
4: Twitter sentiment analysis with cnns and lstms.
arXiv preprint arXiv:1704.06125.

John Duchi, Elad Hazan, and Yoram Singer. 2011.
Adaptive subgradient methods for online learning
and stochastic optimization. Journal of Machine
Learning Research, 12(Jul):2121–2159.

C.J. Hutto and E.E. Gilbert. 2014. Vader: A parsimo-
nious rule-based model for sentiment analysis of so-
cial media text. In Eighth International Conference
on Weblogs and Social Media (ICWSM-14), Ann
Arbor, MI.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Steven Loria, P Keen, M Honnibal, R Yankovsky,
D Karesh, E Dempsey, et al. 2014. Textblob:
simplified text processing. Secondary TextBlob:
Simplified Text Processing.

Christopher D. Manning, Mihai Surdeanu, John Bauer,
Jenny Finkel, Steven J. Bethard, and David Mc-
Closky. 2014. The Stanford CoreNLP natural lan-
guage processing toolkit. In Association for Compu-
tational Linguistics (ACL) System Demonstrations,
pages 55–60.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S
Corrado, and Jeff Dean. 2013. Distributed represen-
tations of words and phrases and their composition-
ality. In C. J. C. Burges, L. Bottou, M. Welling,
Z. Ghahramani, and K. Q. Weinberger, editors,
Advances in Neural Information Processing Systems
26, pages 3111–3119. Curran Associates, Inc.

Saif M Mohammad. 2017. Word affect intensities.
arXiv preprint arXiv:1704.08798.

Saif M. Mohammad, Felipe Bravo-Marquez, Mo-
hammad Salameh, and Svetlana Kiritchenko. 2018.
Semeval-2018 Task 1: Affect in tweets. In Proceed-
ings of International Workshop on Semantic Evalu-
ation (SemEval-2018), New Orleans, LA, USA.

Saif M. Mohammad and Svetlana Kiritchenko. 2018.
Understanding emotions: A dataset of tweets to
study interactions between affect categories. In
Proceedings of the 11th Edition of the Language
Resources and Evaluation Conference, Miyazaki,
Japan.

Olutobi Owoputi, Brendan O’Connor, Chris Dyer,
Kevin Gimpel, Nathan Schneider, and Noah A
Smith. 2013. Improved part-of-speech tagging for
online conversational text with word clusters. Asso-
ciation for Computational Linguistics.

John W Pratt. 1987. Dividing the indivisible: Using
simple symmetry to partition variance explained. In
Proceedings of the second international Tampere
conference in statistics, 1987, pages 245–260. De-
partment of Mathematical Sciences, University of
Tampere.

Radim Řehůřek and Petr Sojka. 2010. Software
Framework for Topic Modelling with Large Cor-
pora. In Proceedings of the LREC 2010 Workshop
on New Challenges for NLP Frameworks, pages 45–
50, Valletta, Malta. ELRA. http://is.muni.
cz/publication/884893/en.

Duyu Tang, Furu Wei, Nan Yang, Ming Zhou, Ting
Liu, and Bing Qin. 2014. Learning sentiment-
specific word embedding for twitter sentiment clas-
sification. In Proceedings of the 52nd Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), volume 1, pages 1555–
1565.

D Roland Thomas, Edward Hughes, and Bruno D
Zumbo. 1998. On variable importance in linear re-
gression. Social Indicators Research, 45(1-3):253–
275.

224

A Features List

List of features used as inputs for the task-specific models.

Name Description Dim.
ASC ASC model hidden layer. 25

ASC x {anger,fear,joy,sadness} Emotion specific ASC hidden layers. 4× 25

at ‘@’ symbol in tweet. 1

blob TextBlob sentiment library. 1

caps Occurrence of all capitalized words. 1

dim Diminisher words. 1

{ft,w2v} x {150,200} x {anger,fear,joy,sadness} Hidden layers of models used to re-train the

embeddings.

4× 4× 15

hash ‘#’ symbol in tweet. 1

hash x {anger,fear,joy,sadness} Affection lexicon of hashtags. 4

irony Occurrence of #irony or #sarcasm hashtags. 1

length Logarithm of sentence length. 1

long Elongated words, ‘wowwww’. 1

mag Magnifiers. 1

vader Vader sentiment library. 3

negative Negative emojis. 1

neutral Neutral emojis. 1

positive Positive emojis. 1

anger/1

Detection of emojis and words related to the

given emotion, taken from a manually

annotated list.

2

fear/1 2

joy/1 2

sadness/1 2

love 1

surprise 1

disappointed 1

lonely 1

hopeful 1

Table 6: Complete list of features generated from datasets.

225

Proceedings of the 12th International Workshop on Semantic Evaluation (SemEval-2018), pages 226–230
New Orleans, Louisiana, June 5–6, 2018. ©2018 Association for Computational Linguistics

deepSA2018 at SemEval-2018 Task 1: Multi-task Learning of Different
Label for Affect in Tweets

1Zi-Yuan Gao and 2Chia-Ping Chen
Department of Computer Science and Engineering

National Sun Yat-sen University
Kaohsiung, Taiwan

1m053040030@student.nsysu.edu.tw
2cpchen@cse.nsysu.edu.tw

Abstract

This paper describes our system implementa-
tion for subtask V-oc of SemEval-2018 Task
1: affect in tweets. We use multi-task learn-
ing method to learn shared representation, then
learn the features for each task. There are five
classification models in the proposed multi-
task learning approach. These classification
models are trained sequentially to learn differ-
ent features for different classification tasks.
In addition to the data released for SemEval-
2018, we use datasets from previous SemEvals
during system construction. Our Pearson cor-
relation score is 0.638 on the official SemEval-
2018 Task 1 test set.

1 Introduction

In recent years, people began to study how to cre-
ate computational systems that process and under-
stand the human languages. Today, people share
their thoughts on social networks of the Internet,
e.g. Facebook, Line, Twitter and so on. Thus, if
the messages in the textual contents of social net-
works can be extracted and summarized automat-
ically via algorithms, it is possible to learn what
people are interested in or are concerned with,
and use such information to predict future market
trends.

Here we continue our previous works on the
task 4 of SemEval-2017: Sentiment Analysis in
Twitter (Rosenthal et al., 2017). SemEval-2017
subtask 4A is similar to task 1 of SemEval-2018:
Affect in Tweets (Mohammad et al., 2018). They
are challenging tasks as the messages on Twitter,
called tweets, are short and informal. Further-
more, in addition to noisy or incomplete texts, the
emotional content of a tweet can be ambiguous
and subjective.

Affect in Tweets is an expanded version
of WASSA-2017 shared task (Mohammad and
Bravo-Marquez, 2017). The best system in

WASSA-2017 is an ensemble of three sets of ap-
proaches, including feed-forward neural network,
multi-task deep learning and sequence modeling
using CNNs and LSTMs (Goel et al., 2017). They
attempt to use the idea of multi-task learning to ex-
plore the notion of generalized or shared learning
across different emotions. In this paper, we extend
the idea with different label methods.

The rest of this paper is organized as follows. In
Section 2, we introduce our system. In Section 3,
we describe the details of training and experimen-
tal settings. In Section 4, we present the evaluation
results along with our comments.

2 System Description

2.1 Baseline System

Using RNN has become a very common tech-
nique for various NLP tasks. There are many units
for RNN-based model like simple RNN, gated
recurrent units (GRU) (Chung et al., 2014), and
long short-term memory (LSTM) (Hochreiter and
Schmidhuber, 1997). For the baseline, we use
LSTM as unit for its long-range dependency.

Figure 1 shows the architecture of our baseline
system. Our baseline system contains an input
layer, an embedding layer, Bi-LSTM layers and
an output layer. At the input layer, the words of
tweet are pre-processed, and they are treated as
a sequence of words w1, w2, ...wn. Each word is
represented by a one-hot vector, and the size of in-
put layer is equal to the size of word list.

At the embedding layer, each word is converted
to a word vector. We use pre-trained word vector
which are stored in a matrix. Words are mapped
to word vectors by the word embedding matrix. A
word not in the word embedding matrix is repre-
sented by a zero vector.

A Bi-LSTM layer contains h units. We use bidi-
rectional (Schuster and Paliwal, 1997) structure

226

to gather two-way contextual information at each
point. The hidden states from the first word to the
penultimate word in a tweet are connected to the
hidden states of the next word. The state values in
both directions are combined with sum. Only the
last Bi-LSTM states of the last word are connected
to the output layer. Finally, the network output is
converted to probability by a soft-max function.

Figure 1: LSTM-RNN architecture.

2.2 Multi-task Learning
Multi-task learning has been used with success
in applications of machine learning, from natu-
ral language processing (Collobert and Weston,
2008) and speech recognition (Deng et al., 2013).
By sharing representations with related tasks, a
model tends to generalize better on the original
task (Ruder, 2017). In this work, different labels
for the same data are exploited in multi-task learn-
ing.

Figure 2 shows our multi-task learning frame-
work. The overall system is divided into five mod-
els. The Three-class model is trained first, and its
trained parameters are used to initialize the param-
eters in other models. Then we train the Negative,
Neutral, Positive class models, and their trained
parameters are used to initialize the parameters of
the Seven class model. The final output is obtained
from the Seven class model.

Figure 2: Multi-task learning of sentiment classifica-
tion.

Three class model In Three class model, the
tweets are converted to the word vector and
used as the input to Bi-LSTM layer. The
output layer has three units for three classes
{−1, 0, 1}.

Negative class model The Negative class model
has one more Bi-LSTM layer than Three
class model. The output layer has four units
for four classes {−3,−2,−1, other}.

Neutral class model The Neutral class model has
the same architecture as the Negative class
model. The output layer has two units for two
classes {0, other}.

Positive class model The Positive class model
has the same architecture as the Negative
class model. The output layer has four units
for four classes {other, 1, 2, 3}.

Seven class model The Seven class model com-
bines the Bi-LSTM layers of the Negative
class, Neutral class, and Positive class mod-
els. Further, it has one additional Bi-LSTM
layer. The output layer has seven units for
seven classes {−3,−2,−1, 0, 1, 2, 3}. Note
that attention mechanism (Luong et al., 2015;
Wang et al., 2016) is incorporated in this
model.

3 Training

3.1 Data
We use the dataset provided for the SemEval-2018
shared task (Mohammad et al., 2018), which in-
cludes a new dataset and the datasets provided for
SemEval-2017 (Rosenthal et al., 2017). Table 1
summarizes the statistics of these datasets.

3.2 Different Labeling
The SemEval-2017 dataset consists of three-class
data, which is different from the new SemEval-
2018 dataset. In order to exploit SemEval-2017
dataset, we modify the data labels. In the base-
line system, we change the label to±1,±2, or±3.
Adding a lot of data lead to imbalance problem, so
we apply two methods of data balance. Method 1
is that adding data to positive and negative classes
randomly such that they have same size respec-
tively. Method 2 is that adding data to all classes
randomly such that they have 3,000 tweets. Ta-
ble 1 shows the numbers of data points after these
different labeling methods.

227

dataset labels
Negative Neutral Positive

total
-3 -2 -1 0 1 2 3

train-18 - 129 249 78 341 167 92 125 1,181
train-17 - 8,581 18,186 15,219 41,986
train-all to ±1 129 249 8,659 18,527 15,386 92 125 43,167
train-all to ±2 129 8,830 78 18,527 167 15,311 125 43,167
train-all to ±3 8,710 249 78 18,527 167 92 15,344 43,167
train-all bal-method 1 3,013 3,012 3,012 18,527 5,201 5,201 5,201 43,167
train-all bal-method 2 3,000 3,000 3,000 3,000 3,000 3,000 3,000 21,000
dev-18 - 69 95 34 105 58 35 53 449

Table 1: Statistics of our different labeling methods and datasets. train-18 and dev-18 are from SemEval-2018
Task 1. train-17 is from SemEval-2017 task 4. train-all means the merger of the train-18 and train-17 datasets.

3.3 Pre-processing

We begin with basic pre-processing methods
(Yang et al., 2017), e.g. splitting a tweet into
word, replacing URLs and USERs with normal-
ization patterns <URL> and <USER>, and con-
verting uppercase letters to lowercase letters. As
tweets are informal and complex, the basic pre-
processing is too simple to convey enough impor-
tant information.

Tweets often have emoticons and hashtags,
which could be instrumental to sentiment analy-
sis. Thus, we use text processing tool1 (Bazio-
tis et al., 2017) to improve text normalization, in-
cluding sentiment-aware tokenization, spell cor-
rection, word normalization, word segmentation
(for splitting hashtags). and word annotation.

3.4 Early Stopping

The early stopping method is used to prevent over-
fitting when the loss of a development set ceases to
decrease for a few epochs. We randomly take 20%
of SemEval-2018 train data as the development set
for early stopping and the remaining 80% data as
the train set.

3.5 Settings

The maximum length for any tweet in the used
datasets is n = 99. The embedding is based on
a publicly available set of word vectors learned
from 400 million tweets for the ACL WNUT 2015
shared task (Baldwin et al., 2015).

The baseline system uses 4 hidden Bi-LSTM
layers, with 300 neurons in each layer. Dropout
method with probability 0.3 is used to prevent the
model from overfitting (Srivastava et al., 2014).

1github.com/cbaziotis/ekphrasis

In the multi-task learning approach, the num-
bers of neurons in the Bi-LSTM and hidden layers
are [200, 200], [200, 150, 200], [200, 150, 100],
[200, 150, 200], [200, [150, 150, 150], 200, 200]
for the 5 different class models, respectively.

4 Results

4.1 Baseline System
First, we compare the experiments of different la-
beling in baseline system to decide how to use the
train-17 dataset. In baseline system, we use the
basic pre-processing for text normalization. The
results are shown in Table 2. The calculation of
Pearson correlation coefficient (Pcc.) requires cal-
culating the mean value of the data, which is often
close to zero. From the results, labeling to more
distant from zero get the higher Pcc. Therefore,
we use labeling to ±3 method in the multi-task
learning system.

train set labels Pcc. Acc.
train-18 - 0.515 0.298
train-all to ±1 0.572 0.261
train-all to ±2 0.629 0.323
train-all to ±3 0.649 0.347
train-all bal-method 1 0.548 0.303
train-all bal-method 2 0.553 0.347

Table 2: Results of different labeling. Pcc. means
the pearson correlation coefficient (all classes). Acc.
means the accuracy.

4.2 Multi-task Learning System
Table 3 shows the results of multi-task learning.
With basic pre-processing for text normalization,
the multi-task learning system is better than the

228

model training set Pcc. Pcc.(s-m) Kappa Kappa(s-m) Acc.
baseline train-18 0.515 0.567 0.499 0.534 0.298
baseline train-all 0.649 0.712 0.628 0.700 0.347

multi-task train-18 0.603 0.660 0.579 0.623 0.312
multi-task train-all 0.689 0.760 0.671 0.753 0.350
multi-task* train-18 0.622 0.667 0.616 0.653 0.361
multi-task* train-all 0.691 0.770 0.665 0.757 0.323
multi-task* train-all 0.638 0.698 0.606 0.643 -

Table 3: Results of multi-task learning. Final row is the official SemEval-2018 test set result and others are
development set results. Here * means using the ekphrasis tool for pre-processing and s-m means some-emotion.

baseline system. When the basic pre-processing
method is replaced by using ekphrasis tool, the
performance is further improved. Finally, we sub-
mit the results from our best system for the unseen
test set to SemEval-2018, getting 0.638 for Pcc.
eventually. We note this is significantly lower than
0.691 on the development data.

5 Conclusion

The proposed method improves performance on
SemEval-2018 over baseline systems without
multi-task learning. External dataset can signifi-
cantly improve the Pcc. performance, but not the
Acc. performance. The possible reason is that all
the labels of external dataset are marked as±3, re-
sulting in data imbalance problem. In the future,
we will use skewness-robust weights to solve this
problem and use more resources to improve the
system as sentiment lexicons.

References
Timothy Baldwin, Marie-Catherine de Marneffe,

Bo Han, Young-Bum Kim, Alan Ritter, and Wei
Xu. 2015. Shared tasks of the 2015 workshop on
noisy user-generated text: Twitter lexical normal-
ization and named entity recognition. In Proceed-
ings of the Workshop on Noisy User-generated Text,
pages 126–135.

Christos Baziotis, Nikos Pelekis, and Christos Doulk-
eridis. 2017. Datastories at semeval-2017 task
4: Deep lstm with attention for message-level and
topic-based sentiment analysis. In Proceedings of
the 11th International Workshop on Semantic Evalu-
ation (SemEval-2017), pages 747–754. Association
for Computational Linguistics.

Junyoung Chung, Caglar Gulcehre, KyungHyun Cho,
and Yoshua Bengio. 2014. Empirical evaluation of
gated recurrent neural networks on sequence model-
ing. arXiv preprint arXiv:1412.3555.

Ronan Collobert and Jason Weston. 2008. A unified
architecture for natural language processing: Deep
neural networks with multitask learning. In Pro-
ceedings of the 25th international conference on
Machine learning, pages 160–167. ACM.

Li Deng, Geoffrey Hinton, and Brian Kingsbury. 2013.
New types of deep neural network learning for
speech recognition and related applications: An
overview. In Acoustics, Speech and Signal Process-
ing (ICASSP), 2013 IEEE International Conference
on, pages 8599–8603. IEEE.

Pranav Goel, Devang Kulshreshtha, Prayas Jain, and
Kaushal Kumar Shukla. 2017. Prayas at emoint
2017: An ensemble of deep neural architectures
for emotion intensity prediction in tweets. In Pro-
ceedings of the 8th Workshop on Computational Ap-
proaches to Subjectivity, Sentiment and Social Me-
dia Analysis, pages 58–65.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural computation,
9(8):1735–1780.

Minh-Thang Luong, Hieu Pham, and Christopher D
Manning. 2015. Effective approaches to attention-
based neural machine translation. arXiv preprint
arXiv:1508.04025.

Saif M. Mohammad and Felipe Bravo-Marquez. 2017.
WASSA-2017 shared task on emotion intensity. In
Proceedings of the Workshop on Computational Ap-
proaches to Subjectivity, Sentiment and Social Me-
dia Analysis (WASSA), Copenhagen, Denmark.

Saif M. Mohammad, Felipe Bravo-Marquez, Mo-
hammad Salameh, and Svetlana Kiritchenko. 2018.
Semeval-2018 Task 1: Affect in tweets. In Proceed-
ings of International Workshop on Semantic Evalu-
ation (SemEval-2018), New Orleans, LA, USA.

Sara Rosenthal, Noura Farra, and Preslav Nakov. 2017.
SemEval-2017 task 4: Sentiment analysis in Twitter.
In Proceedings of the 11th International Workshop
on Semantic Evaluation, SemEval ’17, Vancouver,
Canada. Association for Computational Linguistics.

Sebastian Ruder. 2017. An overview of multi-task
learning in deep neural networks. arXiv preprint
arXiv:1706.05098.

229

Mike Schuster and Kuldip K Paliwal. 1997. Bidirec-
tional recurrent neural networks. IEEE Transactions
on Signal Processing, 45(11):2673–2681.

Po-Yuan Shih. 2016. Skewness-Robust Neural Net-
works with Application to Speech Emotion Recog-
nition. Ph.D. thesis, Masters thesis, National Sun
Yat-sen University.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky,
Ilya Sutskever, and Ruslan Salakhutdinov. 2014.
Dropout: A simple way to prevent neural networks
from overfitting. The Journal of Machine Learning
Research, 15(1):1929–1958.

Yequan Wang, Minlie Huang, Li Zhao, et al. 2016.
Attention-based lstm for aspect-level sentiment clas-
sification. In Proceedings of the 2016 Conference on
Empirical Methods in Natural Language Process-
ing, pages 606–615.

Tzu-Hsuan Yang, Tzu-Hsuan Tseng, and Chia-Ping
Chen. 2017. deepsa at semeval-2017 task 4: Inter-
polated deep neural networks for sentiment analysis
in twitter. In Proceedings of the 11th International
Workshop on Semantic Evaluation (SemEval-2017),
pages 616–620. Association for Computational Lin-
guistics.

Yichun Yin, Yangqiu Song, and Ming Zhang. 2017.
Nnembs at semeval-2017 task 4: Neural twitter sen-
timent classification: a simple ensemble method
with different embeddings. In Proceedings of the
11th International Workshop on Semantic Evalua-
tion (SemEval-2017), pages 621–625.

230

Proceedings of the 12th International Workshop on Semantic Evaluation (SemEval-2018), pages 231–235
New Orleans, Louisiana, June 5–6, 2018. ©2018 Association for Computational Linguistics

ECNU at SemEval-2018 Task 1: Emotion Intensity Prediction Using
Effective Features and Machine Learning Models

Huimin Xu1, Man Lan1,2∗ ,Yuanbin Wu1,2

1Department of Computer Science and Technology,
East China Normal University, Shanghai, P.R.China

2Shanghai Key Laboratory of Multidimensional Information Processing
51174506035@stu.ecnu.edu.cn, {mlan, ybwu}@cs.ecnu.edu.cn

Abstract

In this paper we describe our systems submit-
ted to Semeval 2018 Task 1 “Affect in Tweet”
(Mohammad et al., 2018). We participated in
all subtasks of English tweets, including emo-
tion intensity classification and quantification,
valence intensity classification and quantifica-
tion. In our systems, we extracted four type-
s of features, including linguistic, sentiment
lexicon, emotion lexicon and domain-specific
features, then fed them to different regressors,
finally combined the models to create an en-
semble for the better performance. Officially
released results showed that our system can be
further extended.

1 Introduction

The Semeval 2018 Task 1 aims to automatically
determine the intensity of emotions of the tweeters
from their tweets, including five subtasks. That is,
given a tweet and one of the four emotions (anger,
fear, joy, sadness), the subtask 1 and 2 are to deter-
mine the intensity and classify the tweet into one
of the four ordinal classes of intensity of the e-
motion respectively. Similarly, the subtask 3 and
4 determine the intensity and classify the tweet
into one of seven ordinal classes of intensity of
valance. Subtask 5 is a multi-label emotion clas-
sification task which classifies the tweets as neu-
tral or no emotion or as one, or more, of eleven
given emotions (anger, anticipation, disgust, fear,
joy, love, optimism, pessimism, sadness, surprise,
trust) that best represent the mental state of the
tweeter. For each task, training and test dataset-
s are divided into English, Arabic, and Spanish
tweets. We participated in all subtasks of English
tweets.

Traditional sentiment classification is a coarse-
grained task in sentiment analysis which focuses
on sentiment polarity classification of the whole
sentence (i.e., positive, negative, neutral, mixed).

Semeval 2018 Task 1 subtask 5 takes basic human
emotion proposed by Ekman (Ekman, 1999) into
consideration, including Anger, Anticipation, Dis-
gust, Fear, Joy, Sadness, Surprise, and Trust.

The difference between these subtasks lies in
the emotion granularity and classification or quan-
tification, so in our work, the similar method is
adopted for five subtasks. We extracted a rich set
of elaborately designed features. In addition to lin-
guistic features, sentiment lexicon features and e-
motion lexicon features, we also extracted some
domain specific features. Also, we conducted a
series of experiments on different machine learn-
ing algorithms and ensemble methods to obtain the
better performing for each subtask. For subask 5,
we adopted multiple binary classification and con-
structed a model for each emotion.

2 System Description

We first performed data preprocessing, then ex-
tracted several types of features from tweets and
constructed supervised models for this task.

2.1 Data Preprocessing

Firstly, all words are converted to lower case,
URLs are replaced by “url”, abbreviations, s-
langs and elongated words are transformed to
their normal format. Then, emojis are replaced
by corresponding emojis names by “Emoji Li-
brary”1. Finally, we use Stanford CoreNLP tools
(Manning et al., 2014) for tokenization, POS tag-
ging, named entity recognizing (NER) and pars-
ing.

2.2 Feature Engineering

We extracted a set of features to construct super-
vised models for five subtasks, that is linguistic

1https://github.com/fvancesco/emoji/

231

features, sentiment lexicon features, emotion lexi-
con features and domain-specific features.

2.2.1 Linguistic Features
• Lemma unigram Considering there is sim-

ilar emotion intensity expressed by “anger”
and “angers”, we choose word lemma uni-
gram features from tweets rather than word
unigram features.

• Negation Negation in a sentence often affect-
s its sentiment orientation, and conveys it-
s intensity of the sentiment. For example, a
sentence with several negation words is more
inclined to negative sentiment polarity. Fol-
lowing previous work (Zhang et al., 2015),
we manually collected 29 negations2 and de-
signed two binary features. One is to indicate
whether there is any negation in the tweet and
the other is to record whether this tweet con-
tains more than one negation.

• NER Given a tweet “@JackHoward the
Christmas episode genuinely had me in tears
of laughter”, it has useful information like
person name and festival which may con-
vey tweeter’s happiness. So we extracted 12
types of named entities (DURATION, SET,
NUMBER, LOCATION, PERSON, ORGA-
NIZATION, PERCENT, MISC, ORDINAL,
TIME, DATE, MONEY) from the sentence
and represented each type of named entity as
a binary feature to check whether it appears
in the sentence.

2.2.2 Sentiment Lexicon Features
Many tasks related to sentiment or emotion anal-
ysis depend upon affect, opinion, sentiment, sense
and emotion lexicons. So we employ eight sen-
timent lexicons to capture the sentiment informa-
tion of the given sentence. The eight sentiment
lexicons are as follows: Bing Liu lexicon3, Gener-
al Inquirer lexicon4, IMDB5, MPQA6, NRC Emo-
tion Sentiment Lexicon7, AFINN8, NRC Hashtag

2https://github.com/haierlord/resource
3http://www.cs.uic.edu/liub/FBS/sentiment-

analysis.html#lexicon
4http://www.wjh.harvard.edu/inquirer/homecat.htm
5http://www.aclweb.org/anthology/S13-2067
6http://mpqa.cs.pitt.edu/
7http://www.saifmohammad.com/WebPages/lexicons.html
8http://www2.imm.dtu.dk/pubdb/views/publication

details.php?id=6010

Sentiment Lexicon9, and NRC Sentiment140 Lexi-
con10.

There is not a unified form among the eight-
s lexicons. For example, Bing Liu lexicon use t-
wo values for each word to represent its sentiment
scores which one for positive sentiment and the
other for negative sentiment. In order to unify the
form, we transformed the two scores into a one-
dimensional value by subtracting negative emo-
tion scores from positive emotion scores. Given
a tweet, we calculated the following six scores:

– the ratio of positive words to all words.

– the ratio of negative words to all words.

– the maximum sentiment scores.

– the minimum sentiment scores.

– the sum of sentiment scores.

– the sentiment score of the last word in tweet.

2.2.3 Emotion Lexicon Features
Considering subtask 1, 2, 5 are related to e-
motion intensity prediction, subtask 3, 4 are
related valence intensity prediction, three e-
motion lexicons and one valence lexion are
adopted. That is NRC Hashtag Sentimen-
t Lexicon (Mohammad and Kiritchenko, 2015),
NRC Affect Intensity Lexicon (Mohammad,
2017), NRC Word-Emotion Association Lexicon
(Bravo-Marquez et al., 2017) and ANEW-1999
Lexicon (Bradley and Lang, 1999). Given a tweet,
we calculate three scores for each lexicon to con-
struct emotion lexicon features: the maximum s-
cores, the sum of scores, the number of words ex-
ist in lexicons.

2.2.4 Domain-specific Features
• Punctuation People often use exclamation

mark(!) and question mark(?) to express sur-
prise or emphasis. Therefore, we extract the
following 6 features:

– whether the tweet contains an exclama-
tion mark.

– whether the tweet contains more than
one exclamation mark.

– whether the tweet has a question mark.
9http://www.umiacs.umd.edu/saif/WebDocs/NRC-

Hashtag-Sentiment-Lexicon-v0.1.zip
10http://help.sentiment140.com/for-students/

232

– whether the tweet contains more than
one question mark.

– whether the tweet contains both excla-
mation marks and question marks.

– whether the last token of this tweet is an
exclamation or question mark.

• Bag-of-Hashtags Hashtags reflect emotion
orientation of tweets directly, so we con-
structed a vocabulary of hashtags appearing
in the training set and development set, then
adopted the bag-of-hashtags method for each
tweet.

• Emoticon We collected 67 emoticons from
Internet11, including 34 positive emoticons
and 33 negative emoticons, then designed the
following 4 binary features:

– to record whether the positive and nega-
tive emoticons are present in the tweet,
respectively (1 for yes, 0 for no).

– to record whether the last token is a pos-
itive or a negative emoticon.

• Intensity Words Some words appeared more
frequently in tweets with higher intensity,
some words has higher score in emotion lex-
icons, these words may contain information
that express strong emotion intensity. So we
extracted this type words in two ways:

– Pick up words whose emotion score is
greater than threshold from emotion lex-
icons.

– Calculate the probability of each word
appearing at different intensity for sub-
task 2 and 4, then pick up words whose
probability greater than threshold(i.e.,
0.5).

Finally, for each word in intensity words list,
we use a binary feature to check whether it
appears in the given tweet.

2.3 Learning Algorithms

We explore six algorithms as follows: Logis-
tic Regression (LR) and Support Vector Regres-
sion (SVR) implemented in Liblinear12, Bagging
Regressor (BR), AdaBoost Regressor (ABR) and

11https://github.com/haierlord/resource/blob/master/
Emoticon.txt

12https://www.csie.ntu.edu.tw/ cjlin/liblinear/

Gradient Boosting Regressor (GBR) implement-
ed in scikit-learn tools13 and XGBoost Regressor
(XGB)14. All these algorithms are used with de-
fault parameters.

3 Experiments

3.1 Dataset
The statistics of the English datasets provided by
Semeval 2018 Task 1 are shown in Table 1 and
2. How the English data created is described in
(Mohammad and Kiritchenko, 2018).

Datasets anger fear joy sadness
train 1,701 2,252 1,616 1,533
dev 388 689 290 397

test subtask 1 17,939 17,923 18,042 17,912
subtask 2 1,002 986 1,105 975

Table 1: The statistics of data sets for subtask 1 and 2.

Subtask train dev test
3 1,181 449 17,874
4 1,181 449 937
5 6,838 886 3,259

Table 2: The statistics of data sets for subtask 3, 4, 5.

3.2 Evaluation Metric
To evaluate the performance of different system-
s, the official evaluation measure Pearson Corre-
lation Coefficient with the Gold ratings/labels is
adopted for the first four subtasks. The correlation
scores across all four emotions will be averaged
(macro-average) to determine the final system per-
formance.

As for the last subtask, systems are evaluated by
calculating multi-label accuracy namely Jaccard
index, the formula are follow:

Accuracy =
1

|T |
∑

t∈T

|Gt ∩ Pt|
|Gt ∪ Pt|

where Gt is the set of the gold labels for tweet t,
Pt is the set of the predicted labels for tweet t, and
T is the set of tweets.

3.3 Experiments on Training and Test Data
Firstly, we performed a series of experiments in
order to explore the effectiveness of each feature
type. Table 3 lists the performance contributed by

13http://scikit-learn.org/stable/
14https://github.com/dmlc/xgboost

233

Features macro-avg anger fear joy sadness
Linguistic 0.393 0.398 0.402 0.485 0.286
.+SentiLexi 0.594(+20.1%) 0.606 0.532 0.634 0.603
.+EmoLexi 0.635(+4.1%) 0.689 0.632 0.612 0.606
.+domain 0.657(+2.2%) 0.691 0.658 0.642 0.638

Table 3: Performance of different features on development set for subtask 1. “.+” means to add current features to
the previous feature set. The numbers in the brackets are the performance increments compared with the previous
results.

Algorithm macro-avg anger fear joy sadness
BR 0.602 0.609 0.618 0.584 0.597
XGBOOST 0.628 0.663 0.656 0.576 0.618
ABR 0.635 0.664 0.666 0.573 0.637
SVR 0.657 0.691 0.658 0.642 0.638
GBR 0.667 0.694 0.675 0.630 0.668
XGBOOST+ABR+SVR+GBR 0.680 0.715 0.689 0.647 0.670

Table 4: Performance of different learning algorithm on development set for subtask 1.

Subtask System macro-avg anger fear joy sadness

1
rank 1 0.799 (1) 0.827 (1) 0.779 (1) 0.792 (1) 0.798 (1)

our system 0.695(14) 0.713(15) 0.677(18) 0.693(16) 0.697(14)
baseline 0.520(36) 0.526(33) 0.525(34) 0.575(33) 0.453(36)

2
rank 1 0.695 (1) 0.706 (1) 0.637 (1) 0.720 (2) 0.717 (1)

our system 0.531(16) 0.565(13) 0.441(21) 0.581(15) 0.536(20)
baseline 0.394(26) 0.382(27) 0.355(26) 0.469(26) 0.370(29)

Table 5: Performance of our system, top-ranked system and baseline on test set for subtask 1, 2. SVM and unigrams
are adopted in baseline. The numbers in the brackets are the official rankings.

System Subtask3 Subtask4 Subtask5
rank 1 0.873 (1) 0.836 (1) 0.588 (1)

our system 0.813(14) 0.686(17) 0.501(11)
baseline 0.585(28) 0.509(24) 0.442(19)

Table 6: Performance of our system, top-ranked system
and baseline on test set for subtask 3, 4, 5. SVM and
unigrams are adopted in baseline. The numbers in the
brackets are the official rankings.

different features on development set with Support
Vector Regression algorithm for subtask 1. We
find that:

(1) All feature types make contribution to the
performance of emotion intensity prediction and
their combination achieves the best performance.

(2) Linguistic features act as baseline and have
shown poor performance for emotion intensity
prediction. However, we find the system perfor-
mance drops once we remove the Linguistic fea-
tures.

(3) Sentiment lexicon features make a consid-
erable contribution to the performance, which in-
dicates that sentiment lexicon features are benefi-
cial not only in traditional sentiment polarity anal-
ysis tasks, but also in emotion intensity prediction
tasks.

(4) Beside, we find that the system performance
only drops by 0.2% if we remove intensity words
features. This indicates that these intensity words
fail to distinguish emotion intensity. The reason
may be that their function have overlap with senti-
ment and emotion lexicon features.

Also, we explored the performance of differen-
t learning algorithms. Table 4 shows the results
of different algorithms for subtask 1 based on all
features described before. From table 4, we find
that GBR outperforms other single algorithm, and
the ensemble model are superior to the models us-
ing single algorithm. The ensemble model use the
four algorithms to build the ensemble regression
models, which averages the output scores of al-

234

l regression algorithm.
Therefore, the system configurations for test da-

ta are: using all features for five subtasks, ensem-
ble model for subtask 1 and 3, Logistic Regression
for subtask 2, 4 and 5.

Based on the system configurations described
above, we train separate model for each subtask
and evaluate them against the test set in SemEval
2018 Task 1. Table 5 and Table 6 shows the results
with ranks on test set for subtask 1 to 5. Compared
with the top ranked systems, there is much room
for improvement in our work. First, the biggest is-
sue is that we only used hand-craft features but ig-
noring deep learning method. Second, we find that
our system achieves greater performance on test
set compared with the development set, the possi-
ble reason might be the different data distribution
held between them.

4 Conclusion

In this paper, we extracted several traditional NLP,
sentiment lexicon, emotion lexicon and domain
specific features from tweets, adopted supervised
machine learning algorithms to perform emotion
intensity prediction. The system performance
ranks above average. In future work, we consid-
er to use deep learning method to model sentence
with the aid of sentiment word vectors.

Acknowledgements

This work is is supported by the Science and
Technology Commission of Shanghai Municipali-
ty Grant (No. 15ZR1410700) and the open project
of Shanghai Key Laboratory of Trustworthy Com-
puting (No.07dz22304201604).

References
Margaret M. Bradley and Peter J. Lang. 1999. Af-

fective norms for english words (anew): Instruction
manual and affective ratings. Journal Royal Micro-
scopical Society, 88(1):630–634.

Felipe Bravo-Marquez, Eibe Frank, Saif M. Moham-
mad, and Bernhard Pfahringer. 2017. Determining
word-emotion associations from tweets by multi-
label classification. In Ieee/wic/acm International
Conference on Web Intelligence, pages 536–539.

Paul Ekman. 1999. Basic emotions. Handbook of Cog-
nition and Emotion, 99(1):45–60.

Christopher D. Manning, Mihai Surdeanu, John Bauer,
Jenny Finkel, Steven J. Bethard, and David Mc-
closky. 2014. The stanford corenlp natural language

processing toolkit. In Meeting of the Association for
Computational Linguistics: System Demonstrations.

Saif M. Mohammad. 2017. Word affect intensities.

Saif M. Mohammad, Felipe Bravo-Marquez, Mo-
hammad Salameh, and Svetlana Kiritchenko. 2018.
Semeval-2018 Task 1: Affect in tweets. In Proceed-
ings of International Workshop on Semantic Evalu-
ation (SemEval-2018), New Orleans, LA, USA.

Saif M Mohammad and Svetlana Kiritchenko. 2015.
Using hashtags to capture fine emotion cate-
gories from tweets. Computational Intelligence,
31(2):301–326.

Saif M. Mohammad and Svetlana Kiritchenko. 2018.
Understanding emotions: A dataset of tweets to
study interactions between affect categories. In
Proceedings of the 11th Edition of the Language
Resources and Evaluation Conference, Miyazaki,
Japan.

Zhihua Zhang, Guoshun Wu, and Man Lan. 2015. Ec-
nu: Multi-level sentiment analysis on twitter using
traditional linguistic features and word embedding
features. In International Workshop on Semantic E-
valuation, pages 561–567.

235

Proceedings of the 12th International Workshop on Semantic Evaluation (SemEval-2018), pages 236–244
New Orleans, Louisiana, June 5–6, 2018. ©2018 Association for Computational Linguistics

EMA at SemEval-2018 Task 1: Emotion Mining for Arabic

Gilbert Badaro, Obeida El Jundi, Alaa Khaddaj, Alaa Maarouf, Raslan Kain
Hazem Hajj, Wassim El-Hajj†

Department of Electrical and Computer Engineering, American University of Beirut
† Department of Computer Science, American University of Beirut

Beirut, Lebanon
{ggb05;oae15;awk11;aim20;rhk44;hh63;we07}@aub.edu.lb

Abstract

While significant progress has been achieved
for Opinion Mining in Arabic (OMA), very
limited efforts have been put towards the task
of Emotion mining in Arabic. In fact, busi-
nesses are interested in learning a fine-grained
representation of how users are feeling to-
wards their products or services. In this work,
we describe the methods used by the team
Emotion Mining in Arabic (EMA), as part of
the SemEval-2018 Task 1 for Affect Mining
for Arabic tweets. EMA participated in all 5
subtasks. For the five tasks, several prepro-
cessing steps were evaluated and eventually
the best system included diacritics removal,
elongation adjustment, replacement of emojis
by the corresponding Arabic word, character
normalization and light stemming. Moreover,
several features were evaluated along with dif-
ferent classification and regression techniques.
For the 5 subtasks, word embeddings feature
turned out to perform best along with Ensem-
ble technique. EMA achieved the 1st place in
subtask 5, and 3rd place in subtasks 1 and 3.

1 Introduction

Emotion recognition has captured the interest of
researchers for many years. Different models
have been used to detect people’s emotions such
as human computer interaction (HCI) (Hibbeln
et al., 2017; Patwardhan and Knapp, 2017; Con-
stantine et al., 2016) and their facial expressions
(Trad et al., 2012; Wegrzyn et al., 2017). Re-
cently, with Web 2.0, the size of textual data
charged with opinions and emotions on the web
has tremendously increased. Thus, researchers
have been looking at automatically performing
sentiment and emotion analysis from textual data.
In fact, learning emotions of users is critical
for different applications such as shaping mar-
keting strategies (Bougie et al., 2003), providing

customers with better personalized recommenda-
tions for advertisements and products (Moham-
mad and Yang, 2011), improving recommendation
of typical recommender systems (Badaro et al.,
2013, 2014c,d), tracking emotions of users to-
wards politicians, movies, music, products, etc,
(Pang et al., 2008), or accurately predicting stock
market prices (Bollen et al., 2011).

Some efforts have already been placed in de-
veloping emotion classification models from text
(Shaheen et al., 2014; Houjeij et al., 2012; Abdul-
Mageed and Ungar, 2017). Since sentiment lex-
icons helped in improving the accuracy of senti-
ment classification models (Liu and Zhang, 2012;
Taboada et al., 2011), several researchers are
working on developing emotion lexicons for dif-
ferent languages such as English, French, Chinese
(Mohammad, 2017; Bandhakavi et al., 2017; Yang
et al., 2007; Poria et al., 2012; Das et al., 2012;
Mohammad et al., 2013; Abdaoui et al., 2017;
Staiano and Guerini, 2014; Badaro et al., 2018a).
There were also couple of attempts for developing
Arabic emotion lexicons (Mohammad and Turney,
2013; Mohammad et al., 2013; El Gohary et al.,
2013; Badaro et al., 2018b).

Building on our previous work on opinion min-
ing which involved development of sentiment lex-
icons (ArSenL (Badaro et al., 2014a)), opinion
mining models (Baly et al., 2014; Al Sallab et al.,
2015; Al-Sallab et al., 2017; Baly et al., 2017b)
and applications (Badaro et al., 2014b, 2015), and
building on our analysis and characterization for
Twitter Data (Baly et al., 2017a,c), we participate
in SemEval 2018 Task 1 (Mohammad et al., 2018):
Affect in Arabic Tweets. In fact, analyzing senti-
ment and emotions from dialectal Arabic such as
text data from Twitter is of great importance given
the tremendous increase of Arabic speaking users

236

on Twitter.1

In this paper, we describe our approaches to
SemEval 2018 Task 1 (Mohammad et al., 2018):
Affect in Arabic Tweets, along with the achieved
results for each of the subtasks where we em-
ployed preprocessing steps, features and classifi-
cation models based on our prior work on senti-
ment analysis. In section 2, we present a brief
overview of related work to emotion classification
for English and Arabic. In section 3, we describe
the five subtasks that are part of Affect in Tweet
task. In section 4, we present our proposed ap-
proach and finally, we conclude in section 5.

2 Related Work

There have been extensive efforts for extracting
emotions from different modalities including HCI
(Constantine et al., 2016; Hibbeln et al., 2017;
Patwardhan and Knapp, 2017), facial expressions
(Trad et al., 2012; Wegrzyn et al., 2017) and
speech (Houjeij et al., 2012). The related work
for text emotion classification can be categorized
into approaches for Emotion classification in En-
glish, that are leading the advances, versus re-
search progress in Emotion in Arabic texts.

Emotion detection task from text is usually de-
fined as a categorical classification task, where
given a text, the classifier needs to predict the emo-
tion label corresponding to the input text. Two typ-
ical categorical representations for emotions ex-
ist: Ekman representation (Ekman, 1992) which
includes anger, happiness, surprise, disgust, sad-
ness and fear and Plutchik model (Plutchik, 1980,
1994) which includes Ekman’s six emotions in ad-
dition to two labels: trust and anticipation.

2.1 English Emotion Analysis

In general, there are three different approaches
for emotion classification: keyword-based detec-
tion, learning-based detection, and hybrid detec-
tion (Avetisyan et al., 2016).

Keyword-based techniques, also known as
lexicon-based, depend on identifying emotional
keywords in the input sentence (Strapparava et al.,
2004; Mohammad and Turney, 2010, 2013).
These models rely on the existence of large scale
emotion lexicons and their accuracy is correlated
with the accuracy of the emotion lexicon that is be-
ing utilized. On the other hand, they do not require

1https://weedoo.tech/twitter-arab-world-statistics-feb-
2017/

the existence of training data.
Learning-based approaches or feature-based ap-

proaches depend on the existence of annotated
training data that are processed in order to ex-
tract several features such as syntactic, stylistic
and semantic features (Ho and Cao, 2012; Band-
hakavi et al., 2017). Additionally, in hybrid meth-
ods, emotions are detected by using a combination
of emotional keywords and learning patterns col-
lected from training datasets.

Due to the notable lack of resources related to
emotion (annotated data and lexicons), progress
on automatic affect intensity is still lagging. Mo-
hammad and Bravo-Marquez (2017) created not
only the first datasets of tweets annotated with
emotion intensities, but also developed an emotion
regression system with benchmark results. Abdul-
Mageed and Ungar (2017) developed a large scale
English dataset with fine grained emotion labels
and trained deep learning models on top of it
achieving an average accuracy of 87.58%.

2.2 Arabic Emotion Analysis

Emotion recognition for Arabic text has been gain-
ing more attention recently. El Gohary et al.
(2013) applied a knowledge-based approach to
achieve 65% accuracy on the six basic Ekman
emotions. Rabie and Sturm (2014) extracted a
sample Arabic emotion lexicon and demonstrated
how it enhanced the emotion detection results.
Sayed et al. (2016) utilized Conditional Random
Fields (CRF) and AdaBoost classifiers for clas-
sifying emotions of tweets and expression levels
in which CRF achieved the best results. Alsharif
et al. (2013) used Naive Bayes and SVM to clas-
sify Arabic poems into four emotion classes.

While some attempts were performed for Emo-
tion recognition from Arabic text, there is still a lot
of area for improvement as for example, develop-
ing large scale emotion lexicon for more accurate
emotion recognition model, developing highly ac-
curate emotion mining models for MSA as well as
dialectal Arabic whether through the use of feature
based approaches or deep learning.

3 SemEval 2018 Task 1: Affect in Arabic
Tweets

We describe in this section the subtasks of Se-
mEval 2018 task 1.

237

3.1 Subtasks’ Descriptions
SemEval 2018 Task 1 Affect in Tweets (Moham-
mad et al., 2018) included five subtasks each with
annotated dataset for English, Arabic and Spanish.
The tasks were as follows:

1. EI-reg (Emotion Intensity Regression Task):
Given a tweet and an emotion E (anger, fear, joy
or sadness), determine the intensity of E that best
represents the emotion intensity of the tweeter by
predicting a real-valued score between 0 (least E)
and 1 (most E).

2. EI-oc (Emotion Intensity Ordinal Classifica-
tion): Given a tweet and an emotion E, classify
the tweet into one of four ordinal classes of inten-
sity of E, from 0 (low amount) to 3 (high amount),
that best represents the mental state of the tweeter.

3. V-reg (a sentiment intensity regression task):
Given a tweet, determine the valence (V) that best
represents the mental state of the tweeter by pre-
dicting a real-valued score between 0 (most nega-
tive) and 1 (most positive).

4. V-oc (a sentiment analysis, ordinal classifi-
cation, task): Given a tweet, classify it into one
of seven ordinal classes, from -3 (very negative) to
+3 (very positive), corresponding to various levels
of positive and negative sentiment intensity, that
best represents the sentiment of the tweeter.

5. E-c (an emotion classification task): Given
a tweet, classify it as neutral (no emotion) or as
one, or more, of eleven given emotions that best
represent the tweeter.

3.2 Datasets
For each of the 5 tasks, 3 sets of datasets were re-
leased, each set corresponding to a language (En-
glish, Arabic and Spanish). For each language, 3
datasets were released (training, development and
test). For subtasks 1 and 2 Arabic, each emotion
of the four emotions had a training set of around
800 tweets on average and a development set of
around 200 tweets. Subtasks 3 and 4 Arabic had
a dataset consisting of 932 tweets for training and
138 tweets for development. For subtask 5 Arabic,
2278 tweets were used for training and 585 tweets
for development.

4 Explored Models for Competition

We present a description of EMA system covering
preprocessing steps, features used, machine learn-

ing models employed and results achieved. An
overview of the system is show in Figure 1.

Figure 1: Overview of EMA System.

4.1 Preprocessing
The provided datasets contained raw tweets that
included different properties used in Twitter such
as hashtags, user mentions, urls, images, Ara-
bizi and emojis. Thus, preprocessing steps were
needed to enhance the analysis of the tweet. We
experimented with different preprocessing config-
urations that led to mixed results. For example,
using stems instead of lemmas proved to be bet-
ter. One justification is that tweets are mostly in
dialectal Arabic while most Arabic morphological
analyzers are trained on MSA data. We present
next the steps that led to the best performance.

We first applied the normalization rules fol-
lowed by Shoukry and Rafea (2012): Diacritics
were removed, the “hamza” on characters was

238

normalized in addition to normalizing some word
ending characters such as the “t marbouta” and
“ya’ maqsoura”. We then removed elongations
as well as non Arabic letters. We manually cre-
ated a lexicon containing the most frequent emojis
in tweets and transcribed each emoji to its corre-
sponding Arabic word. The lexicon consisted of
100 emojis. The tweets were finally stemmed us-
ing A Robust Arabic Light Stemmer (ARLSTEM)
(Abainia et al., 2017).

4.2 Features
We have tried different features separately includ-
ing unigrams, bigrams, trigrams, scores from emo-
tion lexicon, ArSEL (Badaro et al., 2018b), senti-
ment lexicon, ArSenL ((Badaro et al., 2014a) and
word embeddings from AraVec (Soliman et al.,
2017) and FastText by Facebook (Bojanowski
et al., 2016). AraVec was trained on three different
datasets (Wikipedia, Text data from Web and Twit-
ter) while FastText was trained on Wikipedia. Us-
ing word embeddings from AraVec outperformed
significantly all other features including word em-
beddings trained on Wikipedia provided by Face-
book. This is likely due to the fact that AraVec is a
large scale dataset (around 205,000 words) trained
on the same data domain (twitter), and includes
several Arabic dialects. Word embeddings over-
come the problem of sparsity present with n-grams
and also reduce semantic complexity by providing
similar representations to words that can appear in
the same context. Each word was represented by a
vector of real numbers of dimension 300. The sen-
tence embeddings were computed by taking the
average of its word embeddings. If a word did
not have a vector representation, we tried using
its stem’s representation. If neither the word nor
its stem had a vector representation in AraVec, the
average of the embeddings of closest words was
utilized. By closest words, we mean words that
had the smallest minimum edit distance (Leven-
shtein distance) with the target term. Eventually,
each tweet was represented by a vector consisting
of 300 real valued numbers. The same feature is
used for all subtasks. For feature extraction, we
used Python with NLTK, gensim and Numpy li-
braries.

4.3 Classification and Regression Models
Overall, we tried different learning models includ-
ing Ridge regression, support vector machines,
random forests, ensemble methods and deep neu-

ral networks such as convolutional neural net-
works with long short term memory layer. Deep
neural networks performed poorly compared to
other models. One possible explanation was that
the training data size was very small and deep neu-
ral networks perform best when trained on a large
scale data to ensure a well representation of the
data (Beleites et al., 2013).

For regression subtasks 1 and 3, we tried dif-
ferent machine learning models including Ridge,
Elastic Net, Decision Trees, random forest, xg-
boost and support vector regressor with (rbf ker-
nel). The best was an Ensemble of Ridge regres-
sion (RR), Support Vector Regressor (SVR), and
Random Forests (RF). In fact, the 3 models per-
formed reasonably well on their own. For clas-
sification subtasks 2 and 4, we also tried different
classification models including Ridge, Elastic Net,
Decision Trees, Random Forest, Support Vector
Classifier (SVC) with linear and non linear kernels
and convolutional neural nets. For subtask 2, SVC
performed best. As for subtask 4, an ensemble of
SVC and Ridge Classifier performed best. Ridge
Classifier allows defining a linear mapping with-
out allowing weights to be large thanks to regular-
ization effect for generalization while SVM tries
to find the best classification margins. Adding
ElasticNet did not help much since L1 and L2
errors were already covered by optimized using
the ensemble of Ridge and SVM. Moreover, Zhou
et al. (2015) shows that ElasticNet can be reduced
to SVM. Random Forest with its large number of
estimators had a better generalization than regu-
lar decision trees. Combining all these models in
an ensemble model ensured a better generalization
and accuracy on the test data.

For subtask 5, we tested SVC (with both penal-
ties L1 and L2), RC, RF and Ensemble. SVC
with L1 performed best. While Pearson correla-
tion measure was used for evaluating subtasks 1 to
4, Accuracy was used to evaluate subtask 5.

For all subtasks, we utilized the training data for
training the different models and the development
set was treated as unseen data in order to make
sure that comparison across the different models is
fair. The best model was selected based on its per-
formance on the development set. Our focus was
on feature extraction and preprocessing, so most
feature-based models performed well. One main
problem faced in all problems was sparsity, since
most tweets were in Dialectical Arabic.

239

4.4 Experimental Results

All experiments were conducted using Python
with scikit-learn and Keras libraries. A grid search
mechanism was utilized to optimize the hyperpa-
rameters of the different learning models used and
whose performances are reported in below tables:
alpha parameter for Ridge, penalty C, kernel and
gamma for Support Vectors, and, number trees,
maximum tree depth and number of features per
tree for Random Forests. Rows 2 to 5 in tables
1 and 2 show the results (Pearson Score) of the
different regression techniques used for subtasks 1
and 3 respectively on the corresponding develop-
ment sets for each of the four emotions (Joy, Sad-
ness, Poor and Anger). Average performance is
also reported in the last column. The last two rows
in table 1 show the result on the test set of our
Ensemble model on average and per each emotion
and the performance of the best team for subtask1
respectively. The last two rows in table 2 show the
performance of Ridge Regression on the test set
and the performance of the best team respectively.
In both subtasks, EMA ranked 3rd among partic-
ipants. By examining the results of the different
participants in subtask 1, we can observe that the
proposed systems perform best for the Joy emo-
tion. Tables 3 and 4 show the hyperparameters for
each technique employed. For Random Forest, the
number of estimators was set to 1000.

In Tables 5 and 6, we show the results of sub-
tasks 2 and 4 respectively. SVC was the best per-
forming model on the development set in subtask 2
and Ensemble methods performed best in subtask
4. The last column in table 5 shows the perfor-
mance of SVC on the test set on average and per
each of the four emotions. The last row in table 6
represents the Pearson score achieved by the En-
semble of RC and SVC on the test set. EMA was
ranked 8th and 5th in subtasks 2 and 4 respectively.
Tables 7 and 8 show the best hyperparameters of
the classification models used.

Regression
Model

Joy Sadness Fear Anger Avg

RR 0.610 0.635 0.481 0.566 0.573
SVR 0.615 0.628 0.484 0.567 0.574
RF 0.578 0.547 0.413 0.458 0.499
Ensemble 0.624 0.630 0.488 0.563 0.576
Ensemble on
Test

0.709 0.656 0.593 0.615 0.643

Best (Affec-
Thor)

0.756 0.694 0.642 0.647 0.685

Table 1: Subtask 1 Pearson Correlation Results on Dev
and Test Sets. RR = Ridge Regression; SVR = Support
Vector Regressor; RF = Random Forest.

Regression Model Pearson Correlation
RR 0.746

SVR 0.744
RF 0.609

Ensemble 0.737
Ensemble on Test 0.804
Best (EiTAKA) 0.8284

Table 2: Subtask 3 Pearson Correlation Results on Dev
and Test Sets. RR = Ridge Regression; SVR = Support
Vector Regressor; RF = Random Forest.

Regression Model Joy Sadness Fear Anger
Ridge (alpha) 7.1 5.9 3.7 4.9

SVR (C) 4.4 4.7 10 4.9
RF (depth) 10 10 10 10

Table 3: Subtask 1 Regression Models’ Hyperparam-
eters.

Regression Model Parameter Value
Ridge (alpha) 3.9

SVR (C) 5.6
RF (depth) 10

Table 4: Subtask 3 Regression Models’ Hyperparam-
eters.

Model RC SVC Ens SVC on
Test

Best (Af-
fecThor)

Joy 0.502 0.484 0.480 0.215 0.631
Sadness 0.587 0.594 0.589 0.535 0.618
Fear 0.373 0.431 0.390 0.242 0.551
Anger 0.472 0.518 0.497 0.077 0.551
Average 0.484 0.507 0.489 0.267 0.587

Table 5: Subtask 2 Pearson Correlation Results on
Dev and Test Sets. RC = Ridge Classification; SVC =
Support Vector Classifier; Ens = Ensemble.

Classification Model Pearson Correlation
RC 0.611

SVC 0.623
Ensemble 0.625

Ensemble on Test 0.643
Best (EiTAKA) 0.809

Table 6: Subtask 4 Pearson Correlation Results on
Dev and Test Sets. RC = Ridge Classification; SVC =
Support Vector Classifier.

Model RC (alpha) SVC (C)
Joy 18.2 19.5

Sadness 3.3 29.4
Fear 20.6 17.1

Anger 15.4 19.5

Table 7: Subtask 2 Classification Models’ Hyperpa-
rameters.

Finally, Table 9 shows the results of subtask 5
on the development and the test sets where for a
given tweet, the tweet is classified either as neutral

240

Classification Model Parameter Value
RC (alpha) 27.2

SVC (C) 10.7

Table 8: Subtask 4 Classification Models’ Hyperpa-
rameters.

or as one or more of 11 emotions (anger, anticipa-
tion, disgust, fear, joy, love, optimism, pessimism,
sadness, surprise, trust). Linear SVC performed
best among all classifiers. EMA ranked 1st in sub-
task 5. Table 10 shows the best hyperparameters
for each classification model used. The number of
estimators for Random Forest was set to 1000.

Classification Model Accuracy
SVC L1 0.488
SVC L2 0.484

RC 0.443
RF 0.370

Ensemble 0.401
SVC L1 on Test 0.489

Table 9: Subtask 5 Accuracy Results on Dev and Test
Sets. RC = Ridge Classification; SVC = Support Vector
Classifier; RF = Random Forest.

Classification Model Parameter Value
SVC L1 (C) 1.98
SVC L2 (C) 0.3
RC (alpha) 7.9
RF (depth) 14

Table 10: Subtask 5 Classification Models’ Hyperpa-
rameters.

5 Conclusion and Future Work

In this paper, we presented EMA (Emotion Min-
ing in Arabic) at SemEval 2018 Task 1 Affect in
Tweets to perform Arabic Emotion and Sentiment
mining. Several methods were tested for decid-
ing on features, regression and classification tech-
niques. Word embeddings provided the best fea-
ture while the choice of the predictor was task de-
pendent. EMA ranked 1st in subtask 5 and 3rd in
subtasks 1 and 3. As future work, we suggest find-
ing the best combination of the different features
that were employed in separate models. Other fu-
ture work includes dealing with sparsity caused by
dialectal Arabic.

References

Kheireddine Abainia, Siham Ouamour, and Halim
Sayoud. 2017. A novel robust arabic light stem-
mer. Journal of Experimental & Theoretical Ar-
tificial Intelligence, 29:557–573.

Amine Abdaoui, Jérôme Azé, Sandra Bringay,
and Pascal Poncelet. 2017. Feel: a french ex-
panded emotion lexicon. Language Resources
and Evaluation, 51(3):833–855.

Muhammad Abdul-Mageed and Lyle Ungar. 2017.
Emonet: Fine–grained emotion detection with
gated recurrent neural networks. In Proceedings
of the 55th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long
Papers), volume 1, pages 718–728.

Ahmad Al-Sallab, Ramy Baly, Hazem Hajj,
Khaled Bashir Shaban, Wassim El-Hajj, and
Gilbert Badaro. 2017. Aroma: A recursive deep
learning model for opinion mining in arabic as
a low resource language. ACM Transactions
on Asian and Low-Resource Language Informa-
tion Processing (TALLIP), 16(4):25.

Ahmad A Al Sallab, Ramy Baly, Gilbert Badaro,
Hazem Hajj, Wassim El Hajj, and Khaled B
Shaban. 2015. Deep learning models for sen-
timent analysis in arabic. In ANLP Workshop,
volume 9.

Ouais Alsharif, Deema Alshamaa, and Nada Gh-
neim. 2013. Emotion classification in arabic
poetry using machine learning. International
Journal of Computer Applications, 65(16).

H Avetisyan, O Bruna, and J Holub. 2016.
Overview of existing algorithms for emotion
classification. uncertainties in evaluations of ac-
curacies. In Journal of Physics: Conference Se-
ries, volume 772. IOP Publishing.

Gilbert Badaro, Ramy Baly, Rana Akel, Linda
Fayad, Jeffrey Khairallah, Hazem Hajj, Khaled
Shaban, and Wassim El-Hajj. 2015. A light
lexicon-based mobile application for sentiment
mining of arabic tweets. In Proceedings of the
Second Workshop on Arabic Natural Language
Processing, pages 18–25.

Gilbert Badaro, Ramy Baly, Hazem Hajj, Nizar
Habash, and Wassim El-Hajj. 2014a. A large
scale Arabic sentiment lexicon for Arabic opin-
ion mining. ANLP 2014, 165.

Gilbert Badaro, Ramy Baly, Hazem Hajj, Nizar
Habash, Wassim El-hajj, and Khaled Shaban.
2014b. An efficient model for sentiment classi-
fication of Arabic tweets on mobiles. In Qatar

241

Foundation Annual Research Conference, 1,
page ITPP0631.

Gilbert Badaro, Hazem Hajj, Wassim El-Hajj, and
Lama Nachman. 2013. A hybrid approach
with collaborative filtering for recommender
systems. In Wireless Communications and Mo-
bile Computing Conference (IWCMC), 2013 9th
International, pages 349–354. IEEE.

Gilbert Badaro, Hazem Hajj, Ali Haddad, Wassim
El-Hajj, and Khaled Bashir Shaban. 2014c. A
multiresolution approach to recommender sys-
tems. In Proceedings of the 8th Workshop on
Social Network Mining and Analysis, page 9.
ACM.

Gilbert Badaro, Hazem Hajj, Ali Haddad, Was-
sim El-Hajj, and Khaled Bashir Shaban. 2014d.
Recommender systems using harmonic analy-
sis. In Data Mining Workshop (ICDMW), 2014
IEEE International Conference on, pages 1004–
1011. IEEE.

Gilbert Badaro, Hussein Jundi, Hazem Hajj, and
Wassim El-Hajj. 2018a. Emowordnet: Auto-
matic expansion of emotion lexicon using en-
glish wordnet. In Proceedings of the Sev-
enth Joint Conference on Lexical and Compu-
tational Semantics (*SEM2018) co-located with
NAACL2018.

Gilbert Badaro, Hussein Jundi, Hazem Hajj, Was-
sim El-Hajj, and Nizar Habash. 2018b. Arsel:
A large scale arabic sentiment and emotion lex-
icon. In Proceedings of the 3rd Workshop on
Open-Source Arabic Corpora and Processing
Tools (OSACT3) co-located with LREC2018.

Ramy Baly, Gilbert Badaro, Georges El-Khoury,
Rawan Moukalled, Rita Aoun, Hazem Hajj,
Wassim El-Hajj, Nizar Habash, and Khaled
Shaban. 2017a. A characterization study of ara-
bic twitter data with a benchmarking for state-
of-the-art opinion mining models. In Proceed-
ings of the Third Arabic Natural Language Pro-
cessing Workshop, pages 110–118.

Ramy Baly, Gilbert Badaro, Hazem Hajj, Nizar
Habash, Wassim El Hajj, and Khaled Shaban.
2014. Semantic model representation for hu-
man’s pre-conceived notions in arabic text with
applications to sentiment mining. In Qatar
Foundation Annual Research Conference, 1,
page ITPP1075.

Ramy Baly, Gilbert Badaro, Ali Hamdi, Rawan
Moukalled, Rita Aoun, Georges El-Khoury,
Ahmad Al Sallab, Hazem Hajj, Nizar Habash,
Khaled Shaban, et al. 2017b. Omam at semeval-
2017 task 4: Evaluation of english state-of-the-
art sentiment analysis models for arabic and a
new topic-based model. In Proceedings of the
11th International Workshop on Semantic Eval-
uation (SemEval-2017), pages 603–610.

Ramy Baly, Georges El-Khoury, Rawan
Moukalled, Rita Aoun, Hazem Hajj,
Khaled Bashir Shaban, and Wassim El-Hajj.
2017c. Comparative evaluation of senti-
ment analysis methods across arabic dialects.
Procedia Computer Science, 117:266–273.

Anil Bandhakavi, Nirmalie Wiratunga, Stewart
Massie, and Deepak Padmanabhan. 2017. Lexi-
con generation for emotion detection from text.
IEEE intelligent systems, 32(1):102–108.

Claudia Beleites, Ute Neugebauer, Thomas Bock-
litz, Christoph Krafft, and Jürgen Popp. 2013.
Sample size planning for classification models.
Analytica chimica acta, 760:25–33.

Piotr Bojanowski, Edouard Grave, Armand Joulin,
and Tomas Mikolov. 2016. Enriching word vec-
tors with subword information. arXiv preprint
arXiv:1607.04606.

Johan Bollen, Huina Mao, and Xiaojun Zeng.
2011. Twitter mood predicts the stock market.
Journal of computational science, 2(1):1–8.

Roger Bougie, Rik Pieters, and Marcel Zeelen-
berg. 2003. Angry customers don’t come back,
they get back: The experience and behavioral
implications of anger and dissatisfaction in ser-
vices. Journal of the Academy of Marketing Sci-
ence, 31(4):377–393.

Layale Constantine, Gilbert Badaro, Hazem Hajj,
Wassim El-Hajj, Lama Nachman, Mohamed
BenSaleh, and Abdulfattah Obeid. 2016. A
framework for emotion recognition from human
computer interaction in natural setting. 22nd
ACM SIGKDD Conference on Knowledge Dis-
covery and Data Mining (KDD 2016), Work-
shop on Issues of Sentiment Discovery and
Opinion Mining (WISDOM 2016).

Dipankar Das, Soujanya Poria, and Sivaji Bandy-
opadhyay. 2012. A classifier based approach to

242

emotion lexicon construction. In NLDB, pages
320–326. Springer.

Paul Ekman. 1992. An argument for basic emo-
tions. Cognition & emotion, 6(3-4):169–200.

Amira F El Gohary, Torky I Sultan, Maha A Hana,
and Mohamed M El Dosoky. 2013. A com-
putational approach for analyzing and detect-
ing emotions in arabic text. International Jour-
nal of Engineering Research and Applications
(IJERA), 3:100–107.

Martin Hibbeln, Jeffrey L Jenkins, Christoph
Schneider, Joseph S Valacich, and Markus
Weinmann. 2017. How is your user feeling?
inferring emotion through human–computer in-
teraction devices. MIS Quarterly, 41(1).

Dung T Ho and Tru H Cao. 2012. A high-order
hidden markov model for emotion detection
from textual data. In Pacific Rim Knowledge
Acquisition Workshop, pages 94–105. Springer.

Ali Houjeij, Layla Hamieh, Nader Mehdi, and
Hazem Hajj. 2012. A novel approach for emo-
tion classification based on fusion of text and
speech. In Telecommunications (ICT), 2012
19th International Conference on, pages 1–6.
IEEE.

Bing Liu and Lei Zhang. 2012. A survey of opin-
ion mining and sentiment analysis. In Mining
text data, pages 415–463. Springer.

Saif M Mohammad. 2017. Word affect intensities.
arXiv preprint arXiv:1704.08798.

Saif M Mohammad and Felipe Bravo-Marquez.
2017. Emotion intensities in tweets. arXiv
preprint arXiv:1708.03696.

Saif M. Mohammad, Felipe Bravo-Marquez, Mo-
hammad Salameh, and Svetlana Kiritchenko.
2018. Semeval-2018 Task 1: Affect in tweets.
In Proceedings of International Workshop on
Semantic Evaluation (SemEval-2018), New Or-
leans, LA, USA.

Saif M Mohammad, Svetlana Kiritchenko, and Xi-
aodan Zhu. 2013. Nrc-canada: Building the
state-of-the-art in sentiment analysis of tweets.
arXiv preprint arXiv:1308.6242.

Saif M Mohammad and Peter D Turney. 2010.
Emotions evoked by common words and
phrases: Using mechanical turk to create an
emotion lexicon. In Proceedings of the NAACL
HLT 2010 workshop on computational ap-
proaches to analysis and generation of emotion
in text, pages 26–34. Association for Computa-
tional Linguistics.

Saif M Mohammad and Peter D Turney. 2013.
Crowdsourcing a word–emotion associa-
tion lexicon. Computational Intelligence,
29(3):436–465.

Saif M Mohammad and Tony Wenda Yang. 2011.
Tracking sentiment in mail: How genders differ
on emotional axes. In Proceedings of the 2nd
workshop on computational approaches to sub-
jectivity and sentiment analysis, pages 70–79.
Association for Computational Linguistics.

Bo Pang, Lillian Lee, et al. 2008. Opinion min-
ing and sentiment analysis. Foundations and
Trends R© in Information Retrieval, 2(1–2):1–
135.

Amol S Patwardhan and Gerald M Knapp. 2017.
Multimodal affect analysis for product feedback
assessment. arXiv preprint arXiv:1705.02694.

Robert Plutchik. 1980. A general psychoevolu-
tionary theory of emotion. Theories of emotion,
1(3-31):4.

Robert Plutchik. 1994. The psychology and biol-
ogy of emotion. HarperCollins College Publish-
ers.

Soujanya Poria, Alexander Gelbukh, Dipankar
Das, and Sivaji Bandyopadhyay. 2012. Fuzzy
clustering for semi-supervised learning–case
study: Construction of an emotion lexicon. In
Mexican International Conference on Artificial
Intelligence, pages 73–86. Springer.

Omneya Rabie and Christian Sturm. 2014. Feel
the heat: Emotion detection in arabic social me-
dia content. In The International Conference
on Data Mining, Internet Computing, and Big
Data (BigData2014), pages 37–49. The Society
of Digital Information and Wireless Communi-
cation.

Amr M Sayed, Samir AbdelRahman, Reem Bah-
gat, and Aly Fahmy. 2016. Time emotional

243

analysis of arabic tweets at multiple levels.
INTERNATIONAL JOURNAL OF ADVANCED
COMPUTER SCIENCE AND APPLICATIONS,
7(10):336–342.

Shadi Shaheen, Wassim El-Hajj, Hazem Hajj, and
Shady Elbassuoni. 2014. Emotion recogni-
tion from text based on automatically generated
rules. In Data Mining Workshop (ICDMW),
2014 IEEE International Conference on, pages
383–392. IEEE.

Amira Shoukry and Ahmed Rafea. 2012. Pre-
processing egyptian dialect tweets for sentiment
mining. In The Fourth Workshop on Computa-
tional Approaches to Arabic Script-based Lan-
guages, page 47.

Abu Bakr Soliman, Kareem Eissa, and Samhaa R
El-Beltagy. 2017. Aravec: A set of arabic word
embedding models for use in arabic nlp. Proce-
dia Computer Science, 117:256–265.

Jacopo Staiano and Marco Guerini. 2014. De-
pechemood: A lexicon for emotion analysis
from crowd-annotated news. arXiv preprint
arXiv:1405.1605.

Carlo Strapparava, Alessandro Valitutti, et al.
2004. Wordnet affect: an affective extension
of wordnet. In LREC, volume 4, pages 1083–
1086.

Maite Taboada, Julian Brooke, Milan Tofiloski,
Kimberly Voll, and Manfred Stede. 2011.
Lexicon-based methods for sentiment analysis.
Computational linguistics, 37(2):267–307.

Chadi Trad, Hazem M Hajj, Wassim El-Hajj, and
Fatima Al-Jamil. 2012. Facial action unit and
emotion recognition with head pose variations.
In ADMA, pages 383–394. Springer.

Martin Wegrzyn, Maria Vogt, Berna Kireclioglu,
Julia Schneider, and Johanna Kissler. 2017.
Mapping the emotional face. how individual
face parts contribute to successful emotion
recognition. PloS one, 12(5):e0177239.

Changhua Yang, Kevin Hsin-Yih Lin, and Hsin-
Hsi Chen. 2007. Building emotion lexicon from
weblog corpora. In Proceedings of the 45th An-
nual Meeting of the ACL on Interactive Poster
and Demonstration Sessions, pages 133–136.
Association for Computational Linguistics.

Quan Zhou, Wenlin Chen, Shiji Song, Jacob R
Gardner, Kilian Q Weinberger, and Yixin Chen.
2015. A reduction of the elastic net to sup-
port vector machines with an application to gpu
computing. In AAAI, pages 3210–3216.

244

Proceedings of the 12th International Workshop on Semantic Evaluation (SemEval-2018), pages 245–255
New Orleans, Louisiana, June 5–6, 2018. ©2018 Association for Computational Linguistics

NTUA-SLP at SemEval-2018 Task 1: Predicting Affective Content in
Tweets with Deep Attentive RNNs and Transfer Learning

Christos Baziotis1,3, Nikos Athanasiou1, Alexandra Chronopoulou1,
Athanasia Kolovou1,2, Georgios Paraskevopoulos1,4, Nikolaos Ellinas1

Shrikanth Narayanan4,5, Alexandros Potamianos1,4,5

1School of ECE, National Technical University of Athens, Athens, Greece
2 Department of Informatics, University of Athens, Athens, Greece

3 Department of Informatics, Athens University of Economics and Business, Athens, Greece
4 Behavioral Signal Technologies, Los Angeles, CA

5 Signal Analysis and Interpretation Laboratory (SAIL), USC, Los Angeles, USA
cbaziotis@mail.ntua.gr, el12074@central.ntua.gr
el12068@central.ntua.gr, akolovou@di.uoa.gr

geopar@central.ntua.gr, nellinas@central.ntua.gr
shri@sipi.usc.edu, potam@central.ntua.gr

Abstract

In this paper we present deep-learning mod-
els that submitted to the SemEval-2018 Task 1
competition: “Affect in Tweets”. We par-
ticipated in all subtasks for English tweets.
We propose a Bi-LSTM architecture equipped
with a multi-layer self attention mechanism.
The attention mechanism improves the model
performance and allows us to identify salient
words in tweets, as well as gain insight into
the models making them more interpretable.
Our model utilizes a set of word2vec word em-
beddings trained on a large collection of 550
million Twitter messages, augmented by a set
of word affective features. Due to the limited
amount of task-specific training data, we opted
for a transfer learning approach by pretrain-
ing the Bi-LSTMs on the dataset of Semeval
2017, Task 4A. The proposed approach ranked
1st in Subtask E “Multi-Label Emotion Classi-
fication”, 2nd in Subtask A “Emotion Intensity
Regression” and achieved competitive results
in other subtasks.

1 Introduction

Social media content has dominated online com-
munication, enriching and changing language with
new syntactic and semantic constructs that allow
users to express facts, opinions and emotions in
short amount of text. The analysis of such con-
tent has received great attention in NLP research
due to the wide availability of data and the inter-
esting language novelties. Specifically the study
of affective content in Twitter has resulted in a va-
riety of novel applications, such as tracking prod-
uct perception (Chamlertwat et al., 2012), public
opinion detection about political tendencies (Pla

<user> has forever changed my life

<hashtag> blessed </hashtag>

Emotions: joy, love, optimism

seriously about to smack someone in the

face <hashtag> arsehole </hashtag>

Emotions: anger, disgust

Figure 1: Attention heat-map visualization. The
color intensity corresponds to the weight given to
each word by the self-attention mechanism.

and Hurtado, 2014; Tumasjan et al., 2010), stock
market monitoring (Si et al., 2013; Bollen et al.,
2011b) etc. The wide usage of figurative language,
such as emojis and special language forms like ab-
breviations, hashtags, slang and other social me-
dia markers, which do not align with the conven-
tional language structure, make natural language
processing in Twitter even more challenging.

In the past, sentiment analysis was tackled by
extracting hand-crafted features or features from
sentiment lexicons (Nielsen, 2011; Mohammad
and Turney, 2010, 2013; Go et al., 2009) that were
fed to classifiers such as Naive Bayes or Sup-
port Vector Machines (SVM) (Bollen et al., 2011a;
Mohammad et al., 2013; Kiritchenko et al., 2014).
The downside of such approaches is that they re-
quire extensive feature engineering from experts
and thus they cannot keep up with rapid language
evolution (Mudinas et al., 2012), especially in
social media/micro-blogging context. However,

245

Unlabeled
Dataset Ta

sk
Fi

n
al

 L
ay

er

Embeddings
Pre-training

Word
Embeddings

Em
b

ed
d

in
g

La
ye

r

Subtask X
Dataset

Processed
Input Data

Transfer Weights

Su
b

ta
sk

 X
Fi

n
al

 L
ay

er

Pretraining
Dataset

Processed
Input Data

P
re

tr
ai

n
in

g
Ta

sk
Su

b
ta

sk
 X

Text
Preprocessing

(ekphrasis)

Figure 2: High-level overview of our approach

recent advances in artificial neural networks for
text classification have shown to outperform con-
ventional approaches (Deriu et al., 2016; Rouvier
and Favre, 2016; Rosenthal et al., 2017a). This
can be attributed to their ability to learn features
directly from data and also utilize hand-crafted
features where needed. Most of aforementioned
works focus on sentiment analysis, but similar ap-
proaches have been applied to emotion detection
(Canales and Martínez-Barco, 2014) leading to
similar conclusions. SemEval 2018 Task 1: “Af-
fect in Tweets” (Mohammad et al., 2018) focuses
on exploring emotional content of tweets for both
classification and regression tasks concerning the
four basic emotions (joy, sadness, anger, fear) and
the presence of more fine-grained emotions such
as disgust or optimism.

In this paper, we present a deep-learning sys-
tem that competed in SemEval 2018 Task 1: “Af-
fect in Tweets”. We explore a transfer learning
approach to compensate for limited training data
that uses the sentiment analysis dataset of Semeval
Task 4A (Rosenthal et al., 2017b) for pretraining a
model and then further fine-tune it on data for each
subtask. Our model operates at the word-level
and uses a Bidirectional LSTM equipped with a
deep self-attention mechanism (Pavlopoulos et al.,
2017). Moreover, to help interpret the inner work-
ings of our model, we provide visualizations of
tweets with annotations of the salient tokens as
predicted by the attention layer.

2 Overview

Figure 2 provides a high-level overview of our
approach, which consists of three main steps:

(1) the word embeddings pretraining, where we
train word2vec and affective word embeddings
on our unlabeled Twitter dataset, (2) the trans-
fer learning step, where we pretrain a deep-learn-
ing model on a sentiment analysis task, (3) the
fine-tuning step, where we fine-tune the pretrained
model on each subtask.
Task definitions. Given a tweet we are asked to:
Subtask EI-reg: determine the intensity of a cer-
tain emotion (joy, fear, sadness, anger), as a real-
valued number between in the [0, 1] interval.
Subtask EI-oc: classify its intensity towards a cer-
tain emotion (joy, fear, sadness, anger) across a
4-point scale.
Subtask V-oc: classify its valence intensity (i.e
sentiment intensity) across a 7-point scale [−3, 3].
Subtask V-reg: determine its valence intensity as a
real-valued number between in the [0, 1] interval.
Subtask E-c: determine the existence of none, one
or more out of eleven emotions: anger, anticipa-
tion, disgust, fear, joy, love, optimism, pessimism,
sadness, surprise, trust.

2.1 Data

Unlabeled Dataset. We collected a big dataset
of 550 million English tweets, from April 2014 to
June 2017. This dataset is used for (1) calculating
word statistics needed in our text preprocessing
pipeline (Section 2.3) and (2) training word2vec
and affective word embeddings (Section 2.2).
Pretraining Dataset. For transfer learning, we
utilized the dataset of Semeval-2017 Task4A.
The dataset consists of 61, 854 tweets with
{positive, neutral, negative} sentiment (va-
lence) annotations. To our knowledge, this is the
largest Twitter dataset with affective annotations.

2.2 Word Embeddings

Word embeddings are dense vector representa-
tions of words (Collobert and Weston, 2008;
Mikolov et al., 2013), capturing their semantic
and syntactic information. To this end, we train
word2vec word embeddings, to which we add 10
affective dimensions. We use our pretrained em-
beddings, to initialize the first layer (embedding
layer) of our neural networks.
Word2vec Embeddings. We leverage our unla-
beled dataset to train Twitter-specific word em-
beddings. We use the word2vec (Mikolov et al.,
2013) algorithm, with the skip-gram model, nega-
tive sampling of 5 and minimum word count of 20,

246

utilizing Gensim’s (Řehůřek and Sojka, 2010) im-
plementation. The resulting vocabulary contains
800, 000 words.
Affective Embeddings. Starting from small man-
ually annotated lexica, continuous norms (within
the [−1, 1] interval) for new words are estimated
using semantic similarity and a linear model along
ten affect-related dimensions, namely: valence,
dominance, arousal, pleasantness, anger, sad-
ness, fear, disgust, concreteness, familiarity. The
method of generating word level norms is detailed
in (Malandrakis et al., 2013) and relies on the as-
sumption that given a similarity metric between
two words, one may derive the similarity between
their affective ratings. This approach uses a set
of N words with known affective ratings (seed
words), as a starting point. Concretely, we cal-
culate the affective rating of a word w as follows:

υ̂(w) = α0 +

N∑

i=1

αiυ(ti)S(ti, w), (1)

where t1...tN are the seed words, υ(ti) is the af-
fective rating for seed word ti, αi is a trainable
weight corresponding to seed ti and S()̇ stands for
the semantic similarity metric between ti and w.
The seed words ti are selected separately for each
dimension, from the words available in the orig-
inal manual annotations (see 2.2). The S()̇ met-
ric is estimated as shown in (Palogiannidi et al.,
2015) using word-level contextual feature vectors
and adopting a scheme based on mutual informa-
tion for feature weighting.
Manually annotated norms. To generate affec-
tive norms, we need to start from some manual
annotations, so we use ten dimensions from four
sources. From the Affective Norms for English
Words (Bradley and Lang, 1999) we use norms for
valence, arousal and dominance. From the MRC
Psycholinguistic database (Coltheart, 1981), we
use norms for concreteness and familiarity. From
the Paivio norms (Clark and Paivio, 2004) we use
norms for pleasantness. Finally from (Stevenson
et al., 2007) we use norms for anger, sadness, fear
and disgust.

2.3 Preprocessing1

We utilized the ekphrasis2 (Baziotis et al., 2017)
tool as a tweet preprocessor. The preprocessing
steps included in ekphrasis are: Twitter-specific
tokenization, spell correction, word normaliza-
tion, word segmentation (for splitting hashtags)
and word annotation.
Tokenization. Tokenization is the first fundamen-
tal preprocessing step and since it is the basis for
the other steps, it immediately affects the qual-
ity of the features learned by the network. Tok-
enization on Twitter is challenging, since there is
large variation in the vocabulary and the expres-
sions which are used. There are certain expres-
sions which are better kept as one token (e.g. anti-
american) and others that should be split into sepa-
rate tokens. Ekphrasis recognizes Twitter markup,
emoticons, emojis, dates (e.g. 07/11/2011, April
23rd), times (e.g. 4:30pm, 11:00 am), currencies
(e.g. $10, 25mil, 50e), acronyms, censored words
(e.g. s**t), words with emphasis (e.g. *very*) and
more using an extensive list of regular expressions.
Normalization. After tokenization, we apply a se-
ries of modifications on the extracted tokens, such
as spell correction, word normalization and seg-
mentation. Specifically for word normalization
we use lowercase words, normalize URLs, emails,
numbers, dates, times and user handles (@user).
This helps reducing the vocabulary size without
losing information. For spell correction (Jurafsky
and James, 2000) and word segmentation (Segaran
and Hammerbacher, 2009) we use the Viterbi al-
gorithm. The prior probabilities are obtained from
word statistics from the unlabeled dataset.

The benefits of the aforementioned procedure
are the reduction of the vocabulary size, without
removing any words, and the preservation of in-
formation that is usually lost during tokenization.
Table 1 shows an example text snippet and the re-
sulting preprocessed tokens.

1Significant portions of the systems submitted to SemEval
2018 in Tasks 1, 2 and 3, by the NTUA-SLP team are shared,
specifically the preprocessing and portions of the DNN archi-
tecture. Their description is repeated here for completeness.

2github.com/cbaziotis/ekphrasis

original The *new* season of #TwinPeaks is coming on May 21, 2017. CANT WAIT \o/ !!! #tvseries #davidlynch :D
processed the new <emphasis> season of <hashtag> twin peaks </hashtag> is coming on <date> . cant <allcaps> wait

<allcaps> <happy> ! <repeated> <hashtag> tv series </hashtag> <hashtag> david lynch </hashtag> <laugh>

Table 1: Example of our text processor

247

2.4 Neural Transfer Learning for NLP

Transfer learning aims to make use of the knowl-
edge from a source domain, to improve the perfor-
mance of a model in a different, but related, tar-
get domain. It has been applied with great success
in computer vision (CV) (Razavian et al., 2014;
Long et al., 2014). Deep neural networks in CV
are rarely trained from scratch and instead are ini-
tialized with pretrained models. Notable examples
include face recognition (Taigman et al., 2014)
and visual QA (Agrawal et al., 2017), where im-
age features trained on ImageNet (Deng et al.,
2009) and word embeddings estimated on large
corpora via unsupervised training are combined.
Although model transfer has seen widespread suc-
cess in computer vision, transfer learning beyond
pretrained word vectors is less pervasive in NLP.

In our system, we explore the approach of pre-
training a network in a sentiment analysis task in
Twitter and use it to initialize the weights of the
models of each subtask. We chose the dataset of
Semeval 2017 Task4A (SA2017) (Rosenthal et al.,
2017b), which is a semantically similar dataset to
the emotion datasets of this task. By pretraining
on a dataset in a similar domain, it is more likely
that the source and target dataset will have similar
distributions.

To build our pretrained model, we initialize
the weights of the embedding layer with the
word2vec Twitter embeddings and train a bidirec-
tional LSTM (BiLSTM) with a deep self-attention
mechanism (Pavlopoulos et al., 2017) on SA2017,
similar to (Baziotis et al., 2017). Afterwards, we
utilize the encoding part of the network, which
is the BiLSTM and the attention layer, throwing
away the last layer. This pretrained model is used
for all subtasks, with the addition of a subtask-
specific final layer for classification/regression.

2.5 Recurrent Neural Networks

We model the Twitter messages using Recurrent
Neural Networks (RNN). RNNs process their in-
puts sequentially, performing the same operation,
ht = fW (xt, ht−1), on every element in a se-
quence, where ht is the hidden state t the time
step, and W the network weights. We can see that
the hidden state at each time step depends on the
previous hidden states, thus the order of elements
(words) is important. This process also enables
RNNs to handle inputs of variable length.

RNNs are difficult to train (Pascanu et al.,

𝑥1

ℎ1

𝑥2

ℎ2

𝑥3

ℎ3

𝑥𝑁

𝒉𝑵

…𝑅𝑁𝑁 𝑅𝑁𝑁 𝑅𝑁𝑁 𝑅𝑁𝑁

(a) Regular RNN

𝑥1

𝑎1

ℎ1

𝑥2

ℎ2

𝑥3

ℎ3

𝑥𝑁

ℎ𝑁

…𝑅𝑁𝑁 𝑅𝑁𝑁 𝑅𝑁𝑁 𝑅𝑁𝑁

𝑎2 𝑎3 𝑎𝑁

(b) Attention RNN

Figure 3: Comparison between regular RNN and
attentive RNN.

2013), because gradients may grow or decay ex-
ponentially over long sequences (Bengio et al.,
1994; Hochreiter et al., 2001). A way to overcome
these problems is to use more sophisticated vari-
ants of regular RNNs, like Long Short-Term Mem-
ory (LSTM) networks (Hochreiter and Schmidhu-
ber, 1997) or Gated Recurrent Units (GRU) (Cho
et al., 2014), introducing a gating mechanism to
ensure proper gradient flow through the network.

2.6 Self-Attention Mechanism

RNNs update their hidden state hi as they process
a sequence and the final hidden state holds a sum-
mary of the information in the sequence. In or-
der to amplify the contribution of important words
in the final representation, a self-attention mecha-
nism (Bahdanau et al., 2014) is used as shown in
Fig. 3. By employing an attention mechanism, the
representation of the input sequence r is no longer
limited to just the final state hN , but rather it is
a combination of all the hidden states hi. This is
done by computing the sequence representation,
as the convex combination of all hi. The weights
ai are learned by the network and their magnitude
signifies the importance of each hi in the final rep-
resentation. Formally:

r =

N∑

i=1

aihi where

N∑

i=1

ai = 1, ai > 0

3 Model Description

Next, we present in detail the submitted models.
For all subtasks, we adopted a transfer learning
approach, by pretraining a BiLSTM network with
a deep attention mechanism on SA2017 dataset.
Afterwards, we replaced the last layer of the pre-
trained model with a task-specific layer and fine-
tuned the whole network for each subtask.

248

𝑤1
𝑎1

𝑎𝑇

𝐿𝑆𝑇𝑀 𝐿𝑆𝑇𝑀

Bi-LSTM

𝑎2

Ԧ𝑥1

Embedding

𝑤2 𝐿𝑆𝑇𝑀 𝐿𝑆𝑇𝑀
Ԧ𝑥2

𝑤𝑁 𝐿𝑆𝑇𝑀 𝐿𝑆𝑇𝑀
Ԧ𝑥𝑁

……

Deep Self-Attention

Ԧ𝑟

ℎ1

ℎ1

ℎ2

ℎ2

ℎ𝑁

ℎ𝑁

…

𝑎1 ∗ ℎ1 + 𝑎2 ∗ ℎ2…

Figure 4: The proposed model, composed of a 2-layer BiLSTM with a deep self-attention mechanism.

3.1 Transfer Learning Model (TF)
Our transfer learning model is based on the sen-
timent analysis model in (Baziotis et al., 2017).
It consists of a 2-layer bidirectional LSTM (BiL-
STM) with a deep self-attention mechanism.
Embedding Layer. The input to the network is a
Twitter message, treated as a sequence of words.
We use an embedding layer to project the words
w1, w2, ..., wN to a low-dimensional vector space
RW , where W is the size of the embedding layer
and N the number of words in a tweet. We initial-
ize the weights of the embedding layer with our
pre-trained word embeddings (Section 2.2).
BiLSTM Layer. An LSTM takes as input a se-
quence of word embeddings and produces word
annotations h1, h2, ..., hN , where hi is the hid-
den state of the LSTM at time-step i, summariz-
ing all the information of the sentence up to wi.
We use bidirectional LSTMs (BiLSTM) in order
to get word annotations that summarize the infor-
mation from both directions. A BiLSTM consists
of 2 LSTMs, a forward LSTM

−→
f that parses the

sentence fromw1 towN and a backward LSTM
←−
f

that parses the sentence fromwN tow1. We obtain
the final annotation for each word hi, by concate-
nating the annotations from both directions,

hi =
−→
hi ‖
←−
hi , hi ∈ R2L (2)

where ‖ denotes the concatenation operation and
L the size of each LSTM.
Attention Layer. To amplify the contribution of
the most informative words, we augment our BiL-
STM with a self-attention mechanism. We use a

deep self-attention mechanism (Pavlopoulos et al.,
2017), to obtain a more accurate estimation of the
importance of each word. The attention weight in
the simple self-attention mechanism, is replaced
with a multilayer perceptron (MLP), composed
of l layers with a non-linear activation function
(tanh). The MLP learns the attention function g.
The attention weights ai are then computed as a
probability distribution over the hidden states hi.
The final representation r is the convex combina-
tion of hi with weights ai.

ei = g(hi) (3)

ai =
exp(ei)∑N
t=1 exp(et)

(4)

r =
N∑

i=1

aihi, r ∈ R2L (5)

Output Layer. We use vector r as the feature rep-
resentation, which we feed to a final task-specific
layer. For the regression tasks, we use a fully-
connected layer with one neuron and a sigmoid
activation function. For the ordinal classification
tasks, we use a fully-connected layer, followed by
a softmax operation, which outputs a probability
distribution over the classes. Finally, for the multi-
label classification task, we use a fully-connected
layer with 11 neurons (number of labels) and a sig-
moid activation function, performing binary clas-
sification for each label.

3.2 Fine-Tuning
After training a network on the pretraining dataset
(SA2017), we fine-tune it on each subtask, by re-

249

placing its final layer with a task-specific layer.
We experimented with two fine-tuning schemes.
The first approach is to fine-tune the whole net-
work, that is, both the pretrained encoder (BiL-
STM) and the task-specific layer. The second ap-
proach is to use the pretrained model only for
weight initialization, freeze its weights during
training and just fine-tune the final layer. Based
on the experimental results, the first approach ob-
tains significantly better results in all tasks.

3.3 Regularization

In both models, we add Gaussian noise to the
embedding layer, which can be interpreted as a
random data augmentation technique, that makes
models more robust to overfitting. In addition
to that, we use dropout (Srivastava et al., 2014)
and we stop training after the validation loss has
stopped decreasing (early-stopping).

Furthermore, we do not fine-tune the embed-
ding layers. Words occurring in the training set,
are projected in the embedding space and the clas-
sifier correlates certain regions of the embedding
space to certain emotions. However, words in-
cluded only in the test set, remain at their initial
position which may no longer reflect their “true”
emotion, leading to mis-classifications.

4 Experiments and Results

4.1 Experimental Setup

Training We use Adam algorithm (Kingma and
Ba, 2014) for optimizing our networks, with mini-
batches of size 32 and we clip the norm of the gra-
dients (Pascanu et al., 2013) at 1, as an extra safety
measure against exploding gradients. For devel-
oping our models we used PyTorch (Paszke et al.,
2017) and Scikit-learn (Pedregosa et al., 2011).
Class Weights. In subtasks EI-oc and V-oc, some
classes have more training examples than oth-
ers, introducing bias in our models. To deal
with this problem, we apply class weights to the
loss function, penalizing more the misclassifica-
tion of under-represented classes. These weights
are computed as the inverse frequencies of the
classes in the training set.
Hyper-parameters. In order to tune the hyper-
parameter of our model, we adopt a Bayesian op-
timization (Bergstra et al., 2013) approach, per-
forming a more time-efficient search in the high
dimensional space of all the possible values, com-
pared to grid or random search. We set size of the

embedding layer to 310 (300 word2vec + 10 affec-
tive dimensions), which we regularize by adding
Gaussian noise with σ = 0.2 and dropout of 0.1.
The sentence encoder is composed of 2 BiLSTM
layers, each of size 250 (per direction) with a 2-
layer self-attention mechanism. Finally, we apply
dropout of 0.3 to the encoded representation.

4.2 Experiments

In Table 2, we compare the proposed transfer
learning models against 3 strong baselines. Pear-
son correlation is the metric used for the first
four subtasks, whereas Jaccard index is used for
the E-c multi-label classification subtask. The
first baseline is a unigram Bag-of-Words (BOW)
model with TF-IDF weighting. The second base-
line is a Neural Bag-of-Words (N-BOW) model,
where we retrieve the word2vec embeddings of
the words in a tweet and compute the tweet rep-
resentation as the average (centroid) of the con-
stituent word2vec embeddings. Finally, the third
baseline is similar to the second one, but with
the addition of 10-dimensional affective embed-
dings that model affect-related dimensions (va-
lence, dominance, arousal, etc). Both BOW and
N-BOW features are then fed to a linear SVM
classifier, with tuned C = 0.6. In order to as-
sess the impact of transfer learning, we evalu-
ate the performance of each model in 3 different
settings: (1) random weight initialization (LST-
M-RD), (2) transfer learning with frozen weights
(LSTM-TL-FR), (3) transfer learning with fine-
tuning (LSTM-TL-FT). The results of our neural
models in Table 2 are computed by averaging the
results of 10 runs to account for model variability.
Baselines. Our first observation is that N-BOW
baselines significantly outperform BOW in sub-
tasks EI-reg, EI-oc, V-reg and V-oc, in which we
have to predict the intensity of an emotion, or the
tweet’s valence. However, BOW achieves slightly
better performance in subtask E-c, in which we
have to recognize the emotions expressed in each
tweet. This can be attributed to the fact that BOW
models perform well in tasks where we the occur-
rence of certain words is sufficient, to accurately
determine the classification result. This suggests
that in subtask E-c, certain words are highly in-
dicative of some emotions. Word embeddings,
though, that encode the correlation of each word
with different dimensions, enable NBOW to better
predict the intensity of various emotions. Further-

250

EI-reg (pearson) EI-oc (pearson) V-Reg
(pearson)

V-oc
(pearson)

E-c
(jaccard)anger fear joy sadness anger fear joy sadness

BOW 0.5249 0.5227 0.5716 0.4721 0.3996 0.3491 0.4456 0.3835 0.5963 0.4954 0.4572
NBOW 0.6539 0.6318 0.6355 0.6305 0.5573 0.3796 0.5044 0.5009 0.7501 0.6527 0.4541
NBOW+A* 0.656 0.6359 0.6384 0.6341 0.5367 0.3906 0.4803 0.5005 0.7457 0.6578 0.4478

LSTM-RD 0.7568 0.7357 0.7313 0.7479 0.6387 0.5874 0.6226 0.6343 0.8462 0.7722 0.5788
LSTM-TL-FR 0.7347 0.6509 0.7321 0.7269 0.5999 0.4666 0.6264 0.6030 0.8275 0.7331 0.5243
LSTM-TL-FT 0.7717 0.7273 0.7638 0.7665 0.6329 0.5702 0.6351 0.6400 0.8390 0.7652 0.5788

Table 2: Results of our experiments across all subtasks on the official evaluation metrics. For subtasks
EI-reg, EI-oc, V-reg, V-oc, the evaluation metric is Pearson correlation. For subtask E-c, the evaluation
metric is multi-label accuracy (Jaccard index). BOW stands for Bag-of-Words baseline, N-BOW stands
for Neural Bag-of-Words baseline and N-BOW+A indicates the inclusion of the affective word features.
As for the neural models, RD stands for random initialization, TL for Transfer Learning, FR for Frozen
pretrained layers (without fine-tuning) and FT for Fine-Tuning. For our deep-learning models, the results
are computed by averaging 10 runs to account for the variability in training performance.

Ave.diff. Overall Ave.diff. p-value
Anger 0.001 0 0.02223
Fear -0.003 -0.003 0
Joy 0.004 0.010 0
Sadness 0.002 -0.002 0
Valence 0.005 0.005 0

Table 3: Analysis for inappropriate biases

more, regarding the affective embeddings, we can
directly observe their impact by the performance
gain over the NBOW baseline.

Transfer Learning. We observe that our neural
models achieved better performance than all base-
lines by a large margin. Moreover, we can see that
our transfer learning model yielded higher perfor-
mance over the non-transfer model in most of the
Emotion Intensity (EI) subtasks. In the Emotion
multi-label classification subtask (E-c), transfer
learning did not outperform the random initializa-
tion model. This can be attributed to the fact that
our source dataset (SA17) was not diverse enough
to boost the model performance when classifying
the tweets into none, one or more of a set of 11
emotions. As for fine-tuning or freezing the pre-
trained layers, the overall results show that en-
abling the model to fine-tune always results in sig-
nificant gains. This is consistent with our intuition
that allowing the weights of the model to adapt to
the target dataset, thus encoding task-specific in-
formation, results in performance gains. Regard-
ing the emotion of joy, we observe that in EI-reg
and EI-oc subtasks, LSTM-RD matches the per-
formance of LSTM-TL-FR. We interpret this re-
sult as an indication of the semantic similarity be-
tween the source and the target task.

Mystery dataset. The submitted models were
also evaluated against a mystery dataset, in order
to investigate if there is statistically significant so-
cial bias in them. This is a very important exper-
iment, especially when automated machine learn-
ing algorithms are interacting with social media
content and users in the wild. The mystery dataset
consists of pairs of sentences that differ only in
the social context (e.g. gender or race). Submitted
models are expected to predict the same affective
values for both sentences in the pair. The evalua-
tion metric is the average difference in prediction
scores per class, along with the p-value score indi-
cating if the difference is statistically significant.
Results are summarized in Table 3.

4.3 Attention visualizations
Fig. 10 shows a heat-map of the attention weights
on top of 8 example tweets (2 tweets per emo-
tion). The color intensity corresponds to the
weight given to each word by the self-attention
mechanism and signifies the importance of this
word for the final prediction. We can see that the
salient words correspond to the predicted emotion
(e.g. “irritated” for anger, “mourn” for sadness
etc.). An interesting observation is that when emo-
jis are present they are almost always selected as
important, which indicates their function as weak
annotations. Also note that the attention mecha-
nism can hint to dependencies between words even
if they far in a sentence, like the “why” and “mad”
in the sadness example.

4.4 Competition Results
Our official ranking was 2/48 in subtask 1A (EI-
reg), 5/39 in subtask 2A (EI-oc), 4/38 in subtask

251

<user>
0.114

such
0.177

an
0.133

amazing
0.192

pic
0.192 0.192

the
0.042

golden
0.110

temple
0.040

is
0.110

beautiful
0.233

!
0.233 0.233

Figure 5: Examples of intensity of joy

why
0.133

do
0.123

i
0.120

get
0.124

mad
0.133

so
0.114

easily
0.124 0.129

how
0.123

long
0.148

will
0.160

they
0.159

mourn
0.188

me
0.122

?
0.100

Figure 6: Examples of intensity of sadness

totally
0.157

scare
0.159

for
0.154

this
0.128

upcoming
0.103

results
0.155

.
0.143

fuckfuckfuck
0.239

my
0.166

hands
0.213

are
0.144

shaking
0.239

Figure 7: Examples of intensity of fear

i
0.162

am
0.165

actually
0.167

very
0.168

irritated
0.169 0.169

i
0.132

really
0.142

hate
0.146

the
0.143

morning
0.145

shift
0.146 0.146

Figure 8: Examples of intensity of anger

it
0.043

'
0.031

s
0.037

been
0.088

<number>
0.087

weeks
0.113

and
0.063

i
0.074

still
0.113

go
0.090

through
0.120

depression
0.123

smh
0.019

Emotions: pessimism, sadness

everything
0.093

i
0.028

order
0.035

online
0.050

just
0.043

comes
0.036

looking
0.029

like
0.068

a
0.082

piece
0.141

of
0.106

shit
0.145 0.145

Emotions: anger, disgust

i
0.031

have
0.031

never
0.032

been
0.031

so
0.031

excited
0.224

to
0.229

start
0.228

a
0.059

semester
0.038

!
0.065

Emotions: anticipation, joy, optimism

the
0.028

best
0.166

revenge
0.166

ever
0.099

.
0.023

<repeated>
0.023

is
0.024

success
0.165 0.089 0.141 0.075

Emotions: joy, optimism

Figure 9: Examples of emotion recognition

Figure 10: Attention heat-map visualization. The color intensity of each word corresponds to its weight
(importance), given by the self-attention mechanism (Section 2.6).

3A (V-reg), 8/37 (tie with 6 and 7 place) in sub-
task 4A (V-oc) and 1/35 in subtask 5A (E-c). All
of our models achieved competitive results. We
used the same transfer learning approach in all
subtasks (LSTM-TL-FT), utilizing the same pre-
trained model.

5 Conclusion

In this paper we present a deep-learning system
for short text emotion intensity, valence estimation
for both regression and classification and multi-
class emotion classification. We used Bidirec-
tional LSTMs, with a deep attention mechanism
and took advantage of transfer learning in order to
address the problem of limited training data.

Our models achieved excellent results in sin-
gle and multi-label classification tasks, but mixed
results in emotion and valence intensity tasks.
Future work can follow two directions. Firstly,
we aim to revisit the task with different transfer
learning approaches, such as (Felbo et al., 2017;
Howard and Ruder, 2018; Hashimoto et al., 2016).

Secondly, we would like to introduce character-
level information in our models, based on (Wiet-
ing et al., 2016; Labeau and Allauzen, 2017), in or-
der to overcome the problem of out-of-vocabulary
(OOV) words and learn syntactic and stylistic fea-
tures (Peters et al., 2018), which are highly indica-
tive of emotions and their intensity.

Finally, we make both our pretrained word
embeddings and the source code of our models
available to the community3, in order to make our
results easily reproducible and facilitate further
experimentation in the field.

Acknowledgements. This work has been partially
supported by the BabyRobot project supported by
EU H2020 (grant #687831). Also, the authors
would like to thank NVIDIA for supporting this
work by donating a TitanX GPU.

3github.com/cbaziotis/
ntua-slp-semeval2018-task1

252

References
Aishwarya Agrawal, Jiasen Lu, Stanislaw Antol, Mar-

garet Mitchell, C. Lawrence Zitnick, Devi Parikh,
and Dhruv Batra. 2017. Vqa: Visual question an-
swering. Int. J. Comput. Vision, 123(1):4–31.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua
Bengio. 2014. Neural machine translation by
jointly learning to align and translate. CoRR,
abs/1409.0473.

Christos Baziotis, Nikos Pelekis, and Christos Doulk-
eridis. 2017. Datastories at semeval-2017 task
4: Deep lstm with attention for message-level and
topic-based sentiment analysis. In Proceedings of
the 11th International Workshop on Semantic Eval-
uation (SemEval-2017), pages 747–754.

Yoshua Bengio, Patrice Simard, and Paolo Frasconi.
1994. Learning long-term dependencies with gradi-
ent descent is difficult. IEEE transactions on neural
networks, 5(2):157–166.

James Bergstra, Daniel Yamins, and David D. Cox.
2013. Making a Science of Model Search: Hyper-
parameter Optimization in Hundreds of Dimensions
for Vision Architectures. ICML (1), 28:115–123.

Johan Bollen, Huina Mao, and Alberto Pepe. 2011a.
Modeling public mood and emotion: Twitter sen-
timent and socio-economic phenomena. Icwsm,
11:450–453.

Johan Bollen, Huina Mao, and Xiaojun Zeng. 2011b.
Twitter mood predicts the stock market. Journal of
computational science, 2(1):1–8.

M. Bradley and P. Lang. 1999. Affective norms for
English words (ANEW): Instruction Manual and Af-
fective Ratings. Technical report.

Lea Canales and Patricio Martínez-Barco. 2014. Emo-
tion detection from text: A survey. In Proceedings
of the Workshop on Natural Language Processing in
the 5th Information Systems Research Working Days
(JISIC), pages 37–43.

Wilas Chamlertwat, Pattarasinee Bhattarakosol, Tip-
pakorn Rungkasiri, and Choochart Haruechaiyasak.
2012. Discovering consumer insight from twitter
via sentiment analysis. J. UCS, 18(8):973–992.

Kyunghyun Cho, Bart Van Merriënboer, Caglar Gul-
cehre, Dzmitry Bahdanau, Fethi Bougares, Holger
Schwenk, and Yoshua Bengio. 2014. Learning
phrase representations using RNN encoder-decoder
for statistical machine translation. arXiv preprint
arXiv:1406.1078.

J.M. Clark and A. Paivio. 2004. Extensions of the
paivio, yuille, and madigan (1968) norms. Behav-
ior Research Methods, Instruments, & Computers,
36(3):371–383.

Ronan Collobert and Jason Weston. 2008. A unified
architecture for natural language processing: Deep
neural networks with multitask learning. In Pro-
ceedings of the 25th International Conference on
Machine Learning, pages 160–167. ACM.

M. Coltheart. 1981. The mrc psycholinguistic
database. The Quarterly Journal of Experimental
Psychology Section A, 33(4):497–505.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai
Li, and Fei-Fei Li. 2009. Imagenet: a large-scale
hierarchical image database.

Jan Deriu, Maurice Gonzenbach, Fatih Uzdilli, Au-
relien Lucchi, Valeria De Luca, and Martin Jaggi.
2016. SwissCheese at SemEval-2016 Task 4: Sen-
timent classification using an ensemble of convo-
lutional neural networks with distant supervision.
Proceedings of SemEval, pages 1124–1128.

Bjarke Felbo, Alan Mislove, Anders Søgaard, Iyad
Rahwan, and Sune Lehmann. 2017. Using millions
of emoji occurrences to learn any-domain represen-
tations for detecting sentiment, emotion and sar-
casm. arXiv preprint arXiv:1708.00524.

Alec Go, Richa Bhayani, and Lei Huang. 2009. Twit-
ter sentiment classification using distant supervision.
CS224N Project Report, Stanford, 1(12).

Kazuma Hashimoto, Caiming Xiong, Yoshimasa Tsu-
ruoka, and Richard Socher. 2016. A joint many-task
model: Growing a neural network for multiple nlp
tasks. arXiv preprint arXiv:1611.01587.

Sepp Hochreiter, Yoshua Bengio, Paolo Frasconi, and
Jürgen Schmidhuber. 2001. Gradient Flow in Re-
current Nets: The Difficulty of Learning Long-Term
Dependencies. A field guide to dynamical recurrent
neural networks. IEEE Press.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural computation,
9(8):1735–1780.

Jeremy Howard and Sebastian Ruder. 2018. Fine-
tuned language models for text classification. arXiv
preprint arXiv:1801.06146.

Daniel Jurafsky and H. James. 2000. Speech and lan-
guage processing an introduction to natural language
processing, computational linguistics, and speech.

Diederik Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Svetlana Kiritchenko, Xiaodan Zhu, and Saif M. Mo-
hammad. 2014. Sentiment analysis of short in-
formal texts. Journal of Artificial Intelligence Re-
search, 50:723–762.

Matthieu Labeau and Alexandre Allauzen. 2017. Char-
acter and subword-based word representation for
neural language modeling prediction. In Proceed-
ings of the First Workshop on Subword and Charac-
ter Level Models in NLP, pages 1–13.

253

Jonathan Long, Evan Shelhamer, and Trevor Darrell.
2014. Fully convolutional networks for semantic
segmentation. CoRR, abs/1411.4038.

N. Malandrakis, A. Potamianos, E. Iosif, and
S. Narayanan. 2013. Distributional semantic mod-
els for affective text analysis. IEEE Transac-
tions on Audio, Speech and Language Processing,
21(11):2379–2392.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S. Cor-
rado, and Jeff Dean. 2013. Distributed representa-
tions of words and phrases and their compositional-
ity. In Advances in Neural Information Processing
Systems, pages 3111–3119.

Saif M. Mohammad, Felipe Bravo-Marquez, Mo-
hammad Salameh, and Svetlana Kiritchenko. 2018.
Semeval-2018 Task 1: Affect in tweets. In Proceed-
ings of International Workshop on Semantic Evalu-
ation (SemEval-2018), New Orleans, LA, USA.

Saif M. Mohammad, Svetlana Kiritchenko, and Xiao-
dan Zhu. 2013. NRC-Canada: Building the state-
of-the-art in sentiment analysis of tweets. arXiv
preprint arXiv:1308.6242.

Saif M Mohammad and Peter D Turney. 2010. Emo-
tions evoked by common words and phrases: Us-
ing mechanical turk to create an emotion lexicon. In
Proceedings of the NAACL HLT 2010 workshop on
computational approaches to analysis and genera-
tion of emotion in text, pages 26–34. Association for
Computational Linguistics.

Saif M Mohammad and Peter D Turney. 2013. Crowd-
sourcing a word–emotion association lexicon. Com-
putational Intelligence, 29(3):436–465.

Andrius Mudinas, Dell Zhang, and Mark Levene. 2012.
Combining lexicon and learning based approaches
for concept-level sentiment analysis. In Proceedings
of the first international workshop on issues of sen-
timent discovery and opinion mining, page 5. ACM.

Finn Årup Nielsen. 2011. A new anew: Evaluation of a
word list for sentiment analysis in microblogs. arXiv
preprint arXiv:1103.2903.

E. Palogiannidi, E. Iosif, P. Koutsakis, and A. Potami-
anos. 2015. Valence, Arousal and Dominance Esti-
mation for English, German, Greek, Portuguese and
Spanish Lexica using Semantic Models. In Proc. of
Interspeech, pages 1527–1531.

Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio.
2013. On the difficulty of training recurrent neural
networks. ICML (3), 28:1310–1318.

Adam Paszke, Sam Gross, Soumith Chintala, Gre-
gory Chanan, Edward Yang, Zachary DeVito, Zem-
ing Lin, Alban Desmaison, Luca Antiga, and Adam
Lerer. 2017. Automatic differentiation in pytorch.

John Pavlopoulos, Prodromos Malakasiotis, and
Ion Androutsopoulos. 2017. Deep learning
for user comment moderation. arXiv preprint
arXiv:1705.09993.

Fabian Pedregosa, Gaël Varoquaux, Alexandre Gram-
fort, Vincent Michel, Bertrand Thirion, Olivier
Grisel, Mathieu Blondel, Peter Prettenhofer, Ron
Weiss, Vincent Dubourg, and others. 2011. Scikit-
learn: Machine learning in Python. Journal of Ma-
chine Learning Research, 12(Oct):2825–2830.

Matthew E Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word rep-
resentations. arXiv preprint arXiv:1802.05365.

Ferran Pla and Lluís-F Hurtado. 2014. Political ten-
dency identification in twitter using sentiment anal-
ysis techniques. In Proceedings of COLING 2014,
the 25th international conference on computational
linguistics: Technical Papers, pages 183–192.

Ali Sharif Razavian, Hossein Azizpour, Josephine Sul-
livan, and Stefan Carlsson. 2014. CNN features off-
the-shelf: an astounding baseline for recognition.
CoRR, abs/1403.6382.

Radim Řehůřek and Petr Sojka. 2010. Software Frame-
work for Topic Modelling with Large Corpora. In
Proceedings of the LREC 2010 Workshop on New
Challenges for NLP Frameworks, pages 45–50, Val-
letta, Malta. ELRA. http://is.muni.cz/
publication/884893/en.

Sara Rosenthal, Noura Farra, and Preslav Nakov.
2017a. Semeval-2017 task 4: Sentiment analysis
in twitter. In Proceedings of the 11th International
Workshop on Semantic Evaluation (SemEval-2017),
pages 502–518.

Sara Rosenthal, Noura Farra, and Preslav Nakov.
2017b. SemEval-2017 Task 4: Sentiment Analy-
sis in Twitter. In Proceedings of the 11th Interna-
tional Workshop on Semantic Evaluation, SemEval
’17, Vancouver, Canada. Association for Computa-
tional Linguistics.

Mickael Rouvier and Benoit Favre. 2016. SENSEI-
LIF at SemEval-2016 Task 4: Polarity embedding
fusion for robust sentiment analysis. Proceedings of
SemEval, pages 202–208.

Toby Segaran and Jeff Hammerbacher. 2009. Beautiful
Data: The Stories Behind Elegant Data Solutions.
"O’Reilly Media, Inc.".

Jianfeng Si, Arjun Mukherjee, Bing Liu, Qing Li,
Huayi Li, and Xiaotie Deng. 2013. Exploiting topic
based twitter sentiment for stock prediction. In Pro-
ceedings of the 51st Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 2: Short
Papers), volume 2, pages 24–29.

254

Nitish Srivastava, Geoffrey E. Hinton, Alex
Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdi-
nov. 2014. Dropout: A simple way to prevent neural
networks from overfitting. Journal of Machine
Learning Research, 15(1):1929–1958.

R.A. Stevenson, J.A. Mikels, and T.W. James. 2007.
Characterization of the affective norms for english
words by discrete emotional categories. Behavior
research methods, 39(4):1020–1024.

Yaniv Taigman, Ming Yang, Marc’Aurelio Ranzato,
and Lior Wolf. 2014. Deepface: Closing the gap
to human-level performance in face verification.

Andranik Tumasjan, Timm Oliver Sprenger, Philipp G
Sandner, and Isabell M Welpe. 2010. Predicting
elections with twitter: What 140 characters reveal
about political sentiment. Icwsm, 10(1):178–185.

John Wieting, Mohit Bansal, Kevin Gimpel, and Karen
Livescu. 2016. Charagram: Embedding words and
sentences via character n-grams. arXiv preprint
arXiv:1607.02789.

255

Proceedings of the 12th International Workshop on Semantic Evaluation (SemEval-2018), pages 256–263
New Orleans, Louisiana, June 5–6, 2018. ©2018 Association for Computational Linguistics

CrystalFeel at SemEval-2018 Task 1: Understanding and Detecting
Emotion Intensity using Affective Lexicons

Raj Kumar Gupta and Yinping Yang∗

Institute of High Performance Computing (IHPC)
Agency for Science, Technology and Research (A*STAR), Singapore

{gupta-rk, yangyp}@ihpc.a-star.edu.sg

Abstract

While sentiment and emotion analysis has re-
ceived a considerable amount of research at-
tention, the notion of understanding and de-
tecting the intensity of emotions is relatively
less explored. This paper describes a system
developed for predicting emotion intensity in
tweets. Given a Twitter message, CrystalFeel
uses features derived from parts-of-speech, n-
grams, word embedding, and multiple affec-
tive lexicons including Opinion Lexicon, Sen-
tiStrength, AFFIN, NRC Emotion & Hash
Emotion, and our in-house developed EI Lexi-
cons to predict the degree of the intensity asso-
ciated with fear, anger, sadness, and joy in the
tweet. We found that including the affective
lexicons-based features allowed the system to
obtain strong prediction performance, while
revealing interesting emotion word-level and
message-level associations. On gold test data,
CrystalFeel obtained Pearson correlations of
.717 on average emotion intensity and of .816
on sentiment intensity.

1 Introduction

While humans experience emotions every day, the
degree of one’s emotions varies from one experi-
ence to another. To date, a vast majority of NLP
and computational linguistics research deals with
ground truth data constructed through the assign-
ment of discrete labels to text messages by anno-
tators. Conventionally, sentiment analysis seeks to
determine the valence (positive, negative or neu-
tral) of the feelings and opinions that annotators
can recognize in a text message (Hu and Liu, 2004;
Pang and Lee, 2008; Socher et al., 2013). Emo-
tion classification, a closely related task, typically
seeks to predict the presence or absence of an emo-
tion, i.e., if there is joy or no joy, anger or no

∗Both authors contributed to this research equally. Cor-
respondence should be sent to yangyp@ihpc.a-star.edu.sg.

anger, fear or no fear, in a particular message (Alm
et al., 2005; Aman and Szpakowicz, 2007; Wen
and Wan, 2014). The detection of emotion inten-
sity along a continuous scale is a relatively less
explored task.

One of the key reasons for the lack of work
on detecting emotion intensity is plausibly at-
tributable to the difficulty in measuring the very
concept of emotion intensity. As highlighted in
prior research, the question “how intense was your
emotional experience on a scale of 1 to 10?” can-
not generate reliable responses even for the same
emotion type (Frijda et al., 1992). For example,
asking people to respond to “how intense was your
fear towards getting rejected” and “how intense
was your fear towards receiving a medical test re-
sult” would lead to inconsistent answers across
the same annotators at different times, as well as
across different annotators. Because of the lack of
a clear reference point, it is nearly impossible to
construct ground truth datasets with adequate reli-
ability.

To address the measurement issue, Mohammad
and Bravo-Marquez (2017) used a best-worst scal-
ing (BWS) method to create a tweet emotion in-
tensity dataset. Annotators were asked to rank the
best and worst examples of the intensity of emo-
tions among n text examples (called n-tube, where
n > 2 and typically n = 4). This reduces the ref-
erence point ambiguity issue faced by annotators
with regards to which baseline they would have
used to rate a text along a single scale. Upon hav-
ing a target tweet annotated with 24 ranking judge-
ments, the emotion intensity score for the tweet
was computed as a real-valued score in the range
of 0 to 1 (based on linear transformed value of
the difference between the percentage of the num-
ber of times the tweet ranked the highest and the
times ranked the lowest among all ranking judge-
ments). In total, the dataset consists of 7,097 an-

256

Emotion intensity score in range of [0, 0.5] Emotion intensity score in range of (0.5, 1.0]
Anger No words Sir... Thank you for the concern.. [0.197] Everything I order online just comes looking like a

piece of shit [0.864]
Fear They are building a shell command on a server, com-

bining that with user input, and then executing that in
a shell on the client. #shudder [0.482]

Let’s hope the ct scan gives us some answers on this
lump today #nervous [0.818]

Joy ’You’re here to feed me. I won’t die of starvation,’
he said, slightly smiling. I frowned. Panira. Kainis.
[0.177]

Omgsh Alexis is sooooo freaking funny on #Bache-
lorInParadise That pizza segment! Plus I love her
and Jazzy’s friendship! [0.813]

Sadness I will not fall to the dark side [0.208] That moment when you look back and realise
you’ve been a #selfish #horrible #judgemental per-
son. #FeelingAshamed [0.909]

Table 1: Examples of tweets with their emotion intensity scores from the task dataset.

notated tweets across four emotions of anger, fear,
joy and sadness, which formed the training dataset
for the present SemEval-2018 Task 1 dataset (Mo-
hammad et al., 2018). Table 1 provides a few ex-
amples from the dataset.

The ability to detect the degree or intensity of
emotions is beneficial to many AI applications.
For example, a virtual service assistant would be
able to employ more appropriate response strat-
egy when a high-intensity anger or frustration is
sensed from its customer, as compared to respond
monotonically in normal dialogues. Customer re-
lationship management systems can be more tar-
geted by engaging customers who express high de-
grees of joy or excitement with their products and
services. Homecare robots, empowered with the
ability to recognize high-intensity grief or distress,
would be less likely to miss the opportunity to alert
professional human care givers.

In this paper, we discuss our approach to ad-
dress this emotion intensity detection task, with a
focus on the use of and experiments with affec-
tive lexicons. In the following sections, we in-
troduce our in-house developed Emotion Intensity
lexicons, and compare the performance of feature
sets derived from various affective lexicons as well
as parts-of-speech, n-grams and word embedding
with SVM-based classifier.

2 Emotion Intensity and Affective
Lexicons

In its simplest form, emotion intensity refers to the
degree or amount of an emotion (Mohammad and
Bravo-Marquez, 2017). A basic feature of emo-
tion intensity would be the use of quantifier words.
For example, one may indicate that he or she is a
bit annoyed, very pissed off, or extremely angry.
On the other hand, one may also say that he or she
feels angry, livid, or furious. Without quantifier

words, emotion words in itself are salient features
indicating the intensity of emotions.

In 2016, we started in-house efforts to develop
a multidimensional affective lexicon that com-
putationally captures and distinguishes different
psychological and linguistic meanings associated
with each emotion-related word. Our initial ver-
sion of Emotion Intensity (EI) Lexicon is a col-
lection of 3,204 emotion-related English words,
common emoticons and Internet slangs labelled
in strength and intensity dimensions (as used in
Gupta and Yang 2017). In the beginning, the ra-
tionale underlying our work centered on the fact
that human emotions can be characterized using
two fundamental dimensions: the dimension of
evaluation strength in that an expression would
have different levels of pleasantness or unpleas-
antness (Osgood et al., 1957), and the dimen-
sion of intensity (Shaver et al., 1987) which con-
cerns about−and what Osgood et al. (1957) origi-
nally called as−motivational “potency” and phys-
ical “activity”1. By developing a lexicon that dis-
tinguishes strength and intensity, anger-based ex-
pressions (high in potency), for example, can be
differentiated from equally unpleasant, sadness-
based expressions (low in potency).

In EI, each lexicon item is coded with strength
and intensity scores in the range of [-3, -2, -
1, 0, 1, 2, 3]. For example, items such as
“excited”, “astonished” and “thrill” are coded
as “3” (high-intensity, positive); items such as
“thank”, “cooperative”, “concern”, “:)” and “:d”
are coded as “1” (low-intensity, positive); items
such as “sorry”, “agh” and “:/” are coded as “-
2” (medium-intensity, negative); items such as
“hate”, “resented”, “D:” are coded as “-3” (high-
intensity, negative); words such as “great”, “haze”,

1For illustration, the feeling of depression is very nega-
tive in evaluation strength, but it may not be highly intense.

257

“fulfill”, “sick” and “sleepy” are coded as “0” as
they are related to emotions by reflecting exter-
nal, bodily, physical or cognitive conditions, but
are not “genuine” emotions (Ortony et al., 1987;
Clore et al., 1987).

In Gupta and Yang (2017), we explored the
use of the Emotion Intensity (EI) Lexicon and
found it helpful in enhancing sarcasm detection
and sentiment analysis. Encouraged by its effec-
tiveness, we continue to develop and use the lex-
icon by adding more psychologically meaningful
affective dimensions. We consider three more di-
mensions: the “basic” emotion categories (Shaver
et al., 1987; Ekman, 1973) including fear, anger,
sadness, joy, love and surprise, fine-grained emo-
tion categories (as summarized in Robinson 2009)
including finer emotions such as joy-contentment,
joy-cheerfulness, joy-excitement, and psychologi-
cal conditions including affective condition, cog-
nitive condition, physical & bodily state and ex-
ternal condition (Clore et al., 1987). In addition,
we also add a levels of polarity dimension to re-
flect if a word is more uni-polarized (e.g., “angry”
and “careless” are definitely negative) or more
bi-polarized (e.g., “surprised” and “sympathetic”
may imply both positive and negative feelings).
These new considerations contribute to forming
the Enhanced Emotion Intensity (E2I) Lexicon.
The following table (Table 2) presents the prop-
erties of our lexicon in the context of five affective
lexicons which were shown to be useful in prior
sentiment and emotion analysis research.

3 CrystalFeel System

Focusing on features design and experiments, we
employed SVM as the main classifier for the Crys-
talFeel system. In terms of features, we considered
two broad categories: affective lexicon based fea-
tures, and non-affective lexicon based features.

2https://www.cs.uic.edu/∼liub/FBS/sentiment-
analysis.html#lexicon

3http://www2.imm.dtu.dk/pubdb/views/publication det-
ails.php?id=6010

4http://sentistrength.wlv.ac.uk
5http://saifmohammad.com/WebPages/NRC-Emotion-

Lexicon.htm
6http://saifmohammad.com/WebPages/AccessResource.htm
7http://www.crystalace.socialanalyticsplus.net
8The construction of the full Enhanced Emotion Inten-

sity Lexicon is under development of a research manuscript.
The lexicon will be released to the research community.

3.1 Affective Lexicons-Based Feature Sets
Following the discussion in Section 2, seven sets
of affective lexicons based features were extracted
for the experiments:

• OL (6 features): counts of positive (+ive) &
negative (−ive) words (2 features), order of
+ive &−ive words (1 feature), count of both
+ive &−ive words (1 feature), start positions
of first occurrence of +ive & −ive words (2
features)

• SS (16 features): counts of +ive & −ive
words (2), order of +ive & −ive words
(1), count of both +ive & −ive words (1),
start positions of first occurrence of +ive &
−ive words (2), count of words of different
strengths of -5 to 4 (10)

• AFFIN (17 features): counts of +ive & −ive
words (2), order of +ive & −ive words
(1), count of both +ive & −ive words (1),
start positions of first occurrence of +ive &
−ive words (2), count of words of different
strengths of -5 to 5 (11)

• NRC-EmoLex (14 features): counts of +ive
& −ive words (2), order of +ive & −ive
words (1), count of both +ive & −ive words
(1), start positions of first occurrence of +ive
& −ive words (2), count of words belonging
to 8 emotions (8)

• NRC-Hash-Emo (14 features): counts of
+ive &−ive words (2), order of +ive &−ive
words (1), count of both +ive & −ive words
(1), start positions of first occurrence of +ive
&−ive words (2), total intensity of words be-
longing to 8 emotions (8)

• EI (24 features): counts of +ive & −ive
words (2), order of +ive & −ive words (1),
count of both +ive & −ive words (1), start
positions of first occurrence of +ive & nega-
tive words (2), counts of words holding three
strengths of 1 to 3 (3), count of words holding
three intensities of 1 to 3 (3), counts of posi-
tive & negative words holding three strengths
of 1 to 3 (6), counts of positive & negative
words holding three intensities of 1 to 3 (6)

• E2I (115 features, including 24 EI features):
counts of +ive & −ive words (2), order of
+ive & −ive words (1), count of both +ive

258

Lexicon
Size

Lexical/Words
Coverage

Affective Di-
mension Size

Affective Dimension
Coverage

Construction
Method

1. Opinion Lexicon (OL)2

(Hu and Liu, 2004)
6,789 standard English,

informal English
1 sentiment/valence Automatic

2. AFINN3 (Nielsen,
2011)

2,477 standard English,
informal English

2 sentiment/valence,
strength

Manual (Ex-
pert Annota-
tion)

3. SentiStrength (SS)4

(Thelwall et al., 2012)
2,503 standard English,

informal En-
glish, emoticons,
idioms

2 sentiment/valence,
strength

Manual (Ex-
pert Annota-
tion)

4. NRC Word-Emotion
Association Lexicon
(NRC-Emo-Lex)5 (Mo-
hammad and Turney,
2010, 2013)

14,182 standard English 2 sentiment/valence, emo-
tion category (8 emo-
tions)

Manual
(Crowd-
sourced
Annotation)

5. NRC Hashtag Emotion
Association Lexicon
(NRC-Hash-Emo)6

(Mohammad, 2012;
Mohammad and Kir-
itchenko, 2015)

16,862 informal English 2 emotion category (8
emotions), association
(real-valued numeric
score)

Automatic

6. Emotion Intensity (EI)
Lexicon7 (Gupta and
Yang, 2017)

3,204 standard English,
informal English,
emoticons

3 sentiment/valence,
strength, intensity

Manual (Ex-
pert Annota-
tion)

7. Enhanced Emotion In-
tensity (E2I) Lexicon8

3,446 standard English,
informal En-
glish, emoticons,
idioms

7 sentiment/valence,
strength, intensity, emo-
tion category (6 basic
emotions), fine-grained
emotion category (31
fine emotions), psy-
chological condition
(4 conditions), polarity
condition (4 conditions)

Manual (Ex-
pert Annota-
tion)

Table 2: Affective lexicons used in our emotion intensity analysis experiments.

& −ive words (1), start positions of first oc-
currence of +ive & −ive words (2), counts
of words holding three strengths of 1 to 3
(3), count of words holding three intensities
of 1 to 3 (3), counts of words belonging to
6 emotions and unspecific words (7), counts
of words belonging to 31 emotions and un-
specific words (32), counts of words belong-
ing to 4 psychological conditions (4), counts
of words belonging to 4 polarity conditions
(4), pairwise intersection features across all
the dimensions (56)

3.2 N-grams, POS, Word Counts, and Word
Embedding Feature Sets

In addition to affective lexicons, we extracted 25-
dimensional Tweet part-of-speech (POS) features
(Owoputi et al., 2013) for each tweet. Further-
more, as emotion intensity is likely to be associ-
ated with the total tweet length and use of capi-
tal letters, we added the word counts (WC) fea-
tures set including counting of total words and
counting of uppercase letters. We extracted n-

grams in the same way as in our earlier work
(Gupta and Yang, 2017). Lastly, we used FastText
(Joulin et al., 2016) to convert the tweets into a
100-dimensional feature vectors. To train FastText
model, we downloaded close to 8 million tweets
using Twitter Streaming API. In summary:

• POS (25 features): Counts of proper nouns,
verbs, conjunctions, adjectives, hasthags,
emoticons, urls, punctuations etc. computed
using TweetPOS tagger

• WC (2 features): Counts of uppercase letters,
text length

• N-grams (12,650 features): uni-grams & bi-
grams

• Word Embedding (100 features): word em-
bedding features computed using FastText

3.3 Feature Experiments
Based on the setup, we use the official SemEval-
2018 Task 1 training and development datasets to

259

Pearson correlations (r)
Anger Fear Joy Sadness Avg.

Individual Affective Lexicons Feature Sets
OL 0.364 0.426 0.538 0.383 0.428
SS 0.290 0.484 0.445 0.402 0.405

AFFIN 0.344 0.383 0.508 0.440 0.419
NRC-EmoLex 0.216 0.414 0.300 0.301 0.308

NRC-Hash-Emo 0.453 0.492 0.477 0.359 0.445
EI 0.195 0.378 0.368 0.375 0.329

E2I 0.362 0.475 0.458 0.531 0.456
Combined Affective Lexicon Features Sets

OL + SS 0.300 0.508 0.545 0.457 0.453
OL + SS + AFFIN 0.358 0.497 0.587 0.525 0.492

OL + SS + AFFIN + NRC-EL 0.353 0.544 0.576 0.540 0.503
OL + SS + AFFIN + NRC-EL + NRC-H-E 0.528 0.629 0.627 0.585 0.592

OL + SS + AFFIN + NRC-EL + NRC-H-E + E2I 0.544 0.629 0.626 0.622 0.605
Other Individual Feature Sets

POS 0.136 0.123 0.070 0.223 0.138
WC -0.005 0.106 0.069 0.070 0.060

N-grams 0.378 0.608 0.497 0.504 0.497
Word Embedding 0.611 0.557 0.585 0.580 0.583

All Features Sets
All Features 0.702 0.689 0.666 0.689 0.686

Table 3: Results of feature experiments trained and tested on SemEval-2018 training and development
data (highest results in each features sets group are bolded).

train and test the performance of various individ-
ual and combined feature conditions. The results
are presented in Table 3.

Among individual lexicon based feature sets,
features derived from E2I alone led to highest
macro-averaged Pearson correlations (r = 0.456).
(Note that r ranges from −1 to 1 where −1 means
perfect reverse correlation and 1 means perfect
correlation; a random algorithm gives close to
0.) The performances of NRC-Hash-Emo and OL
came closely as second (r = 0.445) and third
(r = 0.428). Interestingly, on specific emotions,
E2I’s advantage (r = 0.531) on the prediction
of sadness is significantly greater than the sec-
ond highest prediction of sadness from AFFIN de-
rived features (r = 0.440). NRC-Hash-Emo led
to highest results for anger (r = 0.453) and fear
(r = 0.492), and OL features led to the highest
value for joy (r = 0.538).

For the combined affective lexicon features set-
tings, we observed that there was a tendency for
each feature set to result in additional advantage
(e.g., combining OL + SS features with OL or SS
features alone) on the macro-averaged scores, sug-
gesting the complementarity across these lexicons.
Combining all the lexicons resulted in a large im-
provement (avg. r = 0.605).

Among non-affective lexicons based features
sets, word embedding features obtained the best
result (r = 0.583). Except for predicting fear,

in which n-grams performed better (r = 0.608),
word embedding’s advantage also held for predict-
ing anger (r = 0.611), joy (r = 0.585) and sad-
ness (r = 0.580).

Finally, we combined all the lexicon-based fea-
tures (with small variations9 from the individual
experiment conditions) and non-lexicon based fea-
tures. This “all-features” condition resulted in the
highest performance for avg. Pearson correlation
(r = 0.684) and individual correlations for all four
emotions. The all-features setting was used for the
CrystalFeel system for gold test data.

3.4 Word-level and Message-level Analysis
So to what extent are emotion words from af-
fective lexicons indicative of emotion intensity in
tweets at the message level? To explore this ques-
tion, we ran correlation analysis by calculating
bivariate Pearson correlation coefficients between
each feature derived from the affective lexicons
and the emotion intensity ground truth labels. Fig-
ure 1 shows the results.

The analysis indicated several interesting pat-
terns related to the usefulness of lexicon dimen-
sions. First, the sentiment/valence dimension of
affective lexicons were generally useful, as the
counts of +ive and −ive words (regardless the
source of the lexicons) showed up in top ten fea-

9The variations are not including two features of start
positions of first occurrence of +ive & −ive words (2) for
NRC-EmoLex and NRC-Hash-Emo.

260

Figure 1: Top ten features with highest bivariate feature-emotion intensity correlations across the four
emotion datasets.

Pearson correlations (r)
Anger Fear Joy Sadness Avg.

Random Baseline -0.008 -0.018 -0.058 0.024 -0.008
SVM Unigrams Baseline 0.520 0.526 0.575 0.525 0.520
CrystalFeel 0.740 0.700 0.708 0.720 0.717

Table 4: Evaluation Results on subtask 1 emotion intensity regression (EI-reg).

Pearson correlations (r)
Anger Fear Joy Sadness Avg.

Random Baseline -0.008 -0.018 0.024 -0.058 -0.008
SVM Unigrams Baseline 0.520 0.526 0.525 0.575 0.520
CrystalFeel 0.576 0.466 0.540 0.538 0.530

Table 5: Evaluation Results on subtask 2 emotion intensity ordinal classification (EI-oc).

tures for all four emotions. Second, features de-
rived from the advanced dimensions of the affec-
tive lexicons appeared across the emotions too,
suggesting the meaningfulness of lexicons dis-
tinguishing finer dimensions of psycholingusitic
properties of words. Specifically, for example,
on strength dimension, count of negative words
with strength 3 from AFFIN lexicon (AFFIN -
ive strength3) is positively correlated with anger
intensity in tweets (r = 0.295). On emotion

category dimension, counts of anger words from
NRC-Hash-Emo (NRCHash anger) and from E2I
(E2I anger) are positively associated with anger
intensity in tweets. Third, more fine-grained di-
mensions from E2I are shown as top individual
features correlated with anger and sadness in-
tensities and in particular with sadness intensity.
For example, count of fear-fright words from E2I
(E2I fear-fright) is highly correlated with fear in-
tensity (r = 0.374) and count of sadness words

261

as genuine emotions (E2I sadness affective) is
highly correlated with sadness intensity (r =
0.421).

Furthermore, the results revealed interesting
word-level and message-level feature associations
across the four emotions. While the top features
for intensities of anger, fear and sadness in tweets
(9 or 10 out of 10 top features) are positive associa-
tions with the presence and higher amount of neg-
ative or emotion-specific words, the top features
for intensity of joy (7 out of 10 top features) are
negative associations with the absence and lower
amount of negative words. It deserves future re-
search to further investigate these patterns and to
cross examine these patterns in other datasets.

Pearson correlations (r)
Valence

Random Baseline 0.031
SVM Unigrams Baseline 0.585
CrystalFeel 0.816

Table 6: Evaluation Results on subtask 3 valence/
sentiment intensity regression (V-reg).

Pearson Kappa
Valence Valence

Random Baseline -0.010 -0.010
SVM Unigrams Baseline 0.509 0.504
CrystalFeel 0.652 0.637

Table 7: Evaluation Results on subtask 4 valence/
sentiment ordinal classification (V-oc).

Accuracy Micro-
avg F1

Macro-
avg F1

Random Baseline 0.185 0.307 0.285
SVM Unigrams
Baseline

0.442 0.570 0.443

CrystalFeel 0.468 0.601 0.522

Table 8: Evaluation Results on subtask 5 multi-
label emotion classification (E-c).

4 Results

We evaluated the CrystalFeel system using gold
test datasets provided by SemEval-2018 Task 1
(Mohammad et al., 2018). Besides testing the
main task of emotion intensity, since it is our pri-
mary interest, we have also participated in all other
subtasks. In all subtasks, CrystalFeel system out-
performed the baseline set by the task organizer.
Tables 4-8 summarize the final results.

5 Conclusion

This paper describes CrystalFeel system which is
capable of predicting the intensity of emotions as-
sociated with a Twitter message. The results of
the feature experiments supported the usefulness
of our in-house developed EI & E2I lexicons as
a new manually constructed lexicon on a rela-
tively small number of lexicon items. In addition,
the lexicon also aided us to understand the dif-
ferent patterns of associations between emotion-
specific words and emotion-specific intensities at
the tweets/messages level. Based on the current
analysis, it appeared that our approach possesses a
special advantage in understanding and predicting
sadness-specific intensity present in tweets. For
the use of classifiers, we focused on using SVM
as our machine learning classifier in the present
study. We plan to investigate the use of deep learn-
ing methods in future work.

Acknowledgment

This research is supported by SERC Strate-
gic Fund from Science and Engineering Re-
search Council (SERC), A*STAR (project no.
a1718g0046). The authors thank Andrew Ortony
for his valuable comments on emotions and emo-
tion intensity and the Digital Emotions team for
helpful discussions. We are grateful for the help
from Nur Atiqah Othman for her proofreading and
enhancement on the clarity of the paper.

References

Cecilia Ovesdotter Alm, Dan Roth, and Richard
Sproat. 2005. Emotions from text: machine learn-
ing for text-based emotion prediction. International
conference on Human Language Technology and
Empirical Methods in Natural Language Processing
pages 579–586.

Saima Aman and Stan Szpakowicz. 2007. Identifying
expressions of emotion in text. International Con-
ference on Text, Speech and Dialogue pages 196–
205.

Gerald L. Clore, Andrew Ortony, and Mark A. Foss.
1987. The psychological foundations of the affec-
tive lexicon. Journal of Personality and Social Psy-
chology 53(4):751–766.

Paul Ekman. 1973. cross-cultural studies of facial ex-
pression. Darwin and facial expression: A century
of research in review .

262

Nico H. Frijda, Andrew Ortony, Joep Sonnemans, and
Gerald Clore. 1992. The complexity of intensity: Is-
sues concerning the structure of emotion intensity.
Personality and Social Psychology Review 13:60–
89.

Raj Kumar Gupta and Yinping Yang. 2017. Crys-
talNest at SemEval-2017 Task 4: Using sarcasm de-
tection for enhancing sentiment classification and
quantification. International Workshop on Semantic
Evaluation (SemEval 2017) .

Minqing Hu and Bing Liu. 2004. Mining and sum-
marizing customer reviews. ACM SIGKDD pages
168–177.

Armand Joulin, Edouard Grave, Piotr Bojanowski, and
Tomas Mikolov. 2016. Bag of tricks for efficient
text classification. Proceedings of the 15th Confer-
ence of the European Chapter of the Association for
Computational Linguistics 2:427–431.

Saif M. Mohammad. 2012. #emotional tweets. In Pro-
ceedings of the First Joint Conference on Lexical
and Computational Semantics (*Sem) .

Saif M. Mohammad and Felipe Bravo-Marquez. 2017.
Emotion intensities in tweets. In Proceedings of
the Sixth Joint Conference on Lexical and Compu-
tational Semantics .

Saif M. Mohammad, Felipe Bravo-Marquez, Mo-
hammad Salameh, and Svetlana Kiritchenko. 2018.
Semeval-2018 task 1: Affect in tweets. SemEval .

Saif M. Mohammad and Svetlana Kiritchenko. 2015.
Using hashtags to capture fine emotion cate-
gories from tweets. Computational Intelligence
31(2):301–326.

Saif M. Mohammad and Peter Turney. 2010. Emo-
tions evoked by common words and phrases: Us-
ing mechanical turk to create an emotion lexicon. In
Proceedings of the NAACL-HLT 2010 Workshop on
Computational Approaches to Analysis and Genera-
tion of Emotion in Text .

Saif M. Mohammad and Peter Turney. 2013. Crowd-
sourcing a word-emotion association lexicon. Com-
putational Intelligence 29(3):436–465.

Finn Arup Nielsen. 2011. Afinn. Informatics and
Mathematical Modelling, Technical University of
Denmark .

Andrew Ortony, Gerald L. Clore, and Mark A. Foss.
1987. The referential structure of the affective lexi-
conn. Cognitive Science 11(3):341–364.

Charles Egerton Osgood, George J. Suci, and Percy H.
Tannenbaum. 1957. The measurement of meaning.
University of Illinois Press .

Olutobi Owoputi, Brendan O’Connor, Chris Dyer,
Kevin Gimpel, Nathan Schneider, and Noah A.
Smith. 2013. Improved part-of-speech tagging
for online conversational text with word clusters.
NAACL: HLT pages 380–390.

Bo Pang and Lillian Lee. 2008. Opinion ming and sen-
timent analysis. New Publishers Inc .

David L. Robinson. 2009. Brain function, emotional
experience and personality. The Netherlands Jour-
nal of Psychology pages 152–167.

Phillip Shaver, Judith Schwartz, Donald Kirson, and
Cary O’Connor. 1987. Emotion knowledge: Further
exploration of a prototype approach. Journal of Per-
sonality and Social Psychology 52(6):1061–1086.

Richard Socher, Alex Perelygin, Jean Y. Wu, Jason
Chuang, Christopher D. Manning, Andrew Y. Ng,
and Christopher Potts. 2013. Recursive deep mod-
els for semantic compositionality over a sentiment
treebank. EMNLP .

Mike Thelwall, Kevan Buckley, and Georgios Pal-
toglou. 2012. Sentiment strength detection for the
social web. Journal of the American Society for In-
formation Science and Technology 63(1):163–173.

Shiyang Wen and Xiaojun Wan. 2014. Emotion clas-
sification in microblog texts using class sequential
rules. AAAI Conference on Artificial Intelligence
pages 187–193.

263

Proceedings of the 12th International Workshop on Semantic Evaluation (SemEval-2018), pages 264–272
New Orleans, Louisiana, June 5–6, 2018. ©2018 Association for Computational Linguistics

PlusEmo2Vec at SemEval-2018 Task 1: Exploiting emotion knowledge
from emoji and #hashtags

Ji Ho Park, Peng Xu, Pascale Fung
Centre for Artificial Intelligence Research (CAiRE)
Hong Kong University of Science and Technology

{jhpark, pxuab}@connect.ust.hk, pascale@ece.ust.hk

Abstract

This paper describes our system that has been
submitted to SemEval-2018 Task 1: Affect in
Tweets (AIT) to solve five subtasks. We fo-
cus on modeling both sentence and word level
representations of emotion inside texts through
large distantly labeled corpora with emojis and
hashtags. We transfer the emotional knowl-
edge by exploiting neural network models as
feature extractors and use these representa-
tions for traditional machine learning mod-
els such as support vector regression (SVR)
and logistic regression to solve the competi-
tion tasks. Our system is placed among the
Top3 for all subtasks we participated.

1 Introduction

Finding a good representation of texts is very chal-
lenging since texts are sequences of words which
are represented in a discrete space of the vocabu-
lary. For this reason, many past works have inves-
tigated in finding the mapping of words (Mikolov
et al., 2013; Pennington et al., 2014) or sentences
(Kiros et al., 2015) to continuous spaces, so that
each text can be represented by a fixed-size, real-
valued N-dimensional vector. This vector repre-
sentation then can be applied to machine learning
models to solve problems like classification and
regression. A good representation should contain
essential information inside each text and be a use-
ful input for statistical models.

Emotions in texts further deepen the complexity
of modeling natural language since they not only
depend on the semantics of a language but also
are inherently subjective and ambiguous. Despite
the difficulty, accounting for emotion is important
in achieving true natural language understanding,
especially in areas involving human-computer in-
teractions such as dialogue systems (Fung, 2015).

Humans can naturally capture and express dif-
ferent emotions in texts, so machines should also

be able to infer them. Many works (Tang et al.,
2014; Felbo et al., 2017; Thelwall, 2017) explored
modeling sentiment or emotion in texts in various
directions. This work is highly related to these ef-
forts.

Semeval-2018 Task 1: Affect in Tweets (AIT-
2018) encourages more efforts in this area with
the task of sentiment analysis, which is one of
the most practical applications of modeling emo-
tional text representations. We have participated
in five subtasks regarding English tweets: emo-
tion intensity regression, emotion intensity ordi-
nal classification, valence (sentiment) regression,
valence ordinal classification, and emotion classi-
fication (More details on the tasks in Mohammad
et al. (2018)).

Although these five tasks take different for-
mats, the most important objective is finding a
good representation of the tweets regarding emo-
tions. However, the given competition training
datasets are too small to achieve our goal (Table
3). Therefore, we explore utilizing larger datasets
that are distantly supervised by emojis and hash-
tags to learn a robust representation and transfer
the knowledge of each dataset to the competition
datasets to solve the tasks. We aim to minimize the
use of lexicons and linguistic features by replacing
them with continuous vector representations.

2 Emoji sentence representations

Thanks to the endless stream of social media such
as Twitter and Facebook, researchers nowadays
are lucky enough to have access to almost an un-
limited number of texts generated every day. Nev-
ertheless, annotating these texts with explicit emo-
tion or sentiment human labels is very expensive
and difficult. For this reason, many works nat-
urally focused on finding direct or indirect evi-
dence of emotion inside each text, such as hash-

264

Figure 1: 11 clusters of emojis used as categori-
cal labels and their distributions in the training set.
Because some emojis appear much less frequently
than others, we group the 34 emojis into 11 clus-
ters according to the distance on the correlation
matrix of the hierarchical clustering from Felbo
et al. (2017) and use them as categorical labels

tags and emoticons (Suttles and Ide, 2013; Wang
et al., 2012), and found them useful to distantly
label an emotion of each text. Furthermore, the
recent popular culture of using emojis (Wood and
Ruder, 2016) inside social media posts and mes-
sages provides us even richer evidence of different
emotions, and they have been proven to be very ef-
fective in learning rich representations for various
affect-related tasks (Felbo et al., 2017).

2.1 Methodology & Emoji Dataset

In this paper, we compare two models using two
different emoji dataset to transform the competi-
tion data into robust sentence representations.

First model is the pre-trained DeepMoji model
(Felbo et al., 2017), which is trained through emoji
predictions on a dataset of 1.2 billion tweets with
64 common emoji labels. We use the pretrained
deep learning network, which consists of Bidirec-
tional Long Short Term Memory (Bi-LSTM) with
attention, except the last softmax layer, as a feature
extractor of the original competition datasets. As
a result, each sample is transformed into a 2304-
dimensional vector from the model.

The second model is our proposed emoji clus-
ter model. We crawled 8.1 million tweets with
each of which has 34 different facial and hand
emojis, assuming these kinds of emojis are more
relevant to emotions. Since some emojis appear
much less frequently than others, we cluster the
34 emojis into 11 clusters (Figure 1) according to
the distance on the correlation matrix of the hier-
archical clustering from Felbo et al. (2017). Sam-

ples with emojis in the same cluster are assigned
the same categorical label for prediction. Sam-
ples with multiple emojis are duplicated in the
training set, whereas in the dev and test set we
only use samples with one emoji to avoid confu-
sion. We then train a one-layer Bi-LSTM clas-
sifier with 512 hidden units to predict the emoji
cluster of each sample. We take part of the dataset
to construct a balanced dev set with 15,000 sam-
ples per class (total 165,000) for hyperparameter
tuning and early stopping. We use 200 dimension
Glove vectors pre-trained on a much larger Twitter
corpus to initialize the embedding layer.

The motivation for exploring two different mod-
els is that, firstly, we want to replicate the effec-
tiveness of using emoji for representing emotions
from the previous work (Felbo et al., 2017) with a
smaller dataset and a simpler model. Note that the
dataset size of the emoji cluster model is less than
1% of that of the first model, whereas DeepMoji
uses more than 1 billion training samples. More-
over, the first model implements a two-layer Bi-
LSTM with self-attention, which has much more
parameters than the second model’s simple one-
layer Bi-LSTM does. Secondly, we want to verify
that ensembling both emoji representations trained
from different datasets to boost our performance.
We will present the result of the comparisons and
the ensembles in Section 5.2.

One thing i dislike is laggers man
I hate inconsistency
The paper is irritating me
As of right now i hate dre
im sick of crying im tired of trying
why body pain why
uuugh i really have nothing to do right now
i dont wanna go back to mex
looking forward to holiday
well today am on lake garda enjoying the life
perfect time to read book
im feeling great enjoying my holiday

Table 1: Test samples from the Emoji Cluster
model and their top-3 nearest sentences according
to the learned representations. It shows that emo-
tionally similar sentences are clustered together

2.2 Evaluation
As a result, the model can achieve 29.8% top-1
accuracy and 61.0% top-3 accuracy on the emoji
cluster prediction task. Since the objective of this
model is not to predict the cluster label but to
find a good sentence representation, we visual-

265

ize the test set samples to discover that samples
with similar semantics and emotions are grouped
together (Table 1). Finally, similar to the first
model, we use this model as a feature extractor
on the competition datasets. Each text sample in
the competition datasets is transformed into a 512-
dimensional vector through the model except the
last class predicting softmax layer.

In conclusion, we trained two deep learning
models with two different emoji datasets to extract
emoji representations of the competition datasets.
They are transformed into high dimensional, real-
valued, and continuous vectors, which can be used
as features for the classification and regression
tasks.

From now on, we will call the vectors from the
first model, DeepMoji representations, and those
from the second, Emoji Cluster representations.

3 Emotional word vectors (EVEC)

We also explore word-level representations, along
with emoji sentence representations. Although
sentence-level representations already build up
from word representations (in particular we use
pretrained Glove vectors (Pennington et al.,
2014)), they may not be enough to attend to the
valence that each word contains. Previous works
(Tang et al., 2014) examine the significance of us-
ing sentiment-specific word embedding for related
tasks. For this reason, we train emotional word
vectors that not only cluster together direct emo-
tion words such as anger and joy, but also cap-
ture emotions inside indirect emotion words, such
as anger inside headache and joy inside beach.
We learn these vectors by training a Convolu-
tional Neural Network (CNN) from another sepa-
rate Twitter corpus distantly labeled with hashtags.

3.1 Methodology

Our intuition to learn effective emotion word vec-
tors is that given a document labeled with emo-
tion there exists one or more emotionally signifi-
cant words inside. Nevertheless, we do not know
which ones are more important. We assume that a
deep learning model, which learns the representa-
tions of the data with different level of abstractions
(LeCun et al., 2015) will be able to capture those
words and encode the information in its word em-
bedding layer while classifying the documents la-
bel.

For the model structure, we use CNN since it

is proven to be effective in text classification tasks
by looking at the documents n-gram features and
its gradient can be directly back-propagated to the
word embedding, whereas Recurrent Neural Net-
work (RNN) models are updated sequentially. We
use a similar structure used by (Kim, 2014), which
includes a max-pooling layer to force the network
to find the most relevant feature for predicting the
emotion class correctly.

After the CNN network learns how to classify
the documents into different emotion categories,
we extract emotional word vectors from the net-
work’s embedding layer and use them as same as
how other word embeddings, such as word2vec
(Mikolov et al., 2013) or Glove, are used, treating
them as features for other classification or regres-
sion models.

3.2 Hashtag Dataset

To accumulate a large corpus of emotion-labeled
texts, we use a distant supervision method by us-
ing hashtags of tweets to automatically annotate
emotions. Such method has proven to provide
relevant emotion labels by previous works (Wang
et al., 2012). Their source of the emotion words
came from emotion words list made from Shaver
et al. (1987), where the authors organize emotions
into a hierarchy in which the first layer contains
six basic emotions and each emotion has a list
of emotion words. Wang et al. (2012) again ex-
panded the list by including their lexical variants
and also introduced some filtering heuristics, such
as only using tweets with emotional hashtags at
the end of tweets to make the distant supervision
more relevant to human annotation. We combine
their dataset, another public dataset 1, which used
the same method, and our own extracted tweets
between January and October 2017 using the Twit-
ter Firehose API.

For the emotion labels, we focus on four emo-
tion categories: joy, sadness, anger, and fear, since
the competition tasks are only limited to those cat-
egories. In total, our hashtag dataset consists of
1.9 million tweets (Table 2).

3.3 Evaluation

For every sample in the SemEval competition
dataset, we extract all emotional word vectors of
the words in the sentence and simply average them

1http://hci.epfl.ch/sharing-emotion-lexicons-and-
data#emo-hash-data

266

Emotion Label % Samples
Joy 36.5% It’s been such a great week #happy
Sadness 33.8% I think I miss my boyfriend #lonely
Anger 23.5% Ignoring me isn’t going to make our problems go away. #annoyed
Fear 6% What to wear for this job orientation.. #nervous

Table 2: Description of the Twitter hashtag corpus. Hashtags at the end were removed from the document
and used as labels. It is hard to construct a well-balanced dataset for all four classes since Twitter users
tend to use more hashtags related to happy and sad emotions.

into one vector. For words out of vocabulary of the
hashtag corpus, we add zero vectors with the same
dimension. As a result, every sentence is trans-
formed into a 300-dimension vector to be used as
features for the competition tasks. We expect these
emotional word vectors can replace sentiment or
emotion lexicons, since they are continuous repre-
sentations learned from a large corpus, which can
be more robust and rich in information about emo-
tions inside words.

4 System Description

4.1 Features

These are the three features that are used as input
for our system to solve SemEval-2018 Task 1.

Emoji Sentence Representations: Two mod-
els will be compared - DeepMoji representations
(2304 dimensions) and Emoji cluster representa-
tions (512 dimensions). See Section 2.

Emotional Word Vectors (EVEC): Average of
emotional word vectors learned from hashtag cor-
pus (300 dimensions). See Section 3.

Tweet-specific features: We employ Tweet-
specific features to capture information that two
previous representations cannot. Inspired from the
previous SemEval papers (Zhou et al., 2016; Ba-
likas and Amini, 2016), we choose five features,
(1) number of words in uppercase, (2) number of
positive and negative emoticons, (3) Sum of emoji
valence score 2, (4) number of elongated words,
and (5) number of exclamation & question marks.
Note that we do not use any linguistic features or
sentiment/emotion lexicons for our system.

4.2 Preprocessing

Tweets in the competition datasets are tokenized
after all non-alphanumeric characters are re-
moved, except for extracting tweet-specific fea-
tures. Some words, especially for hashtags, are
merged together (e.g. #iloveyou), so unknown

2https://github.com/words/emoji-emotion

words in the vocabulary is put into a wordsegment
library 3 to preserve the right segment (e.g. i, love,
you). Then, the tokens are transformed into emoji
sentence representations (2304 or 512 dimensions)
and emotional word vectors (300 dimensions), ac-
cording to the vocabulary of the emoji and hashtag
dataset. These datasets respectively have 262,975
and 48,929 words in their vocabularies.

4.3 Regression and Ordinal Classification

Due to the fact that the datasets of regression tasks
(EI-reg & V-reg) and ordinal classification tasks
(EI-oc & V-oc) have the same sample sentences,
we assume that regression labels are more infor-
mative than the ordinals, since they tell us the rank
among the samples within the same ordinal class.
Therefore, we first train a regression model and
then use it to predict ordinals, rather than training
a separate classifier. We later prove that this trick
yields a better result in ordinal classification.

For regression, since our features are extracted
from deep learning models, we find Support Vec-
tor Regression (SVR) and Kernel-Ridge Regres-
sion methods, which are effective for nonlinear
features, perform better than linear methods. We
tune the hyper-parameters with the given develop-
ment (dev) set and later merge both train and dev
set to train the final model with the best hyper-
parameter found. Also, we try ensembles by aver-
aging the final regression predictions of different
methods or feature combinations to boost perfor-
mance. The best groups of models are selected by
the development set results of many combinations.

Another important finding is that the mapping
between the regression labels and ordinal labels
are very different among emotion categories. For
example in Figure 2, Class 0 for fear is distributed
in [0,0.6], whereas class 0 for joy is distributed in
[0, 0.4]. Therefore, we try to find the mapping
from the regression values (continuous) to ordinal

3http://www.grantjenks.com/docs/wordsegment/

267

(a) Fear (b) Joy

Figure 2: Distribution of regression labels (x-axis) and ordinal labels (y-axis) on the training dataset of
Task 1a & 2a. Class 0 for fear is distributed in [0,0.6], whereas class 0 for joy is distributed in [0, 0.4].
Vertical lines are boundaries between ordinal classes, which are used for scope mapping method

values (discrete) from the training dataset. We ex-
periment with three different mapping:

1. naive mapping: divides [0,1] into same size
segments according to the number of ordinals

2. scope mapping: finds the boundary of each
segment in the training dataset (vertical lines
on Figure 2)

3. polynomial mapping: fits a polynomial re-
gression function from the training data and
finds the closest ordinal label.

4.4 Multi-label Classification
This task of multi-label classification is different
from previous tasks in that the model needs to pre-
dict the binary label for each of the 11 classes
given a tweet. The task is difficult in terms of three
aspects. Firstly, some of the classes have opposite
emotions (such as optimism and pessimism) but
may have been labeled both as true. Secondly, it
is not trivial to distinguish similar emotions such
as joy, love, and optimism, which will include a
lot of noise in the labels and make it hard to per-
form classification during training. Lastly, most
of the tweets are labeled with no more than 3 cat-
egories out of 11 classes, which make the labels
very sparse and imbalanced (Table 4).

We propose to train two models to tackle this
problem: regularized linear regression and logis-
tic regression classifier chain (Read et al., 2009).
Both models aim to exploit labels’ correlation to
perform multi-label classification.

4.4.1 Regularized linear regression model
We formulate the multi-label classification prob-
lem as a linear regression with label distance as

the regularization term. We denote the features for
i-th tweet as xi ∈ RN where N is the number of
features and the number of categories as C. Our
prediction is y

′
i = W ∗ xi where W ∈ RM∗C

is the weight of the linear regression model. We
take the following formula as loss function to min-
imize. The loss consists of two parts. First part
aims to minimize the mean square loss between
our prediction y

′
i and ground truth label yi. The

second part is the regularization term to capture
relationship among different emotion labels. To
model the correlations among emotions, we im-
plicitly treat each emotion category as a vertice in
an undirected graph g and use Laplacian matrix
of g for regularization (Grone et al., 1990; Shahid
et al., 2016) .

loss =
1

M

M∑

i

(y′ − y)2 + λy
′T
i Ly

′
i

L = D − A

where M is the number of samples, L ∈ RC∗C

is the Laplacian matrix, A ∈ RC∗C is the Eu-
clidean matrix, D ∈ RC∗C is the Degree matrix.
To derive L, we first compute the co-occurrence
matrix O ∈ RC∗C among the emotion labels and
take each row/column Oi ∈ RC as the represen-
tation of each emotion. Then we compute the dis-
tance matrix A by taking the Euclidean distance
of different labels. That is Aij = (Oi − Oj)

2.
Here, A can be regarded as the adjacency matrix
of the graph g. Afterwards, we calculate the de-
gree matrix D by summing up each row/column
and making it a diagonal matrix.

268

Subtasks 1a&2a 3a&4a 5a
Train 7,102 1,181 6,838
Dev 1,464 449 886
Test 4,068 937 3,259

Table 3: Statistics of the competition dataset for
all 5 subtasks

of labels 0 1 2 3 4 5 6
% 2.9 14.3 40.6 30.9 9.6 1.4 0.2

Table 4: Number of multi-labels. Most samples
have from 1-3 labels, but can have no labels or up
to 6 labels. (subtask 5a)

4.4.2 Logistic regression classifier chain
Classifier chain is another method to capture the
correlation of emotion labels. It treats the multi-
label problem as a sequence of binary classifica-
tion problem while taking the prediction of the
previous classifier as extra input. For example,
when training the i-th emotion category, we take
both the features of input tweet and also the 1st,
2nd, · · · , (i-1)-th prediction as the input of our lo-
gistic regression classifier to predict the i-th emo-
tion label of input tweet. We further ensemble
10 logistic regression chains by shuffling the se-
quence of 11 emotion labels to achieve better gen-
eralization ability.

5 Experiments & Results

Most of our system experiments were imple-
mented by using PyTorch (Paszke et al., 2017) and
Scikit-learn (Pedregosa et al., 2011).

5.1 Competition dataset

SemEval-2018 Affect in Tweets (AIT) is cre-
ated by human annotators through crowd-sourcing
methods (Mohammad and Kiritchenko, 2018).
Total three datasets are given: emotion intensity
(with four emotion categories; Subtask 1a & 2a),
sentiment intensity (subtask 3a & 4a), and multi-
label emotion classification (subtask 5a).

For emotion and sentiment intensity datasets,
each tweet sample has both an ordinal label
(coarse; {0,1,2,3} for emotion, {-3,-2,-1,0,1,2,3}
for sentiment) and real-value regression label
(fine-grained; [0,1]). For multi-label emotion clas-
sification dataset, each can have none or up to six
number of multi-labels (Table 4).

We used the given development set to tune the
hyper-parameters and select models. For the fi-

nal submission, we merged the train & develop-
ment set together to retrain the model with the best
hyper-parameter found (Table 3).

5.2 Regression: Subtask 1a & 3a

Table 5 shows the test set results on regression
tasks, Subtask 1a&3a. We experimented with
different features that we introduced before to
analyze the effectiveness of each representation.
For emoji sentence representations, emoji cluster
worked better on sadness and sentiment, whereas
DeepMoji outperformed in anger, fear, and joy.
We presumed such difference was due to the dif-
ferent emoji types of the two datasets used to train
each model. Emoji cluster only used 11 classes of
emojis that were clustered together, but DeepMoji
used 64 emoji classes. It may be possible clus-
tering of emoji classes made it easy for regression
models to predict the intensities in certain emo-
tion categories, whereas some emotion categories
needed more detailed representations.

The emotional word vectors overall did help en-
hance the performance of the regression model for
all emotion categories. This shows that emotional
word vectors can serve as additional word-level in-
formation which are helpful for solving this task.

Tweet-specific features boosted the perfor-
mance, notably for sentiment, since features like
capital letters, emojis, elongated words, and the
number of exclamation marks, could help to figure
out the subtle difference of the emotion intensities.

One thing to note is that our system’s rank in the
fear category (7th) is relatively lower than other
emotion categories. We found out from the pre-
vious literature (Wood and Ruder, 2016) that fear
emojis were the most ambiguous, having the least
correlation with human-annotated emotion labels
among the six emotion categories. On the other
hand, joy emojis were the most highly correlated.
This may explain our best performance in the joy
category and worst performance in the fear cat-
egory. Future systems using emojis as a dataset
may need to take this shortcoming into account.

5.3 Ordinal Classification: Subtask 2a& 4a

As mentioned in Sec 4.3, we used our best regres-
sion model to also predict ordinal labels. Since
each emotion category has a different distribution
of regression labels and ordinal labels, we exper-
imented three different mappings, naive mapping,
scope mapping, and polynomial mapping. Using

269

Features Regression Method
Pearson correlation (all instances)

1a (EI-reg) 3a(V-reg)
Anger Fear Joy Sadness Valence

Emoji Cluster SVR .733 .632 .679 .693 .811
Emoji Cluster KernelRidge .735 .638 .675 .692 .809
DeepMoji SVR .772 .675 .736 .664 .798
DeepMoji KernelRidge .778 .672 .737 .698 .798
Emoji Cluster + EVEC SVR .739 .678 .701 .706 .815
Emoji Cluster + EVEC KernelRidge .741 .694 .709 .709 .822
DeepMoji + EVEC SVR .781 .694 .749 .708 .810
DeepMoji + EVEC KernelRidge .779 .702 .754 .710 .813
DeepMoji + feat. SVR .785 .680 .739 .714 .824
DeepMoji + feat. KernelRidge .781 .670 .691 .711 .829
Emoji Cluster + EVEC + feat. SVR .757 .684 .720 .725 .844
Emoji Cluster + EVEC + feat. KernelRidge .757 .698 .693 .721 .840
DeepMoji + EVEC + feat. SVR .792 .709 .763 .732 .837
DeepMoji + EVEC + feat. KernelRidge .790 .716 .734 .739 .826
Best Ensemble .811(2) .728(7) .773(2) .753(5) .860(3)

Table 5: Test set results on Subtask 1a & 3a. For 1a, separate regression models were trained for each
emotion category. The number next to the best result(bold & underlined) indicates our ranking of the
competition. Underlined ones show the models that were selected for ensemble according to the dev set.

Pearson (all instances)
Task Naive Scope Poly

2a (EI-oc)

Anger .654 .664 .704(2)
Fear .498 .562 .570(*)
Joy .632 .720(1) .712

Sadness .645 .697(*) .692
4a (V-oc) Valence .813 .816 .833(2)

Table 6: Test set results on Subtask 2a & 4a.
The predictions of the best regression models are
mapped into ordinal predictions. The number next
to the best result(bold & underlined) indicates our
ranking of the competition. (*) indicates better re-
sults that we acquired after our final submission

the training set, we found the ideal mapping func-
tion to match the regression predictions and the or-
dinal predictions.

Test set results (Table 6) on ordinal classifica-
tion show that our mapping methods are indeed
much more effective. For anger, fear, and senti-
ment categories, polynomial mapping performed
the best, whereas scope mapping outperformed
for joy and sadness categories. With our method,
we achieved higher ranks in ordinal classification
tasks (2a & 4a), placed both in 2nd. Figure 3
shows how a cubic function is fitted to find the
mapping between regression labels and ordinal la-
bels.

Additionally, we report some results better than
the final submission. The change is due to a new
model selection strategy. For the final submis-
sion, we searched for the optimal pair of regres-
sion model & mapping method by looking at the

Figure 3: Plot of test labels and the mapping func-
tion derived from the training set. A polynomial
function is fitted to map the regression predictions
into ordinal predictions

ordinal classification results on the development
set. However, it turned out that always using the
best ensemble prediction and then searching for
the optimal mapping method with respect to the
development set was better.

5.4 Multi-label Classification: Subtask 5a

We found the best hyper-parameters by evaluating
on our development set. We initialized the weight
matrix W with a normal distribution of standard
deviation of 0.1. We used gradient descent to opti-
mize this function and set the learning rate to 1.0.

270

Features CC RLR
Emoji Cluster .528 .545
DeepMoji .532 .552
Emoji Cluster + EVEC .545 .558
DeepMoji + EVEC .544 .558
Emoji Cluster + EVEC + f .546 .558
DeepMoji + EVEC + f .550 .562
Best ensemble .576(3)

Table 7: Test set results on Subtask 5a. The com-
petition metric is Jaccard index.

Gender Race
Ours Avg Ours Avg

Anger 0.5% 0.1% 1% 0.4%
Fear -0.9% -0.3% 3.3% 0.5%
Joy -1.2% 0.4% -0.9% -0.7%

Sadness 0% 0.2% 1.3% 0.8%
Valence -0.6% 0.5% -1% -0.6%

Table 8: Average differences of the system’s bias.
Gender difference is from female to male, and race
differences is from African American names to
European American names (sign of the percent-
age indicates the direction). “Ours“ indicate the
bias of our system, and “Avg“ is the average of the
biases of all systems from the competition.

The optimal λ we found was -0.0001.
We found that regularized linear regression

model was always better than classifier chain
model. The ensemble of classifier chain and regu-
larized linear regression of both features combina-
tion(underlined elements in Table 7) achieved best
performance than any single model (Table 7).

5.5 Analysis of system’s gender/racial biases

In this year’s competition, the organizers gave out
a mystery test set that was included in the regres-
sion tasks (subtask 1a & 3a). At the end of the
evaluation period, they announced that these were
set of pair sentences that differ only in the sub-
ject’s or object’s gender or racial names (See the
task paper Mohammad et al. (2018) for details). It
turned out that our system also included some bi-
ases like most other systems did, but fairly small,
less than 1.5% for gender bias and 3.5% for racial
bias (Table 8). We believe that this is an inter-
esting experiment and look forward to discussing
more about the issue during the workshop.

6 Conclusion

In this paper, we explored a couple of differ-
ent methods to find good representations of emo-

Subtask System Score(rank)

1a EI-reg

SeerNet .799(1)
NTUA-SLP .776(2)

PlusEmo2Vec .766(3)
psyML .765(4)

2a EI-oc
SeerNet .695(1)

PlusEmo2Vec .659(2)
psyML .653(3)

3a V-reg

SeerNet .873(1)
TCS Research .861(2)
PlusEmo2Vec .860(3)

NTUA-SLP .851(4)

4a V-oc
SeerNet .836(1)

PlusEmo2Vec .833(2)
Amobee .813(3)

5a E-c

NTUA-SLP .588(1)
TCS Research .582(2)
PlusEmo2Vec .576(3)

psyML .574(4)

Table 9: Official final scoreboard on all 5 subtasks
that we participated. Scores for Subtask 1-4 are
macro-average of the Pearson scores of 4 emotion
categories and 5 is Jaccard index. About 35 par-
ticipants are in each task.

tions inside tweets for solving 5 subtasks of pre-
dicting emotion/sentiment intensity and emotion
labels. We used external datasets, which were
much larger than the competition dataset but dis-
tantly labeled with emojis and #hashtags, to ex-
ploit the transferred knowledge to build a more
robust machine learning system to solve the task.
We avoided using traditional NLP features like lin-
guistic features and emotion/sentiment lexicons by
substituting them with continuous vector represen-
tations learned from huge corpora.

We performed experiments to show that emoji
sentence representations and emotional word vec-
tors trained from neural networks can be used
with tweet-specific features as input for other tra-
ditional regression models, such as SVR and Ker-
nel Regression, to solve the task of regression and
ordinal classification. We proved the effectiveness
of finding the mapping of the relationship between
regression and ordinal labels from the training set
to perform ordinal classification. Moreover, we
tried using classifier chain and regularized logistic
regression to deal with multi-label classification.

As a final official result (Table 9), our system
ranked among the top three in every subtask of the
competition we participated. For future work, we
want to work further on employing these emotion
representations on other tasks, such as text gener-
ation, while we gather more data and improve the
model to train the representations.

271

Acknowledgments

This work is partially funded by ITS/319/16FP
of Innovation Technology Commission, HKUST
16214415 & 16248016 of Hong Kong Re-
search Grants Council, and RDC 1718050-0 of
EMOS.AI.

References
Georgios Balikas and Massih-Reza Amini. 2016.

Twise at semeval-2016 task 4: Twitter sentiment
classification. Proceedings of the 10th International
Workshop on Semantic Evaluation (SemEval-2016).

Bjarke Felbo, Alan Mislove, Anders Søgaard, Iyad
Rahwan, and Sune Lehmann. 2017. Using millions
of emoji occurrences to learn any-domain represen-
tations for detecting sentiment, emotion and sar-
casm. EMNLP 2017.

Pascale Fung. 2015. Robots with heart. Scientific
American, 313(5):60–63.

Robert Grone, Russell Merris, and V S Sunder. 1990.
The laplacian spectrum of a graph. SIAM Journal on
Matrix Analysis and Applications, 11(2):218–238.

Yoon Kim. 2014. Convolutional neural networks
for sentence classification. In EMNLP, pub-
lisher=Citeseer,.

Ryan Kiros, Yukun Zhu, Ruslan R Salakhutdinov,
Richard Zemel, Raquel Urtasun, Antonio Torralba,
and Sanja Fidler. 2015. Skip-thought vectors. In
NIPS, pages 3294–3302.

Yann LeCun, Yoshua Bengio, and Geoffrey Hinton.
2015. Deep learning. Nature, 521(7553):436–444.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013. Distributed representa-
tions of words and phrases and their compositional-
ity. In NIPS, pages 3111–3119.

Saif M. Mohammad, Felipe Bravo-Marquez, Mo-
hammad Salameh, and Svetlana Kiritchenko. 2018.
Semeval-2018 Task 1: Affect in tweets. In Proceed-
ings of International Workshop on Semantic Evalu-
ation (SemEval-2018), New Orleans, LA, USA.

Saif M. Mohammad and Svetlana Kiritchenko. 2018.
Understanding emotions: A dataset of tweets to
study interactions between affect categories. In
Proceedings of the 11th Edition of the Language
Resources and Evaluation Conference, Miyazaki,
Japan.

Adam Paszke, Sam Gross, Soumith Chintala, Gre-
gory Chanan, Edward Yang, Zachary DeVito, Zem-
ing Lin, Alban Desmaison, Luca Antiga, and Adam
Lerer. 2017. Automatic differentiation in pytorch.

Fabian Pedregosa, Gaël Varoquaux, Alexandre Gram-
fort, Vincent Michel, Bertrand Thirion, Olivier
Grisel, Mathieu Blondel, Peter Prettenhofer, Ron
Weiss, Vincent Dubourg, et al. 2011. Scikit-learn:
Machine learning in python. Journal of machine
learning research, 12(Oct):2825–2830.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. Glove: Global vectors for word
representation. In EMNLP2014, pages 1532–1543.

Jesse Read, Bernhard Pfahringer, Geoff Holmes, and
Eibe Frank. 2009. Classifier chains for multi-
label classification. In Joint European Conference
on Machine Learning and Knowledge Discovery in
Databases, pages 254–269. Springer.

Nauman Shahid, Nathanael Perraudin, Vassilis Kalo-
folias, Benjamin Ricaud, and Pierre Vandergheynst.
2016. Pca using graph total variation. In Acous-
tics, Speech and Signal Processing (ICASSP), 2016
IEEE International Conference on, pages 4668–
4672. Ieee.

Phillip Shaver, Judith Schwartz, Donald Kirson, and
Cary O’connor. 1987. Emotion knowledge: Further
exploration of a prototype approach. Journal of per-
sonality and social psychology, 52(6):1061.

Jared Suttles and Nancy Ide. 2013. Distant supervision
for emotion classification with discrete binary val-
ues. In International Conference on Intelligent Text
Processing and Computational Linguistics, pages
121–136. Springer.

Duyu Tang, Furu Wei, Nan Yang, Ming Zhou, Ting
Liu, and Bing Qin. 2014. Learning sentiment-
specific word embedding for twitter sentiment clas-
sification. In Proceedings of the 52nd Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), volume 1, pages 1555–
1565.

Mike Thelwall. 2017. The heart and soul of the web?
sentiment strength detection in the social web with
sentistrength. In Cyberemotions, pages 119–134.
Springer.

Wenbo Wang, Lu Chen, Krishnaprasad Thirunarayan,
and Amit P Sheth. 2012. Harnessing twitter”
big data” for automatic emotion identification. In
Privacy, Security, Risk and Trust (PASSAT), 2012
International Conference on and 2012 Interna-
tional Confernece on Social Computing (Social-
Com), pages 587–592. IEEE.

Ian Wood and Sebastian Ruder. 2016. Emoji as emo-
tion tags for tweets. In Emotion and Sentiment Anal-
ysis Workshop, at LREC2016. LREC2016.

Yunxiao Zhou, Zhihua Zhang, and Man Lan. 2016.
Ecnu at semeval-2016 task 4: An empirical inves-
tigation of traditional nlp features and word embed-
ding features for sentence-level and topic-level sen-
timent analysis in twitter. In Proceedings of the
10th International Workshop on Semantic Evalua-
tion (SemEval-2016), pages 256–261.

272

Proceedings of the 12th International Workshop on Semantic Evaluation (SemEval-2018), pages 273–278
New Orleans, Louisiana, June 5–6, 2018. ©2018 Association for Computational Linguistics

YNU-HPCC at SemEval-2018 Task 1: BiLSTM with Attention Based
Sentiment Analysis for Affect in Tweets

You Zhang, Jin Wang and Xuejie Zhang
School of Information Science and Engineering

Yunnan University
Kunming, P.R. China

Contact: xjzhang@ynu.edu.cn

Abstract

This paper describes the system we built as the
YNU-HPCC team in the SemEval-2018 com-
petition. As participants of Task 1, named Af-
fect in Tweets, we implemented the sentimen-
t system for all five subtasks in English and
Spanish. All subtasks involved predicting e-
motion or sentiment intensity (regression and
ordinal classification) and determining emo-
tions (multi-label classification). Our system
mainly applied the bidirectional long-short ter-
m memory (BiLSTM) model with an atten-
tion mechanism. We used BiLSTM in order
to extract word information from both direc-
tions. The attention mechanism was used to
find the contribution of each word to improv-
ing the scores. Furthermore, based on the
BiLSTM with an attention mechanism, a few
deep-learning algorithms were employed for
different subtasks. For regression and ordinal
classification tasks, we used domain adapta-
tion and ensemble learning methods to lever-
age the base model, while a single base model
was used for the multi-label task. Our system
achieved very competitive results on the offi-
cial leaderboard.

1 Introduction

Sentiment analysis is an area of natural language
processing (NLP), which aims to systematically i-
dentify and study affective state, and to quantify
subjective sentiment expressed in texts. Tweets
in Twitter always constitute a challenging task a-
mong NLP problems because of the colorful writ-
ing styles used.

In previous work on sentiment analysis tasks,
researchers usually used a variety of hand-crafted
features and sentiment lexicons to generate the so-
lution system by combining traditional method-
s such as naive Bayes, support vector machines
(SVMs) (Mohammad et al., 2013), and decision
trees (Blake, 2007). Recently, many ensemble

learning models based on these traditional meth-
ods (Giorgis et al., 2016) have attracted the interest
of researcher and have shown good results. These
approaches require long-term studies to gather in-
formation from massive or unstructured dataset-
s, and often result in redundant or missing fea-
tures. In contrast, the novel deep learning method
(Socher et al., 2013) has immediately and shown
exceptionally good results in NLP.

In this paper, we primarily present a deep learn-
ing system for the SemEval-2018 shared Task 1:
Affect in Tweets. We employ the bidirectional
long short-term memory with an attention mech-
anism (BiLSTMATT) as a base model. For the re-
gression and ordinal classification tasks, we used
fine-tuning methods on the base model, combined
with multi-tasking and AdaBoost algorithm. We
use a simple BiLSTM with an attention mechanis-
m for the multi-label task. Our contributions are
as follows:

• We propose a base model combining the BiL-
STM with an attention mechanism for the
sentiment analysis problem.

• Using the base model, a domain adaptation
method of fine-tuning combined with multi-
tasking is used for associated tasks.

• An ensemble learning method using the Ad-
aBoost algorithm implemented on the base
model is of great use for performing the task
with unevenly distributed data.

The remainder of this paper is organized as fol-
lows. In Section 2, we describe an overview of our
system. The details of the model are presented in
Section 3. Finally, comparative results of the ex-
periments are discussed, and a conclusion is drawn
in Sections 4 and 5, respectively.

273

Figure 1: Architecture of the BiLSTM with Attention Mechanism.

2 Overview

This section shows an overview of our system or
experiments, which consists of three steps:(1) the
data processing step, in which we use some tex-
t processing tools for preparing the data as input
to the deep learning models, (2) the training step,
where we build and train our models, and then pre-
dict and (3) evaluate our test results.

Task description. In all five subtasks, we take
participant in all subtasks for English and Span-
ish (Mohammad et al., 2018). Subtasks EI-reg
and V-reg, which require the system to detect e-
motion and sentiment intensity (a real-value score
between 0 and 1) from given tweets, are both treat-
ed as regression problems. The difference between
them is that subtask EI-reg has four different emo-
tion sub-datasets (anger, fear, joy and sadness). In
subtasks EI-oc and V-oc, we are given the mes-
sage and scores, which are ordinal values from
four-level and seven-level scales corresponding to
positive or negative emotion and sentiment inten-
sity, respectively. Subtask E-c is a multi-label task
that requires the system to identify the tweets as
”no emotion” or as one, or more, of eleven given
emotions.

2.1 Data processing
We built our text processing tools in order to uti-
lize more information from the original text. The
objectives of the tools are word-splitting, word an-
notation, processing of unknown word, and so on.

Text pre-processing. It is difficult to feed original
tweets directly into a deep learning model. Im-
ported from the NLTK API 1, the twitter-tokenizer
shows great usefulness in fast word segmentation.
The tokenizer is able to identify all the words,

1http://www.nltk.org/.

most of the emoticons and emojis, and omits al-
l useless punctuation. The English (or Spanish)
dataset primarily contains English (or Spanish)
text. Therefore, all non-English (or non-Spanish)
letters are treated as unknown words. Moreover,
we converted all words to lower case and nor-
malized the construction of user (@user), URLs
(http://ie.com), and numbers and hashtags (#hash-
tag).

Pre-trained word embedding. Word embedding
techniques aim to use continuous low-dimension
vectors representing the features of the words
(Mikolov et al., 2013), captured in context. For
English tasks, a pre-trained word vector with a di-
mension of 300, which combined word embedding
from training with the GloVe algorithm (Penning-
ton et al., 2014) with the emoji embedding (Bar-
bieri et al., 2016), which included most of the e-
moticons and emojis, was used to map the tweet-
s. For the Spanish task, we used only the word
embedding training by Barbieri et al. (2016). Un-
known words were added to the vocabulary, and
their vectors were randomly generated from a u-
niform distribution of U(−0.25, 0.25). The pre-
trained word embeddings were used for initializ-
ing the word embedding layer (the input layer) of
our deep learning models.

2.2 Deep Learning models

Recently, most advanced work in NLP employs
deep learning methods.

Convolutional Neural Networks (CNNs). Al-
though CNNs were first applied for computer vi-
sion, they also show great importance for NLP
problems (Zhang and Wallace, 2015). CNNs are
able to quickly extract local n-gram features, and
are easy to train. However, CNNs have difficulty

274

capturing long-distance dependencies.

Recurrent Neural Networks (RNNs). Another
effective neural network is the RNN, which cap-
tures dynamic information in serial data by pe-
riodically connecting hidden layer nodes. RNNs
can store a state of context or even a story, learn
and express relevant information in any long con-
text window, unlike CNN’s fixed-input formation.
An RNN is able to overcome the problem of long-
distance dependency. However, it is difficult to
train because gradients may explode or vanish
over long sequences (Hochreiter, 1998). One way
to address this problem is by employing a variant
of the regular RNN, the LSTM (Graves, 2012). L-
STMs have a more complex internal structure with
cells replacing RNN nodes, which allows LSTMs
to remember information for either a long or short
time.

Attention Mechanism. Between sequences, an
attention mechanism shows a considerable im-
provement by changing the contribution of each
word to the analysis of the whole text (Rocktschel
et al., 2015; Raffel and Ellis, 2015). Before the
RNN model summarizes the hidden states for the
output, an attention mechanism amplifies the re-
sults by aggregating the hidden states and weight-
ing their relative importance.

Domain Adaptation. Domain adaptation en-
hances learning in target domains by transferring
learning from source domains that may have a dis-
tribution different from the target domain. Domain
adaptation not only addresses the difference be-
tween source and target domains, but also pays
attention to the relevance of both domains. The
method provides an elegant way to access the ful-
l resources of similar tasks for target tasks (Mou
et al., 2016).

Ensemble Learning. Ensemble learning is a su-
pervised learning algorithm that ensembles two
or more weak learners to amplify system perfor-
mance (Maclin and Opitz, 1999). The AdaBoost
algorithm (Li et al., 2008) is one of the ensemble
learning algorithms that repeats training and ad-
justs the weights of all weak learners continuously
to take into consideration the previous iteration er-
ror prediction samples. Therefore, the AdaBoost
algorithm focuses more attention on a small pro-
portion of special samples in a dataset for better
scores.

Figure 2: Architecture of cell in LSTM.

3 Model Description

We proposed the base BiLSTM model with an at-
tention mechanism for subtask E-c (3.1). Two ad-
ditional models (3.2 and 3.3) based on the BiLST-
M with an attention mechanism are used for other
subtasks.

4 BiLSTM with Attention Mechanism
(BiLSTMATT)

Figure 1 shows the architecture of BiLSTM with
an attention mechanism, which has four different
layers as follows.

Embedding Layer. After the pre-processing of
text, tweets are transformed into a sequence of
words,X = (x1, x2, ..., xN), X ∈ RN×d, where
N is the number of a tweet, and d denotes the di-
mension of a word vector. The word tokens are
then directly fed into the model embedding layer,
which was initialized by the pre-trained word em-
beddings.

BiLSTM Layer. LSTM replaces the nodes of a
regular RNN model with special structures (cells).
The architecture of the LSTM is shown in Figure
2. It calculates the hidden state ht at time t using
the following equations:

• Gates

ft = σ(Wf · [ht−1, xt] + bf)
it = σ(Wi · [ht−1, xt] + bi)
ot = σ(Wo · [ht−1, xt] + bo)

(1)

• Transformation

C̃t = tanh(Wc · [ht−1, xt] + bc) (2)

275

Figure 3: The Model of EIM. Here anger sub-dataset is
the target domain and other three sub-datasets regarded
as source domain.

• State update

Ct = ft ∗ Ct−1 + it ∗ C̃t

ht = ot ∗ tanh(Ct)
(3)

where σ denotes the sigmoid function, xt is the t-
th word vector, Ct, ft, it and ot are all gate vectors
of the cell, and W and b are cell parameters.

We use bidirectional LSTM so as to obtain word
features H = (h1, h2, ..., hn) concatenated from
both directions. A forward LSTM processes the
tweet from x1 to xn, while a backward LSTM pro-
cesses from xn to x1. For word xt, a forward L-
STM obtains a word feature as

−→
h and a backward

LSTM obtains the feature as
←−
h . Then, h is calcu-

lated as follows:

hi =
−→
hi ⊕←−hi , hi ∈ R2L (4)

Where ⊕ denotes the function of concatenation
and L is the size of the one-directional LSTM.

Attention Layer. We add an attention layer for
finding the contribution of each word to the w-
hole sequence. The attention mechanism assigns
a weight wi to each word feature hi with a focus
on results. The hidden states are finally calculated
to produce a hidden sentence feature vector r by a
weighted sum function. Formally:

ei = tanh(Whhi + bh), ei ∈ [−1, 1]
wi =

exp(ei)∑N

t=1
exp(et)

,
N∑
i=1

wi = 1

r =
N∑
i=1

wihi,r ∈ R2L

(5)

where Wh and bh are the weight and bias from the
attention layer.

Figure 4: The Model of SIM

Output Layer. The representation r is a sentence
feature vector, which we put into a fully-connected
layer that outputs the results for the whole sen-
tence. Different tasks require different forms of
the output. This base model is dedicated to sub-
task E-c, with eleven fully-connected sigmoid lay-
ers as the output layer.

4.1 Emotion Intensity Model (EIM)

Figure 3 shows an overview of the EIM, the model
we used for task EI-reg and EI-oc with more than
one sub-dataset. To train one emotion dataset as
a target task (T), the other three emotion dataset-
s were treated as source tasks (S). Our approach
was to first train the base model on S, and then
to directly initialize the base model on T using
the tuned parameters. The parameters were then
fine-tuned for predicting the results of S. The out-
put layer of the EIM uses the linear decoder for
regression. For ordinal classification task EI-oc,
real-value scores from the EIM are translated into
four-point classes with thresholds according to the
training sets for EI-reg and EI-oc.

4.2 Sentiment Intensity Model (SIM)

Figure 4 shows the architecture of the SIM. Based
on the base model, we use the AdaBoost algorith-
m ensemble the M weak learners to a stronger
learner for subtask V-reg and V-oc. Initially, each
sample has the same weight. After each iteration,
the algorithm weights the samples with poor pre-
dictions by the previous learner, and the weighted
samples are again used to train the next learner.
Finally, we use the calculated weight ai of each

276

Model
subtask EI-reg subtask V-reg

p
panger fear joy sadness

CNN 0.428 0.498 0.501 0.631 0.700
LSTM 0.551 0.522 0.560 0.500 0.762
CNN-LSTM 0.521 0.532 0.592 0.555 0.753
BiLSTM 0.511 0.533 0.535 0.5003 0.718
BiLSTMATT 0.555 0.655 0.605 0.700 0.773
EIM 0.654 0.715 0.630 0.728 -
SIM 0.558 0.659 0.621 0.713 0.787

Table 1: Comparable results of experiments for subtask EI-reg and V-reg.

learner for the weighted sum of scores. The out-
put layer of the SIM is the same as the one in the
task EI-reg. The results of task V-oc are obtained
from the real-value scores of the SIM with thresh-
olds according to the training sets for V-reg and
V-oc.

4.3 Training and Hyper-parameters

We train the model for task E-c using the categori-
cal cross-entropy loss function, and for other tasks
using mean squared error. For all tasks, we use the
Adam (Kingma and Ba, 2014) optimizer to train
models, and the Relu activation function for fast
calculation. An early stopping (Prechelt, 1998) s-
trategy is used to prevent over-fitting. All models
use stochastic gradient descent with mini-batches
of size 32.

Hyper-parameters. The dimension of word em-
beddings (d) is 300; the number of each LSTM
(L) is 100; the dropout ratio is 0.25 at all layers
for all models. Finally, we set 30 learners from the
base model to train the SIM by ensemble learning.

5 Experiment

Corpus. The datasets we used were all provided
by the competition, with no other external corpus.
Except for subtasks EI-reg and EI-oc, which had
four sub-datasets, subtasks had only one dataset
each for English and Spanish. We thank Moham-
mad and Kiritchenko (Mohammad et al., 2013) for
contributions to the data.

Evaluation Measure. For regression and ordinal
tasks (including task EI-reg, EI-oc, V-reg, and V-
oc), the official competition metric was the value
(p) of the Pearson Correction Coefficient. More-
over, tasks EI-oc and V-oc have a second metric,
the quadratic weighted kappa (k). For the multi-
label task (task E-c), apart from the official com-
petition metric (multi-label accuracy, a), a micro-
averaged F-score (f1micro) and a macro-averaged

F-score (f1macro) were also calculated for our
submissions.

Results. On the competition leaderboard, our
system placed 22/48 (9/24) for English (Spanish)
in task EI-reg, 12/39 (8/16) in task EI-oc, 27/38
(7/14) in task V-reg, 14/31 (6/14) in task V-oc and
7/35 (6/14) in task E-c.

Experiments and Analysis. We trained our mod-
els on the training set and evaluated the predic-
tion with the golden scores of the developmen-
t set. In order to illustrate the good performance
of our methods, we compare the results with base-
line models of CNN, LSTM, CNN-LSTM (Zhang
et al., 2017) and a regular BiLSTM. From the re-
sults shown in Table 1, we can see that our ap-
proach achieved a significant result. A regular L-
STM tends to ignore future contextual information
while processing sequences in a time series. The
BiLSTM is able to use both past and future con-
texts by processing the text from both directions.
Not all words make the same contribution to senti-
ment analysis in the text. The attention mechanism
is able to shuffle the word annotation weights ac-
cording to their importance to the meaning of sen-
tence. We can see that the attention based BiLST-
M obtained higher scores than the BiLSTM with-
out the attention mechanism. Moreover, the SIM
and the EIM showed their best performance on
subtasks V-reg and EI-reg, respectively. SIM em-
ployed the AdaBoost algorithm so as to integrate
30 the models of BiLSTMATT . The SIM was able
to adapt to the training error rate of each learner,
so that the whole system was improved effectively.
The EIM fine-tuned the parameters for the multi-
task approach, which made full use of associated
sub-datasets of the task EI-reg. Before training the
target dataset, the special parameter initialization
gave the target model additional knowledge from
the other source datasets. In addition, for the same
training tweets that were used in task EI-reg (or
V-reg) and EI-oc (or V-oc), we defined the thresh-

277

old for translating from real-value score to ordinal
classes by referring to the training labels across the
training dataset.

6 Conclusion

In this paper, we described our deep learning mod-
els for the sentiment analysis task SemEval-2018
shared Task 1: Affect in Tweets. We used the BiL-
STM with an attention mechanism as a base model
and built the SIM and EIM for all subtasks. The
final system for submission achieved good result-
s. We would like to further explore text sentiment
analysis, and employ more interesting methods for
NLP problems.

References
Francesco Barbieri, German Kruszewski, Francesco

Ronzano, and Horacio Saggion. 2016. How cos-
mopolitan are emojis?: Exploring emojis usage and
meaning over different languages with distribution-
al semantics. In ACM on Multimedia Conference,
pages 531–535.

Catherine Blake. 2007. The role of sentence struc-
ture in recognizing textual entailment. In Acl-Pascal
Workshop on Textual Entailment and Paraphrasing,
pages 101–106.

Stavros Giorgis, Apostolos Rousas, John Pavlopoulos,
Prodromos Malakasiotis, and Ion Androutsopoulos.
2016. aueb.twitter.sentiment at semeval-2016 task
4: A weighted ensemble of svms for twitter sen-
timent analysis. In International Workshop on Se-
mantic Evaluation, pages 96–99.

Alex Graves. 2012. Long Short-Term Memory.
Springer Berlin Heidelberg.

Sepp Hochreiter. 1998. The vanishing gradient prob-
lem during learning recurrent neural nets and prob-
lem solutions. International Journal of Uncer-
tainty, Fuzziness and Knowledge-Based Systems,
6(02):107–116.

Diederik Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. Computer Sci-
ence.

Xuchun Li, Lei Wang, and Eric Sung. 2008. Adaboost
with svm-based component classifiers. Engineering
Applications of Artificial Intelligence, 21(5):785–
795.

R. Maclin and D. Opitz. 1999. Popular ensemble meth-
ods: An empirical study. Journal of Artificial Intel-
ligence Research, 11:169–198.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey
Dean. 2013. Efficient estimation of word represen-
tations in vector space. Computer Science.

Saif M. Mohammad, Felipe Bravo-Marquez, Mo-
hammad Salameh, and Svetlana Kiritchenko. 2018.
Semeval-2018 task 1: Affect in tweets. In Proceed-
ings of International Workshop on Semantic Evalu-
ation (SemEval-2018), New Orleans, LA, USA.

Saif M Mohammad, Svetlana Kiritchenko, and Xiao-
dan Zhu. 2013. Nrc-canada: Building the state-of-
the-art in sentiment analysis of tweets. Computer
Science.

Lili Mou, Zhao Meng, Rui Yan, Ge Li, Yan Xu,
Lu Zhang, and Zhi Jin. 2016. How transferable are
neural networks in nlp applications?

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. Glove: Global vectors for word
representation. In Conference on Empirical Meth-
ods in Natural Language Processing, pages 1532–
1543.

L Prechelt. 1998. Automatic early stopping using cross
validation: quantifying the criteria. Neural Net-
works the Official Journal of the International Neu-
ral Network Society, 11(4):761.

Colin Raffel and Daniel P. W. Ellis. 2015. Feed-
forward networks with attention can solve some
long-term memory problems.

Tim Rocktschel, Edward Grefenstette, Karl Moritz
Hermann, TomKoisky, and Phil Blunsom. 2015.
Reasoning about entailment with neural attention.

Richard Socher, Yoshua Bengio, and Christopher D.
Manning. 2013. Deep learning for nlp (without
magic). Acl Tutorial.

Ye Zhang and Byron Wallace. 2015. A sensitivity anal-
ysis of (and practitioners’ guide to) convolutional
neural networks for sentence classification. Com-
puter Science.

You Zhang, Hang Yuan, Jin Wang, and Xuejie Zhang.
2017. Ynu-hpcc at emoint-2017: Using a cnn-lstm
model for sentiment intensity prediction. In Pro-
ceedings of the 8th Workshop on Computational Ap-
proaches to Subjectivity, Sentiment and Social Medi-
a Analysis, pages 200–204, Copenhagen, Denmark.
Association for Computational Linguistics.

278

Proceedings of the 12th International Workshop on Semantic Evaluation (SemEval-2018), pages 279–285
New Orleans, Louisiana, June 5–6, 2018. ©2018 Association for Computational Linguistics

UG18 at SemEval-2018 Task 1: Generating Additional Training Data for
Predicting Emotion Intensity in Spanish

Marloes Kuijper
CLCG

University of Groningen
marloes.madelon

@gmail.com

Mike van Lenthe
CLCG

University of Groningen
mikevanlenthe
@gmail.com

Rik van Noord
CLCG

University of Groningen
r.i.k.van.noord@rug.nl

Abstract
The present study describes our submission to
SemEval 2018 Task 1: Affect in Tweets. Our
Spanish-only approach aimed to demonstrate
that it is beneficial to automatically generate
additional training data by (i) translating train-
ing data from other languages and (ii) applying
a semi-supervised learning method. We find
strong support for both approaches, with those
models outperforming our regular models in
all subtasks. However, creating a stepwise en-
semble of different models as opposed to sim-
ply averaging did not result in an increase in
performance. We placed second (EI-Reg), sec-
ond (EI-Oc), fourth (V-Reg) and fifth (V-Oc)
in the four Spanish subtasks we participated
in.

1 Introduction

Understanding the emotions expressed in a text or
message is of high relevance nowadays. Compa-
nies are interested in this to get an understanding
of the sentiment of their current customers regard-
ing their products and the sentiment of their po-
tential customers to attract new ones. Moreover,
changes in a product or a company may also af-
fect the sentiment of a customer. However, the
intensity of an emotion is crucial in determining
the urgency and importance of that sentiment. If
someone is only slightly happy about a product,
is a customer willing to buy it again? Conversely,
if someone is very angry about customer service,
his or her complaint might be given priority over
somewhat milder complaints.

Mohammad et al. (2018) present four tasks1 in
which systems have to automatically determine
the intensity of emotions (EI) or the intensity of
the sentiment (Valence) of tweets in the languages
English, Arabic, and Spanish. The goal is to ei-
ther predict a continuous regression (reg) value or

1We did not participate in subtask 5 (E-c).

to do ordinal classification (oc) based on a num-
ber of predefined categories. The EI tasks have
separate training sets for four different emotions:
anger, fear, joy and sadness. Due to the large num-
ber of subtasks and the fact that this language does
not have many resources readily available, we only
focus on the Spanish subtasks. Our work makes
the following contributions:

• We show that automatically translating En-
glish lexicons and English training data
boosts performance;

• We show that employing semi-supervised
learning is beneficial;

• We show that the stepwise creation of an
ensemble model is not necessarily better
method than simply averaging predictions.

Our submissions ranked second (EI-Reg), sec-
ond (EI-Oc), fourth (V-Reg) and fifth (V-Oc),
demonstrating that the proposed method is accu-
rate in automatically determining the intensity of
emotions and sentiment of Spanish tweets. This
paper will first focus on the datasets, the data gen-
eration procedure, and the techniques and tools
used. Then we present the results in detail, after
which we perform a small error analysis on the
largest mistakes our model made. We conclude
with some possible ideas for future work.

2 Method

2.1 Data
For each task, the training data that was made
available by the organizers is used, which is a se-
lection of tweets with for each tweet a label de-
scribing the intensity of the emotion or sentiment
(Mohammad and Kiritchenko, 2018). Links and
usernames were replaced by the general tokens
URL and @username, after which the tweets

279

Task NRC-HSL S-140 SenStr AFINN EMOTICONS Bing Liu MPQA NRC-10-exp NRC-HEAL NEGATION
EI-Reg-a 4 4 6 4 4 6 4 4 6 6

EI-Reg-f 6 6 6 4 6 4 4 6 4 4

EI-Reg-j 4 4 4 6 6 4 6 6 6 4

EI-Reg-s 6 4 6 6 4 4 6 4 4 6

EI-Oc-a 6 4 6 6 6 6 4 6 4 6

EI-Oc-f 4 6 6 6 6 6 6 6 6 4

EI-Oc-j 6 6 6 6 6 4 4 4 6 4

EI-Oc-s 6 6 4 4 4 6 6 4 4 6

V-Reg 6 6 6 6 6 4 4 4 6 6

V-Oc 6 6 6 6 6 6 4 6 6 6

Table 1: Lexicons included in our final ensemble. NRC-10 and SentiWordNet are left out of the table because they
never improved the score for a task.

were tokenized by using TweetTokenizer. All text
was lowercased. In a post-processing step, it was
ensured that each emoji is tokenized as a single
token.

2.2 Word Embeddings
To be able to train word embeddings, Spanish
tweets were scraped between November 8, 2017
and January 12, 2018. We chose to create our own
embeddings instead of using pre-trained embed-
dings, because this way the embeddings would re-
semble the provided data set: both are based on
Twitter data. Added to this set was the Affect in
Tweets Distant Supervision Corpus (DISC) made
available by the organizers (Mohammad et al.,
2018) and a set of 4.1 million tweets from 2015,
obtained from Toral et al. (2015). After remov-
ing duplicate tweets and tweets with fewer than
ten tokens, this resulted in a set of 58.7 million
tweets, containing 1.1 billion tokens. The tweets
were preprocessed using the method described in
Section 2.1. The word embeddings were created
using word2vec in the gensim library (Řehůřek
and Sojka, 2010), using CBOW, a window size
of 40 and a minimum count of 5.2 The feature
vectors for each tweet were then created by using
the AffectiveTweets WEKA package (Mohammad
and Bravo-Marquez, 2017).

2.3 Translating Lexicons
Most lexical resources for sentiment analysis are
in English. To still be able to benefit from
these sources, the lexicons in the AffectiveTweets
package were translated to Spanish, using the
machine translation platform Apertium (Forcada
et al., 2011).

All lexicons from the AffectiveTweets package
were translated, except for SentiStrength. Instead

2Embeddings available at www.let.rug.nl/
rikvannoord/embeddings/spanish/

of translating this lexicon, the English version was
replaced by the Spanish variant made available by
Bravo-Marquez et al. (2013).

For each subtask, the optimal combination of
lexicons was determined. This was done by first
calculating the benefits of adding each lexicon
individually, after which only beneficial lexicons
were added until the score did not increase any-
more (e.g. after adding the best four lexicons the
fifth one did not help anymore, so only four were
added). The tests were performed using a default
SVM model, with the set of word embeddings de-
scribed in the previous section. Each subtask thus
uses a different set of lexicons (see Table 1 for an
overview of the lexicons used in our final ensem-
ble). For each subtask, this resulted in a (modest)
increase on the development set, between 0.01 and
0.05.

2.4 Translating Data
The training set provided by Mohammad et al.
(2018) is not very large, so it was interesting to
find a way to augment the training set. A possi-
ble method is to simply translate the datasets into
other languages, leaving the labels intact. Since
the present study focuses on Spanish tweets, all
tweets from the English datasets were translated
into Spanish. This new set of “Spanish” data was
then added to our original training set. Again, the
machine translation platform Apertium (Forcada
et al., 2011) was used for the translation of the
datasets.

2.5 Algorithms Used
Three types of models were used in our system,
a feed-forward neural network, an LSTM network
and an SVM regressor. The neural nets were in-
spired by the work of Prayas (Goel et al., 2017)
in the previous shared task. Different regression
algorithms (e.g. AdaBoost, XGBoost) were also

280

tried due to the success of SeerNet (Duppada and
Hiray, 2017), but our study was not able to repro-
duce their results for Spanish.

For both the LSTM network and the feed-
forward network, a parameter search was done for
the number of layers, the number of nodes and
dropout used. This was done for each subtask,
i.e. different tasks can have a different number of
layers. All models were implemented using Keras
(Chollet et al., 2015). After the best parameter set-
tings were found, the results of 10 system runs to
produce our predictions were averaged (note that
this is different from averaging our different type
of models in Section 2.7). For the SVM (imple-
mented in scikit-learn (Pedregosa et al., 2011)),
the RBF kernel was used and a parameter search
was conducted for epsilon. Detailed parameter
settings for each subtask are shown in Table 2.
Each parameter search was performed using 10-
fold cross validation, as to not overfit on the de-
velopment set.

2.6 Semi-supervised Learning

One of the aims of this study was to see if us-
ing semi-supervised learning is beneficial for emo-
tion intensity tasks. For this purpose, the DISC
(Mohammad et al., 2018) corpus was used. This
corpus was created by querying certain emotion-
related words, which makes it very suitable as
a semi-supervised corpus. However, the specific
emotion the tweet belonged to was not made pub-
lic. Therefore, a method was applied to automat-
ically assign the tweets to an emotion by compar-
ing our scraped tweets to this new data set.

First, in an attempt to obtain the query-terms,
we selected the 100 words which occurred most
frequently in the DISC corpus, in comparison
with their frequencies in our own scraped tweets
corpus. Words that were clearly not indicators
of emotion were removed. The rest was anno-
tated per emotion or removed if it was unclear to
which emotion the word belonged. This allowed
us to create silver datasets per emotion, assigning
tweets to an emotion if an annotated emotion-word
occurred in the tweet.

Our semi-supervised approach is quite straight-
forward: first a model is trained on the training set
and then this model is used to predict the labels
of the silver data. This silver data is then simply
added to our training set, after which the model is
retrained. However, an extra step is applied to en-

sure that the silver data is of reasonable quality. In-
stead of training a single model initially, ten differ-
ent models were trained which predict the labels
of the silver instances. If the highest and lowest
prediction do not differ more than a certain thresh-
old the silver instance is maintained, otherwise it
is discarded.

This results in two parameters that could be op-
timized: the threshold and the number of silver in-
stances that would be added. This method can be
applied to both the LSTM and feed-forward net-
works that were used. An overview of the char-
acteristics of our data set with the final parameter
settings is shown in Table 3. Usually, only a small
subset of data was added to our training set, mean-
ing that most of the silver data is not used in the
experiments. Note that since only the emotions
were annotated, this method is only applicable to
the EI tasks.3

2.7 Ensembling

To boost performance, the SVM, LSTM, and feed-
forward models were combined into an ensem-
ble. For both the LSTM and feed-forward ap-
proach, three different models were trained. The
first model was trained on the training data (reg-
ular), the second model was trained on both the
training and translated training data (translated)
and the third one was trained on both the training
data and the semi-supervised data (silver). Due to
the nature of the SVM algorithm, semi-supervised
learning does not help, so only the regular and
translated model were trained in this case. This
results in 8 different models per subtask. Note that
for the valence tasks no silver training data was
obtained, meaning that for those tasks the semi-
supervised models could not be used.

Per task, the LSTM and feed-forward model’s
predictions were averaged over 10 prediction runs.
Subsequently, the predictions of all individual
models were combined into an average. Finally,
models were removed from the ensemble in a step-
wise manner if the removal increased the aver-
age score. This was done based on their origi-
nal scores, i.e. starting out by trying to remove
the worst individual model and working our way
up to the best model. We only consider it an in-
crease in score if the difference is larger than 0.002
(i.e. the difference between 0.716 and 0.718). If
at some point the score does not increase and we

3For EI-Oc, the labels were normalized between 0 and 1.

281

SVM Feed-forward LSTM

Task Epsilon Layers Nodes Layers Nodes Dropout Dense

EI-Reg-a 0.01 2 (600, 200) 2 400 0.001 6

EI-Reg-f 0.04 2 (700, 200) 2 400 0.01 4

EI-Reg-j 0.05 2 (500, 500) 2 200 0.1 6

EI-Reg-s 0.06 2 (400, 300) 2 600 0.001 6

EI-Oc-a 0.005 2 (600, 200) 2 200 0.001 6

EI-Oc-f 0.06 2 (700, 300) 2 200 0.001 6

EI-Oc-j 0.04 2 (800, 200) 3 400 0.001 4

EI-Oc-s 0.005 2 (500, 200) 3 800 0.01 4

V-Reg 0.07 3 (400, 400, 400) 2 200 0.001 4

V-Oc 0.09 3 (400, 400, 100) 3 600 0.01 4

Table 2: Parameter settings for the algorithms used. For feed-forward, we show the number of nodes per layer.
The Dense column for LSTM shows whether a dense layer was added after the LSTM layers (with half the number
of nodes as is shown in the Nodes column). The feed-forward networks always use a dropout of 0.001 after the
first layer.

Feed-forward LSTM

Words Tweets Task Threshold Tweets added Threshold Tweets added

Anger 23 81, 798 EI-Reg 0.1 2,500 0.05 2,500
EI-Oc 0.1 1,000 0.1 2,500

Fear 17 54,113 EI-Reg 0.1 1,500 0.05 1,500
EI-Oc 0.075 1,000 0.1 2,500

Joy 29 51,135 EI-Reg 0.125 1,500 0.15 500
EI-Oc 0.05 500 0.05 500

Sadness 16 102,810 EI-Reg 0.1 5,000 0.1 2,500
EI-Oc 0.125 2,000 0.05 2,500

Table 3: Statistics and parameter settings of the semi-supervised learning experiments.

are therefore unable to remove a model, the pro-
cess is stopped and our best ensemble of models
has been found. This process uses the scores on
the development set of different combinations of
models. Note that this means that the ensembles
for different subtasks can contain different sets of
models. The final model selections can be found
in Table 4.

3 Results and Discussion

Table 5 shows the results on the development set
of all individuals models, distinguishing the three
types of training: regular (r), translated (t) and
semi-supervised (s). In Tables 4 and 5, the let-
ter behind each model (e.g. SVM-r, LSTM-r)
corresponds to the type of training used. Com-
paring the regular and translated columns for the
three algorithms, it shows that in 22 out of 30
cases, using translated instances as extra training

data resulted in an improvement. For the semi-
supervised learning approach, an improvement is
found in 15 out of 16 cases. Moreover, our best
individual model for each subtask (bolded scores
in Table 5) is always either a translated or semi-
supervised model. Table 5 also shows that, in gen-
eral, our feed-forward network obtained the best
results, having the highest F-score for 8 out of 10
subtasks.

However, Table 6 shows that these scores can
still be improved by averaging or ensembling the
individual models. On the dev set, averaging our 8
individual models results in a better score for 8 out
of 10 subtasks, while creating an ensemble beats
all of the individual models as well as the aver-
age for each subtask. On the test set, however,
only a small increase in score (if any) is found
for stepwise ensembling, compared to averaging.
Even though the results do not get worse, we can-

282

Task SVM-r SVM-t LSTM-r LSTM-t LSTM-s FF-r FF-t FF-s
EI-Reg-anger 6 4 6 4 4 4 4 4

EI-Reg-fear 4 4 6 4 4 6 4 6

EI-Reg-joy 4 4 6 4 4 6 4 4

EI-Reg-sadness 4 4 4 6 6 4 4 4

EI-Oc-anger 4 6 6 4 4 6 4 4

EI-Oc-fear 6 4 4 4 4 4 4 4

EI-Oc-joy 6 4 6 4 4 4 4 4

EI-Oc-sadness 6 4 6 4 4 4 4 4

V-Reg 4 6 6 4 6 4 4 6

V-Oc 6 4 4 4 6 4 4 6

Table 4: Models included in our final ensemble.

Task SVMr SVMt LSTMr LSTMt LSTMs FFr FFt FFs
EI-Reg-a 0.630 0.663 0.644 0.672 0.683 0.659 0.672 0.681
EI-Reg-f 0.683 0.700 0.666 0.702 0.682 0.675 0.704 0.674
EI-Reg-j 0.702 0.711 0.683 0.709 0.699 0.688 0.720 0.710
EI-Reg-s 0.690 0.696 0.694 0.67 0.678 0.694 0.694 0.704
EI-Oc-a 0.663 0.645 0.602 0.673 0.589 0.611 0.659 0.640
EI-Oc-f 0.621 0.579 0.610 0.603 0.615 0.596 0.598 0.629
EI-Oc-j 0.626 0.674 0.670 0.657 0.671 0.616 0.638 0.628
EI-Oc-s 0.579 0.621 0.590 0.612 0.610 0.579 0.633 0.595
V-Reg 0.728 0.735 0.729 0.766 - 0.751 0.765 -
V-Oc 0.680 0.670 0.719 0.711 - 0.724 0.727 -

Table 5: Scores for each individual model per subtask. Best individual score per subtask is bolded.

Task Avg
Dev

Ens
Dev

Avg
Test

Ens
Test

EI-Reg-a 0.684 0.692 0.589 0.595
EI-Reg-f 0.709 0.718 0.687 0.689
EI-Reg-j 0.721 0.727 0.712 0.712
EI-Reg-s 0.711 0.716 0.710 0.712
EI-Oc-a 0.658 0.678 0.500 0.499
EI-Oc-f 0.643 0.666 0.592 0.606
EI-Oc-j 0.669 0.695 0.668 0.665
EI-Oc-s 0.612 0.645 0.612 0.625
V-Reg 0.728 0.744 0.686 0.682
V-Oc 0.767 0.772 0.706 0.707

Table 6: Results on the dev and test set for averaging
and stepwise ensembling the individual models. The
last column shows our official results.

not conclude that stepwise ensembling is a better
method than simply averaging.

Our official scores (column Ens Test in Table 6)
have placed us second (EI-Reg, EI-Oc), fourth (V-
Reg) and fifth (V-Oc) on the SemEval AIT-2018

leaderboard. However, it is evident that the re-
sults obtained on the test set are not always in line
with those achieved on the development set. Es-
pecially on the anger subtask for both EI-Reg and
EI-Oc, the scores are considerably lower on the
test set in comparison with the results on the devel-
opment set. Therefore, a small error analysis was
performed on the instances where our final model
made the largest errors.

3.1 Error Analysis

Due to some large differences between our results
on the dev and test set of this task, we performed
a small error analysis in order to see what caused
these differences. For EI-Reg-anger, the gold la-
bels were compared to our own predictions, and
we manually checked 50 instances for which our
system made the largest errors.

Some examples that were indicative of the
shortcomings of our system are shown in Table 7.
First of all, our system did not take into account
capitalization. The implications of this are shown
in the first sentence, where capitalization intensi-

283

Example sentence Pred. Gold Possible problem

QUIERES PELEA FSICA? 0.25 0.80 Capitalization
DO YOU WANT A PHYSICAL FIGHT?

Ojal una precuela de Imperator Furiosa. 0.64 0.24 Named entity not recognized
I wish a prequel to Imperator Furiosa.

Odio estar tan enojada y que me de risa 0.79 0.46 Reduced angriness
I hate being so angry and that that makes me laugh

Yo la mejor y que te contesten as nomas me infla la vena 0.45 0.90 Figurative speech
I am the best and that they answer you like that, it just inflates my vein

Table 7: Error analysis for the EI-Reg-anger subtask, with English translations.

fies the emotion used in the sentence. In the sec-
ond sentence, the name Imperator Furiosa is not
understood. Since our texts were lowercased, our
system was unable to capture the named entity and
thought the sentence was about an angry emperor
instead. In the third sentence, our system fails to
capture that when you are so angry that it makes
you laugh, it results in a reduced intensity of the
angriness. Finally, in the fourth sentence, it is the
figurative language me infla la vena (it inflates my
vein) that the system is not able to understand.

The first two error-categories might be solved
by including smart features regarding capitaliza-
tion and named entity recognition. However, the
last two categories are problems of natural lan-
guage understanding and will be very difficult to
fix.

4 Conclusion

To conclude, the present study described our sub-
mission for the Semeval 2018 Shared Task on Af-
fect in Tweets. We participated in four Spanish
subtasks and our submissions ranked second, sec-
ond, fourth and fifth place. Our study aimed to
investigate whether the automatic generation of
additional training data through translation and
semi-supervised learning, as well as the creation
of stepwise ensembles, increase the performance
of our Spanish-language models. Strong support
was found for the translation and semi-supervised
learning approaches; our best models for all sub-
tasks use either one of these approaches. These
results suggest that both of these additional data
resources are beneficial when determining emo-
tion intensity (for Spanish). However, the creation
of a stepwise ensemble from the best models did
not result in better performance compared to sim-
ply averaging the models. In addition, some signs
of overfitting on the dev set were found. In fu-

ture work, we would like to apply the methods
(translation and semi-supervised learning) used on
Spanish on other low-resource languages and po-
tentially also on other tasks.

References
Felipe Bravo-Marquez, Marcelo Mendoza, and Bar-

bara Poblete. 2013. Combining strengths, emo-
tions and polarities for boosting twitter sentiment
analysis. In Proceedings of the Second Interna-
tional Workshop on Issues of Sentiment Discovery
and Opinion Mining, page 2. ACM.

François Chollet et al. 2015. Keras. https://
github.com/keras-team/keras.

Venkatesh Duppada and Sushant Hiray. 2017. Seernet
at emoint-2017: Tweet emotion intensity estimator.
In Proceedings of the 8th Workshop on Computa-
tional Approaches to Subjectivity, Sentiment and So-
cial Media Analysis, pages 205–211, Copenhagen,
Denmark. Association for Computational Linguis-
tics.

Mikel L Forcada, Mireia Ginestı́-Rosell, Jacob Nord-
falk, Jim ORegan, Sergio Ortiz-Rojas, Juan An-
tonio Pérez-Ortiz, Felipe Sánchez-Martı́nez, Gema
Ramı́rez-Sánchez, and Francis M Tyers. 2011.
Apertium: a free/open-source platform for rule-
based machine translation. Machine translation,
25(2):127–144.

Pranav Goel, Devang Kulshreshtha, Prayas Jain, and
Kaushal Kumar Shukla. 2017. Prayas at emoint
2017: An ensemble of deep neural architectures
for emotion intensity prediction in tweets. In Pro-
ceedings of the 8th Workshop on Computational Ap-
proaches to Subjectivity, Sentiment and Social Me-
dia Analysis, pages 58–65.

Saif Mohammad and Felipe Bravo-Marquez. 2017.
Emotion intensities in tweets. In Proceedings of the
6th Joint Conference on Lexical and Computational
Semantics, *SEM @ACM 2017, Vancouver, Canada,
August 3-4, 2017, pages 65–77.

Saif M. Mohammad, Felipe Bravo-Marquez, Mo-
hammad Salameh, and Svetlana Kiritchenko. 2018.

284

Semeval-2018 Task 1: Affect in tweets. In Proceed-
ings of International Workshop on Semantic Evalu-
ation (SemEval-2018), New Orleans, LA, USA.

Saif M. Mohammad and Svetlana Kiritchenko. 2018.
Understanding emotions: A dataset of tweets to
study interactions between affect categories. In
Proceedings of the 11th Edition of the Language
Resources and Evaluation Conference, Miyazaki,
Japan.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Pretten-
hofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Pas-
sos, D. Cournapeau, M. Brucher, M. Perrot, and
E. Duchesnay. 2011. Scikit-learn: Machine learning
in Python. Journal of Machine Learning Research,
12:2825–2830.

Radim Řehůřek and Petr Sojka. 2010. Software Frame-
work for Topic Modelling with Large Corpora. In
Proceedings of the LREC 2010 Workshop on New
Challenges for NLP Frameworks, pages 45–50, Val-
letta, Malta. ELRA. http://is.muni.cz/
publication/884893/en.

Antonio Toral, Xiaofeng Wu, Tommi A Pirinen,
Zhengwei Qiu, Ergun Bicici, and Jinhua Du. 2015.
Dublin city university at the tweetmt 2015 shared
task. In TweetMT@ SEPLN, pages 33–39.

285

Proceedings of the 12th International Workshop on Semantic Evaluation (SemEval-2018), pages 286–290
New Orleans, Louisiana, June 5–6, 2018. ©2018 Association for Computational Linguistics

 1

ISCLAB at SemEval-2018 Task 1: UIR-Miner for Affect in Tweets

Meng Li1, 2, Zhenyuan Dong1, Zhihao Fan1, Kongming Meng1, Jinghua Cao1,

Guanqi Ding1, Yuhan Liu1, Jiawei Shan1, Binyang Li1*

1 School of Information Science and Technology, University of International Relations

2 University of Pittsburgh
* Corresponding author

mel165@pitt.edu; {byli, zydong, zhfan, kmmeng, jhcao, gqding, jwshan}@uir.edu.cn

Abstract

This paper presents a UIR-Miner system for

emotion and sentiment analysis evaluation in

Twitter in SemEval 2018. Our system con-

sists of three main modules: preprocessing

module, stacking module to solve the in-

tensity prediction of emotion and senti-

ment, LSTM network module to solve

multi-label classification, and the hierar-

chical attention network module for solv-

ing emotion and sentiment classification

problem. According to the metrics of

SemEval 2018, our system gets the final

scores of 0.636, 0.531, 0.731, 0.708, and

0.408 in terms of Pearson Correlation on

5 subtasks, respectively.

1 Introduction

Recently, social media platforms are becoming

more and more popular, such as Twitter mi-

croblogging, Facebook, and so on. Through these

platforms, online users would like to share their

opinions and emotions. Therefore, the analysis

about the information on “affect” in the social me-

dia has attracted much interest from both academia

and industries.

However, the short texts are usually consisted of

informal expressions with much casual forms and

emoticons, it brings great challenges for such re-

search.

For this purpose, SemEval organized the evalu-

ation of sentiment analysis on Tweet. This year

comes the fifth edition that consists of new genres,

including emotion intensity regression task, emo-

tion intensity ordinal classification task, sentiment

intensity regression task, sentiment degree ordinal

classification task, and emotion classification task

(Mohammad et al., 2018).

Figure 1: System architecture.

We participated in SemEval 2018 task 1 for Eng-

lish, i.e. Affect in Tweet. Our system considers EI-

reg and V-reg (subtask A and C) as regression prob-

lems to get the emotion intensity and sentiment in-

tensity by using regression models, while regards

EI-oc and V-oc (subtask B and D) as categorization

problems to classify each tweet into its correspond-

ing emotion category and sentiment category by

implementing hierarchical attention networks.

Moreover, subtask E, i.e., E-c, is considered as a

multi-label classification task.

This paper is organized as follows. Section 2

overviews the framework of our system. Section 3

describes the methods for subtask A and C. Section

4 describes the hierarchical attention networks for

subtask B and D. Subtask E will be introduced in

Section 5. Section 6 presents the evaluation results.

Section 7 will conclude this paper.

2 System Overview

The architecture of UIR-Miner is shown in Figure

1. UIR-Miner system is comprised of 4 modules:

(1) Preprocessing module: involves data cleaning,

topic classification, and tweets embedding.

286

 2

(2) Regressor module: creates an ensemble regres-

sor model by using different basic models sim-

ultaneously to calculate the emotion intensity

and sentiment intensity, i.e. subtask A and sub-

task C;

(3) Classification module: constructs an LSTM

network with multi-layer attention mechanism

for emotion and sentiment categorization, i.e.

subtask B and subtask D;

(4) Multi-label Classification module: builds a

LSTM network for subtask E.

2.1 Preprocessing

Our system will firstly preprocess the Tweets data,

and the main steps are as follows.

 Delete the unrelated texts, including the id,

some mentions, stop words, and some mean-

ingless punctuation combinations.

 Normalize synonymous words, like replacing

“cant” and “can’t” with “cannot”.

 Extract emoticons from tweets through regular

expressions, and then maintain the emotional

ones.

2.2 Word embedding

In the preprocessing, we used the pre-trained word

embedding by Glove (Penningto et. al, 2014), in

which each word 𝑒𝑖𝑡 will be represented by a 200-

dimensional vector 𝑤𝑖𝑡 , 𝑖 ∈ [1, 𝐿] , 𝑡 ∈ [1, 𝑇] .
Here, 𝑖 denotes the location of the sentence in the

tweet and 𝐿 is the maximum number of sentences

for each tweet, 𝑡 denotes the location of the word

in the sentence and 𝑇 is the maximum number of

words for each sentence. Set 𝑇 = 140 and 𝐿 = 5.

3 Subtask A and C

This section will describe the methods for subtask

A and C. Given a tweet and an emotion E (or a

sentiment V), determine the intensity of E (or V)

that best represents the mental state of the

tweeter—a real-valued score between 0 and 1. We

consider both of subtask A and C as a regression

problem.

On the whole, we use a stacking framework to

enhance the accuracy of final prediction. The orig-

inal features are selected as input into the stacking

model, including hashtags, emoticons, and n-

gram features. Then, the stacking model is di-

vided into two layer, the base layer and the stack-

ing layer. In the base layer, we choose four basic

regressors due to their excellent performance. In

the stacking layer, we still use SVM model, espe-

cially, the NuSVR model, which can control its

error rate. Finally, we get the final result of inten-

sity value.

3.1 Feature Selection

Since there are many irregular expressions in

tweet, we combine the features, including emoti-

con, hashtag, and special punctuations. In our sys-

tem, we mainly select the following features:

• Hashtags: the number of hashtags in one tweet;

• Ill format: the presence of ill format with some

characters replacing by *;

• Punctuation: the number of contiguous se-

quences of exclamation marks, question marks,

and both exclamation and question marks;

whether the last token contains an exclamation

or question mark;

• Emoticons: the presence of positive and negative

emoticons at any position in the tweet; whether

the last token is an emoticon;

• OOV: the ratio of words out of vocabulary;

• Elongated words: the presence of sentiment

words with one character repeated more than

two times, for example, ‘cooool’;

• URL: whether the tweet contains a URL.

• Reply or Retweet: is the current tweet a reply/

retweet tweet.

3.2 Stacking Model

To avoid overfitting, we test 6 basic models to

construct our stacking model.

 B: Bayesian Ridge (Hsiang, T.C 1975)

 G: Gradient Boosting Regressor (Jerome H.

Friedman, 2001)

 K: Kernel Ridge (Zhang Y et. al, 2013)

 L: Lasso Regressor (Tibshirani et al., 1996)

 M: MLP Regression (Pal and Mitra, 1992)

 R: Random Forest Regressor (Ho, 1995)

 S: SVR (Vapnik 1995)

To achieve the best performance, we also com-

pare different combinations of our basic models

with the metrics of Mean Squired Error (MSE) in

the stacking method, and the experimental result

is shown in Table 1.

 Baseline: we use SVR as the Baseline;

 Stacking1: B+K+S;

 Stacking2: M+K+R;

 Stacking3: B+K+R+S;

 Stacking4: B+G+K+M;

 Stacking5: G+K+L+ S;

 Stacking6: B+G+K+S.

Since Stacking 6 achieves the best performance,

we use the same setting in our system.

287

 3

Figure 2: BiLSTM network with multi-layer at-

tention mechanism.

Table 1: Evaluation on different combinations in

stacking method.

Method
Metrics

Ang Fear Joy Sad Ave

Baseline 9.774 8.390 9.055 9.086 9.076

Stacking1 9.404 7.926 8.352 8.629 8.578

Stacking2 9.596 7.849 8.192 8.520 8.539

Stacking3 9.351 7.900 8.206 8.536 8.500

Stacking4 9.557 7.715 8.045 8.454 8.443

Stacking5 9.381 7.790 8.170 8.387 8.432

Stacking6 9.300 7.766 7.794 8.334 8.298

4 Hierarchical Attention Networks for

Subtask B and D

This section will introduce our hierarchical atten-

tion model for subtask B and D. Given a tweet and

an emotion category E (or a sentiment category V),

classify the tweet into one of the ordinal classes of

intensity of E (or V) that best represents the mental

state of the tweeter. Note that, the number of cate-

gory of E is 4, while that of V is 7. In our system,

we consider both of subtask B and D as a classifi-

cation problem.

Each tweet contains several sentences that are

comprised by several words. In order to better rep-

resent the semantics of emotion or sentiment, we

utilize the hierarchical structure of a tweet to cap-

ture the contextual information of both intra and in-

ter-tweet. The architecture is shown as Figure 2.

We build a hierarchical model which contains

two layers, word layer and sentence layer. Since

words and sentences are highly sensitive to the con-

texts, recurrent neural networks based on bidirec-

tional long short-term memory (BiLSTM)

(Hochreiter and Schmidhuber, 1997) are imple-

mented on both layers to get tweets’ representa-

tions. Furthermore, since the words in one sentence

or different sentences in a given tweet can indicate

different emotion intensity or sentiment intensity.

To better represent the semantics, attention mecha-

nisms are added to both layers respectively (Xu et.

al., 2015). We then use softmax as the activation

4.1 BiLSTM-based Word Encoder

A word level BiLSTM (Hochreiter and Schmidhu-

ber, 1997) is used to represent each word. The

BiLSTM consists of the forward LSTM and the

backward LSTM. Forward LSTM reads the sen-

tence 𝑠𝑖 from 𝑒𝑖1 to 𝑒𝑖𝑇 and represents the word 𝑒𝑖𝑡

as 𝐿𝑆𝑇𝑀⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗(𝑤𝑖𝑡), 𝑡 ∈ [1, 𝑇]. Backward LSTM reads

the sentence 𝑠𝑖 from 𝑒𝑖𝑇 to 𝑒𝑖1 and represents the

word 𝑒𝑖𝑡 as 𝐿𝑆𝑇𝑀⃖⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ (𝑤𝑖𝑡), 𝑡 ∈ [𝑇, 1]. Then word 𝑒𝑖𝑡

can be annotated by combining both forward infor-

mation and backward information, ℎ𝑖𝑡 =

 [𝐿𝑆𝑇𝑀⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗(𝑤𝑖𝑡), 𝐿𝑆𝑇𝑀⃖⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ (𝑤𝑖𝑡)] . The equations are

listed as follows:

𝑖𝑡 = 𝜎(𝑊𝑖𝑤𝑖𝑡 + 𝑈𝑖ℎ𝑡−1 + 𝑏𝑖) (1)

𝑓𝑡 = 𝜎(𝑊𝑓𝑤𝑓𝑡 + 𝑈𝑓ℎ𝑡−1 + 𝑏𝑓) (2)

𝑜𝑡 = 𝜎(𝑊𝑜𝑤𝑜𝑡 + 𝑈𝑜ℎ𝑡−1 + 𝑏𝑜) (3)

𝑢𝑡 = tanh(𝑊𝑢𝑤𝑢𝑡 + 𝑈𝑢ℎ𝑡−1 + 𝑏𝑢) (4)

𝑐𝑡 = 𝑖𝑡⨀𝑢𝑡 + 𝑓𝑡⨀𝑐𝑡−1 (5)

ℎ𝑡 = 𝑜𝑡⨀tanh(𝑐𝑡) (6)

where 𝑖𝑡 , 𝑓𝑡 and 𝑜𝑡 are the input gate, forget gate

and output gate, 𝜎 is the logistic sigmoid function,

⨀ denotes elementwise multiplication, 𝑡𝑎𝑛ℎ is the

network output activation function, and softmax is

used for categorization. To better support Twitter,

we input the word embedding with 200 dimensions,

and the max number of words in a sentence as 140.

4.2 Word Layer Attention

Different weights 𝛼𝑖𝑡 are given to different words.

Attention mechanism (Xu et. al., 2015) is added to

the word layer and the sentence 𝑠𝑖 can be repre-

sented as 𝑠_𝑎𝑡𝑡𝑖.

𝑢𝑖𝑡 = tanh(𝑊𝑤ℎ𝑖𝑡 + 𝑏𝑤) (7)

𝛼𝑖𝑡 =
exp(𝑢𝑖𝑡

𝑇 𝑢𝑤)

∑ 𝑒𝑥𝑝𝑡 (𝑢𝑖𝑡
𝑇 𝑢𝑤)

 (8)

288

 4

𝑠_𝑎𝑡𝑡𝑖 = ∑𝛼𝑖𝑡ℎ𝑖𝑡

𝑡

 (9)

More specifically, after putting ℎ𝑖𝑡 into a fully-

connected layer, we get 𝑢𝑖𝑡. Then calculate weight

𝛼𝑖𝑡 with a word level context 𝑢𝑤. Finally, we can

get the sentence vector through an attention layer

by calculating the sum of 𝛼𝑖𝑡ℎ𝑖𝑡.

4.3 Sentence Layer Attention

Similarly, a sentence level BiLSTM (Hochreiter

and Schmidhuber, 1997) can be used to represent

sentence 𝑠𝑖 by adding sentence level context infor-

mation,

ℎ𝑖 = [𝐿𝑆𝑇𝑀⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗(𝑠𝑎𝑡𝑡𝑖𝑡), 𝐿𝑆𝑇𝑀⃖⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ (𝑠𝑎𝑡𝑡𝑖𝑡)].

We then add weights to different sentence. Take

𝑥𝑖 as input and get 𝑡𝑤𝑒𝑒𝑡_𝑎𝑡𝑡 to represent each

tweet through an attention layer.

𝑢𝑖 = tanh(𝑊𝑠ℎ𝑖 + 𝑏𝑠)

𝛼𝑖 =
exp (𝑢𝑖

𝑇𝑢𝑠)

∑ 𝑒𝑥𝑝𝑖 (𝑢𝑖
𝑇𝑢𝑠)

𝑡𝑤𝑒𝑒𝑡_𝑎𝑡𝑡 = ∑𝛼𝑖ℎ𝑖

𝑖

More specifically, after putting ℎ𝑖 into a fully-

connected layer, we get 𝑢𝑖. Then calculate weight

𝛼𝑖 with a sentence level context 𝑢𝑠. Finally, we can

get the tweet vector through an attention layer by

calculating the sum of 𝛼𝑖ℎ𝑖.

5 Subtask E

This section will introduce neural network model

for subtask E. Given a tweet, classify the tweet as

“neutral or no emotion” or as one, or more, of

eleven given emotions that best represent the men-

tal state of the tweeter.

Each tweet will be classified with different num-

bers of labels. Since there exists eleven labels each

of which may be suitable, considering one of these

labels every time is reasonable. Our system will

calculate a score for each of the eleven labels for

each tweet, and select the top-3 as the final results.

We also used a LSTM network for this task, and

get the classification result by using softmax. The

other settings of this model is quite similar to that

in Section 4 except for multi-label classification.

6 Experiment

In this section, we will report our evaluation re-

sults in SemEval 2018 based on the given dataset

as well as the metrics. The statistics of the dataset

is shown in Table 2.

Note that any other extra external resources,

such as sentiment lexicon, emoticons, and anno-

tated corpus, are not used in the evaluation except

for the training dataset provided by the organiza-

tion.

Table 2: Statistics of the dataset.
 Training set Dev set Test set

EI-reg anger: 1701

fear: 2252

joy: 1616

sadness: 1533

anger: 388

fear: 389

joy: 290

sadness: 397

anger: 17939

fear: 17923

joy: 18042

sadness: 17912

EI-oc anger: 1701

fear: 2252

joy: 1616

sadness: 1533

anger: 388

fear: 389

joy: 290

sadness: 397

anger: 1002

fear: 986

joy: 1105

sadness: 975

V-reg 1181 449 17874

V-oc 1181 449 937

E-c 6838 886 3259

Table 3 shows the results of our UIR-Miner for

all the subtasks on both Dev set and Test set, and

the final ranking.

Table 3: The results on different datasets.

 Score in Dev Score in Test Ranking

EI-reg 0.576 0.636 28/48

EI-oc 0.495 0.531 15/39

V-reg 0.729 0.781 21/38

V-oc 0.694 0.708 16/37

E-c 0.421 0.407 23/35

7 Conclusion

In this paper, we present a framework for SemEval

2018 Affect in Tweet task. After the preprocessing,

we firstly propose an ensembling method to calcu-

late the intensity score of emotion and sentiment.

Then a LSTM network model with multi-layer at-

tention mechanism is constructed for emotion and

sentiment classification. According to SemEval

2018’s metrics, our model runs got final scores of

0.636, 0.531, 0.731, 0.708, and 0.408 in terms of

Pearson Correlation on 5 subtasks, respectively.

Acknowledgements

This paper is funded by the National Natural

Foundation of China 61502115, 61602326,

U1636103, U1536207, 61572043, 61672361,

61632011, the Hong Kong Applied Science and

Technology Research Institute Project 7050854,

and the Fundamental Research Fund for the

Central Universityies 3262015T70, 3262017T12.

289

 5

References

Alex J. Smola, Bernhard Schölkopf. 2004. A tutorial

on support vector regression. In 2004 Kluwer Aca-

demic Publishers, pages 199-222

Hsiang, T.C. 1975.A Bayesian View on Ridge Regres-

sion. In Journal of the Royal Statistical Society,

page 267-268.

Zhang Y, Duchi J, Wainwright M. 2013. Divide and

conquer kernel ridge regression. In Conference on

Learning Theory, pages 592-617.

Jerome H. Friedman. 2001. Greedy function approxi-

mation: a gradient boosting machine. In Annals of

Statistics, pages 1189–1232

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long

short-term memory. In Neural computation, 9(8):

1735-1780.

Saif M. Mohammad, Felipe Bravo-Marquez, Moham-

mad Salameh, and Svetlana Kiritchenko. 2018.

SemEval-2018 Task1: Affect in tweets. In Proceed-

ings of International Workshop on Semantic Evalu-

ation (SemEval-2018).

Saif M. Mohammad and Svetlana Kiritchenko. 2018.

Understanding emotions: A dataset of tweets to

study interactions between affect categories. In Pro-

ceedings of the 11th Edition of the Language Re-

sources and Evaluation Conference.

Jeffrey Pennington, Richard Socher, and Christopher

D. Manning. 2014. Glove: Global vectors for word

representation. In Empirical Methods in Natural

Language Processing, pages 1532-1543.

Kelvin Xu, Jimmy Ba, Ryan Kiros, Kyunghyun Cho,

Aaron Courville, Ruslan Salakhudinov, Richard Ze-

mel, and Yoshua Bengio. 2015. Show, attend and

tell: Neural image caption generation with visual at-

tention. In International Conference on Machine

Learning, pages 2048-2057.

Zichao Yang, Diyi Yang, Chris Dyer, Xiaodong He,

Alex Smola, and Eduard Hovy. 2016. Hierarchical

attention networks for document classification. In

Proceedings of the 2016 Conference of the North

American Chapter of the Association for Computa-

tional Linguistics: Human Language Technologies,

pages 1480-1489.

Tibshirani R, Bickel P, Ritov Y, et al. Least absolute

shrinkage and selection operator[J]. 1996.

Ho T K. Random decision forests[C]//Document anal-

ysis and recognition, 1995, proceedings of the third

international conference on. IEEE, 1995, 1: 278-

282.

Pal S K, Mitra S. Multilayer perceptron, fuzzy sets, and

classification[J]. IEEE Transactions on neural net-

works, 1992, 3(5): 683-697.

290

Proceedings of the 12th International Workshop on Semantic Evaluation (SemEval-2018), pages 291–299
New Orleans, Louisiana, June 5–6, 2018. ©2018 Association for Computational Linguistics

TCS Research at SemEval-2018 Task 1: Learning Robust Representations
using Multi-Attention Architecture

Hardik Meisheri
TCS Research

New Delhi, India
hardik.meisheri@tcs.com

Lipika Dey
TCS Research

New Delhi, India
lipika.dey@tcs.com

Abstract
This paper presents system description of our
submission to the SemEval-2018 task-1: Af-
fect in tweets for the English language. We
combine three different features generated us-
ing deep learning models and traditional meth-
ods in support vector machines to create a uni-
fied ensemble system. A robust representation
of a tweet is learned using a multi-attention
based architecture which uses a mixture of dif-
ferent pre-trained embeddings. In addition,
analysis of different features is also presented.
Our system ranked 2nd, 5th, and 7th in differ-
ent subtasks among 75 teams.

1 Introduction

In Natural Language processing, Sentiment anal-
ysis refers to the degree of positiveness or nega-
tiveness of the information presented in the text.
Traditionally sentiment analysis is treated as ei-
ther a binary classification task (positive, nega-
tive) or a multi-class classification task (very nega-
tive, negative, neutral, positive, very positive). Af-
fect analysis on the other hand refers to detecting
discrete sets of emotions present in the text such
as anger, joy, sadness etc (Dalgleish and Power,
2000; Plutchik, 2001). Predicting intensities of
these emotions to fine granularity can help us bet-
ter understand the sentiment and emotions of the
writer.

Detecting sentiments or affect from text have a
number of useful applications. For example, the
degree of disgust or anger expressed in customer
complaints or reviews can help us decide the prior-
ities of issues to look at, or the joy or optimism ex-
pressed in customer feedbacks can be a major fac-
tor in deciding the marketing strategy for a com-
pany.

Sentiment or affect analysis for social media
text is a challenging task due to the extensive use
of slang, frequent spelling mistakes, innovative

and unpredictable use of hashtags and extensive
use of emojis and smileys.

SemEval-2018 Task 1: Affect in tweets, pro-
vides data for 3 languages: English, Arabic, and
Spanish. For each language, there are 5 subtasks
that are presented, 2 Regression tasks, 2 classifi-
cation tasks and 1 Multi-Label task. Further de-
tails of tasks are presented in section 3. This task
was similar to the WASSA shared task (Moham-
mad and Bravo-Marquez, 2017) and dataset pre-
sented here is the extension of the data presented
for WASSA shared task.

In this paper, we present our approach to solv-
ing these tasks for English language tweets. We
have proposed a system which uses various pre-
trained embeddings to handle out-of-vocabulary
words and emoji present in the text along with
cleaning of raw text. In addition, to create a better
representation of the text, we use two sets of em-
beddings learnt over two different corpus which
results in parallel attention mechanism - one set
from the twitter space and another from a com-
mon crawl corpus. Finally, we combine features
generated from the deep learning model with other
features to generate an ensemble system.

Major contributions of this paper are:
1. Generating word vector representation of a
tweet from three different set of pre-trained em-
beddings which can handle emoji/smileys and the
out of vocabulary words in the dataset.
2. Deep neural network architecture which gener-
ates robust representation of the text with the help
of parallel attention mechanism.

Rest of the paper is organized as follows, Sec-
tion 2 presents the preprocessing step to generate
mixed set of embeddings and the model architec-
ture. It also presents the different sets of features
that are used for final ensemble system. In sec-
tion 3, data, training and experimentation setup is
described for different subtasks. Section 4 states

291

the results of the proposed system and detailed dis-
cussion of the feature over development and test
data. Finally, section 5 concludes the paper with
summary of the approach presented.

2 Proposed Approach

Figure 1 describes the overall system architecture
used for regression and classification subtasks. We
have extracted different types of features from the
raw text, which fall under three different cate-
gories. Deep learning features are the ones which
are generated from the model that is trained and
proposed in this paper. Lexicon-based features are
generated from training sets. In addition, features
from pre-trained models are used. These models
were trained over large corpus.

Figure 1: System Diagram.

Attention mechanism has been successful in se-
quence to sequence learning problems specifically
for neural machine translation (NMT) (Bahdanau
et al., 2014). These mechanism helps model to fo-
cus more on the task in hand. The proposed archi-
tecture uses two parallel processing towers which
use attention as a means of focusing on sentiment
specific words. Figure 2 presents a snapshot of the
random sample for sadness emotion, first row de-
notes the output of the attention mechanism and
row 2 denotes the output of the model. We ob-
serve that the attention mechanism helps in focus-
ing on words which are relevant to the sentiment
task in hand, such as crying, dying etc. which
further helps in improving the performance of the
model. The multi-attention mechanism is inspired
from (Lin et al., 2017) where, they have used more
multi-attention over the same embedding space to
focus on more than one word. In contrast, we use
limit our attention to at max 2 words as the tweet
is much more compact in nature as well as we do
it over different embedding space to encapsulate
much more information.

For generating features as mentioned above, we
employ pre-processing steps to normalize the text
with respect to sentiment specific words and its us-
age.

2.1 Preprocessing
As mentioned earlier, tweets in the raw form
are noisy and prone to many distortions in terms
of syntactic and semantic structure. These pre-
processing steps are common to all the features
generated. Deep learning features require ad-
ditional steps which are explained in respective
section.
1. All the characters in the text are converted to
lower case.
2. Twitter contains lot of words with more than 2
repeating characters such as happpyyyyyyy, we
limited occurrence of each character to maximum
of 2 successive times.
3. To handle hashtags, # symbol is removed from
all the words.
4. Extra spaces and new line character is deleted
from the tweet to ensure the compactness of the
tweets.

2.2 Deep Learning Features
Figure 3 shows the model which was used to gen-
erate deep learning features. In this model, we
have used different embeddings to enhance the
representations of raw text. There are two parallel
architectures which take the same raw input but
generate the representation from a different em-
bedding space. This helps in encapsulating the
word and its usage in twitter space as well as keep-
ing a general semantic and syntactic structure of
word intact.

For tower one in the figure 3, text is pre-
processed using steps mentioned earlier. In ad-
dition, following pre-processing steps are per-
formed:
1. Usernames in twitter which starts with @ is re-
placed by mention token.
2. Punctuations are removed except [,], [?], [!],
[.]
3. Words that are most probably used as slangs
in twitter are replaced with its corresponding ex-
panded versions such as ”y’all” is replace by ”you
all”.
Embedding matrix is generated from the pre-
processed text using combination of three pre-
trained embeddings: Glove (Pennington et al.,

292

Figure 2: Attention Example.

Figure 3: Model Diagram.

2014) trained over common crawl corpus with 300
dimension vector, Character1 level embeddings
trained over common crawl glove corpus provid-
ing 300 dimensional vectors for each character
and emoji2vec (Eisner et al., 2016) which provides
300 dimension vectors for most commonly used
emojis in twitter platform. Procedure to generate a
representation of a text using all these embeddings
is presented in Algorithm 1, where get vector is
a function of token and embedding type and re-
turns the corresponding vector for the token from
the pre-trained embedding specified.

Embedding vectors that are generated for each
tweet are then converted to into matrix, with
a number of rows being the size of maxi-
mum sequence, rest is zero padded. This ma-
trix then forms the input to the Bidirectional
LSTM(BiLSTM) layer (Graves and Schmidhuber,
2005), which helps in generating representations
by taking all the words in sequence into account.

1https://github.com/minimaxir/char-embeddings

word token = Tokenize tweet
for each word in word token do

if word is in EmojiEmbb then
word vector =
get vector(EmojiEmbb,
word vector)

else if word is in Glove then
word vector = get vector(Glove,
word vector)

else if word is in CharEmbb then
word vector = get vector(charEmbb,
word vector)

else
chars = tokeinze word token into
character

n = length(chars) word vector =∑n
1 get vector(charEmbb, chars)

end
end
Algorithm 1: Embedding Matrix generation

The output of each time-step is then fed to Atten-
tion Mechanism (Bahdanau et al., 2014). The core
concept behind the attention mechanism forces the
model to focus on important words that are related
to the task.

Tower 2 in the Figure 3 uses pre-processed
mechanism where, all the punctuations are re-
moved, usernames are removed without any re-
placement with tokens and, special characters in-
cluding smiley and emojis are removed. Embed-
ding matrix is generated using pre-trained glove
embeddings trained over twitter corpus and pro-
vides 200-dimensional vectors for each word.
These are zero padded as mentioned earlier and
is fed into another BiLSTM layer. Maxpooling
is applied over the output of BiLSTM to extract
the most prominent vector from the rest over the
temporal dimension which act as a attention over
word sequences. Maximum sequence length for
the embedding space is kept at 50, as twitter has a
character limit of 140 characters.

The output of tower 1 and 2 are then concate-
nated and then fed into the fully connected net-
work with 2 layers. Final layer contains a differ-
ent number of neurons and activation functions de-

293

pending on the subtasks which are stated in the ex-
periments section 4. To handle overfitting we have
used L2 regularization dropout in layers and batch
size is kept at 512.

2.3 Traditional Features

We defined features that are used in most of
the traditional sentiment analysis techniques are
termed as traditional features. As per the base-
line system provided in the WASSA Emotion In-
tensity Task we define baseline features. The
knowledge sources that have been used to gen-
erate baseline feature are: MPQA subjective
lexicon (Wilson et al., 2005), Bing Liu lexi-
con (Ding et al., 2008), AFINN (Nielsen, 2011),
Sentiment140 (Kiritchenko et al., 2014), NRC
Hashtag Sentiment Lexicon (Mohammad and Kir-
itchenko, 2015), NRC Hashtag Emotion Associ-
ation Lexicon (Mohammad et al., 2013), NRC
Word-Emotion Association Lexicon (Mohammad
and Turney, 2013), NRC-10 Expanded Lexicon
(Bravo-Marquez et al., 2016) and the SentiWord-
Net (Esuli and Sebastiani, 2007). Two more fea-
tures are calculated on the basis of emoticons (ob-
tained from AFINN (Nielsen, 2011)) and nega-
tions present in the text. This amounts to 45 fea-
tures for each tweet.

In addition to this, we have used Vader Senti-
ment Lexicons (Gilbert, 2014), which provides the
positive, negative, neutral and compound score for
the text. These lexicons are specifically designed
for social media texts.

2.4 Features from pre-trained models

We use SentiNeuron feature (Radford et al., 2017)
from a model which is trained over 82 million
Amazon review dataset. The aim of the model was
to predict the next word in the review. They have
used LSTM with 4096 units. The 2389th neu-
ron was found to be specifically focusing on the
sentiment for a given sentence. We use output of
this 2389th as a feature. Further more, we have
normalized it between 0-1 which helps in perfor-
mance improvement.

3 Data and Experiments

We participated in all the subtasks of English lan-
guage, namely: EI-reg (intensity score prediction
of 4 emotions), EI-oc (intensity ordinal classifica-
tion task of 4 emotions), V-reg (intensity score pre-
diction of valence), V-oc (intensity ordinal classifi-

Table 1: Data Distribution.
Train Dev Test

Anger 1701 388 1002
Fear 2252 389 986
Joy 1616 290 1105
Sadness 1533 397 975
Valence 1181 449 937
Multi-Label 6838 886 3259

cation task for valence) and E-c (Multi-label clas-
sification task over 11 emotions). Detailed analy-
sis and distribution of the dataset are presented in
the task paper (Mohammad et al., 2018).

For each subtask, deep learning model is same
as mentioned earlier, although there is a variation
in the feature being used for ensemble approach.
Data distribution across train, dev and test dataset
is given table 1.

3.1 EI-reg and V-reg: Regression
In this task, given a tweet and its corresponding
emotion, we need to predict the intensity of the
given emotion in 0-1 range. For this task, Deep
learning models with sigmoid as activation func-
tion and number of hidden unit in last layer as
one is used. Official evaluation metric for this is a
pearson correlation, so we define a new loss func-
tion to train deep learning models.

Loss = 0.7× (1− pearson)+ 0.3×MSE (1)

This is a slightly modified version than used
by (Meisheri et al., 2017; Goel et al., 2017) for
WASSA dataset, where they use the negative of
pearson correlation as the loss function. We ob-
serve that using weighted sum of negation of pear-
son correlation and mean square error improved
the performance.

Training data was split into 10 different folds,
by using stratified splits which were achieved by
generating 10 bins over the continuous bins. Ten
different models were generated with permuta-
tions of 9 out of 10 folds as training and remain-
ing 1 as validation dataset. Finally, dev dataset
is passed over all the models and mean of all the
models were considered as output. This can be
seen as a variation of weak learners concept in de-
cision trees.

For the testing dataset as mentioned earlier, we
combine training and development set and then

294

generate 10 folds to create 10 models with 80-20
split for validation. Parameters used for models
are stated in table 2. In addition, we have used
Adam optimizer with 0.0001 as learning rate.

Table 2: Parameters for Regression Task.
Layers Units Activation Regularization Dropout

BiLSTM - Tower 1 70 Tanh L2 - 0.05 0.35
BiLSTM - Tower 2 70 Tanh L2 - 0.05 0.35

Attention - - L2 - 0.01 -
Max Pooling - - - -

Fully Connected Layer 1 100 Selu L2 - 0.001 0.5
Fully Connected Layer 2 50 Selu L2 - 0.001 0.3

Output Layer 1 Sigmoid - -

The output of deep learning models is consid-
ered as a feature for our ensemble method, where
we combine other features as mentioned in sec-
tion 2.3 and section 2.4. In addition to this, the
output of other emotion is also used as a feature
for the ensemble model which provides an addi-
tional context for the prediction task. So, for each
emotion in a task, we get additional features from
deep learning model which we define as a cross
emotion features.

All this features are then passed on to the sup-
port vector regression, whose parameters C and
Kernel are tuned using 10 fold cross validation
over training set.

3.2 EI-oc and V-oc: Classification

Objective of this task was to classify tweet into one
of the ordinal classes, given a tweet and its corre-
sponding emotion. Number of classes for EI-oc
were four and for V-oc it was seven. Official eval-
uation metric for this task was provided as pear-
son correlation. Output layer in the deep learn-
ing model contained four and seven neurons for
EI-oc and V-oc respectively with softmax as the
activation function. Loss function used for classi-
fication task was categorical crossentropy. Simi-
lar settings of 10-fold as mentioned in regression
task earlier was carried out resulting in 10 differ-
ent models for each emotion and valence. Layer
parameters for this task are summarized in table 3.
Stochastic gradient descent with nesterov momen-
tum and learning rate 0.01 was used as optimizer
for this task.

Similar to regression task, for classification we
create ensemble model by combining output of
deep learning models with other features. In ad-
dition, we also consider output of regression mod-
els as additional features for classification. Sup-
port vector classifier is used as a final classifier,

Table 3: Parameters for Classification Task.
Layers Units Activation Regularization Dropout

BiLSTM - Tower 1 50 Tanh L2 - 0.05 0.4
BiLSTM - Tower 2 50 Tanh L2 - 0.05 0.4

Attention - - L2 - 0.001 -
Max Pooling - - - -

Fully Connected Layer 1 50 Selu L2 - 0.01 0.4
Fully Connected Layer 2 20 Selu L2 - 0.01 0.4

Output Layer 5/7 Softmax - -

Table 4: Parameters for Multi-Label Classification
Task.

Layers Units Activation Regularization Dropout
BiLSTM - Tower 1 120 Tanh 0 0.3
BiLSTM - Tower 2 120 Tanh 0 0.3

Attention - - 0 -
Max Pooling - - - -

Fully Connected Layer 1 100 relu L2 - 0.01 0.3
Fully Connected Layer 2 50 relu L2 - 0.01 0.2

Output Layer 11 Softmax - -

with C and Kernel being tuned using 10-fold cross
validation. Final submission is done with model
being trained by combining training and develop-
ment dataset and then taking 80-20 split for train-
ing and validation.

3.3 E-c: Multilabel Classification

In this task, we were provided with tweet and its
corresponding labels among 11 emotion: anger,
anticipation, disgust, fear, joy, love, optimism,
pessimism, sadness, surprise and trust. For this
task, output layer of our deep learning model con-
tains 11 neurons and sigmoid as a activation func-
tion. Binary cross entropy is used as a loss func-
tion with Stochastic gradient descent with Nes-
terov momentum, 0.01 learning rate and 10−6

learning rate decay as optimizer. Parameters for
other layers are presented in table 4.

Official evaluation metric for this task was Jac-
card similarity score. The output of the deep learn-
ing model gives values between 0-1 for each emo-
tion. Since the task was to predict the presence
or absence of any emotion continuous value must
be converted to binary number. Threshold was ap-
plied which was learned from training and devel-
opment set. For training set we found the thresh-
old to be 0.35, whereas for development set it was
found to be 0.30. For testing set, we take the mean
of both the values as threshold.

4 Results and Discussion

In total 75 teams participated in the task, our sys-
tem was ranked 2nd for V-reg task, 5th for EI-reg
task and 7th for both V-oc and EI-oc task. For

295

Table 5: Comparison of proposed deep Learning model and ensemble model over train and development set for
regression task.

Development Set Test Set
Original Split 80-20 Split Original Split 80-20 Split

Ensemble
System

Deep
Learning
Model

Ensemble
System

Deep
Learning
Model

Ensemble
System

Deep
Learning
Model

Ensemble
System

Deep
Learning
Model

Fear 0.751 0.707 0.791 0.791 0.745 0.725 0.736 0.74
Anger 0.79 0.718 0.747 0.744 0.775 0.721 0.776 0.749

Sadness 0.735 0.689 0.77 0.767 0.764 0.723 0.776 0.741
Joy 0.723 0.675 0.812 0.775 0.767 0.724 0.77 0.731

Average 0.75 0.697 0.78 0.769 0.763 0.723 0.764 0.74
Valence 0.857 0.804 0.85 0.788 0.858 0.832 0.861 0.84

Table 6: Results of Regression and Classification task
over test set.

Reg OC
Orginal Split 80-20 Split Orginal Split 80-20 Split

Fear 0.745 0.735 0.595 0.561
Anger 0.775 0.775 0.626 0.641
Sadness 0.764 0.776 0.618 0.621
joy 0.767 0.77 0.65 0.655
Average 0.76275 0.764 0.62225 0.6195
Valence 0.858 0.861 0.727 0.777

Multi-Label classification, our system achieved
2nd rank among the teams, with Jaccard similar-
ity score of 0.582.

Table 6 shows the result for EI-reg, V-reg, EI-
oc and V-oc task on official evaluation metric i.e.
pearson correlation. We also compare the results
over the original split and 80-20 split generated af-
ter combining training and development dataset. It
can be seen that both of these gives similar results
while, for classification original split is better, for
regression it is other way. Table 5 shows compar-
ison of Ensemble model and Deep learning model
for EI-reg and V-reg. We observe improvement in
ensemble model over development dataset in both
sets of splits. On the contrary, there is relatively
less difference in the test set.

Table 7 contains results of different deep learn-
ing architecture for EI-reg and V-reg task. For both
of these task, we can observe what is impact of at-
tention over both the towers. We also present the
results for each single tower which helps in un-
derstanding the need for two towers. Although
adding attention over Tower-1 gives little improve-
ment for EL-reg task it provides significant im-
provement for V-reg task. It is worthwhile to note
that sadness emotion shows no improvement by
adding attention over tower-2.

Table 7: Regression Task Results over model different
architectures over test set:80-20 Split.

Anger Fear Sadness Joy Average Valence
Proposed Model 0.749 0.74 0.741 0.731 0.74 0.84

Tower-1 0.727 0.727 0.704 0.709 0.717 0.825
Tower-2 0.714 0.719 0.673 0.70 0.705 0.792

Tower-1 without Attention 0.721 0.709 0.69 0.704 0.711 0.783
Tower-2 without Attention 0.693 0.692 0.673 0.682 0.685 0.766

Table 8: Results of Individual Features in combination
with Deep learning features over development set.

Features Anger Fear Sadness Joy Valence
dl 0.744 0.791 0.767 0.775 0.788

dl+baselines 0.747 0.792 0.773 0.778 0.789
dl+vader 0.747 0.792 0.772 0.775 0.785

dl+sentineuron 0.748 0.79 0.773 0.778 0.79
dl+valence 0.751 0.792 0.77 0.785 -

dl+cross emotion 0.75 0.794 0.773 0.778 0.809

In table 8 and table 9, results on regression task
for 80-20 split for each feature when combined
with deep learning feature over development and
test set respectively. We observe that adding lexi-
con features marginally increases the performance
of the system. We can conclude from this that deep
learning model that we presented can encapsulate
most of the information regarding the sentiment
which was present in traditional features. Includ-
ing cross-emotion feature shows considerable in-
crease in the performance.

Inter-feature correlation is presented in figure 4,
where we can observe that apart from anger and
valence baseline features are weak negatively cor-
related with other features. Furthermore, vader
and sentineuron are less correlated except for va-
lence and yet they provide similar improvement
when combined individually with DL features.
Although, when both these features are combined
together they provide a significant boost.

296

Table 9: Results of Individual Features in combination
with Deep learning features over test set.

Features Anger Fear Sadness Joy Valence
dl 0.749 0.74 0.741 0.731 0.84

dl+baselines 0.755 0.739 0.742 0.731 0.84
dl+vader 0.753 0.744 0.746 0.731 0.841

dl+sentineuron 0.753 0.739 0.752 0.734 0.842
dl+valence 0.756 0.743 0.745 0.74 -

dl+cross emotion 0.759 0.744 0.753 0.738 0.849

For classification task across four emotion and
valence we observed that, using threshold values
obtained by comparing continuous values from
regression task provides a better result in pear-
son correlation. Possible reason for this might be
the loss function that we trained for classification
model was categorical cross entropy.

4.1 Error analysis

We observe that high difference between the pre-
dicted value/class and truth value/class are present
at the extreme end of the spectrum. One of the
possible reason might be that the distribution of
the data shows a Gaussian distribution and there
are few samples at the extreme end as described
in (Mohammad and Kiritchenko, 2018). In addi-
tion, we manually inspect some cases where our
model failed, for example for sadness You are
MINE, my baby, my headache, my love, my smile,
my frown, my wrong, my right, my pain, my happi-
ness, my everything. has truth value of 0.140 and
our system predicted 0.568 which is way higher
than what the writer is trying to convey. The
model is predicting slightly above neutral senti-
ment. Possible reasons include the presence of
both positive and negative words present in the al-
ternate sequence. This kind of discourse and irony
detection can help in better prediction if incorpo-
rated into the models.

In joy emotion, when will i ever be happy with
myself? has a truth value of 0.109 and predicted
value is 0.491. These kind of rhetorical questions
is hard to understand even for humans, for model
to understand we need to put in some explicit con-
text. By observing more such samples, we find
that adding more context about the different physi-
ological and linguistic phenomenon into the model
with appropriate bias can greatly increase the ac-
curacies of the models present.

Table 10 shows the error across different emo-
tions in multi-label task. We observe that there is
a high error rate in anticipation, pessimism, sur-

Table 10: Multi-label Error across Emotions.

Emotion Error
Presence

total
Ratio

Anger 521 1101 0.473
Anticipation 469 425 1.103

Disgust 646 1099 0.588
Fear 251 485 0.518
Joy 477 1442 0.331

Love 405 516 0.785
Optimism 704 1143 0.616
Pessimism 398 375 1.061

Sadness 539 960 0.561
Surprise 167 170 0.982

Trust 161 153 1.052

prise and trust, possible reasons might be that
there are already fewer samples available and the
ratio of percentage votes received to the percent-
age of tweets labeled is also high for this emotion
as compared to other emotions (Mohammad and
Kiritchenko, 2018). In addition, we observe that
there are around 2% of the tweets contained no
emotion in test set, where our model predicted at-
least one emotion.

5 Conclusion

In this paper, we describe our approach to
SemEval-2018 Task-1 for English tweet. We
present ensemble system which is capable of
handling noisy sentiment dataset over regression,
classification as well as multi-label dataset. Use
of the mixture of embedding in parallel makes this
system unique in terms of generating better repre-
sentations with respect to sentiment. Our system
achieved 2nd, 5th and 7th in different subtasks.
Analyzing different feature combinations from in-
dividual results and inter-feature correlation over
test data reveals that our deep learning model is
able to capture most of the information that is pro-
vided by lexicon feature. Multi-label classification
has proved to be a challenging task among all the
subtask that has been provided as the evaluation
score of all the team participating has been low.

We have also presented some examples where
our model has performed poorly and conclude that
including context feature for sarcasm, irony and
rhetoric question can improve the performance
further over all the subtasks presented in SemEval
for English language.

297

Figure 4: Correlation among various features for test set.

References
Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-

gio. 2014. Neural machine translation by jointly
learning to align and translate. arXiv preprint
arXiv:1409.0473.

Felipe Bravo-Marquez, Eibe Frank, Saif M Moham-
mad, and Bernhard Pfahringer. 2016. Determining
word–emotion associations from tweets by multi-
label classification. In WI’16, pages 536–539. IEEE
Computer Society.

Tim Dalgleish and Mick Power. 2000. Handbook of
cognition and emotion. John Wiley & Sons.

Xiaowen Ding, Bing Liu, and Philip S Yu. 2008. A
holistic lexicon-based approach to opinion mining.
In Proceedings of the 2008 international conference
on web search and data mining, pages 231–240.
ACM.

Ben Eisner, Tim Rocktäschel, Isabelle Augenstein,
Matko Bosnjak, and Sebastian Riedel. 2016.
emoji2vec: Learning emoji representations from
their description.

Andrea Esuli and Fabrizio Sebastiani. 2007. Senti-
wordnet: A high-coverage lexical resource for opin-
ion mining. Evaluation, pages 1–26.

CJ Hutto Eric Gilbert. 2014. Vader: A parsimo-
nious rule-based model for sentiment analysis of so-
cial media text. In Eighth International Confer-
ence on Weblogs and Social Media (ICWSM-14).
Available at (20/04/16) http://comp. social. gatech.
edu/papers/icwsm14. vader. hutto. pdf.

Pranav Goel, Devang Kulshreshtha, Prayas Jain, and
Kaushal Kumar Shukla. 2017. Prayas at emoint

2017: An ensemble of deep neural architectures
for emotion intensity prediction in tweets. In Pro-
ceedings of the 8th Workshop on Computational Ap-
proaches to Subjectivity, Sentiment and Social Me-
dia Analysis, pages 58–65.

Alex Graves and Jürgen Schmidhuber. 2005. Frame-
wise phoneme classification with bidirectional lstm
and other neural network architectures. Neural Net-
works, 18(5):602–610.

Svetlana Kiritchenko, Xiaodan Zhu, and Saif M Mo-
hammad. 2014. Sentiment analysis of short in-
formal texts. Journal of Artificial Intelligence Re-
search, 50:723–762.

Zhouhan Lin, Minwei Feng, Cicero Nogueira dos San-
tos, Mo Yu, Bing Xiang, Bowen Zhou, and Yoshua
Bengio. 2017. A structured self-attentive sentence
embedding. arXiv preprint arXiv:1703.03130.

Hardik Meisheri, Kunal Ranjan, and Lipika Dey.
2017. Sentiment extraction from consumer-
generated noisy short texts. In Proceedings of IEEE
International Conference on Data Mining Work-
shops (ICDMW), New Orleans, USA.

Saif M. Mohammad and Felipe Bravo-Marquez. 2017.
Wassa-2017 shared task on emotion intensity. In
Proceedings of the EMNLP 2017 Workshop on
Computational Approaches to Subjectivity, Senti-
ment, and Social Media (WASSA), September 2017,
Copenhagen, Denmark.

Saif M. Mohammad, Felipe Bravo-Marquez, Mo-
hammad Salameh, and Svetlana Kiritchenko. 2018.
Semeval-2018 Task 1: Affect in tweets. In Proceed-
ings of International Workshop on Semantic Evalu-
ation (SemEval-2018), New Orleans, LA, USA.

298

Saif M Mohammad and Svetlana Kiritchenko. 2015.
Using hashtags to capture fine emotion cate-
gories from tweets. Computational Intelligence,
31(2):301–326.

Saif M. Mohammad and Svetlana Kiritchenko. 2018.
Understanding emotions: A dataset of tweets to
study interactions between affect categories. In
Proceedings of the 11th Edition of the Language
Resources and Evaluation Conference, Miyazaki,
Japan.

Saif M Mohammad, Svetlana Kiritchenko, and Xiao-
dan Zhu. 2013. Nrc-canada: Building the state-
of-the-art in sentiment analysis of tweets. arXiv
preprint arXiv:1308.6242.

Saif M Mohammad and Peter D Turney. 2013. Crowd-
sourcing a word–emotion association lexicon. Com-
putational Intelligence, 29(3):436–465.

Finn Årup Nielsen. 2011. A new anew: Evaluation of a
word list for sentiment analysis in microblogs. arXiv
preprint arXiv:1103.2903.

Jeffrey Pennington, Richard Socher, and Christo-
pher D. Manning. 2014. Glove: Global vectors for
word representation. In Empirical Methods in Nat-
ural Language Processing (EMNLP), pages 1532–
1543.

Robert Plutchik. 2001. The nature of emotions: Hu-
man emotions have deep evolutionary roots, a fact
that may explain their complexity and provide tools
for clinical practice. American scientist, 89(4):344–
350.

A. Radford, R. Jozefowicz, and I. Sutskever. 2017.
Learning to Generate Reviews and Discovering Sen-
timent. ArXiv e-prints.

Theresa Wilson, Janyce Wiebe, and Paul Hoffmann.
2005. Recognizing contextual polarity in phrase-
level sentiment analysis. In Proceedings of the con-
ference on human language technology and empiri-
cal methods in natural language processing, pages
347–354. Association for Computational Linguis-
tics.

299

Proceedings of the 12th International Workshop on Semantic Evaluation (SemEval-2018), pages 300–304
New Orleans, Louisiana, June 5–6, 2018. ©2018 Association for Computational Linguistics

DMCB at SemEval-2018 Task 1: Transfer Learning of Sentiment
Classification Using Group LSTM for Emotion Intensity prediction

Youngmin Kim, Hyunju Lee
Gwangju Institute of Science and Technology,

Data mining and Computational Biology Lab, Gwangju, Korea
{minok00, hyunjulee}@gist.ac.kr

Abstract

This paper describes a system attended in the
SemEval-2018 Task 1 “Affect in tweets” that
predicts emotional intensities. We use Group
LSTM with an attention model and transfer
learning with sentiment classification data as a
source data (SemEval 2017 Task 4a). A trans-
fer model structure consists of a source domain
and a target domain. Additionally, we try a
new dropout that is applied to LSTMs in the
Group LSTM. Our system ranked 8th at the
subtask 1a (emotion intensity regression). We
also show various results with different archi-
tectures in the source, target and transfer mod-
els.

1 Introduction

Sentiment analysis is one of the most famous Nat-
ural Language Process (NLP) task. In this study,
we perform a task that predicts emotional inten-
sities of anger, joy, fear and sadness with tweet
messages, where intensity values range from 0 to
1. This task is competed at SemEval-2018 Task
1 (Mohammad et al., 2018). In previous stud-
ies, neural networks with word embedding and
affective lexicons were widely used (Goel et al.,
2017; He et al., 2017). Also, many studies em-
ployed support vector regression (Duppada and
Hiray, 2017; Akhtar et al., 2017).

Transfer learning was recently proposed as an
effecive approach to have higher performance,
when data is not abundant. Using a pre-trained
deep-learning model with an abundant data set has
been popular and shows good results in various
tasks (Donahue et al., 2014; Conneau et al., 2017).
Especially in a medical image task, it is very effi-
cient because of lacks of medical data (Tajbakhsh
et al., 2016). Just as humans can learn new things
better with their past knowledge, neural networks
can also be trained on target domains by transfer-
ring knowledge from the source domain.

We make a transfer model that can be divided
into a source model and a target model. The
source model is constructed based on the paper
(Baziotis et al., 2017). The model of this paper
uses LSTM with attention. However, we introduce
Group LSTM (GLSTM) (Kuchaiev and Ginsburg,
2017) with a new dropout. After then, we make
the target model with LSTM.

In the result section, we provide comparison of
LSTM and GLSTM in the source model, and re-
sults of various pre-trained word embeddings with
target model. Finally, we discuss about the result
of the transfer model that is a combined model
with the source and target models.

2 System Description

2.1 Data and Label
For transfer learning, we use a source data pro-
vided by SemEval 2017 Task4 (a) (Rosenthal
et al., 2017). The task of the source domain is to
classify sentences to positive, negative and neu-
tral sentences. Training data is 44,613 sentences
(10% are used as a development set), and test data
is 12,284 sentences for the source model evalua-
tion. For transfer learning in this study, all training
and test data are used as training data.

For the target domain, training data is about
2,000 sentences for each emotion. Although the
main task is regression prediction, we change it as
distribution prediction (Tai et al., 2015). In this
way, we deal it as a classification problem. Inten-
sity scores y are changed to labels t satisfying:

ti =





y’− by’c if i = by’c+ 1
by’c − y’ + 1 if i = by’c
0 otherwise

where i = [1, 2, 3, 4, 5] and y’ = 4y

Size of the final output is 5. For example, if an
intensity score y is 0.7, label t is [0, 0, 0.2, 0.8, 0].

300

With given r = [0, 0.25, 0.5, 0.75, 1], label y can
be obtained again by dot product with t and r (0.7
= 0.2*0.5 + 0.8*0.75).

2.2 Text preprocessing
To normalize words and remove noise in sen-
tences, we use ekphrasis library (Baziotis et al.,
2017). It helps to apply social tokenizer, spell
correction, word segmentation and various prepro-
cessing. We normalize time and number, and omit
URL, email and user tag. Annotations are added
on hashtags, emphasized and repeated words. We
annotate them as a group because hashtags are
gathered in many cases (see Table 1). Lastly,
emoticons are changed to words that represent
emoticons.

#letsdance #dancinginthemoonlight #singing
⇒ 〈hashtag〉 lets dance dancing in the

moonlight singing 〈/hashtag〉

Table 1: Example of preprocessing hashtag

2.3 Word embedding
We try five pre-trained word embeddings to
choose the best one for the target model. Two are
trained with GloVe (Pennington et al., 2014) using
different data sets: one1 is trained with very large
data in Common crawl, and the other2 is made
with tweets (Baziotis et al., 2017). Other word
embedding methods are fastText3 (Bojanowski
et al., 2016), word2vec4 (Mikolov et al., 2013) and
LexVec5 (Salle et al., 2016). LexVec is the mixed
version of GloVe and word2vec. Dimensions of
them are all 300. Among them, GloVe with tweet
is used for the source and transfer models.

Emoji can be good features but most of emoji
ideograms are not contained in embedding vocab-
ulary. Hence, we change a emoji to a phrase with
python ‘emoji’ library. For example, is de-
coded to “Smiling Face with Open Mouth and
Smiling Eyes”. Because it is quite long, embed-
ding vectors of emoji are changed to mean of vec-
tors of each decoded words. In this way, we reduce
Out-Of-Vocabulary and prevent the sentence from
lengthening.

1https://nlp.stanford.edu/projects/glove/
2https://github.com/cbaziotis/datastories-semeval2017-

task4
3https://github.com/facebookresearch/fastText
4https://code.google.com/archive/p/word2vec/
5https://github.com/alexandres/lexvec

2.4 LSTM and GLSTM
Recurrent Neural Network (RNN) works well in
a sequence model like language by addressing its
arbitrary length (Tai et al., 2015). However, RNN
is difficult to be optimized because of a gradient
vanishing problem. To solve it, LSTM suggested
a cell state and gates as bridges to control the flow
of error (Hochreiter and Schmidhuber, 1997).

GLSTM is just a group of several LSTMs,
where outputs of LSTMs are concatenated. The
idea is that LSTM can be divided into several
sub-LSTMs (Kuchaiev and Ginsburg, 2017). This
model has some advantages compared to the orig-
inal LSTM. The number of parameters is reduced
with a preserving feature size. Also, it can be par-
allelized and computation times are reduced be-
cause the computation of each sub-LSTM is inde-
pendent.

2.5 Dropout
To avoid overfitting and achieve generality, we use
three types of dropout. One is normal dropout be-
tween layers (Srivastava et al., 2014). If a shape of
the layer is sequential, dropout mask is shared on
sequential axis. Another dropout is inside cells of
LSTM. In the each LSTM cell, the same dropout
mask is applied on hidden values that come from
the previous cell (Zaremba et al., 2014). Apply-
ing different dropout masks for each cell can mis-
lead memory and information. With the same
dropout mask, however, LSTM cell can dropout
nodes consistently so that the model can forget
or memorize information stably. The last one is
dropout between sub-LSTMs. To get more gener-
ality, we dropped several LSTMs in GLSTM. For
example, if GLSTM consist of five sub-LSTMs,
we dropped two LSTMs and only use the rest three
LSTMs.

3 Model structure

3.1 Source model
For the source model, Glove with tweets is used
as input vectors of the embedding layer. After
embedding layer, two GLSTM layers are stacked.
GLSTM is made of 5 LSTMs with 40 feature size.
Additionally, we concatenate forward and back-
ward GLSTM to be bidirectional. So hidden size
of each recurrent layer is 400 (= 5 ×40× 2).

Next is an attention layer, which calculates im-
portance of each time step. Attention mechanism
shows good performance on sequential tasks like

301

Figure 1: Structure of models. For the trans-
fer model, connections between source and target
models are used. Large arrows are paths of re-
duced gradient flow during backpropagation.

machine translation (Bahdanau et al., 2014) and
sentiment analysis (Baziotis et al., 2017). It helps
to concentrate position related to emotion. Atten-
tion values are calculated:

et = Whht + bt

at =
exp(et)∑l
i exp(ei)

,
∑

at = 1

Calculated attention values are multiplied by each
current hidden state and they are all added up.

Passing through the attention layer, the output
becomes non-sequential representation vectors. It
enters a fully connected softmax layer as a final
classification layer, where the size of the layer is
3.

3.2 Target model
Unlike the source model, a normal bi-LSTM is
used with 100 feature size. After then, attention
and output layers are stacked. The size of output
layer is 5.

For transfer learning, outputs of several layers
on the source model are used as additional fea-
tures. The LSTM layer on the target model takes
as input the concatenation of the embedding layer
and the first LSTM layer output of the source
model. After the attention layer, in a similar way,
outputs of the attention and the final layers on the
source model are concatenated and entered into
the final layer as input.

3.3 Regularization
At the embedding layer, Gaussian noise is ap-
plied with sigma = 0.2. It helps models to be
robust by avoiding overfitting on specific features
of words. Dropouts are used everywhere between
layers with probability p = 0.3 except before the fi-
nal layer. Before the final layer, p = 0.5 dropout is
applied. Additionally, LSTM dropout was applied
on every LSTM layers with p = 0.3. The proba-
bility of dropout at GLSTM on the source model
is 0.3. Also, we use L2 normalization. It pre-
vents weights to be large values by adding weight
penalty to loss. We set up it with 0.001 for the
source model and 0.0001 for the target model.

3.4 Training
For the source and target models, categorical
cross-entropy is used as a loss function. For up-
dating weights, we apply the Adam (Kingma and
Ba, 2014) optimizer with a learning rate of 0.001.
During training the transfer model, since we want
to preserve target model weight parameters with a
little updating, we decrease gradient flow of back-
propagation from the source model to the target
model by 0.05 times (see large arrows on Figure
1). Because there are many parameters on the fi-
nal model, we take that constraint to prevent over-
fitting.

4 Result and discussion

4.1 GLSTM
Figure 2 shows the result of GLSTM and normal
LSTM on the source model for Sentiment Classi-
fication (SemEval 2017 Task 1a). We tried var-
ious feature sizes. The number of sub-LSTM in
GLSTM is fixed to 5 and the feature size of each
sub-LSTM is changed. As the sizes of features
increase, the performances of GLSTM increase.
On the other hand, although the performances of
LSTM gradually improve with larger feature sizes,
it starts to decrease rapidly after 100. Thus, we
infer that GLSTM with dropout is more effective
on overfitting than LSTM with larger feature size.
Based on this result, we use GLSTM for the source
model.

4.2 Various Embedding
We tested five different word embedding vectors
using the target model to choose the best em-
bedding. To compare the performances of em-
beddings, the embedding layers was not trained

302

Figure 2: Performance comparison between
GLSTM and LSTM on the source model for sen-
timent classification. A dotted line is the result of
(Baziotis et al., 2017).

Table 2: Pearsons correlation of Dev set on the tar-
get model for SemEval-2018 Task1(a).

(static). Note that we did not use transfer learning
in this experiment. Table 2 shows Pearson corre-
lation between the given emotion intensities and
predicted intensities by the models on the devel-
opment set. Tweet GloVe had the best score and
Common GloVe showed the second best score.
Hence, we decided to do transfer learning with
Tweet GloVe and Common GloVe.

4.3 Transfer

Our main task results are described in Table 3.
There are four models. Tweet Glove and Com-
mon GloVe were picked from the conclusion of
4.2, and we performed two approaches: training
the embedding layer or not (non-static or static)
(Kim, 2014). Tweet GloVe with static showed the
best performance as a single model and it is al-
most same to non-static. However, the non-static
method had a higher score than the static for Com-
mon GloVe embedding. In addition, the ensemble
model by averaging all single models showed bet-
ter performance than the single models. We also
found that compared to the scores without trans-

fer learning on dev set (Table 2), there were sig-
nificant performance improvements when transfer
learning used in Table 3.

5 Conclusion

This paper described the system submitted to
SemEval-2018 Task 1: Affect in tweets and anal-
ysis of various models. Various embedding vec-
tors were tried and we chose Tweet GloVe with
static. The main method is LSTM with attention
and transfer learning that uses sentiment classifi-
cation as source domain. In future work, we will
perform transfer learning with labeled data sets
such as SNLI or SST data sets. Also, training tag-
ging or tree parsing can be used for transfer learn-
ing.

Acknowledgments

This research was supported by the Bio-Synergy
Research Project (NRF-2016M3A9C4939665) of
the Ministry of Science, ICT and Future Planning
through the National Research Foundation.

References
Md Shad Akhtar, Palaash Sawant, Asif Ekbal, Jyoti

Pawar, and Pushpak Bhattacharyya. 2017. Iitp at
emoint-2017: Measuring intensity of emotions us-
ing sentence embeddings and optimized features.
In Proceedings of the 8th Workshop on Computa-
tional Approaches to Subjectivity, Sentiment and So-
cial Media Analysis, pages 212–218.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2014. Neural machine translation by jointly
learning to align and translate. arXiv preprint
arXiv:1409.0473.

Christos Baziotis, Nikos Pelekis, and Christos Doulk-
eridis. 2017. Datastories at semeval-2017 task
4: Deep lstm with attention for message-level and
topic-based sentiment analysis. In Proceedings of
the 11th International Workshop on Semantic Eval-
uation (SemEval-2017), pages 747–754, Vancouver,
Canada. Association for Computational Linguistics.

Piotr Bojanowski, Edouard Grave, Armand Joulin,
and Tomas Mikolov. 2016. Enriching word vec-
tors with subword information. arXiv preprint
arXiv:1607.04606.

Alexis Conneau, Douwe Kiela, Holger Schwenk, Loic
Barrault, and Antoine Bordes. 2017. Supervised
learning of universal sentence representations from
natural language inference data. arXiv preprint
arXiv:1705.02364.

303

Table 3: Experiment results of the transfer model on SemEval-2018 Task 1(a) Emotional Intensity regres-
sion. The submitted system to the task is Tweet GloVe with static.

Jeff Donahue, Yangqing Jia, Oriol Vinyals, Judy Hoff-
man, Ning Zhang, Eric Tzeng, and Trevor Darrell.
2014. Decaf: A deep convolutional activation fea-
ture for generic visual recognition. In International
conference on machine learning, pages 647–655.

Venkatesh Duppada and Sushant Hiray. 2017. Seernet
at emoint-2017: Tweet emotion intensity estimator.
arXiv preprint arXiv:1708.06185.

Pranav Goel, Devang Kulshreshtha, Prayas Jain, and
Kaushal Kumar Shukla. 2017. Prayas at emoint
2017: An ensemble of deep neural architectures
for emotion intensity prediction in tweets. In Pro-
ceedings of the 8th Workshop on Computational Ap-
proaches to Subjectivity, Sentiment and Social Me-
dia Analysis, pages 58–65.

Yuanye He, Liang-Chih Yu, K Robert Lai, and Weiyi
Liu. 2017. Yzu-nlp at emoint-2017: Determin-
ing emotion intensity using a bi-directional lstm-
cnn model. In Proceedings of the 8th Workshop
on Computational Approaches to Subjectivity, Sen-
timent and Social Media Analysis, pages 238–242.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural computation,
9(8):1735–1780.

Yoon Kim. 2014. Convolutional neural net-
works for sentence classification. arXiv preprint
arXiv:1408.5882.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Oleksii Kuchaiev and Boris Ginsburg. 2017. Factor-
ization tricks for lstm networks. arXiv preprint
arXiv:1703.10722.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jef-
frey Dean. 2013. Efficient estimation of word
representations in vector space. arXiv preprint
arXiv:1301.3781.

Saif M. Mohammad, Felipe Bravo-Marquez, Mo-
hammad Salameh, and Svetlana Kiritchenko. 2018.
Semeval-2018 Task 1: Affect in tweets. In Proceed-
ings of International Workshop on Semantic Evalu-
ation (SemEval-2018), New Orleans, LA, USA.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. Glove: Global vectors for word
representation. In Proceedings of the 2014 confer-
ence on empirical methods in natural language pro-
cessing (EMNLP), pages 1532–1543.

Sara Rosenthal, Noura Farra, and Preslav Nakov.
2017. Semeval-2017 task 4: Sentiment analysis in
twitter. In Proceedings of the 11th International
Workshop on Semantic Evaluation (SemEval-2017),
pages 502–518.

Alexandre Salle, Marco Idiart, and Aline Villavicencio.
2016. Matrix factorization using window sampling
and negative sampling for improved word represen-
tations. arXiv preprint arXiv:1606.00819.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky,
Ilya Sutskever, and Ruslan Salakhutdinov. 2014.
Dropout: A simple way to prevent neural networks
from overfitting. The Journal of Machine Learning
Research, 15(1):1929–1958.

Kai Sheng Tai, Richard Socher, and Christopher D
Manning. 2015. Improved semantic representations
from tree-structured long short-term memory net-
works. arXiv preprint arXiv:1503.00075.

Nima Tajbakhsh, Jae Y Shin, Suryakanth R Gurudu,
R Todd Hurst, Christopher B Kendall, Michael B
Gotway, and Jianming Liang. 2016. Convolutional
neural networks for medical image analysis: Full
training or fine tuning? IEEE transactions on medi-
cal imaging, 35(5):1299–1312.

Wojciech Zaremba, Ilya Sutskever, and Oriol Vinyals.
2014. Recurrent neural network regularization.
arXiv preprint arXiv:1409.2329.

304

Proceedings of the 12th International Workshop on Semantic Evaluation (SemEval-2018), pages 305–312
New Orleans, Louisiana, June 5–6, 2018. ©2018 Association for Computational Linguistics

DeepMiner at SemEval-2018 Task 1: Emotion Intensity Recognition Using
Deep Representation Learning

Habibeh Naderi
Dalhousie University, Canada

habibeh.naderi@dal.ca

Behrouz H. Soleimani
Dalhousie University, Canada
behrouz.hajisoleimani@dal.ca

Svetlana Kiritchenko, Saif M. Mohammad
National Research Council Canada

{svetlana.kiritchenko, saif.mohammad}@nrc-cnrc.gc.ca

Stan Matwin
Dalhousie University, Canada

stan@cs.dal.ca

Abstract

In this paper, we propose a regression system
to infer the emotion intensity of a tweet. We
develop a multi-aspect feature learning mech-
anism to capture the most discriminative se-
mantic features of a tweet as well as the emo-
tion information conveyed by each word in it.
We combine six types of feature groups: (1) a
tweet representation learned by an LSTM deep
neural network on the training data, (2) a tweet
representation learned by an LSTM network
on a large corpus of tweets that contain emo-
tion words (a distant supervision corpus), (3)
word embeddings trained on the distant super-
vision corpus and averaged over all words in a
tweet, (4) word and character n-grams, (5) fea-
tures derived from various sentiment and emo-
tion lexicons, and (6) other hand-crafted fea-
tures. As part of the word embedding train-
ing, we also learn the distributed representa-
tions of multi-word expressions (MWEs) and
negated forms of words. An SVR regressor is
then trained over the full set of features. We
evaluate the effectiveness of our ensemble fea-
ture sets on the SemEval-2018 Task 1 datasets
and achieve a Pearson correlation of 72% on
the task of tweet emotion intensity prediction.

1 Introduction

The widespread use of micro-blogging and social
networking websites such as Twitter for convey-
ing information, sharing opinions, and expressing
feelings, makes the sentiment analysis of tweets
an attractive area of research. However, senti-
ment analysis is challenging because people often
convey their emotions indirectly and creatively,
rather than explicitly stating how they feel. Sen-
timent analysis of tweets is additionally challeng-
ing because of the frequent occurrences of non-
standard language and poor grammatical structure.
Tweets also often contain misspellings, abbrevia-
tions, hashtags, and emoticons.

Various machine learning approaches have been
developed for Twitter sentiment classification.
Most of these algorithms train a classifier over
tweets with manually annotated sentiment inten-
sity labels and learn the most discriminative fea-
tures. Hence, designing an effective feature engi-
neering algorithm can improve classification per-
formance, greatly. Mohammad et al. (2013; 2014)
used many different sentiment lexicons (manually
created and automatically generated), as well as a
variety of hand-crafted features to build the top-
ranked system for Twitter sentiment classification
tasks in SemEval-2013 and SemEval-2014. Sen-
timent lexicons, either hand-crafted or algorith-
mically generated, consist of words and their as-
sociated polarity scores. However, since feature
engineering is labour intensive and usually needs
domain-specific knowledge, sentiment classifica-
tion algorithms with less dependency on feature
engineering are attracting considerable interest.

Socher et al. (2013) proposed a feature learning
algorithm to discover explanatory factors in sen-
timent classification. They consider the represen-
tation of a sentence (or document) as a composi-
tion of the representations of its constituent words
or phrases. This way, the sentiment classifica-
tion problem reduces to learning an effective word
representation (or word embedding) that not only
models the syntactic context of words but also
captures sentiment information of the sentence.
Tang et al. (2014) extended the traditional word
embedding methods (Mikolov et al., 2013b; Col-
lobert et al., 2011) by encoding sentiment informa-
tion into the existing continuous representation of
words. They built sentiment-specific word embed-
ding (SSWE) by developing three neural networks
wherein the sentiment polarity of the tweet is in-
corporated in the neural networks’ loss functions.
Teng et al. (2016) proposed a context-sensitive
lexicon-based method using recurrent and simple

305

Emotion Train Dev. Test Total
anger 1,701 388 1,002 3,091
fear 2,252 389 986 3,627
joy 1,616 290 1,105 3,011
sadness 1,533 397 975 2,905
Total 7,102 1,464 4,068 12,634

Table 1: Number of instances provided in the Tweet
Emotion Intensity dataset (SemEval-2018 Task 1, EI-
reg English). The data was divided into train, develop-
ment, and test sets.

feed-forward neural networks to extract sentiment
lexicons and produce a new polarity weight, re-
spectively.

Unlike lexicon-based sentiment analysis, deep
learning approaches are effective in exploring both
linguistic and semantic relations between words
(Liu et al., 2015). However, due to the limited
amount of high-quality labeled data, it is difficult
to train deep models with a large number of hyper-
parameters for sentiment analysis tasks. Addition-
ally, manual labeling of data is costly and requires
domain expert knowledge, which is not always
available.

In this paper, we describe two systems: Sys-
tem I, our official submission to the competition,
and System II, our best model. In both systems,
we combine deep learning and lexicon-based ap-
proaches to extract the most informative semantic
and emotion representations of tweets. We train
two LSTM models, one on the provided training
data and another one on a large corpus of tweets
that contain emotion words, to obtain emotion-
specific tweet representations. We augment this
feature space with word and character n-grams,
features derived from several sentiment and emo-
tion lexicons as well as other hand-crafted fea-
tures. Our best model achieves an average Pear-
son correlation of 71.96% on the official EI-reg
test dataset.

2 Data

The English training, development, and test
datasets used in our experiments were provided as
part of the SemEval-2018 Task 1, EI-reg subtask
(Mohammad et al., 2018).1 The data files include
tweet id, tweet text, emotion of the tweet, and the
emotion intensity. An overview of the data is pro-
vided in Table 1.

1A detailed description of the English datasets and the
analysis of various affect dimensions is available in Moham-
mad and Kiritchenko (2018).

2.1 Data preparation

The following pre-processing steps were applied
to each of the training and test tweets:

• Remove URLs and usernames.

• Lower-case all the tweet text.

• Substitute abbreviated phrases such as I’ve,
don’t, I’d, etc. with their long forms.

• Replace tweet-specific acronyms such as gr8,
lol, rotfl, etc. with their expanded forms.

• Substitute the elongated words with the same
words but keeping at most two consecutive
occurrences of repeated letters.

• Standardize all the emojis in data to their ex-
planatory phrases using emoji Python pack-
age2.

• Remove all the HTML character codes.

• Replace all occurrences of a multi-word
expression (MWE) by a unique identifier.
We use WikiMWE (Hartmann et al., 2012),
which contains all multi-word expressions
from Wikipedia.

• Generate the negated form of all the tokens
that occur between any of the negation words,
such as no, not, never, etc., and a punctuation
mark.

• Remove special characters, numbers, non-
English words or phrases.

• Normalize all adjectives and adverbs in test
data that do not exist in train or develop-
ment data sets with adjective or adverb in the
training data which shares the most common
Synsets of WordNet with it (if we find more
than one candidate, we replace the adjective
with the most frequent one in the training
data).

• Applying WordNet lemmatizer to have the
simple singular form of tokens with part-
of-speech tags of adjective, adverb, verb or
noun.

The tweets are now fed to the system.

2https://pypi.org/project/emoji/

306

3 System Description

We created two models: System I, our official sub-
mission to the competition, and System II, our best
model. Both models address the task of emotion
intensity prediction (EI-reg): given a tweet T and
an emotion e, predict a real-valued intensity score
(in the range [0, 1]) of e that represents the emo-
tional state of the author of the tweet T.

3.1 System I

Our first model takes advantage of both
embedding-based and lexicon-based features.
In particular, the following feature sets are
generated:

• Embedding-based features:

– Average word embedding vector;
– Representation of a tweet learned by an

LSTM neural network on the provided
training data;

• Lexicon-based and n-gram features:

– Word and character n-gram features;
– Vector of 43 lexicon-derived features,

compiled using the AffectiveTweets
package (Mohammad and Bravo-
Marquez, 2017).3 The lexicons used
include those created by Nielsen
(2011); Mohammad and Turney (2013);
Kiritchenko et al. (2014); Hu and Liu
(2004); Bravo-Marquez et al. (2016);
Thelwall et al. (2012); Wilson et al.
(2005).

We use bag-of-word (BOW) (Pang et al., 2002)
and term frequency-inverse document frequency
(tf-idf) methods to extract different word and char-
acter n-grams. We train word embeddings on a
large corpus of tweets that contain emotion words.
Then, we refine our learned word embeddings to
build emotion-specific word embeddings for ev-
ery emotion. Specifically, we assign emotion-
specific weights to every word in our learned word
embeddings and multiply each word vector by
weights. These emotion-specific weights are ob-
tained by calculating the Pearson correlation be-
tween the extracted unigram features and intensity
labels of the training and development datasets of
each emotion.

3https://affectivetweets.cms.waikato.ac.nz/

We concatenate two learned embedding-based
tweet representations, word and character n-
grams, and the lexicon features in a multimodal
feature layer. We train a Random Forest (RF)
over this heterogeneous multimodal feature layer
to predict emotion intensity of a tweet.

This approach was evaluated on the datasets of
SemEval-2018 Task 1, EI-reg (an emotion inten-
sity regression task) and EI-oc (an emotion inten-
sity ordinal classification task), for which it ob-
tained Pearson correlations of 57.5% and 48.5%
on the test sets, respectively.

Further investigation revealed that our system
I was overfitted to the training data and lost its
generalization ability over new unseen data. The
cause of this problem was the use of development
dataset labels in our feature engineering algorithm.
So, we modify our model to overcome overfitting
and propose system II.

3.2 System II
Similarly to System I, our second model incor-
porates both embedding-based representations and
linguistic knowledge in a unified architecture (see
Figure 1). We train a Support Vector Regressor
(SVR) over the following two categories of fea-
tures:

• Embedding-based features:

– Average word embedding vector;
– Representation of a tweet learned by an

LSTM neural network on the provided
training data;

– Emotion-polarized representation of a
tweet learned by an LSTM neural net-
work on a distant supervision corpus;

• Lexicon-based and hand-crafted features:

– Word and character n-gram features;
– Vector of 43 lexicon-derived features,

compiled using the AffectiveTweets
package (Mohammad and Bravo-
Marquez, 2017);

– Hand-crafted features based on either
word similarities in learned word em-
beddings or emotion intensity similari-
ties in accordance to train and develop-
ment labels.

Below, different components of the two systems
are explained in detail.

307

Average embedding

LSTM intensity
regressor

Lexicon features

Tweet2Lexicon
LSTM trained

on DSD

SemEval 2018 dataset

Polarized representation

Extract n grams
and extra features

Handcrafted featuresLSTM representation

Concatenation

Final representation

Support Vector Regressor

Emotion intensity

Word vectors
averaging

Figure 1: The architecture of our model (System II).

3.3 Word embedding layer

Since the input of our model is a sequence of
tokens {w1, w2, ..., wn}, it is crucial to learn an
effective word representation for automatic emo-
tion analysis. A word embedding is a dense,
low-dimensional and real-valued vector associ-
ated with each word wi. We used word2vec
(Mikolov et al., 2013a) and SVD-NS (Soleimani
and Matwin, 2018) to learn word embeddings and
trained it on an unlabeled corpus of 21M tweets
provided as part of the SemEval-2018 Affect in
Tweets DIstant Supervision Corpus (SemEval-
2018 AIT DISC) (Mohammad et al., 2018). SVD-
NS works better for word and sentence similarity
tasks and is much faster than word2vec. Such dis-
tributed word representations learned from mas-
sive text data make feature engineering less depen-
dent on the task. However, unsupervised learn-
ing of word embeddings cannot thoroughly cap-
ture finer context-based semantic information of
a specific task. Hence, to incorporate linguistic
structure of tweets, we use the following two tech-
niques to improve the word vectors:

1. Our model learns a unique distributed rep-
resentation for every Multi-Word Expression
(MWE). MWEs occur frequently in tweets,
and their meanings are often not derivable
from the meanings of the constituent words.

2. Additionally, our model learns an embedding
vector to represent the negated form of ev-
ery word occurring between a negation word
(e.g., no, shouldn’t) and the following punc-

tuation mark. Due to the significant im-
pact of negation words in changing the sen-
timent polarity of a sentence, we treat the
negated tokens differently (Zhu et al., 2014;
Kiritchenko et al., 2014). By adding a ‘NEG’
prefix to them, we consider the negated to-
kens as different entities and learn separate
word representations for them.

To learn word embeddings, we applied two
methods: the continuous skip-gram model
(Mikolov et al., 2013a) with the window size of 5,
and SVD-NS (Soleimani and Matwin, 2018) with
the PMI threshold of α = −2.5. The vector di-
mensionality was set to d = 100. We also filter
words that occur less than 3 times in the corpus.

3.4 Average embedding layer

To capture the global context of a tweet, we build a
tweet embedding by vertically concatenating em-
bedding vectors of its n words. This yields a tweet
embedding matrix X ∈ Rn×d. Then, we take
the mean of these word embeddings across the
tweet length. Therefore, an average embedding
will add d features (equal to the number of our
word embedding dimensions) to our multimodal
feature layer.

3.5 Tweet embedding vector learned by
LSTM layer

To learn a semantic representation of a tweet, we
use an LSTM neural network, which we found
effective in detecting salient words of a sen-
tence while automatically attenuating unimportant

308

words. The LSTM model sequentially takes each
word in a sentence, extracts its information, and
embeds it into a semantic vector. Due to its abil-
ity to capture long-term memory, LSTM accu-
mulates increasingly richer information as it goes
through the sentence, and when it reaches the last
word, the hidden layer of the network provides
a semantic representation of the whole sentence
(Palangi et al., 2016). To be able to train se-
quential neural networks in batches, we normal-
ize tweet length by zero padding and then feed the
zero-padded tweet embedding matrix to an LSTM
layer. We apply dropout (Srivastava et al., 2014)
on the LSTM layer to prevent network parame-
ters from overfitting and control the co-adaptation
of features. Our LSTM layer is then followed by
two fully connected hidden layers, and one output
layer. Each of these layers computes the transfor-
mation f(Wi ∗ xi + bi) for i = {1, 2, 3}, where W
is the weight matrix, b is the bias vector and f is a
Relu non-linear activation function for hidden lay-
ers and a Sigmoid neuron for output layer. The full
network is trained on the provided training data to
predict the intensity score of the input tweet. We
consider the representation obtained from the first
hidden layer as a sentence embedding vector of an
input tweet.

The network parameters are learned by mini-
mizing the mean squared error (MSE) between
the actual and predicted values of emotion inten-
sity on the training data. We optimize this loss
function by back-propagating through layers via
mini-batch gradient descent, with batch size of 32,
40 training epochs, and Adam optimization algo-
rithm (Kingma and Ba, 2014) with learning rate of
α = 0.001. We use one LSTM layer with 64 neu-
rons, followed by a dropout of 0.2, and two hid-
den layers of sizes 32 and 16, respectively. We use
the same network parameters for an LSTM model
trained on the distant supervision data (see Sec-
tion 3.6).

3.6 Emotion-polarized tweet representation
learned by LSTM

We leverage large amount of Twitter data with dis-
tant supervision to polarize our word embeddings
for each emotion. Hence, we use SemEval-2018
AIT DISC distant supervision corpus of tweets
released by the competition organizers, which
includes around 100M English tweet ids asso-
ciated with tweets that contain emotion-related

query terms such as ‘#angry’, ‘annoyed’, ‘panic’,
‘happy’, etc. We collected 21M tweets by polling
the Twitter API with these tweet ids. Based
on the query terms, one or more emotion la-
bels of {‘anger’, ‘fear’, ‘joy’, ‘sadness’} have
been assigned to every tweet in this dataset.
For each emotion, we randomly select 200, 000
tweets labeled with that emotion (e.g., ‘anger’)
and 200, 000 tweets labeled with other emotions
(‘not anger’) to build the emotion-specific word
embeddings. Since the four basic emotions are
not independent and may be correlated, we build
these emotion-polarized word embeddings in two
ways: (i) one against all strategy: for example,
‘not anger’ tweets are selected from tweets la-
beled with any of the other three emotions, i.e.,
‘fear’, ‘joy’, or ‘sadness’; (ii) considering emo-
tions with similar valence as one group of labels:
tweets labeled with ‘anger’, ‘fear’, and ‘sadness’
are treated as they have the same label. So, here
‘not anger’ tweets are selected from tweets that
are labeled only as ‘joy’. Then, we train an LSTM
neural network using these emotion-specific word
embeddings to build emotion-specific representa-
tions of tweets. Our final emotion-specific tweet
representation obtained by concatenating two hid-
den state layers learned by the same LSTM neural
network trained twice on the same data but with
different emotion labeling according to the above
two labeling strategies.

3.7 Hand-Crafted Features

In addition to the two kinds of tweet representa-
tions described above, we use bag-of-word (BOW)
representation to extract most and least frequent
word n-grams (unigrams, bigrams, and trigrams)
as well as character n-grams (three, four, and five
consecutive characters) from the training, devel-
opment, and test datasets. BOW represents each
word as a one-hot vector which has the same
length as the size of the vocabulary, and only one
dimension is 1, with all others being 0. How-
ever, the one-hot word representation cannot suffi-
ciently capture the complex linguistic characteris-
tics of words. We augment our feature space by
generating additional hand-crafted features. We
define a set of binary features by adding n adjec-
tives with highest and lowest intensities for each
emotion according to the emotion’s training data.
The intensity of a word (unigram) is obtained as an
average emotion intensity of tweets in the train-

309

Experiment Anger Fear Joy Sadness Average
System I (EI-reg) WE + TE + lex 58.15 57.06 57.51 57.36 57.54
System I (EI-oc) WE + TE + lex 49.07 41.09 55.62 48.45 48.56

System II (EI-reg)

WE 62.37 60.07 56.46 60.69 60.12
WE + MWEs 63.26 61.55 57.91 61.89 61.15
WE + MWEs + negation 62.80 62.66 58.21 63.32 61.75
ngram 48.30 52.65 52.44 52.01 51.35
polTE 30.12 36.81 33.95 48.86 37.44
TE 68.91 68.93 69.21 70.14 69.30
WE + lex 67.74 68.74 66.20 67.21 67.48
WE + ngram 63.70 66.38 60.87 64.55 63.87
WE + ngram + lex 66.99 70.27 67.46 67.67 68.10
WE + lex + handcrafted 68.82 71.63 67.74 69.27 69.37
WE + ngram + TE 69.69 69.54 68.49 69.66 69.35
WE + ngram + TE + lex 69.98 73.44 69.14 73.33 71.47
all features 72.30 70.46 71.55 73.13 71.96

Table 2: Pearson correlation (r) % obtained on the test sets. The highest score in each emotion is shown in bold.
System I indicates the results of our first overfitted model and System II shows the results of our modified model.
In every experiment on system II, we train SVR regressor with linear kernel to predict emotion intensity of a
tweet while in system I experiments, we use RF regressor and SVM classifier for SemEval-2018 Task 1 and 2,
respectively. The all-features experiment represents the model built on concatenation of all six groups of features
including WE, ngram, TE, polTE, lex, and handcrft.

ing data that contain that unigram. We also add
the weighted average intensity of all extracted un-
igrams and the intensity of their k nearest neigh-
bors in learned word embeddings (sorted based on
cosine similarity) to our feature set.

4 Results

We train the SVR regressor on the combined set
of tweets in the training and development sets and
apply the model on the test set. The Pearson cor-
relation between the predictions and the gold la-
bels was used by the competition organizers as
the official evaluation measure. The percentage
of Pearson correlation scores obtained by all of
our individual and combined models on the test
set are shown in Table 2. To make the result ta-
ble easier to understand, we shortened the fea-
ture groups’ names as follows: 1) average word
embedding vectors → WE, 2) tweet embedding
vectors learned by LSTM → TE, 3) emotion-
polarized tweet embeddings learned by LSTM →
polTE, 4) word and character n-gram features →
ngram, 5) AffectiveTweets lexicon features → lex,
6) hand-crafted features based on word similar-
ities in emotion intensity → handcrft. All the
results reported in the table use word embed-
dings that are obtained by SVD-NS (Soleimani
and Matwin, 2018) method which was slightly
better than word2vec (Mikolov et al., 2013b).

The ‘all-features’ row shows the results ob-
tained by the model that concatenates all six
groups of features including WE, ngram, TE,

polTE, lex, and handcrft. This model achieves
the highest Pearson correlation score among all
of our proposed models. The tweet representation
learned by LSTM is the best learned unimodal fea-
ture. Considering MWEs as independent seman-
tic units improves the average embedding model’s
performance by 1.03 percentage points. Learning
independent embedding vectors for negated form
of words further improves the score by 0.6 per-
centage points.

5 Conclusion

We described a deep learning framework to predict
emotion intensity in tweets. We implemented an
ensemble of embedding-based feature representa-
tions and sentiment lexicon-based feature learning
approaches. Our best model obtained a Pearson
correlation of 71.96% on Task 1 of SemEval-2018
competition (EI-reg: an emotion intensity regres-
sion task). The tweet representation feature vec-
tor learned by LSTM was the most effective fea-
ture group amongst those that we used. Various
sentiment and emotion lexicon features, our hand-
crafted features and word n-grams features also
helped improve prediction quality.

Acknowledgments

We thank Xiang Jiang for helping us build atten-
tive deep neural networks and fruitful discussions.

310

References
Felipe Bravo-Marquez, Eibe Frank, Saif M Moham-

mad, and Bernhard Pfahringer. 2016. Determining
word-emotion associations from tweets by multi-
label classification. In Web Intelligence (WI), 2016
IEEE/WIC/ACM International Conference on, pages
536–539. IEEE.

Ronan Collobert, Jason Weston, Léon Bottou, Michael
Karlen, Koray Kavukcuoglu, and Pavel Kuksa.
2011. Natural language processing (almost) from
scratch. Journal of Machine Learning Research,
12(Aug):2493–2537.

Silvana Hartmann, György Szarvas, and Iryna
Gurevych. 2012. Mining multiword terms from
wikipedia. In Semi-Automatic Ontology Develop-
ment: Processes and Resources, pages 226–258. IGI
Global.

Minqing Hu and Bing Liu. 2004. Mining and summa-
rizing customer reviews. In Proceedings of the tenth
ACM SIGKDD international conference on Knowl-
edge discovery and data mining, pages 168–177.
ACM.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. In International
Conference on Learning Representations.

Svetlana Kiritchenko, Xiaodan Zhu, and Saif M Mo-
hammad. 2014. Sentiment analysis of short in-
formal texts. Journal of Artificial Intelligence Re-
search, 50:723–762.

Pengfei Liu, Shafiq Joty, and Helen Meng. 2015. Fine-
grained opinion mining with recurrent neural net-
works and word embeddings. In Proceedings of the
2015 Conference on Empirical Methods in Natural
Language Processing, pages 1433–1443.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jef-
frey Dean. 2013a. Efficient estimation of word
representations in vector space. arXiv preprint
arXiv:1301.3781.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013b. Distributed representa-
tions of words and phrases and their compositional-
ity. In Advances in neural information processing
systems, pages 3111–3119.

Saif M. Mohammad and Felipe Bravo-Marquez. 2017.
Emotion intensities in tweets. In Proceedings of the
sixth joint conference on lexical and computational
semantics (*Sem), Vancouver, Canada.

Saif M. Mohammad, Felipe Bravo-Marquez, Mo-
hammad Salameh, and Svetlana Kiritchenko. 2018.
Semeval-2018 Task 1: Affect in tweets. In Proceed-
ings of International Workshop on Semantic Evalu-
ation (SemEval-2018), New Orleans, LA, USA.

Saif M. Mohammad and Svetlana Kiritchenko. 2018.
Understanding emotions: A dataset of tweets to

study interactions between affect categories. In Pro-
ceedings of the 11th Edition of the Language Re-
sources and Evaluation Conference (LREC-2018),
Miyazaki, Japan.

Saif M. Mohammad, Svetlana Kiritchenko, and Xiao-
dan Zhu. 2013. NRC-Canada: Building the state-
of-the-art in sentiment analysis of tweets. In Pro-
ceedings of the International Workshop on Semantic
Evaluation, Atlanta, GA, USA.

Saif M Mohammad and Peter D Turney. 2013. Crowd-
sourcing a word–emotion association lexicon. Com-
putational Intelligence, 29(3):436–465.

Finn Årup Nielsen. 2011. A new anew: Evaluation
of a word list for sentiment analysis in microblogs.
In Workshop on’Making Sense of Microposts: Big
things come in small packages, pages 93–98.

Hamid Palangi, Li Deng, Yelong Shen, Jianfeng Gao,
Xiaodong He, Jianshu Chen, Xinying Song, and
Rabab Ward. 2016. Deep sentence embedding using
long short-term memory networks: Analysis and ap-
plication to information retrieval. IEEE/ACM Trans-
actions on Audio, Speech and Language Processing
(TASLP), 24(4):694–707.

Bo Pang, Lillian Lee, and Shivakumar Vaithyanathan.
2002. Thumbs up?: sentiment classification using
machine learning techniques. In Proceedings of the
ACL-02 conference on Empirical methods in natural
language processing-Volume 10, pages 79–86. As-
sociation for Computational Linguistics.

Richard Socher, Alex Perelygin, Jean Wu, Jason
Chuang, Christopher D Manning, Andrew Ng, and
Christopher Potts. 2013. Recursive deep models
for semantic compositionality over a sentiment tree-
bank. In Proceedings of the 2013 conference on
empirical methods in natural language processing,
pages 1631–1642.

Behrouz H Soleimani and Stan Matwin. 2018. Spectral
word embedding with negative sampling. In Pro-
ceedings of the Thirty-Second AAAI Conference on
Artificial Intelligence.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky,
Ilya Sutskever, and Ruslan Salakhutdinov. 2014.
Dropout: A simple way to prevent neural networks
from overfitting. The Journal of Machine Learning
Research, 15(1):1929–1958.

Duyu Tang, Furu Wei, Nan Yang, Ming Zhou, Ting
Liu, and Bing Qin. 2014. Learning sentiment-
specific word embedding for twitter sentiment clas-
sification. In Proceedings of the 52nd Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), volume 1, pages 1555–
1565.

Zhiyang Teng, Duy Tin Vo, and Yue Zhang. 2016.
Context-sensitive lexicon features for neural senti-
ment analysis. In Proceedings of the 2016 Con-
ference on Empirical Methods in Natural Language
Processing, pages 1629–1638.

311

Mike Thelwall, Kevan Buckley, and Georgios Pal-
toglou. 2012. Sentiment strength detection for the
social web. Journal of the Association for Informa-
tion Science and Technology, 63(1):163–173.

Theresa Wilson, Janyce Wiebe, and Paul Hoffmann.
2005. Recognizing contextual polarity in phrase-
level sentiment analysis. In Proceedings of the con-
ference on human language technology and empir-
ical methods in natural language processing, pages
347–354.

Xiaodan Zhu, Hongyu Guo, Saif Mohammad, and
Svetlana Kiritchenko. 2014. An empirical study on
the effect of negation words on sentiment. In Pro-
ceedings of the 52nd Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 1: Long
Papers), volume 1, pages 304–313.

312

Proceedings of the 12th International Workshop on Semantic Evaluation (SemEval-2018), pages 313–318
New Orleans, Louisiana, June 5–6, 2018. ©2018 Association for Computational Linguistics

Zewen at SemEval-2018 Task 1: An Ensemble Model for Affect Prediction
in Tweets

Zewen Chi, Heyan Huang, Jiangui Chen, Hao Wu, Ran Wei
School of Computer Science, Beijing Institute of Technology, Beijing, China

czwin32768@gmail.com, hhy63@bit.edu.cn, chenjiangui@outlook.com,
wuhao123@bit.edu.cn, weiranbit@163.com

Abstract

This paper presents a method for Affect in
Tweets, which is the task to automatically de-
termine the intensity of emotions and inten-
sity of sentiment of tweets. The term affect
refers to emotion-related categories such as
anger, fear, etc. Intensity of emotions need
to be quantified into a real valued score in [0,
1]. We propose an ensemble system including
four different deep learning methods which are
CNN, Bidirectional LSTM (BLSTM), LSTM-
CNN and a CNN-based Attention model (CA).
Our system gets an average Pearson correla-
tion score of 0.682 in the subtask EI-reg and
an average Pearson correlation score of 0.784
in subtask V-reg, which ranks 19th among 48
systems in EI-reg and 17th among 38 systems
in V-reg.

1 Introduction

Affect determination is a significant part of nature
language processing. Especially, affect in tweets
becomes a focus in recent years. Sentiment Anal-
ysis in Twitter, which is a task of SemEval, was
firstly proposed in 2013 and not replaced until
2018. In SemEval 2018, the task Affect in Tweets
(AIT) (Mohammad et al., 2018) was proposed and
the objective is to automatically determine the in-
tensity of emotions (E) and intensity of sentiment
(aka valence V) of tweets. In this paper, we focus
on two subtasks:

• EI-reg (emotion intensity regression) – Given
a tweet and an emotion E, determine the in-
tensity of E that best represents the mental
state of the tweeter – a real-valued score be-
tween 0 (least E) and 1 (most E)

• V-reg (sentiment intensity regression) –
Given a tweet, determine the intensity of sen-
timent or valence (V) that best represents the
mental state of the tweeter – a real-valued

score between 0 (most negative) and 1 (most
positive)

Before 2016, most systems use Support Vector
Machine (SVM), Naive Bayes, maximum entropy
and linear regression (Nakov et al., 2013; Rosen-
thal et al., 2014, 2015). In SemEval 2014, deep
learning methods started to appear and a team
using them won the second place. Since 2015,
more and more teams who were rank at the top
used deep learning methods and now deep learn-
ing methods including CNN and LSTM networks
become really popular (Nakov et al., 2016; Rosen-
thal et al., 2017).

The system described in this paper is an en-
semble of four different DNN methods including
CNN, Bidirectional LSTM (Bi-LSTM), LSTM-
CNN and a CNN-based Attention model (CA). In
these methods, words in tweets are firstly mapped
to word vectors. After intensity scores are calcu-
lated by these models, we use a logistic regression
and finally give the scores.

The rest of the paper is organized as follows.
Section 2 describes the four various methods and
the ensemble method used in our system. Section
3 and Section 4 give the implementation and train-
ing details of our system for subtask EI-reg and
V-reg. Section 5 states the results and discussion
in the evaluation period. Finally, Section 6 makes
a conclusion on this work.

2 System Description

2.1 CNN
Inspired by Kim’s work on sentence classification
(Kim, 2014), the architecture of the CNN model
used in our system is almost identical to his model.
As it is shown in Figure 1, tweets are first fed into
the embedding layer, which converts words into
word vectors. Then the tweet is mapped into a ma-
trix M of size n×d. In order to reduce the number

313

Figure 1: The architecture of our CNN model

of parameters in the neural network, we just use
the single channel non-static model, which sets
pre-trained word vectors in the embedding layer
and can be modified in the training period. In the
convolution layer, convolution operations are ap-
plied on the submatrixes of M. The convolution
operation here is defined as:

ck = fk(
∑

i

∑
j ωijx[i:i+h−1] + b)

where b ∈ R is a bias term and f is a non-
linear function such as ReLU (Jarrett et al., 2009),
which is used in our approach. Filters are applied
with different size of windows and in each win-
dow of size h, feature matrix c ∈ R(n−h+1)×m is
produced corresponding to the filters:

c = [c1, c2, ..., ck, ..., cm]

where m is the number of filters and ck ∈
Rn−h+1 represents the features extracted from a
word sequence. In the pooling layer, we apply a
max-over-time pooling operation (Collobert et al.,
2011) over feature matrix and take the maximum
in each column to preserve the most important fea-
tures. These maximums are concatenated and then
fed into a fully-connected network (L1, L2). L2
is followed by a single sigmoid neuron node to
generate the prediction of the affect on the inter-
val [0, 1].

2.2 Bidirectional LSTM

The LSTM architecture used in our system is
a kind of modern Recurrent Neural Networks
(RNN). Comparing to CNN, the way RNN work is
more similar to that how humans read sentences.
A word vector sequence x, which is converted
from a tweet, will be fed to the RNN in order.

ht = σ(Whxxt +Whhht−1 + bh)
yt = softmax(Wyhht + by)

At time t, the RNN takes the input from the cur-

Figure 2: The architecture of our bidirectional LSTM
model, where hfn and hbn represent the last hidden
state of the forward and backward LSTM respectively.

rent word xt and also from the previous hidden
state ht−1 to calculate the hidden state ht and the
output ŷt, which means ŷt at time t is in the in-
fluence of all previous input words x1, ..., xt−1.
However, this regular RNN suffers from the ex-
ploding and vanishing gradient problem when us-
ing the backpropagation algorithm (Hochreiter,
1998), which makes RNN hard to train. Therefore,
we use the Long short-term memory (LSTM) net-
work (Hochreiter and Schmidhuber, 1997) to over-
come this problem. Each ordinary node of hidden
layer in LSTMs is replaced by a memory cell and
the following equations describe the LSTM:

gt = φ(Wgxxt +Wghht−1 + bg)
it = σ(Wixxt +Wihht−1 + bi)
ft = σ(Wfxxt +Wfhht−1 + bf)
ot = σ(Woxxt +Wohht−1 + bo)

st = gt � it + st−1 � ft
ht = φ(st)� ot

The vector ht is the value of hidden layer of
LSTM at time t, gt is the input node, it is the input
gate, ft is the forget gate, ot is the output gate and
st is the internal state where � is pointwise mul-
tiplication. According to Zaremba and Sutskever
(2014), the function φ used here is the tanh func-
tion.

For every point in a given sequence, Graves et
al. (2005) shows that a bidirectional LSTM can
preserve more sequential information about all se-
quential points before and after it. As the Figure
2 shows, we concatenate the hidden states of two
separate LSTMs after they process the word se-
quence in opposite direction and get the concate-
nated state h

′ ∈ R2m, which is fed to fully con-
nected layers and finally give the result with a sin-
gle sigmoid neuron node.

2.3 LSTM-CNN

The architecture of LSTM-CNN is a combination
of previous two model. Instead of feeding the out-

314

Figure 3: The architecture of our LSTM-CNN model.

Figure 4: The architecture of CNN-based Attention
Model (CA)

put of LSTM to the fully connected layers, the out-
put of LSTM ht at each time t are regarded as the
input of CNN and Figure 3 shows the architecture.

2.4 A CNN-based Attention Model (CA)

Since attention mechanism has achieved signifi-
cant improvements in many NLP tasks, including
machine translation (Bahdanau et al., 2014), cap-
tion generation (Xu et al., 2015) and text sum-
marization (Rush et al., 2015), it becomes an
integral part of compelling sequence modeling
and transduction models in various tasks. Mo-
tivated by Du’s work on sentence classification
(Du et al., 2017), the architecture of our CNN-
based attention model resembles his model. We
first use a CNN-based network to model the at-
tention signal in sentences. The convolution op-
eration here is same as that described in Sec-
tion 2.1. The attention signal of original text
is represented by the output of convolutional fil-
ter. In order to reduce the noise, multiple filters
with same size of windows are applied. After
that, we get the corresponding attention similarity:

Figure 5: The architecture of the ensemble model

[c1, c2, ..., ck, ..., cm]. Then we obtain the attention
signal of each element which represents the impor-
tance of the corresponding word by averaging the
attention similarities along the filter-axis:

c = 1
m

∑m
i=1 ci

An RNN with LSTM units is used to encode
the sentence. According to the equation in Section
2.2, the hidden state ht ∈ Rd (where d is the di-
mension of the RNN) at time t is ht = φ(st)� ot.

So far, we have obtained attention signal ct and
the corresponding hidden state vector of RNN ht.
The representation of the whole sentence can be
computed by

s = 1
T

∑T−1
t=0 ctht

And then s ∈ Rd is fed into a fully-connected
network (L1, L2). L2 is followed by a single sig-
moid neuron node to generate the prediction of the
affect on the interval [0, 1]. The architecture of
this model is shown in Figure 4.

2.5 Ensemble Model

According to the results of SemEval-2017 task 4,
the use of ensembles stood out clearly. Therefore,
we use a mix of deep learning methods to make
our system obtain better predictive performance.
Inspired by the boosting algorithms, we use a lo-
gistic regression to improve the accuracy of these
four methods and the architecture is shown in Fig-
ure 5. In order to make the model simple, it only
takes the output of the four methods as input rather
than training data.

3 Implementation

We implemented our system with PyTorch (Paszke
et al., 2017) in Python 3.

Preprocessing: For making tweets string clean,
we apply a preprocessing procedure on the input
tweets which removes the abbreviations like ’s, ’ve
and make them lowercased.

Word Embeddings: We utilize pre-trained
300-dimensional word embeddings of Stanford’s

315

Methods L1 L2
CNN 300 150
BLSTM 30 Nil
LSTM-CNN 256 100
CA 150 75

Table 1: Fully connected layers hyper-parameters, the
numbers represent the size of outputs of liner layers.

Methods p CNN LSTM
CNN 0.2 [2, 3, 4], 256 Nil
BLSTM 0.5 Nil 300
LSTM-CNN 0.5 [3], 200 300
CA 0.5 [3], 50 150

Table 2: Network hyper-parameters for the filters of
CNN and hidden size of LSTM, and p is the dropout
rate. For example, [2, 3, 4], 256 means the filter height
is set to 2, 3 and 4, and the number of filters is set to
256 for different sizes of filters.

GloVe (Pennington et al., 2014) trained by Com-
mon Crawl.

Model Hyper-parameters: Table 1 and Table 2
show the hyper-parameters we use in our system.

For fully connected layers, no more than two
fully-connected layers are used in the four meth-
ods and all fully-connected layers are followed by
ReLU. Before the outputs of pooling layers and
LSTMs are fed to the fully connected layers, a
dropout is applied and the details are described in
Table 2.

4 Training

The dataset used in our system is provided by the
AIT task and no external datasets are used in train-
ing period. For the subtask EI-reg and subtask V-
reg, they are trained with the same model hyper-
parameters which are listed in Table 1 and Table
2. Also, the four methods use the same word em-
beddings, which is a pre-trained 300-dimensional
word vectors with common crawl by GloVe algo-
rithm. For different emotions, we train the mod-
els for 10 epochs respectively. The network pa-
rameters are learned by minimizing the Mean Ab-
solute Error (MAE) between the gold labels and
predictions and the four methods used in our sys-
tem are trained separately. We optimize the loss
function by back-propagating algorithm via Mini-
batch Gradient descent with batch size of 8 for the
4 deep learning models and full batch learning for
the ensemble model, as well as the Adam opti-

mization algorithm (Kingma and Ba, 2014) for all
models with initial leaning rate of 0.001 and 0.01
for the four deep learning models and the ensem-
ble model, respectively.

5 Result and Discussion

We compare the results of the four methods
used in our system, the ensemble system, the
SVM Unigrams Baseline provided from the AIT
task and the best-performing system – SeerNet in
Table 3. The metric for evaluating performance is
Pearson Correlation.

Its remarkable that, comparing to the individual
models, our ensemble model has an improvement
of at least 2% on EI-reg subtask and 1.1% on V-
reg subtask. However, it’s obvious that there is a
gap between our models and the best-performance
system. The rough preprocessing method of our
system is one of the reason for the low score. Be-
cause of some words in tweets are misspelled or
in a special format like ‘yaaaaay!’, some of the
information is lost in this process. So we added
an experiment on the V-reg task to study the ef-
fect of preprocessing method. We replace the text
preprocessing method with the ekphrasis1 for the
tokenization, word normalization, word segmen-
tation (for splitting hashtags) and spell correction
and the keep the other parameters unchanged. As
it is shown in Table 4, the four methods as well
as the ensemble model all get an improvement on
the results. Actually, some expressions like dates,
urls, hashtags and emoticons are converted into the
special tokens like <date> , <url>, <hashtag>
and <joy>, but these tokens are not in the dictio-
nary of pre-trained word vectors, which means the
information of these tokens is still wasted in the
embedding process.

There is much room for the improvement of our
method:

1. In our system, a single pre-trained word em-
bedding is used, which lack experimental ev-
idence. For future work, combining more
kinds of word embeddings should be taken
into consideration.

2. We adjust the hyper-parameters by doing
evaluation on dev dataset. For future work,
we can apply a more advanced strategy like
Cross Validation.

1github.com/cbaziotis/ekphrasis

316

Methods Average(EI-reg) Anger Fear Joy Sadness V-reg
CNN 0.668 0.673 0.684 0.670 0.644 0.773
BLSTM 0.625 0.619 0.645 0.630 0.604 0.731
LSTM-CNN 0.641 0.620 0.680 0.627 0.636 0.759
CA 0.640 0.606 0.662 0.670 0.624 0.761
Ensemble 0.682 0.673 0.700 0.690 0.665 0.784
SeerNet 0.799 0.827 0.779 0.792 0.798 0.873
Baseline 0.520 0.526 0.525 0.575 0.453 0.585

Table 3: Results on Subtask EI-reg and V-reg.

Methods Rough method ekphrasis
CNN 0.773 0.788
BLSTM 0.731 0.733
LSTM-CNN 0.759 0.767
CA 0.761 0.773
Ensemble 0.784 0.793

Table 4: Results of different text preprocessing
method on V-reg task when the other parameters are
kept unchanged.

3. For the input features, we only use the word
vectors. We are supposed to experiment with
more features like lexicons.

4. In our system, we just use a simple logistic
regression but achieve an impressive result on
the two subtasks. There is an interesting idea
that we can do more work on finding a better
ensemble model.

6 Conclusion

In this paper, we propose a model on the sub-task
EI-reg and V-reg of SemEval-2018 Task 1: Af-
fect on Tweets. The submitted system is an en-
semble model based on CNN, Bidirectional LSTM
(BLSTM), LSTM-CNN and a CNN-based Atten-
tion model (CA). All methods are described in de-
tail to make our work replicable.

For future work, it would be significant to make
an improvement on preprocessing of tweets, doing
more experiment on word embeddings and feature
selection, model validation and ensemble method.

References
Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-

gio. 2014. Neural machine translation by jointly
learning to align and translate. arXiv preprint
arXiv:1409.0473.

Christos Baziotis, Nikos Pelekis, and Christos Doulk-
eridis. 2017. Datastories at semeval-2017 task
4: Deep lstm with attention for message-level and
topic-based sentiment analysis. In Proceedings of
the 11th International Workshop on Semantic Eval-
uation (SemEval-2017), pages 747–754, Vancouver,
Canada. Association for Computational Linguistics.

Mathieu Cliche. 2017. Bb twtr at semeval-2017 task
4: Twitter sentiment analysis with cnns and lstms.
arXiv preprint arXiv:1704.06125.

Ronan Collobert, Jason Weston, Léon Bottou, Michael
Karlen, Koray Kavukcuoglu, and Pavel Kuksa.
2011. Natural language processing (almost) from
scratch. Journal of Machine Learning Research,
12(Aug):2493–2537.

Jiachen Du, Lin Gui, Ruifeng Xu, and Yulan He. 2017.
A convolutional attention model for text classifica-
tion. In National CCF Conference on Natural Lan-
guage Processing and Chinese Computing, pages
183–195. Springer.

Pranav Goel, Devang Kulshreshtha, Prayas Jain, and
Kaushal Kumar Shukla. 2017. Prayas at emoint
2017: An ensemble of deep neural architectures
for emotion intensity prediction in tweets. In Pro-
ceedings of the 8th Workshop on Computational Ap-
proaches to Subjectivity, Sentiment and Social Me-
dia Analysis, pages 58–65.

Alex Graves and Jürgen Schmidhuber. 2005. Frame-
wise phoneme classification with bidirectional lstm
and other neural network architectures. Neural Net-
works, 18(5-6):602–610.

Hussam Hamdan. 2017. Senti17 at semeval-2017
task 4: Ten convolutional neural network voters
for tweet polarity classification. arXiv preprint
arXiv:1705.02023.

Sepp Hochreiter. 1998. The vanishing gradient prob-
lem during learning recurrent neural nets and prob-
lem solutions. International Journal of Uncer-
tainty, Fuzziness and Knowledge-Based Systems,
6(02):107–116.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural computation,
9(8):1735–1780.

317

Kevin Jarrett, Koray Kavukcuoglu, Yann LeCun, et al.
2009. What is the best multi-stage architecture
for object recognition? In Computer Vision,
2009 IEEE 12th International Conference on, pages
2146–2153. IEEE.

Yoon Kim. 2014. Convolutional neural net-
works for sentence classification. arXiv preprint
arXiv:1408.5882.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Saif M. Mohammad, Felipe Bravo-Marquez, Mo-
hammad Salameh, and Svetlana Kiritchenko. 2018.
Semeval-2018 Task 1: Affect in tweets. In Proceed-
ings of International Workshop on Semantic Evalu-
ation (SemEval-2018), New Orleans, LA, USA.

Preslav Nakov, Zornitsa Kozareva, Alan Ritter, Sara
Rosenthal, and Veselin Stoyanov Theresa Wilson.
2013. Semeval-2013 task 2: Sentiment analysis in
twitter. volume 2.

Preslav Nakov, Alan Ritter, Sara Rosenthal, Fabrizio
Sebastiani, and Veselin Stoyanov. 2016. Semeval-
2016 task 4: Sentiment analysis in twitter. In Pro-
ceedings of the 10th International Workshop on Se-
mantic Evaluation (SemEval-2016), pages 1–18.

Adam Paszke, Sam Gross, Soumith Chintala, Gre-
gory Chanan, Edward Yang, Zachary DeVito, Zem-
ing Lin, Alban Desmaison, Luca Antiga, and Adam
Lerer. 2017. Automatic differentiation in pytorch.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. Glove: Global vectors for word
representation. In Proceedings of the 2014 confer-
ence on empirical methods in natural language pro-
cessing (EMNLP), pages 1532–1543.

Sara Rosenthal, Noura Farra, and Preslav Nakov.
2017. Semeval-2017 task 4: Sentiment analysis in
twitter. In Proceedings of the 11th International
Workshop on Semantic Evaluation (SemEval-2017),
pages 502–518.

Sara Rosenthal, Preslav Nakov, Svetlana Kiritchenko,
Saif Mohammad, Alan Ritter, and Veselin Stoyanov.
2015. Semeval-2015 task 10: Sentiment analysis
in twitter. In Proceedings of the 9th international
workshop on semantic evaluation (SemEval 2015),
pages 451–463.

Sara Rosenthal, Alan Ritter, Preslav Nakov, and
Veselin Stoyanov. 2014. Semeval-2014 task 9: Sen-
timent analysis in twitter. In Proceedings of the
8th International Workshop on Semantic Evaluation
(SemEval 2014), pages 73–80, Dublin, Ireland. As-
sociation for Computational Linguistics and Dublin
City University.

Mickael Rouvier. 2017. Lia at semeval-2017 task 4:
An ensemble of neural networks for sentiment clas-
sification. In Proceedings of the 11th International

Workshop on Semantic Evaluation (SemEval-2017),
pages 760–765.

Alexander M Rush, Sumit Chopra, and Jason We-
ston. 2015. A neural attention model for ab-
stractive sentence summarization. arXiv preprint
arXiv:1509.00685.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014.
Sequence to sequence learning with neural net-
works. In Advances in neural information process-
ing systems, pages 3104–3112.

Kelvin Xu, Jimmy Ba, Ryan Kiros, Kyunghyun Cho,
Aaron Courville, Ruslan Salakhudinov, Rich Zemel,
and Yoshua Bengio. 2015. Show, attend and tell:
Neural image caption generation with visual at-
tention. In International Conference on Machine
Learning, pages 2048–2057.

Wojciech Zaremba, Ilya Sutskever, and Oriol Vinyals.
2014. Recurrent neural network regularization.
arXiv preprint arXiv:1409.2329.

318

Proceedings of the 12th International Workshop on Semantic Evaluation (SemEval-2018), pages 319–323
New Orleans, Louisiana, June 5–6, 2018. ©2018 Association for Computational Linguistics

Amrita student at SemEval-2018 Task 1: Distributed Representation of
Social Media Text for Affects in Tweets

Nidhin A Unnithan, Shalini K., Barathi Ganesh H. B., M. Anand Kumar, K. P. Soman
Center for Computational Engineering and Networking (CEN)

Amrita School of Engineering, Coimbatore
Amrita Vishwa Vidyapeetham, India

nidhinkittu5470@gmail.com, shalinikholla@gmail.com,
bharathiganesh.hb@gmail.com, m anandkumar@cb.amrita.edu,

kp soman@amrita.edu

Abstract

In this paper we did an analysis of ”Affects
in Tweets” which was one of the task con-
ducted by SemEval 2018. Task was to build a
model which is able to do regression and clas-
sification of different emotions from the given
tweets data set. We developed a base model
for all the subtasks using distributed represen-
tation (Doc2Vec) and applied machine learn-
ing techniques for classification and regres-
sion. Distributed representation is an unsu-
pervised algorithm which is capable of learn-
ing fixed length feature representation from
variable length texts. Machine learning tech-
niques used for regression is ’Linear Regres-
sion’ while ’Random Forest Tree’ is used for
classification purpose. Empirical results ob-
tained for all the subtasks by our model are
shown in this paper.

1 Introduction

Most basic form of communication between hu-
mans is through language. Thus it can act as a
medium of how we are feeling at any particular
instance. For example, if we are angry at someone
rather than just hitting him first we would express
our feeling through our words. Thus from a con-
version we can make out the different emotions a
person is going through at that time. Apart from
this social media texts can be used for determining
the class of a person as described in (Ganesh H. B.
et al., 2016b). In this work we are doing 2 ordi-
nal classification, 1 classification and 2 regression
of different emotions that people exhibits through
tweets obtained from twitter (Mohammad and Kir-
itchenko, 2018; Bravo-Marquez et al., 2014; Mo-
hammad et al., 2013) for three different languages
namely Arabic, English and Spanish. The data set
given has tweets from all the three languages for
each subtask (Mohammad et al., 2018; Moham-
mad and Kiritchenko, 2018). There is a total of

five subtask an emotion intensity regression task,
an emotion intensity ordinal classification task, a
sentiment intensity regression task, a sentiment
analysis ordinal classification task and an emotion
classification task.

We used distributed representation (Le and
Mikolov, 2014; Ganesh H. B. et al., 2016a) to
create feature vector which can be feed as in-
put to machine learning algorithms for classifica-
tion and regression. Bag-of-words is one of the
most common method used to create fixed length
feature vectors but the ordering and semantics of
the words are ignored in this method. By us-
ing Doc2Vec, an unsupervised learning algorithm,
we can create fixed length features from variable
length data. Thus by using Doc2Vec we can pre-
serve the ordering as well as the semantics of data.
Another method for word representation is distri-
butional representation (Ganesh H. B. et al., 2018)
which is an extension of co-occurrence based rep-
resentation and have the same disadvantages as co-
occurrence based methods.

Once the feature vector is created it is pushed
into machine learning algorithm for classification
and regression. We have used Random Forest Tree
for classification which is an ensemble learning
method that creates a number of decision trees dur-
ing training and gives an output class which ap-
pears most often. For regression we used Linear
Regression which tries to fit a line between the ac-
tual and predicted values by minimizing the error
sum of squares between them. The final model
is obtained after doing hyper parameter tuning for
Doc2Vec size and n estimator, max depth for
Random Forest Tree which are fixed through a grid
search method before pushing to machine learning
algorithms.

Section 2 of this paper gives a brief introduction
to corpus. Section 3 describes the theory of differ-
ent methods used. Section 4 describes the method-

319

ology used. Section 5 covers result and discussion.
Section 6 talks about our conclusion.

2 Corpus

The given corpus consists of tweets from three dif-
ferent languages for all five subtasks. The lan-
guages are English, Arabic and Spanish. Each
language have training, development and test data
set (Mohammad et al., 2018; Mohammad and Kir-
itchenko, 2018).

While building the model training data set was
splitted into 80% for training and 20% for test-
ing. Training and development data set consist
of tweet id, tweet, affect dimension and intensity
score while test data set has entries as none at in-
tensity scores.

3 Methodology

3.1 Distributed Representation

Doc2Vec is an unsupervised learning algorithm
which gives a fixed length vector representation
of a variable length text. The text can be a sen-
tence, paragraph or document. It is an extension
of Word2Vec in which a vector representation of
words are given inorder to predict a word given the
vector representation of context words are given.
Word2Vec is inspired because it can be used to
predict the next word in a sentence given the con-
text word vectors thus capturing the semantics of
the sentence even though the word vectors are ran-
domly initialized. Instead of word vector we will
use document vector to predict next word given
context from a document in Doc2Vec. In doc-
ument vector every document is represented by
a column of unique vector called document ma-
trix and words are represented by unique vectors
called word matrix. Next word in a context is pre-
dicted by the concatenation or averaging of docu-
ment and word vectors.

In Doc2Vec the document vector is same for all
context generated from same document but differs
across documents. However word vector matrix is
same for different document, i.e., the vector repre-
sentation of same word across different document
have the same vector representation.

3.2 Linear Regression

For regression tasks Linear Regression was used.
Linear Regression tries to fit a line between the ac-
tual and predicted values by minimizing the error

sum of squares between them. In a Linear Regres-
sion problem there will be one dependent variable
and an independent variable. A regression tries
to verify two objective, firstly whether a satisfac-
tory prediction can be made by a set of predictor
variables and secondly which all variables play an
important role in predicting the outcome variable.
The estimated regression outputs are used to ex-
plain the connection between independent and de-
pendent variables.

3.3 Random Forest Tree
For classification problem we used Random Forest
Tree. It is an ensemble learning method that cre-
ates a number of decision trees during training and
gives an output class which appears most often.
Advantage of Random Forest Tree is its ability to
control over-fitting by taking an average of all the
decision trees for prediction. If more than one al-
gorithm of same or different kind are combined to
classify an object such an algorithm is called en-
semble algorithm. For example it may run a pre-
diction on SVM, Naive Bayes and Decision Tree
before taking the vote for classification of test ob-
ject.

3.4 Experiment
The corpus was obtained from SemEval2018 web-
site. Once the data was obtained the first pro-
cess was to extract tweets from the data for all the
languages. Once every thing was extracted from
the document next step was to build a Doc2Vec
model from the extracted tweets which will pro-
duce feature vectors which can be used as inputs
for our machine learning techniques for regression
and classification tasks. Gensim library was used
to build the Doc2Vec model. Sklearn library was
used for Random Forest Tree and Linear Regres-
sion.

Before fixing the Doc2Vec base model we did
hyper parameter tuning for all subtasks in all lan-
guages. The parameters tuned for regression tasks
was Doc2Vec size and for classification were
Doc2Vec size and n estimator, max depth for
Random Forest Tree. size of Doc2Vec means the
dimensionality of the feature vector, i.e., in which
dimension each document in a corpus is repre-
sented as. n estimator of Random Forest Tree
means the number of decision trees used in the
forest, i.e., before taking vote of a class how many
different algorithms are to be run. max depth of
Random Forest Tree gives the maximum depth of

320

Tasks size n estimator max depth
Task 1 140 - -
Task 2 250 40 17
Task 3 280 - -
Task 4 820 30 12
Task 5 150 10 8

Table 1: Tuned parameters for English.

the tree in algorithm. We did a grid search method
to find out the optimum parameter values for each
subtasks.

For emotion intensity regression task (Task 1)
and sentiment intensity regression task (Task 3)
Doc2Vec size was varied from 10 to 1000 with
an increment of 10 in each iteration. For emotion
intensity ordinal classification task (Task 2), sen-
timent analysis ordinal classification task (Task 4)
and emotion classification task (Task 5) Doc2Vec
size was varied from 10 to 1000 with an incre-
ment of 10 in each iteration, n estimator of Ran-
dom Forest Tree was varied from 10 to 150 with an
increment of 10 in each iteration and max depth
of Random Forest Tree was varied from 2 to 20
with an increment of 1 in each iteration. Variables
used to estimate the ideal parameters for regres-
sion tasks were mean square error (MSE) and vari-
ance of Linear Regression algorithm. We selected
those parameters that gave the least MSE value
ans large variance value. Variables used to esti-
mate the ideal parameters for classification tasks
was accuracy of the Random Forest Tree algo-
rithm. Once the parameters were fixed we build
the model for each subtask and used it to pre-
dict the values for test data. Development data
was used for hyper-parameter tuning while train-
ing data was used for building Doc2Vec model.

The ideal parameters obtained after hyper-
parameter tuning for each subtask for English is
consolidated in Table 1, Arabic is consolidated in
Table 2 and Spanish is consolidated in Table 3.
The control parameter values obtained for the op-
timum parameters which in turn are used to build
the model is consolidated in Table 4 for task 1 Ta-
ble 5 for task 3 Table 6 for task 2 Table 7 for task
4 Table 8 for task 5

4 Results and Discussion

The output of test data obtained by our model
was compared with golden label available with
SemEval2018 and the following results were ob-

Tasks size n estimator max depth
Task 1 20 - -
Task 2 50 90 19
Task 3 110 - -
Task 4 90 140 17
Task 5 80 1 18

Table 2: Tuned parameters for Arabic.

Tasks size n estimator max depth
Task 1 190 - -
Task 2 160 40 18
Task 3 120 - -
Task 4 320 140 16
Task 5 180 10 11

Table 3: Tuned parameters for Spanish.

Variable English Arabic Spanish
MSE 0.03 0.03 0.04

Variance 0.03 0.03 0.08

Table 4: Control variable value for optimum parame-
ters for Task 1.

Variable English Arabic Spanish
Accuracy 0.4883 0.4039 0.4047

Table 5: Control variable value for optimum parame-
ters for Task 2.

Variable English Arabic Spanish
MSE 0.03 0.04 0.05

Variance 0.06 0.06 0.02

Table 6: Control variable value for optimum parame-
ters for Task 3.

Variable English Arabic Spanish
Accuracy 0.28 0.27 0.28

Table 7: Control variable value for optimum parame-
ters for Task 4.

Variable English Arabic Spanish
Accuracy 0.9525 0.9550 0.9401

Table 8: Control variable value for optimum parame-
ters for Task 5.

tained. The metric used for evaluation is macro
average F-Score and Pearson correlation coeffi-
cient. In macro average method precision and re-

321

call on different sets of system is averaged. The
harmonic mean of precision and recall will give
us the F-Score. Such an obtained value is called
macro F-Score. In Pearson correlation coefficient
the linear correlation between two variables X1
and X2 is calculated. For emotion intensity regres-
sion task, emotion intensity ordinal classification
task, sentiment intensity regression task and sen-
timent analysis ordinal classification task Pearson
correlation coefficient is used as metric while for
emotion classification task macro average F-Score
is used as metric.

For emotion intensity regression task on English
tweets our model obtained an accuracy of 20.0%
when compared with the golden label under Pear-
son correlation coefficient. When compared for
individual emotions we got an accuracy of 21.6%,
21.0%, 11.2%, 26.2% for anger, fear, joy and sad-
ness respectively. On Arabic tweets our model ob-
tained an accuracy of 22.1% when compared with
the golden label under Pearson correlation coeffi-
cient. When compared for individual emotions we
got an accuracy of -0.3%, 17.9%, 31.5%, 39.3%
for anger, fear, joy and sadness respectively. On
Spanish tweets our model obtained an accuracy of
21.8% when compared with the golden label un-
der Pearson correlation coefficient. When com-
pared for individual emotions we got an accuracy
of 24.1%, 21.4%, 14.2%, 27.3% for anger, fear,
joy and sadness respectively.

For emotion intensity ordinal classification task
on English tweets our model obtained an accuracy
of 3.7% when compared with the golden label un-
der Pearson correlation coefficient. When com-
pared for individual emotions we got an accuracy
of 2.6%, -0.2%, 6.7%, 5.5% for anger, fear, joy
and sadness respectively. On Arabic tweets our
model obtained an accuracy of 13.8% when com-
pared with the golden label under Pearson corre-
lation coefficient. When compared for individ-
ual emotions we got an accuracy of -6.2%, 5.0%,
28.7%, 27.5% for anger, fear, joy and sadness
respectively. On Spanish tweets our model ob-
tained an accuracy of 2.5% when compared with
the golden label under Pearson correlation coeffi-
cient. When compared for individual emotions we
got an accuracy of 2.0%, -5.2%, 6.3%, 6.8% for
anger, fear, joy and sadness respectively.

For sentiment intensity regression task on En-
glish tweets our model obtained an accuracy of
28.1% when compared with the golden label under

Pearson correlation coefficient. On Arabic tweets
our model obtained an accuracy of 47.0% when
compared with the golden label under Pearson cor-
relation coefficient. On Spanish tweets our model
obtained an accuracy of 19.3% when compared
with the golden label under Pearson correlation
coefficient.

For sentiment analysis ordinal classification
task on English tweets our model obtained an ac-
curacy of 12.5% when compared with the golden
label under Pearson correlation coefficient. On
Arabic tweets our model obtained an accuracy of
38.3% when compared with the golden label un-
der Pearson correlation coefficient. On Spanish
tweets our model obtained an accuracy of 12.7%
when compared with the golden label under Pear-
son correlation coefficient.

For emotion classification task on English
tweets our model obtained an accuracy of 14.8%
when compared with the golden label under macro
average F-Score. On Arabic tweets our model ob-
tained an accuracy of 25.0% when compared with
the golden label under macro average F-Score. On
Spanish tweets our model obtained an accuracy of
6.0% when compared with the golden label under
macro average F-Score.

5 Conclusion

The task was to analyze the ’Affects of Tweets’
from tweets comprising of different emotions from
three different languages. We used distributed rep-
resentation (Doc2Vec) for creating feature vector
which was passed as the input to machine learning
algorithm such as Linear Regression for regres-
sion tasks and Random Forest Tree for classifica-
tion tasks. The model was fixed after doing hyper-
parameter tuning and the results obtained using the
model on test data was evaluated using golden la-
bel by SemEval2018. The results obtained with
the model after comparing with the golden label
using some evaluation metric have been discussed
in the paper.

References
Felipe Bravo-Marquez, Marcelo Mendoza, and Bar-

bara Poblete. 2014. Meta-level sentiment models for
big social data analysis. Knowledge-Based Systems,
69:86–99.

Barathi Ganesh H. B., M. Anand Kumar, and K. P. So-
man. 2016a. Amrita CEN at SemEval-2016 Task 1:
Semantic relation from word embeddings in higher

322

dimension. In Proceedings of the 10th International
Workshop on Semantic Evaluation (SemEval-2016),
pages 706–711.

Barathi Ganesh H. B., M. Anand Kumar, and K. P. So-
man. 2016b. Statistical semantics in context space
: Amrita CEN@Author Profiling. In CEUR Work-
shop Proceedings, 1609, pages 881–889.

Barathi Ganesh H. B., M. Anand Kumar, and K. P.
Soman. 2018. From vector space models to vec-
tor space models of semantics. In Lecture Notes
in Computer Science (including subseries Lecture
Notes in Artificial Intelligence and Lecture Notes
in Bioinformatics), 10478 LNCS, pages 50–60.
Springer.

Quoc Le and Tomas Mikolov. 2014. Distributed rep-
resentations of sentences and documents. In Inter-
national Conference on Machine Learning, pages
1188–1196.

Saif M. Mohammad, Felipe Bravo-Marquez, Mo-
hammad Salameh, and Svetlana Kiritchenko. 2018.
SemEval-2018 Task 1: Affect in tweets. In Proceed-
ings of International Workshop on Semantic Evalu-
ation (SemEval-2018), New Orleans, LA, USA.

Saif M. Mohammad and Svetlana Kiritchenko. 2018.
Understanding emotions: A dataset of tweets to
study interactions between affect categories. In Pro-
ceedings of the 11th Edition of the Language Re-
sources and Evaluation Conference (LREC-2018),
Miyazaki, Japan.

Saif M Mohammad, Svetlana Kiritchenko, and Xiao-
dan Zhu. 2013. Nrc-canada: Building the state-
of-the-art in sentiment analysis of tweets. arXiv
preprint arXiv:1308.6242.

323

Proceedings of the 12th International Workshop on Semantic Evaluation (SemEval-2018), pages 324–328
New Orleans, Louisiana, June 5–6, 2018. ©2018 Association for Computational Linguistics

SSN MLRG1 at SemEval-2018 Task 1: Emotion and Sentiment Intensity
Detection Using Rule Based Feature Selection

Angel Deborah S, Rajalakshmi S, S Milton Rajendram, Mirnalinee T T
SSN College of Engineering

Chennai 603 110, Tamil Nadu, India
angeldeborahs@ssn.edu.in, rajalakshmis@ssn.edu.in,

miltonrs@ssn.edu.in, mirnalineett@ssn.edu.in

Abstract

The system developed by the SSN MLRG1
team for Semeval-2018 task 1 on affect in
tweets uses rule based feature selection and
one-hot encoding to generate the input fea-
ture vector. Multilayer Perceptron was used to
build the model for emotion intensity ordinal
classification, sentiment analysis ordinal clas-
sification and emotion classfication subtasks.
Support Vector Regression was used to build
the model for emotion intensity regression and
sentiment intensity regression subtasks.

1 Introduction

Twitter is a huge microblogging service with more
than 500 million tweets per day from differ-
ent locations of the world and in different lan-
guages (Saif and Felipe, 2017). Tweets are of-
ten used to convey ones emotions, opinions to-
wards products, and stance over issues (Nabil
et al., 2016). Automatically detecting emotion
intensities in tweets has several applications, in-
cluding commerce (Jansen et al., 2009), crisis
management (Verma et al., 2011), tracking brand
and product perception, tracking support for is-
sues and policies, and tracking public health and
well-being (Chew and Eysenbach, 2010). The
task is challenging because of the informal writing
style, the semantic diversity of content as well as
the “unconventional” grammar. These challenges
in building a classification model and regression
model can be handled by using proper approaches
to feature generation and machine learning.

There are several machine learning techniques
that can be used for sentiment intensity predic-
tion or emotion intensity prediction. Some of
the approaches inlclude Artificial Neural Network
(ANN) (Sudipta et al., 2017), Random Forests,
Support Vector Machine (SVM), Naive Bayes
(NB) (Tabari et al., 2017), Multi-Kernel Gaussian

Process (MKGP) (Angel Deborah et al., 2017a,b),
AdaBoost Regressor (ABR), Bagging Regres-
sor (BR)(Jiang et al., 2017) and Deep Learning
(DL)(Pivovarova et al., 2017).

2 Multi-Layer Perceptron

A Multilayer Perceptron (MLP) as shown in Fig-
ure 1 is a feed-forward Neural Network model that
maps input data sets onto appropriate output sets.
An MLP has many layers of nodes in a directed
graph, with each layer connected to the next layer.
A neuron is a processing element with activation

Input1

Input2

Input3

Output1

Output2

Figure 1: Multi-Layer Perceptron.

function (in the input layer the activation func-
tion is not applied). The output layer has as many
nuerons as the number of class labels in the prob-
lem. Each connection has a weight assigned to
it. Output of each neuron is calculated by apply-
ing the activation function on the weighted sum
of the inputs. Linear, sigmoid, tanh, elu, soft-
plus, softmax and relu are some of the commonly
used activation functions. The supervised learning
problem of the MLP can be solved with the back-
propagation algorithm (Haykin, 1998). The algo-
rithm consists of two steps. In the forward pass,
the predicted outputs are calculated for the given
inputs . In the backward pass, partial derivatives

324

of the cost function with respect to the weight pa-
rameters are propagated back through the network.
The chain rule of differentiation gives very similar
computational rules for the backward pass as the
ones for the forward pass. The network weights
can then be adapted using any gradient-based op-
timisation algorithm.

MLP was used in implementing for the follow-
ing subtasks:

1. EI-oc (an emotion intensity ordinal classifi-
cation task): Given a tweet and an emotion
E, classify the tweet into one of four ordinal
intensity classes of E that best represents the
mental state of the tweeter.

2. V-oc (a sentiment analysis, ordinal classifi-
cation task): Given a tweet, classify it into
one of seven ordinal classes, corresponding
to various levels of positive and negative sen-
timent intensity, that best represents the men-
tal state of the tweeter.

3. E-c (an emotion classification task): Given a
tweet, classify it as neutral or no emotion or
as one, or more, of eleven given emotions that
best represent the mental state of the tweeter.

3 Support Vector Regression

Support Vector Machines (SVM) are character-
ized by usage of kernels, absence of local min-
ima, sparseness of the solution and capacity con-
trol obtained by acting on the margin or on num-
ber of support vectors, etc. As in classification,
support vector regression (SVR) is characterized
by the use of kernels, sparse solution, and Vapnik-
Chervonenkis control of the margin and the num-
ber of support vectors. Although less popular
than SVM, SVR has been proven to be an effec-
tive tool in real-value function estimation (Awad
and Khanna, 2015). The idea of SVR is based
on the computation of a linear regression func-
tion in a high dimensional feature space where the
input data are mapped via a non-linear function.
It contains all the main features that characterize
maximum margin algorithm: a non-linear func-
tion is learned by a linear learning machine map-
ping into high dimensional kernel-induced feature
space. The capacity of the system is controlled by
parameters that do not depend on the dimensional-
ity of feature space. Instead of minimizing the ob-
served training error, Support Vector Regression
(SVR) attempts to minimize the generalization er-
ror bound so as to achieve generalization perfor-

mance.
SVR was used in implementing for the follow-

ing subtasks:
1. EI-reg (an emotion intensity regression

task): Given a tweet and an emotion E, de-
termine the intensity of E that best represents
the mental state of the tweeter, a real-valued
score between 0 (least E) and 1 (most E).

2. V-reg (a sentiment intensity regression task):
Given a tweet, determine the intensity of sen-
timent or valence (V) that best represents
the mental state of the tweeter, a real-valued
score between 0 (most negative) and 1 (most
positive).

4 System Overview

The system consists of the following modules:
data extraction, preprocessing, rule based feature
selection, feature vector generation and building
the model – Multilayer Perceptron model for clasi-
fication subtasks and Support Vector Regression
for regression subtasks. The algorithm for prepro-
cessing of the data is outlined below:
Algorithm: Data extraction and Preprocessing.
Input: Input dataset.
Output: Tokenized words and their parts of
speech.
begin

1. Separate labels and sentences
2. Perform tokenization using

word tokenize, the function for tok-
enizing in the NLTK toolkit.

3. Perform Parts of Speech tagging using
pos tag function from the NLTK toolkit.

4. Return the tokenized words and their parts of
speech as inputs to rule based feature selec-
tion.

end
The algorithm for rule based feature selection

and feature vector generation is outlined below:
Algorithm: Rule based feature selection and fea-
ture vector generation.
Input: Tokenized words and their parts of speech.
Output: Feature vector.
begin
For each of the tokenized words, falling under one
of the categories listed in Table 1, do the follow-
ing steps.

1. Lemmatize the word using WordNet
Lemmatizer from the NLTK toolkit.

2. Insert the lemmatized word into the dictio-

325

nary.
3. Represent each sentence as a feature vector

using one-hot encoding by looking up the
dictionary.

4. Return the feature vector generated as the in-
put to build the model.

end

Abbreviation Parts of Speech
VB verb, base form
VBZ verb, 3rd person sing. present
VBP verb, non 3rd sing. present
VBD verb, past tense
VBG verb, gerund/present participle
VBN verb, past participle
JJ adjective
JJR adjective, comparative
JJS adjective, superlative
RB adverb, very
RBR adverb, comparative
RBS adverb, superlative
NN noun, singular
NNP proper noun, singular
NNS noun, plural
NNPS proper noun, plural

Table 1: Parts of speech categories.

The Multi-Layer Perceptron (MLP) model is
built by the following algorithm.
Algorithm: Build a Multi-Layer Perceptron
model.
Input: Feature vectors and actual output labels.
Output: Learned MLP model.
begin

1. Represent feature vectors as XTrain and ac-
tual output label as YTrain.

2. Build the initial classification model with two
hidden layers and the output layer, using
relu and softmax activation functions, re-
spectively.

3. Optimize the classification model using
nadam optimizer of keras package

4. Return the learned model.
end

The Support Vector Regression(SVR) model is
bulit with the following algorithm.
Algorithm: Build a SVR model.
Input: Feature vectors and actual output labels.
Output: Learned SVR model.
begin

1. Represent feature vectors as XTrain and ac-

tual output label as YTrain.
2. Build the initial classification model using

appropriate kernel function.
3. Optimize the model parameters using a

heuristic approach.
4. Return the learned model.

end

5 Performance Evaluation

We evaluated the system only for English lan-
guage. The results obtained using MLP and SVR
for the subtasks are tabulated in Table 2 to Table 6.
From Table 2 which shows the Pearson scores ob-
tained for SVR, we can infer that SVR predicts joy
better compared to anger, fear and sadness. Simi-
larly, from Table 3 which shows the Pearson scores
obtained for MLP, we observe that MLP model
predicts joy better compared to anger, fear and
sadness. The Pearson score for valence intensity
regression and sentiment intensity ordinal classifi-
cation are given in Table 4 and 5 respectively.

anger fear joy sadness macro
averaged

0.490 0.490 0.502 0.461 0.486

Table 2: Pearson score for EI-reg (emotion intensity
regression) using SVR.

anger fear joy sadness macro
averaged

0.365 0.363 0.390 0.383 0.375

Table 3: Pearson score for EI-oc (emotion intensity or-
dinal classification) using MLP.

Pearson (all instances) Pearson (gold in 0.5-1)
0.582 0.424

Table 4: Pearson score for V-reg (valence intensity re-
gression) using SVR.

Pearson (all classes) Pearson (some-emotion)
0.427 0.479

Table 5: Pearson score for V-oc (Sentiment intensity
ordinal classification) using MLP.

The Pearson score r is calculated using the
Equation 1.

r =

∑n
i=1(Yi − Ȳ)(yi − ȳ)√∑n

i=1(Yi − Ȳ)2
√∑n

i=1(yi − ȳ)2
(1)

326

Accuracy Micro-avg F1 Macro-avg F1
0.468 0.595 0.476

Table 6: Pearson score for E-c (multi-label emotion
class) using MLP.

where Y is actual output and y is predicted out-
put. The accuracy, micro-averaged F score and
macro-avearged F score for emotion classifica-
tion are given in Table 6. The metrics are defined
from Equations 2 to 5.

Accuracy =
1

|T |
∑

t∈T

|Gt ∩ Pt|
|Gt ∪ Pt|

(2)

where Gt is the set of the gold labels for tweet t,
Pt is the set of the predicted labels for tweet t, and
T is the set of tweets.

Micro-avearge F =
2×micro-P ×micro-R

micro-P ×micro-R
(3)

where micro-P is micro-averaged precision and
micro-R is micro-averaged recall

F =
2× Pe ×Re

Pe ×Re
(4)

Macro-average F =
1

|E|
∑

e∈E
Fe (5)

where Pe is precision, Re is recall and E is the
given set of eleven emotions.

6 Conclusion

We have presented the results of using MultiLayer
Perceptron for emotion intensity ordinal classi-
fication, sentiment analysis ordinal classification
and emotion classification. We built a basic MLP,
which has an input layer, two hidden layers with
128 and 64 neurons, and an output layer with as
many neurons as the number of class labels. We
have used nadam optimizer with learning rate as
0.01. We have also presented the results of using
Support Vector Regression for emotion intenisty
and sentiment intensity regression. It is observed
that both MLP and SVR predict joy more accu-
rately when compared to anger, fear and sadness.
We analyzed the feature vectors generated for var-
ious emotions. Feature vectors generated for joy
helps to achieve better results than for other emo-
tions. We used rule based feature selection and
one-hot encoding to generate input feature vectors
for buliding the models. The results obtained can

be enhanced by using different feature selection
approaches and incorporating sentiment lexicons.

References
S Angel Deborah, S Milton Rajendram, and T T Mir-

nalinee. 2017a. Ssn mlrg1 at semeval-2017 task
4: Sentiment analysis in twitter using multi-kernel
gaussian process classifier. In Proceedings the 11th
International Workshop on Semantic Evaluation
(SemEval-2017), pages 709–712. ACL,Vancouver,
Canada.

S Angel Deborah, S Milton Rajendram, and T T Mir-
nalinee. 2017b. Ssn mlrg1 at semeval-2017 task
5: Fine-grained sentiment analysis using multiple
kernel gaussian process regression model. In Pro-
ceedings the 11th International Workshop on Se-
mantic Evaluation (SemEval-2017), pages 823–826.
ACL,Vancouver, Canada.

M Awad and R Khanna. 2015. Support Vector Re-
gression. In: Efficient Learning Machines. Apress,
Berkeley, CA.

C. Chew and G. Eysenbach. 2010. Pandemics in the
age of twitter: content analysis of tweets during the
2009 h1n1 outbreak. PloS ONE, 5(11):1–13.

Simon Haykin. 1998. Neural Networks – A Compre-
hensive Foundation. Second Edition, Prentice-Hall,
Englewood Cliffs, NJ.

B. J. Jansen, K. Sobel M. Zhang, and A. Chowdury.
2009. Twitter power: Tweets as electronic word of
mouth. Journal of the American Society for Infor-
mation Science and Technology, 60(11):2169–2188.

Mengxiao Jiang, Man Lan1, and Yuanbin Wu. 2017.
Ecnu at semeval-2017 task 5: An ensemble of re-
gression algorithms with effective features for fine-
grained sentiment analysis in financial domain. In
Proceedings the 11th International Workshop on Se-
mantic Evaluation (SemEval-2017), pages 888–893.
ACL,Vancouver, Canada.

Mahmoud Nabil, Mohamed Aly, and Amir F. Atiya.
2016. Cufe at semeval-2016 task 4: A gated recur-
rent model for sentiment classification. In Proceed-
ings of SemEval-2016.ACL, Vancouver, Canada.,
pages 52–57.

Lidia Pivovarova, Llorenc Escoter, Arto Klami, and
Roman Yangarber. 2017. Hcs at semeval-2017 task
5: Sentiment detection in business news using con-
volutional neural networks. In Proceedings the 11th
International Workshop on Semantic Evaluation
(SemEval-2017), pages 842–846. ACL,Vancouver,
Canada.

M. Mohammad Saif and Bravo-Marquez Felipe. 2017.
Emotion intensities in tweets. In Proceedings of
sixth joint conference on lexical and computational
semantics (*Sem). Vancouver, Canada., pages 65–
77.

327

Kar Sudipta, Suraj Maharjan, and Thamar Solorio.
2017. Ritual-uh at semeval-2017 task 5: Sentiment
analysis on financial data using neural networks. In
Proceedings the 11th International Workshop on Se-
mantic Evaluation (SemEval-2017), pages 877–882.
ACL,Vancouver, Canada.

Narges Tabari, Armin Seyeditabari, and Wlodek
Zadrozny. 2017. Sentiheros at semeval-2017 task
5: An application of sentiment analysis on finan-
cial tweets. In Proceedings the 11th International
Workshop on Semantic Evaluation (SemEval-2017),
pages 857–860. ACL,Vancouver, Canada.

S. Verma, S. Vieweg, W. J. Corvey, L. Palen, J. H.
Martin, M. Palmer, A. Schram, and K. M. Ander-
son. 2011. Natural language processing to the res-
cue extracting situational awareness tweets during
mass emergency. In Proceedings of 5th Interna-
tional Conference on Web and Social Media.

328

Proceedings of the 12th International Workshop on Semantic Evaluation (SemEval-2018), pages 329–333
New Orleans, Louisiana, June 5–6, 2018. ©2018 Association for Computational Linguistics

CENNLP at SemEval-2018 Task 1: Constrained Vector Space Model in
Affects in Tweets

Naveen J R, Barathi Ganesh H. B., Anand Kumar M, Soman K P
Center for Computational Engineering and Networking (CEN)

Amrita School of Engineering, Coimbatore
Amrita Vishwa Vidyapeetham, India

cb.en.p2cen16011@cb.students.amrita.edu,
barathiganesh.hb@gmail.com, m anandkumar@cb.amrita.edu

Abstract
This paper discusses on task 1, ”Affect in
Tweets” sharedtask, conducted in SemEval-
2018. This task comprises of various sub-
tasks, which required participants to analyse
over different emotions and sentiments based
on the provided tweet data and also measure
the intensity of these emotions for subsequent
subtasks. Our approach is to come up with
a model for all the subtasks on count based
representation and use machine learning tech-
niques for regression and classification related
tasks. In this work, we use bag of words tech-
nique for supervised text classification and re-
gression. . Further, fine tuning on various pa-
rameters for the bag of word, representation
model we acquired better scores over various
other baseline models (Vinayan et al.) partici-
pated in the sharedtask.

1 Introduction

A huge portion of analysis in natural language pro-
cessing try to find better understand and process
various kinds of info in text. Day by day the devel-
opment of social websites, blogging and the con-
summation of technologies gives vast amount text
data on the internet, which opened a space to study
peoples feeling, reviews, and emotion from their
own written languages, called sentimental analy-
sis. Sentimental analysis has so many attractions
and has done so many research (Zhu et al., 2014)
in this area.

Sentiment analysis remains a sequence of tech-
niques, approaches, and tools about sensing and
mining subjective info (such as opinion and at-
titudes) from language (Bravo-Marquez et al.,
2014). Traditional approaches (Kiritchenko et al.,
2014; Mohammad et al., 2013) are finding out
the polarity of the positive, negative, neutral
classification problem (Mohammad, 2018; Bravo-
Marquez et al., 2015). Recent research in sen-
timental analysis (Mohammad and Kiritchenko,

2018) are done on the data-driven algorithm view
point. But at the same time combination of good
linguistic awareness data can increase the perfor-
mance and insights about the task. We used ma-
chine learning techniques to build the model. Lin-
ear regression, random forest methods are used re-
spectively for prediction and classification tasks.
A mathematical system or an algorithm need some
form of numeric representation to work with. The
naive way of representing a word in vector form
is one hot representation but it is a very ineffec-
tive way for representing a large corpus. In a
more effective way, we need some semantic sim-
ilarities (Soman et al., 2016) to nearby points,
thus creating the representation bring beneficial
info about the word actual meaning, called word
embedding models that are categorized based on
count and predictive word embedding models.
Both embedding models at least some way share
sematic meaning. We used here count based
word embedding methods for inputting the word.
In more specific, Feature representation is done
based on the term-document matrix (TDM) and
term frequency-inverse frequency (TFIDF) ma-
trix. The optimum value of n-gram range, depth
of classifier, mindf are obtained by hyper parame-
ter tuning.

2 Corpus

Dataset provided by shared task was sourced
from Twitter API by focusing emotion-correlated
words. The tweets were annotated separately for
4 emotions namely anger, joy, fear and sadness.
The data provided were annotated with best-worst
scaling technique (Kiritchenko and Mohammad,
2016) that gave better annotation consistency and
emotion intensity scores for tweets. There were 5
subtasks in task1 (Mohammad et al., 2018). For
each sub-tasks, separate training and testing data

329

sets are given for Spanish, English, and Arabic.
Subtasks 1 and 3 focused on emotion intensity and
sentiment intensity tasks respectively which were
categorized into regression tasks (EI-reg and V-reg
). In that emotion intensity and sentimental inten-
sity is a real-valued scale between 0 and 1, where
0 represents least and 1 represents the most in-
tensity of the tweeters from written tweets. Rest
of the subtasks EI-oc, V-oc, E-c were multi-class
classifications problems that are emotion intensity
ordinal classification, sentiment analysis ordinal
classification, emotion classification subtasks re-
spectively. For subtask 2(EI-oc) distinct training
and testing, dataset are provided for anger, fear,
joy, and sadness. Subtask 4(V-oc) gives 7 ordi-
nal classes, according to different levels of posi-
tive and negative valence state of the tweeter. Ta-
ble 1-2 shows various vocabulary sizes based on
the different count and n-gram parameters, for 3
different languages.

(min,n-gram) vocabulary size
English Arabic Spanish

(1,1) 23359 25144 15400
(2,1) 10677 9281 6022
(3,1) 6738 7067 4453
(1,2) 119782 83498 64306
(2,2) 41557 20143 18324
(3,2) 22669 16333 13405
(1,3) 250233 141916 126712
(2,3) 76696 29223 28581
(3,3) 40550 24810 21417
(1,4) 378870 196365 186213
(2,4) 109838 37527 36876
(3,4) 57970 32682 28418

Table 1: El-reg vocabulary size with variation of pa-
rameters.

3 Background

3.1 TDM
TD is the most basic method of representation of a
text used in NLP. In this technique, for every indi-
vidual document present in a corpus, we take the
raw count of the words present in that document
over all the unique words present in the entire cor-
pus as its representation (Larson, 2010). That is to
say, a vocabulary is created using all the word in
the entire corpus and for a single document repre-
sentation, the count of the words are incremented
in view of their occurrence only for that docu-

(min,n-gram) vocabulary size
english Arabic Spanish

(1,1) 9019 12581 15400
(2,1) 2830 2928 2204
(3,1) 1761 1536 1291
(1,2) 38795 37013 29299
(2,2) 7157 3764 4626
(3,2) 4099 1754 2320
(1,3) 78139 60856 53978
(2,3) 10915 3922 5262
(3,3) 5670 1782 2454
(1,4) 117210 83021 186213
(2,4) 13209 4011 36876
(3,4) 6955 1799 28418

Table 2: V-reg vocabulary size with variation of param-
eters.

ment. The drawback of this method is that this cre-
ates a very spares matrix where only a few of the
columns are accumulated with numbers whereas,
the rest of the columns are all zeros, thus bringing
to the term frequency method.

3.2 TF-IDF
One of the problems that occur due to the term
document representation is that, it takes a raw
count of all the words present in the document
where most frequently occurring words like con-
junction, preposition appear very often across
most of the articles, thus not adding any signifi-
cant importance to the individual article. On the
other hand, seldom occurring words, like proper
nouns give a more individual identification to the
article. Thus, coming to a method where we take
in the frequency of the words over the entire cor-
pus, this method is termed as term-frequency(tf).
In language processing technique a collection of
commonly appearing words with apparently less
significance to a document are called as ’stop
words’, these can be removed at pre-processing
level. Whereas, more often than not a list of stop
words is not a sophisticated approach to adjusting
term frequency for commonly used words.
Inverse document frequency (idf) is a technique
(Ramos et al., 2003) wherein, less weight age is
given to more commonly occurring words (not re-
stricted to only stop words) and vice-verse for sel-
domly used words across the entire corpus.

idft = ln

(
Ntot docs

ndocs containing t

)

330

Combining the two ideologies (tf-idf) brings, the
rarity of the term intended to measure how impor-
tant a word can be to the document in a collection
(or corpus) of documents. it can be considered as
a heuristic quantity. The term inverse document
frequency for any given term is defined as

tf−idft,d = tft,d ∗ idft

3.3 Linear Regression

Linear regression is a commonly used supervised
learning approach for prediction. The key goal is
to fit a best fit line between a dependent and inde-
pendent variable so as to minimize the error sum
of squares between the actual and predicted value
using the model. The model for linear regression
is usually fitted using least square approach, or
by minimizing the error sum of squares between
the actual and predicted value. In certain cases,
the model can also be framed by adding a regular-
ization term. The regularization term is added to
avoid overfitting (François and Miltsakaki, 2012).

3.4 Random Forest

Random forest, an ensemble decision tree based
classifier which averages various combination of
trees created on arbitrary samples from the data
set. A decision tree breakdown the data into mi-
nor sub-classes while instantaneously construe a
tree using decision and leaf nodes. The category
is embodied by leafs nodes. A decision node takes
two or extra divisions with choices or leafs. Ev-
ery tree in the RF is made on an arbitrary decent
subclass of features present (Liaw et al., 2002) on
the entire data. The RF algorithm medians trees to
generate a system with short variance and insignif-
icant trees are canceled out, left trees produce the
output.

4 Methodology

The model will be effective based on how it is
extracting meaningful information from raw text.
The system is created with the help of scikit-learn
library 1 which is a python based library very
much useful for classification, regression, clus-
tering, data preparation, dimensionality reduction
etc.

1http://scikit-learn.org/stable/

The training, development and test data set are
taken from SemEval18 website.

1. Importing training and cross-validation from
the given data set

2. Removes all the stop words from data that are
insignificant.

3. Create a bag of words model which is a sim-
ple numeric representation of piece of text
that is easy to classify. We just count the
frequency of each word in the piece of text
and created a dictionary of them which is
called tokenization process in NLP which is
then passed to countvectorize object in scikit
learn package to create a set of maximum fea-
tures. We use fit transform method to model
(Ganesh et al., 2016) the bag of words feature
vector which are stored in an array.

4. Same tools and methods are followed for cre-
ating TDM matrix as mentioned in step 3

5. We created a classifier or prediction with the
help of machine learning model. Here we
used random forest classifiers consisting of
one hundred trees. RF is a set of decision
trees graphs that model all possibility of cer-
tain outcomes.

lang Rep min df n-gram MSE Var
Sp TDM 1 3 0.04 0.19
Sp TFIDF 1 2 0.04 0.19
Ara TDM 1 3 0.03 0.04
Ara TFIDF 1 2 0.03 0.04
En TDM 1 3 0.04 -0.02
En TFIDF 1 3 0.03 0.09

Table 3: EI-reg cross validation results.

lang Rep min df n-gram
depth
of tree

acc

Sp TDM 1 3 18 41.74
Sp TFIDF 1 2 19 42.62
En TDM 1 8 18 46.51
En TFIDF 1 12 19 46.58
Ara TDM 3 6 18 35.09
Ara TFIDF 3 14 15 33.73

Table 4: EI-oc cross validation results.

Table 1-5 show the representation we adopted
for making our model in each sub-tasks. Same

331

lang Rep min df n-gram MSE Var
Sp TDM 1 2 0.03 0.33
Sp TFIDF 1 2 0.03 0.34
English TDM 1 3 0.04 0.25
En TFIDF 1 2 0.04 0.25
Ara TDM 1 2 0.03 0.22
Ara TFIDF 2 3 0.03 0.21

Table 5: V-reg cross validation results.

lang Rep min df n-gram depth acc
Sp TDM 3 9 17 30
SP TFIDF 2 10 13 31.4
En TDM 2 13 18 29.4
En TFIDF 1 9 17 29.4
Ara TDM 1 14 16 26
Ara TFIDF 2 9 15 25.36

Table 6: V-oc cross validation results.

model is created 3 different languages, Spanish,
English and Arabic. Both TDM and TFID fea-
ture matrix are tuned on the basis of accuracy and
Fscore values. Accuracy shown in bold letter are
used for making prediction and classification task
model.

5 Result

The group of tasks is particularly focusing on au-
tomatic detection of the intensity of emotion (EI-
reg) and sentiment (V-reg) of the tweeter. In this
task, they have presented with the problem of clas-
sifying multi-classed emotion of tweets, such as
EI-oc, V-oc, E-c . We have approached these tasks
with a count based representation model, where
every individual tweet is represented based on var-
ied vocabulary size, and how these will perform
for different category of subtasks over three differ-
ent language dataset namely English, Spanish and
Arabic. We base the model, considering in mind

lang Rep min df n-gram
depth
of tree

accur

Sp TDM 3 11 12 95.58
Sp TFIDF 1 9 17 95.58
En TDM 2 5 15 95.25
En TFIDF 2 7 15 95.25
Ara TDM 1 1 2 93.81
Ara TFIDF 2 10 10 94.41

Table 7: E-c cross validation results.

that an algorithm should not be narrowed down
to a certain problem. That is it should not be bi-
ased towards a particular problem overall, this in-
ference is made on the fact that all subtasks under
task1 are focused on understanding the effect of
tweets from the same corpora. As all the subtasks
under task1 follow a generic grid search models,
which are varied over min-df, n-gram parameters.
The El-reg task was tuned on mean square error
and varience for all 3 languages. El-reg gave com-
paratively better accuracy in TF-IDF matrix than
TDM matrix.so we used TF-IDF for creating fea-
ture matrix. This regression task gave macroavg
between 32-44 percentage. English tweets gave
least macro-avg value (32) and Spanish data gave
high macro-avg value, among them angry got un-
wavering values in 3 languages.

Pearson (all instances)
macro
-avg

anger fear joy sadness

english 0.328 0.315 0.415 0.178 0.404
arabic 0.399 0.267 0.392 0.487 0.447
spanish 0.441 0.348 0.533 0.414 0.471

Table 8: EI-reg result.

V-reg is a regression task where sentiment in-
tensity was predicted. Spanish and English used
TF-IDF and Arabic corpora used term document
matrix for feature input matrix. These feature are
found out by grid search method. Arabic and
Spanish data give 58 % prediction and English
data give slight high result which is 62

Pearson (all instances)
Valence

English 0.622
Arabic 0.583
Spanish 0.580

Table 9: V-reg result.

Subtasks 2,4,5 are multi-label classification
problems whose models are also generated by bag
of words method. But the classification which was
done by random forest did not yield expected re-
sult comparing to regression tasks.

6 Conclusion

Affect in tweets has been found out by the bag of
words representation and classical machine learn-
ing algorithms. Random Forest and linear re-

332

gression were used as machine learning tasks for
predicting classification tasks and regression tasks
respectively in which regression task gave fairly
good results while classification task yield not so
favorable results. TF-IDF seems to give better re-
sults for English and Spanish languages whereas
TDM gave better results for the Arabic language.
Emotion intensity and valence were captured by
our model for the validation given data. Algo-
rithms performed nearly same with TF-IDF and
TDM but with slightly better results while using
TF-IDF.

References
Felipe Bravo-Marquez, Eibe Frank, and Bernhard

Pfahringer. 2015. Positive, negative, or neu-
tral: Learning an expanded opinion lexicon from
emoticon-annotated tweets. In IJCAI, pages 1229–
1235.

Felipe Bravo-Marquez, Marcelo Mendoza, and Bar-
bara Poblete. 2014. Meta-level sentiment models for
big social data analysis. Knowledge-Based Systems,
69:86–99.

Thomas François and Eleni Miltsakaki. 2012. Do nlp
and machine learning improve traditional readabil-
ity formulas? In Proceedings of the First Work-
shop on Predicting and Improving Text Readability
for target reader populations, pages 49–57. Associ-
ation for Computational Linguistics.

HB Barathi Ganesh, M Anand Kumar, and KP Soman.
2016. From vector space models to vector space
models of semantics. In Forum for Information Re-
trieval Evaluation, pages 50–60. Springer.

Svetlana Kiritchenko and Saif M Mohammad. 2016.
Sentiment composition of words with opposing po-
larities. In Proceedings of the 2016 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, pages 1102–1108.

Svetlana Kiritchenko, Xiaodan Zhu, and Saif M Mo-
hammad. 2014. Sentiment analysis of short in-
formal texts. Journal of Artificial Intelligence Re-
search, 50:723–762.

Ray R Larson. 2010. Introduction to information re-
trieval.

Andy Liaw, Matthew Wiener, et al. 2002. Classifi-
cation and regression by randomforest. R news,
2(3):18–22.

Saif M. Mohammad. 2018. Word affect intensities. In
Proceedings of the 11th Edition of the Language Re-
sources and Evaluation Conference (LREC-2018),
Miyazaki, Japan.

Saif M. Mohammad, Felipe Bravo-Marquez, Mo-
hammad Salameh, and Svetlana Kiritchenko. 2018.
Semeval-2018 Task 1: Affect in tweets. In Proceed-
ings of International Workshop on Semantic Evalu-
ation (SemEval-2018), New Orleans, LA, USA.

Saif M. Mohammad and Svetlana Kiritchenko. 2018.
Understanding emotions: A dataset of tweets to
study interactions between affect categories. In Pro-
ceedings of the 11th Edition of the Language Re-
sources and Evaluation Conference (LREC-2018),
Miyazaki, Japan.

Saif M Mohammad, Svetlana Kiritchenko, and Xiao-
dan Zhu. 2013. Nrc-canada: Building the state-
of-the-art in sentiment analysis of tweets. arXiv
preprint arXiv:1308.6242.

Juan Ramos et al. 2003. Using tf-idf to determine word
relevance in document queries. In Proceedings of
the first instructional conference on machine learn-
ing, volume 242, pages 133–142.

KP Soman et al. 2016. Amrita cen at semeval-
2016 task 1: Semantic relation from word embed-
dings in higher dimension. In Proceedings of the
10th International Workshop on Semantic Evalua-
tion (SemEval-2016), pages 706–711.

Vivek Vinayan, JR Naveen, NB Harikrishnan,
M Anand Kumar, and KP Soman. Amritanlp@ pan-
rusprofiling: Author profiling using machine learn-
ing techniques.

Xiaodan Zhu, Svetlana Kiritchenko, and Saif Moham-
mad. 2014. Nrc-canada-2014: Recent improve-
ments in the sentiment analysis of tweets. In Pro-
ceedings of the 8th international workshop on se-
mantic evaluation (SemEval 2014), pages 443–447.

333

Proceedings of the 12th International Workshop on Semantic Evaluation (SemEval-2018), pages 334–338
New Orleans, Louisiana, June 5–6, 2018. ©2018 Association for Computational Linguistics

TeamCEN at SemEval-2018 Task 1: Global Vectors Representation in
Emotion Detection

Anon George, Barathi Ganesh HB, Anand Kumar M and Soman KP
Center for Computational Engineering and Networking (CEN)

Amrita School of Engineering, Coimbatore
Amrita Vishwa Vidyapeetham, India

anongeorge007@gmail.com, barathiganesh.hb@gmail.com

Abstract

Emotions are a way of expressing human sen-
timents. In the modern era, social media is
a platform where we convey our emotions.
These emotions can be joy, anger, sadness
and fear. Understanding the emotions from
the written sentences is an interesting part in
knowing about the writer. In the amount of
digital language shared through social media,
a considerable amount of data reflects the sen-
timent or emotion towards some product, per-
son and organization. Since these texts are
from users with diverse social aspects, these
texts can be used to enrich the application re-
lated to the business intelligence. More than
the sentiment, identification of intensity of the
sentiment will enrich the performance of the
end application. In this paper we experimented
the intensity prediction as a text classification
problem that evaluates the distributed repre-
sentation text using aggregated sum and di-
mensionality reduction of the glove vectors of
the words present in the respective texts.

1 Introduction

Emotion detection from text has been an impor-
tant task in recent years since the development of
Natural Language Processing. Finding the affect
in tweet enlarges the business intelligence towards
the consumer behaviour analysis, peoples likeness
towards the person, organization and policies of
the government.

Intensity of the sentiment present in the text
can be predicted by performing a text classifica-
tion by taking texts as the observations and their
intensity classes or scores as a target labels. Rep-
resentation is a key part in any text classification
task which can affect the further feature extrac-
tions and predictions (Ganesh et al., 2016; So-
man et al., 2016; B. et al., 2016). A bad repre-
sentation of the word vector can make the further

predictions fruitless. Hence we use a meaning-
ful representation of words, that is, global vectors
(Glove) for the representation of words into vec-
tors of a tweet. This paper explains the use of
global vectors representation for representing the
words in a tweet and their further processing using
machine learning techniques for classification and
regression tasks. SemEval-2018 Task 1 provided
the twitter corpus for classification and regression
tasks for the emotion detection.

After representing the words in the tweets, the
vector for tweets is obtained by computing the ag-
gregated sum and dimensionality reduction. The
final tweet vectors are used for further classifica-
tion and regression.

2 Global Vectors

Global Vectors (GloVe) creates word vectors and
it is an unsupervised machine learning tech-
nique(Pennington et al., 2014). Unlike word2vec
representations like skip-gram and continuous bag
of words (CBOW), word-word co occurrence stat-
ics is taken for the vector representation. It also
retains the relations between words and gives a
better feature extraction. The vectors represented
in space gives more meanings than the traditional
methods. global matrix factorization methods and
local context window methods, such as the skip-
gram model (Mikolov et al., 2013) is the main two
types of vector representations. The word-word
co occurrence count on the whole set of words are
used for training and hence it captures more infor-
mation.

3 Datasets

Dataset consists of tweets from three languages
that are English, Spanish and Arabic. These are
mainly focused on the emotions contained in it.
These are annotated for the different emotions

334

such as joy, fear, anger and sadness. Separate
datasets are provided for each emotions. The
classification tasks consists of annotations marked
as different intensity values for each emotion.
They also contains the value corresponding to
how much emotion value can be inferred from the
tweets. For the regression tasks, the values be-
tween 0 and 1 are provided along with it. The
value 0 means no information can be inferred and
1 means maximum information can be inferred.
Sub-tasks EI-oc, V-oc, E-c are multi-class classi-
fication problems. EI-reg and V-reg are regression
problems.EI-reg and EI-oc are emotion intensity
tasks and V-reg is a sentiment intensity task. V-oc
is a sentimental analysis task and E-c is a emotion
classification task. (Mohammad and Kiritchenko,
2018)

4 Methodology

Pre-trained model of GloVe with 100 dimensions
computed from 27 billion tokens and 2 billion
tweets from the twitter is used in this experiment
1. From the tweet datasets, the words are taken
and checked if it is present in the downloaded
GloVe model. If it is present then the vector repre-
sentation corresponding to that word is taken and
added to the model. After obtaining the vector
representation for all the words in a tweet, the
vector representation for each tweet is made af-
ter pre-processing steps like unimportant symbols
and space removal. The representation for a tweet
is made by writing the word vector as columns of
a matrix concatenated till the tweet ends. This ma-
trix is reduced into a single vector by two methods:

• SUM: Taking the sum of each rows and mak-
ing it a new vector. This is an easy method
which has less computation but the disad-
vantage includes the loss of word order in a
tweet.

• SVD: Singular Value Decomposition is a de-
composition method widely used for reduc-
ing the dimension of matrices. Here the sen-
tence matrix is reduced to a rank one matrix
by taking only the most important singular
value. This is then used to take the important
vector from the matrix which can be the most
information containing (Golub and Reinsch,
1970). The tweet matrix is decomposed 3

1https://nlp.stanford.edu/projects/
glove/

parts using SVD. The most important singu-
lar value occurs in the first value of the diag-
onal matrix. A new vector is formed by using
only one singular value from the SVD. Re-
ducing the dimension using SVD preserves
the important spread of data rather than sim-
ple summing operations of columns.

A = U
∑

V T (1)

These vectors are used as the input for the dif-
ferent machine learning techniques. A part of the
training data is split into training and validation
data and is given to learning methods like Random
Forest and Support Vector Machine (SVM). These
methods will learn and give predictions about the
classification or regression task that is assigned.
Experiments are done to find out which hyper pa-
rameters give the better value for the validation ac-
curacy. These are stored and used for predicting
the new unseen data from the test set.

4.1 Random Forest

Random Forest is a powerful and popular machine
learning algorithm capable of performing both re-
gression and classification tasks. This algorithm
creates a number of decision trees. When the
number of these decision trees are more , the pre-
dictions will have more robustness and accuracy.
Random Forest consists of multiple trees to clas-
sify a new object based on attributes. A classifi-
cation is given by each tree and the tree votes for
that class are saved. Choice is made for the classi-
fication by taking the most votes for consideration.
It can handle the missing values and can maintain
accuracy for the missing data. It can also work on
large datasets which are high dimensional. It is not
that good at regression like it does for the classifi-
cation tasks. The control over the model is less as
there are less parameters to tune.

Test features are passed through the rules of
each randomly created trees for the predictions.
Each tree will be predicting an output and the
voting is done for the prediction to get the high-
est vote for a particular class of prediction. This
is called majority voting. It is called ensemble
machine learning algorithm. Divide and conquer
approach is used for the improvement of perfor-
mance. Each classifier in this group may be weak
learner, but when they come together, it acts as a
strong learner (Liaw et al., 2002).

335

4.2 Support Vector Machine (SVM)
SVM is used to classify different classes in a
dataset. It draws a decision boundary after looking
at the extreme data points in a dataset. This bound-
ary is called the hyper-plane which has one dimen-
sion less than the dimension of the data points. It
is drawn near the extreme points of the dataset.
SVM is a popular algorithm which segregates the
different classes of data points in a dataset. If the
decision boundary is drawn without making it op-
timized, then the further classifications will have
less accuracy on new data. Support Vectors are
the data points that are closer to the other classes
and they are the ones pushing the boundary farther
to make better predictions. This algorithm says
that only those support vectors or the margins are
needed for the further classifications and the other
data points are ignored. This is because the mar-
gin is drawn by considering the extreme case in a
class and all the other points can easily be classi-
fied with that prior knowledge.

SVMs can also be used in higher dimensional
datasets and the data points will be called as vec-
tors and they will have their coordinates lying in-
side the space of data. For the cases in which our
function is not linearly separable, our data should
be transformed in to a higher dimension using a
function. Data points in higher dimensions are
computationally complex for predictions. Kernel
trick can be used to reduce this computational cost.
A kernel function or a kernel trick is a function
that takes the input vectors from the original vec-
tor space and returns the dot product of the vec-
tors in the features in the feature space. To map
every point into a higher dimensional space, dot
product between two vectors can be applied us-
ing some transformation. Transformation on non-
linear space into linear space is possible using that
(Suykens and Vandewalle, 1999). Common kernel
types are,

1. Linear Kernel

2. Polynomial Kernel

3. Radial Basis Function (RBF) Kernel

Table 1 shows the kernel functions of different ker-
nel. Here x and y are the data points and the kernel
function is found using the equations correspond-
ing to it. d is the dimension of the space and γ is a
hyper parameter. To get better performance using
any kernel, parameter tuning is required. SVMs

Kernel Name Kernel Function
Linear Kernel k(x, y) = x× y
Polynomial Kernel k(x, y) = (x× y + 1)d

RBF Kernel k(x, y) = e−γ‖x−y‖
2

Table 1: Kenel Functions

are effective in higher dimensions and it is possi-
ble to add custom kernels to it making it adaptive.
It performs poor when the number of features are
greater than the number of samples.

We have reported the observations made using
the linear and RBF kernel.

5 Results and Observation

Mean Squared Error (MSE) is noted for all the
regression tasks and accuracy is noted for all the
classification tasks. MSE near the value 0 is al-
ways better and accuracy value can be a maximum
of 100%. Accuracy measures are in percentage.
Validation scores for the test data provided is mea-
sured and reported for observations.

Using the SVD method always gave slightly
better result compared to the SUM method. From
this we can understand that the the reduction of a
matrix in to vector should be done with SVD in-
stead of SUM method. Scores for the language
English gave better results compared to Spanish
and Arabic. This can be due to the use of pre-
trained GloVe vectors which was trained on more
English data.

Table 2 has MSE for validation set in EI-reg
(emotion intensity regression). For English, Ran-
dom Forest gave slightly better results than the
other two SVM methods. Random Forest and
SVM with RBF kernel were performing nearly
same for the Spanish and Arabic datasets.

Table 3 has Accuracy of validation set in EI-
oc (emotion intensity ord.class.). Random Forest
Classifier was performing better than the other two
classifiers for all the three languages. English lan-
guage showed better accuracy than the other two
languages and Arabic showed least accuracy.

Table 4 has MSE for validation set in V-reg (va-
lence intensity regression). All the three regres-
sors were performing in a similar way for English
wereas Random Forest and the SVM with RBF
kernel performed better for the other languages.

Table 5 contains Accuracy for validation set
in V-oc (valence ord.class.). Random Forest was
performing better for all the classification tasks

336

Random Forest SVM (Linear) SVM (RBF)
SUM SVD SUM SVD SUM SVD

English 0.03 0.02 0.03 0.03 0.04 0.03
Spanish 0.04 0.03 0.05 0.05 0.04 0.03
Arabic 0.03 0.02 0.03 0.03 0.03 0.02

Table 2: Mean Squared Error for validation set in EI-reg (emotion intensity regression)

Random Forest SVM (Linear) SVM (RBF)
SUM SVD SUM SVD SUM SVD

English 45.42 47.31 43.36 45.28 42.55 44.45
Spanish 40.35 42.20 39.72 42.12 38.58 40.56
Arabic 28.74 31.05 26.34 28.03 25.06 26.98

Table 3: Accuracy for validation set in EI-oc (emotion intensity ord.class.)

Random Forest SVM (Linear) SVM (RBF)
SUM SVD SUM SVD SUM SVD

English 0.05 0.04 0.05 0.04 0.05 0.04
Spanish 0.04 0.03 0.04 0.04 0.04 0.03
Arabic 0.05 0.05 0.06 0.05 0.06 0.05

Table 4: Mean Squared Error for validation set in V-reg (valence intensity regression)

Random Forest SVM (Linear) SVM (RBF)
SUM SVD SUM SVD SUM SVD

English 26.05 28.66 22.49 25.04 22.01 23.54
Spanish 23.58 24.05 19.65 20.12 18.05 19.57
Arabic 20.28 22.34 13.04 13.64 12.50 13.62

Table 5: Accuracy for validation set in V-oc (valence ord.class.)

Random Forest SVM (Linear) SVM (RBF)
SUM SVD SUM SVD SUM SVD

English 95.43 95.56 95.14 95.68 94.56 94.66
Spanish 95.14 95.41 95.43 95.54 95.01 95.34
Arabic 93.84 93.91 93.84 94.02 92.12 92.31

Table 6: Accuracy for validation set in E-c (multi-label emotion class.)

Pearson (all instances)
macro-avg anger fear joy sadness

English 0.077 (44) 0.062 (44) 0.076 (44) 0.079 (43) 0.090 (44)
Arabic 0.230 (10) 0.213 (10) 0.230 (10) 0.207 (11) 0.269 (11)
Spanish 0.131 (12) 0.184 (11) 0.117 (12) 0.143 (11) 0.078 (12)

Table 7: Published Results score for EI-reg where the number in brackets is the ranking

337

given. Accuracy for Arabic stayed down and En-
glish stayed up. Table 6 contains Accuracy for val-
idation set in E-c (multi-label emotion class.). All
the classifiers for all languages were performing
nearly same for this task. English still remained
on top where as SVD always gave a slight boost in
accuracy like the previous cases.

The published results for all these are also tab-
ulated. The algorithm did not give the score and
accuracy that was giving on the validation sets.

Table 7 contains published Results score for EI-
reg where the number in brackets is the ranking.
The minimum value is 0 and maximum value is 1.
Our algorithm has lower score but comparatively
the sentiment ”sadness” has slightly better score.
Score of published results for EI-oc was not sat-
isfactory and the score values were less. In pub-
lished results score for V-reg, Valence score for
Arabic language (0.319) was better than the other
2 languages and English had the lowest. For the
published results score for V-oc, algorithm’s per-
formance was not satisfactory but the arabic lan-
guage had better valence (0.163) than the other 2
languages. In the published results score for E-c,
the accuracy for Spanish was slightly better com-
pared to the English and Arabic languages.

6 Conclusion

Five different tasks with common framework is
experimented to find out the affect in tweets in
3 different languages. From the scores and accu-
racy obtained from the validation data we can con-
clude that the Global Vector Representation gives
good results for the sentiment analysis tasks. Us-
ing a pre-trained model for the GloVe made the
task simpler and easy to use for vector represen-
tation. Reducing the tweet matrix into vector us-
ing SVD always gave better results than taking the
column wise sum of the matrices. This shows the
importance of the word order. Random Forest al-
gorithms gave better results for the classification
tasks were as the SVD algorithm with RBF ker-
nel performed nearly well in the regression tasks.
English language showed better scores in the val-
idation data compared to other languages. From
these observations, it can be noted that this ap-
proach performed satisfactorily better in the val-
idation step and was able to get the semantic fea-
tures from the tweets. Hence the future work will
be focused more on the performance of the exper-
imented methods.

References
Barathi Ganesh H. B., M. Anand Kumar, and K. P. So-

man. 2016. Statistical semantics in context space :
Amrita cen@author profiling. In CLEF.

HB Barathi Ganesh, M Anand Kumar, and KP Soman.
2016. From vector space models to vector space
models of semantics. In Forum for Information Re-
trieval Evaluation, pages 50–60. Springer.

Gene H Golub and Christian Reinsch. 1970. Singu-
lar value decomposition and least squares solutions.
Numerische mathematik, 14(5):403–420.

Andy Liaw, Matthew Wiener, et al. 2002. Classifi-
cation and regression by randomforest. R news,
2(3):18–22.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013. Distributed representa-
tions of words and phrases and their compositional-
ity. In Advances in neural information processing
systems, pages 3111–3119.

Saif M. Mohammad and Svetlana Kiritchenko. 2018.
Understanding emotions: A dataset of tweets to
study interactions between affect categories. In
Proceedings of the 11th Edition of the Language
Resources and Evaluation Conference, Miyazaki,
Japan.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. Glove: Global vectors for word
representation. In Proceedings of the 2014 confer-
ence on empirical methods in natural language pro-
cessing (EMNLP), pages 1532–1543.

KP Soman et al. 2016. Amrita cen at semeval-
2016 task 1: Semantic relation from word embed-
dings in higher dimension. In Proceedings of the
10th International Workshop on Semantic Evalua-
tion (SemEval-2016), pages 706–711.

Johan AK Suykens and Joos Vandewalle. 1999. Least
squares support vector machine classifiers. Neural
processing letters, 9(3):293–300.

338

Proceedings of the 12th International Workshop on Semantic Evaluation (SemEval-2018), pages 339–344
New Orleans, Louisiana, June 5–6, 2018. ©2018 Association for Computational Linguistics

IIT Delhi at SemEval-2018 Task 1 : Emotion Intensity Prediction

Bhaskar Kotakonda
Undegraduate

IIT Delhi
ee1140448@iitd.ac.in

Prashanth Gowda
Undergraduate

IIT Delhi
ee1140470@iitd.ac.in

Brejesh Lall
Associate Professor

IIT Delhi
brejesh@ee.iitd.ac.in

Abstract

This paper discusses the experiments per-
formed for predicting the emotion intensity in
tweets using a generalized supervised learning
approach. We extract 3 kind of features from
each of the tweets - one denoting the senti-
ment and emotion metrics obtained from dif-
ferent sentiment lexicons, one denoting the se-
mantic representation of the word using dense
representations like Glove, Word2vec and fi-
nally the syntactic information through POS
N-grams, Word clusters, etc. We provide
a comparative analysis of the significance of
each of these features individually and in com-
bination tested over standard regressors avail-
able in scikit-learn. We apply an ensemble of
these models to choose the best combination
over cross validation.

Our resources and the details of implementa-
tion are publicly available at :

https://github.com/prashanth470/

affect-in-tweets

1 Introduction

In Natural Language Understanding, the field of
sentiment analysis deals with the process of deter-
mining the polarity of a given text, such as pos-
itive, negative, neutral and mixed. In extension
to this analysis, we have the emotion recognition
task which deals with associating the text with pre-
defined set of emotions like anger, fear, joy, etc. A
general method of performing the emotion recog-
nition task is to employ weak supervision mod-
els like emojis, hashtags and emoticons to mine
emotion. Instead of using this discreet approach
to emotion, continuous models that map text to an
n - dimensional space with valence, arousal and
dominance can be used.

Another interesting problem in the NLP space
is the abundance of social media texts, especially
twitter. Twitter is a micro-blogging site where

people express themselves and react to content in
real-time. An estimated 500 million tweets are
generated on a daily basis. The peculiar nature of
such micro-blogging sites is the form of expres-
sion through hashtags, emojis, slang and informal
words etc. But analyzing this abundant informa-
tion would help us to realize several insights about
an event, person or organization.

It is with this motivation that the SemEval
shared task on Emotion Intensity was con-
ducted.(Mohammad et al., 2018) Given a tweet
and an emotion (anger, fear, sadness, joy) the aim
is to determine the intensity score that can be seen
as an approximation to the intensity felt by the
reader or expressed by the author. The paper is
divided into 3 sections hereon - the second sec-
tion talks about the system description, the third
section on a comparative analysis of results and fi-
nally a discussion on the future scope.

2 System Description

The datasets for anger, joy, fear and sad-
ness were created using a technique called the
Best Worst Scaling.(Mohammad and Kiritchenko,
2016) These annotations lead to reliable fine
grained intensity scores which can be used to im-
ply the intensity or the degree of an emotion ex-
pressed. The detailed data collection information
can be found in Mohammad et al.(Mohammad and
Turney)

2.1 Pre Processing

This step includes modifying the raw tweets to a
form that can be easier to process for the further
steps. It has already been asserted that the nature
of the text in question is peculiar as it is mined
from social media. In addition to regular usage of
words emoticons, user ids and URLs are common
in social media. It is very important to note that

339

while the tweet is tokenized into words, the pro-
cess is twitter-aware, or the splitting is done keep-
ing in mind the utility of User IDs and URLs as
separate entities.

We tried 2 kinds of tokenizers : tweetokenize
and regular expressions using the regex expression
matching in python. We demonstrate below the
difference in tokenizing for each of these and why
we chose tweetokenize as it was more tweet aware.

The sentence used is :
What are some good #funny #entertaining #inter-
esting accounts I should follow ? My twitter is dry

1. Regex Python
’what’, ’are’, ’some’, ’good’, ’funny’, ’en-
tertaining’, ’interesting’, ’accounts’, ’i’,
’should’, ’follow’, ’?’, ’my’, ’twitter’, ’is’,
’dry’

2. Tweetokenize
’What’, ’are’, ’some’, ’good’, ’#funny’, ’#en-
tertaining’, ’#interesting’, ’accounts’, ’I’,
’should’, ’follow’, ’?’, ’My’, ’twitter’, ’is’,
’dry’

2.2 Feature Extraction

The baseline feature made available is the Affec-
tive Tweets package, which includes a number
of lexicon based and syntactic feature extraction
modules. After a thorough analysis of various
systems of NLP competitions from Kaggle,
KD Nuggets and various other conferences, we
narrowed down to 3 type of important features.

1. Lexicon Based
Many of the tasks related to sentiment and
emotion are using these features extensively
(Mohammad and Kiritchenko, 2018). A lexi-
con is a dictionary of words with labels spec-
ifying their sentiments and scores to iden-
tify the intensity of text. Table 1 shows the
different lexicons used, the scores they con-
tribute and the size of the corpus. Using the
above features selectively leads to a 135 di-
mensional feature vector, which as we ob-
serve is still relatively sparse with only a few
non zero values.

2. Semantic Based
To overcome limitations of using the sparse

lexicon based features and to add the seman-
tic meaning of the words, compactly repre-
sented low dimesional dense vector encod-
ings called word embeddings are also in-
cluded. Glove embeddings, which are 200 di-
mensional vectors trained on 2 billion corpus
are integrated. Although these vectors accu-
rately represent the significance of a word in a
context, the sentence embeddings or the rep-
resentation in a sequential manner is not fo-
cused on in this section. The sentence em-
bedding is considered to be the average of the
individual word embeddings of the sentence.
The final represented sentence embedding is
a 25 dimensional vector.

3. Syntactic Based
Although the meaning of the individual
words have been taken into account in the
semantic based vectors, it is essential to en-
code certain other aspects of the word, like
part of speech tags, brown clusters and word
n grams.

The final feature vector is chosen based on the
significance of each of the individual features,
when input to regressors to maximize the pearson
coefficient.

2.3 Regressors
Each of the above features have very little correla-
tion between each other as they represent different
aspects of the text. Hence the regressors such as
Support Vectors Regression, AdaBoost, Random
Forest Regressor and Bagging regressor, etc can
be used effectively. The feature vectors are used
without any kind of normalization.

2.4 Hyper Tuning
The sci-kit package enables an extensive grid
search mechanism to find the optimum value
of the various hyper parameters of a regressor.
Figure 1 shows the different values of C and
gamma taken by the regressor to maximize the
cost function of pearson coefficient using 10 fold
cross validation. It shows anger, fear, joy and
sadness metrics in a clockwise manner. Table 2
also shows the parameter values of the SVR for
different emotions.

The best combination of hyper parameters are
denoted by the grey spot in the grid search for each
of the emotions.

340

Affect Lexicon Description Corpus Details
NRC Hashtag Positive and negative variables emotions: anger, anticipation
Emotion by aggregating the positive fear, joy, sadness, surprise, trust

and negative word scores provided size : 16,862 unigrams
by this lexicon created with tweet score : 0 to infinite
annotated with emotional hashtags

Sentiment140 Aggregating positive and negative emotions : anger, fear
scores size : 45,255 unigrams

score : -inf to +inf
NRC 10 Adds the emotion associations emotions : +ve, -ve

of the words matching the size : 62,468 unigrams
Twitter Specific expansion score : -inf to +inf

SentiStrength Weighted average of the emotions : anger, anticipation,
sentiment distributions of the fear, joy, sadness, surprise, trust
synsets for word occurring size : 14,000 words
in multiple synsets score : 0 to 1

NRC Emotion Calculates a positive and a size : 76,400 terms
negative score by aggregating the score : count
word associations provided
by a list of emoticons

Table 1: Lexicons used for feature extraction.

Figure 1: Hypertuning of SVR.

Emotion C Gamma
Anger 100 1e-05
Fear 1.0 1e-04
Joy 1.0 1e-04
Sadness 10 1e-05

Table 2: Final Parameters for Support Vector System.

3 Results

Only the semantic and lexicon based features are
seen to be having a positive affect on the pearson
coefficient while the syntactic feaatures show al-
most no improvement. Hence, they are discarded
from further analysis. The 10 fold cross validation
shows best performance in the case of employing
all the different lexicons available in concatenation
with the average word embedding.

3.1 Experimental Results

Table 4 shows the performance of this feature vec-
tor when trained across various regressors. The
gradient boosting with XGBOOST ensemble re-
gressor is observed to give the best results. The
spearman coefficient has been skipped in the anal-
ysis as it had the same insights offered by the pear-
son coefficient.

341

Emotion Tweet Predicted Gold
’Pope fuming after police broke up drug-fuelled 0.539 0.545
Vatican priest gay orgy’ some headline.
Lugubrious face, crestfallen eyes, forlorn heart 0.418 0.437
and an agitated soul seeking serenity.

Anger I talked to an Asian yesterday. 0.374 0.000
You are MINE, my baby, my headache, my love, 0.433 0.172
my smile, my frown, my wrong, my right,
my pain, my happiness, my everything.
i’m nervous 0.777 0.741
The moment I joined BTS, I was nervous and amp; 0.713 0.732
felt lost. I still have those feelings but whenever
I do, the people who bring me back are you guys

Fear Considering I am 101% fine with getting tattoos, 0.435 0.845
blood tests terrify me and I AM HAVING TO
GET ONE AAAAAHHHH
Every time I fart my dog jumps in fear hahahaha lol 0.610 0.242
Streetlights coming on. We can see stars! #amazing 0.681 0.672
#SolarEclipse2017
@SteveConteNYC lovely! :) 0.661 0.672

Joy My dads big day is only less than 2 weeks away! 0.456 0.844
What do you call a camel with no humps? 0.286 0.6
Humphrey! #joke #writerslife #WednesdayWisdom
Do not linger too long near the howff or you 0.427 0.417
risk the displeasure of a chuhaister with pubes
more underwhelming than those of an aurochs.
@rohandes Lets see how this goes. We falter in SL 0.377 0.385
and this goes downhill. :(

Sadness I wonder how many Lexas and Alexandrias there will 0.653 0.321
be in 10 tears.
Me at Start of Semester Expecting = A+ After Mids 0.343 0.696
= B+ After Finals = Passing Marks. Thinking to quit

Table 3: Analysis of sample predictions in each emotion.

3.2 Limitations

The features that were chosen to represent the
sentences, although having limitations in terms
of missing context, perform significantly well
in estimating the emotion. Table 3 analyzes
the system’s predictions in cases were the gold
labels were close to the final value as well as the
erroneous cases.

In cases where there are multiple instances of
displaying emotion the model is very successful as
seen in the first samples of every emotion. We also
observe that the emoticons and punctuation are
very well accounted for, like @SteveConteNYC
lovely! :) and @rohandes Lets see how this goes.
We falter in SL and this goes downhill. :(. It can

also be said that the model is twitter aware as it
often attributes an intensity based on the relative
importance of the hashtag and emoticon.

There are broadly three cases where the system
has trouble - one where there is very little context
to decide an emotion, which is problematic even
for the manual annotation, like I talked to an Asian
yesterday. This should not be misunderstood with
racial bias but merely a lack of training data. The
second case is Sarcasm, like Every time I fart my
dog jumps in fear hahahaha lol. While the lexicon
based features attribute high intensity of fear due
to direct usage of the word fear, it has to be un-
derstood that words such as hahahaha, lol have a
diminishing effect on this sentiment. Finally, we

342

Regressor Emotion Pearson Pearson (> 0.5) Spearman (> 0.5)
SVR rbf Anger 0.607 0.349 0.346
(gamma=0.001) Fear 0.627 0.441 0.412
(C=1e-4) Joy 0.415 0.328 0.331

Sadness 0.622 0.483 0.493
Random forest Anger 0.614 0.501 0.505

Fear 0.556 0.411 0.389
Joy 0.569 0.359 0.358
Sadness 0.541 0.435 0.429

Adaboost Anger 0.585 0.385 0.389
Fear 0.612 0.502 0.483
Joy 0.638 0.408 0.433
Sadness 0.579 0.423 0.437

Gradient Boosting Anger 0.660 0.506 0.516
Fear 0.677 0.500 0.480
Joy 0.622 0.380 0.393
Sadness 0.606 0.497 0.506

Bagging Anger 0.576 0.421 0.425
Fear 0.590 0.459 0.429
Joy 0.546 0.353 0.337
Sadness 0.570 0.444 0.446

Table 4: Results over different regressors.

also see that in cases where there is no direct
usage of the words from lexicon but merely the
context of the preceding sentences that decide the
emotion, like Me at Start of Semester Expecting
= A+ After Mids = B+ After Finals = Passing
Marks. Thinking to quit MS. This is quite expected
due to the choice of features we employed.

4 Future Work

The main limitation of this approach is overlook-
ing the importance of context and composition-
ality of the sentence, in addition to the semantic
and syntactic attributes. This can be taken into ac-
count by using bi-directional LSTMs - long short
term memory approach. LSTMs allow for learn-
ing sentence representations that account for con-
text to be stored in memory over a longer distance
through a mechanism of forgetting and memory at
each stage, thus tackling the problem of vanishing
gradient.(Olah)

Although Convolution Neural Networks have
been discovered for image recognition tasks, re-
cent research of (Kim, 2014) show exceptionally
high accuracy of CNNs when trained on word em-
bedding for language understanding tasks. The
CNNs effectively appply filters of different sizes
to images which can be understood as considering

Figure 2: LSTM Model.

a n-gram featurizer and deciding on the most ef-
fective n-gram that contributes to the meaning of
the tweet.

Acknowledgments

We thank our supervisor Dr.Brejesh Lall for guid-
ing us through the process and the organizers of
SemEval 2018 for providing us the opportunity to
work on this task and creating datasets.

343

References
Yoon Kim. 2014. Convolutional neural networks for

sentence classification. CoRR, abs/1408.5882.

Saif M. Mohammad, Felipe Bravo-Marquez, Mo-
hammad Salameh, and Svetlana Kiritchenko. 2018.
Semeval-2018 Task 1: Affect in tweets. In Proceed-
ings of International Workshop on Semantic Evalu-
ation (SemEval-2018), New Orleans, LA, USA.

Saif M. Mohammad and Svetlana Kiritchenko. 2016.
Capturing reliable fine-grained sentiment associa-
tions by crowdsourcing and bestworst scaling.

Saif M. Mohammad and Svetlana Kiritchenko. 2018.
Understanding emotions: A dataset of tweets to
study interactions between affect categories. In
Proceedings of the 11th Edition of the Language
Resources and Evaluation Conference, Miyazaki,
Japan.

Saif M. Mohammad and Peter D. Turney. Crowdsourc-
ing a word-emotion association lexicon. New Or-
leans, LA, USA.

Christopher Olah. Understanding lstm networks.

344

Proceedings of the 12th International Workshop on Semantic Evaluation (SemEval-2018), pages 345–349
New Orleans, Louisiana, June 5–6, 2018. ©2018 Association for Computational Linguistics

Mutux at SemEval-2018 Task 1: Exploring Impacts of Context
Information On Emotion Detection

Pan Du
DIRO, University of Montreal
pandu@iro.umontreal.ca

Jian-Yun Nie
DIRO, University of Montreal
nie@iro.umontreal.ca

Abstract

This paper describes MuTuX, our system that
is designed for task 1-5a, emotion classifica-
tion analysis of tweets on SemEval20181. The
system aims at exploring the potential of con-
text information of terms for emotion analy-
sis. A Recurrent Neural Network is adopted
to capture the context information of terms in
tweets. Only term features and the sequential
relations are used in our system. The result
submitted ranks 16th out of 35 systems on the
task of emotion detection in English-language
tweets.

1 Introduction

Emotion analysis on social media is attracting
more and more reserach interests (Strapparava and
Mihalcea, 2008; Balahur et al., 2011; Agrawal and
An, 2012; Wang et al., 2012; Hasan et al., 2014a;
Canales and Martı́nez-Barco, 2014) from indus-
try and academia. Commercial applications such
as product recommendation, online retailing, and
marketing are turning their interests from tradi-
tional sentiment analysis to emotion analysis as
well. Emotion analysis is generally taken as a
multi-lable classification problem. Given a piece
of text, such as a tweet, it assigns several lables
such as depressed, sad, angry and so on to it (Mo-
hammad et al., 2018) based on the meaning con-
tained in the text.

Techniques related to emotion detection can be
divided into lexicon-based approaches (Valitutti,
2004; Strapparava and Mihalcea, 2008; Balahur
et al., 2011) and machine learning approaches
(Hasan et al., 2014b; Wang et al., 2012; Roberts
et al., 2012; Suttles and Ide, 2013). Lexicon-
based approaches leverage lexical resources to
detect emotions, the resources can be keywords
(Hasan et al., 2014a), WordNet-Affect (Valitutti,

1https://competitions.codalab.org/competitions/17751

2004), ontologies (Balahur et al., 2011) and so
on. Machine learning based approaches (Bala-
bantaray et al., 2012) generally take emotion de-
tection as a classification problem using SVM,
neural network (Abdul-Mageed and Ungar, 2017;
Bravo-Marquez et al., 2016), naieve bayes, Deci-
sion Tree, KNN and so on, or using certain un-
supervised techniques such as LSA (Deerwester
et al., 1990; Wang and Zheng, 2013; Gill et al.,
2008), pLSA, NMF to transform the feature space
into a more reasonable one before conducting clas-
sification. The main challenges of emotion analy-
sis of tweets are the following:

1. Informal languages used on social media are
not always obeying formal grammar, which
makes traditional grammatical features less
reliable for detecting emotions on social me-
dia.

2. New words are frequently created on social
media, making it difficult to understand their
emotional meaning even for a human being.

To address the challenges above, we use re-
current neural network to make use of terms, se-
quential information, and contextual information
simultaneously for emotion detection. We believe
that contextual information can partly solve the
new-term problem and grammar-breach problem.
To use recurrent neural network, a pre-trained em-
bedding is used as our initial input of each term.

2 External Resource

We only used one external resource in our anal-
ysis, which is a pre-trained word embedding
(Mikolov et al., 2013) word2vec provided by
Google. It is trained on a part of the Google News
dataset (about 100 billion words) and it contains
300-dimensional vectors for 3 million words and
phrases.

345

3 System Description

To explore the limit of term features with RNN
for emotion detection, we did not use various fea-
tures other than term embedding. The system
could be improved by using features like emojis
or emoticons. We will conduct further analysis
afterwards by addressing problems in combining
different feature space.

As for the system used for SemEval18 task 1,
the main steps, features used in the model are de-
scribed in this section.

3.1 Preprocessing
Since the method heavily depends on terms appear
in the text, the corpus is carefully pre-processed as
described below.

• Normalization Each word in each tweet is
converted into lowercase. Non-linguistic
content such as URLs, emojis, emoticons,
user names are removed (some important fea-
tures such as emojis and emoticons will be
explored in the future).

• Tokenization Each tweet is split into a word
sequence. No stemming is applied since
some special word forms may convey more
apparent emotions than its original form.

• Stop-words Removing NLTK2 toolkits is
leveraged to remove stop words from tweets.
Some other meaningless terms such as single
characters, digits, their compositions and so
on, are also eliminated.

3.2 Embedding Usage
Word embeddings are a widely used semantic
presentation of words for almost any neural net-
work based text analysis approach. A vector of
real numbers is used for a single word to repre-
sent its distributional semantics in the embedding
space. Since the space is generated by the lan-
guage model, words that are functional similar in
certain language are close with each other in the
embedding space, for example, ”cat” and ”dog”
could be similar in the space.

In this system, a tweet is represented by con-
catenating embeddings of the words in it.

3.3 Our Approach
The system submitted is based on a recurrent neu-
ral network approache, GRU, to be specific.

2https://www.nltk.org/

3.3.1 The Basic Idea
Lexicons play the key role in lexicon-based ap-
proaches and bag-of-feature based machine learn-
ing approaches for emotion analysis. However, in
addition to the emotion lexicons, we believe that
linguistic characteristics may also contribute a lot
to emotion analysis. For example, the context of
the emotion lexicon such as negation could revert
the emotion of the utterence if it is neglected. The
sequence of the sentence terms also play an im-
portant role for understanding its meaning, hence
important for uncovering the true emotions. Lack
of newly created terms in vocabulary or grammat-
ically incorrect utterances can also lead to poor
performance of traditional emotion analysis ap-
proaches. By modeling long-term dependencies
of terms inside a tweet, fusing the semantics of the
terms and their contexts together with GRU, a re-
current neural network, we hope that above prob-
lems can be alleviated in the new space.

3.3.2 Problem Statement
We take emotion analysis as a multi-label classifi-
cation problem in our system as usual. A tweet is
represented as a sequence of terms

xi = {w0
i , w

1
i , · · · , wM

i } (1)

where M is the length of the tweet xi. Given a
tweet xi, the task aims at prediting the labels of it
as yi, where yi is a d-dimensional Boolean vector
yi ∈ Bd, d = 11 in this case. Each dimension
of vector yij indicates an emotion label of the 11
labels space anger, anticipation, disgust, fear, joy,
love, optimism, pessimism, sadness, suprise, and
trust respectively. For example yi0 = 1 means
emotion of anger is detected in the tweet xi, yi9 =
0 means emotion of sadness does not appear in the
tweet.

3.3.3 The model architecture
The architecture of the model is shown in Figure
1. The model is composed of 3 layers. The in-
put of the network is the pre-trained embedding of
each term occurs in a tweet. The sequential term
embeddings are then turned into a tweet level rep-
resentation by a classical GRU, the output of GRU
is directly inputed into a linear perceptron layer,
and maps the tweet representation into class repre-
sentation directly by this layer. The output of the
linear perceptrons are then processed by a sigmoid
function to get the final predictions.

346

Figure 1: Overview of the architecture

3.3.4 The GRU Layer
The input of the GRU layer is the sequence of
term embeddings of the tweet. We denote by
H = h1, . . . , hn the input sequence of length n,
where hi ∈ Rd is the term representation for the i-
th token wi. The new representation of the whole
tweet ri is then obtained from hi via a GRU net-
work:

ri = (1− zi)� ri−1 + zi � r̃i (2)

where,

gi = σ(Wgri−1 + Ughi)

zi = σ(Wzri−1 + Uzhi)

r̃i = tanh(Wr(gi � ri−1) + Urhi).

(3)

Here, gi and zi are reset and update gates respec-
tively that control the information flow from the
previous timestamp. Wg, Ug, Wz , Uz , Wr, and Ur

are weight matrices to be learned for transform-
ing ri−1 and hi to gate units. By applying GRU
on hi, the tweet representation ri ∈ RK encodes
the context information and historical information
simutaneously.

3.3.5 The Perceptron Layer
With the output of GRU, a vector rj ∈ RK repre-
senting the overall information of a tweet, we use
a perceptron layer together with a sigmoid activa-
tion function to map the tweet from feature space

to label space yj ∈ RL, where L is dimension of
the label space.

ŷj = σ(Wprj)

σ(x) =
1

1 + e−x

(4)

The predicted label vector ŷj of each tweet tj is
then compared with the true label vector yj on
training data to guide the training process with an
appropriate loss function.

3.3.6 The Loss Function
Binary cross entropy loss can be used for multi-
label classification problems, it is computed as the
formula below:

loss(p, q)

= − 1

N

N∑

i=1

H(pn, qn)

= − 1

N

N∑

i=1

[yi log ŷi + (1− yi) log(1− ŷi)]

(5)

where yi is the true label vector of the tweet xi,
and ŷi is its predicted label vector.

4 Training

To train these models, we use the training data pro-
vided by SemEval18 task 1, which includes 6, 839

347

human labeled english tweets for Subtask 1. A
data set of 887 labeled english tweets for develop-
ment is also avaible, we leverage this set for val-
idation. The trained model is then applied on the
testing set with 3260 unlabeled tweets in it. A vo-
cabulary is generated by extracting terms from all
the training set, validating set and testing set to en-
sure its coverage.

The parameter configuration for the best system
performance on validation set is defined as fol-
lows:

• Hidden Dimension The initial embedding
of each term is 300 as we adopt the pre-
trained word embedding trained on part of the
Google News dataset3. The hidden dimen-
sion of GRU is set to 200 when we get the
best validation result.

• Maximum Tweet Length The length of each
tweet is different, we regularize the length
with a maximum limit of 30 meaningful
terms after preprocessing steps. A tweet that
is longer than that is trimmed, and shorter
than that is populated with zero paddings.

• Learning Rate We adopt an Adam optimizer
to train the model for the submitted system.
The learning rate for the optimizer is set to
0.0001 when we get the best system perfor-
mance on validation set.

• Dropout Rate Dropout operation is reported
to have similar effects of boosting approches
in neural network based models. A dropout
operation is executed on the linear perceptron
layer with a dropout rate of 0.4 when achiev-
ing the optimum.

• Batch Size The batch size settings also affact
the performance of the proposed system. The
optimum is obtained with a setting of 20 as
the batch size.

The number of epochs is used for terminating
the training process when optimum is obtained.
Terminating condition depends on not only the
values of the loss function, but also its transient
performance on the validating dataset. Some ran-
dom factors, such as the initial state of various ran-
dom variables also show their impacts on it. In our
experiments, the optimum is achieved at the 3-rd

3https://code.google.com/archive/p/word2vec/

epoch, it may vary with different intial states of
other parameters.

Using the model parameters above, which pro-
duced the best performance on validating dataset,
we predicted the labels of each tweet in the test-
ing dataset. The evaluation results provided by Se-
mEVal18 is described in the next section.

5 Results

Among all the 35 systems which participated in
the task of emotion classification subtask of task
1 (Mohammad et al., 2018), our only submission
is ranked 16-th on the evaluation metric of Accu-
racy, and 19-th on both metrics of micro-avg F1
and macro-avg F1, as is shown in Table 1. Our

Rank System Acc. mi-F1 Ma-F1
1 cbaziotis 0.588 0.701 0.528

15 mutux 0.473 0.591 0.446
21 SVM 0.442 0.570 0.443
28 Random 0.185 0.307 0.285

Table 1: System Evaluation Results

model structure and feature space are designed as
simple as possible intentionally, so that it can test
the idea without distractive factors. As shown in
above table, the system outperforms SVM-based
approach consistently on all three different evau-
lation metrics.

6 Conclusion

We have presented a GRU-based multi-lable clas-
sifier to leverage context information and histor-
ical information for emotion analysis. It outper-
forms the unigram SVM model consistently on
three evaluation metrics, even though only term
features and a pre-trained word embedding are
used. Some key factors such emojis, emoticons,
emotion lexicons and multi-layer neural structures
will be explored in the futrue for further analysis.

Acknowledgments

This work is partly supported by an NSERC
discovery grant, as well as a donated GPU by
NVIDIA.

References
Muhammad Abdul-Mageed and Lyle Ungar. 2017.

Emonet: Fine-grained emotion detection with gated

348

recurrent neural networks. In Proceedings of the
55th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), vol-
ume 1, pages 718–728.

Ameeta Agrawal and Aijun An. 2012. Unsupervised
emotion detection from text using semantic and syn-
tactic relations. In Proceedings of the The 2012
IEEE/WIC/ACM International Joint Conferences on
Web Intelligence and Intelligent Agent Technology-
Volume 01, pages 346–353. IEEE Computer Society.

Rakesh C Balabantaray, Mudasir Mohammad, and
Nibha Sharma. 2012. Multi-class twitter emotion
classification: A new approach. International Jour-
nal of Applied Information Systems, 4(1):48–53.

Alexandra Balahur, Jesús M. Hermida, and Andrés
Montoyo. 2011. Detecting implicit expressions of
sentiment in text based on commonsense knowl-
edge. In Proceedings of the 2Nd Workshop on Com-
putational Approaches to Subjectivity and Sentiment
Analysis, WASSA ’11, pages 53–60, Stroudsburg,
PA, USA. Association for Computational Linguis-
tics.

F. Bravo-Marquez, E. Frank, S. M. Mohammad, and
B. Pfahringer. 2016. Determining word-emotion as-
sociations from tweets by multi-label classification.
In 2016 IEEE/WIC/ACM International Conference
on Web Intelligence (WI), pages 536–539.

Lea Canales and Patricio Martı́nez-Barco. 2014. Emo-
tion detection from text: A survey. In Proceedings
of the Workshop on Natural Language Processing in
the 5th Information Systems Research Working Days
(JISIC), pages 37–43.

Scott Deerwester, Susan T. Dumais, George W. Furnas,
Thomas K. Landauer, and Richard Harshman. 1990.
Indexing by latent semantic analysis. JOURNAL OF
THE AMERICAN SOCIETY FOR INFORMATION
SCIENCE, 41(6):391–407.

Alastair J Gill, Robert M French, Darren Gergle, and
Jon Oberlander. 2008. Identifying emotional char-
acteristics from short blog texts. In Proc. 30th Ann.
Conf. Cognitive Science Soc., BC Love, K. McRae,
and VM Sloutsky, eds, pages 2237–2242.

Maryam Hasan, Emmanuel Agu, and Elke Runden-
steiner. 2014a. Using hashtags as labels for su-
pervised learning of emotions in twitter messages.
In ACM SIGKDD Workshop on Health Informatics,
New York, USA.

Maryam Hasan, Elke Rundensteiner, and Emmanuel
Agu. 2014b. Emotex: Detecting emotions in twit-
ter messages.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey
Dean. 2013. Efficient estimation of word represen-
tations in vector space. CoRR, abs/1301.3781.

Saif M. Mohammad, Felipe Bravo-Marquez, Mo-
hammad Salameh, and Svetlana Kiritchenko. 2018.
Semeval-2018 Task 1: Affect in tweets. In Proceed-
ings of International Workshop on Semantic Evalu-
ation (SemEval-2018), New Orleans, LA, USA.

Kirk Roberts, Michael A Roach, Joseph Johnson, Josh
Guthrie, and Sanda M Harabagiu. 2012. Em-
patweet: Annotating and detecting emotions on twit-
ter. In LREC, volume 12, pages 3806–3813. Cite-
seer.

Carlo Strapparava and Rada Mihalcea. 2008. Learning
to identify emotions in text. In Proceedings of the
2008 ACM Symposium on Applied Computing, SAC
’08, pages 1556–1560, New York, NY, USA. ACM.

Jared Suttles and Nancy Ide. 2013. Distant supervision
for emotion classification with discrete binary val-
ues. In International Conference on Intelligent Text
Processing and Computational Linguistics, pages
121–136. Springer.

Ro Valitutti. 2004. Wordnet-affect: an affective exten-
sion of wordnet. In In Proceedings of the 4th In-
ternational Conference on Language Resources and
Evaluation, pages 1083–1086.

Wenbo Wang, Lu Chen, Krishnaprasad Thirunarayan,
and Amit P Sheth. 2012. Harnessing twitter”
big data” for automatic emotion identification. In
Privacy, Security, Risk and Trust (PASSAT), 2012
International Conference on and 2012 Interna-
tional Confernece on Social Computing (Social-
Com), pages 587–592. IEEE.

Xuren Wang and Qiuhui Zheng. 2013. Text emotion
classification research based on improved latent se-
mantic analysis algorithm. In Proceedings of the
2nd International Conference on Computer Science
and Electronics Engineering (ICCSEE 2013), pages
210–213.

349

Proceedings of the 12th International Workshop on Semantic Evaluation (SemEval-2018), pages 350–357
New Orleans, Louisiana, June 5–6, 2018. ©2018 Association for Computational Linguistics

TeamUNCC at SemEval-2018 Task 1: Emotion Detection in English and
Arabic Tweets using Deep Learning

Malak Abdullah Samira Shaikh
College of Computing and Informatics

University of North Carolina at Charlotte
North Carolina, U.S

mabdull5, sshaikh2@uncc.edu

Abstract

Task 1 in the International Workshop SemEval
2018, Affect in Tweets, introduces five sub-
tasks (El-reg, El-oc, V-reg, V-oc, and E-c) to
detect the intensity of emotions in English,
Arabic, and Spanish tweets. This paper de-
scribes TeamUNCC’s system to detect emo-
tions in English and Arabic tweets. Our ap-
proach is novel in that we present the same
architecture for all the five subtasks in both
English and Arabic. The main input to the
system is a combination of word2vec and
doc2vec embeddings and a set of psycholin-
guistic features (e.g. from AffectiveTweets
Weka-package). We apply a fully connected
neural network architecture and obtain perfor-
mance results that show substantial improve-
ments in Spearman correlation scores over
the baseline models provided by Task 1 or-
ganizers, (ranging from 0.03 to 0.23). Tea-
mUNCC’s system ranks third in subtask El-oc
and fourth in other subtasks for Arabic tweets.

1 Introduction

The rise and diversity of social microblogging
channels encourage people to express their feel-
ings and opinions on a daily basis. Consequently,
sentiment analysis and emotion detection have
gained the interest of researchers in natural lan-
guage processing and other fields that include po-
litical science, marketing, communication, social
sciences, and psychology (Mohammad and Bravo-
Marquez, 2017; Agarwal et al., 2011; Chin et al.,
2016). Sentiment analysis refers to classifying
a subjective text as positive, neutral, or nega-
tive; emotion detection recognizes types of feel-
ings through the expression of texts, such as anger,
joy, fear, and sadness (Agarwal et al., 2011; Ek-
man, 1993).

SemEval is the International Workshop on Se-
mantic Evaluation that has evolved from SensE-

val. The purpose of this workshop is to evalu-
ate semantic analysis systems, the SemEval-2018
being the 12th workshop on semantic evaluation.
Task 1 (Mohammad et al., 2018) in this workshop
presents five subtasks with annotated datasets for
English, Arabic, and Spanish tweets. The task for
participating teams is to determine the intensity of
emotions in text. Further details about Task 1 and
the datasets appear in Section 3.

Our system covers five subtasks for both En-
glish and Arabic. The input to the system are word
embedding vectors (Mikolov et al., 2013a), which
are applied to fully connected neural network ar-
chitecture to obtain the results. In addition, all
subtasks except the last one, use document-level
embeddings doc2vec (Le and Mikolov, 2014) that
are concatenated with different feature vectors.
The models built for detecting emotions related to
Arabic tweets ranked third in subtask El-oc and
fourth in the other subtasks. We use both the orig-
inal Arabic tweets as well as translated tweets (to
English) as input. The performance of the system
for all subtasks in both languages shows substan-
tial improvements in Spearman correlation scores
over the baseline models provided by Task 1 orga-
nizers, ranging from 0.03 to 0.23.

The remainder of this research paper is orga-
nized as follows: Section 2 gives a brief overview
of existing work on social media emotion and sen-
timent analyses, including for English and Arabic
languages. Section 3 presents the requirements of
SemEval Task1 and the provided datasets. Section
4 examines the TeamUNCC’s system to determine
the presence and intensity of emotion in text. Sec-
tion 5 summarizes the key findings of the study
and the evaluations. Section 6 concludes with fu-
ture directions for this research.

350

2 Related work

Sentiment and Emotion Analysis: Sentiment anal-
ysis was first explored in 2003 by Nasukawa and
Yi (Nasukawa and Yi, 2003). An interest in
studying and building models for sentiment anal-
ysis and emotion detection for social microblog-
ging platforms has increased significantly in re-
cent years (Kouloumpis et al., 2011; Pak and
Paroubek, 2010; Oscar et al., 2017; Jimenez-Zafra
et al., 2017). Going beyond the task of mainly
classifying tweets as positive or negative, several
approaches to detect emotions were presented in
previous research papers (Mohammad and Kir-
itchenko, 2015; Tromp and Pechenizkiy, 2014;
Mohammad, 2012). Researchers (Mohammad and
Bravo-Marquez, 2017) introduced the WASSA-
2017 shared task of detecting the intensity of emo-
tion felt by the speaker of a tweet. The state-
of-the-art system in that competition (Goel et al.,
2017) used an approach of ensembling three dif-
ferent deep neural network-based models, repre-
senting tweets as word2vec embedding vectors. In
our system, we add doc2vec embedding vectors
and classify tweets to ordinal classes of emotions
as well as multi-class labeling of emotions.

Arabic Emotion Analysis: The growth of the
Arabic language on social microblogging plat-
forms, especially on Twitter, and the significant
role of the Arab region in international politics
and in the global economy have led researchers
to investigate the area of mining and analyzing
sentiments and emotions of Arabic tweets (Ab-
dullah and Hadzikadic, 2017; El-Beltagy et al.,
2017; Assiri et al., 2016). The challenges that
face researchers in this area can be classified un-
der two main areas: a lack of annotated resources
and the challenges of the Arabic language’s com-
plex morphology relative to other languages (As-
siri et al., 2015). Although recent research has
been dedicated to detect emotions for English con-
tent, to our knowledge, there are few studies for
Arabic content. Researchers (Rabie and Sturm,
2014) collected and annotated data and applied
different preprocessing steps related to the Arabic
language. They also used a simplification of the
SVM (known as SMO) and the NaiveBayes clas-
sifiers. Another two related works (Kiritchenko
et al., 2016; Rosenthal et al., 2017) shared differ-
ent tasks to identify the overall sentiments of the
tweets or phrases taken from tweets in both En-
glish and Arabic. Our work uses the state-of-the-

art approaches of deep learning and word/doc em-
bedding.

3 Task Description and Datasets

SemEval-2018 Task 1, Affect in Tweets, presents
five subtasks (El-reg, El-oc, V-reg, V-oc, and E-c.)
The subtasks provide training and testing for Twit-
ter datasets in the English, Arabic, and Spanish
languages (Mohammad and Kiritchenko, 2018).
Task 1 asks the participants to predict the intensity
of emotions and sentiments in the testing datasets.
It also includes multi-label emotion classification
subtask for tweets. This paper focuses on deter-
mining emotions in English and Arabic tweets.
Figure 1 shows the number of tweets for both
training and testing datasets for individual sub-
tasks. We note that subtasks El-reg and El-oc share
the same datasets with different annotations, and
the same for subtasks V-reg and V-oc.

Task1	

El-­‐reg	

El-­‐oc	

V-­‐reg	

V-­‐oc	

E-­‐c	

English	

Arabic	

English	

Arabic	

Train	

Test	

Train	

Test	

Train	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 7724	

Test	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 3259	

Train	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 2863	

Test	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 1518	

English	

Arabic	

Train	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 1630	

Test	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 937	

Train	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 1070	

Test	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 730	

Anger	
 	
 	
 2089	
 	
 	
 	
 	
 	
 	
 	
 	
 Joy	
 	
 1906	

	

Sadness	
 1930	
 	
 	
 	
 	
 	
 Fear	
 2641	
 	

Anger	
 	
 	
 1002	
 	
 	
 	
 	
 	
 	
 	
 	
 Joy	
 	
 1105	
 	
 	

	

Sadness	
 	
 975	
 	
 	
 	
 	
 	
 	
 Fear	
 	
 986	

Anger	
 	
 1027	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 Joy	
 	
 952	
 	
 	

	

Sadness	
 1030	
 	
 	
 	
 	
 	
 Fear	
 1028	

Anger	
 	
 373	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 Joy	
 448	

	

Sadness	
 	
 370	
 	
 	
 	
 	
 	
 	
 Fear	
 372	

Figure 1: Datasets of SemEval-2018 Task 1.

The description of each subtask is:
EI-reg: Determine the intensity of an emotion

in a tweet as a real-valued score between 0 (least
emotion intensity) and 1 (most emotion intensity).

EI-oc: Classify the intensity of emotion (anger,
joy, fear, or sadness) in the tweet into one of four
ordinal classes (0: no emotion, 1, 2, and 3 high
emotion).

V-reg: Determine the intensity of sentiment or
valence (V) in a tweet as a real-valued score be-
tween 0 (most negative) and 1 (most positive).

V-oc: Classify the sentiment intensity of a tweet
into one of seven ordinal classes, corresponding to

351

various levels of positive and negative sentiment
intensity (3: very positive mental state can be in-
ferred, 2, 1, 0, -1, -2, and -3: very negative mental
state can be inferred)

E-c: Classify the tweet as ’neutral or no emo-
tion’ or as one, or more, of eleven given emotions
(anger, anticipation, disgust, fear,joy, love, opti-
mism, pessimism, sadness, surprise, and trust).

4 The TeamUNCC System

Our team, TeamUNCC, is the only team that par-
ticipated in all subtasks of Task 1 of SemEval-
2018 for both English and Arabic tweets. Sub-
tasks El-reg and V-reg are considered similar be-
cause they determine the intensity of an emotion
or a sentiment (respectively) in a tweet as a real-
valued score. While subtasks El-oc and V-oc clas-
sify the intensity of the emotion or the sentiment
(respectively) to ordinal classes. Our system, de-
signed for these subtasks, shares most features and
components; however, the fifth subtask, E-c, uses
fewer of these elements. Figure 2 shows the gen-
eral structure of our system. More details for the
system’s components are shown in the following
subsections: Section 4.1 describes the system’s in-
put and prepocessing. Section 4.2 lists the feature
vectors, and Section 4.3 details the architecture of
neural network. Section 4.4 discusses the output
details.

4.1 Input and Preprocessing

EngTweets: The original English tweets in train-
ing and testing datasets have been tokenized by
converting the sentences into words, and all up-
percase letters have been converted to lower-
case. The preprocessing step also includes stem-
ming the words and removal of extraneous white
spaces. Punctuation have been treated as indi-
vidual words (”.,?!:;()[]#@’), while contractions
(wasn’t, aren’t) were left untreated.

ArTweets: The original Arabic tweets in train-
ing and testing datasets have been tokenized,
white spaces have been removed, and the punctu-
ation marks have been treated as individual words
(”.,?!:;()[]#@’).

TraTweets: The Arabic tweets have been trans-
lated using a powerful translation tool written in
python (translate 3.5.0)1. Next, the preprocessing
steps that are applied to EngTweets are also ap-
plied on TraTweets.

1https://pypi.python.org/pypi/translate

4.2 Feature Vectors

AffectTweets-145: Each tweet, in either En-
gTweets or TraTweets, is represented as 145 di-
mensional vectors by concatenating three vectors
obtained from the AffectiveTweets Weka-package
(Mohammad and Bravo-Marquez, 2017; Bravo-
Marquez et al., 2014), 43 features have been ex-
tracted using the TweetToLexiconFeatureVector
attribute that calculates attributes for a tweet us-
ing a variety of lexical resources; two-dimensional
vector using the Sentiment strength feature from
the same package, and the final 100 dimensional
vector is obtained by vectorizing the tweets to em-
beddings attribute also from the same package.

Doc2Vec-300: Each tweet is represented as a
300 dimensional vector by concatenating two vec-
tors of 150 dimensions each, using the document-
level embeddings (’doc2vec’) (Le and Mikolov,
2014; Lau and Baldwin, 2016). The vector for
each word in the tweet has been averaged to attain
a 150 dimensional representation of the tweet.

Word2Vec-300: Each tweet is represented as
a 300 dimensional vector using the pretrained
word2vec embedding model that is trained on
Google News (Mikolov et al., 2013b), and for
Arabic tweets, we use the pretrained embedding
model that is trained on Arabic tweets (Twt-SG)
(Soliman et al., 2017).

PaddingWord2Vec-300: Each word in a tweet
is represented as a 300 dimensional vector. The
same pretraind word2vec embedding models that
are used in Word2Vec-300 are also used in this
feature vector. Each tweet is represented as a vec-
tor with a fixed number of rows that equals the
maximum length of dataset tweets and a standard
300 columns using padding of zero vectors.

4.3 Network Architecture

Dense-Network: The input 445 dimensional vec-
tor feeds into a fully connected neural network
with three dense hidden layers. The activation
function for each layer is RELU (Maas et al.,
2013), with 256, 256, and 80 neurons for each
layer, respectively. The output layer consists of
one sigmoid neuron, which predicts the intensity
of the emotion or the sentiment between 0 and
1. Two dropouts are used in this network (0.3,
0.5) after the first and second layers, respectively.
For optimization, we use SGD (Stochastic Gradi-
ent Descent) optimizer (lr=0.01, decay=1× 10−6,

352

	

	

	

Input	
 &	

Preprocessing	

Feature	
 Vectors	

Network	
 Architecture	
 	

EngTweets	

ArTweets	

TraTweets	

AffectTweets-­‐145	

Doc2Vec-­‐300	

Word2Vec-­‐300	

PaddingWord2Vec-­‐300	

Dense-­‐Network	

LSTM-­‐Network	
 PredicHon	
 2	

PredicHon	
 3	

Average	

Output	

PredicHon	
 1	

Figure 2: The structure for our system.

and momentum=0.9) 2, optimizing for ’mse’ loss
function and ’accuracy’ metrics. Early stopping is
also applied to obtain best results.

LSTM-Network: The input vector feeds an
LSTM of 256 neurons that passes the vector to
a fully connected neural network of two hidden
layers and two dropouts (0.3, 0.5). The first hid-
den layer has 256 neurons, while the second layer
has 80 neurons. Both layers use the RELU acti-
vation function. The output layer consists of one
sigmoid neuron, which predicts the intensity of
the emotion or the sentiment between 0 and 1.
For optimization, we use SGD optimizer (lr=0.01,
decay=1× 10−6, and momentum=0.9), optimiz-
ing for ’mse’ loss function and ’accuracy’ metrics
as well as early stopping to obtain the best results.

4.4 Output

Subtasks El-reg, El-oc, V-reg, and V-oc: These
four subtasks for each language (English and Ara-
bic) share the same structure as shown in Figure
2, the only difference is in the output stage. Each
subtask passes the tweets to three different models
that produces three predictions. See Table 1 and
Table 2 for more comprehensive details on how
each prediction with English and Arabic language
is produced, respectively. The average of the pre-
dictions for each tweet is a real-valued number be-
tween 0 and 1. This output is considered the final
output for both subtasks El-reg and V-reg, while
subtasks El-oc and V-oc classify this real-valued
number to one of the ordinal classes that are shown
in Section 3. We note that El-reg and El-oc shares
the same datasets. We also noticed that V-reg and
V-oc shares the same dataset. Therefore, we found
the ranges of values for each ordinal class by com-
paring the datasets. Table 3 shows the range of

2https://keras.io/optimizers/

values to obtain the ordinal classes for El-oc sub-
task in English, Table 4 shows the same for El-oc
subtask in Arabic, and Table 5 shows the for V-oc
in both English and Arabic.

Feature	
 Vectors:	
 Word2Vec-­‐300	

(googleNews.bin	
 	
 for	
 English	
 tweets)	

(Twt-­‐SG.bin	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 for	
 Arabic	
 tweets)	

	

	

	

Dense	
 256	
 (Relu)	

Dropout	
 0.3	

Dense	
 256	
 (Relu)	

Dorpout	
 0.5	

Dense	
 80	
 (Relu)	

Dense	
 1(sigmoid)	

Output	
 for	
 each	
 tweet	
 	

and	
 every	
 emoOon	

Network	
 Architecture:	

	
 Dense-­‐Network	

If	
 the	
 result	
 >	
 0.5	

	
 this	
 emoOon	
 is	
 1	

Else	

	
 this	
 emoOon	
 is	
 0	

Input:	
 EngTweets	
 for	
 English	
 Tweets	
 and	

ArTweets	
 for	
 Arabic	
 tweets	

Figure 3: The detailed structure for our system related
to subtask E-c.

Subtask E-c: In this subtask, our system makes
only one prediction. See Figure3 for more details
on the process of predicting the results. The input
is EngTweets for English language and ArTweets
for Arabic language. We use Word2Vec-300 as
the feature vector with GoogleNews for English
tweets and Twt-SG for Arabic tweets. The net-
work architecture is Dense-Network. This process
is applied for each emotion of the eleven emotions:

353

- Prediction 1 Prediction2 Prediction3
Input EngTweets EngTweets EngTweets

Feature Vectors
AffectTweets-145

Doc2Vec-300
AffectTweets-145

Word2Vec-300
PaddingWord2Vec-300

Neural Network Dense-Network Dense-Network LSTM-Network

Table 1: The Architecture details for English subtasks El-reg, El-oc, V-reg, and V-oc.

- Prediction 1 Prediction2 Prediction3

Input TraTweets
ArTweets
TraTweets

ArTweets

Feature Vectors
AffectTweets-145

Doc2Vec-300
AffectTweets-145

Word2Vec-300
PaddingWord2Vec-300

Neural Network Dense-Network Dense-Network LSTM-Network

Table 2: The Architecture details for Arabic subtasks El-reg, El-oc, V-reg, and V-oc.

Output class Angry Joy Fear Sadness
0: no emotion can be inferred 0-0.42 0-0.36 0-0.57 0-0.44

1: low amount of emotion can be inferred 0.42-0.52 0.36-0.53 0.57-0.69 0.44-0.54
2: moderate amount of emotion can be inferred 0.52-0.7 0.53-0.69 0.66-0.79 0.54-0.7

3: high amount of emotion can be inferred 0.7-1 0.69-1 0.79-1 0.7-1

Table 3: Classify the output to ordinal classes for English El-oc.

Output class Angry Joy Fear Sadness
0: no emotion can be inferred 0-0.40 0-0.31 0-0.45 0-0.47

1: low amount of emotion can be inferred 0.40-0.55 0.31-0.51 0.45-0.56 0.47-0.54
2: moderate amount of emotion can be inferred 0.55-0.64 0.51-0.75 0.56-0.76 0.54-0.67

3: high amount of emotion can be inferred 0.64-1 0.75-1 0.76-1 0.67-1

Table 4: Classify the output to ordinal classes for Arabic El-oc.

Output class English Sentiment Arabic Sentiment
-3: very negative emotional state can be inferred 0-0.23 0-0.20

-2: moderately negative emotional state can be inferred 0.23-0.38 0.20-0.37
-1: slightly negative emotional state can be inferred 0.38-0.43 0.37-0.43
0: neutral or mixed emotional state can be inferred 0.43-0.61 0.43-0.56
1: slightly positive emotional state can be inferred 0.61-0.70 0.56-0.69

2: moderately positive emotional state can be inferred 0.70-0.78 0.69-0.81
3: very positive emotional state can be inferred 0.78-1 0.81-1

Table 5: Classify the output to ordinal classes for English and Arabic V-oc.

anger, anticipation, disgust, fear, joy, love, opti-
mism, pessimism, sadness, surprise, and trust. The
output of each individual tweet is a real-valued
number between 0 and 1. This output is normal-
ized to either 1 (contains an emotion) if it is greater
than 0.5 or 0 (no emotion) if it is less than 0.5.

5 Evaluations and Results

Each participating system in the subtasks El-reg,
El-oc, V-reg, and V-oc, has been scored by using
Spearman correlation score. The subtask E-c has

been scored by using accuracy metric. Table 6
shows the performance of our system in E-reg and
El-oc with each emotion and the average score for
both English and Arabic. Table 7 shows the re-
sults for subtasks V-reg, V-oc, and E-c. The per-
formance of our system beats the baseline model’s
performance, which is provided by the Task’s or-
ganizers, see Figure 4 to capture the difference be-
tween the two performances. Our system ranks
third in the subtask El-oc for Arabic language, and
Fourth in the subtasks El-reg, V-reg, V-oc, and E-

354

Task Angry Joy Fear Sadness Average
El-reg (English) 0.722 0.698 0.692 0.666 0.695
El-reg (Arabic) 0.524 0.657 0.576 0.631 0.597
El-oc (English) 0.604 0.638 0.544 0.610 0.599
El-oc (Arabic) 0.459 0.538 0.483 0.587 0.517

Table 6: The Spearman correlation scores for subtasks El-reg and El-oc.

Task Spearman score
V-reg (English) 0.787
V-reg (Arabic) 0.773
V-oc (English) 0.736
V-oc (Arabic) 0.748

Task Accuracy score
E-c (English) 0.471
E-c (Arabic) 0.446

Table 7: The results for subtasks V-reg, V-oc, and E-c.

Figure 4: Comparing performances of the TeamUNCC and the baseline systems.

c for Arabic language too. It is worth mentioning
that these results have been obtained by using the
task datasets without using any external data.

6 Conclusion

In this paper, we have presented our system that
participated in Task 1 of Semeval-2018. Our sys-
tem is unique in that we use the same underlying
architecture for all subtasks for both languages -
English and Arabic to detect the intensity of emo-
tions and sentiments in tweets. The performance
of the system for each subtask beats the perfor-
mance of the baseline’s model, indicating that our
approach is promising. The system ranked third in
El-oc for Arabic language and fourth in the other
subtasks for Arabic language too.

In this system, we used word2vec and doc2vec
embedding models with feature vectors extracted
from the tweets by using the AffectTweets Weka-
package, these vectors feed the deep neural net-
work layers to obtain the predictions.

In future work, we will add emotion and valence
detection in Spanish language to our system by ap-

plying the same approaches that have been used
with Arabic. We also want to investigate the Ara-
bic feature attributes in order to enhance the per-
formance in this language.

References
Malak Abdullah and Mirsad Hadzikadic. 2017. Senti-

ment analysis on arabic tweets: Challenges to dis-
secting the language. In International Conference
on Social Computing and Social Media, pages 191–
202. Springer.

Apoorv Agarwal, Boyi Xie, Ilia Vovsha, Owen Ram-
bow, and Rebecca Passonneau. 2011. Sentiment
analysis of twitter data. In Proceedings of the work-
shop on languages in social media, pages 30–38.
Association for Computational Linguistics.

Adel Assiri, Ahmed Emam, and Hmood Al-Dossari.
2016. Saudi twitter corpus for sentiment analysis.
World Academy of Science, Engineering and Tech-
nology, International Journal of Computer, Electri-
cal, Automation, Control and Information Engineer-
ing, 10(2):272–275.

Adel Assiri, Ahmed Emam, and Hmood Aldossari.
2015. Arabic sentiment analysis: a survey. Interna-

355

tional Journal of Advanced Computer Science and
Applications, 6(12):75–85.

Felipe Bravo-Marquez, Marcelo Mendoza, and Bar-
bara Poblete. 2014. Meta-level sentiment models for
big social data analysis. Knowledge-Based Systems,
69:86–99.

Delenn Chin, Anna Zappone, and Jessica Zhao. 2016.
Analyzing twitter sentiment of the 2016 presidential
candidates. News & Publications: Stanford Univer-
sity.

Paul Ekman. 1993. Facial expression and emotion.
American psychologist, 48(4):384.

Samhaa R El-Beltagy, Talaat Khalil, Amal Halaby,
and Muhammad Hammad. 2017. Combining lex-
ical features and a supervised learning approach
for arabic sentiment analysis. arXiv preprint
arXiv:1710.08451.

Pranav Goel, Devang Kulshreshtha, Prayas Jain, and
Kaushal Kumar Shukla. 2017. Prayas at emoint
2017: An ensemble of deep neural architectures
for emotion intensity prediction in tweets. In Pro-
ceedings of the 8th Workshop on Computational Ap-
proaches to Subjectivity, Sentiment and Social Me-
dia Analysis, pages 58–65.

Salud Maria Jimenez-Zafra, M Teresa Martin Valdivia,
Eugenio Martinez Camara, and Luis Alfonso Urena-
Lopez. 2017. Studying the scope of negation for
spanish sentiment analysis on twitter. IEEE Trans-
actions on Affective Computing.

Svetlana Kiritchenko, Saif Mohammad, and Moham-
mad Salameh. 2016. Semeval-2016 task 7: De-
termining sentiment intensity of english and arabic
phrases. In Proceedings of the 10th International
Workshop on Semantic Evaluation (SemEval-2016),
pages 42–51.

Efthymios Kouloumpis, Theresa Wilson, and Jo-
hanna D Moore. 2011. Twitter sentiment analysis:
The good the bad and the omg! Icwsm, 11(538-
541):164.

Jey Han Lau and Timothy Baldwin. 2016. An empiri-
cal evaluation of doc2vec with practical insights into
document embedding generation. arXiv preprint
arXiv:1607.05368.

Quoc Le and Tomas Mikolov. 2014. Distributed rep-
resentations of sentences and documents. In Inter-
national Conference on Machine Learning, pages
1188–1196.

Andrew L Maas, Awni Y Hannun, and Andrew Y Ng.
2013. Rectifier nonlinearities improve neural net-
work acoustic models. In Proc. icml, volume 30,
page 3.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jef-
frey Dean. 2013a. Efficient estimation of word
representations in vector space. arXiv preprint
arXiv:1301.3781.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013b. Distributed representa-
tions of words and phrases and their compositional-
ity. In Advances in neural information processing
systems, pages 3111–3119.

Saif M Mohammad. 2012. # emotional tweets. In Pro-
ceedings of the First Joint Conference on Lexical
and Computational Semantics-Volume 1: Proceed-
ings of the main conference and the shared task, and
Volume 2: Proceedings of the Sixth International
Workshop on Semantic Evaluation, pages 246–255.
Association for Computational Linguistics.

Saif M Mohammad and Felipe Bravo-Marquez. 2017.
Wassa-2017 shared task on emotion intensity. arXiv
preprint arXiv:1708.03700.

Saif M. Mohammad, Felipe Bravo-Marquez, Mo-
hammad Salameh, and Svetlana Kiritchenko. 2018.
Semeval-2018 Task 1: Affect in tweets. In Proceed-
ings of International Workshop on Semantic Evalu-
ation (SemEval-2018), New Orleans, LA, USA.

Saif M Mohammad and Svetlana Kiritchenko. 2015.
Using hashtags to capture fine emotion cate-
gories from tweets. Computational Intelligence,
31(2):301–326.

Saif M. Mohammad and Svetlana Kiritchenko. 2018.
Understanding emotions: A dataset of tweets to
study interactions between affect categories. In
Proceedings of the 11th Edition of the Language
Resources and Evaluation Conference, Miyazaki,
Japan.

Tetsuya Nasukawa and Jeonghee Yi. 2003. Sentiment
analysis: Capturing favorability using natural lan-
guage processing. In Proceedings of the 2nd inter-
national conference on Knowledge capture, pages
70–77. ACM.

Nels Oscar, Pamela A Fox, Racheal Croucher, Riana
Wernick, Jessica Keune, and Karen Hooker. 2017.
Machine learning, sentiment analysis, and tweets:
an examination of alzheimers disease stigma on twit-
ter. Journals of Gerontology Series B: Psychologi-
cal Sciences and Social Sciences, 72(5):742–751.

Alexander Pak and Patrick Paroubek. 2010. Twitter as
a corpus for sentiment analysis and opinion mining.
In LREc, volume 10.

Omneya Rabie and Christian Sturm. 2014. Feel the
heat: Emotion detection in arabic social media con-
tent. In The International Conference on Data
Mining, Internet Computing, and Big Data (Big-
Data2014), pages 37–49. The Society of Digital In-
formation and Wireless Communication.

Sara Rosenthal, Noura Farra, and Preslav Nakov.
2017. Semeval-2017 task 4: Sentiment analysis in
twitter. In Proceedings of the 11th International
Workshop on Semantic Evaluation (SemEval-2017),
pages 502–518.

356

Abu Bakr Soliman, Kareem Eissa, and Samhaa R El-
Beltagy. 2017. Aravec: A set of arabic word embed-
ding models for use in arabic nlp. Procedia Com-
puter Science, 117:256–265.

Erik Tromp and Mykola Pechenizkiy. 2014. Rule-
based emotion detection on social media: putting
tweets on plutchik’s wheel. arXiv preprint
arXiv:1412.4682.

357

Proceedings of the 12th International Workshop on Semantic Evaluation (SemEval-2018), pages 358–363
New Orleans, Louisiana, June 5–6, 2018. ©2018 Association for Computational Linguistics

RIDDL at SemEval-2018 Task 1: Rage Intensity Detection with Deep
Learning

Venkatesh Elango, Karan Uppal
Bloomberg

New York, NY, USA
{velango,kuppal8}@bloomberg.net

Abstract

We present our methods and results for af-
fect analysis in Twitter developed as a part of
SemEval-2018 Task 1, where the sub-tasks in-
volve predicting the intensity of emotion, the
intensity of sentiment, and valence for tweets.
For modeling, though we use a traditional
LSTM network, we combine our model with
several state-of-the-art techniques to improve
its performance in a low-resource setting. For
example, we use an encoder-decoder network
to initialize the LSTM weights. Without any
task specific optimization we achieve compet-
itive results (macro-average Pearson correla-
tion coefficient 0.696) in the El-reg task. In
this paper, we describe our development strat-
egy in detail along with an exposition of our
results.

1 Introduction

Sentiment analysis is a technique to classify doc-
uments based on the polarity of opinion expressed
by the author of the document (Pang et al., 2002).
Traditionally this involved extracting coarse sen-
timent (positive, negative, or neutral) from doc-
uments such as news articles, product or movie
reviews (Wiebe et al., 2005; Hu and Liu, 2004).
In order to get a fine grained view of the opinion,
sentiment analysis was applied at the sentence and
phrase level (Yu and Hatzivassiloglou, 2003; Wil-
son et al., 2005). With the advent of social me-
dia, Twitter in particular, sentiment towards a wide
range of topics could be extracted at a much larger
scale than before. This however came with its own
set of problems, viz., a lack of proper grammatical
structure, prevalence of slang, acronyms, and mis-
spellings (Jansen et al., 2009; Barbosa and Feng,
2010).

SemEval tasks have provided a curated test-
ing environment for analysis on Twitter data with
tasks to quantify sentiment on two-point, three-

point, and five-point scales (Nakov et al., 2016;
Rosenthal et al., 2017). While a finer gradation
in polarity of the text could be inferred by intro-
ducing more nuanced categories, it faces the prob-
lem of needing to collect more labeled data as
the number of classes increase. Therefore, this
approach requires that the intensity of the senti-
ment expressed be measured on a continuous scale
rather than through discrete categories. SemEval
2018 Task 1 takes a novel step in this direction by
introducing tasks for predicting intensity of emo-
tion, or sentiment expressed (Mohammad et al.,
2018).

We participated in SemEval-2018 Task-1 (El-
Reg, V-reg, V-oc) and our contributions through
this paper are as follows:

• We present an LSTM network combined with
known state-of-the-art techniques to improve
performance on low-resource setting tasks.

• The proposed model requires no task specific
hyper-parameter tuning.

• We perform error analysis of our model to
obtain a better understanding of strengths
and weaknesses of a deep learning-based ap-
proach for these tasks and propose improve-
ments.

2 Methods

2.1 Datasets

For each subtask, the organizers provide train-
ing and development datasets for model training
and hyperparameter selection. The details on how
much data and how it was labeled can be found
here (Mohammad and Kiritchenko, 2018). We
concatenate the training and development datasets
and sample 10% of this combined dataset, to use
as validation data. Our model training involves an

358

Figure 1: Network architecture.

unsupervised phase and a supervised phase, which
is described in detail in Section 2.3. For the unsu-
pervised learning phase, we use the concatenated
training data from all the tasks, and for the super-
vised learning phase, we use the task specific train-
ing data.

2.2 Model

We start by pre-processing and tokenizing the
tweets by adapting the pre-processing used in
training GloVe word embeddings for Twitter (Pen-
nington et al., 2014). Following the pre-processing
techniques used in GloVe, we retain punctua-
tions, normalize mentions, numbers, URLs, smi-
leys (happy, neutral, and sad separately), and in-
clude tags for hashtags, repeating, and all upper
case characters. In addition, we also pre-process
emojis by replacing them with their Unicode text
description1.

After a tweet is broken down into a sequence of
tokens, it is then converted to a sequence of vectors
using the 200-dimensional GloVe word embed-
dings for Twitter which was trained on 2 billion
tweets with a vocabulary of size 1.2 million (Pen-
nington et al., 2014).

This sequence of word vectors is next input to
an LSTM network (Hochreiter and Schmidhuber,
1997), with h1 hidden units. The output from the
last time step of the LSTM cell is passed through
a layer of h2 hidden units with ReLU activation.
A final sigmoid layer then produces the output.
Since all of the tasks, including the ordinal clas-
sification task, have an innate sense of ordering,
we cast them as regression problems. The network
architecture is shown in Figure 1.

1http://unicode.org/emoji/charts/emoji-list.html

2.3 Training

We tried two different training strategies. The re-
sults submitted before the official deadline used
the first strategy. Since then, we identified a few
key areas of improvement and used the second
training strategy to get much better results. Both
strategies are described below and the results are
discussed in Section 3.

2.3.1 Strategy 1
We divide the training of our model into two
phases, an unsupervised phase and a supervised
phase.

Unsupervised Phase
Since the amount of training data is small (approx-
imately 2000 labeled samples on average across
all tasks) in comparison to the number of pa-
rameters (approximately 500,000) of the model,
the training of the model could be unstable and
prone to over-fitting. To counter this problem, the
weights of the LSTM are initialized using a mod-
ified sequence auto-encoder (Dai and Le, 2015).
This modified sequence auto-encoder uses sepa-
rate encoder and decoder networks, attempting to
reconstruct the input to the encoder at the output
of the decoder by minimizing the mean squared er-
ror between them (Elango et al., 2017; Srivastava
et al., 2015). For this unsupervised learning phase,
we pool the training data from all the tasks and use
10% of it as a validation set. The validation set is
used to tune the number of epochs. The validation
loss is minimized for 5 epochs. Then, we fine-tune
these weights with task specific training + valida-
tion data and this fine-tuning is run for another 10
epochs.

The unsupervised learning procedure is crucial
for the good initialization of weights in the super-
vised task. As the model optimizes its weights for
reconstruction of the sequence, it is able to learn
the structure of the data.

Supervised Phase
For the supervised phase, the weights from the
encoder network are used as initialization. To
learn a generalizable model, instead of optimiz-
ing the hyper-parameters for each task separately,
we optimize the hyper-parameters only for the
anger intensity regression sub-task (EI-reg anger)
which was picked arbitrarily. For tuning the hyper-
parameters we combine the training and develop-
ment set provided for the task and randomly sam-

359

Hyperparameter Value
h1 256
h2 32
nmb 32
e 5
pdo 0.5

Table 1: Hyperparameters used for network training.

ple 10% of the data from this task as a validation
set. The set of hyper-parameters optimized are the
number of hidden units (h1, h2), mini-batch size
(nmb), number of epochs to train the network (e)
and dropout probability (pdo). For all the other
tasks, the same optimized set of hyper-parameter
values are used in training the model with all of
the task specific training data.

Also, per recommendation from (Gers et al.,
2000; Jozefowicz et al., 2015), to enable gradient
flow, the bias term in the forget gate of the LSTM
is initialized to 1. We apply dropout to the recur-
rent states (Gal and Ghahramani, 2016) and the
hidden nodes with a probability of pdo, to prevent
over-fitting to the training data. The model opti-
mization is carried out by back-propagation using
Adam optimizer (Kingma and Ba, 2014).

Using the above approach, the set of hyper-
parameters that provide the best performance are
reported in Table 1.

2.3.2 Strategy 2
After observing the results for all the subtasks we
noticed that variance is fairly high in the predicted
intensities. This is also visible in the scatter plots
of true and predicted intensity, shown in Figures 2
and 3. We also noticed during the hyper param-
eter optimization on the anger task that the gap
between the validation loss and training loss was
high.

Simpler Model and Regularization
The above observations led us to believe that we
might be over-fitting to the training data. Hence
we tried the following steps to reduce over-fitting:

1. Reduced number of parameters: Number of
hidden units of LSTM was reduced to 100.

2. Increased dropout rate: Increased the dropout
in the hidden layer to 0.75.

Additional Unlabeled Data
Furthermore, we believed that the unsupervised
phase of our training could benefit from more un-

labeled data. So we pooled in all the development
and test data across all the tasks along with the
training data, and used it in the unsupervised learn-
ing of weights of the LSTM. To tune the number
of epochs, we set aside 10% of the combined train-
ing, development, and test as validation set. It is
important to note that at no point were gold labels
of test data used in any phase of training. This was
simply an inexpensive way to get more data for
trainining the unsupervised phase.

Ensemble
To further improve the prediction performance, we
take an ensemble of 5 versions of our model and
also optimize the number of epochs of training
for each task for each of the 5 models. All the
other hyper-parameters are kept the same across
all tasks. For each of the 5 models, a random
validation set with 10% of the labeled data is set
aside to tune the number of epochs. Therefore,
each model of the ensemble is being trained 90%
of randomly sampled data. The supervised phase
is trained, with random initialization for the dense
layer, for 15 epochs, and the model state is saved
at the end of every epoch. Finally the model cor-
responding to the epoch with the lowest validation
loss is picked. All 5 models are used to predict on
the test set, and the average of the 5 predictions is
used as the final prediction of the ensemble.

3 Results

Models trained with both strategies are evaluated
using Pearson correlation as the metric. We com-
pare our performance with an unigram SVM base-
line, as well as the best submission for each sub-
task. The official submitted results using Strategy
1 are reported in Tables 2 and 3 for subtask EI-reg
and in Tables 4 and 5 for subtasks V-reg and V-oc
respectively. The improved results using strategy
2 are reported in Table 6. The results in table 6 are
averaged over 5 runs and report the standard devi-
ation over the runs as well. We find that strategy
2 improves the macro-average Pearson correlation
from 0.666 to 0.696.

To further analyze the results for the regression
tasks, we created scatter plots shown in Figures 2
and 3. We plot the predicted intensity score against
the gold label intensity score and also show the
line of best fit.

Analyzing the scatter plots, we note that our
model consistently overestimates the intensity

360

a

b

c

d

Figure 2: Plot of predicted against gold intensity score
for emotion intensity regression using Strategy 1.

Emotion
Model Anger Fear Joy Sadness

Baseline 0.526 0.525 0.575 0.453
Ours 0.695 0.659 0.638 0.672
Best 0.827 0.779 0.792 0.798

Table 2: Pearson correlation on emotion intensity re-
gression task (EI-reg) in English for each emotion us-
ing Strategy 1.

Model Macro-average
Baseline 0.520

Ours 0.666
Best 0.799

Table 3: Macro average of Pearson correlation on emo-
tion intensity regression task (EI-reg) in English using
Strategy 1.

Model Valence
Baseline 0.585

Ours 0.782
Best 0.873

Table 4: Pearson correlation on valence intensity re-
gression task (V-reg) in English using Strategy 1.

Model Valence
Baseline 0.509

Ours 0.593
Best 0.836

Table 5: Pearson correlation on valence ordinal classi-
fication task (V-oc) in English using Strategy 1.

Pearson Correlation
Emotion Average Std Dev
Anger 0.717 0.0021
Fear 0.695 0.0020
Joy 0.688 0.0054

Sadness 0.685 0.0020
Macro-average 0.696 0.0054

Table 6: Pearson correlation (average and standard de-
viation of 5 runs) on emotion intensity regression task
(EI-reg) in English using Strategy 2.

when the gold label score is low and underesti-
mates the intensity when the gold label score is
high. The overestimation of low gold label score
is most pronounced in the case of emotion inten-
sity regression for joy and this is reflected in its
low Pearson correlation in Table 2. Emotion in-
tensity regression for fear has larger variance in
predicted intensities for high gold label scores and

361

Figure 3: Plot of predicted against gold intensity score
for valence regression using Strategy 1.

this too can be seen in the relatively low Pearson
correlation reported in Table 2. While anger and
sadness emotions also make under estimation er-
ror for high gold label scores, the line of best fit as
well as the Pearson correlation are better than the
corresponding ones for joy and fear.

The performance of the model in the valence re-
gression task is markedly better in comparison to
the performance in the emotion intensity regres-
sion tasks, as seen from the Pearson correlation, in
Table 3, as well as the line of best fit, in Figure 3.

4 Conclusion

We presented an LSTM based approach for affect
and emotion intensity regression and described
our training strategy which did not involve any
task specific hyper-parameter optimization. We
did not employ any task specific hyper-parameter
optimization to demonstrate that the training pro-
cedure is robust and that the model can be trained
to achieve reasonable performance without be-
ing highly sensitive to values of hyper-parameters.
We also show how the traditional LSTM network
can be combined with known state-of-the-art tech-
niques to get improvements in low resource set-
tings. We use an encoder-decoder network to ini-
tialize the LSTM weights and use ensembles of
our network to further improve performance. On
the other hand, when the goal is to maximize per-
formance, task specific hyper-parameter optimiza-
tion could be employed, which is shown in strat-
egy 2 where tuning the number of epochs on a per
task basis helps the performance.

References

Luciano Barbosa and Junlan Feng. 2010. Robust sen-
timent detection on twitter from biased and noisy
data. In Proceedings of the 23rd international con-
ference on computational linguistics: posters, pages
36–44. Association for Computational Linguistics.

Andrew M Dai and Quoc V Le. 2015. Semi-supervised
sequence learning. In Advances in Neural Informa-
tion Processing Systems, pages 3079–3087.

Venkatesh Elango, Aashish N Patel, Kai J Miller, and
Vikash Gilja. 2017. Sequence transfer learning for
neural decoding. bioRxiv, page 210732.

Yarin Gal and Zoubin Ghahramani. 2016. A theoret-
ically grounded application of dropout in recurrent
neural networks. In Advances in Neural Information
Processing Systems, pages 1019–1027.

Felix A Gers, Jürgen Schmidhuber, and Fred Cummins.
2000. Learning to forget: Continual prediction with
lstm. Neural computation, 12(10):2451–2471.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural computation,
9(8):1735–1780.

Minqing Hu and Bing Liu. 2004. Mining and summa-
rizing customer reviews. In Proceedings of the tenth
ACM SIGKDD international conference on Knowl-
edge discovery and data mining, pages 168–177.
ACM.

Bernard J Jansen, Mimi Zhang, Kate Sobel, and Abdur
Chowdury. 2009. Twitter power: Tweets as elec-
tronic word of mouth. Journal of the Association for
Information Science and Technology, 60(11):2169–
2188.

Rafal Jozefowicz, Wojciech Zaremba, and Ilya
Sutskever. 2015. An empirical exploration of recur-
rent network architectures. In Proceedings of the
32nd International Conference on Machine Learn-
ing (ICML-15), pages 2342–2350.

Diederik Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Saif M. Mohammad, Felipe Bravo-Marquez, Mo-
hammad Salameh, and Svetlana Kiritchenko. 2018.
Semeval-2018 Task 1: Affect in tweets. In Proceed-
ings of International Workshop on Semantic Evalu-
ation (SemEval-2018), New Orleans, LA, USA.

Saif M. Mohammad and Svetlana Kiritchenko. 2018.
Understanding emotions: A dataset of tweets to
study interactions between affect categories. In
Proceedings of the 11th Edition of the Language
Resources and Evaluation Conference, Miyazaki,
Japan.

362

Preslav Nakov, Alan Ritter, Sara Rosenthal, Fabrizio
Sebastiani, and Veselin Stoyanov. 2016. Semeval-
2016 task 4: Sentiment analysis in twitter. In Pro-
ceedings of the 10th International Workshop on Se-
mantic Evaluation (SemEval-2016), pages 1–18.

Bo Pang, Lillian Lee, and Shivakumar Vaithyanathan.
2002. Thumbs up?: sentiment classification using
machine learning techniques. In Proceedings of the
ACL-02 conference on Empirical methods in natural
language processing-Volume 10, pages 79–86. As-
sociation for Computational Linguistics.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. Glove: Global vectors for word
representation. In Proceedings of the 2014 confer-
ence on empirical methods in natural language pro-
cessing (EMNLP), pages 1532–1543.

Sara Rosenthal, Noura Farra, and Preslav Nakov.
2017. Semeval-2017 task 4: Sentiment analysis in
twitter. In Proceedings of the 11th International
Workshop on Semantic Evaluation (SemEval-2017),
pages 502–518.

Nitish Srivastava, Elman Mansimov, and Ruslan
Salakhudinov. 2015. Unsupervised learning of
video representations using lstms. In International
Conference on Machine Learning, pages 843–852.

Janyce Wiebe, Theresa Wilson, and Claire Cardie.
2005. Annotating expressions of opinions and emo-
tions in language. Language resources and evalua-
tion, 39(2-3):165–210.

Theresa Wilson, Janyce Wiebe, and Paul Hoffmann.
2005. Recognizing contextual polarity in phrase-
level sentiment analysis. In Proceedings of the con-
ference on human language technology and empiri-
cal methods in natural language processing, pages
347–354. Association for Computational Linguis-
tics.

Hong Yu and Vasileios Hatzivassiloglou. 2003. To-
wards answering opinion questions: Separating facts
from opinions and identifying the polarity of opinion
sentences. In Proceedings of the 2003 conference on
Empirical methods in natural language processing,
pages 129–136. Association for Computational Lin-
guistics.

363

Proceedings of the 12th International Workshop on Semantic Evaluation (SemEval-2018), pages 364–368
New Orleans, Louisiana, June 5–6, 2018. ©2018 Association for Computational Linguistics

ARB-SEN at SemEval-2018 Task1: A New Set of Features for Enhancing
the Sentiment Intensity Prediction in Arabic Tweets

El Moatez Billah Nagoudi
Laboratoire d’Informatique et de Mathématiques LIM, Laghouat, Algeria

Echahid Hamma Lakhdar University, El Oued, Algeria
e.nagoudi@lagh-univ.dz

Abstract

This article describes our proposed Arabic
Sentiment Analysis system named ARB-
SEN. This system is designed for the In-
ternational Workshop on Semantic Eval-
uation 2018 (SemEval-2018), Task1: Af-
fect in Tweets. ARB-SEN proposes two su-
pervised models to estimate the sentiment
intensity in Arabic tweets. Both mod-
els use a set of features including senti-
ment lexicon, negation, word embedding
and emotion symbols features. Our sys-
tem combines these features to assist the
sentiment analysis task. ARB-SEN sys-
tem achieves a correlation score of 0.720,
ranking 6th among all participants in the
valence intensity regression (V-reg) for the
Arabic sub-task organized within the Se-
mEval 2018 evaluation campaign.

1 Introduction and Related Work

According to Mohammad (2016) the Sentiment
Analysis (SA) task is used to refer to the “task of
automatically determining the valence or polarity
of a piece of text, whether it is positive, negative,
or neutral”.

Nowadays, social media platforms like Twit-
ter, Facebook, LinkedIn, and Quora are widely
used (Lenze, 2017). For instance, Ranginwala
and Towbin (2017) estimate that Twitter has 320
million active monthly users. These social me-
dia platforms allow people to communicate not
only the sentiment they are feeling (positive or
negative) but also the intensity of this sentiment.
For example, from the tweet of your friend, you
can estimate that: he is very happy (most posi-
tive), slightly angry (slightly negative), absolutely
sad (most negative) or neutral (Mohammad et al.,
2017).

Automatically determining the sentiment inten-
sity is an important task in several application
fields, such as public health, intelligence gather-
ing, commerce and social welfare (Mohammad
and Bravo-Marquez, 2017).

In the Semantic Evaluation (SemEval), senti-
ment analysis in Twitter task has been proposed
for the first time in SemEval-2013 by (Nakov et
al., 2013). Since SemEval-2013, this task has be-
come a principal task in SemEval : SemEval-2014
(Rosenthal et al., 2014), SemEval-2015 (Rosenthal
et al., 2015), SemEval-2016, (Nakov et al., 2016)
and SemEval-2017 (Rosenthal et al., 2017).

In the Arab world, Salem (2017) estimates that
the number of monthly active Arabic users was
11.1 million in March 2017, which makes Ara-
bic an emergent language for sentiment analysis
in Twitter (Rosenthal et al., 2017). Sentiment
analysis task in Arabic is particularly a challeng-
ing research task (Rosenthal et al., 2017) due to
its complex morphological and syntactic structure
(Habash, 2010).

Many Arabic sentiment analysis tools and stud-
ies have been proposed in order to overcome this
challenge. For example in Arabic newswire, the
most relevant works are: (Abdul-Mageed et al.,
2011), (Elarnaoty et al., 2012). In Arabic reviews
we find (Elhawary and Elfeky, 2010), (Elnagar,
2016), (Altowayan and Elnagar, 2017). In Arabic
Twitter many researches are focused on the senti-
ment analysis task such as (Mourad and Darwish,
2013), (Abdul-Mageed et al., 2014), (Refaee and
Rieser, 2014), , (Salameh et al., 2015) and (Al-
dayel and Azmi, 2016).

In this article we present our ARB-SEN system
devoted to enhancing the detection of sentiment
intensity in Arabic tweets. ARB-SEN system pro-
poses two methods to measure this valence. Our
best submitted method achieves a correlation of
0.720, ranking 6th in the Arabic Detecting Sen-

364

timent Intensity shared task (Mohammad et al.,
2018a), SemEval-2018.

2 System Description

The sentiment intensity detection in ARB-SEN
system relies on a set of features. In what follows
we describe the considered features:

2.1 Sentiment Lexicon Features (SLF)
We employed the following four sentiment lexi-
cons to extract the SLF features:

Arabic Sentiment (Valence) Lexicons
Created as part of SemEval-2016 by Kiritchenko
et al. (2016), this Arabic sentiment lexicon is a list
of 1,168 single words and 198 simple phrases and
their associations with positive and negative sen-
timent. The lexicon include both standard and di-
alectal Arabic terms.

Arabic Sentiment (Valence) Lexicons
This is a annotated Arabic sentiment lexicon that is
created by (Saif M. Mohammad and Kiritchenko,
2016). These lexicons were created by measuring
the extent to which the words in a tweets corpus
co-occurred with a set of seed positive and seed
negative terms. This lexicon includes about 43k
entries (23k positive and 20k negative).

ArabSenti sentiment lexicon
ArabSent is a manually annotated Arabic senti-
ment lexicon of 14k words that was created and by
Abdul-Mageed et al. (2011). Each word in Arab-
Senti is associated with a positive/negative senti-
ment label.

Dialectal sentiment lexicon
This is a freely available Arabic sentiment lexi-
con with more than 480 dialectal Arabic words.
The lexicon is proposed by Refaee and Rieser
(2014) and it is manually annotated by native Ara-
bic speakers. Using these sentiment lexicons, we
extract for each tweet four features:

1) Sum Score The sum of sentiment scores
of all the words in the tweet.

2) Average Score This feature computes the
average of sentiment scores of all the words
in the tweet.

3,4) Min and Max Score Represent the mini-
mum and maximum sentiment score of words
in the tweet.

For each of these features, if one word in the tweet
does not exist in a sentiment lexicon, its corre-
sponding sentiment score is not considered.

2.2 Negation Feature (NF)
Negation refers to words that reverse the senti-
ment of the word/phrase coming after them. For
example: YJ
ª� �I�Ë A 	K @ (I’m not happy), in this

example the word YJ
ª� (happy) has a positive
sentiment, however, due to the negation word
�I�Ë (I’m not) the sentiment of expression be-

comes negative. This feature is used by ENCU
system (Wang et al., 2016) the best system in
SemEval-2016 (Sentiment Intensity Task). Wang
et al. (2016) they showed that the sentiment of the
phrase can be reversed by adding a negation. Thus,
for this binary feature, we have used a list of five
main negation word in the Modern Standard Ara-
bic (MAS) { ÕË , B , 	áË , AÓ , ��
Ë } proposed by
(Abdulla et al., 2013). If the tweet contains at least
one negation, this feature is set to 1, else 0.

2.3 Word Embedding Feature (WEF)
One of the main advantages of word embedding
model is the fact that it allows for the retrieval
of a list of words that are used in the same con-
texts with respect to a given word (Mikolov et al.,
2013). In fact , we use the Arabic CBOW model
(Zahran et al., 2015) to construct a list of 5-closet
words for each word in the tweet as described in
(Nagoudi et al., 2017). Then, we extract for each
tweet the same features described in the section
2.1, with the difference that we compute the senti-
ment score for each word based on their 5-closet
in word embedding:

1) Sum ScoreThe sum of the average sen-
timent scores of all the 5-closet words in
tweet.

2) Average Score This feature computes the
average of sentiment scores of the 5-closet
words in the tweet.

3,4) Min and Max Score Represent the min-
imum and maximum average sentiment score
of the 5-closet words in tweet.

To compute these features, we have used the same
sentiment lexicons presented in the section 2.1.

2.4 Emoticons and Emojis Features (EEF)
The emoticons and emojis are already used in the
sentiment analysis task in twitter (Read, 2005)

365

Positive
Emoticons Emojis

:-) :) :D :o) =]
:] :3 :c) 8) :-]

Negative
Emoticons Emojis

:[:-(:(:-c :c
:-C :C :-[:[:{

Neutral
Emoticons Emojis

:/ :-/ :-. :/ :t :s
=/ =I :L =L :Z

Table 1: A sample of the positive, negative and
neutral emoticons and emojis.

and (Wolny, 2016). Therefore, we have used the
Emoticons and Emojis as an indicator to predict
the sentiment intensity of the tweet. We have used
3 set of emoticon and emoji positive, negative and
neutral. Table 2 shows a sample of the positive,
negative and neutral of emoticons and emojis.

2.5 Models Construction

The previously described features are fed into two
different regression classifiers : Linear Regres-
sion (LR) and Support Vector Regression (SVR).
We have used the python-based machine learning
scikit-learn library1 to trained these classifiers on
the training and development data set of SemEval
2018 (Mohammad et al., 2018b), along with the
previously discussed features to predict the senti-
ment intensity score for each tweet. Figure 1 illus-
trates an overview of the ARB-SEN system.

3 Experiments And Results

3.1 Training Data

The organisers of SemEval 2018 provided a train-
ing and development data set, which contained
933 and 139 Arabic tweets respectively. Thus, the
trial and development are used as training data for
our supervised models.

3.2 Data Pre-processing

In order normalize tweets, many pre-processing
techniques have been proposed in the literature,
such as:(Agarwal et al., 2011), (Ahmed et al.,

1http://scikit-learn.org

Figure 1: Architecture of the ARB-SEN system.

2013), and (Rosenthal et al., 2014). Therefore,
we normalize our tweets using the following pre-
processing steps:

1. Removing @user names, RTs, and URLs;

2. Removing diacritics and non-alphanumeric
characters;

3. Tokenizing the #hashtags of each
tweet by breaking them into words, e.g:
#very nice day becomes very, nice and day;

4. Normalizing the exchangeable Arabic letters
as described in (Darwish et al., 2012), e.g:
normalizing

@ , @
 ,

�
@ to @ and replacing final

ø followed by Z with
ø.

3.3 Tests and Results
To evaluate the performance of our system, our
two supervised models were assessed based on
their accuracy on the 731 tweets in the Arabic Sen-
timent Intensity Evaluation Set2. In addition, we
studied the impact of sentiment lexicon, negation,
word embedding and emotion symbols features on
the prediction efficiency.

We calculate the Pearson correlation between
our assigned Sentiment Intensity scores and the
gold labels. The results are presented in Table 2.

These results demonstrate that SVR classifier
with all features succeed in predict the sentiment
intensity in Arabic tweets with a Pearson corre-
lation score of 0.720. However, the LR classifier
with all features achieves a correlation score of
0.617. Thus, we can easily observe that SVR clas-
sifier with all features outperforms the LR classi-

2http://saifmohammad.com/WebDocs/
AIT-2018/AIT2018-DATA

366

Methods Features Correlation
SLF 0.523

LR SLF+NF 0.524
SLF+NF+WEF 0.561
SLF+NF+WEF+EEF 0.617

SLF 0.647
SVR SLF+NF 0.649

SLF+NF+WEF 0.683
SLF+NF+WEF+EEF 0.720

Baseline - -0.052

Table 2: Correlation results

fier with a gain of +11%. Regarding the impact
of the extracted features, all of them improve the
results of the sentiment intensity prediction. Inter-
estingly, we notice that the word embedding and
emotion symbols features play a key role in im-
proving the performance of the prediction accu-
racy in both classifiers with a mean of +3.5% and
+4.7% respectively.

4 Conclusion and Future Work

In this article, we have presented two supervised
models to predicate the sentiment intensity in Ara-
bic tweets. Both classifiers are trained along with
a set of Arabic tweets characterised by a set of
features including: sentiment lexicon, negation,
word embedding and emotion symbols features.
The performance of our proposed system was con-
firmed through the Pearson correlation between
our assigned sentiment scores and the golden la-
bels. As future work, we are going to extend our
features by using an Arabic Combined-Sentiment
Word Embedding model. We would also like to
further investigate the Arabic sentiment analysis
task with more recent classifiers, namely Neural
Deep learning.

References

Muhammad Abdul-Mageed, Mona T Diab, and Mo-
hammed Korayem. 2011. Subjectivity and senti-
ment analysis of modern standard arabic. In Pro-
ceedings of the 49th Annual Meeting of the Associ-
ation for Computational Linguistics: Human Lan-
guage Technologies: short papers-Volume 2, pages
587–591. Association for Computational Linguis-
tics.

Muhammad Abdul-Mageed, Mona Diab, and Sandra
Kübler. 2014. Samar: Subjectivity and sentiment

analysis for arabic social media. Computer Speech
& Language, 28(1):20–37.

Nawaf A Abdulla, Nizar A Ahmed, Mohammed A She-
hab, and Mahmoud Al-Ayyoub. 2013. Arabic sen-
timent analysis: Lexicon-based and corpus-based.
In Applied Electrical Engineering and Computing
Technologies (AEECT), 2013 IEEE Jordan Confer-
ence on, pages 1–6. IEEE.

Apoorv Agarwal, Boyi Xie, Ilia Vovsha, Owen Ram-
bow, and Rebecca Passonneau. 2011. Sentiment
analysis of twitter data. In Proceedings of the work-
shop on languages in social media, pages 30–38.
Association for Computational Linguistics.

Soha Ahmed, Michel Pasquier, and Ghassan Qadah.
2013. Key issues in conducting sentiment analysis
on arabic social media text. In Innovations in In-
formation Technology (IIT), 2013 9th International
Conference on, pages 72–77. IEEE.

Haifa K Aldayel and Aqil M Azmi. 2016. Arabic
tweets sentiment analysis–a hybrid scheme. Journal
of Information Science, 42(6):782–797.

A Aziz Altowayan and Ashraf Elnagar. 2017. Im-
proving arabic sentiment analysis with sentiment-
specific embeddings. In Big Data (Big Data), 2017
IEEE International Conference on, pages 4314–
4320. IEEE.

Kareem Darwish, Walid Magdy, and Ahmed Mourad.
2012. Language processing for arabic microblog
retrieval. In Proceedings of the 21st ACM inter-
national conference on Information and knowledge
management, pages 2427–2430. ACM.

Mohamed Elarnaoty, Samir AbdelRahman, and Aly
Fahmy. 2012. A machine learning approach for
opinion holder extraction in arabic language. arXiv
preprint arXiv:1206.1011.

Mohamed Elhawary and Mohamed Elfeky. 2010.
Mining arabic business reviews. In Data Min-
ing Workshops (ICDMW), 2010 IEEE International
Conference on, pages 1108–1113. IEEE.

Ashraf Elnagar. 2016. Investigation on sentiment anal-
ysis for arabic reviews. In Computer Systems and
Applications (AICCSA), 2016 IEEE/ACS 13th Inter-
national Conference of, pages 1–7. IEEE.

Nizar Y Habash. 2010. Introduction to arabic natural
language processing. Synthesis Lectures on Human
Language Technologies, 3(1):1–187.

Svetlana Kiritchenko, Saif M. Mohammad, and Mo-
hammad Salameh. 2016. Semeval-2016 task 7: De-
termining sentiment intensity of english and arabic
phrases. In Proceedings of the International Work-
shop on Semantic Evaluation, SemEval ’16, San
Diego, California, June.

367

Nele Lenze. 2017. Social media in the arab
world: Communication and public opinion in the
gulf states. European Journal of Communication,
32(1):77–79.

Tomas Mikolov, Wen-tau Yih, and Geoffrey Zweig.
2013. Linguistic regularities in continuous space
word representations. In Hlt-naacl, volume 13,
pages 746–751.

Saif M Mohammad and Felipe Bravo-Marquez. 2017.
Wassa-2017 shared task on emotion intensity. arXiv
preprint arXiv:1708.03700.

Saif M Mohammad, Parinaz Sobhani, and Svetlana
Kiritchenko. 2017. Stance and sentiment in tweets.
ACM Transactions on Internet Technology (TOIT),
17(3):26.

Saif M Mohammad, Felipe Bravo-Marquez, Moham-
mad Salameh, and Svetlana Kiritchenko. 2018a.
Semeval-2018 task 1: Affect in tweets. In Proceed-
ings of International Workshop on Semantic Evalu-
ation (SemEval-2018), New Orleans, LA, USA.

Saif M. Mohammad, Felipe Bravo-Marquez, Moham-
mad Salameh, and Svetlana Kiritchenko. 2018b.
Semeval-2018 Task 1: Affect in tweets. In Proceed-
ings of International Workshop on Semantic Evalu-
ation (SemEval-2018), New Orleans, LA, USA.

Saif M Mohammad. 2016. Sentiment analysis: De-
tecting valence, emotions, and other affectual states
from text. In Emotion measurement, pages 201–237.
Elsevier.

Ahmed Mourad and Kareem Darwish. 2013. Sub-
jectivity and sentiment analysis of modern standard
arabic and arabic microblogs. In Proceedings of the
4th workshop on computational approaches to sub-
jectivity, sentiment and social media analysis, pages
55–64.

El Moatez Billah Nagoudi, Jérémy Ferrero, Didier
Schwab, and Hadda Cherroun. 2017. Word
embedding-based approaches for measuring seman-
tic similarity of arabic-english sentences. In The 6th
International Conference on Arabic Language Pro-
cessing, pages 19–33. Springer.

Preslav Nakov, Zornitsa Kozareva, Alan Ritter, Sara
Rosenthal, Veselin Stoyanov, and Theresa Wilson.
2013. Semeval-2013 task 2: Sentiment analysis in
twitter.

Preslav Nakov, Alan Ritter, Sara Rosenthal, Fabrizio
Sebastiani, and Veselin Stoyanov. 2016. Semeval-
2016 task 4: Sentiment analysis in twitter. In Pro-
ceedings of the 10th International Workshop on Se-
mantic Evaluation (SemEval-2016), pages 1–18.

Saad Ranginwala and Alexander J Towbin. 2017. The
power of promotion: using social media to pro-
mote a radiology department. Academic Radiology,
24(4):488–496.

Jonathon Read. 2005. Using emoticons to reduce de-
pendency in machine learning techniques for senti-
ment classification. In Proceedings of the ACL stu-
dent research workshop, pages 43–48. Association
for Computational Linguistics.

Eshrag Refaee and Verena Rieser. 2014. An arabic
twitter corpus for subjectivity and sentiment analy-
sis. In LREC, pages 2268–2273.

Sara Rosenthal, Alan Ritter, Preslav Nakov, and
Veselin Stoyanov. 2014. Semeval-2014 task 9: Sen-
timent analysis in twitter. In Proceedings of the
8th International Workshop on Semantic Evaluation
(SemEval 2014), pages 73–80, Dublin, Ireland, Au-
gust. Association for Computational Linguistics and
Dublin City University.

Sara Rosenthal, Preslav Nakov, Svetlana Kiritchenko,
Saif Mohammad, Alan Ritter, and Veselin Stoyanov.
2015. Semeval-2015 task 10: Sentiment analysis
in twitter. In Proceedings of the 9th international
workshop on semantic evaluation (SemEval 2015),
pages 451–463.

Sara Rosenthal, Noura Farra, and Preslav Nakov. 2017.
SemEval-2017 task 4: Sentiment analysis in Twit-
ter. In Proceedings of the 11th International Work-
shop on Semantic Evaluation, SemEval ’17, Van-
couver, Canada, August. Association for Computa-
tional Linguistics.

Mohammad Salameh Saif M. Mohammad and Svetlana
Kiritchenko. 2016. Sentiment lexicons for arabic
social media. In Proceedings of 10th edition of the
the Language Resources and Evaluation Conference
(LREC), Portorož, Slovenia.

Mohammad Salameh, Saif Mohammad, and Svetlana
Kiritchenko. 2015. Sentiment after translation: A
case-study on arabic social media posts. In Proceed-
ings of the 2015 conference of the North American
chapter of the association for computational linguis-
tics: Human language technologies, pages 767–777.

F. Salem. 2017. The arab social media report 2017:
Social media and the internet of things: Towards
data-driven policymaking in the arab world. Vol. 7.

Feixiang Wang, Zhihua Zhang, and Man Lan. 2016.
Ecnu at semeval-2016 task 7: An enhanced super-
vised learning method for lexicon sentiment inten-
sity ranking. In Proceedings of the 10th Interna-
tional Workshop on Semantic Evaluation (SemEval-
2016), pages 491–496.

Wiesław Wolny. 2016. Sentiment analysis of twitter
data using emoticons and emoji ideograms. Studia
Ekonomiczne, 296:163–171.

Mohamed A Zahran, Ahmed Magooda, Ashraf Y Mah-
goub, Hazem Raafat, Mohsen Rashwan, and Amir
Atyia. 2015. Word representations in vector space
and their applications for arabic. In International
Conference on Intelligent Text Processing and Com-
putational Linguistics, pages 430–443. Springer.

368

Proceedings of the 12th International Workshop on Semantic Evaluation (SemEval-2018), pages 369–376
New Orleans, Louisiana, June 5–6, 2018. ©2018 Association for Computational Linguistics

psyML at SemEval-2018 Task 1: Transfer Learning for Sentiment and
Emotion Analysis

Grace Gee, Eugene Wang
psyML, Inc.

grace.eugene@psyml.co

Abstract

In this paper, we describe the first attempt to
perform transfer learning from sentiment to
emotions. Our system employs Long Short-
Term Memory (LSTM) networks, including
bidirectional LSTM (biLSTM) and LSTM
with attention mechanism. We perform trans-
fer learning by first pre-training the LSTM net-
works on sentiment data before concatenating
the penultimate layers of these networks into a
single vector as input to new dense layers. For
the E-c subtask, we utilize a novel approach
to train models for correlated emotion classes.
Our system performs 4/48, 3/39, 8/38, 4/37,
4/35 on all English subtasks EI-reg, EI-oc, V-
reg, V-oc, E-c of SemEval 2018 Task 1: Affect
in Tweets.

1 Introduction

SemEval-2018 Task 1: Affect in Tweets (Moham-
mad et al., 2018) is a shared task expanding on pre-
vious SemEval sentiment tasks and the WASSA-
2017 Shared Task on Emotion Intensity (Moham-
mad and Bravo-Marquez, 2017). It presents 5
tasks:

1. Emotion intensity regression (EI-reg): given
tweet and emotion (fear, anger, joy or sad-
ness), predict real-valued emotion intensity
from 0 to 1.

2. Emotion intensity ordinal classification (EI-
oc): given tweet and emotion (fear, anger, joy
or sadness), predict emotion intensity ordinal
class from 0 (no emotion) to 3 (high emo-
tion).

3. Sentiment intensity regression (V-reg): given
tweet, predict real-valued sentiment intensity
from 0 (no sentiment) to 1 (high sentiment).
In this subtask, the directionality of the tweet
sentiment is ignored. A negative tweet will

be given the same score as a positive tweet
with the same valence.

4. Sentiment intensity ordinal classification (V-
oc): given tweet, predict sentiment ordinal
intensity class from -3 (very negative) to 3
(very positive).

5. Emotion classification (E-c): given tweet,
predict for each one of 11 emotions (anger,
anticipation, disgust, fear, joy, love, opti-
mism, pessimism, sadness, surprise, trust)
whether the emotion is neutral (0) or present
(1).

The task is particularly challenging since E-c and
EI-oc are completely new subtasks. Thus, no prior
data or working models are available for compar-
ison. The leaderboard is also not public during
the competition. As shown in Table 1, taken from
(Mohammad and Kiritchenko, 2018), the develop-
ment sets are particularly small compared to the
test sets, and the test sets are comparable in size to
the training sets, so the model must generalize.

For EI-oc and EI-reg, the development and test
sets are also annotated separately from the train-
ing sets. This impacts performance as our sys-
tem would have placed 1st with average pearson
score 0.755 on the WASSA 2017 task, in which
the EI-reg train, development, and test data are an-
notated in the same format. Furthermore, tweets
are difficult to analyze due to the unstructuredness
of its language (hashtags, emoticons, slang, mis-
spellings, poor grammar).

Previously submitted systems in SemEval sen-
timent analysis use deep learning models such as
CNN, RNN and LSTMs (Baziotis et al., 2017;
Cliche, 2017; Rouvier, 2017). In a previous run of
EI-reg in WASSA-2017 Shared Task on Emotion
Intensity, top performing teams use deep learning
models (Goel et al., 2017; Köper et al., 2017) and

369

Dataset train dev test Total
EI-reg, EI-oc

anger 1,701 388 1,002 3,091
fear 2,252 389 986 3,627
joy 1,616 290 1,105 3,011
sadness 1,533 397 975 2,905

V-reg, V-oc 1,181 449 937 2,567
E-c 6,838 886 3,259 10,983

Table 1: Number of tweets in SemEval-2018: Affect
in Tweets Dataset.

classifiers such as Support Vector Regressors or
Random Forest Regressors (Duppada and Hiray,
2017; Köper et al., 2017). In both tasks, some par-
ticipants use an ensemble approach (Goel et al.,
2017; Duppada and Hiray, 2017; Rouvier, 2017).

To extract linguistic features, some systems em-
ploy pre-trained word embeddings (Baziotis et al.,
2017; Cliche, 2017) or a combination of manu-
ally created features and/or lexicons (Köper et al.,
2017; Duppada and Hiray, 2017). However, ex-
clusively relying on hand-crafted features for EI-
reg may result in a model that fails to encompass
unforeseen linguistic relationships. Similarly, re-
lying exclusively on deep learning models with-
out lexicon inputs can lead to simple misclassifi-
cations due to the small training data.

To combine the best of both worlds, previous
systems collapse high-dimensional word embed-
dings into a single dimension arithmetically, be-
fore combining it with hand-crafted features (usu-
ally one-dimensional). Goel et al. for instance
averaged the word embeddings for each word in
a tweet in order to concatenate it with a 43-
dimensional vector. Duppada and Hiray simply
averaged the two top performing model outputs.

In this paper, we present a deep learning sys-
tem whose variants competed competitively in all
English subtasks in SemEval-2018 Task 1: Affect
in Tweets, specifically EI-reg, EI-oc, V-reg, V-oc,
and E-c. We make the following contributions:

• A deep learning system that can take in
a combination of one-dimensional hand-
crafted and multi-dimensional word embed-
ding inputs.

• A deep learning system that uses transfer
learning from sentiment tasks to overcome
the lack of training data compared to test
data. To the best of our knowledge, this is the

first instance of transferring knowledge from
sentiment to emotion.

• Specifically for Task E-c, procedures for
training correlated target classes.

2 Overview

Fig 1 shows an overview of our system, which
consists of three steps: (1) preprocessing input us-
ing a text processor and the Weka AffectiveTweets
package1 (Mohammad and Bravo-Marquez, 2017)
(2) pre-training Components A to C using senti-
ment data (3) training the entire system, includ-
ing Components A, B, C, E, using subtask-specific
dataset.

Figure 1: System Overview.

2.1 Preprocessing
We use the ekphrasis text processor2 and word
embeddings3 built by Baziotis et al. Ekphra-
sis corrects for spelling, emoticons, emojis, splits
hashtags and recognizes emphasized words. Its
300-dimension word embeddings are trained on
330M Twitter messages using GloVe. Other em-
beddings such as Stanford’s GloVe (Pennington
et al., 2014) do not incorporate newer popular uni-
code emojis. To build the Weka Lookup, we pass
all 658,114 tokens in Baziotis et al. embedding
dictionary into the TweetToLexiconFeatureVector
filter in the Weka AffectiveTweets package. Of
the 658,114, only 59,235 tokens returned nonzero

1https://github.com/felipebravom/
AffectiveTweets

2https://github.com/cbaziotis/
ekphrasis

3https://github.com/cbaziotis/
datastories-semeval2017-task4

370

vectors. The TweetToLexiconFeatureVector re-
turns a 43-dimension feature vector using sen-
timent and emotion lexicons such as Bing-Liu,
AFINN, Sentiment140, and NRC-10 Expanded.

2.2 Transfer Learning

Transfer learning is the process of using knowl-
edge from solving a source task to help perfor-
mance in a target task. In particular, transfer learn-
ing is useful when the target task training set is
small.

Another common way to deal with small data is
distant supervision (Mintz et al., 2009), a process
for generating labelled data from an unlabelled set
according to a set of rules. For instance, for a
sentiment analysis task, distant supervision can in-
volve labelling tweets with smileys as positive and
those with sad emojis as negative (Read, 2005).

Transfer learning has historically performed
well on computer vision problems (Yosinski et al.,
2014; Razavian et al., 2014). Traditionally, the
CNN layer weights are frozen, its output treated
as a feature vector input to a fully-connected layer,
which will learn the new target task. Intuitively,
the CNN will learn low-level image features on the
source task while the dense layers will use these
low-level features to predict a new target task.

Another strategy is to unfreeze the later lay-
ers weights of the pre-trained network and instead
backpropagate all the way to the pre-trained net-
work. In this case, the later layers of the pre-
trained network can be fine-tuned. We choose to
leave all weights from the pre-trained network un-
frozen.

Transfer learning in natural language process-
ing applications has been largely successful only
within the same task such as POS tagging or sen-
timent (Blitzer et al., 2006, 2007). For different
domains, good results are only achieved in seman-
tically equivalent transfer (in which a source task
and target task have the same objective but differ-
ent data) but not for semantically different transfer
(in which a source and target task have different
objectives) (Mou et al., 2016).

For all subtasks, we will use transfer learning
to pre-train our models on sentiment data. The
source task objective is to predict sentiment cate-
gorical classes (’positive’, ’negative’, or ’neutral’)
given a tweet. Since the source task is not equiv-
alent to any of the target tasks, we’d expect lower
performance than those experiments on domain

adaptation.
There are two main ways to perform transfer

learning, the parameter initialization approach, in
which a model is trained on a source task and the
weights are transferred to a target task, and multi-
task learning, in which a model is trained to learn
multiple tasks simultaneously. We choose to im-
plement the parameter initialization approach as
Mou et al. has shown both approaches to be com-
parable.

2.3 Neural Network

The Recurrent Neural Network (RNN) is an ex-
tension of the traditional neural network that al-
lows sequential data. Fig 2 shows the architecture
of a standard RNN which takes in a sequence of
word embeddings x1, x2, . . . , xN and outputs hid-
den states h1, h2, . . . , hN , where N is the length
of the tweet.4

Figure 2: RNN basic structure.

In its simplest form, the hidden state ht ∈ Rd

(where d is the size of the RNN at time step t) is a
function f of the current word embedding xt, the
past hidden state ht−1, and the learned θ parame-
ters.

ht = f(xt, ht−1; θ) (1)

Long Short-Term Memory (LSTM) (Hochreiter
and Schmidhuber, 1997) is a special form of RNN
with a memory cell and input, forget, and output
gates that allow it to take into account long-term
dependencies. It is more widely used than RNN
since it overcomes the vanishing or exploding gra-
dient problem common in RNNs. The architecture
of a standard LSTM will be the same as that of an

4Figure recreated from http://colah.github.
io/posts/2015-08-Understanding-LSTMs/

371

RNN as shown in Fig 2, but with a different re-
peating A module. Formally, each LSTM cell is
computed as follows:

X =

[
ht−1
xt

]
(2)

ft = σ(Wf ·X + bf) (3)

it = σ(Wi ·X + bi) (4)

ot = σ(Wo ·X + bo) (5)

ct = ft � ct−1 + it � tanh(Wc ·X + bc) (6)

ht = σt � tanh(ct) (7)

where ft is the forget gate, it the input gate, ct
the cell state, ht the hidden state, σ the sigmoid
function and � element-wise multiplication.

We use bidirectional LSTM (biLSTM) to in-
corporate both past and future context. A biL-
STM employs two LSTMs, one reading forward,−−−−→
LSTM , on the input sequence and another back-
ward,

←−−−−
LSTM .

Whereas in a traditional LSTM, output hi
only incorporates information up till time step
i, or x1, x2, . . . , xi, a bidirectional LSTM would
incorporate information from both past input
x1, x2, . . . , xi and future input xi, xi+1, . . . , xN .
Fig 3 shows the architecture of a standard biL-
STM.

Figure 3: Bidirectional LSTM.

We use an attention mechanism (Rocktäschel
et al., 2015) to learn which words in a tweet con-
tribute more to a target task. Fig 4 shows the archi-
tecture of a standard LSTM with attention mecha-
nism.

The attention layer is usually a 1 or 2-layer neu-
ral net that takes the output of an LSTM or RNN as
input. It assigns ”attention weight” αi to each hid-
den state hi and outputs a weighted representation
r of the hidden states.

ei = tanh(Whhi + bh) (8)

αi = softmax(ei) (9)

r =
∑

N

αihi (10)

where α is an attention weight vector, r is a
weighted representation of the hidden states, and
Wh and bh are learned during backpropagation.

Figure 4: LSTM with Attention.

Components A and C are bidirectional LSTMs.
Component B is a LSTM with attention mecha-
nism.

3 Data

We used the dataset provided by the SemEval chal-
lenge.

For transfer learning, we pre-train Components
A to C using train, development and test data from
2013 to 2017 SemEval Task 4A sentiment anal-
ysis classification tasks5. In total, this provided
7,723 negative, 22,195 neutral and 19,652 positive
tweets.

4 Model

Component A is a 1-layer biLSTM. The input is
a matrix A ∈ Rn×d, where n is the number of
words in the tweet and d is the dimension of the
word embedding. Component B is an LSTM with
attention and takes in the same input as Com-
ponent A. The attention layer is a 1 unit dense
layer. Component C is also a 1-layer biLSTM
like Component A, except the input is a matrix

5http://alt.qcri.org/semeval2017/
task4/

372

C ∈ Rn×43, since Weka’s TweetToLexiconFea-
tureVector returns a 43-dimension vector and C
is just a concatenated sequence of 43-dimension
vectors of words passed into the TweetToLexicon-
FeatureVector. The tweet input for Components
A through C are all zero padded. Component D
just takes in an entire tweet and returns the 43-
dimension TweetToLexiconFeatureVector vector.
Component E is a 5-layer fully-connected neural
net.

4.1 Regularization
In Components A through C, we apply dropout
to both input and recurrent connections. Dropout
(Srivastava et al., 2014) is a technique that in-
volves randomly dropping units during training to
prevent overfitting and co-adaptation of neurons.
By randomly dropping units, neighboring neurons
make up for the dropped units and learn represen-
tations for the target, resulting in a more robust
network.

In Components A and C we apply global max
pooling for the final layer.

We incorporate mini-batch gradient descent in
all our models. Mini-batch gradient descent is cal-
culated over small batches of data instead of the
entire dataset as in traditional gradient descent.
Compared to stochastic gradient descent, where
gradient descent is calculated after every example,
it is not as computationally intensive.

In the E-c dataset and sentiment classification
dataset, some classes are overrepresented. This
class imbalance can lead to bias in model output.
To overcome this, for E-c we apply class weight
to the loss function to boost recall of the minority
class.

4.2 Hyper-parameters
We train all our models using mini-batches of size
8, and Adam (Kingma and Ba, 2014) optimization.
For the E-c subtask, we minimize binary cross en-
tropy loss. For EI-oc, EI-reg, V-oc and V-reg, we
minimize mean squared error.

Models Components A through C all have
dropout of 0.2 for their input layer and recurrent
connections.

Components A and C are both biLSTM with
256 units. Component A takes in A ∈ R50×300,
while Component C takes in C ∈ R50×43. We
chose 50 since none of the tweets are longer than
50 words. Finally, we add a global max pooling
layer.

Component B is a LSTM of 256 units, and takes
in B ∈ R50×300.

For source task learning, we apply a dense layer
of 3 hidden units with sigmoid activation function
to Components A through C.

Component E is 5 dense layers with 300, 125,
50, 25, and 1 hidden units. We use Rectified lin-
ear unit (ReLU) as the activation function for the
former four layers.

4.3 Training

Source Task Learning During source task learn-
ing, we train each of Components A through C in-
dividually on the sentiment dataset with 10% hold
out validation. The source task objective is to pre-
dict sentiment categorical class (’positive’, ’neg-
ative’, or ’neutral’). For each of the models, we
train it for 1, 2, 3, 4, and 5 epochs and save the
best performing one.

We experimented with RNN, CNN, LSTM, and
biLSTM before settling on biLSTM and LSTM
with attention.

Target Task Learning During target task learn-
ing, the final dense layers in Components A
through C are removed and the penultimate lay-
ers are concatenated together with the output from
Component D into a single vector as input to Com-
ponent E. None of the weights are frozen and the
entire system (Components A through E) is trained
for between 5 to 10 epochs for subtasks EI-oc, EI-
reg, V-oc, and V-reg. We choose the best perform-
ing model based on performance on the develop-
ment set.

The final layer in Component E uses sigmoid
as an activation function for EI-reg, EI-oc, V-reg,
E-c and hyperbolic tangent for V-oc. The fol-
lowing functions are used to transform the ordi-
nal classes of EI-oc, dEI−oc ∈ {0, 1, 2, 3}, and V-
oc, dV−oc ∈ {−3,−2,−1, 0, 1, 2, 3}, to the out-
put space of [0, 1] and [-1, 1] respectively.

d′EI−oc = dEI−oc ∗ 0.25 + 0.125 (11)

d′V−oc = dV−oc ∗ 2/7 (12)

For E-c, we notice the emotion classes are in-
tercorrelated. The following Figure 5 is a dendro-
gram generated from E-c training data. The emo-
tions are hierarchically clustered based on their
correlations. The horizontal axis labels corre-
spond to the 11 classes. The shorter the length of

373

the sideways n-shape, the more correlated the two
classes.

Figure 5: Dendrogram of 11 emotions, clustered using
correlation and hierarchical clustering.

For E-c, we obtain the following emotion clus-
ters from the dendrogram: [anger, disgust], [sad-
ness, pessimism, fear], [joy, optimism, love], [an-
ticipation, surprise, trust]. For each of the clus-
ters, we obtain a fresh copy of the entire pre-
trained system and train it for 2 epochs consecu-
tively for each target class in the aforementioned
order within the emotion cluster. The pseudocode
is as follows. We call this method ”cluster train-
ing”:

Algorithm 1 Cluster training
1: for emotionCluster in emotionClusters do
2: S← System from Fig 1
3: for emotion in emotionCluster do
4: Train S for 2 epochs on emotion training
5: Predict emotion test with S

4.4 Experimental Setup

We build all the models with the Keras library and
train them on Google Datalab. The dendrogram
diagram is built with Plotly.

5 Evaluation & Results

SemEval Results Our model ranks 4/48 in EI-reg,
3/39 in EI-oc, 8/38 in V-reg, 4/37 in V-oc, 4/35 in
E-c (Mohammad et al., 2018). Our performance
for V-reg is less than satisfactory because V-reg
measures sentiment intensity without regards for
directionality, whereas our source task takes into
account directionality. This supports findings by

Mou et al. that pre-training is less useful in a se-
mantically different transfer.

System To evaluate our system, we assess the
performance of each Component and various com-
binations of them. Table 2 shows the development
set performance. In particular, we note that Com-
ponent A+B performs better than Component A
or Component B separately, as with Component
C+D. Furthermore, Component A+B+C+D per-
form better overall compared to Component A+B
and Component C+D.

Cluster training Subtask E-c classes are imbal-
anced, with 95% of ”Trust” and ”Surprise” train-
ing examples being negative. Table 3 shows the
breakdown of negative and positive training exam-
ples for each of the E-c classes.

To assess our cluster training procedure, we
evaluate the performance of independently train-
ing each of the E-c emotion classes (using a fresh
copy of the pre-trained system for each of the 11
emotions) as well as with various class weighing
schemes. Table 4 shows our experiment results.

Within independent training experiments,
squared inverse weights performed best as mea-
sured by accuracy and micro-avg F1. Using
squared inverse weights, cluster training performs
better than independent training, attesting to the
utility of cluster training.

6 Conclusion

In this paper, we present the first attempt to per-
form transfer learning from sentiment to emotions.
Model weights are pre-trained with past SemEval
sentiment categorization tasks and the penultimate
layers of the models are concatenated into a single
vector as input to new dense layers. The entire
system is then trained for each subtask with the
weights unfrozen.

Our deep learning system combines
multi-dimensional word embeddings with
single dimensional lexicon-based fea-
tures. Specifically we combine features of
X ∈ R50×300,R50×43,R1×43, which results in
better performance than systems using just one of
the features.

For the E-c subtask, we utilize hierarchical clus-
tering to group correlated emotions together and
train the same model incrementally for emotions
within the same cluster. This novel method out-
performs a system which trains on each emotion
independently.

374

Experiment Anger Sadness Fear Joy
Component A 0.729 0.706 0.677 0.719
Component B 0.710 0.719 0.646 0.689
Component C 0.584 0.561 0.567 0.564
Component D 0.602 0.597 0.546 0.585
Component A+B 0.722 0.714 0.701 0.732
Component C+D 0.659 0.619 0.631 0.601
Component A+B+C+D 0.761 0.720 0.723 0.745

Table 2: Results on development set comparing Component experiments.

Emotion Percentage negative Percentage positive
Anger 63% 37%
Disgust 62% 38%
Sadness 71% 29%
Pessimism 88% 12%
Fear 82% 18%
Joy 64% 36%
Optimism 71% 29%
Love 90% 10%
Anticipation 86% 14%
Surprise 95% 5%
Trust 95% 5%

Table 3: E-c training set, breakdown of percentage of positive and negative examples.

Experiment Accuracy Micro-avg F1 Macro-avg F1
Cluster training, squared inverse weights 0.576 0.695 0.522
Independent training, equal weights 0.513 0.639 0.439
Independent training, inverse weights 0.447 0.586 0.545
Independent training, squared inverse weights 0.558 0.684 0.527

Table 4: E-c experiment results on development set.

We participated in all of the English subtasks
of SemEval 2018 Task 1: Affect in Tweets and
obtained top 4 in 4 out of the 5 subtasks, testifying
to our model robustness.

For future work, we would like to experiment
with other training methods such as multi-task
learning and distant supervision, as well as tune
the hyper-parameters of our model to augment its
performance across all subtasks (Mohammad and
Kiritchenko, 2018).

Acknowledgments

This project was kindly financed by psyML Inc.,
a company co-founded by Galen Buckwalter and
Dave Herman to bring psychology and AI together
to solve real world problems. We thank Sebastian
Ruder for his paper suggestions and the task or-

ganizers of SemEval 2018 Task 1 for the data and
gracious support.

References

Christos Baziotis, Nikos Pelekis, and Christos Doulk-
eridis. 2017. Datastories at semeval-2017 task
4: Deep lstm with attention for message-level and
topic-based sentiment analysis. In Proceedings of
the 11th International Workshop on Semantic Evalu-
ation (SemEval-2017), pages 747–754. Association
for Computational Linguistics.

John Blitzer, Mark Dredze, and Fernando Pereira.
2007. Biographies, bollywood, boom-boxes and
blenders: Domain adaptation for sentiment classi-
fication. In Proceedings of the 45th Annual Meet-
ing of the Association of Computational Linguistics,
pages 440–447. Association for Computational Lin-
guistics.

375

John Blitzer, Ryan McDonald, and Fernando Pereira.
2006. Domain adaptation with structural correspon-
dence learning. In Proceedings of the 2006 Con-
ference on Empirical Methods in Natural Language
Processing, pages 120–128. Association for Com-
putational Linguistics.

Mathieu Cliche. 2017. Bb twtr at semeval-2017 task 4:
Twitter sentiment analysis with cnns and lstms. In
Proceedings of the 11th International Workshop on
Semantic Evaluation (SemEval-2017), pages 573–
580. Association for Computational Linguistics.

Venkatesh Duppada and Sushant Hiray. 2017. Seernet
at emoint-2017: Tweet emotion intensity estimator.
In Proceedings of the 8th Workshop on Computa-
tional Approaches to Subjectivity, Sentiment and So-
cial Media Analysis, pages 205–211. Association for
Computational Linguistics.

Pranav Goel, Devang Kulshreshtha, Prayas Jain, and
Kaushal Kumar Shukla. 2017. Prayas at emoint
2017: An ensemble of deep neural architectures
for emotion intensity prediction in tweets. In Pro-
ceedings of the 8th Workshop on Computational Ap-
proaches to Subjectivity, Sentiment and Social Me-
dia Analysis, pages 58–65. Association for Compu-
tational Linguistics.

Sepp Hochreiter and Jurgen Schmidhuber. 1997.
Long short-term memory. Neural computation,
9(8):1735–1780.

Diederik Kingma and Jimmy Ba. 2014. Adam:
A method for stochastic optimization.
arXiv:1412.6980. ArXiv preprint.

Maximilian Köper, Evgeny Kim, and Roman Klinger.
2017. Ims at emoint-2017: Emotion intensity pre-
diction with affective norms, automatically extended
resources and deep learning. In Proceedings of
the 8th Workshop on Computational Approaches to
Subjectivity, Sentiment and Social Media Analysis,
pages 50–57. Association for Computational Lin-
guistics.

Mike Mintz, Steven Bills, Rion Snow, and Daniel Ju-
rafsky. 2009. Distant supervision for relation ex-
traction without labeled data. In Proceedings of the
Joint Conference of the 47th Annual Meeting of the
ACL and the 4th International Joint Conference on
Natural Language Processing of the AFNLP, pages
1003–1011. Association for Computational Linguis-
tics.

Saif Mohammad and Felipe Bravo-Marquez. 2017.
Wassa-2017 shared task on emotion intensity. In
Proceedings of the 8th Workshop on Computational
Approaches to Subjectivity, Sentiment and Social
Media Analysis, pages 34–49. Association for Com-
putational Linguistics.

Saif M. Mohammad, Felipe Bravo-Marquez, Mo-
hammad Salameh, and Svetlana Kiritchenko. 2018.

Semeval-2018 Task 1: Affect in tweets. In Proceed-
ings of International Workshop on Semantic Evalu-
ation (SemEval-2018).

Saif M. Mohammad and Svetlana Kiritchenko. 2018.
Understanding emotions: A dataset of tweets to
study interactions between affect categories. In Pro-
ceedings of the 11th Edition of the Language Re-
sources and Evaluation Conference (LREC-2018).

Lili Mou, Zhao Meng, Rui Yan, Ge Li, Yan Xu,
Lu Zhang, and Zhi Jin. 2016. How transferable are
neural networks in nlp applications? In Proceedings
of the 2016 Conference on Empirical Methods in
Natural Language Processing, pages 479–489. As-
sociation for Computational Linguistics.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. Glove: Global vectors for word
representation. In Proceedings of the 2014 Con-
ference on Empirical Methods in Natural Language
Processing (EMNLP), pages 1532–1543. Associa-
tion for Computational Linguistics.

Ali Sharif Razavian, Hossein Azizpour, Josephine Sul-
livan, and Stefan Carlsson. 2014. Cnn features off-
the-shelf: an astounding baseline for recognition. In
Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition Workshops, pages
806–813.

Jonathon Read. 2005. Using emoticons to reduce de-
pendency in machine learning techniques for senti-
ment classification. In Proceedings of the ACL Stu-
dent Research Workshop, pages 43–48. Association
for Computational Linguistics.

Tim Rocktäschel, Edward Grefenstette, Karl Moritz
Hermann, Tomáš Kočiský, and Phil Blunsom. 2015.
Reasoning about entailment with neural attention.
arXiv:1509.06664. ArXiv preprint.

Mickael Rouvier. 2017. Lia at semeval-2017 task 4:
An ensemble of neural networks for sentiment clas-
sification. In Proceedings of the 11th International
Workshop on Semantic Evaluation (SemEval-2017),
pages 760–765. Association for Computational Lin-
guistics.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky,
Ilya Sutskever, and Ruslan Salakhutdinov. 2014.
Dropout: A simple way to prevent neural networks
from overfitting. The Journal of Machine Learning
Research, 15(1):1929–1958.

Jason Yosinski, Jeff Clune, Yoshua Bengio, and Hod
Lipson. 2014. How transferable are features in deep
neural networks? Advances in Neural Information
Processing Systems, 27:3320–3328.

376

Proceedings of the 12th International Workshop on Semantic Evaluation (SemEval-2018), pages 377–384
New Orleans, Louisiana, June 5–6, 2018. ©2018 Association for Computational Linguistics

UIUC at SemEval-2018 Task 1: Recognizing Affect with Ensemble Models

Abhishek Narwekar
Department of Computer Science

University of Illinois, Urbana Champaign
USA 61820

abhisheknkar@gmail.com

Roxana Girju
Linguistics Department,

Computer Science Department,
Beckman Research Institute,

University of Illinois, Urbana Champaign
USA 61820

girju@illinois.edu

Abstract

Our submission to the SemEval-2018 Task1:
Affect in Tweets shared task competition is a
supervised learning model relying on standard
lexicon features coupled with word embed-
ding features. We used an ensemble of di-
verse models, including random forests, gra-
dient boosted trees, and linear models, cor-
rected for training-development set mismatch.
We submitted the system’s output for sub-
tasks 1 (emotion intensity prediction), 2 (emo-
tion ordinal classification), 3 (valence inten-
sity regression) and 4 (valence ordinal clas-
sification), for English tweets. We placed
25th, 19th, 24th and 15th in the four subtasks
respectively. The baseline considered was an
SVM (Support Vector Machines) model with
linear kernel on the lexicon and embedding
based features. Our system’s final perfor-
mance measured in Pearson correlation scores
outperformed the baseline by a margin of 2.2%
to 14.6% across all tasks.

1 Introduction

Affective computing deals with the recognition,
interpretation, processing, and simulation of hu-
man affects. It is a highly interdisciplinary field
at the heart of a broad range of technological ap-
plications in health care, media & advertisement,
automotive, and others.

Although emotions are a fundamental feature of
human experience, they have been long ignored
by technology development mainly due to their
complex and subjective nature, as well as the lack
of learning capabilities to detect them. Current
affective computing systems focus mainly on fa-
cial expressions, body language, speech (tone of
voice, rhythm, etc.), keystroke as well as physio-
logical input (e.g., heart rate, body temperature) to
capture and process changes in a user’s emotional
state. However, in environments such as social

media and Internet forums, most often the only
signal is written language. And since language
per se is the smallest portion of human commu-
nication (Mehrabian, 1981), emotions are not easy
to detect.

Although emotion detection is directly related
to the more popular task of sentiment analysis,
they differ in many respects. Sentiment Analy-
sis aims to detect the positive, neutral, or negative
orientation of the text, while emotion detection
focuses on recognizing and classifying text snip-
pets into a set of predefined, more or less univer-
sal emotions. Various such classification models
have been proposed, two famous ones being Ek-
man’s (Ekman, 1997) six basic emotions (anger,
happiness, surprise, disgust, sadness, and fear)
and Plutchik’s wheel of eight emotions (Plutchik,
2001), where each primary emotion has a polar op-
posite (joy, trust, fear, surprise, sadness, anticipa-
tion, anger, and disgust).

To date, there are many freely available tools
for sentiment polarity classification of input text,
yet not so many exist for emotion detection. Ma-
jor challenges are: (1) the difficulty in establish-
ing ground truth for various emotions, (2) the high
variability, vagueness, ambiguity, and implicitness
of language that can make the detection very prob-
lematic, (3) the scarcity of non-verbal clues in
written communication, as well as (4) the chal-
lenge of getting access to and being able to process
the right type of context. This can be explained by
the ”7% Rule” (Mehrabian, 1981): only 7% of hu-
man communication is verbal while over 90% is
comprised of tone of voice (38%) and body lan-
guage (55%).

This year, SemEval 2018 hosts Task1: Affect in
Tweets (Mohammad et al., 2018) - a shared task
competition aiming to predict emotions and sen-
timent in tweets. There are five sub-tasks (Table
1). The participating systems have to automati-

377

cally determine the intensity of emotions (E) and
intensity of sentiment (i.e., valence V) from a col-
lection of tweets, as experienced by the authors of
these tweets. The organizers also include a multi-
label emotion classification task for tweets. For
each task, separate training and test data sets for
each language considered are provided to the par-
ticipants.

ID Task Input Output
Label

1 El-reg Tweet (t), Intensity(e, t) ∈ (0, 1)
Emotion (e)

2 El-oc Tweet (t), 0 ≤ Intensity(e, t) ≤ 3,
Emotion (e) Intensity(e, t) ∈N

3 V-reg Tweet (t), Intensity(s, t) ∈ (0, 1)
Sentiment (s)

4 V-oc Tweet (t), -3 ≤ Intensity(s, t) ≤ 3,
Sentiment (s) Intensity(s, t) ∈N

5 E-c Tweet (t), Class: neutral/
Emotions (s) no emotion/

multiple emotions

Table 1: Description of the five sub-tasks of Task1: Af-
fect in Tweets at SemEval 2018.

The contributions of the UIUC system are as
follows: (1) In this competition, we demon-
strate the use of a system that uses lexicon- and
embedding-based features in an ensemble model
of diverse approaches such as random forests, gra-
dient boosted trees, and linear classifiers. We
demonstrate how their combination in the final en-
semble outperforms each of the individual meth-
ods. (2) We account for the train-development
mismatch in the dataset by training a separate
model to learn this mismatch. (3) We analyze the
UIUC system and several variants of it, some of
which improve on its performance. (4) We also
perform an error analysis of “difficult” tweets, and
explore areas for improvement of the model.

2 Related Work

Word-Emotion Lexicons: Word-emotion lexi-
cons are a mapping between the words in the vo-
cabulary to an emotion rating. Some lexicons map
words to discrete emotions, such as General In-
quirer (Stone et al., 1962), Wordnet Affect (Strap-
parava et al., 2004) and the NRC-10 Emotion Lex-
icon (Mohammad and Turney, 2013). Others, such
as Affective Norms for English Words (ANEW)
(Bradley and Lang, 1999) and WKB Corpus (War-
riner et al., 2013), map them to dimensions such as
valence, arousal and dominance.

Sentence-Level Labeled Corpora: Large
scale corpora annotated with sentence-level emo-

tion labels are uncommon in the literature. Affec-
tive Text (Strapparava and Mihalcea, 2007), cre-
ated for SemEval 2007, contains emotion annota-
tions headlines of news articles. Alm et al. anno-
tated about 185 children’s stories with the Ekman
labels. Aman and Szpakowicz created annotated
5,000 sentences with additional labels for intensity
and emotion bearing phrases. Preotiuc-Pietro et al.
annotated 3,000 social media posts for valence and
arousal, making this one of the few datasets that
contains annotations based on the VAD model.

Approaches: Rule-based approaches incorpo-
rate domain knowledge. This can include term-
based n-gram features, distance between certain
terms or pre-specified POS patterns. Early work
in this area focused mainly on linguistic heuristics
(Hatzivassiloglou and McKeown, 1997). How-
ever, a major drawback of these rule-based ap-
proaches is that they are unable to detect novel ex-
pression of sentiment. Keyword based approaches
classify text based on the detection of unambigu-
ous words in language. They depend on large scale
lexicons with affective labels for words, such NRC
(Mohammad and Turney, 2013). Knowledge-
based approaches use web ontologies or seman-
tic networks. A major advantage of such systems
is that they enable the system to use conceptual
ideas derived from world knowledge (Cambria and
Hussain, 2012). Recently, distributed approaches
have been proposed that leverage word embed-
dings and train deep neural networks on the em-
bedding space (Mohammad and Bravo-Marquez,
2017a).

Shared evaluations have encouraged the com-
munity to create benchmarks over shared tasks,
and have been organized frequently. The Af-
fective Text task at SemEval 2007 (Strapparava
and Mihalcea, 2007) asked its participants to pre-
dict emotion labels for headlines of news articles.
More recently, the Shared Task on Emotion In-
tensity (EmoInt) at WASSA 2017 (Mohammad
and Bravo-Marquez, 2017a), had 22 participating
teams who were given a corpus of 3,960 English
tweets annotated with a continuous intensity score
for each of four of Ekman’s basic emotions: anger,
fear, joy and sadness.

3 Dataset

Tasks 1 and 2 share the same training and devel-
opment data sets: a total of 7,500 sentences in
training and about 1,600 sentences in development

378

across the four emotions: anger, fear, joy, sadness.
It is interesting to note that the training data sets
for the emotions of fear, anger and sadness overlap
significantly: all pairs have a Jaccard similarity of
over 0.5. This means that over 67% of the data sets
across these emotions contain the same tweets.

Tasks 3 and 4 share the same data sets as well,
for a total of 1,200 tweets in training and 450
tweets in development across the four emotions.

Another interesting overlap is between the tweet
collections for Tasks 5 and 1 (and therefore Task
2): The data set for Task 5 appears to be made
up largely of the tweets for Task 1, for both the
training and development sets. These overlaps of
the training and development data sets across all
emotions gave us the idea to tackle all tasks using a
common set of features. For instance, Tasks 2 and
4 may be solved by simply transforming the output
of Tasks 1 and 3, respectively. Task 5 involves
a multi-label classification and thus, needs more
thought.

In the test set, with the exception of the first
1,000 or so sentences, nearly 95% of the total sen-
tences for Tasks 1A and 3A (i.e., for English) are
the so called “mystery” sentences – meaning, es-
sentially neutral sentences without any emotional
content. The scores reported by the organizers
are for the non-mystery sentences only (i.e., non-
neutral).

4 The UIUC System

Our system takes as input features from affective
lexicons and word embeddings trained on affective
Twitter corpora. We then train an ensemble of di-
verse models over these features. Given that the
training and development labels are not directly
comparable, we also model the mismatch between
the two sets. Moreover, we also describe addi-
tional models that we constructed after the com-
petition deadline (section 4.4). We report results
for tasks 1A, 2A, 3A and 4A (where ’A’ identifies
the target language: English).

4.1 Feature Space

We have used the AffectiveTweets (Mohammad
and Bravo-Marquez, 2017b), a package in Weka
(Hall et al., 2009) for extracting certain fea-
tures from a tweet. The features extracted
are: MPQA (Wilson et al., 2005), BingLiu
(Bauman et al., 2017), AFINN (Nielsen, 2011),
Sentiment-140 Emoticon (Kiritchenko et al.,

2014), NRC Hashtag Emotion Lexicon (Mo-
hammad and Kiritchenko, 2015), NRC emo-
tion lexicon (wordlevel) (Mohammad and Tur-
ney, 2013), SentiWordNet (Baccianella et al.,
2010), NegatingWordList(Mohammad and Bravo-
Marquez, 2017b). We call these lexicon features.
In addition, we also extract Embedding based fea-
tures (Twitter Edinburgh 100D / 400D corpus) us-
ing the AffectiveTweets package.

4.2 Models

The UIUC system contains an ensemble con-
structed using stacking of several base learners.
A schematic of this ensemble is shown in figure
1. We obtained out-of-fold predictions for each
of these three models using 5-fold cross validation
on layer 1. These predictions were concatenated
and provided as input to layer 2. Parameters of the
models in this ensemble are detailed below:

Layer 1
Random Forests:
n estimators=100, max features=

√
F (F=total

features), max depth=5, min samples leaf=2
XGB1: max depth=5, min child weight=150,
gamma=0, n estimators=150, reg alpha=0.01,
reg lambda=0.87, learning rate=0.1
SVM:kernel=linear, C=0.1

Layer 2
XGB: max depth=3, min child weight=1,
gamma=0, n estimators=100, reg alpha=0.1,
reg lambda=1, learning rate=0.1, random state=0

4.3 Modeling the Mismatch Between the
Training and Development Sets

According to the organizers, the training set for
the task was created from an annotation effort in
2016 (Mohammad and Bravo-Marquez, 2017a).
The development and test sets were created from
a common 2017 annotation effort. As a result, the
scores for tweets across the training and develop-
ment sets or across the training and test sets are not
directly comparable. We therefore devise a model
that can predict and eliminate the mismatch be-
tween the two sets of labels. As a means to model
the mismatch in the distributions of the two label
sets, we train a linear model that, for the labels
in the development set, learns a function between
the predictions made for the development set and

1Note: XGB stands for the XGBoost implementation of
gradient boosted decision trees. SVM was implmented using
sklearn (http://scikit-learn.org/stable/).

379

Figure 1: Ensemble used in the UIUC system.

the ground truth. This learner does not affect the
training in any way, but is a way to transform the
predictions made for the development set so that
they are comparable to the ground truth labels.

4.4 Additional Models

After the competition deadline, we built and eval-
uated additional models. The overall model was
an ensemble with the same structure as the offi-
cial submission. Additions include implementa-
tion of neural models of computation. In particu-
lar, we implement feed-forward neural networks
(using the average word embeddings as input),
LSTM-CNN (using individual word embeddings)
and character level LSTM (using the character
stream). The neural networks were implemented
in Keras (Chollet et al., 2015) with the Tensorflow
(Abadi et al., 2016) backend. Details about these
additional models are shown below.

Layer 1:
SVM (layer 1): C=0.1, kernel=RBF
XGB: max depth=5, reg lambda=0.87,
min child weight=150, n estimators=150
FFNN (feed forward neural network): Dense
(256, sigmoid), Dropout (0.2, sigmoid), Dense
(64, sigmoid), Dense (32, sigmoid), Dense (1,
relu)
LSTM-CNN: Conv1D (300, 3, relu), Dropout
(0.2), LSTM (150), Dropout (0.2), Dense (32,
sigmoid), Dense (1, relu)
Character level language model (Char): LSTM
(150), Dropout (0.2), Dense (64, sigmoid), Dense
(1, relu)

Layer 2:
SVM: C=1, kernel=RBF

5 Results

In this section, we describe the results of our offi-
cial submission to SemEval 2018 (subsection 5.1)
as well as the results of experiments on additional
models constructed after the competition deadline
(section 5.2).

5.1 Performance of the UIUC system

Tables 2 and 3 show the performance of our model
for Tasks 1A, 2A, 3A and 4A, respectively. We
have shown the results by comparing our model
against the baseline, which has been trained using
an SVM with linear kernel on the lexicon and em-
bedding based features. Our submission outper-
forms the baseline in nearly all the task-emotion
pairs.

In particular, we observe that the results for the
prediction of data points in the 0.5 – 1 range are
poorer than in the overall range. The reason for
this is that the finer prediction is a harder task than
the overall prediction, and exactly predicting the
emotion intensity given that it is high has signifi-
cant variance. Scores for Task 2A are worse than
those for Task 1A in spite of the similarity of the
tasks. This is because in Task 2A, we essentially
discretize the output, thereby either increasing or
decreasing the absolute error between the inten-
sity predicted and the actual intensity, depending
on whether the discretized output is correct or not.
On the whole, evidently, the correlation drops as
the effect of the latter case (increase in the abso-
lute error) dominates over the former.

Tasks 3 and 4 follow similar trends as Tasks 1
and 2 respectively, but we see a higher correla-
tion for these tasks as compared to Tasks 1 and
2, respectively. This leads to the conclusion that
predicting the sentiment is an easier task than pre-

380

Subtask Submission Pearson (all instances) Alternate evaluation
macro-avg anger fear joy sadness macro-avg anger fear joy sadness

1
UIUC System 0.647 0.663 0.646 0.649 0.628 0.463 0.514 0.431 0.422 0.485

Baseline 0.630 0.652 0.625 0.632 0.610 0.462 0.523 0.418 0.424 0.481

2
UIUC System 0.518 0.514 0.449 0.576 0.533 0.463 0.414 0.392 0.562 0.484

Baseline 0.448 0.512 0.258 0.527 0.493 0.334 0.335 0.219 0.415 0.366

Table 2: Results of the UIUC system for subtasks 1a (emotion intensity regression) and 2a (emotion ordinal
classification) and comparison with baseline. The alternate evaluation is Pearson correlation for tweets with scores
between 0.5 and 1 for subtask 1 and the Cohen Kappa (Cohen, 1960) for subtask 2.

Subtask Model Pearson Alternate evaluation

3 UIUC system 0.762 0.582
Baseline 0.746 0.565

4 UIUC system 0.724 0.694
Baseline 0.688 0.673

Table 3: Results of the UIUC system for tasks 3a (va-
lence intensity regression) and 4a (valence ordinal clas-
sification) and comparison with baseline. The alter-
nate evaluation was Pearson correlation for tweets with
score 0.5-1 for subtask 3a and Cohen’s Kappa for sub-
task 4a.

dicting the intensity of a given emotion.

5.2 Performance of Additional Models
Ablation Study for Task 1: Given the multiple
subsections of data, it is difficult to optimize the
architecture and parameters for all emotions for all
subtasks. Therefore, we focus on optimizing the
architecture and parameters for only the first sub-
task (emotion intensity prediction) for the emotion
anger. Given the many models developed and pre-
sented here, it is interesting to see how they per-
form individually on this subtask. Table 4 shows
the performance of various feature-model combi-
nations. Note that L and E in the Features column
indicate lexicon-based and embedding-based fea-
tures respectively.

Feature Model CV Dev Test

L

SVM 0.646 0.616 0.654
XGB 0.648 0.646 0.634
FFNN 0.699 0.674 0.664

SVM+XGB 0.662 0.651 0.663
SVM+XGB+FFNN [M1] 0.695 0.674 0.673

E

SVM 0.564 0.553 0.555
LSTM 0.640 0.635 0.633

LSTM-CNN 0.641 0.639 0.635
LSTM-CNN (Att) [M2] 0.651 0.642 0.644

L+E
M1+M2 0.733 0.713 0.701

M1+M2+Char 0.735 0.711 0.704

Table 4: An ablation study of various features and mod-
els for subtask 1: emotion intensity prediction for the
specific case of the emotion anger.

We use the SVM trained on lexical fea-
tures as the baseline. We can see that the
SVM+XGB+FFNN (referred to as M1) performs

better than the SVM alone. LSTM-CNN with at-
tention (referred to as M2) performs similarly to
the SVM baseline. However, when combined to-
gether, the model M1+M2+Char performs better
than each of the individual models on the test set.
This means that the different models capture com-
plementary information about the input, and work
better in unison, thus demonstrating the efficacy of
the idea of ensembling.

Henceforth, we use M1 to refer to the SVM
+ XGBoost + Feedforward Neural Network ar-
chitecture trained on lexical features, M2 to re-
fer to the LSTM-CNN architecture with attention
trained on the embedding features and Char to re-
fer to the character level LSTM model trained on
the individual characters.

Task Features Model Pearson Correlation Coefficient
Anger Fear Joy Sadness

1

L SVM 0.654 0.646 0.649 0.628
L M1 0.673 0.668 0.698 0.642
E M2 0.644 0.659 0.685 0.644

L+E M1+M2+Char 0.704 0.688 0.713 0.652

2

L SVM 0.514 0.449 0.576 0.533
L M1 0.549 0.462 0.58 0.557
E M2 0.544 0.455 0.571 0.542

L+E M1+M2+Char 0.558 0.461 0.601 0.566

Table 5: Evaluation for subtask 1 (emotion intensity
prediction) and subtask 2 (emotion ordinal classifica-
tion) for all emotions with various features and models.

Tasks 1 and 2 with with Additional Models:
Table 5 shows the performance of the models de-
scribed above to the first two subtasks: emotion
intensity prediction and emotion ordinal classifi-
cation. We have shown the results for all the four
emotions. As we can see, here too, the model com-
bination M1+M2+Char combination performs the
best for all emotions in subtask 1. The perfor-
mance of the model is the best for the emotion joy,
and the worst for the emotion fear.

Tasks 3 and 4 with with Additional Models:
Coming to subtasks 3 and 4 (valence intensity pre-
diction and valence ordinal classification respec-
tively), Table 6 shows the performance of the var-

381

Task Features Model Alternate Evaluation

3

L SVM 0.762
L M1 0.78
E M2 0.764

L+E M1+M2+Char 0.784

4

L SVM 0.724
L M1 0.733
E M2 0.745

L+E M1+M2+Char 0.75

Table 6: Evaluation for subtask 3 (emotion valence re-
gression) and subtask 4 (valence ordinal classification)
for various features and models. The alternate evalu-
ation is the Pearson correlation for tweets with scores
0.5 - 1 for subtask 3 and the Cohen’s Kappa for subtask
4.

ious models on these tasks. Consistent with the
results of subtasks 1 and 2, the combined model
M1+M2+Char performs the best for both tasks.

In general, we note that the correlation is signif-
icantly higher on valence prediction tasks as com-
pared to the emotion intensity tasks. This is likely
because the emotion intensity prediction is a fine
grained task, requiring the model to observe pat-
terns specific to an emotion. Valence is more of an
“aggregated” effect of all the emotions.

Had the best model in additional experiments
for all subtasks been submitted to SemEval with
all other factors constant, its rank based on the
macro-average for the first four subtasks would
have been 15th, 15th, 18th and 13th respectively.

6 Discussion

In order to identify areas where the model can im-
prove, it is necessary to study cases where it per-
forms poorly. To do so, we select 5 sentences
where the baseline SVM model performs very
poorly while predicting anger intensity (based on
absolute error) and 1 sentence where it performs
well. We have restricted the number of sentences
to 6 for brevity. In particular, for sentences 1 and
2, the model significantly overestimates the inten-
sity, for sentence 3, the model predicts the inten-
sity accurately. For sentences 4, 5 and 6, the model
significantly underestimates the intensity. Table 7
shows the sentences considered and the true value
of emotion intensity for the emotion anger.

We then compare the absolute error between
the true value and model prediction for various
models. This comparison is shown in Table 8.
Given that 5 of the 6 sentences are “difficult”
for the models, we observe that there is no clear

Tweet Intensity
1 never had a dull moment with u guys 0.078
2 Fast and furious marathon soon! 0.118
3 They cancelled Chewing Gum. #devastated 0.625
4 Its taking apart my lawn! GET OFF MY LAWN! 0.797
5 I need a beer #irritated 0.806
6 Working with alergies is the most miserable shit 0.856

in the world #miserable #alergies

Table 7: Test Examples for Error Analysis with inten-
sity annotations for anger.

winner over these sentences. However, we ob-
serve that for sentences 1 and 2, the model M1
performs relatively well. For sentences 4, 5 and
6, the models involving M2 perform relatively
well. This suggests that M1 is better at predict-
ing the lower intensities, while M2 is better at the
higher intensities. This may explain why though
the overall scores for the two models was simi-
lar, the ensembled model outperformed the indi-
vidual models. Another interesting observation is
that for sentence 4, the presence of the capital let-
ters is the reason for the high intensity. The model
M1+M2+Char is able to identify this well, and
contributes to reducing the error significantly as
compared to all the other models.

Features Model Sentence-wise error
1 2 3 4 5 6

L SVM 0.310 0.308 0.004 -0.377 -0.326 -0.327
L M1 0.305 0.287 -0.067 -0.391 -0.286 -0.245
E M2 0.344 0.366 0.051 -0.265 -0.241 -0.199

L+E M1+M2+Char 0.339 0.373 0.071 -0.213 -0.242 -0.203

Table 8: Absolute error values for various features and
models for subtask 1: emotion intensity prediction for
emotion anger.

7 Conclusion

In this paper we presented the UIUC system
that performs regression and ordinal classifica-
tion of the emotion and sentiment present in En-
glish tweets. Our system comprised an ensem-
ble trained on lexicon based and embedding based
features. We also provided an account for the
training and development mismatch in a given data
set by training an adaptive model between the
model predictions and the final test predictions.
We finally perform an error analysis over the var-
ious models to identify potential sources of im-
provement to the model.

382

References
Martı́n Abadi, Paul Barham, Jianmin Chen, Zhifeng

Chen, Andy Davis, Jeffrey Dean, Matthieu Devin,
Sanjay Ghemawat, Geoffrey Irving, Michael Isard,
et al. 2016. Tensorflow: A system for large-scale
machine learning. In OSDI, volume 16, pages 265–
283.

Cecilia Ovesdotter Alm, Dan Roth, and Richard
Sproat. 2005. Emotions from text: machine learning
for text-based emotion prediction. In Proceedings of
the conference on human language technology and
empirical methods in natural language processing,
pages 579–586. Association for Computational Lin-
guistics.

Saima Aman and Stan Szpakowicz. 2007. Identify-
ing expressions of emotion in text. In International
Conference on Text, Speech and Dialogue, pages
196–205. Springer.

Stefano Baccianella, Andrea Esuli, and Fabrizio Sebas-
tiani. 2010. Sentiwordnet 3.0: An enhanced lexical
resource for sentiment analysis and opinion mining.
In LREC. European Language Resources Associa-
tion.

Konstantin Bauman, Bing Liu, and Alexander Tuzhilin.
2017. Aspect based recommendations: Recom-
mending items with the most valuable aspects based
on user reviews. In Proceedings of the 23rd ACM
SIGKDD, pages 717–725. ACM.

Margaret M Bradley and Peter J Lang. 1999. Affective
norms for English words (ANEW): Instruction man-
ual and affective ratings. Technical report, Technical
report C-1, the center for research in psychophysiol-
ogy, University of Florida.

Erik Cambria and Amir Hussain. 2012. Sentic comput-
ing: Techniques, tools, and applications, volume 2.
Springer Science & Business Media.

François Chollet et al. 2015. Keras.

Jacob Cohen. 1960. A coefficient of agreement for
nominal scales. Journal of Educational and Psycho-
logical Measurement, 20(1):37.

Paul Ekman. 1997. Basic Emotions. Handbook of
Cognition and Emotion, John Wiley & SOns, Sus-
sex, UK.

Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard
Pfahringer, Peter Reutemann, and Ian H Witten.
2009. The weka data mining software: an update.
ACM SIGKDD explorations newsletter, 11(1):10–
18.

Vasileios Hatzivassiloglou and Kathleen R McKeown.
1997. Predicting the semantic orientation of adjec-
tives. In Proceedings of the 35th annual meeting
of the association for computational linguistics and
eighth conference of the european chapter of the as-
sociation for computational linguistics, pages 174–
181. Association for Computational Linguistics.

Svetlana Kiritchenko, Xiaodan Zhu, and Saif M Mo-
hammad. 2014. Sentiment analysis of short in-
formal texts. Journal of Artificial Intelligence Re-
search, 50:723–762.

Albert Mehrabian. 1981. Silent messages: Implicit
communication of emotions and attitudes (2nd ed).
Wadsworth Pub. Co., Belmont, California.

Saif Mohammad and Felipe Bravo-Marquez. 2017a.
Wassa shared task on emotion intensity. In Pro-
ceedings of the 8th Workshop on Computational Ap-
proaches to Subjectivity, Sentiment and Social Me-
dia Analysis (WASSA), pages 34–49.

Saif M Mohammad and Felipe Bravo-Marquez. 2017b.
Emotion intensities in tweets. arXiv preprint
arXiv:1708.03696.

Saif M. Mohammad, Felipe Bravo-Marquez, Mo-
hammad Salameh, and Svetlana Kiritchenko. 2018.
Semeval-2018 Task 1: Affect in tweets. In Proceed-
ings of International Workshop on Semantic Evalu-
ation (SemEval), New Orleans, LA, USA.

Saif M Mohammad and Svetlana Kiritchenko. 2015.
Using hashtags to capture fine emotion cate-
gories from tweets. Computational Intelligence,
31(2):301–326.

Saif M Mohammad and Peter D Turney. 2013. Crowd-
sourcing a word–emotion association lexicon. Com-
putational Intelligence, 29(3):436–465.

Finn Årup Nielsen. 2011. A new ANEW: Evaluation
of a word list for sentiment analysis in microblogs.
arXiv preprint arXiv:1103.2903.

Robert Plutchik. 2001. The nature of emotions. Amer-
ican Scientist, 89.

Daniel Preotiuc-Pietro, H Andrew Schwartz, Gregory
Park, Johannes C Eichstaedt, Margaret Kern, Lyle
Ungar, and Elizabeth P Shulman. 2016. Modelling
valence and arousal in facebook posts. In Proceed-
ings of NAACL-HLT, pages 9–15.

Philip J Stone, Robert F Bales, J Zvi Namenwirth, and
Daniel M Ogilvie. 1962. The general inquirer: A
computer system for content analysis and retrieval
based on the sentence as a unit of information. Be-
havioral Science, 7(4):484–498.

Carlo Strapparava and Rada Mihalcea. 2007. Semeval-
2007 task 14: Affective text. In Proceedings of
the 4th International Workshop on Semantic Evalu-
ations, pages 70–74. Association for Computational
Linguistics.

Carlo Strapparava, Alessandro Valitutti, et al. 2004.
Wordnet affect: an affective extension of wordnet.
In LREC, volume 4, pages 1083–1086. Citeseer.

Amy Beth Warriner, Victor Kuperman, and Marc Brys-
baert. 2013. Norms of valence, arousal, and dom-
inance for 13,915 english lemmas. Behavior re-
search methods, 45(4):1191–1207.

383

Theresa Wilson, Janyce Wiebe, and Paul Hoff-
mann. 2005. Recognizing contextual polarity in
phrase-level sentiment analysis. In Proceedings of
HLT/EMNLP, pages 347–354. Association for Com-
putational Linguistics.

384

Proceedings of the 12th International Workshop on Semantic Evaluation (SemEval-2018), pages 385–389
New Orleans, Louisiana, June 5–6, 2018. ©2018 Association for Computational Linguistics

KU-MTL at SemEval-2018 Task 1:
Multi-task Identification of Affect in Tweets

Thomas Nyegaard-Signori, Casper Veistrup Helms,
Johannes Bjerva, Isabelle Augenstein

Department of Computer Science
University of Copenhagen

{sfq340,wqx727}@alumni.ku.dk, {bjerva,augenstein}@di.ku.dk

Abstract

We take a multi-task learning approach to the
shared Task 1 at SemEval-2018. The general
idea concerning the model structure is to use
as little external data as possible in order to
preserve the task relatedness and reduce com-
plexity. We employ multi-task learning with
hard parameter sharing to exploit the related-
ness between sub-tasks. As a base model, we
use a standard recurrent neural network for
both the classification and regression subtasks.
Our system ranks 32nd out of 48 participants
with a Pearson score of 0.557 in the first sub-
task, and 20th out of 35 in the fifth subtask
with an accuracy score of 0.464.

1 Introduction

We consider the task of identifying affect in
tweets, as described in Mohammad et al. (2018).
Given a tweet, the task is to predict the emo-
tions and their corresponding intensities which the
tweet portrays. Previous approaches to this task
are outlined in Mohammad and Bravo-Marquez
(2017). The winning team of the SemEval EmoInt
2017, presented in Goel et al. (2017), tackled a
similar task as the regression task presented in
this year’s SemEval Task 1. The winning sys-
tem utilised an ensemble approach consisting of 5
sub-models and using a weighted average of these
models to come up with the final result. This
model is utilising most of the different approaches
mentioned in the literature and combining them
into one and with great success.

Our work bears resemblance to the runner up
in the SemEval EmoInt 2017, Köper et al. (2017),
who used a comparatively simple model consist-
ing of a CNN-LSTM neural network. The differ-
ence between the models presented in this paper
and the IMS system is the utilisation of lexicons,
and that we take a multi-task learning approach.

We focus on two subtasks of this shared task,
namely emotion intensity regression and emotion
classification (Sub-tasks 1 and 5). These were
chosen because of the overlap in tweets but differ-
ing truth labels value and types. Furthermore, we
only consider the English versions of the subtasks.

2 System Description

Our system is a standard RNN, with the exception
that we approach the task using multi-task learning
via hard parameter sharing (Caruana, 1993). We
will now present the details of our implementation.

2.1 Preprocessing of Text and Textual
Representation

We use embedded word representations as input to
our system, initialised to the weights from a large
set of pre-trained embeddings which have been
trained on Twitter data (∼400 million tweets).
These embeddings were obtained from Godin
et al. (2015). Words which are out-of-vocabulary
are replaced with UNK. Furthermore, user men-
tions and numbers get mapped to a place-holder
instead of their actual values.

Since the model used both word and character
representations, the characters are read in sepa-
rately, although the same basic principle is fol-
lowed. Every character is represented by an em-
bedded representation, which is initialised ran-
domly prior to training.

2.2 Augmentation of Data
Since the tweets have different formats of truth
labels, one is a singular value (regression) and
one is a multi-label list (classification), reading in
the labels has to be augmented. Since the tweets
are reused in the two tasks, some of the regres-
sion tweets can be augmented with their respective
classification label, although, if no classification
label is present, the truth labels are set to -1, which

385

Figure 1: The word input part of the full model.

then acts as a mask. Since there are more regres-
sion tweets than classification, the augmentation is
done this way around. All the tweets are padded
differently based on whether or not the tweet is be-
ing read as a word representation or character rep-
resentation, and tweets longer than the specified
padding values are cut down to size.

2.3 Word Input Model

The word input to the model is 60 · 400 dimen-
sional vectors that have been passed through the
preprocessing and augmentation specified in sec-
tion 2.1 and 2.2 ((7) in Figure 1). These vectors
are then passed into two 250-dimensional, bidirec-
tional GRUs which traverse the tweet front to back
and vice versa, and the outputs of the two GRU
layers are then concatenated ((8) and (9) in Fig-
ure 1). This output is then batch normalised and
dropout is applied ((10) in Figure 1). This output
of the word submodel is then concatenated later
with the character submodel.

2.4 Character Input Model

The character input to the model is 256 · 400 di-
mensional vectors that have been through the same
preprocessing and augmentation as the word in-
puts ((1) in Figure 2). These vectors then get
passed into a residual neural network which works
as a loop of batch normalisations, dropout appli-
cations and one-dimensional convolutions ((2) in
Figure 2). Each loop ends with an addition of the
values at the start of the loop and the current result
and then a max pooling. These vectors are then
passed into two GRU layers similar to the word
input ((4) and (5) in Figure 2) which are then con-
catenated and passed along to be connected with
the word input part ((6) in Figure 2).

2.5 Full Model

The combined model consists of four submodels,
one for each regression emotion. The combined

Figure 2: The character input part of the full model.

embeddings are used to generate classification la-
bels. A high level overview can be seen in Fig-
ure 3.

2.6 Loss Functions

Since the model is a multitask model, more than
one loss function was needed. The model solves
two tasks which can not share loss functions be-
cause of the inherent nature of the problem, one
being a regression problem and the other a classi-
fication problem.

Regression loss function For the regression
output of the model, mean squared error was cho-
sen as a way to optimise the model with regards
to Pearson-score. Since mean squared error seeks
to minimise the difference between the prediction
and the gold score, a low mean squared error will
bring the Pearson score closer to one.

Classification loss function The loss function
for the classification is a bit more convoluted since
all regression tweets have regression labels, but
not all regression tweets have classification labels.
This is handled by way of a mask and the augmen-
tation specified in section 2.2. Since the model
has eleven output layers, there is a loss function
for each of the eleven emotions/layers. The loss
function ensures that tweets with no classification
labels do not impact the updating of the weights
of the model by giving the predicted values a loss
of zero. The binary cross entropy loss function
was modified to include a weighting parameter be-
cause of the uneven distribution of ones and zeros.
The objective of the model is to identify the emo-
tions indicated by a tweet, and as such a value of
one is assigned a higher value.

386

Figure 3: The character input part of the full model.

3 Error Analysis

3.1 Regression Scores
Since there is a considerable overlap in tweets,
some tweets are reused in multiple emotions from
Task 1 which then in turn can be reused a single
time in Task 5. The actual numbers of unique
and “duplicate” tweets are hard to resolve and
presented a challenge in the first iterations of the
model. Gold and predicted scores for an example
instance are shown in Table 1 and 2.

Anger score Fear score Joy score Sadness score

Gold : 0.517
Pred : 0.449

Gold : 0.800
Pred : 0.953

Gold : 0.197
Pred : 0.139

Gold : 0.707
Pred : 0.756

Table 1: Good prediction for regression task with
the following tweet:
“we need to do something. something must be
done!!!!!’ your anxiety is amusing. nothing will
be done. despair.”.

Anger score Fear score Joy score Sadness score

Gold : 0.953
Pred : 0.620

Gold : 0.621
Pred : 0.346

Gold : —–
Pred : 0.430

Gold : 0.680
Pred : 0.326

Table 2: Bad prediction for regression task with the
following tweet:
”Don’t fucking tag me in pictures as ’family first’
when you cut me out 5 years ago. You’re no one to
me.”.

It is noticeable from the scoring shown in Ta-
ble 1 and 2 that keywords such as ’familiy’, ’anx-
iety’ and ’fucking’, for example, have a very large
effect on the values predicted. These keyword cor-

relations might have been better handled with the
use of external data, such as emotive lexicons and
the likes.

3.2 Classification Scores
Keeping in mind that the classification labels rep-
resent the emotions anger, anticipation, disgust,
fear, joy, love, optimism, pessimism, sadness, sur-
prise and trust, exemplary classification predic-
tions are presented in Table 3 and Table 4.

Predictions Hit percentage

Gold : 0 0 1 0 0 0 0 0 1 0 0
Pred : 0 1 1 0 0 0 0 0 0 0 0

82%

Table 3: Scores for classification task with the fol-
lowing tweet:
“Not sure tequila shots at my family birthday
meal is up there with the best ideas I’ve ever had
#grim”.

Predictions Hit percentage

Gold : 0 1 0 0 1 1 1 0 0 0 1
Pred : 1 0 1 0 0 0 0 0 0 0 0

36%

Table 4: Bad prediction scores for classification
task with the following tweet:
”SheenKL I assume the manga is #good?”.

There are certain structures that are prevalent
in the correct and incorrect predictions. When
looking at the amount of labels that are set in the
datasets, it is evident just from the small amount of
surprise or trust labels that have been set that these

387

emotions will be harder to predict, since there are
so few points of reference. Furthermore, when
both anger and disgust labels are present in a tweet
the model predicts better. This can be explained
by the fact that there are a significant amount of
tweets with these two labels.

Average score Anger Fear Joy Sadness Classification

0.551 0.521 0.606 0.538 0.563 0.464

Table 5: Overall scoring of the model, both regres-
sion and classification (Task 1 and 5).

Table 5 describes the overall scores from the
model run on the test set in the evaluation period
of the shared task.

4 Related Work

Multi-task Learning Neural networks make
multi-task learning via (hard) parameter sharing
particularly easy (Caruana, 1993) and has shown
to be successful for a variety of NLP tasks, such
as machine translation (Dong et al., 2015; Lu-
ong et al., 2016), keyphrase boundary classifi-
cation (Augenstein and Søgaard, 2018), tagging
(Martı́nez Alonso and Plank, 2017; Bjerva et al.,
2016), complex word identification (Bingel and
Bjerva, 2018), and natural language understanding
(Augenstein et al., 2017). For sequence labelling,
many combinations of tasks have been explored,
e.g., by Martı́nez Alonso and Plank (2017); Bjerva
(2017a,b). An analysis of different task com-
binations was performed by Søgaard and Gold-
berg (2016); Bingel and Søgaard (2017). Ruder
et al. (2017) presented a more flexible architecture,
which learned what to share between the main and
auxiliary tasks, and might require further investi-
gation in future work. Augenstein et al. (2017)
combine multi-task learning with semi-supervised
learning for strongly related tasks with different
output spaces. For this shared task, we opt for a
simple hard parameter sharing strategy, though we
would expect to see improvements with more in-
volved architectures.

5 Conclusion

In this paper, we present our system for SemEval-
2018 Task 1. We employed a simple multi-task
architecture with hard parameter sharing to model
Subtasks 1 and 5 jointly. The model achieved an
average performance compared to the rest of the

participants. We argue this is due to our not using
external data or performing extensive additional
engineering.

Acknowledgments

Isabelle Augenstein is supported by Eurostars
grant Number E10138. We further gratefully ac-
knowledge the support of NVIDIA Corporation
with the donation of the Titan Xp GPU used for
this research.

References
Isabelle Augenstein, Sebastian Ruder, and Anders

Søgaard. 2017. Multi-task learning of keyphrase
boundary detection. In Proceedings of ACL.

Isabelle Augenstein and Anders Søgaard. 2018. Multi-
task learning of pairwise sequence classification
tasks over disparate label spaces. In Proceedings of
NAACL, to appear.

Joachim Bingel and Johannes Bjerva. 2018. Cross-
lingual complex word identification with multitask
learning. In Proceedings of Shared Task on CWI at
BEA18.

Joachim Bingel and Anders Søgaard. 2017. Identify-
ing beneficial task relations for multi-task learning
in deep neural networks. In EACL. pages 164–169.

Johannes Bjerva. 2017a. One Model to Rule them all
– Multitask and Multilingual Modelling for Lexical
Analysis. Ph.D. thesis, University of Groningen.

Johannes Bjerva. 2017b. Will my auxiliary tagging
task help? Estimating Auxiliary Tasks Effectivity in
Multi-Task Learning. In Proceedings of NoDaLiDa.
Linköping University Electronic Press, 131, pages
216–220.

Johannes Bjerva, Barbara Plank, and Johan Bos. 2016.
Semantic tagging with deep residual networks. In
Proceedings of COLING 2016. pages 3531–3541.

Richard A Caruana. 1993. Multitask connectionist
learning. In In Proceedings of the 1993 Connection-
ist Models Summer School.

Daxiang Dong, Hua Wu, Wei He, Dianhai Yu, and
Haifeng Wang. 2015. Multi-Task Learning for Mul-
tiple Language Translation. In Proceedings of ACL.

Fréderic Godin, Baptist Vandersmissen, Wesley De
Neve, and Rik Van de Walle. 2015. Multimedia
Lab @ ACL W-NUT NER Shared Task: Named En-
tity Recognition for Twitter Microposts using Dis-
tributed Word Representations .

Pranav Goel, Devang Kulshreshtha, Prayas Jain, and
K.K. Shukla. 2017. Prayas at emoint 2017: An en-
semble of deep neural architectures for emotion in-
tensity prediction in tweets .

388

Maximilian Köper, Evgeny Kim, and Roman Klinger.
2017. Ims at emoint-2017: Emotion intensity pre-
diction with affective norms, automatically extended
resources and deep learning .

Minh-Thang Luong, Quoc V. Le, Ilya Sutskever, Oriol
Vinyals, and Lukasz Kaiser. 2016. Multi-task Se-
quence to Sequence Learning. In Proceedings of
ICLR.

Héctor Martı́nez Alonso and Barbara Plank. 2017.
When is multitask learning effective? Semantic se-
quence prediction under varying data conditions. In
EACL. pages 44–53.

Saif M. Mohammad and Felipe Bravo-Marquez. 2017.
Wassa-2017 shared task on emotion intensity .

Saif M. Mohammad, Felipe Bravo-Marquez, Mo-
hammad Salameh, and Svetlana Kiritchenko. 2018.
Semeval-2018 Task 1: Affect in tweets. In Proceed-
ings of International Workshop on Semantic Evalu-
ation (SemEval-2018). New Orleans, LA, USA.

Sebastian Ruder, Joachim Bingel, Isabelle Augenstein,
and Anders Søgaard. 2017. Sluice networks: Learn-
ing what to share between loosely related tasks.
arXiv preprint arXiv:1705.08142 .

Anders Søgaard and Yoav Goldberg. 2016. Deep
multi-task learning with low level tasks supervised
at lower layers. In ACL. volume 2, pages 231–235.

389

Proceedings of the 12th International Workshop on Semantic Evaluation (SemEval-2018), pages 390–394
New Orleans, Louisiana, June 5–6, 2018. ©2018 Association for Computational Linguistics

EmoNLP at SemEval-2018 Task 2: English Emoji Prediction with
Gradient Boosting Regression Tree Method and Bidirectional LSTM

Man Liu

liumanlalala@gmail.com

Abstract

This paper describes our system used in
the English Emoji Prediction Task 2 (Bar-
bieri et al., 2018) at the SemEval-2018.
Our system is based on two supervised
machine learning algorithms: Gradient
Boosting Regression Tree Method (GBM)
and Bidirectional Long Short-term Mem-
ory Network (BLSTM). Besides the com-
mon features, we extract various lexicon
and syntactic features from external re-
sources. After comparing the results of
two algorithms, GBM is chosen for the fi-
nal evaluation.

1 Introduction

Short text messages from social media websites
such as Twitter and Facebook have become an im-
portant communication channel in our daily life.
Although the writing styles of such short text mes-
sages are extremely diverse, the usage of emojis
are generally shared. Emojis are ideograms and
smiles that can be electronic expressions of natu-
ral emotions. Genres of emojis vary from facial
expression, places, types of weather to animals.
Emojis are used every day, rapidly changing the
communication way in the social network. Due
to the importance of emojis, investigations about
emojis have been performed in recent years. For
example, the previous work (Barbieri et al., 2017)
has shown that there are relations between words
and emojis, in other words, emojis are predictable
given its surrounding words. Task 2 of SemEval
2018 provides a platform for the further prediction
of emojis on tweets.

Our system addresses the first subtask: English
emoji prediction. Note that all the emojis in the
training data are removed. We models this prob-
lem as a multiclass classification problem. Specif-

ically, we leverage on semantic and syntactic re-
sources to extract varieties of features. After fea-
ture engineering, two models are adopted: gradi-
ent boosting regression tree method (GBM) and
bi-directional long short-term memory network
(BLSTM). After comparing results of these two
models, GBM is selected for the final evaluation.

The reminder of this paper is structured as fol-
lows. In section 2, we describe our system in
detail, including the feature description and ap-
proaches. In section 3, results of 5-fold experi-
ments and feature ablation are presented. Finally,
section 4 summarizes our work.

2 System Description

In this section, we present the details of our En-
glish emoji prediction system. In the dataset, each
tweet corresponds to one label indicating one type
of emojis. There are 20 types of emojis, most of
which are emotions.

We treat the problem as a multiclass predic-
tion task and extract a variety of features. For the
model GBM, besides the common features such as
word n-gram features, we utilize extensive exter-
nal resources to build diverse word clusters, lexi-
con and syntactic features. For the model BLSTM,
we adopt the pre-trained word embedding GloVe
(Pennington et al., 2014).

2.1 Preprocessing

As the first step, we perform preprocessing for
tweets tokenization and normalization. The
tokenization of all tweets are performed us-
ing tweetokenize1. In addition, we normal-
ize tweets by replacing all the URLs (e.g.
https://t.co/bihPimeeV9) with ” url ” and all the
mentions (e.g. @Preston Hall) with ”@mention”.

1https://github.com/jaredks/tweetokenize

390

2.2 Features
This section briefly describes features employed
in our two models. GBM takes advantage of all
the features shown in this section while BLSTM
only utilizes pre-trained GloVe as the word em-
bedding. For GBM, each tweet is represented as a
feature vector consisting of all the following fea-
tures. Since most of the target emojis are related
to emotions, we employ diversiform lexicon fea-
tures as well as emotional word (e.g. ”:)”) fea-
tures to exploit the sentimental information in the
sentence.

Character ngram: This feature represents the
presence or absence of contiguous sequence of 3,
4 and 5 characters to capture the morphological
information hidden in the words.

POS: The POS tag presents the information
about the lexical type of the word. We part-of-
speech tag the tweets with the Carnegie Mellon
University (CMU) tool (Gimpel et al., 2011). This
tool is designed specifically for tweets pos tagging
with the capability to deal with the non-standard
words. For example, it can tag ”ikr” (”I know,
right?”) as an interjection.

Cluster: This feature is induced from CMU
pos-tagging tool which provides the word cluster
using the Brown clustering algorithm. These pre-
trained 1,000 clusters serve as alternative repre-
sentations of each tweet. This feature illustrates
the presence and absence of tokens from the 1,000
clusters.

Negation: This negation feature is gener-
ated followed by Mohammad’s work (Mohammad
et al., 2013), where a negated context is defined
from a negation word (e.g. no, none) to one of the
punctuation marks:”,”, ”.”, ”:”, ”:”, ”!”, ”?”. Each
word in the negated context is added with the suf-
fix ” NEG” .

Word ngram: The word ngram (n=1, 2, 3, 4)
features are captured after negation processing and
can explore additional context information.

Counting feature: This feature is inspired by
Mohammad’s work (Mohammad et al., 2013) and
developed by combining all the number of special
symbols (e.g. mentions) in each tweet.

• the number of hashtags;

• the number of words with all characters in up-
per case;

• the number of contiguous sequences of ques-
tion marks, exclamation marks, and both of

them;

• whether the last token contains an question
mark or exclamation;

• the number of mentions;

• the number of URLs;

• the number of words which have repeated
characters (e.g. ”coooool”);

• presence or absence of positive or negative
emoticons in the tweet. The positive and neg-
ative emoticons are defined in (Mohammad
et al., 2013).

SSWE feature: SSWE (sentiment-specific
word embedding) are learned on 10 million tweets
using customized neural network (Tang et al.,
2014). SSWE features can capture the sentiment
information of sentences as well as the syntactic
context of words.

Lexicon feature: This feature is created follow-
ing the method produced by (Mohammad et al.,
2013). We investigate the number of sentiment
words, the total sentiment score, the score of last
sentiment words and the maximal sentiment score
for each lexicon. Taking advantage of exten-
sive external lexicons 2, this feature can interpret
the sentimental information in tweets comprehen-
sively.

2.3 Model

Two models are used in our system: GBM and
BLSTM. We compare performances of these two
models and finally use the GBM result for final
evaluation.

GBM: We construct GBM model by using all
the features mentioned in section 2.2. For each
tweet, the concatenated feature vector can be used
as the model input. Outputs of the model are the
multiclassification results. The gradient boosting
regression tree method generates base models se-
quentially and at each step updates the base model
by minimizing the loss function value. The base
model is a single regression tree which fits a set
of features by partitioning the feature space into

2NRC Emotion Lexicon; NRC Hashtag Sentiment Lex-
icon; MaxDiff Twitter Lexicon; MPQA Effect Lexicon;
MPQA Subjectivity Lexicon; Harvard Inquirer Lexicon;
Bing Liu Lexicon; Loughran McDonald Lexicon; Amazon
Laptop Review Lexicon; Sentiment140 Lexicon.

391

different regions. With additional regression trees
added to the model, the fitted model may achieve
a small training error. In other words, the gradient
boosting method sequentially fits the training data
by correcting base models at each step to strategi-
cally yield the best combination of trees. There-
fore, the gradient boosting method is potential to
produce more accurate predictions results (Zhang
and Haghani, 2015). The tool we used to build
GBM model is lightGBM3. We tune the hyperpa-
rameters on the training set by grid search. Be-
cause of the time constraints, it is impossible to
tune all the hyperparameters in the GBM model.
We choose two hyperparameters to tune and we set
learning rate to 0.1 and minimal number of data in
one leaf to 20. Table 1 summarizes the final set-
tings and the search space of hyperparameters.

Parameters Setting Search space

number of leaves per tree 64
16, 32, 64,
128

number of trees 300
100, 300, 700,
1000

Table 1: Tuned hyperparameter values and search
space for GBM.

BLSTM: We experiment BLSTM with pub-
lished word embedding, namely Stanford’s GloVe
embedding4 trained on 6 billion words from
Google and Web text. Instead of a traditional feed-
forward network, we use the bi-directional long-
short term memory network. LSTM (Hochreiter
and Schmidhuber, 1997) is a powerful connection-
ist model that can capture time dynamics and it
has special capability to cope with these gradi-
ent vanishing problems compared with the tradi-
tional recurrent neural network (RNN). However,
LSTM only has access to process one directional
information in the sequence which is contradictory
with most of the practical situations where the bi-
directional information is both beneficial. BLSTM
is designed to deal with this problem with the ba-
sic idea to process the sequence backward and for-
ward and feed the output into two separate hidden
states to catch the past and future information (Ma
and Hovy, 2016).

We exploit this BLSTM transforming word em-
bedding into classification results. Figure 1 shows
the network in detail. We also tuned the hyperpa-

3https://lightgbm.readthedocs.io/en/latest/
4https://nlp.stanford.edu/projects/glove/

Figure 1: Architecture of BLSTM. The word
embeddings of each word are fed into forward
LSTMs and backward LSTMs. The outputs of
each network are concatenated and decoded by a
softmax function into probability for each cate-
gory.

Parameters Setting
LSTM units 64
LSTM dropout 0.2
Recurrent dropout 0.2
Optimizer rmsprop
Loss function categorical crossentropy

Table 2: Tuned hyperparameter values for
BLSTM.

rameters in BLSTM to achieve the best result. The
tuned parameter values used are illustrated in table
2.

2.4 Results
Our system is trained on two models. With the
fine-tuned hyperparameters exhibited in table 1
and 2, we train the two separate models to deter-
mine the final classifier for evaluation.
To find out the optimum settings, we explore
all the training data and conduct 5-fold cross-
validation experiments. Table 3 shows the 5-fold
cross-validation performances on the two mod-
els. Comparing the 5-fold cross-validation results,
we observe that there is no significant difference
across these 5 experiments.
By comparing results of the two models, GBM
outperforms in the official macro F1 score. We
finally submit the evaluation result of GBM. The
precision, recall and macro F1 score of the final
evaluation are 39.426, 33.695 and 33.665 respec-

392

Micro F1 Macro F1
GBM 47.16± 0.157 33.90± 0.119
BLSTM 21.73± 0.114 1.78± 0.007

Table 3: 5-fold cross-validation results of GBM
and BLSTM.

Emo P R F1 %
90.55 84.14 87.23 21.6
27.43 56.02 36.83 9.66
34.24 62.51 44.24 9.07
26.88 26.91 26.89 5.21
56.31 51.99 54.06 7.43
14.5 12.9 13.65 3.23
26.64 16.93 20.7 3.99
40.01 24.99 30.77 5.5
35.51 14.72 20.81 3.1
22.61 17.11 19.48 2.35
28.61 51.61 36.81 2.86
67.46 62.24 64.75 3.9
74.35 54.07 62.61 2.53
47.85 7.0 12.22 2.23
18.62 4.98 7.85 2.61
37.56 20.5 26.52 2.49
16.58 2.69 4.63 2.31
67.31 81.17 73.59 3.09
40.49 19.65 26.46 4.83
15.0 1.78 3.19 2.02

Table 4: Precision, Recall, F-measure and per-
centage of occurrences in the test set of each
emoji.

tively. Our system achieves the best accuracy in
this task. In addition, the precision, recall, F1 and
percentage of occurrences in the test set of each
emoji are shown in table 4.

2.5 Further Analysis of Feature Engineering

Table 5 shows the F1 score and loss on the test
set resulting from training with each group of fea-
ture removed. The experiment performance re-
veals that all features except SSWE in our sys-
tem are helpful. The performance drops after
adding SSWE features. This observation is prob-
ably caused by overfitting on the training set be-
cause of the curse of dimension.

Feature F1 loss F1 score
Character ngram 1.161 32.74
POS 0.167 33.73
Cluster 0.15 33.75
Word ngram 0.503 33.40
Counting 0.176 33.72
SSWE -0.235 34.14
Lexicon 0.094 33.81

Table 5: Feature ablation study using the GBM
model. The quantity is the F1 loss and score re-
sulting from the removal of each feature group.

3 Conclusion

In this paper, we present the systems used in Se-
mEval 2018 task 2 for English emoji prediction.
Our effort focuses on putting forward two mod-
els to improve the multi emojis classification. By
leveraging on general features (i.e. word ngram
feature, character ngram feature and counting fea-
tures), external resources (i.e. a variety of manual
constructed lexicons, CMU brown cluster), feature
selection and hyperparameters fine-tuning, GBM
achieves better performance than BLSTM. This
observation is attributed to the extensive usage of
sentimental and syntactic features. Due to most of
the target emojis are related emotions, these senti-
mental features can reveal the relation from words
with the emotional emojis. In future, we hope to
improve our BLSTM model by taking advantage
of more features and incorporating more effective
architecture.

References
Francesco Barbieri, Miguel Ballesteros, and Horacio

Saggion. 2017. Are emojis predictable? In Lapata
M, Blunsom P, Koller A, editors. 15th Conference of
the European Chapter of the Association for Compu-
tational Linguistics; 2017 Apr 3-7; Valencia, Spain.
Stroudsburg (PA): ACL; 2017. p. 105-11.. ACL (As-
sociation for Computational Linguistics).

Francesco Barbieri, Jose Camacho-Collados,
Francesco Ronzano, Luis Espinosa-Anke, Miguel
Ballesteros, Valerio Basile, Viviana Patti, and
Horacio Saggion. 2018. SemEval-2018 Task 2:
Multilingual Emoji Prediction. In Proceedings
of the 12th International Workshop on Semantic
Evaluation (SemEval-2018). Association for Com-
putational Linguistics, New Orleans, LA, United
States.

Kevin Gimpel, Nathan Schneider, Brendan O’Connor,
Dipanjan Das, Daniel Mills, Jacob Eisenstein,

393

Michael Heilman, Dani Yogatama, Jeffrey Flanigan,
and Noah A Smith. 2011. Part-of-speech tagging
for twitter: Annotation, features, and experiments.
In Proceedings of the 49th Annual Meeting of the
Association for Computational Linguistics: Human
Language Technologies: short papers-Volume 2. As-
sociation for Computational Linguistics, pages 42–
47.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural computation
9(8):1735–1780.

Xuezhe Ma and Eduard Hovy. 2016. End-to-end se-
quence labeling via bi-directional lstm-cnns-crf. In
Proceedings of the 54th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers). volume 1, pages 1064–1074.

Saif Mohammad, Svetlana Kiritchenko, and Xiaodan
Zhu. 2013. Nrc-canada: Building the state-of-the-
art in sentiment analysis of tweets. In Second Joint
Conference on Lexical and Computational Seman-
tics (* SEM), Volume 2: Proceedings of the Sev-
enth International Workshop on Semantic Evalua-
tion (SemEval 2013). volume 2, pages 321–327.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. Glove: Global vectors for word
representation. In Proceedings of the 2014 confer-
ence on empirical methods in natural language pro-
cessing (EMNLP). pages 1532–1543.

Duyu Tang, Furu Wei, Bing Qin, Ting Liu, and Ming
Zhou. 2014. Coooolll: A deep learning system for
twitter sentiment classification. In Proceedings of
the 8th International Workshop on Semantic Evalu-
ation (SemEval 2014). pages 208–212.

Yanru Zhang and Ali Haghani. 2015. A gradient boost-
ing method to improve travel time prediction. Trans-
portation Research Part C: Emerging Technologies
58:308–324.

394

Proceedings of the 12th International Workshop on Semantic Evaluation (SemEval-2018), pages 395–399
New Orleans, Louisiana, June 5–6, 2018. ©2018 Association for Computational Linguistics

UMDSub at SemEval-2018 Task 2: Multilingual Emoji Prediction
Multi-channel Convolutional Neural Network on Subword Embedding

Zhenduo Wang and Ted Pedersen
Department of Computer Science

University of Minnesota
Duluth, MN 55812, USA

{wang7211,tpederse}@d.umn.edu

Abstract

This paper describes the UMDSub system that
participated in Task 2 of SemEval-2018. We
developed a system that predicts an emoji
given the raw text in a English tweet. The
system is a Multi-channel Convolutional Neu-
ral Network based on subword embeddings for
the representation of tweets. This model im-
proves on character or word based methods by
about 2%. Our system placed 21st of 48 par-
ticipating systems in the official evaluation.

1 Introduction

People use emojis on social media with text in or-
der to express their emotions or reveal meanings
hidden by figurative language. However, under-
standing the semantic relationship between texts
and emojis is a challenging task because emojis
often have different interpretations that depend on
the reader. (Barbieri et al., 2018) shows that a
carefully designed machine learning system can
perform better than humans on an emoji prediction
task. The system which gives the best predictions
in that paper is a long short term memory (LSTM)
network with pre-trained character embeddings as
the text representation method.

(Barbieri et al., 2018) provides a new task in the
context of Twitter and describes several powerful
models in text sequence modeling and classifica-
tion. Our work explores other possible configura-
tions for the system, including subword embed-
ding as a text representation method and multi-
channel Convolutional Neural Networks as a fea-
ture extraction method. We conduct experiments
on the Semeval-2018 Task 2 Multilingual Emoji
Prediction data set and compare our results with
other methods. Our results show that subword em-
bedding based Convolutional Neural Network sys-
tem is effective. It improves on character embed-
ding by 2.1% and word embedding by 1.8%.

2 Task Description

SemEval–2018 Task 2 has two subtasks which are
similar but in different languages. Subtask A is
emoji prediction on English tweets, while subtask
B is on Spanish. Both tasks are to predict 1 out of
20 emojis (19 in Spanish subtask) given only the
text of a tweet. There are∼500K tweets in the En-
glish training set and∼100K tweets in the Spanish
training set. The organizers use the macro F-score
to evaluate the performance of the systems.

This is by definition a text classification task.
It is more challenging than tasks such as senti-
ment analysis or authorship identification because
it is on Twitter data which is extremely large and
changes frequently. We build UMDSub for the
English subtask and conduct several experiments
with different settings.

3 System Description

UMDSub is a multi-channel Convolutional Neu-
ral Network based on subword embedding as the
text representation. We use byte-pair-encoding for
subword segmentation.

3.1 Word Segmentation

The goal of the word segmentation step is to break
the words into subwords in order to have better
representations for tweet texts.

Existing text representation methods mostly
work on whole word level (Mikolov et al.,
2013)(Pennington et al., 2014) or character level
(Zhang et al., 2015) (Xiao and Cho, 2016). In
these works, character embedding as the basis for
feature extraction were shown to be more effective
on text classification tasks. Also there are works
such as (Bojanowski et al., 2016) which try to en-
rich word representations with subword informa-
tion and improve upon the original word embed-
ding methods. We believe that subword is a in-

395

triguing level for text representation. However, the
method used to generate subwords in (Bojanowski
et al., 2016) is to divide words into fixed length
n-grams, which fails to use knowledge of word
morphology. We believe that Language is never,
ever, ever, random (Kilgarriff, 2005). Subwords as
character n-grams could be detected by measuring
their frequencies.

We detect subwords with the byte-pair-
encoding (BPE) algorithm (Shibata et al., 1999),
which is a frequency based text compression
algorithm. The original algorithm first splits the
text into bytes (characters). Then it ranks all the
byte pairs (which are simply bigrams) according
to their frequencies. The most frequent byte
pair is then joined together and encoded by a
single byte. By repeating this simple process, the
original text will be compressed. In our system,
we use BPE as a word segmentation algorithm.
We join characters together by frequency but do
not replace them with new symbols. This method
was also shown to be successful in (Sennrich
et al., 2015).

For example, suppose the text to be segmented
is

S0 = workers work in workshop.

First, we split S0 into character sequence.

S1 = w o r k e r s w o r k i n w o r k s h o p.

Then in the first iteration, we choose the most fre-
quent bigram wo and join them together.

S2 = wo r k e r s wo r k i n wo r k s h o p.

In the second iteration, we choose the most fre-
quent bigram wor and join them together.

S3 = wor k e r s wor k i n wor k s h o p.

Similarly, the next bigram should be work.

S4 = work e r s work i n work s h o p.

The text is represented by a subword sequence af-
ter the algorithm finishes in N iterations, and will
look like this :

SN = work er s work in work shop.

3.2 Subword Embedding Layer
Embeddings can be categorized into two types
based on how they are trained, saved (or static)
and reused (or dynamic). Static embeddings are
separately trained from large open corpus (such as
Wikipedia) and saved for reuse. Word2vec and
GloVe models are two such examples. Dynamic
embeddings are jointly trained with other parts of

specific systems. The Twitter corpus is not like a
standard corpus, since it is extremely large and it
changes frequently. We choose to use a dynamic
embedding strategy since it may fit better for our
system.

After word segmentation the text is made up
of subword sequences. In order to use subword
embedding to represent the text, we first represent
each subword type with a one-hot vector. The one-
hot vector for the ith subword in vocabulary is a
sparse binary vector oi which has 1 as the ith el-
ement and 0 for all others. This step results in a
representation similar to a vector space model. We
put all the subwords in the subword one-hot hyper-
space where each unique subword type owns one
dimension. The one-hot embedding is so sparse
and it suffers from the Dimension Disaster. Hence
we project it to a smaller hyperspace by multi-
plying the one-hot embedding with a projection
weighting matrix W ∈ Rd×|V |, where d is the di-
mension for the target embedding hyperspace and
|V | is the subword vocabulary size. Now each sub-
word is represented by a dense vector si = Woi,
and the tweet text T with length of L is repre-
sented by a sequence of subword embedding vec-
tors T = (s1, s2, ..., sL).

3.3 Multi-channel Convolutional Layer

As we mentioned in Section 2, this is a text classi-
fication task. A key step in any classification sys-
tem which uses the feature-classifier scheme is to
choose indicative features. In NLP tasks, n-grams
are commonly used features because they capture
word collocations as found in text. But this may
not be effective if we have no sense of what kind(s)
of n-grams could be useful for a certain problem.
Recently, a trend (Zhang et al., 2015) (Xiao and
Cho, 2016) for solving text classification tasks is
to break the text into the smallest units and build
a representation for them. Then this approach can
use a complex neural network such as Convolu-
tional Neural Network (CNN) or recurrent neural
network (RNN) to find abstract features upon the
representations. This system configuration takes
advantage of the ability of complex neural net-
works to extract features. (Kim et al., 2016) tries
to explain the mechanism of character-entry-CNN
by showing that the features extracted by CNN are
specific n-grams. We believe this scheme could be
very useful for finding features for classification
when we have little knowledge of the corpus, as is

396

often the case for Twitter.
In our system, we use a multi-channel CNN

layer for feature extraction. Since tweets are gen-
erally short, higher-level features for classification
may not exist. Instead of adding depth to our net-
work, we add diversity to the kernel sizes in order
to keep as much n-gram information as possible.
A similar model is used in (Ruder et al., 2016)
(Shrestha et al., 2017).

The multi-channel convolution layer consists
of three parallel convolution units. They have a
similar structure but different convolutional ker-
nel sizes. Each convolution unit consists of two
steps, the convolution and pooling. The convo-
lution step is to calculate the convolutions of the
resulting vector sequence from the subword em-
bedding vector sequence T = (s1, s2, ..., sL) and
convolution kernels k1:M ∈ Rd,M×r, where M is
the kernel number, r is the kernel size. The kernel
size represents the context window of feature ex-
traction and the kernel number represents the num-
ber of patterns.

fm
′

l=1:L = σ(km ∗ [sl−r/2+1, ..., sl, .., sl+r/2])

where σ is the activation function.
Then the pooling step is to trim the resulting se-

quence F ′ by leaving only the maximum in every
r consecutive f ′l s.

fmq=1:L/r = max{fm′
l=(q−1)×r+1, ..., f

m′
l=q×r}

Then the convolution unit outputs features ex-
tracted by each kernel. The output of can be seen
as all the features extracted within a certain size of
context window.

F =
[
f11 , ..., f

M
1

]

Each CNN unit works as above. We concatenate
all the three feature maps and flatten the resulting
matrix to one single vector. This single vector is
later used for classification.

3.4 Classification Layer
We make two assumptions of how texts affect the
usage of emojis, and how emojis are chosen to ex-
press emotions as an auxiliary symbol for the text.

1. Emojis are chosen and used to indicate the
emotion of the whole tweet or the emotion
of the tweeter at the moment, independent of
position.

2. Emojis are tied to its context only, enhanc-
ing or revealing the true underlying meaning.
This can vary depending on the position or
content of the tweet.

In case 2, a “verbose” tweet which contains sev-
eral sentences may map to different emojis at dif-
ferent positions. Given this nature of how emojis
are used in tweets, the task could have been very
different from traditional text classification since
only a part of the text decides the classification
output. Fortunately, most the tweets are chosen so
that they contain only one sentence and the dataset
does not provide the position information of the re-
moved emoji, which makes the task easier. Hence
we assume all the emojis are used as in case 1 and
we will use the whole tweet to do prediction.

From the convolutional layer we get output of
the features extracted from the whole tweet. We
first reshape the features matrix into a single vec-
tor, then we feed it to a logistic regression layer
for the final classification. The layer consists of a
fully connected network layer and a softmax func-
tion as activation function. It takes the the one di-
mensional feature vector generated from convolu-
tional layer as input and outputs a distribution over
the 20 emojis denoting their probabilities of being
used in the original tweet. Hence this layer can be
represented by:

P [y = k| ~X] =
exp(W>k ~X + bk)∑20
i=1 exp(W

>
i
~X + bi)

Figure 1 is a summary of our system.

Figure 1: Diagram of UMDSub.

4 Parameter Settings

We use the training and test tweets collectively
for the byte pair encoding algorithm with 2,000

397

Embedding |V | d M r #param
Word 10K 256

128 3, 4, 5
4.16M

subword 2K 64 0.63M
Character 200 16 0.13M

Table 1: Network parameter settings.

iteration. Each iteration of BPE algorithm gen-
erates a new character n-gram, resulting in a vo-
cabulary size around 2,000. Then we embed each
subword with a vector with dimension d = 64. In
our concatenated Convolutional Neural Network,
each unit has M = 128 filters with filter sizes
and max pooling size r = {3, 4, 5}. For compar-
ison, we also build character based system con-
taining not only the ascii characters with vocab-
ulary size |V | = 200 and embedding dimension
d = 16 and word based system with vocabu-
lary size |V | = 10, 000 and embedding dimension
d = 256. We use the same network structure for
all different text representation methods. We train
the network for 50 epochs. Table 1 summarizes
the parameter settings used.

5 Experimental Results

Table 2 shows our experimental results and reveals
that our methods have a preference towards pre-
cision. In the task evaluation, UMDSub attained
precision of .330 which was 9th of 48 systems,
and recall of .267 which was 20th. The overall
F-score was .260 and placed 21st. This emphasis
on precision can be seen in that our system was
particularly accurate in predicting the most fre-
quent emoji in the training and test data (the red
heart), achieving an accuracy of .854 which was
4th among the 48 participating systems.

Our submission for the evaluation phase (sub-
CNN (E)) was produced by a 4-layer single chan-
nel Convolutional Neural Network. After we
changed it to the post-evaluation version of our
multi-channel network (sub-CNN (P)), we saw a
significant improvement where the F-score rose to
.301 which would have placed 10th in the eval-
uation. The reasons for this success have to do
with the nature of tweets, which are difficult to
represent in a deep network given their very lim-
ited content. A Multi-channel CNN captures more
information using various kernels in a single layer
and so the content of short and somewhat noisy
tweets is well represented.

System config F1 Precision Recall
sub-CNN (E) .260 .330 .267
Word-CNN (P) .283 .355 .285
sub-CNN (P) .301 .352 .302
Char-CNN (P) .289 .382 .291
BOW .29 .32 .34
Word-LSTM .33 .35 .36
Word-LSTM + P .32 .34 .36
Char-LSTM .32 .36 .37
Char-LSTM + P .34 .42 .39

Table 2: Experimental results (both evaluation (E) and
post-evaluation (P) phase). -LSTM refers to the models
used in (Barbieri et al., 2018), with results from this
paper. +P refers to pre-trained embeddings.

6 Conclusion

Our work shows that subword embedding is an ef-
fective method of text representation for the emoji
prediction task. Under the multi-channel CNN
framework, it improves word embedding by 1.8%
and character embedding by 2.1% while maintain-
ing a modest computational cost.

We try to explain the reason of our results with
the success of byte pair encoding (BPE) segmen-
tation. We check the segmented text after byte pair
encoding algorithm and we find a very representa-
tive example:

Before BPE: Playing the drums on RockBand
made it look much easier than it is.

After BPE: Pl ay ing the dr um s on Rock B
and made it look much ea si er than it is.

We observe that some of the segmentations cor-
respond with word morphology, others not. This
is because the segmentation is based on frequency
and not a knowledge of morphology. Based on
these observations, we consider the BPE algorithm
a method that dynamically decides which n-grams
are most frequent in a corpus and thus deserving
of a unique representation that is included in the
vocabulary. The vocabulary generated by BPE
is a mixture of characters, roots, affixes, whole
words and even random n-grams, chosen as such
to make the representation of text statistically ef-
ficient. The advantage of such a system is that it
does not consider Twitter language as a compound
made of characters or atomic words. Therefore it
does not limit text representation on only one sin-
gle level, making the later feature extraction more
efficient.

398

References
Francesco Barbieri, Jose Camacho-Collados,

Francesco Ronzano, Luis Espinosa-Anke, Miguel
Ballesteros, Valerio Basile, Viviana Patti, and
Horacio Saggion. 2018. SemEval-2018 Task 2:
Multilingual Emoji Prediction. In Proceedings
of the 12th International Workshop on Semantic
Evaluation (SemEval-2018). Association for Com-
putational Linguistics, New Orleans, LA, United
States.

Piotr Bojanowski, Edouard Grave, Armand Joulin,
and Tomas Mikolov. 2016. Enriching word vec-
tors with subword information. arXiv preprint
arXiv:1607.04606 .

Adam Kilgarriff. 2005. Language is never, ever, ever,
random. Corpus linguistics and linguistic theory
1(2):263–276.

Yoon Kim, Yacine Jernite, David Sontag, and Alexan-
der M Rush. 2016. Character-aware neural language
models. In AAAI. pages 2741–2749.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013. Distributed representa-
tions of words and phrases and their compositional-
ity. In Advances in neural information processing
systems. pages 3111–3119.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. Glove: Global vectors for word
representation. In Proceedings of the 2014 confer-
ence on empirical methods in natural language pro-
cessing (EMNLP). pages 1532–1543.

Sebastian Ruder, Parsa Ghaffari, and John G. Bres-
lin. 2016. Character-level and multi-channel
convolutional neural networks for large-scale au-
thorship attribution. CoRR abs/1609.06686.
http://arxiv.org/abs/1609.06686.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2015. Neural machine translation of rare words with
subword units. arXiv preprint arXiv:1508.07909 .

Yusuxke Shibata, Takuya Kida, Shuichi Fukamachi,
Masayuki Takeda, Ayumi Shinohara, Takeshi Shi-
nohara, and Setsuo Arikawa. 1999. Byte pair encod-
ing: A text compression scheme that accelerates pat-
tern matching. Technical report, Technical Report
DOI-TR-161, Department of Informatics, Kyushu
University.

Prasha Shrestha, Sebastian Sierra, Fabio Gonzalez,
Manuel Montes, Paolo Rosso, and Thamar Solorio.
2017. Convolutional neural networks for authorship
attribution of short texts. In Proceedings of the 15th
Conference of the European Chapter of the Associa-
tion for Computational Linguistics: Volume 2, Short
Papers. volume 2, pages 669–674.

Yijun Xiao and Kyunghyun Cho. 2016. Efficient
character-level document classification by combin-
ing convolution and recurrent layers. arXiv preprint
arXiv:1602.00367 .

Xiang Zhang, Junbo Zhao, and Yann LeCun. 2015.
Character-level convolutional networks for text clas-
sification. In Advances in neural information pro-
cessing systems. pages 649–657.

399

Proceedings of the 12th International Workshop on Semantic Evaluation (SemEval-2018), pages 400–404
New Orleans, Louisiana, June 5–6, 2018. ©2018 Association for Computational Linguistics

UMDuluth-CS8761 at SemEval-2018 Task 2:
Emojis: Too many Choices?

Dennis Asamoah Owusu & Jonathan Beaulieu
Department of Computer Science
University of Minnesota Duluth

Duluth, MN 55812 USA
{asamo012,beau0307}@d.umn.edu

https://github.com/derpferd/semeval-2018-task2/

Abstract

In this paper, we present our system for assign-
ing an emoji to a tweet based on the text. Each
tweet was originally posted with an emoji
which the task providers removed. Our task
was to decide out of 20 emojis, which origi-
nally came with the tweet. Two datasets were
provided - one in English and the other in
Spanish. We treated the task as a standard clas-
sification task with the emojis as our classes
and the tweets as our documents. Our best per-
forming system used a Bag of Words model
with a Linear Support Vector Machine as its’
classifier. We achieved a macro F1 score of
32.73% for the English data and 17.98% for
the Spanish data.

1 Introduction

An AI system that can associate text with appro-
priate emojis could be useful for generating con-
tent that is sparkled with emojis among other uses
(Barbieri et al., 2017). Given only the text from
a tweet in English or Spanish, the SemEval (Bar-
bieri et al., 2018) task was to determine the emoji
that was in the original tweet. To learn how users
associate emojis with text, a dataset comprised of
489,609 tweets in English and 98,289 tweets in
Spanish was provided. Each tweet had a corre-
sponding label representing the emoji that was in
the tweet. The labels were assigned based on the
frequency of the emoji, 0 being assigned to the
most frequent emoji. The total number of labels
was 20 for the English data and 19 for the Spanish
data. We classified the tweets, our documents, by
their emojis, our classes. We viewed the emojis as
approximations of the sentiment expressed in the
text.

For our baseline, we implemented a Bag of
Words model using a Bernoulli Naive Bayes clas-
sifier. We analyzed the results and used the in-
sights to implement our final system, which used

a Linear Support Vector machine for classification
and also used a Bag of Words model to represent
each document. This system performed better than
our baseline by ~3.5 percentage points for our En-
glish data and ~1.5 percentage points for our Span-
ish data. It also performed better than several neu-
ral network models we experimented with. Our
macro F1 score were 32.73% and 17.98% for our
English data and Spanish data respectively.

2 Baseline

For our Baseline, we used a Bag of Words model
(BOW) with a Bernoulli Naive Bayes Classi-
fier. We also implemented a Most Frequent Class
Model (MFC) and a Random Model (RAND) to
help draw insights from our baseline. The results
of these models for the English and Spanish data
are shown in Table 1 and Table 2 respectively. The
tables show mean and standard deviation over the
folds using 10-fold cross-validation. We reserved
10% of the data for testing and trained on the re-
maining 90% for each fold. We followed the same
approach in all our experiments. The Micro F1
scores are heavily influenced by the performance
of the dominant classes. Since ~21% of the tweets
belong to label 0 () for English, the micro F1
score was ~21% for the MFC model. Macro F1
scores, on the other hand, give equal weight to
each class, since they average the F1 scores of
each class.

We chose Bernoulli style Naive Bayes because
it generally works better for short texts (e.g.
Tweets) than its Multinomial counterpart (Man-
ning et al., 2008). We empirically verified this
with our task and data. To implement this model,
we used the NLTK library for preprocessing and
the scikit-learn framework for the model training
(Bird et al., 2009; Pedregosa et al., 2011).

Our data pipeline consisted of four steps: Tok-

400

Macro F1 Micro F1
Mean S-Dev Mean S-Dev

BOW 29.1 0.2 42.1 0.3
MFC 1.8 0.0 21.7 0.2
RAND 4.5 0.1 5.0 0.1

Table 1: Baseline results for English

enization, Bagination, Tf-idf transform and Train-
ing. For tokenization we used NLTK’s Tweet-
Tokenizer function. We configured it to convert
all text to lowercase, crop repeating characters
to a max of 3 and remove tweeter handles. We
created the BOW by making a set of the tokens
which appeared per the document. The next step
was to normalize the frequency data into term-
frequency times inverse document-frequency(tf-
idf) representation. Finally, we trained a Bernoulli
Naive Bayes classifier on this data.

2.1 Insights from BOW English Results
For the English tweets, the difference between the
macro and micro F-scores for our Bernoulli model
lies in the fact that the distribution of classes is
very unbalanced. This is demonstrated from the
results shown in Table 1.

Table 3 shows a confusion matrix for some la-
bels of our BOW results for the English data. A
mapping of select labels to emojis and their de-
scriptions is shown in Table 4. The matrix illus-
trates the struggles of the BOW model. Gener-
ally many tweets are misclassified as and .
Take for instance. While only 332 tweets were
correctly labeled, 558 tweets and 385 tweets that
should have been labeled were labeled and

respectively. This misclassification of as
and is not only the case for the selected classes
represented in the matrix but also for most of the
classes. Emojis and illustrate another pattern
we observed. 653 out of 2312 tweets that should
have been classified as were misclassified as .
Since is a smiling face with smiling eyes and
is smiling face with heart eyes, we inferred that the
model might have trouble discriminating between
classes with similar semantics.

That inference is supported by the fact that the
model also struggles to discriminate between , a
camera, and , a camera with flash. 458 tweets
out of 1344 tweets (34%) that should have been
labeled as where incorrectly labeled as . This
is more significant when one notes that only 148
of tweets (11%) where labeled correctly.

Macro F1 Micro F1
Mean S-Dev Mean S-Dev

BOW 16.5 0.4 29.6 0.4
MFC 1.7 0.0 20.0 0.4
RAND 4.8 0.2 5.5 0.2

Table 2: Baseline results for Spanish

Total
8637 618 10752

2358 832 5145
1022 2718 5114
653 437 251 139 2313
558 385 332 2092

Table 3: BOW Confusion Matrix for English. We have
choose to leave some numbers out to prevent distrac-
tion from the patterns we are trying to show. All left
out numbers are negligible.

To measure the impact of these semantically
similar classes on our model, we collapsed classes
that were semantically similar and reran the BOW
model. All of the “heart” emojis were put into
a single class; the “smiling” emojis (except the
hearty eyes one) were put into another class; the
“camera” emojis were collapsed into one class;
and each remaining emoji had its own class. In
the end, we had 13 classes after merging.

After running the model on these new set of
classes, the macro F1 score improved by 6 per-
cent points suggesting that the semantic similarity
between emojis, such as and , has an effect
although the effect was not nearly as significant
as we had expected. It is worth noting that after
collapsing the semantically similar classes, plenty
of tweets were misclassified as the most frequent
class. Thus, it may be that the semantic similar-
ity of the classes does really matter but the gain in
performance from collapsing the classes was off-
set by the fact that we had a class that was rela-
tively much larger than the largest class before.

The BOW performed relatively well for labels
0, 1, 2, 4 and 17 (, , , and respectively)
for the English data.

2.2 Insights from BOW Spanish Results

The Spanish results were much worse than the En-
glish results. Table 5 illustrates the major trend we
noticed with the BOW model’s performance on
the Spanish data. Count is the number of tweets
that correctly belong to a class. %C is what per-

401

Label Emoji Description

0 Red heart

1 Smiley face with heart eyes

2 Face with tears of joy

4 Fire

5 Smiling face with smiling eyes

6 Smiling face with sunglasses

13 Purple Heart

10 Camera

17 Christmas Tree

18 Camera with Flash

Table 4: Some English Emojis

%C % % % Count
62 - 14 0 1882
43 16 - 14 1338
46 0 25 - 908
15 32 24 0 641
9 14 32 17 647
11 22 29 11 438
63 5 17 4 331
7 12 30 20 332
24 13 19 27 283

Table 5: BOW Spanish results. %C refers to the per-
cent correctly labeled and %emoji refers to the percent
mislabeled as emoji.

centage of tweets were correctly labeled. % ,
% and % are the percentages of tweets that
our model misclassified as labels 0, 1 and 2 re-
spectively. Thus for , there were 1882 tweets
in the test data; 62% of these were labeled cor-
rectly while 14% was incorrectly as . As the ta-
ble shows, a significant percentage of tweets were
either misclassified as , or . The exception
to this is - the Spanish flag. Table 6 shows the
emojis corresponding to the numerical labels.

2.3 Neural Network

Upon reading about how neural models achieved
high scores on similar tasks, we decided to try out
methods based on (Barbieri et al., 2017) and (dos
Santos and Gatti, 2014). The task this paper tries
to solve is based on Barbieri et al.’s work where
they do the same task. Their best performing
model was a character based Bi-directional Long

Label Emoji Description

0 Red heart

1 Smiley with heart eyes

2 Face with tears of joy

3 Two hearts

4 Smiley with smiling eyes

5 Face blowing a kiss

9 Spain

10 Smiling face with sunglasses

16 Musical notes

Table 6: Some Spanish Emojis

Short-term Memory Network (char-BLSTM). We
also took inspiration from dos Santos and Gatti’s
work. They were able to achieve very good results
using a Convolutional Neural Network (CNN) to
do sentiment analysis. We tested four different
types of neural network models: LSTM, BLSTM,
CNN-LSTM and CNN-BLSTM. For the LSTM
based models, we used a network size of 128.
The only difference between our LSTM and our
BLSTM is that we added a layer to train each in-
put bidirectionally. Our CNN’s convolution layer
had an output dimension of 64 and a kernel size of
5. For it’s pooling layer we chose a pool size of
4. When training each of the neural network mod-
els we used a development set which was 10% of
the training set to select the best parameters and
to know how many epochs to train for. We settled
on these specific parameters after trying out dif-
ferent parameters on the development set. None
of our neural network models performed signifi-
cantly better than our baseline.

2.4 Linear SVM
Realizing that our neural network models did not
perform any better than our BOW baseline, we
decided to try a BOW model with other classi-
fiers which were not neural networks. We settled
on a Linear Support Vector Machine. To enable
multi-class classification we used a one-vs-rest ap-
proach.

2.5 Sampling
Roughly 20% of the tweets in the English data
belong to label 0. The performance of classifiers
such as Naive Bayes degrades when there is such a

402

English Spanish
Mean S-Dev Mean S-Dev

Base 29.10 0.20 16.49 0.42
C+L 29.30 0.36 - -
C+L(f) 29.35 0.44 - -
LSVM 32.73 0.24 17.98 0.31

Table 7: Macro F1 scores. Base is baseline, L is LSTM,
C is CNN, (f) means each class was equally repre-
sented.

dominant class (Rennie et al., 2003). This data im-
balance exists in the Spanish data as well. To im-
prove the performance of our classifiers, we per-
form a sampling of the data so that we train on a
data set where the classes are roughly equally rep-
resented. We performed a simple under sampling
by randomly selecting an equal number of tweets
from each class even though a more sophisticated
re-sampling method will likely improve the results
(Estabrooks et al., 2004).

3 Results

The neural network models that we tested ended
up achieving around the same score as our BOW
baseline. The BOW model with a Linear Sup-
port Vector Machine for classification provided
the best results. Table 7 shows the results of the
LSVM along with the results of our baseline and
our best performing neural network models for
comparison. The effect of sampling the dataset to
balance the frequency of each class was negligi-
ble as shown in Table 7. The improvement to em-
ploying sampling was 0.05 percentage points for
our CNN combined with LSTM model. The F1
score of our LSVM model on the test data from
the task organizers was 31.834 which is within
one percent of the 32.73 from our 10-fold cross-
validation. Precision on the test data was 39.803,
recall was 31.365 and accuracy was 45.732. 1

4 Discussion

The first important trend we observe with our sys-
tem (BOW model with LSVM classifier) is the
most frequently seen emojis , and per-
form well in terms of true positives - ~83% for
(8848/10622), ~57% for (2903/5077) and ~63%
for (3171/5067) while at the same time being

1Task Scoreboard https://docs.google.com/sp
readsheets/d/1on1Oj53EFcE4n-yO_sJc1JEo6x
8hcUh5hsWTkTYdc_o/edit#gid=885431079. We
submitted under theteam name: Hopper.

false positives for many classes. Take (label 5)
for instance. 327 tweets are correctly classified as
belonging to . However, 732 tweets that should
have been classified as are misclassified as .
The trend of misclassifying more tweets as was
seen for labels 6, 7, 8, 13, 14, 15, 16 and 19 as
well. This trend carried through from our base-
line; the final system performs better only because
of marginal improvements in the classification it-
self.

Below are some tweets for that the LSVM
succeed in classifying that the Bernoulli Naive
Bayes could not find. We choose because the
percentage difference in performance (in favor of
the LSVM) is the greatest here.

Different angles to the same goal. by
@user @ New

When iris.apfel speaks...knowledge and
wisdom is all you hear so listen up...
:@drummondphotog

Our supposition is that the Linear Support Vec-
tor Machine is able to make associations that the
Bernoulli Naive Bayes is unable to make. ”An-
gles”, we suspect, correlates with camera than the
other emojis and the LSVM finds that associa-
tion. The second tweet is interesting because it
would seem that the LSVM is able to connect the
“photog” in “@drummondphotog” despite our use
of a Bag of Words Model unless the prediction
was based on some other less obvious word in the
tweet.

Acknowledgments

This project was carried out as a part of CS 8761,
Natural Language Processing, offered in Fall 2017
at the University of Minnesota, Duluth by Dr. Ted
Pedersen. We are grateful to Dr. Ted Pedersen for
his support and guidance in this project. Authors
are listed in alphabetical order.

References
Francesco Barbieri, Miguel Ballesteros, and Horacio

Saggion. 2017. Are emojis predictable? In Pro-
ceedings of the 15th Conference of the European
Chapter of the Association for Computational Lin-
guistics: Volume 2, Short Papers, pages 105–111.
Association for Computational Linguistics.

Francesco Barbieri, Jose Camacho-Collados,
Francesco Ronzano, Luis Espinosa-Anke, Miguel

403

Ballesteros, Valerio Basile, Viviana Patti, and
Horacio Saggion. 2018. SemEval-2018 Task 2:
Multilingual Emoji Prediction. In Proceedings of
the 12th International Workshop on Semantic Eval-
uation (SemEval-2018), New Orleans, LA, United
States. Association for Computational Linguistics.

Steven Bird, Ewan Klein, and Edward Loper.
2009. Natural Language Processing with Python.
O’Reilly Media.

Andrew Estabrooks, Taeho Jo, and Nathalie Japkowicz.
2004. A multiple resampling method for learning
from imbalanced data sets. Computational Intelli-
gence, 20(1):18–36.

Christopher D. Manning, Prabhakar Raghavan, and
Hinrich Schuetze. 2008. Introduction to Information
Retrieval. Cambridge University Press. Pg. 268.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Pretten-
hofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Pas-
sos, D. Cournapeau, M. Brucher, M. Perrot, and
E. Duchesnay. 2011. Scikit-learn: Machine learning
in Python. Journal of Machine Learning Research,
12:2825–2830.

Jason D. M. Rennie, Lawrence Shih, Jaime Teevan, and
David R. Karger. 2003. Tackling the poor assump-
tions of naive bayes text classifiers. In In Proceed-
ings of the Twentieth International Conference on
Machine Learning, pages 616–623.

Cicero dos Santos and Maira Gatti. 2014. Deep con-
volutional neural networks for sentiment analysis
of short texts. In Proceedings of COLING 2014,
the 25th International Conference on Computational
Linguistics: Technical Papers, pages 69–78, Dublin,
Ireland. Dublin City University and Association for
Computational Linguistics.

404

Proceedings of the 12th International Workshop on Semantic Evaluation (SemEval-2018), pages 405–409
New Orleans, Louisiana, June 5–6, 2018. ©2018 Association for Computational Linguistics

The Dabblers at SemEval-2018 Task 2: Multilingual Emoji

Prediction

Larisa Alexa, Alina Lorenț,

Daniela Gîfu, Diana Trandabăț

Faculty of Computer Science, “Alexandru Ioan Cuza” University of Iasi

Institute of Computer Science, Romanian Academy - Iasi Branch

Cognos Business Consulting S.R.L., 32 Bd. Regina Maria, Bucharest, Romania

{larisa.alexa04, alina.lorent}@gmail.com, {daniela.gifu, dtrandabat}@info.uaic.ro

Abstract

The “Multilingual Emoji Prediction” task

focuses on the ability of predicting the

correspondent emoji for a certain tweet. In

this paper, we investigate the relation

between words and emojis. In order to do

that, we used supervised machine learning

(Naive Bayes) and deep learning (Recursive

Neural Network).

Keywords
Virtual, emojis, human sentiment, understanding

of emojis.

1. Introduction

In the last few years, Social Media has evolved

very fast, becoming at the moment a very

important part of our daily life. There are several

social networking platforms such as Twitter,

Facebook, Instagram, WhatsApp, which were

created in order to allow us to communicate with

each other, to share our feelings or opinions

related to different topics. Despite their

differences or their purposes, each of these

platforms shares one aspect: the use of emojis.

From facial expressions to animals, objects or

places, they are all used to communicate simple

things or to enhance feelings and emotions. Due

to the fact that their meaning is not always the

same, processing emojis remains a challenge for

the NLP researchers. From a language to another,

for different cultures or depending on the user’s

sentiments, emojis meaning can vary a lot.

Understanding their meaning depending on the

context of use has a huge relevance in multiple

fields, like: human computer interaction,

multimedia retrieval, etc.

Twitter Emojis are pictures usually combined

with text in order to emphasize the meaning of

that text. Although these pictures are the same all

over the world, they can be interpreted and used

in different ways, depending on culture

differences. Despite their widely usage in social

media, their underlying semantics have received

little attention from a Natural Language

Processing standpoint.

2. Related work

Over the past few years, there has been an

increased public and enterprise interest in social

media. Therefore, analyzing emojis has become

an important aspect for NLP researchers, because

their meaning has remained for the time

unexplored.

Go et al. [9] and Castellucci et al. [6] used in

their papers distant supervision over emotion-

labeled textual contents in order to train a

sentiment classier and to build a polarity lexicon.

Aoki et al. [1] described in his research a

methodology to represent each emoticon as a

vector of emotions, while Jiang [10] proposed a

sentiment and emotion classier based on

semantic spaces of emojis in the Chinese

Website Sina Weibo. In his research, Cappallo et

al. [5] proposed a multimodal approach for

generating emoji labels for images

(Image2Emoji). Boia et al. (2013) [4] analyzed

sentiment lexicons generated by considering

emoticons, showing that in many cases they do

405

not outperform lexicons created only with textual

features.

Barbieri et al. [2] tried to predict the most likely

emoji a Twitter message evokes. They used a

model based on Bidirectional Long Short-term

Memory Networks (BLSTMs) with standard

lookup, word representations and character-based

representation of tokens. For the word

representations they replaced each word that

occurred only once in the training data with a

fixed representation (out- of-vocabulary words

vector) (similar to the treatment of word

embeddings by Dyer et al. (2015)). For the

character-based representations, they computed

character- based continuous-space vector

embeddings (Ling et al., 2015b; Ballesteros et

al., 2015) of the tokens in each tweet, using

bidirectional LSTMs.

3. Data Set and Methods

In this Section, we present the data set format

and the architecture we used to predict emojis.

We implemented two main modules: first one is

based on a Recurrent Neural Network (3.3.1) and

the second one implements Naïve Bayes

algorithm (Error! Reference source not

found.).

Figure 1. Architectural Diagram

3.1 Data Set

The corpus is formed from 500k tweets in

English and 100K tweets in Spanish. The tweets

were retrieved with the Twitter APIs, from

October 2015 to February 2017, from United

States and Spain. The dataset includes tweets that

contain one and only one emoji from the 20 most

frequent emojis. Data was split into Training Data

(80%), Trial Data (10%) and Test Data (10%).

Data set is related to the 20 most frequent emoji

of each language.

Figure 2. Emoji labels distribution

Figure 3. Label frequency in training dataset

In order to generate the training data, we used the

tools given by organizers: a crawler for

extracting the tweets and an emoji extractor.

For each language, data is represented through

two files: one file containing one tweet per line

and the other file containing the corresponded

emoji label.

Figure 4. Corpus-tweets file

Figure 5. Corpus-labels file

3.2 Tweet Pre-Processor

The first step from the preprocessor module

consists in cleaning up the data set (punctuation,

stop words) in order to avoid noise in the

implemented algorithms.

406

This step consists in removing punctuation marks

and links. We identify them by using the regular

expression:

(([-\"'/`_%$&*+<>^•()=|¡・;:.,!?@#~]+)|([0-9]+))

We removed stop words and user mentions, but

we decided not to eliminate the hashtag word

because many tweets were made only by this

kind of words. We removed instead the Hashtag

sign and passed the words to the next step of

preprocessing.

For the last step, we used Stanford Tokenizer in

order to obtain the list of tokens for each tweet.

Then we replaced each word with the

correspondent lemma using WordNet Dictionary.

The words that didn’t have a lemma were

considered noise and we choose to eliminate

them.

Figure 6. Preprocessing architecture

Figure 7. Code sample for finding word lemma

using WordNet Dictionary

3.3 Deep Learning Models

3.3.1 Recursive Neural Networks

Recursive neural network (RvNN) is a kind of

deep neural network created by applying the

same set of weights recursively over a structure,

in order to produce a structured prediction over

variable-size input structures, or a scalar

prediction on it, by traversing a given structure in

topological order.

Given the proven effectiveness and the impact of

recurrent neural networks in different topics

(sentiment analysis, etc.), we intend to build an

emoji prediction model based on a Long Short-

Term Memory Network (LSTM).

For each subtask, we divided the train data set

into twenty smaller train sets, one for each emoji

label. Each train subset contains tweets with only

two labels (classes). For instance, the train set for

label “0” contains tweets with classified with 0

or !0. We then created a model for every emoji

label a trained it with the correspondent train

dataset.

In order to unify the models output, we run the

test dataset on each one of these model. Then,

based on the probabilities of each classified

label, we chose the emoji with the highest score.

Figure 8. Evaluation for English models

3.3.2 Naïve Bayes Classifier

Naïve Bayes it’s a classification technique based

on Bayes’ Theorem with an assumption of

independence among predictors. In simple terms,

a Naive Bayes classifier assumes that the

presence of a particular feature in a class is

unrelated to the presence of any other feature.

407

 P(c|x) is the posterior probability of class (c,

target) given predictor (x, attributes).

 P(c) is the prior probability of class.

 P(x|c) is the likelihood which is the

probability of predictor given class.

 P(x) is the prior probability of predictor.

Naïve Bayes Classifier is written in JavaScript.

We used several libraries, applications already

made to make the best and smarter module. Train

data receives as input ex: “en_train.txt” and

“en_train.labels”, after the files are read, it reads

files line by line, makes a tweet array, then it

assigns to each tweet from the array a number

from the label file, then it calls the Naïve Bayes

algorithm implementation. Finally, the test data

is entered and the values are generated for them.

It represents an interface that easily generates a

label according to the introduced text. Moreover,

it does not change values if the same tweet is

entered multiple times. The output format is txt

and a label is generated for each line from test

data.

Figure 9. Short example of US result

Figure 10. Short example of ES result

4. Discussions

Based on the things observed during the project

implementation, we think that a possible

improvement consists in trying to minimize the

tweets noise. For instance, many words from

tweets have duplicated letters (e.g. “aaaaand”).

Eliminating those duplicated letters till the word

has a correspondent lemma could significantly

reduce the noise.

5. Conclusions

Emojis are very used on social sites, but not

much is known about their use and semantics.

However, it has been noticed that emojis are used

in different communities. In this paper, we tried

to predict the correspondent emoji for a given

tweet using a deep learning module based on a

Recurrent Neural Network and a Naïve Bayes

module. The results for the Naïve Bayes

implementation were better than those from the

network module.

Acknowledgments

This survey was published with the support by

two grants of the Romanian National Authority

for Scientific Research and Innovation,

UEFISCDI, project number PN-III-P2-2.1-BG-

2016-0390, contract 126BG/2016 and project

number PN-III-P1-1.2-PCCDI-2017-0818,

contract 73PCCDI/2018 within PNCDI III, and

partially by the README project "Interactive

and Innovative application for evaluating the

readability of texts in Romanian Language and

for improving users' writing styles", contract no.

114/15.09.2017, MySMIS 2014 code 119286.

References
[1] Aoki, S. and Uchida, O. 2011. A method for

automatically generating the emotional vectors of

emoticons using weblog articles. In Proceedings of

10th WSEAS Int. Conf. On Applied Computer and

Applied Computational Science, Stevens Point,

Wisconsin, USA, pages 132{136, 2011.

[2] Barbieri, F., Ballesteros, M., Saggion, H., 2017.

Are Emojis Predictable? in Large Scale Text

Understanding Systems Lab, TALN Group

Universitat Pompeu Fabra, Barcelona, Spain IBM

T.J Watson Research Center, U.S

[3] Barbieri, Francesco and Camacho-Collados, Jose

and Ronzano, Francesco and Espinosa-Anke, Luis

and Ballesteros, Miguel and Basile, Valerio and

Patti, Viviana and Saggion, Horacio, 2018.

SemEval-2018 Task 2: Multilingual Emoji

Prediction. In Proceedings of the 12th

International Workshop on Semantic Evaluation

(SemEval-2018), New Orleans, LA, United States.

Association for Computational Linguistics.

[4] Boia, M., Faltings, B., Musat, C.-C., and Pu, P.,

2013. A:) is worth a thousand words: How people

attach sentiment to emoticons and words in tweets.

In Social Computing (SocialCom), 2013

408

International Conference on, pages 345–350.

IEEE.

[5] Cappallo, S., Mensink, T. and Snoek, C. G. M.,

2015. Image2emoji: Zero-shot emoji predictionfor

visual media. In Proceedings of the 23rd Annual

ACM Conference on Multimedia Conference,

pp.1311–1314. ACM, (2015).

[6] Castellucci, G. , Croce, D. and Basili R. 2015.

Acquiring a large scale polarity lexicon through

unsupervised distributional methods. In Natural

Language Processing and Information Systems,

pages 73{86. Springer, 2015.

[7] Dzmitry, B., Kyunghyun, C. and Yoshua, B.,

2014. Neural machine translation by jointly

learning to align and translate. In Proceeding of

the third International Conference on Learning

Representations, Toulon, France, May.

[8] Eisner, B., Rocktäschel, T., Augenstein, I.,

Bošnjak, M. and Riedel, S., 2016. Emoji2vec:

Learning emoji representations from their

description. In Proceedings of The Fourth

International Workshop on Natural Language

Processing for Social Media, pages 48–54, Austin,

TX, USA, November. Association for

Computational Linguistics.

[9] Go, A. , Bhayani, R. and Huang, L. 2009. Twitter

sentiment classication using distant upervision.

CS224N Project Report, Stanford, 1:12, 2009

[10] Jiang, F., Liu, Y.-Q., Luan, H.-B., Sun, J.-S.,

Zhu, X., Zhang, M. and Ma, S.-P., 2015.

Microblog sentiment analysis with emoticon space

model. Journal of Computer Science and

Technology, 30(5):1120{1129, 2015.

409

Proceedings of the 12th International Workshop on Semantic Evaluation (SemEval-2018), pages 410–414
New Orleans, Louisiana, June 5–6, 2018. ©2018 Association for Computational Linguistics

THU NGN at SemEval-2018 Task 2: Residual CNN-LSTM Network with
Attention for English Emoji Prediction

Chuhan Wu1, Fangzhao Wu2, Sixing Wu1, Zhigang Yuan1,
Junxin Liu1 and Yongfeng Huang1

1Tsinghua National Laboratory for Information Science and Technology,
Department of Electronic Engineering, Tsinghua University Beijing 100084, China

2Microsoft Research Asia
{wuch15,wu-sx15,yuanzg14,ljx16,yfhuang}@mails.tsinghua.edu.cn

wufangzhao@gmail.com

Abstract

Emojis are widely used by social media and
social network users when posting their mes-
sages. It is important to study the relation-
ships between messages and emojis. Thus, in
SemEval-2018 Task 2 an interesting and chal-
lenging task is proposed, i.e., predicting which
emojis are evoked by text-based tweets. We
propose a residual CNN-LSTM with attention
(RCLA) model for this task. Our model com-
bines CNN and LSTM layers to capture both
local and long-range contextual information
for tweet representation. In addition, attention
mechanism is used to select important com-
ponents. Besides, residual connection is ap-
plied to CNN layers to facilitate the training of
neural networks. We also incorporated addi-
tional features such as POS tags and sentiment
features extracted from lexicons. Our model
achieved 30.25% macro-averaged F-score in
the first subtask (i.e., emoji prediction in En-
glish), ranking 7th out of 48 participants.

1 Introduction

Emojis such as and are widely used in so-
cial media and social network messages such as
tweets. They are frequently combined with plain
texts to visually complement the meaning of a
message and convey various opinions and emo-
tions (Novak et al., 2015; Barbieri et al., 2017).
Social media platforms such as Twitter has ac-
cumulated a large number of emoji-incorporated
messages. Analyzing the relationships between
the textual message and emojis has many potential
applications, such as emoji recommendation, au-
tomatic emoji-enriched message generation, and
accurate sentiment analysis of social media mes-
sages (Barbieri et al., 2017).

However, the research on the relationships be-
tween textual message and emojis is limited. Ex-
isting studies on emojis mainly focus on analyzing

the semantics, usage or sentiment of emojis (Aoki
and Uchida, 2011; Barbieri et al., 2016a,b,c;
Ljubešić and Fišer, 2016; Novak et al., 2015).
For example, Barbieri et al. (2016b) explored the
meaning and usage of emojis across different lan-
guages. Wijeratneet al. (2017) proposed to uti-
lize the emoji sense definitions to improve the per-
formance of emoji embedding model. However,
these approaches cannot reveal the interplay be-
tween plain texts and emojis. In order to fill this
gap, Barbieri et al. (2017) proposed a novel task
to predict which emojis are evoked by text-based
tweets. For example, given a tweet message “Love
my coworkers ! @user”, a system is required to
predict that emoji is associated with this tweet.

As an extension, the SemEval-2018 Task 21

aims to predict emojis for English and Spanish
tweets (Barbieri et al., 2018). Given a plain tweet
message without emoji, systems are required to
predict which emoji is evoked by this message.
We proposed a residual CNN-LSTM with atten-
tion model (RCLA) for this task.2 Our model
combines LSTM and multi-level CNN layers to
capture both long-range and local information to
learn tweet representation. In addition, atten-
tion mechanism (Yang et al., 2016) is incorpo-
rated into our approach to select important com-
ponents. Besides, we applied residual connection
technique (He et al., 2016) to CNN layers in our
model to facilitate the training of neural networks.
We also incorporated additional features such as
POS tags and sentiment features extracted from
sentiment lexicons. Our model achieved 30.25%
macro-averaged F-score on the test data of the
first subtask (i.e., emoji prediction in English), and
ranked 7th out of 48 participants.

1https://competitions.codalab.org/competitions/17344
2The codes of our RCLA model are publicly available at

https://github.com/wuch15/SemEval-2018-task2-THU NGN

410

Embedding

Word
embedding

Bi-LSTM

Attention
layer

CNN

Dense
layers

Output

Love my coworkers ! @user

Max Pooling (stride=2)

Sentiment
features

𝑤𝑤

𝛼𝛼1

h1 h2 h3 h4 h5

𝛼𝛼2 𝛼𝛼5𝛼𝛼3 𝛼𝛼4

CNN

Max Pooling (stride=2)

Global Max Pooling

ReLU

softmax

CNN

𝑟𝑟1 𝑟𝑟2 𝑟𝑟3 𝑟𝑟4 𝑟𝑟5

POS tag

zeros zeros

+ + + +

zeroszeros

zeroszeros

+ + +

Figure 1: The architecture of our model. The dashed
lines in CNN layers represent residual connections.

2 Residual CNN-LSTM with Attention

The framework of our residual CNN-LSTM with
attention model (RCLA) is illustrated in Figure 1.
Next, we will introduce each layer in our model
from bottom to top in detail.

The first layer in our model is the embedding
layer. This layer is used to convert a sentence from
a sequence of words into a sequence of dense vec-
tors. An embedding lookup table is used in this
layer, whose parameters are obtained from pre-
trained word embeddings and fine-tuned during
training. POS tags have proven useful for many
natural language processing tasks such as dimen-
sional sentiment analysis (Wu et al., 2017). Mo-
tivated by existing studies, we also incorporate
POS tags as additional features in our approach,
and combining them with the word embeddings to
form the final word features as the input of next

layer. We use the Ark-Tweet-NLP3 tool to obtain
the POS tags of tweets.

The second layer in our model is bidirectional
long short-term memory (Bi-LSTM) layer. This
layer is used to capture long-range contextual in-
formation from tweets. At time step i, a hidden
state hi is generated which contains both previ-
ous and future context information. Since differ-
ent words and phrases have different importance
for emoji prediction, we incorporate an attention
layer after the Bi-LSTM layer to help our model
focus on important words and contexts. The input
of the attention layer is the hidden state vector hi

at each time step. The attention weight αi for this
time step can be computed as:

mi = tanh(hi),

α̂i = wTmi + b,

αi =
exp(α̂i)∑
j exp(α̂j)

,

(1)

where w and b are the parameters of the attention
layer. The output of attention layer at the ith time
step is formulated as follows:

ri = αhi. (2)

The third layer in our model is a 3-layer convo-
lutional neural networks (CNN) to capture local
context information. Each CNN layer has multiple
kernels with different window sizes. In addition,
we apply residual connections (He et al., 2016) to
the CNN layers as shown in Figure 1, which have
shown effectiveness in facilitating the training of
deep neural networks. Max pooling is applied to
the output of the last CNN layer to obtain the hid-
den representation of tweets.

Tweets with specific emojis such as usually
convey strong sentiment information. Thus, sen-
timent information is helpful for emoji prediction.
We incorporate sentiment features into our model
to enhance its performance. These sentiment fea-
tures are extracted using AffectiveTweets4 (Mo-
hammad and Bravo-Marquez, 2017) package in
Weka5. Two filters are involved, i.e., TweetToLex-
iconFeatureVector (Bravo-Marquez et al., 2014)
and TweetToSentiStrengthFeatureVector (Thel-
wall et al., 2012). These sentiment features are
combined with the hidden tweet representations

3http://www.cs.cmu.edu/ ark/TweetNLP
4https://github.com/felipebravom/AffectiveTweets
5https://www.cs.waikato.ac.nz/ml/weka

411

generate by neural networks to form the final fea-
ture representation of tweets. Finally, a softmax
layer is used to predict the emoji label.

The tweets with different emojis in the training
set are very imbalanced. For example, the ratio
of is higher than 20%, while the ratio of is
only 2.4%. Motivated by the cost-sensitive cross-
entropy method (Santos-Rodrı́guez et al., 2009),
the objective function of our model is defined as:

L = −
N∑

i=1

wyiyi log(ŷi), (3)

where N is the number of tweets, yi is the emoji
label of the ith tweet, ŷi is the prediction score,
and wyi is the loss weight of emoji label yi. wyi

is defined as
∑C

k=1

√
Nk√

Nyi

, where C is the number of

emoji labels and Nj is the number of tweets with
emoji label j. Thus, the infrequent emojis have
relatively larger loss weights.

3 Experiment

3.1 Dataset and Experimental Settings
The dataset6 for this task is collected from Twitter.
There are 20 emojis in total. 489,277 tweets are
used for model training. The number of tweets in
the trial and test sets are both 50,000. We used the
pre-trained word embeddings provided by Barbi-
eri et al. (2016b). They were trained on 20 mil-
lion geo-localized tweets and their dimension is
300. These word embedding were fine-tuned dur-
ing model training.

The hyperparameters in our model were se-
lected via cross-validation on the trail set. More
specifically, the dimension of Bi-LSTM hidden
states is 300, the window sizes of CNN filters are
2, 3, 4 respectively. The number of CNN filters
is 200 and the number of sentiment features is
45. The dimension of dense layer is 300, and the
dropout rate is 0.2 for each layer. The batch size
is 500, and the maximal training epoch is set to
100. We use RMSProp as the optimizer for net-
work training. The performance is evaluated by
macro-averaged F-score.

3.2 Performance Evaluation
The performance of our model on the test set is
shown in Table 1. According to Table 1, our model
can achieve good performance on predicting fre-
quent emojis, since their training data is sufficient.

6https://competitions.codalab.org/competitions/17344

In addition, the performance of our approach on
some infrequent emojis is also satisfactory. For
example, the F-score on emoji is high. This is
probably because specific words such as “Christ-
mas” are frequently associated with this emoji,
making it relatively easy to predict.

Emo P R F1 %
82.9 79.55 81.19 21.6

27.52 41.61 33.13 9.66
33.69 52.43 41.02 9.07
20.94 20.54 20.74 5.21
51.74 45.67 48.51 7.43
10.38 11.59 10.95 3.23
16.16 18.44 17.22 3.99
35.51 23.54 28.31 5.5
22.73 14.4 17.63 3.1
14.93 15.23 15.08 2.35
22.0 25.63 23.68 2.86
64.0 60.03 61.95 3.9

64.04 53.36 58.21 2.53
20.6 9.78 13.27 2.23
9.99 6.89 8.16 2.61

26.58 22.03 24.09 2.49
8.16 6.24 7.08 2.31

66.22 67.12 66.67 3.09
31.84 18.58 23.46 4.83
7.1 3.47 4.66 2.02

Table 1: Precision, Recall, F-score and percentage of
occurrences of each emoji in the test set.

The visualization of the confusion matrix of our
model is shown in Figure 2. From this figure, we
find two pairs of emojis which are difficult for our
model to discriminate between them. The emoji

is often wrongly identified as . This is prob-
ably because these two emojis are often used to
express similar meaning and feelings. For exam-
ple, they both can be used in tweets which convey
happy emotion. Another pair of emojis is and

. These two emojis look quite similar, and dis-
criminating them is quite difficult.

In order to further validate the effectiveness
of our model, we compare the performance of
our model with several baseline methods. The
methods to be compared include: 1) LSTM, us-
ing Bi-LSTM for tweet presentation; 2) CNN, 3-
layer CNN without residual connections; 3) CNN-
LSTM (denoted as CL), using the combination of
LSTM and CNN; 4) Residual CNN-LSTM (de-
noted as RCL), CNN-LSTM with residual con-
nections; 5) Residual CNN-LSTM with attention
(denoted as RCLA). The results are shown in Ta-
ble 2. According to Table 2, the combination of

412

Figure 2: The confusion matrix of our model.

LSTM and CNN (CL) usually outperforms the sin-
gle CNN and LSTM. It indicates that combining
CNN and LSTM to capture both local and long-
range context information is beneficial for tweet
emoji prediction. In addition, by comparing RCL
with CL, we find that the residual connections
can improve the performance of CL model. It
shows that the residual connections can facilitate
the training of neural networks. Besides, the at-
tention mechanism can also significantly improve
the performance. It validates that employing atten-
tion mechanism to capture the important contexts
for emoji prediction is useful.

3.3 Influence of Additional Features

The influence of the POS tags and sentiment fea-
tures is illustrated in Table 3. The results show that
both POS tags and sentiment features can help im-
prove the performance of tweet emoji prediction.
It indicates that POS tags contain useful informa-
tion for predicting emojis, since important emoji
clues such as hashtags, emoticons and sentiment
words usually have specific POS tags. Thus, in-
corporating POS tag features is beneficial. Incor-
porating sentiment features is also useful. This is
because the sentiment features we extracted from
sentiment lexicons can identify both formal and
information sentiment signals such as hashtags
and emoticons, and these sentiment signals usu-
ally have strong associations with specific emojis.
Thus, incorporating the sentiment features is also
beneficial to predict emojis.

Emo LSTM CNN CL RCL RCLA
79.61 81.24 81.26 82.79 81.19
28.81 31.39 30.73 32.72 33.13
37.34 41.16 38.35 38.72 41.02
20.88 16.55 18.16 17.53 20.74
45.03 47.57 46.34 44.92 48.51
9.71 9.59 7.99 10.03 10.95
15.49 18.43 14.28 17.77 17.22
28.40 27.43 27.62 27.72 28.31
18.24 16.82 17.70 17.21 17.63
12.13 14.83 15.87 13.86 15.08
21.34 22.06 21.35 21.31 23.68
58.14 52.76 59.36 59.58 61.95
56.37 57.50 59.03 58.65 58.21
11.75 10.06 11.95 14.89 13.27
9.17 4.00 10.43 8.72 8.16
20.61 22.13 21.34 21.76 24.09
6.50 6.83 8.73 6.26 7.08
63.88 64.73 64.65 64.50 66.67
24.62 25.38 25.80 27.21 23.46
6.31 6.77 6.11 5.97 4.66

Avg. 28.72 28.86 29.35 29.61 30.25

Table 2: The F-score of each emoji and the macro-F of
different methods.

Feature Macro-F
None 29.08
+POS 29.76

+Sentiment 29.55
+POS+Sentiment 30.25

Table 3: Influence of POS tags and sentiment features.

4 Conclusion

In this paper, we introduce our residual CNN-
LSTM model with attention model (RCLA) for
SemEval-2018 Task 2, i.e., emoji prediction for
tweets. Our model combines CNN and LSTM
layers to capture both local and long-range con-
text information for tweet representation, and in-
corporates an attention layer to select important
information. Besides, we applied residual con-
nections to CNN layers to facilitate the training
of our model. In addition, we incorporated ad-
ditional features such as POS tags and sentiment
features to further improve the performance. The
experimental results validate the effectiveness of
our model on emoji prediction for English tweets.

Acknowledgments

The authors thank the reviewers for their in-
sightful comments and constructive suggestions
on improving this work. This work was sup-
ported in part by the National Key Research
and Development Program of China under Grant

413

2016YFB0800402 and in part by the National Nat-
ural Science Foundation of China under Grant
U1705261, Grant U1536207, Grant U1536201
and U1636113.

References

Sho Aoki and Osamu Uchida. 2011. A method for
automatically generating the emotional vectors of
emoticons using weblog articles. In Proc. 10th
WSEAS Int. Conf. on Applied Computer and Applied
Computational Science, Stevens Point, Wisconsin,
USA, pages 132–136.

Francesco Barbieri, Luis Espinosa Anke, and Horacio
Saggion. 2016a. Revealing patterns of twitter emoji
usage in barcelona and madrid. In CCIA, pages 239–
244.

Francesco Barbieri, Miguel Ballesteros, and Horacio
Saggion. 2017. Are emojis predictable? In Pro-
ceedings of the 15th Conference of the European
Chapter of the Association for Computational Lin-
guistics: Volume 2, Short Papers, pages 105–111.
Association for Computational Linguistics.

Francesco Barbieri, Jose Camacho-Collados,
Francesco Ronzano, Luis Espinosa-Anke, Miguel
Ballesteros, Valerio Basile, Viviana Patti, and
Horacio Saggion. 2018. SemEval-2018 Task 2:
Multilingual Emoji Prediction. In Proceedings of
the 12th International Workshop on Semantic Eval-
uation (SemEval-2018), New Orleans, LA, United
States. Association for Computational Linguistics.

Francesco Barbieri, German Kruszewski, Francesco
Ronzano, and Horacio Saggion. 2016b. How cos-
mopolitan are emojis?: Exploring emojis usage and
meaning over different languages with distributional
semantics. In Proceedings of the 2016 ACM on Mul-
timedia Conference, pages 531–535. ACM.

Francesco Barbieri, Francesco Ronzano, and Horacio
Saggion. 2016c. What does this emoji mean? a
vector space skip-gram model for twitter emojis. In
LREC.

Felipe Bravo-Marquez, Marcelo Mendoza, and Bar-
bara Poblete. 2014. Meta-level sentiment models for
big social data analysis. Knowledge-Based Systems,
69:86–99.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. 2016. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 770–
778.

Nikola Ljubešić and Darja Fišer. 2016. A global anal-
ysis of emoji usage. In Proceedings of the 10th Web
as Corpus Workshop, pages 82–89.

Saif Mohammad and Felipe Bravo-Marquez. 2017.
Wassa-2017 shared task on emotion intensity. In
Proceedings of the 8th Workshop on Computational
Approaches to Subjectivity, Sentiment and Social
Media Analysis, pages 34–49, Copenhagen, Den-
mark. Association for Computational Linguistics.

Petra Kralj Novak, Jasmina Smailovic, Borut Sluban,
and Igor Mozetic. 2015. Sentiment of emojis. PLOS
ONE, 10(12).

Raúl Santos-Rodrı́guez, Darı́o Garcı́a-Garcı́a, and
Jesús Cid-Sueiro. 2009. Cost-sensitive classifi-
cation based on bregman divergences for medi-
cal diagnosis. In Machine Learning and Applica-
tions, 2009. ICMLA’09. International Conference
on, pages 551–556. IEEE.

Mike Thelwall, Kevan Buckley, and Georgios Pal-
toglou. 2012. Sentiment strength detection for the
social web. Journal of the Association for Informa-
tion Science and Technology, 63(1):163–173.

Sanjaya Wijeratne, Lakshika Balasuriya, Amit Sheth,
and Derek Doran. 2017. A semantics-based mea-
sure of emoji similarity. In 2017 IEEE/WIC/ACM
International Conference on Web Intelligence (WI),
Leipzig, Germany. ACM, ACM.

Chuhan Wu, Fangzhao Wu, Yongfeng Huang, Sixing
Wu, and Zhigang Yuan. 2017. Thu ngn at ijcnlp-
2017 task 2: Dimensional sentiment analysis for chi-
nese phrases with deep lstm. Proceedings of the
IJCNLP 2017, Shared Tasks, pages 47–52.

Zichao Yang, Diyi Yang, Chris Dyer, Xiaodong He,
Alex Smola, and Eduard Hovy. 2016. Hierarchi-
cal attention networks for document classification.
In Proceedings of the 2016 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 1480–1489.

414

Proceedings of the 12th International Workshop on Semantic Evaluation (SemEval-2018), pages 415–418
New Orleans, Louisiana, June 5–6, 2018. ©2018 Association for Computational Linguistics

#TeamINF at SemEval-2018 Task 2: Emoji Prediction in Tweets

Alison P. Ribeiro
Institute of Informatics

Federal University of Goiás
Goiânia – Goiás – Brasil

alisonrib17@gmail.com

Nádia F. F. da Silva
Institute of Informatics

Federal University of Goiás
Goiânia – Goiás – Brasil
nadia@inf.ufg.br

Abstract
In this paper, we describe a methodology to
predict emoji in tweets. Our approach is based
on the classic bag-of-words model in conjunc-
tion with word embeddings. The used clas-
sification algorithm was Logistic Regression.
This architecture was used and evaluated in the
context of the SemEval 2018 challenge (task 2,
subtask 1).

1 Introduction

Over the years, technology has significantly
changed the way people communicate. It was
changed especially due to social media like Twit-
ter1, Facebook2, WhatsApp3, among others. Such
media provide users with the ability to express
their opinions/emotions not only with words, but
through images, the so-called emojis.

However, within the context of the sentiment
analysis, little research has been dedicated to ex-
plore the semantics of emoji (Barbieri et al., 2016),
thus becoming an interesting challenge to investi-
gate.

Understanding the meaning of emojis in rela-
tion to their context of use is important for inde-
xing multimedia information, retrieval, or content
extraction systems. In addition, emoji can com-
plement the meaning of a message, that is, an
emoji can determine the feeling of a text, howe-
ver, such emotive figures may become fragile in
the ironic/sarcastic context.

In this paper, we developed a methodology to
predict emoji in tweets, especially our method
is based on the bag-of-words model in conjunc-
tion with word embeddings (GloVe4 pre-trained)
and n-grams5, applying a classification algorithm.

1https://twitter.com/
2https://www.facebook.com
3https://www.whatsapp.com/
4https://nlp.stanford.edu/projects/glove/
5terms composed by n words.

This configuration was employed and evaluated in
the SemEval 2018 challenge (task 2, subtask 1), in
which the goal is to predict the emoji of a tweet
(Barbieri et al., 2018).

This work is organized as follows: section 2 ex-
plains some related works, section 3 describes the
data set, section 4 addresses the methodology ap-
plied in the task, section 5 presents the results, and
finally section 6 final considerations as well as fu-
ture work.

2 Related Works

Emojis can express diverse types of contents
in a visual way, adapting to the informal style of
communication in social networks. The meaning
expressed by emoticons has been explored to al-
low or improve various tasks related to the sen-
timent analysis, as in (Hogenboom et al., 2013,
2015).

Emojis can also be used to label excerpts of
texts where they occur, thus making it possible to
construct sentiment lexical. In this context, in (Go
et al., 2009) and (Castellucci et al., 2015) use a
distant supervision over the emotionally marked
textual contents to form a sentiment classifier and
construct a lexicon of polarity. While Novak et al.
2015 constructed lexicons and drew a map of sen-
timents of the 751 most used emoji.

In the work of Barbieri et al. 2017, the authors
investigated the relationship between words and
emojis, studying the new task of predicting which
emoji are evoked by text-based tweet messages.
The authors trained several models based on Long
Memory Short-Term networks (LSTMs).

In (Barbieri et al., 2016) the authors explore
the meaning and use of emojis in four langua-
ges: American English, British English, Penin-
sular Spanish and Italian. By performing several
experiments the researchers were able to compare

415

how the semantics of emoji vary according to the
languages. In a first experiment, they investigated
whether the meaning of a single emoji is preserved
in all variations of language. In the second experi-
ment, they compared the general semantic models
of the 150 most frequent emoji in all languages. In
this study it was possible to find out that the gene-
ral semantics of the most frequent emoji is similiar.

Finally, given the context of the challenge of Se-
meval 2018 (task 2, subtask 1), we propose a mo-
del capable of predicting emoji corresponding to
the tweets.

3 Dataset and Task

Dataset. The data for the task consists of 500k
tweets in English for training, 50k for trial and 50k
for test. The tweets were retrieved with the Twitter
APIs, from October 2015 to February 2017, and
geolocalized in United States. The dataset inclu-
des tweets that contain one and only one emoji, of
the 20 most frequent emojis. The amount of tweets
for dataset can be seen in Figure 1.
Task details. Because of the importance of visual
icons with the ability to provide additional mea-
ning for social messaging and Twitter’s key role
as one of the most important communication plat-
forms, the Semeval 2018 team invites participants
to predict the emoji associated with a tweet in En-
glish (Barbieri et al., 2018).

Figure 1: Number of labels per classes.

4 Methodology

The methodology applied in this task consists
of two phases, one based on the bag-of-words mo-
del and another based on the word embeddings
(GloVe) model, in the end both are concatenated,
as shown in Figure 2.

4.1 Preprocessing

This step consists in eliminating noises and
terms that have no semantic significance in the
sentiment prediction. For this, we perform the re-
moval of links, removal of numbers, removal of
special characters, removal of stop words (words
with low discriminative power, for example, “is”,
“that” etc.). The standardization of tweets in
lowercase was also applied, and finally, stemming.
The purpose of stemming is to reduce words to
their radical, for example, the word “belivies” will
be transformed into “believ” (Perkins, 2014).

4.2 Bag-of-words

We apply bag-of-words as baseline, since it has
been successfully employed in various classifica-
tion tasks (Da Silva et al., 2014; Barbieri et al.,
2017; Pak and Paroubek, 2010; Kouloumpis et al.,
2011; Socher et al., 2013). We represent each mes-
sage with a vector of tokens, selected using term
frequency-inverse document frequency (TF-IDF)
with quadrigrams, and min df = 1, max features
= 3500, and ngram range = (1,4). In the Logistic
Regression it was considered C = 10.0, while in
the Support Vector Machine and Random Forest
the hyperparameters were used by default.

4.3 Word embeddings

Word Embeddings (Bengio et al., 2003) is a su-
pervised statistical language model trained using
deep neural networks. The purpose of this mo-
del is to predict the next word, given the previ-
ous context in the sentence, so similar words tend
to be always close. The vector presentation of
words was a great advance in relation to the strate-
gies based on bag-of-words. For the proposed task
we apply the GloVe model (with 200 dimensions)
by (Pennington et al., 2014), GloVe is based on a
counting model, in which the vectors are derived
from an array of co-occurrences used to extract
statistical information about the corpus. With this
model an array was generated through the simple
arithmetic mean of the word vectors.

416

4.3.1 Challenges

Because of the need for high computational
power to perform the task and the high dimensi-
onality of the table, both in terms of number of
attributes and number of rows, only a sampling of
10% of training data was used, this sampling re-
flects the distribution of real classes.

Figure 2: Model used in competition.

5 Results

In this section, we report the obtained results by
our model according to the metric evaluation of
the challenge, macro f1, precision and recall, ac-
curacy, and f1 for all the emojis (Barbieri et al.,
2018). Results are reported for five diverse con-
figurations: (i) the system based on word embed-
dings and baf-of-words with Logistic Regression
(LR); (ii) the system based on word embeddings
and baf-of-words with Support Vector Machine
(SVM); (iii) the bag-of-words system with Logis-
tic Regression (LR); (iv) the bag-of-words system
with Support Vector Machine (SVM); and (v) the
bag-of-words system with Random Forest (RF). In
Table 1 we show model’s performances and in Fi-
gure 3 we present the predicted score for one of
the 20 emojis.

Model F1 P R Acc

WE+BoW-LR 21.497 26.208 20.843 31.588
WE+BoW-SVM 21.023 27.034 21.403 32.570
BoW-LR 20.351 24.923 19.824 30.830
BoW-SVM 20.194 26.659 20.518 31.966
BoW-RF 15.793 19.890 15.310 25.842

Table 1: Result Semeval-2018.

The obtained results on the testing data indicate
that word embedding together with bag-of-word
produces the best F1, on the other hand the three
configurations represented only by bag-of-word
obtained their results close to the central work mo-
del (Word Embedding + Bag-of- Words). It is im-
portant to remember that only 10% of training data
was used, such choice directly influenced the final
result.

Figure 3: F1 per classes.

6 Conclusion

In this paper, we propose several configurations
based on word embeddings and bag-of-words for
the Semeval 2018 task 2, subtask 1. As base clas-
sifiers we use Logistic Regression (LR), Support
Vector Machine (SVM) and Random Forest (RF)
to predict emojis in tweets. Our best model got F1
of 21.497.

As future works we intend to explore the seman-
tics of emojis more, as well as apply new word
embeddings templates, such as Word2Vec (Miko-
lov et al., 2013), FastText (Joulin et al., 2016) and
Doc2Vec (Le and Mikolov, 2014) with more com-
putational resources.

References
Francesco Barbieri, Miguel Ballesteros, and Horacio

Saggion. 2017. Are emojis predictable? arXiv pre-
print arXiv:1702.07285.

Francesco Barbieri, Jose Camacho-Collados, Fran-
cesco Ronzano, Luis Espinosa-Anke, Miguel Bal-
lesteros, Valerio Basile, Viviana Patti, and Hora-
cio Saggion. 2018. SemEval-2018 Task 2: Mul-
tilingual Emoji Prediction. In Proceedings of the
12th International Workshop on Semantic Evalua-
tion (SemEval-2018), New Orleans, LA, United Sta-
tes. Association for Computational Linguistics.

Francesco Barbieri, German Kruszewski, Francesco
Ronzano, and Horacio Saggion. 2016. How cos-
mopolitan are emojis?: Exploring emojis usage and
meaning over different languages with distributional
semantics. In Proceedings of the 2016 ACM on Mul-
timedia Conference, pages 531–535. ACM.

Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and
Christian Jauvin. 2003. A neural probabilistic lan-
guage model. Journal of machine learning research,
3(Feb):1137–1155.

Giuseppe Castellucci, Danilo Croce, and Roberto Ba-
sili. 2015. Acquiring a large scale polarity lexi-
con through unsupervised distributional methods. In

417

International Conference on Applications of Natu-
ral Language to Information Systems, pages 73–86.
Springer.

Nadia FF Da Silva, Eduardo R Hruschka, and Este-
vam R Hruschka Jr. 2014. Tweet sentiment analy-
sis with classifier ensembles. Decision Support Sys-
tems, 66:170–179.

Alec Go, Richa Bhayani, and Lei Huang. 2009. Twit-
ter sentiment classification using distant supervision.
CS224N Project Report, Stanford, 1(12).

Alexander Hogenboom, Daniella Bal, Flavius Frasin-
car, Malissa Bal, Franciska De Jong, and Uzay Kay-
mak. 2015. Exploiting emoticons in polarity classi-
fication of text. J. Web Eng., 14(1&2):22–40.

Alexander Hogenboom, Daniella Bal, Flavius Frasin-
car, Malissa Bal, Franciska de Jong, and Uzay
Kaymak. 2013. Exploiting emoticons in sentiment
analysis. In Proceedings of the 28th Annual ACM
Symposium on Applied Computing, pages 703–710.
ACM.

Armand Joulin, Edouard Grave, Piotr Bojanowski, and
Tomas Mikolov. 2016. Bag of tricks for efficient text
classification. CoRR, abs/1607.01759.

Efthymios Kouloumpis, Theresa Wilson, and
Johanna D Moore. 2011. Twitter sentiment
analysis: The good the bad and the omg! Icwsm,
11(538-541):164.

Quoc Le and Tomas Mikolov. 2014. Distributed repre-
sentations of sentences and documents. In Internati-
onal Conference on Machine Learning, pages 1188–
1196.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jef-
frey Dean. 2013. Efficient estimation of word re-
presentations in vector space. arXiv preprint ar-
Xiv:1301.3781.

Petra Kralj Novak, Jasmina Smailović, Borut Sluban,
and Igor Mozetič. 2015. Sentiment of emojis. PloS
one, 10(12):e0144296.

Alexander Pak and Patrick Paroubek. 2010. Twitter as
a corpus for sentiment analysis and opinion mining.
In LREc, volume 10.

Jeffrey Pennington, Richard Socher, and Chris-
topher D. Manning. 2014. Glove: Global vectors for
word representation. In Empirical Methods in Na-
tural Language Processing (EMNLP), pages 1532–
1543.

Jacob Perkins. 2014. Python 3 Text Processing with
NLTK 3 Cookbook. Packt Publishing Ltd.

Richard Socher, Alex Perelygin, Jean Wu, Jason Chu-
ang, Christopher D Manning, Andrew Ng, and Ch-
ristopher Potts. 2013. Recursive deep models for se-
mantic compositionality over a sentiment treebank.
In Proceedings of the 2013 conference on empiri-
cal methods in natural language processing, pages
1631–1642.

418

Proceedings of the 12th International Workshop on Semantic Evaluation (SemEval-2018), pages 419–422
New Orleans, Louisiana, June 5–6, 2018. ©2018 Association for Computational Linguistics

EICA Team at SemEval-2018 Task 2: Semantic and Metadata-based
Features for Multilingual Emoji Prediction

Yufei Xie, Qingqing Song
East China Normal University, Shanghai, P.R.China

yufeixie@ica.stc.sh.cn

Abstract

The advent of social media has brought along
a novel way of communication where meaning
is composed by combining short text messages
and visual enhancements, the so-called emo-
jis. We describe our system for participating in
SemEval-2018 Task 2 on Multilingual Emoji
Prediction. Our approach relies on combining
a rich set of various types of features: seman-
tic and metadata. The most important types
turned out to be the metadata feature. In sub-
task 1: Emoji Prediction in English, our pri-
mary submission obtain a MAP of 16.45, Pre-
cision of 31.557, Recall of 16.771 and Accu-
racy of 30.992.

1 Introduction

Emojis are ideograms which are naturally com-
bined with plain text to visually complement or
condense the meaning of a message (Barbieri
et al., 2017). Despite being widely used in social
media, their underlying semantics have received
little attention from a Natural Language Process-
ing standpoint. Barbieri et al. (2016) compare the
meaning and usage of emojis across two Span-
ish cities: Barcelona and Madrid. Ljubešić et al.
(2017) present a set of experiments and analyses
on predicting the gender of Twitter users based
on languageindependent features extracted either
from the text or the metadata of users tweets.

Miller et al. (2016) performed an evaluation
asking human annotators the meaning of emojis,
and the sentiment they evoke. People do not al-
ways have the same understanding of emojis, in-
deed, there seems to exist multiple interpretations
of their meaning beyond their designers intent or
the physical object they evoke1. Their main con-
clusion was that emojis can lead to misunderstand-
ings. The ambiguity of emojis raises an interest-
ing question in human-computer interaction: how

can we teach an artificial agent to correctly inter-
pret and recognise emojis use in spontaneous con-
versation? The main motivation of our research
is that an artificial intelligence system that is able
to predict emojis could contribute to better natu-
ral language understanding (Novak et al., 2015)
and thus to different natural language processing
tasks such as generating emoji-enriched social me-
dia content, enhance emotion/sentiment analysis
systems, and improve retrieval of social network
material.

2 Our Approach

2.1 Features
We use several semantic features and metadata
features to represent the twitter.

2.1.1 Semantic Features
Semantic features represent the basic concep-
tual components of meaning for any lexical item
(Fromkin et al., 2018). An individual semantic
feature constitutes one component of a word’s in-
tension, which is the inherent sense or concept
evoked (O’Grady et al., 1997).

Semantic Word Embeddings. We use semantic
word embeddings obtained from Word2vec mod-
els for GoogleNews. For each twitter, we con-
struct the centroid vector from the vectors of all
words in that text.

centroid(w1..n) =

∑n
i=1wi

n
(1)

TF-IDF. In information retrieval, tfidf or
TFIDF, short for term frequencyinverse document
frequency, is a numerical statistic that is intended
to reflect how important a word is to a document
in a collection or corpus (Leskovec et al., 2014). It
is often used as a weighting factor in searches of
information retrieval, text mining, and user mod-
eling. The tf-idf value increases proportionally to

419

the number of times a word appears in the docu-
ment, but is often offset by the frequency of the
word in the corpus, which helps to adjust for the
fact that some words appear more frequently in
general. Nowadays, tf-idf is one of the most pop-
ular term-weighting schemes; 83% of text-based
recommender systems in the domain of digital li-
braries use tf-idf (Beel et al., 2016).

tf(t, d) = 0.5 + 0.5 ∗ ft,d
max{ft′,d : t′ ∈ d} (2)

t represents the term, d represents the document
(Luhn, 1957).

idf(t, d) = log
N

|{d ∈ D : t ∈ d}| (3)

N is total number of documents in the corpus
N = |D|, |{d ∈ D : t ∈ d}| is the number of
documents where the term t appears. If the term
is not in the corpus, this will lead to a division-by-
zero (Robertson, 2004). It is therefore common to
adjust the denominator to 1 + |{d ∈ D : t ∈ d}|.

2.1.2 Metadata Features
Metadata-based features provide clues about the
social aspects of the twitter. Thus, except for the
semantic features described above, we also used
some common sense metadata features:

Twitter containing a question mark. We think
if the twitter has a question mark, it may be a
question, which might indicate a negative emo-
tions (Castillo et al., 2011).

The presence and the number of links in the
twitter. We count both inbound and outbound
links. Our hypothesis is that the presence of a ref-
erence to another resource is indicative of a posi-
tive emotions (Adamic and Huberman, 2000).

Twitter length. The assumption here is that
longer twitter could bring more useful detail (Oga-
sawara, 2009).

2.2 Classifier

For each twitter, we firstly extract the features de-
scribed above. Then we concatenate the extracted
features in a bag of features vector and have them
normalized. After the normalization, the value are
mapped to interval [-1,1]. At last, we input them
into the classifier. In our experiments, we use L2-
regularized logistic regression classifier (Buitinck
et al., 2013) and SVM classifier (Zweigenbaum

and Lavergne, 2016) respectively. For the logis-
tic regression classifier, we tune the classifier with
different values of the C (cost) parameter (Aono
et al., 2016), and we take the one that yield the best
accuracy on 10-fold cross-validation on the train-
ing set. For the SVM classifier, we choose differ-
ent kernels (Moreno et al., 2004) and achieve the
best results with RBF kernel. We only show the
better results of above two classifiers in the next
section.

3 Experiments and Evalution

3.1 Dataset

3.1.1 Training and Evaluation Data
The data for the task will consist of 500k tweets
in English and 100K tweets in Spanish (Barbi-
eri et al., 2018). The tweets were retrieved with
the Twitter APIs, from October 2015 to February
2017, and geolocalized in United States and Spain.
The dataset includes tweets that contain one and
only one emoji, of the 20 most frequent emojis.
Data will be split into trial, training and test.

3.1.2 Label set
As labels we will use the 20 most frequent emo-
jis of each language. They are different across the
English and Spanish corpora. In the following we
show the distribution of the emojis for each lan-
guage (numbers refer to the percentage of occur-
rence of each emoji)

3.2 Evaluation Criteria

For evaluation, the classic Precision and Recall
metrics over each emoji are used. The official re-
sults will be based on Macro F-score, as the fun-
damental idea of this task is to encourage sys-
tems to perform well overall, which would inher-
ently mean a better sensitivity to the use of emo-
jis in general, rather than for instance overfitting
a model to do well in the three or four most com-
mon emojis of the test data. Macro F-score can
be defined as simply the average of the individual
label-wise F-scores. The official will also report
Micro F-score for informative purposes.

3.3 Subtask 1 Result

We can see the results in Table 1. The cagri team
obtains the best F1 value. The derpferd team gets

420

Table 1
Experimental Results on the SemEval-2018 Task 2

Team F1 P R Acc

cagri(Top 1) 35.991 36.551 36.222 47.094
cbaziotis(Top2) 35.361 34.534 37.996 44.744
hgsgnlp(Top 3) 34.018 34.997 33.572 45.548
liu man(Top 4) 33.665 39.426 33.695 47.464
lanman(Top 5) 33.354 35.168 33.108 46.296
derpferd(Top 6) 31.834 39.803 31.365 45.732
ChuhanWu(Top 7) 30.25 31.852 29.806 42.182
kennywlino(Top 8) 30.125 29.905 33.016 38.09
Shi(Top 9) 29.502 35.17 29.91 39.214
anbasile(Top 10) 29.426 30.637 29.583 40.928
EICA 16.45 31.557 16.771 30.992

the best Precision. The cbaziotis obtains the best
Recall and the liu man obtains the best Accuracy.
The F1 value of our team is 16.45.

4 Conclusion

We have described our system for SemEval-2018,
Task 2 Multilingual Emoji Prediction. Our ap-
proach rely on semantic and metadata-based fea-
tures. Our primary submission obtain a F1 of
16.45 and accuracy of 30.992.

In future work, we plan to use our best feature
combinations in a deep learning architecture, as
in the Qius system (Qiu and Huang, 2015), which
outperforms the other methods on two matching
tasks. We also want to use information from en-
tire threads (Joty et al., 2015) to make better pre-
dictions. How to combine them efficiently in the
system is an interesting research question

5 Acknowledgments

This research was supported in part by Science and
Technology Commission of Shanghai Municipal-
ity (No.16511102702).

References
Lada A Adamic and Bernardo A Huberman. 2000.

Power-law distribution of the world wide web. sci-
ence, 287(5461):2115–2115.

Yoshinori Aono, Takuya Hayashi, Le Trieu Phong, and
Lihua Wang. 2016. Scalable and secure logistic
regression via homomorphic encryption. In Pro-
ceedings of the Sixth ACM Conference on Data and
Application Security and Privacy, pages 142–144.
ACM.

Francesco Barbieri, Luis Espinosa Anke, and Horacio
Saggion. 2016. Revealing patterns of twitter emoji
usage in barcelona and madrid. In CCIA, pages 239–
244.

Francesco Barbieri, Miguel Ballesteros, and Horacio
Saggion. 2017. Are emojis predictable? In Pro-
ceedings of the 15th Conference of the European
Chapter of the Association for Computational Lin-
guistics: Volume 2, Short Papers, pages 105–111.
Association for Computational Linguistics.

Francesco Barbieri, Jose Camacho-Collados,
Francesco Ronzano, Luis Espinosa-Anke, Miguel
Ballesteros, Valerio Basile, Viviana Patti, and
Horacio Saggion. 2018. SemEval-2018 Task 2:
Multilingual Emoji Prediction. In Proceedings of
the 12th International Workshop on Semantic Eval-
uation (SemEval-2018), New Orleans, LA, United
States. Association for Computational Linguistics.

Joeran Beel, Bela Gipp, Stefan Langer, and Corinna
Breitinger. 2016. paper recommender systems: a
literature survey. International Journal on Digital
Libraries, 17(4):305–338.

Lars Buitinck, Gilles Louppe, Mathieu Blondel, Fabian
Pedregosa, Andreas Mueller, Olivier Grisel, Vlad
Niculae, Peter Prettenhofer, Alexandre Gramfort,
Jaques Grobler, et al. 2013. Api design for machine
learning software: experiences from the scikit-learn
project. arXiv preprint arXiv:1309.0238.

Carlos Castillo, Marcelo Mendoza, and Barbara
Poblete. 2011. Information credibility on twitter. In
Proceedings of the 20th international conference on
World wide web, pages 675–684. ACM.

Victoria Fromkin, Robert Rodman, and Nina Hyams.
2018. An introduction to language. Cengage Learn-
ing.

Shafiq Joty, Alberto Barrón-Cedeno, Giovanni
Da San Martino, Simone Filice, Lluı́s Màrquez,
Alessandro Moschitti, and Preslav Nakov. 2015.
Global thread-level inference for comment clas-
sification in community question answering. In
Proceedings of the 2015 Conference on Empirical
Methods in Natural Language Processing, pages
573–578.

Jure Leskovec, Anand Rajaraman, and Jeffrey David
Ullman. 2014. Mining of massive datasets. Cam-
bridge university press.

Nikola Ljubešić, Darja Fišer, and Tomaž Erjavec. 2017.
Language-independent gender prediction on twitter.
In Proceedings of the Second Workshop on NLP and
Computational Social Science, pages 1–6.

Hans Peter Luhn. 1957. A statistical approach to mech-
anized encoding and searching of literary informa-
tion. IBM Journal of research and development,
1(4):309–317.

Hannah Miller, Jacob Thebault-Spieker, Shuo Chang,
Isaac Johnson, Loren Terveen, and Brent Hecht.
2016. Blissfully happy or ready to fight: Varying
interpretations of emoji. Proceedings of ICWSM,
2016.

421

Pedro J Moreno, Purdy P Ho, and Nuno Vasconcelos.
2004. A kullback-leibler divergence based kernel
for svm classification in multimedia applications. In
Advances in neural information processing systems,
pages 1385–1392.

Petra Kralj Novak, Jasmina Smailović, Borut Sluban,
and Igor Mozetič. 2015. Sentiment of emojis. PloS
one, 10(12):e0144296.

Todd Ogasawara. 2009. The reason for the 160 char-
acter text message and 140 character twitter length
limits. SocialTimes. com.

William O’Grady, Michael Dobrovolsky, and Francis
Katamba. 1997. Contemporary linguistics. St. Mar-
tin’s.

Xipeng Qiu and Xuanjing Huang. 2015. Convolutional
neural tensor network architecture for community-
based question answering. In IJCAI, pages 1305–
1311.

Stephen Robertson. 2004. Understanding inverse doc-
ument frequency: on theoretical arguments for idf.
Journal of documentation, 60(5):503–520.

Pierre Zweigenbaum and Thomas Lavergne. 2016. Hy-
brid methods for icd-10 coding of death certificates.
In Proceedings of the Seventh International Work-
shop on Health Text Mining and Information Analy-
sis, pages 96–105.

422

Proceedings of the 12th International Workshop on Semantic Evaluation (SemEval-2018), pages 423–427
New Orleans, Louisiana, June 5–6, 2018. ©2018 Association for Computational Linguistics

EmojiIt at SemEval-2018 Task 2: An Effective Attention-Based Recurrent
Neural Network Model for Emoji Prediction with Characters Gated

Words

Shiyun Chen, Maoquan Wang, Liang He
Department of Computer Science and Technology

East China Normal University
Shanghai, P.R.China 200241

51174506002@stu.ecnu.edu.cn, maoquanwang@ica.stc.sh.cn, lhe@cs.ecnu.edu.cn

Abstract

This paper presents our single model to Sub-
task 1 of SemEval 2018 Task 2: Emoji Predic-
tion in English. In order to predict the emo-
ji that may be contained in a tweet, the basic
model we use is an attention-based recurrent
neural network which has achieved satisfacto-
ry performs in Natural Language processing.
Considering the text comes from social media,
it contains many discrepant abbreviations and
online terms, we also combine word-level and
character-level word vector embedding to bet-
ter handling the words not appear in the vo-
cabulary. Our single model1 achieved 29.50%
Macro F-score in test data and ranks 9th a-
mong 48 teams.

1 Introduction

SemEval-2018 shared task 2 (Barbieri et al., 2018)
provides a platform for us to explore the relation-
ship between text and emoji in Twitter. The par-
ticipants are expected to predict, given a tweet in
English or Spanish, its most likely associated e-
moji. As the number of frequently-used emojis up
to 20, this is also a multi-category classification
task. Overall, both the prediction of emoji and the
multi-category classification have undoubtedly in-
creased the difficulty of task 2.

Before choosing a suitable model, we first an-
alyze the data characteristics in detail. For each
emoji, we count the total number of all tweets
words under this emoji and enumerate the top 10
meaningful words with the highest frequency. And
we can explore the following observations from
the statistics:

• In almost all emojis, the first three words that
appear frequently include “@user” suggest-
ing that Twitter is a highly interactive social

1https://github.com/wwmmqq/SemEval-2018-Task-2-
Multilingual-Emoji-Prediction

networking site (all the person names uni-
fied as “users” during the data preprocess-
ing). Such a tweet should include an unwrit-
ten but important context information.

• Because people do not always have the same
understanding of emojis, some words can e-
voke more than one emoji. The greater the
repetition of high-frequency words among d-
ifferent emojis, the harder it is to distinguish
among these tweets.

• There are also some easily recognizable
words. They are just common words un-
der a certain emoji, almost do not appear
under others, such as “lit” and “fire” under

; “photo” under ; “usa”, “america” and
“vote” under ; “beach” and “summer” un-
der .

• When glancing over the data, we find that
tweets have the following characteristics:
a) Non-standard language, some discrepant
shorthand or Internet jargon causes the model
to get confused about the word; b) Misspelled
words, although the human can easily real-
ize the correct words, but if the model takes
word-level as the processing unit, it cannot
process them correctly. All of these can af-
fect the ability of text representation serious-
ly.

Taking all of these factors into consideration,
we explore solutions form three perspectives:

• The second observation indicates that tra-
ditional statistical-based model may not
achieve good performance, so we decide to
adopt a neural network.

• Considering that the importance of each word
is different in one tweet although text is very

423

short no more than 140 words, we introduce
an attention mechanism to extract the key
words in tweets.

• As the last observation can generate some to-
kens do not appear in the vocabulary (OOV),
we utilizes both word-level and character-
level word vector embedding.

In a word, our single model is an attention-
based neural network with word-level and
character-level sentence embedding.

2 System Description

Our model architecture is depicted in Fig. 1 and it
consists of the following three subparts: word em-
bedding layer, BiLSTM layer and attention layer.

2.1 Word Embedding Layer
Assuming there are n words in a giving sentence
x, we denote it as x = 〈w1, w2, · · · , wn〉. At each
time step t, both the word lookup table and a bidi-
rectional LSTM take the same wordwt as an input.

Word-level embedding The word-level input is
projected into a high-dimensional space by a word
lookup table E ∈ R|V|×d, which you can get from
publicly available word2vector 2 tool, where |V |
is the vocabulary size and d is the dimension of a
word vector. Then we refer to the obtained vector
as xword

wt
.

Character-level embedding The character-
level input is converted into a vector by using a
recurrent neural network. In order to better cap-
ture the interaction between adjacent characters,
we use a bidirectional LSTM (BiLSTM) (Graves,
2005) to model the words. BiLSTM contains a
forward LSTM processing the input from the first
char to the last char, and a backward LSTM per-
forming the opposite action. The last hidden s-
tates of the forward and the backward recurrent
networks are linearly combined to xchar

wt
.

Combine word-level and character-level em-
bedding We generate the final vector representa-
tion of a word by combining two distinct represen-
tations of the word:

xwt = gwordx
word
wt

+©gcharxchar
wt

(1)

where +© is a concatenation operator, gword and
gchar are weights which can be calculated as:

gword = σ(W1x
word
wt

+ b1) (2)
2https://https://code.google.com/p/word2vec

gchar = σ(W2x
char
wt

+ b2) (3)

here W1, W2, b1 and b2 are trainable parameters,
σ(·)is a sigmoid function.

2.2 BiLSTM Layer
Recurrent Neural Network (RNN) (Elman,
1990) (Mikolov et al., 2010) (Chung et al., 2014)
is proposed for modeling long-distance depen-
dence in a sequence, but it tends to suffer from
the gradient vanishing and exploding problems.
RNN with Long Short-Time Memory Network
unit (Hochreiter and Schmidhuber, 1997) solves
such problems by introducing a memory cell
and gates into the network. In order to better
model the tweets, we use a bidirectional LST-
M(BiLSTM) (Graves et al., 2014) (Graves, 2005)
to process the inputs.

Each single LSTM (LSTMforward and
LSTMbackward) can be formalized as shown in
(Gers and Schraudolph, 2003):

Then we use +© to obtain the hidden layer rep-
resentation as below:

−→
hwt = LSTMforward(xwt ,

−−−→
hwt−1) (4)

←−
hwt = LSTMbackward(xwt ,

←−−−
hwt−1) (5)

ht =
−→
hwt +©←−hwt (6)

here
−→
h t,
←−
h t are the hidden layer states for single

word wt, which generate from the combination of
the current word information xwt and previous s-
tate information

−−→
ht−1(

←−−
ht−1). For simplicity, we

note all the n ht as H = (h1,h2, · · · ,hn).

2.3 Attention Layer
In our model we introduce an attention mechanism
to focus on certain part of the tweet (Santos et al.,
2016) (Yang et al., 2017). The motivation main-
ly comes from the following two observations: a)
although tweet is short, it always introduces much
noise; b) the emoji decided by a relative small part
of tweet content itself. The attention layer pro-
duces a weight vector applied to hidden states of
BiLSTM.

The attention mechanism takes the whole hid-
den states H as input, and outputs a vector of
weights a:

a = softmax(W3tanh(W4H
T)) (7)

424

Figure 1: Our model architecture

here W3 and W4 are trainable parameters, the
softmax() ensures all computed weights sum up
to 1.

Then we sum up the BiLSTM hidden states H
according to the weight provided by a to get the
input representation r:

r = aH (8)

2.4 Output

At the output layer, we need to predict the emoji
evoked by the tweet. We use the softmax func-
tion to predict the probability distribution over all
emojis:

p(ŷ|r) = softmax(W5r + b5) (9)

where W5 and b5 are the parameters of softmax
function.

The training loss based on cross-entropy is de-
fined as follow:

J(θ) = − 1

N

N∑

t=1

H (yi, ŷi) + β ‖θ‖2 (10)

where θ is the whole trainable parameters of the
model, and β is the weight for the regularization
term. H is the cross-entropy function for instance
i between the gold category yi and predict catego-
ry ŷi. N is the number of training instance.

3 Experiment

3.1 Dataset

SemEval-2018 provided 500k tweets in English
and 100k in Spanish for task 2, while our model

is only for English. Dateset is split into trial, train-
ing and test sets. However, it was unable to down-
load all the training set because some tweets were
deleted or not available due to modified authoriza-
tion status, and we finally collected 471, 455 train-
ing tweets.

3.2 Data Pre-processing
All of the tweets before feeding to any model
are pre-processed as follows: all tweets are low-
ercased; URLs are replaced by < url > to-
ken; USERNAMEs are replaced by @user token;
NLTK3 is employed to tokenize input tweets.

3.3 Training
We use the 200-dimensional vectors (Barbier-
i et al., 2016) to initialize our words matrix E, and
set max length of one word to 10, max length of
one sentence to 30. All of the models are trained
for 10 epochs, and the final model is selected by
trial dataset. Adam optimizer (Kingma and Ba,
2014) with initial learning rate of 0.001 is used to
minimized cross-entropy loss. The learning rate
is reduced by a factor of 10 for the first 3 epoch.
The models were implemented in TensorFlow and
experiments were run on an Intel(R) Core(TM) i7-
4790 CPU.

3.4 Baselines
We compare our model with the following base-
lines: FastText (Joulin et al., 2016), NBOW,
Convolutional Neural Networks (CNN) (Kim,
2014) (Kalchbrenner et al., 2014), Recurrent Con-
volutional Neural Networks (RCNN) (Sentences
are first separately embedded with CNN, and then
joined up with RNN) (Kalchbrenner and Blunsom,

425

Model Representation F1 P R Acc

Basic

FastText

Word Only

25.19 30.07 24.60 34.74
NBOW 24.62 28.19 24.28 32.98
CNN 20.34 22.54 23.00 34.73

RCNN 26.89 26.97 29.62 32.53
BiLSTM 20.36 22.41 23.00 34.74

BiLSTM+ATT 24.95 34.87 26.34 36.44
Basic C2W2S+ATT Char Only 27.77 28.39 28.01 34.56

Our Submit C2W2S+ATT Char+Word 29.50 35.17 29.91 39.21
Rank 1: cagri - 35.99 36.55 36.22 47.09

Table 1: Experimental results on test data and result of rank 1 system

2013), BiLSTM (Graves et al., 2014) and BiLST-
M+ATT (Graves et al., 2014).

3.5 Results and Discussion on Training Data

A series of comparison experiments on training set
have been performed to explore the performance
of our model in macro F-score(F1), precision(P),
recall(R) and accuracy(Acc). The experimental re-
sults are shown in Table 1 in percentage. For the
first part, we choose some basic models which on-
ly use the word-level word vector embedding as
input; for the second part, we present ablation ex-
periments showing usefulness of word-level and
character-level embedding.

Statistics show the following three conclusions:
1) among the basic model, the best performance
according to different evaluation metrics achieved
by RCNN (F1), BiLSTM+ATT (Precision), RCN-
N (Recall) and BiLSTM+ATT (Accuracy) respec-
tively; 2) when compare the two model (Word On-
ly and Char Only) about BiLSTM+ATT, word-
level model and character-level model comple-
ment each other on the four measurements. So we
consider combining the two to obtain Char+Word
BiLSTM model; 3) as the ablation experiments
show, our model can get best result when combine
word-level input with character-level input.

4 Results on Test Data

Detailed official results of our model are shown in
Table 2. And we focus on analyzing performance
of our model under each emoji combined with the
characteristics of tweets summarized in section 1.

On the one hand, our model achieved promising
results in the following emojis: (F1: 69.06),
(F1: 64.01), and (F1: 55.46). As for the reason,
section 1 gives us inspiration: the common words
evoke these emojis are easily recognizable, in oth-

Emo P R F1 %
40.3 64.38 49.57 21.6
30.82 32.96 31.86 9.66
38.6 55.56 45.55 9.07
31.23 4.57 7.97 5.21
57.83 53.28 55.46 7.43
13.39 8.56 10.44 3.23
22.11 17.94 19.81 3.99
33.41 26.26 29.41 5.5
36.05 10.26 15.98 3.1
20.81 7.83 11.38 2.35
31.9 53.7 40.02 2.86
64.94 63.11 64.01 3.9
36.24 50.59 42.23 2.53
56.49 7.81 13.72 2.23
16.33 9.19 11.76 2.61
32.18 26.13 28.84 2.49
20.39 6.42 9.76 2.31
64.12 74.82 69.06 3.09
43.31 23.05 30.08 4.83
12.95 1.78 3.13 2.02

Table 2: Precision, Recall, F-measure and percentage
of occurrences in the test set of each emoji.

er words, the word “christmas” evoking emoji
is barely used in emoji .

On the other hand, for those emojis that are eas-
ily confused, our model does not perform well,
such as , and . So we analyze data and
find that these three emojis have the highest rate
of repetition of common words with other emojis.
For example, the common words under emoji
include “love” (top2) and “happi” (top5), but the
two words also evoke and frequently.

Overall, the Macro F-score of our model ranks
9th in the subtask 1.

426

References
Francesco Barbieri, Jose Camacho-Collados,

Francesco Ronzano, Luis Espinosa-Anke, Miguel
Ballesteros, Valerio Basile, Viviana Patti, and
Horacio Saggion. 2018. SemEval-2018 Task 2:
Multilingual Emoji Prediction. In Proceedings of
the 12th International Workshop on Semantic Eval-
uation (SemEval-2018), New Orleans, LA, United
States. Association for Computational Linguistics.

Francesco Barbieri, German Kruszewski, Francesco
Ronzano, and Horacio Saggion. 2016. How cos-
mopolitan are emojis?: Exploring emojis usage and
meaning over different languages with distribution-
al semantics. In Proceedings of the 2016 ACM on
Multimedia Conference, pages 531–535. ACM.

Junyoung Chung, Caglar Gulcehre, Kyung Hyun Cho,
and Yoshua Bengio. 2014. Empirical evaluation of
gated recurrent neural networks on sequence model-
ing. Eprint Arxiv.

Jeffrey L. Elman. 1990. Finding structure in time.
Cognitive Science, 14(2):179–211.

Felix A. Gers and Nicol N. Schraudolph. 2003. Learn-
ing precise timing with lstm recurrent networks.
JMLR.org.

Alex Graves. 2005. 2005 Special Issue: Framewise
phoneme classification with bidirectional LSTM and
other neural network architectures. Elsevier Sci-
ence Ltd.

Alex Graves, Navdeep Jaitly, and Abdel Rahman Mo-
hamed. 2014. Hybrid speech recognition with deep
bidirectional lstm. In Automatic Speech Recognition
and Understanding, pages 273–278.

Seppu Hochreiter and Jrgen Schmidhuber. 1997. Long
short-term memory. Springer Berlin Heidelberg.

Armand Joulin, Edouard Grave, Piotr Bojanowski, and
Tomas Mikolov. 2016. Bag of tricks for efficient text
classification. arXiv preprint arXiv:1607.01759.

Nal Kalchbrenner and Phil Blunsom. 2013. Recurrent
convolutional neural networks for discourse compo-
sitionality. Computer Science.

Nal Kalchbrenner, Edward Grefenstette, and Phil Blun-
som. 2014. A convolutional neural network for
modelling sentences. Eprint Arxiv, 1.

Yoon Kim. 2014. Convolutional neural networks for
sentence classification. Eprint Arxiv.

Tomas Mikolov, Martin Karafit, Lukas Burget, Jan Cer-
nock, and Sanjeev Khudanpur. 2010. Recurren-
t neural network based language model. In IN-
TERSPEECH 2010, Conference of the Internation-
al Speech Communication Association, Makuhari,
Chiba, Japan, September, pages 1045–1048.

Cicero Dos Santos, Ming Tan, Bing Xiang, and Bowen
Zhou. 2016. Attentive pooling networks.

Zichao Yang, Diyi Yang, Chris Dyer, Xiaodong He,
Alex Smola, and Eduard Hovy. 2017. Hierarchical
attention networks for document classification. In
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, pages 1480–1489.

427

Proceedings of the 12th International Workshop on Semantic Evaluation (SemEval-2018), pages 428–432
New Orleans, Louisiana, June 5–6, 2018. ©2018 Association for Computational Linguistics

Peperomia at SemEval-2018 Task 2: Vector Similarity Based Approach
for Emoji Prediction

Jing Chen , Dechuan Yang , Xilian Li , Wei Chen ∗ and Tengjiao Wang

Key Lab of High Confidence Software Technologies (MOE), School of EECS,
Peking University, Beijing, 100871, China

{chenjing.amy, yangdechuan, xilianli, pekingchenwei, tjwang}@pku.edu.cn

Abstract

This paper describes our participation in Se-
mEval 2018 Task 2: Multilingual Emoji Pre-
diction, in which participants are asked to pre-
dict a tweet’s most associated emoji from 20
emojis. Instead of regarding it as a 20-class
classification problem we regard it as a text
similarity problem. We propose a vector sim-
ilarity based approach for this task. First the
distributed representation (tweet vector) for
each tweet is generated, then the similarity be-
tween this tweet vector and each emoji’s em-
bedding is evaluated. The most similar emoji
is chosen as the predicted label. Experimental
results show that our approach performs com-
parably with the classification approach and
shows its advantage in classifying emojis with
similar semantic meaning.

1 Introduction

Participants for SemEval 2018 Task 2 (Barbieri
et al.) are asked to predict the most likely asso-
ciated emoji given the tweet. For simplicity pur-
poses, each tweet contains one and only one emoji,
which belongs to the 20 most frequent emojis. We
participate in its subtask 1: Emoji Prediction in
English.

With the wide-spread use on many social plat-
forms, emoji has attracted more and more atten-
tion of researchers recently. Miller et al. (2016)
explored whether emoji renderings or differences
across platforms gave rise to diverse interpreta-
tions of emoji. For the same emoji, the sender
and the receiver may have different interpreta-
tions of its meaning. This misinterpretation oc-
curs when joint perceptual experience of sender
and receiver lacks or the platforms’ rendering style
differs. Some efforts have been devoted to study-
ing emoji through its distributed representation.

∗corresponding author.

Barbieri et al. (2016a,b) trained emoji embed-
dings with a skip-gram model through millions of
tweets, and explored the similarity and relatedness
among these embeddings in various languages.
Their results suggested that the overall seman-
tic of emoji was preserved across languages, but
some emojis were interpretated differently due to
users’ socio-geographical differences. Eisner et al.
(2016) trained emoji embeddings with their short
descriptions and demonstrated that emoji embed-
dings trained through this way were beneficial to
sentiment analysis task.

We believe that the key to better classify emo-
jis is understanding their meaning, since people
intend a particular meaning when they send an
emoji. People view the same characters during the
exchange of plain text. Unlike plain text, emoji
is not definite enough and doesn’t have a gen-
eral acknowledgement of how we should use it.
It is common for different readers to have differ-
ent interpretations of the same emoji, which nat-
urally results in different ways of using emoji.
Na’aman et al. (2017) investigated a wide range of
emoji usage and showed that emojis served at least
two very different purposes: content and function
words or multimodal affective markers.

Word embeddings (Bengio et al., 2003;
Mikolov et al., 2013a,b) are continuous dis-
tributed representations of words, with two good
properties: 1. take word’s semantic meaning
into account, 2. distances between words are
interpretable and can be measured using cosine
distance. Based on such previous work, we
proposed our vector similarity based approach for
emoji prediction: first the neural network model is
trained to generate a 300-d1 vector, which is con-
sidered as the overall sentence vector of the tweet.
Then this tweet vector’s semantic similarity with

1The embedding dimension is 300 in this paper.

428

each emoji’s pre-trained embedding is evaluated.
The predicted label is the one with the highest
similarity.

2 Approach Description

This section describes our approach in detail. It
consists of two parts, one is tweet representa-
tion, the other is similarity computation between
tweet vector and emoji embedding. Whether tweet
vector or emoji embedding is text representation.
Thus we start by discussing previous researches
about text representation.

Many efforts have been made to generate vec-
tors for variable-length texts such as phrases, sen-
tences, paragraphs or documents (Mitchell and La-
pata, 2010; Larochelle and Lauly, 2012; Mikolov
et al., 2013b; Le and Mikolov, 2014). The gener-
ated vectors are of fixed-size, which can be used
as input features for many machine learning meth-
ods.

Word embeddings are distributed word repre-
sentations trained using word2vec models such as
CBOW and skip-gram, which can be interpreted
as the probability distribution of the context the
word exists in. If we take emoji as a normal token
and train it together with its context words using
word2vec models, then its embedding represents
the context this emoji may exists in. We associate
a tweet with its related emoji using tweet’s vector
and emoji’s embedding.

Formally, our vector similarity based approach
can be described as follows: first the tweet’s vec-
tor ŷ is generated using the neural network model,
then its most similar emoji p is decided by calcu-
lating the cosine similarity(1) between ŷ and each
emoji’s embedding yi

2 in the candidate emoji set
E whose size is 20.

cosine(ŷ,yi) =
ŷ · yi

||ŷ|| · ||yi||
(1)

p = argmax
i

cosine(ŷ,yi) (2)

where || · || is L2 norm and p is the predicted emoji
label.

During training, we use the opposite of cosine
similarity as the loss function, which aims to make
the generated tweet vector ŷ closer to the target
emoji’s embedding y.

loss1 = −
∑(

y

||y|| ·
ŷ

||ŷ||

)
(3)

2yi can be found in pre-trained embeddings.

We also tried another loss function which has
similar idea with SVM. That is, minimize the co-
sine distance(4) between ŷ and target emoji em-
bedding y, meanwhile maximize the minimum co-
sine distance between ŷ and non-target emoji em-
bedding ỹ. We hope to make y more distinctive
when similar emojis exist.

d(a, b) = 1− cosine(a, b) (4)

loss2 = αd(ŷ,y)− (1− α)min
ỹ∈F

d(ŷ, ỹ) (5)

where α is a parameter to control the proportion
of each part, F is the set which consists of 19
non-target emojis’ pretrained embeddings for this
tweet.

3 Models

This section describes the two models we used for
generating tweet vector. Barbieri et al. (2017)’s
previous work showed that LSTM neural networks
performed well in emoji prediction. Inspired by
their research, we implement two LSTM based
models: a 2-layered LSTM model and a BiLSTM
model.

3.1 2-layered LSTM
Our first model is a 2-layered LSTM model. This
model consists of one trainable embedding layer
for mapping words into vector representations,
two stacked LSTM layers for processing and ex-
tracting useful information from the tweet, and
one dense layer outputs the tweet vector.

Our experiments show that 2-layered LSTM
works better than single layer LSTM. When
stacked LSTM layer num gets larger than 2, the
system performance doesn’t increase much. Be-
sides, deeper network structure costs more time to
train and more parameters make it easy to overfit.

Long Short-Term Memory network, or LSTM
(Hochreiter and Schmidhuber, 1997) is an en-
hanced version of basic recurrent neural network
(RNN), which uses purpose-built memory cells to
store information selectively (Graves et al., 2013).
LSTM model can better exploit long range con-
text, and is widely used in natural language pro-
cessing tasks.

3.2 BiLSTM
Our second model is a bidirectional LSTM (BiL-
STM) model (Schuster and Paliwal, 1997). This

429

model consists of one trainable embedding layer,
one bidirectional LSTM layer, and one dense out-
put layer.

BiLSTM splits the neuron of a regular LSTM
into two directions, one for positive time direction
(forward states), 5and another for negative time
direction (backward states). Output state oi can
be the concatenation or summation of the forward
and backward state fwi and bwi:

oi = fwi � bwi (6)

where � operator can be concatenate, element-
wise add, etc.

4 Experiments

Our system is implemented using Keras3 and the
code is available on github4. We use the official
evaluation metric macro f1, which evaluates both
precision and recall of each class regardless of its
sample num.

Three groups of experiments are achieved to
evaluate our approach and models. To compare
the vector similarity based approach with the clas-
sification approach, we implement the above 2-
layered LSTM model and BiLSTM model with
the same experiment settings for both approaches.
To figure out which model structure is better, we
compare the 2-layered LSTM model and BiLSTM
model’s performance on both approaches. We also
test the loss functions loss1 and loss2’s effects on
2-layered LSTM model. Next, we will describe
the key experiment settings. More detailed model
settings can be found in Table 1.
Text Preprocessing: The whole tweet is low-
ercased. We split it into token sequence us-
ing Keras’ default tokenizer, which split a sen-
tence by spaces and following punctuations:
!"#$%&()*+,-./:;<=>?@[\]^_‘~\t\n{
|}. Long sequences are truncated and short ones
are padded with 0s from the head to meet fixed
length 20.
Embedding Layer: The embedding layer is set to
be trainable. It is initialized by looking up from
a pre-trained twitter embedding matrix (Barbieri
et al., 2016a), <UNK> is initialized as 0.
Output Layer: For classification approach, the
output layer’s unit num is 20 (same with the num

3https://keras.io/
4https://github.com/MonkandMonkey/

amyjing_emoji_predict.git

Item Value Description
data_set 466,233 train set size
optimizer Adam train optimizer
batch_size 128 batch size
max_len 20 fixed sequence len
num_words 58,205 vocab size

2-layered LSTM model
lstm1_size 300 lstm1 output size
lstm2_size 300 lstm2 output size

BiLSTM model
lstm_size 300 lstm output size
bilstm_size 300 bilstm output size
merge_mode sum bilstm merge mode

Table 1: Experiment settings.

Model Valid Test

CL
2-LSTM 27.119 25.678*
BiLSTM 26.492 25.166*

VS
2-LSTM(loss1) 27.188 25.444
2-LSTM(loss2) 27.089 25.496
BiLSTM(loss1) 26.441 25.281

Table 2: Experiment Results. CL for classification ap-
proach, VS for vector similarity based approach, 2-lstm
for 2-layered LSTM model. The results marked with
asterisk (*) are our submissions for final evaluation.

of emoji classes). For vector similarity based ap-
proach, the output layer’s unit num is 300 (same
with the size of the pre-trained emoji embedding).
Training Loss: For our vector similarity ap-
proach, loss1 and loss2 described in section 2 are
tested separately. For classification approach, cat-
egorial_cross_entropy is used.

5 Discussion

As is shown in Table 2, the vector similarity based
approach’s performance is comparable with the
classification approach on both validation set and
test set.

For both our vector similarity based and clas-
sification approaches, the 2-layered LSTM model
outperforms the BiLSTM model, which shows
that a deeper network structure contributes to cap-
turing higher level features. Our 2-layered LSTM
model consists of two stacked LSTM cells which
are combined vertically. The first LSTM layer
learns the shallower representation of the tweet,
the second LSTM layer learns more abstract repre-
sentation. Our BiLSTM layer also consists of two

430

Figure 1: classification BiLSTM: confusion matrix Figure 2: vector similarity BiLSTM: confusion matrix

LSTM cells, but are combined in a horizontal way.
With the same number of parameters, the deeper
structure (2-layered LSTM) works better than the
wider structure (BiLSTM).

Experiments show that the loss1 is slightly bet-
ter than the loss2 function. They are different in
that loss1 only considers the most similar emoji’s
distance, whereas loss2 considers both most sim-
ilar emoji’s distance and the second most similar
emoji’s distance. We tested several α values in
loss2 from 0.8 to 0.99, and 0.9 gives the best per-
formance, which is also dominated by the most
similar emoji’s distance.

Figure 1 and Figure 2 plot the confusion matrix
of BiLSTM model’s predictions for classification
and our vector similarity approach. The (red
heart) column in Figure 1 shows that the classifi-
cation approach tends to misclassify other classes
into the most frequent emoji . And for emojis
with similar semantics, it is more likely to confuse
them. Like the (face-throwing-a-kiss) row, the
classification approach misclassified most to

, whereas the vector similarity based approach
only misclassified a smaller part of them, and its
correctly predict num is relatively higher. In short,
the classification approach is good at distinguish-
ing emojis with concrete meanings, such as ,

, and , but poor at distinguishing emojis with
similar semantic meanings. The vector similarity
based approach can make a trade-off between both
situations.

Besides, for both our proposed approach and
classification approach, the performance on test
set is relatively lower than that on validation set.
Thus dataset will also make an influence, espe-

cially for tweet, which is time-sensitive text. If
the test set contains many words that unseen dur-
ing the training stage or its class distribution dif-
fers from the training set, the performance will be
influenced.

6 Future Work and Conclusion

The pre-trained embeddings we used are trained
with a skip-gram model, which treats emojis and
words equally, whereas for this task we need to
concentrate more on emoji’s semantic, instead of
its syntactic. Thus we suppose that treating emoji
in a different way from word during the training
stage will do a favor. That is, whether the emoji is
in the head, center or tail of the tweet, its relative
part can be used to train the emoji’s embedding,
despite it is outside the context window. Another
attempt worth trying is to use a Logistic Regres-
sion or Linear SVM classifier to find tweet’s most
appropriate emoji, instead of cosine similarity.

In this paper, we present our work for SemEval-
2018 task 2: Multilingual Emoji Prediction. We
propose a vector similarity based approach which
generates a vector for tweet and then use co-
sine similarity to find its most appropriate emoji.
Through which we hope to explore the relation-
ship between words and emojis. Experimental
results show that the vector similarity based ap-
proach performs comparably with the classifica-
tion approach. It provides an innovative thinking
for solving the emoji prediction problem.

431

References
Francesco Barbieri, Miguel Ballesteros, and Horacio

Saggion. 2017. Are emojis predictable? In Pro-
ceedings of the 15th Conference of the European
Chapter of the Association for Computational Lin-
guistics: Volume 2, Short Papers, pages 105–111.
Association for Computational Linguistics.

Francesco Barbieri, Jose Camacho-Collados,
Francesco Ronzano, Luis Espinosa-Anke, Miguel
Ballesteros, Valerio Basile, Viviana Patti, and Ho-
racio Saggion. SemEval-2018 Task 2: Multilingual
Emoji Prediction. In Proceedings of the 12th
International Workshop on Semantic Evaluation
(SemEval-2018).

Francesco Barbieri, German Kruszewski, Francesco
Ronzano, and Horacio Saggion. 2016a. How cos-
mopolitan are emojis?: Exploring emojis usage and
meaning over different languages with distributional
semantics. In Proceedings of the 2016 ACM on Mul-
timedia Conference, pages 531–535. ACM.

Francesco Barbieri, Francesco Ronzano, and Horacio
Saggion. 2016b. What does this emoji mean? a
vector space skip-gram model for twitter emojis. In
LREC.

Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and
Christian Jauvin. 2003. A neural probabilistic lan-
guage model. Journal of machine learning research,
3(Feb):1137–1155.

Ben Eisner, Tim Rocktäschel, Isabelle Augenstein,
Matko Bošnjak, and Sebastian Riedel. 2016.
emoji2vec: Learning emoji representations from
their description. arXiv preprint arXiv:1609.08359.

Alex Graves, Abdel-rahman Mohamed, and Geoffrey
Hinton. 2013. Speech recognition with deep recur-
rent neural networks. In Acoustics, speech and sig-
nal processing (icassp), 2013 ieee international con-
ference on, pages 6645–6649. IEEE.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural computation,
9(8):1735–1780.

Hugo Larochelle and Stanislas Lauly. 2012. A neural
autoregressive topic model. In Advances in Neural
Information Processing Systems, pages 2708–2716.

Quoc Le and Tomas Mikolov. 2014. Distributed rep-
resentations of sentences and documents. In Inter-
national Conference on Machine Learning, pages
1188–1196.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jef-
frey Dean. 2013a. Efficient estimation of word
representations in vector space. arXiv preprint
arXiv:1301.3781.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013b. Distributed representa-
tions of words and phrases and their compositional-
ity. In Advances in neural information processing
systems, pages 3111–3119.

Hannah Miller, Jacob Thebault-Spieker, Shuo Chang,
Isaac Johnson, Loren Terveen, and Brent Hecht.
2016. Blissfully happy” or “ready to fight”: Varying
interpretations of emoji. Proceedings of ICWSM,
2016.

Jeff Mitchell and Mirella Lapata. 2010. Composition
in distributional models of semantics. Cognitive sci-
ence, 34(8):1388–1429.

Noa Na’aman, Hannah Provenza, and Orion Montoya.
2017. Varying linguistic purposes of emoji in (twit-
ter) context. In Proceedings of ACL 2017, Student
Research Workshop, pages 136–141.

Mike Schuster and Kuldip K Paliwal. 1997. Bidirec-
tional recurrent neural networks. IEEE Transactions
on Signal Processing, 45(11):2673–2681.

432

Proceedings of the 12th International Workshop on Semantic Evaluation (SemEval-2018), pages 433–437
New Orleans, Louisiana, June 5–6, 2018. ©2018 Association for Computational Linguistics

ECNU at SemEval-2018 Task 2: Leverage Traditional NLP Features and
Neural Networks Methods to Address Twitter Emoji Prediction Task

Xingwu Lu1, Xin Mao1, Man Lan1,2∗, Yuanbin Wu1,2

1Department of Computer Science and Technology,
East China Normal University, Shanghai, P.R.China

2Shanghai Key Laboratory of Multidimensional Information Processing
{51174506023, 10131530334}@stu.ecnu.edu.cn

{mlan, ybwu}@cs.ecnu.edu.cn

Abstract

This paper describes our submissions to Task 2
in SemEval 2018, i.e., Multilingual Emoji Pre-
diction. We first investigate several traditional
Natural Language Processing (NLP) features,
and then design several deep learning model-
s. For subtask 1: Emoji Prediction in English,
we combine two different methods to repre-
sent tweet, i.e., supervised model using tradi-
tional features and deep learning model. For
subtask 2: Emoji Prediction in Spanish, we on-
ly use deep learning model.

1 Introduction

Visual icons play a crucial role in providing infor-
mation about the extra level of social media infor-
mation. SemEval 2018 shared task for researcher-
s to predict, given a tweet in English or Spanish,
its most likely associated emoji (Barbieri et al.,
2018, 2017) (Task 2, Multilingual Emoji Predic-
tion), which is organized into two optional subtask
(subtask 1 and subtask 2) respectively in English
and Spanish.

For subtask 1, we adopt a combination model to
predict emojis, which consists of traditional Natu-
ral Language Processing (NLP) methods and deep
learning methods. The results returned by the clas-
sifier with traditional NLP features, by the neural
network model and by the combination model are
voted to get the final result. For subtask 2, we only
use deep learning model.

2 System Description

For subtask 1, we explore three different methods
i.e., using traditional NLP features to learn a su-
pervised machine learning-based classifier, learn-
ing a deep learning model to make prediction
and combine features captured by neural networks
with traditional NLP features to train a supervised
machine learning-based classifier. For subtask 2,

we simply implement deep learning method to
make prediction.

2.1 Traditional NLP Features
In this task, we extract the following three types
of features to capture effective information from
the given tweets, i.e., linguistic features, sentiment
lexicon features and tweet specific features.

2.1.1 Linguistic Features
• N-grams: We extract 3 types of Bag-of-

Words features as N-grams features, where N
= 1,2,3 (i.e., unigram, bigram, and trigram
features).

• POS: Generally, the sentences carrying sub-
jective emotions are inclined to contain more
adjectives and adverbs while the sentences
without sentiment orientation would contain
more nouns. Thus, we extract POS tag from
the sentence as features with the Bag-of-
Words form.

• Correlation Degree: For each word appear in
training data, the ratio of the number of oc-
currences under each class and the total oc-
currences is counted as the correlation degree
of the word to a certain class. When the fea-
ture is created, the sum of the correlation de-
gree of words in tweet is counted as the cor-
relation degree of the tweet to a certain class:

CorrDeg(s, l) =

|s|∑

t=1

O(wt, cl)∑N
i O(wt, ci)

Where |s| is the length of tweet and N is
the number of classes, wt means tth word in
tweet and ci means ith class, O(wt, ci) de-
notes the number of tweets of ci that contain
wt. The dimension of this feature is equal
to the number of classes, value is correlation

433

degree of the tweet to each class, i.e., Cor-
rDeg(s,l).

2.1.2 Sentiment Lexicon Features (SentiLexi)
We also extract sentiment lexicon features (Sen-
tiLexi) to capture the sentiment information of the
given sentence. Given a tweet, we first convert al-
l words into lowercase. Then on each sentiment
lexicon, we calculate the following six scores for
one message: (1) the ratio of positive words to all
words, (2) the ratio of negative words to all word-
s, (3) the maximum sentiment score, (4) the min-
imum sentiment score, (5) the sum of sentiment
scores, (6) the sentiment score of the last word in
tweet. If the word does not exist in one sentiment
lexicon, its corresponding score is set to 0. The
following 8 sentiment lexicons are adopted in our
systems: Bing Liu lexicon1, General Inquirer lex-
icon2, IMDB3, MPQA4, NRC Emotion Sentiment
Lexicon5, AFINN6, NRC Hashtag Sentiment Lexi-
con7, and NRC Sentiment140 Lexicon8.

2.1.3 Tweet Specific Features
• Punctuation: Considering that users often

use exclamation marks and question marks
to express strongly surprised and questioned
feelings, we extract 7-dimensions punctua-
tion features by recording rules of punctua-
tion marks in the tweets.

• All-caps: One binary feature is to check
whether this tweet has words in uppercase.

• Bag-of-Hashtags: We construct a vocabulary
of hashtags appearing in the training data and
then adopt the bag-of-hashtags method for
each tweet.

2.2 Deep Learning Modules
In addition to manually constructing features, we
build deep neural models to capture the semantics
of the text. Figure 1 shows the network structure
of our model. The input of the network is a tweet,
which is a sequence of words. The output of the
network contains class elements.

1http://www.cs.uic.edu/liub/FBS/sentiment-analysis.html
2http://www.wjh.harvard.edu/inquirer/homecat.htm
3http://www.aclweb.org/anthology/S13-2067
4http://mpqa.cs.pitt.edu/
5http://www.saifmohammad.com/WebPages/lexicons.html
6http://www2.imm.dtu.dk/pubdb/views/publication

details.php?id=6010
7http://www.umiacs.umd.edu/saif/WebDocs/NRC-

Hashtag-Sentiment-Lexicon-v0.1.zip
8http://help.sentiment140.com/for-students/

Figure 1: Deep learning model architecture.

2.2.1 Word-Level Representations
We use pre-trained word embedding concatenat-
ed with char embedding, POS embedding and N-
ER embedding obtaining a final representation for
each word type, which are learned together with
the updates to the model.

• Word Embedding: Word embedding is a
continuous-valued vector representation for
each word, which can capture meaningful
syntactic and semantic regularities. In this
task, we use the 300-dimensional word vec-
tors pre-trained on Twitter provided by Se-
mEval task organizers, available in SWM9

• Char Embedding: We randomly initialize the
representation of the character and compute
character-based continuous-space vector em-
beddings of the words in tweets by bidirec-
tional LSTM. The dimension of char embed-
ding is 50.

• POS Embedding: We randomly initialize the
representation of the POS tag in tweet with a
vector size of 50.

• NER Embedding: We also randomly initial-
ize the representation of the NER tag in tweet
with a vector size of 50.

2.2.2 Sentence-Level Representations
• Bi-Directional LSTM: We apply a recurrent

structure to capture contextual information as
far as possible when learning word represen-
tations, to model the tweet with both of the

9https://github.com/fvancesco/acmmm2016

434

preceeding and following contexts, we ap-
ply a Bi-directional Long Short-term Memo-
ry Networks (BiLSTM, Graves et al. (2005))
architecture as shown in Figure 1.

• Attention Mechanism: Considering not al-
l words contribute equally to the representa-
tion of the sentence meaning, we introduce
attention mechanism (Bahdanau et al., 2014)
to extract such words that are important to the
meaning of the sentence and aggregate the
representation of those informative words to
form a sentence vector.

We first use BiLSTM and Attention Mechanism
to obtain sentence-level representations and then
concatenate it with several effective NLP features.
At last, we use a Multi-layer Perceptron (MLP)
and output the probability of emoji label based on
a softmax function. The BiLSTM has a hidden
size of 512. The MLP have 1 hidden layer of size
200 and relu non-linearity.

To learn model parameters, we minimize the
KL-divergence between the outputs and gold la-
bels. We adopt Adam (Kingma and Ba, 2014) as
optimization method and set learning rate of 0.01.

3 Experimental Settings

3.1 Datasets
For training sets, the organizers provide only the
list of tweet ID and a script for all participants
to collect tweets. However, since not all tweet-
s are available when downloading, participants
may collect slightly different numbers of tweet-
s for training sets. In addition, we find that the
crawled training sets and the trial sets provided by
the organizers have 37.26% overlap in English and
71.16% in Spanish. So we remove the duplicate
data and combine train and trial sets to perform a
3-fold cross-validation. Table 1 shows the statis-
tics of the tweets we collect in our experiments. In
subtask 1, the number of class 0 is the largest, ac-
counting for 22.28%, followed by class 1 and class
2, respectively, 10.37% and 10.20%, and the oth-
er 17 classes distribute between 2.46% and 5.51%.
Subtask 2 has a similar data distribution.

3.2 Data Preprocessing
Firstly, we convert unicode encoding into cor-
responding characters, punctuation, emoticons.
Then we use slangs10 to transform the informal

10https://github.com/haierlord/resource/blob/master/slangs

label
Dataset Subtask 1 Subtask 2

0 116693 (22.28%) 20495 (20.41%)
1 54313 (10.37%) 13688 (13.63%)
2 53432 (10.20%) 9342 (9.30%)
3 28855 (5.51%) 6859 (6.83%)
4 25778 (4.92%) 6535 (6.51%)
5 24475 (4.67%) 4765 (4.43%)
6 22301 (4.26%) 4444 (4.42%)
7 19236 (3.67%) 3868 (3.85%)
8 17908 (3.42%) 3687 (3.67%)
9 16996 (3.25%) 3544 (3.53%)

10 16755 (3.20%) 3399 (3.16%)
11 16052 (3.07%) 2943 (2.93%)
12 15167 (2.90%) 2826 (2.81%)
13 13650 (2.61%) 2727 (2.72%)
14 14136 (2.70%) 2629 (2.62%)
15 13963 (2.67%) 2564 (2.55%)
16 13702 (2.62%) 2618 (2.61%)
17 13474 (2.57%) 2551 (2.54%)
18 13867 (2.65%) 2552 (2.54%)
19 12900 (2.46%) –

total 523653 100440

Table 1: The statistics of data sets in combination of
training sets and trial sets which we used to perform
a 3-fold cross-validation. The numbers in brackets are
the percentages of different classes in each data set.

writing to regular forms, e.g., “LOL” replaced by
“laugh out loud”. And we recover the elongat-
ed words to their original forms, e.g., “soooooo”
to “so”. Finally, we implement tokenization, POS
tagging, named entity recognizing(NER) with the
aid of Stanford CoreNLP tools (Manning et al.,
2014).

3.3 Learning Algorithm

Considering the large dimension of the features
designed by traditional NLP methods, we use
learning algorithms of Logistic Regression(LR) to
build classification models, which is supplied in
Liblinear11.

3.4 Evaluation Metrics

The official evaluation measure is Macro F-score,
which would inherently mean a better sensitivity
to the use of emojis in general, rather than for in-
stance overfitting a model to do well in the three or
four most common emojis of the test data. Macro
F-score can be defined as simply the average of the
individual label-wise F-scores.

11https://www.csie.ntu.edu.tw/ cjlin/liblinear/

435

4 Experiments on Training Data

4.1 Comparison of NLP Features
Table 2 lists the comparison of different con-
tributions made by different features on cross-
validation with Logistic Regression algorithm.
From the results in Table 2, we observe the fol-
lowing findings:

(1) The combination of Uigram, Bigram, Cor-
relation Degree, POS and SentiLexi achieves the
best performance (i.e., 34.63).

(2) Correlation Degree feature makes more con-
tributes than other features, as it reflects the degree
of relevance between tweets and emoji label.

(3) Bigram feature makes contribution and is
more effective than unigram feature. The reason
may be that bigram feature can capture more con-
textual information and word orders.

(4) SentiLexi feature also makes contribution,
which indicates that SentiLexi features are ben-
eficial not only in traditional sentiment analysis
tasks, but also in predicting the emoji in tweet.

Features Fmacro change
Best Features 34.63 -

-Correlation Degree 30.59 -4.04
-Bigram 33.38 -1.25

-SentiLexi 33.63 -1.00
-POS 33.91 -0.72

-Uigram 34.22 -0.41

Table 2: Performance of different features on subtask
1. - means to exclude some features.

4.2 Comparison of Deep Learning Modules
Table 3 shows the results of different deep learn-
ing models described before. From Table 3, we
observe the findings as follows:

(1) We explore the performance of three d-
ifferent deep learning model: Neural Bag-of-
Words(NBOW, Iyyer et al. (2015)), Convolu-
tional Neural Network (CNN, Collobert et al.
(2011)) and Bi-directional Long Short-term Mem-
ory Networks (LSTM, Hochreiter and Schmidhu-
ber (1997)). All models used only pre-trained
word embedding to compare. Clearly, BiLSTM
outperformed other models in this task, and our
deep learning model is based on BiLSTM.

(2) POS embedding makes more contribution
than other word-level representations. Since POS
embedding can learn emotional tendencies, it is
beneficial for tweet emojis prediction.

(3) The last two rows results shows that com-
bine both SentiLexi and Punctuation features with
sentence representations to train the deep learning
model can make contribution.

Models Subtask 1 Subtask 2
NBOW 23.73 18.67
CNN 23.64 18.91

BiLSTM 25.64 19.32
.+Char 25.66 (+0.02) 19.56
.+NER 26.57 (+0.91) –
.+POS 30.55 (+3.98) –

.+Attention 30.74 (+0.19) –
.+Punctuation 32.10 (+1.36) –
.+SentiLexi 32.59 (+0.49) –

Table 3: Performance of different deep learning mod-
els on subtask 1 and subtask 2. .+ means to add cur-
rent module to the previous model. The numbers in
the brackets are the performance increments compared
with the previous results.

4.3 Combination and Ensemble
For subtask 1, we also use the trained neural net-
works described in 4.2 to capture the features
of tweets and combine it with traditional NLP
features to train a Logistic Regression classifier,
named Combination Model.

Table 4 shows the results of different methods.
We find that combination model improved the per-
formance and the ensemble of 3 methods achieve
the best result. It suggests that the traditional NLP
methods and the deep learning models are com-
plementary to each other and their combination
achieves the best performance.

Methods Fmacro

Traditional NLP Features 34.63
Deep Learning Model 32.59
Combination Model 35.21
Ensemble Model 35.57

Table 4: Performance of different methods on subtask
1.

4.4 System Configuration
Based on above experimental analysis, the two
system configurations on test data sets are listed
as followings:

(1) subtask 1: Logistic Regression with best
NLP feature sets is used as model 1. Deep learn-

436

ing model is used as model 2. Logistic Regres-
sion with NLP features and the feature captured by
deep learning model is used as model 3. Ensemble
of three models is used as final submission.

(2) subtask 2: Deep learning model with word
embedding and char embedding is used as submis-
sion.

5 Results on Test Data

Subtask 1 Subtask 2
Our system 33.35 (5) 16.41 (7)

Rank 1 35.99 (1) 22.36 (1)
Rank 2 35.36 (2) 18.73 (2)
Rank 3 34.02 (3) 18.18 (3)

Table 5: Performance of our systems and the top-
ranked systems for two subtasks on test datasets. The
numbers in the brackets are the official rankings.

Table 5 shows the results on test datasets. From
Table 5, we find that our system achieves almost
the same performance as the cross-validation. The
low performance of this task illustrates the diffi-
culty of the task itself, especially the Spanish task.

6 Conclusion

In this paper, we extract several effective tradi-
tional NLP features, design different deep learn-
ing models and build a model in combination of
traditional NLP features and deep learning method
together. The extensive experimental results show
that this combination improves the performance.

For the future work, we consider to focus on de-
veloping a neural networks model to handle unbal-
anced data and improve the performance of con-
fusing labels.

Acknowledgements

This work is is supported by the Science and
Technology Commission of Shanghai Municipali-
ty Grant (No. 15ZR1410700) and the open project
of Shanghai Key Laboratory of Trustworthy Com-
puting (No.07dz22304201604).

References
Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-

gio. 2014. Neural machine translation by jointly
learning to align and translate. arXiv preprint arX-
iv:1409.0473.

Francesco Barbieri, Miguel Ballesteros, and Horacio
Saggion. 2017. Are emojis predictable? In Pro-
ceedings of the 15th Conference of the European

Chapter of the Association for Computational Lin-
guistics: Volume 2, Short Papers, pages 105–111.
Association for Computational Linguistics.

Francesco Barbieri, Jose Camacho-Collados,
Francesco Ronzano, Luis Espinosa-Anke, Miguel
Ballesteros, Valerio Basile, Viviana Patti, and
Horacio Saggion. 2018. SemEval-2018 Task 2:
Multilingual Emoji Prediction. In Proceedings of
the 12th International Workshop on Semantic Eval-
uation (SemEval-2018), New Orleans, LA, United
States. Association for Computational Linguistics.

Ronan Collobert, Jason Weston, Léon Bottou, Michael
Karlen, Koray Kavukcuoglu, and Pavel Kuksa.
2011. Natural language processing (almost) from
scratch. Journal of Machine Learning Research,
12(Aug):2493–2537.

Alex Graves, Santiago Fernández, and Jürgen Schmid-
huber. 2005. Bidirectional lstm networks for im-
proved phoneme classification and recognition. In
International Conference on Artificial Neural Net-
works, pages 799–804. Springer.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural computation,
9(8):1735–1780.

Mohit Iyyer, Varun Manjunatha, Jordan Boyd-Graber,
and Hal Daumé III. 2015. Deep unordered compo-
sition rivals syntactic methods for text classification.
In Proceedings of ACL 2015.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Christopher D. Manning, Mihai Surdeanu, John Bauer,
Jenny Finkel, Steven J. Bethard, and David Mc-
Closky. 2014. The Stanford CoreNLP natural lan-
guage processing toolkit. In Proceedings of 52nd
Annual Meeting of the Association for Computation-
al Linguistics: System Demonstrations, pages 55–
60.

437

Proceedings of the 12th International Workshop on Semantic Evaluation (SemEval-2018), pages 438–444
New Orleans, Louisiana, June 5–6, 2018. ©2018 Association for Computational Linguistics

NTUA-SLP at SemEval-2018 Task 2: Predicting Emojis using RNNs with
Context-aware Attention

Christos Baziotis1,3, Nikos Athanasiou1

Georgios Paraskevopoulos1,4, Nikolaos Ellinas1
Athanasia Kolovou1,2, Alexandros Potamianos1,4

1School of ECE, National Technical University of Athens, Athens, Greece
2 Department of Informatics, University of Athens, Athens, Greece

3 Department of Informatics, Athens University of Economics and Business, Athens, Greece
4 Behavioral Signal Technologies, Los Angeles, CA

cbaziotis@mail.ntua.gr, el12074@central.ntua.gr
geopar@central.ntua.gr, nellinas@central.ntua.gr

akolovou@di.uoa.gr, potam@central.ntua.gr

Abstract

In this paper we present a deep-learning model
that competed at SemEval-2018 Task 2 “Mul-
tilingual Emoji Prediction”. We participated
in subtask A, in which we are called to pre-
dict the most likely associated emoji in En-
glish tweets. The proposed architecture relies
on a Long Short-Term Memory network, aug-
mented with an attention mechanism, that con-
ditions the weight of each word, on a “con-
text vector” which is taken as the aggregation
of a tweet’s meaning. Moreover, we initial-
ize the embedding layer of our model, with
word2vec word embeddings, pretrained on a
dataset of 550 million English tweets. Finally,
our model does not rely on hand-crafted fea-
tures or lexicons and is trained end-to-end with
back-propagation. We ranked 2nd out of 48
teams.

1 Introduction

Emojis play an important role in textual commu-
nication, as they function as a substitute for non-
verbal cues, that are taken for granted in face-to-
face communication, thus allowing users to con-
vey emotions by means other than words. Despite
their large appeal in text, they haven’t received
much attention until recently. Former works,
mostly consider their semantics (Aoki and Uchida,
2011; Espinosa-Anke et al., 2016; Barbieri et al.,
2016b,a; Ljubešić and Fišer, 2016; Eisner et al.,
2016) and only recently their role in social media
was explored (Barbieri et al., 2017; Cappallo et al.,
2018). In SemEval-2018 Task 2: “Multilingual
Emoji Prediction” (Barbieri et al., 2018), given a
tweet, we are asked to predict its most likely asso-
ciated emoji.

thanks for always making me feel like family

! love you guys ! …

Label: Top 5:

i better get a bunch of fire type pokemon

Label: Top 5:

Figure 1: Attention heat-map visualization. The
color intensity corresponds to the weight given to
each word by the self-attention mechanism.

In this work, we present a near state of the art
approach for predicting emojis in tweets, which
outperforms the best present work (Barbieri et al.,
2017). For this purpose, we employ an LSTM
network augmented with a context-aware self-
attention mechanism, producing a feature repre-
sentation used for classification. Moreover, the at-
tention mechanism helps us make our model’s be-
havior more interpretable, by examining the distri-
bution of the attention weights for a given tweet.
To this end, we provide visualizations with the dis-
tributions of the attention weights.

2 Overview

Figure 3 provides a high-level overview of our ap-
proach that consists of three main steps: (1) The
text preprocessing step, which is common both for
unlabeled data and the task’s dataset, (2) the word
embeddings pre-training step, where we train cus-
tom word embeddings on a big collection of unla-
beled Twitter messages and (3) the model training
step where we train the deep learning model.

438

Task definition. In subtask A, given an English
tweet, we are called to predict the most likely asso-
ciated emoji, from the 20 most frequent emojis in
English tweets according to (Barbieri et al., 2017).
The training dataset consists of 500k tweets, re-
trieved from October 2015 to February 2017 and
geolocalized in the United States. Fig. 2 shows the
classes (emojis) and their distribution.

22.42% 10.34% 10.18% 5.48% 4.91%

4.67% 4.26% 3.64% 3.40% 3.23%

3.22% 3.04% 2.90% 2.60% 2.70%

2.68% 2.61% 2.58% 2.66% 2.48%

Figure 2: Distribution of emoji (class) labels.

2.1 Data

Unlabeled Dataset. We collected a dataset of 550
million archived English Twitter messages, from
Apr. 2014 to Jun. 2017. This dataset is used for
(1) calculating word statistics needed in our text
preprocessing pipeline (Section 2.2) and (2) train-
ing word2vec word embeddings.
Word Embeddings. We leverage our unlabeled
dataset to train Twitter-specific word embeddings.
We use the word2vec (Mikolov et al., 2013) al-
gorithm, with the skip-gram model, negative sam-
pling of 5 and minimum word count of 20, utiliz-
ing the Gensim’s (Řehůřek and Sojka, 2010) im-
plementation. The resulting vocabulary contains
800, 000 words. The pre-trained word embeddings
are used for initializing the first layer (embedding
layer) of our neural networks.

2.2 Preprocessing1

We utilized the ekphrasis2 tool (Baziotis et al.,
2017) as a tweet preprocessor. The preprocessing

1Significant portions of the systems submitted to SemEval
2018 in Tasks 1, 2 and 3, by the NTUA-SLP team are shared,
specifically the preprocessing and portions of the DNN archi-
tecture. Their description is repeated here for completeness.

2github.com/cbaziotis/ekphrasis

Unlabeled
Dataset

C
la

ss
if

ie
r

Embeddings
Pre-training

Word
Embeddings

Em
b

ed
d

in
g

La
ye

r

Emoji
Dataset

Text
Preprocessing

(ekphrasis)

Processed
Input Data

Neural Network

Figure 3: High-level overview of our approach

steps included in ekphrasis are: Twitter-specific
tokenization, spell correction, word normaliza-
tion, word segmentation (for splitting hashtags)
and word annotation.

Tokenization. Tokenization is the first fundamen-
tal preprocessing step and since it is the basis for
the other steps, it immediately affects the qual-
ity of the features learned by the network. Tok-
enization on Twitter is challenging, since there is
large variation in the vocabulary and the expres-
sions which are used. There are certain expres-
sions which are better kept as one token (e.g. anti-
american) and others that should be split into sepa-
rate tokens. Ekphraris recognizes Twitter markup,
emoticons, emojis, dates (e.g. 07/11/2011, April
23rd), times (e.g. 4:30pm, 11:00 am), currencies
(e.g. $10, 25mil, 50e), acronyms, censored words
(e.g. s**t), words with emphasis (e.g. *very*) and
more using an extensive list of regular expressions.

Normalization. After tokenization we apply a
series of modifications on extracted tokens, such
as spell correction, word normalization and seg-
mentation. Specifically for word normalization we
lowercase words, normalize URLs, emails, num-
bers, dates, times and user handles (@user). This
helps reducing the vocabulary size without losing
information. For spell correction (Jurafsky and
James, 2000) and word segmentation (Segaran and
Hammerbacher, 2009) we use the Viterbi algo-
rithm. The prior probabilities are initialized us-
ing uni/bi-gram word statistics from the unlabeled
dataset. Table 1 shows an example text snippet and
the resulting preprocessed tokens.

original The *new* season of #TwinPeaks is coming on May 21, 2017. CANT WAIT \o/ !!! #tvseries #davidlynch :D
processed the new <emphasis> season of <hashtag> twin peaks </hashtag> is coming on <date> . cant <allcaps> wait

<allcaps> <happy> ! <repeated> <hashtag> tv series </hashtag> <hashtag> david lynch </hashtag> <laugh>

Table 1: Example of our text processor

439

2.3 Recurrent Neural Networks
We model the Twitter messages using Recurrent
Neural Networks (RNN). RNNs process their in-
puts sequentially, performing the same operation,
ht = fW (xt, ht−1), on every element in a se-
quence, where ht is the hidden state t the time
step, and W the network weights. We can see that
hidden state at each time step depends on previous
hidden states, thus the order of elements (words)
is important. This process also enables RNNs to
handle inputs of variable length.

RNNs are difficult to train (Pascanu et al.,
2013), because gradients may grow or decay ex-
ponentially over long sequences (Bengio et al.,
1994; Hochreiter et al., 2001). A way to overcome
these problems is to use more sophisticated vari-
ants of regular RNNs, like Long Short-Term Mem-
ory (LSTM) networks (Hochreiter and Schmidhu-
ber, 1997) or Gated Recurrent Units (GRU) (Cho
et al., 2014), which ensure better gradient flow
through the network.
Self-Attention Mechanism. RNNs update their
hidden state hi as they process a sequence and the
final hidden state holds a summary of the infor-
mation in the sequence. In order to amplify the
contribution of important words in the final repre-
sentation, a self-attention mechanism (Bahdanau
et al., 2014) can be used (Fig. 4). In normal RNNs,
we use as representation r of the input sequence
its final state hN . However, using an attention
mechanism, we compute r as the convex combi-
nation of all hi, with weights ai, which signify
the importance of each hidden state. Formally:
r =

∑N
i=1 aihi,where

∑N
i=1 ai = 1, and ai > 0.

3 Model Description

We use a word-level BiLSTM architecture to
model semantic information in tweets. We also
propose an attention mechanism, which conditions
the weight of hi on a “context vector” that is taken

𝑥1

ℎ1

𝑥2

ℎ2

𝑥3

ℎ3

𝑥𝑁

𝒉𝑵

…𝑅𝑁𝑁 𝑅𝑁𝑁 𝑅𝑁𝑁 𝑅𝑁𝑁

(a) Regular RNN

𝑥1

𝑎1

ℎ1

𝑥2

ℎ2

𝑥3

ℎ3

𝑥𝑁

ℎ𝑁

…𝑅𝑁𝑁 𝑅𝑁𝑁 𝑅𝑁𝑁 𝑅𝑁𝑁

𝑎2 𝑎3 𝑎𝑁

(b) Attention RNN

Figure 4: Comparison between the regular RNN
and the RNN with attention.

as the aggregation of the tweet meaning.

𝑤1

𝑎1 𝑎𝑇

𝐿𝑆𝑇𝑀

𝐿𝑆𝑇𝑀

B
i-
L
ST
M

𝑎2

Ԧ𝑥1

E
m
b
ed
d
in
g

𝑤2

𝐿𝑆𝑇𝑀

𝐿𝑆𝑇𝑀

Ԧ𝑥2

𝑤𝑁

𝐿𝑆𝑇𝑀

𝐿𝑆𝑇𝑀

Ԧ𝑥𝑁

…

…

A
tt
en
ti
o
n

Ԧ𝑟

ℎ1ℎ1 ℎ2ℎ2 ℎ𝑁ℎ𝑁

…

𝑐

…

…

ℎ
1
∗
𝑎
1
+
ℎ
2
∗
𝑎
2
+
⋯

Figure 5: Architecture of the proposed model.

Embedding Layer. The input to the network is a
Twitter message, treated as a sequence of words.
We use an embedding layer to project the words
w1, w2, ..., wN to a low-dimensional vector space
RW , whereW the size of the embedding layer and
N the number of words in a tweet. We initialize
the weights of the embedding layer with our pre-
trained word embeddings.
BiLSTM Layer. A LSTM takes as input the
words of a tweet and produces the word annota-
tions h1, h2, ..., hN , where hi is the hidden state
of the LSTM at time-step i, summarizing all the
information of the sentence up to wi. We use bidi-
rectional LSTM (BiLSTM) in order to get word
annotations that summarize the information from
both directions. A BiLSTM consists of a forward
LSTM

−→
f that reads the sentence from w1 to wN

and a backward LSTM
←−
f that reads the sentence

from wN to w1. We obtain the final annotation for
each word, by concatenating the annotations from
both directions, hi =

−→
hi ‖

←−
hi , hi ∈ R2L where

‖ denotes the concatenation operation and L the
size of each LSTM.
Context-aware Self-Attention Layer. Even

440

though the hidden state hi of the LSTM captures
the local context up to word i, in order to better es-
timate the importance of each word given the con-
text of the tweet we condition hidden state on a
context vector. The context vector is taken as the
average of hi: c =

1

N

∑N
1 hi. The context-aware

annotations ui are obtained as the concatenation
of c and hi: ui = hi ‖ c. The attention weights ai
are computed as the softmax of the attention layer
outputs ei. W and b are the trainable weights and
biases of the attention layer:

ei = tanh(Wui + b) (1)

ai =
exp(ei)∑N
t=1 exp(et)

(2)

The final representation r is again taken as the con-
vex combination of the hidden states.

r =
N∑

i=1

aihi, r ∈ R2L (3)

Output Layer. We use the representation r as
feature vector for classification and we feed it to
a fully-connected softmax layer with L neurons,
which outputs a probability distribution over all
classes pc as described in Eq. 4:

pc =
eWr+b

∑
i∈[1,L](e

Wir+bi)
(4)

where W and b are the layer’s weights and biases.

3.1 Regularization
In both models we add Gaussian noise to the
embedding layer, which can be interpreted as a
random data augmentation technique, that makes
models more robust to overfitting. In addition
to that we use dropout (Srivastava et al., 2014)
and we stop training after the validation loss has
stopped decreasing (early-stopping).

4 Experiments and Results

4.1 Experimental Setup
Class Weights. In order to deal with class imbal-
ances, we apply class weights to the loss function
of our models, penalizing more the misclassifica-
tion of underrepresented classes. We weight each
class by its inverse frequency in the training set.
Training We use Adam algorithm (Kingma and
Ba, 2014) for optimizing our networks, with mini-
batches of size 32 and we clip the norm of the gra-
dients (Pascanu et al., 2013) at 1, as an extra safety

measure against exploding gradients. For devel-
oping our models we used PyTorch (Paszke et al.,
2017) and Scikit-learn (Pedregosa et al., 2011).
Hyper-parameters. In order to find good hyper-
parameter values in a relative short time (com-
pared to grid or random search), we adopt the
Bayesian optimization (Bergstra et al., 2013) ap-
proach, performing a time-efficient search in the
space of all hyper-parameter values. The size of
the embedding layer is 300, and the LSTM layers
300 (600 for BiLSTM). We add Gaussian noise
with σ = 0.05 and dropout of 0.1 at the embed-
ding layer and dropout of 0.3 at the LSTM layer.
Results. The dataset for Task 2 was introduced in
(Saggion et al., 2017), where the authors propose a
character level model with pretrained word vectors
that achieves an F1 score of 34%. Our ranking as
shown in Table 2 was 2/49, with an F1 score of
35.361%, which was the official evaluation metric,
while team TueOslo achieved the first position
with an F1 score of 35.991%. It should be noted
that only the first 2 teams managed to surpass the
baseline model presented in (Saggion et al., 2017).

In Table 3 we compare the proposed Context-
Attention LSTM (CA-LSTM) model against 2
baselines: (1) a Bag-of-Words (BOW) model with
TF-IDF weighting and (2) a Neural Bag-of-Words
(N-BOW) model, where we retrieve the word2vec
representations of the words in a tweet and com-
pute the tweet representation as the centroid of
the constituent word2vec representations. Both
BOW and N-BOW features are then fed to a linear
SVM classifier, with tuned C = 0.6. The CA-
LSTM results in Table 3 are computed by aver-
aging the results of 10 runs to account for model
variability. Table 3 shows that BOW model out-
performs N-BOW by a large margin, which may
indicate that there exist words, which are very cor-
related with specific classes and their occurrence
can determine the classification result. Finally, we
observe that CA-LSTM significantly outperforms
both baselines.

Fig. 6 shows the confusion matrix for the 20

Team Name Acc Prec Rec F1
1 TueOslo 47.094 36.551 36.222 35.991
2 NTUA-SLP 44.744 34.534 37.996 35.361
3 Unknown 45.548 34.997 33.572 34.018
4 Liu Man 47.464 39.426 33.695 33.665

Table 2: Official Results for Subtask A

441

f1 accuracy recall precision
BOW 0.3370 0.4468 0.3321 0.3525
N-BOW 0.2904 0.4120 0.2849 0.3150
CA-LSTM 0.3564 0.4482 0.3885 0.3531

Table 3: Comparison against baselines

Figure 6: Confusion matrix

emojis. Observe that our model is more likely to
misclassify a rare class as an instance of one of the
4 more frequent classes, even after the inclusion
of class weights in the loss function (Section 4.1).
Furthermore, we observe that heart or face emojis,
which are more ambiguous, are easily confusable
with each other. However, as expected this in not
the case for emojis like the US flag or the Christ-
mas tree, as they are tied with specific expressions.
Attention Visualization. The attention mecha-
nism not only improves the performance of the
model, but also makes it interpretable. By using
the attention scores assigned to each word annota-
tion, we can investigate the behavior of the model.
Figure 7 shows how the attention mechanism fo-
cuses on each word in order to estimate the most
suitable emoji label.

5 Conclusion

In this paper, we present a deep learning system
based on a word-level BiLSTM architecture and
augment it with contextual attention for SemEval
Task 2: “Multilingual Emoji Prediciction” (Bar-
bieri et al., 2018). Our work achieved excellent
results, reaching the 2nd place in the competition
and outperforming the state-of-the-art reported in

happy
0.031

fathers
0.185

day
0.031

,
0.030

dad
0.090

!
0.045

i
0.042

love
0.093

you
0.052

and
0.029

i
0.028

am
0.033

lucky
0.035

to
0.029

call
0.081

you
0.033

mine
0.064

…
0.070

Label: Top 5:

<user>
0.089

thanks
0.085

for
0.048

the
0.058

follow
0.181

!
0.047

<repeated>
0.053

<hashtag>
0.051

cool
0.306

</hashtag>
0.083

Label: Top 5:

<user>
0.074

i
0.033

love
0.144

you
0.100

!
0.039

<repeated>
0.032

i
0.033

will
0.036

be
0.056

praying
0.139

for
0.065

you
0.086

baby
0.163

Label: Top 5:

always
0.049

laughing
0.163

through
0.046

life
0.090

with
0.046

my
0.042

beautiful
0.188

sister
0.209

so
0.035

glad
0.036

to
0.037

…
0.059

Label: Top 5:

Figure 7: Attention Visualizations

the bibliography (Barbieri et al., 2017). The per-
formance of our model could be further boosted,
by utilizing transfer learning methods from larger,
weakly annotated, datasets. Moreover, the joint
training of word- and character-level models can
be tested for further performance improvement.

Finally, we make both our pretrained word
embeddings and the source code of our models
available to the community3, in order to make our
results easily reproducible and facilitate further
experimentation in the field.

Acknowledgements. This work has been partially
supported by the BabyRobot project supported by
EU H2020 (grant #687831). Also, the authors
would like to thank NVIDIA for supporting this
work by donating a TitanX GPU.

3github.com/cbaziotis/
ntua-slp-semeval2018-task2

442

References
Sho Aoki and Osamu Uchida. 2011. A method for

automatically generating the emotional vectors of
emoticons using weblog articles. In Proc. 10th
WSEAS Int. Conf. on Applied Computer and Applied
Computational Science, Stevens Point, Wisconsin,
USA, pages 132–136.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua
Bengio. 2014. Neural machine translation by
jointly learning to align and translate. CoRR,
abs/1409.0473.

Francesco Barbieri, Miguel Ballesteros, and Horacio
Saggion. 2017. Are emojis predictable? In Pro-
ceedings of the 15th Conference of the European
Chapter of the Association for Computational Lin-
guistics: Volume 2, Short Papers, pages 105–111.
Association for Computational Linguistics.

Francesco Barbieri, Jose Camacho-Collados,
Francesco Ronzano, Luis Espinosa-Anke, Miguel
Ballesteros, Valerio Basile, Viviana Patti, and
Horacio Saggion. 2018. SemEval-2018 Task 2:
Multilingual Emoji Prediction. In Proceedings of
the 12th International Workshop on Semantic Eval-
uation (SemEval-2018), New Orleans, LA, United
States. Association for Computational Linguistics.

Francesco Barbieri, German Kruszewski, Francesco
Ronzano, and Horacio Saggion. 2016a. How cos-
mopolitan are emojis?: Exploring emojis usage and
meaning over different languages with distributional
semantics. In Proceedings of the 2016 ACM on Mul-
timedia Conference, pages 531–535. ACM.

Francesco Barbieri, Francesco Ronzano, and Horacio
Saggion. 2016b. What does this emoji mean? a
vector space skip-gram model for twitter emojis. In
LREC.

Christos Baziotis, Nikos Pelekis, and Christos Doulk-
eridis. 2017. Datastories at semeval-2017 task
4: Deep lstm with attention for message-level and
topic-based sentiment analysis. In Proceedings of
the 11th International Workshop on Semantic Eval-
uation (SemEval-2017), pages 747–754.

Yoshua Bengio, Patrice Simard, and Paolo Frasconi.
1994. Learning long-term dependencies with gradi-
ent descent is difficult. IEEE transactions on neural
networks, 5(2):157–166.

James Bergstra, Daniel Yamins, and David D. Cox.
2013. Making a Science of Model Search: Hyper-
parameter Optimization in Hundreds of Dimensions
for Vision Architectures. ICML (1), 28:115–123.

Spencer Cappallo, Stacey Svetlichnaya, Pierre Gar-
rigues, Thomas Mensink, and Cees GM Snoek.
2018. The new modality: Emoji challenges in pre-
diction, anticipation, and retrieval. arXiv preprint
arXiv:1801.10253.

Kyunghyun Cho, Bart Van Merriënboer, Caglar Gul-
cehre, Dzmitry Bahdanau, Fethi Bougares, Holger
Schwenk, and Yoshua Bengio. 2014. Learning
phrase representations using RNN encoder-decoder
for statistical machine translation. arXiv preprint
arXiv:1406.1078.

Ben Eisner, Tim Rocktäschel, Isabelle Augenstein,
Matko Bošnjak, and Sebastian Riedel. 2016.
emoji2vec: Learning emoji representations from
their description. arXiv preprint arXiv:1609.08359.

Luis Espinosa-Anke, Horacio Saggion, and Francesco
Barbieri. 2016. Revealing patterns of twitter emoji
usage in barcelona and madrid. Frontiers in Arti-
ficial Intelligence and Applications. 2016;(Artificial
Intelligence Research and Development) 288: 239-
44.

Sepp Hochreiter, Yoshua Bengio, Paolo Frasconi, and
Jürgen Schmidhuber. 2001. Gradient Flow in Re-
current Nets: The Difficulty of Learning Long-Term
Dependencies. A field guide to dynamical recurrent
neural networks. IEEE Press.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural computation,
9(8):1735–1780.

Daniel Jurafsky and H. James. 2000. Speech and lan-
guage processing an introduction to natural language
processing, computational linguistics, and speech.

Diederik Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Nikola Ljubešić and Darja Fišer. 2016. A global anal-
ysis of emoji usage. In Proceedings of the 10th Web
as Corpus Workshop, pages 82–89.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S. Cor-
rado, and Jeff Dean. 2013. Distributed representa-
tions of words and phrases and their compositional-
ity. In Advances in Neural Information Processing
Systems, pages 3111–3119.

Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio.
2013. On the difficulty of training recurrent neural
networks. ICML (3), 28:1310–1318.

Adam Paszke, Sam Gross, Soumith Chintala, Gre-
gory Chanan, Edward Yang, Zachary DeVito, Zem-
ing Lin, Alban Desmaison, Luca Antiga, and Adam
Lerer. 2017. Automatic differentiation in pytorch.

Fabian Pedregosa, Gaël Varoquaux, Alexandre Gram-
fort, Vincent Michel, Bertrand Thirion, Olivier
Grisel, Mathieu Blondel, Peter Prettenhofer, Ron
Weiss, Vincent Dubourg, and others. 2011. Scikit-
learn: Machine learning in Python. Journal of Ma-
chine Learning Research, 12(Oct):2825–2830.

Radim Řehůřek and Petr Sojka. 2010. Software Frame-
work for Topic Modelling with Large Corpora. In
Proceedings of the LREC 2010 Workshop on New

443

Challenges for NLP Frameworks, pages 45–50, Val-
letta, Malta. ELRA. http://is.muni.cz/
publication/884893/en.

Horacio Saggion, Miguel Ballesteros, and Francesco
Barbieri. 2017. Are emojis predictable? In EACL.

Toby Segaran and Jeff Hammerbacher. 2009. Beautiful
Data: The Stories Behind Elegant Data Solutions.
"O’Reilly Media, Inc.".

Nitish Srivastava, Geoffrey E. Hinton, Alex
Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdi-
nov. 2014. Dropout: A simple way to prevent neural
networks from overfitting. Journal of Machine
Learning Research, 15(1):1929–1958.

444

Proceedings of the 12th International Workshop on Semantic Evaluation (SemEval-2018), pages 445–448
New Orleans, Louisiana, June 5–6, 2018. ©2018 Association for Computational Linguistics

Hatching Chick at SemEval-2018 Task 2: Multilingual Emoji Prediction

J. Coster, R.G. van Dalen, and N.A.J. Stierman
Department of Information Science

University of Groningen
{j.coster.2, r.g.van.dalen, n.a.j.stierman}@student.rug.nl

Abstract

As part of a SemEval 2018 shared task an at-
tempt was made to build a system capable of
predicting the occurence of a language’s most
frequently used emoji in Tweets. Specifically,
models for English and Spanish data were
created and trained on 500.000 and 100.000
tweets respectively. In order to create these
models, first a logistic regressor, a sequential
LSTM, a random forest regressor and a SVM
were tested. The latter was found to perform
best and therefore optimized individually for
both languages. During developmet f1-scores
of 61 and 82 were obtained for English and
Spanish data respectively, in comparison, f1-
scores on the official evaluation data were 21
and 18. The significant decrease in perfor-
mance during evaluation might be explained
by overfitting during development and might
therefore have partially be prevented by using
cross-validation. Over all, emoji which occur
in a very specific context such as a Christmas
tree were found to be most predictable.

1 Introduction

It is said that a picture is worth a thousand words;
inherently then, visual icons can provide addi-
tional meaning to text. One common example of
this is the use of emoticons (emoji) accompanying
primarily short, informal texts such as text mes-
sages and tweets. The role of these is interesting
as they can be used in a variety of manners such as
to complement text (e.g., to indicate happiness)
and to replace text (e.g., I you instead of I love
you).

This research is concerned with the develop-
ment of a system for predicting the occurrence
of these emoji on the basis of Twitter data and is
conducted as part of a SemEval 2018 shared task
(Barbieri et al., 2018). More specifically, given
the text of an English or Spanish tweet, the system
will attempt to predict the emoji originally found

in that tweet. The set of emoji used is limited to
the twenty most frequent emoji for each language
respectively.

2 Previous Work

A similar research on predicting emoji occurring
in tweets was conducted by Barbieri et al. (2017).
In this study a Bidirectional Long Short-Term
Memory (BLSTM) network with standard look-
up word representations and character-based rep-
resentations of tokens was used. While it was
found that profoundly dissimilar emoji could be
predicted, this method did not succeed to accu-
rately differentiate between twenty emoji classes.

Na’aman et al. (2017) meanwhile conducted a
study to further explore the linguistic varieties of
the purposes of emoji on Twitter. It was found that
emoji can be an integral part of the content. One
common example of this is a part of a phrase be-
ing replaced by an emoji, much like the ’I you’
example from the previous section. The notion
of these word-emoji combinations is also men-
tioned by Dimson (2015). These findings inher-
ently strongly support the idea that text could to
some extent be used to predict emoji, given that
fixed co-occurrences do exist.

3 Data

Since this study was conducted as part of a shared
task, data was made available by the organization
(Barbieri et al., 2018). For the English language,
data consisted of a trial set containing 50.000 and a
training set containing 500.000 tweets geolocated
in the United States. For Spanish, a trial set of
10.000 and a training set of 100.000 tweets geolo-
cated in Spain were available. For both languages,
the trial portion of the data was used as a devel-
opment set. Evaluation then was ultimately con-
ducted on a held out data set sized similarly to the

445

English Spanish
Train Test Train Test
118425 10798 21854 2028
57167 4830 14962 1363
56199 4534 10299 970
30360 2605 7526 705
27137 3716 7137 645
25614 1613 4834 415
23362 1996 4220 367
20259 2749 4053 386
18817 1549 3857 320
17828 1175 3776 369
17586 1423 3420 267
16876 1949 3198 271
15333 1265 3112 313
14323 1114 2993 281
14842 1306 2908 282
14655 1244 2806 244
14394 1153 2861 262
14122 1545 2785 260
14534 2417 2807 252
13516 1010 - - -

Table 1: The distribution of training and test data as
used during evaluation

trial set for both languages respectively.
Analysis of the supplied data showed the tweets

originated from the period between October 2015
and February 2017 with a natural distribution to
the extent that slightly more tweets originated
from months with a large number of public holi-
days such as December. All of these tweets con-
tain one of the twenty most used emoji for their re-
spective language, although due to an error in the
data ultimately only the top nineteen had to be pre-
dicted for Spanish. The distribution of the emoji
over the tweets can be seen in Table 1. Note that
in this table counts for the trial and training data
have been merged as a data set combining these
was used during final evaluation.

4 Method

In order to build capable models for predicting
emoji in English and Spanish tweets, a two step
procedure was followed. First, various forms of
preprocessing and multiple machine learning al-
gorithms were tested in order to identify what type
of model would most likely be successful. Then,

a system built on these results was optimized for
English and Spanish tweets separately in order to
create a model for each language.

4.1 Initial Model Selection
In order to determine which type of model to use,
four different classification methods were tested.
Specifically, a Logistic Regression classifier was
tested using word unigrams, word bigrams and a
combination of both. Next, a sequential LSTM
with maximum sentence length embeddings as
features was tested. This model used 40 neurons
and a softmax activation function. The model was
compiled by implementing Categorical Crossen-
tropy and the Adagrad optimizer. Then, a Random
Forest Regressor was implemented using the same
features as the initial Logistic Regression model.
Finally, a linear SVM model was built using the
SKLearn SGDClassifier with a hinge loss func-
tion.

For all models, four preprocessing steps were
tested. Namely replacing URLs occurring in the
data with a general identifier, replacing mentions
occurring in the data with a general identifier, tok-
enizing the tweets using the NLTK TweetTokenizer
and stemming the tweets using the Snowball stem-
mer.

After all tests had been executed it was found
that the linear SVM using the SGDClassifier
yielded the best results. Therefore this model was
selected as a basis for the per language models.

4.2 English
4.2.1 Preprocessing
For the optimized English model, most of the
preprocessing steps from the previous subsection;
tokenization, URL replacement and mention re-
placement, were used. Use of the snowball stem-
mer was omitted as it did not appear to improve
performance. Additionally, punctuation was re-
moved as this seemed to yield better results on trial
data.

4.2.2 Optimized Model
As set out in the Initial Model Selection subsection
the SKLearn SGDClassifier was used as the basis
for this model. The settings used for this classi-
fier can be seen in Table 2 and are shared with
the model for Spanish. The input for this classi-
fier then was a tf-idf vector created from the pre-
processed data, which was first converted to low-
ercase as this was found to improve performance.

446

The SKLearn FeatureUnion function was used in
order to experiment with both word and character
ngram ranges simultaneously. Ultimately it was
found that using only word ngrams with a range of
two to four yielded the best results. However, de-
spite not using character ngrams in the optimized
model, the Featurenion was kept as the 0.5 weight
it applied to all features improved results by ap-
proximately two percent point. This effect is most
likely caused by the reduction of the absolute dif-
ferences between the predictiveness of features.
After these optimizations, testing on the trial set
resulted in an average f1-score of 61.

4.3 Spanish

4.3.1 Preprocessing

For the final model, the Spanish optimized model
used the same preprocessing procedure as the En-
glish optimized model, as described in section
4.2.1 as this procedure was found to perform best
on Spanish data as well. During the development
of this model however the use of a lemmatizer at
the preprocessing stage was also tested as a re-
placement of the Snowball stemmer. While nei-
ther were included in the final model as they did
not yield a significant improvement, it is interest-
ing to note that the model with lemmatizer scored
better when its language was set to English as op-
posed to Spanish, despite the language of the data
primarily being the latter.

4.3.2 Optimized Model

Much like the English optimized model, the final
model for Spanish data used the SKLearn SGD-
Classifier with the same parameter settings, as
seen in Table 2. The only difference then is that
for Spanish data using a ngram range of one to
seven instead of two to four was found to yield the
best results. When tested against the trial data this
model yielded an average f1-score of 82.

5 Results

Once parameter optimization on both the English
and Spanish models had been completed, the mod-
els were prepared for official evaluation on previ-
ously unseen data as explained in section 3. To this
end, a merged data set containing both training and
trial data was created for each language respec-
tively as during development it was found that sys-
tem performance would scale with the amount of

Parameter Value
loss hinge
penalty l2
alpha 1e-3
random state 42
max iter 20
tol None
class weight dict(1 for each class)

Table 2: Parameters used for the SGDClassifier

English Spanish
Emoji F1-score Emoji F1-score

57.29 64.725
26.796 34.635
37.755 51.356
7.931 6.847
41.762 10.506
7.11 20.755
12.034 32.701
16.7 9.339
9.122 10.631
5.9 44.649
14.359 11.268
52.366 6.391
33.295 1.439
5.459 4
5.472 4.651
12.513 13.843
3.254 21.277
57.807 6.03
19.568 0.806
2.26 - -

Average 21.438 Average 18.729

Table 3: F1-scores achieved during evaluation

447

training data used1. The models were then trained
on these merged data sets and tasked with predict-
ing the corresponding emoji for the tweets in the
evaluation data. These predictions were submitted
to and consecutively evaluated by the task’s orga-
nization. Results from this evaluation are detailed
in the following subsections.

5.1 English Model

On average, the English optimized classifier
achieved a f1-score of 21.438 with a precision
of 25.965, a recall of 21.483 and an accuracy of
36.522. An overview of per class performance
in the form of f1-scores can be seen in Table 3.
Overall, the system performed best when predict-
ing emoji which are likely to only occur in a spe-
cific context. For example is likely to occur
in tweets about love, is predominantly used in
the context of independence day and is used
mainly in tweets concerning Christmas. On these
emoji the system achieved f1-scores of over 50.
Meanwhile, the system performed worst on emoji
such as and , which are likely to be used in a
plethora of different contexts. These findings are
in line with trends seen when testing on trial data
during development.

5.2 Spanish Model

Contrary to scores seen when testing on trial
data, the Spanish optimized classifier performed
slightly worse than the English optimized sys-
tem. When tested on evaluation data, this model
achieved a f1-score of 18.729 with a precision
of 20.662, a recall of 19.163 and an accuracy
of 37.23. Compared to English, a similar trend
of weaker performance on more generic emoji is
seen. Furthermore, ranked among the most
accurately predicted emoji for Spanish as well.
However due to lack of knowledge of the Span-
ish language no qualitative analysis of why other
emoji such as and could be predicted rela-
tively well was conducted.

6 Discussion

Although compared to other systems participat-
ing in the task the models did not do exception-
ally bad, a significant drop in performance is seen
when compared to results obtained during devel-
opment. In fact, the English model saw a 40 per-

1Debugging was often conducted using a portion of the
training data in order to reduce execution time

cent point drop and the Spanish model a 64 percent
point drop. This decrease could partially be ex-
plained by differences in the distribution of certain
emoji, as can be seen in Table 1. More importantly
however, it is likely that the models were overfitted
on the trial data as all testing during development
was done on this portion of the data. In hindsight
then, cross-validation might have been the better
approach for evaluation during development.

Acknowledgments

Our contribution to this shared task was conducted
as part of a course of the Information Science
Master’s degree programme at the University of
Groningen. As such we would like to thank
H. Haagsma for his insightful feedback during
progress meetings.

References
Francesco Barbieri, Miguel Ballesteros, and Horacio

Saggion. 2017. Are emojis predictable? arXiv
preprint arXiv:1702.07285.

Francesco Barbieri, Jose Camacho-Collados,
Francesco Ronzano, Luis Espinosa-Anke, Miguel
Ballesteros, Valerio Basile, Viviana Patti, and
Horacio Saggion. 2018. SemEval-2018 Task 2:
Multilingual Emoji Prediction. In Proceedings of
the 12th International Workshop on Semantic Eval-
uation (SemEval-2018), New Orleans, LA, United
States. Association for Computational Linguistics.

Thomas Dimson. 2015. Emojineering part 1: Machine
learning for emoji trends. Instagram Engineering
Blog, 30.

Noa Na’aman, Hannah Provenza, and Orion Montoya.
2017. Varying linguistic purposes of emoji in (twit-
ter) context. In Proceedings of ACL 2017, Student
Research Workshop, pages 136–141.

448

Proceedings of the 12th International Workshop on Semantic Evaluation (SemEval-2018), pages 449–453
New Orleans, Louisiana, June 5–6, 2018. ©2018 Association for Computational Linguistics

EPUTION at SemEval-2018 Task 2: Emoji Prediction with User Adaption

Liyuan Zhou1,2 Qiongkai Xu1,2 Hanna Suominen1,2,3,4 Tom Gedeon1

1 The Australian National University, Canberra, ACT, Australia
2 Data61, CSIRO, Canberra, ACT, Australia

3 University of Canberra, Canberra, ACT, Australia
4 University of Turku, Turku, Finland

{Liyuan.Zhou, Qiongkai.Xu, Hanna.Suominen, Tom.Gedeon}@anu.edu.au

Abstract

This paper describes our approach, called
EPUTION, for the open trial of the SemEval-
2018 Task 2, Multilingual Emoji Prediction.
The task relates to using social media — more
precisely, Twitter — with its aim to predict
the most likely associated emoji of a tweet.
Our solution for this text classification prob-
lem explores the idea of transfer learning for
adapting the classifier based on users’ tweet-
ing history. Our experiments show that our
user-adaption method improves classification
results by more than 6 per cent on the macro-
averaged F1. Thus, our paper provides evi-
dence for the rationality of enriching the orig-
inal corpus longitudinally with user behaviors
and transferring the lessons learned from cor-
responding users to specific instances.

1 Introduction

Twitter sentiment analysis is an essential prob-
lem for companies and organizations to compu-
tationally measure customers’ perceptions which
attracts attention from fields of both social media
analytics and natural language processing (Rosen-
thal et al., 2017; Felbo et al., 2017; Mac Kim
et al., 2017). A Twitter message, called a tweet,
is generally composed of text, emojis, links, and
mentioned users, known as tweeters. An emoji
is a small picture or symbol of a standardized set
to represent a feeling or another concept (Dictio-
nary.com, 2018), contributing to the sentiment of
its sender (Barbieri et al., 2017). Consequently,
techniques for emoji classification are relevant and
can be used to transfer information to subsequent
tasks of sentiment, emotion, and sarcasm analy-
sis (Felbo et al., 2017).

The SemEval-2018 Task 2 challenges its partic-
ipants to perform multilingual emoji prediction in
English and Spanish. The top-20 most frequent
emojis of each language are annotated as tweets’

class labels. To encourage systems with better
performance on less frequent emojis, the macro-
averaged F1 score (Macro-F) (Suominen et al.,
2008) is used as the official evaluation measure.

Emoji prediction is widely formalized as a text
classification problem in which the state-of-the-
art systems fail to perform satisfactory (Barbieri
et al., 2018). Because individual users enjoy di-
verse preferences in their emoji usage, it is hard to
train a generalized classifier to tackle emoji pre-
diction. As demonstrated in Table 1, with two ex-
amples of simple tweets with various annotations
from the training set, even with exactly the same
tweet texts, different tweeters have various choices
of emojis, such as i) a user can select one of the
emojis express the same emotion and ii) a user can
have different attitudes towards the same objects
or topics.

Tweet Emoji
@user happy birthday
@ new york, new york

Table 1: The diversity emojis by different users.

In light of such observations, we propose to uti-
lize a user adaption method to capture the spe-
cific preference for each individual user. We
propose Emoji Prediction with User Adaption
(EPUTION). It trains user-adapted classification
models by applying tweeters’ tweeting history to
personalize a basic model trained by the bench-
mark training data. We implement the method on
SemEval-2018 Task2 in English, where the basic
model is competitive to the state-of-the-art sys-
tems, while the user-adaptation model further im-
proves the classification results.

2 System Description

In this section, we describe the text classification
method and user adaption approach.

449

2.1 Text Classification

The text classification component of our system is
based on FastText1 (Joulin et al., 2017), which can
achieve results comparable to those by the state-
of-the-art deep learning methods but with many
orders of magnitude less running time. FastText
feeds a linear classifier with averaged word repre-
sentations as follows:

P (y|xn) = Softmax(BAxn) (1)

where y refers to the class label of a given docu-
ment, xn is the respective normalized bag of fea-
tures vector of the document, and A and B are the
weight matrices. The cross entropy loss is updated
to optimized for parameter learning. The model is
trained using hte stochastic gradient descent algo-
rithm with a linearly decaying learning rate.

To optimize the computing time, Hierarchical
Softmax based on the Huffman tree (Mikolov et al.,
2013) is used to estimate label distribution. The
probability of the label node ny in the Huffman
tree, with parents n1, · · · , np, is calculated as

P (ny|x) =
p∏

i=1

P (ni|x). (2)

In order to capture the word order information in
the text, bag of n-grams are used as features.

2.2 User Adaption Framework

Our User Adaption (UA) framework is composed
of the following two main components (Figure 1):
a pre-training process and an adaption process.

During the pre-training process, we train a basic
classification model Mb using the training set of
the benchmark corpus Cb through FastText. Dur-
ing the adaption process, for each user ui, we
adapt the basic classification model Mb to a user-
adapted model Mi. Namely, we initialize the pa-
rameters Bi and Ai of Mi with pre-trained param-
eters from Mb, and train Mi for 5 epochs using
the retrospective tweet collectionCi of ui. Out-of-
vocabulary words in Ci are randomly initialized in
our experiments.

3 Experimental Setup

In this section, we will describe our supplementary
data collection process, model, and test settings.

1https://fasttext.cc/

Figure 1: An overview of the user adaption framework.

3.1 Supplementary Data Collection

To implement our user adapted classification sys-
tem, supplementary tweets are collected for each
user. First, for each tweet of the emoji predic-
tion task, the original tweeter who posted the tweet
is retrieved by using the Twitter Application Pro-
gramming Interfaces2 (API). In order to map a
tweet to its tweeter, we use the content of the
tweet as a query to search for a match in Twit-
ter. If precisely one result is retrieved and its con-
tent is precisely the same as the query text, the
user who posted the retrieved tweet is assigned as
the tweeter. Otherwise, no specific tweeter is as-
signed. Second, for each retrieved user, a retro-
spective collection of tweets is crawled from the
most recent to the maximum number of 3, 200
tweets3. The current tweet used to retrieve the ad-
ditional tweeter data is excluded from the user’s
tweet collection4.

After enriching the task corpus by these user-
specific collections, text content of the tweets is
extracted using official scripts (Barbieri et al.,
2017), removing hyperlinks while keeping texts
and emojis. The tweets with only one emoji are se-
lected, where the emoji is considered as the class
label of the tweet. To ensure no overlapping in-
stances exist between the test set and additional
data that is collected for the user adaptation model
(i.e., the collection of users’ historical tweets), we
remove the instances in the retrieved dataset that
match the test tweets. More over, drawing from
the use of the inverse document frequency in in-
formation retrieval as a way to scale down words

2https://developer.twitter.com/
3This number is determined by the Twitter API limitation.
4The crawling was performed for our SemEval-2018 Task

2 submission on 2nd February, 2018.

450

that only appear in few documents as too specific,
all tweets that occur only in a single user’s tweet
collection are filtered out. This post-processing
eliminates accidentally collected test cases where
a user name cannot be retrieved, but keeps general
cases that commonly appears in a tweet message
such as Happy Birthday and Good Morning.

To summarize the dataset setting, there are
487, 0885 and 50, 000 samples in the bench-
mark training and test sets, respectively. From
all the tweets in the test set, 22, 642 of them
matched a tweeter, from 20, 594 unique tweeters6.
The final supplementary tweet collection contains
2, 565, 459 tweets, with user IDs. This is about
five times the size of the benchmark training set.

3.2 Model and Test Settings

Because the number of retrospective tweets from a
single user is limited7, the performance of training
one model for each user is unsatisfactory in our
preliminary experiments. Therefore, we apply a
pre-training model to the benchmark training data
of the task as a way to achieve properly initialized
model parameters.

We implement the following three models:

• FastText is the baseline text classification
model trained on the benchmark training set.

• Data Augment (DA) is the adapted model
that used all tweeters’ tweets grouped as
a whole.

• Individual User Adaption (IUA) model is
the adapted model that tailored the model to
each individual tweeter’s tweets.

After grid searching for the parameters on the
benchmark development set, the initial learning
rate α is set to be 0.01. The baseline model uses
100 dimensions of word vectors and 5 words in
the context. It is trained over 50 epochs. The UA
model has α = 0.05 and is trained over 5 epochs.
As the key point of this paper is the user adaption
model, we explore the basic text classification fea-
tures of unigrams, bigrams, and trigrams in our
primary experiments. Trigram features achieve
the best results. Thus, we follow such settings
in all UA models while leaving room for further

5We retrieved 487, 088 samples among the 500, 000
tweet IDs provided by the task organizers.

6Some users have more than one instance in the test set.
7to approximately 23 tweets in the case of this paper

Model Test-F Test-R Test-N
FastText 31.45 30.98 31.24
DA 33.17 34.94 30.81
IUA 37.54 43.25 31.24†

†: We reuse Mb for tweets without the retrieved retro-

spective tweets for a given user.

Table 2: Macro-F [%] for the models on the test sets

improvements of our system performance by in-
troducing the features implemented in other lead-
ing systems.

To demonstrate the influence of retrieved user
information, we compare our approaches on the
test sets with the following settings:

• Test-F (Full set of 50, 000 tweets) is the
whole test set provided by the organizers of
the SemEval2018 Task 2.

• Test-R (Retrieved set) is the subset of
Test-F where the tweets are used to re-
trieve users’ retrospective tweets, containing
22, 642 tweets.

• Test-N (Non-retrieved set) is the subtraction
of Test-F and Test-R, where a user was not re-
trieved with this tweet or the retrieved user’s
retrospective tweets were not available, con-
taining 27, 358 tweets.

4 Experimental Results

With additional retrospective data from the users,
our model achieves more than 6 per cent better
Macro-F than FastText. Consequently, it outper-
forms leading results from this competition.

Both DA and IUA achieve higher performance
on the retrieved part of test set, Test-R, and thus
improve the Macro-F on the full test set, Test-F
(Table 4). This demonstrates the effectiveness of
introducing the users’ retrospective tweets.

IUA out performs DA, with a margin of more
than 8 per cent on Test-R, indicating the neces-
sity of training individual user adaptive models for
the emoji prediction task. Compared with the best
results in the task, on Test-F, — namely, 35.99
percent for cagri and 35.36 per cent for cbazio-
tis (Barbieri et al., 2018) — IUA achieves better
results, even without an intensive feature engineer-
ing process.

5 Discussion

This section discusses and analyzes the success of
our method in terms of its advantage on easily con-

451

Figure 2: Class-specific results of the FastText, DA, and IUA models in emoji prediction on the Test-R data. We
provide emoji labels on the x-axis and their respective label-specific F1 score on the y-axis.

fused labels, and on users with certain amounts of
historical tweets, over FastText.

We analyze the performance of IUA on different
classes, by illustrating the Macro-F results of each
emoji on Test-R in Figure 2. For the emojis, “Two
Hearts”, “Blue Heart”, and “Purple Heart”, they
carry similar meanings but different users have di-
verse preference when expressing their emotions.
Both “Camera With Flash” and “Camera” with-
out flash can be chosen under the same circum-
stances. Compared with DA, IUA achieves a
marginal improvement on distinguishing the user
preferences of those emojis. For other emojis such
as “United States”, “Sun”, and “Christmas Tree”,
IUA is competitive, as these emojis are aligned
with single entities. These result show that our
adaptive model is capable of learning user pref-
erences in emojis with similar meanings, that is,
the Case 1 of Section 1.

To demonstrate that IUA is also able to tackle
the Case 2 of Section 1, we demonstrate some
sample tweets that provide different emoji predic-
tions using different user adapted models. For
example, when the test tweet is University life,
users have different attitudes towards “Red Heart”,
“Two Hearts”, “Smiling Face With Smiling Eyes”,
“Face With Tears of Joy”, “Hundred Points”, and
other emojis Meanwhile, FastText is only able to
predict “Two Hearts” for all users. IUA manages
to capture the attitudes of individual users towards
the same tweets, while FastText and DA tend to
provide common attitudes of the tweets.

Both IUA and DA outperform FastText under

different scale settings of retrieved tweets, as illus-
trated in Figure 3. With more retrieved samples,
the performance of DA increases. IUA reaches its
peak performance on tweets with 64 retrieved his-
torical tweets. More retrieved tweets do not fur-
ther improve the results in our experiments. We
have not observed much improvement for FastText
for users with more retrieved tweets.

Figure 3: Macro-F of IUA, DA, and FastText on Test-R
as numbers of tweets in each user collection increases.

6 Conclusion

This paper provides evidence for the rational-
ity of enriching the original corpus longitudinally
with user behaviors and transferring the lessons
learned as user-adapted models to supervised ma-
chine learning tasks, such as the SemEval-2018
Task 2 on English emoji prediction. Our system
achieves better performance than systems, which
use all training data as a whole, even without much
feature engineering. We believe this model can
provide insight for introducing user-specific infor-
mation for subsequent tasks of emoji prediction.

452

References
Francesco Barbieri, Miguel Ballesteros, and Horacio

Saggion. 2017. Are Emojis Predictable? In Pro-
ceedings of the 15th European Chapter of the Asso-
ciation for Computational Linguistics (EACL).

Francesco Barbieri, Jose Camacho-Collados,
Francesco Ronzano, Luis Espinosa-Anke, Miguel
Ballesteros, Valerio Basile, Viviana Patti, and
Horacio Saggion. 2018. SemEval-2018 Task 2:
Multilingual Emoji Prediction. In Proceedings
of the 12th International Workshop on Semantic
Evaluation (SemEval).

Dictionary.com. 2018. Define Emoji at Dictionary.
http://www.dictionary.com/browse/emoji, Accessed:
2018-03-05.

Bjarke Felbo, Alan Mislove, Anders Søgaard, Iyad
Rahwan, and Sune Lehmann. 2017. Using Millions
of Emoji Occurrences to Learn Any-domain Rep-
resentations for Detecting Sentiment, Emotion and
Sarcasm. In Proceedings of the 2017 Conference on
Empirical Methods in Natural Language Processing
(EMNLP).

Armand Joulin, Edouard Grave, Piotr Bojanowski, and
Tomas Mikolov. 2017. Bag of Tricks for Efficient
Text Classification. In Proceedings of the 15th Euro-
pean Chapter of the Association for Computational
Linguistics (EACL).

Sunghwan Mac Kim, Qiongkai Xu, Lizhen Qu,
Stephen Wan, and Cécile Paris. 2017. Demographic
Inference on Twitter using Recursive Neural Net-
works. In Proceedings of the 55th Annual Meet-
ing of the Association for Computational Linguistics
(ACL), volume 2, pages 471–477.

Tomas Mikolov, Kai Chen, Gregory S. Corrado, and
Jeffrey Dean. 2013. Efficient Estimation of Word
Representations in Vector Space. Computing Re-
search Repository (CoRR), abs/1301.3781.

Sara Rosenthal, Noura Farra, and Preslav Nakov.
2017. SemEval-2017 Task 4: Sentiment Analysis
in Twitter. In Proceedings of the 11th International
Workshop on Semantic Evaluation (SemEval-2017),
pages 502–518.

Hanna Suominen, Tapio Pahikkala, and Tapio
Salakoski. 2008. Critical Points in Assessing
Learning Performance via Cross-validation. In
Proceedings of the 2nd International and Inter-
disciplinary Conference on Adaptive Knowledge
Representation and Reasoning (AKRR), pages 9–22.

453

Proceedings of the 12th International Workshop on Semantic Evaluation (SemEval-2018), pages 454–458
New Orleans, Louisiana, June 5–6, 2018. ©2018 Association for Computational Linguistics

PickleTeam! at SemEval-2018 Task 2:
English and Spanish Emoji Prediction from Tweets

Daphne Groot
University of Groningen

d.groot.2@student.rug.nl

Rémon Kruizinga
University of Groningen

r.kruizinga.2@student.rug.nl

Hennie Veldthuis
University of Groningen

h.veldthuis@student.rug.nl

Simon de Wit
University of Groningen

s.de.wit.2@student.rug.nl

Hessel Haagsma
University of Groningen

hessel.haagsma@rug.nl

Abstract

We present a system for emoji prediction
on English and Spanish tweets, prepared for
the SemEval-2018 task on Multilingual Emoji
Prediction. We compared the performance of
an SVM, LSTM and an ensemble of these two.
We found the SVM performed best on our
development set with an accuracy of 61.3%
for English and 83% for Spanish. The fea-
tures used for the SVM are lowercased word
n-grams in the range of 1 to 20, tokenised by
a TweetTokenizer and stripped of stop words.
On the test set, our model achieved an accu-
racy of 34% on English, with a slightly lower
score of 29.7% accuracy on Spanish.

1 Introduction

The way people communicate with each other has
changed since the rise of social media. Many peo-
ple use visual icons, so-called emojis, to com-
plement their social media messages. Emojis are
frequently used on online platforms like Twitter,
Facebook, Instagram and WhatsApp. The wide
use of emojis in social media means that process-
ing these emojis can be relevant for NLP applica-
tions dealing with social media data.

Social media text has been studied in the field
of author profiling, but only recently the interest
in the research on emojis started growing. Author
profiling is used in different fields such as market-
ing, forensics, psychological research and medical
diagnosis. Author profiling focuses on stylomet-
ric features, and since this new popular way of
expressing meaning by using emojis has become
mainstream, its important to research if and how
this data can be used in addition to the textual data.
It could be possible that emojis reveal a great deal

about the author’s gender, location, age or other
characteristics.

We describe our approach to SemEval-2018
Task 2 on Multilingual Emoji Prediction (Barbi-
eri et al., 2018) in this paper. We will discuss the
features, the machine learning methods we used
and analyse the performance of our best method.

2 Related Work

Author profiling tasks are focusing more and more
on social media. Oftentimes, the data that is pro-
vided is data obtained from social media platforms
Rangel et al. (2017). However, research on emojis
is more scarce. Some research on emojis is done
by Barbieri et al. (2017). They investigated the re-
lation between words and emojis, and found that
neural models outperform baseline bag-of-words
models as well as humans when predicting which
emojis are used in tweets.

Xie et al. (2016) researched automatic emoji
recommendation using neural networks. Emo-
jis can express more delicate feelings beyond
plain text, and suggesting valid emojis to users
of messaging systems can enhance user experi-
ence. They approached this problem with neural
networks, and they found an Hierarchical-LSTM
system significantly outperformed all other LSTM
approaches.

Zhao and Zeng (2017) also looked at emoji
prediction. The task described in this paper is
very similar to the SemEval task. They achieved
an accuracy of 40% using a CNN. As fea-
tures they used the Twitter GloVe embeddings1.
Since they worked with a noisy dataset they con-
structed themselves and we are provided with a

1http://nlp.stanford.edu/projects/glove/

454

clean dataset, a similar approach might yield high
scores.

Author profiling on tweets is not new. At PAN
2017 (Rangel et al., 2017), Basile et al. (2017)
were able to achieve a score of 82% on gender
prediction of English tweets. They approached the
task with an SVM using combinations of character
and tf-idf word n-grams. This yields good results
for predicting gender, and can provide a good ba-
sis for an emoji prediction system.

In the light of this task, sentiment analysis might
be helpful. The sentiment of a tweet might point
the classifier in the right direction. Mohammad
et al. (2013), Han et al. (2013) and Da Silva
et al. (2014) all looked into sentiment classifica-
tion of tweets using machine learning algorithms.
Da Silva et al. (2014) achieved an accuracy of
84.85% on predicting sentiment on a Tweet dataset
using an ensemble where SVM, Random Forest
and Multinomial Naive Bayes were combined us-
ing majority voting. It might be fruitful to try some
features and methods used in these papers to see
if sentiment can be a distinctive feature for emoji
prediction. Unfortunately, we did not manage to
experiment with these features.

3 Data

The dataset used for this task was provided by
the organizers of the SemEval task, and is de-
rived from Twitter and only includes Spanish and
English tweets from respectively Spain and the
United States. An overview of the emojis in the
dataset is shown in Tables 1 and 2.

4 Method

For the task of emoji prediction, we explored a
neural network approach and an SVM approach.
We established a basic machine learning model
per approach and improved on these models for
both Spanish and English development dataset.
With this approach, we aim to develop a robust
model that is able to predict the emojis for both
the Spanish and the English dataset accurately.

Architectures we tried for the neural network
approach ranged from a simplistic sequential
model with a few hidden layers to a stacked LSTM
model with word embeddings.

The highest results for our neural network
approach were achieved by a sequential neu-
ral network model. Our first layer was a 200-
dimensional embedding layer, using the GloVe

Twitter embeddings (Pennington et al., 2014).
Secondly, we used an LSTM layer. After the
LSTM layer, our model included a Dropout of 0.2
(Srivastava et al., 2014). The output layer was
a dense layer with the sigmoid activation func-
tion. Our model used a categorical cross-entropy
loss and was optimized by the Adam optimizer
(Kingma and Ba, 2014). We used zero masking,
20 epochs and a batch size of 128. Other parame-
ters were left to the Keras defaults.

By establishing a basic SVM system, we tried to
improve the system with divergent features. Our
basic model consisted of word and character n-
gram features. Improvements on this model were
applied by using different kinds of preprocessing,
tokenization, stemming and POS-tagging meth-
ods. We tried tokenization with the NLTK Word
Tokenizer and the NLTK Tweet Tokenizer For
stemming, we tried the Porter and Snowball stem-
mer, also from NLTK. Both of them did slightly
decrease the accuracy of our system. The POS tag-
ger we tried was NLTK’s default POS tagger.

After trying several setups for both systems on
the development dataset, we concluded that our
SVM approach was the most accurate for both the
English and Spanish tweets.

For our best SVM system, we found that some
special characters and punctuation had to be re-
moved. Besides, we replaced the Twitter URLs
with the placeholder ‘URL’ and we substituted
‘. . . ’, which was a reference to Instagram, with the
placeholder ‘INSTAGRAM’. Lastly, we applied
a method to reduce each character sequence to a
maximum sequence of three characters. E.g., if a
user uses the word ‘wooooooooooow’, we normal-
ize it to ‘wooow’, so the textual input to the system
is less sparse.

The SVM system which yielded the best results
on the development set, used the NLTK Tweet
tokenizer and merely one feature, namely a tf-
idf word vectorizer with a word n-gram range of
(1,15), no lowercasing, removing of English stop-
words for both the English and Spanish dataset
(unconventional, but improved the scores) and a
minimum document frequency of one. Our model
was trained with sklearn’s SGDClassifier2 with a
hinge loss and a maximum number of 50 itera-
tions. All other parameters were left to the sklearn
defaults.

2http://scikit-learn.org/stable/modules/generated
/sklearn.linear model.SGDClassifier.html

455

Emoji

SVM 45.35 26.58 40.65 8.22 46.93 7.98 14.14 23.79 11.64 6.14
Ensemble 43.67 25.82 38.82 7.45 39.92 7.67 13.79 21.04 9.79 5.53

Emoji

SVM 17.85 56.48 34.86 9.50 3.61 19.51 6.13 60.27 15.77 1.70
Ensemble 17.15 40.26 30.88 7.49 3.55 15.77 5.70 48.60 13.34 1.63

Table 1: Macro F1-score per emoji on test-set for English.

Emoji

Spanish 38.79 29.12 49.89 4.25 10.32 17.34 32.01 7.85 12.96 41.68
Ensemble 38.57 28.18 47.06 4.61 10.29 16.40 27.08 6.34 13.65 41.93

Emoji

Spanish 10.64 3.56 0.71 2.33 1.56 12.84 20.58 3.30 1.52
Ensemble 9.48 3.95 0.71 2.34 2.72 12.22 16.19 3.02 1.49

Table 2: Macro F1-score per emoji on test-set for Spanish.

In addition to the SVM and LSTM, we tried
an ensemble approach that combined both. Our
assumption was that both systems performed
slightly better or worse in different aspects. By
combining our best SVM and LSTM, we tried to
achieve a higher accuracy. When the LSTM sys-
tem is 95% certain about a label prediction, our
ensemble system takes this label as the predicted
label. When the LSTM is less certain, the ensem-
ble system takes the label predicted by our SVM
system as the predicted label. This threshold was
chosen after a short trial of different thresholds,
where the 0.95 provided the best results. Yet, it
turned out that combining both systems yielded a
slightly worse accuracy than our best SVM system
alone.

5 Results

The baseline results, obtained by always predict-
ing the most frequent label from the training set,
are presented in Tables 4 and 5

The results obtained on the development set are
presented in Table 3, with the highest scores, i.e.
those achieved by the best systems, are printed in
bold.

The results of the final SVM model that we sub-
mitted on the test set are presented in Tables 4
and 5, for English and Spanish, respectively. The
scores on individual classes (==emojis) are pre-

sented in Tables 1 and 2.

Our final system achieves a macro F1-score of
22.86% for English and 15.86%.In order to pro-
vide additional insights into the system’s perfor-
mance, the confusion matrices for English and
Spanish on the test set, are presented in Figure 1
and Figure 2.

Figure 1: Confusion matrix for predicted and gold la-
bels on the English test set.

456

Model Setup F1 (EN) F1 (ES)

SVM Word 1-grams 0.443 0.652
Word 1- to 3-grams + Character 3- to 5-grams 0.519 0.790
Word and PoS-tag 1- to 3-grams + Character 3- to 5-grams 0.556 0.804
Word 1- to 10-grams 0.583 0.821
Word 1- to 15-grams, no punctuation 0.613 0.830
Word 1- to 15-grams, no punctuation + tweet length 0.525 –

LSTM Dropout of 0.2 before LSTM, 6 epochs 0.427 –
Dropout of 0.2 before LSTM, 20 epochs 0.529 –
No Dropout before LSTM, 10 epochs 0.525 0.728
No Dropout before LSTM, 20 epochs 0.553 0.790

Table 3: Macro F1-score for various system setups on the development sets for English and Spanish.

F1 Precision Recall Acc.

Baseline 1.78 1.08 5.00 21.60
SVM 22.86 26.17 24.37 34.09
Ensemble 19.89 21.97 20.89 30.57

Table 4: Macro-averaged F1, Precision & Recall and
Accuracy for English on the test-set.

F1 Precision Recall Acc.

Baseline 1.86 1.13 5.26 21.41
SVM 15.86 17.57 16.76 29.70
Ensemble 15.06 16.38 15.90 28.17

Table 5: Macro-averaged F1, Precision & Recall and
Accuracy for Spanish on the test-set.

6 Discussion & Conclusion

In the confusion matrices, the diagonal lines of
correct predictions can be seen. However, as also
reported in the paper of Zhao and Zeng (2017),
there is also a bias towards predicting the most fre-
quent emojis. For the English tweets, the Christ-
mas tree emoji was predicted most accurately.
This is understandable, since this is an emoji that
is mostly used in very distinct circumstances. For
emojis 3, 8, 9 and 13 this is not the case. They
were often incorrectly predicted as emoji 0 (a red
heart), which is explainable by the fact that all
these emojis relate to love and hearts. For the
Spanish tweets, the same issues can be seen with
similar emojis.

In this paper, we explored two approaches (an
LSTM and an SVM) and a combination of both for
predicting emojis of English and Spanish Tweets.
Ultimately, the SVM classifier achieved the high-

Figure 2: Confusion matrix for predicted and gold la-
bels on the Spanish test set.

est results: F1-score of 22.86 for English and
15.86 for Spanish. Compared the other partici-
pating groups, the results were in the mid-range.
These results showed that our system ranks 26th

out of 49 for English and 10th out of 22 for Span-
ish. The results on the test set were lower than
what we achieved on the development set. This
is possibly due to the fact that there seemed to be
an overlap between the training set and the devel-
opment set. This would cause the classifier to be
able to make more correct predictions, because it
has seen the exact same tweets before.

References

Francesco Barbieri, Miguel Ballesteros, and Horacio
Saggion. 2017. Are emojis predictable? In Lapata

457

M, Blunsom P, Koller A, editors. 15th Conference of
the European Chapter of the Association for Compu-
tational Linguistics; 2017 Apr 3-7; Valencia, Spain.
Stroudsburg (PA): ACL; 2017. p. 105-11. ACL (As-
sociation for Computational Linguistics).

Francesco Barbieri, Jose Camacho-Collados,
Francesco Ronzano, Luis Espinosa-Anke, Miguel
Ballesteros, Valerio Basile, Viviana Patti, and
Horacio Saggion. 2018. SemEval-2018 Task 2:
Multilingual Emoji Prediction. In Proceedings of
the 12th International Workshop on Semantic Eval-
uation (SemEval-2018), New Orleans, LA, United
States. Association for Computational Linguistics.

Angelo Basile, Gareth Dwyer, Maria Medvedeva, Jo-
sine Rawee, Hessel Haagsma, and Malvina Nissim.
2017. N-GrAM: New Groningen Author-profiling
Model. arXiv preprint arXiv:1707.03764.

Nadia FF Da Silva, Eduardo R Hruschka, and Este-
vam R Hruschka Jr. 2014. Tweet sentiment analy-
sis with classifier ensembles. Decision Support Sys-
tems, 66:170–179.

Qi Han, Junfei Guo, and Hinrich Schütze. 2013.
Codex: Combining an SVM classifier and character
n-gram language models for sentiment analysis on
Twitter text. In Second Joint Conference on Lexical
and Computational Semantics (* SEM), Volume 2:
Proceedings of the Seventh International Workshop
on Semantic Evaluation (SemEval 2013), volume 2,
pages 520–524.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Saif M Mohammad, Svetlana Kiritchenko, and Xiao-
dan Zhu. 2013. NRC-Canada: Building the state-
of-the-art in sentiment analysis of tweets. arXiv
preprint arXiv:1308.6242.

Jeffrey Pennington, Richard Socher, and Christo-
pher D. Manning. 2014. GloVe: Global vectors
for word representation. In Proceedings of EMNLP
2014, pages 1532–1543.

Francisco Rangel, Paolo Rosso, Martin Potthast, and
Benno Stein. 2017. Overview of the 5th author pro-
filing task at PAN 2017: Gender and language vari-
ety identification in Twitter. Working Notes of CLEF
2017 - Conference and Labs of the Evaluation Fo-
rum.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky,
Ilya Sutskever, and Ruslan Salakhutdinov. 2014.
Dropout: A simple way to prevent neural networks
from overfitting. The Journal of Machine Learning
Research, 15(1):1929–1958.

Ruobing Xie, Zhiyuan Liu, Rui Yan, and Maosong Sun.
2016. Neural emoji recommendation in dialogue
systems. arXiv preprint arXiv:1612.04609.

Luda Zhao and Connie Zeng. 2017. Using neural net-
works to predict emoji usage from Twitter data.

458

Proceedings of the 12th International Workshop on Semantic Evaluation (SemEval-2018), pages 459–465
New Orleans, Louisiana, June 5–6, 2018. ©2018 Association for Computational Linguistics

YNU-HPCC at SemEval-2018 Task 2: Multi-ensemble Bi-GRU Model
with Attention Mechanism for Multilingual Emoji Prediction

Nan Wang, Jin Wang and Xuejie Zhang
School of Information Science and Engineering

Yunnan University
Kunming, P.R. China

Contact:xjzhang@ynu.edu.cn

Abstract
This paper describes our approach to
SemEval-2018 Task 2, which aims to predict
the most likely associated emoji, given a tweet
in English or Spanish. We normalized text-
based tweets during preprocessing, following
which we utilized a bi-directional gated
recurrent unit with an attention mechanism
to build our base model. Multi-models with
or without class weights were trained for
the ensemble methods. We boosted models
without class weights, and only strong boost
classifiers were identified. In our system, not
only was a boosting method used, but we also
took advantage of the voting ensemble method
to enhance our final system result. Our method
demonstrated an obvious improvement of
approximately 3% of the macro F1 score in
English and 2% in Spanish.

1 Introduction

As a novel means of enhancing the visual effect
and meaning of short text messages, emojis
are almost indispensable to each social platfor-
m, such as Facebook, Twitter, and Instagram.
These graphic facial expressions and other object
symbols enrich the emotion the user wishes to
express in a text-based message. Although
they are significant as part of social messages,
emojis have scarcely attracted attention from a
natural language processing (NLP) standpoint.
Notable exceptions include studies focused on
emoji semantics and usages (Barbieri et al.,
2017). However, the interplay between text-
based messages and emojis remains virtually
unexplored. The aim of SemEval-2018 task
2 (Barbieri et al., 2018) is to fill this gap by
providing all participants with a large set of text-
based tweets and their related emojis, which were
extracted from original tweet messages, in order to
determine the connection between text words and
emojis.

In recent years, an increasing amount of re-
search work has been conducted on the sentiment
analysis of tweets. Emojis have always played
an important role in the sentiment polarity of
tweets. Novak et al. (2015) proposed a sentiment
map of the 751 most frequently used emojis,
by computing the sentiment emoji from the
sentiment of tweets in which they occurred,
and they determined a significant difference in
the sentiment distribution of tweets with and
without emojis. As opposed to sentiment polarity
prediction of tweets, we further investigated
potential tweet emojis in this task, evoked by the
text part.

Neural networks involving attention mecha-
nisms have been studied extensively in the image
processing and NLP fields, and have demonstrated
remarkable results, particularly convolutional neu-
ral networks (CNNs) (Collobert et al., 2011) and
long short-term memories (LSTMs) (Hochreiter
and Schmidhuber, 1997). Cliche (2017) assem-
bled several CNNs and LSTMs and achieved first
ranking in all of five English subtasks. Raffel
and Ellis (2015) proposed a feed-forward network
model with attention, which selects the most
important element from each time step using
learnable weights, depending on the target. As
a variant of LSTM, the gated recurrent units
(GRUs) (Cho et al., 2014) use gating units directly
in order to modulate the data flow inside the unit,
rather than consisting of separate memory cells.
For this task, we firstly utilized bi-directional
GRUs and the attention mechanism to train the
base model, following which we boosted the base
model with different sample weights. In order
to achieve optimum performance, soft and hard
voting ensemble methods were also used in our
system.

The remainder of paper is structured as follows.
Section 2 provides an overview of task 2. In

459

section 3, we describe the architecture of our base
model, particularly the attention mechanism, as
well as the multi-ensemble methods used in our
submission. Section 4 describes our experiment,
which consists of system parameters, evaluation
metrics, and experimental results for the two
subtasks. Finally, in section 5, we list several
possible improvement points, and in section 6, we
outline our main conclusions.

2 Task Overview

This multilingual emoji prediction task consisted
of multi-labeled emoji classification of short tweet
texts, and was divided into two subtasks based on
the text language: subtask 1 in English and subtask
2 in Spanish. The most frequently used emojis in
English and Spanish were employed as labels, so
the two task labels differed.

Subtask-1: Emoji Prediction in English
Given a text of tweets in English, its potential

emojis are predicted from 20 emoji labels, as
follows:

Subtask-2: Emoji Prediction in Spanish
Given a text of tweets in Spanish, its potential

emojis are predicted from 19 emoji labels, as
follows:

2.1 Datasets
The organizers provided a huge amount of training
data, including 500K tweets in English and 100K
tweets in Spanish1. We crawled almost the entire
set of tweets with Twitter APIs2, as parts of the
training tweets were no longer available. Table 1
provides a detailed distribution of the datasets for
subtasks 1 and 2.

Furthermore, all of the used emoji labels
extracted from the tweets are the 20 or 19
most frequently used emojis in the languages
themselves. Data samples for these classes are
gradually decreasing; thus, datasets of the two

1The crawler and extractor for
this task can be downloaded from
https://github.com/fvancesco/Semeval2018-
Task2-Emoji-Detection/tree/master/dataset

2https://apps.twitter.com/

Subtask-1 Subtask-2
Train 489660 98506

Develop 50000 10000
Test 50000 10000

Table 1: Datasets of Task2.

subtasks are both imbalanced. In subtask 1,
the greatest majority class includes 106352
(21.7%) samples, nearly ten times that of the
lowest minority class , which includes only
12190 (2.5%) samples. For subtask 2, similar to
subtask 1, the greatest majority class includes
19640 (19.9%) samples, while the lowest minority
class includes 2525 (2.6%) samples.

Pre-trained Twitter embeddings for English and
Spanish were offered in the task. We validated
these by using another pre-trained embedding
from GloVe3 (Pennington et al., 2014), and the
English embedding offered in the task presented
approximately the same performance in our test.

3 System Description

As these two subtasks were rather similar, with
the exception of different emoji labels, we used
exactly the same thought to train every system of
the respective languages. In order to choose the
best one as our base model, several models were
tested(such as CNN, CNN+LSTM), and superior
performance was achieved by using the multi-
ensemble methods as the following subsection 3.2.

3.1 Base Model

We created our base model with Bi-GRU (Bah-
danau et al., 2014) rather than Bi-LSTM, owing
to its faster, efficient, and superior performance.
Furthermore, the bi-directional model can con-
catenate the sentence matrix vector forward and
backward at each time step to obtain full sentence
information (Irsoy and Cardie, 2014). The atten-
tion mechanism was also involved in our model,
the model architecture of which is illustrated in
Fig. 1, where ht denotes the hidden vector at each
time step, and t means the time step in the input
sequence. Vectors in hidden state sequence ht are
fed into the learnable function to produce attention
weight αt. A single vector is computed as the
weighted average of ht.

3glove.840B.300d from
https://nlp.stanford.edu/projects/glove/

460

GRU

GRU

GRU

GRU

GRU

GRU

Concat Attention

c

Dense Softmax Label

forward

backward

Word

Embedding
h t

te t

c

tanh()t te Wh b 

max()t tsoft e 

t t

t

c h

Figure 1: Architecture of Bi-GRU Model with Attention Mechanism.

The characteristic advantage of the attention
mechanism over other reduction operations is that
it takes an auxiliary context vector as input. The
context vector is crucial because it indicates which
information to discard, and a summary vector is
therefore tailored to the network using it.

3.2 Ensemble

The ensemble classifier is a type of algorithm in
which multiple learners are used to improve the
individual classification performance by combin-
ing hypotheses. In this task, the multiple ensemble
methods of boosting and voting were used to
achieve the optimal result.

3.2.1 Boosting

The concept of boosting involves iteratively train-
ing the base classifier with the re-weighting
method, which assigns a new list of sample
weights to each round of training data samples.
The weight distribution of each sample round
depends on the results of the previous round
classifier. Simple weights to instances are based
on how arduous they are to the classification; thus,
the boost classifier provides additional weights to
those mis-classified instances following a round
of classification in order to boost the following
classifier result. Finally, the sequence-based
linear weighting method was used to combine the
classifiers. Although boosting is not intended
for class imbalance problems, owing to this
characteristic, it has become an ideal method for
class imbalance problems.

3.2.2 Voting
The voting classifier can take a series of machine
learning classification algorithms (possibly con-
ceptually different) and average them to obtain
final predictions. Two voting methods are avail-
able:
Soft voting: Each model outputs a probability
vector for all classes, and the voting model is
average-weighted to obtain a final probability
vector for classification.
Hard voting: Each model outputs what it believes
to be the most likely category, from which the
voting model selects the category with the largest
number of voting models as the final classification.

In several tasks, soft voting may obtain superior
results over hard voting. In this case, both voting
methods were used. We assembled our strong
boosting classifier and weighted Bi-GRUATT by
means of soft voting.

4 Experiment and Results

4.1 Pre-processing
Twitter messages include a great deal of irrelevant
information that is useless for capturing text
message features. Prior to building our model, we
utilized a series of operations to normalize tweet
messages, divided into the following steps.
Lowercase. We integrated all text words by
converting them to lowercase.
Replace Emoticons. We began by pre-processing
tweet messages with emoticon replacement. Typo-
graphic emoticon symbols that appear sideways,
resembling facial expressions, such as :), :-), and
(: all mean “smiley face”, while :-(, :(, and):

461

mean “frowny face”. In spite of the fact that
these emoticons could barely be recognized in the
pre-embedding vocabulary, they visibly advanced
or changed the text message interpretation. We
identified these emoticons and replaced them with
the words “smile” or “sad” in the English task, and
“sonrełr” and “triste” in the Spanish task.

Remove marks. With Twitter as a large social
communication platform, we detected user oper-
ations in order to remove them:

• remove URL link;

• do nothing with “@” and “@user”;

• remove hashtag mark and retweet mark, such
as “#”, “rt”, “&”;

• remove numbers and other irrelevant punc-
tuation marks, such as question mark “?”,
exclamatory mark “!”, and quotation.

Revise elongated words. Incorrect words re-
mained in the training samples,, elongated with
a single letter, such as “Helloooooo”. We
searched for words containing repeated letters
consecutively more than three times, and revised
the number of letter replications to one.

Abbreviation. People are likely to use abbrevia-
tions of certain phrase to create Twitter message,
and we changed these abbreviations back into
original phrases in the English task. Above 60
common abbreviations of twitter were replaced
in the pre-processing. For example, “thx” was
changed back to “thanks” and “ASAP” to “as soon
as possible”. We determined to skip this step in the
Spanish task because we were not familiar with
Spanish or its abbreviations.

4.2 Implementation

Following preprocessing, we used a multi-
language tokenizer tool, Unitok4, for tokenization
of each task, and then calculated the token
number of the longest sentences in the training
datasets. All tokens that could be recognized in
the provided word embedding were converted into
a 300-dimension vector, which would be filled
in with zero if it was still unrecognized with the
prefix “#”. All training samples were padded out
to the same length L, which is 40 in English and
38 in Spanish.

We implemented our model using the Python
Keras library with a TensorFlow backend. The

4http://corpus.tools/wiki/Unitok

properties of our Bi-GRUATT model were as
follows.

1. The GRU dropout was set to 0.2, which was
the same as the dropout layer following the
attention layer.

2. The active function of the dense layer was
tanh with a length of 100, and softmax was
used to output the prediction label.

3. Instead of using Sequential.fit to train the
model, the Sequential.fit generator was
used for huge training samples in order to
solve the memory problem.

4. The optimizer Adam and loss function cross
entropy were used to deal with this multi-
labeled task.

5. The training epoch was dependent on the
early stopping monitor. If the training loss
had not improved in the latest 10 epochs,
the training process stopped. Both training
processes in task 2 exhibited extremely slow
improvement in every epoch. In English, the
training epoch was approximately 180 to 230,
and 280 to 400 in Spanish.

As the ratio of the majority to minority classes
could be as high as 10:1, a simple means of
enhancing the minority class performance is a
cost-sensitive method that applies different costs
for mis-classification errors to each class. Usually,
there is a high cost for the minority class and a
low cost for the majority class. We balanced the
training samples with various class weights, and
used these to train the cost-sensitive models in the
English and Spanish tasks.

Boosting and voting were implemented using
the AdaBoosting and Voting classifiers of scikit-
learn (Pedregosa et al., 2011) in Python. During
the boosting processing, we applied the Bi-
GRUATT model with an equal sample weight of
1/N (where N is the total number of training
samples) as the base estimator, and then iteratively
trained a stronger classifier by paying more
attention to mis-classified samples. The boosting
learning rate was set to 0.001 and the number of
estimators was dependent on the result of macro
F1. The boosting model would be stopped if it
already had three weak classifiers. Only the strong
classifier in the boosting process would be used
in the voting ensemble, and weak classifiers were
ignored.

462

0 1 2 3 4 5
13.6

13.8

14.0

14.2

14.4

14.6

M
ac

ro
 F

1-
Sc

or
e

14.153

14.47
14.532

14.236

14.038

13.794

0 1 2 3 4 5
29.6

29.8

30.0

30.2

30.4

30.6

M
ic

ro
 F

1-
Sc

or
e

29.76

29.85

30.05

30.26 30.25

30.49

Figure 2: Macro F1 and Micro F1 of boosting
classifiers in Spanish. (X-axis means the number
of boosting iteration, and number ’0’ refers to the
initial model which was trained with equal sample
weight.)

4.3 Evaluation

For evaluation purposes, the official results were
based on the macro F1 score for the two tasks. The
F1 score was calculated as follows:

Fi =
2πiρi
πi + ρi

(1)

Fmacro =

∑M
i=0 Fi

M
(2)

where Fi is the F1 score of the i-th class, and πi
and ρi denote the precision and recall of the i-th
class, respectively. The macro average provides
an equal weight to all the classes, regardless of
how many samples belong to it. The micro
average provides equal weights to all the samples,
thereby favoring the performance of the majority
classes. The macro F1 as well as micro F1 score
were utilized to evaluate the performance of every
model in our system.

4.4 Results

As the English datasets are fivefold the Spanish
ones, we adjusted the system model and its
parameters with the Spanish datasets in order to
save time. We handled the two subtasks in the
same manner; however, the results indicated that
not all methods were appropriate for both the
English and Spanish tasks.

Subtask-2: Spanish Emoji Prediction
Boosting had generated only six strong or weak

classifiers, and the variation tendencies of the
macro and micro F1 scores are displayed in Fig.
2.

Subtask-2 Macro F1 Micro F1
Boost 0 14.153 29.76
Boost 1 14.47 29.85
Boost 2 14.532 30.05

Soft Voting 15.016 31.55
Bi-GRUATT 1 13.768 18.93
Bi-GRUATT 2 14.144 18.86
Hard Voting 16.015 30.22

Table 2: Results of each model and voting ensem-
ble in Spanish.

38.03 29.39 52.69 0 14.93

24.72 35.11 13.68 8.86 28.43

12.99 1.87 0 2.43 0

14.19 19.77 2.82 4.38

Table 3: Macro F1 of each emoji label in Spanish.

It was found that, as the iteration times in-
creased, the micro F1 score (accuracy) of the
boosting system continuously increased, while the
macro F1 score was increased in the first three
iterations and then decreased in the following
iterations. As the macro F1 score provides
the official evaluation index, we identified the
first three strong boost classifiers for the further
ensemble. In the voting ensemble part, the
three strong boost classifiers were used to achieve
stronger classification by means of soft voting, and
eventually, we integrated the soft voting result and
the results of the two basic Bi-GRUATT models
trained with a balanced class weight (same model
but trained twice). The results of these models can
be seen in Table 2. Soft voting achieved a 0.9%
improvement in the macro F1 score, while the hard
voting achieved 1% compared to the soft voting
results.

Furthermore, hard voting, which provided the
final result, demonstrated a 2% improvement in
the weighted Bi-GRUATT model. Table 3 displays
the macro F1 for each emoji label.

Subtask-1: English Emoji Prediction

Similar to the process of subtask 2, we obtained
four boosting classifiers, the variation tendencies
of which are illustrated in Fig. 3. The macro F1

463

0 1 2 3
24.0

24.2

24.4

24.6

24.8

25.0

25.2

25.4
M

ac
ro

 F
1-

Sc
or

e
25.248

24.973

24.307

24.567

0 1 2 3
37.2

37.3

37.4

37.5

37.6

37.7

37.8

M
ic

ro
 F

1-
Sc

or
e

37.346

37.726

37.376

37.57

Figure 3: Macro F1 and Micro F1 of boosting
classifiers in English. (X-axis means the number
of boosting iteration, and number ’0’ refers to the
initial model which was trained with equal sample
weight.)

Subtask-1 Macro F1 Micro F1
Boost 0 25.248 37.346

Bi-GRUATT 1 25.656 27.556
Bi-GRUATT 2 25.552 27.28
Hard Voting 28.112 35.196

Table 4: Results of each model and voting ensem-
ble in English.

score was decreased following each iteration. We
could not conduct soft voting with only one strong
classifier, but carried out the hard voting directly.
Table 4 presents the results of the weighted Bi-
GRUATT and hard voting. The hard voting in the
English task demonstrated a 2.5% improvement in
the weighted Bi-GRUATT and 2.9% improvement
in the Bi-GRUATT without class weights. The
macro F1 for each emoji label is displayed in Table
5.

All above-mentioned results were obtained
following the competition, and we changed the
learning rate from 0.01 to 0.001 for increased
boost classifiers. The competition submission
only used two boost classifiers for ensemble in
Spanish and one was utilized in English. We
ranked 16th among 48 teams in the English task
and 13th among 21 teams in the Spanish task5.

As indicated in Tables 4 and 5, predictions of
similar smiley face emojis (in Spanish
and in English) exhibited unstratified
results. There were not many characteristics to
distinguish these from one another, as they all
meant a happy feeling, and people had a different

5Results of all teams can be found in
https://goo.gl/P515KW

44.53 30.6 43.98 15.79 54.17

10.84 17.96 31.46 17.53 16.95

28.09 55.64 37.7 11.59 12.1

25.22 11.68 66.86 24.97 4.59

Table 5: Macro F1 of each emoji label in English.

understanding and favorite emojis, which could
cause certain confusion problems. Compared to
the confused smiley face emojis, the label
demonstrated the best result, although it was a
minority class. It was easy to predict, owing to
the label having an obvious feature to recognize,
such as “tree”, “Christmas Tree” or everything
relevant to Christmas.

Another confused set of emojis were series
of heart emojis, particularly , and in
subtask 2, some of these labels even obtained
a zero result. This illustrates that the model
preferred to predict the highest majority class of
the same series, such as rather than its actual
emoji , or other heart.

5 Discussion

In this section, we briefly discuss several points
that may enhance our system results. For time
reasons, we have not validated these yet.

Pre-processing
1. We simply removed hashtag mark “#”,

however, there were numerous unrecognized
hashtag words, such as “Iamhappy”,
“I am happy” or “I-Am-Happy”. A
preferable method is decomposing the
hashtag to invert it into a sequence of words
that would enrich the information of the
sentence samples (Billal et al., 2016).

2. We did not deal with the mis-spelled words,
and changed all elongated words into the
without repeated letters that would create
mistake words, like “foooood”.

Model
1. As the official evaluation index is the macro

F1 score, we should set the initial sample
weight to be the same as the balanced class
weight in the boosting process.

464

2. We only trained less than 10 estimators in
the boosting, which may be too small to
determine the boost variation tendency in this
task.

3. We only used one base model to ensemble.
Assembling with different model types may
achieve improved results, such as CNN, a
combination of CNN and LSTM, and random
forest.

6 Conclusion

In this brief paper, we have presented the system
we used to compete in the SemEval-2018 task
2: Emoji Prediction in English and Spanish.
Our submission system was based on a Bi-
GRU model with an attention mechanism, and
we aimed to ensemble the base model with
multi-method boosting and voting in order to
achieve superior performance. In our work, multi-
ensemble exhibited a 2 to 3% improvement in the
task results.

In the future, we plan to validate the points
in the Discussion section in order to verify their
influence of them, and add useful points to our
system to implement an improved model for emoji
prediction.

Acknowledgments

This work was supported by the National Natural
Science Foundation of China (NSFC) under Grant
No.61702443 and No.61762091, and in part by
Educational Commission of Yunnan Province of
China under Grant No.2017ZZX030. We would
like to thank task organisers and the anonymous
reviewers for their helping and constructive
comments.

References
Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua

Bengio. 2014. Neural machine translation by
jointly learning to align and translate. CoRR,
abs/1409.0473.

Francesco Barbieri, Miguel Ballesteros, and Horacio
Saggion. 2017. Are emojis predictable? CoRR,
abs/1702.07285.

Francesco Barbieri, Jose Camacho-Collados,
Francesco Ronzano, Luis Espinosa-Anke, Miguel
Ballesteros, Valerio Basile, Viviana Patti, and
Horacio Saggion. 2018. SemEval-2018 Task 2:

Multilingual Emoji Prediction. In Proceedings
of the 12th International Workshop on Semantic
Evaluation (SemEval-2018), New Orleans, LA,
United States. Association for Computational
Linguistics.

Belainine Billal, Alexsandro Fonseca, and Fatiha
Sadat. 2016. Named entity recognition and hashtag
decomposition to improve the classification of
tweets. In Proceedings of COLING, pages 102–111.

KyungHyun Cho, Bart van Merrienboer, Dzmitry
Bahdanau, and Yoshua Bengio. 2014. On the
properties of neural machine translation: Encoder-
decoder approaches. CoRR, abs/1409.1259.

Mathieu Cliche. 2017. Bb twtr at semeval-2017 task
4: Twitter sentiment analysis with cnns and lstms.
In Proceedings of SemEval, pages 573–580.

Ronan Collobert, Jason Weston, Lon Bottou, Michael
Karlen, Koray Kavukcuoglu, and Pavel P. Kuksa.
2011. Natural language processing (almost) from
scratch. Journal of Machine Learning Research,
12:2493–2537.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural computation,
9(8):1735–1780.

Ozan Irsoy and Claire Cardie. 2014. Opinion mining
with deep recurrent neural networks. In Proceedings
of the Conference on Empirical Methods in Natural
Language Processing(EMNLP), pages 720–728.

Petra Kralj Novak, Jasmina Smailović, Borut Sluban,
and Igor Mozetic̆. 2015. Sentiment of emojis.
CoRR, abs/1509.07761.

Fabian Pedregosa, Gaël Varoquaux, Alexandre Gram-
fort, Vincent Michel, Bertrand Thirion, Olivier
Grisel, Mathieu Blondel, Peter Prettenhofer, Ron
Weiss, and Vincent Dubourg. 2011. Scikit-learn:
Machine learning in python. Journal of Machine
Learning Research, 12(Oct):2825–2830.

Jeffrey Pennington, Richard Socher, and Christopher D
Manning. 2014. Glove: Global vectors for
word representation. In Proceedings of the
Conference on Empirical Methods in Natural
Language Processing(EMNLP), volume 14, pages
1532–1543.

Colin Raffel and Daniel P. W. Ellis. 2015. Feed-
forward networks with attention can solve
some long-term memory problems. CoRR,
abs/1512.08756.

465

Proceedings of the 12th International Workshop on Semantic Evaluation (SemEval-2018), pages 466–469
New Orleans, Louisiana, June 5–6, 2018. ©2018 Association for Computational Linguistics

DUTH at SemEval-2018 Task 2: Emoji Prediction in Tweets

Dimitrios Effrosynidis Georgios Peikos Symeon Symeonidis Avi Arampatzis

Database & Information Retrieval research unit,
Department of Electrical & Computer Engineering,

Democritus University of Thrace, Xanthi 67100, Greece
{deffrosy,georpeik,ssymeoni,avi}@ee.duth.gr

Abstract

This paper describes the approach that was de-
veloped for SemEval 2018 Task 2 (Multilin-
gual Emoji Prediction) by the DUTH Team.
First, we employed a combination of pre-
processing techniques to reduce the noise of
tweets and produce a number of features.
Then, we built several N-grams, to represent
the combination of word and emojis. Finally,
we trained our system with a tuned LinearSVC
classifier. Our approach in the leaderboard
ranked 18th amongst 48 teams.

1 Introduction

Emojis are used in everyday life to express words
or feelings of microblogging users. They are com-
monly placed at the end of a sentence or alone.
In this paper, we show how our emoji prediction
framework was applied to SemEval-2018 Task 2
(Multilingual Emoji Prediction) (Barbieri et al.,
2018), specifically on Subtask 1 (Emoji Prediction
in English).

In the last few years, many studies concentrated
on emoji prediction and analysis. The prediction
of emojis, the connection of emojis and words, and
their separation from content-based tweet mes-
sages, based on Long ShortTerm Memory net-
works (LSTMs), was examined by Barbieri et al.
(2017). The combination of emojis and sentiment
was investigated by Novak et al. (2015), who de-
veloped the first emoji sentiment lexicon and cre-
ated a sentiment map of the 751 most frequently
used emojis. The study of Barbieri et al. (2016)
tested several skip-gram word embedding mod-
els to measure the difference in performance be-
tween machine-learning models and human anno-
tation. Na’aman et al. (2017) analyzed the viabil-
ity of a trained classifier to differentiate between
those emojis utilized as semantic substance words
and those utilized as paralinguistic or emotional

multimodal markers. Miller et al. (2017) investi-
gated the hypothesis of previous works that emo-
jis in their regular textual contexts would gener-
ously reduce and lead to miscommunication, but
they found no such evidence; the potential for mis-
communication appeared to be the same.

The rest of this paper is organized as follows.
Section 2 describes the architecture of our system
and the dataset. In Section 3, we discuss the vari-
ous parameters that were used to fine-tune the sys-
tem, and present the performance of our frame-
work. In Section 4, we lay out our main conclu-
sions and research issues for further investigation.

2 System Description

The principal goal of SemEval-2018 Task 2 - Sub-
task 1 was emoji prediction in English. The frame-
work we utilized consists of a bag of-words rep-
resentation and N-gram extraction. We used the
popular machine learning tool for Python, called
Scikit-Learn (Pedregosa et al., 2011).

2.1 Preprocessing

For the preprocessing of tweets, we were guided
by the results of our previous research (Effrosyni-
dis et al., 2017). We used the effective combina-
tion of the following techniques:

• Replace URLs and User Mentions to the tags
‘URL’ and ‘AT USER’, as the majority of
tweets on Twitter contain a URL and men-
tions which are considered noise.

• Replace Contractions, as it reduces the di-
mensionality of the problem and improves
speed and accuracy according to the above-
mentioned paper.

• Remove Numbers, because they do not con-
tain any sentiment.

466

Label Sentences Unique
Words Words/Sentence Tweets User tags Hashtags Unique

Hashtags
0 160220 110305 7.191 107669 20471 110655 55287
1 75706 70430 7.351 51923 11097 57839 32922
2 75879 69280 7.881 50988 13884 45182 28984
3 37068 36928 8.113 27517 4284 17984 12128
4 35327 45940 7.693 24625 10164 28940 19140
5 35347 37710 7.598 23318 5204 20811 13802
6 30406 38420 7.418 21323 4097 24013 15842
7 24859 31386 8.196 18388 3316 15783 10215
8 23623 28479 7.585 17024 2508 14594 10157
9 24983 28742 7.125 16167 4405 13862 9496

10 25705 35760 6.895 16045 11186 19929 12237
11 22136 25142 6.930 15365 2012 24937 10192
12 18482 20883 7.441 13882 1282 12848 7478
13 18538 24496 7.524 12981 2382 11317 8158
14 21060 28277 7.900 13472 3023 13113 9831
15 18353 26909 7.835 13408 3210 12886 9206
16 20531 27494 7.360 13094 3084 13044 9582
17 18631 20292 7.032 12853 1477 11607 6338
18 20164 29989 7.116 13255 8918 15628 10065
19 18900 27230 7.622 12307 2421 12653 9359

SUM 725918 764092 7.490 495604 118425 497625 300419

Table 1: Statistics per emoji.

• Replace Repetitions of Punctuation, which
merges in the same feature the intensity of
emotions. For example, if we find more
than two consecutive exclamation, question
or stop marks, we replace them with a single
one.

2.2 Dataset

The training and testing datasets were provided by
the organizers. The training set contained approx-
imately 500, 000 tweets, where each tweet con-
tained a single emoji, before they removed it and
set it as class label. That emoji is used as the class
label for the particular tweet.

We extracted various statistics for the dataset as
it can be seen in Table 1. Some class labels con-
tain more sentences per tweet, like label 10 ()
and 0 (). We also observe that the emoji has
on average much fewer hashtags per tweet, while
the emoji has much more. All the other emojis
range within reasonable limits. The emojis with
labels 7 () and 3 () are expressed using more
words on average, while the emojis 10 () and 11
() are expressed with fewer words.

All the above observations are important to un-

derstand the dataset and how people are using each
emoji. One can use these statistics in order to cre-
ate more features and test them to see the changes
in classification accuracy. For example, one can
count the words of each new sentence for classi-
fication, and compare them with the ones derived
from the training dataset.

In our study, we compared several machine
learning algorithms (Ridge, Logistic Regression,
Passive-Aggressive, and Linear SVC), and three
different word to vector representations (tf-idf
Vectorizer, count Vectorizer, and hashing Vector-
izer). The macro F-measure score was computed
for 10-folds cross-validation on the training set
and on the trial set while using the training set for
training. We employed word n-grams and charac-
ter n-grams (n ranging from 1 to 4), with the latter
ones performing poorly.

3 Experimental Results

In this section, we describe the different classifiers
and vectorizers used and present our results.

467

Macro-averaged F-measure
Vectorizer Ridge Logistic Regression Passive-Aggressive LinearSVC

tfidfVectorizer 26.2 25.1 24.0 26.6
countVectorizer 25.9 26.7 20.9 25.5

hashingVectorizer 24.6 23.0 23.6 25.9

Table 2: Results per classifier and vectorizer using 10-fold unigrams.

3.1 Classifiers
In order to gain a better perspective on the prob-
lem, we trained four different classification algo-
rithms. We test each classifier comparing their
macro F-measure score. We choose LinearSVC,
because of the stability we noticed in the results it
returned. Below we discuss every classifier:

• Ridge: an algorithm belonging to the Gener-
alized Linear Models family. Text classifica-
tion problems tend to be quite high dimen-
sional, and high dimensional problems are
likely to be linearly separable; this is one rea-
son why Ridge performs quite well.

• Logistic Regression: despite its name, it is
used for classification and fits a linear model
as well. In the multiclass case, the training al-
gorithm uses the one-vs-rest (OvR) scheme.

• Passive-Aggressive: belongs to a family of
algorithms for large-scale learning, which
does not require a learning rate and includes a
regularization parameter C. On the one hand,
the aggressive mode of the algorithm means
that if an incorrect classification occurs, the
model updates to adjust to this misclassified
example. On the other hand, the model stays
unchanged in every correct classification and
this is the passive behavior of the algorithm
(Crammer et al., 2006).

• Linear SVC: the purpose of this algorithm
is to fit the data by finding a set of hyper-
planes that separate space into areas repre-
senting classes. The most efficient way is
considered to be the max distance between
data points and the hyperplane.

3.2 Vectorizers
Nowadays, one can find many vectorizers to use
in order to extract features. We used the follow-
ing three vectorizers provided by Python’s Scikit-
Learn library (Pedregosa et al., 2011), in order to
transform tweets into vectors of features.

• tf-idf Vectorizer: a vectorizer which scales
the term frequency counts in each tweet by
penalising terms that appear more frequently
across the dataset.

• count Vectorizer: converts the collection of
tweets to a matrix of token counts.

• hashing Vectorizer: a vectorizer which ap-
plies a hashing function to term frequency
counts in each document. This vectorizer
leads to a sparse matrix holding token occur-
rence counts (or binary occurrence informa-
tion).

Each vectorizer we used is efficient under cer-
tain circumstances. In addition, we noticed that
the combination of the vectorizer and classifica-
tion algorithm is crucial for our problem. In our
work, as we can see in Table 2, the combination
of countVectorizer and Logistic Regression leads
to the best result. However, the tfidfVectorizer
achieves greater results than the countVectorizer
and the hashingVectorizer in the majority of the
algorithms; for this reason, we proceeded with the
tfidfVectorizer.

3.3 Evaluation Results
We evaluate the performance of our system with
the macro F-measure score. The macro F-measure
score gives equal weight to each emoji category,
regardless of its class size. The F-measure per
emoji class is the harmonic mean of the precision
and recall of the class:

F-measure =
2(Precision× Recall)

Precision + Recall
.

The macro-average F-measure score is obtained
by taking the average of F-measure values across
emoji classes:

macro F-measure =
1

M

M∑

n=1

F-score(n) ,

where M is the total number of classes.

468

In Table 3 we present the macro F-measure
score of tfidfVectorizer combined with LinearSVC
classification algorithm. In the first column, the
results of 10-folds cross validation on the train-
ing set are presented. In the second column we
present the results when training with the training
data and testing with the trial data. As it can be
seen, four-grams performance on trial data has the
highest value, but trigrams perform better on 10-
folds cross-validation. This is the reason we used
trigrams to train our model for the submitted runs.

10-folds Training Trial
word-unigrams 26.6 46.8
word-bigrams 29.3 61.4
word-trigrams 29.4 63.7

word-fourgrams 29.2 64.4

Table 3: F-measure results for word N-grams.

4 Conclusions

In this paper, we presented the framework we used
to participate in the SemEval-2018 emoji predic-
tion competition. We used a tfidfVectorizer com-
bined with a LinearSVC classification algorithm,
employing word tri-grams, to train our model. Our
team ranked in the 18th place among 48 teams.

For future work, it would be interesting to test
Neural Network approaches, to use emoji senti-
ment lexica (Novak et al., 2015), or additionally
include more features. Furthermore, it would like-
wise be intriguing to investigate the miscommuni-
cation of emojis in their natural textual contexts.

References
Francesco Barbieri, Miguel Ballesteros, and Horacio

Saggion. 2017. Are emojis predictable? In Pro-
ceedings of the 15th Conference of the European
Chapter of the Association for Computational Lin-
guistics: Volume 2, Short Papers, pages 105–111.
Association for Computational Linguistics.

Francesco Barbieri, Jose Camacho-Collados,
Francesco Ronzano, Luis Espinosa-Anke, Miguel
Ballesteros, Valerio Basile, Viviana Patti, and
Horacio Saggion. 2018. SemEval-2018 Task 2:
Multilingual Emoji Prediction. In Proceedings of
the 12th International Workshop on Semantic Eval-
uation (SemEval-2018), New Orleans, LA, United
States. Association for Computational Linguistics.

Francesco Barbieri, Francesco Ronzano, and Horacio
Saggion. 2016. What does this emoji mean? A

vector space skip-gram model for twitter emojis.
In Proceedings of the Tenth International Confer-
ence on Language Resources and Evaluation LREC
2016, Portorož, Slovenia, May 23-28, 2016. Euro-
pean Language Resources Association (ELRA).

Koby Crammer, Ofer Dekel, Joseph Keshet, Shai
Shalev-Shwartz, and Yoram Singer. 2006. Online
passive-aggressive algorithms. Journal of Machine
Learning Research, 7:551–585.

Dimitrios Effrosynidis, Symeon Symeonidis, and Avi
Arampatzis. 2017. A comparison of pre-processing
techniques for twitter sentiment analysis. In Re-
search and Advanced Technology for Digital Li-
braries - 21st International Conference on Theory
and Practice of Digital Libraries, TPDL 2017, Thes-
saloniki, Greece, September 18-21, 2017, Proceed-
ings, volume 10450 of Lecture Notes in Computer
Science, pages 394–406. Springer.

Hannah Jean Miller, Daniel Kluver, Jacob Thebault-
Spieker, Loren G. Terveen, and Brent J. Hecht. 2017.
Understanding emoji ambiguity in context: The role
of text in emoji-related miscommunication. In Pro-
ceedings of the Eleventh International Conference
on Web and Social Media, ICWSM 2017, Montréal,
Québec, Canada, May 15-18, 2017., pages 152–161.
AAAI Press.

Noa Na’aman, Hannah Provenza, and Orion Montoya.
2017. Varying linguistic purposes of emoji in (twit-
ter) context. In Proceedings of the 55th Annual
Meeting of the Association for Computational Lin-
guistics, ACL 2017, Vancouver, Canada, July 30 -
August 4, Student Research Workshop, pages 136–
141. Association for Computational Linguistics.

Petra Kralj Novak, Jasmina Smailovic, Borut Sluban,
and Igor Mozetic. 2015. Sentiment of emojis.
CoRR, abs/1509.07761.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Pretten-
hofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Pas-
sos, D. Cournapeau, M. Brucher, M. Perrot, and
E. Duchesnay. 2011. Scikit-learn: Machine learning
in Python. Journal of Machine Learning Research,
12:2825–2830.

469

Proceedings of the 12th International Workshop on Semantic Evaluation (SemEval-2018), pages 470–476
New Orleans, Louisiana, June 5–6, 2018. ©2018 Association for Computational Linguistics

TAJJEB at SemEval-2018 Task 2: Traditional Approaches Just Do the
Job with Emoji Prediction

Angelo Basile
University of Groningen / The Netherlands

University of Malta / Msida, Malta
angelo.basile.17@um.edu.mt

Kenny W. Lino
University of the Basque Country /

San Sebastián, Spain
University of Malta / Msida, Malta
kenny.lino.17@um.edu.mt

Abstract
Emojis are widely used on social media; thus
understanding their meaning is important for
both practical purposes (e.g. opinion mining,
sentiment detection) and theoretical purposes
(e.g. How do different L1 speakers use them?,
Do they have specific syntax?). This paper
presents a set of models that predict an emoji
given a tweet as a part of the SemEval-2018
Task 2: Multilingual Emoji Prediction. We
built different models and we found that the
test results were very different from the vali-
dation results.

1 Introduction

To some extent, Twitter can be considered a huge
corpus and researchers exploit it in many different
ways to get a proxy for various types of annota-
tions. Purver and Battersby (2012) use distant su-
pervision on tweets to build an emotion detection
system; Bollen et al. (2011) show that it is pos-
sible to use Twitter data to predict the stock mar-
ket; Mohammad et al. (2016) build a corpus from
tweets for modelling stance.

Social media in general are very popular for
building corpora for sentiment-related tasks since
the users make a wide use of emojis. Pool and
Nissim (2016) show that it is possible to achieve
state-of-the-art performance in sentiment classifi-
cation using only automatically gathered data.

The wide use of emojis on the web calls for sys-
tems that can automatically process them. When
performing opinion mining tasks, for instance, it
can be the case that all we have is just an emoji.
For example, a single emoji could be used as a re-
ply to an advertisement of a certain product; thus,
being able to get the meaning of that emoji is im-
portant. Felbo et al. (2017) shows that given a text,
it is possible to successfully automatically suggest
the most appropriate emoji that can accompany
that text.

In this paper we describe our participation in the
SemEval-2018 Task 2: Multilingual Emoji Predic-
tion (Barbieri et al., 2018), a challenge that origi-
nates from the work of (Barbieri et al., 2017). The
task is structured as follows: given a tweet that
originally contained one and only one emoji, pre-
dict that emoji; the emoji is removed and given as
a training label.

We experimented using three different ap-
proaches: first we use a shallow feature repre-
sentation with two different algorithms (Naı̈ve-
Bayes and Support Vector Machine); then we ex-
perimented with a dense feature representation
(i.e. word embeddings) and a deep neural clas-
sifier; lastly, we modeled the problem as a trans-
lation problem (i.e. treating English and Spanish
as the source language and ‘Emoji’ as the target
language) using a state-of-the-art neural transla-
tion system to predict the labels as translated sen-
tences.

To summarize, our main contributions pre-
sented in this paper are three machine learning
models that predict an emoji given some text. We
confirm a fact that is well known in the literature,
i.e. that neural models can give good results but
hyper-parameter tuning is a hard task and if it is
not successful, then a good linear classifier with
a bag-of-words representation can easily outper-
form the neural model. Our best English system
was ranked 8th in SemEval Shared Task and our
best Spanish system was ranked 4th1.

2 Data

Both the training and testing data are tweet col-
lections: overall, there are 500k English tweets
and 100k Spanish tweets, provided as two distinct
datasets. These tweets are accompanied by two

1We submitted on January 10, 2018. Our submission was
made under the name ’The Fabulous EM-LCT Team from
Malta’.

470

sets of labels — one per language — and these la-
bels are the emojis that were originally in the tweet
and later removed.

The English label set consists of 20 emojis,
while the Spanish label set consists of 19 emojis.

We manually inspected some portions of the
datasets and found that the English set contains
some Spanish tweets and vice versa: this is due
to the fact that the tweets were collected automat-
ically using geographical information associated
with the account of the user who wrote the tweet.
We decided to ignore this fact and assume that the
actual test set will also contain some noise. We
did not perform any systematic language identifi-
cation experiment since after the manual inspec-
tion it seemed to us that this would not be a prob-
lem.

Figure 1: The label set for both English (USA) and
Spanish (SPA).

The distribution of the labels is highly skewed
for both English and Spanish: Figure 2 shows that
the most frequent label (i.e. the red heart) is much
more frequent than the others.

We decided to conduct experiments with both
the original skewed dataset and a balanced version
of it. To balance the dataset, we randomly sample
from all classes a number of tweets which is equal
to the size of the smallest class.

2.1 Normalization

We decided not to perform any sort of normal-
ization on the dataset. The reason for this is
that we think that the information that is located
at the sub-token level would probably get lost
with normalization (e.g. ‘amaaaaazing’ vs ‘amaz-
ing’). Character-level differences can be impor-
tant in helping deciding which emoji is the most
appropriate one. For instance, we can imagine
that someone who writes ‘amaaaaaazing’ is more
prone to choose a more sophisticated and less
common emoji (e.g. a purple heart), while some-
one who writes in a more sober style would prob-
ably pick only the most common emojis.

Furthermore, considering the domain (i.e. Twit-
ter), it is very hard to properly normalize text.

3 Experiments

We performed two groups of experiments: for one
group we used a shallow feature representation
(i.e. bag-of-words), and for the other we used
a dense feature representation (i.e. word embed-
dings). In the following sections we present these
two groups of experiments.

3.1 General Experimental Set-up
In order to facilitate our work, we utilized Python
3.6.3 and set up a Python working environment
using pipenv to make our experiments easily
reproducible; for the same reason we are releas-
ing several Jupyter notebooks containing all the
code that we wrote2. To train our models, we
utilized the standard machine learning package,
scikit-learn (Pedregosa et al., 2011) for the
models using a shallow feature representation.
The neural models were built using Keras (Chol-
let et al., 2015). We used OpenNMT (Klein et al.,
2017) to model the problem as a translation prob-
lem.

3.2 Traditional BoW Modelling
For our first set of experiments, we chose two dif-
ferent algorithms for text classification and com-
mon bag-of-words features.

Algorithms For our algorithms, we worked
with Naı̈ve-Bayes and Support Vector Machines.
We chose these algorithms in particular because
of their success in previous work such as in Wang
and Manning (2012).

Features For our features, we worked with
the raw counts of each word as well as the tf-
idf scores, and n-grams. We used tf-idf to give
more weight to the more prominent words within
the tweets, and less weight to the more com-
mon words, while we used n-grams to capture se-
quences of words.

3.2.1 Baseline
We established our baseline by using a bag-of-
words approach and the Naı̈ve-Bayes classifier
with five-fold cross validation. We chose this as
our baseline as we felt that this was the most sim-
ple — but still reasonably strong — approach.

3.2.2 Dimensionality Reduction
As a test, we also looked at the effects of dimen-
sionality reduction using truncated singular value

2They can be found here at:
https://github.com/anbasile/emojiprediction

471

(a) English (b) Spanish

Figure 2: Distribution of emojis in the English and the Spanish datasets.

decomposition (SVD) (also referred to as latent se-
mantic analysis (LSA) when used on textual data)
on our best support vector machine model. This
was only done with the support vector machine
model as it was not possible to do it with the
Naı̈ve-Bayes classifier.

We hypothesized that SVD could potentially be
useful as it would be able to model topics within
the data. If we could model topics within the text,
then it would be likely that certain topics would
align with certain emojis.

To run the test, we used 10% of our data with
dimensions of n = 100 and n = 500 on our best
unbalanced model — the support vector machine
model with tf-idf, bi-grams, and POS-tagging. We
chose to only use 10% of the data as the runtime
of utilizing SVD on the whole English dataset was
particularly long.

3.3 Neural Models

In order to take advantage of the large dataset, we
decided to try to model the problem using a neural
network, which usually requires many instances to
be trained properly.

We performed two sets of experiments: first, we
trained a simple recurrent neural network. From
there, we moved to a more complex recurrent net-
work using bidirectional long short term mem-
ory (LSTM) layers in order to account for con-
text from both the right and the left side of words;
we then used an already optimized sequence-2-
sequence model to model the problem as a trans-
lation problem and effectively treating emoji as a
language.

The main advantage of using neural networks

for processing text is that the feature extraction
process and the classification (or structured pre-
diction process) can be optimized at the same time,
possibly resulting in better performance.

Embeddings Word embeddings — one of the
possible ways to extract feature from text —
turned out to be very helpful in NLP and some
of its properties (dense, high dimensional for-
mat) make it suitable to be used with neural net-
works. Baroni et al. (2014) have shown that word
embeddings almost always perform better when
compared to systems using the traditional bag-of-
words approach.

To create the embeddings for our experiments,
we used the Embedding layer provided in the
Keras framework. This method does not make use
of the most recent advancements in the field — as
those described in Mikolov et al. (2013) — but it
has the advantage of being fast and easily under-
standable.

3.3.1 Predicting Emojis with a Neural
Classifier

Using Keras, we set up a network with the struc-
ture represented in Figure 3. One way to inter-
pret this kind of modelling is to consider it as a
list of matrices. The first layer is the embedding
layer, where every node is a word, which is rep-
resented as an embedding; the 2 hidden layers are
what makes the model able to discover eventual
non-linear relationships; the last layer consists of
a softmax function that gives in output a vector of
probabilities: choosing the most probable class al-
lows to get the most probable emoji.

By making the second hidden layer smaller in
length than the external layers, the model implic-

472

itly performs a process of dimensionality reduc-
tion which allows it to eventually learn latent in-
formation (e.g. topic, style, etc.) present in the
data.

Furthermore, following the work of Srivastava
et al. (2014), we apply to our network a drop-out
layer in order to avoid over-fitting and improve the
capability of the network to generalize the results.

Figure 3: The structure of the neural network.

3.3.2 Seq2Seq Modelling
To some extent, we can say that emojis compress
— or tend to compress — all the meaning of the
English or Spanish texts that accompanies them.
This suggests that the problem can be modelled
as a translation problem, where the source lan-
guage is either English or Spanish and the target
language is the emoji language.

We use a state-of-the-art machine translation
system and consider our emoji-annotated text as
a parallel corpus, having English or Spanish as the
source language, and the emojis as the target lan-
guage.

We use the default network from the OpenNMT
framework. This network consists of 2 LSTM lay-
ers with 500 hidden units each; furthermore, this
implementation includes an attention layer that
weights the importance of the different words in
translating to the target language3.

We trained the same network for both English
and Spanish — building one model for each lan-
guage — and we got similar results, even though
the English dataset is considerably larger than the

3We use the PyTorch implementation: see https://
github.com/OpenNMT/OpenNMT-py

Spanish one. Surprisingly, the network learned for
both languages that the syntax of the emoji lan-
guage — so to say — specify that only one token
can be used for each sentence.

4 Evaluation

4.1 Metrics

In order to quantify our results for the shallow rep-
resentation models, we chose to use F-score as our
main metric, as F-score is fairly standard and gives
us a more unbiased view of the results.

With the dense representation and translation
models, we utilized accuracy and perplexity as
we could not extract precision and recall for these
models for time constraints and technical issues.
For the neural networks we did not perform cross-
validation since it would have been too costly to
perform; however, we use a development set dur-
ing training and we tested on a blind test set when
we finished training.

4.2 Results

Investigating the results of the experiments, we
were able to confirm some of our linguistic intu-
itions.

First, it is evident that the best model for both
the English and Spanish dataset based on macro
F1 score was the most complex SVM model using
tf-idf normalization, part-of-speech tagging and
bi-grams. We see that POS-tagging added a sub-
stantial increase when comparing the SVM+tfidf
model to the SVM + tfidf + 2grams model with
an increase of 11% and 5% in the English and
Spanish dataset respectively. This suggests that
POS-tagging provides key information that helps
the classifiers (at least SVMs).

However, dimensionality reduction — with n =
100 and n = 500 — did not prove to be as suc-
cessful as we had hypothesized. Instead, we found
that it had negative effects on the models as seen
in Table 1. This is likely because we remove too
much information that distinguishes the individual
classes.

Table 1 and Table 2 describe the results for En-
glish and Spanish respectively. The models were
trained and five-fold cross-validated with various
configurations4. Models with * were with the bal-

4The naming of each model is built in the following
way: classifier, feature extraction method, n-grams and po-
tential extra features. The following are the acronyms of the
configurations– NB: Naive-Bayes; SVM: Support Vector Ma-

473

anced dataset. The model submitted to the chal-
lenge has also been bolded for easy viewing.

Considering the neural models, we found out
that the best model using an SVM and bag-of-
words outperformed the more sophisticated neu-
ral classifier that we built. We believe that this is
due to either the hyper-parameters not being op-
timized. Our networks (emoji-nn-dp) has a struc-
ture that is very similar to the one implemented in
OpenNMT (except for the attention layer). About
OpenNMT: since we got development results that
are much higher that test results, we believe to
have over-fitted the model. For the OpenNMT net-
work we also report on perplexity since it is a ma-
chine translation system and that metric is reported
by default. Table 3 highlights the results of the
NN. The systems were tested on 100k tweets: we
tested our network on the English dataset only be-
cause of time constraints. We managed to test the
OpenNMT system on both English and Spanish5.

One of the most exciting things that we ob-
served from our experiments was the impact of the
skewed data on the models. In order to see what
effect the skewedness had on the data, we tested
the best unbalanced model by using a balanced
dataset for both languages using the the number
of tweets of the least frequent class.

This proved to be a huge success, as observed
in the confusion matrix in Figure 4c. As we can
see, there is a well-defined diagonal in the con-
fusion matrix as compared to the best unbalanced
model in Figure 4b, which shows that the balanced
model is more capable of classifying tweets for all
classes.

If we take a closer look at the matrix, we see that
some categories are not retrieved at all. Of partic-
ular interest are the heart emojis, represented in
categories 0, 3, 8 and 13 for the English dataset.
In the best unbalanced model, categories 8 and 13
(blue heart and purple heart) are completely miss-
ing while these are actually retrieved by the bal-
anced model. More interestingly, we see that there
is a bit of confusion between these four hearts in
the balanced model: we think that this is because
the distribution of words that co-occur with all of
the heart emojis overlap.

chines; tfidf: term-frequency inverse document frequency;
POS: part-of-speech tagged data; 2grams: bi-grams; SVD:
singular value decomposition.

5We are releasing both the OpenNMT systems and an hf5
version of our network with the model and the weights: this
will make it easy to reproduce the results without having to
train the network again.

In contrast, perhaps the most interesting obser-
vation in the balanced model is its success with
certain categories. For example, if we take an-
other closer look, we observe that the balanced
model performs well at classifying tweets with
the fire emoji, American flag, Christmas tree and
camera emojis. This is likely due to the fact that
these emojis, especially the American flag and
the Christmas tree, have very predictable distri-
butions. For example, the tweet ‘Things got a
little festive at the office #christmas2016 @ Re-
dRock. . . ’ may be easy to classify because of the
word ‘festive’ or because of the hashtag.

model accuracy precision recall macro F1
baseline (NB + bow) 0.30 0.39 0.30 0.21
NB + tfidf + POS + 2grams 0.24 0.57 0.24 0.13
SVM + bow 0.31 0.28 0.31 0.29
SVM + tfidf 0.33 0.30 0.33 0.30
SVM + tfidf + POS 0.43 0.41 0.43 0.41
SVM+ tfidf + 2grams 0.35 0.31 0.35 0.32
SVM+ tfidf + POS + 2grams 0.45 0.43 0.45 0.43
SVM + tfidf + POS + 2grams + SVD 0.31 0.23 0.31 0.23
NB + tfidf + POS + 2grams* 0.33 0.32 0.33 0.32
SVM + tfidf + POS + 2grams* 0.35 0.34 0.35 0.34

Table 1: Results of English Models.

model accuracy precision recall macro F1
baseline (NB + bow) 0.26 0.32 0.26 0.17
NB + tfidf + POS + 2grams 0.22 0.37 0.22 0.10
SVM + bow 0.23 0.21 0.23 0.21
SVM + tfidf 0.25 0.22 0.25 0.23
SVM + tfidf + POS 0.30 0.27 0.30 0.28
SVM + tfidf + 2grams 0.26 0.23 0.26 0.24
SVM + tfidf + POS + 2grams 0.31 0.28 0.31 0.29
NB + tfidf + POS + 2grams* 0.22 0.21 0.22 0.20
SVM + tfidf + POS + 2grams* 0.21 0.20 0.21 0.21

Table 2: Results of Spanish Models.

model accuracy perplexity
emoji-nn 38.71 -
emoji-nn-dp 34.23 -
OpenNMT-en 65.11 3.29
OpenNMT-es 71.02 3.28

Table 3: The Result of Neural Network Models.

4.3 Test Results

All the previous discussion about the results is
based solely on cross-validation (for the NB and
SVM based models) and validation data (for the
neural models). The results based on the test set
show that we ended up over-fitting the neural mod-
els and that the high-scores obtained during vali-
dation do not hold for the test set: the model that
looked like to be the best during validation (i.e.

474

(a) Baseline (b) Best unbalanced model (c) Balanced model

Figure 4: Confusion matrices of select English models.

OpenNMT-es, 71.02% accuracy) saw its perfor-
mance dropping by over 50%. From investigation
of the test set results, it seems that the loss in per-
formance may also be due to the fact that the trans-
lation model is conflating the different variation of
hearts with the more ‘plain’ red heart, as we ob-
serve this in the Spanish results.

5 Conclusions

To summarize, we performed several machine
learning experiments on an automatically created
corpus: we experimented with both traditional
bow models and with recent neural models. We
conclude that when optimized properly, the neural
models can outperform linear classifiers; also, we
have to note that training neural models requires a
significant amount of computational power, which
is not always available. When a big amount of
data is available, neural networks usually tend to
perform better than other models.

Due to time constraints, we did not perform a
systematic optimization of the hyper-parameters
of the models and instead we only tried some op-
tions that are know in the literature to work well
(e.g. using a linear kernel for the SVM, since
text data are usually linearly separable). Further-
more, we did not try using pre-trained embeddings
with neither models: in the future we plan to use
the Glove (Pennington et al., 2014) embeddings
trained on Twitter. In particular, the next major
experiment that we will try will be the following:
modelling the problem as an image description
problem. Considering the nature of the labels —
emoji — it is easy to see that they cannot be treated
as discrete indistinct labels, but instead they share
many features that are easy to represent visually:
as an example, we can clearly imagine that a cam-
era with flash and no flash or a purple and a red
heart are much more similar than, for instance, a

red heart and a smile. We had this idea during the
last stage of conducting our experiments and for
time reasons again we could not test this idea.

Acknowledgments

We are thankful to Amazon for providing us the
AWS Educate Grant that allowed us to conduct
all our experiments. Furthermore, this paper orig-
inates from an assignment for an exam at the Uni-
versity of Malta, where we are both enrolled as
students. We are thankful to our supervisors J.P.
Ebejer and Claudia Borg for their suggestions and
feedback. We also would like to thank our review-
ers for their detailed suggestions.

As an aside, we really wanted to find a name
for our system that would link our experiences in
Malta to this project and landed on tajjeb. Tajjeb is
Maltese for ‘good’, which we think accurately de-
picts our work here. If you’ve notice, ‘prediction’
begins with a ‘P’ and not a ‘B’, but we chose it as
it was the most appropriate word for the acronym
and because Maltese has word-final obstruent de-
voicing (thus reflecting how it actually sounds!)

References
Francesco Barbieri, Miguel Ballesteros, and Horacio

Saggion. 2017. Are emojis predictable? In Pro-
ceedings of the 15th Conference of the European
Chapter of the Association for Computational Lin-
guistics: Volume 2, Short Papers, pages 105–111.
Association for Computational Linguistics.

Francesco Barbieri, Jose Camacho-Collados,
Francesco Ronzano, Luis Espinosa-Anke, Miguel
Ballesteros, Valerio Basile, Viviana Patti, and
Horacio Saggion. 2018. SemEval-2018 Task 2:
Multilingual Emoji Prediction. In Proceedings of
the 12th International Workshop on Semantic Eval-
uation (SemEval-2018), New Orleans, LA, United
States. Association for Computational Linguistics.

475

Marco Baroni, Georgiana Dinu, and Germán
Kruszewski. 2014. Don’t count, predict! a
systematic comparison of context-counting vs.
context-predicting semantic vectors. In Proceedings
of the 52nd Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long
Papers), volume 1, pages 238–247.

Johan Bollen, Alberto Pepe, and Huina Mao. 2011.
Modeling public mood and emotion: Twitter sen-
timent and socio-economic phenomena. CoRR,
abs/0911.1583.

François Chollet et al. 2015. Keras. https://
github.com/keras-team/keras.

Bjarke Felbo, Alan Mislove, Anders Søgaard, Iyad
Rahwan, and Sune Lehmann. 2017. Using millions
of emoji occurrences to learn any-domain represen-
tations for detecting sentiment, emotion and sar-
casm. arXiv preprint arXiv:1708.00524.

G. Klein, Y. Kim, Y. Deng, J. Senellart, and A. M.
Rush. 2017. OpenNMT: Open-Source Toolkit for
Neural Machine Translation. ArXiv e-prints.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Gregory S.
Corrado, and Jeffrey Dean. 2013. Distributed repre-
sentations of words and phrases and their composi-
tionality. In NIPS.

Saif Mohammad, Svetlana Kiritchenko, Parinaz Sob-
hani, Xiao-Dan Zhu, and Colin Cherry. 2016. A
dataset for detecting stance in tweets. In LREC.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Pretten-
hofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Pas-
sos, D. Cournapeau, M. Brucher, M. Perrot, and
E. Duchesnay. 2011. Scikit-learn: Machine learning
in Python. Journal of Machine Learning Research,
12:2825–2830.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. Glove: Global vectors for word
representation. In Proceedings of the 2014 confer-
ence on empirical methods in natural language pro-
cessing (EMNLP), pages 1532–1543.

Chris Pool and Malvina Nissim. 2016. Distant supervi-
sion for emotion detection using facebook reactions.
CoRR, abs/1611.02988.

Matthew Purver and Stuart Adam Battersby. 2012. Ex-
perimenting with distant supervision for emotion
classification. In EACL.

Nitish Srivastava, Geoffrey E. Hinton, Alex
Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdi-
nov. 2014. Dropout: a simple way to prevent neural
networks from overfitting. Journal of Machine
Learning Research, 15:1929–1958.

Sida Wang and Christopher D Manning. 2012. Base-
lines and bigrams: Simple, good sentiment and topic
classification. In Proceedings of the 50th Annual

Meeting of the Association for Computational Lin-
guistics: Short Papers-Volume 2, pages 90–94. As-
sociation for Computational Linguistics.

476

Proceedings of the 12th International Workshop on Semantic Evaluation (SemEval-2018), pages 477–481
New Orleans, Louisiana, June 5–6, 2018. ©2018 Association for Computational Linguistics

SyntNN at SemEval-2018 Task 2: is Syntax Useful for Emoji Prediction?
Embedding Syntactic Trees in Multi Layer Perceptrons

Andrea Santilli
Department of Enterprise Engineering

University of Rome Tor Vergata
Italy

andrea.santilli@live.it

Fabio Massimo Zanzotto
Department of Enterprise Engineering

University of Rome Tor Vergata
Italy

fabio.massimo.zanzotto@uniroma2.it

Abstract

In this paper, we present SyntNN as a
way to include traditional syntactic mod-
els in multilayer neural networks used in
the task of Semeval Task 2 of emoji pre-
diction (Barbieri et al., 2018). The model
builds on the distributed tree embedder also
known as distributed tree kernel (Zanzotto and
Dell’Arciprete, 2012). Initial results are ex-
tremely encouraging but additional analysis is
needed to overcome the problem of overfitting.

1 Introduction

Syntactic models of language have always played
a crucial role in many natural language processing
tasks but, in recent years, it has been marginalized
by the advent of neural networks and in particular
long-short term memory (LSTM). These latter net-
works have had a tremendous impact on how lin-
guistic tasks are modeled and, sometimes, solved.

In this paper, we want to explore the use of “tra-
ditional” syntactic information within a neural net-
work framework in the task of Semeval Task 2 of
emoji prediction (Barbieri et al., 2018, 2017). We
propose SyntNN as a way to include traditional
syntactic models in multilayer neural networks.
The model builds on the distributed tree embed-
der also known as distributed tree kernel (Zanzotto
and Dell’Arciprete, 2012; Ferrone and Zanzotto,
2014; Zanzotto et al., 2015) that is a way to trans-
pose syntactic information in small vectors. Initial
results are extremely encouraging: SyntNN out-
performs syntax-unaware neural networks on the
trial set. Unfortunately, these promising results are
not confirmed on the test set. Hence, we analyzed
these results to try to understand why this has hap-
pened.

2 SyntNN: a Syntax-aware Multilayer
Perceptron

SyntNN is a simple, non-recurrent neural network
that aims to exploit traditional syntactic interpre-
tations of tweets in classification tasks. This net-
work wants to explore two questions: first, in-
vestigating whether “traditional” syntactic inter-
pretation can be used within neural networks and,
second, understanding if syntactic information is
useful in modeling tweets for the specific task of
emoji prediction.

The architecture of SyntNN is then organized
around two sub-networks (see Fig. 1): (1) a
syntactic sub-network and (2) a semantic sub-
network. These two sub-networks are then merged
to obtain the final classification layer.

The rest of the section describes the two sub-
networks and the merging layer.

2.1 Syntactic Subnetwork with a Distributed
Tree Embedding Layer

The syntactic subnetwork aims to take syntactic
interpretations of tweets and make them available
to a simple, non-recurrent neural network. The
key point is how to obtain the transformation of
the symbolic representation of syntactic trees into
tensor-based representations that have meaningful
properties.

The Distributed Tree Embedding Layer (DTE)
(see Fig. 1) is the core component of the syntactic
subnetwork. DTE is based on a technique to em-
bed the structural information of syntactic tree into
dense, low-dimensional vectors of real numbers
(Zanzotto and Dell’Arciprete, 2012; Ferrone and
Zanzotto, 2014; Zanzotto et al., 2015). This tech-
nique has been originated as a way to replace syn-
tactic kernel functions (Collins and Duffy, 2002)
in kernel machines (Cristianini and Shawe-Taylor,
2000) but it can be seen as a principled way to

477

Figure 1: MultiLayer Perceptron Architecture for Syntactic and Semantic Representation of Tweets.

insert syntactic information into vectors. In this
technique, tree are transformed into distributed
trees that are low dimensional vectors. These dis-
tributed trees build on the recently revitalized re-
search in Distributed Representations (DR) (Hin-
ton et al., 1986; Plate, 1994; Bengio, 2009; Col-
lobert et al., 2011; Socher et al., 2011).

DTE is a layer that maps trees into low-
dimensional vectors in a space Rd. This space is a
low dimensional space that embeds the space rep-
resenting trees according to their subtrees. DTE
is then represented as the following embedding
layer:

y =W (DTE)S(T) (1)

where S(T) = t is a onehot layer that maps trees
to vectors in the space of subtrees Rn andW (DTE)

d×n

is a transformation matrix that embeds the huge
space of subtrees Rn in a smaller space Rd.

DTE is based on the Johnson-Lindenstrauss
Tranform (JLT) (Johnson and Lindenstrauss,
1984; Dasgupta and Gupta, 1999) and it is not
learned. Using JLT, the layer DTE maps vectors
representing trees in the space of subtrees in vec-
tors in a reduced space where similarity is approxi-
mately preserved, that is, given two syntactic trees
T1 and T2 and given a ε, it is possible to find a
W for which, if Rd has a specific relation with Rn

(see (Dasgupta and Gupta, 1999)), this property
holds:

|t1−t2|−ε < |Wt1−Wt2| < |t1−t2|+ε (2)

where t1 = S(T1) and t2 = S(T2). Hence, the
space Rd embeds the space Rn of the subtrees.

However, directly producing a DTE with JLT is
unfeasible as the space of subtrees Rn is huge and
intractable.

Our solution is using the recursive model
for computing distributed trees (Zanzotto and
Dell’Arciprete, 2012; Zanzotto et al., 2015),
which empirically guarantees the property in
Equation 2. This model is a mapping function
that encodes trees in vectors by assigning random
vectors to node labels and by recursively comput-
ing vectors for subtrees by composing vectors for
nodes. The mapping function has a linear com-
plexity with respect to the size of the tree.

After the DTE, the syntactic subnetwork has
two dense layers with ReLU activation functions.
These dense layers should select subtrees that are
relevant for the final task of emoji prediction.

As it is designed, the syntactic subnetwork
should take into consideration the syntactic infor-
mation of tweets and it should be a valuable model
to experiment with syntactic information on the
task of emoji prediction.

2.2 Semantic Subnetwork with a
(Bag-of-)Word Embedding Layer

The semantic subnetwork is composed by a classic
multilayer perceptron (MLP) network that takes as
input tweets represented as xidf . These vectors
represent tweets in the following way. Each di-
mension represents a word w and, if a tweet con-
tains the word w, the dimension has the inverse
document frequency (idf) value of the word w,
otherwise it has a 0. Hence, the first layer of the
semantic subnetwork is a word embedding layer

478

working in the following way:

y = Exidf (3)

where E is a word embedding matrix. As word
embeddings, we used the Stanford’s Glove (twit-
ter 27B, 200d) for the English task and the word
embedding used in the paper How Cosmopolitan
Are Emojis?(Barbieri et al., 2016)1 for the Span-
ish task.

2.3 Merging Syntactic and Semantic
Subnetworks

The merging layer of the syntactic and semantic
subnetworks is composed by a concatenate layer
that concatenate the syntactic vector with the se-
mantic vector among the features axis. Then, a
batch normalization layer performs the operation
of batch normalization (Ioffe and Szegedy, 2015).
At the end a 20 units layer compute the emoji’s
probability through a softmax layer.

3 Experiments and Evaluation

3.1 Experimental Setting

To ensure replicability, this section fully describes
the implementation details of SyntNN (Fig. 1)
and the values of its metaparameters. Moreover, it
introduces the networks used for comparison and
the datasets used on the experiments.

For the Syntactic Subnetwork of SyntNN, we
used the Python implementation of the Distributed
Tree Encoder2. Tweets’ parse trees are obtained
by using Stanford’s CoreNLP3 probabilistic con-
text free grammar parser. Distributed trees are rep-
resented in a space Rd with d = 4000. Then,
the layer l1(synt) is composed of 5512 units. The
layer l2(synt) is a cascade of two dense layers com-
posed, respectively, of 2018 units and 1024 units.
All these tree layers have dropout 0.5 and a ReLU
activation function.

For the Semantic Subnetwork of SyntNN, we
used pretrained word embeddings as Stanford’s
Glove4 and the word embeddings given by the or-
ganizers of the task (Barbieri et al., 2016)5. The
rest of the semantic subnetwork is the following.
The first layer, the input layer I , is composed by

1https://github.com/fvancesco/acmmm2016
2https://github.com/lorenzoferrone/pyDTK
3https://stanfordnlp.github.io/CoreNLP/
4https://nlp.stanford.edu/projects/glove/
5https://github.com/fvancesco/acmmm2016

200/300 neurons. Each neuron take in input a di-
mension of the BoW vector. The number of in-
put neuron varies according to the word embed-
ding used: 200 if the word embedding used is
Glove; 300 if the word embedding used in the
other word embedding cited in the word embed-
ding section. The second layer l1(sem) consists
of 512 neurons, dropout 0.5 and ReLU activation
function. The third layer l2(sem) consists of 1024
neurons, dropout 0.5 and ReLU activation func-
tion.

To understand whether SyntNN positively uses
syntactic information, we compared our system
with two neural networks trained in compara-
ble conditions: (1) BOW-MLP and (2) BiLSTM.
BOW-MLP is basically the Semantic Subnetwork
of SyntNN without the Syntactic Subnetwork.
BiLSTM is a bidirectional LSTM (Huang et al.,
2015), which has been proven effective in many
natural language processing tasks. For the BiL-
STM, we used the same embedding layer used in
SyntNN, we used a recurrent layer of 100 Bidi-
rectional Long Short Term Memory (LSTM) neu-
rons with activation function tanh, recurrent ac-
tivation function hard sigmoid, recurrent dropout
and dropout probability 0.5 and weight l2 regular-
izer with λ = 0.01. The output layer is composed
by 20 neurons and activation function softmax.

All models are implemented using Keras li-
brary (Chollet et al., 2015) and run on tensorflow
(Abadi et al., 2015) back-end on different cuda
GPUs. Models are trained with Adam(Kingma
and Ba, 2014) gradient descent algorithm with
lr = 0.0001, β1 = 0.9, β2 = 0.999. The loss
function used is the categorical crossentropy func-
tion. The BOW-MLP model and SyntNN model
are trained for 140 epochs and batch size = 50,
while the BiLSTM model is trained for 18 epochs
and batch size = 50.

We performed our tests on the emoji prediction
dataset and we used the Macro F1 Score evaluator
provided by the organizers (Barbieri et al., 2018).
No additional datasets have been used.

3.2 Results and Analysis

Initial experiments (Table 1), performed using the
trial dataset as testing set, are extremely positive
with respect to our research question: syntactic
information is definitely important for both lan-
guages and SyntNN seems to be the good way
to represent syntactic relations among words. In

479

Figure 2: Loss comparison on English datasets.

Dataset BOW-MLP BiLSTM SyntNN
en 30.832 47.535 61.777
es 74.077 72.875 80.474

Table 1: Macro F1 score on the Trial Set.

Dataset BOW-MLP BiLSTM SyntNN
en 16.298 25.877 18.385
es 15.427 15.008 14.99

Table 2: Macro F1 score on the Test Set.

fact, SyntNN largely outperformed BOW-MLP in
both languages: 61.777 vs. 30.832 for the English
dataset (en) and 80.474 vs. 74.077 for the Spanish
dataset (es). Moreover syntactic information cap-
tured by SyntNN seems to be totally different and
more effective than the structural information ex-
ploited by recurrent neural networks as BiLSTMs.
SyntNN has different results with respect to BiL-
STM on both datasets with SyntNN outperforming
BiLSTM (61.777 vs. 47.535 for en and 80.474 vs.
72.875 for es). These results seem to show that
syntactic information is useful and distributed tree
embedders are a possible, effective way to take
into consideration syntactic information in multi-
layer perceptrons.

Surprisingly, results on the official test set did
not confirm results on the trial set (Table 2). The
first observation is that Macro F1 scores on the test
set are definitely lower of the results obtained with
different models on the trial set. Moreover, the rel-
ative rank among the models is not fully respected.
In fact, SyntNN outperforms BOW-MLP only for
the en dataset but it is definitely worser than BiL-
STM. Whereas, models are performing similarly
for the es dataset. The question is: Why? What
happened?

Dataset Test Trial
en 44.10% 19.81%
es 40.67% 7.21%

Table 3: Out-of-vocabulary words in the different
datasets.

We then tried to analyze where the poor results
on the test set came from. The first observation is
that unknown words in the test set (Table 3) are
larger than for the trial set for both datasets. The
unknown words on the test set is more than double
with respect to the unknown words in the trial for
the English dataset and more than 4 times for the
Spanish dataset. Test is definitely farer than trial
with respect to the training set. This seems to be
the first reason why results are poorer on the test
set. The second observation is on the degree of
overfitting. In fact, this seems to to be the major
problem of SyntNN and of the other two models
(see Fig. 2). By looking at the loss function, three
models largely overfit with respect to the epochs:
the loss functions on the train set and on the trial
set diverge. This can partially explain poor results.

However, to have a more in-dept analysis we
need to know what and how these networks are
modelling symbols in general and syntactic infor-
mation in particular.

4 Conclusions

In this paper we presented a way to include tra-
ditional syntactic information in neural networks
and we experimented with this model within the
emoji prediction task. Although results on the test
set does not confirm results on the trial set, this
approach is promising as it opens to an higher
explainability of decisions of the neural network
(Zanzotto and Ferrone, 2017).

480

References
Martı́n Abadi, Ashish Agarwal, Paul Barham, Eugene

Brevdo, Zhifeng Chen, Craig Citro, Greg S. Cor-
rado, Andy Davis, Jeffrey Dean, Matthieu Devin,
Sanjay Ghemawat, Ian Goodfellow, Andrew Harp,
Geoffrey Irving, Michael Isard, Yangqing Jia, Rafal
Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh
Levenberg, Dandelion Mané, Rajat Monga, Sherry
Moore, Derek Murray, Chris Olah, Mike Schus-
ter, Jonathon Shlens, Benoit Steiner, Ilya Sutskever,
Kunal Talwar, Paul Tucker, Vincent Vanhoucke,
Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals,
Pete Warden, Martin Wattenberg, Martin Wicke,
Yuan Yu, and Xiaoqiang Zheng. 2015. TensorFlow:
Large-scale machine learning on heterogeneous sys-
tems. Software available from tensorflow.org.

Francesco Barbieri, Miguel Ballesteros, and Horacio
Saggion. 2017. Are emojis predictable? In Pro-
ceedings of the 15th Conference of the European
Chapter of the Association for Computational Lin-
guistics: Volume 2, Short Papers, pages 105–111.
Association for Computational Linguistics.

Francesco Barbieri, Jose Camacho-Collados,
Francesco Ronzano, Luis Espinosa-Anke, Miguel
Ballesteros, Valerio Basile, Viviana Patti, and
Horacio Saggion. 2018. SemEval-2018 Task 2:
Multilingual Emoji Prediction. In Proceedings of
the 12th International Workshop on Semantic Eval-
uation (SemEval-2018), New Orleans, LA, United
States. Association for Computational Linguistics.

Francesco Barbieri, German Kruszewski, Francesco
Ronzano, and Horacio Saggion. 2016. How cos-
mopolitan are emojis?: Exploring emojis usage and
meaning over different languages with distributional
semantics. In Proceedings of the 2016 ACM on Mul-
timedia Conference, pages 531–535. ACM.

Yoshua Bengio. 2009. Learning deep architectures for
ai. Foundations and Trends in Machine Learning,
2(1):1–127.

François Chollet et al. 2015. Keras. https://
github.com/keras-team/keras.

Michael Collins and Nigel Duffy. 2002. New rank-
ing algorithms for parsing and tagging: Kernels over
discrete structures, and the voted perceptron. In Pro-
ceedings of the Conference of the Annual Meeting of
the Association of Computational Linguistics.

Ronan Collobert, Jason Weston, Léon Bottou, Michael
Karlen, Koray Kavukcuoglu, and Pavel Kuksa.
2011. Natural language processing (almost) from
scratch. Journal of Machine Learning Research,
12:2493–2537.

Nello Cristianini and John Shawe-Taylor. 2000. An In-
troduction to Support Vector Machines and Other
Kernel-based Learning Methods. Cambridge Uni-
versity Press.

Sanjoy Dasgupta and Anupam Gupta. 1999. An ele-
mentary proof of the johnson-linderstrauss lemma.
Technical Report TR-99-006, ICSI, Berkeley, Cali-
fornia.

Lorenzo Ferrone and Fabio Massimo Zanzotto. 2014.
Towards syntax-aware compositional distributional
semantic models. In COLING 2014, 25th Inter-
national Conference on Computational Linguistics,
Proceedings of the Conference: Technical Papers,
August 23-29, 2014, Dublin, Ireland, pages 721–
730.

Geoffrey E. Hinton, James L. McClelland, and
David E. Rumelhart. 1986. Distributed representa-
tions. In D. E. Rumelhart and J. L. McClelland, ed-
itors, Parallel Distributed Processing: Explorations
in the Microstructure of Cognition. Volume 1: Foun-
dations. MIT Press, Cambridge, MA.

Zhiheng Huang, Wei Xu, and Kai Yu. 2015. Bidirec-
tional lstm-crf models for sequence tagging. CoRR,
abs/1508.01991.

Sergey Ioffe and Christian Szegedy. 2015. Batch
normalization: Accelerating deep network train-
ing by reducing internal covariate shift. CoRR,
abs/1502.03167.

W. Johnson and J. Lindenstrauss. 1984. Extensions of
lipschitz mappings into a hilbert space. Contemp.
Math., 26:189–206.

Diederik P. Kingma and Jimmy Ba. 2014. Adam:
A method for stochastic optimization. CoRR,
abs/1412.6980.

Tony A. Plate. 1994. Distributed Representations and
Nested Compositional Structure. Ph.D. thesis.

Richard Socher, Eric H. Huang, Jeffrey Pennington,
Andrew Y. Ng, and Christopher D. Manning. 2011.
Dynamic pooling and unfolding recursive autoen-
coders for paraphrase detection. In Advances in
Neural Information Processing Systems 24.

F. M. Zanzotto and L. Ferrone. 2017. Can we explain
natural language inference decisions taken with neu-
ral networks? inference rules in distributed repre-
sentations. In 2017 International Joint Conference
on Neural Networks (IJCNN), pages 3680–3687.

Fabio Massimo Zanzotto and Lorenzo Dell’Arciprete.
2012. Distributed tree kernels. In Proceedings of In-
ternational Conference on Machine Learning, pages
193–200.

Fabio Massimo Zanzotto, Lorenzo Ferrone, and Xavier
Carreras. 2015. Decoding distributed tree struc-
tures. In Statistical Language and Speech Process-
ing, pages 73–83, Cham. Springer International Pub-
lishing.

481

Proceedings of the 12th International Workshop on Semantic Evaluation (SemEval-2018), pages 482–485
New Orleans, Louisiana, June 5–6, 2018. ©2018 Association for Computational Linguistics

Duluth UROP at SemEval-2018 Task 2: Multilingual Emoji Prediction
with Ensemble Learning and Oversampling

Shuning Jin and Ted Pedersen
Department of Computer Science

University of Minnesota
Duluth, MN 55812 USA

{jinxx596,tpederse}@d.umn.edu
https://github.com/shuningjin/SemEval2018-Task2-EmojiDetection

Abstract

This paper describes the Duluth UROP sys-
tems that participated in SemEval–2018 Task
2, Multilingual Emoji Prediction. We relied
on a variety of ensembles made up of classi-
fiers using Naive Bayes, Logistic Regression,
and Random Forests. We used unigram and
bigram features and tried to offset the skew-
ness of the data through the use of oversam-
pling. Our task evaluation results place us 19th
of 48 systems in the English evaluation, and
5th of 21 in the Spanish. After the evaluation
we realized that some simple changes to pre-
processing could significantly improve our re-
sults. After making these changes we attained
results that would have placed us sixth in the
English evaluation, and second in the Spanish.

1 Introduction

Emoji prediction of tweets is an emerging problem
(Barbieri et al., 2017) which combines the nuances
of sentiment analysis with the noisy data charac-
teristic of social media. SemEval–2018 Task 2
(Barbieri et al., 2018) adds to this the challenge of
multilingual processing, where both Spanish and
English tweets are used.

Given the relatively large amount of training
data available for the task (see Section 2) we de-
cided to approach this as a classification task,
where we used relatively simple unigram and bi-
gram features in combination with standard ma-
chine learning algorithms. We particularly fo-
cused on the use of Multinomial Naive Bayes,
Logistic Regression, and Random Forests, all of
which were provided to us via the scikit learn
package (Pedregosa et al., 2011). Given the chal-
lenging nature of this task we decided to employ
a variety of ensemble approaches, since no sin-
gle classifier seemed likely to perform well in all
cases.

In the sections that follow we summarize the ex-
perimental data used in the task, and then describe
the methods we employed for supervised learning,
ensemble building, and oversampling. We close
by interpreting and discussing our results.

2 Experimental Data

The task organizers created both training and test
data made up of Spanish and English tweets (sep-
arately). The training data consists of 100,000
Spanish tweets and 500,000 English tweets. The
test data is made up of 10,000 Spanish tweets and
50,000 English tweets. Each instance consists of
a single tweet, where 19 different emojis were ob-
served in the Spanish data, and 20 emojis were ob-
served in the English.

We collected the training tweets via the Twitter
API on November 10–11, 2017. By that time some
of the tweets selected by the organizers had been
deleted or made private, but we were still able to
download the vast majority of training tweets. For
English we downloaded 490,272 tweets, so 9,628
were unavailable. For Spanish we obtained 98,657
tweets, so 1,343 were unavailable.

One of the most striking aspects of this data
for both English and Spanish is that the num-
ber of classes (emojis) is relatively large (20 and
19 respectively), and that the distribution of these
classes is skewed. In the English training data the
most common emoji is which occurs 21.7% of
the time. The next most frequent emoji is which
occurs 10.5% of the time. The two emojis were
also the most frequent in the Spanish data, occur-
ring 19.9% and 13.7% of the time. By contrast 16
of the emojis occurred less than 5% of the time in
English, and 14 occurred less than 5% in the Span-
ish.

The evaluation measure used to rank systems in
this task is the F–measure, which rewards systems

482

that are able to predict instances in the low fre-
quency classes correctly. Given that we decided
to employ oversampling in order to try to improve
our results on the low frequency classes which had
the negative effect of degrading our performance
on the more frequent classes.

3 System Description

3.1 Preprocessing

First, the text is normalized to lowercase. In pre-
liminary experiments, we find that removing all
punctuations reduces performance, thus we de-
cided to only remove commas. In our task evalua-
tion experiments we removed all non-ASCII char-
acters, but then post–evaluation decided to keep
most of them. Then, we tokenize the tweets with
NLTK word tokenizer and identify unigrams and
bigrams as potential features. To reduce noise, a
document frequency cutoff of 5 is applied to sift
out unigram and bigram features that occur in at
least five tweets.

When applied to the English data, this process
results in 166,681 features, including 35,197 un-
igrams and 131,484 bigrams. The Spanish data
is made up of 40,420 features, including 12,356
unigrams and 28,061 bigrams. For text represen-
tation, we adopt the bag-of-words model. Each
tweet is converted to a vector based on n-grams by
Count Vectorizer.

3.2 Oversampling

Faced with the skewness of both the English and
Spanish tweets, we introduce oversampling to ad-
just the class distribution to reduce bias. We
use Synthetic Minority Oversampling Technique
(SMOTE), where the minority classes are over-
sampled by creating synthetic examples using k
nearest neighbors. We use imblearn in scikit-learn
library for oversampling.

In our case, all classes are resampled to have
equal number with the majority class . As a
result, the resampled Spanish data has a size of
373,825, with class size of 19,675, and English has
a size of 2,130,180, with class size of 106,509.

3.3 Base Classifier

We use scikit-learn library for the base classi-
fiers and the first-level ensemble classifier below.
And the second-level ensemble is constructed with
mlxtend library, which is compatible with scikit-
learn.

3.3.1 Multinomial Naive Bayes (MNB):
MNB is a probabilistic classifier based on inte-
ger feature counts. It is simple yet powerful for
text classification, especially for short documents
(Wang and Manning, 2012). To eliminate zero
counts, we use additive smoothing with a parame-
ter value of 0.5.

3.3.2 Logistic Regression (LR):
While NB assumes strong conditional indepen-
dence, LR is more robust to correlated features.
We use a LR with L2 regularization to reduce over-
fitting. It uses the one-vs-rest (OvR) scheme for
multiclass classification.

3.3.3 Random Forest (RF):
As an enhancement of decision tree, we use the RF
classifier, which ensembles a multitude of decision
trees. By fitting on sub-samples of the dataset, RF
improves accuracy and reduces overfitting by av-
eraging. We use 20 trees here.

3.4 Ensemble Classifier

We build an ensemble classifier to combine the
strengths of a collection of base models. The en-
semble method is soft voting, where the calibrated
member classifiers cast weighted votes for classes
based on predicted probabilities. The ensemble is
also a calibrated classifier, who can either predict
associated probabilities based on weighted sum, or
a class with maximum probability.

P (cj) =
∑

i∈ensemble

wiPi(cj) (1)

c = argmax
cj

P (cj) (2)

Our ensemble has two levels. On the base level,
we include a diverse collection of heterogeneous
classifiers: MNB, LR, RF, with weights (1.1,1,1)
for Spanish and (1.5,6,1) for English.

On the second level, we train the base ensem-
ble respectively on the original task data (Ensem-
ble1) and oversampled data (Ensemble2). On the
one hand, oversampling can adjust class distribu-
tion so that rare classes are well represented. On
the other hand, it may exacerbate overfitting prob-
lem in the context of noisy data, and consequently
harms accuracy. To seek a balance, we devise
a meta-ensemble classifier (Meta) including both
Ensemble1 and Ensemble2, with weights (3,1) for
Spanish and (4,1) for English.

483

Method F1 P R Acc.
Ensemble1 26.37 28.10 27.41 34.43

Meta 26.59 27.18 27.87 33.80

Table 1: English Task Evaluation Results

Method F1 P R Acc.
Ensemble1 16.59 18.03 17.84 29.67

Meta 16.75 17.11 18.10 28.51

Table 2: Spanish Task Evaluation Results

The weights for the ensembles were set in a
non-systematic fashion via trial and error. In fu-
ture work, we would like to arrive at these weights
in a more rigorous fashion.

3.5 Evaluation Metric
For individual classes, F1 score is calculated as:

F =
2Precision ·Recall

Precision+Recall

The overall classification performance of the sys-
tem is measured by macro-averaged F1 score:

Fmacro =
1

k

k∑

i=1

Fi

where k is total number of classes.

4 Results and Discussion

4.1 Task Evaluation
For task evaluation, our two submitted systems
are: Ensemble1 and Meta. The official results are
shown for English in Table 1 and Spanish in Table
2. Our overall F-score was competitive in both the
English (19th of 48) and Spanish tasks (5th of 21).

4.2 Post Evaluation
In post-evaluation experiments, we revised the
preprocessing by including most non-ASCII char-
acters and modified the weights assigned for en-
sembles. As a result, the system performance im-
proved greatly, which was largely attributed to the
changes in preprocessing.

The system was trained on the whole training
data, and tested with the official test data. We
show post-evaluation results for English in Table
3 and for Spanish in Table 4. The confusion ma-
trices of Meta classifier are shown in Figure 1 and
Figure 2.

Method F1 P R Acc.
MNB-P 30.21 30.78 31.58 42.22
LR-P 32.73 35.05 32.08 44.79
RF-P 24.49 30.13 24.41 39.01

Ensemble1-P 33.03 34.68 33.09 45.68
Ensemble2-P 31.85 31.38 33.14 42.08

Meta-P 33.31 34.14 33.61 45.58

Table 3: English Post-Evaluation Results

Method F1 P R Acc.
MNB-P 19.26 19.92 20.51 35.07
LR-P 18.43 20.98 18.28 35.23
RF-P 13.41 19.47 13.78 32.68

Ensemble1-P 19.58 21.13 20.51 37.05
Ensemble2-P 20.34 20.44 21.55 33.64

Meta-P 20.21 21.23 21.12 36.74

Table 4: Spanish Post-Evaluation Results

In the task evaluation we eliminated all non-
ASCII characters during preprocessing. After
the evaluation period we realized that this re-
sulted in a significant loss of accuracy. We re-
vised our preprocessing for our post-evaluation
experiments and only removed the following non-
ASCII characters (shown as Unicode value, de-
scription): (U+00B7, middle dot), (U+2019, right
single quotation mark), (U+2018, left single quo-
tation mark), (U+2022, bullet), (U+2026, horizon-
tal ellipsis), and (U+30FB, katakana middle dot).

Preserving non-ASCIIs is important for both
languages. Spanish using MNB has a F-score of
16.77 without non-ASCII and 19.08 when pre-
serving all, and English has 25.47 without non-
ASCII and 30.00 when including. While their im-
portance for Spanish is apparent as accents are
ubiquitous in Latin languages, their function for
English is relatively vague. Nevertheless, they are
clearly providing useful information in the tweets.

4.3 Discussion

In this section, we will discuss the results based on
post-evaluation.

Ideally, we would hope an ensemble would out-
perform all of its components. Its performance
counts on the accuracy and diversity of the mem-
bers. While NB and LR are linear classifiers, RF
is nonlinear. Also, the actual performance is sen-
sitive to the assigned voting weights. Initially, we
get a rough estimation based on individual per-

484

Figure 1: English Meta Confusion Matrix

formances, especially accuracy. For both English
and Spanish, RF has a notable inferior score, so
lower weight is expected. Then we manually per-
form experiments to find better weights. Due to
the large size of data, it is computationally ex-
pensive to perform grid search. In the future, we
would like to investigate if other automated meth-
ods could find optimal hyper-parameters more ef-
ficiently.

By fitting the ensemble with oversampled data,
the overall accuracy drops. However, the rare
classes originally with low F-scores gain an in-
crease. This is desirable as we attempt to maxi-
mize the overall classification performance for all
classes, which is measured by macro-averaged F.
In considering the weights in Meta, we perceive
Ensemble1 a more reliable source as it shows no-
tably higher accuracy. Meta tends to outperform
Ensemble1 in F-score.

It is worth mentioning that the baseline classi-
fiers like MNB and LR have robust performance
compared to other more complex systems. This
suggest that improvement from ensembles may be
limited for this challenging problem, and new per-
spectives are necessary.

Additionally, there are some interesting obser-
vations from the confusion matrices. For English
tweets, is frequently misclassified as . And
there is apparent confusion between and . For
Spanish tweets, has highest accuracy. Mean-
while, many other emojis are misclassified to this
label, typical ones including , , and .

Figure 2: Spanish Meta Confusion Matrix

Acknowledgments

The first author is grateful for the support of the
Undergraduate Research Opportunity Program at
the University of Minnesota.

References
Francesco Barbieri, Miguel Ballesteros, and Horacio

Saggion. 2017. Are emojis predictable? In Pro-
ceedings of the 15th Conference of the European
Chapter of the Association for Computational Lin-
guistics, EACL 2017, Valencia, Spain, April 3-7,
2017, Volume 2: Short Papers, pages 105–111.

Francesco Barbieri, Jose Camacho-Collados,
Francesco Ronzano, Luis Espinosa-Anke, Miguel
Ballesteros, Valerio Basile, Viviana Patti, and
Horacio Saggion. 2018. SemEval-2018 Task 2:
Multilingual Emoji Prediction. In Proceedings of
the 12th International Workshop on Semantic Eval-
uation (SemEval-2018), New Orleans, LA, United
States. Association for Computational Linguistics.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Pretten-
hofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Pas-
sos, D. Cournapeau, M. Brucher, M. Perrot, and
E. Duchesnay. 2011. Scikit-learn: Machine learning
in Python. Journal of Machine Learning Research,
12:2825–2830.

Sida Wang and Christopher D. Manning. 2012. Base-
lines and bigrams: Simple, good sentiment and
topic classification. In Proceedings of the 50th An-
nual Meeting of the Association for Computational
Linguistics: Short Papers - Volume 2, ACL ’12,
pages 90–94, Stroudsburg, PA, USA. Association
for Computational Linguistics.

485

Proceedings of the 12th International Workshop on Semantic Evaluation (SemEval-2018), pages 486–490
New Orleans, Louisiana, June 5–6, 2018. ©2018 Association for Computational Linguistics

CENNLP at SemEval-2018 Task 2: Enhanced Distributed Representation
of Text using Target Classes for Emoji Prediction Representation

Hariharan V, Naveen J R, Barathi Ganesh H. B., Anand Kumar M, Soman K P
Center for Computational Engineering and Networking (CEN)

Amrita School of Engineering, Coimbatore
Amrita Vishwa Vidyapeetham, India

cb.en.p2cen16007@cb.students.amrita.edu,
barathiganesh.hb@gmail.com , m anandkumar@cb.amrita.edu

Abstract

Emoji is one of the ”fastest growing language
” in pop-culture, especially in social media and
it is very unlikely for its usage to decrease.
These are generally used to bring an extra level
of meaning to the texts, posted on social me-
dia platforms. Providing such an added info,
gives more insights to the plain text, arising to
hidden interpretation within the text. This pa-
per explains our analysis on Task 2, ” Multilin-
gual Emoji Prediction” sharedtask conducted
by Semeval-2018. In the task, a predicted
emoji based on a piece of Twitter text are la-
belled under 20 different classes (most com-
monly used emojis) where these classes are
learnt and further predicted are made for un-
seen Twitter text. In this work, we have exper-
imented and analysed emojis predicted based
on Twitter text, as a classification problem
where the entailing emoji is considered as a la-
bel for every individual text data. We have im-
plemented this using distributed representation
of text through fastText. Also, we have made
an effort to demonstrate how fastText frame-
work can be useful in case of emoji prediction.
This task is divided into two subtasks, they are
based on dataset presented in two different lan-
guages English and Spanish.

1 Introduction

The consumption of technology in industry deliv-
ers potential tools for communication. Messaging
has turned into a critical method of communica-
tion all through the world and is expanding at a
quick rate. Adding emoji in the text convey lit-
tle more information about the person’s emotion,
which otherwise is absent in the normal text. Emo-
tions contents of text is better expressed by usage
of emojis. Emojis are fundamentally kind of im-
age which are logically connected with the writ-
ten text. Tweets and online social media platforms
are investigated to assess the emotion depth of the

several issues for sentiment analysis and Opinion
mining in natural language platform. In recent
times, the interest in theses area received is very
much increased and made several classifications
which are polarity based classification such as pos-
itive, negative and neutral. In case of emojis cer-
tain remarkable studies on emoji sematic and us-
age find out in papers (Aoki and Uchida, 2011)
Relevant study into emoji (Barbieri et al., 2018)
are limited in number. The common exploration
about emoji has inspired (Barbieri et al., 2017) on
descriptive analysis or used them as a indication
the emotional affect (Rathan et al., 2017) on so-
cial media. That is too restricted in face emojis.

2 Corpus

The shared task (Barbieri et al., 2018)provided 20
most commonly used emojis in tweets English as
well as Spanish. That are distinct in nature for En-
glish and Spanish corpus (Barbieri et al., 2016).
For the simplicity the corresponding emojis are la-
belled from 0 to 19. The data given for the task
is 500k tweet ids for Spanish and 1000k tweet
ids for English. Using the tweet ids, tweets are
crawled from twitter using 4 different accounts.
The crawled data was in JSON format, the raw
data from twitter is prepocessed and the labelled
data is converted into format suitable for the learn-
ing algorithm. For tuning the hyperparameters of
the model 20% from the training data set is made
into validation set and only the rest 80% is used
for the training the model.

3 Related Works

Any mathematical system or an algorithm need
some form of numeric representation to work
with. One of most naive way of representing word
in vector form is one hot representation but it is
very ineffective way for representing words in a

486

large corpus since the length of one hot vector
grows as the vocabulary increases, so we need
a better and more effective way which captures
some semantic similarities (Ganesh et al., 2016)
between nearby words, thus creating the represen-
tation for words bring beneficial info about the
word and its actual meaning, the methods which
encodes these information about the words are
called word embedding models, they are catego-
rized into count based and predictive word em-
bedding models. Both embedding models at least
some way share syntactic meaning (Soman et al.,
2016). But count based word embedding models
does not preserve the word order and learn about
word semantics

Predictive models attempts to calculate the
word vector which captures the both syntactic and
semantic meaning (Ganesh H. B. et al., 2016) of
the word. This is done by calculating the softmax
of the word over the context window. The word
embeddings provided by the predictive model not
only gives a representation for words but it is also
able to learn word similarities and interesting word
analogies like ”king”-”man”+”woman”=”queen”.
The wor2vec and glove models are the popular
predictive models used to learn the word embed-
dings in many NLP pipelines.The disadvantage of
above predictive models are they does not form
a sentence representation and morphology of the
words is not considered. These shortcomings
are overcome the FastText framework which is
a recent development in predictive model. (Bo-
janowski et al., 2016) presented the fastText em-
beddings, which is devolopment on the word2vec
model. Since FastText is considering the char n-
gram of the words it learns a good representation
for words when compared to word2vec embed-
dings.

4 Methodology

This work explores the FastText Framework for
text classification. It is a fast and lightweight im-
plementation written in C++ to learn word embed-
ding. FastText is a unified framework for text rep-
resentation and text classification.

Generally text classification is done to cate-
gories the class of sentences or documents for task
such as sentiment analysis, spam detection etc. In
these tasks vector representation is assigned either
to the words, sentences or documents depending
upon the task. There are various methods for get-

Figure 1: FastTex architecture for emoji and classifica-
tion.

ting the vector representation. In this work us-
ing distributed representation, the word embed-
ding is assigned to the words in the vocabulary
over the corpora. In FastText framework for doing
text classification it extends the concept of Con-
tinuous Bag Of Words (CBOW) model introduced
word2vec model. Since fastText is improvised
version of word2vec model so to get a good un-
derstanding the full word2vec

The word2vec model by proposed by (Mikolov
et al., 2013) is shallow neural network architec-
ture, where word embedding is learnt in an un-
supervised fashion. It was proposed in the paper
Distributed Representations of Words and Phrases
and their Compositionality. This paper proposed
two architectures for learning the word embed-
dings, they are continuous bag of words(CBOW)
and skip-gram. In the continuous bag of words ar-
chitecture given the surrounding words, the centre
word is predicted, while in the skip gram model
given the center word, the context word is pre-
dicted.

In a CBOW architecture, as in the figure 1. Let
us consider this example sentence we built a sand-
castle in the beach in this sentence every word is
predicted by taking the surrounding words in the
window as the input and softmax is applied over
the output to predict the corresponding word (Po-
ria et al., 2016). To reduce the computational com-
plexity of the softmax with large vocabulary, two
techniques namely negative sub sampling and hi-
erarchical softmax are applied.

In FastText, for text classification CBOW archi-
tecture of Word2vec is slightly modified to form
a representation of sentences or document. In
Bag of words (BOW), instead of predicting the
center word given the context words, the center

487

word is flipped with the label which it is associ-
ated to. Then the softmax is applied over the pre-
defined class. For N set of classes the negative
log-likelyhood is given by

−1
N

N∑

n=1

ynlog(

∫
(BAxn))

where y are the labels and x is the normalized
bag of words feature. B and A are the weight
matrix from the hidden layer. The BOW does
not take the word order into consideration, which
otherwise may increase the computation complex-
ity of the model. The word2vec does not pre-
dict the word which it has not seen in the train-
ing time, to overcome this char N-gram is done
within the word and it is given (Brown et al.,
1992) to model during training along with word
to overcome the unknown words at the test time.
The model is trained with a decaying learning rate
using stochastic gradient decent. The hierarchi-
cal softmax can come in very handy if the no of
classes is very large, it basically works like a bi-
nary search tree, all the classes are arranged using
the Huffmans encoding. By selecting the element
in the tree, the search space for the class get re-
duced into half at each node, this brings the com-
putation complexity in the order of log.

5 Result

Hyperparameter English Spanish
corpus corpus

learning rate 0.1 0.1
dimension 200 100
window size 3 4
word n-gram 1 1
loss softmax softmax
neg 10 10

Table 1: Hyper parameters for english and spanish.

In this work, a classifier based on fast text
framework is applied on the Sem-Eval 2018 task
2 emoji detection data set, the classifier is trained
to predict the emoji on the English emoji corpus
and Spanish corpus. Our team got placed in the
21th position in the English corpus and 13th po-
sition on the Spanish corpus. To make our model
perform better we evaluated the classifiers hyper-
parameter with various values and found the fol-
lowing hyper-parameter values to best performing
on the English and the Spanish emoji corpus.

Emo P R F1 %
80.56 80.24 80.4 21.6
24.61 48.55 32.67 9.66
29.1 59.86 39.16 9.07
23.57 24.34 23.95 5.21
45.29 43.97 44.62 7.43
11.1 12.46 11.74 3.23
19.88 13.18 15.85 3.99
29.41 19.28 23.29 5.5
23.71 8.59 12.61 3.1
17.98 12.85 14.99 2.35
31.19 48.67 38.01 2.86
43.58 38.99 41.16 3.9
63.2 42.77 51.01 2.53
35.48 0.99 1.92 2.23
14.75 2.45 4.2 2.61
22.6 11.17 14.95 2.49
12.04 1.13 2.06 2.31
65.03 59.09 61.92 3.09
39.31 8.9 14.51 4.83
0.0 0.0 0.0 2.02

Table 2: Precision, Recall, F-measure and percentage
of occurrences in the test set of each emoji for english.

Emo P R F1 %
59.47 65.58 62.37 21.41
24.32 49.08 32.53 14.08
38.07 60.37 46.7 14.99
10.66 5.97 7.65 3.52
13.22 11.67 12.4 5.14
25.48 13.35 17.52 3.97
25.07 28.01 26.46 3.07
10.91 1.32 2.36 4.53
6.58 5.56 6.02 1.8
26.39 41.51 32.26 4.24
18.75 2.65 4.65 3.39
0.0 0.0 0.0 4.13
0.0 0.0 0.0 2.35
0.0 0.0 0.0 2.74
0.0 0.0 0.0 0.93

35.56 7.69 12.65 4.16
15.69 15.09 15.38 2.12
0.0 0.0 0.0 1.34
0.0 0.0 0.0 2.09

Table 3: Precision, Recall, F-measure and percentage
of occurrences in the test set of each emoji for spanish.

488

Figure 2: Confusion matrix set of each emoji for En-
glish.

Figure 3: Confusion matrix set of each emoji for Span-
ish.

6 Conclusion and Future Scope

Every year we see a no of new words being added
to the dictionary, most of these new words are the
result of new culture trends, the same is applica-
ble with the emojis, which expresses them visu-
ally and it is important for us to study its occur-
rence along with text in social media to better un-
derstand the sense of the message. A classifier
trained on predicting the emoji from text is sig-
nificant for understanding the interaction of emoji
with the text. In this work a emoji is predicted for
the sentences in English and Spanish using fast-
Text framework which is known for being compu-
tationally efficient and the learned word represen-

tation is on par word representation learned from
the standard models like Word2vec.

In this work, a single emoji is predicted for the
sentence and since people usually people tend to
use more the one emoji in tweets, comments and
posts, so we can also extend this problem to a
multi-label classification problem.

References
Sho Aoki and Osamu Uchida. 2011. A method for

automatically generating the emotional vectors of
emoticons using weblog articles. In Proceedings
of the 10th WSEAS International Conference on
Applied Computer and Applied Computational Sci-
ence, ACACOS’11, pages 132–136, Stevens Point,
Wisconsin, USA. World Scientific and Engineering
Academy and Society (WSEAS).

Francesco Barbieri, Miguel Ballesteros, and Horacio
Saggion. 2017. Are emojis predictable? In Lapata
M, Blunsom P, Koller A, editors. 15th Conference of
the European Chapter of the Association for Compu-
tational Linguistics; 2017 Apr 3-7; Valencia, Spain.
Stroudsburg (PA): ACL; 2017. p. 105-11. ACL (As-
sociation for Computational Linguistics).

Francesco Barbieri, Jose Camacho-Collados,
Francesco Ronzano, Luis Espinosa-Anke, Miguel
Ballesteros, Valerio Basile, Viviana Patti, and
Horacio Saggion. 2018. SemEval-2018 Task 2:
Multilingual Emoji Prediction. In Proceedings of
the 12th International Workshop on Semantic Eval-
uation (SemEval-2018), New Orleans, LA, United
States. Association for Computational Linguistics.

Francesco Barbieri, Luis Espinosa-Anke, and Horacio
Saggion. 2016. Revealing patterns of twitter emoji
usage in barcelona and madrid. Frontiers in Arti-
ficial Intelligence and Applications. 2016;(Artificial
Intelligence Research and Development) 288: 239-
44.

Piotr Bojanowski, Edouard Grave, Armand Joulin,
and Tomas Mikolov. 2016. Enriching word vec-
tors with subword information. arXiv preprint
arXiv:1607.04606.

Peter F Brown, Peter V Desouza, Robert L Mercer,
Vincent J Della Pietra, and Jenifer C Lai. 1992.
Class-based n-gram models of natural language.
Computational linguistics, 18(4):467–479.

HB Barathi Ganesh, M Anand Kumar, and KP Soman.
2016. From vector space models to vector space
models of semantics. In Forum for Information Re-
trieval Evaluation, pages 50–60. Springer.

Barathi Ganesh H. B., M. Anand Kumar, and K. P. So-
man. 2016. Statistical semantics in context space :
Amrita cen@author profiling. In CLEF.

489

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013. Distributed representa-
tions of words and phrases and their compositional-
ity. In Advances in neural information processing
systems, pages 3111–3119.

Soujanya Poria, Erik Cambria, and Alexander Gel-
bukh. 2016. Aspect extraction for opinion min-
ing with a deep convolutional neural network.
Knowledge-Based Systems, 108:42–49.

M Rathan, Vishwanath R Hulipalled, KR Venugopal,
and LM Patnaik. 2017. Consumer insight mining:
aspect based twitter opinion mining of mobile phone
reviews. Applied Soft Computing.

KP Soman et al. 2016. Amrita cen at semeval-
2016 task 1: Semantic relation from word embed-
dings in higher dimension. In Proceedings of the
10th International Workshop on Semantic Evalua-
tion (SemEval-2016), pages 706–711.

490

Proceedings of the 12th International Workshop on Semantic Evaluation (SemEval-2018), pages 491–496
New Orleans, Louisiana, June 5–6, 2018. ©2018 Association for Computational Linguistics

Manchester Metropolitan at SemEval-2018 Task 2: Random Forest with
an Ensemble of Features for Predicting Emoji in Tweets

Luciano Gerber
School of Computing, Mathematics

and Digital Technology
Manchester Metropolitan University

l.gerber@mmu.ac.uk

Matthew Shardlow
School of Computing, Mathematics

and Digital Technology
Manchester Metropolitan University

m.shardlow@mmu.ac.uk

Abstract

We present our submission to the Semeval
2018 task on emoji prediction. We used a ran-
dom forest, with an ensemble of bag-of-words,
sentiment and psycholinguistic features. Al-
though we performed well on the trial dataset
(attaining a macro f-score of 63.185 for En-
glish and 81.381 for Spanish), our approach
did not perform as well on the test data. We
describe our features and classification proto-
col, as well as initial experiments, concluding
with a discussion of the discrepancy between
our trial and test results.

1 Introduction

Written digital communication is increasingly per-
vaded by the use of emoji. Classic NLP sys-
tems are not well geared to handle them. Lin-
guists are still working out how to treat them
(Stark and Crawford, 2015; Danesi, 2016). Even
their users may disagree on meaning (Tigwell and
Flatla, 2016; Miller et al., 2016). A simple ap-
proach could be to ignore all emoji and concen-
trate on the words of a text, however this approach
may miss valuable meaning that can be obtained
by treating the emoji as semantic units.

The emoji prediction task (Barbieri et al., 2018,
2017), encourages research into the creation of
text classification systems which can identify
which emoji was present in a tweet. This could
lead to automated suggestion systems for emoji,
as well as improving the NLP communities under-
standing of how to deal with emoji computation-
ally.

2 Data Acquisition + Preprocessing

The dataset was compiled between October 2015
and May 2016 (Barbieri et al., 2018). Training,
trial, and test data emerge from a 80:10:10 split
based on chronological order. We followed the

Emoji top 5 words
love heart my family ve
obsessed wcw heaven foodporn view
lmao funny lmfao lol hilarious
pink breast sanfranciscoengagement loveal-
waysyje strides
lit fire mixtape heat flames
802-3037 dickensfranklin dickensofachrist-
mas bagsbycab 7171
sunglasses shades cool risky coolin
sparkle magical pixie magic getonshimmur
royals autism bbn autismspeaks forever-
royal
kisses kiss princessmailyana smooches
smooch
: :@ bvillain shredforaliving gdlfashion
merica usa ivoted imwithher election2016
sunshine sun sunny soakin beachin
purple endalz purplerain alzheimer’s relay
mividaesunatombola multi-level silver-
criketgentlemensclub azek wink
facts rns realtalk salute t3t
djsty cheesin braces strasberg fcpx
christmas merry christmastree tree tis
opus : :@ grigsby cred
martian neh silly cray jewelrydesigner

Table 1: The top 5 words according to our class occur-
rence features for each emoji.

organisers instructions to obtain the training data,
however we were only able to extract 491,486
tweets as some had been removed by their authors.
We tokenised the tweets using the NLTK tweet to-
keniser (Bird et al., 2009), but did not perform any
further normalisation.

491

3 Features

3.1 Word-Class Occurrences

We created a set of features that describe which
words occur with each emoji. We created a map
describing how often each token occurred along-
side each class. Let V be the vocabulary in terms
of tokens. Let C be the number of total classes,
where each class represents one emoji. We cre-
ated a matrix M with size |V |×|C| such that each
element Mi,j indicates the number of times that to-
ken Vi occurs with class Cj . This allowed us to see
whether one token occurred mostly in the context
of one or two classes, or whether it occurred with
similar frequency across all classes. This metric is
similar to document frequency in information re-
trieval.

To further improve our metric, we applied a
normalisation transformation to the rows (scaling
each row by the total size of the row):

M ′
ij =

Mij

|C|∑
k=1

Mik

This method favoured lower frequency terms
(i.e., a hashtag that occurs only a few times with
one emoji), so we applied a further transformation
to multiply each row by the log frequency of oc-
currence of the token:

M ′′
ij = M ′

ij ×
|C|∑

k=1

lnMik

These features produced intuitive results. The
top words for a few select classes are as fol-
lows (: love, heart, my, family; : sunglasses,
shades, cool; : christmas, merry, #christmas-
tree)

These features are at the token level, however
our classification labels are at the level of the sen-
tence. To convert these features to the sentence
level, we used two strategies: average and max.
We calculated the average vector as the mean of
all token vectors in a tweet. We calculated the max
vector by taking the highest value across all tokens
for each class. This led to 40 features (20 for av-
erage and 20 for max).

3.2 Sentiment

We employed Vader (Gilbert, 2014), a lexicon-
and rule-based sentiment detection system to de-

rive a set of sentiment features. Vader fash-
ions features, at sentence level, for positive, neu-
tral, and negative polarities ranging from 0 to
1 and representing intensity. It also produces a
combined sentiment score, with values between
-1 (negative) and 1 (positive), where values in
[−0.5, 0.5] denote neutrality.

3.3 Psycholinguistic Features

We used the MRC psycholinguistic norms (im-
agery, concreteness, familiarity, meaningfulness,
age of acquisition) (Coltheart, 1981) as token level
features. These were averaged to give tweet level
features in our classification scheme.

3.4 LIWC

We used the latest version of the Linguistic Inquiry
Word Count (Tausczik and Pennebaker, 2010) sys-
tem, LIWC2015, to produce a large set of features,
at sentence level, concerning emotional, cognitive,
and structural components derived from the texts.
As shown in Table 2, our experiments with those
features, arranged into different subsets, did not
produce any significant improvement; therefore,
we decided not to include those in our submis-
sions.

4 Results

We performed subset analyses to determine the
best feature grouping. In Table 2, we show our
results for different feature sets when training on
the training data and testing on the trial data.

We also optimised the number of trees in our
random forest, finding 225 to be the best value for
this parameter.

Table 3 shows the detailed classification re-
port (precision, recall, F1, and support, by
class), and Figure 1 displays the confusion
heatmap for our best submission on the En-
glish test dataset. Our system ranked 24th,
with a macro-averaged F1-score of 24.982
(n=48, median=23.919, min=2.038, max=35.991,
Q1=18.278, Q3=28.410).On the Spanish chal-
lenge, our best submission (using only the
average class-occurrence features) ranked 8th,
with a macro-averaged F1-score of 16.338
(n=21, median=14.912, min=3.896, max=22.364,
Q1=10.892, Q3=16.696) (see Table 4 and Figure
2 for detailed performance). For lack of space, we
restrict our subsequent error analysis and findings

492

Features Macro F1
Avg class occurrence, Vader, Topic-20, Avg MRC 0.6299
Avg class occurrence 0.6273
Max class occurrence 0.6266
Vader 0.1290
Topic-20 0.1126
Avg MRC 0.4922
LIWC 0.0425
Vader, Topic-20, Avg MRC 0.3530
Avg class occurrence, Topic-20, Avg MRC 0.6295
Avg class occurrence, Vader, Avg MRC 0.6319
Avg class occurrence, Vader, Topic-20 0.6287
Avg class occurrence, Vader 0.6301
Vader, Avg MRC 0.5211
Avg class occurrence, Avg MRC 0.6287
Max class occurrence, Avg class occurrence, Vader, Avg MRC *0.6358
Max class occurrence, Avg class occurrence, Vader, Max MRC, Avg MRC 0.6352
Max class occurrence, Avg class occurrence, Vader, Max MRC 0.6355
Max class occurrence, Avg class occurrence, Vader, Avg MRC, LIWC 0.5400

Table 2: Analysis of different feature subsets. Score is reported as Macro F1 throughout. The best performing
feature subset (which we used in our experiments) is marked with an asterix.

Figure 1: Confusion Heatmap For English Test Data

to the English challenge. However, these gener-
alise to Spanish.

The F1-score on the test data was much lower
than that on the trial data (63.185). We hypoth-
esise that this discrepancy might be largely due
to (1) our system overfitting the training data and
to (2) a test dataset whose class distribution and
discriminant features differ in some measure from
those of training and trial.

Figure 4 shows the class (i.e., emoji ranks)
distributions on trial and test data. With re-
spect to training (omitted here for brevity) and
trial data, the shape of the distributions match al-

Emo P R F1 %
35.23 62.97 45.18 21.6
27.9 25.51 26.65 9.66
33.0 50.64 39.96 9.07
20.41 4.18 6.94 5.21
51.71 45.16 48.21 7.43
10.36 5.7 7.36 3.23
19.63 13.33 15.88 3.99
30.49 17.06 21.88 5.5
24.81 6.33 10.08 3.1
17.45 4.09 6.62 2.35
26.34 37.99 31.11 2.86
60.64 52.8 56.45 3.9
32.76 40.47 36.21 2.53
26.28 6.46 10.37 2.23
13.27 5.59 7.87 2.61
28.65 20.34 23.79 2.49
13.45 5.2 7.5 2.31
59.81 72.43 65.52 3.09
37.89 21.1 27.11 4.83
8.68 3.47 4.95 2.02

Table 3: Detailed Precision, Recall, F-measure, and
Support for English Test Data

493

Emo P R F1 %
32.54 48.44 38.93 21.41
27.77 30.82 29.22 14.08
42.11 53.77 47.23 14.99
8.84 5.4 6.7 3.52

11.13 11.28 11.21 5.14
20.0 11.08 14.26 3.97

30.93 43.32 36.09 3.07
13.48 9.49 11.14 4.53
11.26 9.44 10.27 1.8
47.63 35.61 40.76 4.24
16.26 9.73 12.18 3.39
15.12 3.15 5.21 4.13
3.03 0.85 1.33 2.35
7.88 4.74 5.92 2.74
3.51 2.15 2.67 0.93

20.42 9.38 12.85 4.16
18.93 18.4 18.66 2.12
1.56 0.75 1.01 1.34
6.4 3.83 4.79 2.09

Table 4: Detailed Precision, Recall, F-measure, and
Support for Spanish Test Data

Figure 2: Confusion Heatmap For Spanish Test Data

most perfectly. Also, to a large degree, they are
rank-preserving.1 This is in contrast to the class
distribution of the test data, which is not rank-
preserving, particularly for those labels in the long
tail (i.e., below the three most frequent).

From the classification report (Table 3) and the
confusion heatmap (Figure 1) on the test data,
one could infer, firstly, that our system revealed a
propensity for predicting the most frequent emoji,
particularly , , and (accounting for about
40% of the data), which can be noticed from
the consistent high values on the three left-most
columns of the heatmap. Consequently, those
within the surroundings of the peak of the class
distribution, almost consistently, had recall signif-
icantly higher than precision.

For the majority of lower-support emoji, the
system had a hard time in separating classes
and quite frequently opted for higher-support
ones. Secondly, it conflated classes into groups
which, intuitively, could be seen as clusters of
semantically-similar emoji, taking into account as-
pects such as emotions (e.g., joy), concepts (e.g.,
Christmas tree), and occasions (e.g., Christmas),
to mention a few.

For instance, most of those associated with af-
fection, elation, and other positive emotions and
emotional states (e.g., , , , ,) presented
extremely low recall and, frequently, were mis-
classfied as . As an example, had a recall
of 4.18%, with about 64% of its tweets predicted
incorrectly as .

Our system performed better at separating other
seemingly distinct clusters, such as sunny weather
(,), patriotism/national holidays/travelling
(), occasions/special events/holidays (), being
humorous (,), photography (,), to name a
few. For example, ’s recall was 37.99%, with
most of its misclassified instances (18%) being as-
signed to . Conversely, ’s recall was 21.1%,
with about 32% wrongly predicted as .

5 Conclusions

We presented a system for the prediction a single
emoji, out of a set of the twenty most-frequent,
for Twitter datasets for (1) English and (2) Span-
ish. Our best model was based on a random for-
est (n=225) employing an ensemble of (a) max-

1There a few discrepancies; for example, in the trial data’s
class distribution, contrary to the ranking in Figure 3, (14,)
occurs slightly more often than (13,).

494

Figure 3: Emoji Rankings For English (USA) and Spanish (ESP) (from (Barbieri et al., 2018))

Figure 4: Class Distributions For English Trial and Test Data. The x-axis shows the classes (i.e., the emoji ranks
in Figure 3), and the y-axis represents support (i.e., normalised frequencies)

and mean-aggregated normalised word-class oc-
currences, (b) sentiment and (c) psycho-linguistic
features.

Our scores on the test data were significantly
lower than those on the trial data, and we postu-
lated that reasons for so were (1) a random forest
that overfitted the training data and (2) large vari-
ance between trial and test data. It is worth investi-
gating to which extent, and how, different periods
of time explain that variance. For example, trial
and test might have captured different, emerging
trending topics and events; reflect drift in emoji
usage; among others. It is reasonable to assume
that, given the nature and the sparsity of the data,
more representative samples might require much
larger number of instances (say, billions of tweets)
and time periods covered.

F1-scores were consistently low for all partic-
ipants, which demonstrates the difficulty of the
task. We are conscious that idiosyncrasies of
Twitter-specific data (e.g., data sparsity, neolo-
gisms, informality, lack of grammatical structure)
make it all more problematic, and some of our cur-
rent research involves devising and incorporating
features to address those challenges.

We believe it would be fruitful to investigate
evaluation metrics that, rather than all-or-nothing

(e.g., misclassification rate), reflect the semantic
similarity (or distance) between labels and pre-
dicted classes.

References
Francesco Barbieri, Miguel Ballesteros, and Horacio

Saggion. 2017. Are emojis predictable? In Pro-
ceedings of the 15th Conference of the European
Chapter of the Association for Computational Lin-
guistics: Volume 2, Short Papers, pages 105–111.
Association for Computational Linguistics.

Francesco Barbieri, Jose Camacho-Collados,
Francesco Ronzano, Luis Espinosa-Anke, Miguel
Ballesteros, Valerio Basile, Viviana Patti, and
Horacio Saggion. 2018. SemEval-2018 Task 2:
Multilingual Emoji Prediction. In Proceedings of
the 12th International Workshop on Semantic Eval-
uation (SemEval-2018), New Orleans, LA, United
States. Association for Computational Linguistics.

Steven Bird, Ewan Klein, and Edward Loper. 2009.
Natural language processing with Python: analyz-
ing text with the natural language toolkit. ” O’Reilly
Media, Inc.”.

Max Coltheart. 1981. The mrc psycholinguistic
database. The Quarterly Journal of Experimental
Psychology Section A, 33(4):497–505.

Marcel Danesi. 2016. The semiotics of emoji: The

495

rise of visual language in the age of the internet.
Bloomsbury Publishing.

CJ Hutto Eric Gilbert. 2014. Vader: A parsimonious
rule-based model for sentiment analysis of social
media text. In Eighth International Conference on
Weblogs and Social Media (ICWSM-14).

Hannah Miller, Jacob Thebault-Spieker, Shuo Chang,
Isaac Johnson, Loren Terveen, and Brent Hecht.
2016. Blissfully happy or ready to fight: Varying
interpretations of emoji. Proceedings of ICWSM,
2016.

Luke Stark and Kate Crawford. 2015. The conser-
vatism of emoji: Work, affect, and communication.
Social Media+ Society, 1(2):2056305115604853.

Yla R Tausczik and James W Pennebaker. 2010. The
psychological meaning of words: Liwc and comput-
erized text analysis methods. Journal of language
and social psychology, 29(1):24–54.

Garreth W Tigwell and David R Flatla. 2016. Oh that’s
what you meant!: reducing emoji misunderstanding.
In Proceedings of the 18th International Conference
on Human-Computer Interaction with Mobile De-
vices and Services Adjunct, pages 859–866. ACM.

496

Proceedings of the 12th International Workshop on Semantic Evaluation (SemEval-2018), pages 497–501
New Orleans, Louisiana, June 5–6, 2018. ©2018 Association for Computational Linguistics

Tweety at SemEval-2018 Task 2: Predicting Emojis using Hierarchical
Attention Neural Networks and Support Vector Machine

Daniel Kopev, Atanas Atanasov, Dimitrina Zlatkova,
Momchil Hardalov, Ivan Koychev

FMI, Sofia University “St. Kliment Ohridski”, Sofia, Bulgaria
{dkopev, amitkov, dvzlatkova}@uni-sofia.bg

{hardalov, koychev}@fmi.uni-sofia.bg

Ivelina Nikolova, Galia Angelova
IICT, Bulgarian Academy of Sciences, Sofia, Bulgaria

{iva, galia}@lml.bas.bg
Abstract

We present the system built for SemEval-
2018 Task 2 on Emoji Prediction. Although
Twitter messages are very short we managed
to design a wide variety of features: tex-
tual, semantic, sentiment, emotion-, and color-
related ones. We investigated different meth-
ods of text preprocessing including replacing
text emojis with respective tokens and splitting
hashtags to capture more meaning. To rep-
resent text we used word n-grams and word
embeddings. We experimented with a wide
range of classifiers and our best results were
achieved using a SVM-based classifier and a
Hierarchical Attention Neural Network.

1 Introduction

SemEval 2018 Task 2 on Emoji Prediction (Bar-
bieri et al., 2018) is a classical task for supervised
learning. Given labeled data consisting of Twitter
messages and a corresponding emoji as a label, the
aims is to classify new examples (tweets) into 20
categories - the most frequent emojis of two lan-
guages: English (Subtask 1) and Spanish (Subtask
2). We participated only in Subtask 1. The labels
are presented in Figure 1:

Figure 1: Labels ordered by frequency.

2 Related Work

Prior work includes using LSTM-RNN and CNN
models (Zhao and Zeng) utilizing pre-trained
Twitter embeddings with the latter achieving very
good results. Other works (Barbieri et al., 2017)
show that LSTMs have high accuracy and even
outperform humans at the emoji prediction task.

In (Barbieri et al., 2016) the skip-gram neural em-
bedding model is applied with different dimen-
sions of the vectors and length of the windows ap-
plied to both words and emojis.

3 Data

We used the 500k training and 50k trial tweets
provided by the organizers to train and validate our
models respectively. One key mistake we made
is that we did not compare those two datasets for
duplicate entries. As we found out only after the
submission deadline, the train and trial data had a
40% overlap, which unfortunately skewed our ex-
pected results and made them unrealistically high.
The experimental results presented in Table 2 are
on the data with removed duplicates.

We crawled additional 100k tweets via Tweepy1

only 5k of which were compliant with the require-
ments to contain exactly one emoji. With this ex-
ternal data we aimed to improve the overall per-
formance of our models, but since it was way too
small, it did not have much effect.

Finally, when predicting on the test data, we
trained our models on the combined train, trial and
crawled data.

Looking at the emojis we immediately noticed
two problematic groups: 1. two emojis with a
camera - one with flash and one without; 2. four
emojis containing a heart - three of them exactly
the same, different only in color (red, blue, pur-
ple), and one with two pink hearts. We approach
the second group with color-related features (see
Section 4.2)

4 Method

4.1 Data Preprocessing
Replacing Text Emojis: Text emojis like :), :D,
:o and others should in theory carry valuable

1http://www.tweepy.org/

497

information, thus we encode them to unique
strings that will not be removed in future pre-
processing steps. The encoded strings are:
smile laughing very happy
sad cry and surprise .
Removing Punctuation and Artifacts: The

data given by the orginizers comes with user men-
tions replaced by @user and all URLs removed.
We remove @user, because the user mentions
are taken into account in the feature engineering
step, even though their position is lost. We also
remove automatic location mentions in the form
@ Location. Non-letter characters are also re-
moved, exception is #, used to identify words in
hashtags which we later attempt to split.

Hashtag Splitting: We try to break down each
token starting with # to a set of words. The process
iterates over the token until a word existing in a
corpus is found. Then we take the rest of the token
and recursively apply the same procedure until the
whole original token is empty. The longest match-
ing word is always taken first. For subtoken word
identification we used the Brown corpus. As an-
ticipated, adding a slang corpus seemed to worsen
the splits. For simplicity we take the first found
valid split, but an improvement would be to calcu-
late and take the most probable one.

Tokenization and Lemmatization: A Word-
Net (Miller, 1995) lemmatizer is used on tok-
enized (TweetTokenizer from NLTK2) and lower-
cased beforehand part-of-speech annotated tweets.
High frequency words are removed.

4.2 Features

Textual Features: Since all we had was the text of
the tweet without any metadata or context, we fo-
cused on extracting valuable information from the
text itself. We gathered statistics like number of
words, hashtags, stop-words, user mentions, mean
word length and more. Some of those were specif-
ically targeted at predicting certain emojis. For
instance, we hoped counting the digits and per-
centage signs would help identifying . Punctua-
tion such as question marks, exclamation marks or
words with all title letters could signify an intensi-
fied face emotion like or .

Semantic features: Looking at the train data,
we noticed that 42% of the tweets end in the fol-
lowing pattern: @ LocationName, for instance
Happy birthday Nathan!!! @ Boca Gardens. We

2http://www.nltk.org/

Cluster Id Words
00101111010 almost nearly practically

alm0st nearlly almst
111010100010 lmao lmfao lmaoo lmaooo

lool rofl loool lmfaoo
111010100011 haha hahaha hehe hahahaha

hahah aha hehehe ahaha

Table 1: Twitter clusters.

figured that this was an automatically assigned lo-
cation and extracted it as a separate feature.

Emotion-related features: To capture emo-
tion, we used the NRC Word-Emotion Association
Lexicon (Mohammad and Turney, 2013). It con-
tains a list of English words and their associations
with eight basic emotions - anger, fear, anticipa-
tion, trust, surprise, sadness, joy, and disgust.

Color-related features: Dealing with four
emojis with the heart symbol in different colors,
we decided to use another NRC Lexicon - on
Word-Colour Associations (Mohammad, 2011). It
consists of mappings for eleven colors - white,
black, red, green, yellow, blue, brown, pink, pur-
ple, orange and grey, which covers the four heart
colors in question.

Sentiment features: In order to capture senti-
ment in the tweets, we used SentiWordNet (Bac-
cianella et al., 2010) to associate each token in the
tweet with a positive and negative score.

Twitter clusters: Another observation we made
while looking at the tweets is that there were a
lot of misspelled words and words with identi-
cal meaning written with different syntax (mainly
slang). To handle that we utilized Hierarchical
Twitter Word Clusters3. The clusters also help
identify synonymous words. Three exemplary
clusters of words are shown in Table 1.

All features were used in all classification ex-
periments, except in some of the stacking, where a
subset was used.

4.3 Classifiers
Using the features above, we had represented each
tweet into that vector-space. Experiments were
made with classifiers from various types: Linear,
Non-Linear, and Deep Learning.

Linear Classifiers: For our baseline we used
Multinomial Naive Bayes, which we managed to
outperform with ease. In the subsequent experi-
ments we used linear classifiers - Logistic Regres-
sion with L-BFGS optimizer (Liu and Nocedal,

3http://www.cs.cmu.edu/ ark/TweetNLP

498

1989) and Linear SVMs with SGD optimizer (Bot-
tou, 2010).

Non-Linear Classifiers: As we wanted to over-
come the linearity of the LR and SVMs we had
moved to non-linear classifiers. We had fed our
feature vectors into Random Forest with 300 es-
timators, and AdaBoost with Decision Tree base,
again with the same number of estimators.

Stacking: Another idea was to combine count-
based and semantic features. For this we applied
two versions of Stacking ensembles. The first in-
cludes SVM (tf-idf), AdaBoost (embeddings) and
Random Forest (semantic and sentiment extracted
features). The second one is composed of SVM
(tf-idf), AdaBoost (embeddings) and Multi-layer
Perceptrion (tf-idf). Both ensembles use hard
weighted voting with coefficients 1.5 for the SVM
prediction and 1.0 for the rest.

Deep Learning: We applied some of the state-
of-the-art neural architectures for text-processing.
Our experiments included Multi-layer Perceptri-
ons, Recurrent NNs with LSTM (Hochreiter and
Schmidhuber, 1997) and Convolutional NNs.

In the dev phase we achieved best results us-
ing Hierarchical Attention Neural Network (Yang
et al., 2016) (HANN). The idea of HANN is to
mimic the hierarchical structure of documents. It
has two levels of attention mechanism: for word
and for sentence. This enables them to capture and
act differently on different levels of content impor-
tance. HANNs structure is build up from: word
sequence encoder, word-level attention layer, sen-
tence encoder and a sentence-level attention layer.
Word Encoder gets word annotations from an
embedding matrix summarizing information from
both directions of the words. Word Attention (an
attention mechanism), extracts the most important
words, because not all words contribute equally to
the sentence’s meaning. Sentence Attention (an-
other attention mechanism), is used to mark the
important sentences at sentence level context.

As another experiment we used a two-layered
bidirectional LSTM with a dropout rate of 0.35
and the Adam optimizer.

Another interesting approach that we adapted
was to apply Convolutional Layer for text (Kim,
2014) that allows our network to learn and capture
patterns for adjacent words in sentences. CNN are
widely applied for image data, by using them for
text classification we can learn and track corre-
lations between close words and inputs. An ad-

vantage of CNN over RNN is that CNN are much
faster than RNN architectures. CNNs allow our
network to see the entire input at once and to paral-
lelize all operations, because a convolutional ker-
nel acts on each patch independently.

The key insight of boosting our Neural Network
models was switching from ReLU to ELU as ac-
tivation function. Proper Dropout Strategy (be-
tween 0.35 and 0.4) also improved our validation
score.

5 Experiments and Evaluation

5.1 Experimental Setup

We transformed the training tweets into vectors
using two mainstream techniques: tf-idf repre-
sentation and word embeddings. While building
the tf-idf weights we formed word 6-grams (with-
out the stop words) and removed entries with DF
greater than 0.5. The second approach consisted of
using 200-dimensional GloVe embeddings (Pen-
nington et al., 2014) trained on Twitter corpus
with 27 billion tokens. Using the embedding of
each term we concatenated the component-wise
minimum and maximum vectors (De Boom et al.,
2016). Some classifiers were tested using both
representations when we found that appropriate.

5.2 Results

The results from those experiments on 10k train
(sampled from the train dataset) and 1k test (sam-
pled from the trial dataset) data are presented in
Table 2. The experimental results are on the data
with duplicates removed. The second stacking
gave a better result than SVM, but we did not man-
age to run the model on the whole dataset in time
for the submission. We placed 25th in the official
ranking.

Precision, recall and Macro-F1 per class (on du-
plicated data) can be seen in Table 3.

The confusion matrix in Figure 2 reveals that
two of the most confused classes are the ones with
a camera, which was expected. Less anticipated
is the strong confusion between the heart and the
sun emojis. Overall, the heart emoji is confused
the most with the rest of the classes, but since it’s
the most common one it’s possible that classifiers
often falsely predict it.

In terms of features, we found out that the n-
gram representation of the tweets was the most
important in terms of determining its label and the
additional features did not have much influence.

499

Model Precision Recall Macro-F1
Multinomial Naive Bayes 0.05 0.21 1.763
Logistic Regression with L-BFGS 0.22 0.28 13.16
Multi-Layer Perceptron 2-hidden (ReLU) 0.26 0.26 17.898
Random Forest (300 estimators) 0.20 0.26 16.167
AdaBoost with Decision Tree base (300 estimators) 0.15 0.19 7.825
SVM with tf-idf 0.23 0.27 19.554
SVM with Twitter embeddings 0.16 0.18 8.522
Stacking (SVM + AdaBoost + Random Forest) 0.25 0.24 13.764
Stacking (SVM + AdaBoost + MLP) 0.25 0.28 20.106
Convolutional Neural Network 0.15 0.14 12.034
Recurrent Neural Network with LSTM 0.24 0.17 13.106
HANN 0.30 0.13 15.999
SVM tf-idf 0.30 0.33 23.3
HANN 0.31 0.33 22.518

Table 2: Precision, Recall and F-measure of experimental classifiers on 1k tweets (top) and final classifiers on 50k
tweets (bottom).

Emoji Precision Recall Macro-F1 %
36.53 54.25 43.66 21.6
22.49 29.25 25.43 9.66
35.72 46.52 40.41 9.07
14.78 6.41 8.94 5.21
46.01 48.12 47.04 7.43
8.94 5.52 6.82 3.23

23.07 11.97 15.77 3.99
35.62 18.52 24.37 5.5
20.42 10.65 14.0 3.1
11.87 4.43 6.45 2.35
19.26 20.11 19.68 2.86
52.66 60.39 56.26 3.9
31.33 45.77 37.2 2.53
21.28 5.39 8.6 2.23
8.03 2.91 4.27 2.61

17.62 21.7 19.45 2.49
13.02 4.34 6.51 2.31
48.58 78.64 60.06 3.09
30.14 11.83 16.99 4.83
7.93 2.77 4.11 2.02

Table 3: Precision, Recall, F-measure and percentage
of occurrences in the test set of each emoji.

6 Conclusion

The work we did on the Emoji Prediction task
seems promising, even though we could make our
process better by filtering train data, retrieving
more tweets and focusing more on the preprocess-
ing of the tweets. There’s a lot of room for im-
provement, given that the task is very challeng-
ing - tweets are short and full of slang words and
ambiguous emoticons. We tried to combat those
through some feature engineering, preprocessing
and semantic approach for vectorization.

Figure 2: Confusion matrix per emoji type.

Improvements could be made with the seman-
tic representation of the tweets. Because our em-
bedding representations use coordinate-wise min-
imization and miximization, a lot of meaning is
lost. Embedding approaches that work on a higher
than word level text blocks like Skip-Thoughts
vectors (Kiros et al., 2015) could decrease this
loss. As future work we plan on using more so-
phisticated architectures like deeper CNNs and
Squeeze-and-Excitation Networks for text.

Acknowledgments

This research was done by MSc students in Com-
puter Science at the Sofia University “St Kliment
Ohridski”.

500

References
Stefano Baccianella, Andrea Esuli, and Fabrizio Sebas-

tiani. 2010. Sentiwordnet 3.0: an enhanced lexical
resource for sentiment analysis and opinion mining.
In LREC, volume 10, pages 2200–2204.

Francesco Barbieri, Miguel Ballesteros, and Horacio
Saggion. 2017. Are emojis predictable? In Pro-
ceedings of the 15th Conference of the European
Chapter of the Association for Computational Lin-
guistics: Volume 2, Short Papers, pages 105–111,
Valencia, Spain. Association for Computational Lin-
guistics.

Francesco Barbieri, Jose Camacho-Collados,
Francesco Ronzano, Luis Espinosa-Anke, Miguel
Ballesteros, Valerio Basile, Viviana Patti, and
Horacio Saggion. 2018. SemEval-2018 Task 2:
Multilingual Emoji Prediction. In Proceedings of
the 12th International Workshop on Semantic Eval-
uation (SemEval-2018), New Orleans, LA, United
States. Association for Computational Linguistics.

Francesco Barbieri, Francesco Ronzano, and Horacio
Saggion. 2016. What does this emoji mean? a
vector space skip-gram model for twitter emojis.
In Language Resources and Evaluation conference,
LREC, Portoroz, Slovenia.

Léon Bottou. 2010. Large-scale machine learning
with stochastic gradient descent. In Proceedings of
COMPSTAT’2010, pages 177–186. Springer.

Cedric De Boom, Steven Van Canneyt, Thomas De-
meester, and Bart Dhoedt. 2016. Representation
learning for very short texts using weighted word
embedding aggregation. Pattern Recogn. Lett.,
80(C):150–156.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural computation,
9(8):1735–1780.

Yoon Kim. 2014. Convolutional neural networks
for sentence classification. In Proceedings of the
2014 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 1746–1751,
Doha, Qatar. Association for Computational Lin-
guistics.

Ryan Kiros, Yukun Zhu, Ruslan Salakhutdinov,
Richard S. Zemel, Antonio Torralba, Raquel Ur-
tasun, and Sanja Fidler. 2015. Skip-thought vec-
tors. In Proceedings of the 28th International Con-
ference on Neural Information Processing Systems -
Volume 2, NIPS’15, pages 3294–3302, Cambridge,
MA, USA. MIT Press.

Dong C Liu and Jorge Nocedal. 1989. On the limited
memory bfgs method for large scale optimization.
Mathematical programming, 45(1-3):503–528.

George A Miller. 1995. Wordnet: a lexical database for
english. Communications of the ACM, 38(11):39–
41.

Saif Mohammad. 2011. Colourful language: Measur-
ing word-colour associations. In Proceedings of the
2nd Workshop on Cognitive Modeling and Compu-
tational Linguistics, pages 97–106, Portland, Ore-
gon, USA. Association for Computational Linguis-
tics.

Saif M Mohammad and Peter D Turney. 2013. Crowd-
sourcing a word–emotion association lexicon. Com-
putational Intelligence, 29(3):436–465.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. Glove: Global vectors for word
representation. In Proceedings of the 2014 confer-
ence on empirical methods in natural language pro-
cessing (EMNLP), pages 1532–1543.

Zichao Yang, Diyi Yang, Chris Dyer, Xiaodong He,
Alexander J. Smola, and Eduard H. Hovy. 2016. Hi-
erarchical attention networks for document classifi-
cation. In HLT-NAACL.

Luda Zhao and Connie Zeng. Using neural networks
to predict emoji usage from twitter data.

501

Proceedings of the 12th International Workshop on Semantic Evaluation (SemEval-2018), pages 502–506
New Orleans, Louisiana, June 5–6, 2018. ©2018 Association for Computational Linguistics

LIS at SemEval-2018 Task 2: Mixing Word Embeddings and Bag of
Features for Multilingual Emoji Prediction

Gaël Guibon
LIS UMR 7020

Aix Marseille Université
CNRS

Caléa Solutions
gael.guibon@lis-lab.fr

Magalie Ochs
LIS UMR 7020

Aix Marseille Université
CNRS

magalie.ochs@lis-lab.fr

Patrice Bellot
LIS UMR 7020

Aix Marseille Université
CNRS

patrice.bellot@lis-lab.fr

Abstract

In this paper we present the system submit-
ted to the SemEval2018 task2 : Multilingual
Emoji Prediction. Our system approaches both
languages as being equal by first; considering
word embeddings associated to automatically
computed features of different types, then by
applying bagging algorithm RandomForest to
predict the emoji of a tweet.

1 Introduction

Emojis were first used to emphasize conversations
before becoming representations of specific emo-
tions, objects or ideas. They are now used in al-
most every social medium and conversation de-
vices, such as messenging applications or even
emails1.

Tweets and their emoticons were used as la-
bels to predict polarity at first (Pak and Paroubek,
2010). However, emojis are not used the same way
as emoticons in messaging applications. They can
convey further information, even more when com-
bined. The advantage of emojis is that they are
becoming more standardized, even though exist-
ing emojis are still growing quickly2. This is why
emoji prediction is a relatively new task. It can
be considered as a composite task mixing emotion
prediction for face emojis, aspect/subject detec-
tion for object emojis, and other metadata predic-
tion for more abstract emojis, representing ideas
for instance.

This year, SemEval started the first emoji pre-
diction task (Barbieri et al., 2018). It consists of a
multiclass classification task for a total of 20 pos-
sible classes, i.e. emojis. This task is interesting
in several ways. Firstly, it is a relatively new task
that only a few studies did focus on. Secondly, it is

1http://cdn.emogi.com/docs/reports/
2015_emoji_report.pdf

2https://goo.gl/jbeRYW

quite important not only for research, but also for
companies willing to embrace the current trend of
social network and interaction analysis. Both are
important topics for Natural Language Processing
(NLP) and Information Retrieval (IR).

Our system obtained good results (63.65% f1-
score) while using the trial dataset, and lower re-
sults (13.53% f1-score) on the test dataset. Be-
cause this pattern occurred for both English and
Spanish, and for all participants, we try to explain
it.

The paper is organized as follows: we first sum-
marize the existing work related to this task and to
our approach (Section 2). Then we present what
we identified as the most challenging areas from
this task and the dataset used (Section 3). We go
on by describing our system (Section 4) and de-
tailing the pre processing and prediction steps. Fi-
nally, we conclude by discussing the performance
limits and show the benefits of our participation in
this task (Section 5).

2 Related Work

Several research studies focus on emoji prediction.
Most of them use word embeddings in order to do
a multiclass emoji prediction. At the beginning,
images were used instead of text as the source
of emoji prediction (Cappallo et al., 2015). Eis-
ner (Eisner et al., 2016) used embeddings based
on emoji description in the Unicode3 list, such
as smiling face with heart eyes. They obtained
85% accuracy in their classification of emoji de-
scriptions, predicting several keywords for one
emoji. Xie (Xie et al., 2016) trained neural net-
works on Weibo4 to predict 10 possible emojis in
conversations with 65% accuracy for the 3 mostly
used emojis. Barbieri (Barbieri et al., 2017) then

3http://unicode.org/ emoji/charts/full emojilist.html
4http://www.weibo.com/

502

predicted 20 emojis in millions of tweets using
LSTM (Hochreiter and Schmidhuber, 1997) and
obtained 65% f1-score for the 5 most used emo-
jis. Felbo (Felbo et al., 2017) tackled emoji pre-
diction by LSTM with 43.8% accuracy for the top
5 emojis, while using emoji vectors to help de-
tect sarcasm. In our recent work we considered
another approach with 84.48% weighted F1-score
using multi-label emoji prediction of 169 senti-
ment related emojis in real private messages (Gui-
bon et al., 2018).

3 Task Specific Difficulties

Be it in English or Spanish, the proposed task has
specific difficulties. Each of these difficulties rep-
resents challenges and obstacles for the classifier
to make a good prediction.

First, the dataset is made of 20 classes of differ-
ent types and concepts. Some are related to pure
emotions , facial expressions of emotions , or
even classes representing objects or ideas .
Those different classes may sometimes appear in
a same context (, , and for instance),
even though the dataset was selected to only keep
tweets with only one emoji.

Second, tweets are not private short messages.
This means that some tweets are even difficult to
understand for humans. This is the case for re-
action tweets to a certain hashtag or social event.
The appreciation of the event is totally dependent
on the user’s subjective point of view. Thus, it is
also the case for the resulting emoji associated to
the message. Other types of tweet-emoji associ-
ations, such as advertisements, are not even hu-
manly predictable.

Third, the dataset is really unbalanced, which
has become quite common in real applied classi-
fication. However, it still represents a challenge
when associated to the two previous difficulties.
Taken together, they make emoji prediction quite
difficult, especially for tweets, which justifies even
more the necessity for this task.

Two datasets5 were used for emoji prediction in
tweets: 500 000 tweets in training and 50 000 as
trial and test for English, 100 000 tweets in train-
ing and 10 000 as trial and test for Spanish. Each
dataset was made of tweets containing only one
emoji between a set of 20 most frequent emojis
from tweets containing only one emoji.

5https://github.com/fvancesco/
Semeval2018-Task2-Emoji-Detection

The emoji set only contains positive or neutral
emojis, making a sentiment analysis approach less
relevant, but we still kept using polarity scores in
order to include the intensity of the polarity as a
feature.

4 System

4.1 Preprocessing
Cleaning. To prepare the data we first cleaned
tweets by removing trailing three dots, user men-
tions and urls. Then we used Spacy6 to apply
lemmatization and part-of-speech tagging (PoS).
Word Representation. For data representation,
we compared different approaches for text vec-
torization. We first did a text representation us-
ing FastText (Bojanowski et al., 2016) but did not
obtain an overall gain in the prediction in com-
parison to Word2Vec (Mikolov et al., 2013). We
used Word2Vec in its Gensim7 (Rehurek and So-
jka, 2010) implementation with the following hy-
per parameters:

• Architecture: Continuous Bag-of-Words

• Batch size: 32

• Minimum count: 1

• Embedding size: 50 or 300

• Iterations: 100

The minimum count was set to 1 in order to better
capture rare items from really small tweets, and
the Continuous Bag of Words (CBOW) architec-
ture was prefered after empirical tests to determine
if it was useful to use it or not. The best text vec-
torization was obtained using live-trained embed-
dings, without using external pre-trained embed-
dings, even though we trained word embeddings
and character embeddings on millions of tweets to
obtain better representation, and also used exist-
ing pre-trained embeddings (Barbieri et al., 2016).
This is certainly due to the overlap between the
training and the trial set. Thus the local vectoriza-
tion is more representative to find already known
contexts. Varying the size of the embedding ma-
trix E did not show major improvements for the
following prediction, whether its dimension was
d300 or d50. Thus, we chose a dimension of
d50 to train faster. Tweets are represented as the
mean of each word embedding vectors, allowing

6https://spacy.io/
7https://radimrehurek.com/gensim/

about.html

503

the same size (d50) for each tweet final embed-
ding vector.
Computed Features. In addition to the embed-
ding vectors, we computed several features rep-
resented as a feature vector F : binary features
for the presence of a question or an interrogation
mark, and their repetitions, another boolean fea-
ture for the usage of Title Case. Numerical counts
were also added: word count, character count, av-
erage token length, number of nouns, adjectives,
adverbs, interjections and verbs. Polarity predic-
tion was also added by using SentiStrength (Thel-
wall et al., 2010) positive and negative scores. The
advantage being that we then have polarity inten-
sity, so it could be useful even if all 20 emojis are
neutral or positive.

Finally, this feature vector F of dimension d23
was added to each embedding matrix E along
the columns axis. The matrix is as follow: each
row represents one tweet, and each column a fea-
ture. Each tweet information being represented by
E + F . This means that before concatenation, a
row (i.e. a tweet) has 50 columns, and after con-
catenation, it has 73 columns.

This pre-processing approach was used for all
data separately, meaning that we based all our tests
while training on the training set, and testing on
the trial set. We used this approach for both En-
glish and Spanish.

4.2 Prediction

The system used was chosen after trying multi-
ple approaches using the training set for train the
model and the trial set to obtain macro F1-score.
We explored multi-class RBF-SVM with gaussian
distance function, LSTM network (3 LSTM layers
with 64 unit cells, 0.5 dropout, then softmax layer)
and decision tree based algorithms (XGBoost, de-
cision tree, RandomForest). Decision tree based
algorithms always gave us better results to take
into account all classes during prediction. The
number of systems were limited to 2, so we ap-
plied sightly different approaches.

In our system we used RandomForest with 700
estimators chosen empirically in order to predict
emojis. To automatically find the best parameters
we used a grid search with cross validation strat-
egy for specific parameters visible in Table 1. The
best parameters found were quite similar to the de-
fault one from the Scikit-Learn API except for the
balanced subsample class weight. We also tried

setting the class weight manually to deal with un-
balanced dataset. We gave more weight (5) to the
3 majority classes and left the other classes
to 1, without improving the results. The maximum
depth for each tree was then set to None because
we believe a bagging approach such as Random-
Forest with a number of estimators higher than the
targetted classes can compensate overfitting issues
coming from a higher complexity of each estima-
tor.

Max Depths 20, 100, 200
Min Samples Splits 2, 5
Min Samples Leafs 1, 4

Max Features sqrt, log2, None
Criterions ’gini’, ’entropy’

Class Weights None, ’balanced’
’balanced subsample’

Table 1: Grid search for RandomForest parameters.

The two submissions vary slightly, but are still
the same system.
Version 1. On the one hand, data were scaled
from 0 to 1 and we used a log2 parameters and χ2

feature selection to minimize the number of fea-
tures. This is based on the assumption that useful
data in the word embeddings should be scaled be-
fore being concatenated with the features vector,
then only embeddings and useful computed fea-
tures should be used.
Version 2. On the other hand, we did not scaled
any data nor limited the number of features, as
suggested by the grid search.

According to feature importance scores from
the classifier (Table 2), the best computed features
were the average token length, the character and
word counts, and the number of uppercases. The
other features have minor impact even though PoS
tag counts follow the top five features.

1 averageTokenLength (0.016)
2 charCount (0.015)
3 wordCount 0.012)
4 upperCharCount (0.011)
5 nounCount (0.009)
...

Table 2: Top five computed features.

We first used only embeddings to predict, then
predicted using concatenated embeddings and
computed features vectors. The latter improved
the overall prediction, which can also be seen by
the feature importance scores.

We managed to obtain 63.65% macro f1-score
on English, and 84.13% macro f1-score on Span-

504

ish while predicting on the official trial corpus.
The English classification report is visible in Ta-
ble 3. Also, the model obtained 61.92% accuracy
on english and could be upgraded by sometimes
choosing one of the best probabilities from each
prediction according to the Mean Reciprocal Rank
(MRR) score of 0.7126.

Emo P R F1
0.42 0.92 0.58
0.82 0.51 0.63
0.58 0.76 0.66
0.97 0.44 0.60
0.73 0.62 0.67
0.97 0.44 0.61
0.95 0.45 0.61
0.94 0.46 0.62
0.96 0.44 0.61
0.97 0.43 0.60
0.70 0.68 0.69
0.86 0.61 0.71
0.76 0.51 0.61
0.98 0.42 0.59
0.99 0.48 0.64
0.96 0.48 0.64
0.97 0.46 0.63
0.87 0.68 0.76
0.89 0.51 0.65
0.99 0.45 0.62

Avg. 0.76 0.62 0.62

Table 3: Precision, Recall, F-measure for each emoji
on the trial set.

However, our system obtained poor results once
applied on the official test set, with only 13.528%
macro f1-score on English, and 8.808% macro f1-
score on Spanish.
Performance decrease in test set. An overall
drastic performance decrease was shown while ap-
plying the model on the test set. We believe this is
due to multiple factors. First, as we have no means
to identify very difficult tweets for which even hu-
mans could not predict emoji (see Section 3), it is
difficult to know to what extent the model general-
ized well. Of course, by comparing our approach
results with other ones, we know that the model or
the approach should be improved in order to better
take into account all classes, as it is visible in the
test set confusion matrix (Figure 1).

Another element explaining the major perfor-
mance decrease is the presence of overlapping el-
ements between the trial set and the training set

Figure 1: Confusion matrix from official test results.

that misleaded parameters tuning. Even though,
we think a text representation enhancement is nec-
essary, as this approach finally gave poor results.

5 Conclusion

In this paper we described the system we sub-
mitted to the SemEval-2018 Task 2 for Multilin-
gual Emoji Prediction. The system presented uses
text vectorization through word embeddings asso-
ciated to a computed-features vector in order to
represent each tweet by their polarity intensity and
metrics. The classification is then done by using
decision tree based algorithm for understanding,
with bagging technique for better generalization
to match the goal of macro F1-score metric. With
this system we wanted to have a generic system
for both languages without specific parameters for
each language.

The system obtained good results on the trial set
but the performances decreased drastically when
applied to the test set. Even though this pattern
was shown through all participants’ systems, ours
finally obtained poor results on the test set. We
believe it is necessary to further process the data in
order to identify recurrent difficult cases, such as
really short and commons tweets. A more robust
representation of each tweet is also required.

Finally, the python code used for this task is
available on github8.

8https://github.com/
gguibon/SemEval2018-Task2-
MultilingualEmojiPrediction

505

References
Francesco Barbieri, Miguel Ballesteros, and Horacio

Saggion. 2017. Are emojis predictable? In Pro-
ceedings of the 15th Conference of the European
Chapter of the Association for Computational Lin-
guistics: Volume 2, Short Papers, pages 105–111.
Association for Computational Linguistics.

Francesco Barbieri, Jose Camacho-Collados,
Francesco Ronzano, Luis Espinosa-Anke, Miguel
Ballesteros, Valerio Basile, Viviana Patti, and
Horacio Saggion. 2018. SemEval-2018 Task 2:
Multilingual Emoji Prediction. In Proceedings of
the 12th International Workshop on Semantic Eval-
uation (SemEval-2018), New Orleans, LA, United
States. Association for Computational Linguistics.

Francesco Barbieri, German Kruszewski, Francesco
Ronzano, and Horacio Saggion. 2016. How cos-
mopolitan are emojis?: Exploring emojis usage and
meaning over different languages with distributional
semantics. In Proceedings of the 2016 ACM on Mul-
timedia Conference, pages 531–535. ACM.

Piotr Bojanowski, Edouard Grave, Armand Joulin,
and Tomas Mikolov. 2016. Enriching word vec-
tors with subword information. arXiv preprint
arXiv:1607.04606.

Spencer Cappallo, Thomas Mensink, and Cees G.M.
Snoek. 2015. Image2emoji: Zero-shot emoji pre-
diction for visual media. pages 1311–1314. ACM
Press.

Ben Eisner, Tim Rocktäschel, Isabelle Augenstein,
Matko Bošnjak, and Sebastian Riedel. 2016.
emoji2vec: Learning emoji representations from
their description. arXiv preprint arXiv:1609.08359.

Bjarke Felbo, Alan Mislove, Anders Søgaard, Iyad
Rahwan, and Sune Lehmann. 2017. Using millions
of emoji occurrences to learn any-domain represen-
tations for detecting sentiment, emotion and sar-
casm. arXiv preprint arXiv:1708.00524.

Gaël Guibon, Magalie Ochs, and Patrice Bellot. 2018.
Emoji recommendation in private instant messages.
In Proceedings of the 2018 ACM symposium on Ap-
plied computing, pages 1810–1813. ACM.

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long
short-term memory. Neural Comput., 9(8):1735–
1780.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jef-
frey Dean. 2013. Efficient estimation of word
representations in vector space. arXiv preprint
arXiv:1301.3781.

Alexander Pak and Patrick Paroubek. 2010. Twitter as
a corpus for sentiment analysis and opinion mining.
In LREc, volume 10.

Radim Rehurek and Petr Sojka. 2010. Software frame-
work for topic modelling with large corpora. In In

Proceedings of the LREC 2010 Workshop on New
Challenges for NLP Frameworks. Citeseer.

Mike Thelwall, Kevan Buckley, Georgios Paltoglou,
Di Cai, and Arvid Kappas. 2010. Sentiment strength
detection in short informal text. Journal of the
American Society for Information Science and Tech-
nology, 61(12):2544–2558.

Ruobing Xie, Zhiyuan Liu, Rui Yan, and Maosong Sun.
2016. Neural emoji recommendation in dialogue
systems. arXiv preprint arXiv:1612.04609.

506

Proceedings of the 12th International Workshop on Semantic Evaluation (SemEval-2018), pages 507–511
New Orleans, Louisiana, June 5–6, 2018. ©2018 Association for Computational Linguistics

ALANIS at SemEval-2018 Task 3:
A Feature Engineering Approach to Irony Detection in English Tweets

Kevin Swanberg‡ and Madiha Mirza† and Ted Pedersen† and Zhenduo Wang†∗

‡Department of Writing Studies
†Department of Computer Science

University of Minnesota
Duluth, MN 55812, USA

{swanb034,mirz0022,tpederse,wang7211}@d.umn.edu

Abstract

This paper describes the ALANIS system that
participated in Task 3 of SemEval-2018. We
develop a system for detection of irony, as well
as the detection of three types of irony: ver-
bal polar irony, other verbal irony, and situa-
tional irony. The system uses a logistic regres-
sion model in subtask A and a voted classifier
in subtask B, both of which rely on manually
developed features to identify ironic tweets.
ALANIS placed 34th of 43 systems in subtask
A and 26th of 31 systems in subtask B.

1 Introduction

With the invention and growth of various social
networking sites, irony and other creative lin-
guistic devices have become increasingly preva-
lent in online content. Particularly when con-
sidering microblogging platforms like Twitter,
which encourage users to share their thoughts
and opinions on a wide variety of topics, the
use of irony can be extremely common. This
can have strong implications for various prob-
lems in natural language processing, which of-
ten have difficulty in processing this ironic con-
tent (e.g., (Liu, 2012; Ghosh and Veale, 2016;
Maynard and Greenwood, 2014)), thus motivating
the development of an accurate irony detection
system.

While irony has many varying definitions, it is
defined by the SemEval task organizers as a trope
or figurative language whose actual meaning dif-
fers from what is literally enunciated. Our sys-
tem, ALANIS (Automated Location and Naming
of Ironic Sentences), uses a manually developed
feature set and a logistic regression classifier for
subtask A and a voted classifier for subtask B,
achieving mean accuracies of .650 and .607 re-
spectively on the training set and .512 and .434

∗Authors are ordered alphabetically by their first name.

respectively on the test set. The F1-scores are .469
and .276 on the test set.

2 Task Description

SemEval Task 3 involves two subtasks. In sub-
task A, a tweet simply must be identified as ironic
or non-ironic. In subtask B, three types of ironic
content must be individually differentiated from
non-ironic content. These three types of irony are
verbal polar irony, other verbal irony, and situa-
tional irony. The task organizers provided us with
a training set of 3,834 tweets for both subtasks.

3 ALANIS

Our system, ALANIS, uses manually developed
features indicative of ironic content, and passes a
feature matrix for each tweet to a logistic regres-
sion classifier in subtask A and a voted classifier
system which employs a logistic regression, SVM,
and Random Forest classifier in Subtask B. It use
the scores from each of these classifiers to ”vote”
on the correct label for a tweet.

3.1 Feature Selection
We explored two types of features, structural fea-
tures and affective features. Structural features
included sentence semantic similarity, irony-rich
word lists, indicative parts of speech, and content
features. Affective features included sentiment po-
larity and subjectivity. These features were used
to assign scores for each tweet, creating a feature
matrix.

3.2 Structural Features
Our system combines a number of structural fea-
tures that are identified as indicative of ironic con-
tent by previous solutions.

Sentence Semantic Similarity is a measure-
ment of similarity in meaning between two sen-
tences. This is a structural feature employed in a

507

system designed by (Farı́as et al., 2016) with some
success. Ironic tweets with multiple sentences
should show a sharp change in meaning between
sentences. To implement this feature we employed
WordNet synsets. The similarity of the sentences
is computed based on the semantic similarity of
the words contained in the two sentences.

Irony-Rich Word Lists: Our system takes ad-
vantage of a number of words claimed to be in-
dicative of irony. This involved several manu-
ally developed word lists. Most importantly, we
used discourse markers, which are phrases that
are indicative of discourse segments. Examples
of these include however, on the other hand, and
in my opinion. These have been cited as be-
ing more common in ironic content (Farı́as et al.,
2016). Our system employs a list of 53 discourse
markers. Also based on Farias et al, we measure
intensifiers, like very and really that make adjec-
tives stronger.

In addition to these, we build on our curated lists
of irony-indicative words with features like swear
words and top words, as well as textual markers
of laughter like lol and haha, which was noted to
be common in ironic content (Buschmeier et al.,
2014). Another word list included interjections to
detect irony. Interjections are word that express
feeling rather than meaning, for example, words
like wow, gosh, and jeez.

Indicative Parts of Speech: We also built fea-
tures that measured the prevalence of several parts
of speech thought to be indicative of ironic con-
tent. These included adjectives, adverbs, prepo-
sitions, and named entities. All of these features
were identified by the NLTK1 POS tagger in order
to count their occurrence. These counts were then
normalized for the length of the tweet. Adjectives
and adverbs occur more frequently in ironic tweets
than non-ironic according to (Kreuz and Caucci,
2007). We hypothesized that prepositions and
named entities would occur more often in situa-
tional irony, due to the likely need to explain the
situation.

Content Features: ALANIS also employs a
number of features relevant to the content of the
tweet in order to identify irony. These include
Word Count, Punctuation, and URLs. According
to Farias et al, ironic tweets tend to have exces-
sive punctuation to catch the eyes of readers and
to stress a point. Examples include ”It is really

1http://www.nltk.org/

worth it!!!” or ”Okay...”. Thus, heavy punctuation
sometimes implies irony. Farias et al. also iden-
tified that ironic tweets are likely to contain fewer
words than non-ironic tweets, thus motivating the
use of the word count feature.

URLs were also employed as a feature in our
system. (Schifanella et al., 2016) found that ironic
tweets often contain images and often the inter-
pretation of the irony depends on the image. For
example, a photo of a warm, sunny beach with
the caption ”Terrible weather we’re having.” How-
ever, the task data does not immediately give us
images, only a link to images (which may not in
fact exist online anymore), so the simplest way
to identify this was to just check if a tweet had
a URL.

Popular Hashtags and Keywords: Twitter
hashtags and keywords are a good measure of pub-
lic opinion on trending topics and current events.
Through these hashtags, users express a wide va-
riety of opinions, including irony. For exam-
ple, the following hashtags were among the top
Twitter hashtags for 2016: #GOPDebate, #Pray-
forJapan, #WomensRightsAreHumanRights. Our
system finds hashtags that contain words related
to global issues, sports, entertainment, and fash-
ion using a manually created list of top hashtags.

3.3 Affective Features

While most work on irony detection (e.g.,
(Carvalho et al., 2009; Barbieri and Saggion,
2014; Vanin et al., 2013)) focus on the structural
features, (Farı́as et al., 2016) show that intro-
ducing affective information can also improve
state-of-the-art accuracy.

In our work, we included two commonly used
sentiment features, polarity and subjectivity. Sen-
timent polarity reflects the general positivity of
a piece of text, while subjectivity is measured
against objectivity. Each of the two features is as-
signed a score within the range [−1, 1]. We used
the TextBlob package in python 2 to implement the
scoring functions for these features.

4 Classifiers

The classifiers we used for our system included
Naive Bayes, logistic regression, Support Vector
Machine (SVM) and Random Forest. We chose
these because they are generally robust classifiers.
As we added features to our feature list, we also

2http://textblob.readthedocs.io/en/dev/

508

kept track of the performance of the the logistic
regression, Random Forest, and SVM classifiers,
while Naive Bayes was only used for the bag of
words baseline.

In ALANIS, all the classifiers take the tweet
features matrix as input and have as output a bi-
nary label vector for the categorical result. We
separate the data into a training set and a test
set using cross-validation. We train the classifiers
with the training set to optimize the parameters in-
cluding the hyperplane and kernel. Then we eval-
uate the trained classifier on the test set.

Support Vector Machine: We find that SVM is
relatively powerful when the feature list is short,
compared with other classifiers. Also, we no-
ticed that SVM classifier scores the highest recall,
which means that it detects the most ironic tweets.

Logistic Regression Classifier: We find that
logistic regression is stable in terms of total ac-
curacy. It becomes the most accurate classifier for
our long final feature list. The logistic regression
classifier does not show any tendency in detect-
ing irony or avoiding error. Because of its linear
kernel, we are able to get the trained weights for
each feature. This helps us know the capacities of
features and select them better. We rank the im-
portance of features according to the magnitude of
their weights. See Table 3 for details.

Random Forest Classifier: This classifier does
not perform well compared to the others. How-
ever, it is worth mentioning that when the feature
list grows long, it retains a higher accuracy than
SVM.

Voting System: We find that the confusion ma-
trices of the classifiers are different. This means
the classifiers have different specialties. There-
fore, we combined them in order to get a synthe-
sized result. We make a voting system with the
classifiers discussed previously. The voting sys-
tem uses majority rule.

5 Experimental Results

Our final result is that logistic regression is most
accurate classifier for subtask A and the voting
system is most accurate for subtask B. Table 1
shows the average cross validation scores on the
training set, while Table 2 shows the scores when
our system is trained on the whole training set and
evaluated on the test set.

BOW+NB stands for the Bag of Words Naive
Bayes baseline, while LR, RF, and Vote represent

Model TaskA Acc TaskB Acc
BOW+NB 0.572 0.285

LR 0.650 0.603
SVM 0.596 0.545
RF 0.622 0.584

Vote 0.644 0.607

Table 1: Performance of classifiers on training set

Model TaskA Acc/f1 TaskB Acc/f1
LR 0.512/0.469 -

Vote - 0.434/0.276

Table 2: Performance of classifiers on test set

logistic regression, Random Forest, and the Voting
System. Based on these results, we used logistic
regression or subtask A and the voting system for
subtask B.

The result in Table 1 are based on 5-fold cross
validation with the training data. As such we ex-
pected comparable results when we applied our
classifiers to the test data. However as can be seen
in Table 2 this is not the case. The results for LR
decline from .65 to .51, and for Vote from .607
to .434. While some variation is to be expected,
this was surprising to us. We hypothesize one
of two possible explanations. First, our methods
may have overfit the training data and so do not
generalize well to other data. However, since we
employed cross validation we are not certain how
likely this explanation proves to be. The second
explanation may be that the test data is in some
way different from the training data, to the extent
that a model learnt on the training data may not
fare well on the test data. We have not yet ana-
lyzed the test data closely enough to resolve this
question, but consider this to be an important step
in understanding our results.

6 Discussion and Future Work

We tried to interpret the importance of the fea-
tures by the magnitude of their weights in logis-
tic regression. The weights of the features’ perfor-
mance in subtask A and B are shown in Table 3. In
interpreting this table, the further a feature is from
0, the stronger the feature’s impact is on our classi-
fier. For instance, of our features, stop words and
laughters are relative weak features. Conversely,
intensifiers, discourse markers, adjective/adverbs,
and prepositions are much stronger features.

In order to understand the different performance

509

Feature Weight Feature Weight
intensifier 1.05 subjectivity 0.20
discourse 0.90 named entity 0.18
adj./adv. 0.81 swear words 0.18

preposition 0.81 URLs 0.15
polarity 0.54 word count 0.12
politcal 0.39 similarity 0.11

interjections 0.34 stopwords 0.06
celebrity 0.33 laughter 0.01

punctuation 0.32

Table 3: Weights (in absolute) of features

of the classifiers, we made confusion matrices for
all the classifiers and then also did a weight anal-
ysis for logistic regression since it employs a lin-
ear kernel. From the confusion matrices, we found
that although the classifiers have their specialties,
the voting system does not always work out well.
We believe that this is because SVM and Random
Forest are both much weaker than the logistic re-
gression classifier (shown in Table 1) so they neu-
tralize logistic regression’s advantages.

In subtask B, we need to label a tweet with 0
(non-ironic) or 1,2,3 (three different subcategories
of irony). However, the difference among these
subcategories are so subtle that our features do not
capture them very well. Overall these classifiers
have a hard time with multi-class classification.
Since all three classifiers have more similar results
for task B, the voted system is more successful

We review our system and the output of our sys-
tem and find several possible explanations. From
the confusion matrix, we can see that class 2 (7%)
and 3 (5.9%) are relatively rare. This makes the
task very hard for classifiers because of lack of
information to train on for class 2 and 3. How-
ever, because the majority of data in subtask B
falls into class 0 and class 1 we are still able to
get a high accuracy (0.6+). If the data was spread
more evenly between the four classes our system
would likely perform better. When analyzing indi-
vidual tweets from class 1, 2 and 3, we found that
their feature lists are more similar to each other
than to class 0 (non-ironic). This means we miss
features that are relevant for identifying different
types of irony, making our feature-based classifier
ill suited to this task.

To see the system’s effectiveness, it is often
helpful to consider some indicative examples of
the system in action. Consider examples (1) and

(2) below. Our system successfully classifies (1)
as ironic, but fails to classify (2) as ironic.

1. Feeling like crap. And being treated horribly
too. It’s a great day. #iwanttogohome

2. Hey there! Nice to see you Minnesota/ND
Winter Weather

Our system likely successfully classifies (1) for a
number of reasons. First, the word count of the
sentences is low, which seems typical of ironic
tweets. It has strong sentiment polarity between
the sentences. The first two sentences are nega-
tive, and the last sentence is positive. There is also
a strong shift in sentence similarity between sen-
tences.

However, (2) is classified incorrectly. This is
likely because it is identified by our system as sim-
ilar sentiment in both sentences. There is also very
little punctuation or emojis, and there are no in-
dicative words, like discourse markers or interjec-
tions in the tweet, causing our system to fail.

These results demonstrate that a manually-
selected feature-based system, using both struc-
tural and affective features can achieve reason-
able success in identifying ironic content. This
system is successful even when used with non-
conventional language such as that seen in Twitter
data. Our mean accuracy scores of .650 and .607
on the two subtasks on the training set demon-
strates both a reasonable success, and an opportu-
nity for future work in irony detection by extend-
ing the feature set further or even applying a deep
learning approach to the problem when enough
data is available.

7 Acknowledgments

This project was carried out as a part of CS 8761,
Natural Language Processing, a graduate level
class offered in Fall 2017 at the University of Min-
nesota, Duluth by Dr. Ted Pedersen.

References
Francesco Barbieri and Horacio Saggion. 2014. Auto-

matic detection of irony and humour in twitter. In
ICCC. pages 155–162.

Konstantin Buschmeier, Philipp Cimiano, and Roman
Klinger. 2014. An impact analysis of features in a
classification approach to irony detection in prod-
uct reviews. In Proceedings of the 5th Workshop

510

on Computational Approaches to Subjectivity, Sen-
timent and Social Media Analysis. Association for
Computational Linguistics, Baltimore, Maryland,
pages 42–49.

Paula Carvalho, Luı́s Sarmento, Mário J. Silva, and
Eugénio de Oliveira. 2009. Clues for detecting irony
in user-generated contents: Oh...!! it’s ”so easy” ;-).
In Proceedings of the 1st International CIKM Work-
shop on Topic-sentiment Analysis for Mass Opinion.
ACM, New York, NY, USA, TSA ’09, pages 53–56.

Delia Irazú Hernańdez Farı́as, Viviana Patti, and Paolo
Rosso. 2016. Irony detection in twitter: The role
of affective content. ACM Trans. Internet Technol.
16(3):19:1–19:24.

Aniruddha Ghosh and Tony Veale. 2016. Fracking sar-
casm using neural network. In WASSA@ NAACL-
HLT . pages 161–169.

Roger J Kreuz and Gina M Caucci. 2007. Lexical in-
fluences on the perception of sarcasm. In Proceed-
ings of the Workshop on computational approaches
to Figurative Language. Association for Computa-
tional Linguistics, pages 1–4.

Bing Liu. 2012. Sentiment analysis and opinion min-
ing. Synthesis lectures on human language tech-
nologies 5(1):1–167.

Diana Maynard and Mark A Greenwood. 2014. Who
cares about sarcastic tweets? investigating the im-
pact of sarcasm on sentiment analysis. In LREC.
pages 4238–4243.

Rossano Schifanella, Paloma de Juan, Joel R.
Tetreault, and Liangliang Cao. 2016. Detecting
sarcasm in multimodal social platforms. CoRR
abs/1608.02289.

Aline A. Vanin, Larissa A. Freitas, Renata Vieira, and
Marco Bochernitsan. 2013. Some clues on irony de-
tection in tweets. In Proceedings of the 22Nd In-
ternational Conference on World Wide Web. ACM,
New York, NY, USA, WWW ’13 Companion, pages
635–636.

511

Proceedings of the 12th International Workshop on Semantic Evaluation (SemEval-2018), pages 512–519
New Orleans, Louisiana, June 5–6, 2018. ©2018 Association for Computational Linguistics

NEUROSENT-PDI at SemEval-2018 Task 3: Understanding Irony in
Social Networks Through a Multi-Domain Sentiment Model

Mauro Dragoni
Fondazione Bruno Kessler

Via Sommarive 18
Povo, Trento, Italy
dragoni@fbk.eu

Abstract

This paper describes the NeuroSent system
that participated in SemEval 2018 Task 3. Our
system takes a supervised approach that builds
on neural networks and word embeddings.
Word embeddings were built by starting from
a repository of user generated reviews. Thus,
they are specific for sentiment analysis tasks.
Then, tweets are converted in the correspond-
ing vector representation and given as input to
the neural network with the aim of learning
the different semantics contained in each emo-
tion taken into account by the SemEval task.
The output layer has been adapted based on
the characteristics of each subtask. Prelimi-
nary results obtained on the provided training
set are encouraging for pursuing the investiga-
tion into this direction.

1 Introduction

Sentiment Analysis is a natural language process-
ing (NLP) task (Dragoni et al., 2015a) which aims
at classifying documents according to the opin-
ion expressed about a given subject (Federici and
Dragoni, 2016a,b). Many works available in the
literature address the sentiment analysis problem
without distinguishing specific information con-
text of documents when sentiment models are
built.

The necessity of investigating this problem
from a multi-domain perspective is led by the dif-
ferent influence that a term might have in dif-
ferent contexts. The idea of adapting terms po-
larity to different domains emerged only in the
last decade (Blitzer et al., 2007; Dragoni and
Petrucci, 2017). Multi-domain sentiment analy-
sis approaches discussed in the literature focus on
building models for transferring information be-
tween pairs of domains (Dragoni, 2015; Petrucci
and Dragoni, 2015). While on the one hand such
approaches allow to propagate specific domain in-

formation to others, their drawback is the neces-
sity of building new transfer models every time a
new domain has to be analyzed. Thus, such ap-
proaches do not have a great generalization capa-
bility of analyzing texts, because transfer models
are limited to the N domains used for building the
models.

The problem of detecting irony in text can be
considered from a multi-domain perspective. The
development of the social web has stimulated cre-
ative and figurative language use like irony. This
frequent use of irony on social media has im-
portant implications for natural language process-
ing tasks, which struggle to maintain high perfor-
mance when applied to ironic text (Liu and Zhang,
2012; Maynard and Greenwood, 2014; Ghosh and
Veale, 2016). Although different definitions of
irony co-exist, it is often identified as a trope or
figurative language use whose actual meaning dif-
fers from what is literally enunciated. As such,
modeling irony has a large potential for applica-
tions in various research areas, including text min-
ing, author profiling, detecting online harassment,
and perhaps one of the most popular applications
at present, sentiment analysis. As described by
(Joshi et al., 2017), recent approaches to irony
can roughly be classified into rule-based and ma-
chine learning-based methods. While rule-based
approaches mostly rely upon lexical information
and require no training, machine learning invari-
ably makes use of training data and exploits differ-
ent types of information sources, including bags of
words, syntactic patterns, sentiment information
or semantic relatedness. Recently, deep learning
techniques gain increasing popularity for this task
as they allow to integrate semantic relatedness by
making use of, for instance, word embeddings.

In this paper, we discuss how the NeuroSent
tool has been applied in SemEval 2018 Task
3 (Hee et al., 2018). The tool leverages on the

512

following pillars: (i) the use of word embeddings
for representing each word contained in raw sen-
tences; (ii) the word embeddings are generated
from an opinion-based corpus instead of a general
purpose one (like news or Wikipedia); (iii) the de-
sign of a deep learning technique exploiting the
generated word embeddings for training the sen-
timent model; and (iv) the use of multiple output
layers for combining domain overlap scores with
domain-specific polarity predictions.

The last point enables the exploitation of lin-
guistic overlaps between domains, which can be
considered one of the pivotal assets of our ap-
proach. This way, the overall polarity of a doc-
ument is computed by aggregating, for each do-
main, the domain-specific polarity value multi-
plied by a belonging degree representing the over-
lap between the embedded representation of the
whole document and the domain itself.

2 Related Work

Sentiment analysis from the multi-task and multi-
domain perspective is a research field which
started to be explored only in the last decade. Ac-
cording to the nomenclature widely used in the
literature (see (Blitzer et al., 2007; Dragoni and
Petrucci, 2017)), we call domain a set of docu-
ments about similar topics, e.g. a set of reviews
about similar products like mobile phones, books,
movies, etc.. The massive availability of multi-
domain corpora in which similar opinions are ex-
pressed about different topics opened the scenario
for new challenges. Researchers tried to train
models capable to acquire knowledge from a spe-
cific domain and then to exploit such a knowledge
for working on documents belonging to different
ones. This strategy was called domain adaptation.
The use of domain adaptation techniques demon-
strated that opinion classification is highly sensi-
tive to the domain from which the training data is
extracted. The reason is that when using the same
words, and even the same language constructs, we
may obtain different opinions, depending on the
domain. The classic scenario occurs when the
same word has positive connotations in one do-
main and negative connotations in another one, as
we showed within the examples presented in Sec-
tion 1.

Several approaches related to multi-domain
sentiment analysis have been proposed. Roughly
speaking, all of these approaches rely on one of the

following ideas: (i) the transfer of learned classi-
fiers across different domains (Blitzer et al., 2007;
Pan et al., 2010; Bollegala et al., 2013; Xia et al.,
2013), and (ii) the use of propagation of labels
through graph structures (Ponomareva and Thel-
wall, 2013; Tsai et al., 2013; Dragoni et al., 2015b;
Dragoni, 2015, 2017; Petrucci and Dragoni, 2017,
2016, 2015; Dragoni et al., 2014; Dragoni and
Petrucci, 2018).

While on the one hand such approaches demon-
strated their effectiveness in working in a multi-
domain environment, on the other hand they suf-
fered by the limitation of being influenced by the
linguistic overlap between domains. Indeed, such
an overlap leads learning algorithms to infer simi-
lar polarity values to domains that are similar from
the linguistic perspective.

The adoption of evolutionary algorithms within
the sentiment analysis research field is quite re-
cent. First studies focused on the use of evo-
lutionary solutions for modeling financial indica-
tors by starting from investors sentiments (Yamada
and Ueda, 2005; Chen and Chang, 2005; Huang
et al., 2012; Yang et al., 2017; Simoes et al., 2017).
Here, the evolutionary component was used for
learning the trend of financial indicators with re-
spect to the sentiment information extracted from
opinions provided by the investors. With respect
to these papers, we propose an approach adopting
evolutionary computation to a more fine-grained
level where the evolution component affects also
the polarities of opinion concepts.

Studies considering the use of evolutionary al-
gorithms for optimizing the polarity values of
opinion concepts have been proposed only re-
cently (Ferreira et al., 2015; Onan et al., 2016,
2017). However, these works focused on learning
candidate refinements of opinion concepts polarity
without considering the context dimension associ-
ated with them. A variant of this problem is the use
of polarity adaptation strategy in the field of social
media and microblogs (Alahmadi and Zeng, 2015;
Wang et al., 2014; Keshavarz and Abadeh, 2017;
Hu et al., 2016; Fu et al., 2016; Gong et al., 2016).

With respect to state of the art, this work rep-
resents the first exploration of evolutionary algo-
rithms for multi-domain sentiment analysis with
the aim of learning multiple dictionaries of opin-
ion concepts. Moreover, we differ from the lit-
erature by do not considering the propagation of
polarity information across domain (i.e., we keep

513

them completely separated) in order to avoid trans-
fer learning drawbacks.

3 System Implementation

NeuroSent has been entirely developed in Java
with the support of the Deeplearning4j library 1

and it is composed by following two main phases:

• Generation of Word vectors (Section 3.1):
raw text, appropriately tokenized using the
Stanford CoreNLP Toolkit, is provided as in-
put to a 2-layers neural network implement-
ing the skip-gram approach with the aim of
generating word vectors.

• Learning of Sentiment Model (Section 3.2):
word vectors are used for training a recur-
rent neural network with an output layer cus-
tomized based on the addressed subtask. The
customizations have been explained in Sec-
tion 4.

In the following subsections, we describe in
more detail each phase by providing also the set-
tings used for managing our data.

3.1 Generation of Word Vectors

The generation of the word vectors has been per-
formed by applying the skip-gram algorithm on
the raw natural language text extracted from the
smaller version of the SNAP dataset (McAuley
and Leskovec, 2013). The rationale behind the
choice of this dataset focuses on three reasons:

• the dataset contains only opinion-based doc-
uments. This way, we are able to build word
embeddings describing only opinion-based
contexts.

• the dataset is multi-domain. Information con-
tained into the generated word embeddings
comes from specific domains, thus it is possi-
ble to evaluate how the proposed approach is
general by testing the performance of the cre-
ated model on test sets containing documents
coming from the domains used for building
the model or from other domains.

• the dataset is smaller with respect to other
corpora used in the literature for building
other word embeddings that are currently

1https://deeplearning4j.org/

freely available, like the Google News ones. 2

Indeed, as introduced in Section 1, one of our
goal is to demonstrate how we can leverage
the use of dedicated resources for generating
word embeddings, instead of corpora’s size,
for improving the effectiveness of classifica-
tion systems.

The aspect of considering only opinion-based
information for generating word embeddings is
one of the peculiarity of our system. While
embeddings currently available are created from
big corpora of general purpose texts (like news
archives or Wikipedia pages), ours are generated
by using a smaller corpus containing documents
strongly related to the problem that the model will
be thought for. On the one hand, this aspect may
be considered a limitation of the proposed solution
due to the requirement of training a new model in
case of problem change. However, on the other
hand, the usage of dedicated resources would lead
to the construction of more effective models.

Word embeddings have been generated by
the Word2Vec implementation integrated into the
Deeplearning4j library. The algorithm has been
set up with the following parameters: the size of
the vector to 64, the size of the window used as in-
put of the skip-gram algorithm to 5, and the mini-
mum word frequency was set to 1. The reason for
which we kept the minimum word frequency set to
1 is to avoid the loss of rare but important words
that can occur in domain specific documents.

3.2 Learning of The Sentiment Model
The sentiment model is built by starting from the
word embeddings generated during the previous
phase.

The first step consists in converting each tex-
tual sentence contained within the dataset into the
corresponding numerical matrix S where we have
in each row the word vector representing a single
word of the sentence, and in each column an em-
bedding feature. Given a sentence s, we extract all
tokens ti, with i ∈ [0, n], and we replace each ti
with the corresponding embedding w. During the
conversion of each word in its corresponding em-
bedding, if such embedding is not found, the word
is discarded. At the end of this step, each sentence
contained in the training set is converted in a ma-
trix S = [w〈1〉, . . . ,w〈n〉].

2https://github.com/mmihaltz/word2vec-GoogleNews-
vectors

514

Before giving all matrices as input to the neu-
ral network, we need to include both padding and
masking vectors in order to train our model cor-
rectly. Padding and masking allows us to support
different training situations depending on the num-
ber of the input vectors and on the number of pre-
dictions that the network has to provide at each
time step. In our scenario, we work in a many-
to-one situation where our neural network has to
provide one prediction (sentence polarity and do-
main overlap) as result of the analysis of many in-
put vectors (word embeddings).

Padding vectors are required because we have
to deal with the different length of sentences. In-
deed, the neural network needs to know the num-
ber of time steps that the input layer has to import.
This problem is solved by including, if necessary,
into each matrix Sk, with k ∈ [0, z] and z the
number of sentences contained in the training set,
null word vectors that are used for filling empty
word’s slots. These null vectors are accompanied
by a further vector telling to the neural network
if data contained in a specific positions has to be
considered as an informative embedding or not.

A final note concerns the back propagation
of the error. Training recurrent neural networks
can be quite computationally demanding in cases
when each training instance is composed by many
time steps. A possible optimization is the use of
truncated back propagation through time (BPTT)
that was developed for reducing the computational
complexity of each parameter update in a recur-
rent neural network. On the one hand, this strat-
egy allows to reduce the time needed for training
our model. However, on the other hand, there is
the risk of not flowing backward the gradients for
the full unrolled network. This prevents the full
update of all network parameters. For this rea-
son, even if we work with recurrent neural net-
works, we decided to do not implement a BPTT
approach but to use the default backpropagation
implemented into the DL4J library.

Concerning information about network struc-
ture, the input layer was composed by 64 neu-
rons (i.e. embedding vector size), the hidden RNN
layer was composed by 128 nodes, and the out-
put layers with a different number of nodes based
on the addressed subtask. The network has been
trained by using the Stochastic Gradient Descent
with 1000 epochs and a learning rate of 0.002.

4 The Tasks

The SemEval 2018 Task 3 is composed by two
different subtasks for the automatic detection of
irony on Twitter. For the first subtask, participants
should determine whether a tweet is ironic or not
by simply assigning a binary value 0 or 1. While,
for the second subtask, participants have to distin-
guish, among the ironic tweets, one of the three
classes which tweets are further split.

Subtask #1: Ironic vs. Non-ironic The first
subtask is a binary classification task where the
system has to predict whether a tweet is ironic or
not. Example of an ironic and non-ironic tweet are
presented below, respectively:

• I just love when you test my patience!! #not

• Had no sleep and have got school now #not
happy

The output layer of our neural network is com-
posed by a single neuron implementing the SIG-
MOID activation function.

Subtask #2: Different types of irony The sec-
ond subtask is a multiclass classification task
where the system has to predict one out of four
labels describing:

i. verbal irony realized through a polarity con-
trast;

ii. verbal irony without such a polarity contrast;

iii. descriptions of situational irony; and,

iv. non-irony

i
Instances of the category Verbal irony by means

of a polarity contrast contains an evaluative ex-
pression whose polarity (positive, negative) is in-
verted between the literal and the intended evalua-
tion. An example of this category is the following:
“I really love this year’s summer; weeks and weeks
of awful weather.”

Instead, instances of the category Verbal irony
without such a polarity contrast do not show po-
larity contrast between the literal and the intended
evaluation, but are nevertheless ironic. An ex-
ample of this category is the following: “Human
brains disappear every day. Some of them have
never even appeared.”

515

Then, instances of the Situational irony cate-
gory describe situations that fail to meet some ex-
pectations. An example is the following: “Just
saw a non-smoking sign in the lobby of a tobacco
company.”

Finally, the Non-ironic category contains in-
stances that are clearly not ironic, or which lack
context to be sure that they are ironic.

The output layer of our neural network is com-
posed by four neurons and the SOFTMAX strat-
egy has been implemented for selecting the most
candidate class.

The NeuroSent system has been applied to
both subtasks. In Section 5, we report the prelim-
inary results obtained by NeuroSent on the train-
ing set compared with a set of baselines.

5 In-Vitro Evaluation

Approach Task #3.1 Task #3.2
Support Vector Machine 0.4294 0.4415

Naive-Bayes 0.4388 0.4378
Maximum Entropy 0.4810 0.4629
CNN Architecture 0.5420 0.4891

NeuroSent 0.5687 0.5974

Table 1: Results obtained on the training set by Neu-
roSent and by the four baselines.

The NeuroSent approach have been prelimi-
narily evaluated by adopting the Dranziera pro-
tocol (Dragoni et al., 2016).

The validation procedure leverages on a five-
fold cross evaluation setting in order to validate
the robustness of the proposed solution. The ap-
proach has been compared with four baselines:
Support Vector Machine (SVM) (Chang and Lin,
2011), Naive Bayes (NB) and Maximum Entropy
(ME) (McCallum, 2002), and Convolutional Neu-
ral Network (Chaturvedi et al., 2016).

In Table 1, we provide average Pearson correla-
tion obtained on the five folds in which the training
set has been split.

The obtained results demonstrated the suitabil-
ity of NeuroSent with respect to the adopted
baselines. We may also observed how solutions
based on neural networks obtained a significant
improvement with respect to the others for both
tasks.

We performed a detailed error analysis concern-
ing the performance of NeuroSent. In general,
we observed how our strategy tends to provide

false negative predictions. An in depth analysis
of some incorrect predictions highlighted that the
embedded representations of some positive opin-
ion words are very close to the space region of neg-
ative opinion words. Even if we may state that the
confidence about positive predictions is very high,
this scenario leads to have a predominant negative
classification for borderline instances.

On the one hand, a possible action for improv-
ing the effectiveness our strategy is to increase
the granularity of the embeddings (i.e. augment-
ing the size of the embedding vectors) in order
to increase the distance between the positive and
negative polarities space regions. On the other
hand, by increasing the size of embedding vectors,
the computational time for building, or updating,
the model and for evaluating a single instance in-
creases as well. Part of the future work, will be
the analysis of more efficient neural network ar-
chitectures able to manage augmented embedding
vectors without negatively affecting the efficiency
of the platform.

6 Conclusion

In this paper, we described the NeuroSent sys-
tem presented at SemEval 2018 Task 3. Our sys-
tem makes use of artificial neural networks to clas-
sify tweets by polarity or for detecting emotion
levels. The results obtained on the training set
demonstrated that the adopted solution is promis-
ing and worthy of investigation. Therefore, fu-
ture work will focus on improving the system by
exploring the integration of sentiment knowledge
bases (Dragoni et al., 2015a) in order to move to-
ward a more cognitive approach.

References
Dimah Hussain Alahmadi and Xiao-Jun Zeng. 2015.

Twitter-based recommender system to address cold-
start: A genetic algorithm based trust modelling and
probabilistic sentiment analysis. In 27th IEEE Inter-
national Conference on Tools with Artificial Intelli-
gence, ICTAI 2015, Vietri sul Mare, Italy, November
9-11, 2015, pages 1045–1052. IEEE Computer So-
ciety.

John Blitzer, Mark Dredze, and Fernando Pereira.
2007. Biographies, bollywood, boom-boxes and
blenders: Domain adaptation for sentiment classi-
fication. In ACL 2007, Proceedings of the 45th An-
nual Meeting of the Association for Computational
Linguistics, June 23-30, 2007, Prague, Czech Re-
public. The Association for Computational Linguis-
tics.

516

Danushka Bollegala, David J. Weir, and John A. Car-
roll. 2013. Cross-domain sentiment classification
using a sentiment sensitive thesaurus. IEEE Trans.
Knowl. Data Eng., 25(8):1719–1731.

Chih-Chung Chang and Chih-Jen Lin. 2011. Libsvm:
A library for support vector machines. ACM TIST,
2(3):27:1–27:27.

Iti Chaturvedi, Erik Cambria, and David Vilares. 2016.
Lyapunov filtering of objectivity for spanish senti-
ment model. In 2016 International Joint Conference
on Neural Networks, IJCNN 2016, Vancouver, BC,
Canada, July 24-29, 2016, pages 4474–4481. IEEE.

An-Pin Chen and Yung-Hua Chang. 2005. Using
extended classifier system to forecast s&p futures
based on contrary sentiment indicators. In Proceed-
ings of the IEEE Congress on Evolutionary Compu-
tation, CEC 2005, 2-4 September 2005, Edinburgh,
UK, pages 2084–2090. IEEE.

Mauro Dragoni. 2015. Shellfbk: An information
retrieval-based system for multi-domain sentiment
analysis. In Proceedings of the 9th International
Workshop on Semantic Evaluation, SemEval ’2015,
pages 502–509, Denver, Colorado. Association for
Computational Linguistics.

Mauro Dragoni. 2017. Extracting linguistic features
from opinion data streams for multi-domain senti-
ment analysis. In Proceedings of the 3rd Interna-
tional Workshop at ESWC on Emotions, Modality,
Sentiment Analysis and the Semantic Web co-located
with 14th ESWC 2017, Portroz, Slovenia, May 28,
2017., volume 1874 of CEUR Workshop Proceed-
ings. CEUR-WS.org.

Mauro Dragoni and Giulio Petrucci. 2017. A neural
word embeddings approach for multi-domain sen-
timent analysis. IEEE Trans. Affective Computing,
8(4):457–470.

Mauro Dragoni and Giulio Petrucci. 2018. A fuzzy-
based strategy for multi-domain sentiment analysis.
Int. J. Approx. Reasoning, 93:59–73.

Mauro Dragoni, Andrea Tettamanzi, and Célia
da Costa Pereira. 2016. DRANZIERA: an eval-
uation protocol for multi-domain opinion mining.
In Proceedings of the Tenth International Confer-
ence on Language Resources and Evaluation LREC
2016, Portorož, Slovenia, May 23-28, 2016. Euro-
pean Language Resources Association (ELRA).

Mauro Dragoni, Andrea G. B. Tettamanzi, and Célia
da Costa Pereira. 2014. A fuzzy system for concept-
level sentiment analysis. In Semantic Web Evalua-
tion Challenge - SemWebEval 2014 at ESWC 2014,
Anissaras, Crete, Greece, May 25-29, 2014, Revised
Selected Papers, volume 475 of Communications in
Computer and Information Science, pages 21–27.
Springer.

Mauro Dragoni, Andrea G. B. Tettamanzi, and Célia
da Costa Pereira. 2015a. Propagating and aggregat-
ing fuzzy polarities for concept-level sentiment anal-
ysis. Cognitive Computation, 7(2):186–197.

Mauro Dragoni, Andrea Giovanni Battista Tettamanzi,
and Célia da Costa Pereira. 2015b. Propagating and
aggregating fuzzy polarities for concept-level senti-
ment analysis. Cognitive Computation, 7(2):186–
197.

Marco Federici and Mauro Dragoni. 2016a. A
knowledge-based approach for aspect-based opin-
ion mining. In Semantic Web Challenges - Third
SemWebEval Challenge at ESWC 2016, Heraklion,
Crete, Greece, May 29 - June 2, 2016, Revised Se-
lected Papers, volume 641 of Communications in
Computer and Information Science, pages 141–152.
Springer.

Marco Federici and Mauro Dragoni. 2016b. Towards
unsupervised approaches for aspects extraction. In
Joint Proceedings of the 2th Workshop on Emo-
tions, Modality, Sentiment Analysis and the Seman-
tic Web and the 1st International Workshop on Ex-
traction and Processing of Rich Semantics from
Medical Texts co-located with ESWC 2016, Herak-
lion, Greece, May 29, 2016., volume 1613 of CEUR
Workshop Proceedings. CEUR-WS.org.

Lohann Ferreira, Mariza Dosciatti, Júlio C. Nievola,
and Emerson Cabrera Paraiso. 2015. Using a ge-
netic algorithm approach to study the impact of im-
balanced corpora in sentiment analysis. In Pro-
ceedings of the Twenty-Eighth International Florida
Artificial Intelligence Research Society Conference,
FLAIRS 2015, Hollywood, Florida. May 18-20,
2015., pages 163–168. AAAI Press.

Peng Fu, Zheng Lin, Hailun Lin, Fengcheng Yuan,
Weiping Wang, and Dan Meng. 2016. Quantifying
the effect of sentiment on topic evolution in chinese
microblog. In Web Technologies and Applications
- 18th Asia-Pacific Web Conference, APWeb 2016,
Suzhou, China, September 23-25, 2016. Proceed-
ings, Part I, volume 9931 of Lecture Notes in Com-
puter Science, pages 531–542. Springer.

Aniruddha Ghosh and Tony Veale. 2016. Fracking
sarcasm using neural network. In Proceedings of
the 7th Workshop on Computational Approaches to
Subjectivity, Sentiment and Social Media Analysis,
WASSA@NAACL-HLT 2016, June 16, 2016, San
Diego, California, USA, pages 161–169. The Asso-
ciation for Computer Linguistics.

Lin Gong, Mohammad Al Boni, and Hongning Wang.
2016. Modeling social norms evolution for per-
sonalized sentiment classification. In Proceedings
of the 54th Annual Meeting of the Association for
Computational Linguistics, ACL 2016, August 7-12,
2016, Berlin, Germany, Volume 1: Long Papers. The
Association for Computer Linguistics.

517

Cynthia Van Hee, Els Lefever, and Veronique Hoste.
2018. Semeval-2018 task 3: Irony detection in en-
glish tweets. In Proceedings of International Work-
shop on Semantic Evaluation (SemEval-2018), New
Orleans, LA, USA.

Yan Hu, Xiaofei Xu, and Li Li. 2016. Analyzing topic-
sentiment and topic evolution over time from so-
cial media. In Knowledge Science, Engineering and
Management - 9th International Conference, KSEM
2016, Passau, Germany, October 5-7, 2016, Pro-
ceedings, volume 9983 of Lecture Notes in Com-
puter Science, pages 97–109.

Chien-Feng Huang, Tsung-Nan Hsieh, Bao Rong
Chang, and Chih-Hsiang Chang. 2012. A compar-
ative study of regression and evolution-based stock
selection models for investor sentiment. In 2012
Third International Conference on Innovations in
Bio-Inspired Computing and Applications, Kaohsi-
ung City, Taiwan, September 26-28, 2012, pages 73–
78. IEEE.

Aditya Joshi, Pushpak Bhattacharyya, and Mark James
Carman. 2017. Automatic sarcasm detection: A sur-
vey. ACM Comput. Surv., 50(5):73:1–73:22.

Hamidreza Keshavarz and Mohammad Saniee Abadeh.
2017. ALGA: adaptive lexicon learning using
genetic algorithm for sentiment analysis of mi-
croblogs. Knowl.-Based Syst., 122:1–16.

Bing Liu and Lei Zhang. 2012. A survey of opinion
mining and sentiment analysis. In C. C. Aggarwal
and C. X. Zhai, editors, Mining Text Data, pages
415–463. Springer.

Diana Maynard and Mark A. Greenwood. 2014. Who
cares about sarcastic tweets? investigating the im-
pact of sarcasm on sentiment analysis. In Pro-
ceedings of the Ninth International Conference on
Language Resources and Evaluation, LREC 2014,
Reykjavik, Iceland, May 26-31, 2014., pages 4238–
4243. European Language Resources Association
(ELRA).

Julian J. McAuley and Jure Leskovec. 2013. Hidden
factors and hidden topics: understanding rating di-
mensions with review text. In Seventh ACM Confer-
ence on Recommender Systems, RecSys ’13, Hong
Kong, China, October 12-16, 2013, pages 165–172.
ACM.

Andrew Kachites McCallum. 2002. Mallet: A machine
learning for language toolkit. http://mallet.
cs.umass.edu.

Aytug Onan, Serdar Korukoglu, and Hasan Bulut.
2016. A multiobjective weighted voting ensemble
classifier based on differential evolution algorithm
for text sentiment classification. Expert Syst. Appl.,
62:1–16.

Aytug Onan, Serdar Korukoglu, and Hasan Bulut.
2017. A hybrid ensemble pruning approach based

on consensus clustering and multi-objective evolu-
tionary algorithm for sentiment classification. Inf.
Process. Manage., 53(4):814–833.

Sinno Jialin Pan, Xiaochuan Ni, Jian-Tao Sun, Qiang
Yang, and Zheng Chen. 2010. Cross-domain sen-
timent classification via spectral feature alignment.
In Proceedings of the 19th International Conference
on World Wide Web, WWW 2010, Raleigh, North
Carolina, USA, April 26-30, 2010, pages 751–760.
ACM.

Giulio Petrucci and Mauro Dragoni. 2015. An infor-
mation retrieval-based system for multi-domain sen-
timent analysis. In Semantic Web Evaluation Chal-
lenges - Second SemWebEval Challenge at ESWC
2015, Portorož, Slovenia, May 31 - June 4, 2015,
Revised Selected Papers, volume 548 of Communi-
cations in Computer and Information Science, pages
234–243. Springer.

Giulio Petrucci and Mauro Dragoni. 2016. The IRMU-
DOSA system at ESWC-2016 challenge on seman-
tic sentiment analysis. In Semantic Web Challenges
- Third SemWebEval Challenge at ESWC 2016, Her-
aklion, Crete, Greece, May 29 - June 2, 2016, Re-
vised Selected Papers, volume 641 of Communica-
tions in Computer and Information Science, pages
126–140. Springer.

Giulio Petrucci and Mauro Dragoni. 2017. The IR-
MUDOSA system at ESWC-2017 challenge on se-
mantic sentiment analysis. In Semantic Web Chal-
lenges - 4th SemWebEval Challenge at ESWC 2017,
Portoroz, Slovenia, May 28 - June 1, 2017, Revised
Selected Papers, volume 769 of Communications in
Computer and Information Science, pages 148–165.
Springer.

Natalia Ponomareva and Mike Thelwall. 2013. Semi-
supervised vs. cross-domain graphs for sentiment
analysis. In Recent Advances in Natural Language
Processing, RANLP 2013, 9-11 September, 2013,
Hissar, Bulgaria, pages 571–578. RANLP 2013 Or-
ganising Committee/ACL.

Carlos Simoes, Rui Ferreira Neves, and Nuno Horta.
2017. Using sentiment from twitter optimized by
genetic algorithms to predict the stock market. In
2017 IEEE Congress on Evolutionary Computation,
CEC 2017, Donostia, San Sebastián, Spain, June 5-
8, 2017, pages 1303–1310. IEEE.

Angela Charng-Rurng Tsai, Chi-En Wu, Richard
Tzong-Han Tsai, and Jane Yung jen Hsu. 2013.
Building a concept-level sentiment dictionary based
on commonsense knowledge. IEEE Int. Systems,
28(2):22–30.

Zhitao Wang, Zhiwen Yu, Zhu Wang, and Bin Guo.
2014. Investigating sentiment impact on informa-
tion propagation and its evolution in microblog. In
2014 International Conference on Behavioral, Eco-
nomic, and Socio-Cultural Computing, BESC 2014,
Shanghai, China, October 30 - November 1, 2014,
pages 33–39. IEEE.

518

Rui Xia, Chengqing Zong, Xuelei Hu, and Erik Cam-
bria. 2013. Feature ensemble plus sample selec-
tion: Domain adaptation for sentiment classification.
IEEE Int. Systems, 28(3):10–18.

Takashi Yamada and Kazuhiro Ueda. 2005. Explana-
tion of binarized time series using genetic learning
model of investor sentiment. In Proceedings of the
IEEE Congress on Evolutionary Computation, CEC
2005, 2-4 September 2005, Edinburgh, UK, pages
2437–2444. IEEE.

Steve Y. Yang, Sheung Yin Kevin Mo, Anqi Liu, and
Andrei Kirilenko. 2017. Genetic programming op-
timization for a sentiment feedback strength based
trading strategy. Neurocomputing, 264:29–41.

519

Proceedings of the 12th International Workshop on Semantic Evaluation (SemEval-2018), pages 520–524
New Orleans, Louisiana, June 5–6, 2018. ©2018 Association for Computational Linguistics

UWB at SemEval-2018 Task 3: Irony detection in English tweets

Tomáš Hercig1,2

1NTIS – New Technologies for the Information Society,
Faculty of Applied Sciences, University of West Bohemia, Czech Republic

2Department of Computer Science and Engineering,
Faculty of Applied Sciences, University of West Bohemia, Czech Republic

tigi@kiv.zcu.cz
http://nlp.kiv.zcu.cz

Abstract

This paper describes our system created for the
SemEval-2018 Task 3: Irony detection in En-
glish tweets.

Our strongly constrained system uses only the
provided training data without any additional
external resources. Our system is based on
Maximum Entropy classifier and various fea-
tures using parse tree, POS tags, and morpho-
logical features. Even without additional lexi-
cons and word embeddings we achieved fourth
place in Subtask A and seventh in Subtask B in
terms of accuracy.

1 Introduction

Frequent use of creative and figurative language
on social media has important implications for
natural language processing tasks such as senti-
ment analysis. The semantics of a sentence with
creative or figurative language can be quite dif-
ferent from the same sentence with literal mean-
ing and misinterpreting figurative language such
as irony represents a significant challenge in sen-
timent analysis. Hercig and Lenc (2017) explored
the effect of figurative language on sentiment anal-
ysis and confirmed that figurative language affects
sentiment analysis.

The issue of automatic irony and/or sarcasm1

detection has been addressed mostly in English,
however there has been some research in other
languages as well (e.g. Dutch (Liebrecht et al.,
2013), Italian (Bosco et al., 2013), Brazilian Por-
tuguese (Vanin et al., 2013), and Czech (Ptáček
et al., 2014)).

2 Task

The goal of SemEval-2018 Task 3 (Van Hee et al.,
2018) is to detect irony in English tweets. Subtask

1There is only a weak boundary in meaning between
irony, sarcasm and satire (Reyes et al., 2012)

A detects just binary score for irony and Subtask
B also detects more detailed types of irony (non-
ironic, ironic by clash, situational irony, and other
forms of verbal irony). These subtasks correspond
to their respective phases (A and B). Data for sub-
task B were available only after phase A was fin-
ished.

At the evaluation time the following descrip-
tions of the submitted system labels were given:

• Constrained: only the provided training data
were used to develop the system

• Unconstrained: additional training data
were used

Only after the end of the phase A we learned
that constrained systems can make use of addi-
tional resources like lexicons, dictionaries, embed-
dings, etc. Thus we introduce another system label
to describe our system – strongly constrained.

• Strongly Constrained: using ONLY the the
provided training/development data without
any additional external resources (such as
lexicons, embeddings, etc.)

Data statistics for Subtask A and Subtask B are
shown in Table 1 and 2 respectively.

Label Test Train
Non-ironic 473 (60,3%) 1923 (50,2%)
Ironic 311 (39,7%) 1911 (49,8%)

Table 1: Data statistics for Subtask A.

3 System Description

For all experiments we use Maximum Entropy
classifier with default settings from Brainy ma-
chine learning library (Konkol, 2014). Data pre-
processing includes lower-casing and in some

520

Label Test Train
Non-ironic 473 (60,3%) 1923 (50,2%)
Ironic by clash 164 (20,9%) 1390 (36,3%)
Situational irony 85 (10,8%) 316 (8,2%)
Other irony 62 (7,9%) 205 (5,3%)

Table 2: Data statistics for Subtask B.

cases lemmatization2. We utilize morphological
analysis, parse trees, lemmatization, and POS tags
from UDPipe (Straka et al., 2016).

3.1 Features
We tried to create the best strongly constrained
feature set using various features using parse tree,
POS tags, and morphological features. Most fea-
tures listed below are based on the work of Hercig
et al. (2016).

• Character n-grams (ChNn): Separate bi-
nary feature for each n-gram representing the
n-gram presence in the text. We do it sepa-
rately for different orders n ∈ {1, 2, 3, 4, 5}
and remove n-gram with frequency f ≤ 2.

• Bag of Morphological features (BoM): We
use bag-of-words representation of a tweet,
i.e. separate binary feature representing the
occurrence of a morphological feature for
all verbs in the tweet. The morphological
features3 include abbreviation, aspect, defi-
niteness, degree of comparison, evidential-
ity, mood, polarity, politeness, possessive,
pronominal type, tense, verb form, and voice.

• Bag of Parse Tree Tags (BoT): We use bag-
of-words representation of a tweet, i.e. sep-
arate binary feature representing the occur-
rence of a parse tree tag in the tweet. We
remove tags with a frequency f ≤ 2.

• First Words (FW): Bag of first five words
with at least 2 occurrences.

• Last Words (LW): Bag of last five words
with at least 2 occurrences.

• List (List): Binary feature representing the
presence of the following words or characters
(yay, yep, yes, ha, heh, um, uh, sh, so, no, !,
?, ., ’, ”) in tweet.

2Character n-grams and N-gram Shape use original
words.

3http://universaldependencies.org/u/
feat/index.html

• N-gram Shape (NSh): The occurrence of
word shape n-gram in the tweet. Word shape
assigns words into one of 24 classes4 simi-
lar to the function specified in (Bikel et al.,
1997). We consider unigrams with frequency
f > 2 and trigrams with frequency f > 10.

• POS Count (POS): We use the count of POS
tags in a tweet as a feature. We remove POS
tags with frequency f ≤ 10.

• POS Count Bins (POS-B): We map the fre-
quency of POS tags in a tweet into a one-
hot vector with length three and use this
vector as binary features for the classifier.
The frequency belongs to one of three equal-
frequency bins5. Each bin corresponds to a
position in the vector. We remove POS tags
with frequency ≤ 5.

• Root Bag of Words (R-BoW): Bag of words
for parent, siblings, and children of the root
from the sentence parse tree. We use only
words with POS6 matching adjective, inter-
jection, noun, symbol, verb, and other.

• TF-IDF: Term frequency – inverse document
frequency of a word computed from the train-
ing data for words with at least 5 occurrences
and at most 50 occurrences.

• Verb Bag of Words (V-BoW): Bag of words
for parent, siblings, and children of the verb
from the sentence parse tree. We use only
words with POS6 matching adverb, noun, ad-
jective, verb, and auxiliary.

• Word n-grams (WNn): Separate binary fea-
ture for each word n-gram representing the
n-gram presence in the text. We do it sepa-
rately for different orders n ∈ {1, 2, 3} and
remove n-gram with frequency f ≤ 2.

3.2 Subtask A
We use a simple binary classification approach
with the Maximum Entropy classifier and the fea-
tures shown in Table 5. Blank space denotes that
the corresponding feature has not been used.

4We use edu.stanford.nlp.process.WordShapeClassifier
with the WORDSHAPECHRIS1 setting available in Stand-
ford CoreNLP library (Manning et al., 2014).

5The frequencies from the training data are split into
three equal-size bins according to 33% quantiles.

6http://universaldependencies.org/u/
pos/

521

Team Accuracy Precision Recall F1-score
THU NGN 0.7347 (1) 0.6304 (4) 0.8006 (4) 0.7054 (1)
NTUA-SLP 0.7321 (2) 0.6535 (2) 0.6913 (13) 0.6719 (2)
NIHRIO, NCL 0.7015 (3) 0.6091 (5) 0.6913 (13) 0.6476 (5)
UWB best 0.7003 0.6195 0.6334 0.6264
UWB submitted 0.6875 (4) 0.5988 (7) 0.6431 (19) 0.6202 (11)

Table 3: CodaLab results for Subtask A.

Team Accuracy Precision Recall F1-score
UCDCC 0.7321 (1) 0.5768 (1) 0.5044 (4) 0.5074 (1)
WLV 0.6709 (2) 0.4311 (10) 0.4149 (9) 0.4153 (8)
NIHRIO, NCL 0.6594 (3) 0.5446 (2) 0.4475 (5) 0.4437 (5)
NTUA-SLP 0.6518 (4) 0.4959 (4) 0.5124 (2) 0.4959 (2)
INGEOTEC-IIM. 0.6441 (5) 0.5017 (3) 0.3850 (15) 0.4055 (10)
UWB best 0.6403 0.4571 0.4180 0.4080
RDST∗ 0.6327 (6) 0.4868 (5) 0.4388 (8) 0.4352 (6)
ELiRF-UPV 0.6327 (6) 0.4123 (12) 0.4404 (7) 0.4211 (7)
UWB submitted 0.6263 (7) 0.4404 (8) 0.4059 (12) 0.3902 (13)
∗ Random Decision Syntax Trees

Table 4: CodaLab results for Subtask B.

Feature
Subtask A submitted Subtask A best

Accuracy Precision Recall F1-score Accuracy Precision Recall F1-score
ALL∗ 0.6875 0.5988 0.6431 0.6202 0.7003 0.6195 0.6334 0.6264
ChN -0.0434 -0.0586 +0.0482 -0.0137 -0.0446 -0.0636 +0.0225 -0.0246
BoM +0.0000 +0.0000 +0.0000 +0.0000 -0.0038 -0.0044 -0.0064 -0.0054
BoT -0.0051 -0.0037 -0.0193 -0.0110
FW +0.0000 +0.0006 -0.0032 -0.0012 -0.0064 -0.0089 -0.0032 -0.0061
LW -0.0038 -0.0042 -0.0064 -0.0052
List
NSh -0.0013 -0.0035 +0.0096 +0.0025
POS -0.0038 -0.0042 -0.0064 -0.0052
POS-B -0.0140 -0.0157 -0.0257 -0.0206
R-BoW -0.0064 -0.0020 -0.0386 -0.0195 -0.0077 -0.0094 -0.0096 -0.0095
TF-IDF +0.0000 +0.0000 +0.0000 +0.0000 -0.0064 -0.0068 -0.0129 -0.0098
V-BoW +0.0051 +0.0066 +0.0032 +0.0050
WN1 +0.0013 +0.0030 -0.0064 -0.0014 -0.0089 -0.0107 -0.0129 -0.0117
∗ Original results achieved with all used features in the respective ablation study.

Table 5: Feature ablation study for Subtask A.

3.3 Subtask B

We classify tweets into one of four classes using
the Maximum Entropy classifier and the features
shown in Table 6. Blank space denotes that the
corresponding feature has not been used.

4 Results and Experiments

Our results in Subtask A are in Table 3 and our
results in Subtask B are in Table 4. The official
evaluation metric was F1-score. The system set-
tings and features were selected based on our pre-

522

Feature
Subtask B submitted Subtask B best

Accuracy Precision Recall F1-score Accuracy Precision Recall F1-score
ALL∗ 0.6263 0.4404 0.4059 0.3902 0.6403 0.4571 0.4180 0.4080
ChN -0.0383 -0.0744 -0.0228 -0.0415 -0.0727 -0.0359 -0.0185 -0.0164
BoM +0.0077 +0.0064 +0.0076 +0.0090 -0.0013 -0.0079 -0.0039 -0.0042
BoT
FW -0.0013 -0.0096 +0.0039 +0.0025 -0.0089 -0.0207 -0.0087 -0.0079
LW +0.0089 +0.0011 +0.0091 +0.0094 +0.0000 -0.0068 +0.0000 -0.0001
List +0.0051 +0.0001 +0.0065 +0.0066
NSh +0.0064 +0.0027 +0.0051 +0.0072 -0.0051 -0.0197 -0.0055 -0.0068
POS
POS-B +0.0051 +0.0034 +0.0069 +0.0089 -0.0102 -0.0289 -0.0145 -0.0176
R-BoW +0.0064 +0.0062 +0.0055 +0.0097
TF-IDF +0.0000 -0.0042 +0.0024 +0.0035
V-BoW +0.0026 -0.0056 +0.0039 +0.0071
WN1 +0.0000 -0.0072 +0.0024 +0.0036
WN2,3 +0.0013 +0.0001 +0.0034 +0.0068
∗ Original results achieved with all used features in the respective ablation study.

Table 6: Feature ablation study for Subtask B.

evaluation experiments using 10-fold cross valida-
tion on the training data for the team description
UWB submitted. The team description UWB best
represents the best settings according to the exper-
iments on test data.

We performed ablation experiments to see
which features are the most beneficial (see Table 5
and Table 6). Numbers represent the performance
change when the given feature is removed.

We can see that many features in the submitted
settings for both subtasks are not beneficial for the
results, thus we remove them in the best settings
for the given subtask. The best features apart from
character n-grams include POS-B, FW, and BoM
for both subtasks. In subtask A R-Bow, TF-IDF,
and unigrams were also beneficial. In subtask B
word shape n-grams were also helpful.

Detailed statistical analysis into the datasets and
feature presence in the data would be needed in
order to infer further insides.

5 Conclusion

We competed in both subtasks and ranked 4th in
terms of accuracy in Subtask A and 7th in Subtask
B. In terms of the F1-score measure we ranked
11th in Subtask A and 13th in Subtask B. However
this comparison likely isn’t fair because our sys-
tem should not be be considered just constrained

but strongly constrained.

Acknowledgments

This publication was supported by the project
LO1506 of the Czech Ministry of Education,
Youth and Sports under the program NPU I and
by university specific research project SGS-2016-
018 Data and Software Engineering for Advanced
Applications.

References
Daniel M Bikel, Scott Miller, Richard Schwartz,

and Ralph Weischedel. 1997. Nymble: a high-
performance learning name-finder. In Proceedings
of the fifth conference on Applied natural language
processing, pages 194–201. Association for Compu-
tational Linguistics.

Cristina Bosco, Viviana Patti, and Andrea Bolioli.
2013. Developing corpora for sentiment analysis:
The case of irony and senti-tut. IEEE Intelligent Sys-
tems, 28(2):55–63.

Tomáš Hercig, Tomáš Brychcı́n, Lukáš Svoboda, and
Michal Konkol. 2016. UWB at SemEval-2016 Task
5: Aspect Based Sentiment Analysis. In Proceed-
ings of the 10th International Workshop on Semantic
Evaluation (SemEval-2016), pages 342–349. Asso-
ciation for Computational Linguistics.

Tomáš Hercig and Ladislav Lenc. 2017. The impact
of figurative language on sentiment analysis. In

523

Proceedings of the International Conference Recent
Advances in Natural Language Processing RANLP
2017, Varna, Bulgaria. INCOMA Ltd. Shoumen,
BULGARIA.

Michal Konkol. 2014. Brainy: A machine learning li-
brary. In Leszek Rutkowski, Marcin Korytkowski,
Rafal Scherer, Ryszard Tadeusiewicz, Lotfi Zadeh,
and Jacek Zurada, editors, Artificial Intelligence and
Soft Computing, volume 8468 of Lecture Notes in
Computer Science, pages 490–499. Springer Inter-
national Publishing.

Christine Liebrecht, Florian Kunneman, and Antal
Van den Bosch. 2013. The perfect solution for
detecting sarcasm in tweets #not. In Proceedings
of the 4th Workshop on Computational Approaches
to Subjectivity, Sentiment and Social Media Analy-
sis, pages 29–37, Atlanta, Georgia. Association for
Computational Linguistics.

Christopher D. Manning, Mihai Surdeanu, John Bauer,
Jenny Finkel, Steven J. Bethard, and David Mc-
Closky. 2014. The Stanford CoreNLP natural lan-
guage processing toolkit. In Association for Compu-
tational Linguistics (ACL) System Demonstrations,
pages 55–60.

Tomáš Ptáček, Ivan Habernal, and Jun Hong. 2014.
Sarcasm Detection on Czech and English Twitter.
In Proceedings of COLING 2014, the 25th Inter-
national Conference on Computational Linguistics:
Technical Papers, pages 213–223, Dublin, Ireland.
Dublin City University and Association for Compu-
tational Linguistics.

Antonio Reyes, Paolo Rosso, and Davide Buscaldi.
2012. From humor recognition to irony detec-
tion: The figurative language of social media. Data
Knowl. Eng., 74:1–12.

Milan Straka, Jan Hajič, and Jana Straková. 2016. UD-
Pipe: trainable pipeline for processing CoNLL-U
files performing tokenization, morphological anal-
ysis, pos tagging and parsing. In Proceedings
of the Tenth International Conference on Lan-
guage Resources and Evaluation (LREC’16), Paris,
France. European Language Resources Association
(ELRA).

Cynthia Van Hee, Els Lefever, and Véronique Hoste.
2018. SemEval-2018 Task 3: Irony Detection in
English Tweets. In Proceedings of the 12th Interna-
tional Workshop on Semantic Evaluation, SemEval-
2018, New Orleans, LA, USA. Association for
Computational Linguistics.

Aline A Vanin, Larissa A Freitas, Renata Vieira, and
Marco Bochernitsan. 2013. Some clues on irony de-
tection in tweets. In Proceedings of the 22nd inter-
national conference on World Wide Web companion,
pages 635–636. International World Wide Web Con-
ferences Steering Committee.

524

Proceedings of the 12th International Workshop on Semantic Evaluation (SemEval-2018), pages 525–530
New Orleans, Louisiana, June 5–6, 2018. ©2018 Association for Computational Linguistics

NIHRIO at SemEval-2018 Task 3: A Simple and Accurate Neural
Network Model for Irony Detection in Twitter

Thanh Vu1, Dat Quoc Nguyen2, Xuan-Son Vu3, Dai Quoc Nguyen4,
Michael Catt1 and Michael Trenell1

1NIHRIO, Newcastle University, UK; 2The University of Melbourne, Australia;
3Umeå University, Sweden; 4Deakin University, Australia

thanh.vu@io.nihr.ac.uk; dqnguyen@unimelb.edu.au;
sonvx@cs.umu.se; dai.nguyen@deakin.edu.au;

{michael.catt, michael.trenell}@io.nihr.ac.uk

Abstract

This paper describes our NIHRIO system for
SemEval-2018 Task 3 “Irony detection in En-
glish tweets.” We propose to use a simple neu-
ral network architecture of Multilayer Percep-
tron with various types of input features in-
cluding: lexical, syntactic, semantic and po-
larity features. Our system achieves very high
performance in both subtasks of binary and
multi-class irony detection in tweets. In par-
ticular, we rank third using the accuracy met-
ric and fifth using the F1 metric. Our code
is available at: https://github.com/
NIHRIO/IronyDetectionInTwitter.

1 Introduction

Mining Twitter data has increasingly been attract-
ing much research attention in many NLP appli-
cations such as in sentiment analysis (Pak and
Paroubek, 2010; Kouloumpis et al., 2011; Agar-
wal et al., 2011; Liu et al., 2012; Rosenthal et al.,
2017; Cambria et al., 2018) and stock market pre-
diction (Bollen et al., 2011; Vu et al., 2012; Bartov
et al., 2015; Nofer and Hinz, 2015; Oliveira et al.,
2017). Recently, Davidov et al. (2010) and Reyes
et al. (2013) have shown that Twitter data includes
a high volume of “ironic” tweets. For example,
a user can use positive words in a Twitter mes-
sage to her intended negative meaning (e.g., “It is
awesome to go to bed at 3 am #not”). This es-
pecially results in a research challenge to assign
correct sentiment labels for ironic tweets (Bosco
et al., 2013; Ghosh et al., 2015; Farı́as et al., 2016;
Nozza et al., 2017; Kannangara, 2018).

To handle that problem, much attention has
been focused on automatic irony detection in Twit-
ter (Davidov et al., 2010; Reyes et al., 2013; Barbi-
eri and Saggion, 2014; Rajadesingan et al., 2015;
Farı́as et al., 2016; Sulis et al., 2016; Karoui et al.,

2017; Joshi et al., 2017; Huang et al., 2017; Ravi
and Ravi, 2017). In this paper, we propose a neural
network model for irony detection in tweets. Our
model obtains the fifth best performances in both
binary and multi-class irony detection subtasks in
terms of F1 score (Van Hee et al., 2018). Details
of the two subtasks can be found in the task de-
scription paper (Van Hee et al., 2018). We briefly
describe the subtasks as follows:

Subtask 1 (A): Ironic vs non-ironic This first
subtask is a binary classification problem, in
which we predict whether or not a tweet is ironic.
For example, “I just love when you test my pa-
tience!! #not” is ironic, but “Had no sleep and
have got school now #not happy” is non-ironic.

Subtask 2 (B): Different types of irony This
second subtask is a multi-class classification prob-
lem, where we predict the correct label of a tweet
from four classes: (1) non-irony, (2) verbal irony
by means of a polarity contrast, (3) other verbal
irony and (4) situational irony.

The remainder of this paper is organized as fol-
lows: We describe the ironic tweet dataset pro-
vided by the SemEval-2018 Task 3 in Section 2.
We then describe our system in Section 3. The ex-
perimental results and conclusion are detailed in
Section 4 and Section 5, respectively.

2 Dataset

The dataset consists of 4,618 tweets (2,222 ironic
+ 2,396 non-ironic) that are manually labelled by
three students. Some pre-processing steps were
applied to the dataset, such as the emoji icons in
a tweet are replaced by a describing text using
the Python emoji package.1 Additionally, all the

1https://pypi.python.org/pypi/emoji/

525

Figure 1: Overview of our model architecture for irony detection in tweets.

Statistics Training Test
#samples 3,834 784
#non-irony 1,923 473
#irony 1,911 311
- polarity contrast verbal 1,390 164
- other verbal 316 85
- situational 205 62

Table 1: Basic statistics of the provided dataset.

ironic hashtags, such as #not, #sarcasm, #irony, in
the dataset have been removed. This makes diffi-
cult to correctly predict the label of a tweet. For
example, “@coreybking thanks for the spoiler!!!!
#not” is an ironic tweet but without #not, it prob-
ably is a non-ironic tweet. The dataset is split into
the training and test sets as detailed in Table 1.

Note that there is also an extended version of
the training set, which contains the ironic hash-
tags. However, we only use the training set which
does not contain the ironic hashtags to train our
model as it is in line with the test set.

Our data pre-processing step: Tweet normal-
ization is an important pre-processing step as there
are around 15% of tweets containing 50% or
more out-of-vocabulary tokens (Han and Baldwin,
2011). We normalize each tweet from the dataset
using a lexicon-based approach proposed by Han
et al. (2012), using a manually constructed nor-
malization dictionary (e.g., “reeeaaalll” is normal-
ized by “real’). We then replace all tagged users
and urls by specific word tokens “<USER>” and
“<URL>”, respectively. It is because they are
likely not correlated with the ironic labels.

3 Our modeling approach

We first describe our MLP-based model for ironic
tweet detection in Section 3.1. We then present the
features used in our model in Section 3.2.

3.1 Neural network model

We propose to use the Multilayer Perceptron
(MLP) model (Hornik et al., 1989) to handle both
the ironic tweet detection subtasks. Figure 1
presents an overview of our model architecture
including an input layer, two hidden layers and
a softmax output layer. Given a tweet, the in-
put layer represents the tweet by a feature vec-
tor which concatenates lexical, syntactic, semantic
and polarity feature representations. The two hid-
den layers with ReLU activation function take the
input feature vector to select the most important
features which are then fed into the softmax layer
for ironic detection and classification.

3.2 Features

Table 2 shows the number of lexical, syntactic, se-
mantic and polarity features used in our model.

Lexical features: Our lexical features include 1-
, 2-, and 3-grams in both word and character lev-
els. For each type of n-grams, we utilize only the
top 1,000 n-grams based on the term frequency-
inverse document frequency (tf-idf) values. That
is, each n-gram appearing in a tweet becomes an
entry in the feature vector with the corresponding
feature value tf-idf. We also use the number of
characters and the number of words as features.

526

Name # Features
Lexical features 2,002
Syntactic features 45
Semantic features 700
Polarity features 12
Total 2,759

Table 2: Number of features used in our model

Cluster Word Cluster Word
110000 wife 11001000 adorable
110000 sister 11001000 excellent
110000 boyfriend 11001000 interesting
110000 daughter 11001000 blessed
110000 mum 11001000 easy
110000 son 11001000 perfect
110000 dad 11001000 cool
110000 family 11001000 funny

Table 3: Example of clusters produced by the Brown
clustering algorithm.

Syntactic features: We use the NLTK toolkit to
tokenize and annotate part-of-speech tags (POS
tags) for all tweets in the dataset. We then use all
the POS tags with their corresponding tf-idf val-
ues as our syntactic features and feature values,
respectively.

Semantic features: A major challenge when
dealing with the tweet data is that the lexicon used
in a tweet is informal and much different from
tweet to tweet. The lexical and syntactic features
seem not to well-capture that property. To handle
this problem, we apply three approaches to com-
pute tweet vector representations.

Firstly, we employ 300-dimensional pre-trained
word embeddings from GloVe (Pennington et al.,
2014) to compute a tweet embedding as the aver-
age of the embeddings of words in the tweet.

Secondly, we apply the latent semantic indexing
(Papadimitriou et al., 1998) to capture the under-
lying semantics of the dataset. Here, each tweet is
represented as a vector of 100 dimensions.

Thirdly, we also extract tweet representation by
applying the Brown clustering algorithm (Brown
et al., 1992; Liang, 2005)2—a hierarchical cluster-
ing algorithm which groups the words with similar
meaning and syntactical function together. Apply-
ing the Brown clustering algorithm, we obtain a
set of clusters, where each word belongs to only

2https://github.com/percyliang/
brown-cluster

Figure 2: The training mechanism.

one cluster. For example in Table 3, words that
indicate the members of a family (e.g., “mum”,
“dad”) or positive sentiment (e.g., “interesting”,
“awesome”) are grouped into the same cluster. We
run the algorithm with different number of cluster-
ing settings (i.e., 80, 100, 120) to capture multiple
semantic and syntactic aspects. For each cluster-
ing setting, we use the number of tweet words in
each cluster as a feature. After that, for each tweet,
we concatenate the features from all the clustering
settings to form a cluster-based tweet embedding.

Polarity features: Motivated by the verbal irony
by means of polarity contrast, such as “I really
love this year’s summer; weeks and weeks of awful
weather”, we use the number of polarity signals
appearing in a tweet as the polarity features. The
signals include positive words (e.g., love), nega-
tive words (e.g., awful), positive emoji icon and
negative emoji icon. We use the sentiment dictio-
naries provided by Hu and Liu (2004) to identify
positive and negative words in a tweet. We further
use boolean features that check whether or not a
negation word is in a tweet (e.g., not, n’t).

3.3 Implementation details

We use Tensorflow (Abadi et al., 2015) to imple-
ment our model. Model parameters are learned to
minimize the the cross-entropy loss with L2 reg-
ularization. Figure 2 shows our training mech-
anism. In particular, we follow a 10-fold cross-
validation based voting strategy. First, we split the
training set into 10 folds. Each time, we combine 9
folds to train a classification model and use the re-
maining fold to find the optimal hyperparameters.

527

Name 1 (A) 2 (B)
Hidden layers (800, 400) (800, 300)
epoch 100 100
early stop 30 30
Learning rate 10−4 10−4

l2 10−5 10−5

Table 4: The optimal hyperparameter settings for sub-
tasks 1 (A) and 2 (B).

Accuracy Precision Recall F1

70.153 60.91 69.13 64.765

Table 5: The performance (in %) of our model on the
test set for subtask 1 (binary classification). The sub-
scripts denote our official ranking.

Table 4 shows optimal settings for each subtask.
In total, we have 10 classification models to pro-

duce 10 predicted labels for each test tweet. Then,
we use the voting technique to return the final pre-
dicted label.

4 Experiments

4.1 Metrics

The metrics used to evaluate our model include
accuracy, precision, recall and F1. The accuracy
is calculated using all classes in both tasks. The
remainders are calculated using only the positive
label in subtask 1 or per class label (i.e., macro-
averaged) in subtask 2. Detail description of the
metrics can be found in Van Hee et al. (2018).

4.2 Results for subtask 1

Table 5 shows our official results on the test set
for subtask 1 with regards to the four metrics. By
using a simple MLP neural network architecture,
our system achieves a high performance which is
ranked third and fifth out of forty-four teams us-
ing accuracy and F1 metrics, respectively.

4.3 Results for subtask 2

Table 6 presents our results on the test set for
subtask 2. Our system also achieves a high per-
formance which is ranked third and fifth out of
thirty-two teams using accuracy and F1 metrics,
respectively. We also show in Table 7 the perfor-
mance of our system on different class labels. For
ironic classes, our system achieves the best perfor-
mance on the verbal irony by means of a polarity
contrast with F1 of 60.73%. Note that the perfor-
mance on the situational class is not high. The

Accuracy Precision Recall F1

65.943 54.46 44.75 44.375

Table 6: The performance (in %) of our model on the
test set for subtask 2 (multi-class classification).

Class Precision Recall F1

Non-irony 72.97 79.92 76.29
Contrast verbal 53.21 70.73 60.73
Other verbal 48.78 23.53 31.75
Situational 42.86 4.84 8.70

Table 7: The performance (in %) of our model on the
test set for each class label in subtask 2.

reason is probably that the number of situational
tweets in the training set is small (205/3,834), i.e.
not enough to learn a good classifier.

4.4 Discussions

Apart from the described MLP models, we have
also tried other neural network models, such
as Long Short-Term Memory (LSTM) (Hochre-
iter and Schmidhuber, 1997) and Convolutional
Neural Network (CNN) for relation classification
(Kim, 2014). We found that LSTM achieves much
higher performance than MLP does on the ex-
tended training set containing the ironic hashtags
(about 92% vs 87% with 10-fold cross-validation
using F1 on subtask 1). However, without the
ironic hashtags, the performance is lower than
MLP’s. We also employed popular machine learn-
ing techniques, such as SVM (Hearst et al., 1998),
Logistic Regression (Harrell, 2001), Ridge Re-
gression Classifier (Le Cessie and Van Houwelin-
gen, 1992), but none of them produces as good re-
sults as MLP does. We have also implemented en-
semble models, such as voting, bagging and stack-
ing. We found that with 10-fold cross-validation
based voting strategy, our MLP models produce
the best irony detection and classification results.

5 Conclusion

We have presented our NIHRIO system for partic-
ipating the Semeval-2018 Task 3 on “Irony detec-
tion in English tweets”. We proposed to use Mul-
tilayer Perceptron to handle the task using various
features including lexical features, syntactic fea-
tures, semantic features and polarity features. Our
system was ranked the fifth best performing one
with regards to F1 score in both the subtasks of
binary and multi-class irony detection in tweets.

528

Acknowledgments

This research is supported by the National Institute
for Health Research (NIHR) Innovation Observa-
tory at Newcastle University, United Kingdom.

References
Martı́n Abadi, Ashish Agarwal, Paul Barham, Eugene

Brevdo, Zhifeng Chen, Craig Citro, Greg S. Cor-
rado, Andy Davis, Jeffrey Dean, Matthieu Devin,
Sanjay Ghemawat, Ian Goodfellow, Andrew Harp,
Geoffrey Irving, Michael Isard, Yangqing Jia, Rafal
Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh
Levenberg, Dan Mané, Rajat Monga, Sherry Moore,
Derek Murray, Chris Olah, Mike Schuster, Jonathon
Shlens, Benoit Steiner, Ilya Sutskever, Kunal Tal-
war, Paul Tucker, Vincent Vanhoucke, Vijay Vasude-
van, Fernanda Viégas, Oriol Vinyals, Pete Warden,
Martin Wattenberg, Martin Wicke, Yuan Yu, and Xi-
aoqiang Zheng. 2015. TensorFlow: Large-scale ma-
chine learning on heterogeneous systems. Software
available from tensorflow.org.

Apoorv Agarwal, Boyi Xie, Ilia Vovsha, Owen Ram-
bow, and Rebecca Passonneau. 2011. Sentiment
analysis of twitter data. In Proceedings of the work-
shop on languages in social media, pages 30–38.

Francesco Barbieri and Horacio Saggion. 2014. Mod-
elling irony in twitter. In Proceedings of the Stu-
dent Research Workshop at the 14th Conference of
the European Chapter of the Association for Com-
putational Linguistics, pages 56–64.

Eli Bartov, Lucile Faurel, and Partha Mohanram. 2015.
Can twitter help predict firm-level earnings and
stock returns? The Accounting Review.

Johan Bollen, Huina Mao, and Xiaojun Zeng. 2011.
Twitter mood predicts the stock market. Journal of
computational science, 2(1):1–8.

Cristina Bosco, Viviana Patti, and Andrea Bolioli.
2013. Developing corpora for sentiment analysis:
The case of irony and senti-tut. IEEE Intelligent Sys-
tems, 28(2):55–63.

Peter F. Brown, Peter V. deSouza, Robert L. Mer-
cer, Vincent J. Della Pietra, and Jenifer C. Lai.
1992. Class-based n-gram models of natural lan-
guage. Comput. Linguist., 18(4):467–479.

Erik Cambria, Soujanya Poria, Devamanyu Hazarika,
and Kenneth Kwok. 2018. Senticnet 5: discover-
ing conceptual primitives for sentiment analysis by
means of context embeddings. In Proceedings of the
32nd AAAI Conference on Artificial Intelligence.

Dmitry Davidov, Oren Tsur, and Ari Rappoport. 2010.
Semi-supervised recognition of sarcastic sentences
in twitter and amazon. In Proceedings of the Four-
teenth Conference on Computational Natural Lan-
guage Learning, pages 107–116.

Delia Irazú Hernańdez Farı́as, Viviana Patti, and Paolo
Rosso. 2016. Irony detection in twitter: The role
of affective content. ACM Trans. Internet Technol.,
16(3):19:1–19:24.

Aniruddha Ghosh, Guofu Li, Tony Veale, Paolo Rosso,
Ekaterina Shutova, John Barnden, and Antonio
Reyes. 2015. Semeval-2015 task 11: Sentiment
analysis of figurative language in twitter. In Pro-
ceedings of the 9th International Workshop on Se-
mantic Evaluation, pages 470–478.

Bo Han and Timothy Baldwin. 2011. Lexical normali-
sation of short text messages: Makn sens a #twitter.
In Proceedings of the 49th Annual Meeting of the
Association for Computational Linguistics: Human
Language Technologies - Volume 1, pages 368–378.

Bo Han, Paul Cook, and Timothy Baldwin. 2012. Au-
tomatically constructing a normalisation dictionary
for microblogs. In Proceedings of the 2012 Joint
Conference on Empirical Methods in Natural Lan-
guage Processing and Computational Natural Lan-
guage Learning, pages 421–432.

Frank E Harrell. 2001. Ordinal logistic regression. In
Regression modeling strategies, pages 331–343.

Marti A. Hearst, Susan T Dumais, Edgar Osuna, John
Platt, and Bernhard Scholkopf. 1998. Support vec-
tor machines. IEEE Intelligent Systems and their ap-
plications, 13(4):18–28.

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long
short-term memory. Neural Comput., 9(8):1735–
1780.

K. Hornik, M. Stinchcombe, and H. White. 1989. Mul-
tilayer feedforward networks are universal approxi-
mators. Neural Netw., 2(5):359–366.

Minqing Hu and Bing Liu. 2004. Mining and summa-
rizing customer reviews. In Proceedings of the tenth
ACM SIGKDD international conference on Knowl-
edge discovery and data mining, pages 168–177.

Yu-Hsiang Huang, Hen-Hsen Huang, and Hsin-Hsi
Chen. 2017. Irony detection with attentive recur-
rent neural networks. In European Conference on
Information Retrieval, pages 534–540.

Aditya Joshi, Pushpak Bhattacharyya, and Mark J Car-
man. 2017. Automatic sarcasm detection: A survey.
ACM Computing Surveys, 50(5):73.

Sandeepa Kannangara. 2018. Mining twitter for fine-
grained political opinion polarity classification, ide-
ology detection and sarcasm detection. In Proceed-
ings of the Eleventh ACM International Conference
on Web Search and Data Mining, pages 751–752.

Jihen Karoui, Benamara Farah, Véronique Moriceau,
Viviana Patti, Cristina Bosco, and Nathalie
Aussenac-Gilles. 2017. Exploring the impact of
pragmatic phenomena on irony detection in tweets:
A multilingual corpus study. In Proceedings of the

529

15th Conference of the European Chapter of the
Association for Computational Linguistics (Volume
1: Long Papers), pages 262–272.

Yoon Kim. 2014. Convolutional neural networks for
sentence classification. In Proceedings of the 2014
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 1746–1751.

Efthymios Kouloumpis, Theresa Wilson, and Jo-
hanna D Moore. 2011. Twitter sentiment analysis:
The good the bad and the omg! Proceedings of the
5th International Conference on Web and Social Me-
dia, pages 538–541.

Saskia Le Cessie and Johannes C Van Houwelingen.
1992. Ridge estimators in logistic regression. Ap-
plied statistics, pages 191–201.

Percy Liang. 2005. Semi-supervised learning for nat-
ural language. Ph.D. thesis, Massachusetts Institute
of Technology.

Kun-Lin Liu, Wu-Jun Li, and Minyi Guo. 2012.
Emoticon smoothed language models for twitter
sentiment analysis. In Proceedings of the Twenty-
Sixth AAAI Conference on Artificial Intelligence,
pages 1678–1684.

Michael Nofer and Oliver Hinz. 2015. Using twitter
to predict the stock market. Business & Information
Systems Engineering, 57(4):229–242.

Debora Nozza, Elisabetta Fersini, and Enza Messina.
2017. A multi-view sentiment corpus. In Proceed-
ings of the 15th Conference of the European Chap-
ter of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 273–280.

Nuno Oliveira, Paulo Cortez, and Nelson Areal. 2017.
The impact of microblogging data for stock market
prediction: using twitter to predict returns, volatility,
trading volume and survey sentiment indices. Ex-
pert Systems with Applications, 73:125–144.

Alexander Pak and Patrick Paroubek. 2010. Twitter as
a corpus for sentiment analysis and opinion mining.
In Proceedings of the Seventh conference on Inter-
national Language Resources and Evaluation.

Christos H. Papadimitriou, Hisao Tamaki, Prabhakar
Raghavan, and Santosh Vempala. 1998. La-
tent semantic indexing: A probabilistic analy-
sis. In Proceedings of the Seventeenth ACM
SIGACT-SIGMOD-SIGART Symposium on Princi-
ples of Database Systems, pages 159–168.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. Glove: Global Vectors for Word
Representation. In Proceedings of the 2014 Con-
ference on Empirical Methods in Natural Language
Processing, pages 1532–1543.

Ashwin Rajadesingan, Reza Zafarani, and Huan Liu.
2015. Sarcasm detection on twitter: A behavioral
modeling approach. In Proceedings of the Eighth

ACM International Conference on Web Search and
Data Mining, pages 97–106.

Kumar Ravi and Vadlamani Ravi. 2017. A novel
automatic satire and irony detection using ensem-
bled feature selection and data mining. Knowledge-
Based Systems, 120:15–33.

Antonio Reyes, Paolo Rosso, and Tony Veale. 2013.
A multidimensional approach for detecting irony in
twitter. Lang. Resour. Eval., 47(1):239–268.

Sara Rosenthal, Noura Farra, and Preslav Nakov. 2017.
Semeval-2017 task 4: Sentiment analysis in twitter.
In Proceedings of the 11th International Workshop
on Semantic Evaluation, pages 502–518.

Emilio Sulis, Delia Irazú Hernández Farı́as, Paolo
Rosso, Viviana Patti, and Giancarlo Ruffo. 2016.
Figurative messages and affect in twitter: Dif-
ferences between# irony,# sarcasm and# not.
Knowledge-Based Systems, 108:132–143.

Cynthia Van Hee, Els Lefever, and Véronique Hoste.
2018. SemEval-2018 Task 3: Irony Detection in
English Tweets. In Proceedings of the 12th Inter-
national Workshop on Semantic Evaluation, page to
appear.

Tien Thanh Vu, Shu Chang, Quang Thuy Ha, and Nigel
Collier. 2012. An experiment in integrating senti-
ment features for tech stock prediction in twitter. In
The COLING Workshop on Information Extraction
and Entity Analytics on Social Media Data, pages
23–38.

530

Proceedings of the 12th International Workshop on Semantic Evaluation (SemEval-2018), pages 531–536
New Orleans, Louisiana, June 5–6, 2018. ©2018 Association for Computational Linguistics

LDR at SemEval-2018 Task 3:
A Low Dimensional Text Representation for Irony Detection

Bilal Ghanem
Universitat Politecnica de Valencia,

Spain
bigha@doctor.upv.es

Francisco Rangel
Universitat Politecnica de Valencia,

Spain
francisco.rangel@autoritas.es

Paolo Rosso
Universitat Politecnica de Valencia,

Spain
prosso@dsic.upv.es

Abstract

In this paper we describe our participation in
the SemEval-2018 task 3 Shared Task on Irony
Detection. We have approached the task with
our low dimensionality representation method
(LDR), which exploits low dimensional fea-
tures extracted from text on the basis of the
occurrence probability of the words depend-
ing on each class. Our intuition is that words in
ironic texts have different probability of occur-
rence than in non-ironic ones. Our approach
obtained acceptable results in both subtasks A
and B. We have performed an error analysis
that shows the difference on correct and incor-
rect classified tweets.

1 Introduction

With the existence of online social networks, a
huge amount of information rapidly pervades,
which attracting the attention of researchers to in-
vestigate the linguistic phenomenon that appears.
One of these complex phenomenon is irony, where
the speaker uses words that mean the opposite of
the literal meaning and what others really think,
especially in order to be funny1. Moreover, irony
can be considered as a strategy intended to criticise
or to praise (Hernández-Farı́as et al., 2015). The
detection of irony recently is quite a hot research
topic due to its importance for efficient sentiment
analysis (Ghosh et al., 2015). Also, another figu-
rative language device noticed recently is sarcasm,
where the writer intend to offend someone rather
than creating a humor situation. In many research
works, irony and sarcasm are often viewed as the
same language device, or they considered irony as
an umbrella term that covers also sarcasm (Wang,

1As defined in the Merriam Webster Dictionary,
http://www.merriam-webster.com/dictionary/irony; accessed
on Feb. 2018.

2013). Several approaches have been proposed to
detect irony, where most of them have turned the
problem into a binary classification task using a
set of features. (Carvalho et al., 2009) proposed
one of the first works on irony detection. They
worked on the identification of a set of patterns
to identify ironic sentences. The adopted features
were the use of punctuation marks and emoticons.
(Reyes et al., 2013) proposed a model that em-
ployed four types of conceptual features: signa-
tures, unexpectedness, style and emotional sce-
narios. (Barbieri and Saggion, 2014) proposed a
model using lexical features, such as frequency
of rare and common terms, synonyms, adjectives,
emoticons, punctuation marks, positive and nega-
tive terms. Their results showed that the most im-
portant features are structure, frequency and syn-
onyms for detecting irony in multiple datasets.
(Karoui et al., 2015) presented a model to detect
irony using a vector composed of six main groups
of features: surface features (such as punctuation
marks), sentiment (positive and negative words),
sentiment shifter (positive and negative words in
the scope of an intensifier), shifter (presence a
negation word or reporting speech verbs), oppo-
sition (sentiment opposition or contrast between
a subjective and an objective proposition) and in-
ternal contextual (the presence of personal pro-
nouns). (Reyes et al., 2012) also studied the ef-
fect of multiple features to distinguish ironic and
non-ironic tweets messages. The adopted features
include quantifiers of sentence complexity, mor-
phosyntactic and semantic ambiguity, polarity, un-
expectedness, emotional activation, imagery, and
pleasantness of words. (Wallace et al., 2015) pre-
sented a way to approach verbal irony classifica-
tion by exploits contextual features, specifically by
combining noun phrases and sentiment extracted

531

from comments using a dataset of comments col-
lected from reddit site which is social news aggre-
gation. Most of these features did well in detect-
ing ironic sentences, where in general they relied
on different types of high level features that use
lexical resources, sentiment analysis methods or
common terms occurrence. Based on these previ-
ous works, we investigate the using of low dimen-
sional features extracted from a given text. LDR
uses terms weights to represent the probability that
each Twitter message belongs to a specific class
(e.g. ironic vs. non-ironic). Our intuition is that
words usage in ironic texts has different probabil-
ity of occurrence than in non-ironic ones, and LDR
is good at capturing these differences. LDR does
not need external resources, hand-crafted features,
and drastically reduces the dimensionality of the
representation. This allows the method to deal
with big data problems. In this paper, we present
the participation of LDR in the SemEval-2018 task
3 on Irony Detection (Van Hee et al., 2018). The
rest of the paper is structured as follows. In Sec-
tion 2, the LDR method is presented. In Sec-
tion 3, we discuss the results we have achieved in
both tasks and further analyse the error in Section
4. For example, to know whether the terms us-
age changes depending on ironic and non-ironic
tweets. Finally, we draw some conclusions in Sec-
tion 5 together with future work proposals.

2 Low Dimensional Representation
Description

We proposed the low dimensional representation
(LDR) in (Rangel et al., 2017a). LDR has been
used in multiple author profiling tasks (Rangel
et al., 2017b; Litvinova et al., 2017), and espe-
cially in language variety identification (Franco-
Salvador et al., 2015; Fabra et al., 2015). The key
aspect of the LDR is the use of weights to repre-
sent the probability of each term belonging to each
one of the different language varieties. In our ap-
proach we built a vector of features from a matrix
of terms weights. Starting from a set of training
documents, with using Tf-Idf weighting scheme,
we built a matrix of terms weights where each
row represents Tf-Idf terms weights of a document
(specifically this row of term weights represents
a unique class C of its document), and each col-
umn corresponds to a specific term. Therefore, we
obtained another matrix where each term weight
was built using the ratio between the weights of

the documents belonging to a concrete language
variety C and the total distribution of weights for
that term t over other documents, where each col-
umn in the matrix represents a term distribution
overall documents.

AVG The average weight of a document
is calculated as the sum of weights
W(t,c) of its terms divided by the
total number of vocabulary terms of
the document.

STD The standard deviation of the weight
of a document is calculated as the
root square of the sum of all the
weights W(t,c) minus the average.

MIN The minimum weight of a docu-
ment is the lowest term weight W(t,c)
found in the document.

MAX The maximum weight of a document
is the highest term weight W(t,c)
found in the document.

PROB The overall weight of a document
is the sum of weights W(t,c) of the
terms of the document divided by the
total number of terms of the docu-
ment.

PROP The proportion between the number
of vocabulary terms of the document
and the total number of terms of the
document.

Table 1: LDR features for each classification class

Then, a vector of features was built where each
feature was obtained in a different way, Table 1
describes the used features in LDR. In this paper,
we used LDR in order to investigate its perfor-
mance in irony detection classification task. LDR
was proposed for different application where its
discriminative statistical features proved to be ef-
ficient for classification purposes. Therefore, in
this task, we investigated the LDR efficiency in
irony detection, where the implicit meaning of a
sentence is required to identify the correct class
type.

3 Experiments and Results

During the experiments, LDR was tested using
different classifiers. In the following sections we
will illustrate the experiments that we carried out.
For the evaluation, we used both accuracy and
macro-average F-score. Moreover, the error anal-

532

Dataset # of tweets # Positive # Negative

SemEval-
2018

3,834 1,911 1,923

(Karoui
et al., 2017)

540 540 -

(Ptáček
et al., 2014)

67,779 18,889 48890

Table 2: Number of positive and negative tweets in
the used datasets - Task A.

ysis we did allowed us to further understand the
behavior of LDR in irony detection.

3.1 Data

We trained our model using the provided task 3
dataset with other two datasets collected previ-
ously by other researchers. The task A train-
ing subset consists of 3,834 tweets, where 1,911
tweets labeled as irony and 1,923 as not. While in
task B, the same number of tweets was used with
different type of subcategories. The tweets distri-
bution over the categories was as follows: 1,390
irony tweets with a polarity contrast (labeled as
1), 316 as situational irony tweets (labeled as 2),
205 irony tweets without a polarity contrast (la-
beled as 3), and finally 1,923 non-irony tweets
(labeled as 0). The second dataset that we used
was provided by (Karoui et al., 2017) by collecting
tweets using the Twitter API. The authors searched
a set of keywords for different topics, such as pol-
itics, sport, artists, locations, Arab Spring, envi-
ronment, racism, health, social media. These top-
ics have been discussed in the French and Amer-
ican media during a specific period. We used the
English part of the dataset which consists of 540
tweets. The last dataset was created by (Ptáček
et al., 2014). The dataset approximately con-
sists of 67,800 tweets of sarcasm linguistic phe-
nomenon. As in the previous dataset, they used
the Twitter API to collect the tweets but looking
for the ”sarcasm” hashtag. Table 2 summarises
the statistical numbers of the datasets. We have
conducted several experiments by combining the
described datasets.

3.2 Task A

We have tested LDR with different classifiers us-
ing the Weka toolkit with standard parameters and
conducted 10-fold cross-validation to find out the
classifier that achieves the best results. LDR has
achieved 64% of accuracy and 65% of F-score

with the DecisionStump classifier. To improve the
results, we adopted the Majority Vote (MV) algo-
rithm using the results that were generated by the
other two datasets with the training subset, each
combined with the training part of task A subset
in the 10-fold cross-validation. To note, none of
the datasets improves the results more than using
the task A subset independently. In spite of that,
combining with Karoui et al. dataset achieved its
highest results with Multilayer Perceptron classi-
fier, and with Ptacek et al. dataset with REPTree
classifier. By applying MV, we improved by 0.6%
in accuracy the previous results obtained only with
the task A training subset. Accordingly, we sub-
mitted two different runs, constrained and not. In
the constrained one, we used the DecisionStump
classifier with the task A training subset indepen-
dently, while in the unconstrained, we used MV
combining the three described datasets.

3.3 Task B

In this task, we experimented several runs that are
similar to task A experiments. Since we did not
find such a dataset with the used four subcate-
gories, no other subset involved in this task exper-
iments. Therefore, 10-cross validation technique
was used without involving any other dataset. For
the accuracy, the MultiClassUpdateable classifier
achieved the highest result with 60.68%, while
for the macro average F-score BayesNet achieved
38%. Accordingly, we adopted the classifiers that
have the highest results in F-score to apply MV
where BayesNet, NaiveBayes and NaiveBayesUp-
dateable classifiers are involved. By applying MV,
we got a value 39% of macro average F-score. Fi-
nally, when the test subset for each task was re-
leased, we submitted our runs for each task. For
the task A, both constrained and unconstrained
runs were submitted while for task B, only the
constrained run was submitted. Upon that, LDR
attained the results that are in Table 2.

Tasks Run Type Accuracy F-score

Task A
Constrained 0.56 0.43

Unconstrained - 0.43
Task B Constrained 0.46 0.23

Table 3: LDR classification results of Task A and
B using Accuracy and Macro average F-score.

The classification results for both runs in task A
achieved the same score in terms of F-score mea-

533

Figure 1: The distribution of correctly classified
cases in term of AVG feature.

Figure 2: The distribution of incorrectly classified
cases in term of AVG feature.

sure with some tiny progress to the unconstrained
run. In the task B, LDR achieved a lower result
comparing to task A. We believe that the reason
is due to the number of training records for some
classes in the training subset is small comparing to
the other classes (unbalanced subset), where our
model on these classes has a high bias (underfit-
ting). Another possibility could be regarding to the
LDR features, where maybe some of them could
not be suitable for such task.

4 Error Analysis

We aim from analyzing the error of LDR to bet-
ter understand the weak classification results that
were obtained, especially in task B. We started
with investigating the ability of LDR features to

discriminate the data. So, we applied the Gain-
Ratio algorithm for features selection under the
Weka toolkit to evaluate and to find out how much
the LDR features are relevant to the irony training
subset. The GainRatio result shows that LDR fea-
tures were weak in discriminating the data, where
the highest ranked attribute is the AVG feature for
class 1 (ironic) with a value of 10%, followed by
the AVG feature of class 0 (non-ironic) with 9%,
where the rest of features are lower.

In the Fig. 1 and 2, we plotted the distribution
of AVG feature of both correctly classified and in-
correctly classified cases in test subset of task A, to
show how they are distributed. In both figures, we
can figure out that there is an overlapping between
ironic and the non-ironic classes. To deduce which
of them is more overlapped, we calculated the Eu-
clidean distance (Ed) between the average points
(the black circles) of both classes in each figure.
As a result, the Ed in the Fig.1 of the correctly
classified cases is 0.143, whilst in the second fig-
ure is 0.102. Therefore, the overlapping between
both classes in the Fig.1 is lower than in the second
figure, which clearly shows that the AVG feature is
a good feature to infer both ironic and non-ironic
classes.

As we discussed before, the LDR features are
built based on a weighting scheme. Therefore,
the larger is the training subset used, the more
classification accuracy our model produces. To
infer this fact, we investigated manually the AVG
weights of two cases from the Fig. 1, to show how
the weights are differentiated when: 1) a correctly
classified ironic and non-ironic cases are far from
each other in the figure, 2) and when they are
near. Therefore, in the first case, we selected the
cases A and B where they are far from each other.
The tweets of A and B points in the figure are:

Ironic (A)

Yay jury duty #sarcasm

We found that the term ”Yay” was mentioned fre-
quently in the ironic cases, where the writer used it
as a figurative term to represent an irony situation.
Meanwhile, this term was presented rarely in the
non-ironic tweets. Therefore, this term made a
distinctive situation for this tweet. The other two
terms ”jury & duty” were not used in the process
of weights building of the tweets, since we
excluded terms that rarely appeared in the corpus.

534

Classes
Classified as

Correct
0 1 2 3

0 270 108 59 36 57%
1 36 104 19 5 64%
2 36 16 24 9 29%
3 32 9 17 4 6%

Table 4: Confusion matrix of the 4-class classifica-
tion.

Non-Ironic (B)

Extended cut "NICHA"
https://t.co/qdzpcuRqc1
#trailer #spoof #film #dramatic
#action #film2014 #youtube
#fightscenes

Similarly in this tweet, the terms have a high
probability of occurrence in the non-ironic tweets
while a very small probability in the ironic tweets.
For the second case, we took other two tweets
from the overlapping area between the ironic and
non-ironic tweets. The tweets’ terms weights are
very similar to each other where the terms in both
sentences were mentioned. This is what makes the
tweets AVG features near to each in the figure.

For the task B, we built a confusion matrix to
clarify the predictions of test subset cases, as in
Table 3. We can conclude that: in the classes
that have a low number of training records (2 and
3), our model was highly confused in detecting
their original labels, where a very small number of
cases was classified correctly with a detection ra-
tio of 29% and 6% for class 2 and 3 sequentially.
Moreover, the highest confusion occurs from class
0 to class 1 where 108 cases were classified incor-
rectly, where the lowest was from class 1 to class
3. In general, both classes 1 and 2 were correctly
classified better than 2 and 3 classes. In our view,
our model did not fit the training subset for the
classes 2 and 3.

5 Conclusion

In this paper, we have evaluated LDR on the
irony detection task to investigate its performance
on irony detection. Using LDR the classifica-
tion task accomplished with accepted results with-
out using any semantic, sentiment or contextual
features. Despite the fact that LDR previously

showed its competitive results on language vari-
ety identification and author profiling tasks and
outperformed traditional state-of-the-art represen-
tations, from the results of this shared task we can
conclude that the low dimensionality features do
not perform as good as other language dependent
features do, and from our point of view, they are
not suitable to infer of such language phenomenon
as irony. As future work we will continue studying
how LDR will perform on other language applica-
tions.

Acknowledgement

This research work was done in the frame-
work of the SomEMBED TIN2015-71147-C2-1-P
MINECO research project.

References
Francesco Barbieri and Horacio Saggion. 2014. Mod-

elling irony in twitter. In Proceedings of the Stu-
dent Research Workshop at the 14th Conference of
the European Chapter of the Association for Com-
putational Linguistics, pages 56–64.

Paula Carvalho, Luı́s Sarmento, Mário J Silva, and
Eugénio De Oliveira. 2009. Clues for detecting
irony in user-generated contents: oh...!! it’s so
easy;-. In Proceedings of the 1st international
CIKM workshop on Topic-sentiment analysis for
mass opinion, pages 53–56. ACM.

Raül Boluda Fabra, Francisco Rangel, and Paolo
Rosso. 2015. Nlel upv autoritas participation at dis-
crimination between similar languages (dsl) 2015
shared task. In Proceedings of the Joint Workshop
on Language Technology for Closely Related Lan-
guages, Varieties and Dialects, pages 52–58.

Marc Franco-Salvador, Francisco Rangel, Paolo Rosso,
Mariona Taulé, and M Antònia Martı́t. 2015. Lan-
guage variety identification using distributed repre-
sentations of words and documents. In Interna-
tional Conference of the Cross-Language Evalua-
tion Forum for European Languages, pages 28–40.
Springer.

Aniruddha Ghosh, Guofu Li, Tony Veale, Paolo Rosso,
Ekaterina Shutova, John Barnden, and Antonio
Reyes. 2015. Semeval-2015 task 11: Sentiment
analysis of figurative language in twitter. In Pro-
ceedings of the 9th International Workshop on Se-
mantic Evaluation (SemEval 2015), pages 470–478.

Irazú Hernández-Farı́as, José-Miguel Benedı́, and
Paolo Rosso. 2015. Applying basic features from
sentiment analysis for automatic irony detection. In
Iberian Conference on Pattern Recognition and Im-
age Analysis, pages 337–344. Springer.

535

Jihen Karoui, Farah Benamara, Véronique Moriceau,
Nathalie Aussenac-Gilles, and Lamia Hadrich Bel-
guith. 2015. Towards a contextual pragmatic model
to detect irony in tweets. In 53rd Annual Meeting of
the Association for Computational Linguistics (ACL
2015), pages PP–644.

Jihen Karoui, Benamara Farah, Véronique Moriceau,
Viviana Patti, Cristina Bosco, and Nathalie
Aussenac-Gilles. 2017. Exploring the impact of
pragmatic phenomena on irony detection in tweets:
A multilingual corpus study. In Proceedings of the
15th Conference of the European Chapter of the
Association for Computational Linguistics: Volume
1, Long Papers, volume 1, pages 262–272.

Tatiana Litvinova, Francisco Rangel, Paolo Rosso,
Pavel Seredin, and Olga Litvinova. 2017. Overview
of the rusprofiling pan at fire track on cross-genre
gender identification in russian. Notebook Papers of
FIRE, pages 8–10.

Tomáš Ptáček, Ivan Habernal, and Jun Hong. 2014.
Sarcasm detection on czech and english twitter. In
Proceedings of COLING 2014, the 25th Interna-
tional Conference on Computational Linguistics:
Technical Papers, pages 213–223.

Francisco Rangel, Marc Franco-Salvador, and Paolo
Rosso. 2017a. A low dimensionality representation
for language variety identification. arXiv preprint
arXiv:1705.10754.

Francisco Rangel, Paolo Rosso, Martin Potthast, and
Benno Stein. 2017b. Overview of the 5th author
profiling task at pan 2017: Gender and language va-
riety identification in twitter. In CLEF 2017 Labs
and Workshops, Notebook Papers. CEUR Workshop
Proceedings, volume 1866.

Antonio Reyes, Paolo Rosso, and Davide Buscaldi.
2012. From humor recognition to irony detection:
The figurative language of social media. Data &
Knowledge Engineering, 74:1–12.

Antonio Reyes, Paolo Rosso, and Tony Veale. 2013.
A multidimensional approach for detecting irony
in twitter. Language resources and evaluation,
47(1):239–268.

Cynthia Van Hee, Els Lefever, and Vronique Hoste.
2018. Semeval-2018 task 3: Irony detection in en-
glish tweets. In Proceedings of the 12th Interna-
tional Workshop on Semantic Evaluation (SemEval-
2018).

Byron C Wallace, Eugene Charniak, et al. 2015.
Sparse, contextually informed models for irony de-
tection: Exploiting user communities, entities and
sentiment. In Proceedings of the 53rd Annual Meet-
ing of the Association for Computational Linguistics
and the 7th International Joint Conference on Natu-
ral Language Processing (Volume 1: Long Papers),
volume 1, pages 1035–1044.

Po-Ya Angela Wang. 2013. # irony or# sarcasma quan-
titative and qualitative study based on twitter. In
Proceedings of the 27th Pacific Asia Conference on
Language, Information, and Computation (PACLIC
27), pages 349–356.

536

Proceedings of the 12th International Workshop on Semantic Evaluation (SemEval-2018), pages 537–540
New Orleans, Louisiana, June 5–6, 2018. ©2018 Association for Computational Linguistics

IIIDYT at SemEval-2018 Task 3: Irony detection in English tweets

Edison Marrese-Taylor1*, Suzana Ilic2*, Jorge A. Balazs1*,
Helmut Prendinger2, Yutaka Matsuo1

Graduate School of Engineering, The University of Tokyo, Japan1

emarrese,jorge,matsuo@weblab.t.u-tokyo.ac.jp
National Institute of Informatics, Tokyo, Japan2

suzana,helmut@nii.ac.jp
*Authors contributed equally to this work.

Abstract

In this paper we introduce our system for the
task of Irony detection in English tweets, a
part of SemEval 2018. We propose represen-
tation learning approach that relies on a multi-
layered bidirectional LSTM, without using ex-
ternal features that provide additional seman-
tic information. Although our model is able to
outperform the baseline in the validation set,
our results show limited generalization power
over the test set. Given the limited size of
the dataset, we think the usage of more pre-
training schemes would greatly improve the
obtained results.

1 Introduction

Sentiment analysis and emotion recognition, as
two closely related subfields of affective comput-
ing, play a key role in the advancement of artifi-
cial intelligence (Cambria et al., 2017). However,
the complexity and ambiguity of natural language
constitutes a wide range of challenges for compu-
tational systems.

In the past years irony and sarcasm detection
have received great traction within the machine
learning and NLP community (Joshi et al., 2016),
mainly due to the high frequency of sarcastic and
ironic expressions in social media. Their linguis-
tic collocation inclines to flip polarity in the con-
text of sentiment analysis, which makes machine-
based irony detection critical for sentiment anal-
ysis (Poria et al., 2016; Van Hee et al., 2015).
Irony is a profoundly pragmatic and versatile lin-
guistic phenomenon. As its foundations usu-
ally lay beyond explicit linguistic patterns in re-
constructing contextual dependencies and latent
meaning, such as shared knowledge or common
knowledge (Joshi et al., 2016), automatically de-
tecting it remains a challenging task in natural lan-
guage processing.

In this paper, we introduce our system for the
shared task of Irony detection in English tweets, a
part of the 2018 SemEval (Van Hee et al., 2018).
We note that computational approaches to auto-
matically detecting irony often deploy expensive
feature-engineered systems which rely on a rich
body of linguistic and contextual cues (Bamman
and Smith, 2015; Joshi et al., 2015). The advent
of Deep Learning applied to NLP has introduced
models that have succeeded in large part because
they learn and use their own continuous numeric
representations (Hinton, 1984) of words (Mikolov
et al., 2013), offering us the dream of forgetting
manually-designed features. To this extent, in
this paper we propose a representation learning
approach for irony detection, which relies on a
bidirectional LSTM and pre-trained word embed-
dings.

2 Data and pre-processing

For the shared task, a balanced dataset of 2,396
ironic and 2,396 non-ironic tweets is provided.
The ironic corpus was constructed by collecting
self-annotated tweets with the hashtags #irony,
#sarcasm and #not. The tweets were then cleaned
and manually checked and labeled, using a fine-
grained annotation scheme (Van Hee et al., 2015).
The corpus comprises different types of irony:

• Verbal irony (polarity contrast): 1,728 in-
stances

• Other types of verbal irony: 267 instances.

• Situational irony: 401 instances

Verbal irony is often referred to as an utterance
that conveys the opposite meaning of what of liter-
ally expressed (Grice, 1975; Wallace, 2015), e.g. I
love annoying people. Situational irony appears

537

in settings, that diverge from the expected (Lu-
cariello, 1994), e.g. an old man who won the lot-
tery and died the next day. The latter does not
necessarily exhibit polarity contrast or other typi-
cal linguistic features, which makes it particularly
difficult to classify correctly.

For the pre-processing we used the Natural Lan-
guage Toolkit (Loper and Bird, 2002). As a first
step, we removed the following words and hash-
tagged words: not, sarc, sarcasm, irony, ironic,
sarcastic and sarcast, in order to ascertain a clean
corpus without topic-related triggers. To ease
the tokenizing process with the NLTK TweetTok-
enizer, we replaced two spaces with one space and
removed usernames and urls, as they do not gener-
ally provide any useful information for detecting
irony.

We do not stem or lowercase the tokens, since
some patterns within that scope might serve as an
indicator for ironic tweets, for instance a word or
a sequence of words, in which all letters are capi-
talized (Tsur et al., 2010).

3 Proposed Approach

The goal of the subtask A was to build a binary
classification system that predicts if a tweet is
ironic or non-ironic. In the following sections, we
first describe the dataset provided for the task and
our pre-processing pipeline. Later, we lay out the
proposed model architecture, our experiments and
results.

3.1 Word representation

Representation learning approaches usually re-
quire extensive amounts of data to derive proper
results. Moreover, previous studies have shown
that initializing representations using random val-
ues generally causes the performance to drop. For
these reasons, we rely on pre-trained word em-
beddings as a means of providing the model the
adequate setting. We experiment with GloVe1

(Pennington et al., 2014) for small sizes, namely
25, 50 and 100. This is based on previous work
showing that representation learning models based
on convolutional neural networks perform well
compared to traditional machine learning meth-
ods with a significantly smaller feature vector size,
while at the same time preventing over-fitting and
accelerates computation (e.g (Poria et al., 2016).

1nlp.stanford.edu/projects/glove

GloVe embeddings are trained on a dataset of
2B tweets, with a total vocabulary of 1.2 M to-
kens. However, we observed a significant overlap
with the vocabulary extracted from the shared task
dataset. To deal with out-of-vocabulary terms that
have a frequency above a given threshold, we cre-
ate a new vector which is initialized based on the
space described by the infrequent words in GloVe.
Concretely, we uniformly sample a vector from a
sphere centered in the centroid of the 10% less
frequent words in the GloVe vocabulary, whose
radius is the mean distance between the centroid
and all the words in the low frequency set. For the
other case, we use the special UNK token.

To maximize the knowledge that may be recov-
ered from the pre-trained embeddings, specially
for out-of-vocabulary terms, we add several token-
level and sentence-level binary features derived
from simple linguistic patterns, which are concate-
nated to the corresponding vectors.

Word-level features

1. If the token is fully lowercased.

2. If the Token is fully uppercased.

3. If only the first letter is capitalized.

4. If the token contains digits.

Sentence-level features

1. If any token is fully lowercased.

2. If any token is fully uppercased.

3. If any token appears more than once.

3.2 Model architecture
Recurrent neural networks are powerful sequence
learning models that have achieved excellent re-
sults for a variety of difficult NLP tasks (Ian Good-
fellow, Yoshua Bengio, 2017). In particular, we
use the last hidden state of a bidirectional LSTM
architecture (Hochreiter and Urgen Schmidhuber,
1997) to obtain our tweet representations. This
setting is currently regarded as the state-of-the-art
(Barnes et al., 2017) for the task on other datasets.
To avoid over-fitting we use Dropout (Srivastava
et al., 2014) and for training we set binary cross-
entropy as a loss function. For evaluation we use
our own wrappers of the the official evaluation
scripts provided for the shared tasks, which are
based on accuracy, precision, recall and F1-score.

538

4 Experimental setup

Our model is implemented in PyTorch (Paszke
et al., 2017), which allowed us to easily deal with
the variable tweet length due to the dynamic nature
of the platform. We experimented with different
values for the LSTM hidden state size, as well as
for the dropout probability, obtaining best results
for a dropout probability of 0.1 and 150 units for
the the hidden vector. We trained our models us-
ing 80% of the provided data, while the remaining
20% was used for model development. We used
Adam (Kingma and Ba, 2015), with a learning rate
of 0.0001 and early stopping when performance
did not improve on the development set. Using
embeddings of size 100 provided better results in
practice. Our final best model is an ensemble of
four models with the same architecture but differ-
ent random initialization.

To compare our results, we use the provided
baseline, which is a non-parameter optimized
linear-kernel SVM that uses TF-IDF bag-of-word
vectors as inputs. For pre-processing, in this case
we do not preserve casing and delete English stop-
words.

5 Results

To understand how our strategies to recover more
information from the pre-trained word embed-
dings affected the results, we ran ablation studies
to compare how the token-level and sentence-level
features contributed to the performance. Table 1
summarizes the impact of these features in terms
of F1-score on the validation set.

Feature Yes No
Token-level 0.6843 0.7008

Sentence-level 0.6848 0.6820

Table 1: Results of our ablation study for binary fea-
tures in terms of F1-Score on the validation set.

We see that sentence-level features had a pos-
itive yet small impact, while token-level features
seemed to actually hurt the performance. We think
that since the task is performed at the sentence-
level, probably features that capture linguistic phe-
nomena at the same level provide useful informa-
tion to the model, while the contributions of other
finer granularity features seem to be too specific
for the model to leverage on.

Table 2 summarizes our best single-model re-
sults on the validation set (20% of the provided

data) compared to the baseline, as well as the offi-
cial results of our model ensemble on the test data.

Split Accuracy Precision Recall F1-score
Baseline Valid 0.6375 0.6440 0.6096 0.6263

Ours Valid 0.6610 0.6369 0.8447 0.7262
Ours Test 0.3520 0.2568 0.3344 0.2905

Table 2: Summary of the obtained best results on the
valid/test sets.

Out of 43 teams our system ranked 421st with
an official F1-score of 0.2905 on the test set. Al-
though our model outperforms the baseline in the
validation set in terms of F1-score, we observe im-
portant drops for all metrics compared to the test
set, showing that the architecture seems to be un-
able to generalize well. We think these results
highlight the necessity of an ad-hoc architecture
for the task as well as the relevance of additional
information. The work of Felbo et al. (2017) of-
fers interesting contributions in these two aspects,
achieving good results for a range of tasks that in-
clude sarcasm detection, using an additional atten-
tion layer over a BiLSTM like ours, while also pre-
training their model on an emoji-based dataset of
1246 million tweets.

Moreover, we think that due to the complex-
ity of the problem and the size of the training
data in the context of deep learning better results
could be obtained with additional resources for
pre-training. Concretely, we see transfer learn-
ing as one option to add knowledge from a larger,
related dataset could significantly improve the re-
sults (Pan and Yang, 2010). Manually labeling and
checking data is a vastly time-consuming effort.
Even if noisy, collecting a considerably larger self-
annotated dataset such as in Khodak et al. (2017)
could potentially boost model performance.

6 Conclusion

In this paper we presented our system to SemEval-
2018 shared task on irony detection in English
tweets (subtask A), which leverages on a BiLSTM
and pre-trained word embeddings for represen-
tation learning, without using human-engineered
features. Our results showed that although the
generalization capabilities of the model are lim-
ited, there are clear future directions to improve.
In particular, access to more training data and the
deployment of methods like transfer learning seem
to be promising directions for future research in
representation learning-based sarcasm detection.

539

References
David Bamman and Noah A Smith. 2015. Contextual-

ized sarcasm detection on twitter. Icwsm (Interna-
tional AAAI Conference on Web and Social Media),
pages 574–577.

Jeremy Barnes, Roman Klinger, and Sabine Schulte
im Walde. 2017. Assessing state-of-the-art senti-
ment models on state-of-the-art sentiment datasets.
pages 2–12.

Erik Cambria, Dipankar Das, Sivaji Bandyopadhyay,
and Antonio Feraco. 2017. Guide to Sentiment
Analysis. Springer International Publishing AG
2017, Cham, Switzerland.

Bjarke Felbo, Alan Mislove, Anders Søgaard, Iyad
Rahwan, and Sune Lehmann. 2017. Using millions
of emoji occurrences to learn any-domain represen-
tations for detecting sentiment, emotion and sar-
casm.

H. Paul Grice. 1975. Logic and conversation. In Pe-
ter Cole and Jerry L. Morgan, editors, Syntax and
Semantics, volume 3, pages 41–58. Academic Press,
New York.

Geoffrey E Hinton. 1984. Distributed representations.

Sepp Hochreiter and J Urgen Schmidhuber. 1997.
Long short-term memory. Neural Computation,
9(8):1735–1780.

Aaron Courville Ian Goodfellow, Yoshua Bengio.
2017. Deep Learning, volume 521. MIT Press.

Aditya Joshi, Pushpak Bhattacharyya, and Mark James
Carman. 2016. Automatic sarcasm detection: A sur-
vey. ACM Computing Surveys, V.

Aditya Joshi, Vinita Sharma, and Pushpak Bhat-
tacharyya. 2015. Harnessing context incongruity
for sarcasm detection. Proceedings of the 53rd An-
nual Meeting of the Association for Computational
Linguistics and the 7th International Joint Confer-
ence on Natural Language Processing (Short Pa-
pers), 51(4):757–762.

Mikhail Khodak, Nikunj Saunshi, and Kiran Vodra-
halli. 2017. A large self-annotated corpus for sar-
casm.

Diederik P. Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. In Proceedings
of the 3rd International Conference for Learning
Representations, San Diego.

Edward Loper and Steven Bird. 2002. Nltk: The natu-
ral language toolkit.

Joan Lucariello. 1994. Situational irony: A concept of
events gone awry. Journal of Experimental Psychol-
ogy: General, 123(2):129–145.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013. Distributed Representa-
tions of Words and Phrases and their Composition-
ality. In C. J. C. Burges, L. Bottou, M. Welling,
Z. Ghahramani, and K. Q. Weinberger, editors, Ad-
vances in Neural Information Processing Systems
26, pages 3111–3119. Curran Associates, Inc.

Sinno Jialin Pan and Qiang Yang. 2010. A survey on
transfer learning. IEEE Transactions on Knowledge
and Data Engineering, 22(10):1345–1359.

Adam Paszke, Gregory Chanan, Zeming Lin, Sam
Gross, Edward Yang, Luca Antiga, and Zachary De-
vito. 2017. Automatic differentiation in pytorch.
Advances in Neural Information Processing Systems
30, (Nips):1–4.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. Glove: Global vectors for word
representation. Proceedings of the 2014 Conference
on Empirical Methods in Natural Language Pro-
cessing (EMNLP), pages 1532–1543.

Soujanya Poria, Erik Cambria, Devamanyu Hazarika,
and Prateek Vij. 2016. A deeper look into sarcastic
tweets using deep convolutional neural networks.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky,
Ilya Sutskever, and Ruslan Salakhutdinov. 2014.
Dropout: A simple way to prevent neural networks
from overfitting. The Journal of Machine Learning
Research, 15(1):1929–1958.

Oren Tsur, Ari Rappoport, and Dmitry Davidov. 2010.
Icwsm a great catchy name: Semi-supervised recog-
nition of sarcastic sentences in online product re-
views. International AAAI Conference on Weblogs
and Social Media, (9):162–169.

Cynthia Van Hee, Els Lefever, and Veronique Hoste.
2015. Guidelines for annotating irony in social me-
dia text. LT3 Technical Report, 15(2).

Cynthia Van Hee, Els Lefever, and Véronique Hoste.
2018. SemEval-2018 Task 3: Irony Detection in
English Tweets. In Proceedings of the 12th Interna-
tional Workshop on Semantic Evaluation, SemEval-
2018, New Orleans, LA, USA. Association for
Computational Linguistics.

Byron C. Wallace. 2015. Computational irony: A sur-
vey and new perspectives. Artificial Intelligence Re-
view, 43(4):467–483.

540

Proceedings of the 12th International Workshop on Semantic Evaluation (SemEval-2018), pages 541–545
New Orleans, Louisiana, June 5–6, 2018. ©2018 Association for Computational Linguistics

PunFields at SemEval-2018 Task 3: Detecting Irony by Tools of Humor
Analysis

Elena Mikhalkova, Yuri Karyakin, Dmitry Grigoriev,
Alexander Voronov, and Artem Leoznov
Tyumen State University, Tyumen, Russia

(e.v.mikhalkova, y.e.karyakin)@utmn.ru

Abstract

The paper describes our search for a univer-
sal algorithm of detecting intentional lexical
ambiguity in different forms of creative lan-
guage. At SemEval-2018 Task 3, we used
PunFields, the system of automatic analysis of
English puns that we introduced at SemEval-
2017, to detect irony in tweets. Preliminary
tests showed that it can reach the score of
F1=0.596. However, at the competition, its re-
sult was F1=0.549.

1 Introduction

It requires no proof that usually language users can
detect lexical ambiguity in figurative speech with-
out classifying it into types like metaphor, pun, hu-
mor, irony, sarcasm, etc. At the same time, such
terminology is necessary in studyng these phe-
nomena as well as solving problems of automatic
classification. In our opinion, programs dealing
with intentional lexical ambiguity should be more
like natural language users, i.e. they should have
one general mechanism of its detection optimized
to a certain extent to different types of creative
language. In Task 3 “Irony Detection in English
Tweets” of SemEval-2018 (Van Hee et al., 2018),
we attempted to employ PunFields, our previously
introduced classifier of English puns (Mikhalkova
and Karyakin, 2017b) 1, in the task of irony clas-
sification in tweets as the constrained submission.
I.e. PunFields trained only on the Gold dataset re-
leased by the Organizers.

As for the unconstrained submission, we used a
bag-of-words model with an SVM classifier. The
training dataset was enriched with tweets from
other SemEval competitions. We will discuss it
in a separate paragraph later in detail.

The results of PunFields in this competition
were above the chance value (cf.: Table 1) demon-

1https://github.com/evrog/PunFields

Ac. Prec. Rec. F1 s.
Con. 0.5765 0.4753 0.6495 0.5489
Unc. 0.6033 0.5000 0.5563 0.5266
Hom. 0.6782 0.7993 0.7337 0.7651
Het. 0.5747 0.7580 0.5940 0.6661

Table 1: Results of PunFields at SemEval 2018 Task
3 and SemEval 2017 Task 7. Ac. - acuracy, Prec. -
precision, Rec. - recall, F1 s. - F1 score. SemEval-
2018: Con. - Constrained submission, Unc. - Uncon-
strained submission. SemEval-2017: Hom. - homo-
graphic puns, Het. - heterographic puns.

strating higher scores of Recall and F1 score, but
lower Acuracy and Precision compared to the en-
riched bag-of-words (unconstrained submission).
In analysis of puns, PunFields is more efficient
reaching F1=0.765.

In this paper we will briefly outline the state-of-
the-art system and possible reasons for its compe-
tition results.

2 Lexical Ambiguity in Irony and Puns

We will demonstrate similarity between a pun and
irony by the two following examples.

Christmas shopping on 2 hours sleep is
going to be fun.

In this ironic tweet from the Gold dataset of the
competition, the word fun is used simultaneously
in the meaning “joy, amusement”, in the context
of “Christmas shopping”, and in the meaning, op-
posite to it, “problem, trouble”, in the context of
“2 hours sleep.” This opposition of meanings put
into one word or phrase consitutes the essence of
what many researchers call irony (Van Hee, 2017;
Barbieri and Saggion, 2014).

I could tell you a chemistry joke, but I
know I wouldn’t get a reaction.

541

In the pun above from the Gold dataset of Se-
mEval2017 (Miller et al., 2017), the word reac-
tion is used simultaneously in the meaning “chem-
ical reaction”, in the context of “chemistry”, and
in the meaning “emotional response”, in the con-
text of “joke”. The only difference between the
pun and irony in these examples is that in puns
the opposition of meanings is more pragmatic. I.e.
the two meanings of reaction belong to different
spheres of human activity. In irony, the opposition
is binary: fun=not fun.

In the both cases, the two meanings are envoked
by two contexts, scripts, or themes. Therefore, if a
computer program detects coexistence of two top-
ics within an utterance, it is likely to classify cor-
rectly both pun and irony, but would be unable to
tell which type it deals with. But can ordinary sen-
tences without an intentionally ambiguous word or
phrase also contain two scripts? Let us demon-
strate what happens to a pun and irony if we trans-
form them into sentences without ambiguity:

Christmas shopping on 2 hours sleep is
not going to be fun / is going to be a
problem.

I could tell you a chemistry joke, but I
know I wouldn’t get an emotional reac-
tion / a chemical reaction.

When we transform these sentences, one of the
scripts in a pun starts to dominate, for example
the three word unity “joke + emotional reaction”
would outnumber the one-word script of “chem-
istry”, and vice versa “chemistry + chemical reac-
tion” would outnumber the script of “joke”.

However, in case of irony, this ambiguity is not
so obvious. On the one hand, if we change “fun”
to “problem”, words “sleep”, “hours” and “prob-
lem” can form a script. Although this script is not
so easily recognizable and requires knowledge that
two hours of sleep is too little (for example in the
known semantic vector representations of words
or documents sleep can be found close to lack, fa-
tigue, and time). On the other hand, if we leave
the word “fun” in the setence and just add “not”
to it (“not going to be fun”), our algorithm will
need to process auxiliary words and other variants
of negation: never, neither, don’t, etc. But these
stop-words often create noise in searching for the
main topics. If we ignore “not”, the script “Christ-
mas shopping + fun” would still form a union and
dominate in the utterance.

In sum, intentional lexical ambiguity in irony is
not easy for recognition compared to more explicit
speech genres like puns. Another feature of irony
that supports this statement is that otherwise there
would be no need to mark irony with indicators of
ambiguity like hashtags and emoji. 2

3 PunFields

PunFields is a program that turns an utterance into
a vector of length 39 based on 39 semantic classes
of Roget’s Thesaurus called Sections. 3 A the-
saurus is a kind of dictionary that unites words into
classes that build a hierarchy. Unlike WordNet,
the hierarchy is designed by the author/-s of a the-
saurus beforehand (top-down approach). Roget’s
Thesaurus places all lexemes at the lowest level on
the basis of their semantic proximity. The clusters
of words then unite into Sections, Sections into Di-
visions, Divisions into Classes. The 39 Sections of
Roget’s Thesaurus are in a way similar to dimen-
sions of the word2vec algorithm (Mikolov et al.,
2013), but word2vec has a fine tuning of meaning
proximities.

Data Preprocessing. Before submitting data
to PunFields, tweets are put into a preprocessing
pipeline. The first step in the pipeline is sepa-
rating symbols from words in a way that men-
tions (start with “@”) and hashtags (start with
“#”) are left intact. Emoji are processed as word
combiations (“:ok hand sign:” is simply “ok hand
sign”). Words in hashtags are often separated with
a “ ”. Hence, we add a space before and after
each “ ”. For eaxmple, the line “@kennyches-
ney, :ok hand sign: #New#color#new#beginning”
becomes “@kennychesney , : ok hand sign :
#New #color #new #beginning”.

The next step is treatment of emphatic devices
in words that are not mentions and hashtags. We
judge words with one letter repeated more than

2There are cases when it is impossible to recognize am-
biguity without such indicators. For example, “Luv this” or
“Sitting in this hall is fun” can be expressions of the real state
of things unless the user adds a hashtag “#not”, an emoji like
“unamused face”, etc. Note that these indicators quite often
come at a particular place - end of the utterance. This fact
also brings irony and puns together: in puns, usually the tar-
get word (the word used in the two senses) also occurs in the
end.

3In (Mikhalkova and Karyakin, 2017a), we tried to join
some of these classes together for a better performance, but
it appeared that such enlargement does not improve it. And
vice versa when we reach a certain number of general classes
- approximately 4 - the performance starts to decrease signif-
icantly.

542

two times as emphasized. The words are “de-
emphasized”. For example, the word “everrrrrrr”
becomes “ever”.

We then proceed to mentions and hashtags. As
there can be capitalized real names or titles, we de-
capitalize them starting with the second letter and
add a space before the capital letter and after the
word, for example, “#ElektrikBLOOM” becomes
“Elektrik Bloom ”. If there are (successions of)
numbers, a space is added on the both sides of the
number. If there are names spelt as one word like
“@WhoopiGoldberg”, we add a space after every
succession staring with a capital letter: “Whoopi
Goldberg ”.

Some mentions and hashtags are problematic to
process as words are written without any indica-
tion that they should be separate, e.g. “kenny-
chesney”. We check in the NLTK names dictio-
nary (Bird et al., 2009) if the glued hashtag starts
with any name of length more than 5 characters.
If yes, we unglue the word at the name border-
line capitalizing the fisrt letters: “Kenny Chesney”
(as luck would have it, most names consist of just
two parts). Otherwise, we consider the word to be
something other than a name. To separate words
with spaces, we use Wordninja 4. This library
has problems with names and titles, so we have
to check the names before using it. Words of more
than two characters are also checked in a list of
slang abbreviations. For example, “bbq” becomes
“barbeque”. 5

Tweet to Vector. Preprocessed tweets go into the
classifier. PunFields collects Section numbers for
every word and collocation in a sentence, remov-
ing duplicates and excluding stop words. Then, it
builds a semantic vector of the sentence weighing
how many of its elements belong to each Section.
For example, the tweet “Christmas shopping on 2
hours sleep is going to be fun” has 7 words bel-
ogning to different Sections: shopping - 33; 2 - 4;
sleep - 11, 27, 14, 34; go - 11, 0, 14, 35, 7; christ-
mas - 38, 5; fun - 35; hour - 5. Its vector will be as
follows: {1, 0, 0, 0, 1, 2, 0, 1, 0, 0, 0, 2, 0, 0, 2, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 2,
0, 0, 1}.

Classification. When the vectors are ready,
we split them into a training and test set. The
classification is conducted using different Scikit-
learn (Pedregosa et al., 2011) algorithms. At the

4https://pypi.python.org/pypi/wordninja
5The pipeline is available at

https://github.com/evrog/PunFields.

present competition, we used SVM with the lin-
ear kernel, because preliminary tests using the
Gold dataset with a 5-fold cross validation showed
that it has the highest result among the tested
algorithms: Precision=0.556, Recall=0.646, F1-
score=0.596 (766 samples in a training set). How-
ever, when we used all the 3834 samples for train-
ing during the competition, they obviously created
a too noisy feature space for a good generaliza-
tion. Hence, the decrease in the result. At Se-
mEval2017 (Miller et al., 2017), when we tried
larger datasets for training, the result grew better.
Tweets generally seem to be more “noisy” than
puns due to slang, contractions, glued words, etc.
although there are no strict ways of calculating this
“noisyness”.

Instead of SVM, we also tested a deep learn-
ing network with different architectures imple-
mented in the Python library Keras (Chollet et al.,
2015) with TensorFlow (TensorFlow Develop-
ment Team, 2015) and Theano (Theano Develop-
ment Team, 2016) backends, but we only managed
to reach as much as 0.56 for F1-score. 6 Further-
more, we tried to replace Roget’s semantic classes
with a vector model realization via the Gensim li-
brary (Řehůřek and Sojka, 2010) summing every
score in the 300 long word2vec representations
similarly to what PunFields does with the 39 Sec-
tions. However, it did not bring any significant
result either.

All in all, PunFields appears to better classify
such cases where there are two evidently differ-
ent topics in one utterance that are expressed by
two groups of words that outnumber other (noisy)
groups. In the toy examples from the previous
paragraph, the “chemistry” pun belongs to the so-
called homographic puns, i.e. such puns where
one word is used in two meanings. Unlike them,
heterographic puns are such puns where the word
used in one meaning resembles in form/sounding
another word. That creates a disbalance between
the two groups of words representing the two
clashing topics: one of the groups gets the men-
tioned word and the other one does not (as the
word is only implied). For example, in the hetero-
graphic pun “I relish the fact that you have mus-
tard the strength to ketchup to me” the group of
“mastered” and “catch up” is hidden. Similar to
heterographic puns, ironic tweets have one word

6Due to limitations in the size of papers, we will not de-
scribe the architecture here. Some of the code we used for the
neural network is available at our PunFields repository.

543

expressed in full and its opposite implied. Con-
sequently, PunFields processes such cases worse
than homographic puns.

4 Unconstrained Submission

As for the unconstrained submission, we decided
to use it to test another assumption that irony is
close not only to puns, but to different kinds of hu-
mor. However, as in this competition we deal with
irony in Twitter, we decided to check this assump-
tion on humorous tweets. We took 1,000 humor-
ous tweets from SemEval 2017 #HashtagWars:
Learning a Sense of Humor (Potash et al., 2017)
and 1,000 tweets with 0 to +2 positive polarity
from SemEval 2016 Task 4: Sentiment Analysis
in Twitter (Nakov et al., 2016) and combined them
with 2,000 tweets from the Gold dataset. For the
classifier, we used Bernoulli bag-of-words SVM
model with the linear kernel given as the bench-
mark system by the competition Organizers. After
reshuffling the dataset several times, we chose that
result which had a more or less equal number of
items in the both classes.

The result of this test shows a decrease in the
efficiency of the benchmark system. However, to
our surprise it was also slightly above the chance
value.

5 Conclusions

With this research, we continue to elaborate on the
universal mechanism of detecting intentional lex-
ical ambiguity in creative language. We tried to
demonstrate that irony and puns share some fea-
tures which can be processed by a similar algo-
rithm. However, the results of our system, Pun-
Fields, at this competition leave much to be de-
sired.

We are planning to replace the core of the sys-
tem, the semantic scheme of 39 classes, with a
more elaborate system of word2vec representa-
tions and, maybe, a deep learning classifier if it
provides a better result. So far, we were unable to
get the system working with these elements, but
the problem was, very likely, in the technical side.

All in all, PunFields shows the result that is
higher than the chance operating on the data it was
not meant to process. With due elaboration, we
believe, it has a greater classifying potential than
what was gained at the competition.

References
Francesco Barbieri and Horacio Saggion. 2014. Mod-

elling irony in Twitter. In Proceedings of the Stu-
dent Research Workshop at the 14th Conference of
the European Chapter of the Association for Com-
putational Linguistics, pages 56–64.

Steven Bird, Ewan Klein, and Edward Loper. 2009.
Natural language processing with Python: analyz-
ing text with the natural language toolkit. ” O’Reilly
Media, Inc.”.

François Chollet et al. 2015. Keras. https://
github.com/keras-team/keras.

Elena Mikhalkova and Yuri Karyakin. 2017a. Detect-
ing intentional lexical ambiguity in English puns.
In 23rd International Conference on Computational
Linguistics and Intellectual Technologies, volume 1,
pages 167–179.

Elena Mikhalkova and Yuri Karyakin. 2017b. Pun-
fields at Semeval-2017 Task 7: Employing Roget’s
Thesaurus in Automatic Pun Recognition and Inter-
pretation. In Proceedings of the 11th International
Workshop on Semantic Evaluation (SemEval-2017),
pages 426–431.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013. Distributed representa-
tions of words and phrases and their compositional-
ity. In Advances in neural information processing
systems, pages 3111–3119.

Tristan Miller, Christian Hempelmann, and Iryna
Gurevych. 2017. Semeval-2017 task 7: Detection
and interpretation of English puns. In Proceed-
ings of the 11th International Workshop on Semantic
Evaluation (SemEval-2017), pages 58–68.

Preslav Nakov, Alan Ritter, Sara Rosenthal, Fabrizio
Sebastiani, and Veselin Stoyanov. 2016. Semeval-
2016 Task 4: Sentiment analysis in Twitter. In Pro-
ceedings of the 10th International Workshop on Se-
mantic Evaluation (SemEval-2016), pages 1–18.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Pretten-
hofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Pas-
sos, D. Cournapeau, M. Brucher, M. Perrot, and
E. Duchesnay. 2011. Scikit-learn: Machine Learn-
ing in Python. Journal of Machine Learning Re-
search, 12:2825–2830.

Peter Potash, Alexey Romanov, and Anna Rumshisky.
2017. Semeval-2017 Task 6:# hashtagwars: Learn-
ing a sense of humor. In Proceedings of the
11th International Workshop on Semantic Evalua-
tion (SemEval-2017), pages 49–57.

Radim Řehůřek and Petr Sojka. 2010. Software Frame-
work for Topic Modelling with Large Corpora. In
Proceedings of the LREC 2010 Workshop on New
Challenges for NLP Frameworks, pages 45–50, Val-
letta, Malta. ELRA. http://is.muni.cz/
publication/884893/en.

544

TensorFlow Development Team. 2015. TensorFlow:
Large-Scale Machine Learning on Heterogeneous
Systems. Software available from tensorflow.org.

Theano Development Team. 2016. Theano: A Python
framework for fast computation of mathematical ex-
pressions. arXiv e-prints, abs/1605.02688.

Cynthia Van Hee. 2017. Can machines sense irony? :
exploring automatic irony detection on social media.
Ph.D. thesis, Ghent University.

Cynthia Van Hee, Els Lefever, and Véronique Hoste.
2018. SemEval-2018 Task 3: Irony Detection in
English Tweets. In Proceedings of the 12th Interna-
tional Workshop on Semantic Evaluation, SemEval-
2018, New Orleans, LA, USA. Association for
Computational Linguistics.

545

Proceedings of the 12th International Workshop on Semantic Evaluation (SemEval-2018), pages 546–552
New Orleans, Louisiana, June 5–6, 2018. ©2018 Association for Computational Linguistics

HashCount at SemEval-2018 Task 3:
Concatenative Featurization of Tweet and Hashtags for Irony Detection

Won Ik Cho, Woo Hyun Kang, Nam Soo Kim
Department of Electrical and Computer Engineering and INMC,

Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, Korea, 08826
{wicho, whkang}@hi.snu.ac.kr, nkim@snu.ac.kr

Abstract
This paper proposes a novel feature extraction
process for SemEval task 3: Irony detection
in English tweets. The proposed system incor-
porates a concatenative featurization of tweet
and hashtags, which helps distinguishing be-
tween the irony-related and the other compo-
nents. The system embeds tweets into a vec-
tor sequence with widely used pretrained word
vectors, partially using a character embedding
for the words that are out of vocabulary. Iden-
tification was performed with BiLSTM and
CNN classifiers, achieving F1 score of 0.5939
(23/42) and 0.3925 (10/28) each for the binary
and the multi-class case, respectively. The re-
liability of the proposed scheme was verified
by analyzing the Gold test data, which demon-
strates how hashtags can be taken into account
when identifying various types of irony.

1 Introduction

Nowadays, opinion mining from social media has
become an important issue in natural language
processing (NLP). Since tweets are globally used
social media text that can influence the worldwide
readers with just a short arrangement of words,
the analysis on tweets has been widely studied in
the semantic aspects such as sentiment classifica-
tion (Rosenthal et al., 2017), hate speech detection
(Waseem and Hovy, 2016), and irony detection
(Karoui et al., 2015; Liebrecht et al., 2013). Espe-
cially, the automatic detection of ironic tweets can
help the readers who are having difficulty recog-
nizing sarcasm to notice such figurative instances
from excessive amount of text data.

Despite the potential usage of the tasks, irony
and sarcasm are difficult to grasp simply by an-
alyzing word distribution. They require under-
standings on the language and social context,
which are dependent on time and space; this im-
plies that the study should accompany constant up-
dates on the database used for the analysis. Also,

it is important to construct a concrete criteria set to
distinguish between ironic and non-ironic tweets.

In this paper, we incorporate a classification on
manually labeled irony tweet corpus. The cor-
pus contains 2,396 English tweets for ironic/non-
ironic each (4,792 total), which were annotated
under the scheme suggested in Van Hee et al.
(2016). For the competition, the corpus was split
into a training (80%, or 3,834 instances) and test
(20%, or 958 instances) set. A training procedure
for the system was all performed with the former
(constrained).

2 Task Description

Two tasks were proposed for ironic English tweet
analysis. Task A deals with the binary classifica-
tion involving ironic tweets and non-ironic ones,
and in Task B the ironic ones are categorized into
three types (i.e. verbal irony by means of a polar-
ity contrast, other types of verbal irony, and situa-
tional irony) (Van Hee et al., 2018). The original
corpus contains 1,728/267/401 instances for each
type.

3 System Description

3.1 Feature Engineering

For feature extraction, significant user behaviors
were taken into account. We observed several ten-
dencies in tweets: a large portion of irony-relevant
information is conveyed by hashtags, and the
hashtagged words are usually out-of-vocabulary
(OOV) or non-segmented; at the same time draw-
ing attention of the readers and emphasizing the
user’s point.

While extracting the features, the importance of
hashtagged information was reflected in the coex-
tensive placement of the original tweet and hash-
tags. This connotes the idea that the hashtagged

546

Figure 1: The capture of tweet number 63 in train-
ing set: About once a yr I get a little nutty and
reach for the orange marmalade. #livingontheedge
http://t.co/sF9o6OWE1v (ironic)

component is the metadata which needs highlight-
ing.

3.1.1 Metadata handling
There are mainly three kinds of metadata observed
in the tweets: ID tags (e.g. @someone), uniform
resource locators (URLs, e.g. http://hyperlink),
and hashtags (e.g. #something). The example
sentences in this section are from the training set,
not the Gold test data, thus they don’t contain any
irony hashtags, namely #not, #irony, and #sar-
casm.

ID tags: In an empirical point of view, the ID
tag of a tweet mainly delivered information on
whether the user intends to notify someone the
content (1a). This was not considered supportive
information for irony detection, since sarcasm was
observed to be conveyed in both a human-directive
and non-human-directive way (1b,c) and that the
presence of an ID tag (‘@’) could not be a crucial
evidence in detecting irony.

(1) a. @mrjamieeast I think it was the hotel own-
ers... (non-ironic)

b. @LifeCheating doesn’t lucky and fortunate
mean the same thing? (ironic)

c. 3 hours sleep yay loving life (ironic)

URLs: The URLs are usually used as a hyper-
link of the photo (Figure 1). However, as shown in
the example, presence of photo doesn’t necessarily
affect the ironic nature of a tweet; we cannot infer
the semantics of a photo just given an URL. Based

on this observation, the URLs were not specially
addressed; they were omitted in the word embed-
ding process.

Hashtags: We paid attention to hashtagged
words which were expected to contain informa-
tion that can actually influence the nuance of the
tweet (Chang, 2010). Thus, we created a place-
holder for the vector embeddings of the hashtags
(hashtag vector placeholder, HVP) and augmented
it to the word vector sequence of the original tweet
(Figure 2). This may cause a repetition on words
in both the dictionary and the hashtags (e.g. keep
of Figure 2), but it was assumed that the repetition
would not degrade the performance. The reason
for this assumption is because such words were
expected to have a strong influence on the content,
in that the user would have left it as a single word
to notify its significance.

Firstly, a tweet was investigated whether it con-
tains a hashtags. If not, the tweet would be com-
pared to others based on the semantics of the orig-
inal message. If any hashtag exists, the array of
hashtagged words is embedded to the HVP to pro-
vide an useful evidence for the comparison with
other tweets with hashtags. The numericalization
of hashtags is demonstrated in the following pas-
sage.

3.1.2 Hashtag embedding
Given the nature of hashtags that does not allow
spaces, most of the hashtagged words came under
a category of either a single word (2a), concatena-
tion of words with/without capital letters (2b,c), or
an acronym (2d).

(2) a. It will be impossible for me to be late if I
start to dress up right now. #studing #university
#lazy (ironic)

b. I picked a great week to start a new show on
Netflix. #HellOnWheels (ironic)

c. Casper the friendly ghost on 2 lev-
els! #thingsmichelleobamathinksareracist (non-
ironic)

d. Another great day on the #TTC. (ironic)

Instead of following the previous studies on
hashtag segmentation (Bansal et al., 2015) that
requires additional training processes, a simple
guideline for hashtag embedding is proposed for
such possible cases. Let hash be any hashtagged
word, dict be a dictionary, lower(w) be the char-
acter lowering process, and D(w) be the vector

547

Figure 2: Feature extraction procedure for tweet number 1494. Word vector (or character-embedded vector)
sequences are obtained for the original tweet and hashtags, denoted with length of 30 and 20 respectively. keep
was colored purple since it belongs to both categories.

embedding for a word w.

• If lower(hash) in dict: Trivial case. Com-
pute output O = D(lower(hash)) and ap-
pend it to the HVP.

• If lower(hash) not in dict (OOV) and hash is
a concatenation of words that each has a cap-
italized first letter:
1) Split hash by the capital letters.
2) One of the following strategies is chosen:

a) Summation Compute the average∑
iD(lower(wi))/W where wi denotes

each segmented word and W denotes the
number of wis. Assign it as an output O and
append it to the HVP.

b) Enumeration Append D(lower(wi))
to the HVP one by one, for all wis.

• Otherwise (character embedding): Compute∑
iD(lower(ci))/C where ci denotes each

character in the hash and C denotes the num-
ber of cis. Assign it as an output O and ap-
pend it to the HVP.

The three dotted cases above can be respec-
tively applied to the examples in Figure 2, namely
keep, ThingsBetterThanTitansJags, and bigjoefa-
vorite. To make it clear for the second case, for
ThingsBetterThanTitansJags, the number of vec-
tors appended to the HVP is 1 and 5 for the case of
Summation and Enumeration respectively. Note

again that only one heuristic method is chosen be-
tween those two - not being used simultaneously -
in the aggregation of the word vectors from tweets.

The total size of the input feature is (wdim, 50),
where wdim denotes the word vector size and 50
denotes the length of the vector sequence after the
augmentation. The size was considered sufficient
to cover the tokens of each tweet.

3.2 Classification

Classification was performed in a quite standard
manner, utilizing both baseline sparse features and
the proposed dense features. Although there have
been some approaches that take into account the
whole semantic relationship between terms (Kim
et al., 2016; Cho et al., 2017), in this task we incor-
porated only the augmented feature constructed in
the last section1.

Since the sequential vectors were employed
as features, descriptive models such as convolu-
tional neural network (CNN) (Kim, 2014) and the
bidirectional long short-term memory (BiLSTM)
(Schuster and Paliwal, 1997) were adopted. In
BiLSTM with an input size of 50 units, hidden lay-
ers had an output size of 32*2 = 64 units. In CNN,
two 32*32-dim convolutional layers (for single
channel) were used with a max-pooling layer be-
tween, summarized by a window of size 3. The
output layer of the classifiers was fully connected

1Finding only the semantic contrasts could not cover the
cases regarding situational irony.

548

F1 score Task A Task A (emoji) Task B Task B (emoji)

Baseline 0.6263 0.6200 0.3469 0.3455
CNN-text 0.6651 0.6425 0.3580 0.3647

CNN-enum 0.6723 0.6607 0.3785 0.4009
CNN-sum 0.6418 0.6543 0.4084 0.3517

BiLSTM-text 0.6568 0.6776 0.4022 0.3890
BiLSTM-enum 0.6701 0.6681 0.4091 0.4378
BiLSTM-sum 0.6616 0.6852 0.3843 0.3928

Table 1: 10-fold cross validation on the constrained training dataset. In task B, F1 score was obtained by macro
averaging used in the scoring of competition. Bolded cases denote the best performing system for each labeled
corpus. Underlined ones denote the systems that were originally submitted to the competition for each task. The
score was updated according to an additional experiment.

Accuracy Precision Recall F1 score

Task A 0.6441 0.5426 0.6559 0.5939
(Best) 0.7972 0.7879 0.6688 0.7235
Task B 0.5982 0.4117 0.4096 0.3925
(Best) 0.7321 0.5768 0.5044 0.5074

Table 2: The submitted systems evaluated with the
measurements, compared with the best scoring ones.

to the layer of 32 and then to decision layer of size
1 or 4, with either a sigmoid or a softmax activa-
tion, depending on the task.

4 Evaluation

The preprocessing was performed based on the
example code2, where the corpus was tokenized
with NLTK (Bird et al., 2009). The 100dim GloVe
(Pennington et al., 2014) pretrained with 27B to-
ken Twitter data3 was employed as a dictionary
for word embedding. All the training and valida-
tion procedure were carried out with Keras (Ten-
sorFlow backend) (Chollet et al., 2015). The code
is provided online4.

In this part, two main results are investigated.
One deals with the comparison of performance ac-
cording to classifiers and features. This is based
on 10-fold cross validation using training data. In
other words, the systems are trained using 3,450
instances and validated on 384 instances. In the
other result, the competition score acquired using
the submitted systems is inspected. Afterwards,
we analyze the Gold test data, finding support-
ive evidences for the validity of the proposed ap-
proach regarding hashtags.

2https://github.com/Cyvhee/SemEval2018-Task3
3https://nlp.stanford.edu/projects/glove/
4https://github.com/warnikchow/HashCount

4.1 Result

The overall result tells that using the proposed fea-
tures outperforms the baseline - term frequency-
inverse document frequency (TF-IDF) on support
vector machine (SVM), which was the system pre-
sented along with the train data. Table 1 shows
the performance for each proposed system (Clas-
sifier-Feature) in each task. Here, text denotes the
feature that includes only the original tweet (i.e.
Original tweet (30) in Figure 2), and enum/sum de-
notes the feature that involves Enumeration and
Summation, respectively.

The result suggests that employing enum and
sum outperforms the vanilla case of text in general
(Table 1). This supports our assumption in Section
3.1.1 and will be verified in Section 4.2. Although
there were exceptions, employing BiLSTM out-
performed the CNN-based method. This implies
that the detection of irony is heavily influenced by
specific terms (e.g. polarity items (Krifka, 1995))
or word sequence of the tweets. It is likely that the
summarizing property of CNNs weaken the influ-
ence of such information. Also, unlike the intu-
ition that more information will induce higher ac-
curacy, there was no noticeable tendency regard-
ing emoji.

4.2 Competition

The submitted systems showed F1 score of 0.5939
(ranked 23/42) and 0.3925 (ranked 10/28) in the
competition, for Task A and B respectively.

Task A: The system submitted for Task A
equals to the best performer of Table 1, BiLSTM-
sum with emoji. However, it showed little an im-
provement compared to the CNN-based method
(CNN-enum without emoji);%. it implies that the
binary classification is less influenced by specific

549

Instances Total With @ With # Correct With # (>1) Correct with # (>1)

Non-ironic 473 217 (45.8%) 255 301 (63.6%) 164 (34.6%) 125 (76.2% given #>1)
Ironic 311 84 (27.0%) 311 204 (65.5%) 139 (44.6%) 97 (69.7% given #>1)

Table 3: Analysis with the Gold test data of Task A. @ and # each denotes ID tag and hashtag.

Instances Total Correct With #
(>1)

Correct
with # (>1)

Non-ironic 473
339

(71.6%)
164

134
(81.7%)

Polar 164
108

(65.8%)
74

51
(68.9%)

Situational 85
21

(24.7%)
40

10
(25.0%)

Other 62
1

(1.65%)
25

0
(0.0%)

Table 4: Analysis with the Gold test data of Task B.

terms or word sequence. From this, it could be in-
ferred that the type classification of irony itself can
be more difficult than just a detection.

Task B: The system submitted for task B,
namely CNN-sum without emoji, differs from
the lately-achieved best performer (BiLSTM-enum
with emoji) which relatively outperforms the sub-
mitted model by 7.19%. The initial choice is based
on overlooking the superiority of using BiLSTM,
where the influence of the specific terms on nu-
ance of the tweet has not been recognized.

There was a significant decrease in recall, com-
pared with Task A. Since the feature is fixed, there
may exist possible issues of classifier and emojis.
Considering the analysis in the last subsection, it
is presumed that the classifier issue is dominant
over other problems. CNN seems to be a more
cautious model than BiLSTM, but this is not con-
sidered a good property for the detector. In the
aspect of the nature of sarcasm that at least ‘sen-
sitive’ false alarms are better than generous igno-
rance, it is considered a reasonable decision to use
a recurrent classifier model with high recall.

4.3 Gold Test Data

Further investigation regarding the Gold test data
was performed for both tasks. We examined the
composition of correct predictions, in terms of
how the presence of hashtags positively affected
the outcome.

Task A: We first figured out how ID tags and
hashtags are distributed over the whole test cor-

pus. It was revealed that non-ironic tweets more
frequently accompany ID tags than the ironic ones
(Table 3), but we did not conclude that ID tags
convey a non-ironicalness for the reasons given in
3.1.1.

For hashtags, there was an important thing to
consider in counting; all ironic tweets included at
least one irony hashtag, which led to 100% pres-
ence of ‘#’ for ironic instances. Thus, only the
‘effective’ hashtags were taken into account in a
way of identifying tweets with more than one ‘#’;
in other words, a single default hashtag was ig-
nored5.

In terms of tweet ratios with effective hashtags,
ironic tweets outperformed the non-ironic ones. In
addition, the rate of correct prediction in instances
with #>1 was observed to be higher than the ra-
tio in the whole instance, for both cases (63.6% <
76.2% and 65.5% < 69.7% in Table 3). These val-
idates the utility of the proposed modeling which
emphasizes hashtags as indispensable metadata.

We also observed that 79, 41, and 19 instances
of ironic tweets possessed one, two, and three or
more effective hashtags, respectively. Except for
172 tweets with a single default hashtag, the most
common case is to convey sarcasm in one word as
in (3), inducing a contradiction between the literal
evaluation and the intended one (Van Hee et al.,
2016).

(3) Just a @ScienceDaily article re: a robot arm
you can control with your mind. Meh. Nothing
huge. #sarcasm #science http://t.co/AK4bAorhBc

Task B: We further investigated the detailed
types of ironic tweets. Except for the case of Other
where the accuracy was particularly low, hashtags
performed as supportive information for correct
prediction (Table 4).

Of the three irony types, Polar recorded the
highest accuracy of correct answer prediction, also
showing the most amount of enhancement given
a condition of at least one effective hashtag. To
be more specific than what was discussed above,

5This was also applied to non-ironic cases to match the
proportion of instances.

550

Number of
effective #s 0 1 2 >2

Polar 57/90
(63.3%)

27/42
(64.2%)

18/21
(85.7%)

6/11
(54.5%)

Situational 11/45
(24.4%)

6/26
(23.1%)

2/9
(22.2%)

2/5
(40.0%)

Other 1/37
(2.7%)

0/11
(0.0%)

0/11
(0.0%)

0/3
(0.0%)

Table 5: The number of effective instances for each
irony types (correct/total) regarding the number of
hashtags. The irony hashtags were not counted.

the number of effective hashtags was found to be
most supportive in one or two cases (Table 5). This
property can be effectively utilized, e.g. varying
the weight given to the hashtag vector, depending
on the number.

For Situational, the percentage was not reliable
due to the shortage of the number of instances. We
concluded that the case regarding the tweets only
with default irony tags (11/45) is rather valid, in
that the tone of the Situational ironic tweets ap-
peared to be descrptive than provocative (4a). It
was even more difficult to identify tendencies for
the case of Other (4b); thus, it was assumed to re-
semble the case of situational.

(4) a. The thirstiest of thirst buckets calling other
people thirsty #irony

b. @BarryBlackNE I don’t think the Heredi-
tary Baronet wants to encourage a something-for-
nothing culture :-$ #irony

5 Discussion

There are a few more schemes to consider in
the future implementation. First, Additional nor-
malization of words can be done. The proposed
scheme focused on the featurization of the original
tweet and hashtags, and no lemmatization or stem-
ming was carried out. This was mainly because
normalization can inadvertently erase important
information; but it would be tolerable if carried
out just on the non-hashtagged lexical words.

It would also be effective to apply the advanced
segmentation algorithm to hashtags, taking into
account the improved performance of proposed
systems. This does not necessarily involve an
algorithm that requires additional training and a
huge database. Lighter and fancy segmentation
techniques that fully utilize the dictionary are ex-
pected to be introduced.

Finally, fusion of classifiers can be undertaken.
This was not considered in the proposed system,
since in mixed networks, it is difficult to recog-
nize the influence of using each feature and classi-
fier. Nonetheless, such networks can be chosen in
terms of boosting performance for real-life appli-
cations.

6 Conclusion

In this paper, the feature engineering based on
the coextensive placement of tweet and hashtags
was presented. Two embedding schemes for hash-
tag vector placeholder (HVP) were employed, and
concatenation of HVP and original word vector
sequences was used as inputs to CNN and BiL-
STM classifiers. The implementation verified that
the proposed systems outperform the baseline, and
the system’s reliability was supported by analyz-
ing the correlation of hashtags and prediction ac-
curacy with the Gold test data. Future works in-
clude lemmatization that do not affect content, de-
velopment of an efficient hashtag segmentation,
and fusion of classifiers.

Acknowledgments

This work was supported by the Technology Inno-
vation Program (10076583, Development of free-
running speech recognition technologies for em-
bedded robot system) funded By the Ministry of
Trade, Industry & Energy (MOTIE, Korea).

References
Piyush Bansal, Romil Bansal, and Vasudeva Varma.

2015. Towards deep semantic analysis of hashtags.
In European Conference on Information Retrieval.
Springer, pages 453–464.

Steven Bird, Ewan Klein, and Edward Loper. 2009.
Natural language processing with Python: analyz-
ing text with the natural language toolkit. ” O’Reilly
Media, Inc.”.

Hsia-Ching Chang. 2010. A new perspective on twitter
hashtag use: Diffusion of innovation theory. Pro-
ceedings of the Association for Information Science
and Technology 47(1):1–4.

Won Ik Cho, Woo Hyun Kang, Hyun Seung Lee,
and Nam Soo Kim. 2017. Detecting oxymoron
in a single statement. In Proceedings of Con-
ference of The Oriental Chapter of International
Committee for Coordination and Standardization of
Speech Databases and Assessment Techniques (O-
COCOSDA). pages 48–52.

551

François Chollet et al. 2015. Keras. https://
github.com/fchollet/keras.

Jihen Karoui, Farah Benamara, Véronique Moriceau,
Nathalie Aussenac-Gilles, and Lamia Hadrich Bel-
guith. 2015. Towards a contextual pragmatic model
to detect irony in tweets. In 53rd Annual Meeting of
the Association for Computational Linguistics (ACL
2015). pages PP–644.

Joo-Kyung Kim, Marie-Catherine de Marneffe, and
Eric Fosler-Lussier. 2016. Adjusting word embed-
dings with semantic intensity orders. In Proceedings
of the 1st Workshop on Representation Learning for
NLP. pages 62–69.

Yoon Kim. 2014. Convolutional neural net-
works for sentence classification. arXiv preprint
arXiv:1408.5882 https://arxiv.org/abs/
1408.5882.

Manfred Krifka. 1995. The semantics and pragmatics
of polarity items. Linguistic analysis 25(3-4):209–
257.

Christine Liebrecht, Florian Kunneman, and Antal van
Den Bosch. 2013. The perfect solution for detecting
sarcasm in tweets# not pages 29–37.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. Glove: Global vectors for word
representation. In Proceedings of the 2014 Con-
ference on Empirical Methods in Natural Language
Processing (EMNLP). pages 1532–1543.

Sara Rosenthal, Noura Farra, and Preslav Nakov.
2017. Semeval-2017 task 4: Sentiment analysis in
twitter. In Proceedings of the 11th International
Workshop on Semantic Evaluation (SemEval-2017).
pages 502–518.

Mike Schuster and Kuldip K Paliwal. 1997. Bidirec-
tional recurrent neural networks. IEEE Transactions
on Signal Processing 45(11):2673–2681.

Cynthia Van Hee, Els Lefever, and Veronique Hoste.
2016. Guidelines for annotating irony in social me-
dia text, ver. 2.0. LT3 Technical Report Series .

Cynthia Van Hee, Els Lefever, and Véronique Hoste.
2018. SemEval-2018 Task 3: Irony Detection in
English Tweets. In Proceedings of the 12th Inter-
national Workshop on Semantic Evaluation. Associ-
ation for Computational Linguistics, New Orleans,
LA, USA, SemEval-2018.

Zeerak Waseem and Dirk Hovy. 2016. Hateful sym-
bols or hateful people? predictive features for hate
speech detection on twitter. In Proceedings of the
NAACL student research workshop. pages 88–93.

552

Proceedings of the 12th International Workshop on Semantic Evaluation (SemEval-2018), pages 553–559
New Orleans, Louisiana, June 5–6, 2018. ©2018 Association for Computational Linguistics

WLV at SemEval-2018 Task 3: Dissecting Tweets in Search of Irony

Omid Rohanian, Shiva Taslimipoor, Richard Evans and Ruslan Mitkov
Research Group in Computationa Linguistics

University of Wolverhampton
Wolverhampton, UK

{omid.rohanian,shiva.taslimi,r.j.evans,r.mitkov}@wlv.ac.uk

Abstract
This paper describes the systems submitted to
SemEval 2018 Task 3 “Irony detection in En-
glish tweets” for both subtasks A and B. The
first system leveraging a combination of senti-
ment, distributional semantic, and text surface
features is ranked third among 44 teams ac-
cording to the official leaderboard of the sub-
task A. The second system with slightly differ-
ent representation of the features ranked ninth
in subtask B. We present a method that en-
tails decomposing tweets into separate parts.
Searching for contrast within the constituents
of a tweet is an integral part of our system.
We embrace an extensive definition of con-
trast which leads to a vast coverage in detect-
ing ironic content.

1 Introduction

In figurative language (also known as trope), there
is a departure from literal use of words. In order
to decode meaning, therefore, it is not enough to
rely solely on the literal sense of individual words.
Irony and sarcasm are two types of such language
that exploit this technique in similar ways. They
“both involve deliberately saying something that
is incongruous or the opposite of what the speaker
knows to be true” (Hanks, 2013). This is some-
times formulated as a transgression of the Gricean
maxim of quality (Grice, 1975)1.

Under this assumption it follows that the viola-
tion is only permissible thanks to shared knowl-
edge between the speaker and the hearer. In order
to achieve this goal, the speaker frames the mes-
sage with some form of commentary or metames-
sage that signals the ironic or sarcastic nature of
the message. This is usually realised through
negation of the original meaning (Haiman, 1998).

Regardless of their similarities, irony and sar-
casm are not technically the same as they might be

1“Do not say what you believe to be false.”

employed for different purposes. It is widely ac-
cepted that sarcasm involves some degree of ver-
bal aggression and ridicule directed at the hearer,
whilst irony can simply be used for humorous or
emphatic effect. It has been shown that compu-
tational processing of irony and sarcasm requires
some knowledge of the context in which they ap-
pear, sometimes including paralinguistic informa-
tion (Wallace et al., 2014).

Exploring ironicity has practical implications,
since performance of sentiment analysis systems
is directly affected by knowledge about irony and
sarcasm (Pozzi et al., 2016).

As part of the 12th workshop on semantic eval-
uation (SemEval-2018), Shared Task 3 defines two
subtasks with regards to irony detection in English
tweets (Van Hee et al., 2018). Subtask A involves
binary classification. The objective is to train a
system that can label tweets as ironic or not. Sub-
task B is a multi-class classification problem with
the objective to label tweets with one of the four
specified labels describing the type of irony (ver-
bal irony by means of a polarity contrast, situa-
tional irony, other verbal irony, and non-ironic).

To tackle these problems, in this paper we de-
scribe two rich feature-based systems addressing
each subtask. Our systems use a combination of
sentiment, distributional semantic, and text sur-
face features. The code and data for this project
is freely available2.

The rest of this paper is organised as follows:
Section 2 describes related work. Section 3 pro-
vides a comprehensive description of the over-
all methodology including pre-processing, feature
representation, and system architecture. Sections
4 and 5 discuss experiments and results, Section 6
involves error analysis and finally Section 7 con-
cludes the paper with some closing remarks.

2https://github.com/omidrohanian/
irony_detection

553

2 Related Work

There has been a recent surge of interest in the
tasks of irony and sarcasm detection due in large
part to increasing popularity of social media and
the availability of data from websites like Twitter
and Reddit. Some recent work focus exclusively
on irony or sarcasm in isolation (Joshi et al., 2016),
under the assumption that sarcasm has a stronger
impact on changing the sentiment of the overall
message. However in many cases, these terms are
taken to be practically synonymous (Pozzi et al.,
2016; Wallace et al., 2014; Ptáček et al., 2014).
SemEval has a long-standing shared task on sen-
timent analysis that has also involved processing
of figurative language including irony and sarcasm
(Ghosh et al., 2015; Nakov et al., 2016). Results
from recent tasks on sentiment analysis confirm
that the top performing teams increasingly em-
ploy deep learning methodologies, while classi-
cal machine learning models like SVM and logis-
tic regression remain popular (Ghosh et al., 2015;
Rosenthal et al., 2017).

3 Methodology

We train our supervised systems using an ensem-
ble soft voting classifier with logistic regression
(LR) and support vector machine (SVM) as com-
ponent models, and create our feature sets using
a combination of sentiment, semantic, and surface
features. We leverage these handcrafted features
in combination with dense vector representations
which differ in details between subtask A and B.
The differences in feature engineering and repre-
sentation between the two subtasks will be dis-
cussed in 3.2.

3.1 Pre-processing
Tweets were tokenised using NLTK’s tweet to-
keniser (Loper and Bird, 2002). Additional pre-
processing was done to obtain a subset of the fea-
tures that concerned surface orthographic features
(e.g. all capitals, elongations, emoticons, etc) and
pattern-based named entities (e.g. time, place,
user, etc). For this we used the ekphrasis toolkit
(Baziotis et al., 2017). It employs an XML-based
annotation scheme that made it easy to extract this
information.

For sentiment features and embeddings, how-
ever, pre-processing beyond tokenisation was
deemed unnecessary as our emoji and word vec-
tors were pre-trained on raw tweets.

3.2 Feature Representation
In our observation of the training data, we noticed
that tweets often follow a fairly consistent spatial
pattern. Informative words are more likely to clus-
ter at both ends of a tweet. Hashtags, while scat-
tered throughout the whole text, tend to occur at
the end. In ironic tweets, negative sentiments are
more likely to be preceded by neutral or positive
ones. An example is given in (1).

(1) What a golden morning.

In order for our models to capture these spatial pat-
terns and to provide a more rigorous representa-
tion of a tweet’s structure, we propose the idea of
decomposing a tweet into separate chunks and ex-
tracting features for each one separately. By con-
catenating these features we are able to partially
preserve information about linear precedence. To
this end, we simply split the sentences to two sec-
tions as represented in example (2) and (3).

(2) 8ams are just | so LOVELY .
surface features: time1 | allcaps2

(3) SEEING @AlpEmiel ON | SATURDAY
whaddddddup #legend
surface features: allcaps1, user1 |
elongated2, hashtag2

In examples (2) and (3), the numbers ‘1’ and ‘2’
signify the first and second sections of the tweet
respectively.

We use the same split structure for representa-
tion of other features, and pre-trained dense vec-
tors.

Contrast is one of the most important properties
of ironic language. One contribution of this work
lies in the particular manner in which the notion
of contrast is defined. Contrast is a marker of po-
larity shift and is usually seen as the presence of a
positive sentiment referring to a negative situation,
or vice versa (Riloff et al., 2013) which is some-
times referred to as “asymmetry of affect” (Clark
and Gerrig, 1984).

Twitter language is non-standard and informal.
Polarity shift can be realised through contrast be-
tween different elements of the tweet. The ele-
ments of a tweet are: text, hashtagged tokens, and
emojis. We adopt a more inclusive stance with re-
gards to the concept of contrast with the following
scenarios:

1. Contrast between different parts of the same

554

element of a tweet

a. antithetical emojis
b. antithetical hashtagged tokens

2. Contrast between two different elements of a
tweet

c. text and hashtagged tokens
d. text and emojis
e. hashtagged tokens and emojis

A sizable proportion of the tweets contain mul-
tiword hashtags, such as #NotExcitedAboutThisA-
tAll or #goodluck, that require segmentation. For
this we used ekphrasis’ hashtag segmentation tool
(Baziotis et al., 2017).

We separate the tweet and its segmented hash-
tagged tokens and run each group through the
sentiment analysis tool from Stanford CoreNLP
(Manning et al., 2014). CoreNLP assigns to an
input any of 5 sentiment classes from very nega-
tive to very positive (0 to 4). If the resulting hash-
tag and text scores are on opposite sides of this
spectrum, we consider this as contrast type c. as
defined in 2.

For d. and e. we follow a similar procedure.
To approximate the sentiments present in emoji to-
kens, we use Emoji Sentiment Ranking (Kralj No-
vak et al., 2015). This is a lexicon of 751 emo-
jis whose sentiments are ranked based on human
annotation of 70,000 tweets in 13 European lan-
guages.

The resulting contrast feature is a binary value
that is set to True if any one of the aforementioned
forms of contrast is present in the tweet.

Relying on sentiment information from
CoreNLP, we define an additional binary fea-
ture named Intensity. It checks whether the
sentiment in a segment of the tweet is sharply
positive/negative. This translates to a value of
0 or 4 in the sentiment scores for that particular
segment. The rationale behind definition of this
feature is that too much of a positive emotion can,
in certain contexts, imply a negative sentiment.
To a lesser extent, the opposite is also true of an
excessively negative emotion.

To track the changes of sentiment expressed
throughout the whole tweet, we define sentiment
patterns of Rise (R), Fall (F), and Stable (S) on a
word-by-word basis and encode this information
in a vector representing the number of S, R, F, RF,

and FR patterns. For these features, we rely on in-
formation from Vader sentiment lexicon (Gilbert,
2014).

For dense vectors we use word2vec embeddings
pretrained on a large twitter corpus as described
in Godin et al. (2015). One limitation of these
embeddings is that they don’t contain information
on emojis. Therefore we have to complement this
resource with additional embeddings specifically
trained on emojis (Eisner et al., 2016).

3.3 Task-specific Selected Features

3.3.1 Subtask A

For subtask A, we found that the best way to com-
bine embeddings is through averaging, separately
for left and right parts3. Features we combine with
these vectors are the following: Surface features,
Intensity (for left and right), and Contrast.

3.3.2 Subtask B

For subtask B, concatenation of the embeddings
was deemed more effective. Furthermore, we aug-
ment the combined embeddings with bigram tf-idf
count vectors.

As a rhetorical trope, irony can often have sub-
tle political and social dimensions, and is used fre-
quently to express opinionated thoughts in gen-
eral (Hutcheon, 1994). We noticed that adding
topic modeling features to our system in subtask
B slightly improves classification performance as
these features can help the model capture more
subtle forms of irony that tend to co-occur with
certain topics and are not necessarily realised as
polarity contrasts. Topic modeling of the tweets is
done using Latent Dirichlet Allocation (LDA) and
Non-negative matrix factorization (NMF).

Other features we add to the above are: Surface
features (we consider these with regard to both the
whole tweet and its left and right splits), Intensity
(for left and right), Contrast, and Vader-based Rise
and Fall sentiment patterns.

4 Experimental Settings

We use the data (text including emojis) as pro-
vided by the organisers of the shared task. We train
our models on the training set using 10-fold cross-
validation. Predictions were made on the held-out
test data.

3word and tweet embeddings are averaged independently,
and subsequently the averages are concatenated.

555

ironic non-ironic total

train 1911 (49.84%) 1923 (50.15%) 3834
test 311 (39.66%) 473 (60.33%) 784

Table 1: Statistics of the data for subtask A

rightIntensity, contrast, date1,
sad1, surprise1, url1, date2,
elongated2, laugh2, sad2, shocking2,
url2, user2

Figure 1: The most informative features for subtask A

Train and test data in both subtasks A and B are
the same and only differ in their annotation. Tables
1 and 2 present the breakdown of the classes and
the number of their instances in each subtask.

The most informative features are selected us-
ing recursive feature elimination (RFE) (Guyon
et al., 2002). As a result, the algorithm uses 13 fea-
tures for subtask A as listed in figure 1. They are
concatenated with the vectors that were derived by
separately averaging the words and emoji vectors
of the left and right parts of tweets.

The best features derived from RFE for subtask
B did not improve the performance of the model.
Therefore we use all of the 87 features which are
consequently augmented with the concatenation of
the word and and emoji vectors of tweets.

The baseline system provided by task organisers
is an SVM classifier which uses tf-idf feature vec-
tors. We consider this as the benchmark and report
the results for 2 different settings of our system as
follows:

• setting 1: average of word and emoji
vectors of bi-sectioned tweets

• setting 2: concatenation of word and
emoji vectors

In both settings we combine vectors with best
features and feed them to the classifiers. To
achieve the best system for subtask A (best
system A) we apply a voting classifier with soft
voting between LR and SVM whose model com-
ponents are based on setting 1 plus the 13
best features that were selected using RFE for sub-
task A.

The best system for subtask B is a voting classi-
fier between 3 LRs with 3 different class weights
as shown in Table 3. The components of the mod-
els are based on setting 2 plus all features for
subtask B.

5 Results and Discussion

Table 4 details the results for subtask A, and the re-
sults for subtask B are presented in Table 5. After
cross-validation on the TRAIN set, the best sys-
tem which is an ensemble voting classifier trained
on models based on setting 1 + best
features of subtask A achieves the high-
est record in F1-score and recall, but is out-
performed in accuracy by its own component
model. In terms of precision it also scores lower
than the system based on setting 2 + all
features.

When tested on the TEST data, our best system
for subtask A ranked third overall on the shared
tasks’s official leaderboard among 44 teams with
an F-score of 0.65. It has the second highest score
for recall. This indicates that the coverage of the
model is extensive.

For subtask B, our best system is an ensem-
ble voting classifier comprised of three logistic re-
gression models based on setting 2 + all
features with the set-up indicated in Table 3.

As can be seen in Table 5, it gives the best F1-
score, accuracy, and recall when cross-validated
on the TRAIN data. On the held-out TEST data,
the system ranked 9th in terms of F1-score, and
with 0.6709 accuracy ranked second out of all par-
ticipating systems in the shared task.

Table 6 shows the F1-scores for subtask B based
on the system’s performance on each individual
label. In the case of irony by clash, our system
achieves an F1-score of 0.6584. This confirms
that our features are informative enough to help
the model capture this type of irony fairly well,
even though only 20.91% of the tweets belong to
this class (Table 2).

However, in the case of situational irony the
system performs much worse. There are several
possible factors that collectively contribute to this
poorer performance. Situational irony is less stud-
ied in the literature and designing effective fea-
tures to model it is more difficult. By definition,
it involves a situation that does not conform to
the expectations of the speaker and elicits an emo-
tional response (Shelley, 2001). Expectations dif-
fer among individuals and people often react dif-
ferently to the same events and stimuli which fur-
ther complicates the problem.

In the provided dataset, the number of instances
of this type of irony is small (only 8.24% of the to-
tal in the TRAIN set), and there are no salient tex-

556

non-ironic clash situational other total

train 1923 (50.15%) 1390 (36.25%) 316 (8.24%) 205 (5.34%) 3834
test 473 (60.33%) 164 (20.91%) 85 (10.84%) 62 (7.90%) 784

Table 2: Statistics of the data for subtask B

non-ironic clash situational other

LR1 1 1 1 1
LR2 1 1 2 2
LR3 1 1 3 3

Table 3: Weights each LR classifier assigns to the 4
classes in subtask B

tual characteristics that can signal their occurrence
while distinguishing them from irony by clash.

6 Error Analysis

Vast coverage in subtask A also means that the
model is quick to judge a tweet as ironic which
translates to a large number of tweets getting
tagged as 1. According to Table 1 the distribution
of labels is slightly skewed towards non-ironic la-
bels, but in our predictions 0.62% of the tweets are
tagged as ironic (Table 4) which explains higher
recall and lower precision. This can be traced back
to the inclusive definition of contrast as defined in
3.2.

The gold standard provided is not without
faults. As an example (4) is obviously an ironic
tweet that is incorrectly labeled as 0 in the gold-
standard4. Also in example (5) the word tit (al-
tered in spelling for censorship), is being used in
two ways; first in its literal sense, and the other to
sarcastically refer to a politician as foolish. This
was labeled as non-ironic in the dataset, which is
subject to debate. Our system correctly identified
both of these instances.

(4) Corny jokes are my absolute favorite

(5) #farage a t1t in public who doesnt agree
with seeing t1ts in public #breastfeeding

Looking at the per-class performances in subtask
B (Table 6), the best system is predicting non-
ironic instances with a high F1-score of 0.7652.
However the F1-scores for other classes remain
low.

The numbers for situational is lower than irony
by clash, which seems logical because in order to

4corny has a negative connotation, implying that the joke
is unfunny, and uninteresting

effectively pinpoint a tweet as ironic by situation it
is sometimes necessary to have access to informa-
tion beyond the text which could involve a broader
context (social, cultural, political, etc) as exempli-
fied in the following examples that are taken from
the TRAIN set:

(6) Sure Staff... Now Hiring.
http://t.co/HDgfxG7elF

(7) #mondaymorning pouring rain and i am
singing ’the most wonderful time of the
year’ as i walk to the office

(8) Patrick Kielty hosting Radio 2’s Comedy
Awards...

In (6), textual information does not provide any-
thing of significant value. If the user clicks on the
link, it seems like the image is about an employ-
ment agency that is hiring. Normally, they supply
staff to clients who are recruiting but in this case, it
is the agency itself which is recruiting. This goes
against expectation. Realisation of this instance as
situational irony requires interpretation of the im-
age which in turn requires linking the name Sure
Staff to an agency, and the background knowledge
about the role of employment agencies.

Example (7) involves the interpretation of a
rainy day on Monday morning as unpleasant,
which is subjective. Example (8) implies that the
comedian is not particularly known to be funny,
which again requires background knowledge and
is also dependent on the opinion of the annotator,
as it could also read as a non-ironic sentence if the
reader does not share the same impression of the
comedian.

7 Conclusion

In this paper, we have described our supervised
systems to identify ironic tweets and categorise
them into three types. Our systems leveraging a
combination of word/emoji vectors and features
related to polarity contrast, intensity and text sur-
face features achieved competitive results for bi-

557

Accuracy Precision Recall F1-score

TRAIN

benchmark system 0.6375 0.6440 0.6096 0.6263
LR with setting 1 0.6643 0.6543 0.6923 0.6728
LR with setting 2 0.6502 0.6466 0.6578 0.6521
LR with setting 1 + best features of subtask A 0.6808 0.6616 0.7357 0.6967
LR with setting 2 + all features 0.6787 0.6726 0.6923 0.6823
best system A 0.6742 0.6452 0.7698 0.7020

TEST best system A 0.6429 (15) 0.5317 (20) 0.8360 (2) 0.6500 (3)

Table 4: Results for subtask A

Accuracy Precision Recall F1-score

TRAIN

benchmark system 0.6064 0.4359 0.3540 0.3470
LR with setting 1 0.6142 0.4952 0.3449 0.3278
LR with setting 2 0.6239 0.5394 0.3796 0.3817
LR with setting 1 + all features 0.6325 0.4867 0.3696 0.3550
LR with setting 2 + all features 0.6450 0.5308 0.4061 0.4134
best system B 0.6458 0.5280 0.4122 0.4215

TEST best system B 0.6709 (2) 0.4311 (11) 0.4149 (10) 0.4153 (9)

Table 5: Results for subtask B

non-ironic clash situational other

TRAIN 0.7064 0.6584 0.2768 0.0444
TEST 0.7652 0.4651 0.2595 0.0299

Table 6: Per-class F1-scores for the best system in subtask B

nary classification of tweets as ironic/non-ironic.
The system is ranked third out of 44 participat-
ing systems due to its high coverage in identify-
ing ironic-tweets. For the subtask of multi-class
classification, we have also used topic modeling
features and features related to the distribution of
polarity. The system is ranked ninth out of 32 par-
ticipating systems with a very competitive accu-
racy.

In future, we intend to extract more sophisti-
cated features related to situational irony. Obser-
vation of the dataset confirms that in cases where
the tweet involves a URL, the contents of the ex-
ternal web page can play an important role in dis-
criminating between ironic and non-ironic tweets.
Therefore introduction of multimodal features is
one future direction to enhance performance of
such models.

References
Christos Baziotis, Nikos Pelekis, and Christos Doulk-

eridis. 2017. Datastories at semeval-2017 task
4: Deep lstm with attention for message-level and
topic-based sentiment analysis. In Proceedings of
the 11th International Workshop on Semantic Eval-
uation (SemEval-2017), pages 747–754, Vancouver,
Canada. Association for Computational Linguistics.

Herbert H Clark and Richard J Gerrig. 1984. On the
pretense theory of irony. Journal of Experimental
Psychology: General.

Ben Eisner, Tim Rocktäschel, Isabelle Augenstein,
Matko Bošnjak, and Sebastian Riedel. 2016.
emoji2vec: Learning emoji representations from
their description. In Proceedings of The Fourth
International Workshop on Natural Language Pro-
cessing for Social Media, page 4854. Association for
Computational Linguistics.

Aniruddha Ghosh, Guofu Li, Tony Veale, Paolo Rosso,
Ekaterina Shutova, John Barnden, and Antonio
Reyes. 2015. Semeval-2015 task 11: Sentiment
analysis of figurative language in twitter. In Pro-
ceedings of the 9th International Workshop on Se-
mantic Evaluation (SemEval 2015), pages 470–478.

CJ Hutto Eric Gilbert. 2014. Vader: A parsimonious
rule-based model for sentiment analysis of social
media text. In Proceedings of the Eighth Inter-
national Conference on Weblogs and Social Media
(ICWSM-14).

Fréderic Godin, Baptist Vandersmissen, Wesley
De Neve, and Rik Van de Walle. 2015. Multimedia
lab @ acl wnut ner shared task: Named entity recog-
nition for twitter microposts using distributed word
representations. In Proceedings of the Workshop on
Noisy User-generated Text, pages 146–153.

H. P. Grice. 1975. Logic and conversation. In Peter
Cole and Jerry L. Morgan, editors, Syntax and Se-

558

mantics: Vol. 3: Speech Acts, pages 41–58. Aca-
demic Press, New York.

Isabelle Guyon, Jason Weston, Stephen Barnhill, and
Vladimir Vapnik. 2002. Gene selection for cancer
classification using support vector machines. Ma-
chine learning, 46(1-3):389–422.

John Haiman. 1998. Talk is cheap: Sarcasm, alien-
ation, and the evolution of language. Oxford Uni-
versity Press on Demand.

Patrick Hanks. 2013. Lexical analysis: Norms and ex-
ploitations. MIT Press.

Linda Hutcheon. 1994. Irony’s edge: The theory and
politics of irony. Psychology Press.

Aditya Joshi, Vaibhav Tripathi, Pushpak Bhat-
tacharyya, Mark Carman, Meghna Singh, Jaya
Saraswati, and Rajita Shukla. 2016. How challeng-
ing is sarcasm versus irony classification?: A study
with a dataset from English literature. In Proceed-
ings of the Australasian Language Technology Asso-
ciation Workshop 2016, pages 123–127.

Petra Kralj Novak, Jasmina Smailović, Borut Sluban,
and Igor Mozetič. 2015. Emoji sentiment rank-
ing 1.0. Slovenian language resource repository
CLARIN.SI.

Edward Loper and Steven Bird. 2002. Natural lan-
guage processing toolkit.
http://www.nltk.org/.

Christopher Manning, Mihai Surdeanu, John Bauer,
Jenny Finkel, Steven Bethard, and David McClosky.
2014. The stanford corenlp natural language pro-
cessing toolkit. In Proceedings of 52nd annual
meeting of the association for computational lin-
guistics: system demonstrations, pages 55–60.

Preslav Nakov, Alan Ritter, Sara Rosenthal, Fabrizio
Sebastiani, and Veselin Stoyanov. 2016. Semeval-
2016 task 4: Sentiment analysis in twitter. In Pro-
ceedings of the 10th International Workshop on Se-
mantic Evaluation (SemEval-2016), pages 1–18.

Federico Alberto Pozzi, Elisabetta Fersini, Enza
Messina, and Bing Liu. 2016. Sentiment analysis
in social networks. Morgan Kaufmann.

Tomáš Ptáček, Ivan Habernal, and Jun Hong. 2014.
Sarcasm detection on Czech and English twitter.
In Proceedings of COLING 2014, the 25th Inter-
national Conference on Computational Linguistics:
Technical Papers, pages 213–223.

Ellen Riloff, Ashequl Qadir, Prafulla Surve, Lalin-
dra De Silva, Nathan Gilbert, and Ruihong Huang.
2013. Sarcasm as contrast between a positive senti-
ment and negative situation. In Proceedings of the
2013 Conference on Empirical Methods in Natural
Language Processing, pages 704–714.

Sara Rosenthal, Noura Farra, and Preslav Nakov.
2017. Semeval-2017 task 4: Sentiment analysis in
twitter. In Proceedings of the 11th International
Workshop on Semantic Evaluation (SemEval-2017),
pages 502–518.

Cameron Shelley. 2001. The bicoherence theory of sit-
uational irony. Cognitive Science, 25(5):775–818.

Cynthia Van Hee, Els Lefever, and Vronique Hoste.
2018. Semeval-2018 task 3: Irony detection in En-
glish tweets. In Proceedings of the 12th Interna-
tional Workshop on Semantic Evaluation (SemEval-
2018), New Orleans, LA, USA.

Byron C Wallace, Laura Kertz, Eugene Charniak, et al.
2014. Humans require context to infer ironic in-
tent (so computers probably do, too). In Proceed-
ings of the 52nd Annual Meeting of the Association
for Computational Linguistics (Volume 2: Short Pa-
pers), volume 2, pages 512–516.

559

Proceedings of the 12th International Workshop on Semantic Evaluation (SemEval-2018), pages 560–564
New Orleans, Louisiana, June 5–6, 2018. ©2018 Association for Computational Linguistics

Random Decision Syntax Trees at SemEval-2018 Task 3: LSTMs and
Sentiment Scores for Irony Detection

Aidan San
University of Illinois at Urbana-Champaign

asan2@illinois.edu

Abstract

We propose a Long Short Term Memory Neu-
ral Network model for irony detection in
tweets in this paper. Our model is trained us-
ing word embeddings and emoji embeddings.
We show that adding sentiment scores to our
model improves the F1 score of our baseline
LSTM by approximately .012, and therefore
show that high-level features can be used to
improve word embeddings in certain Natural
Language Processing applications. Our model
ranks 24/43 for binary classification and 5/31
for multiclass classification. We make our
model easily accessible to the research com-
munity1.

1 Introduction

Recently, irony detection has become an increas-
ingly important problem with new applications ap-
pearing every day. In discourse analysis, it is ex-
tremely important to understand if a politician is
making an ironic or a literal response, or under-
standing can be completely lost. In chatbots, if
a chatbot misinterprets an unhappy sarcastic com-
ment from a customer, the customer could become
even more frustrated. In sentiment analysis, if
irony is not taken into account, the actual senti-
ment could be the opposite of the prediction.

The aim of irony detection is generally a binary
classfication problem: Is the piece of text ironic or
literal? In SemEval2018 Task 3 (Van Hee et al.,
2018), there are two subtasks. First, subtask A, is
our standard binary classification problem. We are
provided with a corpus of tweets annotated with
0 or 1’s to specify if a tweet is ironic or literal.
Second, in subtask B, we are tasked with a more
challenging problem. In subtask B, participants
must determine which type of irony a particular
tweet contains. Is it verbal irony based on polarity,

1github.com/Muakasan/RDST-semeval2018-task3

another type of verbal irony, situational irony or
not ironic at all?

Recently, research has shown that neural ap-
proaches are particularly effective in sarcasm de-
tection (Ghosh and Veale, 2016) and similar prob-
lems such as sentiment analysis (Rosenthal et al.,
2017). In this paper, we present neural network
model designed to tackle the challenge of irony
detection.

In subsection 2.1, we give a brief overview of
the entire model. In subsection 2.2 and 2.3, we
describe our neural architecture and approach. In
subsection 2.5 and 2.6, we describe the embed-
dings and sentiment scores that are used as the in-
put to our neural network. In section 3, we de-
scribe our results, and give quantitative evidence
of the effectiveness of our features. In section 4
we conclude, and in section 5, we describe ways
that our approach could be improved.

2 System Description

2.1 Overview

Our system is composed of three stages: Prepro-
cessing, Feature Creation, and the Neural Net-
work. Preprocessing is composed of tokenizing
the input text. Feature creation is generating the
word and emoji embeddings and sentiment scores
and concatenating them together to form a feature
vector. Finally in the third stage, the feature vec-
tor is fed into the neural network which makes a
prediction. Our full model is illustrated in Figure
1.

2.2 Long Short Term Memory

In traditional Feed Forward Neural Networks,
there is not a good way to represent temporal in-
puts. Recurrent Neural Network (RNN) cells are
like traditional neural network cells, except they
have the key difference of feeding their output

560

Figure 1: Overview of the entire model.

Figure 2: The various gates of the LSTM Cell and
the connections between them. The data path is shown
from the input wc to the output yc. Taken from Gers
et al. (1999).

back into themselves. Each time a new word rep-
resentation is passed into the RNN, the RNN will
take its output and pass it back into the RNN, so
the RNN receives 2 inputs (the current word and
the output from the previous iteration). The output
of the previous iteration can be thought of as a rep-
resentation of the previous words in the sentence.
This is repeated until the sentence is finished. Ad-
ditionally, context units can be added to the cell to
imitate the idea of memory (Elman, 1990). This
improves language modeling, because when read-
ing a sentence, prior context of previous words is
very important for the understanding of the cur-
rent word. When we use an RNN, our model can
be fed in with context from previous words.

The Long Short Term Memory Model (LSTM)
improves over the naive RNN, with the addition of
a memory cell and input and output gates (Hochre-
iter and Schmidhuber, 1997). In the naive RNN, it
is easy to lose important information over many
iterations of the cell. In an LSTM cell, the mem-
ory cell combats this problem. The original LSTM
cell is composed of two gates. The output gate
can protect other units from irrelevant information
from the current iteration, and the input gate can
control which information is passed into the cur-
rent iteration. Additionally, Gers et al. (1999) in-
clude a forget gate which can reset memory once
it is no longer relevant. Figure 2 taken from Gers
et al. (1999) illustrates the architecture of the cell.

2.3 Neural Network Architecture

Our model is built with the high-level Python neu-
ral network library called Keras (Chollet et al.,
2015). We use a 5 layer model. Our first layer
is the input layer, where we feed integer ranks
(a number representing how often a word appears
in the corpus where “1” is the most common) of

561

Figure 3: An unrolled Neural Network. X1 to X30 rep-
resent the first 30 words in the input tweet. Y repre-
sents the irony prediction of the given tweet.

words into the layer. Then we pass the inputs into
an embedding layer. This layer takes our inputs
and converts them into a word or emoji embedding
representation. Our third and fourth layers are
both Long Short Term Memory layers. We take
the outputs of the first LSTM layer and feed them
into our second layer. Both LSTM layers are given
a dropout of .25 (chosen by experimentation) to
prevent overfitting (Srivastava et al., 2014). The
output of the second LSTM is then passed into a
single Dense layer. Our Dense layer has a sigmoid
and softmax activation for subtask A and B respec-
tively. We use binary cross entropy and categori-
cal cross entropy for subtask A and B respectively.
We train our model over 30 epochs (approximately
when the model converged) with a batch size of
32. Our architecture is shown in Figure 3.

2.4 Preprocessing

We preprocess using Pandas (McKinney, 2010)
for csv reading along with basic data processing.
We then run our tweets through the Keras Tok-
enizer (Chollet et al., 2015). The Keras Tokenizer
handles splitting, removing punctuation and low-
ercasing words.

2.5 Word/Emoji Embeddings

When dealing with a relatively small training set,
such as a small number of tweets, pretrained word
embeddings can be a very effective way of encod-

ing additional information into the model with-
out needing additional training data. We used
the Google News pretrained Word2Vec (Mikolov
et al., 2013) word embeddings for our model. The
word embeddings were trained using 100 billion
words taken from the Google News dataset. We
additionally added Emoji2Vec (Eisner et al., 2016)
embeddings. As is shown by Hogenboom et al.
(2013), emoticons encode a large amount of sen-
timent information. As the descendants of emoti-
cons, we hypothesize emojis can encode sentiment
information as well.

2.6 Sentiment Scores

We use NLTK (Bird and Loper, 2004) to get sen-
timent scores using the SentiWordNet (Esuli and
Sebastiani, 2007) corpus. SentiWordNet is a li-
brary which uses a semi-supervised approach to
give synsets (groupings of words which have the
same meaning) an objective, positive, and nega-
tive sentiment score. Riloff et al. (2013) show that
sentiment can be an effective way to improve sar-
casm detection in tweets. For simplicity, we al-
ways use the first synset of a particular word. We
take the positive and negative scores from Senti-
WordNet and then concatenate the results with our
word/emoji embedding.

2.7 Memory Constraints

Standard practice is to pass the word embedding
matrix with every word as a layer into the Neu-
ral Network. In this task, we had the additional
constraint of a relatively small amount of RAM
(about 8GB). To resolve this problem, instead of
building our embedding matrix and then tokeniz-
ing our dataset, we tokenized first. Then, rather
than building our embedding matrix with every
possible entry, we could simply look through the
words that we had seen during tokenization, and
only put those vectors into our matrix. To put this
into context, while we were storing all the em-
beddings in memory we were using about 6GB
of RAM. After we created our much smaller em-
bedding matrix, we were only using about 3GB of
RAM.

562

3 Results

Task F1 Accuracy
A (Binary) .5822(24) .6173(21)

B (Multiclass) .4352(6) .6327(6)

Table 1: Official results from the competition on the
test set. The numbers between parentheses indicate
ranking compared to other models.
As shown in Table 1, in the binary classification
task, we achieved an F1 score of .5822 and an ac-
curacy of .6173, and in the multiclass classifica-
tion task, we achieved an F1 score of .4352 and an
accuracy of .6327. This earned us a rank of 24 and
6 in tasks A, and B respectively, because teams
were ranked using F1 score.

Model F1 Accuracy
Without Emoji .6127 .6121

Without Sentiment .6093 .6097
Emoji & Sentiment .6210 .6091

Table 2: Accuracy and F1 scores of various models
tested on a 75%-25% split of the training data.

To test the effectiveness of the emoji embeddings
feature and sentiment scores feature, we tested our
binary classification model without each feature
separately and compared these models to our com-
bined model. We ran our tests over the training set
with a 75%-25% split, where 75% of the training
data was used to train the model and 25% of the
model was designated as validation data, to verify
the effectiveness of the model on unseen data. We
ran 10 trials and took the average accuracy and F1
score over the 10 trials for each of the 3 models.

The task was ranked using F1 score, so we op-
timized for F1 score. As can be seen in Table 2,
the combined model achieves an F1 score .0083
higher than not including emoji embeddings and
an F1 score .0117 higher than not including senti-
ment scores. Interestingly, we see that the com-
bined model actually achieves a lower accuracy
score than both of the individual models. We
can draw the conclusion that the combined model
has more balanced predictions between the two
classes, which overall creates a higher F1 score at
the cost of lower accuracy in one of the classes.

4 Conclusion

In this paper, we have described our system for
SemEval-2018 Task 3. We discussed LSTM-based
neural models, and how we incorporate sentiment
features and emoji embeddings. We show that
additional high-level features such as sentiment
scores can improve neural based models. We
achieve rank 24/43 in subtask A and 6/31 in sub-
task B.

5 Future Work

Possible improvements to the model fall under two
primary categories: the neural architecture and ad-
ditional high-level features.

To implement our neural architecture, we exper-
imented with other types of layers such as Bidi-
rectional LSTMs and CNNs, but we would like to
further explore these approaches in the future. We
especially think Attention Layers used by models
such as Baziotis et al. (2017) could be particu-
larly effective in irony detection, because of their
effectiveness in sentiment analysis. We could also
try different activation functions in different layers
and test out different batch sizes. Another possi-
ble direction would be to use ensemble methods
which have been shown to be particularly effec-
tive by Cliche (2017) for similar tasks.

Regarding additional high-level features, we
could also include sentence-level features. Goel et
al. (2017) showed that high-level features could be
included in a Feed Forward Neural Network which
improved accuracy in an ensemble method for the
task of emotion detection. Additionally, we could
continue in the vein of the model we created and
add other word-level features such as capitaliza-
tion. To improve our sentiment features, we could
also use a more advanced method of choosing the
correct synset for a better fitting sentiment score.

Acknowledgments

We would like to thank the task organizers for
providing the dataset and putting together the
competition. We would like to thank Assma
Boughoula and Julia Hockenmaier for their help
in this project.

References
Christos Baziotis, Nikos Pelekis, and Christos Doulk-

eridis. 2017. Datastories at semeval-2017 task

563

4: Deep lstm with attention for message-level and
topic-based sentiment analysis. In Proceedings of
the 11th International Workshop on Semantic Eval-
uation (SemEval-2017), pages 747–754.

Steven Bird and Edward Loper. 2004. Nltk: the nat-
ural language toolkit. In Proceedings of the ACL
2004 on Interactive poster and demonstration ses-
sions, page 31. Association for Computational Lin-
guistics.

François Chollet et al. 2015. Keras. https://
github.com/fchollet/keras.

Mathieu Cliche. 2017. Bb twtr at semeval-2017 task 4:
Twitter sentiment analysis with cnns and lstms. In
Proceedings of the 11th International Workshop on
Semantic Evaluation (SemEval-2017), pages 573–
580.

Ben Eisner, Tim Rocktäschel, Isabelle Augenstein,
Matko Bošnjak, and Sebastian Riedel. 2016.
emoji2vec: Learning emoji representations from
their description. In Conference on Empirical Meth-
ods in Natural Language Processing, page 48.

Jeffrey L Elman. 1990. Finding structure in time. Cog-
nitive science, 14(2):179–211.

Andrea Esuli and Fabrizio Sebastiani. 2007. Senti-
wordnet: a high-coverage lexical resource for opin-
ion mining. Evaluation, pages 1–26.

Felix A Gers, Jürgen Schmidhuber, and Fred Cummins.
1999. Learning to forget: Continual prediction with
lstm.

Aniruddha Ghosh and Tony Veale. 2016. Fracking
sarcasm using neural network. In Proceedings of
the 7th Workshop on Computational Approaches to
Subjectivity, Sentiment and Social Media Analysis,
pages 161–169.

Pranav Goel, Devang Kulshreshtha, Prayas Jain, and
Kaushal Kumar Shukla. 2017. Prayas at emoint
2017: An ensemble of deep neural architectures
for emotion intensity prediction in tweets. In Pro-
ceedings of the 8th Workshop on Computational Ap-
proaches to Subjectivity, Sentiment and Social Me-
dia Analysis, pages 58–65.

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Lstm
can solve hard long time lag problems. In Ad-
vances in neural information processing systems,
pages 473–479.

Alexander Hogenboom, Daniella Bal, Flavius Fras-
incar, Malissa Bal, Franciska de Jong, and Uzay
Kaymak. 2013. Exploiting emoticons in sentiment
analysis. In Proceedings of the 28th Annual ACM
Symposium on Applied Computing, pages 703–710.
ACM.

Wes McKinney. 2010. Data structures for statistical
computing in python. In Proceedings of the 9th
Python in Science Conference, pages 51 – 56.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013. Distributed representa-
tions of words and phrases and their compositional-
ity. In Advances in neural information processing
systems, pages 3111–3119.

Ellen Riloff, Ashequl Qadir, Prafulla Surve, Lalin-
dra De Silva, Nathan Gilbert, and Ruihong Huang.
2013. Sarcasm as contrast between a positive senti-
ment and negative situation. In Proceedings of the
2013 Conference on Empirical Methods in Natural
Language Processing, pages 704–714.

Sara Rosenthal, Noura Farra, and Preslav Nakov.
2017. Semeval-2017 task 4: Sentiment analysis in
twitter. In Proceedings of the 11th International
Workshop on Semantic Evaluation (SemEval-2017),
pages 502–518.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky,
Ilya Sutskever, and Ruslan Salakhutdinov. 2014.
Dropout: A simple way to prevent neural networks
from overfitting. The Journal of Machine Learning
Research, 15(1):1929–1958.

Cynthia Van Hee, Els Lefever, and Véronique Hoste.
2018. SemEval-2018 Task 3: Irony Detection in
English Tweets. In Proceedings of the 12th Interna-
tional Workshop on Semantic Evaluation, SemEval-
2018, New Orleans, LA, USA. Association for
Computational Linguistics.

564

Proceedings of the 12th International Workshop on Semantic Evaluation (SemEval-2018), pages 565–569
New Orleans, Louisiana, June 5–6, 2018. ©2018 Association for Computational Linguistics

ELiRF-UPV at SemEval-2018 Tasks 1 and 3: Affect and Irony Detection
in Tweets

José-Ángel González, Lluı́s-F. Hurtado, Ferran Pla
Departament de Sistemes Informàtics i Computació

Universitat Politècnica de València
Camı́ de Vera, sn
46022, València

{jogonba2, lhurtado, fpla}@dsic.upv.es

Abstract
This paper describes the participation of
ELiRF-UPV team at tasks 1 and 3 of Semeval-
2018. We present a deep learning based sys-
tem that assembles Convolutional Neural Net-
works and Long Short-Term Memory neu-
ral networks. This system has been used
with slight modifications for the two tasks ad-
dressed both for English and Spanish. Finally,
the results obtained in the competition are re-
ported and discussed.

1 Introduction

The study of figurative language and affective in-
formation expressed in texts is of great interest in
sentiment analysis applications because they can
change the polarity of a message. The objective of
tasks 1 and 3 of Semeval 2018 is the study of these
phenomena on Twitter.

Task 1 (Mohammad et al., 2018) is related to
Affect in Tweets. Systems have to automatically
determine the intensity of emotions and intensity
of sentiment or valence of the tweeters from their
tweets. The task is divided in five subtasks: emo-
tion intensity regression (EI-Reg), emotion inten-
sity ordinal classification (EI-Oc), sentiment in-
tensity regression (V-Reg), sentiment analysis or-
dinal classification (V-Oc) and emotion classifica-
tion (E-C).

Task 3 (Van Hee et al., 2018) addresses the
problem of Irony detection in English Tweets. It
consists of two subtasks. The first subtask is a
two-class (or binary) classification task where the
system has to predict whether a tweet is ironic or
not. The second subtask is a multiclass classifica-
tion task where the system has to predict one out
of four labels describing i) verbal irony realized
through a polarity contrast, ii) verbal irony without
such a polarity contrast (i.e., other verbal irony),
iii) descriptions of situational irony, iv) non-irony.

This paper describes the main characteristics of
the developed system by the ELiRF-UPV team for
tasks 1 and 3. We addressed all subtasks of task 1
both for English and Spanish, and all subtasks of
task 3.

2 Data Preprocessing

In this work we have taken into account different
aspects when preprocessing the tweets. First we
removed the accents and converted all the text to
lowercase. In general, emoticons, web links, hash-
tags, numbers, and user mentions, were substi-
tuted by generic tokens. For instance, “#hashtag”
→ “hashtag”, , → “Slightly Smiling Face”, etc.
After that, we used TweetMotif (Krieger and Ahn,
2010) as tweet tokenizer, moreover we adapted it
to work with Spanish tweets.

3 Resources

On the one hand, for English, we used the follow-
ing polarity/emotion lexicons: AFFIN (Nielsen,
2011), Bing Liu’s Opinion Lexicon (Hu and Liu,
2004), MPQA (Wilson et al., 2005), Sentiment140
(Go et al., 2009), SentiWordnet (Baccianella et al.,
2010), NRC Emotion Lexicon (Mohammad and
Turney, 2013), NRC Hashtag Emotion Lexicon
(Mohammad, 2012) and LIWC2007 (Pennebaker
et al., 2014). We also used Word2Vec embeddings
(Mikolov et al., 2013a) (Mikolov et al., 2013b)
pre-trained by (Godin et al., 2015) with 400 mil-
lion English tweets.

On the other hand, for Spanish, we used the fol-
lowing polarity/emotion lexicons: ElHPolar (Sar-
alegi and San Vicente, 2013), ISOL (Molina-
González et al., 2013), and MLSenticon (Cruz
et al., 2014). In addition, we also pre-trained
Word2Vec embeddings from 87 million Spanish
tweets collected by our team by means of a twitter
crawler. In this case, it is a skip-gram architecture

565

Figure 1: System architecture.

with 300 dimensions per word, negative sampling
with 5 negative samples and a 5-term context on
the left and right was used.

Through a tuning process on the development
sets with a fixed system architecture, we selected
the best lexicons for each task. For English, all the
lexicons stated above for both tasks were used. For
Spanish, only ElHPolar and ISOL lexicons were
used.

4 System Description

In this section, we briefly describe the general
characteristics of the system developed for Task
1 and Task 3 at SemEval 2018. This description
includes the input representation and the system
architecture.

4.1 Input representation

Regarding the representation used, in those sub-
tasks where the input is only a tweet (V-Reg, V-Oc
and E-C in task 1 and both subtasks in task 3), each
tweet is represented as a matrix M ∈ Rn·d where
n is the maximum number of words per tweet and
d is the embedding dimensionality. To include the
information from the polarity lexicons, for each
word, x, the vector of its embedding is concate-
nated with the vector of polarities/emotions for
this word, v(x). In this way, the representation
matrix of a tweet finally results in M ∈ Rn·(d+|v|).

For the EI-Reg subtask, where in addition to a
tweet an emotion p is also provided, we add the
representation of the word p as the last row of the
M matrix. Moreover, we concatenate one column
to the word embeddings to indicate if the words
belong to the tweet (0) or belong to the emotion
(1).

4.2 System architecture

We propose a general architecture for all subtasks.
This architecture is based on a two-layer Convolu-
tional Neural Network (CNN) (Fukushima, 1980)
ensembled with a final Long Short-Term Memory
(LSTM) neural network (Hochreiter and Schmid-
huber, 1997) as in (González et al., 2017). We use
the representation of the tweet in terms of the M
matrix defined above as input to the system. Fi-
nally, a fully connected layer computes the outputs
of the system. The activation function of this layer
depends on the subtask.

Figure 1 shows the general architecture of the
system, where d0 is the dimensionality of the rep-
resentation of each word (size of the embedding),
fi is the number of filters in the convolutional layer
i, si the height of each filter in layer i, L is the di-
mensionality of the output-state of the LSTM net-
work, and C is the number of outputs for a specific
task.

Although the architecture was the same for all
subtasks, the parameters are subtask dependent
and were experimentally defined by means of a
tuning phase with the development sets. The val-
ues studied for the parameters of the convolutional
network are fi ∈ [64, 256] and si = 3. The num-
ber of neurons of the last layer depends on the sub-
task. We also tested a simplified version of the ar-
chitecture without the convolutional network and
using only the LSTM network with L = 256.

Moreover, we use Batch Normalization (Ioffe
and Szegedy, 2015) between all convolutional lay-
ers, Dropout (Srivastava et al., 2014) after the
LSTM with p = 0.2, ReLU activation functions
(Nair and Hinton, 2010) and RMSProp (Tieleman
and Hinton) as optimization algorithm.

566

Task 1 EI-Reg (Pearson) V-Reg (Pearson) E-C (Jaccard)
En Sp En Sp En Sp

LSTM + Lexicons (MSE) 67.57 68.98 75.46 74.37 N/A N/A
CNN-LSTM + Lexicons (MSE) 64.12 66.56 81.13 80.01 N/A N/A
CNN-LSTM + Lexicons (CCE) N/A N/A N/A N/A 52.11 42.18
CNN-LSTM + Lexicons (Jaccard) N/A N/A N/A N/A 55.23 44.59

Table 1: Task 1 development results.

Task 3 Subtask A (F1) Subtask B (Macro F1)
CNN-LSTM + Lexicons (CCE) 68.44 44.59
CNN-LSTM + Lexicons (F1) 68.63 N/A
CNN-LSTM + Lexicons (Macro F1) N/A 45.45

Table 2: Task 3 development results.

Regarding the loss function, we used Mean
Squared Error (MSE) for the regression subtasks.
However, for subtask E-C and both subtasks of
task 3, we used an adaptation of the evaluation
metrics (Jaccard Index, F1 for binary classifica-
tion, and macro-average F1) as loss functions. In
future work we will define and study in more de-
tail this kind of loss functions. In addition, we also
tested Cross Entropy (CCE) to extend the compar-
ison.

The strategy used in the ordinal classification
subtasks of task 1 (EI-Oc and V-Oc) consisted in
the discretization of the outputs of the equivalent
regression subtasks (EI-Reg and V-Reg). The dis-
cretization process is as follows, be C the classes
set of a ordinal classification subtask and vx ∈ R
the score assigned to sample x using a regres-
sion model. We compute |C| + 1 thresholds by
searching the minimum output for each class, ac-
cording to the regression train sets. Concretely,
{th0, ..., th|C|} where thi ∈ R, thi < thi+1,
th0 = 0, and th|C| = 1. Sample x is assigned
to the class i such that thi < vx ≤ thi+1.

5 Experimental Results

We performed a tuning process with the develop-
ment sets in order to select the best model for each
task. We tested different ways of preprocessing
the tweets, we fit the parameters of the models
and we evaluated some external lexicons. Next,
we summarize the best results obtained in the tun-
ing process by considering some combinations of
the tested models and configurations.

Table 3 shows the results for 3 of the subtasks in
the tuning process for Task 1. For the two remain-
ing tasks (EI-Oc and V-Oc) we do not learn spe-

cific models, in these cases we used the best mod-
els obtained for EI-Reg and V-Reg, respectively.

As it can be seen, LSTM achieved the best re-
sults for subtasks El-Reg. The rest of subtasks per-
formed better when we combined CNN and LSTM
models. In addition, when we consider the evalu-
ation metric as loss function we improved the re-
sults (see the differences between CNN-LSTM +
Lexicons (Jaccard) and CNN-LSTM + Lexicons
(CCE)).

Table 3 shows the results for the two subtasks
in the tuning process for Task 3. We can observe
the same behavior as Task 1. The best results are
obtained using a combination of CNN and LSTM
models and if we consider the evaluation metric as
loss function the results are improved.

Once our best system for each subtask with the
development set was chosen, we tested it on the
official test set and we compare it with the best
results obtained by another participant. These re-
sults are shown in Table 5 for Task 1, and in Table
5 for Task 3.

Task 1
English Spanish

Our Best Our Best
EI-Reg 69.60(13/42) 79.90 64.80(3/12) 73.80
EI-Oc 59.00(10/36) 69.50 57.50(4/13) 66.40
V-Reg 80.40(15/33) 87.30 74.20(2/12) 79.50
V-Oc 75.90(12/34) 83.60 72.90(2/11) 75.60
E-C 55.20(9/35) 58.80 45.80(2/14) 46.90

Table 3: Task 1 test results.

567

Task 3 Our Best
Subtask A 62.94 (7/44) 70.54
Subtask B 42.11 (8/32) 50.74

Table 4: Task 3 test results.

6 Conclusions and Future Work

We presented a deep learning based system that
assembles CNN and LSTM neural networks for
tasks 1 and 3 of Semeval-2018. This system has
been used with slight modifications for the two
tasks addressed.

We want to highlight the improvements ob-
tained when the evaluation measures have been
adapted as loss functions. In addition, we have
also incorporated information extracted from dif-
ferent lexical resources into the models.

As future work, we will continue to study dif-
ferent loss functions and the incorporation of new
lexical resources as well as to carry out a detailed
study of the obtained results.

7 Acknowledgements

This work has been partially supported by the
Spanish MINECO and FEDER founds under
projects ASLP-MULAN: Audio, Speech and
Language Processing for Multimedia Analytics
(TIN2014-54288-C4-3-R); and AMIC: Affective
Multimedia Analytics with Inclusive and Natural
Communication (TIN2017-85854-C4-2-R). Work
of José-Ángel González is also financed by Uni-
versitat Politècnica de València under grant PAID-
01-17.

References
Stefano Baccianella, Andrea Esuli, and Fabrizio Sebas-

tiani. 2010. Sentiwordnet 3.0: An enhanced lexical
resource for sentiment analysis and opinion mining.
In in Proc. of LREC.

Fermı́n L. Cruz, José A. Troyano, Beatriz Pontes, and
F. Javier Ortega. 2014. Building layered, multilin-
gual sentiment lexicons at synset and lemma lev-
els. Expert Systems with Applications, 41(13):5984
– 5994.

Kunihiko Fukushima. 1980. Neocognn: A self-
organizing neural network model for a mechanism
of pattern recognition unaffected by shift in position.
Biological Cybernetics, 36(4):193–202.

Alec Go, Richa Bhayani, and Lei Huang. 2009. Twit-
ter sentiment classification using distant supervision.
150.

Fréderic Godin, Baptist Vandersmissen, Wesley
De Neve, and Rik Van de Walle. 2015. Multimedia
lab @ ACL W-NUT NER sharedtask: named entity
recognition for Twitter microposts using distributed
word representations. ACL-IJCNLP, 2015:146–153.

José-Àngel González, Ferran Pla, and Lluı́s-F. Hur-
tado. 2017. Elirf-upv at semeval-2017 task 4: Sen-
timent analysis using deep learning. In Proceed-
ings of the 11th International Workshop on Semantic
Evaluation (SemEval-2017), pages 723–727. Asso-
ciation for Computational Linguistics.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long Short-Term Memory. Neural Computation,
9(8):1735–1780.

Minqing Hu and Bing Liu. 2004. Mining and summa-
rizing customer reviews. In Proceedings of the Tenth
ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining, KDD ’04, pages
168–177, New York, NY, USA. ACM.

Sergey Ioffe and Christian Szegedy. 2015. Batch
normalization: Accelerating deep network train-
ing by reducing internal covariate shift. CoRR,
abs/1502.03167.

Michel Krieger and David Ahn. 2010. Tweetmotif: ex-
ploratory search and topic summarization for twitter.
In In Proc. of AAAI Conference on Weblogs and So-
cial.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey
Dean. 2013a. Efficient estimation of word represen-
tations in vector space. CoRR, abs/1301.3781.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Cor-
rado, and Jeffrey Dean. 2013b. Distributed repre-
sentations of words and phrases and their composi-
tionality. CoRR, abs/1310.4546.

Saif Mohammad. 2012. #emotional tweets. In *SEM
2012: The First Joint Conference on Lexical and
Computational Semantics – Volume 1: Proceedings
of the main conference and the shared task, and Vol-
ume 2: Proceedings of the Sixth International Work-
shop on Semantic Evaluation (SemEval 2012), pages
246–255, Montréal, Canada. Association for Com-
putational Linguistics.

Saif M. Mohammad, Felipe Bravo-Marquez, Mo-
hammad Salameh, and Svetlana Kiritchenko. 2018.
Semeval-2018 Task 1: Affect in tweets. In Proceed-
ings of International Workshop on Semantic Evalu-
ation (SemEval-2018), New Orleans, LA, USA.

Saif M. Mohammad and Peter D. Turney. 2013.
Crowdsourcing a word-emotion association lexicon.
29(3):436–465.

M. Dolores Molina-González, Eugenio Martı́nez-
Cámara, Marı́a-Teresa Martı́n-Valdivia, and José M.
Perea-Ortega. 2013. Semantic orientation for polar-
ity classification in spanish reviews. Expert Systems
with Applications, 40(18):7250 – 7257.

568

Vinod Nair and Geoffrey E. Hinton. 2010. Rectified
linear units improve restricted boltzmann machines.
In Proceedings of the 27th International Conference
on International Conference on Machine Learning,
ICML’10, pages 807–814, USA. Omnipress.

F. Å. Nielsen. 2011. AFINN.

JW Pennebaker, CK Chung, M Ireland, A Gonzales,
and RJ Booth. 2014. The development and psycho-
logical properties of liwc2007.

Xabier Saralegi and Inaki San Vicente. 2013. Elhuyar
at tass 2013. In XXIX Congreso de la Sociedad Es-
paola de Procesamiento de lenguaje natural, Work-
shop on Sentiment Analysis at SEPLN (TASS2013),
pages 143–150.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky,
Ilya Sutskever, and Ruslan Salakhutdinov. 2014.
Dropout: A simple way to prevent neural networks
from overfitting. J. Mach. Learn. Res., 15(1):1929–
1958.

T. Tieleman and G. Hinton. RMSprop Gradient Opti-
mization.

Cynthia Van Hee, Els Lefever, and Véronique Hoste.
2018. Semeval-2018 Task 3: Irony detection in En-
glish Tweets. In Proceedings of International Work-
shop on Semantic Evaluation (SemEval-2018), New
Orleans, LA, USA.

Theresa Wilson, Janyce Wiebe, and Paul Hoffmann.
2005. Recognizing contextual polarity in phrase-
level sentiment analysis. In Proceedings of the Con-
ference on Human Language Technology and Em-
pirical Methods in Natural Language Processing,
HLT ’05, pages 347–354, Stroudsburg, PA, USA.
Association for Computational Linguistics.

569

Proceedings of the 12th International Workshop on Semantic Evaluation (SemEval-2018), pages 570–575
New Orleans, Louisiana, June 5–6, 2018. ©2018 Association for Computational Linguistics

IronyMagnet at SemEval-2018 Task 3: A Siamese Network for Irony
Detection in Social Media

Aniruddha Ghosh
University College Dublin

Dublin, Ireland
aniruddha.ghosh@ucdconnect.ie

Tony Veale
University College Dublin

Dublin, Ireland
tony.veale@ucd.ie

Abstract

This paper describes our system, entitled
IronyMagnet, for the 3rd Task of the SemEval
2018 workshop, “Irony Detection in English
Tweets”. In Task 1, irony classification task
has been considered as a binary classification
task. Now for the first time, finer categories of
irony are considered as part of a shared task.
In task 2, three types of irony are considered;
“Irony by contrast” - ironic instances where
evaluative expression portrays inverse polarity
(positive, negative) of the literal proposition;
“Situational irony” - ironic instances where
output of a situation do not comply with its
expectation; “Other verbal irony” - instances
where ironic intent does not rely on polarity
contrast or unexpected outcome. We proposed
a Siamese neural network for irony detection,
which is consisted of two subnetworks, each
containing a long short term memory layer
(LSTM) and an embedding layer initialized
with vectors from Glove word embedding1.
The system achieved a f-score of 0.72, and
0.50 in task 1, and task 2 respectively.

1 Introduction

Irony is one of the most prominent and pervasive
figures of speech in human communication, dat-
ing back to ancient religious texts to modern mi-
crotexts. According to literary scholars (Grice,
1978; Lakoff, 1993), irony has been defined as a
trope where the speaker intends to communicate
a contradictory situation or the opposite meaning
of what is literally said. It adopts a subtle tech-
nique where incongruity is used to suggest a dis-
tinction between reality and expectation in order
to produce a humorous or emphatic effect on the
listener. Irony poses an important challenge not
only from a linguistic perspective but also from a
cognitive one. Even without a solid understand-
ing of irony, one can still recognize and produce

1https://nlp.stanford.edu/projects/glove/

ironic utterances from as early as childhood (Har-
ris and Pexman, 2003). Such capabilities are of-
ten associated with one’s ability to correctly in-
fer others’ communicative intentions and perspec-
tives towards a given situation. Psychological the-
ories, such as “echoic reminder theory” (Kreuz
and Glucksberg, 1989), “allusion pretense theory”
(Kumon-Nakamura et al., 1995), and “implicit dis-
play theory” (Utsumi, 2000), confirm that cues
for understanding ironic intent are not restricted
to language. Ironic intent involves several other
aspects including, but not limited to, the context
of an utterance, the world’s perception and famil-
iarity between the listener and the speaker, and
psychological dimensions. Thus, as a purely text
classification task, the irony detection task poses a
significant challenge for computational linguists.
Computational approaches focus on identifying
the subtle incongruity between different parts of
the text. Often, an ironic statement starts with an
overtly positive attitude (“Yay I love”) and ends
up in an disappointment (“working on my birth-
day”) or a negative attitude/statement (“another
outage in less than 8 hours.”) followed by an ap-
preciation (“Keep up the good work!”) or an in-
cident (“I asked God to protect me from my ene-
mies”) resulting in a completely unexpected out-
put (“shortly after I started losing friends”).

Due to the limited scope of expression in social
media such as Twitter2, authors often end up lac-
ing their statements with ironic cue words (‘Yay’)
or social media specific features such as hash-
tags (‘#irony’) to make their ironic intent more
obvious for the reader. Following this intuition,
most of the attempts were made using proba-
bilistic classification models which relied on tex-
tual cues such as lexical indicators like punctua-
tion symbols (e.g., ‘?’), interjections (e.g., “gee”
or “gosh”), and intensifiers (Kreuz and Caucci,
2007); the juxtaposition of positive sentiment and

2www.Twitter.com

570

negative situations (Riloff et al., 2013); discrim-
inative N-grams like ‘yay!’ or ‘great!’ or “oh
really” or “yeah right” (Tsur et al., 2010; Lukin
and Walker, 2013); social media markers like
hashtags (Davidov et al., 2010); emoticon usage
(González-Ibánez et al., 2011); and topics asso-
ciated with irony (e.g. schools, dentists, church
life, public transport, the weather). Carvalho et al.
(2009) exploited text patterns in comments on ar-
ticles of online newspapers to detect ironic state-
ments, while Van Hee et al. (2016) developed a
irony detection model using support vector ma-
chine (SVM) with a combination of lexical, syn-
tactic, sentiment, and semantic (Word2Vec em-
bedding) features. In recent times, multiple re-
search attempts, founded on variants of the deep
neural network built on top of word embeddings,
showed a significant improvement over traditional
methods over several natural language processing
(NLP) tasks. A few representative works in this
direction for detecting sarcasm, a demeaning vari-
ant of irony, especially in the colloquial form, are
based on Convolutional Neural Networks(CNN)
(Mishra et al., 2017), Recurrent Neural Networks
(RNN) (Zhang et al., 2016) and a combination
of CNNs and RNNs (Ghosh and Veale, 2016).
Siamese networks (Bromley et al., 1994), widely
used in image classification, have displayed a good
performance over sentence similarity or document
similarity tasks. A Siamese architecture contains
two identical sub-networks, which are trained with
two different inputs to distinguish the difference
among them. Since in irony, different parts of a
sentence can be incongruous with each other, we
adopted the Siamese architecture to detect such in-
congruity between different sections of a sentence.
In this implementation, each of the subnetworks
consists of an embedding layer and a LSTM layer.
We slice each input sentence into two fragments
and feed them to the subnetworks. The output rep-
resentations of subnetworks are then compared to
distinguish if the two fragments are incongruous
or not i.e. a sentence is considered as non-ironic if
two fragments of a sentence are semantically non-
incongruous, otherwise it is ironic.

2 Dataset Preparation & Resources

The train and test dataset consists of 3834 tweets
and 784 tweets, respectively. The train dataset for
Task 1 is balanced but in task 2, the prominent cat-
egory was “irony by polarity contrast” (table 1).

2.1 Data Normalization
The distorted language, use of abbreviation, and
high number of one-off words, prevents a model
from being robust. Thus, each tweet is prepro-
cessed, normalized, and cleaned with the follow-
ing criteria.

1. To emphasize the ironic effect, an author of-
ten uses repetition of a character or a word.
A set of regular expressions is used to nor-
malize the word (“loooong” to “long”) and
the word is replaced with a word from Word-
Net3 which has the lowest minimum edit dis-
tance4 between them. The repeated word se-
quence is split using a regular expression into
multiple words(“YAYYAYYAYYAYYAY” to
“YAY YAY YAY YAY YAY”).

2. Since this is a text based classification task,
each link from the tweets is discarded.

3. The limited scope of social media incen-
tivizes users to exploit different features of
social media such as hashtags and emoticons
more creatively and efficiently to express an
opinion. Hashtags are often used by authors
to emphasize key parts or themes in their
texts or to convey their attitude or feeling to-
wards the subject. This can provide a toe-
hold for NLP techniques in order to infer the
intended sense behind an ironic statement.
Thus, each hashtag is processed and split into
words. For example, “#TheReasonForThe-
Season” is converted in “The Reason For The
Season”.

4. Emojis have played a significant role in ex-
pressing the hidden feelings of a person not
evident in plain text. Each individual emoji
is replaced with their official name5.

5. The high number of one-off words increases
the vocabulary size of a network. Due to
the sparsity in the dataset because of one-
off words, the model finds it difficult to train.
Thus, all non-valid English words, according
to WordNet dictionary, occurring less than
twice in the entire dataset are removed.

6. Neural network models are data hungry and
their success often relies on the size of the

3https://wordnet.princeton.edu/
4https://en.wikipedia.org/wiki/Edit distance
5https://unicode.org/emoji/charts/full-emoji-list.html

571

train dataset. Since the train dataset is rela-
tively small, it can not extract the distinctive,
robust features for detecting irony. Thus, the
dataset is extended by replacing the overtly
positive and negative words with “positive”
and “negative” respectively using the Senti-
wordnet6.

7. In order to capture the incongruity between
topics, the dataset is further extended by
replacing words with its category type ex-
tracted from WordNet.

2.2 Building Train Dataset

Since a Siamese network expects two inputs and
performs a comparison between the generated
weights, each tweet is split into two parts. A num-
ber of training examples are generated by splitting
the tweets where each split contains a minimum
r number of words. Consider as an input a tweet
containing n words with label y. The tweet will be
split into (n − 2 × r + 1) combinations. In this
experiment, the value of r is chosen as 3. For ex-
ample, “Working on Boxing Day is so fun” will
produce the following combinations:

1. (“Working on Boxing”, “Day is so fun”)

2. (“Working on Boxing Day”, “is so fun”)

For training purposes, the train dataset is split with
a 90%-10% split ratio.

3 Siamese Network

3.1 Input Layer

Each tweet, with length n, is converted to a vector
by replacing a word with its index value in the dic-
tionary s ∈ <1×n. To resolve different lengths of
input, each tweet is either padded or truncated to
convert into a vector of size s ∈<1×l where l is the
maximum allowed length. The maximum allowed
length for the input vector for each sub-network is
set to the average length of the tweets. The input
vector is fed to an embedding layer which converts
each word into a distributional vector of dimen-
sion D. Thus, the input tweet matrix is converted
s ∈ <l×D. The embedding layer is initialized with
the embeddings extracted from Glove word em-
bedding. We freeze the embedding layer to keep
the general meaning of a word intact.

6http://sentiwordnet.isti.cnr.it/

task 0 1 2 3
1 1923 1911 - -
2 1923 1390 316 205
Table 1 Train Data Statistics

3.2 LSTM Layer
Among the variants of RNN networks, LSTM has
demonstrated the power of semantic modelling
by efficiently handling long term dependencies
(Hochreiter and Schmidhuber, 1997) by defining
each memory cell with a set of gates<d, where d is
the memory dimension of hidden states of LSTM.
It does not suffer from a vanishing or exploding
gradient problem while performing back propaga-
tion through time. There are three gates, which are
functions of xt and ht−1: input gate it, forget gate
ft, and output gate ot. The gates jointly decide
whether the memory update mechanism will occur
or not. Equation (2) and (1) denotes the amount of
information to discard and what to store in mem-
ory. Equation (4) denotes the output of a cell ct.
Equation (3), (5), and (6) denotes the input activa-
tion, cell state, and output vector of a LSTM cell
respectively.

it = σ(Wi[ht−1, xt] + bi) (1)

ft = σ(Wf [ht−1, xt] + bf) (2)

qt = sigmoid(Wq[ht−1, xt] + bq) (3)

ot = σ(Wo[ht−1, xt] + bo) (4)

ct = ft � ct−1 + it � qt (5)

ht = ot � sigmoid(ct) (6)

Due to the small dataset size, extra attention has
been paid in order to prevent the network from
overfitting. A recurrent Dropout is used between
each time step of an input. Each LSTM layer
outputs a weight matrix s ∈ <l×m (m = num-
ber of hidden memory units), which is passed to
a Dropout layer.

3.3 Subtract Layer
The generated weights of each LSTM layer car-
ries the conceptual representation of its input. In-
tuitively, the weight difference between the out-
put of two LSTM layers should signify concep-
tual representations as either incongruous to each
other or not. A subtract layer is used to calculate
the weight difference between two sub networks.

572

The subtract layer produced an output matrix s ∈
<l×m, which is passed as an input to a fully con-
nected layer.

3.4 Fully Connected Layer

The fully connected layer produces a higher order
feature set, based on the weight matrix obtained
from the LSTM layer, which is easily separable
into different classes. At the end, a Softmax layer
is added on top of the fully connected layer.

4 Experimental Setup

Success with a neural network model largely
depends on the apt input and optimal hyper-
parameters settings. After investigating differ-
ent combinations of hyper-parameters, the optimal
setting is obtained for each layer of the network.
The LSTM has 32 hidden memory units with a
sigmoid activation function and recurrent dropout
ratio of 0.5. The fully-connected layer consisted of
16 hidden memory units and uses ReLu as the ac-
tivation function. Both of the layers are initialized
with Xavier normal initializer (Glorot and Bengio,
2010). As an optimizer function, Adam optimiza-
tion is used with a learning rate set to 0.001, while
categorical cross-entropy is chosen as a loss func-
tion. The code is developed using the keras7 li-
brary.

5 Results

For both of the tasks, our model is compared
with the state-of-the-art composite neural network
model (Ghosh and Veale, 2016). Each model is
trained with the same datasets. For the composite
model, the entire tweet is fed as an input instead
of just fragments of the tweet.

6 Output Analysis

In both tasks, the Siamese network outperforms
the composite neural network model. The com-
posite neural network model, trained with origi-
nal tweets, is only able to capture certain ironic
utterances where a similar pattern is encountered
in the training dataset. The model responds well
to obvious ironic markers such as “Ohh” in fig-
ure 2. Without the obvious ironic markers, the
model mis-classifies the statement as non-ironic.
Whereas the Siamese network classifies the state-
ment correctly even without the obvious ironic

7http://keras.io/

Figure 1 Siamese Neural network

Task Model P R F1

Task1

Ghosh
and
Veale
(2016)?

0.6449 0.4437 0.5257

Siamese
network

0.7878 0.6688 0.7234

Task2

Ghosh
and
Veale
(2016)

0.4099 0.4187 0.3988

Siamese
network?

0.5768 0.5044 0.5074

Table 2 Experiment Results; ?submissions consid-
ered in final standing

marker, the subtract layer captures the incon-
gruity between two concepts in an ironic state-
ment. However, the Siamese network fails to
detect ironic statements with dropped negations.
For example, the network could not figure out
the ironic intent behind the following statement
“Hey there! Nice to see you Minnesota/ND Win-
ter Weather”, the model has no information about
“Minnesota/ND Winter Weather”.

573

Figure 2 Output Vector of LSTM Layer

7 Conclusion and Future Works

We introduced IronyMagnet, a Siamese neural net-
work model that is capable of separating ironic
statements from non-ironic statements, as well as
at a fine-grained level. Even with small datasets,
the Siamese neural network is able to robustly cap-
ture the incongruity between two concepts. How-
ever, the system lacks the sophistication of under-
standing incongruity at a pragmatic level. Take,
for example, “Whatever happened to the Guano
Apes? Did they ever make it “Big in Japan”?”. In
this example, none of the models are able to estab-
lish the incongruity between “Guano Apes” and
“Big in Japan”. Also, it can not correctly detect
if the incongruous elements are located very close
to one another within the tweet. However, since
the Siamese network is able to correctly classify
simple cases of irony, we can therefore hypothe-
size that the Siamese network can be a stepping
stone towards determining contrastive figurative
languages. In the future, we would like to extend
our model by incorporating an attention network
and other psychological stimuli which pertain to
Irony.

References

Jane Bromley, Isabelle Guyon, Yann LeCun, Eduard
Säckinger, and Roopak Shah. 1994. Signature ver-
ification using a” siamese” time delay neural net-
work. In Advances in Neural Information Process-
ing Systems, pages 737–744.

Paula Carvalho, Luı́s Sarmento, Mário J Silva, and
Eugénio De Oliveira. 2009. Clues for detecting
irony in user-generated contents: oh...!! it’s so
easy;-. In Proceedings of the 1st international
CIKM workshop on Topic-sentiment analysis for
mass opinion, pages 53–56. ACM.

Dmitry Davidov, Oren Tsur, and Ari Rappoport. 2010.
Semi-supervised recognition of sarcastic sentences
in twitter and amazon. In Proceedings of the Four-
teenth Conference on Computational Natural Lan-
guage Learning, pages 107–116. Association for
Computational Linguistics.

Aniruddha Ghosh and Tony Veale. 2016. Fracking
sarcasm using neural network. In Proceedings of
the 7th Workshop on Computational Approaches to
Subjectivity, Sentiment and Social Media Analysis,
pages 161–169.

Xavier Glorot and Yoshua Bengio. 2010. Understand-
ing the difficulty of training deep feedforward neu-
ral networks. In Proceedings of the Thirteenth In-
ternational Conference on Artificial Intelligence and
Statistics, pages 249–256.

Roberto González-Ibánez, Smaranda Muresan, and
Nina Wacholder. 2011. Identifying sarcasm in twit-
ter: a closer look. In Proceedings of the 49th An-
nual Meeting of the Association for Computational
Linguistics: Human Language Technologies: Short
Papers-Volume 2, pages 581–586. Association for
Computational Linguistics.

H Paul Grice. 1978. Further notes on logic and conver-
sation. 1978, 1:13–128.

Melanie Harris and Penny M Pexman. 2003. Chil-
dren’s perceptions of the social functions of verbal
irony. Discourse Processes, 36(3):147–165.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural computation,
9(8):1735–1780.

Roger J. Kreuz and Gina M. Caucci. 2007. Lexical in-
fluences on the perception of sarcasm. In Proceed-
ings of the Workshop on Computational Approaches
to Figurative Language.

Roger J Kreuz and Sam Glucksberg. 1989. How to
be sarcastic: The echoic reminder theory of verbal
irony. Journal of Experimental Psychology: Gen-
eral.

Sachi Kumon-Nakamura, Sam Glucksberg, and Mary
Brown. 1995. How about another piece of pie: The
allusional pretense theory of discourse irony. Jour-
nal of Experimental Psychology: General, 124(1):3.

George Lakoff. 1993. The contemporary theory of
metaphor.

Stephanie Lukin and Marilyn Walker. 2013. Really?
well. apparently bootstrapping improves the perfor-
mance of sarcasm and nastiness classifiers for online
dialogue. In Proceedings of the Workshop on Lan-
guage Analysis in Social Media, pages 30–40.

Abhijit Mishra, Kuntal Dey, and Pushpak Bhat-
tacharyya. 2017. Learning cognitive features from
gaze data for sentiment and sarcasm classification

574

using convolutional neural network. In Proceed-
ings of the 55th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Pa-
pers), volume 1, pages 377–387.

Ellen Riloff, Ashequl Qadir, Prafulla Surve, Lalin-
dra De Silva, Nathan Gilbert, and Ruihong Huang.
2013. Sarcasm as contrast between a positive senti-
ment and negative situation. In EMNLP, volume 13,
pages 704–714.

Oren Tsur, Dmitry Davidov, and Ari Rappoport. 2010.
Icwsm-a great catchy name: Semi-supervised recog-
nition of sarcastic sentences in online product re-
views. In ICWSM.

A. Utsumi. 2000. Verbal irony as implicit display of
ironic environment: Distinguishing ironic utterances
from nonirony. Journal of Pragmatics.

Cynthia Van Hee, Els Lefever, and Véronique Hoste.
2016. Monday mornings are my fave:)# not ex-
ploring the automatic recognition of irony in en-
glish tweets. In Proceedings of COLING 2016,
the 26th International Conference on Computational
Linguistics: Technical Papers, pages 2730–2739.

Meishan Zhang, Yue Zhang, and Guohong Fu. 2016.
Tweet sarcasm detection using deep neural network.
In Proceedings of COLING 2016, the 26th Inter-
national Conference on Computational Linguistics:
Technical Papers, pages 2449–2460.

575

Proceedings of the 12th International Workshop on Semantic Evaluation (SemEval-2018), pages 576–580
New Orleans, Louisiana, June 5–6, 2018. ©2018 Association for Computational Linguistics



CTSys at SemEval-2018 Task 3: Irony in Tweets

Myan Sherif

Faculty of Engineering

Alexandria University

sherif.myan@gmail.com

Sherine Mamdouh

Faculty of Engineering

Alexandria University

sherym51@gmail.com

Wegdan Ghazi

Faculty of Engineering

Alexandria University

wegdan.ghazi@gmail.com

Abstract

The objective of this paper is to provide a

description for a system built as our

participation in SemEval-2018 Task 3 on

Irony detection in English tweets. This system

classifies a tweet as either ironic or non-ironic

through a supervised learning approach. Our

approach is to implement three feature models,

and to then improve the performance of the

supervised learning classification of tweets by

combining many data features and using a

voting system on four different classifiers. We

describe the process of pre-processing data,

extracting features, and running different

types of classifiers against our feature set. In

the competition, our system achieved an F1-

score of 0.4675, ranking 35th in subtask A,

and an F1-score score of 0.3014 ranking 22th

in subtask B.

1 Introduction

Irony detection in text has extended to different

data forms (tweets, reviews, TV series dialogues),

our domain of data in this task is a Twitter corpus

provided by SemEval2018 organizers. Here, irony

detection refers to computational approaches to

predict if a given text is sarcastic. This problem is

hard because of the nuanced ways in which irony

may be expressed. The most difficult part of the

problem mentioned is the process of feature

engineering, because it defines the parameters and

the relationships and dependencies between

semantic meanings, and gives us the numerical

model that the classifier would proceed to work

on, thus being crucial to the soundness and

efficiency of the system.

This led us to dive into deeper questions, such

as the nature of tweets, and how we are dealing

with a version of the English language that is not

directly workable. We need to perform pre-

processing to deal with annotations and hashtags.

Another question is how to analyze irony in

English language and derive a rule-based

approach that can be implemented to better

understand the semantics of ironic text.

The problem, as described by the SemEval-

2018 task organizers, addresses both the binary

distinction between irony and non-irony, as well

as different types of irony.

1.1 Task Description

The SemEval-2018 Task 3 is divided into two

subtasks:

 Subtask A is a binary classification problem

where we are asked to classify a tweet as ironic or

not ironic, based on a given training set of labeled

tweets (0 for non-ironic and 1 for ironic).

Subtask B is a multi-classification problem

where we classify the tweets to which type they

belong as either situational irony or verbal irony

or other irony or not ironic. Each tweet in the

training set is labeled as follows: (0 for non-ironic,

1 for situational irony, 2 for verbal irony, and 3 for

other forms of irony).

1.2 The Dataset

The used dataset in this assignment is the one

provided in SemEval-2018 task 3. It consists of

3,842 tweets in total. The tweets were collected by

searching Twitter for the hashtags #irony,

#sarcasm and #not.

The dataset was presented in two phases:

1- Training data: already labeled tweets used to

train the classifiers. Each tweet was provided with

a binary classification label and an index.

2- Testing data: unlabeled tweets to test the

classifiers against. For each instance in the test

576

data, participants submitted a predicted label.

Based on these predictions, competition scores

were calculated using four metrics (F1-score,

precision, recall, and accuracy).

2 Literature overview

There has been much research involving the

definition of irony and the distinction between

irony and sarcasm. To date, however, experts do

not formally agree on the distinction between

irony and sarcasm as shown by Aditya Joshi et al.,

(2016). Moreover, when describing how irony

works, Antonio Reyes et al., (2013), distinguish

between situational irony and verbal irony.

Situational irony is an unexpected or incongruous

quality in a situation or event, as shown by Shelley

(2001). Whereas verbal irony, in contrast, is a

playful use of language in which a speaker implies

the opposite of what is literally said.

In his work on the Sarcasm Detector website,

Mathieu Cliche collected tweets from Twitter that

were labeled with the hashtag #sarcasm. His

hypothesis was that sarcastic tweets carry what he

calls a contrast of sentiments (e.g. start with a

positive sentiment and end with a negative

sentiment). He also uses features such as n-grams

and topics as accompanying features then trains

an SVM algorithm as a classifier. Cliche’s system

harbored an F1-score of 0.60, an improvement

from previous work on sarcasm detection as

shown in Cliche (2014).

Chun-Che Peng et al., (2015) followed up on

Cliche’s work to acquire improved results and

stated that irony detection models are prone to

suffer from high variance, which be the effect of

having a high dimensional feature space, therefore

making it important to reduce the dimensions of

the feature space and only use the most relevant

features. Their paper also suggests that using a

Gaussian kernel instead of a linear kernel might

be a better approach, given that the data itself is

not linearly separable.

In our work, we build upon Cliche’s (2014)

hypothesis and try to benefit from Peng et al.’s

(2015) remarks on using the most relevant

features.

3 Implementation

The system is based on natural language

processing where we are targeting to improve

performance for classifying tweets as ironic or

non-ironic by combining many data features and

a voting system on many classifiers, we design

pattern-based features that indicate the presence

of discriminative patterns as extracted from a

large irony-labeled dataset.

3.1 Text Preprocessing

To generate good results and to control the

number of unneeded computations, the tweets are

filtered according to certain criteria. We will

briefly go through the steps of pre-processing a

tweet.

3.1.1 Tokenization

The first step to handle textual data is

tokenization, which is the process of splitting

sentences into single words.

3.1.2 Stop Words

The second step is to filter the data and remove

any insignificant and redundant words. There are

known words, called stop words, as shown by

Alani (2014) are always removed to enhance the

performance.

For the objective of the task, irony detection in

tweets, we removed some words from the Stop

Words sets because they are significant in

detecting irony, especially in the sentiment

analysis model. In sentiment analysis, we

removed any negating words and conjunctions,

such as: (“no”, “not”, “until”, “but”). Whereas in

BoW, keeping negation was unnecessary.

3.1.3 Lemmatization

Lemmatization is the process of getting the root

of a word. It takes into consideration the

morphological analysis of words. A lemma is the

same for variations of a word, therefore; it reduces

sparsity.

3.2 Extracting Features

We here convert the tweet into a vector of

dimensional attributes. While feature mapping is

the hardest step in the code, the pattern of feature

engineering in task A and task B is all the same,

we follow the same steps of mapping and

classifying to get different outputs due to different

training data on the models.

We have tried three different directions in

regards to extracting features from the dataset.

The first being the bag of words (BoW) model, the

second is rule-based sentiment analysis, and the

third being word embedding.

577

Four classifier models were used to train and

test the three feature sets implemented. Each

feature set of which is tested on each classifier

model. In other words, we test (feature set ‘1 of

3’, classifier ‘1 of 4’) pairs. Then we used a voting

system to compare between the results of (feature

set, classifier) pairs, and then the classification

with the higher number of votes is picked as the

final classification.

3.2.1 Bag of Words Feature

First, we create three arrays. The first array for

the words in ironic tweets, the second array for the

words in non-ironic tweets and the final array for

words in all tweets. Second, we calculate the

number of repetitions of every word in the ironic

tweets array across all ironic tweets. We repeat the

same step for every word in the non-ironic tweets

across all non-ironic tweets. Third, we extract the

most common words (with highest frequency)

across both tweets to eliminate them from our

processing to the data - since they will not be

effective in determining if a tweet is ironic or not.

Fourth, we create hash-maps for the words as

'key' attribute and their frequency value as 'value'

attribute - one hash-map for words in ironic

tweets, another for words in non-ironic and the

last one for the common ones. Fifth, we sort the

hash-maps for easy acquiring of the words with

highest frequencies. Finally, we add the hash-

maps as another feature for the data processing

procedure.

3.2.2 Sentiment Analysis

According to Van Hee et at., (2016), verbal

irony arises from a clash between two evaluation

polarities. We use sentiment analysis to help

detect irony in a tweet via contrasting polarity. We

used the polarity feature of a word to determine

if the feelings in the tweet changed 180 degrees.

We did not apply lemmatization prior to

extracting this feature because it affects polarity.

We also handle emojis and negation words in the

tweets since they contribute to the polarity of the

sentence. Below are the steps we perform.

a. Split the tweet into two parts on a

conjunction from a list created by hand. We

gather all the available conjunctions in

English Grammar. We handle all the

conjunctions except the ones that consist of

more than one word like “not only... but

also”… etc.

b. Perform pre-processing on each part of the

tweet individually.

c. Evaluate polarity of each word of each part

of the sentence, and then define the polarity

of each part given the ratios of positive,

negative, and neutral words to the total

length of the sentence.

d. Each part is given a tag as positive (POS),

negative (NEG), or neutral (NEU).

e. We tune the parameters that define the

threshold of positivity or negativity of each

part of the sentence, being 0.5 in this case.

f. Compare the polarities of the sentence parts.

To sum up: The Sentiment Analysis method

uses contrasting polarity or extra positivity and

extra negativity as an indication of irony. We split

the tweet into two parts, taking each part as input

into the Sentiment Intensity Analyzer, the

polarity of each word is returned by the analyzer

as either positive (POS), negative (NEG) or

neutral (NEU). To calculate the overall polarity

of one part of the tweet, we search for the polarity

category that has highest number of words and

return it as the overall polarity. The overall

polarity of both parts of a tweet is then examined

and classified as ironic if contrasting polarity (e.g.

POS-NEG or NEG-POS) is found.

3.2.3 Word Embedding

First, we build a model using training data to

act like a dictionary for upcoming processing. The

model used in this step is a Word2Vec model.

Second, we process each tweet in the training

dataset, using every word in every tweet and

passing it to the model - which as a result, returns

an equivalent numerical vector to the word with a

fixed length, in our case; we choose a length of

one hundred (100) as a moderate length value.

Third, we add all the vectors of the words in each

tweet and divide this sum by their number. Thus,

we acquire a numerical representation of a fixed

length for every tweet. Fourth, we append all

those vectors of all tweets. Finally, we pass the

resulting appended vectors of all tweets to the

classifier. If the word did not exist in the

dictionary we made beforehand, a vector of length

0 is returned.

578

3.3 Choosing a classifier

We use four models for classification and we

build a voting system for them all, tune the

parameters, and record the findings to enhance the

performance, the classification models are

selected based on the literature review. The

classification algorithms used are listed below:

• Naive Bayes Classifier.
• Support Vector Machine (SVM).
• Decision Trees.
• K-Nearest Neighbor Classifier: After

some tuning, k=1 generated the best

results for all the features.

4 Results

Our system is divided into three classes one for

each feature. Then the result of each is classified

using the four different classifiers stated above.

Below we present a chart of the accuracies

obtained with different classification algorithms

and different feature types.

 BoW Sen-A Word-E

NB 65 44 49

SVM 62 45 53

Trees 57 59 57

1-NN 52 60 48

Table 1: accuracy of feature-classes when tested

against classifiers using the training set for task A.

Figure 1: results obtained by two voting systems

using three feature set types as shown.

4.1 Classifiers Voting System

We used a voting system to combine the

predictions from the four classifiers exploiting

different feature types.

4.2 Features Voting System

This voting system uses the four output results

from the four classifiers voting system to get an

overall result for the whole system.

The results of the system evaluation phase are

as follows:

 Accuracy Precision Recall F1-score

Task

A

0.5089 0.4102 0.5434 0.4675

Task

B

0.4923 0.2998 0.3108 0.3014

Table 2: The score obtained by the system in

subtasks A and B as evaluated by SemEval.

4.3 Analysis

Looking at the results, we hypothesize that the

system’s performance can be improved by

combining all features instead of testing them

individually. It was also remarkable that the best

accuracy was obtained by the bag-of-words model

using the Naïve Bayes classifier.

We also believe better results can be achieved

if there was a bigger dataset at hand to train upon,

and if we had sufficient time to perform grammar

checking on the tokens and other operations that

can reduce noise.

5 Conclusion

This paper describes our irony detection system

that was built in the framework of SemEval-2018

Task 3. We used the same architecture for subtask

A and B and obtained F1-scores of 0.4675 and

0.3014, respectively. Our binary classification

results are much better compared to multi-

classification, which implies that we need to

implement another feature model that could

represent a whole sentence (e.g. Sentence2Vec

rather than Word2Vec). In future work, we aim to

enhance the performance of our classifier by

combining all features. Moreover, we will add

new features to solve the problem of word

dependencies (by this we mean that all system

features do not account for dependencies between

words in the same sentence) so that the system

gives more accurate results.

Acknowledgements

The authors would like to thank Prof. Ayman

Khalafallah of Alexandria University for his

constant guidance and support throughout the

process of developing this system.

579

References

Harith Alani, Miriam Fernández, Yulan He and Hassan

Saif. 2014. On stopwords, filtering and data sparsity

for sentiment analysis of Twitter. In proceedings of

LREC 2014, 9th International Conference on

Language Resources and Evaluation:810–817.

Mathieu Cliche. 2014. The sarcasm detector. URL:

http://www.thesarcasmdetector.com/about/.

Aditya Joshi, Mark James Carman and Pushpak

Bhattacharyya. 2017. Automatic Sarcasm Detection:

A Survey. ACM Computing Surveys 50(5) Article

73, 2017. https://doi.org/10.1145/3124420

Chun-Che Peng, Jan Wei Pan and Mohammad Lakis.

2015. Detecting Sarcasm in Text: An Obvious

Solution to a Trivial Problem. Stanford CS 229

Machine Learning Final Project.

Antonio Reyes, Paolo Rosso and Tony Veale. 2012. A

multidimensional approach for detecting irony in

Twitter. Language Resources & Evaluation, March

2013, 47(1) :239–268.

https://doi.org/10.1007/s10579-012-9196-x

Cameron Shelley. 2001. The bicoherence theory of

situational irony. Cognitive Science 25:775-818.

https://doi.org/10.1016/S0364-0213(01)00053-2

Cynthia Van Hee, Els Lefever and Veronique Hoste.

2016. Guidelines for Annotating Irony in Social

Media Text. LT3, Department of Translation,

Interpreting and Communication, Faculty of Arts,

Humanities and Law - Ghent University, Belgium.

580

Proceedings of the 12th International Workshop on Semantic Evaluation (SemEval-2018), pages 581–586
New Orleans, Louisiana, June 5–6, 2018. ©2018 Association for Computational Linguistics

Irony Detector at SemEval-2018 Task 3: Irony Detection in English
Tweets using Word Graph

Usman Ahmed, Lubna Zafar, Faiza Qayyum and Muhammad Arshad Islam
Parallel Computing Network,

Department of Computer Science,
Capital University of Science and Technology,

Islamabad, Pakistan.
usmanahmed189@gmail.com,

lubbnaa@gmail.com,
faizaqayyum@cust.edu.pk,

arshad.islam@cust.edu.pk.
Abstract

This paper describes the Irony detection sys-
tem that participates in SemEval-2018 Task
3: Irony detection in English tweets. The
system participated in the subtasks A and B.
This paper discusses the results of our sys-
tem in the development, evaluation and post
evaluation. Each class in the dataset is repre-
sented as directed unweighted graphs. Then,
the comparison is carried out with each class
graph which results in a vector. This vector
is used as features by machine learning algo-
rithm. The model is evaluated on a hold on
strategy. The organizers randomly split 80%
(3,833 instances) training set (provided to the
participant in training their system) and test-
ing set 20% (958 instances). The test set is
reserved to evaluate the performance of par-
ticipants systems. During the evaluation, our
system ranked 23 in the Coda Lab result of
the subtask A (binary class problem). The bi-
nary class system achieves accuracy 0.6135,
precision 0.5091, recall 0.7170 and F mea-
sure 0.5955. The subtask B (multi-class prob-
lem) system is ranked 22 in Coda Lab results.
The multiclass model achieves the accuracy
0.4158, precision 0.4055, recall 0.3526 and f
measure 0.3101.

1 Introduction

Social media are deemed as a diverse web-based
network that serves as an online platform to com-
municate and disseminate information or ideas
among individuals and fraternities. Since its ad-
vent, people all around the globe harness it as a
major source to express their opinions or emo-
tions, however, an expeditious increase in its us-
age has been reported in the last decade (Kelly
et al., 2016; Perrin, 2015). Among the multifar-
ious range of social media platforms, Twitter is
the most popular one. It is basically a microblog-
ging site diffuses information pertaining to what is

happening around the world, and what are the cur-
rent top-interest areas among the wider population
(Rosenthal et al., 2017). According to a recent sur-
vey, 6000 tweets per second are sent by 320 mil-
lion active monthly users, thus 500 million tweets
per day (Statistics, 2014). This poses a challenge
for the scientific community to accurately discern
the sentiment of a tweet out of this plethora. Since
certain aspects associated with sentiment analysis
are quite arduous yet feasible to ascertain (such as
negative, positive, a neutral aspect of the opinion)
than irony.

Irony detection has its implications in senti-
ment analysis (Reyes et al., 2009), opinion min-
ing (Sarmento et al., 2009) and advertising (Kreuz,
2001). For the past few years, irony-aware sen-
timent analysis has attained significant computa-
tional treatment due to the prevalence of irony on
the web content (Farı́as et al., 2016). It is a broad
concept, which has an association with multiple
disciplines such as psychology, linguistics, etc.
The irony is to efficaciously delineate a contrary
aspect of the utterance (Grice, 1975). Irony cannot
be detected with the simple scrutiny of words ex-
pressed in a statement, whereas, an aspect of irony
is implicitly connected with the utterance. Fur-
thermore, it could be deemed as a stance that has
been expressed in an ironic or sarcastic environ-
ment (Grice, 1975; Alba-Juez and Attardo, 2014).
Detection of this implicit aspect poses a strenuous
computational challenge over the scientific com-
munity in terms of initiating effective models in
this regard. In the stream of irony detection, the
first-ever computer model was proposed by (Ut-
sumi, 1996). Subsequently, various other mod-
els have been presented that have specifically ad-
dressed the irony detection among tweets by us-
ing different features such as, cue-words or user-
generated tags (i.e., Hashtags) etc (Van Hee, 2017;
Hernández-Farı́as et al., 2015; Reyes et al., 2013).

581

Figure 1: Graph Construction with vicinity size 2 illustrates how the vicinity size move toward the end of
the tweet; in this example the frame is the two following words and for each word some edges and nodes
are added to the graph.

Though, there does not exist any optimal model
that could be considered as a baseline for irony de-
tection. This paper presents a model to automati-
cally detect sarcasm or irony from the plethora of
tweets. The proposed model is used in the two
subtasks. The first module assigns the binary value
against tweets (i.e., 1 indicates that tweet in ironic
and 0 indicates that a tweet is non-ironic). The sec-
ond module performs multi-class classification: (i)
verbal irony realized through a polarity contrast,
ii) verbal irony without such a polarity contrast
(i.e., Other verbal ironies), iii) descriptions of situ-
ational irony and iv) non-irony. For classification,
data set is comprised of 4792 samples, taken from
GitHub link provided by the SemEval 2018 orga-
nizers.

2 Task Overview

In SemEval-2018 (Cynthia Van Hee, 2018), task 3
contains two subtasks for the detection of Irony in
English tweets. In the first task, the system has to
determine whether a tweet is ironic or non- ironic,
making it a binary classification problem. The sec-
ond task is the multiclass classification problem
where the ironic and non-ironic task is further di-
vided into four categories as mentioned below:

1. verbal irony realized through a polarity con-
trast

2. verbal irony without such a polarity contrast
(i.e., other verbal irony)

3. descriptions of situational irony

4. Non-irony

Systems are evaluated using standard evaluation
metrics, including accuracy, precision, recall and
F1-score.

3 Proposed Model

The proposed model is inspired by the previous
work (Giannakopoulos et al., 2008; Maas et al.,
2011), however, we used some additional features
as well as a word graph similarity score. Each
tweet is represented as directed unweighted word
graph and the edge between each word is created
based on the vicinity window size explained in
1. Each class in the dataset is represented as di-
rected unweighted graphs. Then, the comparison
is carried out with each class graph which results
in a vector. This vector is used as features by ma-
chine learning algorithm. The graph is constructed
based on a class assignment and then we measure
the similarity of a tweet with each class graph. The
similarity between two graphs (tweet graph and
class graph) can be measured in multiple ways,
but in this research, we used the containment simi-
larity (non-normalized value), maximum common
subgraph similarity and its variant compare graph
in terms of similarity.

3.1 Graph Construction
The tweet contained a set of words. Theses word
will be used to construct the word graph based
on their vicinity. Each word in the tweet is rep-
resented by the labelled node. The nodes within

582

Class Name Number of Coloumn
Verbal irony by means of a polarity contrast 1728
Other types of verbal irony 267
Situational Irony 401
Non-Ironic 604

Table 1: Data set Description

window size are joined by an edge. The sequence
of the words is preserved by using directed edges.
The size of the vicinity window can affect the ac-
curacy of the method. In this research, we used a
vicinity size of 2, as seen in 1

The graph similarity between the graph of a
tweet and the graph of the irony class can define
the degree of irony in the tweet. For the purposes
of our study, we used the containment similarity
(non-normalized value), maximum common sub-
graph similarity and its variant compare graph.

3.2 Dataset

The dataset is provided on the GitHub source.
This corpus is constructed of 3,000 English lan-
guage tweets. These tweets are searched by us-
ing hashtags #irony, #sarcasm and #not. The data
were collected from the period of five months (1st
December 2014 to 1st April 2015) and represent
2,676 unique users. All tweets were manually an-
notated using the scheme of Van el al (Van Hee
et al., 2016). The organizer used the services of
three students in linguistics as well as English lan-
guage speakers to annotate the entire corpus. The
(Stenetorp et al., 2012) tool was used as the an-
notation tool. The percentage agreement score
(kappa scores 0.72) is also calculated for the an-
notation. The number of instances for each class
is mentioned in Table 1.

As seen in Table, 2396 instances are ironic
(1,728 + 267 + 401) while 604 are non-ironic. The
organizer balances the class data by using back-
ground corpus. After balancing the total data set
contain 4,792 tweets that contain 2,396 ironic and
2,396 non-ironic tweets. The SemEval-2018 com-
petition used the hold on the strategy to check
the effectiveness of each participated system. The
organizers randomly split 80% (3,833 instances)
training set (provided to the participant in training
their system) and testing set 20% (958 instances).
The test set is reserved to evaluate the performance
of participants systems.

3.3 Feature Engineering
3.3.1 Containment Similarity
The containment similarity measure has been used
to calculate, graph similarity (Aisopos et al.,
2012). In this research, we used bigram nodes.
The measure expresses the common edges be-
tween two graphs by the number of edges of the
smaller graph.

CS(G T , G S) =

∑
e=G T

µ(e,G S)

min(|G T |, |G S |)
(1)

Where GT (target graph) is the word graph of a
tweet, Gs (source graph) is the word graph of an
irony classes. The graph size can be the number
of nodes or edges that are contained. e is an edge
of a word graph.

3.3.2 Maximum Common Sub graph
The maximum common sub graph similarity is
based on the size of the graph. We used the three
variations of the metric are described in the equa-
tion 2, 3 and 4

MCSNS =
MCSN(|G T |, |G S |)
min(|G T |, |G S |)

(2)

Maximum Common Sub graph Node Similarity
(MCSNS): where MCSNS (GT (target graph) —
Gs (source graph)) is the total number of nodes
that are contained in the MCS of that graphs..

MCSUES =
MCSUE(|G T |, |G S |)
min(|G T |, |G S |)

(3)

Maximum Common Sub graph Edge Similarity
(MCSNS): where MCSUE (GT (target graph) —
Gs (source graph)) is the total number of the edges
contained in the MCS regardless the direction of
them.

MCSDES =
MCSDE(|G T |, |G S |)
min(|G T |, |G S |)

(4)

583

Figure 2: Graph Similarity Feature Extraction for one measure. The graph of a tweet used to compare with
training data class graphs, in order to produce two numbers (depending upon the numbers of classes).
These numbers will be used as a feature vector. The feature vector is provided to trained model to predict
the class of the new tweet.

Maximum Common Sub graph Directed Edge Sim-
ilarity (MCSNS): where MCSDES (GT (target
graph) — Gs (source graph)) is the number of the
edges contained in the MCS and have the same di-
rection in the graphs.

3.3.3 Tweet Polarity and Latent Dirichlet
Allocation

We used the SenticNet library to calculate the sen-
tence polarity score as well as subjectivity score.
Moreover, we also perform latent Dirichlet Al-
location on the corpus and then used the trained
model to calculate similarity helinger distance for
each class (Blei et al., 2003; Beran, 1977).

3.4 Model Selection
In this paper, we used Tree-based Pipeline Opti-
mization Tool (TPOT) that designs and optimizes
the machine learning pipelines by using an evo-
lutionary algorithm (Olson et al., 2016). The la-
belled data are provided for TPOT classification.
Both TPOT classes return hyper tune model for
both types of data (binary and Multiclass prob-
lem). After, data analysis, it was observed that
the number of classes in the multiclass dataset is a

Figure 3: Precision Recall Curve of Binary Class
problem

584

Figure 4: Precision Recall Curve of Multi Class
problem

significant imbalance, which gives rise to the class
imbalance problem. In order to handle this prob-
lem, we used SMOTE (Cummins et al., 2017) a
Python toolbox to tackle the curse of imbalanced
data. For binary classification problem, TPOT
gives extreme gradient boosting classifier tune pa-
rameters. For the multiclass problem, TPOT gives
stacking of extreme gradient boosting classifiers,
extra trees classifier and random forest classifier.

4 Results Evaluation

For experimentation, we used efficient tool sklearn
(Machine Learning Library) to train machine
models mentioned above (Pedregosa et al., 2011).
For both model hold on strategy was adopted.
Training data contain 80% (3,833 instances) and
testing sets 20% (958 instances). Our system
ranked 23 in the Coda Lab result of the binary
classification problem. The binary class system
achieves accuracy 0.6135, precision 0.5091, recall
0.7170 and F measure 0.5955. After the release
of the gold set, the model is again tuned by us-
ing TPOT library and result are evaluated as seen
in Figure 3. Our system ranked 22 in the Coda
Lab result of the multi-class problem. The multi-
class model achieves the accuracy 0.4158, preci-
sion 0.4055, recall 0.3526 and f measure 0.3101.
After the release of the gold set model was re-
trained and evaluated. The result of the multiclass
problem is shown in Figure 4

5 Conclusion and Analysis

An innovative citation classification technique is
proposed that combines the well-described struc-

ture of graphs with classification algorithm. The
word graphs can seize the collection of the words
that are contained in a tweet. The tweet word
graph is generated and then by using several graph
similarity techniques is applied to the dataset.
These graph similarity metrics output is repre-
sented as a feature vector by the classification al-
gorithm. It is concluded that word graph with dif-
ferent vicinity window is a good source of infor-
mation to classify irony in the tweet. The model
can be improved by using a large dataset. The pro-
posed method can be enhanced by using a differ-
ent graph similarity metric as features. The word
graph construction method with different vicinity
window size might improve results.

References
Fotis Aisopos, George Papadakis, Konstantinos Tser-

pes, and Theodora Varvarigou. 2012. Content vs.
context for sentiment analysis: a comparative anal-
ysis over microblogs. In Proceedings of the 23rd
ACM conference on Hypertext and social media,
pages 187–196. ACM.

Laura Alba-Juez and Salvatore Attardo. 2014. The
evaluative palette of verbal irony. Evaluation in con-
text, 242:93.

Rudolf Beran. 1977. Minimum hellinger distance esti-
mates for parametric models. The annals of Statis-
tics, pages 445–463.

David M Blei, Andrew Y Ng, and Michael I Jordan.
2003. Latent dirichlet allocation. Journal of ma-
chine Learning research, 3(Jan):993–1022.

Chris Cummins, Pavlos Petoumenos, Zheng Wang, and
Hugh Leather. 2017. Synthesizing benchmarks for
predictive modeling. In Code Generation and Op-
timization (CGO), 2017 IEEE/ACM International
Symposium on, pages 86–99. IEEE.

Veronique Hoste Cynthia Van Hee, Els Lefever. 2018.
Semeval-2018 task 3: Irony detection in english
tweets. in proceedings of the 12th international
workshop on semantic evaluation.

Delia Irazú Hernańdez Farı́as, Viviana Patti, and Paolo
Rosso. 2016. Irony detection in twitter: The role
of affective content. ACM Transactions on Internet
Technology (TOIT), 16(3):19.

George Giannakopoulos, Vangelis Karkaletsis, George
Vouros, and Panagiotis Stamatopoulos. 2008. Sum-
marization system evaluation revisited: N-gram
graphs. ACM Transactions on Speech and Language
Processing (TSLP), 5(3):5.

H Paul Grice. 1975. Logic and conversationin p. cole
and j. morgan (eds.) syntax and semantics volume 3:
Speech acts.

585

Irazú Hernández-Farı́as, José-Miguel Benedı́, and
Paolo Rosso. 2015. Applying basic features from
sentiment analysis for automatic irony detection. In
Iberian Conference on Pattern Recognition and Im-
age Analysis, pages 337–344. Springer.

Brendan S Kelly, Ciaran E Redmond, Gregory J Na-
son, Gerard M Healy, Niall A Horgan, and Eric J
Heffernan. 2016. The use of twitter by radiology
journals: an analysis of twitter activity and impact
factor. Journal of the American College of Radiol-
ogy, 13(11):1391–1396.

R Kreuz. 2001. Using figurative language to increase
advertising effectiveness. In Office of naval re-
search military personnel research science work-
shop. Memphis, TN.

Andrew L Maas, Raymond E Daly, Peter T Pham, Dan
Huang, Andrew Y Ng, and Christopher Potts. 2011.
Learning word vectors for sentiment analysis. In
Proceedings of the 49th annual meeting of the as-
sociation for computational linguistics: Human lan-
guage technologies-volume 1, pages 142–150. Asso-
ciation for Computational Linguistics.

Randal S Olson, Nathan Bartley, Ryan J Urbanowicz,
and Jason H Moore. 2016. Evaluation of a tree-
based pipeline optimization tool for automating data
science. In Proceedings of the Genetic and Evolu-
tionary Computation Conference 2016, pages 485–
492. ACM.

Fabian Pedregosa, Gaël Varoquaux, Alexandre Gram-
fort, Vincent Michel, Bertrand Thirion, Olivier
Grisel, Mathieu Blondel, Peter Prettenhofer, Ron
Weiss, Vincent Dubourg, et al. 2011. Scikit-learn:
Machine learning in python. Journal of machine
learning research, 12(Oct):2825–2830.

Andrew Perrin. 2015. Social media usage: 2005-2015.

Antonio Reyes, Paolo Rosso, and Davide Buscaldi.
2009. Humor in the blogosphere: First clues for a
verbal humor taxonomy. Journal of Intelligent Sys-
tems, 18(4):311–332.

Antonio Reyes, Paolo Rosso, and Tony Veale. 2013.
A multidimensional approach for detecting irony
in twitter. Language resources and evaluation,
47(1):239–268.

Sara Rosenthal, Noura Farra, and Preslav Nakov.
2017. Semeval-2017 task 4: Sentiment analysis in
twitter. In Proceedings of the 11th International
Workshop on Semantic Evaluation (SemEval-2017),
pages 502–518.

Luı́s Sarmento, Paula Carvalho, Mário J Silva, and
Eugénio De Oliveira. 2009. Automatic creation of a
reference corpus for political opinion mining in user-
generated content. In Proceedings of the 1st interna-
tional CIKM workshop on Topic-sentiment analysis
for mass opinion, pages 29–36. ACM.

Twitter Usage Statistics. 2014. Internet live stats.

Pontus Stenetorp, Sampo Pyysalo, Goran Topić,
Tomoko Ohta, Sophia Ananiadou, and Jun’ichi Tsu-
jii. 2012. Brat: a web-based tool for nlp-assisted
text annotation. In Proceedings of the Demonstra-
tions at the 13th Conference of the European Chap-
ter of the Association for Computational Linguistics,
pages 102–107. Association for Computational Lin-
guistics.

Akira Utsumi. 1996. A unified theory of irony and
its computational formalization. In Proceedings of
the 16th conference on Computational linguistics-
Volume 2, pages 962–967. Association for Compu-
tational Linguistics.

Cynthia Van Hee. 2017. Can machines sense irony?:
exploring automatic irony detection on social media.
Ph.D. thesis, Ghent University.

Cynthia Van Hee, Els Lefever, and Véronique Hoste.
2016. Exploring the realization of irony in twitter
data. In LREC.

586

Proceedings of the 12th International Workshop on Semantic Evaluation (SemEval-2018), pages 587–593
New Orleans, Louisiana, June 5–6, 2018. ©2018 Association for Computational Linguistics

Lancaster at SemEval-2018 Task 3: Investigating Ironic Features in
English Tweets

Edward Dearden and Alistair Baron
School of Computing and Communications

Lancaster University
Lancaster, UK, LA1 4WA

initial.surname@lancaster.ac.uk

Abstract

This paper describes the system we submit-
ted to SemEval-2018 Task 3. The aim of
the system is to distinguish between irony and
non-irony in English tweets. We create a tar-
geted feature set and analyse how different
features are useful in the task of irony detec-
tion, achieving an F1-score of 0.5914. The
analysis of individual features provides insight
that may be useful in future attempts at detect-
ing irony in tweets.

1 Introduction

With so many people using social media and mi-
croblogs such as Twitter, a huge amount of natural
language data is available to be analysed. It is de-
sirable to be able to accurately interpret what peo-
ple are saying. An example of this is in the field of
sentiment analysis where the aim is to determine
whether the language being used by an author is
positive or negative.

These kinds of tasks are made more difficult
by the presence of figurative language. Figura-
tive language is a type of language where the con-
tents of the text are not literally true, making it
difficult to ascertain the true meaning of the text
purely from the content. Irony is a particular type
of figurative language in which the meaning is of-
ten the opposite of what is literally said and is not
always evident without context or existing knowl-
edge. A system capable of accurately detecting
irony would be a valuable addition to sentiment
analysis systems, and other systems for natural
language understanding which are confounded by
irony.

In online discourse, examples of irony are very
common. Social media platforms capture natural
language which often includes sarcastic sentences.
An example of a use for irony detection is in the
area of online product reviews (Tsur et al., 2010)

which can contain large amounts of ironic lan-
guage. An irony detection system could be used
to prevent ironic negative reviews being misinter-
preted as positive and highlighted in advertising.

The system described in this paper aims to iden-
tify targeted features of irony and analyse how im-
portant they are in identifying ironic tweets. The
annotated twitter data we use is that provided by
the event organisers. The task is described in the
task description paper (Van Hee et al., 2018).

2 Related Work

The task of irony detection is an inherently diffi-
cult one. Wallace (2015) suggests that to create a
good system for irony detection, one cannot rely
on lexical features such as Bag of Words, and one
must consider also semantic features of the text.

There have been various methods employed to
detect irony. Reyes et al. (2012) created a dataset
generated by searching for user-created tags and
attempted to identify humour and irony. The fea-
tures used to detect irony were polarity, unexpect-
edness, and emotional scenarios. Their classifier
achieved an F1-score of 0.54 for general tweets of
various topics, rising to 0.65 when the irony fea-
tures were combined with the ambiguity features
used to detect humour. The score also improved
when looking at domain specific tweets, suggest-
ing domain knowledge and context can be useful
for identifying irony.

More recently, Van Hee et al. (2016a) inves-
tigated annotated ironic tweet corpora and sug-
gested that looking at contrasting evaluations
within tweets could be useful for detecting irony.
Van Hee et al. (2016b) also created a system to
detect ironic tweets, looking beyond text-based
features, using a feature set made up of lexical,
syntactic, sentiment, and semantic features. They
achieved an F1-score of 0.68. They also suggested

587

that irony by polarity clash was more simple to
detect than other forms of irony, e.g. situational
irony.

A number of works have looked at detecting
sarcastic tweets. Sarcasm is a type of irony in
which the meaning is the opposite of what is lit-
erally said. Maynard and Greenwood (2014) used
a rule based system to supplement sentiment anal-
ysis systems by flipping the predicted polarity of
a tweet if it contained a mismatch of sentiment
between hashtag and text. They achieved an F1-
Score of 0.91. Davidov et al. (2010) used pattern-
based and punctuation-based features, achieving
an F1-Score of 0.83. González-Ibáñez et al. (2011)
combined lexical and pragmatic features, aiming
to distinguish between sarcastic, positive, and neg-
ative utterances. Their classifiers achieved 70%
accuracy distinguishing between sarcasm and pos-
itive tweets and between sarcasm and negative
tweets. Barbieri et al. (2014) looked at distin-
guishing sarcasm from other domains of text in-
cluding irony. They achieved an F1-score of 0.60
when differentiating between sarcasm and irony
compared to 0.89 when differentiating between
sarcasm and politics. These findings suggest that it
is easier to distinguish sarcastic tweets over irony
in general. This could link to Van Hee et al.
(2016b)’s finding that situational irony and other
types of irony are harder to detect than irony by
polarity clash. Given much of the irony in tweets
is sarcasm, looking at some of these features may
be useful.

One challenge for irony detection is that the un-
derstanding of irony often relies on context. There
is certain contextual information that is required
for a human to parse a sentence as being ironic.
For example, the sentence “I am soooo happy to
be going to the dentist tomorrow” would only be
noticed as being ironic if the reader understood
that the word ‘dentist’ has certain negative associ-
ations. Rajadesingan et al. (2015) tries to address
this challenge by looking at more behavioural as-
pects of irony including looking at positive and
negative associations of certain words, achieving
an accuracy of 83%.

Other approaches have aimed to capture the
context in which a tweet was posted for irony de-
tection. Bamman and Smith (2015) used author
and audience features on top of tweet features.
These features looked at the past tweets of authors
and the people to whom the tweet is responding.

Their best performance was 85% accuracy. Wang
et al. (2015) used three types of history of the
tweet to try and bring in additional context: his-
tory of the conversation; history of the author; and
history of the hashtag/topic. They improved the
baseline F1-Score of 0.55 to 0.60.

3 System Description

The developed system uses only the text data of
the tweets provided with the task. It does not
handle any contextual features as these would re-
quire gathering previous tweets and responses.
The classifier we used was a standard, untuned
SVM. As much of the code as possible has been
made publicly available so it can be replicated1.
There are certain parts of the system that cannot
be shared, such as the USAS tagging system2.

In the preprocessing stage the tweets were re-
duced to just the text, separately extracting emo-
jis, hashtags, and user mentions, for use as fea-
tures. Most of the processing of the text was per-
formed with the python Natural Language Toolkit
(NLTK) (Bird and Loper, 2004), including using
the NLTK Tweet Tokeniser to tokenise the text.

For classification we used the Linear SVC im-
plementation in the popular python machine learn-
ing package scikit-learn (Pedregosa et al., 2011).
We performed no tuning of the model as we
were more interested in features and their useful-
ness than gaining the maximum precision and we
wanted to avoid overfitting. We also used a ran-
dom forest classifier to compare results.

3.1 Features

The features used by this system fall into four
main categories: Tweet-level features, Bag-of-X
features, Sentiment features, and Complexity fea-
tures. All feature values were normalised so they
were between 0 and 1.

Tweet Features are the non-language features
contained directly within the contents of the tweet.
These features include punctuation, hashtags and
emoji. These have been used in past research and
found to be useful for the task. It is thought that
these features are used to flag a tweet as ironic. As
there were many different types of emoji used on
Twitter, some very infrequently, the emojis, punc-
tuation, and hashtags used were restricted to the

1https://github.com/dearden/
SemEval2018-Irony

2http://ucrel.lancs.ac.uk/usas/

588

top 50 by frequency over the whole training set
of each. Each of these top 50 were a feature and
their value was 0 or 1 based on whether or not the
token was present in the text. The tweets were
tokenised such that repeated punctuation marks
were counted as a single token. For example,
“...” would be counted as a single token, not 3 in-
stances of “.”. We also count examples of repeated
characters, e.g. in “Greeeeat!”, and the proportion
of the tweet that is capitalised. Other tweet fea-
tures were: Number of links, number of mentions,
number of hashtags, Tweet length, average word
length, and amount of punctuation.

Bag-of-X Features is the set of features which
contain the 1000 most frequent tokens of various
types. The tokens used for these features were:
word unigrams, word bigrams, character trigrams,
POS tags, and Semantic tags. For the POS tag-
ging, we used the NLTK POS tagger (Bird and
Loper, 2004) and for Semantic tagging, the USAS
semantic tagger (Rayson et al., 2004). Semantic
tags put each word (or multi-word expression) into
semantic categories, providing knowledge if some
texts contain more emotion-based terms or more
science and technology terms, for example. This
should provide a higher level view of the text than
achieved by bag of words. Using these techniques
is like casting a wide net over the text that may
find characteristics of irony not picked up by the
more targeted features. They are also included to
test the theory that lexical features are not useful
for the task of irony detection.

For Sentiment Features we used a popular
python package VaderSentiment (Pedregosa et al.,
2011). Sentiment features may be important be-
cause if irony involves saying something posi-
tive to mean something negative, it may be that
contrasts in sentiment or extreme values of senti-
ment are features of irony. The sentiment features
gathered were: Positive sentiment score, negative
sentiment score, mean score, standard deviation,
range, average change of sentiment between adja-
cent words, number of positive to negative tran-
sitions, and emoji sentiment. When looking at
changing sentiments, we modelled each sentence
as a collection of words that were either positive,
negative or neutral. We looked at the way the
words in the sentence transitioned between posi-
tive and negative. For example, the sentence “I
love how awful everything is right now”, would
have one transition between “love” and “awful”.

Emoji Sentiments were used from the work of
Kralj Novak et al. (2015) on the sentiment of emo-
jis. We included the mean, maximum, and mini-
mum emoji sentiment, as well as the number of
positive and negative emojis.

The Complexity features we gathered were:
negations, function words, number of syllables,
Automated Readability Index, ambiguity, lexical
diversity, and lexical density. These features were
included to examine the difference in complexity
and style between ironic and non-ironic tweets.
Ambiguity was calculated as the average number
of meanings for each word in the sentence accord-
ing to WordNet (Kilgarriff, 2000).

3.2 Feature Sets

We tested the system with seven feature sets. The
first four feature sets (Tweet, Bag-of-X, Senti-
ment, and Complexity) are as described above.
The other three are as follows:

Submission: A combination of Tweet, Complex-
ity, and Sentiment Features as described
above containing 126 features.

Reduced: A reduced version of the submission
set with the token frequency features (Emoji,
Punctuation) removed. The idea of this set is
to see if keeping only a focussed set of fea-
tures impacts performance. This set contains
27 features.

Combined: All the features combined together to
see whether performance is increased by us-
ing all the features. Contains 3,537 features.

The features representing occurrences of indi-
vidual hashtags were omitted as they did not repeat
very often and we did not want the model to over-
fit. Also, as the data was gathered using hashtags
we were concerned that certain hashtags would
be used in conjunction with the hashtags used to
gather the data and may not be representative of
irony generally. We left the Bag-of-X features out
of the submission feature set because we did not
want this set being too large and overfitting. With
our submission set, we aimed to use targeted fea-
tures as opposed to data-driven features such as
bag-of-words and character n-grams. This makes
the system more explainable, with the reasoning
pre-defined. With data-driven features, especially
character n-grams, it can be difficult to explain

589

Feature set Precision Recall F1 Score
Baseline 0.5296 0.5756 0.5516
Tweet 0.5209 0.7203 0.6046
Bag-of-X 0.5153 0.5949 0.5522
Sentiment 0.4691 0.5370 0.5007
Complexity 0.4350 0.6238 0.5125
Submission 0.5321 0.6656 0.5914
Reduced 0.5385 0.6527 0.5901
Combined 0.5387 0.6495 0.5889

Table 1: Results of Linear SVC on test set.

why features are useful for the task. For the re-
duced set we went further, omitting all of the data-
driven features. This meant removing Emoji and
punctuation features so the feature set was more
likely to capture the true features of irony as well
as being more explainable.

One drawback of our feature extraction is the
noisiness of the text. The NLTK POS tagger and
VADER Sentiment only perform well with stan-
dard text. If we had performed better normalisa-
tion on the text before extracting Bag-of-X and
Sentiment features, these feature sets may have
performed better.

4 Results and Discussion

We ran the classifier with a number of different
feature sets to assess the power of different types
of feature. Bag-of-Words using all word tokens
was used as a baseline to compare the other fea-
ture sets to. The bag-of-words implementation we
used was slightly different to the baseline provided
with the task in so far as it does not use Scikit-
learn’s in-built Vectoriser. As well as the baseline
bag of words, seven feature sets were evaluated, as
described in Section 3.2.

The results from our system can be seen in Ta-
ble 1, with a Linear SVC. The tweet feature set
was more useful than expected, with the highest
F1 Score. This suggests that twitter users com-
municate elements of what they mean via emojis,
punctuation, and the way they present their tweets.
The high recall means that this feature set is caus-
ing many tweets to be flagged as ironic. However,
given in most real data there are likely to be fewer
ironic tweets than non-ironic, high precision may
be more desirable than high recall. Another con-
cern with relying on these features is that an irony
detection implementation that is clueless if a tweet
contains no emojis or hashtags is not an effective

system. This may also explain why the Tweet fea-
tures did not achieve higher results. Many ironic
tweets do not contain emojis or punctuation that
flag their irony. The bag-of-x features and the
baseline performed similarly, both getting an F1

Score of around 0.55. The addition of Bigrams,
Trigrams, POS and Semantic tags does not seem to
have increased the accuracy. The performance of
these feature sets is not surprising as the features
were in no way targeted to irony. This supports
the findings of Wallace (2015) that lexical features
alone are not effective at identifying irony. The
sentiment features performed the worst. This is
in line with the results of Van Hee et al. (2016b),
which also showed sentiment to be the weakest in-
dividual group. The reduced set performed almost
as well as the submission set which is promising
given it contained 99 fewer features, showing that
specific targeted features are of most use.

With a random forest classifier, the results also
found the Tweet feature set achieved the highest
F1 score of 0.5903 compared to the Baseline fea-
ture set score of 0.4957. The next highest was
the Reduced feature set which achieved a score
of 0.5657, outperforming both the Submission and
Combined sets. This might be because it contains
less sparse features which tree classifiers prefer,
or could suggest that the emoji and punctuation
features are causing the classifier to overfit. Both
the Tweet and Reduced feature set achieved much
higher precision than with the Linear SVC, 0.5922
and 0.5936 respectively, but lower recall, 0.5884
and 0.5401.

Next we looked at features individually, rather
than looking at groups. To do this we used the
coefficients for each feature in the Linear SVC
model. These are the weights used by the model
to decide how much each feature should weigh in
on the final decision.

First we look at the features in the reduced fea-
ture set. The results are shown in Table 2. This
set is interesting because it only contains the more
information-dense features. Number of links, the
number of mentions, and the number of hashtags
are all ranked highly for identifying non-ironic
tweets. This may be because tweets that have
high values for these features are more focussed
on sharing links, for example images, with their
friends. As the focus is more on the thing they are
sharing rather than in the text, these tweets may
be less likely to be ironic. These features are un-

590

Feature Weight Class
Number of Links -2.52 Non-ironic
Number of Syllables 1.89 Ironic
Number of Mentions -1.84 Non-ironic
Punctuation Count -1.50 Non-ironic
Repeated Characters 1.42 Ironic
Function Words -1.20 Non-ironic
Lexical Density -1.18 Non-ironic
Mean Sentiment 1.09 Ironic
Capitalisation -1.04 Non-ironic
Number of Hashtags -1.04 Non-ironic

Table 2: Top 10 LinearSVC weightings in Reduced
Feature Set.

likely to be useful for identifying non-irony out-
side of the twitter domain. Duplicate characters
are highly weighted for identifying irony. This
feature is often used to signpost irony by over-
emphasising the emotion they are expressing iron-
ically such as in the case of, “Loooovvveeeeeee
when my phone gets wiped”. Another common
use is repeated punctuation to make the point clear,
for example, “Gotta love being lied to....”.

Looking into the rankings of individual words
also provides some insights. Three of the top
ranking words indicating irony for the Linear
SVC with the combined feature set were “love”,
“great”, and “fun”. It is interesting that these are
all positive emotional words. This could suggest
that it is more common for such tweets to use pos-
itive language with a true negative meaning. A
lot of tweets follow the format of “I love when...”,
going on to describe a negative experience. These
tweets are often given a positive sentiment as the
negative part of the tweet doesn’t always use neg-
ative language. This highlights the effect a lack
of irony detection can have on sentiment analysis.
The system could be more effective if it took into
account negative concepts, for example “going to
the dentist”, that are not explicitly negative.

Our findings suggest that social elements and
structure of tweets are important for distinguishing
ironic tweets from non-ironic tweets. The words
that rank highly support the claim of Van Hee et al.
(2016b) that irony by contrast is the easiest to de-
tect. Irony by contrast is the most highly repre-
sented type of irony in the corpus so in most cases
of irony, such features will be useful for detection.
A future system would look at semantic and con-
textual features in more depth.

4.1 Subtask B

Subtask B involved a more complex classification
task in which the system had to distinguish be-
tween different types of irony. In this task, the po-
tential labels given by the classifier were: 0 – Non-
irony, 1 – Verbal irony realised through a polarity
contrast, 2 – Descriptions of situational irony, and
3 – Verbal irony without a polarity contrast. These
categories are explained in detail in the task de-
scription (Van Hee et al., 2018).

We used the same feature set used for task A,
aiming to test whether the same features could
classify between the different types of irony. The
submitted result achieved an F1-score of 0.3130.
This result was gained using a Linear SVC classi-
fier with the submission feature set and compared
to the bag-of-words baseline F1-score of 0.3198.
The random forest classifier achieved an F1-score
of 0.3465. These results suggest more complex,
tailored features would be needed for this task.

Both classifiers labelled the majority of tweets
as 0 – non-ironic. The next most frequent label
was 1 – irony by polarity contrast. This is likely
to be because the features were aimed at detect-
ing irony from non-irony and did not take into ac-
count situational information. The results seem to
support the idea that irony detection via polarity
contrast is the easiest to detect. This is further
supported by the fact that 76% of the examples of
other irony and situational irony were classified as
non-ironic.

To investigate this further, we looked at the re-
sults from subtask A and looked at how many
ironic by polarity contrast tweets were correctly
labelled as ironic compared to the other two forms
of irony. This was to see if, when the classifier
was dealing with a binary ironic/non-ironic deci-
sion, it still had the same problem of not detect-
ing examples of irony with no polarity contrast.
82% of the ironic by polarity contrast tweets were
correctly labelled as ironic by the classifier, com-
pared to 50% of the other types. This suggests
that the classifier was using the features of polarity
contrast to make its decisions. This makes sense
as some of the features, especially those from the
sentiment set, were targeted at detecting this type
of irony with features such as number of positive
to negative sentiment transitions.

As a final experiment, we trained the classi-
fier with the ironic by polarity contrast tweets re-
moved. 164 tweets from the test set and 1,390

591

from the training set were removed, leaving a test
set of 473 non-ironic and 147 ironic tweets and
a training set of 1,923 non-ironic and 521 ironic
tweets. The aim was seeing if the system could
distinguish between non-irony and irony with the
easiest to detect tweets removed. In this setup,
the classifier only correctly labelled 4 out of the
147 ironic tweets as ironic. This suggests that it
is much harder to distinguish between non-ironic
text and these two forms of irony. More com-
plex features that directly look at context may be
needed for this task.

5 Conclusion

In this paper, we have described a system for the
detection of irony using targetted features. The re-
sulting F1-score of 0.59 was an improvement over
the baseline bag-of-words. The analysis of our
findings provided insight into the features that are
particularly useful for detecting irony. Tweet fea-
tures performed well suggesting that Twitter users
potentially broadcast their meaning using features
such as emojis and structure. We also investigated
how our system performed when distinguishing
between different types of irony. Our findings
suggest that deeper, more complex features will
be needed to accurately identify situational irony
and irony with no polarity contrast. We could im-
prove our system by looking into contextual and
semantic features. For example, we looked into
sentiment of words, but not at words with positive
and negative associations in certain contexts. Our
analysis provides insights that may be useful for
future research into irony detection.

References
David Bamman and Noah A Smith. 2015. Contextual-

ized sarcasm detection on twitter. In ICWSM, pages
574–577.

Francesco Barbieri, Horacio Saggion, and Francesco
Ronzano. 2014. Modelling sarcasm in twitter, a
novel approach. In Proceedings of the 5th Work-
shop on Computational Approaches to Subjectivity,
Sentiment and Social Media Analysis, pages 50–58.

Steven Bird and Edward Loper. 2004. Nltk: the nat-
ural language toolkit. In Proceedings of the ACL
2004 on Interactive poster and demonstration ses-
sions, page 31. Association for Computational Lin-
guistics.

Dmitry Davidov, Oren Tsur, and Ari Rappoport. 2010.
Semi-supervised recognition of sarcastic sentences

in twitter and amazon. In Proceedings of the
Fourteenth Conference on Computational Natural
Language Learning, CoNLL ’10, pages 107–116,
Stroudsburg, PA, USA. Association for Computa-
tional Linguistics.

Roberto González-Ibáñez, Smaranda Muresan, and
Nina Wacholder. 2011. Identifying sarcasm in twit-
ter: A closer look. In Proceedings of the 49th
Annual Meeting of the Association for Computa-
tional Linguistics: Human Language Technologies:
Short Papers - Volume 2, HLT ’11, pages 581–586,
Stroudsburg, PA, USA. Association for Computa-
tional Linguistics.

Adam Kilgarriff. 2000. Wordnet: An electronic lexical
database.

Petra Kralj Novak, Jasmina Smailovi, Borut Sluban,
and Igor Mozeti. 2015. Sentiment of emojis. PLOS
ONE, 10(12):1–22.

Diana Maynard and Mark Greenwood. 2014. Who
cares about sarcastic tweets? investigating the im-
pact of sarcasm on sentiment analysis. In Proceed-
ings of the Ninth International Conference on Lan-
guage Resources and Evaluation (LREC-2014). Eu-
ropean Language Resources Association (ELRA).

Fabian Pedregosa, Gaël Varoquaux, Alexandre Gram-
fort, Vincent Michel, Bertrand Thirion, Olivier
Grisel, Mathieu Blondel, Peter Prettenhofer, Ron
Weiss, Vincent Dubourg, et al. 2011. Scikit-learn:
Machine learning in python. Journal of machine
learning research, 12(Oct):2825–2830.

Ashwin Rajadesingan, Reza Zafarani, and Huan Liu.
2015. Sarcasm detection on twitter: A behavioral
modeling approach. In Proceedings of the Eighth
ACM International Conference on Web Search and
Data Mining, WSDM ’15, pages 97–106, New York,
NY, USA. ACM.

Paul Rayson, Dawn Archer, Scott Piao, and Anthony M
McEnery. 2004. The ucrel semantic analysis sys-
tem.

Antonio Reyes, Paolo Rosso, and Davide Buscaldi.
2012. From humor recognition to irony detec-
tion: The figurative language of social media. Data
Knowl. Eng., 74:1–12.

Oren Tsur, Dmitry Davidov, and Ari Rappoport. 2010.
Icwsm-a great catchy name: Semi-supervised recog-
nition of sarcastic sentences in online product re-
views.

Cynthia Van Hee, Els Lefever, and Véronique Hoste.
2016a. Exploring the realization of irony in twitter
data. In LREC.

Cynthia Van Hee, Els Lefever, and Veronique Hoste.
2016b. Monday mornings are my fave : #not ex-
ploring the automatic recognition of irony in english
tweets. In Proceedings of COLING 2016, 26th In-
ternational Conference on Computational Linguis-
tics, pages 2730–2739. ACL.

592

Cynthia Van Hee, Els Lefever, and Véronique Hoste.
2018. SemEval-2018 Task 3: Irony Detection in
English Tweets. In Proceedings of the 12th Interna-
tional Workshop on Semantic Evaluation, SemEval-
2018, New Orleans, LA, USA. Association for
Computational Linguistics.

Byron C. Wallace. 2015. Computational irony: A
survey and new perspectives. Artif. Intell. Rev.,
43(4):467–483.

Zelin Wang, Zhijian Wu, Ruimin Wang, and Yafeng
Ren. 2015. Twitter sarcasm detection exploiting a
context-based model. In Proceedings, Part I, of the
16th International Conference on Web Information
Systems Engineering — WISE 2015 - Volume 9418,
pages 77–91, New York, NY, USA. Springer-Verlag
New York, Inc.

593

Proceedings of the 12th International Workshop on Semantic Evaluation (SemEval-2018), pages 594–599
New Orleans, Louisiana, June 5–6, 2018. ©2018 Association for Computational Linguistics

INAOE-UPV at SemEval-2018 Task 3:
An Ensemble Approach for Irony Detection in Twitter

Delia Irazú Hernández Farı́as1, Fernando Sánchez-Vega1

Manuel Montes-y-Gómez1,2, and Paolo Rosso2

1 Instituto Nacional de Astrofı́sica, Óptica y Electrónica (INAOE), Mexico
2 PRHLT Research Center, Universitat Politècnica de València, Spain
{dirazuherfa,fer.callotl,mmontesg}@inaoep.mx

prosso@dsic.upv.es

Abstract

This paper describes an ensemble approach
to the SemEval-2018 Task 3. The proposed
method is composed of two renowned methods
in text classification together with a novel ap-
proach for capturing ironic content by exploit-
ing a tailored lexicon for irony detection. We
experimented with different ensemble settings.
The obtained results show that our method has
a good performance for detecting the presence
of ironic content in Twitter.

1 Introduction

Social media provide a perfect scenario for ex-
ploiting language beyond its literal sense by us-
ing figurative language devices such as, for ex-
ample, irony. Correctly identifying the real inten-
tion behind user-generated content is a big chal-
lenge for different areas related to computational
linguistics. For example, in Sentiment Analy-
sis (SA), the presence of irony could undermine
the performance of systems dedicated to this task
(Hernández Farı́as and Rosso, 2016). There are
several disciplines studying irony from different
perspectives. The most prevalent definition is that
from Grice (1975), stating that the function of
irony is to effectively communicate the opposite
of the literal interpretation a given utterance.

Nowadays, with the growing interest in irony
detection, there are several approaches1 for ad-
dressing such an interesting task. Probably, the
most widely used is that exploiting characteristics
extracted from the text (such as n-grams, punctu-
ation marks, part-of-speech labels, among others)
on its own (Riloff et al., 2013; Ptáček et al., 2014).
Inherent aspects of irony such as its very subjec-
tive component have also been considered (Reyes
et al., 2013; Barbieri et al., 2014; Hernández Farı́as

1For a more comprehensive overview of irony detection,
see (Joshi et al., 2017).

et al., 2016). Other methods have opted for taking
advantage of information coming from the con-
text in which a given utterance is produced (Ra-
jadesingan et al., 2015). There are also some ap-
proaches exploiting deep learning techniques and
word embeddings (Poria et al., 2016; Ghosh and
Veale, 2016; Joshi et al., 2016; Nozza et al., 2016).
A less explored strategy for addressing irony de-
tection is the use of ensemble methods. Fersini
et al. (2015) and Liu et al. (2014) compared the
performance of ensemble approaches against tra-
ditional classifiers; the best results were obtained
by the ensemble strategy setting.

In this paper we describe our participation to
the SemEval-2018 Task 3: Irony detection in En-
glish tweets (Van Hee et al., 2018). The INAOE-
UPV system explores the use of an ensemble ap-
proach that considers different combinations of
three methods. The main contribution of our ap-
proach lies on the use of a list of potentially ironic
and non-ironic terms in order to identify irony in
tweets.

2 Method Description
In order to determine the presence of ironic con-
tent in tweets, we propose an ensemble of different
methods, namely, a bag-of-words and word em-
beddings classifiers, as well as a voting scheme
based on a list of potentially ironic and non-ironic
terms.

2.1 Individual classifiers
Ironic/nonironic Orientation (irO)

This approach attempts to capture the ironic and
non-ironic connotation of the words in a tweet in
order to identify the presence of ironic content.
Building a lexicon for irony detection is not a
trivial task. It has been recognized in (Nozza
et al., 2016) that a lexicon for irony detection can
be derived by using a huge amount of data.

594

To develop a lexicon for irony detection it is
needed to calculate how much a word could be
associated with an ironic or non-ironic sense. A
widely exploited measure in SA for developing
lexica is the Pointwise Mutual Information (PMI)
(Church and Hanks, 1990). We decided to adopt a
similar strategy to generate two lists of terms as-
sociated to ironic and non-ironic senses. As start-
ing point we took advantage of a set of corpora
from the state of the art in irony detection (hence-
forth benchmark-corpora). The datasets we used
are described in (Reyes et al., 2013; Riloff et al.,
2013; Barbieri et al., 2014; Ptáček et al., 2014;
Mohammad et al., 2015; Ghosh et al., 2015; Sulis
et al., 2016; Karoui et al., 2017). Overall, more
than 165,000 tweets were used to generate the lists
of words: ironic terms and nonironic terms.
We calculate the PMI score for each term2 in the
benchmark-corpora. After that, we selected only
those terms with a PMI score greater than zero.

In order to determine the class of an instance
we assigned a vote (v) for each word (w) in a
given tweet (t). First, we filter out the stopwords
in each tweet. Then, we search for the most sim-
ilar term in each of the lists in order to determine
whether w is more related to an ironic or non-
ironic sense. Mainly we compute a score that
indicates the higher cosine similarity3 among w
and each of the N terms defined in our lists of
words. As expected, the score for the words in
t that are directly included in ironic terms or
nonironic terms will be 1.
simIro(w) = max

j=1...N
(sim(w, ironic termsj))

simNI(w) = max
j=1...N

(sim(w, nonironic termsj))

After this, the vote v(w) is assigned according
to the following criterion:

v(w) =

{
simIro if simIro > simNI

−simNI if simIro < simNI
(1)

Finally, the class of a tweet is determined by the
sum of the votes from all words in t.

class(t) =





irony if
|t|∑

i=1

v(w ∈ t) ≥ 0

non-irony otherwise

2We removed those terms that occurred less than five
times in each class.

3We calculated the cosine similarity exploiting pre-trained
word vectors from the Google News Corpus.

Bag-of-words based classifier (BOW)

This approach is based on a bag-of-words (Salton
et al., 1975) representation of the tweets. It uses
unigrams as binary features. For the classification
it employs a SVM classifier4. From here, we will
use the acronym BOW to refer the use of the afore-
mentioned individual approach.

Word Embeddings based classifier (wEmb)

This approach is based on the use of word em-
beddings. Particularly, it employs embeddings
pre-trained on the Google News corpus (Mikolov
et al., 2013) using the Continuous Bag-of-Words
(CBOW) model5. In this case, tweets are repre-
sented by the centroid of the vectors from their
words. Similar to the BOW approach, the clas-
sification is done by a SVM classifier. From now
on the acronym wEmb will be used to refer to this
approach.

2.2 Ensemble approaches for irony detection

We explored the use of different techniques rely-
ing on the words content in each tweet in order to
identify the presence of irony. Each of the tech-
niques we exploited has its own advantages and
limitations. The BOW model allows to capture the
existing topics in the vocabulary as well as discur-
sive markers used in an ironic writing style. On
the other hand, wEmb makes possible to catch
abstract semantics of the words regardless of the
available data for the task. With respect to irO, it
attempts to simulate the interpretative process car-
ried out to understand the ironic intention. Irony
comprehension at an initial stage involves getting
the literal sense of words (Giora and Fein, 1999)
and then recognizing the figurative intention be-
hind them. Thus, our method quantifies how many
words are likely to be used in a literal or figurative
sense before deciding whether a tweet is ironic or
not. By proposing an ensemble using all the meth-
ods together we attempt to encompass different as-
pects of the use of vocabulary when the ironic phe-
nomenon is present. Below, we introduce some

4We employed the SVM implementation of Weka (Hall
et al., 2009).

5We also experimented with word embeddings trained us-
ing the benchmark corpora obtaining lower results than with
Google News embeddings. Therefore, in order to participate
in the shared task we decided to include only the latest kinds
of embeddings.

595

ensemble approaches6 proposed for capturing the
presence of irony in Twitter.

Coverage-based ensemble (ENS cov)
It is composed by BOW and wEmb. In Twitter
data, there are many terms such as mentions, hash-
tags, emoji, URL, etc., that are unlikely to have an
embedding. However, such kinds of terms are in-
deed covered by a model like BOW. To take advan-
tage of both methods, we decided to combine them
by considering a simple criterion depending on the
coverage rate of the word embeddings (cov emb)
in each single tweet. That is, if the cov emb is
greater than 75%, the tweet will be classified by
the wEmb model, otherwise the decision will be
made by the BOW approach.

Majority vote ensemble (ENS vot)
In this approach, the decisions from the three indi-
vidual methods (irO, BOW and wEmb) are com-
bined following a majority vote strategy.

3 Experiments and Results

3.1 Task Description
This year, as part of SemEval-2018 the Task 3 on
Irony detection in English tweets (Van Hee et al.,
2018), was dedicated to the identification of ironic
content in Twitter. The task is composed by two
subtasks: Task A. Ironic vs. non-ironic, the aim
was to identify whether a tweet contains an ironic
intention or not. The objective of the second one,
Task B. Different types of irony, was to classify a
tweet in one out of four classes: (i) verbal irony re-
alized through a polarity contrast, (ii) other verbal
irony, (iii) situational irony, and (iv) non ironic.
Participants were allowed to submit two differ-
ent kinds of systems: Constrained (C) where only
data provided for the task were used for training
purposes, and Unconstrained (U) where additional
data were exploited.

3.1.1 Task A
In order to address Task A, we applied two
different ensemble approaches. Our first sub-
mission was based on the coverage-based en-
semble using a constrained setting (henceforth
taskA ENS cov C).

The second submission (henceforth
taskA ENS vot U) used the majority vote en-
semble built on an unconstrained setting. BOW

6Due to the lack of space we are not reporting all the ex-
periments carried out.

and wEmb models were trained by using only the
training set provided by the organizers. Instead,
irO involves the use of the benchmark corpora.
Additionally, we collected a set of tweets contain-
ing the hashtags #irony and #sarcasm during the
2016 US Elections week7 as well as the training
data provided for the task for building the lists of
ironic and non-ironic terms.

For experimental purposes, we applied a three
fold cross-validation using the training data during
the developing phase of the shared task. Table 1
shows the obtained results in F1-Score.

Method F1-Score
BOW 0.62
wEmb 0.64

irO 0.63
taskA ENS cov C 0.63
taskA ENS vot U 0.65

Table 1: Results during the developing phase in Task A.

First, we evaluated each of the methods de-
scribed in Section 2 individually (the first three
rows in Table 1). The first two rows present the ob-
tained results when the performance of BOW and
wEmb was assessed using only the training data.
Meanwhile, irO exploits both data from the task
and external data. The highest result was achieved
by the wEmb model. Despite being a basic method
for identifying irony in tweets, our proposed ap-
proach (irO) achieves good performance even in
comparison to powerful techniques such as word
embeddings. Regarding the ensemble approaches,
the best performance was reached by the majority
vote approach.

3.1.2 Task B
In order to address the Task B, we employed
two different configurations of the majority
vote approach (henceforth taskB ENS vot U1 and
taskB ENS vot U2), adding an additional crite-
rion: in both cases, when the result of irO8 indi-
cates the presence of irony, we assigned one of
the ironic-related classes by exploiting three dif-
ferent lists of words (one for each class in Task B)
created following the same strategy described in
Section 2.1. For taskB ENS vot U1, the BOW and
wEmb models were trained using the four classes
in Task B; while in taskB ENS vot U2 four binary
classifiers considering the combinations between

7From 8th up to 18th November 2016.
8In this setting we also considered the corpora of the state

of the art.

596

ironic classes and the non-ironic class in Task B.
A weighted voting strategy was adopted in both
ensembles. Table 2 shows the obtained results.

Method F1-Score
BOW 0.48
wEmb 0.31

irO 0.41
taskB ENS vot U1 0.44
taskB ENS vot U2 0.46

Table 2: Results during the developing phase in Task B.

The three methods were also evaluated individ-
ually for Task B. As it can be noticed, the best per-
formance was achieved by BOW. The irO method
performs better than wEmb. This is probably due
to the fact of having few data for training the clas-
sifier. Neither of the ensemble methods improves
the baseline, i.e., the BOW results.

3.2 Official Results

Table 3 shows the obtained results according to the
official ranking of the shared task.

Task Method F1-score

A taskA ENS cov C 0.6265
taskA ENS vot U 0.6184

B taskB ENS vot U1 0.3497
taskB ENS vot U2 0.2148

Table 3: Official results obtained by our runs at the
shared task. The underlined values are those in the of-
ficial ranking of the task.

Our best result was in the constrained version
of Task A (we ranked in the 11th position). Re-
garding this, our intuition is that having data re-
trieved during the same time-frame the probabil-
ities of sharing a similar vocabulary9 (in terms
of trending-topic hashtags, mentions, etc.) are
higher than when using external data. Therefore,
an approach exploiting only data provided in the
task could perform better than one using additional
data. With reference to the unconstrained setting,
we observed a drop in the performance. In spite
of this, we ranked in the 2nd position when only
unconstrained systems were considered.

Concerning Task B, our approach showed worst
performance than in Task A. The results of both
submissions were quite different. Probably this is
due to the amount of classifiers involved in each
ensemble. Overall, all the teams participating in

9We found that training and test data for the task share
around fifty percent of the vocabulary.

the shared task had a lower performance in Task
B demonstrating the difficulty of such a task. It is
important to highlight that the taskB ENS vot U2
submission ranked in the 3rd position when only
the unconstrained setting was considered.

4 Error Analysis
We analyze those instances that were misclassified
by our submissions in Task A observing different
kinds of errors:
• Tweets where the ironic sense highly depends

on the context where they are produced. In
the following example it is not possible to un-
derstand the ironic intention without having
more information: @LukeLPearson hmm...
let me think about that10

• Tweets containing terms often used in ironic
instances, such as “really”. This is a disad-
vantage of word-based methods where terms
highly related to a particular class provoke
misleading classifications when they appear
in other classes. The following is an example
of this: I’m really excited for next semester11

• Tweets containing several hashtags. Most
of the time our methods predicted such in-
stances as ironic being in reality non-ironic:
@NormanWalshUK Stunning work. #british
#textiles #footwear #madeinbritain #not-a-
nike-clone

5 Conclusions

In this paper we describe our participation at
SemEval-2018 Task 3. We propose an ensemble
method including well-known techniques together
with a novel approach based on the words in a
tweet to identify the presence of irony. From the
results, we observe that our approach obtained rel-
atively good results considering its simplicity. As
future work, it could be interesting to enhance the
tailored lexicon by exploiting more data and other
strategies for collecting words which are likely to
be used for achieving an ironic sense. Moreover,
considering different criteria to assign the votes in
our approach is also matter of further experiments.

Acknowledgments

This research was funded by CONACYT project
FC-2016/2410. The work of Paolo Rosso has been
funded by the SomEMBED TIN2015-71147-C2-
1-P MINECO research project.

10Predicted class: non-ironic, Real class: ironic.
11Predicted class: ironic, Real class: non-ironic.

597

References
Francesco Barbieri, Horacio Saggion, and Francesco

Ronzano. 2014. Modelling Sarcasm in Twitter, a
Novel Approach. In Proceedings of the 5th Work-
shop on Computational Approaches to Subjectivity,
Sentiment and Social Media Analysis, pages 50–58,
Baltimore, Maryland, USA. Association for Compu-
tational Linguistics.

Kenneth Ward Church and Patrick Hanks. 1990. Word
association norms, mutual information, and lexicog-
raphy. Comput. Linguist., 16(1):22–29.

E. Fersini, F. A. Pozzi, and E. Messina. 2015. De-
tecting Irony and Sarcasm in Microblogs: The Role
of Expressive Signals and Ensemble Classifiers. In
2015 IEEE International Conference on Data Sci-
ence and Advanced Analytics (DSAA), pages 1–8.

Aniruddha Ghosh, Guofu Li, Tony Veale, Paolo Rosso,
Ekaterina Shutova, John Barnden, and Antonio
Reyes. 2015. SemEval-2015 Task 11: Sentiment
Analysis of Figurative Language in Twitter. In Pro-
ceedings of the 9th International Workshop on Se-
mantic Evaluation, pages 470–478, Denver, Col-
orado. Association for Computational Linguistics.

Aniruddha Ghosh and Tony Veale. 2016. Fracking
Sarcasm using Neural Network. In Proceedings of
the 7th Workshop on Computational Approaches to
Subjectivity, Sentiment and Social Media Analysis,
pages 161–169, San Diego, California. Association
for Computational Linguistics.

Rachel Giora and Ofer Fein. 1999. Irony: Context and
Salience. Metaphor and Symbol, 14(4):241–257.

H. P. Grice. 1975. Logic and Conversation. In P. Cole
and J. L. Morgan, editors, Syntax and Semantics:
Vol. 3: Speech Acts, pages 41–58. Academic Press.

Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard
Pfahringer, Peter Reutemann, and Ian H. Witten.
2009. The WEKA Data Mining Software: An Up-
date. SIGKDD Explor. Newsl., 11(1):10–18.

Delia Irazú Hernández Farı́as, Viviana Patti, and Paolo
Rosso. 2016. Irony Detection in Twitter: The Role
of Affective Content. ACM Trans. Internet Technol.,
16(3):19:1–19:24.

Delia Irazú Hernández Farı́as and Paolo Rosso. 2016.
Irony, Sarcasm, and Sentiment Analysis. Chapter 7.
In Federico Pozzi, Elisabetta Fersini, Enza Messina,
and Bing Liu, editors, Sentiment Analysis in Social
Networks, pages 113–127. Morgan Kaufmann.

Aditya Joshi, Pushpak Bhattacharyya, and Mark J. Car-
man. 2017. Automatic Sarcasm Detection: A Sur-
vey. ACM Comput. Surv., 50(5):73:1–73:22.

Aditya Joshi, Vaibhav Tripathi, Kevin Patel, Pushpak
Bhattacharyya, and Mark James Carman. 2016. Are
Word Embedding-based Features Useful for Sar-
casm Detection? In Proceedings of the 2016 Con-
ference on Empirical Methods in Natural Language
Processing, pages 1006–1011.

Jihen Karoui, Farah Benamara, Veronique Moriceau,
Viviana Patti, Cristina Bosco, and Nathalie
Aussenac-Gilles. 2017. Exploring the Impact
of Pragmatic Phenomena on Irony Detection in
Tweets: A Multilingual Corpus Study. In Pro-
ceedings of the 15th Conference of the European
Chapter of the Association for Computational
Linguistics, Valencia, Spain.

Peng Liu, Wei Chen, Gaoyan Ou, Tengjiao Wang,
Dongqing Yang, and Kai Lei. 2014. Sarcasm Detec-
tion in Social Media Based on Imbalanced Classifi-
cation. In Proceedings of the Web-Age Information
Management: 15th International Conference, pages
459–471, Macau, China. Springer International Pub-
lishing.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Cor-
rado, and Jeffrey Dean. 2013. Distributed Repre-
sentations of Words and Phrases and Their Compo-
sitionality. In Proceedings of the 26th International
Conference on Neural Information Processing Sys-
tems - Volume 2, NIPS’13, pages 3111–3119.

Saif M. Mohammad, Xiaodan Zhu, Svetlana Kir-
itchenko, and Joel Martin. 2015. Sentiment, Emo-
tion, Purpose, and Style in Electoral Tweets. Infor-
mation Processing & Management, 51(4):480 – 499.

Debora Nozza, Elisabetta Fersini, and Enza Messina.
2016. Unsupervised Irony Detection: A Probabilis-
tic Model with Word Embeddings. In Proceed-
ings of the 8th International Joint Conference on
Knowledge Discovery, Knowledge Engineering and
Knowledge Management, pages 68–76.

Soujanya Poria, Erik Cambria, Devamanyu Hazarika,
and Prateek Vij. 2016. A Deeper Look into Sarcastic
Tweets Using Deep Convolutional Neural Networks.
CoRR, abs/1610.08815.

Tomáš Ptáček, Ivan Habernal, and Jun Hong. 2014.
Sarcasm Detection on Czech and English Twitter. In
Proceedings of the 25th International Conference on
Computational Linguistics, pages 213–223, Dublin,
Ireland. Association for Computational Linguistics.

Ashwin Rajadesingan, Reza Zafarani, and Huan Liu.
2015. Sarcasm Detection on Twitter: A Behavioral
Modeling Approach. In Proceedings of the Eighth
ACM International Conference on Web Search and
Data Mining, WSDM ’15, pages 97–106.

Antonio Reyes, Paolo Rosso, and Tony Veale. 2013.
A Multidimensional Approach for Detecting Irony
in Twitter. Language Resources and Evaluation,
47(1):239–268.

Ellen Riloff, Ashequl Qadir, Prafulla Surve, Lalin-
dra De Silva, Nathan Gilbert, and Ruihong Huang.
2013. Sarcasm as Contrast between a Positive Sen-
timent and Negative Situation. In Proceedings of
the 2013 Conference on Empirical Methods in Nat-
ural Language Processing, pages 704–714, Seattle,
Washington, USA. Association for Computational
Linguistics.

598

G. Salton, A. Wong, and C. S. Yang. 1975. A vec-
tor space model for automatic indexing. Commun.
ACM, 18(11):613–620.

Emilio Sulis, Delia Irazú Hernández Farı́as, Paolo
Rosso, Viviana Patti, and Giancarlo Ruffo. 2016.
Figurative Messages and Affect in Twitter: Dif-
ferences between #irony, #sarcasm and #not.
Knowledge-Based Systems, 108:132–143.

Cynthia Van Hee, Els Lefever, and Véronique Hoste.
2018. SemEval-2018 Task 3: Irony Detection in
English Tweets. In Proceedings of the 12th Interna-
tional Workshop on Semantic Evaluation, SemEval-
2018, New Orleans, LA, USA. Association for
Computational Linguistics.

599

Proceedings of the 12th International Workshop on Semantic Evaluation (SemEval-2018), pages 600–606
New Orleans, Louisiana, June 5–6, 2018. ©2018 Association for Computational Linguistics

ECNU at SemEval-2018 Task 3: Exploration on Irony Detection from
Tweets via Machine Learning and Deep Learning Methods

Zhenghang Yin1, Feixiang Wang1, Man Lan1,2, Wenting Wang3

1Department of Computer Science and Technology,
East China Normal University, Shanghai, P.R.China

2Shanghai Key Laboratory of Multidimensional Information Processing
3Alibaba Group

{10142130151,51151201049}@stu.ecnu.edu.cn, mlan@cs.ecnu.edu.cn,
nantiao.wwt@alibaba-inc.com

Abstract

The paper describes our submissions to task
3 in SemEval 2018. There are two subtasks:
Subtask A is a binary classification task to de-
termine whether a tweet is ironic, and Subtask
B is a fine-grained classification task including
four classes. To address them, we explored su-
pervised machine learning method alone and
in combination with neural networks.

1 Introduction

Irony, also known as sarcasm, refers to the use of
words and sentences, whose intended meanings
contrary to their literal meanings. Modeling irony
has a large potential for applications in various
research areas, so SemEval2018-Task3 (Hee
et al.) aims to classify irony into different classes.

There are two subtasks. In subtask A, when giv-
en a tweet, the classifier should predict whether
the tweet is ironic or non-ironic, and in subtask
B, the ironic class is further divided into another
three categories, i.e., irony by Polarity contrast,
by Situational and Other verbal irony.

Polarity contrast irony represents the tweets
containing an expression whose polarity (positive,
negative) is inverted between the literal and the
intended meaning. Situational irony stands for
the ones which don’t contain explicit polarity
contrast. However, the events or results described
in them are contrary to the desired or expected
common knowledge. Other verbal irony tweets
also don’t contain any explicit polarity contrast,
but they can’t be classified into the Situational
irony. Finally, non-ironic contains instances
which are clearly not ironic, or lack adequate
context to be sure that they are ironic.

In the remaining of the paper, section 2
describes our system in details. Section 3 reports
datasets, experiments and results discussions.
Finally, Section 4 concludes our work.

2 System Description

In both subtasks we used supervised machine
learning to model the irony in datasets. Moreover,
we explored neural networks in subtask A.

• In subtask A, we built a binary classification
system to make predictions (see in 2.2.1).
Then, we combine it with a Bi-LSTM neural
networks(see in 2.2.2).

• In subtask B, we used two machine learning
systems to train and evaluate.

1. 4-class classification system: We made
use of classifier directly itself to make
4-class predictions.

2. 4 binary-classification system: We de-
signed a two-step system as follows:

– Step 1 The entire problem was
regarded as 4 binary-classification
problems. Each tweet would be
trained and evaluated within 4
classes, and 4 confidence values
would be returned.

– Step 2 The classifier would allocate
each tweet with a label gaining the
highest confidence, and then made
evaluation.

2.1 Feature Engineering
4 types of features were designed to extract effec-
tive information from the given tweets.

2.1.1 Linguistic-informed Features
• Word N-grams We extracted word n-grams

features (n = 1, 2, 3) from tweets. To
accomplish that, we used TweetTokenizer
from NLTK tools (Bird et al., 2009).
Otherwise, N-grams features with the use of
Relevant Frequency (RF) (Lan et al., 2009)
were also applied to this system.

600

• NER There are different types of words in
tweets. NER feature can effectively express
aforesaid information. The 12 types (i.e.,
DURATION, SET, NUMBER, LOCATION,
PERSON, ORGANIATION, PERCENT,
MISC, ORDINAL, TIME, DATE, MONEY)
named entities are labeled by Stanford
CoreNLP tools (Manning et al., 2014). We
used a 12-dimensions binary feature to
indicate the entities in tweets.

2.1.2 Word Embedding Features

A lot of recent studies on NLP applications were
reported to have good performance through using
word vectors, such as document classification
(Sebastiani, 2002) and question answering (Lan
et al., 2016). In our work, two widely-used word
embedding features were adopted, respectively
Google Word2Vec (Mikolov et al., 2013) and
GloVe (Pennington et al., 2014).

For Word2Vec, a dictionary (Available in
Google1.) with 31622 words and 300 dimensions
was applied. For GloVe, we used data from the
dictionary with 2196017 words and 300
dimensions (glove.840B.300d, available in
GloVe2).

2.1.3 Sentiment Lexicon Feature (SentiLexi)

Eight sentiment lexicons were used to extract
sentiment lexicon features in our work. We
adopted the following 8 sentiment features: Bing
Liu lexicon3, General Inquirer lexicon4,
IMD-B5, MPQA6, NRC Emotion Sentiment
Lexicon7, AFINN8, NRC Hashtag Sentiment
Lexicon9, and NRC Sentiment140 Lexicon10.

2.1.4 Tweet domain Features

We collected tweet related features, and used uni-
gram to imply if a tweet contained such informa-
tion.

1https://code.google.com/archive/p/word2vec
2https://nlp.stanford.edu/projects/glove
3http://www.cs.uic.edu/liub/FBS/sentiment-

analysis.html#lecixon
4http://www.wjh.harbard.edu/inquirer/homecat.htm
5http://www.calweb/org/anthology/S13-2067
6http://mpqa.cs.pitt.edu
7http://www.saifmohammad.com/WebPages/lexicons.html
8http://www2.imm.dtu.dk/pubdb/views/publication

details.php?id=6010
9http://www.umiacs.umd.edu/saif/WebDocs/NRC-

Hashtag-Sentiment-Lexicon-v0.1.zip
10http://help.sentiment140.com/for-students

• Hashtags All the tokens begin with “#” sym-
bol are called hashtags. We extracted all the
hashtags, removed its “#” symbol and built
unigram features for them.

• Word N-grams in Hashtags We exploited
hashtags by a small tool WordSegment11 to
cut linked-together hashtags into a series of
words, like ilikemonday into [‘i’, ‘like’,
‘monday’].

• Punctuation Online users often use emotion
symbols (i.e., ! and ?) to express strongly
feelings. Hence we extracted a 7-dimension
binary features by recording the following
rules, they were: 1) if exclamations (!) exist;
2) if questions (?) exist; 3) if multiple ! exist
(i.e. !!!); 4) if multiple ? exist (i.e. ???); 5)
if alternative appearances of ! and ? exist
(i.e. !? and ?!); 6) if the last token is ! and 7)
if the last token is ?.

• Emoticon: We collected 67 emotions labeled
with positive and negative scores from the In-
ternet12, and used a 67-dimension binary fea-
ture to record the sentiment score of the emo-
tion in tweets.

• Elongated Words Feature In the sentence
“Ahhaaaaaaa, that’s sooooo funny!”,
Ahhaa.. and so.. are the use of elongated
words. The existence of these words will
lead to the overfitting in unigram features.
So we designed a feature to handle them.

In our work, elongated-word feature was de-
fined as the word which has characters re-
peated for 3-11 times. We captured and han-
dled them by using regular expression.

2.2 Classifiers and Models
2.2.1 Machine Learning Algorithm
In both subtasks, we used following supervised
machine learning algorithms to train the model:

• Logistic Regression (LR) implemented in Li-
blinear (Fan et al., 2008).

• DecisionTree, Naı̈veBayes, KNN, Random
Forest, LR, SVM, SGD and AdaBoost all
implemented in scikit-learn tools (Pedregosa
et al., 2011).

11https://pypi.python.org/pypi/wordsegment
12https://github.com/haierlord/resource/blob/master/

Emoticon.txt

601

(a) Model submitted to contest (b) Model Explored after Contest with
Attention and Additional Drop Out

Figure 1: The architecture of our LSTM models. (a) The NN model submitted to Task A, which only incorporates
a drop out layer after bi-lstm layer. (b) The NN model explored after contest, which adds attention layer and
incorporates additional drop out at both embedding and lstm layers.

2.2.2 Deep Learning
Next, we explored neural networks in subtask A.
We modeled all the tweets data through a
Bi-LSTM network. The general architecture of
the model was depicted in Figure 1.

• Input and Embedding Layer: Each tweet
was preprocessed by normalizing hyper links
and mentions to someurl and someuser as de-
scribed in 2.1.1 and extracting word n-grams
in hashtags as described in 2.1.4. Then the
tweet was converted into a vector and padded
to an equal length (or truncated if the tweet is
longer than the pre-defined length). The input
vector was fed to the embedding layer (i.e.
pre-trained glove.twitter.27B vectors), which
converted each word into a distributional vec-
tor.

• Bi-LSTM Layer: We used bi-directional L-
STMs to model the input sequence. In the
bidirectional architecture, two layers of hid-
den nodes from two LSTMs captured com-
positional semantics from both forward and
backward directions of the word sequence.

• Attention Layer: We add attention layer to
model the weights of input words follow
(Raffel and Ellis, 2016), i.e. learning the
weights of hidden states at each time stamp,

then computing the sentence representation
via a weighted sum.

• Output Layer: The output of Bi-LSTM was
passed to a fully connected (FC) layer,
which produced a higher order feature set
easily separable for 2 classes. Finally, a
softmax layer was added on top of the fully
connected layer. The network was trained by
minimizing the binary cross-entropy error
with ADAM (Kingma and Ba, 2015) for
parameter optimization.

3 Experiments and Results

3.1 Datasets
The statistics of the datasets provided by SemEval
2018 task 3 are shown in Table 1.

Subtask A Label 0(%) Label 1(%) - -
train 1,923 (50.2%) 1,911 (49.8%) - -
test 473 (60.3%) 311 (39.7%) - -

Subtask B Label 0(%) Label 1(%) Label 2(%) Label 3(%)
train 1,923 (50.2%) 1,390 (36.3%) 316 (8.2%) 205 (5.3%)
test 473 (60.3%) 164 (20.9%) 85 (10.8%) 62 (7.9%)

Table 1: Statistics of datasets in train and test data.
Label 0 stands for non-ironic, label 1 in subtask A is
ironic, label 1, 2, 3 in subtask B is respectively polarity
contrast irony, situational irony and other verbal irony.

3.2 Evaluation Metric
The official evaluation criterion is as follow:

602

• For subtask A, only F1-score of Ironic class
is used.

F = Fpos

• For subtask B, macro-averaged F1-score cal-
culated among all four classes is used.

Fmacro =
Fpolar cont+Fsenti+Fother+Fnon

4

3.3 Experiments on training data
3.3.1 Subtask A: Irony Detection
We used a series of features and explored different
machine learning algorithms, in combination with
neural networks, in subtask A.

Machine Learning
The count of the train data was only 3,834 and

no dev datasets were provided. To fully exploit
these data, we used 10-fold cross-validation with
data shuffling. The major feature selection work
was done with LibLinear L2-regularized logistic
regression (LibLinear LR).

We used the following features in Table 2 as the
baseline features. Since the cross validation oper-
ations were done with data shuffling, some fluc-
tuations in result might exist. From the table it
can be observed that all these features can make
contributions to the classifier.

Features Fpos,macro

GloVe 0.6314
.+Word2Vec 0.6336 (+0.0022)
.+Punction 0.6382 (+0.0046)
.+ners 0.6406 (+0.0024)
.+Sentiment Lexicon 0.6432 (+0.0026)
.+Emoticon 0.6462 (+0.0030)
.+Elongated 0.6465 (+0.0003)

Table 2: Performance of different features on cross-
validation shuffling data test. “.+” means to add current
features to the previous feature set. The numbers in the
parentheses are the performance increments compared
with the previous results.

Then we added three other features: Word
N-grams, Hashtags and Hashtag unigrams.
Each feature had two versions, with or without
Relevant frequency (RF). Simultaneously, we
set different word frequency when building
lexicon for these features, from frequency
threshold 1 to 5. In order to choose features
which can improve the performance best, we used
Hill Climbing method.

Hill Climbing is a method which can automati-
cally extract the best features from a set of given
features. Its principle is as follows:

1. Given a Candidate Feature set, traverse
each feature and move the feature producing
the best performance into Best Feature set.

2. Traverse the remaining features in
Candidate Feature set, ensemble each one
with Best Feature set to train the model. If
one feature can lead to better performance
than before, move it to Best Feature set.

3. Repeat step 3 until that Candidate Feature
set is empty.

4. The best feature combination can be obtained
by traversing Best Feature set according to
the insertion order of each feature.

After running Hill Climbing 5 times and extract-
ed the features from each first line, we selected 7
features, as shown in Table 3.

Feature Threshold With RF
Trigram 4 Yes
Bigram 2 Yes
Hashtag 2 Yes
Hashtag 1 Yes
Hashtag unigram 1 No
Trigram 2 Yes
Unigram 2 Yes

Table 3: The results of hill climbing.

Algorithms Fpos,macro

SkLearn Naı̈veBayes 0.7111
Sklearn LR 0.6953
LibLinear LR 0.6947

Table 4: Performance of three best learning algorithms.

Then we explored the performance of different
learning algorithms. Table 4 lists the comparison
of best three supervised learning algorithms with
all above features.

Finally, we made ensemble of three algorithms
in Table 4. The ensemble score was 0.6982.

Neural Networks
In our LSTM framework, the dimension of

word vector was set to 100 and the hidden layers
for both LSTM and FC layers were set to 256.
The drop out rate was set to 0.2 for preventing
overfitting. 10% of the training data were
randomly selected as validation set. The best
model during training was used in test evaluation
stage. We implement the framework based on
Tensor-flow (Abadi et al., 2016) and Keras13.

13https://keras.io/

603

seed precision recall f1-score
6815 seed3 0.683908 0.639785 0.661111
6867 seed7 0.705036 0.553672 0.620253
6684 seed11 0.658654 0.709845 0.683292
6789 seed13 0.668142 0.758794 0.710588
6658 seed23 0.692308 0.574468 0.627907

Table 5: Performance of partial neural networks on
subtask A on train and dev datasets.

The performance results on train datasets are
listed in Table 5, and the average is about 0.66.

Ensemble of Machine Learning and Neural
Networks

The average performance of machine learning
and neural networks were respectively 0.69 and
0.66. We ensembled different results of neural
network and of machine learning. Here we used 4
algorithms, i.e., Scikit-Learn’s Naı̈veBayes, LR,
SVM and LibLinear’s LR, to avoid that label 0
and label 1 were voted same times.

During the ensemble, we also tried another s-
trategy. Since we wanted to higher the recall value
of positive labels, we ensembled only the data pre-
dicted as “label 0” by neural networks. For those
“label 1” data, we remained their original labels.
The results of this strategy will be discussed in 3.4.

3.3.2 Subtask B: Irony Classification
When handling subtask B, we used only machine
learning. We conducted two steps in subtask B.

In the first step, the average f1-macro score is
between 0.42-0.43. Table 6 shows how much
each class is graded, the f1-scores of label 2 and
3 are much lower than that of label 0 and 1. This
is caused by imbalance in data distribution.

Features f1-score of
Label 0 Label 1 Label 2 of Label 3

Other features 0.712455 0.649360 0.254167 0.066390
.+URL Unigram T1 0.710811 0.421364 0.282700 0.074074
.+URL Unigram T2 0.712627 0.655994 0.280922 0.105691
.+URL Unigram T3 0.703121 0.648396 0.241015 0.067511
.+URL Unigram T4 0.703121 0.650534 0.280922 0.074689
.+URL Unigram T5 0.709412 0.649573 0.278119 0.075630

Table 6: The f1-scores of each label in subtask B.
Here label 0 represents for Non-ironic, 1 for Polarity
contrast, 2 for Situational irony, 3 for Other verbal
irony.

In the second step, to solve the problem of im-
balance in data distribution, we enlarged the data
size of label 2 and 3. Label 2 was expanded 6
times, and label 3 was expanded to 10 times. Then
we ensembled multi-algorithms. Each algorithm
would perform 4 binary-classifications successive-

ly. Finally, we used Scikit-Learn LR for label 0, 1,
2, and Scikit-Learn SVM for label 3. Results are
listed in Table 7.

Label precision recall f1-score
0 0.669960 0.705148 0.687104
1 0.656558 0.623022 0.639350
2 0.343333 0.325949 0.334416
3 0.167539 0.156098 0.161616

Average score
- 0.459348 0.452554 0.455622

Table 7: The performances of using 4 binary
classifications

However, when generating test files, the output
results fluctuated remarkably. At last, we didn’t
hand in the output result generated by step 2.

3.4 Results on Test Data

Subtask System f1-score (%)

Subtask A

ECNU 0.5931 (20)
THU NGN 0.7054 (1)
NTUA-SLP 0.6719 (2)
WLV 0.6500 (3)

Subtask B

ECNU 0.2326 (30)
UCDCC 0.5074 (1)
NTUA-SLP 0.4959 (2)
THU NGN 0.4947 (3)

Table 8: Performance of our systems and top-ranked
teams on both two subtasks. The numbers in the
parentheses are the official rankings. The evaluation
metrics in mentioned in 3.2.

Table 8 shows the results of our system and the
top-ranked systems provided by the official. Com-
pared with the top ranked systems, there’s so much
room for improvement in our work. There are sev-
eral possible reasons for this.

• First, the overfitting problems is very seri-
ous. The scores during Training and dev pe-
riod and test period differed significantly. It
will be discussed in 3.5.

• Second, possibly the features failed to ex-
tract useful information from the test da-
ta Unlike Word N-Grams, some features, like
hashtag, the probability of the same hashtag
or matching words appearing in both test files
and training files is quite low.

3.5 Supplement results beside the contest
3.5.1 Ensemble of Machine Learning and

Neural Networks on subtask A
This is the performance of machine learning algo-
rithms on subtask A after the contest.

604

Model seed x precision recall f1-score (%)
NN 6815 sd3 0.580282 0.662379 0.618619 (12)
NN 6867 sd7 0.626415 0.533762 0.576389 (27)
NN 6684 sd11 0.532895 0.781350 0.633638 (6)
NN 6789 sd13 0.529279 0.755627 0.622517 (10)
NN+additional dropout 6867 sd7 0.587393 0.65916 0.621212 (11)
NN+additional dropout 6684 sd11 0.525000 0.810289 0.637168 (6)
NN+additional dropout 6789 sd13 0.537079 0.768489 0.632275 (6)
NN+additional dropout+attention 6815 sd3 0.537383 0.739550 0.622463 (10)
NN+additional dropout+attention 6867 sd7 0.529870 0.655949 0.5862070 (24)
NN+additional dropout+attention 6684 sd11 0.544118 0.7138264 0.617524 (13)
NN+additional dropout+attention 6789 sd13 0.574850 0.6173633 0.595349 (19)

Table 9: Performance of pure neural networks on subtask A on test datasets. The number in parentheses is the
position of this result if submitted. Performances in Group ‘NN’ are based on Figure 1(a); Performances in
Group ‘NN+more dropout’ are based on Figure 1(a) with additional drop out settings; and Performances in Group
‘NN+more dropout+attention’ are based on Figure 1(b).

Ensemble precision recall f1-score (%)
TOP3 0.400000 0.553055 0.464238 (37)
4+NN, en0 0.450777 0.839228 0.586517 (24)
4+NN, en0 0.452340 0.839228 0.587838 (23)
4+NN 0.404651 0.559486 0.469636 (35)
4+NN, en0 0.493590 0.742765 0.593068 (20)

Table 10: Performance of ensemble on machine
learning and neural networks on subtask A and test
datasets. The numbers in parentheses represent
positions in the official ranking if the result is
submitted. The last record is the same as ECNU’s.

In Table 10, TOP3 means the ensemble of 3
best algorithms on train datasets. The 4+NN
means using 4 best machine learning algorithms
and ensemble them with the results of neural
networks. en0 means using the other strategy
mentioned in 3.3.1. Hence, the ensemble data
using the other strategy enjoys a particular high
recall value. Nevertheless, the performance of
these results differ greatly that on train datasets.

seed precision recall f1-score (%)
6815 sd3 0.580282 0.662379 0.618619 (12)
6867 sd7 0.626415 0.533762 0.576389 (27)
6684 sd11 0.532895 0.781350 0.633638 (6)
6789 sd13 0.529279 0.755627 0.622517 (10)
6658 sd23 0.601911 0.607717 0.604800 (17)

Table 11: Performance of pure neural networks. The
numbers in parentheses represent positions in the
official ranking if the result is submitted.

In Table 11, the average of f1-scores on pure
neural networks’ results is about 0.61. This phe-
nomenon indicates that in our work the training
of supervised machine learning appeared to have
been overfitted.

3.5.2 Neural Networks on subtask A

In Table 9 the average of f1-scores on pure neural
networks’ results are 0.61, 0.62 and 0.60 for three
Groups respectively.

This phenomenon indicates that in our work, the
training of supervised machine learning appeared
to be overfitted. Moreover, turn on drop out set-
tings in more neural network layers can further re-
duce overfitting.

However, our attempt of further incorporating
attention layer brought negative affect on subtask
A’s performance. This may suggest the weighted
sum of hidden states probably is not a good repre-
sentation of the sentence for irony detection.

4 Conclusion

In this paper, we explored supervised machine
learning algorithms and neural networks, detected
whether a given tweet was ironic or not, and
classified them into four more detailed categories.
The result was that the machine learning
classifiers overfitted, and neural networks
performed better than the traditional training
methods. The system performance for subtask A
ranked above average, and subtask B didn’t
perform so well. In future work, we consider
focusing more on exploring the neural networks.

Acknowledgements

This work is supported by the Science and
Technology Commission of Shanghai
Municipality Grant (No. 15ZR1410700) and the
open project of Shanghai Key Laboratory of
Trustworthy Computing (No.07dz22304201604).

605

References
Martı́n Abadi, Paul Barham, Jianmin Chen, Zhifeng

Chen, Andy Davis, Jeffrey Dean, Matthieu Devin,
Sanjay Ghemawat, Geoffrey Irving, Michael Isard,
et al. 2016. Tensorflow: A system for large-scale
machine learning. In OSDI, volume 16, pages 265–
283.

Steven Bird, Ewan Klein, and Edward Loper. 2009.
Natural language processing with Python: analyz-
ing text with the natural language toolkit. ” O’Reilly
Media, Inc.”.

Rong-En Fan, Kai-Wei Chang, Cho-Jui Hsieh, Xiang-
Rui Wang, and Chih-Jen Lin. 2008. Liblinear: A
library for large linear classification. Journal of
machine learning research, 9(Aug):1871–1874.

Cynthia Van Hee, Els Lefever, and Vronique Hoste.
Semeval-2018 task 3: Irony detection in english
tweets. In Proceedings of the 12th International
Workshop on Semantic Evaluation (SemEval-2018).

Diederik P Kingma and Jimmy Lei Ba. 2015. Adam:
A method for stochastic optimization. international
conference on learning representations.

Man Lan, Chew Lim Tan, Jian Su, and Yue Lu. 2009.
Supervised and traditional term weighting methods
for automatic text categorization. IEEE transactions
on pattern analysis and machine intelligence,
31(4):721–735.

Man Lan, Guoshun Wu, Chunyun Xiao, Yuanbin Wu,
and Ju Wu. 2016. Building mutually beneficial
relationships between question retrieval and answer
ranking to improve performance of community
question answering. pages 832–839.

Christopher Manning, Mihai Surdeanu, John Bauer,
Jenny Finkel, Steven Bethard, and David McClosky.
2014. The stanford corenlp natural language
processing toolkit. In Proceedings of 52nd
annual meeting of the association for computational
linguistics: system demonstrations, pages 55–60.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Gregory S
Corrado, and Jeffrey Dean. 2013. Distributed
representations of words and phrases and their
compositionality. neural information processing
systems, pages 3111–3119.

Fabian Pedregosa, Gaël Varoquaux, Alexandre Gram-
fort, Vincent Michel, Bertrand Thirion, Olivier
Grisel, Mathieu Blondel, Peter Prettenhofer, Ron
Weiss, Vincent Dubourg, et al. 2011. Scikit-learn:
Machine learning in python. Journal of machine
learning research, 12(Oct):2825–2830.

Jeffrey Pennington, Richard Socher, and Christopher D
Manning. 2014. Glove: Global vectors for word
representation. pages 1532–1543.

Colin Raffel and Daniel PW Ellis. 2016. Feed-forward
networks with attention can solve some long-term

memory problems. In the workshop proceedings of
ICLR 2016.

Fabrizio Sebastiani. 2002. Machine learning in
automated text categorization. ACM Computing
Surveys, 34(1):1–47.

606

Proceedings of the 12th International Workshop on Semantic Evaluation (SemEval-2018), pages 607–612
New Orleans, Louisiana, June 5–6, 2018. ©2018 Association for Computational Linguistics

KLUEnicorn at SemEval-2018 Task 3: A Naı̈ve Approach to Irony
Detection

Luise Dürlich
Friedrich-Alexander Universität Erlangen-Nürnberg / Germany

luise.duerlich@fau.de

Abstract

This paper describes the KLUEnicorn system
submitted to the SemEval-2018 task on “Irony
detection in English tweets”. The proposed
system uses a naı̈ve Bayes classifier to exploit
rather simple lexical, pragmatic and semantic
features as well as sentiment. It further takes
a closer look at different adverb categories and
named entities and factors in word-embedding
information.

1 Introduction

Automatic irony and sarcasm detection has made
great advances in recent years, evolving from
considering purely lexical information (Kreuz
and Caucci, 2007) to sentiment (González-Ibáñez
et al., 2011) and semantics (Ghosh et al., 2015).
With new approaches that are aware of the con-
text a tweet is produced in, promising results of as
much as 87% accuracy (Silvio et al., 2016) have
been achieved.

In the following sections, I present a constrained
contribution to the SemEval-2018 irony detection
task (Van Hee et al., 2018). As useful context for
the training data was rather hard to come by, a
solely tweet based approach is explored. In the
next section, the dataset provided by the task or-
ganizers will be discussed. Sections 3 and 4 will
elaborate on data preprocessing and the types of
features that were tested. Finally, sections 5, 6 and
7 will present experiments on the usefulness of dif-
ferent features to different classifiers, the settings
used for the submitted systems and the competi-
tion results.

2 Data

To train the system, only the official training set
consisting of 3,834 tweets was used. Of these
tweets 1,911 were ironic and 1,923 were non-
ironic. Depending on the subtask at hand, namely

binary irony detection (task A) or the differenti-
ation between different types of irony (task B),
the ironic tweets were further categorized as ei-
ther verbal irony by means of polarity contrast
(class 1), other verbal irony (class 2) or situational
irony (class 3). This resulted in 1,390 examples
for class 1, 316 examples for class 2 and 205 ex-
amples for class 3. The tweets still contained the
original URLs, that were further analyzed to get
an idea of whether or not they could provide use-
ful context information. However, only as much
as 14% of the ironic sample even contained URLs
and most of these just linked to images and the
original tweet on Twitter. As the data did not in-
clude the names of the authors or contained any
additional context information,1 context with re-
spect to the authors user profile was not explored
further.

3 Preprocessing

As preparation for tagging, segmentation prob-
lems – especially arising around emoji and punctu-
ation marks – were corrected, user mentions were
anonymized to “@user” and URLs replaced by
“http://url.com”. Hashtags were stripped of the
“#” and segmented using a simple hand-crafted
hashtag tokenizer that relies on regular expres-
sions and a dictionary consisting of the Unix
wordlist and terms filtered from some 190,000
tweets to account for non-standard words and
spelling. The tweets were then tagged using the
part-of-speech tagger provided by Ark TweetNLP
(O’Connor et al., 2013) and filtered using regu-
lar expressions. Conjunctions, determiners, exis-
tential uses of “there”, numerals, predeterminers,
prepositions, pronouns, punctuation, URLs and
user mentions were discarded. Finally, some per-

1The profiles of users mentioned in the tweets were not
considered.

607

sisting segmentation issues related to the tagging
– e.g. sequences of emoji were not segmented and
sometimes assigned the wrong tag – were resolved
and proper nouns identified by the tagger were re-
placed by “ˆ NNP”.

4 Features

The features described in this section were either
obtained from tagged tweets, raw tweets as string
or tokenized raw tweets using the tokenizer pro-
vided by Ark TweetNLP. For tokenization, some
adaptions had to be made to ensure correct seg-
mentation around emoji. In general, the focus
was laid on quick and easy-to-extract binary or
count-based tweet properties (except for embed-
dings and named entities). The features used to
train the model, can be assigned to the following
categories:

Lexical: A bag-of-words was extracted from the
tagged tweets using the TfidfVectorizer provided
by scikit-learn (Pedregosa et al., 2011).

As more of a structural feature, tweet length
both in terms of words and in terms of characters
was exploited.

Pragmatic: The amount of punctuation, quota-
tion marks, character repetition – and as special
case ellipsis (expressed by “...”) – as well as up-
percase words were added to the features by sim-
ply counting their occurrence. As Twitter-specific
patterns, the presence and number of user men-
tions, urls and hashtags as well as the number of
emoji in a given tweet were noted.

Sentiment: Two sentiment lexicons were used
to capture the mean positive, objective and nega-
tive sentiment associated with the hashtags, emoji
and normal words present in a given tweet:

1. AFINN (Nielsen, 2011), a list of about 2,500
entries assigned to a scale ranging from -5 to
5, that also covers some expressions common
in texting and microblogging (e.g. “lol”).

2. SentiWordNet (SWN) (Esuli and Sebastiani,
2006), a much larger resource that provides
different sentiment scores for the different
meanings of a word, but restricted to more
standard words.

To circumvent too complex disambiguation for the
senses in SWN, the mean sentiment scores of the
possible meanings were taken and whenever an

AFINN entry existed, scores were reweighted in
favor of the AFINN sentiment. The scores on
emoji were obtained using the emoji aliases pro-
vided by the Python emoji package.2

Semantic: Inspired by the use of word em-
beddings to contrast a tweet’s sarcastic reading
with its non-sarcastic representation proposed by
(Ghosh et al., 2015), separate models were trained
on the ironic and non-ironic instances within the
training set. The models were obtained using
word2vec as provided by gensim and the model
parameters were set to 100 dimensions and a win-
dow size of 5. Hierachical softmax was used for
training. To obtain the literal and ironic represen-
tations of a tweet, the sums of ironic and non-
ironic word embeddings were calculated and the
embedding vectors were normalized to length 1 re-
spectively.

Other: In an attempt to capture ironic tweets re-
ferring to specific numbers or amounts in a more
simplified way than Kumar et al. (2017), who also
take the deviation of a given number in the context
of a unit of measurement with respect to the mean
number encountered with that unit into account,
information about the presence of certain number
expressions was added to the feature vector.

To get a more fine grained representation of
the adverbs used in tweets, a list of different ad-
verb categories and corresponding adverbs was
collected from Wiktionary3. The list contains 19
different categories that are illustrated in table 1.
A possible advantage of this representation could
be that location or temporal location adverbs – that
might be informative in situational irony – can be
distinguished from adverbs modifying verbs or ad-
jectives, possibly more useful to spot verbal irony
containing e.g. hyperbole.

To record references to entities, the named en-
tity recongnizer provided by Stanford CoreNLP
(Finkel et al., 2005) was used. After the submis-
sion for task A, some more features were added,
namely the number of modals, negations and con-
trasting conjunctions or adverbs.

Weighting and Filtering: To account for less
informative features, F-tests were performed on
the features and only those that were among the
15% most significant were selected.

2https://pypi.python.org/pypi/emoji
3https://en.wiktionary.org/wiki/Category:English adverbs

608

Category Example

1 act-related adverbs accidentally

2 aspect adverbs still, yet

3 conjunctive adverbs hence

4 degree adverbs fairly

5 demonstrative adverbs here

6 focus adverbs especially

7 interrogative adverbs why

8 location adverbs there

9 manner adverbs ironically

10 pronomial adverbs therefore

11 sentence adverbs apparently

12 domain adverbs linguistically

13 evaluative adverbs alarmingly

14 speech-act adverbs honestly

15 modal adverbs actually

16 suppletive adverbs well

17 duration adverbs always

18 frequency adverbs constantly

19 temporal location adverbs now

Table 1: Adverb categories based on Wiktionary

5 Feature Evaluation:

In order to gain insight on the usefulness of the
features, a set of experiments4 was performed, in
which the features were assigned specific groups
and a selection of classifiers was either trained on
the group alone or on all features but those in the
group. 10-fold cross-validation was performed on
the training set comparing a Gaussian naı̈ve Bayes
classifier, support vector machines, a decision tree
and a random forest classifier. The groups are re-
ported in table 2.5

Results when training on the features without
the bag-of-words, displayed in table 3, show that –
with the exception of group 5 – most of the groups
do not seem to make a big contribution to the rest
of the feature set and their exclusion does not lead
to substantial drops in performance. For group 5, a
decrease in performance of as much as 10% can be
observed for the random forest classifier compared
to the performance on all features recorded in table
4.

Training on selected features from just one of
the groups at a time shows that groups 3 and 5 are
already very informative and can produce f-scores

4Note that these experiments only focussed on task A.
5The bag-of-words was restricted to uni- and bigrams

with a minimum document frequency of 5.

Group Features # of Features

1 length in words, length in characters 2

2 character repetition, quotation marks, uppercase 4

3 presence and number of hashtags, URLs

and user mentions, presence of emoji 7

4 number of negations, modals, comparison,

adverbs 41

contrasting conjunctions / adverbs, amounts /

numbers and different types of adverbs

and entities

5 embedding dimensions 200

6 sentiment 9

7 full feature set (group 1 - 6) 263

8 bag-of-words A: 1,408

B: 1,455

Table 2: Feature group description

Without group NB DT SVM RF

1 69.03 57.61 67.64 68.48

2 69.03 57.98 67.64 68.33

3 68.83 57.87 69.81 68.04

4 68.99 57.87 67.58 67.50

5 65.59 56.50 62.65 60.22

6 69.01 58.10 67.65 67.74

Table 3: F1-score when omitting one group at a time
for binary irony detection

609

of 67.42% and 69.76% respectively. As we can
see in table 4, the best score is still obtained when
selecting from the entire feature set and training a
random forest.

Taking a look at the importance weights as-
signed by the random forest classifier, it emerges
that the embeddings range among the top 220
ranks and carry 91% of the importance weight.
They are thus quite important for classification.
Tweet length in characters is identified as the most
important feature followed by positive word sen-
timent scores, which might indicate that the as-
sumption by Clark and Gerrig (1984), that ironic
utterances are more likely to convey negative sen-
timent through literally positive one, also holds for
the observed tweets. Regarding adverb categories,
demonstrative adverbs appear to be most informa-
tive.6 Generally, it can be noted that every group
contributes to the top 250 important features with
at least one or two features.

Group NB DT SVM RF

1 48.88 51.12 50.99 53.20

2 50.12 47.07 51.67 48.66

3 67.42 67.42 67.42 67.42

4 51.08 41.36 43.67 42.14

5 68.76 58.22 69.76 67.31

6 65.57 53.15 47.25 54.21

7 69.05 56.77 67.25 68.18

8 56.77 51.77 53.60 54.76

all 68.61 60.52 68.18 70.06

Table 4: F1-score when training on one group at a time
in binary irony detection

6 Submission Settings

For the submission to task A, the parameters for
the TfidfVectorizer were set to uni-, bi- and tri-
grams and a minimum document frequency of 2.
The feature vectors did not account for modals,
negations and contrasting conjunctions or adverbs
since these were added to the feature set after the
submission deadline for task A. As the two classes
were balanced in training and test data, the priors
of the Gaussian naı̈ve Bayes classifier were set to
0.5 each.

6On the full feature set, location, degree, interrogative,
conjunctive, temporal location and focus adverbs rank among
the top 50 most important features when ignoring word em-
bedding dimensions.

For task B, the bag-of-words was based on uni-
grams only with a minimum document frequency
of 4. Binary features reporting the presence of
hashtags, URLs and user mentions were not in-
cluded. To distinguish different types of irony
as well as non-irony, a two-step classification ap-
proach was adopted, first deciding whether a tweet
was ironic and then labelling it as either situational
or verbal irony with or without polarity change.
No priors were defined for the second Gaussian
naı̈ve Bayes classifier.

7 Results

With respect to the competition results, the system
did not perform very well, getting to rank 27 for
task A and 23 for task B. Results compared to a
benchmark system and random forest with the best
settings are reported in table 5 for task A and in
table 6 for task B.7 Note that NB in table 6 refers
to a single Gaussian naı̈ve Bayes classifier trained
on the same features as KLUEnicorn*.

The results for task A indicate that the model
cannot compete with the benchmark system pro-
vided by the task organizers (a linear SVM trained
on bag-of-words only). Possible reasons for that
might be the restrictions imposed during prepro-
cessing and feature extraction – a minimum docu-
ment frequency of 5 might not be feasible on such
a small amount of tweets and summarizing all the
mentioned user names under the same token in-
stead of at least keeping the more frequent ones
as well as discarding certain parts-of-speech such
as personal pronouns for example, might not be
beneficial to the model. The quality of the word
embeddings, trained on a relatively small amount
of data, represents another issue.

System Accuracy Precision Recall F1-score

Benchmark 63.52 53.25 65.92 58.91

KLUEnicorn 59.44 49.14 64.31 55.71

KLUEnicorn* 65.56 57.20 52.41 54.69

RF 60.84 59.54 59.80 54.79

Table 5: Results on test data – Task A

For task B, table 6 suggests, that the submit-
ted system still performs worse than the bench-
mark, yet the version taking all features into ac-

7KLUEnicorn* refers to a version of the system trained
on a selection of the 15% most significant out of all features
including the bag-of-words.

610

System Accuracy Precision Recall F1-score

Benchmark 56.89 41.64 36.35 34.08

KLUEnicorn 34.69 32.14 35.39 29.82

KLUEnicorn* 49.11 42.51 48.62 40.42

NB 47.96 31.54 35.60 30.84

RF 51.53 40.67 33.40 30.11

Table 6: Results on test data – Task B

count shows a better performance, outperforming
the benchmark by 6% in terms of f-score.

Looking at the predictions in particular, we can
observe that the negative class is predicted with a
rather high precision (71.55%) for task A, while in
task B, non-irony is detected with a high recall of
almost 80%. Apparently, the model is best at pre-
dicting non-irony. In task B, the model struggles
most when predicting situational irony, achieving
an f1-score of only 11%. This is not very surpris-
ing, given the small amount of examples for class
3 in the training data.

Tables 7 and 8 show examples from the test set
for task A and B and the corresponding predictions
made by the classifier. As we can see, short mes-
sages lacking more informative context such as the
second example in table 7 or the first example in
table 8 are still an issue, whereas tweets contain-
ing hashtags that oppose the initial content of the
tweet text such as the third example in table 8 can
correctly be assigned class 1. With “#not” not be-
ing part of the training data, this is more difficult
for tweets like the fourth tweet, where only one
hashtag is present.

Gold label Pred. Tweet

0 0 NOT GONNA WIN http://t.co/Mc9ebqjAqj

0 1 @mickymantell He is exactly that sort of person. Weirdo!

1 1 Just walked in to #Starbucks and asked for a

””tall blonde”” Hahahaha #irony

1 0 @LadySandersfarm: Garner protesters chant ’F*ck

Fox News’ despite Fox agreeing with them

http://t.co/GWIS4hZAI6 #EricGarner #Irony

Table 7: Example predictions KLUEnicorn – Task A

8 Conclusion

In this paper, I described a rather simple system for
irony detection based on target tweets only, con-
sidering various kinds of features from semantic

Gold label Pred. Tweet

0 0 @ChainAttackJay No sugar during christmas time? :(

0 1 Woke Up , showered , made a lunch and got ready for

work only to realize that I have the whole weekend off.

1 1 Well got the truck buried today perfect way to start

a rainy Wednesday work day off #not #annoyed #pissed

1 2 Loooovvveeeeeee when my phone gets wiped -.- #not

2 2 Just walked in to #Starbucks and asked for a

””tall blonde”” Hahahaha #irony

2 3 and as much as I want to connect .. I like only

the people who dont want to .. #Irony #Why oh why?

3 2 People complain about my backround pic and

all I feel is like ””hey don’t blame me, Albert E

might have spoken those words”” #sarcasm #life

3 3 If you wanna look like a badass,

have drama on social media #not

Table 8: Example predictions KLUEnicorn* – Task B

information to different adverb categories. While
all feature groups seem to contribute to perfor-
mance, the embedded tweets were found to be
most informative and to bring a performance gain
of 3-10% depending on the classifier. However,
the presented system does not do a very good job
at detecting irony on the given data set. Both naı̈ve
Bayes and random forest cannot compete with the
simple baseline when it comes to just identifying
irony, but when different types of irony are to be
distinguished, a two-step model trained on a se-
lection of all features can outperform the bench-
mark. For better prediction, more reliable embed-
dings using more training data should be trained
and certain filter settings for preprocessing should
be revisited.

References

H. Clark and R. J. Gerrig. 1984. On the Pretense The-
ory of Irony. Journal of Experimental Psychology:
General, 1:121–126.

A. Esuli and F. Sebastiani. 2006. SENTIWORDNET:
A Publicly Available Lexical Resource for Opinion
Mining. In In Proceedings of the 5th Conference
on Language Resources and Evaluation (LREC06,
pages 417–422.

J. R. Finkel, T. Grenager, and C. Manning. 2005. In-
corporating Non-local Information into Information
Extraction Systems by Gibbs Sampling. In Proceed-

611

ings of the 43nd Annual Meeting of the Association
for Computational Linguistics, pages 363–370.

D. Ghosh, W. Guo, and S. Muresan. 2015. Sarcastic
or Not: Word Embeddings to Predict the Literal or
Sarcastic Meaning of Words. In Proceedings of the
2015 Conference on Empirical Methods in Natural
Language Processing, pages 1003–1012. Associa-
tion for Computational Linguistics.

R. González-Ibáñez, S. Muresan, and N. Wacholder.
2011. Identifying sarcasm in Twitter: a closer look.
In Proceedings of the 49th Annual Meeting of the
ASsociation for Computational Linguistics: Human
Language Technologies: short papers, volume 2,
pages 581–586.

R. Kreuz and G. Caucci. 2007. Lexical Influences
on the Perception of Sarcasm. Proceedings of the
Workshop on Computational Approaches to Figura-
tive Language, pages 2–4.

L. Kumar, A. Somani, and P. Bhattacharyya. 2017.
”Having 2 hours to write a paper is fun!”: Detect-
ing Sarcasm in Numerical Portions of Text. CoRR.

F. Å. Nielsen. 2011. AFINN. Informatics and Math-
ematical Modelling, Technical University of Den-
mark.

B. O’Connor, C. Dyer, K. Gimpel, N. Schneider,
and N. A. Smith. 2013. Improved Part-of-Speech
Tagging for Online Conversational Text with Word
Clusters. In Proceedings of NAACL.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,
R. Weiss, V. Dubourg, V. Vanderplas, A. Pas-
sos, D. Cournapeau, M. Brucher, M. Perrot, and
E. Duchesnay. 2011. Scikit-learn: Machine learning
in Python. Journal of Machine Learning Research,
12:2825–2830.

A. Silvio, B. C. Wallace, H. Lyu, P. Carvalho, and
M. J. Silva. 2016. Modelling Context with User
Embeddings for Sarcasm Detection in Social Me-
dia. In Proceedings of the 20th SIGNLL Confer-
ence on Computational Natural Language Learning
(CoNLL, pages 167–177, Berlin, Germany.

C. Van Hee, E. Lefever, and V. Hoste. 2018. SemEval-
2018 Task 3: Irony Detection in English Tweets. In
Proceedings of the 12th International Workshop on
Semantic Evaluation, SemEval-2018, New Orleans,
LA, USA. Association for Computational Linguis-
tics.

612

Proceedings of the 12th International Workshop on Semantic Evaluation (SemEval-2018), pages 613–621
New Orleans, Louisiana, June 5–6, 2018. ©2018 Association for Computational Linguistics

NTUA-SLP at SemEval-2018 Task 3: Tracking Ironic Tweets using
Ensembles of Word and Character Level Attentive RNNs

Christos Baziotis1,3, Nikos Athanasiou1, Pinelopi Papalampidi1,
Athanasia Kolovou1,2, Georgios Paraskevopoulos1,4, Nikolaos Ellinas1

Alexandros Potamianos1,4

1School of ECE, National Technical University of Athens, Athens, Greece
2 Department of Informatics, University of Athens, Athens, Greece

3 Department of Informatics, Athens University of Economics and Business, Athens, Greece
4 Behavioral Signal Technologies, Los Angeles, CA

cbaziotis@mail.ntua.gr, el12074@central.ntua.gr
el12003@central.ntua.gr, akolovou@di.uoa.gr

geopar@central.ntua.gr, nellinas@central.ntua.gr
potam@central.ntua.gr

Abstract
In this paper we present two deep-learning
systems that competed at SemEval-2018 Task
3 “Irony detection in English tweets”. We
design and ensemble two independent mod-
els, based on recurrent neural networks (Bi-
LSTM), which operate at the word and charac-
ter level, in order to capture both the semantic
and syntactic information in tweets. Our mod-
els are augmented with a self-attention mech-
anism, in order to identify the most informa-
tive words. The embedding layer of our word-
level model is initialized with word2vec word
embeddings, pretrained on a collection of 550
million English tweets. We did not utilize
any handcrafted features, lexicons or external
datasets as prior information and our models
are trained end-to-end using back propagation
on constrained data. Furthermore, we provide
visualizations of tweets with annotations for
the salient tokens of the attention layer that
can help to interpret the inner workings of the
proposed models. We ranked 2nd out of 42
teams in Subtask A and 2nd out of 31 teams
in Subtask B. However, post-task-completion
enhancements of our models achieve state-of-
the-art results ranking 1st for both subtasks.

1 Introduction

Irony is a form of figurative language, considered
as “saying the opposite of what you mean”, where
the opposition of literal and intended meanings is
very clear (Barbieri and Saggion, 2014; Liebrecht
et al., 2013). Traditional approaches in NLP (Tsur
et al., 2010; Barbieri and Saggion, 2014; Karoui
et al., 2015; Farías et al., 2016) model irony based
on pattern-based features, such as the contrast be-
tween high and low frequent words, the punctua-
tion used by the author, the level of ambiguity of

yay its fucking monday life is so perfect and

magical i love everything

Label: ironic by clash

b e a u t i f u l w a y t o s t a r t m y

m o r n i n g .

Label: ironic by clash

Figure 1: Attention heat-map visualization. The
color intensity of each word / character, corre-
sponds to its weight (importance), as given by the
self-attention mechanism (Section 2.6).

the words and the contrast between the sentiments.
Also, (Joshi et al., 2016) recently added word em-
beddings statistics to the feature space and further
boosted the performance in irony detection.

Modeling irony, especially in Twitter, is a chal-
lenging task, since in ironic comments literal
meaning can be misguiding; irony is expressed
in “secondary” meaning and fine nuances that are
hard to model explicitly in machine learning al-
gorithms. Tracking irony in social media posses
the additional challenge of dealing with special
language, social media markers and abbreviations.
Despite the accuracy achieved in this task by hand-
crafted features, a laborious feature-engineering
process and domain-specific knowledge are re-
quired; this type of prior knowledge must be con-
tinuously updated and investigated for each new
domain. Moreover, the difficulty in parsing tweets
(Gimpel et al., 2011) for feature extraction renders

613

their precise semantic representation, which is key
of determining their intended gist, much harder.

In recent years, the successful utilization of
deep learning architectures in NLP led to alterna-
tive approaches for tracking irony in Twitter (Joshi
et al., 2017; Ghosh and Veale, 2017). (Ghosh
and Veale, 2016) proposed a Convolutional Neu-
ral Network (CNN) followed by a Long Short
Term Memory (LSTM) architecture, outperform-
ing the state-of-the-art. (Dhingra et al., 2016) uti-
lized deep learning for representing tweets as a se-
quence of characters, instead of words and proved
that such representations reveal information about
the irony concealed in tweets.

In this work, we propose the combination of
word- and character-level representations in or-
der to exploit both semantic and syntactic infor-
mation of each tweet for successfully predicting
irony. For this purpose, we employ a deep LSTM
architecture which models words and characters
separately. We predict whether a tweet is ironic
or not, as well as the type of irony in the ironic
ones by ensembling the two separate models (late
fusion). Furthermore, we add an attention layer to
both models, to better weigh the contribution of
each word and character towards irony prediction,
as well as better interpret the descriptive power
of our models. Attention weighting also better
addresses the problem of supervising learning on
deep learning architectures. The suggested model
was trained only on constrained data, meaning that
we did not utilize any external dataset for further
tuning of the network weights.

The two deep-learning models submitted to
SemEval-2018 Task 3 “Irony detection in English
tweets” (Van Hee et al., 2018) are described in
this paper with the following structure: in Sec-
tion 2 an overview of the proposed models is pre-
sented, in Section 3 the models for tracking irony
are depicted in detail, in Section 4 the experimen-
tal setup alongside with the respective results are
demonstrated and finally, in Section 5 we discuss
the performance of the proposed models.

2 Overview

Fig. 2 provides a high-level overview of our ap-
proach, which consists of three main steps: (1) the
pre-training of word embeddings, where we train
our own word embeddings on a big collection
of unlabeled Twitter messages, (2) the indepen-
dent training of our models: word- and char-level,

Unlabeled
Dataset

Embeddings
Pre-training

Word
Embeddings

Training
Dataset

Raw Input Data
(characters)

Training
Dataset

Text
Preprocessing

Processed
Input Data

Text
Preprocessing

Word-level DNN

Char-level DNN

Em
b

ed
d

in
g

La
ye

r
Em

b
ed

d
in

g
La

ye
r

Po
sterio

rs
Po

sterio
rs

P
red

ictio
n

s

En
sem

b
le

Figure 2: High-level overview of our approach

(3) the ensembling, where we combine the predic-
tions of each model.

2.1 Task definitions

The goal of Subtask A is tracking irony in tweets
as a binary classification problem (ironic vs. non-
ironic). In Subtask B, we are also called to
determine the type of irony, with three differ-
ent classes of irony on top of the non-ironic one
(four-class classification). The types of irony are:
(1) Verbal irony by means of a polarity con-
trast, which includes messages whose polarity
(positive, negative) is inverted between the lit-
eral and the intended evaluation, such as "I really
love this year’s summer; weeks and weeks of aw-
ful weather", where the literal evaluation ("I re-
ally love this year’s summer") is positive, while
the intended one, which is implied in the context
("weeks and weeks of awful weather"), is nega-
tive. (2) Other verbal irony, which refers to in-
stances showing no polarity contrast, but are ironic
such as "Yeah keeping cricket clean, that’s what he
wants #Sarcasm" and (3) situational irony which
is present in messages that a present situation fails
to meet some expectations, such as "Event tech-
nology session is having Internet problems. #irony
#HSC2024" in which the expectation that a tech-
nology session should provide Internet connection
is not met.

2.2 Data

Unlabeled Dataset. We collected a dataset of 550
million archived English Twitter messages, from
Apr. 2014 to Jun. 2017. This dataset is used for
(1) calculating word statistics needed in our text
preprocessing pipeline (Section 2.4) and (2) train-

614

ing word2vec word embeddings (Section 2.3).

2.3 Word Embeddings

Word embeddings are dense vector representa-
tions of words (Collobert and Weston, 2008;
Mikolov et al., 2013), capturing semantic their and
syntactic information. We leverage our unlabeled
dataset to train Twitter-specific word embeddings.
We use the word2vec (Mikolov et al., 2013) al-
gorithm, with the skip-gram model, negative sam-
pling of 5 and minimum word count of 20, uti-
lizing Gensim’s (Řehůřek and Sojka, 2010) im-
plementation. The resulting vocabulary contains
800, 000 words. The pre-trained word embeddings
are used for initializing the first layer (embedding
layer) of our neural networks.

2.4 Preprocessing1

We utilized the ekphrasis2 (Baziotis et al., 2017)
tool as a tweet preprocessor. The preprocessing
steps included in ekphrasis are: Twitter-specific
tokenization, spell correction, word normaliza-
tion, word segmentation (for splitting hashtags)
and word annotation.
Tokenization. Tokenization is the first fundamen-
tal preprocessing step and since it is the basis for
the other steps, it immediately affects the quality
of the features learned by the network. Tokeniza-
tion in Twitter is especially challenging, since
there is large variation in the vocabulary and the
used expressions. Part of the challenge is also the
decision of whether to process an entire expres-
sion (e.g. anti-american) or its respective tokens.
Ekphrasis overcomes this challenge by recogniz-
ing the Twitter markup, emoticons, emojis, ex-
pressions like dates (e.g. 07/11/2011, April 23rd),
times (e.g. 4:30pm, 11:00 am), currencies (e.g.
$10, 25mil, 50e), acronyms, censored words (e.g.
s**t) and words with emphasis (e.g. *very*).
Normalization. After the tokenization we apply
a series of modifications on the extracted tokens,

1Significant portions of the systems submitted to SemEval
2018 in Tasks 1, 2 and 3, by the NTUA-SLP team are shared,
specifically the preprocessing and portions of the DNN archi-
tecture. Their description is repeated here for completeness.

2github.com/cbaziotis/ekphrasis

such as spell correction, word normalization and
segmentation. We also decide which tokens to
omit, normalize and surround or replace with spe-
cial tags (e.g. URLs, emails and @user). For
the tasks of spell correction (Jurafsky and James,
2000) and word segmentation (Segaran and Ham-
merbacher, 2009) we use the Viterbi algorithm.
The prior probabilities are initialized using uni/bi-
gram word statistics from the unlabeled dataset.

The benefits of the above procedure are the re-
duction of the vocabulary size, without removing
any words, and the preservation of information
that is usually lost during tokenization. Table 1
shows an example text snippet and the resulting
preprocessed tokens.

2.5 Recurrent Neural Networks

We model the Twitter messages using Recurrent
Neural Networks (RNN). RNNs process their in-
puts sequentially, performing the same operation,
ht = fW (xt, ht−1), on every element in a se-
quence, where ht is the hidden state t the time
step, and W the network weights. We can see that
hidden state at each time step depends on previous
hidden states, thus the order of elements (words)
is important. This process also enables RNNs to
handle inputs of variable length.

RNNs are difficult to train (Pascanu et al.,
2013), because gradients may grow or decay ex-
ponentially over long sequences (Bengio et al.,
1994; Hochreiter et al., 2001). A way to overcome
these problems is to use more sophisticated vari-
ants of regular RNNs, like Long Short-Term Mem-
ory (LSTM) networks (Hochreiter and Schmidhu-
ber, 1997) or Gated Recurrent Units (GRU) (Cho
et al., 2014), which introduce a gating mechanism
to ensure proper gradient flow through the net-
work. In this work, we use LSTMs.

2.6 Self-Attention Mechanism

RNNs update their hidden state hi as they pro-
cess a sequence and the final hidden state holds
a summary of the information in the sequence.
In order to amplify the contribution of important
words in the final representation, a self-attention
mechanism (Bahdanau et al., 2014) can be used

original The *new* season of #TwinPeaks is coming on May 21, 2017. CANT WAIT \o/ !!! #tvseries #davidlynch :D
processed the new <emphasis> season of <hashtag> twin peaks </hashtag> is coming on <date> . cant <allcaps> wait

<allcaps> <happy> ! <repeated> <hashtag> tv series </hashtag> <hashtag> david lynch </hashtag> <laugh>

Table 1: Example of our text processor

615

𝑥1

ℎ1

𝑥2

ℎ2

𝑥3

ℎ3

𝑥𝑁

𝒉𝑵

…𝑅𝑁𝑁 𝑅𝑁𝑁 𝑅𝑁𝑁 𝑅𝑁𝑁

(a) Regular RNN

𝑥1

𝑎1

ℎ1

𝑥2

ℎ2

𝑥3

ℎ3

𝑥𝑁

ℎ𝑁

…𝑅𝑁𝑁 𝑅𝑁𝑁 𝑅𝑁𝑁 𝑅𝑁𝑁

𝑎2 𝑎3 𝑎𝑁

(b) Attention RNN

Figure 3: Comparison between the regular RNN
and the RNN with attention.

(Fig. 3). In normal RNNs, we use as represen-
tation r of the input sequence its final state hN .
However, using an attention mechanism, we com-
pute r as the convex combination of all hi. The
weights ai are learned by the network and their
magnitude signifies the importance of each hid-
den state in the final representation. Formally:
r =

∑N
i=1 aihi,where

∑N
i=1 ai = 1, and ai > 0.

3 Models Description

We have designed two independent deep-learning
models, with each one capturing different aspects
of the tweet. The first model operates at the word-
level, capturing the semantic information of the
tweet and the second model at the character-level,
capturing the syntactic information. Both models
share the same architecture, and the only differ-
ence is in their embedding layers. We present both
models in a unified manner.

3.1 Embedding Layer

Character-level. The input to the network is a
Twitter message, treated as a sequence of char-
acters. We use a character embedding layer
to project the characters c1, c2, ..., cN to a low-
dimensional vector space RC , where C the size of
the embedding layer and N the number of charac-
ters in a tweet. We randomly initialize the weights
of the embedding layer and learn the character em-
beddings from scratch.
Word-level. The input to the network is a Twit-
ter message, treated as a sequence of words. We
use a word embedding layer to project the words
w1, w2, ..., wN to a low-dimensional vector space
RW , where W the size of the embedding layer and
N the number of words in a tweet. We initialize
the weights of the embedding layer with our pre-
trained word embeddings.

3.2 BiLSTM Layers

An LSTM takes as input the words (characters)
of a tweet and produces the word (character) an-
notations h1, h2, ..., hN , where hi is the hidden
state of the LSTM at time-step i, summarizing
all the information of the sentence up to wi (ci).
We use bidirectional LSTM (BiLSTM) in order to
get word (character) annotations that summarize
the information from both directions. A bidirec-
tional LSTM consists of a forward LSTM

−→
f that

reads the sentence from w1 to wN and a backward
LSTM

←−
f that reads the sentence from wN to w1.

We obtain the final annotation for a given word
wi (character ci), by concatenating the annotations
from both directions, hi =

−→
hi ‖

←−
hi , hi ∈ R2L

where ‖ denotes the concatenation operation and
L the size of each LSTM. We stack two layers of
BiLSTMs in order to learn more high-level (ab-
stract) features.

3.3 Attention Layer

Not all words contribute equally to the meaning
that is expressed in a message. We use an atten-
tion mechanism to find the relative contribution
(importance) of each word. The attention mech-
anism assigns a weight ai to each word annotation
hi. We compute the fixed representation r of the
whole input message. as the weighted sum of all
the word annotations.

ei = tanh(Whhi + bh), ei ∈ [−1, 1] (1)

ai =
exp(ei)∑T
t=1 exp(et)

,

T∑

i=1

ai = 1 (2)

r =
T∑

i=1

aihi, r ∈ R2L (3)

where Wh and bh are the attention layer’s weights.
Character-level Interpretation. In the case of
the character-level model, the attention mecha-
nism operates in the same way as in the word-
level model. However, we can interpret the weight
given to each character annotation hi by the atten-
tion mechanism, as the importance of the informa-
tion surrounding the given character.

3.4 Output Layer

We use the representation r as feature vector for
classification and we feed it to a fully-connected
softmax layer with L neurons, which outputs a

616

probability distribution over all classes pc as de-
scribed in Eq. 4:

pc =
eWr+b

∑
i∈[1,L](e

Wir+bi)
(4)

where W and b are the layer’s weights and biases.

Ԧ𝑟

Classifier

E
m
b
ed
d
in
g

𝐿𝑆𝑇𝑀

𝐿𝑆𝑇𝑀

ℎ1 ℎ1

Ԧ𝑥1

𝑤1(𝑐1)

𝐿𝑆𝑇𝑀

𝐿𝑆𝑇𝑀

ℎ2 ℎ2

Ԧ𝑥2

𝑤2(𝑐2)

𝐿𝑆𝑇𝑀

𝐿𝑆𝑇𝑀

ℎ𝑁 ℎ𝑁

Ԧ𝑥𝑁

𝑤𝑁(𝑐𝑁)

…

…

B
i-
L
ST
M

𝐿𝑆𝑇𝑀

𝐿𝑆𝑇𝑀

ℎ1 ℎ1

𝐿𝑆𝑇𝑀

𝐿𝑆𝑇𝑀

ℎ2 ℎ2

𝐿𝑆𝑇𝑀

𝐿𝑆𝑇𝑀

ℎ𝑁 ℎ𝑁

…

…

B
i-
L
ST
M

T
w
ee
t

R
ep
re
se
n
ta
ti
o
n

𝑎𝑁𝑎2𝑎1

…

Figure 4: The word/character-level model.

3.5 Regularization

In order to prevent overfitting of both models, we
add Gaussian noise to the embedding layer, which
can be interpreted as a random data augmentation
technique, that makes models more robust to over-
fitting. In addition to that, we use dropout (Srivas-
tava et al., 2014) and early-stopping.

Finally, we do not fine-tune the embedding lay-
ers of the word-level model. Words occurring in
the training set, will be moved in the embedding
space and the classifier will correlate certain re-
gions (in embedding space) to certain meanings or
types of irony. However, words in the test set and
not in the training set, will remain at their initial
position which may no longer reflect their “true”
meaning, leading to miss-classifications.

3.6 Ensemble
A key factor to good ensembles, is to utilize di-
verse classifiers. To this end, we combine the pre-
dictions of our word and character level models.
We employed two ensemble schemes, namely un-
weighted average and majority voting.
Unweighted Average (UA). In this approach, the
final prediction is estimated from the unweighted
average of the posterior probabilities for all differ-
ent models. Formally, the final prediction p for a
training instance is estimated by:

p = argmax
c

1

C

M∑

i=1

~pi, pi ∈ IRC (5)

where C is the number of classes, M is the number
of different models, c ∈ {1, ..., C} denotes one
class and ~pi is the probability vector calculated by
model i ∈ {1, ...,M} using softmax function.
Majority Voting (MV). Majority voting approach
counts the votes of all different models and
chooses the class with most votes. Compared
to unweighted averaging, MV is affected less by
single-network decisions. However, this schema
does not consider any information derived from
the minority models. Formally, for a task with C
classes and M different models, the prediction for
a specific instance is estimated as follows:

vc =
M∑

i=1

Fi(c)

p = argmax
c∈{1,...,C}

vc

(6)

where vc denotes the votes for class c from all dif-
ferent models, Fi is the decision of the ith model,
which is either 1 or 0 with respect to whether the
model has classified the instance in class c or not,
respectively, and p is the final prediction.

4 Experiments and Results

4.1 Experimental Setup
Class Weights. In order to deal with the prob-
lem of class imbalances in Subtask B, we apply
class weights to the loss function of our models,
penalizing more the misclassification of underrep-
resented classes. We weight each class by its in-
verse frequency in the training set.
Training We use Adam algorithm (Kingma and
Ba, 2014) for optimizing our networks, with mini-
batches of size 32 and we clip the norm of the gra-
dients (Pascanu et al., 2013) at 1, as an extra safety

617

measure against exploding gradients. For devel-
oping our models we used PyTorch (Paszke et al.,
2017) and Scikit-learn (Pedregosa et al., 2011).
Hyper-parameters. In order to find good hyper-
parameter values in a relative short time (com-
pared to grid or random search), we adopt the
Bayesian optimization (Bergstra et al., 2013) ap-
proach, performing a “smart” search in the high
dimensional space of all the possible values. Ta-
ble 2, shows the selected hyper-parameters.

Word-Model Char-Model
Embeddings 300 25
Emb. Dropout 0.1 0.0
Emb. Noise 0.05 0.0
LSTM (x2) 150 150
LSTM Dropout 0.2 0.2

Table 2: Hyper-parameters of our models.

4.2 Results and Discussion
Our official ranking is 2/43 in Subtask A and 2/29
in Subtask B as shown in Tables 3 and 4. Based on
these rankings, the performance of the suggested
model is competitive on both the binary and the
multi-class classification problem. Except for its
overall good performance, it also presents a stable
behavior when moving from two to four classes.

Team Name Acc Prec Rec F1
1 THU_NGN 0.7347 0.6304 0.8006 0.7054
2 NTUA-SLP 0.7321 0.6535 0.6913 0.6719
3 WLV 0.6429 0.5317 0.8360 0.6500
4 Unknown 0.6607 0.5506 0.7878 0.6481
5 NIHRIO, NCL 0.7015 0.6091 0.6913 0.6476

Table 3: Competition results for Subtask A

Team Name Acc Prec Rec F1
1 Unknown 0.7321 0.5768 0.5044 0.5074
2 NTUA-SLP 0.6518 0.4959 0.5124 0.4959
3 THU_NGN 0.6046 0.4860 0.5414 0.4947
4 Unknown 0.6033 0.4660 0.5058 0.4743
5 NIHRIO, NCL 0.6594 0.5446 0.4475 0.4437

Table 4: Competition results for Subtask B

Additional experimentation following the offi-
cial submission significantly improved the effi-
ciency of our models. The results of this experi-
mentation, tested on the same data set, are shown
in Tables 5 and 6. The first baseline is a Bag
of Words (BOW) model with TF-IDF weighting.
The second baseline is a Neural Bag of Words (N-
BOW) model where we retrieve the word2vec rep-
resentations of the words in a tweet and compute

model Acc Prec Rec f1
BOW 0.6531 0.6453 0.6417 0.6426
N-BOW 0.6645 0.6543 0.6517 0.6527
LSTM-char 0.6241 0.6371 0.6342 0.6163
LSTM-word 0.7746 0.7726 0.7826 0.7698
Ens-MV 0.7462 0.7381 0.7461 0.7400
Ens-UA 0.7883 0.7865 0.7992 0.7856

Table 5: Results of our models for Subtask A

model Acc Prec Rec f1
BOW 0.5880 0.4460 0.4384 0.4371
N-BOW 0.6084 0.4649 0.4560 0.4520
LSTM-char 0.5726 0.4098 0.4102 0.3782
LSTM-word 0.6987 0.5394 0.5790 0.5315
Ens-MV 0.6888 0.5433 0.5442 0.5358
Ens-UA 0.6888 0.5361 0.4874 0.4959

Table 6: Results of our models for Subtask B

the tweet representation as the centroid of the con-
stituent word2vec representations. Both BOW and
N-BOW features are then fed to a linear SVM clas-
sifier, with tuned C = 0.6.

The best performance that we achieve, as shown
in Tables 5 and 6 is 0.7856 and 0.5358 for Sub-
task A and B respectively34. In Subtask A the
BOW and N-BOW models perform similarly with
respect to f1 metric and word-level LSTM is the
most competitive individual model. However, the
best performance is achieved when the character-
and the word-level LSTM models are combined
via the unweighted average ensembling method,
showing that the two suggested models indeed
contain different types of information related to
irony on tweets. Similar observations are de-
rived for Subtask B, except that the character-level
model in this case performs worse than the base-
line models and contributes less to the final results.

4.3 Attention Visualizations
Our models’ behavior can be interpreted by vi-
sualizing the distribution of the attention weights
assigned to the words (characters) of the tweet.
The weights signify the contribution of each word
(character), to model’s final classification deci-
sion. In Fig. 5, examples of the weights as-

3The reported performance is boosted in comparison with
the results presented in Tables 3 and 4 due to the utilization
of unnormalized word vectors. Specifically, after further ex-
perimentation we found that normalization of word vectors
provided to the LSTM is detrimental to performance, because
semantic information is encoded by both the angle and length
of the embedding vectors (Wilson and Schakel, 2015).

4For our DNNs, the results are computed by averaging 10
runs to account for the variability in training performance.

618

my
0.013

favorite
0.091

dreams
0.093

are
0.093

the
0.077

ones
0.083

where
0.063

you
0.036

wake
0.093

up
0.085

covered
0.093

in
0.074

tears
0.093

.
0.013

Label: ironic by clash

<user>
0.027

so
0.029

,
0.042

this
0.072

topless
0.202

feminist
0.202

was
0.042

just
0.031

looking
0.030

for
0.027

someone
0.028

to
0.027

love
0.057

?
0.184

Label: situational irony

<user>
0.026

he
0.062

lost
0.179

his
0.106

license
0.179

not
0.174

long
0.024

after
0.025

,
0.026

mwahaha
0.174

<user>
0.024

Label: other type of irony

Figure 5: Examples of the attention mechanism for identification of the type of irony in each sentence.

i
0.026 0.031

j
0.037

u
0.035

s
0.028

t
0.033 0.047

l
0.051

o
0.053

v
0.054

e
0.054 0.054

b
0.054

e
0.053

i
0.051

n
0.042

g
0.035 0.026

i
0.014

g
0.012

n
0.010

o
0.011

r
0.012

e
0.012

d
0.019 0.028

|
0.014

#
0.014

n
0.010

o
0.013

t
0.020 0.048

Label: ironic by clash

i
0.081

just
0.087

love
0.092

being
0.092

ignored
0.092 0.092

|
0.092

<hashtag>
0.092

not
0.092

</hashtag>
0.092 0.092

Label: ironic by clash

w
0.063

o
0.069

r
0.064

k
0.042 0.024

s
0.018

h
0.017

o
0.020

u
0.024

l
0.027

d
0.033 0.046

b
0.055

e
0.052 0.052

f
0.036

u
0.021

n
0.014

0.017

t
0.017

o
0.025

d
0.029

a
0.036

y
0.059 0.070 0.071

Label: ironic by clash

work
0.039

should
0.042

be
0.066

fun
0.284

today
0.284 0.284

Label: ironic by clash

Figure 6: Comparison of the behavior of the word and character level models.

signed by the word level model to ironic tweets
are presented. The salient keywords that capture
the essence of irony or even polarity transitions
(e.g. irony by clash) are correctly identified by the
model. Moreover, in Fig. 6 we compare the behav-
ior of the word and character models on the same
tweets. In the first example, the character level
model assigns larger weights to the most discrimi-
native words whereas the weights assigned by the
word level model seem uniform and insufficient in
spotting the polarity transition. However, in the
second example, the character level model does
not attribute any weight to the words with posi-
tive polarity (e.g. “fun”) compared to the word
level model. Based on these observations, the two
models indeed behave diversely and consequently
contribute to the final outcome (see Section 3.6).

5 Conclusion

In this paper we present an ensemble of two
different deep learning models: a word- and a
character-level deep LSTM for capturing the se-
mantic and syntactic information of tweets, re-
spectively. We demonstrated that combining the
predictions of the two models yields competi-
tive results in both subtasks for irony prediction.
Moreover, we proved that both types of informa-

tion (semantic and syntactic) contribute to the final
results with the word-level model, however, indi-
vidually achieving more accurate irony prediction.
Also, the best way of combining the outcomes
of the separate models is by conducting majority
voting over the respective posteriors. Finally, the
proposed model successfully predicts the irony in
tweets without exploiting any external information
derived from hand-crafted features or lexicons.

The performance reported in this paper could
be further boosted by utilizing transfer learning
methods from larger datasets. Moreover, the
joint training of word- and character-level models
can be tested for further improvement of the
results. Finally, we make the source code of
our models and our pretrained word embeddings
available to the community5, in order to make our
results easily reproducible and facilitate further
experimentation.

Acknowledgements. This work has been partially
supported by the BabyRobot project supported by
EU H2020 (grant #687831). Also, the authors
would like to thank NVIDIA for supporting this
work by donating a TitanX GPU.

5github.com/cbaziotis/
ntua-slp-semeval2018-task3

619

References
Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua

Bengio. 2014. Neural machine translation by
jointly learning to align and translate. CoRR,
abs/1409.0473.

Francesco Barbieri and Horacio Saggion. 2014. Auto-
matic detection of irony and humour in twitter. In
ICCC, pages 155–162.

Christos Baziotis, Nikos Pelekis, and Christos Doulk-
eridis. 2017. Datastories at semeval-2017 task
4: Deep lstm with attention for message-level and
topic-based sentiment analysis. In Proceedings of
the 11th International Workshop on Semantic Eval-
uation (SemEval-2017), pages 747–754.

Yoshua Bengio, Patrice Simard, and Paolo Frasconi.
1994. Learning long-term dependencies with gradi-
ent descent is difficult. IEEE transactions on neural
networks, 5(2):157–166.

James Bergstra, Daniel Yamins, and David D. Cox.
2013. Making a Science of Model Search: Hyper-
parameter Optimization in Hundreds of Dimensions
for Vision Architectures. ICML (1), 28:115–123.

Kyunghyun Cho, Bart Van Merriënboer, Caglar Gul-
cehre, Dzmitry Bahdanau, Fethi Bougares, Holger
Schwenk, and Yoshua Bengio. 2014. Learning
phrase representations using RNN encoder-decoder
for statistical machine translation. arXiv preprint
arXiv:1406.1078.

Ronan Collobert and Jason Weston. 2008. A unified
architecture for natural language processing: Deep
neural networks with multitask learning. In Pro-
ceedings of the 25th International Conference on
Machine Learning, pages 160–167. ACM.

Bhuwan Dhingra, Zhong Zhou, Dylan Fitzpatrick,
Michael Muehl, and William W Cohen. 2016.
Tweet2vec: Character-based distributed repre-
sentations for social media. arXiv preprint
arXiv:1605.03481.

Delia Irazú Hernańdez Farías, Viviana Patti, and Paolo
Rosso. 2016. Irony detection in twitter: The role
of affective content. ACM Transactions on Internet
Technology (TOIT), 16(3):19.

Aniruddha Ghosh and Tony Veale. 2016. Fracking
sarcasm using neural network. In Proceedings of
the 7th Workshop on Computational Approaches to
Subjectivity, Sentiment and Social Media Analysis,
pages 161–169.

Aniruddha Ghosh and Tony Veale. 2017. Magnets for
sarcasm: Making sarcasm detection timely, contex-
tual and very personal. In Proceedings of the 2017
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 482–491.

Kevin Gimpel, Nathan Schneider, Brendan O’Connor,
Dipanjan Das, Daniel Mills, Jacob Eisenstein,

Michael Heilman, Dani Yogatama, Jeffrey Flani-
gan, and Noah A. Smith. 2011. Part-of-speech tag-
ging for twitter: Annotation, features, and experi-
ments. In Proceedings of the 49th Annual Meet-
ing of the Association for Computational Linguis-
tics: Human Language Technologies: Short Papers-
Volume 2, pages 42–47. Association for Computa-
tional Linguistics.

Sepp Hochreiter, Yoshua Bengio, Paolo Frasconi, and
Jürgen Schmidhuber. 2001. Gradient Flow in Re-
current Nets: The Difficulty of Learning Long-Term
Dependencies. A field guide to dynamical recurrent
neural networks. IEEE Press.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural computation,
9(8):1735–1780.

Aditya Joshi, Pushpak Bhattacharyya, and Mark J Car-
man. 2017. Automatic sarcasm detection: A survey.
ACM Computing Surveys (CSUR), 50(5):73.

Aditya Joshi, Vaibhav Tripathi, Kevin Patel, Pushpak
Bhattacharyya, and Mark Carman. 2016. Are word
embedding-based features useful for sarcasm detec-
tion? arXiv preprint arXiv:1610.00883.

Daniel Jurafsky and H. James. 2000. Speech and lan-
guage processing an introduction to natural language
processing, computational linguistics, and speech.

Jihen Karoui, Farah Benamara, Véronique Moriceau,
Nathalie Aussenac-Gilles, and Lamia Hadrich Bel-
guith. 2015. Towards a contextual pragmatic model
to detect irony in tweets. In 53rd Annual Meeting of
the Association for Computational Linguistics (ACL
2015), pages PP–644.

Diederik Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

CC Liebrecht, FA Kunneman, and APJ van Den Bosch.
2013. The perfect solution for detecting sarcasm in
tweets# not.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S. Cor-
rado, and Jeff Dean. 2013. Distributed representa-
tions of words and phrases and their compositional-
ity. In Advances in Neural Information Processing
Systems, pages 3111–3119.

Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio.
2013. On the difficulty of training recurrent neural
networks. ICML (3), 28:1310–1318.

Adam Paszke, Sam Gross, Soumith Chintala, Gre-
gory Chanan, Edward Yang, Zachary DeVito, Zem-
ing Lin, Alban Desmaison, Luca Antiga, and Adam
Lerer. 2017. Automatic differentiation in pytorch.

Fabian Pedregosa, Gaël Varoquaux, Alexandre Gram-
fort, Vincent Michel, Bertrand Thirion, Olivier
Grisel, Mathieu Blondel, Peter Prettenhofer, Ron

620

Weiss, Vincent Dubourg, and others. 2011. Scikit-
learn: Machine learning in Python. Journal of Ma-
chine Learning Research, 12(Oct):2825–2830.

Radim Řehůřek and Petr Sojka. 2010. Software Frame-
work for Topic Modelling with Large Corpora. In
Proceedings of the LREC 2010 Workshop on New
Challenges for NLP Frameworks, pages 45–50, Val-
letta, Malta. ELRA. http://is.muni.cz/
publication/884893/en.

Toby Segaran and Jeff Hammerbacher. 2009. Beautiful
Data: The Stories Behind Elegant Data Solutions.
"O’Reilly Media, Inc.".

Nitish Srivastava, Geoffrey E. Hinton, Alex
Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdi-
nov. 2014. Dropout: A simple way to prevent neural
networks from overfitting. Journal of Machine
Learning Research, 15(1):1929–1958.

Oren Tsur, Dmitry Davidov, and Ari Rappoport. 2010.
Icwsm-a great catchy name: Semi-supervised recog-
nition of sarcastic sentences in online product re-
views. In ICWSM, pages 162–169.

Cynthia Van Hee, Els Lefever, and Véronique Hoste.
2018. SemEval-2018 Task 3: Irony Detection in
English Tweets. In Proceedings of the 12th Interna-
tional Workshop on Semantic Evaluation, SemEval-
2018, New Orleans, LA, USA. Association for
Computational Linguistics.

Benjamin J Wilson and Adriaan MJ Schakel. 2015.
Controlled experiments for word embeddings. arXiv
preprint arXiv:1510.02675.

621

Proceedings of the 12th International Workshop on Semantic Evaluation (SemEval-2018), pages 622–627
New Orleans, Louisiana, June 5–6, 2018. ©2018 Association for Computational Linguistics

YNU-HPCC at SemEval-2018 Task 3: Ensemble Neural Network Models
for Irony Detection on Twitter

Bo Peng, Jin Wang and Xuejie Zhang
School of Information Science and Engineering

Yunnan University
Kunming, P.R. China

Contact:xjzhang@ynu.edu.cn

Abstract

This paper describes our proposed to partici-
pate in the first year of the irony detection in
English tweets competition. Previous works
have demonstrated that long short-term mem-
ory models have achieved remarkable perfor-
mance in natural language processing; more-
over, combining multiple classifications from
various individual classifiers is generally more
powerful than a single classification. In order
to obtain more precise irony detection classi-
fication, our system trains several individual
neural network classifiers and combines their
results according to the ensemble-learning al-
gorithm.

1 Introduction

In most sentiment analysis tasks, recognition of
the precise emotional polarity of a sentence form-
s the basis for further work. However, much of
the corpus we used for analysis and training con-
tains numerous sarcasm and irony features that
will have a negative impact on the results of our
analysis and training. For example, although the
tweets provided by Twitter constitute a valuable
and widely applicable corpus for many natural lan-
guage processing tasks, Twitter users express their
feelings and opinions on social networks with fre-
quent irony (Amir et al., 2016). Therefore, such
tweets may contain converse sentiments informa-
tion compared their literal meaning. For exam-
ple, @someuser Yeah keeping cricket clean, that’s
what he wants #Sarcasm: ignoring the hash tag,
this tweet would be positive, which would miss
lead an analysis system that uses these types of
tweets as input.

Thus, it makes sense to discriminate whether a
text is ironic, particularly for social network texts
such as tweets. Further applications including
tweet sentiment analysis, will benefit from auto-
matic irony detection. The SemEval-2018 Twitter

competition promotes research in this area, and is
divided into two subtasks that involve binary and
four-class classification.

Subtask A is a two-class (or binary) classifica-
tion task whereby the system must predict whether
or not a tweet is ironic. The subtask B is a multi-
class classification task where the system has to
predict one out of four labels describing i) ver-
bal irony realized through a polarity contrast, ii)
verbal irony without such a polarity contrast (i.e.,
other verbal irony), iii) descriptions of situation-
al irony, and iv) non-irony (Cynthia Van Hee and
Hoste, 2018). For a more detailed description,
please see Carman et al. (2017).

In recent years, deep learning techniques have
significantly outperformed traditional methods in
several natural language processing (NLP) tasks
(Cliche, 2017). In such task, several deep learn-
ing architecture-based methods have achieved out-
standing performance in irony and sarcasm detec-
tion in social media. Silvio (Amir et al., 2016)
presented a novel convolutional network-based
method for learning user embeddings from their
previous posts and used the user embeddings with
lexical signals to recognize sarcasm. Ghosh and
Veale (2016) proposed a combined convolutional
neural network (CNN) model and long short-term
memory (LSTM) method followed by a deep neu-
ral network (DNN), which also achieved an im-
provement compared to traditional machine learn-
ing approaches such as support vector machines
(SVM).In this paper, we propose an ensemble of
multiple deep learning models with a voting clas-
sifier in order to enhance the performance of indi-
vidual neural network models for to detecting the
ironic tweets. We trained six individual classifier-
s, including LSTMs, bi-directional LSTMs, gat-
ed recurrent units (GRUs), bi-directional GRUs,
attention-based BiLSTMs and attention-based Bi-
GRU. Thereafter, we use a voting mechanism to

622

LSTM BiLSTM GRU BiGRU

Voting Classifier

Input

At-BiLSTM At-BiGRU

Figure 1: Ensemble voting classifier.

combine the results from the six classifiers in or-
der to produce the final prediction label.

The remainder of this paper is organized as fol-
lows. In section 2, we describe the overall struc-
ture of our system and the LSTM-based models, as
well as the selected individual classifiers. In sec-
tion 3, we present the experimental results of our
system, and conclusions are drawn in section 4.

2 System Description

2.1 Overview
Numerous previous research studies have demon-
strated that the resulting classifier is generally
more accurate than any of the individual classifiers
making up the ensemble (Maclin and Opitz, 1999).
For this reason, we decided to build our system
following this strategy. Our system is based on en-
semble learning and combined with various pop-
ular LSTM models. As illustrated in Figure 1,
each classifier is a LSTM-based model, such as bi-
directional LSTM (BiLSTM) and attention LST-
M (AtLSTM). Each classifier is trained using the
complete training set for that network. Following
this, for each classifier, the predicted outputs of all
classifiers are combined to produce the ensemble
system output. As the ironic and non-ironic sam-
ples in the training set are evenly distributed (1911
irony samples; 3834 in total), and each classifier
in our system is trained by the entire training set.
Therefore, we selected the voting classifier as the
combining scheme for our system. The principle
of the voting classifier is the selection of the pre-
diction supported by most of classifiers according
certain rules. For example, if the predictions for a
given sample are:

• classifier 1 - class 1

• classifier 2 - class 2

• classifier 3 - class 1

 

σ

Xt

tanhσ



σ

tanh



Ht

Ct-1 Ct

ht-1 ht

ft

it
ot

Ct

Figure 2: The LSTM memory cell

According to majority voting rules, the voting
classifier would classify the sample as class 1.

Combining the output of several classifiers is
useful only if disagreement exists among them.
Thus, the selection of classifiers is rather impor-
tant for our system.

Neural networks, particularly for recurrent neu-
ral networks (RNNs) (Mikolov et al., 2010), have
achieved effective results in NLP. Owing to their
circular network structure, which allows them to
save previous information in a text sentence. Fur-
thermore, conventional RNNs contain cyclic con-
nections, making them powerful for modeling se-
quences. However, RNNs will face vanishing and
exploding gradient problems when dealing with
lengthy sequences. The LSTM, which is also a
special type of RNN, was designed to address
these problems. Therefore, we selected LSTM-
based models as our individual classifiers.

2.2 LSTMs
The difference between the RNN and LSTM is
that an LSTM (Sak et al., 2014) includes a dif-
ferent and more complex repeating module, as il-
lustrated in Figure 2. This repeating module, also
known as cell, provides the LSTM with the ability
to discriminate whether input information is use-
ful. A cell contains three gates, namely the input,
forgotten and output gates. These gates determine
the selection of information by means of the fol-
lowing formulae:

ft = σ(Wf · [ht−1, xt] + bf)
it = σ(Wi · [ht−1, xt] + bi)

(1)

where ft and it are the forgotten and retained fea-
tures; σ denotes the sigmoid function; xt and ht
are the t-th input and output; and W and b are cell
parameters.

Following this, the cell decides which new in-
formation will be stored in the cell state according

623

LSTM LSTM LSTM LSTM

LSTM LSTM LSTM LSTM

X1 X2 X3 X4



Input

Bidirectional

LSTM

softmax

Output

y

ih

ih

Figure 3: BiLSTM

to the next equation. Here C̃t represents the can-
didate values, created by a tanh gate.

C̃t = tanh(Wc · [ht−1, xt] + bC) (2)

Finally, updating of the cell state and calculating
the output of the cell are carried out according to
the equations,

ot = σ(Wo · [ht−1, xt] + bo)

Ct = ft ∗ Ct−1 + it ∗ C̃t

ht = ot ∗ tanh(Ct)

(3)

For an input tweet with length t, we firstly place
it into an LSTM layer and generate vector ht;
then, use this vector to calculate the possibility of
whether it is ironic by means of a softmax layer.

2.3 BiLSTMs

Standard RNNs use only the previous context and
ignore the future context information when deal-
ing with sequence texts. Bidirectional RNNs pro-
cess the data in both directions with two separate
hidden layers which then feed forward to the same
output layer (Schuster and Paliwal, 1997). BiL-
STMs replace the RNN cell with an LSTM cell
based on BiRNNs, as illustrated in Figure 3. BiL-
STMs compute the forward hidden state

−→
ht and

back forward hidden state
←−
ht , and then output the

sequence y by calculating equation (4), following
which the output layer is updated.

y =
−→
ht ⊗ ←−ht (4)

2.4 Attention BiLSTMs

LSTMs have promoted RNNs to a great extent in
NLP, and a further significant step is the attention

LSTM LSTM LSTM LSTM

LSTM LSTM LSTM LSTM

X1 X2 X3 X4



Input

Bidirectional

LSTM

softmax

Output

Attention


ih

ih

y A

Figure 4: The LSTM memory cell

mechanism. We combined the attention mecha-
nism (Wang et al., 2016) with the BiLSTM as il-
lustrated in Figure 4. The attention captures the
context information of an entire tweet, defined as
follows:

et = tanh(Weht + be)
αt = softmax(et)

(5)

where We and be denote the weight and bias, re-
spectively, and t represents the attention vector
that will be combined with the internal representa-
tion generated by BiLSTM layers. The remaining
steps are consistent with the BiLSTMs.

2.5 GRUs

The GRU is a variant of LSTM. GRUs reduce the
gating signals to two from LSTMs to two, name-
ly reset and update gates. Although GRUs are
simpler in terms of structure and calculation com-
pared to LSTMs, their performance and efficiency
in specific tasks are not reduced (Cho et al., 2014).

Therefore, we also trained three similar models
using GRU cells. In total, we trained six individ-
ual classifiers: they are LSTM, BiLSTM, GRU,
BiGRU, Attention BiLSTM and attention BiGRU.

3 Experiment

3.1 Datasets

The training dataset is constructed from 3834 En-
glish tweets collected by the organizers by means
of searching Twitter for the hashtags #irony, #sar-
casm, and #not. The training dataset for task A
consists of tweets with a binary value score (0 or 1)

624

Subtask A Accuracy F1 score (macro) Recall (macro) Precision (macro)
LSTM 0.64163 0.64161 0.64174 0.65364
BiLSTM 0.64163 0.64161 0.64174 0.65364
GRU 0.63109 0.63108 0.63111 0.64031
BiGRU 0.64295 0.64099 0.64232 0.65110
Attention BiLSTM 0.64295 0.64085 0.64230 0.64519
Attention BiGRU 0.65744 0.65506 0.65673 0.66053
Ensemble 0.66007 0.66871 0.61894 0.62095

Table 1: Cross-validation results for subtask A.

Subtask B Accuracy F1 score (macro) Recall (macro) Precision (macro)
LSTM 0.7148 0.4939 0.5071 0.5341
BiLSTM 0.7330 0.4885 0.4964 0.5103
GRU 0.7369 0.5150 0.5017 0.5438
BiGRU 0.7031 0.4800 0.4946 0.5319
Attention BiLSTM 0.7200 0.5129 0.5315 0.5324
Attention BiGRU 0.7278 0.5081 0.5099 0.5216
Ensemble 0.7539 0.5172 0.5198 0.5385

Table 2: Cross-validation results for subtask B.

indicating whether the tweet is ironic. The train-
ing data for subtask B includes tweets with a nu-
meric value corresponding to one of the subcate-
gories, namely ironic by clash, other irony, situ-
ational irony and non-ironic. For subtasks A and
B, the content of the tweet is exactly the same a-
part from the labels. The organizers also provided
a version with no emoticons or hashtags and one
with emoticons or hashtags. According to peo-
ple’s tweeting habits, emoticons and hashtags are
important tools for expressing emotions, thus, we
used tweets with these features for training.

3.2 Preprocessing
Before feeding the tweets to any classifier, they are
pre-processed by following procedure:

• All uppercase letters are converted to lower-
case.

• URLs are replaced by <url>; instance of
@someone are replaced by <user>.

• Certain emoticons and emojis expressing
positive sentiments are transformed into
words such as smile, like, and happy. Oth-
ers that express negative emotions are all re-
placed by <irony>.

• For subtask A, all hashtags are replaced by
<hashtag>; for subtask B: except for #irony,

#sarcasm and #not, all other hashtags are re-
placed by <hashtag>, and the remainder are
all converted to the word irony.

We did not replace #irony, #sarcasm and #not
with word irony for subtask A because it is easy
for overfitting to occur while training. We con-
sider that the reason for this is that the searching
and labeling of these tweets mostly dependent on
their hashtags. In the four-category subtask B, this
does not lead to over-fitting, but aids in improving
accuracy.

3.3 Word embedding

We obtain word embeddings by training with the
corpus of English articles in Wikipedia pages us-
ing Global Vector (GloVe) (Pennington et al.,
2014). Compared to Word2vec (Mikolov et al.,
2013), GloVe achieves superior performance in
this task under the same conditions. Moreover, we
set the dimension of a single word as 300. Fol-
lowing the above steps, we create a look-up table
that allows for most of the words in the training
dataset to correspond to word vectors trained in
advance, with the dataset containing 9056 unique
words. However, 1266 words remain that cannot
be matched, with most of these be-ing numbers
and certain user-created words.

625

Accuracy F1 score (macro) Recall (macro) Precision (macro)
Subtask A 0.5089 0.4086 0.4277 0.3912
Subtask B 0.466 0.3127 0.3229 0.3384

Table 3: Evaluation for Subtask A and B.

3.4 Parameters

We used earlystopping to observe the accuracy
value convergence of each epoch, with patience
set to 3 and min delta set to 0.05; we found that
each model stopped training with no more than
35 epochs or even less. Consequently, we set the
number of epochs to 30 for the training of every
classifier. Furthermore, we set the batch size to
100 and drop-out rate to 0.25 for training of each
model. We selected the categorical cross-entropy
as the loss function and Adagrad as the optimizer
(Duchi et al., 2011).

For subtasks A and B, the individual classifiers
are trained with the training dataset. Ow-ing to
the lack of development dataset, we only evaluated
the performance of the classifiers and prevented
overfitting by cross-validation. The models were
implemented in Keras using TensorFlow backend.

3.5 Results and analysis

The experimental results of the individual classi-
fiers and ensemble are displayed in Table 1 for
subtask A and Table 2 for subtask B.

As indicated in Table 1, BiLSTM and attention
GRU achieved a superior performance. However,
there is no significant difference among the results
of each model. This may be the reason why the
ensemble does not operate effectively, because a
good ensemble is one in which the individual clas-
sifiers are both ac-curate and create their errors
in different parts of the input space (Maclin and
Opitz, 1999). Our input space is not sufficiently
large and the classifiers are similar, creating their
errors in the same place.

For subtask B, our preprocessing strategy aid-
s in improving accuracy. However, the samples
in the training set are not as evenly distributed as
subtask A, reflecting the ensemble effect. The pre-
cision achieved by our system achieved in subtask
B ranks 10th out of 32 participants. However, nu-
merous aspects of our system require further im-
provement.

The evaluation results from the committee are
illustrated in Table 3. Due to our negligence, we
submitted a wrong result of Subtask B. After the

organizing committee reminded us that we have
corrected the error and re-evaluated our result for
Subtask b. Table 3 shows the corrected results
for Subtask B. We apologize for the inconvenience
caused by our own negligence and we thanked the
organizers for prompt reminders so that we could
correct the results in a timely manner.

4 Conclusion and future work

In this paper, we have presented the system we
used to compete in SemEval-2018 task 3 - Irony
detection in English tweets. The purpose of our
participation in this competition is to deepen our
understanding of irony detection as a novel NLP
application. Moreover, we hope to determine an
effective combination approach to ensemble learn-
ing and neural networks by means of practical ap-
plication.

For future work, it would be meaningful to im-
prove the neural network by combining the charac-
teristic that ironic sentences are often inconsistent.
Moreover, the goal is to identify superior practi-
cal ensemble methods to achieve improved perfor-
mance in increased NLP applications.

References
Silvio Amir, Byron C Wallace, Hao Lyu, and Paula

Carvalho Mrio J Silva. 2016. Modelling context
with user embeddings for sarcasm detection in so-
cial media. pages 167–177.

Mark J. Carman, Mark J. Carman, and Mark J. Car-
man. 2017. Automatic Sarcasm Detection: A Sur-
vey. ACM.

Kyunghyun Cho, Bart Van Merrienboer, Caglar Gul-
cehre, Dzmitry Bahdanau, Fethi Bougares, Holger
Schwenk, and Yoshua Bengio. 2014. Learning
phrase representations using rnn encoder-decoder
for statistical machine translation. Computer Sci-
ence.

Mathieu Cliche. 2017. BBtwtr at semeval-2017 task
4: Twitter sentiment analysis with cnns and lstms.

Els Lefever Cynthia Van Hee and Vronique Hoste.
2018. Semeval-2018 task 3: Irony detection in en-
glish tweets. In Proceedings of the 12th Interna-
tional Workshop on Semantic Evaluation (SemEval-
2018).

626

John Duchi, Elad Hazan, and Yoram Singer. 2011.
Adaptive subgradient methods for online learning
and stochastic optimization. Journal of Machine
Learning Research, 12(7):257–269.

Aniruddha Ghosh and Tony Veale. 2016. Fracking sar-
casm using neural network. In The Workshop on
Computational Approaches To Subjectivity.

R. Maclin and D. Opitz. 1999. Popular ensemble meth-
ods: An empirical study. Journal of Artificial Intel-
ligence Research, 11:169–198.

Tomas Mikolov, Martin Karafit, Lukas Burget, Jan Cer-
nocky, and Sanjeev Khudanpur. 2010. Recurren-
t neural network based language model. In IN-
TERSPEECH 2010, Conference of the Internation-
al Speech Communication Association, Makuhari,
Chiba, Japan, September, pages 1045–1048.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Corra-
do, and Jeffrey Dean. 2013. Distributed representa-
tions of words and phrases and their compositional-
ity. 26:3111–3119.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. Glove: Global vectors for word
representation. In Conference on Empirical Meth-
ods in Natural Language Processing, pages 1532–
1543.

Ha?im Sak, Andrew Senior, and Fran?oise Beaufays.
2014. Long short-term memory based recurren-
t neural network architectures for large vocabulary
speech recognition. Computer Science, pages 338–
342.

Mike Schuster and Kuldip K Paliwal. 1997. Bidirec-
tional recurrent neural networks. IEEE Press.

627

Proceedings of the 12th International Workshop on Semantic Evaluation (SemEval-2018), pages 628–632
New Orleans, Louisiana, June 5–6, 2018. ©2018 Association for Computational Linguistics

Binarizer at SemEval-2018 Task 3: Parsing dependency and deep learning
for irony detection

Nishant Nikhil
IIT Kharagpur

Kharagpur, India
nishantnikhil@iitkgp.ac.in

Muktabh Mayank Srivastava
ParallelDots, Inc.

muktabh@paralleldots.com

Abstract

In this paper, we describe the system submit-
ted for the SemEval 2018 Task 3 (Irony de-
tection in English tweets) Subtask A by the
team Binarizer. Irony detection is a key task
for many natural language processing works.
Our method treats ironical tweets to consist
of smaller parts containing different emotions.
We break down tweets into separate phrases
using a dependency parser. We then embed
those phrases using an LSTM-based neural
network model which is pre-trained to predict
emoticons for tweets. Finally, we train a fully-
connected network to achieve classification.

1 Introduction

The micro-blogging site Twitter has created an
abundance of data about opinions and sentiments
regarding almost every aspect of daily life. A
deeper study of the public opinion can be ob-
tained by applying natural language processing
techniques on this data. However, the performance
of these NLP models is detrimentally affected by
irony (Pozzi et al., 2016). As per the Oxford En-
glish Dictionary, irony is the expression of one’s
meaning by using language that normally signi-
fies the opposite, typically for humorous or em-
phatic effect. This deviation between what is said
and what is intended makes irony hard to detect.
Being a platform where users are free to commu-
nicate and express themselves colloquially, Twit-
ter generates considerable data injected with irony.
Studying this would provide us with a better sen-
timent analysis of these tweets.

Prior work on irony detection includes the
use of unigrams and emoticons (González-Ibánez
et al., 2011; Carvalho et al., 2009; Barbieri et al.,
2014). Maynard and Greenwood (2014) describe
an unsupervised pattern mining approach where
the sentiment of the hashtag in the tweet is pro-
posed to be a key indicator of sarcasm. If the sen-
timent of the tweet does not match the sentiment

of the hashtag, it is predicted to be sarcastic. Riloff
et al. (2013) illustrates a semi-supervised approach
where rule-based classifiers are used to look for
negative situation phrases and positive verbs in a
sentence. Tsur et al. (2010) build pattern-based
features that detect the presence of discriminative
patterns as extracted from a large sarcasm-labelled
corpus. N-gram-based approaches have also been
used (Davidov et al., 2010; Ptáček et al., 2014;
Joshi et al., 2015) with sentiment features. Joshi
et al. (2017) use similarity between word embed-
dings as feature and Poria et al. (2016) use con-
volutional neural networks to extract sentiment,
emotion and personality features for sarcasm de-
tection.

SemEval-2018 Task 3 (the 12th workshop on
semantic evaluation) specifies two subtasks in
relation to irony detection in English tweets
(Van Hee et al., 2018). In subtask A the goal was
to train a binary classifier that detects whether a
given tweet is ironic or not. Subtask B was a
multi-class classification problem where four la-
bels were specified to describe the nature of irony
(verbal irony by means of a polarity contrast, sit-
uational irony, other verbal irony, and non-ironic).
The goal was to assign one of the four labels to
each tweet.

We propose a new method which considers
ironical tweets to be collections of smaller parts
containing different emotions. We break down
tweets into these collections using a dependency
parser and embed them using DeepMoji (Felbo
et al., 2017) which is pre-trained to predict emoti-
cons for tweets. Finally we train a classifier to
detect irony. The paper is organized as follows:
We discuss our methods in section 2. Section 3
contains the details about the experiments and the
training data. In Section 4 we discuss the results
and Section 5 concludes the paper with closing re-
marks.

628

2 Method

In order to identify the chunks of various emotions
in an ironic tweet, we split the tweets into phrases
using a dependency parser. We use Tweeboparser
(Kong et al., 2014), which is a dependency parser
for English tweets. The parser is trained on a sub-
set of a labelled corpus for 929 tweets (12,318 to-
kens) drawn from the POS-tagged tweet corpus of
Owoputi et al. (2013), Tweebank. TweeboParser
predicts the syntactic structure of the tweet repre-
sented by unlabelled dependencies. Tweets con-
tain multiple sentences or fragments called “utter-
ances” each with their own syntactic root discon-
nected from the others. Since a tweet often con-
tains more than one utterance, the output of Twee-
boParser will often be a multi-rooted graph over
the tweet. Also, many elements in tweets have no
syntactic function. These include, in many cases,
hashtags, URLs, and emoticons. TweeboParser at-
tempts to exclude these tokens from the parse tree.
For our purpose, we club the words arising from
the same root to create a phrase. Multiple roots
would create multiple phrases. As we can see from
Figure 1, these phrases can convey the different
sentiments attached to the different subjects of the
tweet.

Figure 1: Parser results

After extracting a set of phrases for the sen-
tence, we embed the phrases into vectors. We
used the DeepMoji (Felbo et al., 2017) model,
which is trained on 1.2 billion tweets with emo-
jis to understand how language is used to express
emotions. It encodes the provided phrase into a
2,304-dimensional feature vector. Under the hood,
DeepMoji model projects each word into a 256-
dimensional vector space followed by a hyperbolic

Figure 2: Neural network architecture

tangent activation function. After this, two bidi-
rectional LSTMs with 1,024 hidden units each are
used to capture the context of each word. Fi-
nally, the model uses skip connections from each
layer to an attention layer and hence the attention
layer outputs a 2,304 (256+1,024+1,024) dimen-
sional vector. Now this 2,304-dimensional output
is connected to a softmax layer for classification.
We did not use the final softmax layer but took
the 2,304-dimensional vector for each phrase. As
the model was trained for prediction of emoticons,
this feature vector contains information about the
semantic and sentimental content of the phrases.
To make the predictions we need to account for
the sentiment behind every utterance. To this end,
we concatenate these vectors and pass the result-
ing concatenated vector through a fully-connected
network as described in Figure 2.

Tweets can have a varying number of roots,
which implies that they split into a varying num-
ber of phrases. Our model considers a maximum
of nine roots. A tweet with an excess of nine roots
is truncated suitably. On the other hand, a tweet
with less than nine roots is zero-padded. We have
described the complete process flowchart in Fig-
ure 3.

3 Experiments

For subtask A, we were provided with a dataset
consisting of tweets along with a binary class (0
or 1) which indicates whether this tweet is ironic
or not (0 for non-ironic tweets and 1 for ironic
tweets). The data was collected from Twitter
API by querying tweets using the hashtags #irony,
#sarcasm and #not, with subsequent manual an-

629

Figure 3: Process Flowchart

notation to remove noise. 3,833 tweets for train-
ing and 784 tweets for testing were provided. The
evaluation was done by using accuracy, precision,
recall and F1 score.

Accuracy :
number of correctly predicted instances

total number of instances

Precision :
number of correctly predicted instances

number of predicted labels

Recall :
number of correctly predicted instances
number of labels in the gold standard

F1 score :
2 x precision x recall

precision + recall

We used the pipeline described in Figure 3.
The final step of the process used a fully con-
nected neural network with four layers. The in-
put layer of the FC network has a dimension of
20,736 (2,304*9), the second layer has a dimen-
sion of 9,216 (2,304*4), the third layer has a di-
mension of 2,304 and the fourth layer has 256 di-
mensions. The final layer has 2 dimensions, with
one for each class. This is depicted in Figure 2.
We used the hyperbolic tangent activation function
in all of the layers, and stochastic gradient descent
with a learning rate of 0.01 and a momentum of
0.5.

Two models were then devised. The difference
in these models lies in the input supplied to the
FC network. In the first model, this input is the
concatenation of the vectors obtained by embed-
ding phrases. In the second model, the input is the

Method Accuracy Precision Recall F1
score

Winning
team

0.7347 0.6304 0.8006 0.7054

Our
System
β1

0.6659 0.5527 0.6471 0.5962

Our
System
β2

0.6390 0.5198 0.6941 0.5944

Our
System
α

0.6951 0.6197 0.5176 0.5641

Table 1: Results
SemEval Task 3A

concatenation of the input in the first model along
with a 2,304-dimensional vector representing the
embedding of the tweet as a whole. The results
we get from various experiments on these models
are shown in Table 1.

System α is the first model. The best F1 score
for this model was achieved after four epochs, as
shown in Table 1. System β1 and β2 are the sec-
ond model running for five and four epochs re-
spectively.

4 Results and Discussions

We participated only in the shared task 3A as the
team Binarizer. We came ninth as per accuracy
and seventeenth as per F1 score among the forty-
three participating systems. Due to a glitch on

630

our side during submission the results are based
on 446 out of 784 instances in the test data.

The models perform better than the baseline
system as per the competition leaderboard. This
reinforces the notion that separate phrases in a
tweet carry information required for irony detec-
tion. System α has greater precision whereas Sys-
tem β has higher recall. So an application which
demands urgent detection of ironic tweets would
profit more from System β. This demonstrates that
the sentiment information of the context provided
from the whole tweet is also important.

5 Conclusion and Future works

We have shown how using the sentiments of differ-
ent segments of tweets can enable irony detection.
From the results of our experiments, we conclude
that the segments have sufficient sentiment infor-
mation in them for the identification of irony. In
future research, we aim to improve the algorithm
for parsing these chunks by replacing the depen-
dency parser. Also, more experimentation can be
performed for the last part of the pipeline. As the
phrases from the tweets are sequences themselves,
we can apply sequence modelling with LSTMs or
CNNs.

References
Francesco Barbieri, Horacio Saggion, and Francesco

Ronzano. 2014. Modelling sarcasm in twitter, a
novel approach. In Proceedings of the 5th Work-
shop on Computational Approaches to Subjectivity,
Sentiment and Social Media Analysis, pages 50–58.

Paula Carvalho, Luı́s Sarmento, Mário J Silva, and
Eugénio De Oliveira. 2009. Clues for detecting
irony in user-generated contents: oh...!! it’s so
easy;-. In Proceedings of the 1st international
CIKM workshop on Topic-sentiment analysis for
mass opinion, pages 53–56. ACM.

Dmitry Davidov, Oren Tsur, and Ari Rappoport. 2010.
Semi-supervised recognition of sarcastic sentences
in twitter and amazon. In Proceedings of the four-
teenth conference on computational natural lan-
guage learning, pages 107–116. Association for
Computational Linguistics.

Bjarke Felbo, Alan Mislove, Anders Søgaard, Iyad
Rahwan, and Sune Lehmann. 2017. Using millions
of emoji occurrences to learn any-domain represen-
tations for detecting sentiment, emotion and sar-
casm. In Conference on Empirical Methods in Nat-
ural Language Processing (EMNLP), pages 1615–
1625.

Roberto González-Ibánez, Smaranda Muresan, and
Nina Wacholder. 2011. Identifying sarcasm in twit-
ter: a closer look. In Proceedings of the 49th An-
nual Meeting of the Association for Computational
Linguistics: Human Language Technologies: Short
Papers-Volume 2, pages 581–586. Association for
Computational Linguistics.

Aditya Joshi, Pushpak Bhattacharyya, and Mark J. Car-
man. 2017. Automatic sarcasm detection: A survey.
ACM Computing Surveys, 50(5):73:1–73:22.

Aditya Joshi, Vinita Sharma, and Pushpak Bhat-
tacharyya. 2015. Harnessing context incongruity for
sarcasm detection. In Proceedings of the 53rd An-
nual Meeting of the Association for Computational
Linguistics and the 7th International Joint Confer-
ence on Natural Language Processing (Volume 2:
Short Papers), volume 2, pages 757–762.

Lingpeng Kong, Nathan Schneider, Swabha
Swayamdipta, Archna Bhatia, Chris Dyer, and
Noah A Smith. 2014. A dependency parser for
tweets. In Proceedings of Empirical Methods in
Natural Language Processing (EMNLP), pages
1001–1012, Doha, Qatar.

Diana Maynard and Mark Greenwood. 2014. Who
cares about Sarcastic Tweets? Investigating the Im-
pact of Sarcasm on Sentiment Analysis. In Pro-
ceedings of the Ninth International Conference on
Language Resources and Evaluation (LREC’14),
pages 4238–4243, Reykjavik, Iceland. European
Language Resources Association.

Olutobi Owoputi, Brendan O’Connor, Chris Dyer,
Kevin Gimpel, Nathan Schneider, and Noah A
Smith. 2013. Improved part-of-speech tagging for
online conversational text with word clusters. In The
2013 Conference of the North American Chapter of
the Association for Computational Linguistics: Hu-
man Language Technologies (NAACL 2013), pages
380–390.

Soujanya Poria, Erik Cambria, and Alexander Gel-
bukh. 2016. Aspect extraction for opinion min-
ing with a deep convolutional neural network.
Knowledge-Based Systems, 108:42–49.

Federico Alberto Pozzi, Elisabetta Fersini, Enza
Messina, and Bing Liu. 2016. Sentiment analysis in
social networks. Morgan Kaufmann Publishers Inc.,
San Francisco, CA.

Tomáš Ptáček, Ivan Habernal, and Jun Hong. 2014.
Sarcasm detection on czech and english twitter. In
Proceedings of COLING 2014, the 25th Interna-
tional Conference on Computational Linguistics:
Technical Papers, pages 213–223.

Ellen Riloff, Ashequl Qadir, Prafulla Surve, Lalin-
dra De Silva, Nathan Gilbert, and Ruihong Huang.
2013. Sarcasm as contrast between a positive senti-
ment and negative situation. In Proceedings of the
2013 Conference on Empirical Methods in Natural
Language Processing, pages 704–714.

631

Oren Tsur, Dmitry Davidov, and Ari Rappoport. 2010.
Icwsm-a great catchy name: Semi-supervised recog-
nition of sarcastic sentences in online product re-
views. In Proceedings of International AAAI Con-
ference on Web and Social Media, pages 162–169.

Cynthia Van Hee, Els Lefever, and Vronique Hoste.
2018. Semeval-2018 task 3: Irony detection in en-
glish tweets. In Proceedings of the 12th Interna-
tional Workshop on Semantic Evaluation (SemEval-
2018), New Orleans, LA, USA.

632

Proceedings of the 12th International Workshop on Semantic Evaluation (SemEval-2018), pages 633–637
New Orleans, Louisiana, June 5–6, 2018. ©2018 Association for Computational Linguistics

SSN MLRG1 at SemEval-2018 Task 3: Irony Detection in English Tweets
Using MultiLayer Perceptron

Rajalakshmi S, Angel Deborah S, S Milton Rajendram, Mirnalinee T T
SSN College of Engineering

Chennai 603 110, Tamil Nadu, India
rajalakshmis@ssn.edu.in, angeldeborahs@ssn.edu.in

miltonrs@ssn.edu.in, mirnalineett@ssn.edu.in

Abstract

Sentiment analysis plays an important role in
E-commerce. Identifying ironic and sarcastic
content in text plays a vital role in inferring the
actual intention of the user, and is necessary
to increase the accuracy of sentiment analy-
sis. This paper describes the work on iden-
tifying the irony level in twitter texts. The
system developed by the SSN MLRG1 team
in SemEval-2018 for task 3 (irony detection)
uses rule based approach for feature selection
and MultiLayer Perceptron (MLP) technique
to build the model for multiclass irony classi-
fication subtask, which classifies the given text
into one of the four class labels.

1 Introduction

Humans have the natural ability to identify the
sentiment or the irony intended in a review or com-
ment. However, identifying the intention of the
user is a difficult task for the machine. Detecting
irony present in a text is critical to sentiment anal-
ysis since it will inverse the polarity of the senti-
ment inferred (Hernandez-Farias et al., 2015).

Choice of shops, books, movies, hotels and var-
ious other services and products is influenced by
comments and reviews in social media to a large
extent. Huge amount of data is available in the
Internet about the choices people make and their
reviews about it.

Irony in texts affects the polarity of the senti-
ment inferred from them. Since it gives the text a
meaning that is just the opposite to what is actu-
ally said, it is called as a polarity reverser (Farias
et al., 2016). Irony is studied in various disci-
plines such as linguistics, philosophy and psychol-
ogy. Due to the frequent use of irony in social
media, its detection has gained importance in nat-
ural language processing, which faces difficulty
in achieving a high performance (Liu, 2012; Wal-
lace, 2015). The potential applications of irony

detection include text mining, author profiling, de-
tecting online harassment and sentiment analysis
(Van Hee et al., June 2018). SSN MLRG1 team
has already worked in sentiment analysis tasks
conducted in SemEval 2017 (Angel Deborah et al.,
2017a,b).

We can identify three types irony namely verbal
irony, situational irony and dramatic irony. Sub-
task B in task 3 is a multiclass classification task
for classifying a given tweet to one of these four
classes:

1. verbal irony realized through a polarity con-
trast,

2. verbal irony without such a polarity contrast,
3. situational irony, and
4. non-irony.

2 Related Work

Unlike factual information, sentiment analysis and
opinion mining have to deal with subjective infor-
mation. Consequently, for any problem, it is im-
portant to analyze opinions collected from many
people and summarize them. Social and political
discussions are much harder due to complex topic
and sentiment expressions, instances of sarcasm
and irony (Liu, 2012). Maynard and Greenwood
(2014) discusses the need for analyzing sarcasm
in social media. They have developed a hash-
tag tokenizer for GATE (General Architecture for
Text Engineering) tool and detected the sentiments
and sarcasm in hashtags. Ghosh and Veale (2016)
have found deep neural networks to perform better
compared to Support Vector Machines (SVM) for
sarcasm detection. Hernandez-Farias et al. (2015)
have used MLP for automatic irony detection us-
ing the basic features from sentiment analysis and
observed that MLP yields better results, compared
to Naive Bayes, decision trees, maximum entropy
and SVM. Barbieri and Saggion (2014) have used

633

random forest and decision tree for analyzing the
irony and humour content in twitter dataset using
Weka tool. They have used seven features for de-
tecting imbalance, unexpectedness and common
patterns.

3 System Overview

The system consists of the following modules:
data extraction, preprocessing, rule based feature
selection, feature vector generation and multilayer
perceptron for classification.

3.1 Feature Engineering and Implementation

The dataset is cleaned and processed using func-
tions from NLTK toolkit. We identified the key-
words for irony detection using rule based feature
selection. The selected features are formed into
a Bag of Words (BoW) dictionary. For each sen-
tence, feature vectors are generated by one-hot en-
coding method, using the sentence keywords and
BoW dictionary. The feature vectors are given
to the MLP and output class label is predicted.
Error is calculated and backpropagated to update
the weight vectors. Nadam (Nesterov-accelerated
Adaptive Moment Estimation) algorithm is used
for optimization.

The procedure for data preprocessing is out-
lined in Algorithm 2:
Algorithm 2: Data preprocessing.
Input: Input dataset.
Output: Tokenized words and their parts of
speech.
begin

1. Separate labels and sentences.
2. Perform tokenization using

word tokenize function of the NLTK
toolkit.

3. Perform Parts of Speech tagging using
pos tag function from the NLTK toolkit.

4. Return the tokenized words and their parts of
speech which will be given as inputs to rule
based feature selection.

end
The procedure for rule based feature selection

and feature vector generation is outlined in Algo-
rithm 3:
Algorithm 3: Rule based feature selection and
feature vector generation
Input: Tokenized words and their parts of speech.
Output: BoW feature representation with labels.
begin

For each of the tokenized words, falling under
one of the categories listed in Table 1, do the fol-
lowing steps.

1. Lemmatize the word using WordNet
Lemmatizer from the NLTK toolkit.

2. Insert the lemmatized word into the dictio-
nary.

3. Represent each sentence as a feature vector
using one-hot encoding by looking up the
dictionary.

4. Store the corresponding label in target vector
using one-hot encoding.

5. Return the feature vector generated as the in-
put to build the model.

end

Abbreviation Parts of Speech
VB verb, base form
VBZ verb, 3rd person sing. present
VBP verb, non 3rd sing. present
VBD verb, past tense
VBG verb, gerund/present participle
VBN verb, past participle
JJ adjective
JJR adjective, comparative
JJS adjective, superlative
RB adverb
RBR adverb, comparative
RBS adverb, superlative
NN noun, singular
NNP proper noun, singular
NNS noun plural
NNPS proper noun, plural

Table 1: Parts of speech categories.

The procedure for building Multilayer Percep-
tron is outlined in Algorithm 4:
Algorithm 4: Build a Multilayer Perceptron
model.
Input: BoW feature representation with labels.
Output: Learned model.
begin

1. Prepare the training dataset. XTrain con-
tains the feature vectors and YTrain con-
tains the target labels for irony class.

2. Build the classification model which com-
prises an input layer, two hidden layers and
an output layer with relu activation func-
tion in the hidden layers and softmax acti-
vation function in the output layer.

634

3. Optimize the classification model using
nadam optimizer of keras package for
some n iterations.

4. Return the learned model.
end

For the test dataset, preprocessing is done and
the feature vectors are generated from the training
data BoW representation. The feature vectors are
given as input to the learned model and the pre-
dicted output labels are stored.

3.2 MultiLayer Perceptron

MLP is a feedforward artificial neural network for
supervised learning. MLP can be used for both
classification and regression tasks. It consists of
an input layer, one or more hidden layers and an
output layer. Each neuron in one layer is fully
connected to the neurons in next layer. Number of
neurons in the output layer depends on the number
of class labels in the given problem.

Each connection has a weight assigned to it.
Output of each neuron is calculated by applying
an activation function on the weighted sum of the
inputs. Some of the common activation functions
are linear, sigmoid, tanh, elu, softplus, softmax,
relu, relu6, crelu, selu and relu x.

Error value is calculated from the value pre-
dicted by the output layer and the actual class la-
bel. This error value is backpropagated and the
weights and biases are updated. This procedure is
repeated for the feature vectors of each input sen-
tence. The whole procedure is repeated for some
n iterations or until the error value converges to a
value below a threshold.

Figure 1 depicts a simple MLP model, consist-
ing of a single hidden layer. It takes four inputs
and produces one output.

Output layerInput layer

Input1

Input2

Input3

Output1

Output2

Hidden layer

Figure 1: Multilayer Perceptron.

The working of Multilayer Perceptron model is
outlined in Algorithm 1:
Algorithm 1: Multilayer Perceptron.
Input: Feature vectors and targets.
Output: Learned model.
begin

1. Initialize the weights with random values and
choose a learning rate η.

2. Repeat steps 3 to 6 until the neural network
is trained.

3. For each input example (feature vector, tar-
get), do steps 4 to 6.

4. Forward Pass
(a) For each neuron of a layer, find the

weighted sum of the input vectors. Ap-
ply the activation function and pass the
outputs as inputs to the next layer.

(b) Predict the value in the output layer.
5. Backward Pass

(a) Compute the error∇ between the actual
target and the predicted class.

(b) Backpropagate the error and compute
the error in all hidden layer neurons.

6. Update all the weights ∆wij and biases bij
by gradient descent technique.

7. Return the learned model.

end

4 Dataset

The dataset consists of 4792 English tweets that
are collected between 01/12/2014 and 04/01/2015
from 2676 unique users. The entire corpus is split
into training (80%) and test (20%) sets. The tweets
are manually labeled using a fine grained annota-
tion scheme for irony (Van Hee et al., 2016). The
training dataset is further divided into training set
and development test set for system building.

5 Performance Evaluation

The performance of the system is measured using
accuracy, precision, recall and F1-score, using
formulas shown in Equations 1 to 4.

635

Accuracy (A) =
TP + TN

N
(1)

Precision (P) =
TP

TP + FP
(2)

Recall (R) =
TP

TP + FN
(3)

F1 score = 2× Precision× Recall
Precision + Recall

(4)

where TP denotes True Positive, TN denotes True
Negative, FP denotes False Positive, FN denotes
False Negative and N denotes total number of
tweets.

The optimization of the model was performed
using different gradient descent algorithms such
as SGD, adam, adaGrad, RMSProp and nadam.
Adam and nadam are the widely used optimiz-
ers. Adam (Adaptive Moment Estimation) com-
putes the adaptive learning rates using momentum
and RMSProp. Momentum points the model in
the best direction, while RMSProp adapts how far
the model goes in that direction on parameter ba-
sis. Nadam combines Nesterov momentum with
Adam which is superior to momentum. (Dozat,
2016).

We split the training set into training set (80%)
and development test set (20%). The different op-
timization algorithms were used with the model
and nadam optimizer produced better results com-
pared to other algorithms for the development test
set.

There are 32 submissions for this particular
task. The model has achieved the following val-
ues for the various measures as listed in Table 2.

Measure Value Ranking
Accuracy 0.5727 15
Precision 0.3484 21
Recall 0.3609 19
F1-Score 0.3337 20

Table 2: Performance.

From the result, it appears as if the basic text
features selected by rule based approach is not
enough to detect the irony level in the given text.
Additional features like emoticons and hashtags

can be added to the feature set to enhance the per-
formance.

6 Conclusion

We built a basic MLP to detect the irony level in
twitter text, which has an input layer, two hidden
layers with 128 and 64 neurons, and an output
layer with 4 neurons for the four class labels. Relu
activation function was used in both hidden lay-
ers and softmax activation function in output layer.
The various optimizers such as SGD, RMSprop,
adam, adagrad, and nadam were tried. Nadam op-
timizer performed better than others.

The text features were taken into consideration
for BoW representation. Since irony renders an
opposite meaning to the text, it is difficult to detect
the irony from the text features alone. The system
performance can be enhanced with the emoticon
and hashtag information. The performance can
also be improved by doing tweet normalization be-
fore the feature selection. The accuracy of system
can be increased by using deep neural networks
such as Convolutional Neural Network (CNN) or
Recurrent Neural Network (RNN). Feature selec-
tion techniques can be enhanced with semantics
and lexicon information.

References
S Angel Deborah, S Milton Rajendram, and T T Mir-

nalinee. 2017a. Ssn mlrg1 at semeval-2017 task
4: Sentiment analysis in twitter using multi-kernel
gaussian process classifier. In Proceedings the 11th
International Workshop on Semantic Evaluation
(SemEval-2017), pages 709–712. ACL,Vancouver,
Canada.

S Angel Deborah, S Milton Rajendram, and T T Mir-
nalinee. 2017b. Ssn mlrg1 at semeval-2017 task
5: Fine-grained sentiment analysis using multiple
kernel gaussian process regression model. In Pro-
ceedings the 11th International Workshop on Se-
mantic Evaluation (SemEval-2017), pages 823–826.
ACL,Vancouver, Canada.

Francesco Barbieri and Horacio Saggion. 2014. Auto-
matic detection of irony and humour in twitter. In
ICCC, Fifth International Conference on Computa-
tional Creativity, Ljubljana, Slovenia, 9th 13th June
2014, pages 155–162.

Timothy Dozat. 2016. Incorporating nesterov momen-
tum into adam. In Workshop track - ICLR 2016.

Delia Irazu Hernandez Farias, Viviana Patti, and Paolo
Rosso. 2016. Irony detection in twitter: The role
of affective content. ACM Transactions on Internet
Technology (TOIT), 16(3):19.

636

Aniruddha Ghosh and Tony Veale. 2016. Fracking
sarcasm using neural network. In Proceedings of
the 7th Workshop on Computational Approaches to
Subjectivity, Sentiment and Social Media Analysis,
pages 161–169.

Irazu Hernandez-Farias, Jose-Miguel Benedi, and
Paolo Rosso. 2015. Applying basic features from
sentiment analysis for automatic irony detection. In
Iberian Conference on Pattern Recognition and Im-
age Analysis, pages 337–344. Springer.

Bing Liu. 2012. Sentiment analysis and opinion min-
ing. Synthesis lectures on human language tech-
nologies, 5(1):1–167.

Diana Maynard and Mark A Greenwood. 2014. Who
cares about sarcastic tweets? investigating the im-
pact of sarcasm on sentiment analysis. In Lrec,
pages 4238–4243.

Cynthia Van Hee, Els Lefever, and Veronique Hoste.
2016. Guidelines for annotating irony in social me-
dia text. Technical report, version 2.0. Technical Re-
port 16-01, LT3, Language and Translation Technol-
ogy Team–Ghent University.

Cynthia Van Hee, Els Lefever, and Veronique Hoste.
June 2018. Semeval-2018 task 3: Irony detec-
tion in english tweets. In In Proceedings of the
12th International Workshop on Semantic Evalua-
tion (SemEval-2018), New Orleans, LA, USA.

Byron C Wallace. 2015. Computational irony: A sur-
vey and new perspectives. Artificial Intelligence Re-
view, 43(4):467–483.

637

Proceedings of the 12th International Workshop on Semantic Evaluation (SemEval-2018), pages 638–642
New Orleans, Louisiana, June 5–6, 2018. ©2018 Association for Computational Linguistics

NLPRL-IITBHU at SemEval-2018 Task 3: Combining Linguistic Features
and Emoji Pre-trained CNN for Irony Detection in Tweets

Harsh Rangwani, Devang Kulshreshtha and Anil Kumar Singh

Indian Institute of Technology (Banaras Hindu University) Varanasi, India
{harsh.rangwani.cse15, devang.kulshreshtha.cse14, aksingh.cse}@iitbhu.ac.in

Abstract

This paper describes our participation in Se-
mEval 2018 Task 3 on Irony Detection in
Tweets. We combine linguistic features with
pre-trained activations of a neural network.
The CNN is trained on the emoji predic-
tion task. We combine the two feature sets
and feed them into an XGBoost Classifier for
classification. Subtask-A involves classifica-
tion of tweets into ironic and non-ironic in-
stances, whereas Subtask-B involves classifi-
cation of tweets into non-ironic, verbal irony,
situational irony or other verbal irony. It is
observed that combining features from these
two different feature spaces improves our sys-
tem results. We leverage the SMOTE algo-
rithm to handle the problem of class imbal-
ance in Subtask-B. Our final model achieves
an F1-score of 0.65 and 0.47 on Subtask-A
and Subtask-B respectively. Our system ranks
4th on both tasks, respectively, outperforming
the baseline by 6% on Subtask-A and 14% on
Subtask-B.

1 Introduction

According to the Merriam-Webster dictionary1,
one of the meanings of irony is defined as ‘the use
of words to express something other than and es-
pecially the opposite of the literal meaning’ (e.g.
I love getting spam emails.). Irony can have dif-
ferent forms, such as verbal, situational, dramatic
etc. Sarcasm is also categorized as a form of ver-
bal irony. Various attempts have been made in the
past for detection of sarcasm (Joshi et al., 2017).
Sarcastic texts are characterized by the presence of
humor and ridicule, which are not always present
in the case of ironic texts (Kreuz and Glucksberg,
1989). The absence of these characteristics makes
automatic irony detection a more difficult problem
than sarcasm detection.

1https://www.merriam-webster.com/
dictionary/irony

Irony detection is a problem that is important
for the working of many Natural Language Un-
derstanding Systems. For example, people often
use irony to express their opinions on social media
like Twitter (Buschmeier et al., 2014). Detecting
irony in social texts can aid in improving opinion
analysis.

The SemEval 2018 task 3 (Van Hee et al., 2018)
consists of two subtasks. Subtask-A involves
predicting whether a tweet is ironic or not and
Subtask-B involves categorizing a tweet into Non-
Ironic, Verbal Irony (by means of a polarity con-
trast), Situational Irony and Other Forms of Verbal
Irony. The task organizers use macro averaged F1,
rather than accuracy to force systems to optimize
to work well on all the four classes of tweets, as
described in Section 3.1.

Systems built in the past primarily used hand-
crafted linguistic features for classification of
ironic texts (Buschmeier et al. 2014; Farı́as et al.
2016). In our system, we try to combine them with
the pre-trained activations of a neural network.
Our results show that both types of features com-
plement each other, as the results produced by the
combination of them surpass the results of using
either the linguistic or the pre-trained activation
features individually by a large margin. We use
XGBoost Classifier (Chen and Guestrin, 2016), as
it performs at par with neural networks when the
provided training data is of small size.

Our results indicate that oversampling tech-
niques like SMOTE (Chawla et al., 2002) can also
be used to oversample the representations gen-
erated using neural networks to improve perfor-
mance on imbalanced datasets.

The rest of the paper is organized as follows:
Section 2 gives a detailed description of how our
system was built, Section 3 then describes the ex-
perimental setup and the results obtained and Sec-
tion 4 concludes the paper.

638

2 Proposed Approach

For modeling irony in tweets, our system makes
use of a combination of features. These features
can be classified into two broad groups:

• Linguistic (Structure and User Behavior)

• Pre-trained Activations of a Neural Network.

These features were concatenated and the XG-
Boost classifier (Chen and Guestrin, 2016) was
used to perform the classification.

For subtask B, to counter the imbalance in the
dataset, which might lead classifiers to favor the
majority class in classification, we used SMOTE
for oversampling the data (Chawla et al., 2002).
Then we used XGBoost Classifier again for clas-
sification into various classes.

The details of the classifier parameters are pro-
vided in Section 2.2. Basic preprocessing of
tweets was performed before feature extraction,
which involved removing hash symbols (’#’), con-
verting contractions (‘doesn’t’ to ‘does not’), re-
moving links and quotations and normalizing the
text into lower case. We will explicitly mention
those features whose extraction require the origi-
nal tweets.

2.1 Feature Extraction

Our system generates a 72-dimensional hand-
crafted feature vector, based on the linguistic
structure and user behavior. We then combine
this with a 2304 dimensional feature vector gener-
ated using activations of a pre-trained CNN. The
combined features are categorized into 11 broad
classes:

Contrast Based Features: Contrast of senti-
ments is a feature that has been observed in sarcas-
tic and ironic texts (Rajadesingan et al., 2015), e.g.
I love being ignored #not. For capturing contrast,
we use the affect score of lemmas (Warriner et al.,
2013) and the sentiment score of words based on
SentiStrength (Thelwall et al., 2010). The final
feature vector consists of:

• The difference between the highest and low-
est sentiment values of the words present in
the tweet. (1 feature)

• The difference between the highest and low-
est affect scores of the words present in the
tweet. (1 feature)

• Longest unimodal sequence size and the
number of transitions of sentiment polarity.
(2 features)

• Sum of sentiment scores and counts of posi-
tive and negative n-grams. (4 features)

Readability Based Features: Ironical texts are
usually complex, and hence we use the total num-
ber of syllables in the tweet, along with number of
words that contain polysyllables as features. Ac-
cording to Automated Readability Index (Senter
and Smith, 1967), the standard deviation, the av-
erage and the median of the word length serve as
indicators of the complexity of the text (Rajadesin-
gan et al., 2015).

Incongruity of Context: Ironic similes are
common in literature (e.g. as clear as mud in
which both clear and mud are sentiment neu-
tral words.). Due to this neutrality, the lexicon
based methods are unable to capture the incon-
gruity present. Therefore, maximum and mini-
mum GloVe (Pennington et al., 2014) cosine sim-
ilarity between any two words in a tweet are used
as features in our system (Joshi et al., 2016).

Repetition-based Features: Users often
change their writing style to depict sarcasm
and irony, which is analogous to the change of
tone in speech while expressing sarcasm, e.g.
Loooovvveeeeeee when my phone gets wiped.
We use the count of of words with repetitive
characters and the count of ‘senti words’ (senti-
ment score ≥ 2 and sentiment score ≤ -2) with
repetitive characters as our features (Rajadesingan
et al., 2015).

Punctuation-based Features: Punctuation
counts can sometimes serve as an indicator of
ironic texts (Kreuz and Caucci, 2007). We use the
counts of characters like hashtag (#), ellipsis (...),
exclamation mark (!), question mark (?), colon (:),
quote (”) and apostrophe (’) in a tweet as features.

Presence of Markers: Discourse markers are
certain words that help in expressing ideas and
performing specific functions (Farı́as et al., 2016).
Our system uses a curated list of discourse mark-
ers. Similar to the list of discourse markers, we
also use a list of intensifiers (e.g. heck), laughter
words (e.g. lmao, lol etc.), interjections (e.g. oops)
and swear words (e.g. shit) as their appearance in
a tweet indicates the presence of unexpectedness,
which can, in turn, serve as an indicator of irony.
We use counts of these different types of words
separately as features.

639

Word Count Features: According to (2016),
ironic tweets depict their content in fewer words
compared to normal tweets. Hence we use the
word count of tweets as a feature. Apart from the
word count, (Kreuz and Caucci, 2007) suggest that
the counts of adjectives and adverbs can also be
used as markers of ironic content. We also use the
preposition count as a separate feature.

Semantic Similarity: Ironic tweets that span
multiple lines are often found to have lines that are
very much semantically dissimilar to each other
(Farı́as et al., 2016). We use the WordNet based
similarity function (Mihalcea et al., 2006) avail-
able online2 to obtain a similarity score, which is
used as a feature.

Polarity and Subjectivity: Ironic texts are usu-
ally subjective and often convey something nega-
tive (or positive) about the target (Wallace et al.,
2015). We use the Polarity and Subjectivity Scores
(Sentiment Score) generated using TextBlob as
features in our model (Loria et al., 2014).

URL Counts: We observed in the training set
that users often used irony to express their opinion
about online content, e.g. blogs, images, tweets,
etc. For specifying the context of a comment
(tweet), they often add a URL to the original con-
tent. So we used the counts of URLs in a tweet
as a feature. Our system requires raw tweets for
extracting this feature.

Apart from the above features, we also experi-
mented with Named Entity Count and occurrence
of popular hashtags like (#hypocrisy), using a cu-
rated list, as our features (Van Hee, 2017).

2.1.1 Pre-trained CNN Features
Apart from extracting linguistic features from
tweets, we leverage the activations of a Convo-
lutional Neural Network (CNN) pre-trained on
emoji prediction task. We use DeepMoji3 (Felbo
et al., 2017), a model trained on 1.2 billion
tweets with emojis, and tested on eight bench-
mark datasets within sentiment, emotion and sar-
casm detection. Since sarcasm is a form of verbal
irony that expresses ridicule or contempt (Long
and Graesser, 1988), we believe transferring the
knowledge of CNN trained on sarcasm can im-
prove the results of Irony Detection task.

Each tweet is converted into a 2304-
dimensional feature vector by feeding into

2http://nlpforhackers.io/
wordnet-sentence-similarity/

3https://github.com/bfelbo/DeepMoji

DeepMoji-CNN and extracting activations of the
last hidden layer.

2.2 Classifiers

We construct XGBoost (Chen and Guestrin, 2016)
feature-based classifiers for irony detection using
the above features. Based on the 10-fold cross val-
idation performance, the best performing parame-
ters prove to be the default parameters used by the
XGBoost Classifier Package 4.

2.3 Handling Class Imbalance

The data provided for subtask-B is highly skewed.
To perform well on every class of irony, we used
an oversampling technique (SMOTE (Chawla
et al., 2002)). In SMOTE, for generating a new
synthetic sample, from the k-nearest neighbors of
an instance, one is chosen at random, and a new
sample is generated on the line joining the instance
and the chosen neighbor. We use the SMOTE
implementation available in imblearn (Lemaı̂tre
et al., 2017) package for our system, with k-
neighbors equal to 5.

3 Experiments and Evaluation

3.1 Dataset and Metrics

The annotated tweet corpus provided for training
consists of 1390 instances of Verbal Irony due to
polarity contrast, 205 instances of Other Types of
Verbal Irony, 316 Situational Ironic instances, and
1923 Non Ironic instances. Our system only uses
the training data provided by the organizers and no
other annotated data is used (Constrained System).

The test dataset for Subtask-A contains 473
non-ironical tweets and 311 ironical tweets. For
Subtask-B, the 311 ironical tweets are further clas-
sified into Verbal Irony by means of Polarity Con-
trast (164), Situational Irony (85) and Other Forms
Of Verbal Irony (62).

The evaluation metric used for ranking teams in
Sub-task A is the F1 score of the positive (Ironic)
class whereas in Subtask-B, the organizers use
macro averaged F1 (average of F1 for each class)
as an evaluation metric for ranking teams.

3.2 Results and Discussion

We present the results achieved by our approaches,
as well as the combination of our methods in Ta-
ble 1. Our final submitted systems are: (Linguistic

4http://xgboost.readthedocs.io/en/
latest/parameter.html

640

Approach Task-A Task-B
Precision Recall F1-score Precision Recall F1-score

Linguistic 0.48 0.78 0.59 0.32 0.36 0.30
Pretrained CNN 0.60 0.63 0.62 0.51 0.44 0.42

Linguistic + Pretrained CNN 0.55 0.79 0.65 0.53 0.44 0.42
Linguistic + Pretrained CNN + SMOTE - - - 0.46 0.51 0.47

Baseline (Linear SVC over BoW) 0.56 0.63 0.59 0.48 0.36 0.33

Table 1: F1 scores in Task A and Macro F1 in Task B on test set.

+ Pretrained CNN) for Task-A and (Linguistic +
Pretrained CNN + SMOTE) for Task-B. We dis-
cuss the major takeaways from the results below.

• Our submitted models achieve 4th position
in public leaderboard 5 on both Task-A and
Task-B and beat the task baselines by about
6% and 14%, respectively, on both tasks on
the test set.

• Leveraging DeepMoji model for Irony detec-
tion domain yields a considerable improve-
ment over purely linguistic features (0.03 and
0.12). This is because the model is trained
on over a billion tweets on sarcasm and four
other domains. As stated earlier, sarcasm is
a verbal form of irony (Long and Graesser,
1988), and transfer learning works as do-
mains are quite similar.

• Our combination of linguistic features with
pre-trained CNN achieves an F-score of 0.65
and 0.42, with an improvement of at least
0.03 on Task-A and significant improvement
in Task-B, compared to linguistic features.
The higher accuracy points to the power of
ensemble learning by combining different
feature spaces, as both feature sets specialize
in different types of tweets.

• The use of SMOTE oversampling technique
leads to an F-score of 0.47 in Task-B, which
is an improvement of 0.05 over (Linguistic +
Pretrained CNN) model.

• The improvement in scores due to linguistic
features are not as pronounced in Subtask-B,
as compared to Subtask-A. One of the possi-
ble reasons for this is that linguistic features
are not able to capture the fine grained differ-
ences between different forms of irony.

5https://competitions.codalab.org/
competitions/17468#results

4 Conclusion

We reported the use of handcrafted features and
pre-trained CNN activations for predicting the
irony in tweets. We implemented a variety of fea-
tures based on user behavior as well as the lin-
guistic structure in a tweet. We further exploit
the SMOTE oversampling technique to handle the
class imbalance problem in Subtask-B, which in-
volves categorizing a tweet into Non Ironic, Verbal
Irony, Situational Irony and Other Verbal Irony.
We then feed the features into XGBoost classifier
for both the tasks. The benefit of using CNN mod-
els pre-trained on sarcasm, sentiment, and emotion
domains can be clearly seen, yielding an improve-
ment of 3% and 9% over task baselines. Our final
submitted system stood 4th in both the subtasks in
the SemEval 2018 shared task on “Irony Detection
in English Tweets”.

References
Konstantin Buschmeier, Philipp Cimiano, and Roman

Klinger. 2014. An impact analysis of features in a
classification approach to irony detection in prod-
uct reviews. In Proceedings of the 5th Workshop
on Computational Approaches to Subjectivity, Sen-
timent and Social Media Analysis, pages 42–49.

Nitesh V Chawla, Kevin W Bowyer, Lawrence O Hall,
and W Philip Kegelmeyer. 2002. Smote: synthetic
minority over-sampling technique. Journal of artifi-
cial intelligence research, 16:321–357.

Tianqi Chen and Carlos Guestrin. 2016. Xgboost: A
scalable tree boosting system. In Proceedings of the
22nd acm sigkdd international conference on knowl-
edge discovery and data mining, pages 785–794.
ACM.

Delia Irazú Hernańdez Farı́as, Viviana Patti, and Paolo
Rosso. 2016. Irony detection in twitter: The role
of affective content. ACM Transactions on Internet
Technology (TOIT), 16(3):19.

Bjarke Felbo, Alan Mislove, Anders Søgaard, Iyad
Rahwan, and Sune Lehmann. 2017. Using millions
of emoji occurrences to learn any-domain represen-
tations for detecting sentiment, emotion and sar-
casm. arXiv preprint arXiv:1708.00524.

641

Aditya Joshi, Pushpak Bhattacharyya, and Mark J Car-
man. 2017. Automatic sarcasm detection: A survey.
ACM Computing Surveys (CSUR), 50(5):73.

Aditya Joshi, Vaibhav Tripathi, Kevin Patel, Pushpak
Bhattacharyya, and Mark Carman. 2016. Are word
embedding-based features useful for sarcasm detec-
tion? arXiv preprint arXiv:1610.00883.

Roger J Kreuz and Gina M Caucci. 2007. Lexical in-
fluences on the perception of sarcasm. In Proceed-
ings of the Workshop on computational approaches
to Figurative Language, pages 1–4. Association for
Computational Linguistics.

Roger J Kreuz and Sam Glucksberg. 1989. How to
be sarcastic: The echoic reminder theory of verbal
irony. Journal of experimental psychology: Gen-
eral, 118(4):374.

Guillaume Lemaı̂tre, Fernando Nogueira, and Chris-
tos K. Aridas. 2017. Imbalanced-learn: A python
toolbox to tackle the curse of imbalanced datasets
in machine learning. Journal of Machine Learning
Research, 18(17):1–5.

Debra L Long and Arthur C Graesser. 1988. Wit
and humor in discourse processing. Discourse pro-
cesses, 11(1):35–60.

Steven Loria, P Keen, M Honnibal, R Yankovsky,
D Karesh, E Dempsey, et al. 2014. Textblob: simpli-
fied text processing. Secondary TextBlob: Simplified
Text Processing.

Rada Mihalcea, Courtney Corley, Carlo Strapparava,
et al. 2006. Corpus-based and knowledge-based
measures of text semantic similarity. In AAAI, vol-
ume 6, pages 775–780.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. Glove: Global vectors for word
representation. In Proceedings of the 2014 confer-
ence on empirical methods in natural language pro-
cessing (EMNLP), pages 1532–1543.

Ashwin Rajadesingan, Reza Zafarani, and Huan Liu.
2015. Sarcasm detection on twitter: A behavioral
modeling approach. In Proceedings of the Eighth
ACM International Conference on Web Search and
Data Mining, pages 97–106. ACM.

RJ Senter and Edgar A Smith. 1967. Automated
readability index. Technical report, CINCINNATI
UNIV OH.

Mike Thelwall, Kevan Buckley, Georgios Paltoglou,
Di Cai, and Arvid Kappas. 2010. Sentiment strength
detection in short informal text. Journal of the As-
sociation for Information Science and Technology,
61(12):2544–2558.

Cynthia Van Hee. 2017. Can machines sense irony? :
exploring automatic irony detection on social media.
Ph.D. thesis, Ghent University.

Cynthia Van Hee, Els Lefever, and Véronique Hoste.
2018. SemEval-2018 Task 3: Irony Detection in
English Tweets. In Proceedings of the 12th Interna-
tional Workshop on Semantic Evaluation, SemEval-
2018, New Orleans, LA, USA. Association for
Computational Linguistics.

Byron C Wallace, Eugene Charniak, et al. 2015.
Sparse, contextually informed models for irony de-
tection: Exploiting user communities, entities and
sentiment. In Proceedings of the 53rd Annual Meet-
ing of the Association for Computational Linguistics
and the 7th International Joint Conference on Natu-
ral Language Processing (Volume 1: Long Papers),
volume 1, pages 1035–1044.

Amy Beth Warriner, Victor Kuperman, and Marc Brys-
baert. 2013. Norms of valence, arousal, and dom-
inance for 13,915 english lemmas. Behavior re-
search methods, 45(4):1191–1207.

642

Proceedings of the 12th International Workshop on Semantic Evaluation (SemEval-2018), pages 643–648
New Orleans, Louisiana, June 5–6, 2018. ©2018 Association for Computational Linguistics

ValenTO at SemEval-2018 Task 3: Exploring the Role of Affective
Content for Detecting Irony in English Tweets

Delia Irazú Hernández Farı́as
Inst. Nacional de Astrofı́sica,
Óptica y Electrónica (INAOE)

Mexico
dirazuherfa@hotmail.com

Viviana Patti
Dip. di Informatica
University of Turin

Italy
patti@di.unito.it

Paolo Rosso
PRHLT Research Center

Universitat Politècnica de València
Spain

prosso@dsic.upv.es

Abstract

In this paper we describe the system used by
the ValenTO team in the shared task on Irony
Detection in English Tweets at SemEval 2018.
The system takes as starting point emotIDM,
an irony detection model that explores the use
of affective features based on a wide range of
lexical resources available for English, reflect-
ing different facets of affect. We experimented
with different settings, by exploiting different
classifiers and features, and participated both
to the binary irony detection task and to the
task devoted to distinguish among different
types of irony. We report on the results ob-
tained by our system both in a constrained set-
ting and unconstrained setting, where we ex-
plored the impact of using additional data in
the training phase, such as corpora annotated
for the presence of irony or sarcasm from the
state of the art. Overall, the performance of
our system seems to validate the important role
that affective information has for identifying
ironic content in Twitter.

1 Introduction

People use social media platforms as a forum to
share and express themselves by using the lan-
guage in creative ways and employing figurative
language devices such as irony to achieve differ-
ent communication purposes. Irony is closely as-
sociated with the indirect expression of feelings,
emotions and evaluations, and detecting the pres-
ence of irony in social media texts is considered
a challenge for research in computational linguis-
tics, also for the impact on sentiment analysis,
where irony detection is important to avoid mis-
interpreting the polarity of ironic statements.

Broadly speaking, under the umbrella term of
irony two main concepts are covered: verbal irony
and situational irony. Verbal irony is commonly
defined as a figure of speech where the speaker in-
tends to communicate the opposite of what is liter-

ally said (Sperber and Wilson, 1986). Situational
irony, instead refers to a contradictory or unex-
pected outcome of events (Lucariello, 2014). In
Twitter we can find many examples both of ver-
bal irony and of posts where users describe as-
pects of an ironic situation. Most of the proposed
approaches to the automatic detection of irony
in social media (Riloff et al., 2013; Buschmeier
et al., 2014; Ptáček et al., 2014)take advantage
of lexical factors such as n-grams, punctuation
marks, among others. Information related to af-
fect has been also exploited (Reyes et al., 2013;
Barbieri et al., 2014; Hernández Farı́as et al.,
2015). Other scholars proposed methods exploit-
ing the context surrounding an ironic utterance
(Wallace et al., 2015; Karoui et al., 2015). Re-
cently, also deep learning techniques have been
applied (Nozza et al., 2016; Poria et al., 2016).

This paper describes our participation in the
SemEval-2018 Task 3. The aim of this task is
to identify ironic tweets. ValenTO exploited an
extended version of emotIDM (Hernández Farı́as
et al., 2016), an irony detection model based
mainly on affective information. In particular, we
experimented the use of a wide range of affect-
related features for characterizing the presence of
ironic content, covering different facets of affect,
from sentiment to finer-grained emotions. Most
theorist (Grice, 1975; Wilson and Sperber, 1992;
Alba-Juez and Attardo, 2014) recognized, indeed,
the important role of affective information for
irony communication-comprehension.

2 The emotIDM model
Irony is a very subjective language device that in-
volves the expression of affective contents such as
emotions, attitudes, or evaluations towards a par-
ticular target. Attempting to take advantage of the
emotionally-laden characteristics of ironic expres-
sions, we relied on emotIDM, an irony detection

643

model that, taking advantage of several affective
resources available for English (Nissim and Patti,
2016), exploits various facets of affective infor-
mation from sentiment to finer-grained emotions
for characterizing the presence of irony in Twitter
(Hernández Farı́as et al., 2016).

In (Hernández Farı́as and Rosso, 2016) the ro-
bustness of emotIDM was assessed over different
Twitter state-of-the-art corpora for irony detection
(Reyes et al., 2013; Barbieri et al., 2014; Moham-
mad et al., 2015; Ptáček et al., 2014; Riloff et al.,
2013). The obtained results outperform those in
the previous works confirming the significance of
affective features for irony detection. An addi-
tional aspect to be mentioned about emotIDM is
that it was designed to identify ironic content in
a general sense, i.e. considering irony as a broad
term covering different types of irony in tweets.

emotIDM comprises two main groups of fea-
tures that are described below:
Structural Features (Str). This group includes
different markers that could help to identify ironic
intention in tweets: punctuation marks (colon, ex-
clamation, question marks), Part-Of-Speech labels
(verbs, adverbs, nouns, adjectives), emoticons, up-
percase characters, among others.
Affective Features. They are organized in three
sub-groups representing different facets of affect:

Sentiment-Related Features (Sent). Hu&Liu
(Hu and Liu, 2004), General Inquirer (Stone and
Hunt, 1963), EffectWordNet (Choi and Wiebe,
2014), Subjectivity lexicon (Wilson et al., 2005),
and EmoLex (Mohammad and Turney, 2013),
AFINN, SWN, Semantic Orientation lexicon
(Taboada and Grieve, 2004), and SenticNet (SN)
(Cambria et al., 2014).
Emotional Categories (eCat). EmoLex,
EmoSenticNet (Poria et al., 2013), SentiSense
(Carrillo de Albornoz et al., 2012), and the Lin-
guistic Inquiry and Word Count dictionary (Pen-
nebaker et al., 2001).
Dimensional Models of Emotions (eDim).
ANEW (Bradley and Lang, 1999), DAL
(Whissell, 2009), and SN.

3 emotIDM at SemEval-2018 Task 3:
Irony Detection in English Tweets

3.1 Task Description and Datasets

In the framework of SemEval-2018 was organized
the Task 3 on Irony detection in English tweets
(Van Hee et al., 2018). The main objective of this

task is to identify the presence of irony in Twitter.
It was divided in two different subtasks:

1. Task A: Ironic vs. non-ironic: to determine
whether a tweet is ironic or not.

2. Task B: Different types of irony: to pre-
dict one out of four labels: 0) non-irony
(nI), 1) verbal irony by polarity contrast (vI), 2)
other verbal irony (oI), 3) situational irony (sI).

Organizers provided datasets for training and test
labeled according the objectives of each subtask.
The whole dataset was collected by exploiting
a set of hashtags (#irony, #sarcasm and #not).
Therefore, a manual annotation process was ap-
plied in order to minimize the noise in the data.
For Task A, 1,911 ironic and 1,923 non-ironic
tweets where provided. While for Task B, the dis-
tribution was: 1923 for nI, 1393 for vI, 213 for oI
and 328 for sI. Participants were allowed to submit
systems trained under two settings: constrained
(C), where only the training data provided for the
task should be used; unconstrained (U), where the
use of additional data was permitted.

3.2 Our Proposal

We decided to participate to the shared task by
using emotIDM. By analyzing the training data,
an interesting characteristic was found: 857 out
of 3,834 tweets contain an URL. From these
tweets, 265 were belonging to the ironic class,
while 592 were labeled as non-ironic. Notice
that, in (Hernández-Farias et al., 2014), the authors
found a similar behavior regarding URL informa-
tion in the dataset provided by the organizers of
SentiPOLC-2014 (Basile et al., 2014). Further-
more, Barbieri et al. (2014) exploited a feature
for alerting the existence of an URL in a tweet;
such feature was ranked among the most discrimi-
native ones according to an information gain anal-
ysis. Since, information regarding to the presence
of URL in a tweet has proven to be useful for
detecting irony in Twitter, we decided to enrich
emotIDM by adding a binary feature for reflecting
the presence of URL in a tweet.

Below, we describe our participation in the task.

Task A: Ironic vs. non-ironic

We addressed this task as a binary classifica-
tion by taking advantage of two of the most
widely applied classifiers in irony detection: De-
cision Tree (DT) and Support Vector Machine

644

(SVM)1. Moreover, we also included Random
Forest (RF) as a classifier in our experiments2.
We carried out a set of experiments for assess-
ing the performance of the original version of
emotIDM and the one including information con-
cerning URL (emotIDM+URL). Besides, to inves-
tigate the contribution of the different sets of fea-
tures in emotIDM further experiments were per-
formed. Several classifiers were used in order to
identify the most promising setting.

As mentioned before, exploiting external data
was allowed in the unconstrained setting. We took
advantage of a set of corpora previously used in
the state of the art in irony detection. We exploited
data from a set of corpora collected exploiting dif-
ferent approaches: self-tagging or manual annota-
tion or crowd-sourcing3. We exploited the corpora
developed by (Reyes et al., 2013), (Barbieri et al.,
2014), (Mohammad et al., 2015), (Ptáček et al.,
2014), (Riloff et al., 2013), (Ghosh et al., 2015),
(Karoui et al., 2017), and (Sulis et al., 2016). Be-
sides, we also take advantage of an in-house col-
lection of tweets containing the hashtags #irony
and #sarcasm4.

Table 1 shows the obtained results during the
developing phase for Task A. We experimented
with different sets of features and classifiers con-
sidering a five fold-cross validation setting.

Features
Classifiers

DT RF SVM

C U C U C U

emotIDM 0.57 0.70 0.64 0.71 0.64 0.79

emotIDM
0.56 0.74 0.62 0.70 0.64 0.81

+ URL

Str + Sent 0.59 0.69 0.60 0.70 0.63 0.78

Str+eCat+eDim 0.58 0.69 0.62 0.70 0.65 0.77

Sent+eCat+eDim 0.52 0.61 0.54 0.62 0.57 0.70
Table 1: Training phase: results for Task A with differ-
ent experimental settings in C and U scenarios.

SVM emerges as the classifier with the best per-
formance in both C and U scenarios. We noticed
that, when using SVM, adding the URL feature

1For experimental purposes we used Scikit-learn: http:
//scikit-learn.org/. The default configuration of
parameters in the classifiers was applied.

2This was motivated by the fact that it demonstrated a
competitive performance for classifying tweets with #irony,
#sarcasm, and #not hashtags in (Sulis et al., 2016).

3Further details on the approaches for collecting corpora
for irony detection can be found in (Hernández Farı́as and
Rosso, 2016).

4The tweets were retrieved during the 2016 US Elections
period from 8th up to 18th November 2016.

to emotIDM helps to improve the overall perfor-
mance of our system. When we experimented by
removing a set of features in emotIDM, a drop in
the performance (in most of the cases) is observed.
The results of the experiments with external data
are higher than those using only the training data.
The last row in Table 1 shows the obtained re-
sults when only affect-related features were used;
even though there is a drop in the performance re-
spect to the experiments using structural features,
it seems that affective features on their own pro-
vide useful information for irony detection.

We participated in the subtask A by submitting
two runs (constrained and unconstrained) exploit-
ing the experimental setting with the best perfor-
mance: emotIDM+URL with a SVM as classifier.

Task B: Different types of irony
Distinguishing between different kinds of ironic
devices is still a controversial issue. In compu-
tational linguistics, only few research works have
attempted to address such a difficult task (Wang,
2013; Barbieri et al., 2014; Sulis et al., 2016;
Van Hee et al., 2016). We are interested in as-
sessing the performance of emotIDM when it deals
with different types of irony, in order to test if a
wide variety of affective features can help in dis-
criminating also in the finer-grained classification
task here proposed. This could give some insights
on the role of affective content among ironic de-
vices having different communication purposes.

emotIDM+URL was trained with the dataset
provided for Task B (constrained setting) to test
the effectiveness of affective features in such finer-
grained task. We exploited the same classifiers
than in Task A attempting to evaluate their per-
formance when different classes of irony should
be classified. Overall, the best performance was
achieved by SVM (see Table 2). However, when
the performance of each single class was consid-
ered, the best results were those obtained with DT.
For this reason, we decided to combine two clas-
sifiers with the following criterion: the sI and oI
classes are assigned by the DT; while irony and
non-irony are assigned by SVM or RF. Table 2
shows the obtained results of the experiments car-
ried out over the dataset for Task B. A five fold
cross-validation was applied. From the results in
Table 2, it can be noticed that when two classi-
fiers are combined the performance of our model
improves. The DT + SVM was selected as the sys-
tem for participating in the Task B.

645

Classifier (s) Macro F-measure
DT 0.31
RF 0.30

SVM 0.31
DT + RF 0.33

DT + SVM 0.34
Table 2: Training phase: obtained results for Task B.

3.3 Results
The results of ValenTO participation in the shared
task are summarized in Table 3. In Task A, on
the official CodaLab ranking, we ranked in the
16th position with the unconstrained version of
our submission. When comparing our official re-
sult with the one obtained by the best-ranked sys-
tem (0.7054), it can be noticed that the difference
is lower than 0.1 in F-score terms. It is an in-
teresting result considering that our system relies
mainly on features covering different facets of af-
fect in ironic tweets, and confirms the key role
that such kind of affective information plays for
detecting irony in Twitter. In addition, the or-
ganizers also provided separate rankings for con-
strained and unconstrained submissions. Our sys-
tem ranked in the 17th position in the constrained
setting, while in the unconstrained one we ranked
as 4th. Moreover, the performance of our system
seems to be stable in the two C and U settings.
Concerning Task B, our system performed rela-
tively well, considering that we did not apply fur-
ther tuning to capture different ironic devices. We
ranked in the 17th position of 31 submissions in
the Official ranking at CodaLab.

Run Accuracy Precision Recall F1-score
Task A

C 0.6709 0.5764 0.6431 0.6079
U 0.5982 0.4959 0.7814 0.6067

Task B
C 0.5599 0.3534 0.3521 0.3520

Table 3: Official results of ValenTO team in both tasks

3.4 Discussion and Error Analysis
Data provided for the task were retrieved by
exploiting hashtags #irony, #sarcasm and #not,
which according to (Sulis et al., 2016) seems to
label different kinds of ironic phenomena. We an-
alyzed the gold standard labels provided by the
organizers (where the ironic hashtags were also
included in the tweets) in order to see the per-
formance of our model for recognizing tweets la-
beled with distinct hashtags. Considering the re-
sults in Task A, we noticed that our system was
able to identify all the three kinds of tweets with-
out any kind of skew towards a particular hashtag.

It somehow confirms the robustness of emotIDM
for recognizing irony in a broad sense.

Our system was able to correctly identify in-
stances expressing an apparent positive emotional
distress with an ironic intention, such as: Sun-
day is such a fun day to study #ew #saywhat and
Yay I just love this time of the month...!. A spe-
cial mention is for tweets labeled with #not. This
hashtag is not always used for highlighting a fig-
urative meaning. Our system was able to cor-
rectly identify instances containing #not when it
was used for figurative meaning such as: Yay for
Fire Alarms at 3AM #not, and also when it was
used as part of the text in a tweet: #Myanmar
#men #plead #not #guilty to #murder of #British
#tourists. http://t.co/flrKr3H6Kl via @reuters.

For what concerns the performance of emotIDM
in Task B, Table 4 5 shows that our model per-
formed better in identifying tweets where verbal
irony was expressed by means of a polarity con-
trast. Moreover, it was recognizing better “situa-
tional irony” than “other irony”.

vI oI sI nI tT Correct (%)
vI 75 10 14 66 166 45
oI 6 4 11 25 62 9.2
sI 16 9 13 35 85 40
nI 67 39 47 347 473 79

Table 4: Confusion Matrix: Task B.

Since our model relies mainly on affective in-
formation, ironic instances lacking of subjective-
related content are hard to recognize, as in: Be-
ing a hipster now is so mainstream. Oh, the
irony. #hipster #irony. Moreover, we found some
tweets where context information is crucial for
capturing the ironic sense, like in: So there used
to be a crossfit place here.... #irony #pizzawins
http://t.co/9BDkxT9GFJ; or where the hashtag is
the only signal for ironic intention.

4 Conclusions
In this paper, we described our participation at
SemEval-2018 Task 3. We exploited an enhanced
version of emotIDM. In our experiments, SVM
emerges as the classifier with the best perfor-
mance. The obtained results serve to validate
the usefulness of affect-related features for distin-
guishing ironic tweets. As future work, it could
be interesting to enrich emotIDM with features
for capturing other kinds of information such as
common-knowledge and semantic incongruity.

5The column ”tT” refers to the amount of tweets in the
test set. The column ”Correct” refers to the percentage of
instances correctly classified per class.

646

Acknowledgments
The work of D. I. Hernández Farı́as was funded
by CONACYT project FC-2016/2410. The work
of P. Rosso has been funded by the SomEM-
BED TIN2015-71147-C2-1-P MINECO project.
The work of V. Patti was partially funded by the
IHatePrejudice project (S1618 L2 BOSC 01).

References
Laura Alba-Juez and Salvatore Attardo. 2014. The

Evaluative Palette of Verbal Irony. In Geoff Thomp-
son and Laura Alba-Juez, editors, Evaluation in
Context, pages 93–116. John Benjamins Publishing
Company, Amsterdam/Philadelphia.

Jorge Carrillo de Albornoz, Laura Plaza, and Pablo
Gervás. 2012. SentiSense: An Easily Scalable
Concept-based Affective Lexicon for Sentiment
Analysis. In Proceedings of the Eight International
Conference on Language Resources and Evaluation
(LREC’12), pages 3562–3567. European Language
Resources Association (ELRA).

Francesco Barbieri, Horacio Saggion, and Francesco
Ronzano. 2014. Modelling Sarcasm in Twitter, a
Novel Approach. In Proceedings of the 5th Work-
shop on Computational Approaches to Subjectivity,
Sentiment and Social Media Analysis, pages 50–58.
Association for Computational Linguistics.

Valerio Basile, Andrea Bolioli, Malvina Nissim, Vi-
viana Patti, and Paolo Rosso. 2014. Overview of
the Evalita 2014 SENTIment POLarity classification
task. In Proceedings of the Fourth Evaluation Cam-
paign of Natural Language Processing and Speech
Tools for Italian EVALITA 2014, pages 50–57.

Margaret M Bradley and Peter J Lang. 1999. Affec-
tive Norms for English Words (ANEW): Instruction
Manual and Affective Ratings. Technical report,
Center for Research in Psychophysiology, Univer-
sity of Florida, Gainesville, Florida.

Konstantin Buschmeier, Philipp Cimiano, and Roman
Klinger. 2014. An Impact Analysis of Features in a
Classification Approach to Irony Detection in Prod-
uct Reviews. In Proceedings of the 5th Workshop
on Computational Approaches to Subjectivity, Senti-
ment and Social Media Analysis, pages 42–49.

Erik Cambria, Daniel Olsher, and Dheeraj Rajagopal.
2014. SenticNet 3: A Common and Common-
Sense Knowledge Base for Cognition-Driven Senti-
ment Analysis. In Proceedings of AAAI Conference
on Artificial Intelligence, pages 1515–1521. AAAI.

Yoonjung Choi and Janyce Wiebe. 2014. +/-
EffectWordNet: Sense-level Lexicon Acquisition
for Opinion Inference. In Proceedings of the 2014
Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP), pages 1181–1191.

Aniruddha Ghosh, Guofu Li, Tony Veale, Paolo Rosso,
Ekaterina Shutova, John Barnden, and Antonio
Reyes. 2015. SemEval-2015 Task 11: Sentiment
Analysis of Figurative Language in Twitter. In Pro-
ceedings of the 9th International Workshop on Se-
mantic Evaluation, pages 470–478. Association for
Computational Linguistics.

H. P. Grice. 1975. Logic and Conversation. In P. Cole
and J. L. Morgan, editors, Syntax and Semantics:
Vol. 3: Speech Acts, pages 41–58. Academic Press.

Delia Irazú Hernández Farı́as, Viviana Patti, and Paolo
Rosso. 2016. Irony Detection in Twitter: The Role
of Affective Content. ACM Trans. Internet Technol.,
16(3):19:1–19:24.

Delia Irazú Hernández Farı́as and Paolo Rosso. 2016.
Irony, Sarcasm, and Sentiment Analysis. Chapter
7. In Federico A. Pozzi, Elisabetta Fersini, Enza
Messina, and Bing Liu, editors, Sentiment Analysis
in Social Networks, pages 113–127. Morgan Kauf-
mann.

Irazú Hernández Farı́as, José-Miguel Benedı́, and
Paolo Rosso. 2015. Applying Basic Features from
Sentiment Analysis for Automatic Irony Detection.
In Pattern Recognition and Image Analysis, volume
9117 of Lecture Notes in Computer Science, pages
337–344. Springer International Publishing.

Irazú Hernández-Farias, Davide Buscaldi, and Belém
Priego-Sánchez. 2014. IRADABE: Adapting En-
glish Lexicons to the Italian Sentiment Polarity
Classification Task. In Proceedings of the First
Italian Conference on Computational Linguistics
(CLiC-it 2014) & the Fourth Evaluation Campaign
of Natural Language Processing and Speech Tools
for Italian EVALITA 2014, pages 75–81.

Minqing Hu and Bing Liu. 2004. Mining and Sum-
marizing Customer Reviews. In Proceedings of the
Tenth ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, KDD ’04,
pages 168–177, Seattle, WA, USA. ACM.

Jihen Karoui, Farah Benamara, Véronique Moriceau,
Nathalie Aussenac-Gilles, and Lamia Hadrich-
Belguith. 2015. Towards a Contextual Pragmatic
Model to Detect Irony in Tweets. In Proceedings
of the 53rd Annual Meeting of the Association for
Computational Linguistics and the 7th International
Joint Conference on Natural Language Processing
(Volume 2: Short Papers), pages 644–650. Associa-
tion for Computational Linguistics.

Jihen Karoui, Farah Benamara, Veronique Moriceau,
Viviana Patti, Cristina Bosco, and Nathalie
Aussenac-Gilles. 2017. . In Proceedings of the
15th Conference of the European Chapter of the
Association for Computational Linguistics: Volume
1, Long Papers, Valencia, Spain. Association for
Computational Linguistics.

647

Joan Lucariello. 2014. Situational Irony: A Concept of
Events Gone Awry. Journal of Experimental Psy-
chology: General, 123(2):129–145.

Saif M. Mohammad and Peter D. Turney. 2013.
Crowdsourcing a Word–Emotion Association Lex-
icon. Computational Intelligence, 29(3):436–465.

Saif M. Mohammad, Xiaodan Zhu, Svetlana Kir-
itchenko, and Joel Martin. 2015. Sentiment, Emo-
tion, Purpose, and Style in Electoral Tweets. Infor-
mation Processing & Management, 51(4):480 – 499.

Malvina Nissim and Viviana Patti. 2016. Semantic as-
pects in sentiment analysis. In Fersini Elisabetta,
Bing Liu, Enza Messina, and Federico Pozzi, edi-
tors, Sentiment Analysis in Social Networks, chap-
ter 3, pages 31–48. Elsevier.

Debora Nozza, Elisabetta Fersini, and Enza Messina.
2016. Unsupervised Irony Detection: A Probabilis-
tic Model with Word Embeddings. In Proceed-
ings of the 8th International Joint Conference on
Knowledge Discovery, Knowledge Engineering and
Knowledge Management, pages 68–76.

James W. Pennebaker, Martha E. Francis, and Roger J.
Booth. 2001. Linguistic Inquiry and Word Count:
LIWC 2001. Mahway: Lawrence Erlbaum Asso-
ciates, 71.

Soujanya Poria, Erik Cambria, Devamanyu Hazarika,
and Prateek Vij. 2016. A Deeper Look into Sarcastic
Tweets Using Deep Convolutional Neural Networks.
CoRR, abs/1610.08815.

Soujanya Poria, Alexander Gelbukh, Amir Hussain,
Newton Howard, Dipankar Das, and Sivaji Bandy-
opadhyay. 2013. Enhanced SenticNet with Af-
fective Labels for Concept-Based Opinion Mining.
IEEE Intelligent Systems, 28(2):31–38.

Tomáš Ptáček, Ivan Habernal, and Jun Hong. 2014.
Sarcasm Detection on Czech and English Twitter.
In Proceedings of COLING 2014, the 25th Inter-
national Conference on Computational Linguistics,
pages 213–223. Dublin City University and Associ-
ation for Computational Linguistics.

Antonio Reyes, Paolo Rosso, and Tony Veale. 2013.
A Multidimensional Approach for Detecting Irony
in Twitter. Language Resources and Evaluation,
47(1):239–268.

Ellen Riloff, Ashequl Qadir, Prafulla Surve, Lalin-
dra De Silva, Nathan Gilbert, and Ruihong Huang.
2013. Sarcasm as Contrast between a Positive Sen-
timent and Negative Situation. In Proceedings of the
2013 Conference on Empirical Methods in Natural
Language Processing, pages 704–714. Association
for Computational Linguistics.

Dan Sperber and Deirdre Wilson. 1986. Relevance:
Communication and Cognition. Harvard University
Press, Cambridge, MA, USA.

Philip J. Stone and Earl B. Hunt. 1963. A Computer
Approach to Content Analysis: Studies Using the
General Inquirer System. In Proceedings of the
May 21-23, 1963, Spring Joint Computer Confer-
ence, AFIPS ’63 (Spring), pages 241–256. ACM.

Emilio Sulis, Delia Irazú Hernández Farı́as, Paolo
Rosso, Viviana Patti, and Giancarlo Ruffo. 2016.
Figurative Messages and Affect in Twitter: Dif-
ferences between #irony, #sarcasm and #not.
Knowledge-Based Systems, 108:132–143.

Maite Taboada and Jack Grieve. 2004. Analyzing Ap-
praisal Automatically. In Proceedings of the AAAI
Spring Symposium on Exploring Attitude and Affect
in Text: Theories and Applications, pages 158–161,
Stanford, US. AAAI.

Cynthia Van Hee, Els Lefever, and Veronique Hoste.
2016. Exploring the realization of irony in Twit-
ter data. In Proceedings of the Tenth International
Conference on Language Resources and Evaluation
(LREC 2016). European Language Resources Asso-
ciation (ELRA).

Cynthia Van Hee, Els Lefever, and Véronique Hoste.
2018. SemEval-2018 Task 3: Irony Detection in
English Tweets. In Proceedings of the 12th Interna-
tional Workshop on Semantic Evaluation, SemEval-
2018, New Orleans, LA, USA. Association for
Computational Linguistics.

Byron C. Wallace, Do Kook Choe, and Eugene Char-
niak. 2015. Sparse, Contextually Informed Mod-
els for Irony Detection: Exploiting User Commu-
nities, Entities and Sentiment. In Proceedings of the
53rd Annual Meeting of the Association for Compu-
tational Linguistics and the 7th International Joint
Conference on Natural Language Processing (Vol-
ume 1: Long Papers), pages 1035–1044. Associa-
tion for Computational Linguistics.

Angela P. Wang. 2013. #irony or #sarcasm — A
Quantitative and Qualitative Study Based on Twitter.
In Proceedings of the 27th Pacific Asia Conference
on Language, Information, and Computation, pages
349–356. National Chengchi University.

Cynthia Whissell. 2009. Using the Revised Dictionary
of Affect in Language to Quantify the Emotional
Undertones of Samples of Natural Languages. Psy-
chological Reports, 2(105):509–521.

Deirdre Wilson and Dan Sperber. 1992. On Verbal
Irony. Lingua, 87(1-2):53–76.

Theresa Wilson, Janyce Wiebe, and Paul Hoffmann.
2005. Recognizing Contextual Polarity in Phrase-
level Sentiment Analysis. In Proceedings of the
Conference on Human Language Technology and
Empirical Methods in Natural Language Process-
ing, HLT ’05, pages 347–354. Association for Com-
putational Linguistics.

648

Proceedings of the 12th International Workshop on Semantic Evaluation (SemEval-2018), pages 649–654
New Orleans, Louisiana, June 5–6, 2018. ©2018 Association for Computational Linguistics

#NonDicevoSulSerio at SemEval-2018 Task 3: Exploiting Emojis and
Affective Content for Irony Detection in English Tweets

Endang Wahyu Pamungkas, Viviana Patti
Dipartimento di Informatica, University of Turin
{pamungka,patti}@di.unito.it

Abstract

This paper describes the participation of the
#NonDicevoSulSerio team at SemEval2018-
Task3, which focused on Irony Detection in
English Tweets and was articulated in two
tasks addressing the identification of irony at
different levels of granularity. We participated
in both tasks proposed: Task A is a classical
binary classification task to determine whether
a tweet is ironic or not, while Task B is a multi-
class classification task devoted to distinguish
different types of irony, where systems have
to predict one out of four labels describing
verbal irony by clash, other verbal irony, sit-
uational irony, and non-irony. We addressed
both tasks by proposing a model built upon
a well-engineered features set involving both
syntactic and lexical features, and a wide range
of affective-based features, covering different
facets of sentiment and emotions. The use of
new features for taking advantage of the affec-
tive information conveyed by emojis has been
analyzed. On this line, we also tried to ex-
ploit the possible incongruity between senti-
ment expressed in the text and in the emojis
included in a tweet. We used a Support Vec-
tor Machine classifier, and obtained promising
results. We also carried on experiments in an
unconstrained setting.

1 Introduction

The use of creative language and figurative lan-
guage devices such as irony has been proven to
be pervasive in social media (Ghosh et al., 2015).
The presence of these devices makes the process
of mining social media texts challenging, espe-
cially because they can influence and twist the sen-
timent polarity of an utterance in different ways.
Glossing over differences across different theoret-
ical accounts proposed in the context of various
disciplines (Gibbs and Colston, 2007; Grice, 1975;
Wilson and Sperber, 1992; Attardo, 2007; Giora,

2003), irony can be defined as an incongruity be-
tween the literal meaning of an utterance and its
intended meaning (Karoui et al., 2017). The term
irony covers mainly two phenomena: verbal and
situational irony (Attardo, 2006). Situational irony
refers to events or situations which fail to meet
expectations, such as for instance “warnings the
dangerous effect of smoking on the cigarette ad-
vertisement”, while verbal irony occurs when the
speaker intend to communicate a different mean-
ing w.r.t what he/she is literally saying. Most
of the time it involves the intention of commu-
nicating an opposite meaning, and this kind of
opposition can be expressed by polarity contrast.
However this is not the only possibility, and so-
cial media messages well reflect such variety, in-
cluding different expressions of verbal irony and
descriptions of situational irony (Van Hee et al.,
2016a; Sulis et al., 2016). Automatic irony de-
tection is an important task to improve sentiment
analysis (Reyes et al., 2013; Maynard and Green-
wood, 2014). However, detecting irony automat-
ically from textual messages is still a challenging
task for scholars (Joshi et al., 2017). The linguistic
and social factors which impact on the perception
of irony contribute to make the task complex.

In this paper, we will describe the irony de-
tection systems we developed for participating in
SemEval2018-Task3: Irony Detection in English
Tweets (Van Hee et al., 2018). Our systems used a
support vector classifier model by exploiting some
novel and well-handcrafted features including lex-
ical, syntactical and affective based features. We
participated in 3 different scenarios (Task A con-
strained, Task A unconstrained, and Task B uncon-
strained). The official results show that our system
outperformed all systems in the unconstrained set-
ting on both tasks and was able to achieve a rea-
sonable score in Task A constrained, ranking in the
top ten out of 44 submissions.

649

2 The #NonDicevoSulSerio System

We performed our experiments using a support
vector machine classifier, with radial basis func-
tion kernel. We exploited different kind of features
(lexical, syntactical and affective-based), which
has been proven effective in literature to identify
ironic phenomena. In addition, we also investi-
gated the use of novel features aimed at exploiting
information conveyed by emojis, studying in par-
ticular sentiment incongruity between sentiment
expressed in the text and in the emojis of a tweet.

2.1 Structural Features

Structural features consist of lexical and syntacti-
cal features which characterize Twitter data. Such
kind of features has been proven beneficial in sev-
eral tasks dealing with Twitter data, and we se-
lected the most relevant ones for irony detection.
Hashtag Presence: binary value 0 (if no hash-
tag in tweet) and 1 (if hashtag contained in tweet).
Hashtag Count: number of hashtags contained in
tweet. Mention Count: number of mentions con-
tained in tweet. Exclamation Mark Count: num-
ber of exclamation marks contained in tweet. Up-
per Case Count: number of upper case characters
in tweet. Link Count: number of links (http) con-
tained in tweet. Link Presence: binary value 0 (if
no link in tweet) and 1 (if at least one link found
in tweet). Has Quote: binary value 0 (if quote (“ ”
or ’ ’) not found in tweet) and 1 (if at least one pair
of quote (“ ” or ’ ’) found in tweet). Intensifiers &
Overstatement Words Count: number of inten-
sifiers and words typically used in ironic overstate-
ments 1 found in tweet. Emoji Presence: binary
value 0 (if no emoji found in tweet) and 1 (if at
least one emoji found in tweet). Repeated Char-
acter: binary value 0 (if there is no repeated char-
acter found in tweet) and 1 (if at least three char-
acters repeated consequently in one word found in
tweet). Text Length: the length of characters in
each tweet. Conjunction Count: the number of
conjunctions found in tweet. Verb Count: the
number of verbs found in tweet. Noun Count:
the number of nouns found in tweet. Adjective
Count: the number of adjectives found in tweet.
We use Standford PoS-Tagger 2 to get the count of
conjunctions, verbs, nouns, and adjectives.

1love, really, lovely, like, great, brilliant, perfect, thank,
glad.

2https://nlp.stanford.edu/software/
tagger.shtml

2.2 Affective-Based Features
Affective features were proven effective in prior
work to detect irony in tweets (Farı́as et al.,
2016). We exploited available affective resources
to extract affective information trying to capture
multiple facets of affects -sentiment polarity and
emotions- by selecting a few resources developed
for English, which refers to both categorical and
dimensional models of emotions.
AFINN.: AFINN is a sentiment lexicon consist-
ing of English words labeled with valence score
between -5 and 5. We used the normalized ver-
sion of AFINN in (Farı́as et al., 2016), where the
valence score was already normalized to the range
between 0 and 1.
Emolex. Emolex (Mohammad and Turney, 2013)
was developed by using crowdsourcing. Emolex
contains 14,182 words associated with eight pri-
mary emotion based on (Plutchik, 2001).
EmoSenticNet. EmoSenticNet(EmoSN) (Poria
et al., 2013) is an enriched version of Sentic-
Net, where emotion labels were added by mapping
WordNet-Affect labels to the SenticNet concepts.
WordNet-Affect labels refers to six Ekman’s basic
emotions.
Linguistic Inquiry and Word Count (LIWC).
LIWC dictionary (Pennebaker et al., 2001) has
4,500 words distributed into 64 different emo-
tional categories including positive and negative.
Here we only use the positive (PosEMO) and neg-
ative emotion (NegEMO) categories.
Dictionary of Affect in Language (DAL). DAL
was developed by (Whissell, 2009) and composed
of 8,742 English words. These words were labeled
by three scores representing the emotion dimen-
sions Pleasantness, Activation, and Imagery.
Emoji Sentiment Ranking. Since we observed
the presence of a lot of emojis in Twitter data, we
used the emoji sentiment ranking lexicon by (No-
vak et al., 2015) to get the sentiment score of each
emoji in the tweet. We also tried to detect sen-
timent incongruity between text and emoji in the
same tweet. We used VADER (Hutto and Gilbert,
2014) to extract the polarity score of the text.

3 Experiment and Results

3.1 Task Description and Dataset
SemEval2018-Task3’s organizers proposed two
subtasks related to the topic of detecting irony in
Twitter automatically (Van Hee et al., 2018). Sub-
Task A is a binary classification task, where every

650

SubTask A
Irony Not Irony

Training 1911 1923
Testing 311 473

SubTask B
0 1 2 3

Training 1923 1390 316 205
Testing 473 164 85 62

Table 1: Dataset Distribution on Both Tasks.
0 : Not irony
1 : Verbal irony by polarity contrast
2 : Others irony
3 : Situational irony

system should determine whether a tweet is ironic
or not ironic. Meanwhile, SubTask B is defined
as a multi-class classification problem, where the
aim is to classify each tweet into four different
categories including: verbal irony by polarity con-
trast, other verbal irony, situational irony, and not
irony. In both tasks, organizers allowed submis-
sions in two scenarios: constrained and uncon-
strained. In unconstrained settings, participants
were allowed to exploit external data from other
corpora annotated with irony labels in the training
phase. Standard evaluation metrics were proposed
for the task, including, precision, recall, accuracy,
and F1-score.
Dataset The organizers provided 3,834 training
data and 784 test data for both tasks. Table 1
shows the dataset distribution. Data were collected
by using three irony-related hashtags: #irony,
#sarcasm, and #not. Datasets for both tasks were
manually labeled by using the fine-grained anno-
tation scheme in (Van Hee et al., 2016b). A two-
layer annotation has been applied on the same
tweets, one concerning the presence and absence
of irony, the second one identifying different types
of irony, when irony is present. As a conse-
quence, as Table 1 shows, there is a class im-
balance on SubTask B dataset in favor of non-
ironic class (50%), verbal irony by polarity con-
trast (25%), other verbal irony (13%) and situ-
ational irony (12%). The irony-related hashtags
were removed from the final dataset release.

3.2 Experimental Setup

We built our supervised systems based on avail-
able training data. In this phase performances

SubTask A
Amt. HashTag Source
500 #irony (Barbieri et al., 2014)
400 #sarcasm (Riloff et al., 2013)
100 #sarcasm (Barbieri et al., 2014)
500 #not (Sulis et al., 2016)
500 non-irony (Mohammad et al., 2015)
500 non-irony (Ptáček et al., 2014)
500 non-irony (Riloff et al., 2013)

SubTask B
Amt. HashTag Source
867 #irony (Barbieri et al., 2014)

Table 2: Additional data on Unconstrained Scenario.

were evaluated based on the mean of F1-score,
by using 10-fold cross validation. We chose an
SVM classifier with radial basis function kernel3.
Our system implementation is free available for re-
search purpose in GitHub page 4. Therefore, we
lean on feature selection process to improve the
system performance. We carried on an ablation
test on our feature sets to get the highest F1-score.
We decided to participate in three different scenar-
ios: SubTask A constrained, SubTask A uncon-
strained, and SubTask B unconstrained.

For unconstrained scenario in SubTask A, we
used the available corpora from previous work.
We tried to add new data with balance proportion
(1500 ironic and 1500 non-ironic). We also added
a balance proportion of ironic data based on dif-
ferent hashtag (500 #irony, 500 #sarcasm, and 500
#not) from three different corpora, with the aim of
enriching the training data with ironic samples of
various provenance and trying to avoid biases. The
distribution and source of our additional data can
be seen in Table 2.

In SubTask B, we proposed to use a pipeline
approach in three-steps classification scenario.
First, we classify the ironic and non-ironic (sim-
ilar configuration with SubTask A). Second, we
classify the ironic data from step one into two
categories, verbal irony by polarity contrast and
the rest (other verbal irony+situational irony). In
the second step, we add more training data on
the other verbal irony+situational irony class to

3SVM good performances for similar tasks were recog-
nized (Joshi et al., 2017). We built our system by using scikit-
learn Python Library http://scikit-learn.org/.

4https://github.com/dadangewp/
SemEval-2018-Task-3

651

Structural Features System 1 System 2 System 3 System 4
Task A (C) Task A (U)
Task B (U)-1 Task B (U)-2 Task B (U)-3

Hashtag Count X X X X
Hashtag Presence X X X -
Mention Count X X - -
Exclamation Mark - - X -
UpperCase Count - X - -
Link Count X X - X
Link Presence X X - -
Has Quote - - X -
Intensifiers/Overstatement X X X -
Emoji Presence - - X X
Repeated Chars - - X X
Text Length X - X X
Conjunction Count X - X X
Noun Count X X - X
Adjective Count - - X X
Verb Count - - X X
Affective Features
AFINN Score - - X X
DAL Pleasantness X - - -
DAL Activation X - - -
DAL Imagery - - X -
Emolex Surprise - - X -
Emolex Trust X - - -
Emolex Positive - - X -
Emolex Negative X - X -
Emolex Anticipation - - X -
Emolex Fear X X X X
LIWC Positive - - X -
LIWC Negative - - - X
EmoSenticNet Disgust X X X X
EmoSenticNet Fear - - - X
EmoSenticNet Joy - X X X
EmoSenticNet Sad - X - X
EmoSenticNet Surprise - - X -
Vader Sentiment Score - - X -
Emoji Incongruity X X - -

Table 3: Feature Selection on each System.

overcome the imbalance issue. We decided to use
only additional tweets marked with #irony hash-
tags, relying on the analysis in (Sulis et al., 2016)
suggesting that the polarity reversal phenomenon
seems to be relevant in messages marked with
#sarcasm and #not, but less relevant for messages
tagged with #irony. In the last step, we classify
between other verbal irony and situational irony.
Table 3 shows selected features on each submitted
system based on our ablation test.

3.3 Result and Analysis

Table 4 shows our experimental results based on
four different metrics including accuracy, preci-
sion, recall, and F1-score. For experiments on the
training set we used 10-fold cross validation, and
we report the score for each metric. However, F1-
score has been used as the criterion to tune the con-
figuration. Official Codalab results show that our
system ranked 10th out of 44 submissions on Sub-

Task A and 9th out of 32 on SubTask B. We ob-
tained F 1-score 0.6216 (Best system: 0.7054) on
SubTask A and 0.4131 (Best system: 0.5074) on
SubTask B. However, our system outperformed all
systems in the unconstrained setting on both tasks.

Based on our analysis, several stylistic fea-
tures were very effective in Task A (both in con-
strained and unconstrained settings). Especially,
Twitter specific symbols such as hashtags, men-
tions, and URLs were very useful to discriminate
non ironic tweets. In addition, we found that af-
fective resource were very helpful in the Step 2
and Step 3 of Task B, especially Emolex (Step
2) and EmoSenticNet (Step 3). Another impor-
tant finding is that additional data on Task A did
not improve the classifier performance. Instead,
additional tweets marked with #irony on Task B
were very useful to handle the imbalance dataset
in Step-2 (verbal irony by polarity contrast vs
other verbal irony+situational irony). Our clas-

652

SubTask A Constrained
Acc Prec Rec F1

Training 0.630 0.616 0.664 0.638
Testing 0.666 0.562 0.717 0.630

SubTask A Unconstrained
Acc Prec Rec F1

Training 0.617 0.615 0.646 0.630
Testing 0.679 0.583 0.666 0.622

SubTask B Unconstrained
Acc Prec Rec F1

Training-1 0.630 0.616 0.664 0.638
Training-2 0.702 0.671 0.779 0.720
Training-3 0.689 0.651 0.488 0.544
Testing 0.555 0.409 0.441 0.413

Table 4: Results on Training and Test sets.

sifier was able to achieve a high F1 score on the
training phase in this case. Furthermore, we also
found that our new features for capturing affec-
tive information in emojis (e.g. emoji incongruity)
were very helpful in classifying between ironic
and not ironic data.

Table 5 shows the confusion matrix of our clas-
sification result on SubTask B. Our system per-
formed quite well in Step 1 (irony vs non-irony)
and Step 2 (verbal irony by polarity contrast vs
other verbal irony+situational irony). However,
our system was struggling in distinguishing be-
tween other verbal irony and situational irony
(Step 3). Our system got very low precision in
detecting situational irony, and this has a huge im-
pact on macro average F-score. The difficulties
to find an important feature to discriminate other
verbal and situational irony was, indeed, for us
the main challenge in Task B. A qualitative error
analysis was conducted. We found a lot of tweets
which where difficult to understand without the
context), like:

(tw1)”Produce Mobile Apps
http://t.co/3OV57ZhqcH
http://t.co/wX1DbI8W9M”

(tw2) ”#Consensus of Absolute Hilarious -
#MichaelMann to lecture on #Professional
#Ethics for #Climate #Scientists?
http://t.co/pD0TEMq1Z0”

The first tweet is featured by situational irony and
was originally including a #not hashtag before the
link. Also for humans it is very difficult to get the

0 1 2 3
0 285 80 75 33
1 19 96 31 18
2 29 7 38 11
3 29 13 12 8

Table 5: Confusion Matrix SubTask B.
0 : Not irony
1 : Verbal irony by polarity contrast
2 : Others irony
3 : Situational irony

ironic intention behind the tweet when the #not
hashtag is removed and without having access to
the information in the URL, which was anyway
inactive. The second example was labelled as
other verbal irony. Although it is very difficult to
resolve the context of this tweet, accessing to the
URL contained was helpful in understanding the
ironic intent.

4 Conclusion

This paper described the participation of the
#NonDicevoSulSerio5 team at SemEval2018-
Task3: Irony Detection of English Tweets. We
proposed to use several stylistic features and ex-
ploited several affective resources to deal with this
task. Based on our evaluation and analysis, clas-
sifying irony into its several types (verbal irony
by polarity contrast, other verbal irony, and situa-
tional irony) is a very challenging task. Especially,
getting relevant features to discriminate between
other verbal irony and situational irony will be-
come our main focus on the future research direc-
tion. In this case, capturing semantic incongruity
by exploiting word embedding semantic similar-
ity is an issue worth to be explored (Joshi et al.,
2015).

References

Salvatore Attardo. 2006. Irony. Encyclopedia of Lan-
guage & Linguistics, 6:26–28.

Salvatore Attardo. 2007. Irony as relevant inappro-
priateness. In H. Colston and R. Gibbs, editors,
Irony in language and thought: A cognitive science
reader, pages 135–172. Lawrence Erlbaum.

5“Non dicevo sul serio” (Italian) means: ’I didn’t mean
that”.

653

Francesco Barbieri, Horacio Saggion, and Francesco
Ronzano. 2014. Modelling sarcasm in twitter, a
novel approach. In Proc. of the 5th Workshop on
Computational Approaches to Subjectivity, Senti-
ment and Social Media Analysis, pages 50–58.

Delia Irazú Hernańdez Farı́as, Viviana Patti, and Paolo
Rosso. 2016. Irony detection in twitter: The role
of affective content. ACM Transactions on Internet
Technology (TOIT), 16(3):19.

Aniruddha Ghosh, Guofu Li, Tony Veale, Paolo Rosso,
Ekaterina Shutova, John Barnden, and Antonio
Reyes. 2015. Semeval-2015 task 11: Sentiment
analysis of figurative language in twitter. In Pro-
ceedings of the 9th International Workshop on Se-
mantic Evaluation (SemEval 2015), pages 470–478.

Raymond W. Gibbs and Herbert L. Colston, editors.
2007. Irony in language and thought. Routledge
(Taylor and Francis), New York.

R. Giora. 2003. On Our Mind: Salience, Context, and
Figurative Language. Oxford University Press.

H. P. Grice. 1975. Logic and Conversation. In P. Cole
and J. L. Morgan, editors, Syntax and Semantics:
Vol. 3: Speech Acts, pages 41–58. Academic Press.

Clayton J Hutto and Eric Gilbert. 2014. Vader: A par-
simonious rule-based model for sentiment analysis
of social media text. In Eighth international AAAI
conference on weblogs and social media.

Aditya Joshi, Pushpak Bhattacharyya, and Mark James
Carman. 2017. Automatic sarcasm detection: A sur-
vey. ACM Comput. Surv., 50(5):73:1–73:22.

Aditya Joshi, Vinita Sharma, and Pushpak Bhat-
tacharyya. 2015. Harnessing context incongruity
for sarcasm detection. In Proc. of the 53rd Annual
Meeting of the ACL and the 7th Int. Joint Conference
on NLP, pages 757–762, Beijing, China. ACL.

Jihen Karoui, Benamara Farah, Véronique Moriceau,
Viviana Patti, Cristina Bosco, and Nathalie
Aussenac-Gilles. 2017. Exploring the impact of
pragmatic phenomena on irony detection in tweets:
A multilingual corpus study. In Proc. of the 15th
Conf. of the European Chapter of the Association
for Computational Linguistics: Volume 1, Long
Papers, volume 1, pages 262–272.

Diana Maynard and Mark A. Greenwood. 2014. Who
cares about sarcastic tweets? Investigating the im-
pact of sarcasm on sentiment analysis. In Proc. of
the 9th Int. Conference on Language Resources and
Evaluation, pages 4238–4243. ELRA.

Saif M Mohammad and Peter D Turney. 2013. Crowd-
sourcing a word–emotion association lexicon. Com-
putational Intelligence, 29(3):436–465.

Saif M Mohammad, Xiaodan Zhu, Svetlana Kir-
itchenko, and Joel Martin. 2015. Sentiment, emo-
tion, purpose, and style in electoral tweets. Infor-
mation Processing & Management, 51(4):480–499.

Petra Kralj Novak, Jasmina Smailović, Borut Sluban,
and Igor Mozetič. 2015. Sentiment of emojis. PloS
one, 10(12):e0144296.

James W Pennebaker, Martha E Francis, and Roger J
Booth. 2001. Linguistic inquiry and word count:
Liwc 2001. Mahway: Lawrence Erlbaum Asso-
ciates, 71(2001):2001.

Robert Plutchik. 2001. The nature of emotions hu-
man emotions have deep evolutionary roots, a fact
that may explain their complexity and provide tools
for clinical practice. American scientist, 89(4):344–
350.

Soujanya Poria, Alexander Gelbukh, Amir Hussain,
Newton Howard, Dipankar Das, and Sivaji Bandy-
opadhyay. 2013. Enhanced senticnet with affective
labels for concept-based opinion mining. IEEE In-
telligent Systems, 28(2):31–38.

Tomáš Ptáček, Ivan Habernal, and Jun Hong. 2014.
Sarcasm detection on Czech and English Twitter. In
Proceedings of COLING 2014, pages 213–223.

Antonio Reyes, Paolo Rosso, and Tony Veale. 2013.
A multidimensional approach for detecting irony
in Twitter. Language resources and evaluation,
47(1):239–268.

Ellen Riloff, Ashequl Qadir, Prafulla Surve, Lalin-
dra De Silva, Nathan Gilbert, and Ruihong Huang.
2013. Sarcasm as contrast between a positive sen-
timent and negative situation. In Proc. of EMNLP
2013, pages 704–714.

Emilio Sulis, Delia Irazú Hernández Farı́as, Paolo
Rosso, Viviana Patti, and Giancarlo Ruffo. 2016.
Figurative messages and affect in Twitter: Dif-
ferences between# irony,# sarcasm and# not.
Knowledge-Based Systems, 108:132–143.

Cynthia Van Hee, Els Lefever, and Veronique Hoste.
2016a. Exploring the realization of irony in Twit-
ter data. In Proc. of the 10th Int. Conference on
Language Resources and Evaluation (LREC 2016).
ELRA.

Cynthia Van Hee, Els Lefever, and Veronique Hoste.
2016b. Guidelines for annotating irony in social me-
dia text, version 2.0. LT3 Technical Report Series.

Cynthia Van Hee, Els Lefever, and Véronique Hoste.
2018. SemEval-2018 Task 3: Irony Detection in
English Tweets. In Proceedings of the 12th Interna-
tional Workshop on Semantic Evaluation, SemEval-
2018, New Orleans, LA, USA. ACL.

Cynthia Whissell. 2009. Using the revised dictionary
of affect in language to quantify the emotional un-
dertones of samples of natural language. Psycho-
logical reports, 105(2):509–521.

Deirdre Wilson and Dan Sperber. 1992. On Verbal
Irony. Lingua, 87(1-2):53–76.

654

Proceedings of the 12th International Workshop on Semantic Evaluation (SemEval-2018), pages 655–659
New Orleans, Louisiana, June 5–6, 2018. ©2018 Association for Computational Linguistics

 KNU CI System at SemEval-2018 Task4: Character Identification by

Solving Sequence-Labeling Problem

Cheoneum Park*, Heejun Song**, Changki Lee*

*Department of Computer Science, Kangwon National University, South Korea

**Samsung Research, Samsung Electronics Co., Ltd., South Korea
*{parkce, leeck}@kangwon.ac.kr

**heejun7.song@samsung.com

Abstract

Character identification is an entity-linking

task that finds words referring to the same

person among the nouns mentioned in a

conversation and turns them into one entity.

In this paper, we define a sequence-labeling

problem to solve character identification,

and propose an attention-based recurrent

neural network (RNN) encoder–decoder

model. The input document for character

identification on multiparty dialogues con-

sists of several conversations, which in-

crease the length of the input sequence. The

RNN encoder–decoder model suffers from

poor performance when the length of the in-

put sequence is long. To solve this problem,

we propose applying position encoding and

the self-matching network to the RNN en-

coder–decoder model. Our experimental

results demonstrate that of the four models

proposed, Model 2 showed an F1 score of

86.00% and a label accuracy of 85.10% at

the scene-level.

1 Introduction

In this paper, we define character identification (CI)

(Chen et al., 2017) as a sequence-labeling problem

and use a recurrent neural network (RNN) en-

coder–decoder (Enc–Dec) model (Cho et al., 2014)

based on the attention mechanism (Bahdanau et al.,

2015) to solve it. An Enc–Dec is an extension of

the RNN model; it generates an encoding vector

using an RNN in the encoder when an input se-

quence is given and performs decoding using the

encoding vector. The attention mechanism calcu-

lates the alignment score for the two sequences and

performs the input sequence and weighted sum so

that they can focus more on the position that affects

the output result. The self-matching network

(Wang et al., 2017) is used to calculate an attention

weight for itself and a context vector by using a

weighted sum, after which the weights of similar

words in the RNN sequence can be applied to aid

in coreference resolution. Position encoding (PE)

(Sukhbaatar et al., 2015, Park and Lee, 2017, Vas-

wani et al., 2017) is a method of applying weights

differently, according to the positions of words ap-

pearing in a sequence. Training and prediction are

performed by multiplying a weight vector by a vec-

tor of positions to be identified in a given input se-

quence.

In an Enc–Dec model, a long input sequence re-

sults in performance degradation due to loss of in-

formation in the front portion of the input sequence

when encoding is performed. In this paper, we pro-

pose four models that apply PE, attention mecha-

nism, and self-matching network to Enc–Dec mod-

els to solve the problem of performance degrada-

tion due to long input sequences.

To summarize, the main contributions of this pa-

per are as follows:

1. In this paper, we define CI task as sequence-

labeling problem, and perform training and

prediction in end-to-end model.

2. We propose four models using Enc-Dec

based on attention mechanism and achieve

high performance.

2 System Description

An Enc–Dec model maximizes P(𝑦|𝑥) using an

RNN. The encoder generates an encoder hidden

655

state by encoding the input sequence, and the de-

coder generates an output sequence that maximizes

P(𝑦|𝑥) using the hidden state of the decoder,

which was generated until this time step, with the

encoder hidden state. The attention mechanism is a

method of determining which part of the target

class should be focused using the hidden state of

the decoder and the hidden state of the encoder

when performing decoding.

2.1 Model 1: Attention-based Enc–Dec

model

The first model proposed in this paper is a general

attention mechanism-based Enc–Dec model, as

shown in Figure 1.

The input of the encoder is one document that

contains 𝑆 sentences (multiparty dialogue). Each

sentence 𝑆 consists of 𝑛𝑆 words, and the input se-

quence 𝑋𝑖𝑛𝑝𝑢𝑡 is 𝑋𝑖𝑛𝑝𝑢𝑡 = {𝑥1, 𝑥2, … , 𝑥𝑛𝑆
} . The

input to the decoder is 𝑌𝑖𝑛𝑝𝑢𝑡 = {𝑦𝑖0, 𝑦𝑖1, … , 𝑦𝑖𝑚}

consisting of the positions of the words given in the

gold mentions, and the output sequence accord-

ingly becomes 𝑌𝑜𝑢𝑡𝑝𝑢𝑡 = {𝑦𝑜0, 𝑦𝑜1, … , 𝑦𝑜𝑚} con-

sisting of the character number, which is corre-

sponded with the decoder’s input mentions.

We use word embedding and adopt the K-di-

mensional word embedding 𝑒𝑖
𝑘 , 𝑘 ∈ [1, 𝐾] for all

input words, where 𝑖 is the word index in the input

sequence. We perform feature embedding for three

features — speaker, named entity recognition

(NER) tags, and capitalization — and concatenate

them to make �̃�𝑖.

 The uppercase feature is a binary feature (1

or 0) that verifies whether the uppercase is

included in the word.

 10-dimensional speaker embedding for a to-

tal of 205 different types of speakers in-

cluded by “unknown”.

 19-dimensional NER embedding for a total

of 19 different types of NER tags.

We use bidirectional gated recurrent unit

(BiGRU) (Cho et al., 2014) for the encoder. The

hidden state of the encoder for the input (word) se-

quence is defined as ℎ𝑖
𝑁.

 𝑒𝑖 = 𝑊𝑒𝑥𝑖 (1)

 �̃�𝑖 = [𝑒𝑖; 𝑢𝑐𝑖; 𝑠𝑝𝑘𝑖; 𝑁𝐸𝑅𝑖] (2)

 ℎ𝑖 = 𝑏𝑖𝐺𝑅𝑈(�̃�𝑖 , ℎ𝑖−1) (3)

where ℎ⃗ 𝑖 and ℎ⃗⃖𝑖 are forward and backward net-

works, respectively, and ℎ𝑖
𝑁 concatenates ℎ⃗ 𝑖 and ℎ⃗⃖𝑖.

The decoder of our model uses the GRU as fol-

lows.

 ℎ𝑡 = 𝐺𝑅𝑈(ℎ𝑦𝑖𝑡
𝑁 , ℎ𝑡−1) (4)

The input of the decoder is the hidden state ℎ𝑖
𝑁

generated by the encoder corresponding to each po-

sition of 𝑌𝑖𝑛𝑝𝑢𝑡 which is the gold mention sequence.

The hidden state ℎ𝑡 of the current decoder receives

the hidden state ℎ𝑖
𝑁 of the encoder corresponding to

the output position of the previous decoder and the

previous hidden state of the decoder.

 𝛼𝑖
𝑡 =

exp(𝑠𝑐𝑜𝑟𝑒𝑎(ℎ𝑡,ℎ𝑦𝑖𝑖
𝑁))

∑ exp(𝑠𝑐𝑜𝑟𝑒𝑎(ℎ𝑡,ℎ𝑦𝑖𝑗
𝑁))𝑗

 (5)

𝑠𝑐𝑜𝑟𝑒𝑎 (ℎ𝑡, ℎ𝑦𝑖
𝑁

𝑖
) = vt

𝑇tanh⁡(𝑊𝑎 [ℎ𝑡; ℎ𝑦𝑖
𝑁

𝑖
; ℎ𝑦𝑖𝑡

𝑁]) (6)

 𝑦𝑡 = argmax𝑖(𝑎𝑖
𝑡) (7)

 𝑐𝑡 = {
∑ 𝑎𝑖

𝑡ℎ𝑖
𝑁

𝑖 ,⁡⁡⁡𝑠𝑜𝑓𝑡⁡𝑎𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛

ℎ𝑦𝑡
𝑁 ,⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡ℎ𝑎𝑟𝑑⁡𝑎𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛

 (8)

At the attention layer of the decoder, we use the

attention weight 𝛼𝑖
𝑡 to compute the alignment score

for the gold mention input into the decoder and the

encoder hidden state ℎ𝑖
𝑁 input. The attention layer

acts as a coreference resolution for each gold men-

tion and input sequence. After calculating the atten-

tion weights, we create the context vector 𝑐𝑡. We

use soft attention and hard attention in Eq. (8). Soft

attention 𝑐𝑡 = ∑ 𝑎𝑖
𝑡ℎ𝑖

𝑁
𝑖 is an attention-pooling

vector of the whole input sentence of the encoder

(ℎ𝑁). The other attention-pooling vector is hard at-

tention 𝑐𝑡 = ℎ𝑦𝑡
𝑁 , which is based on the argmax

function Eq. (7) for attention weight 𝛼𝑖
𝑡 to choose

the position with high score for the decoder input

as the gold mention.

𝑠𝑐𝑜𝑟𝑒𝑧(ℎ𝑡 , 𝑐𝑡 , ℎ𝑦𝑖𝑡
𝑁) = 𝑊𝑧2

𝑇 ReLU⁡(𝑊𝑧[ℎ𝑡; 𝑐𝑡; ℎ𝑦𝑖𝑡
𝑁]) (9)

Figure 1: Attention-based Enc-Dec.

656

𝑦𝑜𝑡 = argmax𝑡 (𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (𝑠𝑐𝑜𝑟𝑒𝑧(ℎ𝑡 , 𝑐𝑡 , ℎ𝑦𝑖𝑡
𝑁)))

 (10)

After calculating the context vector between the

input of the encoder and the input of the decoder,

we calculate 𝑠𝑐𝑜𝑟𝑒𝑧, using which the context vec-

tor 𝑐𝑡, decode hidden state ℎ𝑡 and encoder hidden

state ℎ𝑁 are concatenated in the decoder hidden

layer. Next, the softmax function is used to calcu-

late the alignment score for 𝑠𝑐𝑜𝑟𝑒𝑧, and then the

character index (𝑌𝑜𝑢𝑡𝑝𝑢𝑡) for the CI task corre-

sponding to the input of the decoder is obtained us-

ing the argmax function.

2.2 Model 2: Attention–based Enc–Dec w/

model with PE

The second model is based on the first model but

uses PE which is a method of applying a weight to

an input sequence of an RNN according to the word

order. Among the words in the coreference resolu-

tion, the antecedent has a feature that appears mainly

in the preceding context. In this paper, we apply PE

with a feature to the encoder input sequence, and use

the weight according to the word order as the feature.

As shown in Eq. (11), PE information is concate-

nated to Eq. (2) to produce �̃�𝑖, and PE is calculated

as shown in Eq. (12).

 �̃�𝑖 = [𝑒𝑖; 𝑃𝐸𝑖; 𝑢𝑐𝑖; 𝑠𝑝𝑘𝑖; 𝑁𝐸𝑅𝑖] (11)

 𝑃𝐸𝑖 = (1 − 𝑖/𝑛𝑠) − (𝑠/𝑘)(1 − 2𝑖/𝑛𝑠) (12)

In PE, 𝑖 is the index of the word, 𝑛𝑠 is the total

length of the input sequence, 𝑠 is the position of the

sentence, and 𝑘 is the number of dimensions of the

word expression. The weight of PE is calculated as

a real value that gradually decreases between 1 and

0, and is applied to the input of the encoder to take

advantage of the feature that the predecessor pre-

cedes the current mention. In Eq. (12), (1 −
2𝑖/𝑛𝑠) denotes the order of words. If it is a front

word, it has a higher value than the next word.

(𝑠/𝑘) is a weight based on the sentence order, and

when the sentence is different, the weight reduction

rate difference is calculated to be higher than the

value decreasing in the sentence. The expression

for the encoder and decoder are the same as for

model 1.

2.3 Model 3: Self-matching Network-based

Enc-Dec model

The third model is also based on the first model,

but performs encoding by using the self-matching

network in the encoder without using PE, as shown

in Figure 2. The self-matching network is used for

calculating the alignment score for a given RNN

sequence and itself, and then for performing a

weighting sum with itself to create a context vector.

While using the self-matching network for encod-

ing, attention weights are weighted with high align-

ment scores between similar words. For example,

if “Rachel’s child-hood best friend” and “Monica”

appear in a sentence, a high alignment score be-

tween them is calculated by the self-matching net-

work.

The input sequence of the encoder becomes �̃�𝑖

in Eq. (2), and a feed-forward neural network is

used, as in Eq. (13). Next, we use the self-matching

network to compute the attention weight for the t

sequence and create a context vector 𝑐𝑖
𝑠𝑒𝑙𝑓

 that re-

flects the self-attention (Eqs. 14–16).

 ℎ𝑖
𝑠𝑟𝑐 = 𝑊𝑠𝑟𝑐�̃�𝑖 + b𝑠𝑟𝑐 (13)

 𝛼𝑗
𝑖 =

exp(𝑠𝑐𝑜𝑟𝑒𝑠𝑒𝑙𝑓(ℎ𝑗
𝑠𝑟𝑐 ,ℎ𝑖

𝑠𝑟𝑐))

∑ exp(𝑠𝑐𝑜𝑟𝑒𝑠𝑒𝑙𝑓(ℎ𝑡
𝑠𝑟𝑐,ℎ𝑖

𝑠𝑟𝑐))𝑡
 (14)

𝑠𝑐𝑜𝑟𝑒𝑠𝑒𝑙𝑓(ℎ𝑗
𝑠𝑟𝑐 , ℎ𝑖

𝑠𝑟𝑐) = 𝑣𝑖
𝑇tanh⁡(𝑊𝑎

𝑠𝑟𝑐[ℎ𝑗
𝑠𝑟𝑐; ℎ𝑖

𝑠𝑟𝑐])

 (15)

 𝑐𝑖
𝑠𝑒𝑙𝑓

= ∑ 𝛼𝑗
𝑖

𝑗 ℎ𝑗
𝑠𝑟𝑐 (16)

Subsequently, we construct [ℎ𝑖
𝑠𝑟𝑐; 𝑐𝑖

𝑠𝑒𝑙𝑓
] by

concatenating the context vector 𝑐𝑖
𝑠𝑒𝑙𝑓

, created us-

ing the self-matching network, and the hidden state

ℎ𝑖
𝑠𝑟𝑐; it is then fed to the input of the hidden layer

of the encoder to perform BiGRU.

We apply [ℎ𝑖
𝑠𝑟𝑐; 𝑐𝑖

𝑠𝑒𝑙𝑓
] to the additional gate to

make [ℎ𝑖
𝑠𝑟𝑐; 𝑐𝑖

𝑠𝑒𝑙𝑓
]
∗
, this determines whether or not

Figure 2: Self-matching–Network-based Enc–

Dec.

657

the information of [ℎ𝑖
𝑠𝑟𝑐; 𝑐𝑖

𝑠𝑒𝑙𝑓
] is transmitted to

the encoder hidden layer input. The equation is as

follows:

 𝑔𝑡 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑊𝑔[ℎ𝑖
𝑠𝑟𝑐; 𝑐𝑖

𝑠𝑒𝑙𝑓
]) (17)

 [ℎ𝑖
𝑠𝑟𝑐; 𝑐𝑖

𝑠𝑒𝑙𝑓
]
∗
= 𝑔𝑡⨀[ℎ𝑖

𝑠𝑟𝑐; 𝑐𝑖
𝑠𝑒𝑙𝑓

] (18)

The decoder of model 3 performs training and

prediction using a decoder such as the one used in

model 1 (Eqs. 4–8) based on the hidden state where

encoding is performed as above.

2.4 Model 4: Self–matching Network–based

RNN Enc-Dec model with PE

Model 4 is based on model 3 using the self-match-

ing network; it additionally uses PE, which was

also used for model 2, as a feature to confirm the

word order.

3 Experimental Results

We evaluate the entity linking performance of the

models using label accuracy and macro-F1 (Chen et

al., 2017), and the coreference resolution perfor-

mance using CoNLL F1 (Rahman and Ng, 2009).

The word representation used in this paper is a

data–set provided by LDC, which is learned by a

neural network language model (Bengio et al.,

2003, Lee et al., 2014), and is set to 50 dimensions.

The experiments were performed with cross vali-

dation. The hyper parameters used in the experi-

ment are as follows. We used tanh for the encoder

and decoder, and ReLU for the attention layer. The

hidden layers had 150 dimension, and the dropout

of all layers was set to 0.3. The learning was done

using RMSprop (Hinton et al., 2012) and the learn-

ing rate was reduced by 50% for every 5 epochs

without performance improvement starting at 0.1.

The decoder attention functions of the models used

in the experiments are all based on hard attention,

and are compared with soft attention in Table 1.

Table 1 shows a comparison between the CI per-

formances of the models on the trial set. M 2’ is a

model in which PE proposed by Vaswani et al.

(2017) is applied, and M 4’ is a model in which soft

attention is applied to M 4. At the episode-level, M

3 showed the best Main F1 performance (86.30%)

and M 1 showed the best All F1 performance

(23.33%). At the scene-level, M 4 showed the high-

est Main F1 performance (87.41%), and M 4

showed the highest All F1 performance (23.92%).

In the case of M 2 and M 2’, we can see that the

proposed PE method resulted in a better overall

performance.

At the episode-level, M 4’ showed a better Main

F1 performance (1.83%) than M 4, whereas M 4

showed a better All F1 performance (by 2.67%). At

the scene-level, M 4 showed a better Main F1 per-

formance (by 1.18%) than M 4’, whereas M 4’

 Episode-Level Scene-Level

 Main F1 All F1 Main F1 All F1

M 1 85.57 23.33 83.45 21.13

M 2 82.91 23.15 85.58 22.40

M 2’ 82.46 22.04 83.56 19.67

M 3 86.30 22.93 84.10 21.84

M 4 83.65 22.13 87.41 22.06

M 4’ 85.48 19.46 86.23 23.92

Table 1: Entity-linking results on the trial set (in %).

Main and All in column mean main and other char-

acters, and all characters.

 Characters Main + Other All

Model Chandler Joey Monica Phoebe Rachel Ross Others F1 Acc F1 Acc

E

M 1 81.17 76.39 86.86 84.70 87.13 81.03 72.86 81.45 80.32 15.75 67.19

M 2 85.77 81.59 85.19 87.67 59.64 84.79 80.42 85.01 84.36 16.47 68.42

M 3 82.76 82.06 86.36 84.21 88.76 81.78 77.40 83.33 82.38 17.02 66.65

M 4 83.52 79.92 87.17 86.43 86.72 83.73 78.46 83.71 82.96 15.19 65.83

S

M 1 83.55 79.19 90.99 86.43 90.01 84.11 76.08 84.34 83.08 15.93 68.59

M 2 84.94 79.67 91.16 88.09 92.49 85.86 79.79 86.00 85.10 16.98 69.49

M 3 83.87 84.30 88.24 86.10 88.79 79.65 76.23 83.88 82.34 16.99 67.31

M 4 78.21 83.06 84.42 84.30 89.94 79.08 90.41 85.33 84.64 15.43 67.68

Amore - - - - - - - 79.36 77.23 41.05 74.72

Kamp. - - - - - - - 73.51 73.36 37.37 59.45

zuma - - - - - - - 43.15 46.07 14.42 25.81

Table 2: Entity-linking results on the evaluation set (in %). The F1 score is reported for each character. E/S:

episode/scene level. F1 is macro-average F1 score. Acc is character label accuracy.

658

showed a better All F1 performance (by 1.86%).

Thus, it can be seen that the use of hard attention

results in a better performance.

Table 2 presents the experimental results of the

test set (episode- and scene-level) for the method

proposed in this paper, and the performance com-

parison with other competing models, namely

AMORE UPF (Amore), Kampfpudding (Kamp.),

and zuma. In the Main + Other character evalua-

tions at episode-level, M 2 showed the best perfor-

mance among all models (F1 of 85.01%, Acc of

84.36%), whereas in the All character evaluations,

M 3 showed the best F1 performance (17.02%) and

M 2 showed the best Acc performance (68.42%).

At the scene-level, M 2 showed the best perfor-

mance in both the Main + Other and the All char-

acter evaluation. The proposed method showed a

lower overall performance in the All character

evaluation compared with other competing models,

but showed a higher performance in the Main +

Other character evaluations. The reason for the

lower performance in the All character evaluation

is that the number of data points is smaller than that

of the main characters.

4 Conclusion

In this paper, we defined the entity-linking problem

of SemEval-2018 Task 4 as a sequence-labeling

problem and proposed four models to solve it. Ex-

perimental results showed that M 2 shows the best

performance in the test set scene-level (Main +

Other characters), with an F1 of 86.00% and Acc

of 85.10%. In the Main entities + Others evaluation

of SemEval-2018 Task 4, it ranked 1st with an F1

of 83.37% and Acc of 82.13%. In All Entities +

Others, it ranked 2nd with an F1 of 13.53% and Acc

of 68.55%.

In future work, we will apply character CNN to

solve the unknown word problem, and we will add

word expressions such as GloVe (Pennington et al.,

2014) and ELMo (Peters et al., 2018). We will also

enhance the performance by tightening the model

with less data by adding the features used in the

task 4-based model.

References

Henry Y. Chen, Ethan Zhou, and Jinho D. Choi. 2017.

Robust Coreference Resolution and Entity Linking

on Dialogues: Character Identification on TV Show

Transcripts. In: Proceedings of the 55th Annual

Meeting of the Association for Computational Lin-

guistics.

Kyunghyun Cho, Bart van Merrienboer, Caglar Gul-

cehre, Dzmitry Bahdanau, Fethi Bougares, Holger

Schwenk, and Yoshua Bengio. 2014. Learning

Phrase Representations using RNN Encoder-De-

coder for Statistical Machine Translation.

arXiv:1406.1078.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-

gio. 2015. Neural machine translation by jointly

learning to align and translate. Proc. of ICLR’ 15,

arXiv:1409.0473.

Wenhui Wang, Nan Yang, Furu Wei, Baobao Chang,

and Ming Zhou. 2017. Gated Self-Matching Net-

works for Reading Comprehension and Question

Answering, In: Proceedings of the 55th Annual

Meeting of the Association for Computational Lin-

guistics (Volume 1: Long Papers), pages 189-198.

Sainbayar Sukhbaatar, Arthur Szlam, Jason Weston,

and Rob Fergus. 2015. End-To-End Memory Net-

works. arXiv:1503.08895.

Cheoneum Park and Changki Lee. 2017. Korean Co-

reference Resolution using Pointer Networks based

on Position Encoding. In: Proceedings Of the KIISE

and the KBS Joint Symposium, pages 76-78.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob

Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz

Kaiser, and Illia Polosukhin. 2017. Attention Is All

You Need. arXiv:1706.03762.

Altaf Rahman and Vincent Ng. 2009. Supervised Mod-

els for Coreference Resolution. In: Proceedings of

the 2014 Conference on Empirical Methods in Nat-

ural Language Processing (EMNLP), pages 968-

977.

Changki Lee, Junseok Kim, and Jeonghee Kim. 2014.

Korean Dependency Parsing using Deep Learning.

In: Proceedings of the KIISE for HCLT, pages 87-

37.

Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and

Christian Jauvin. 2003. A Neural Probabilistic Lan-

guage Model. Journal of machine learning research,

pages 1137-1155.

Geoffrey Hinton, Nitish Srivastava, and Kevin

Swersky. 2012. Rmsprop: Divide the gradient by a

running average of its recent magnitude. Neural net-

works for machine learning, Coursera lecture 6e.

Jeffrey Pennington, Richard Socher, and Christopher

Manning. 2014. Glove: Global vectors for word rep-

resentation. Proceedings of the 2014 conference on

empirical methods in natural language processing

(EMNLP), pages. 1532-1543.

Matthew E Peters, Mark Neumann, Mohit Iyyer, Matt

Gardner, Christopher Clark, Kenton Lee, and Luke

Zettlemoyer. 2018. Deep contextualized word

prepresentations. arXiv:1802.05365.

659

Proceedings of the 12th International Workshop on Semantic Evaluation (SemEval-2018), pages 660–666
New Orleans, Louisiana, June 5–6, 2018. ©2018 Association for Computational Linguistics

NewsReader at SemEval-2018 Task 5: Counting events by reasoning over
event-centric-knowledge-graphs

Piek Vossen
VU University Amsterdam / De Boelelaan 1105, 1081HV Amsterdam, Netherlands

piek.vossen@vu.nl

Abstract

In this paper, we describe the participation
of the NewsReader system in the SemEval-
2018 Task 5 on Counting Events and Par-
ticipants in the Long Tail. NewsReader is
a generic unsupervised text processing sys-
tem that detects events with participants, time
and place to generate Event Centric Knowl-
edge Graphs (ECKGs). We minimally adapted
these ECKGs to establish a baseline perfor-
mance for the task. We first use the ECKGs to
establish which documents report on the same
incident and what event mentions are coref-
erential. Next, we aggregate ECKGs across
coreferential mentions and use the aggregated
knowledge to answer the questions of the task.
Our participation tests the quality of News-
Reader to create ECKGs, as well as the po-
tential of ECKGs to establish event identity
and reason over the result to answer the task
queries.

1 Introduction

This paper describes the NewsReader system par-
ticipating in the SemEval 2018 Task 5 Counting
Events and Participants in the Long Tail (Postma
et al., 2018). Task 5 requires detection of certain
events (cases of gun violence, dismissal of em-
ployees, and burning fire incidents) with partici-
pants, as well as extraction of their location and
time in a set of documents and reasoning over their
identity, in order to answer queries over the data
set. A typical query in the task is How many peo-
ple were killed in 2016 in Columbus, MS?. Partic-
ipants were given a collection of news articles in
CoNLL format to distill the answer to the queries.
The task consists of 3 subtasks: subtask 1 asks for
all documents from the data set that report on a sin-
gle incident that fits the question constraints; sub-
task 2 is to provide the number of incidents (zero
or more) and the documents that report on these

incidents given the constraints of a query; subtask
3 asks for the number of affected (injured, dead,
or fired) people in the incidents that match the
query constraints, and the supporting documents
for these incidents. In addition to answering the
subtask queries, participants were asked to mark
the (cross-document) coreferential event mentions
in the CoNLL file according to a specific event
schema for gun violence.

Since we also organized the task, we decided
to participate out-of-competition. Our system is a
version of the NewsReader system (Vossen et al.,
2016) as it was delivered at the end of the project,
with as little adaptation as possible to the pro-
cessing of the text to answer the queries of the
task. The generic NewsReader system created the
semantic output by applying a deep reading ap-
proach to the text, and the tasks were addressed by
loading that output and reasoning over the results.

We participated in all three subtasks by first re-
solving the event coreference (or identity) and next
answering the questions for each task using event
representations that are the results of resolving the
coreference. Our approach consists of three steps:
1. the event mentions in the input documents are
represented as Event-Centric Knowledge Graphs
(ECKGs) using the NewsReader system as is. 2.
the ECKGs of all documents are compared to
each other to decide which documents refer to the
same incident, resulting in an incident-document
index and in cross-document event-coreference re-
lations. 3. the constraints of each question (its
event type, time, participant names, and location)
are matched with the stored ECKGs, resulting in
a number of incidents and source documents for
each question.

Our approach is fully unsupervised and follows
compositional semantic principles to 1) define the
semantics of events and participants, 2) estab-
lish their identity, and 3) reason over the results.

660

The remainder of this paper is structured as fol-
lows. In Section 2, we briefly describe the News-
Reader system and the preprocessing steps. In
Section 3, we explain how we establish event iden-
tity and cross-document coreference starting from
the NewsReader output. The aggregated event
representations are used to answer the queries for
the tasks, which we describe in Section 4.

Finally in Section 5, we discuss the results.
For further details on the NewsReader system, we
point to the NewsReader website and its Github
repository.1 The specific wrapper for this task that
takes the Newsreader output as a starting point is
available in a separate Github.2

2 The NewsReader system

NewsReader processes text by applying a wide
range of NLP modules, among which named en-
tity recognition, classification and disambiguation
(NERCD), semantic role labeling (SRL), word
sense disambiguation (WSD), and temporal ex-
pressions detection and normalization (TIMEX).
The NLP modules store their output as separate
layers in the Natural language processing Anno-
tation Format (NAF) (Fokkens et al., 2014). For
example, events are detected by the SRL system
as PropBank predicates (Kingsbury and Palmer,
2002), while FrameNet frames (Baker, 2008) and
Wordnet synsets (Fellbaum, 1998) are attached to
these predicates on the basis of the WSD output.
Similarly, NERCD will annotate the text with en-
tities and entity classes and it will annotate some
of them with DBpedia URIs. From these entities,
we derive participant names and locations for the
predicates in the SRL output, while TIMEX an-
chors these predicates to dates.

In a second step, NewsReader derives so-called
Event-Centric-Knowledge-Graphs (ECKGs) by
combining the results of the NLP module. The
ECKGs follow the Simple Event Model (SEM)
(Van Hage et al., 2011), which represents events
as instances through URIs with relations to their
participants, location, and time. The same event
instance and participants can be mentioned sev-
eral times throughout a text and across different
documents. Identity across mentions is then mod-
eled through the Grounded Annotation Frame-
work (GAF) (Fokkens et al., 2013), by giving

1www.newsreader-project.eu and https://
github.com/newsreader

2https://github.com/cltl/
nwr-semeval2018-5

event instances the same unique URI in SEM and
pointing to the different mentions in the source
text via a denotedBy relation to mention URIs
based on their offsets. Assigning unique URIs
to coreferential event mentions results in ECKGs
with all the knowledge and information aggre-
gated across mentions in the form of RDF prop-
erties for this subject URI.

Figure 1 shows two examples
of ECKGs with the event URIs
094fe5921b642e30a00cd52ece7b0157#ev1
and 60ad5103290ae7aa16e39d3cd2695496#ev1.
The ECKGs are derived from two mentions in two
different documents. The triple representations
capture the following properties for each event:
subclass relations with WordNet synsets and
FrameNet frames, denotedBy pointers to the offset
positions in the original texts, the words or labels
used to mention the event, PropBank roles filled
by DBpedia URIs, or unresolved phrases that
are not entities and finally, the date to which the
events are anchored.

In this output of NewsReader, we did not apply
any event coreference and we represent each men-
tion as a separate event instance or ECKG. The
WordNet synsets and FrameNet frames are asso-
ciated through the WSD modules in NewsReader.
We used the UKB (Agirre and Soroa, 2009) and
IMS ((Zhong and Ng, 2010) to score the Word-
Net synsets for each predicate. Next, we take the
highest scoring synsets and use the Predicate Ma-
trix (Carreras et al., 2014) to obtain the associated
FrameNet frames. The interpretation of the predi-
cates as events for the task is thus derived from the
SRL output in combination with the WSD output
and the Predicate Matrix association.

We call the above output of NewsReader the
raw-ECKGs. In the next sections, we describe
how we post-process these to derive so-called
task-ECKGs with only the information relevant
for the task. We finally reason over these task-
ECKGs to answer the queries. Both the raw-
ECKGS and the task-ECKGs are available in the
Github repository, including the scripts to extract
the latter from the former.

3 Event coreference

As a first step for the task, we read the raw-ECKGs
and filter out only those events that are relevant
for the task: see section 3.2 for details. Next, we
establish event identity across the different event

661

094fe5921b642e30a00cd52ece7b0157#ev1
a wn:eng-30-00069879-v , wn:eng-00069879-v ,

fn:Cause_harm , fn:Experience_bodily_harm ;
gaf:denotedBy 094fe5921b642e30a00cd52ece7b0157#char=11,18;
skos:prefLabel "injure" ;
pb:A1 dbpedia:East_Palo_Alto,_California ;
time:inDateTime date:20130505 .

60ad5103290ae7aa16e39d3cd2695496#ev1
a wn:eng-30-00069879-v , wn:eng-30-07950786-n ,

wn:eng-02738701-v , wn:eng-01882814-v ,
fn:Cause_harm , fn:Path_shape , fn:Travel ;

gaf:denotedBy 60ad5103290ae7aa16e39d3cd2695496#char=9,16;
skos:prefLabel "wound" ;
pb:A1 semeval2018-5:non-entities/person ;
pb:A2 dbpedia:East_Palo_Alto,_California ;
time:inDateTime date:20130505 .

Figure 1: ECKG representation of events extracted by NewsReader for two different mentions in two different
documents, showing the type of event, the mentions linked through the denotedBy property, the PropBank roles,
the date and the actual words used to make reference. The denotedBy links are simplified to reduce space.

mentions: see subsections 3.3 and 3.4. For this,
we assume that each document reports on a sin-
gle incident and mentions within a document are
coreferential. We carried out the following steps
for this:

1. We build an index of all documents that re-
port on the same incident as follows:

(a) We determine the incident time for a
document.

(b) We determine the overall incident type
for a document: killing, injuring, job fir-
ing, or fire burning.

(c) We compare all documents with the
same incident time and incident type to
further match the locations and partici-
pants.

(d) If there are sufficient matching locations
and participants across documents, we
store them relative to the same incident.

2. Iterating over the incident-document index,
we determine the mentions of incidents and
their subevents over all documents that report
on the same incident. We establish corefer-
ence relations among these mentions:

(a) All mentions of the incident as a whole,
e.g. accident, shooting, this, receive the
same URI that represents the incident.

(b) All further subevents of an incident (hit,
injure, death) are identified by their
subevent type and the victims associated
within and across documents related to

the same incident. Incident subevents of
the same type and with the same vic-
tims become coreferential and receive
the same URI.

In the next subsections, we explain these steps
in more detail.

3.1 Incident time
The document-creation-time is given by the or-
ganizers for each document but it does not nec-
essarily correspond with the date of the inci-
dent. We therefore extract the mostly mentioned
year and month throughout the document and se-
lect the most frequently mentioned date for that
year/month. We experimented with selecting dif-
ferent proportions of the text, as we assumed that
the actual incident data is most likely mentioned
in the beginning and other incidents from the past
may be mentioned later in the text. We tested
these approaches on the trial data and found that
restricting the date references to the first two sen-
tences gave the best results. If there are no time
expressions in the first two sentences, we use the
document-creation-time as the incident date as a
fall-back.3

3.2 Incident type
For each document, we classify all the predicates
for the event types of the task: shooting, burning,
and dismissal of employees and count which type
is most dominant. To classify the predicates, we

3We also experimented with other granularities e.g. by
lumping incidents by the week of the month but these did not
give better results.

662

collected all FrameNet frames that NewsReader
assigned to the trial data and ordered the frames
by frequency. We manually selected the following
frames for each event type:

incident fn:Attack,fn:Catastrophe,fn:Cause harm,
fn:Destroying

kill fn:Cause to end,fn:Death,fn:Killing

injured fn:Cause harm,fn:Cause impact,
fn:Experience bodily harm,
fn:Hit target,fn:Recovery,fn:Resurrection

hit fn:Cause impact,fn:Hit target

shoot fn:Shoot projectiles,fn:Use firearm

burn fn:Absorb heat,fn:Apply heat,
fn:Setting fire,fn:Fire burning,fn:Fire going out

dismiss fn:Firing,fn:Quitting a place,
fn:Quitting,fn:Get a job,fn:Hiring,fn:Employing,
fn:Being employed

We further noticed that some task-relevant
words in the trial data were not matched with
WordNet synsets or FrameNet frames by our sys-
tem. After analysing the output of the trial data,
we manually selected 84 predicates that were
sometimes missed by the system (due to upper
case, part-of-speech errors, out-of-vocabulary) to
ensure higher coverage. We used this word list to-
gether with the FrameNet mappings to select only
those events that are relevant for the tasks and de-
rive the dominant event type of the document.

3.3 Incident-document index

After determining the dominant date and the type
of incident, we compare documents with the same
incident date and the same incident type to de-
termine which documents report on the same in-
cident. For this we compare the locations and
the participants. If there is a sufficient degree of
matching, we assume that documents report on the
same incident.4 For participants, we first check
the names of the entities detected by the NERC
module. If there was no match, we check all other
phrases with PropBank A0 or A1 role, such as per-
son, child, girl that denote persons, but are not
classified as entities by NERC.5 For locations, we
assume that the entity linking software6 found a

4In our experiments, matching a single participant and a
single location was sufficient.

5In NewsReader, these phrases are typed as non-entities
because they can refer to generic or role instantiations, e.g.
victim, mother

6mendes2011dbpedia

match to DBpedia. We directly compare the DB-
pedia URIs for locations across the documents to
find a match. Eventually when documents match
in terms of all properties: same incident date, same
incident type, one participant and one location, we
assume they report on the same incident and we
store them together in an incident-document in-
dex.

3.4 Coreference across incident mentions

The second step in this process establishes the
event coreference relations across all event men-
tions in all the documents related to the same
incident. All references to the incident as a whole
will receive a unique URI that identifies that
incident. For example, if a document has shooting
as the dominant incident type, then we consider
all references to shooting as a mention of the
incident as a whole. We consider abstract incident
mentions such as catastrophe, accident, and even
pronouns such as it and this, as coreferential
with the incident as a whole. Next, we extract
all references to subevents, e.g. hit, injured,
death as separate event instances relative to the
incident to which they are associated. Subevents
are separated by their subtype in combination
with the participants or victims. Each subevent
receives a URI that is composed of the incident
URI, the subevent type, and the participant string.
An example of such a subevent URI is shown in
Figure 2. It starts with a document reference7

followed by #incident, #INJURED and the words
that make up all linked participant phrases:
6-year+old+girl+child+little+girl+person
+young+girl. These participant phrases are
aggregated across various mentions. In the case
of phrases such as this one, it is difficult to
reason over the participant identity; how many
participants are injured? In this approach, we
assume that the URI and therefore their iden-
tity was resolved by the generic processing of
NewsReader. No specific matching strategy
was implemented to establish coreference across
participants. We see in Figure 2 the resulting list
of distinct participant URIs based on their surface
forms. In case of entity names, it is more likely
to match participants across mentions directly
through their URIs or their first name or surname.
For example in Figure 2, the second ECKG shows

7We arbitrarily take the name of the first document used
in comparison just to get a unique URI

663

an incident reference with the participant name
Tewalt that needs to match a participant in another
document with the same name to find a match.

3.5 Aggregating properties

Establishing coreference through the same URI,
results in further aggregation of all properties that
were initially expressed for separate event men-
tions. We also normalised the properties by lump-
ing all PropBank A0 and A1 roles to sem:hasActor
for participants and sem:hasPlace for location.
Figure 2 shows two examples of task-ECKG
resulting after aggregating data from mentions
from the raw-ECKGs. The first ECKG shows a
subevent of the type INJURED based on the raw-
ECKGs shown in Figure 1. The second ECKG
shows an event at the incident level, aggregated
over various mentions in the same document and
their corresponding properties. We also include
all subevents for the incident as links. There are
subevents both for being injured and for death al-
though the participants detected are linked only to
injured subevents. This has consequences for an-
swering subtask 3 questions for number of people
injured or died.

After aggregating the properties, we store
these task-ECKGs to an output file named after
the incident date inside a subfolder that corre-
sponds with each incident event type: (BURN,
DISMISS and SHOOT). For example for the
test data, the software created a BURN sub-
folder with 6 ECKGs files in TRiG-RDF format:
20071026.trig, 20071022.trig, 20151027.trig,
20151024.trig, 20070207.trig, 20070201.trig,
each representing the incident date. Each of these
TRiG files contains all incidents of the same
type that are associated with the same date. For
SHOOT and DISMISS the number of RDF files
with incidents on the same date is far larger: 1,367
and 43 respectively.

In addition to storing the task-ECKGs, we also
read the CoNLL file and annotate its tokens with
numeric event identifiers by taking the checksum
of each URI in the ECKGs and assign the check-
sum to each denotedBy match with a token. The
annotated CoNLL file is submitted for the task.

4 Counting incidents and victims

Given the ECKG representations of incident in-
stances and their subevents, it is straightforward to
answer the task questions. To achieve this, we pro-

cess all the questions and match their constraints
with the knowledge on the task-ECKGs: the inci-
dent type, the date, the participant name, and loca-
tion (if any). This results in a number of matching
incidents and their associated source documents.
For subtask 3, we additionally extract the victims
for the specified subevents killing and injuring.

To obtain the answers, we first check the type of
event in the query (killing, injuring, fire burning,
and job firing) and match it with the subfolders
of the adapted-ECKGs. We only consider the
ECKGs files for a matching type. For shooting
events that are differentiated into killing and in-
juring incidents, we additionally filter the ECKGs
for the occurrence of the corresponding subevents.
From each subfolder, we only load the ECKGs
with matching dates. If there is no date constraint,
we load all ECKGs. In case of a date constraint,
we check if the constraint specifies a day or only a
year or month. If no specific day is specified, we
check if the ECKG files start with the correspond-
ing year and/or month. Else if a specific day is
asked for, we match the full date with the incident
time.

We load all ECKG files that match the above
constraints and consider each incident and its
properties for further matching with other con-
straints on location or participant names. In the
case of location, we first directly match the DBpe-
dia URI for each incident against the sem:hasPlace
properties. If there is no match, we expand the lo-
cation in the query to DBPedia URIs that are re-
lated using spatial properties: north, east, west,
south, northeast, southeast, northwest, and south-
west of the specified location. For participants,
we first check all participants of the incident that
are classified as an entity of type PERSON by the
NERCD module. We check the beginning of the
name in case of a first name constraint and the end-
ing of the name in case of a surname constraint.

After selecting incidents that match the query
constraints, we derive the answers. In the case of
subtask 1, we only provide the document ids for
matched incidents and the numeric answer 1 (if
any document was recovered). In the case of sub-
task 2, we count the unique number of incidents
within the selected ECKGs and the associated doc-
uments of their mentions. If there are none, the
answer is zero. If there is one or more, we provide
the number of incidents and the associated docu-
ment identifiers for their mentions. In the case of

664

<094fe5921b642e30a00cd52ece7b0157#incident#INJURED#
6-year+old+girl+child+little+girl+person+young+girl>
a nwrontology:INJURED ;
gaf:denotedBy 094fe5921b642e30a00cd52ece7b0157#char=11,18,

60ad5103290ae7aa16e39d3cd2695496#char=20,28, etc...;
sem:hasActor se2018-5:non-entity/6-year+old+girl ,

se2018-5:non-entity/person, se2018-5:non-entity/child ,
se2018-5:non-entity/young+girl, se2018-5:non-entity/little+girl ;

sem:hasPlace dbpedia:East_Palo_Alto,_California, dbpedia:Richmond,_California ;
time:inDateTime time:20130505 ;
skos:prefLabel "injury" , "injure" , "shoot" , "wound" .

<8554b200f12a9e9f6fed68f6795ada07#incident>
a nwrontology:SHOOT ;
gaf:denotedBy 8554b200f12a9e9f6fed68f6795ada07#char=2311,2318, etc. ;
sem:hasActor se2018-5:non-entity/kuna+man, se2018-5:entity/Tewalt ;
sem:hasSubEvent <8554b200f12a9e9f6fed68f6795ada07#incident#DEAD#>,

<#incident#INJURED#kuna+man>, <#incident#INJURED#Tewalt+kuna+man>,
<#incident#HIT#Tewalt>, <#incident#INJURED#Tewalt> ;

sem:hasSubType nwrontology:INJURED , nwrontology:DEAD , nwrontology:HIT ;
time:inDateTime time:20161228
skos:prefLabel "accident", "shooting", "incident", "gun", "start", "leave",

"hit", "it", "use", "discharge", "handling", "handle" .

Figure 2: task-ECKG representation of an injure event resulting from establishing event-coreference and aggregat-
ing the event properties across different mentions. The denotedBy and subevent links are adapted to save space.

subtask 3, we additionally extract all victims from
the ECKGs as being injured or killed. If the vic-
tims in the ECKG are entities of the type PER-
SON, we count the unique list of names. If there
are no entities of the type PERSON associated
with the subevents, we simple count the unique
strings of the non-entities associated with injuring
or death. The victim count is then used to answer
subtask 3 queries numerically.

5 Results and discussion

Our system answers the task queries using ECKGs
in which event and participant identity is estab-
lished by the unsupervised NewsReader system.
Next, we reason over the properties of the ECKGs
in relation to the query constraints. We did mini-
mal adaptations for the task and the performance
heavily relies on the quality of the ECKGs. The
adaptations mainly involved detecting the rele-
vant event types among all events detected by
NewsReader, reasoning over the incident date and
matching the location in the query with locations
in the ECKGs using spatial relations from DBpe-
dia. Furthermore, we relied on the one-document-
one-incident heuristic. We expect that the system
can be improved considerably by: 1) improving
the incident-document index using state-of-the-art
clustering techniques ((Li et al., 2005; Nicholls
and Bright, 2018; Wei et al., 2018)), 2) improv-
ing the detection of predicates and the associated

event type on the basis of WSD, 3) improve the de-
tection and reasoning over locations, 4) establish-
ing coreference relations and identity of the partic-
ipants of the events.

Except for subtask 1, our system ranked 2nd in
all tasks. This suggests that it is relatively sta-
ble and can be used to obtain detailed interpre-
tations such as the victim counts for subtask 3.
Also for the event coreference, our system ranks
2nd. Given the low performance on the document-
incident clustering in subtask 1, where we have an
F1 of 23.82, we can expect that this performance
can be substantial higher if we use a state-of-the-
art document-incident clustering technique. Cur-
rently, we used a very simple semantic comparison
over the event properties and do not use most of
the textual data in the documents. We also noticed
that the NewsReader raw-ECKG output is noisy
with respect to the event participants and the lo-
cation detection. There is room for improvement
to better associate frames to events, interpret loca-
tions in the documents and the victims and their
names.

Acknowledgments

This research was funded by the Netherlands Or-
ganization for Scientific Research (NWO) via the
Spinoza grant awarded to Piek Vossen in the
project Understanding Language by Machines.

665

References
Eneko Agirre and Aitor Soroa. 2009. Personalizing

pagerank for word sense disambiguation. In Pro-
ceedings of the 12th Conference of the European
Chapter of the Association for Computational Lin-
guistics, pages 33–41. Association for Computa-
tional Linguistics.

Collin Baker. 2008. Framenet, present and future. In
The First International Conference on Global Inter-
operability for Language Resources, pages 12–17.

Xavier Carreras, Lluı́s Padró, Lei Zhang, Achim Ret-
tinger, Zhixing Li, Esteban Garcı́a-Cuesta, Željko
Agić, Bozo Bekavac, Blaz Fortuna, and Tadej
Štajner. 2014. Xlike project language analysis ser-
vices. In Proceedings of the Demonstrations at the
14th Conference of the European Chapter of the As-
sociation for Computational Linguistics, pages 9–
12.

Christiane Fellbaum. 1998. WordNet. Wiley Online
Library.

Antske Fokkens, Marieke van Erp, Piek Vossen, Sara
Tonelli, Willem Robert van Hage, Luciano Serafini,
Rachele Sprugnoli, and Jesper Hoeksema. 2013.
Gaf: A grounded annotation framework for events.
In Proceedings of the 1st workshop on Events: Def-
inition, Detection, Coreference, and Representation,
NAACL2013, Atlanta, GA, USA.

Antske Fokkens, Aitor Soroa, Zuhaitz Beloki, German
Rigau, Willem Robert van Hage, and Piek Vossen.
2014. NAF: the NLP Annotation Format. Technical
report, Vrije Universiteit Amsterdam.

Paul Kingsbury and Martha Palmer. 2002. From tree-
bank to propbank. In LREC, pages 1989–1993.
Citeseer.

Zhiwei Li, Bin Wang, Mingjing Li, and Wei-Ying Ma.
2005. A probabilistic model for retrospective news
event detection. In Proceedings of the 28th an-
nual international ACM SIGIR conference on Re-
search and development in information retrieval,
pages 106–113. ACM.

Tom Nicholls and Jonathan Bright. 2018. Understand-
ing news story chains using information retrieval
and network clustering techniques. arXiv preprint
arXiv:1801.07988.

Marten Postma, Filip Ilievski, and Piek Vossen. 2018.
Semeval-2018 task 5: Counting events and par-
ticipants in the long tail. In Proceedings of the
12th International Workshop on Semantic Evalu-
ation (SemEval-2018). Association for Computa-
tional Linguistics.

Willem Robert Van Hage, Véronique Malaisé, Roxane
Segers, Laura Hollink, and Guus Schreiber. 2011.
Design and use of the simple event model (sem).
Web Semantics: Science, Services and Agents on the
World Wide Web, 9(2):128–136.

Piek Vossen, Rodrigo Agerri, Itziar Aldabe, Agata Cy-
bulska, Marieke van Erp, Antske Fokkens, Egoitz
Laparra, Anne-Lyse Minard, Alessio Palmero Apro-
sio, and German Riga. 2016. Newsreader: using
knowledge resources in a cross-lingual reading ma-
chine to generate more knowledge from massive
streams of news. Knowledge-Based Systems.

Yifang Wei, Lisa Singh, David Buttler, and Brian Gal-
lagher. 2018. Using semantic graphs to detect over-
lapping target events and story lines from newspaper
articles. International Journal of Data Science and
Analytics, 5(1):41–60.

Zhi Zhong and Hwee Tou Ng. 2010. It makes sense:
A wide-coverage word sense disambiguation system
for free text. In Proceedings of the ACL 2010 system
demonstrations, pages 78–83. Association for Com-
putational Linguistics.

666

Proceedings of the 12th International Workshop on Semantic Evaluation (SemEval-2018), pages 667–673
New Orleans, Louisiana, June 5–6, 2018. ©2018 Association for Computational Linguistics

FEUP at SemEval-2018 Task 5: An Experimental Study of a Question
Answering System

Carla Abreu
Faculdade Engenharia
Universidade do Porto
ei08165@fe.up.pt

Eugénio Oliveira
Faculdade Engenharia
Universidade do Porto

LIACC
eco@fe.up.pt

Abstract

We present the approach developed at the Fac-
ulty of Engineering of the University of Porto
to participate in SemEval-2018 Task 5: Count-
ing Events and Participants within Highly Am-
biguous Data covering a very long tail.1 The
work described here presents the experimental
system developed to extract entities from news
articles for the sake of Question Answering.
We propose a supervised learning approach to
enable the recognition of two different types of
entities: Locations and Participants. We also
discuss the use of distance-based algorithms
(using Levenshtein distance and Q-grams) for
the detection of documents’ closeness based
on the entities extracted. For the experiments,
we also used a multi-agent system that im-
proved the performance.

1 Introdution

Thousands of news articles are published every
day on several media outlets. Representing and
reasoning over all events in these articles is a chal-
lenging task. For instance, if we would like to
answer questions about these articles like: How
many people died on the shootings in Philippi in
30th September, 2017? or How many people died
last year on Birmingham? or How many people
were killed by John List?, a deep understanding is
needed of many phenomena in the articles. For
example, news story updates and duplicate news
need to be considered in the answer processing.
We can simplify the problem by identifying rele-
vant elements from the news entities and create a
structured representation to store these data.

Named Entity Recognition (NER) is a task that
aims at identifying and classifying entity mentions
in free text. Message Understanding Conference
(MUC) defines the entities as belonging to three

1https://competitions.codalab.org/competitions/17285

categories:2 1. Enamex: names, such as Locations,
Persons, Organizations, and others 2. Timex: tem-
poral expressions 3. Numex: numerical elements,
such as numbers and percentages.

In this paper, we present an experimental study
to extract entities from news articles to answer
questions. We make use of a supervised learn-
ing approach to deal with the recognition of two
different kind of entities: Locations (e.g. Philippi,
Birmingham) and Participants (e.g. John List). We
also have studied the use of distance algorithms
(Levenshtein and Q-grams) for the near document
detection based on entities extracted.

The remainder of the paper is organized as fol-
lows. In Section 2, we describe SemEval-2018
Task 5, followed by an overview of the state of
the art in Named Entity Recognition in Section 3.
In Section 4, we present the state of the art in the
Near Document Detection task, followed by the
description of the system architecture in Section
5. In Section 6, we presents the approach, fol-
lowed by the experimental setup in Section 7. The
results are discussed in Section 8.

2 Task Description

The main goal of SemEval-2018 Task 5 (Postma
et al., 2018) is to answer questions based on a set
of provided news articles, e.g. How many killing
incidents happened in 2016 in Columbus, Missis-
sippi?. Each question has three components: an
event type and two event properties. Each question
contains one out of four event types: killing, injur-
ing, fire burning, and job firing. Event Properties
are all the related characteristics associated with
the event. They can include Locations (City or
State), Participants (First Name, Last Name, Full
Name), and Time (Day (e.g. 1/1/2015), Month
(e.g. 1/2015) or Year (e.g. 2015)). There are three

2http://afner.sourceforge.net/what.html

667

subtasks:

• Subtask 1 (S1): Find the single event that an-
swers the question

• Subtask 2 (S2): Find all events (if any) that
answer the question

• Subtask 3 (S3): Find all participant-role rela-
tions that answer the question

3 Named Entity Recognition

A wide range of approaches have been developed
to tackle NER. Early systems deal with this is-
sue by making use of handcrafted rule-based al-
gorithms (Hearst, 1992). More recently, systems
focus on machine learning techniques (supervised
learning (Florian et al., 2003), semi-supervised
(Collins and Singer, 1999; Mikheev et al., 1999),
and unsupervised learning). However, the major
drawback of supervised learning is its dependence
on annotated data. In the case of unavailability
of training examples, handcrafted rules remain the
practical technique (Riaz, 2010).

4 Near Document Detection

In the large amount of news articles that are pub-
lished every day, the same information can be re-
peated in many different articles. The identifica-
tion of similar or near-duplicate documents is ap-
plied in: plagiarized documents detection (Hoad
and Zobel, 2003), similar web pages detection
(Henzinger, 2006), and similar news articles de-
tection (Abreu et al., 2015).

Identification of similar or near-duplicate pairs
of documents in a large collection is a signifi-
cant problem with wide-spread applications. Ku-
mar and Govindarajulu (2009) present approaches
used to solve this issue. For those kind of prob-
lems, three main approaches are proposed: based
on URLs, on lexicon and, the third and more so-
phisticated, on semantics (Abreu et al., 2015).

In the work presented here, we are using the
semantics-based approach applied to the informa-
tion previously extracted from the news articles.

5 Architecture

The system consists of the following main compo-
nents:

Creating a Structured News Representation.

Copyright 2017 by WJXT News4Jax - All rights reserved.
To get alerts for breaking news, grab the free NBC4 News
App for iPhone or Android.
contact kimber laux at klaux@reviewjournal.com or 702 -
383 - 0283.
Contact Jessica Terrones at jterrones@reviewjournal.com
or at 702-383-0381.

Table 1: Journalistic Patterns

D M Y Regular Expression
x x x (Jan. [1-9]+[1-9]*, [1-2][0-9][0-

9][0-9])
x x (December [1-2][0-9][0-9][0-9])

x [1-2][0-9][0-9][0-9]

Table 2: Temporal Regular Expressions

Figure 1 presents the architecture used to parse the
news article. After converting CoNLL to plain
text, journalists patterns are removed as demon-
strated in Table 5. Journalistic patterns could
be relevant for the reader, but not for the entity
recognition task. The output of this system is a
structured news representation with a list of Event
Types, Locations, Participants, and Temporal Ex-
pressions. Additionally, the following sources of
information are also extracted: the news identifier,
publication date, and news title. To result in this
representation, the following four extractions are
performed:

Extract list of Event Types. We use WordNet
(Fellbaum, 1998) to create a list of words that
can be used to describe an event type. Our ap-
proach uses the news article title and body for
the event type recognition. For each one of
these elements, the English Snowball Stem-
mer is applied. We consider a document to
have a certain event type if at least one term
that describes an event type is present in the
news title or body.

Extract Locations and Participants. For the Lo-
cations and Participants recognition, a super-
vised approach is used. The approach pro-
posed is described in Section 6.

Extract Temporal Expressions. Our approach to
finding temporal information in the news ar-
ticle is based on the application of regular ex-
pressions. Table 2 presents some of the regu-
lar expressions used.

668

Figure 1: Create a structured news representation approach

Extract Auxiliar Information. The title, publi-
cation date, and news identifier are also ex-
tracted from the news article to create the
structured news representation.

Search all the news that answer a question

When the system receives a question, an answer
will be retrieved based on the structured news rep-
resentation. Firstly, for each element (Event Type
and Event Propreties) a list of news articles that
has some relation with the element under analysis
is composed. In the end, the news or set of news
articles that address all the items under analysis
are extracted.

Near document detection

The near document detection was done based on
the set of news that answers a question. The ap-
proach is explained in Section 6.

Counting participants

Similarly to what happened in the case of previ-
ously mentioned events’ extraction, this one only
uses a news article or a set of news articles that an-
swer a question. For this set of news articles, we
only process the information given by the news ar-
ticle title. For each Event Type we manually de-
fine the variation trend (increase/ decrease/ stable)
- e.g. the number of death can increase with the de-
crease of the number of injured - in a killing event.
We started this process by normalizing and remov-
ing temporal expressions from the news article ti-
tle. After, we applied the POS-tagger and split the
sentence into subsentences separated by comas.
We started to recognize the event type for each
subsentence. When we found it, we checked if

the subsentence also includes a numerical element
(’CD’ - Post tagger) - this element is considered as
a number of participants associated with the event
type. Once extracted the number of participants
associated with each news article, we connect this
information with news article’s date. Finally, we
try to find the maximum or the minimum of partic-
ipants depending on the temporal event type trend.

The system we are presenting here was devel-
oped in Python 2.7. It uses some python libraries:
Natural Language Toolkit (NLTK) - Wordnet, En-
glish Snowball Stemmer, Stopwords, POSTagger;
Python multi-Agent Development Environment
(SPADE); Scikit-Learn - tree, RandomForestClas-
sifier, ExtraTreesClassifier, LinearSVC; Json; and,
Regular Expressions (re).

6 The proposed approach

6.1 NER Supervised Approach
In this subsection, we describe the implementation
details of the proposed approach for recognizing
Locations and Participants.

Natural Language Processing Tasks:

The data was preprocessed with two NLP tasks:
part of speech tagging and stop word recognition.

Features

Supervised learning techniques require their in-
put to be categorized. When extracting informa-
tion from news documents, it is common to la-
bel each word with a set of features. These fea-
tures allow the SL approach to recognize an en-
tity in a given document. We extracted the fol-
lowing features: 1. CAP (Capitalized) indicates
whether a word: contains no capital characters,

669

shooting at a west Phoenix apartment that left one man dead
CAP 0 0 0 0 1 0 0 0 0 0 0
PT D NN IN DT NNP NN WDT VBD CD NN NN
SWI 0 1 1 0 0 0 1 0 0 0 0
SWA at a that

Table 3: Categorizing each word on a sentence

Figure 2: Features used in each scenario

has only its first letter capitalized, or all its char-
acters are capitalized; 2. PT (POS Tagger Associ-
ation)3 identifies the part of speech tag of a word,
such as noun, verb, adjective, etc.; 3. SWI (Stop–
Words Identification) indicates whether a word is a
stop-word; 4. SWA (Stop-Words Association) as-
sociates a corresponding stop-word; 5. NP - Para-
graph records a numeric identifier of the paragraph
in which the word appears.

Table 3 presents example of features com-
puted for each word in the phrase “shooting at a
west Phoenix apartment that left one man dead”.
For instance, the word “Phoenix” is capitalized
(CAP = 1), corresponds to a noun (PT =
NNP), and is not a stop-word (SWI = 0). Note
that we aggregate all sequential capitalized words
as one, e.g. “Salt Lake City” will be combined in
a single word to be classified.

We believe that a simple association as illus-
trated in Table 3 is not enough to categorize a word
for the Named Entity Recognition task. For this
reason, we also consider the word context in the
document, i.e., the current word (C), the previous
word (P), and the next word (N). Here we indicate
the word position following the feature abbrevia-
tion, e.g., “C CAP” indicates whether the current
word is capitalized or not.

Data Cleaning and Transformation

Data quality is the main challenge of infor-
mation management. To guarantee data quality,
two processes were executed: data cleaning and
data transformation. Tables 4 and 5 present the
data transformation for POS tags and stop-words.

3(POSTagger - All Tags) -
http://www.nltk.org/book/ch05.html visited on 2017,
November

Stop-words have no value for SWA. To fix this, we
replace an empty value by the character “X” and
we encode this value as demonstrated in Table 5.

PostTagger Rep
DT 0
NN 1
NNP 2
VBD 3
... ...

Table 4: POSTtagger

Stop-Word Rep
X 0
a 1
that 2
and 3
... ...

Table 5: Stop Words

Classification Algorithms

Supervised learning techniques create a model
that predicts the value of a target variable based on
a set of input variables. One challenge is to select
the most appropriate algorithm for the task of clas-
sifying Locations and Participants. We have com-
pared the following algorithms: Support Vector
Classifier (SVC); Decision Tree Classifier (Tree);
Random Forest Classifier (Random); Extra Trees
Classifier (Extra). As demonstrated on Table 6,
different configurations were attempted for each
algorithm. Implementations of these algorithms
are provided by the Python library scikit-learn li-
brary4.

6.2 Near Document Detection
The answer to a question in this SemEval task con-
sists of the following: question identifier, set of the
news articles that help to answer the question, and
a numerical answer.

The numerical answer of a question is depen-
dent on the question task. Task 2 requires a num-
ber of unique events that correspond to a ques-
tion. For this purpose, it is essential to detect sim-
ilar news documents within the given set. To de-
tect similar documents, we use the structured news
representation described above. Each pair of news
articles is compared based on: their titles, their
lists of Participants, and their lists of Locations.

7 Experimental Setup

7.1 NER Approach
Data Resources

The SemEval 5 competition provides data for
the purpose at stake. The data made available in
this competition is a set of English news articles.
To extract locations and participants from crime

4http://scikit-learn.org/stable/, visited in November 2017

670

Alg/ID Configuration
SVC 1 Default scikit learn configuration
SVC 2 kernel=”linear”
SVC 3 kernel=”sigmoid”
Tree 1 Default scikit-learn configuration
Tree 2 criterion=”gini”, splitter=”best”, min samples

split=2
Tree 3 criterion=”entropy”, splitter=”best”, min samples

split=2
Tree 4 criterion=”entropy”, splitter=”random”, min sam-

ples split=2
Tree 5 criterion=”gini”, splitter=”random”, min samples

split=2
Tree 6 criterion=”gini”, splitter=”best”, min samples

split=4
Tree 7 criterion=”entropy”, splitter=”best”, min samples

split=4
Random 1 criterion=”gini”, n estimators=10
Random 2 criterion=”gini” n estimators=5
Random 3 criterion=”gini”,n estimators=20
Random 4 criterion=”entropy”, n estimators=10
Random 5 criterion=”entropy”,n estimators=5
Random 6 criterion=”entropy”,n estimators=20
Extra 1 criterion=”gini”, max features=”auto”
Extra 2 criterion=”entropy”, max features=”auto”
Extra 3 criterion=”gini”, max features=”sqrt”
Extra 4 criterion=”entropy”,max features=”sqrt”
Extra 5 criterion=”gini”, max features=”log2”
Extra 6 criterion=”entropy” max features=”log2”
Extra 7 criterion=”gini” max features=None
Extra 8 criterion=”entropy”, max features=None

Table 6: Classification Algorithm Configurations

news, additional annotations were done. A set of
10,580 individual words were annotated in three
categories: Locations, Participants, and Others -
where all the sequential capitalized words were
aggregated as one, e.g., in “as she left Jackson
Memorial Hospital”, the annotated elements are:
[as], [she], [left],[Jackson Memorial Hospital].

Evaluation

The evaluation metrics used to evaluate this ap-
proach are Precision (P), Recall (R), and F1 (F).
Due to a large number of experiences and in order
to correctly analyze the obtained results, we made
use of a multi-agent architecture to find the best re-
sults. For this evaluation, we defined a utility func-
tion and we introduced an auction mechanism to
enable some kind of negotiation. This mechanism
is based on English auction, where each agent can
propose their bids following the auction require-
ments. Our agents represent the different configu-
ration of the classification algorithms and each bid
reveals their result on a specific test scenario. We
expect that in this experiment recall is the most im-
portant metric, thus it is assigned a higher weight
than the other metrics. Our utility function was

defined as follows:

U = 0.5 ∗R+ 0.25 ∗ P + 0.25F1

In order to reduce the data to be analyzed we
exclude all combinations with low performance,
namely all combinations where either Recall, Pre-
cision, or F1 has a mean value bellow 60% or a
standard deviation above 15%.

Experiments

A supervised learning system was needed to gen-
erate a model. The classification algorithms and
the scenarios (S1, S2, S3, and S4) defining values
of features are those described in section 6.1.

Our experiments were done taking cross-
validation with k = 7 into account. We divided
the annotated data into partitions of training data
(75%) and testing data (15%).

7.2 Near Document Detection
Data Resources

Near document detection approach was studied
with the dataset provided at the end of the compe-
tition. Each intended answer includes a list of sim-
ilar documents identified in the given dataset and
aggregated according to the corresponding ques-
tion. For each answer, we created a script to ag-
gregate all news articles in pairs. Additionally, a
label indicating whether a pair is similar or nor
(pairs that are contained in the same set are sim-
ilar) was added. In total, this resulted in 61,931
pairs of news articles.

Evaluation

We evaluate the performance of various thresholds
on near document detection by applying the met-
rics: Precision, Recall, and Accuracy.

Experiments:

For each pair of news articles, we have calcu-
lated the similarity between their elements: title
(T), list of participants (Part), and list of locations
(Loc). For the sake of comparison, we have used
two distance algorithms: Levenshtein (L) (Leven-
shtein, 1966) and Qgrams (Q) (Ullmann, 1977).
We defined two scenarios (SS1, SS2), differing in
the weights of the document elements as follows:

SS1 = 0.50T + 0.25Loc+ 0.25Part

SS2 = 0.34T + 0.33Loc+ 0.33Part

671

Exp Alg P R F U
S3 Tree 6 66.47 70.94 68.34 69.17
S1 Extra 8 71.67 67.63 69.13 69.02
S1 Tree 2 71.28 67.53 69.08 68.85
S1 Tree 3 70.53 67.79 68.90 68.75
S2 Tree 4 70.35 67.55 68.54 68.50

Table 7: Recognizing Participants - Results

Exp Alg P R F U
S3 Tree 3 70.32 66.68 68.13 67.95
S1 Extra 8 68.91 67.53 67.97 67.98
S1 Extra 4 68.13 67.40 67.64 67.64
S1 Extra 7 67.11 70.06 68.34 67.16
S1 Extra 2 68.28 64.84 66.41 66.09

Table 8: Recognizing Location - Results

8 Analysis and Results

8.1 NER Approach
Due to the large volume of combinations and their
corresponding results, we used a multi-agent sys-
tem to simplify the analysis. Tables 7 and 8
present the best 5 results achieved on extracting
Participants and Locations respectively. We con-
sidered the results only from two algorithms: De-
cision Tree and Extra Tree Classifier. Both ap-
proaches show that context helps the recognition
task.

8.2 Near Document detection
Table 9 presents the results achieved for various
threshold values. Changing the threshold value
causes small variations in the performance of the
Qgrams algorithm, but large variation in the per-
formance of the Levenshtein distance algorithm.
The scenarios presented here are not sufficient to
determine if two news articles are similar or not.
These results indicate that in cases where news ar-
ticles refer to the same subject, a reduced news ar-
ticle representations is not sufficient to distinguish
different events.

Alg Function Threshold P R A
L SS1 75 12.24 12.86 86.56
L SS1 80 6.97 60.86 36.22
L SS1 85 8.26 39.98 62.22
L SS2 75 13.46 11.96 87.64
L SS2 80 7.97 40.79 60.30
L SS2 85 9.37 16.05 82.21
Q SS1 75 12.30 12.86 86.60
Q SS1 80 13.38 10.98 88.00
Q SS1 85 13.38 10.97 88.00
Q SS2 75 13.61 10.70 88.21
Q SS2 80 13.23 11.07 87.89
Q SS2 85 13.38 10.98 88.00

Table 9: Near Document Detection Results by Thresh-
old

8.3 SemEval Results

SemEval-2018 Task 5 contains 3 subtasks, on
which we achieved F1 score of 24.65, 30.51, 26.79
respectively.

9 Conclusion and Future Work

In this work, we presented an experimental study
that addresses the Question Answering challenge
in SemEval-2018 task 5. We have used Named
Entity Recognition approaches to identify entities
such as Location, Participants, Temporal Expres-
sions, and Event Types. We used a structured news
representation to perform the required tasks: 1. to
answer questions on counting events 2. to detect
which distinct documents provide an answer to a
question; and 3. to answer questions by counting
event participants.

The use of multi-agent system was crucial in
order to find the best performing algorithm. Our
utility function allowed us to have a previous def-
inition of the influence of each evaluation metric
on the overall evaluation. The resulting system
can be applied to other scenarios by adapting the
utility function according to their requirements. In
the future, our system can be improved to include
multiple combinations (e.g., on the near document
detection we can use a different combination of el-
ements and algorithms).

Task 2 has been solved with extracting informa-
tion. Future work for this task could include an-
other study of a supervised learning approach that
is based on the entire information available in a
news article. However, such a requires a corre-
sponding annotated corpus. Our approach to Task
3 was relatively naive, since it does not consider
the relationships between entities (participants and
event type). Future work should investigate a more
elaborate approach.

Event type behavior should also be studied, as
we believe that some events could present tem-
poral trends. For instance, we expect to observe
an increase of the number of deaths/injuries de-
scribed in crime news documents over time.

References
Carla Abreu, Jorge Teixeira, and Eugénio Oliveira.

2015. Encadear: Encadeamento automático de
notı́cias. Oslo Studies in Language, 7(1).

Michael Collins and Yoram Singer. 1999. Unsuper-
vised models for named entity classification. In

672

1999 Joint SIGDAT Conference on Empirical Meth-
ods in Natural Language Processing and Very Large
Corpora.

Christiane Fellbaum, editor. 1998. WordNet An Elec-
tronic Lexical Database. The MIT Press, Cam-
bridge, MA ; London.

Radu Florian, Abe Ittycheriah, Hongyan Jing, and
Tong Zhang. 2003. Named entity recognition
through classifier combination. In Proceedings of
the seventh conference on Natural language learn-
ing at HLT-NAACL 2003-Volume 4, pages 168–171.
Association for Computational Linguistics.

Marti A Hearst. 1992. Automatic acquisition of hy-
ponyms from large text corpora. In Proceedings of
the 14th conference on Computational linguistics-
Volume 2, pages 539–545. Association for Compu-
tational Linguistics.

Monika Henzinger. 2006. Finding near-duplicate web
pages: a large-scale evaluation of algorithms. In
Proceedings of the 29th annual international ACM
SIGIR conference on Research and development in
information retrieval, pages 284–291. ACM.

Timothy C Hoad and Justin Zobel. 2003. Methods for
identifying versioned and plagiarized documents.
Journal of the Association for Information Science
and Technology, 54(3):203–215.

J Prasanna Kumar and P Govindarajulu. 2009. Du-
plicate and near duplicate documents detection: A
review. European Journal of Scientific Research,
32(4):514–527.

Vladimir I Levenshtein. 1966. Binary codes capable
of correcting deletions, insertions, and reversals. In
Soviet physics doklady, volume 10, pages 707–710.

Andrei Mikheev, Marc Moens, and Claire Grover.
1999. Named entity recognition without gazetteers.
In Proceedings of the ninth conference on European
chapter of the Association for Computational Lin-
guistics, pages 1–8. Association for Computational
Linguistics.

Marten Postma, Filip Ilievski, and Piek Vossen. 2018.
Semeval-2018 task 5: Counting events and par-
ticipants in the long tail. In Proceedings of the
12th International Workshop on Semantic Evalu-
ation (SemEval-2018). Association for Computa-
tional Linguistics.

Kashif Riaz. 2010. Rule-based named entity recog-
nition in urdu. In Proceedings of the 2010 named
entities workshop, pages 126–135. Association for
Computational Linguistics.

Julian R. Ullmann. 1977. A binary n-gram technique
for automatic correction of substitution, deletion, in-
sertion and reversal errors in words. The Computer
Journal, 20(2):141–147.

673

Proceedings of the 12th International Workshop on Semantic Evaluation (SemEval-2018), pages 674–678
New Orleans, Louisiana, June 5–6, 2018. ©2018 Association for Computational Linguistics

NAI-SEA at SemEval-2018 Task 5: An Event Search System

Yingchi Liu, Quanzhi Li and Luo Si
Alibaba Group, Inc

Bellevue, WA 98004, USA
fyingchi.liu,quanzhi.li,luo.sig@alibaba-inc.com

Abstract
In this paper, we describe Alibaba’s
participating system in the semEval-2018
Task5: Counting Events and Participants
in the Long Tail. We designed and
implemented a pipeline system that consists
of components to extract question properties
and document features, document event
category classifications, document retrieval
and document clustering. To retrieve the
majority of the relevant documents, we
carefully designed our system to extract key
information from each question and document
pair. After retrieval, we perform further
document clustering to count the number of
events. The task contains 3 subtasks, on which
we achieved F1 score of 78.33, 50.52, 63.59
, respectively, for document level retrieval.
Our system ranks first in all the three subtasks
on document level retrieval, and it also ranks
first in incident-level evaluation by RSME
measure in subtask 3.

1 Introduction

In this paper we present our system developed
for participanting in the semEval-2018 Task5:
Counting Events and Participants in the Long
Tail. Given a set of questions and a corpus of
documents mainly from news articles, the system
needs to provide a numeric answer together with
the supporting documents that directly relate to
the answer (Postma et al., 2018). According
to the official task rule, participants can also
optionally provide the text mentions of events in
the documents, but we did not participate this
year. The task contains 3 subtasks. Subtask 1 is
to retrieve all the relevant documents related to
one single event asked in the question. Subtask
2 and subtask 3 require the system not only
retrieve relevant documents, but also count the
number of events or number of participants. Event
detection and extraction has been intensively

studied (Choubey and Huang, 2017; Nguyen et al.,
2016a,b; Nguyen and Grishman, 2016; Feng et al.,
2016; Ji and Grishman, 2008). Most of those
research used a corpus of annotated documents
for training. In this task, annotated documents
were not provided, but the key factors to retrieve
relevant documents are provided by the questions.
Therefore, our system starts from a document
retrieval system via key information extraction
and matching and follows a document clustering
component.

2 System Description

We developed a pipeline system for the task,
including question parsing, document feature
generation, document event type classifications,
document retrieval and document clustering.

2.1 Question Properties

In this task, each question contains three
components: the event type and two event
properties. The two event properties provided are
either the time, the location or the participant of
the event. And specifications for these properties
can vary in granularity (e.g. day/month/year,
city/state, first/last/full name). Details can refer
to official task description (Postma et al., 2018).
In this task, we consider four event types (i.e.
killing, injuring, fire burning, job firing). But in
training data, only killing and injuring events are
provided. Our system first processes each question
to extract the question event type and propeties.
Later each question and document will be paired
(q-d pair) and assigned question properties as
binary features. For instance, if a question
asks for killing event(s) that happened at specific
location and time, the features related to the
asked event type and properties (i.e. ask killing,
ask time, ask location) will be 1 and others

674

Figure 1: System Overview.

(i.e. ask injuring, ask fire burning, ask job firing,
ask participant) will be 0.

2.2 Document Features

2.2.1 Event Type Feature
Event type is a feature which can be defined by
the document itself. To decide if a document
is one of the four types defined in this task, we
ultized both word count feature and classification
results. Given the root event trigger keywords
for an event type, we first made a synonym
word list by including the top similar words from
word2vec, based on a cosine similarity score
threshold (Mikolov et al., 2013a,b), and adding a
couple of missing common words associated with
the event. Then we scanned through all documents
and count total number of words from the event
word list in the document. These counts are then
used as word count feature for each event type.

To prepare the training data for the classifier,
we selected the killing and injuring documents
according to the answer document in trial
data. And we used a keyword list to select
fire burning (“firefighter”, “fire department”,
“wildfire”, “burn”) and job firing (“employee”,
“employment”, “fired for”) related documents.
To remove confusing documents that are actually
gun violence related, a short list of gun violence
keywords (“gun”, “shot”, “bullet”, “shoot”) were
used when selecting fire burning and job firing
documents. Two SVM models were trained

for event classification. One for classification
between gun violence and non-gun violence.
Another one is to determine if an event is an
injuring event (not killing-only).

2.2.2 Location Feature
If a question asks for a specific location, the
system will extract a location feature from each
document according to such location. For
instance, if a question asks for an event that
occurred in Phoenix, Arizona, it will scan each
token in the document and decide if “Phoenix”
and “Arizona” are in the document. Based on
the granularity of the location asked, a score is
assigned to the q-d pair as document location
feature. As the states in the U.S. are often
abbreviated, a dictionary of the U.S. states with
their abbreviations 1 is used for better recall.
Additionally, a database of cities in states of the
U.S. 2 is used to retrieve a document in the
case that a state is asked but the document only
mentions the city in that state. In the current
system, a partial score is assigned to such a
document. And one problem raised by this method
is the possibility to retrieve the false positive
documents which contain the city with the same
name that is in a different state. This issue has
not been resolved in the current system, although

1https://en.wikipedia.org/wiki/List_
of_U.S._state_abbreviations

2https://github.com/agalea91/city_to_
state_dictionary

675

Feature Description
DCT DIFF document creation time difference, in days
Title Cosine cosine similarity of title words

Title NE Match number of common NE in title
Title NE Jaccard Jaccard similarity of NE in title

All Person Cosine cosine similarity of Person entities in the document
All Person 1gram Cosine cosine similarity of 1gram of Person in the document

All Location Cosine cosine similarity of Location in the document
All Organization Cosine cosine similarity of Org in the document

All NE Cosine cosine similarity of all NE in the document
All NE Jaccard jaccard similarity of all NE in the document

All Cosin 1gram cosine similarity of 1-gram
All Cosine 2gram cosine similarity of 2-gram

Table 1: Features used for clustering documents talking about same events.

S1 S2 S3
F1 78.33 50.52 63.59

Table 2: Document-Retrieval Performance.

attempts with using additional county information
are tried.

2.2.3 Participant Feature

If a question asks for a specific participant name,
the system will extract a participant feature based
on the match of the name and the granularity of
the name that is asked. For example, if a name
“Michael Farrow” is asked in the question, it will
assign a max score to this participant feature when
“Michael Farrow” is found, or partial score when
only first or last name is found. To avoid the case
that partial name matches to a wrong entity, we
used named entity recognition tool from Stanford
CoreNLP 3 to extract all named entities, and if
the partial name is found in the named entities
other than a person, a relatively low score will
be assigned as the feature. In addition, in real
life a location name (e.g. a street, a mountain
or a station etc.) may sometimes be named after
a person (e.g. Franklin Street). The system
combines these partial names with the common
location words and their abbreviations (e.g. street
and st.), and use regular expression to check if
the documents contain such combination. If so,
a relative low score is given.

3https://nlp.stanford.edu/software/
CRF-NER.html

2.2.4 Time Feature
In case a question asks about a specific time,
the system extracts potential times via word level
matching and Stanford named entity recognition
tool. And all the extracted time phrase are
normlized to the format as ‘DD/MM/YYYY’.
Each document has a creation time, i,e. DCT.
Because errors may occur during time extraction,
it select a potential time only if it is before the
DCT, and then such time is compared with the
question’s time.

2.3 Document Retrieval
To decide the event type, we considered both
event keywords and classification results. For
violence events (killing and injuring), whether
the document contains killing keywords is the
only factor to decide if it is killing event, but
for injuring event the classification result is used
to decide if it is an injuring incidence. For the
other two events, both the keyword count and
gun violence classification results are considered.
With all the features prepared for each q-d pair, a
threshold is set for each feature and only q-d pairs
with all the feature scores above their thresholds
are considered as one corret q-d pair, which means
the document is considered as an correct answer
for the corresponding question.

2.4 Document Clustering
In subtask 2, after we identify documents that
meet the requirements of the question, we need
to group the documents that talk about the same
event into the same cluster. We used the features
listed in Table 1 to train a classifier, to determine

676

Time Location Participant
questions 892 734 438

non-recalled correct documents 70 86 265

Table 3: Number of questions asked for each properties and number of correct documents missing the
corresponding key information.

if two documents are taking about the same
event. It is a binary classifier, with two classes:
Yes and No. Based on the classification result,
we used 1NN for clustering. The trial data of
subtask 1 and 2 are used as the training data
to train the classifier. In total, there are 599
positive samples (document pairs that talk about
the same event), and we randomly generated 1000
document pairs as the negative samples. The
classification algorithm used is Random Forest.
Based on 10-fold validation, the F measure of the
classifier is 0.96. This classifier was also used in
subtask 1 and 3 for expanding the root documents
for improving recall.

3 Evaluation

Document retrieval performance for all the three
subtasks are shown in Table 2.

To understand the loss of the recall, we counted
the numbers of questions that ask for time,
participant, and location, respectively, and the
numbers of documents our system did not retrieve
due to the property (e.g. time, participant, and
location) was not found, which is shown in Table
3. We use the following two documents as
examples:

1. “Probable cause hearing being held for
3 accused in fatal shooting of 3-year-old DE-
TROIT (AP MODIFIED)- Three men charged in
the shooting of a 3-year-old Detroit girl were in
court today for a probable cause hearing. The
Wayne County prosecutor’s office said the three
are charged in the death of Makanzee Oldham,
who died after she was shot while in a car with her
father after a fight erupted and someone poured
juice on a woman getting ready for prom. Thirty
- year - old Cleveland Smelley is accused of firing
the shot that killed Makanzee. He and two other
men, Deonta Bennett and Antoine Smelley, are
also charged with attempted murder because there
were oth-ers in the car ”, and

2. “Suspect arrested in Detroit shooting, 2-
year-old girl still in critical condition DETROIT
(WXYZ)- A 2-year-old girl remains in critical

condition after she was shot in the head on
Detroit’s east side on Wednesday One of the men
is the father of the little girl , the other is the
suspected shooter , Cleveland Smelley Police say
Smelley pulled out a gun and fired one shot at the
other man , missing him and hitting the little girl in
the head She was sitting in her car seat when she
was shot Police confirmed they arrested Cleveland
Smelley on Thursday afternoon ”

The above two documents are correct answer
to this question,“Which [‘killing’] event happened
in 05/2016 (month) that involve the name Deonta
(first)?”

Document 1 was created on 06/09/2016, but
there is no indication in it showing that the
event happened in 05/2016, though it has the
correct person name “Deonta”. In contrast,
document 2 does not have the name “Deonta”.
Therefore, neither of the two documents were
retrieved via our current system. The document
clustering method described in Section 2.4 does
help in retrieving documents missing certain
question properties, but there are still documents
we cannot retrieve, especially for questions that
we cannot find any document containing both
required properties as the root document for
document expansion using the clustering method.

As shown in Table 3, missing participants
information in the documents is most common.
We did not participant in the coreference
competition and our system cannot correctly
retrieve such documents without the key
information that is asked in the question. Recent
works on event nuget detection and coreference
have proposed nerual networks models (Nguyen
et al., 2016a,b; Nguyen and Grishman, 2016;
Choubey and Huang, 2017). Those works could
be studied in the future, where one can elaborate
the coreference information across the document
to boost the recall of correct documents without
key information.

677

References
Prafulla Kumar Choubey and Ruihong Huang. 2017.

TAMU at KBP 2017: Event nugget detection and
coreference resolution. CoRR, abs/1711.02162.

Xiaocheng Feng, Lifu Huang, Duyu Tang, Bing
Qin, Heng Ji, and Ting Liu. 2016. A language-
independent neural network for event detection. In
Proceedings of the 54th Annual Meeting of the
Association for Computational Linguistics, page 66.
Association for Computational Linguistics.

Heng Ji and Ralph Grishman. 2008. Refining
event extraction through cross-document inference.
In ACL-08: HLT - 46th Annual Meeting of
the Association for Computational Linguistics:
Human Language Technologies, Proceedings of the
Conference, pages 254–262.

Tomas Mikolov, Kai Chen, Greg Corrado, and
Jeffrey Dean. 2013a. Efficient estimation of
word representations in vector space. CoRR,
abs/1301.3781.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg
Corrado, and Jeffrey Dean. 2013b. Distributed
representations of words and phrases and their
compositionality. CoRR, abs/1310.4546.

Thien Huu Nguyen, Kyunghyun Cho, and Ralph
Grishman. 2016a. Joint event extraction via
recurrent neural networks. In 2016 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, NAACL HLT 2016 - Proceedings of
the Conference, pages 300–309. Association for
Computational Linguistics (ACL).

Thien Huu Nguyen and Ralph Grishman. 2016.
Modeling skip-grams for event detection with
convolutional neural networks. In Proceedings
of the 2016 Conference on Empirical Methods
in Natural Language Processing, page 886891.
Association for Computational Linguistics.

Thien Huu Nguyen, Adam Meyers, and Ralph
Grishman. 2016b. New york university 2016 system
for kbp event nugget: A deep learning approach. In
Proceedings of Ninth Text Analysis Conference.

Marten Postma, Filip Ilievski, and Piek Vossen.
2018. Semeval-2018 task 5: Counting events and
participants in the long tail.

678

Proceedings of the 12th International Workshop on Semantic Evaluation (SemEval-2018), pages 679–688
New Orleans, Louisiana, June 5–6, 2018. ©2018 Association for Computational Linguistics

SemEval-2018 Task 7: Semantic Relation Extraction and Classification in
Scientific Papers

Kata Gábor1, Davide Buscaldi1, Anne-Kathrin Schumann2, Behrang QasemiZadeh3,
Haı̈fa Zargayouna1, Thierry Charnois1

1 LIPN, CNRS (UMR 7030), Université Paris 13
firstname.lastname@lipn.univ-paris13.fr

2 ProTechnology GmbH, Dresden
annek schumann@gmx.de

3 DFG SFB 991, Heinrich-Heine University, Dsseldorf
zadeh@phil.uni-duesseldorf.de

Abstract

This paper describes the first task on seman-
tic relation extraction and classification in sci-
entific paper abstracts at SemEval 2018. The
challenge focuses on domain-specific seman-
tic relations and includes three different sub-
tasks. The subtasks were designed so as to
compare and quantify the effect of different
pre-processing steps on the relation classifica-
tion results. We expect the task to be relevant
for a broad range of researchers working on
extracting specialized knowledge from domain
corpora, for example but not limited to sci-
entific or bio-medical information extraction.
The task attracted a total of 32 participants,
with 158 submissions across different scenar-
ios.

1 Introduction

One of the emerging trends of natural language
technologies is their use for the humanities and sci-
ences. Recent works in the semantic web (Osborne
and Motta, 2015; Wolfram, 2016) and natural lan-
guage processing (Tsai et al., 2013; Luan et al.,
2017; Augenstein and Søgaard, 2017; Kim et al.,
2010) aimed to improve the access to scientific
literature, and in particular to respond to informa-
tion needs that are currently beyond the capabilities
of standard search engines. Such queries include
finding all papers that address a problem in a spe-
cific way, or discovering the roots of a certain idea.
This ambition involves the identification and classi-
fication of concepts, and the relations connecting
them.

The purpose of the task is to automatically iden-
tify relevant domain-specific semantic relations in
a corpus of scientific publications. In particular,
we search for and classify relations that provide
snippets of information such as ”a (new) method is
proposed for a task”, or ”a phenomenon is found

in a certain context”, or ”results of different exper-
iments are compared to each other”. Identifying
such semantic relations between domain-specific
concepts allows us to detect research papers which
deal with the same problem, or to track the evolu-
tion of results on a certain task.

2 Related Work

SemEval 2010 Task 8 (Hendrickx et al., 2010)
proposed a discrete classification of word pairs
into 9 semantic relations, however, this task was
not tailored to the needs of scientific text analysis
as neither relation types nor the vocabulary were
domain-specific. SemEval 2012 Task 2 (Jurgens
et al., 2012) proposed a gradual notion of relational
similarity: the task was to quantify the similarity
between examples of relation instances. The data
set was aimed at evaluating specific semantic rep-
resentations for relational similarity, but does not
fit our task: in this task, entity pairs were treated
as static class instances; in particular, they were
presented without any context. However, the re-
lation types we deal with are contextual: e.g., a
specific machine learning method is trained on a
specific data set to perform an NLP task in the
context of a given experiment reported by a pa-
per. Finally, the most closely related to our task is
SemEval 2017 Task 10 (Augenstein et al., 2017),
which responds to the growing interest towards the
semantic analysis of scientific corpora. This task
focuses mostly on keyword extraction and cate-
gorization. The subtask concerned with relation
classification proposes 3 categories of taxonomic
relations (synonym, hypernym, unrelated). Our
task goes a step further by proposing a more fine-
grained and, thus, more informative set of semantic
relations (see Table 1). The relation types were
selected and annotated based on a careful corpus
study and are intended to represent the major re-

679

lations that define the information content of the
abstract of a scientific paper.

3 Task description

The task consists in identifying and classifying in-
stances of semantic relations between concepts in
a set of 6 discrete categories. The relations are spe-
cific to the science domain and their instances can
frequently be found in the abstract/introduction of
scientific papers. The task is split into three sub-
tasks. This is done to provide a framework for the
systematic evaluation of the steps that are necessary
for full information extraction from scientific text,
i. e. relation extraction and relation classification.
Two of the subtasks focus solely on the classifica-
tion of relation instances into 6 relation categories.
Another subtask includes both the extraction of re-
lation instances and their classification. The data
we provide is presented as complete abstracts of
scientific papers. An abstract contains about 100
words on average. Entities are annotated in both
the training and the test data. Furthermore, in the
classification subtasks, the relation instances (en-
tity pairs that belong to one of the relation classes)
as well as the directionality of the relation (argu-
ment1, argument2) are given in the training and test
data. In the extraction subtask, relation instances
are not provided in the test data. The training data
for each subtask contains 350 annotated abstracts
with the corresponding relation instances and their
categories1. The test data consists of 150 abstracts2.
Participants were allowed three submissions/sub-
task/team.

3.1 Relation classification scenario

Given a pair of entities in an abstract, the task con-
sists in classifying the semantic relation between
them. A pre-defined list of relations is given (see
Table 1), together with training examples for each
relation.

• Subtask 1.1 : Relation classification on
clean data.
Entity occurrences are manually annotated in
both the training and the test data. In the train-
ing data, semantic relations are manually an-
notated between entities. In the test data, only

1The training data for subtask 1.1 and subtask 2 were
identical.

2After the end of the competition, the complete dataset
was published at https://lipn.univ-paris13.fr/
˜gabor/semeval2018task7/

entity annotations and unlabeled relation in-
stances are given. The task is to predict the
semantic relation between the entities. The
following example shows a text snippet with
the information provided in the test data :

Korean, a <entity id=”H01-
1041.10”>verb final language</en-
tity>with <entity id=”H01-
1041.11”>overt case markers</en-
tity>(...)

A relation instance is identified by the unique
identifier of the entities in the pair, e.g.
(H01-1041.10, H01-1041.11). The informa-
tion to be predicted is the relation class la-
bel: MODEL-FEATURE(H01-1041.10, H01-
1041.11).

• Subtask 1.2 : Relation classification on
noisy data.
Entity occurrences are automatically anno-
tated in both the training and the test data.
Delimitation errors may occur in the entity
annotation. In the training data, semantic re-
lations are manually annotated between the
entities. In the test data, only automatic entity
annotations and unlabeled relation instances
are given. The task is to predict the semantic
relation between the entities. The following
example shows a text snippet with the infor-
mation provided in the test data:

This <entity id=”L08-
1203.8”> paper </entity> in-
troduces a new <entity id=”L08-
1203.9”>architecture</entity>(...)

The relation instance is (L08-1203.8, L08-
1203.9). The information to be predicted is
the relation class label: TOPIC(L08-1203.8,
L08-1203.9)

3.2 Relation extraction and classification
scenario

Given an abstract with annotated entities, the sub-
task consists in:

• identifying instances of semantic relations be-
tween entities in the same sentence,

• assigning class labels, i.e. one of six pre-
defined relation types (see Table 1), to the
relation instances.

680

RELATION TYPE Explanation Example
USAGE Methods, tasks, and data are linked by usage relations.
used by ARG1: method, system ARG2: other method approach – model
used for task ARG1: method/system ARG2: task approach – parsing
used on data ARG1: method applied to ARG2: data MT system – Japanese
task on data ARG1: task performed on ARG2: data parse – sentence
RESULT An entity affects or yields a result.
affects ARG1: specific property of data ARG2: results order – performance
problem ARG1: phenomenon is a problem in a ARG2: field/task ambiguity – sentence
yields ARG1: experiment/method ARG2: result parser – performance
MODEL An entity is a analytic characteristic or abstract model of another entity.
char ARG1: observed characteristics of an observed ARG2: entity order – constituents
model ARG1: abstract representation of an ARG2: observed entity interpretation – utterance
tag ARG1: tag/meta-information associated to an ARG2: entity categories – words
PART WHOLE Entities are in a part-whole relationship.
composed of ARG2: database/resource ARG1: data ontology – concepts
datasource ARG1: information extracted from ARG2: kind of data knowledge – domain
phenomenon ARG1: entity, a phenomenon found in ARG2: context expressions – text
TOPIC This category relates a scientific work with its topic.
propose ARG1: paper/author presents ARG2: an idea paper – method
study ARG1: analysis of a ARG2: phenomenon research – speech
COMPARISON An entity is compared to another entity.
compare ARG1: result, experiment compared to ARG2: result, experiment result – standard

Table 1: Semantic relation typology. The six major relation types result from a finer grained classification which
was used in manual annotation.

The training data we provide contains the same
information as in the classification scenario, i.e.
manually annotated entities, and labeled seman-
tic relations holding between entities. The test
data contains only abstracts with annotated entities:
both the entity pairs and their relation type are to
be predicted.

3.3 Evaluation
Submissions are evaluated differently for the indi-
vidual subtasks. A dedicated gold standard contain-
ing entity and relation annotations is used.

3.3.1 Metrics for the classification scenario
(subtasks 1.1 and 1.2)

Submissions for scenario 1 are assessed by means
of standard metrics:

• Class-wise evaluation: Precision, recall, and
F1 (β = 1) for each relation type.

• Global evaluation:

– Macro-average of the F1 scores obtained
for every relation type.

– Micro-average of the F1 scores obtained
for every relation type.

The official ranking of submissions is performed
according to the macro-average F1 score.

3.3.2 Metrics for the extraction and
classification scenario (Subtask 2)

Evaluation of submissions for scenario 2 is carried
out in two steps:

• Evaluation of relation extraction: Extrac-
tion evaluation assesses the quality of identi-
fied relation instances. Relation labels and di-
rectionality are ignored in this step. Precision
is calculated as the percentage of correctly
connected entity pairs. Recall is calculated as
the percentage of gold entity pairs found by
the system. The official F1 score is calculated
as the harmonic mean of precision and recall.

• Evaluation of relation classification: Clas-
sification evaluation considers only correctly
identified relation instances as per step 1. For
these instances, the same evaluation metrics
are calculated as for task 1. The official score
for this task is macro-average F1.

4 Data Preparation

The task is carried out on abstracts from published
research papers in computational linguistics. Two
existing high-quality corpora were used as start-
ing points for data creation, namely ACL RD-TEC
2.0 (QasemiZadeh and Schumann, 2016) and ACL-
RelAcS (Gábor et al., 2016a). Both resources are
based on the ACL Anthology Reference Corpus
(Bird et al., 2008). In ACL RD-TEC 2.0 entities
were annotated manually, and it was used for the
”clean” subtasks (subtasks 1.1 and 2). In ACL-
RelAcS, entities were annotated fully automati-
cally, and it was used for the ”noisy” subtask (1.2).

681

4.1 Entity annotation

Manual (”clean”) entity annotations were carried
out in accordance with the ACL RD-TEC anno-
tation guidelines (Schumann and QasemiZadeh,
2015). Thus, for subtasks 1.1 and 2 (training data)
termhood is defined by a combination of semantic,
linguistic, and formal criteria. The formal criteria,
for instance, aim at making the annotations maxi-
mally useful for real-world extraction scenarios by
accounting for various contextual usage patterns
of terminological units in scientific prose. There-
fore, annotators are instructed to annotate maximal
noun phrases, abbreviations, and their contextual
variants, including variants with incorrect spelling.
Still, entity annotation proves to be a non-trivial
task even for human expert annotators: Qasemi-
Zadeh and Schumann (2016) show that agreement
scores are satisfactory (e.g., κ > 0.7) only after a
thorough annotation training phase and the subse-
quent refinement of the annotation guidelines.

To extend the set of abstracts that were already
available in ACL RD-TEC with double entity an-
notations, expert annotators were recruited from
amongst the task organizers. Annotators were
asked to read the ACL RD-TEC annotation guide-
lines. A training phase was carried out, during
which each annotator carried out test annotations
on unseen data. To facilitate annotations, abstracts
were pre-annotated automatically using the auto-
matic entity annotator of the ACL-RelAcS corpus
(see below). Annotators were asked to correct the
automatic annotations, in particular, to correct the
boundary of the identified entity. Individual feed-
back was provided to novice annotators and an-
notation difficulties were clarified. Annotations
were consistently monitored and potential causes
for disagreement discussed and corrected.

The ACL RD-TEC already provided 171 double-
annotated and 129 single-annotated abstracts.
While double-annotations could directly be passed
over to manual relation annotation, more single-
pass annotations had to be performed to create a
fully double-annotated training set. The remaining
150 abstracts for the test set of subtask 1.1 were
single-annotated. It should be noted that, due to
their origin from ACL RD-TEC, abstracts for sub-
task 1.1 contain not only entity annotations, but
also information about the the semantic class of
the annotated entity. This information was not ex-
plicitly included in the provided data, but was ac-
cessible to participants through the original ACL

RD-TEC corpus.
The ”noisy” subtask (1.2) was carried out on data

coming from the ACL-RelAcS corpus 1.0 (Gábor
et al., 2016a). The corpus consists of 4.2 million
words from the abstract and introduction sections
of papers in the ACL Anthology Corpus, with an
automatic annotation of entities. This automatic
annotation is based on a gazetteer which, in turn,
was created using a combination of terminology
extraction tools and ontological resources. As a
domain specific resource, the domain models and
topic hierarchies in the NLP domain from Saffron
Knowledge Extraction Framework3 (Bordea, 2013;
Bordea et al., 2013) were included. Terminology
extraction was performed with TermSuite (Daille
et al., 2013) and the resulting list of terms was
filtered by part of speech and looked up in BabelNet
(Navigli and Ponzetto, 2012). The extracted terms
that were found in BabelNet were added to the
gazetteer and used for automatic annotation.

4.2 Relation annotation

The work was divided as 1) defining the typology
of semantic relations, 2) validation of the typology
and of the annotation guidelines and 3) annotation.
A data-driven approach was adopted to identify the
relation types and define a typology (Gábor et al.,
2016b). Domain experts studied the abstracts with
entity annotation and were instructed to read the
text and indicate the semantic relations that are
explicit and relevant for the understanding of the
abstract. They annotated entity pairs and the text
span between them which explicitly indicates the
relation.

Instances of explicit relations were thus discov-
ered and manually annotated in a sample of 100 ab-
stracts from ACL-RelAcS. A fine-grained typology
of domain-specific relations was set up. The fine-
grained relation types (see Table 1) were defined
very precisely and specifically, e.g. using strict
constraints on which types of entities the relations
take as argument. The manual annotation used
this typology; the relations were then automatically
converted to the 6 types used in the classification
tasks.

Only explicit relations were annotated, between
already annotated entities. Entity annotation itself
is never modified or corrected manually during the
relation annotation phase. On the textual level, a
semantic relation is conceived as a text span link-

3http://saffron.insight-centre.org/

682

ing two annotated instances of concepts within the
same sentence. On the semantic level, relation
types need to be specific enough to be easily distin-
guished from each other by a domain expert. Anno-
tation was carried out by one of the organizers and
two NLP student annotators who were subjected to
a training of three weeks during which they anno-
tated 100 abstracts under supervision. This train-
ing material was not included in the future dataset.
Weekly feedback was given and difficult instances
were discussed. If the annotation quality in the 100
abstracts was judged satisfactory, the annotator was
allowed to carry on, and their subsequent annota-
tions were included in the dataset (two out of three
annotator candidates passed this phase).

Inter-annotator agreement was calculated using
a double annotation on a sample of 150 abstracts
from subtask 1.1 by two annotators. The overall
class label agreement rate on these annotations was
90.8%. We also calculated the macro-averaged F1
score across classes, taking one of the annotators
as ”gold standard”. The result was 0.91 (the per-
formance of the best ranking system on this task
is 0.81). When comparing agreement for individ-
ual relations, it turns out that the relation with the
lowest agreement (F1=0.83) is PART WHOLE, fol-
lowed by RESULT (F1=0.89).

5 Results

5.1 Baseline system

As a baseline, we created a simple memory-based
k-nearest neighbor (k-nn) search (Daelemans and
van den Bosch, 2005) which relies on a small set
of hand-crafted features.

Given a sentence s annotated with an ordered
set of e1 . . . en entities appearing in it, we first pull
out all tuples (ei, ej), in which j − i ≤ 2. For
each tuple (ei, ej), we encode their co-occurrence
context using a set of 5 vectors of low dimension-
ality (n = 100). These vectors encode information
about (a) tokens that appear before ei in s (we
use simple white-space tokenization), (b) tokens
that appear between ei and ej , (c) tokens appear-
ing after ej , as well as (d) two additional vectors
that capture the context of ei and ej occurrences in
the ACL Anthology Reference Corpus (Bird et al.,
2008). To encode information about these context-
token occurrences into low-dimensional vectors,
we use positive-only random projections (Qasemi-
Zadeh and Kallmeyer, 2016). Additionally, feature
vectors in each of the above-mentioned categories

are weighted using positive pointwise mutual infor-
mation with respect to the collected co-occurrence
information in vectors for each category for all
the tuples in the training and test data (for each
subtask). Finally, the weighted vectors are concate-
nated to form a 500 dimensional feature vector for
each entity pair.

For each subtask, all the (ei, ej) extracted from
the sentences in the training set are added to the
k-nn’s training instance memory T : if (ei, ej) is
annotated with a relation, then the fetched label is
assigned to it, otherwise it is marked as a negative
example. Given the feature vector ~v for a tuple
(ex, ey) in the test set, the similarity between ~v
and all the training instances ti ∈ T is computed
using the Pearson’s correlation to find the k most
similar ti. Finally, we assign (ex, ey) to the relation
category ly using a majority voting.

Results obtained from this baseline system are
listed in Tables 5, 7, 6, and 8 in the Appendix. We
choose k = 5 based on the observed performances
over the development dataset.

5.2 Summary of participating systems and
results

The task attracted 32 participants altogether who
took part in at least one subtask. The most pop-
ular subtask was the classification on clean data
(subtask 1.1) with 28 participants; 19 of them also
participated in the classification on noisy data (sub-
task 1.2). One participant chose to compete only
in subtask 1.2. Subtask 2 attracted 11 teams. The
scenario allowed to compete only in relation extrac-
tion, without classifying the extracted instances;
only one team used this opportunity. The complete
results and rankings are available in the Appendix
section. Most participants opted for the use of deep
learning methods, with a clear preference for Con-
volutional Neural Networks (CNN) which were
used by 10 systems, and Long Short Term Memory
(LSTM) networks, used by 5 systems. Support Vec-
tor Machines (SVM) were the preferred non-DL
method, used by 5 systems. One participant (Bf3R)
opted for a combination of existing tools in Subtask
2. In Figure 1 and 2 we show an overview of the
number of methods chosen by participants and the
average results obtained by each family of methods
for each subtask. The average was calculated on
all submissions. The number of systems doesn’t
necessarily match the number of participants (some
participants tested different methods). Most par-

683

Figure 1: Popularity of methods chosen by participants
(as number of systems that used the method, left) and
average F1 score obtained for each method (right) in
Subtask 1.1 and 1.2.

ticipants exploited the possibility of aggregating
training data from subtask 1.1 and subtask 1.2.

Word embeddings were used as features by the
majority of systems (13 systems). Some partici-
pants chose to calculate the embeddings on domain-
specific corpora, such as ACL (4 systems) and
arXiv (3 systems), sometimes in combination with
pre-trained embeddings. Pre-trained embeddings
alone were used by a minority of participants, with
TakeLab highlighting some problems in dealing
with out-of-vocabulary words. Apart from the cor-
pora dedicated to training the embeddings, partic-
ipants didn’t use external resources, with the ex-
ception of one system which employed VerbNet
and two systems that used WordNet synonyms and
hypernyms.

Figure 2: Popularity of methods chosen by participants
(as number of systems that used the method, left) and
average F1 score obtained for each method (right) in
Subtask 2.

Among the chosen features, positional embed-
dings were quite popular (5 systems), to account
for the relative position of the left and right entities.

Only three participants recurred to syntactic fea-
tures, in particular dependency trees, despite their
apparent relevance for the task.

SpaCy4 and CoreNLP5 were the most popular
tools to analyze and preprocess text, with a slight
preference for the first one (4 participants vs. 2).

6 Analysis of Results

6.1 Which processing step is the most
difficult?

From the overall task results provided in the Ap-
pendix (Tables 5 – 8), it seems straightforward to
conclude that the reliable identification of seman-
tic relation instances is by far the most difficult
step in the complete processing pipeline: Whereas
systems reached an average F1 score of 47.28 in
subtask 1.1 and 62.51 in subtask 1.2, performance
scores drop rather sharply in scenario 2, namely to
an average F1 of 30.8 for the extraction task and
20.34 for the extraction+classification task.

6.2 Which relation types are the most
difficult to classify?

We examined whether there were relation types
that were more difficult for the systems to clas-
sify, and whether it is possible to relate this to
the semantics of the relations. For instance, the
class MODEL-FEATURE is broad because it en-
compasses relatively different sub-classes: mod-
els, parts of models (such as a representation, a
tag used for a word), or attributes (frequency of a
phenomenon). To analyze this, we calculated the
average recall by relation type over a sample of
submissions to subtask 1.1 (70 submissions) and
1.2 (42 submissions) and the characteristic predic-
tion error types by relation, if any (Table 2). We
also calculated the average F1 score by relation
type of the five top scoring systems from different
participants (Tables 3 and 4).

Our analysis suggests that rather than the seman-
tics of the relation types, it is their distribution in
the data that poses difficulties. Class distribution
is very imbalanced. Moreover, the distribution of
classes in training and test data of subtask 1.1 and
1.2 is different. This difference is due to the na-
ture of entities annotated automatically and those
annotated manually. Because of the terminology
extraction process and the resources that were used

4https://spacy.io/
5https://stanfordnlp.github.io/

CoreNLP/

684

Relation Average recall Frequently mistaken for Training frequency Test frequency
Subtask 1.1
USAGE 73% MODEL-FEATURE 483 175
TOPIC 66% - 18 3
MODEL-FEATURE 51% USAGE, PART WHOLE 326 66
PART WHOLE 44% USAGE, MODEL-FEATURE 234 70
COMPARE 42% USAGE 95 21
RESULT 40% USAGE 72 20
Subtask 1.2
TOPIC 77% - 243 69
USAGE 72% PART WHOLE 470 123
COMPARE 66% - 41 3
RESULT 65% USAGE 123 29
PART WHOLE 64% USAGE 196 56
MODEL-FEATURE 52% USAGE, PART WHOLE 175 75

Table 2: Relations: results and distribution.

for annotation, entities in subtask 1.2 are typically
shorter terms with an intermediate level of speci-
ficity. On the other hand, entities in the clean sce-
nario are more complex and more specific to the
NLP domain. For instance, the TOPIC relation is
more frequent in 1.2 than in 1.1 because entities
like ”paper” or ”article” were annotated by the au-
tomated process, but not in the manual annotation.

Another aspect is that certain classes are lexi-
cally less varied than others and this might well
affect the ”difficulty” of the classification task. For
instance, the TOPIC class has the lowest type-token
ratio of all classes in subtask 1.26. This does not
seem surprising. Neither does it seem surprising
that in subtask 1.2, TOPIC has gained the best av-
erage recall (2) and the highest F1 score among
the top-5 systems (4). TOPIC is also much more
frequent in subtask 1.2 than in subtask 1.1 and this
effect is one likely cause for the difference in per-
formance achieved over subtasks 1.1 and 1.2.

Relation Top 5 Average F1
USAGE 0.85
RESULT 0.75
PART WHOLE 0.73
TOPIC 0.71
MODEL-FEATURE 0.69
COMPARE 0.59

Table 3: Relations: Task 1.1 average results top 5 sys-
tems.

6.3 The effects of entity annotation

Entity annotation has a demonstrable effect on sys-
tem performance. As stated earlier, annotation deci-
sions have direct consequences for the distribution
of certain types in the data and thus influence mea-
surable system performance.

6In this analysis, a tuple of two entities pertaining to a
certain relation class was counted as a ”type”.

Relation Top 5 Average F1
TOPIC 0.97
RESULT 0.91
USAGE 0.87
COMPARE 0.80
PART WHOLE 0.80
MODEL-FEATURE 0.79

Table 4: Relations: Task 1.2 average results top 5 sys-
tems.

A maybe rather surprising result of this task
is the difference in system performance for sub-
tasks 1.1 and 1.2. While ”clean” entities can, with
some plausibility, be considered more useful for
a potential human user of the extracted informa-
tion, ”noisy” entity annotations seem to be more
machine-friendly. The difference in the distribution
of the TOPIC relation between subtasks 1.1 and
1.2 has already been pointed out as one potential
cause for this effect. Moreover, the complexity of
clean entities in subtask 1.1 could also have con-
tributed to the performance gap. Manually anno-
tated entities, in most cases, are long noun phrases,
whereas automatically annotated entities in subtask
1.2 are generally shorter, partial (and therefore less
specific!) entity matches. This also means that
more training examples are likely to be found for
automatically annotated entities. Moreover, some
instances of automatic annotations in subtask 1.2
included explicit verbal relation cues. These cues
sometimes explicitly state the type of the semantic
relation, but they were not annotated in subtask 1.1.
Verbal cues (e. g. the well-known Hearst patterns
(Hearst, 1992)) have typically been used in earlier
work on relation classification and, in fact, several
teams participating in the task describe recurrent
verbal elements between relation arguments.

The role of the specialized lexicon in relation
extraction and classification is a topic that de-

685

serves further exploration for the following reasons:
Firstly, highly specialized, complex terminological
units are the main units of knowledge representa-
tion in specialized domains. Secondly, task results
clearly show that a careful handling of lexical in-
formation improves performance: many successful
systems in the task used domain-specific training
data. The only system that treated complete spe-
cialized entities as semantic units, UWNLP, ranked
first in the relation extraction task. None of the
systems participating in subtasks 1.1 or 2 used se-
mantic class information available for annotated
entities from ACL RD-TEC, although it may be
hypothesized that this feature helps to generalize
lexical instance information.

7 Conclusion and Future Work

We presented the setup and results of SemEval
2018 Task 7: Semantic relation extraction and clas-
sification in scientific papers. The task is divided
into three subtasks: classification on clean data,
classification on noisy data, and a combined extrac-
tion and classification scenario. We also presented
the dataset used for the challenge: a subset of ab-
stracts of published papers in the ACL Anthology
Reference Corpus, annotated for domain specific
entities and semantic relations.

32 participants submitted to one or more sub-
tasks. The most popular methods include Convo-
lutional Neural Networks and Long Short Term
Memory networks, with word embedding based
features, often calculated on domain-specific cor-
pora. Although it was allowed, only a minority of
the participants used external knowledge resources.
The results show that while good results can be
obtained on the supervised multi-class classifica-
tion of relation instances, the extraction of such
instances remains very challenging. Moreover, the
quality and type of entity annotation also plays an
important role in determining relation extraction
and classification results.

Knowledge extraction from a special domain
poses specific challenges, such as working with a
smaller corpus, dealing with specialized vocabular-
ies, and the scarcity of annotated data and available
domain-specific resources. One of the important
future directions is to explore domain adaptation
techniques to address these issues.

Acknowledgments

This work was generously supported by the
program ”Investissements d’Avenir” overseen by
the French National Research Agency, ANR-10-
LABX-0083 (Labex EFL). Behrang QasemiZadeh
is funded by the Deutsche Forschungsgemeinschaft
through the ”Collaborative Research Centre 991
(CRC 991): The Structure of Representations in
Language, Cognition, and Science”.

References
Isabelle Augenstein, Mrinal Das, Sebastian Riedel,

Lakshmi Vikraman, and Andrew McCallum. 2017.
Semeval 2017 task 10: ScienceIE - extracting
keyphrases and relations from scientific publica-
tions. In Proceedings of the 11th International
Workshop on Semantic Evaluation (SemEval-2017),
pages 546–555, Vancouver, Canada. Association for
Computational Linguistics.

Isabelle Augenstein and Anders Søgaard. 2017. Multi-
task learning of keyphrase boundary classification.
In Proceedings of the 55th Annual Meeting of the
Association for Computational Linguistics (ACL).

Steven Bird, Robert Dale, Bonnie Dorr, Bryan Gibson,
Mark Joseph, Min-Yen Kan, Dongwon Lee, Brett
Powley, Dragomir Radev, and Yee Fan Tan. 2008.
The ACL Anthology Reference Corpus: A Refer-
ence Dataset for Bibliographic Research in Compu-
tational Linguistics. In Proceedings of the 6th In-
ternational Conference on Language Resources and
Evaluation (LREC 2008). European Language Re-
sources Association.

Georgeta Bordea. 2013. Domain Adaptive Extraction
of Topical Hierarchies for Expertise Mining. Phd
thesis, National University of Ireland, Galway.

Georgeta Bordea, Paul Buitelaar, and Tamara Polajnar.
2013. Domain-independent term extraction through
domain modelling. In 10th International Confer-
ence on Terminology and Artificial Intelligence (TIA
2013).

Walter Daelemans and Antal van den Bosch. 2005.
Memory-Based Language Processing. Studies in
Natural Language Processing. Cambridge Univer-
sity Press.

Beatrice Daille, Christine Jacquin, Laura Monceaux,
Emmanuel Morin, and Jerome Rocheteau. 2013.
TTC TermSuite : Une chaine de traitement pour
la fouille terminologique multilingue. In Proceed-
ings of the Traitement Automatique des Langues Na-
turelles Conference (TALN).

Kata Gábor, Hafa Zargayouna, Davide Buscaldi, Is-
abelle Tellier, and Thierry Charnois. 2016a. Se-
mantic annotation of the ACL Anthology Corpus

686

for the automatic analysis of scientific literature.
In Proceedings of the International Conference on
Language Resources and Evaluation (LREC), pages
3694–3701.

Kata Gábor, Hafa Zargayouna, Isabelle Tellier, Davide
Buscaldi, and Thierry Charnois. 2016b. A typology
of semantic relations dedicated to scientific literature
analysis. In SAVE-SD Workshop at the 25th World
Wide Web Conference. Lecture Notes in Computer
Science 9792, pages 26–32.

Marti Hearst. 1992. Automatic acquisition of hy-
ponyms from large text corpora. In COLING ’92,
pages 539–545.

Iris Hendrickx, Su Nam Kim, Zornitsa Kozareva,
Preslav Nakov, Diarmuid Saghdha, Sebastian Pad,
Marco Pennacchiotti, Lorenza Romano, and Stan Sz-
pakowicz. 2010. Semeval-2010 task 8: Multi-way
classification of semantic relations between pairs of
nominals. In Proceedings of the Workshop on Se-
mantic Evaluations (SemEval-2010).

David A. Jurgens, Peter D. Turney, Saif M. Moham-
mad, and Keith J. Holyoak. 2012. SemEval-2012
Task 2: Measuring degrees of relational similarity.
In Proceedings of the Workshop on Semantic Evalu-
ations.

Su Nam Kim, Olena Medelyan, Min-Yen Kan, and
Timothy Baldwin. 2010. Semeval-2010 task 5: Au-
tomatic keyphrase extraction from scientific articles.
In Proceedings of SemEval 2010.

Yi Luan, Mari Ostendorf, and Hannaneh Hajishirzi.
2017. Scientific information extraction with semi-
supervised neural tagging. In EMNLP 2017.

Roberto Navigli and Simone Paolo Ponzetto. 2012. Ba-
belNet: The automatic construction, evaluation and
application of a wide-coverage multilingual seman-
tic network. Artificial Intelligence, 193:217–250.

F. Osborne and E. Motta. 2015. Klink-2: Integrat-
ing multiple web sources to generate semantic topic
networks. In Proceedings of the 14th International
Conference on The Semantic Web - ISWC 2015 - Vol-
ume 9366, pages 408–424, New York, NY, USA.
Springer-Verlag New York, Inc.

Behrang QasemiZadeh and Laura Kallmeyer. 2016.
Random Positive-Only Projections: PPMI-enabled
incremental semantic space construction. In Pro-
ceedings of the Fifth Joint Conference on Lexi-
cal and Computational Semantics, pages 189–198,
Berlin, Germany. Association for Computational
Linguistics.

Behrang QasemiZadeh and Anne-Kathrin Schumann.
2016. The ACL RD-TEC 2.0: A language resource
for evaluating term extraction and entity recogni-
tion methods. In Proceedings of the International
Conference on Language Resources and Evaluation
(LREC).

Anne-Kathrin Schumann and Behrang QasemiZadeh.
2015. The ACL RD-TEC Annotation Guideline: A
Reference Dataset for the Evaluation of Automatic
Term Recognition and Classification. Technical re-
port.

Chen-Tse Tsai, Gourab Kundu, and Dan Roth. 2013.
Concept-based analysis of scientific literature. In
ACM Conference on Information and Knowledge
Management ACM, pages 1733–1738.

Dietmar Wolfram. 2016. Bibliometrics, information
retrieval and natural language processing: Natural
synergies to support digital library research. In
Proceedings of the Joint Workshop on Bibliometric-
enhanced Information Retrieval and Natural Lan-
guage Processing for Digital Libraries (BIRNDL),
pages 6–13.

687

Appendix: Competition Results

Rank Participant Macro-F1 Score
1 ETH-DS3Lab 81.7
2 UWNLP 78.9
3 SIRIUS-LTG-UiO 76.7
4 ClaiRE 74.9
5 Talla 74.2
6 MIT-MEDG 72.7
7 TakeLab 69.7
8 Texterra 64.9
9 GU IRLAB 60.9
10 sbuNLP 49.7
11 IRCMS 49.1
12 OhioState 48.1
13 NTNU 47.4
14 danish037 45.7
15 HeMu 45.2
16 UniMa 44.0
17 LaSTUS/TALN 43.2
18 LIGHTREL 39.9
19 LTRC 37.3
N/A Baseline 34.4
20 BIT NLP 32.9
21 likewind 1234 29.3
22 Vitk 29.0
23 hccl 28.1
24 xingwang 27.8
25 SciREL 20.3
26 UKP 19.3
27 NEUROSENT-PDI 18.0
28 angelocsc 15.0

Table 5: Results for subtask 1.1.

Rank Participant F1 Score
1 UWNLP 50.0
2 ETH-DS3Lab 48.8
3 SIRIUS-LTG-UiO 37.4
4 UC3M-NII 35.4
5 NTNU 33.9
6 Bf3R 33.4
7 UniMa 28.4
N/A Baseline 26.8
8 NEUROSENT-PDI 25.6
9 Texterra 15.6
10 xingwang 15.3
11 danish037 15.0

Table 6: Results for subtask 2: Extraction.

Rank Participant Macro-F1 Score
1 ETH-DS3Lab 90.4
2 Talla 84.8
3 SIRIUS-LTG-UiO 83.2
4 MIT-MEDG 80.6
5 GU IRLAB 78.9
6 ClaiRE 78.4
7 TakeLab 75.7
8 OhioState 74.7
9 Texterra 74.4
10 IRCMS 71.1
11 LaSTUS/TALN 69.5
12 LIGHTREL 68.2
13 NTNU 66.0
14 LTRC 65.7
N/A Baseline 53.5
15 likewind 1234 45.8
16 BIT NLP 40.7
17 hccl 38.0
18 xingwang 26.7
19 NEUROSENT-PDI 21.8
20 UKP 15.3

Table 7: Results for subtask 1.2.

Rank Participant Macro-F1 Score
1 ETH-DS3Lab 49.3
2 UWNLP 39.1
3 SIRIUS-LTG-UiO 33.6
4 Bf3R 20.3
5 UC3M-NII 18.5
6 NTNU 17.0
N/A Baseline 12.6
7 Texterra 9.6
8 xingwang 8.3
9 danish037 4.6
10 NEUROSENT-PDI 3.1

Table 8: Results for subtask 2: Extraction + Classifica-
tion.

688

Proceedings of the 12th International Workshop on Semantic Evaluation (SemEval-2018), pages 689–696
New Orleans, Louisiana, June 5–6, 2018. ©2018 Association for Computational Linguistics

ETH-DS3Lab at SemEval-2018 Task 7: Effectively Combining Recurrent
and Convolutional Neural Networks for Relation Classification and

Extraction

Jonathan Rotsztejn1, Nora Hollenstein1,2, Ce Zhang1

1 Systems Group, ETH Zurich
{rotsztej,noraho}@ethz.ch, ce.zhang@inf.ethz.ch

2 IBM Research, Zurich

Abstract
Reliably detecting relevant relations between
entities in unstructured text is a valuable re-
source for knowledge extraction, which is why
it has awaken significant interest in the field of
Natural Language Processing. In this paper,
we present a system for relation classification
and extraction based on an ensemble of con-
volutional and recurrent neural networks that
ranked first in 3 out of the 4 subtasks at Se-
mEval 2018 Task 7. We provide detailed ex-
planations and grounds for the design choices
behind the most relevant features and analyze
their importance.

1 Introduction and related work

One of the current challenges in analyzing un-
structured data is to extract valuable knowledge
by detecting the relevant entities and relations be-
tween them. The focus of SemEval 2018 Task 7
is on relation classification (assigning a type of re-
lation to an entity pair - Subtask 1) and relation
extraction (detecting the existence of a relation be-
tween two entities and determining its type - Sub-
task 2).

Moreover, the task distinguishes between rela-
tion classification on clean data (i.e.: manually
annotated entities - Subtask 1.1) and noisy data
(automatically annotated entities - Subtask 1.2).
It addresses semantic relations from 6 categories,
all of them specific to scientific literature. Rela-
tion instances are to be classified into one of the
following classes: USAGE, RESULT, MODEL-
FEATURE, PART-WHOLE, TOPIC, COMPARE,
where the first five are asymmetrical relations and
the last is order-independent (see Gábor et al.
(2018) for a more detailed description of the task).
Since the training data was provided by the task
organizers, we focused on supervised methods for
relation classification and extraction. Similar sys-
tems in the past have been based on Support Vec-
tor Machines (Uzuner et al., 2011; Minard et al.,

60

65

70

75

80

ICC CSD OP RS WCE EN RPE PTE CRC GD WNC

%
	F
1	
sc
or
e

Added	feature

Figure 1: Feature addition study to evaluate the impact
of the most relevant features on the F1 score of the 5-
fold cross-validated training set of Subtasks 1.1 and 1.2

2011), Naı̈ve Bayes (Zayaraz et al., 2015) and
Conditional Random Fields (Sutton and McCal-
lum, 2006). More recent approaches have experi-
mented with neural network architectures (Socher
et al., 2012; Fu et al., 2017), especially convolu-
tional neural networks (CNNs) (Nguyen and Gr-
ishman, 2015; Lee et al., 2017) and recurrent neu-
ral networks (RNNs) based on LSTMs (Zheng
et al., 2017; Peng et al., 2017). The system pre-
sented in this article builds upon the latest im-
provements in employing neural networks for re-
lation classification and extraction. An overview
of the most relevant features is shown on Figure 1.

2 Method

2.1 Neural architecture

Figure 2 shows the full architecture of our system.
Its main component is an ensemble of CNNs and
RNNs. The CNN architecture follows closely on
(Kim, 2014; Collobert et al., 2011). It consists of

689

Figure 2: Full pipeline architecture

an initial embedding layer, which is followed by
a convolutional layer with multiple filter widths
and feature maps with a ReLU activation func-
tion, a max-pooling layer (applied over time) and a
fully-connected layer, that is trained with dropout,
and produces the output as logits, to which a soft-
max function is applied to obtain probabilities.
The RNN consists of the same initial embedding
layer, followed two LSTM-based sequence mod-
els (Hochreiter and Schmidhuber, 1997), one in
the forward and one in the backward direction of
the sequence, which are dynamic (i.e.: work seam-
lessly for varying sequence lengths). The output
and final hidden states of the forward and back-
ward networks are then concatenated to a single
vector. Finally, a fully-connected layer, trained
with dropout, connects this vector to the logit out-
puts, to which a softmax function is applied anal-
ogously to obtain probabilities.

The complete architecture was replicated and
trained independently several times (see Table 2)
using different random seeds that ensured dis-
tinct initial values, sample ordering, etc. in or-
der to form an ensemble of classifiers, whose out-
put probabilities were averaged to obtain the final
probabilities for each class. We analyzed and tried
several deeper and more complex neural architec-
tures, such as multiple stacked LSTMs (up to 4)

and models with 2 to 4 hidden layers, but they
didn’t achieve any significant improvements over
the simpler models. Conclusively, the strategy that
produced the best results consisted of adequately
combining the individual predictions of the single
models (see section 4).

2.2 Domain-specific word embeddings
We collected additional domain-specific data from
scientific NLP papers to train word embeddings.
All ArXiv cs.CL abstracts since 2010 (1 million
tokens) and the ACL ARC corpus (90 million to-
kens; Bird et al. (2008)) were downloaded and
preprocessed. We used gensim (Řehůřek and So-
jka, 2010) to train word2vec embeddings on these
two data sources, and additionally the sentences
provided as training data for the SemEval task
(in total: 91,304,581 tokens). We experimented
with embeddings of 100, 200 and 300 dimensions,
where 200 dimensions yielded the best perfor-
mance for the task as shown in Figure 3.

2.3 Preprocessing
Cropping sentences Since the most relevant
portion of text to determine the relation type is
generally the one contained between and including
the entities (Lee et al., 2017), we solely analyzed
that part of the sentences and disregarded the sur-
rounding words. For Subtask 2, we initially con-

690

40

45

50

55

60

65

Glove	50d Glove	200d NLP	100d NLP	200d NLP	300d

%
	F
1	
sc
or
e

Embedding	type

Figure 3: Effect of different word embedding types
based on a simple CNN classifier for Subtask 1.1

28

30

32

34

36

38

40

42

44

10 12 15 19 23

Cl
as
si
fic
at
io
n	
ac
cu
ra
cy

Max.	sentence	length

Figure 4: Effect of max. length threshold on accuracy
for a preliminary RNN-based classifier

sidered every entity pair contained within a single
sentence as having a potential relation. Since the
probability that a relation between two entities ex-
ists drops very rapidly with increasing word dis-
tance between them (see Figure 5), we only con-
sidered sentences that didn’t exceed a maximum
length threshold (see Table 2) between entities to
diminish the chances of predicting false positives
in long sentences.

Various experiments with different thresholds
between 7 and 23 words on the training set showed
that the best results on sentences from scientific
papers are achieved with a threshold of 19 words,
as shown in Figure 4.

Cleaning sentences Some of the automatically
annotated samples contained nested entities
such as <entity id=”L08-1220.16”> signal <entity
id=”L08-1220.17”> processing </entity></entity>. We
flattened these structures into simple entities and
considered all the entities separately for each train
and test instance. Moreover, all tokens between
brackets [] and parentheses () were deleted, and

0

100

200

300

400

500

600

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Sa
m
pl
es

Word	distance	between	entities

Figure 5: Word distance between entities in a relation
for training data in Subtask 1.1

<e> corpus <e> consists of independent <e> text <e>

<e> text <e> independent of consists <e> corpus <e>

<e> texts <e> from a <e> target corpus <e>

Resembles

REV ERSE

Figure 6: Example of a reversed sentence

the numbers that were not part of a proper noun
replaced with a single wildcard token.

Using entity tags In order to provide the neu-
ral networks with explicit cues of where an entity
started and ended, we used a single symbol, rep-
resented as an XML tag <e> before and after the
entity, to indicate it (Dligach et al., 2017).

Relative order strategy & number of classes
As mentioned in Section 1, 5 out of the 6 relation
types are asymmetrical and the tagging is always
done by using the same order for the entities as the
one found in the abstracts’ text/title. For that rea-
son, it was important to carefully devise a schema
that allowed generalization by exploiting the infor-
mation from both ordered and reversed (words that
will be treated here as antonyms) relations. Apart
from using the relative position embeddings pre-
sented by Lee et al. (2017), for Subtask 1, we in-
corporated a full text reversal of those sentences in
which a reverse relation was present, both at train-
ing and testing time. The result were instances
that, although not corresponding to a valid English
grammar, frequently resembled more in structure
to their ordered counterparts. This has been illus-
trated by an example of two instances belonging
to the PART-WHOLE class in Figure 6.

691

Thus, the system could operate by using only
the 6 originally specified relation types and merely
learn how to identify ordered relations, rather than
having to handle the two different types of pat-
terns or to add extra classes to describe both the
ordered and the reversed versions of each class,
which helped improve the overall accuracy of the
classifier (+2.0% F1).

For Subtask 2, since no information regarding
the ordering of the arguments was available (the
extraction and the ordering were part of the
task), we opted for a 12-class strategy: one for
each of the 5 ordered and reversed relations,
plus the symmetrical relation (COMPARE) and
a NONE class for the negative instances, i.e.:
those that didn’t contain any relation at all. An
alternative 6-class approach based on presenting
the sentences both ordered and reversed to the
network, computing two predictions for each and
afterwards consolidating both did not produce
good results (-3.4% F1).

Part-of-speech tags We used the Stanford
CoreNLP tagger (Manning et al., 2014) to obtain
POS tags for each word in every sentence in the
dataset and trained high-dimensional embeddings
for the 36 possible tags defined by the Penn Tree-
bank Project (Marcus et al., 1993). Moreover, the
XML tags to identify the entities and the number
wildcard received their own corresponding artifi-
cial POS tag embedding (see Figure 2 for a de-
tailed example).

3 Experiments

3.1 Exploiting provided data
One of the main challenges of the task was the
limited size of the training set, which is a com-
mon drawback for many supervised novel ma-
chine learning tasks. To overcome it, we combined
the provided datasets1 for Subtask 1.1 and 1.2 to
train the models for both Subtasks (+6.2% F1).
Furthermore, we leveraged the predictions of our
system for Subtasks 1.1 and 1.2 and added them
as training data for Subtask 2 (+3.6% F1).

3.2 Generating additional data
Due to the limited number of training sentences
provided, we explored the following approach to
augment the data: We generated automatically-
tagged artificial training samples for Subtask 1 by
combining the entities that appeared in the test

1Link to forum post 1 - Link to forum post 2

data with the text between entities and relation
labels of those from the training set (see Table
1). To evaluate the quality of the sentences and
augment our data only with sensible instances,
we estimated an NLP language model using the
KenLM Language Model Toolkit (Heafield, 2011)
on the corpus of NLP-related text described in
Section 2.2 and evaluated the generated sentences
with it. Furthermore, we set a minimum thresh-
old of 5 words for the length of the text between
entities, limited the number of sentences gener-
ated from each of them to a single instance in or-
der to promote variety, and only kept those sen-
tences that score a very high probability (-21 in log
scale) against the language model. This process
yielded 61 additional samples on the development
set (+0.7% F1).

3.3 Parameter optimization

To determine the optimal tuning for our richly pa-
rameterized models, we ran a grid search over the
parameter space for those parameters that were
part of our automatic pipeline. The final values
and evaluated ranges are specified in Table 2.

3.4 Defining the objective

The cross-entropy loss, defined as the cross-
entropy between the probability distribution out-
putted by the classifier and the one implied by
the correct prediction is one of the most widely
used objectives for training neural networks for
classification problems (Janocha and Czarnecki,
2017). A shortcoming of this approach is that
the cross-entropy loss usually only constitutes a
conveniently decomposable proxy for what the ul-
timate goal of the optimization is (Eban et al.,
2017): in this case, the macro-averaged F1 score.
Motivated by the fact that individual instances of
infrequent classes have a bigger impact on the final
F1 score than those of more frequent ones (Man-
ning et al., 2008), we opted for a weighted version
of the cross-entropy as loss function, where each
class had a weight w that was inversely propor-
tional to their frequency in the training set:

wclass i =

∑
j #class j

Nclasses ∗#class i

where # indicates the count for a certain class and
Nclasses is the total number of classes.
The weights are scaled as to preserve the expected
value of the factor ki that accompanies the loga-
rithm in the mathematical expression of the loss

692

Dev set: <e> predictive performance <e> of our <e> models <e>
Train set: <e> methods <e> involve the use of probabilistic <e> generative models <e>
New sample: <e> predictive performance <e> involve the use of probabilistic <e> models <e>

Table 1: Generated sample

Parameter Final value Experiment range
Word embedding dimensionality 200 100-300
Embedding dimensionality for part-of-speech tags 30 10-50
Embedding dimensionality for relative positions 20 10-50
Number of CNN filters 192 64-384
Sizes of CNN filters 2 to 7 2-4 to 5-9
Norm regularization parameter (λ) 0.01 0.0-1.0
Number of LSTM units (RNN) 600 0-2400
Dropout probability (CNN and RNN) 0.5 0.0-0.7
Initial learning rate 0.01 0.001-0.1
Number of epochs (Subtask 1) 200 20-400
Number of epochs (Subtask 2) 10 5-40
Ensemble size 20 1-30
Training batch size 64 32-192
Upsampling ratio (only Subtask 2) 1.0 0.0-5.0
Max. sentence length (only subtask 2) 19 7-23

Table 2: Final parameter values and their explored ranges

TOPIC-R
RESULT-R
COMPARE

RESULT
MODEL-FEAT-R
PART-WHOLE-R

TOPIC
PART-WHOLE

USAGE-R
MODEL-FEAT

USAGE
NONE

619

349

334

275

238

155

152

137

136

58

23

34,824

Figure 7: Class frequencies for Subtask 2

formula: L = −∑ kilog(yi), which is equal to
wy′i for the weighted cross-entropy and y′i for the
unweighted version, where y′i = 1 for the correct
class and yi is the predicted probability for that
class. Illustrating this concept, it can be observed
that a single instance of class TOPIC (support of
only 6 instances) could account for up to 2.8% of
the final score on the test set. This function proved
to be a better surrogate for the global final score
than the standard cross-entropy (+1.6% F1).

3.5 Upsampling

One of the challenges of our approach for Subtask
2 was the existence of a large imbalance between
the target classes. Namely, the NONE class con-
stituted the clear majority (Figure 7). To overcome
it, we resorted to an upsampling scheme for which
we defined an arbitrary ratio of positive to neg-
ative examples to present to the networks for the
combination of all positive classes (+12.2% F1).

4 Training and validating the model

The neural networks were trained using an Adam
optimizer with parameter values β2 = 0.9, β2 =
0.999, ε = 1e − 08 (suggested default values in
the TensorFlow library (Abadi et al., 2015)) with a
step learning rate decay scheme on top of it. This
consisted in halving the learning rate every 25 and
1 iterations through the whole dataset for Subtasks
1 and 2 respectively (note: the size of the upsam-
pled dataset for Subtask 2 was about 25 times that
of Subtask 1), starting from the initial value deter-
mined in Section 3.3. In order to avoid overfitting
the development set of each Subtask, we evalu-
ated the quality of our models by applying a 5-fold
cross-validation on the combined training data of
Subtasks 1.1 and 1.2 and on the training data of
Subtask 2.

693

Combining predictions During the develop-
ment, we observed that similar F1 scores could
be achieved by using either a convolutional neu-
ral network or a recurrent one separately, but the
combination of both outperformed the individual
models. Moreover, since the RNN-based architec-
ture had a tendency to obtain better results than
its CNN-based counterpart for long sequences, we
combined both predictions in such a way that a
higher weight was assigned to the RNN predic-
tions for longer sentences by applying:

wrnn,i = 0.5 + sign(si) · s2i , where

si =
lengthi −minj(lengthj)

maxj(lengthj)−minj(lengthj)
− 0.5

and lengthi is the length of the i-th sentence.

Post-processing To enforce consistency with
the text annotation scheme, some rules that were
not built into the system had to be applied ex-post.
First, predictions of reversed relations should not
be of type COMPARE, since it is the only symmet-
rical relation. When this condition occurred, we
simply predicted the class that had the 2nd high-
est probability. Second, each entity could only be
part of one relation. To address this for Subtask 2,
we run a conflict-solving algorithm that, in case of
overlaps, always preferred short relations (cf. Fig-
ure 3]) and broke ties by choosing the relation with
the most frequent class in the training data and at
random when it persisted.

5 Results

5.1 Feature analysis

We conducted a feature addition study to evalu-
ate the impact of the most relevant features on
the F1 score of the 5-fold cross-validated train-
ing/development set of Subtasks 1.1 and 1.2.

The results have been previously shown in Fig-
ure 1. It can be observed from the plot that sub-
stantial gains can be obtained by applying stan-
dalone data manipulation techniques that are in-
dependent of the type of classifier used, such as
combining the data of subtask 1.1 and 1.2 (CSD
in Figure 1), reversing the sentences (RS), gener-
ating additional data (GD) and the pre-processing
techniques from Section 2.3. Moreover, as in most
machine learning problems, appropriately tuning
the model hyperparameters also has a significant
impact on the final score.

Subtask P R F1

1.1 79.2 84.4 81.7
1.2 93.3 87.7 90.4
2.E 40.9 55.3 48.8
2.C 41.9 60.0 49.3

Table 3: Precision (P), recall (R) and F1-score (F1) in
% on the test set by Subtask

Relation type P R F1

COMPARE 100.00 95.24 97.56
MODEL-FEATURE 71.01 74.24 72.59

PART-WHOLE 78.87 80.00 79.43
RESULT 87.50 70.00 77.78
TOPIC 50.00 100.00 66.67
USAGE 87.86 86.86 87.36

Micro-averaged total 82.82 82.82 82.82
Macro-averaged total 79.21 84.39 81.72

Table 4: Detailed results (Precision (P), recall (R) and
F1-score (F1)) in % for each relation type on the test set
for Subtask 1.1

5.2 Final results
After presenting and analyzing the impact of each
system feature separately, we show the overall re-
sults in this section. The final results on the offi-
cial test set are presented on Table 3, ranking 1st
in Subtasks 1.1, 1.2 and Subtask 2.C (joint result
of classification and extraction) and 2nd for 2.E
(relation extraction only). Furthermore, Table 4
shows the differences in performance between re-
lation types for Subtask 1.1.

6 Conclusion

In this article we presented the winning system of
SemEval 2018 Task 7 for relation classification,
which also achieved the 2nd place for the relation
extraction scenario. Our system, based on an en-
semble of CNNs and RNNs, ranked first on 3 out
of the 4 Subtasks (relation classification on clean
and noisy data, and relation extraction and classi-
fication on clean data combined). We have tested
various approaches to improve the system such as
generating more additional training samples and
experimenting with different order strategies for
asymmetrical relation types. We demonstrated the
effectiveness of preprocessing the samples by tak-
ing into account their length, marking the entities
with explicit tags, defining an adequate surrogate
optimization objective and combining effectively
the outputs of several different models.

694

References
Martı́n Abadi, Ashish Agarwal, et al. 2015. Ten-

sorFlow: Large-scale machine learning on hetero-
geneous systems. Software available from tensor-
flow.org.

Steven Bird, Robert Dale, Bonnie J Dorr, Bryan Gib-
son, Mark Thomas Joseph, Min-Yen Kan, Dongwon
Lee, Brett Powley, Dragomir R Radev, and Yee Fan
Tan. 2008. The ACL anthology reference corpus: A
reference dataset for bibliographic research in com-
putational linguistics. EUROPEAN LANGUAGE
RESOURCES ASSOC-ELRA.

Ronan Collobert, Jason Weston, Léon Bottou, Michael
Karlen, Koray Kavukcuoglu, and Pavel Kuksa.
2011. Natural language processing (almost) from
scratch. Journal of Machine Learning Research,
12(Aug):2493–2537.

Dmitriy Dligach, Timothy Miller, Chen Lin, Steven
Bethard, and Guergana Savova. 2017. Neural tem-
poral relation extraction. EACL 2017, page 746.

Elad Eban, Mariano Schain, Alan Mackey, Ariel Gor-
don, Ryan Rifkin, and Gal Elidan. 2017. Scalable
learning of non-decomposable objectives. In Artifi-
cial Intelligence and Statistics, pages 832–840.

Lisheng Fu, Thien Huu Nguyen, Bonan Min, and
Ralph Grishman. 2017. Domain adaptation for re-
lation extraction with domain adversarial neural net-
work. In Proceedings of the Eighth International
Joint Conference on Natural Language Processing
(Volume 2: Short Papers), volume 2, pages 425–429.

Kata Gábor, Davide Buscaldi, Anne-Kathrin Schu-
mann, Behrang QasemiZadeh, Hafa Zargayouna,
and Thierry Charnois. 2018. SemEval-2018 Task
7: Semantic Relation Extraction and Classifica-
tion in Scientific Papers. In Proceedings of the
12th International Workshop on Semantic Evalua-
tion (SemEval-2018).

Kenneth Heafield. 2011. Kenlm: Faster and smaller
language model queries. In Proceedings of the Sixth
Workshop on Statistical Machine Translation, pages
187–197. Association for Computational Linguis-
tics.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural computation,
9(8):1735–1780.

Katarzyna Janocha and Wojciech Marian Czarnecki.
2017. On loss functions for deep neural networks
in classification. arXiv preprint arXiv:1702.05659.

Yoon Kim. 2014. Convolutional neural net-
works for sentence classification. arXiv preprint
arXiv:1408.5882.

Ji Young Lee, Franck Dernoncourt, and Peter
Szolovits. 2017. MIT at SemEval-2017 Task 10:
Relation Extraction with Convolutional Neural Net-
works. arXiv preprint arXiv:1704.01523.

Christopher D Manning, Prabhakar Raghavan, Hinrich
Schütze, et al. 2008. Introduction to information re-
trieval, volume 1. Cambridge university press Cam-
bridge.

Christopher D. Manning, Mihai Surdeanu, John Bauer,
Jenny Finkel, Steven J. Bethard, and David Mc-
Closky. 2014. The Stanford CoreNLP natural lan-
guage processing toolkit. In Association for Compu-
tational Linguistics (ACL) System Demonstrations,
pages 55–60.

Mitchell P Marcus, Mary Ann Marcinkiewicz, and
Beatrice Santorini. 1993. Building a large annotated
corpus of English: The Penn Treebank. Computa-
tional linguistics, 19(2):313–330.

Anne-Lyse Minard, Anne-Laure Ligozat, and Brigitte
Grau. 2011. Multi-class SVM for relation extrac-
tion from clinical reports. In Proceedings of the In-
ternational Conference Recent Advances in Natural
Language Processing 2011, pages 604–609.

Thien Huu Nguyen and Ralph Grishman. 2015. Rela-
tion extraction: Perspective from convolutional neu-
ral networks. In Proceedings of the 1st Workshop on
Vector Space Modeling for Natural Language Pro-
cessing, pages 39–48.

Nanyun Peng, Hoifung Poon, Chris Quirk, Kristina
Toutanova, and Wen-tau Yih. 2017. Cross-sentence
n-ary relation extraction with graph LSTMs. arXiv
preprint arXiv:1708.03743.

Radim Řehůřek and Petr Sojka. 2010. Software Frame-
work for Topic Modelling with Large Corpora. In
Proceedings of the LREC 2010 Workshop on New
Challenges for NLP Frameworks, pages 45–50, Val-
letta, Malta. ELRA. http://is.muni.cz/
publication/884893/en.

Richard Socher, Brody Huval, Christopher D Manning,
and Andrew Y Ng. 2012. Semantic compositional-
ity through recursive matrix-vector spaces. In Pro-
ceedings of the 2012 joint conference on empirical
methods in natural language processing and com-
putational natural language learning, pages 1201–
1211. Association for Computational Linguistics.

Charles Sutton and Andrew McCallum. 2006. An
introduction to conditional random fields for rela-
tional learning, volume 2. Introduction to statistical
relational learning. MIT Press.

Özlem Uzuner, Brett R South, Shuying Shen, and
Scott L DuVall. 2011. 2010 i2b2/va challenge on
concepts, assertions, and relations in clinical text.
Journal of the American Medical Informatics Asso-
ciation, 18(5):552–556.

Godandapani Zayaraz et al. 2015. Concept relation ex-
traction using naı̈ve bayes classifier for ontology-
based question answering systems. Journal of
King Saud University-Computer and Information
Sciences, 27(1):13–24.

695

Suncong Zheng, Yuexing Hao, Dongyuan Lu,
Hongyun Bao, Jiaming Xu, Hongwei Hao, and
Bo Xu. 2017. Joint entity and relation extraction
based on a hybrid neural network. Neurocomputing,
257:59–66.

696

Proceedings of the 12th International Workshop on Semantic Evaluation (SemEval-2018), pages 697–706
New Orleans, Louisiana, June 5–6, 2018. ©2018 Association for Computational Linguistics

SemEval-2018 Task 8: Semantic Extraction from CybersecUrity REports
using Natural Language Processing (SecureNLP)

Peter Phandi Amila Silva Wei Lu
8 Somapah Road, Singapore 487372

Singapore University of Technology and Design
{peter phandi,amila silva,wei lu}@sutd.edu.sg

Abstract

This paper describes the SemEval 2018 shared
task on semantic extraction from cybersecu-
rity reports, which is introduced for the first
time as a shared task on SemEval. This task
comprises four SubTasks done incrementally
to predict the characteristics of a specific mal-
ware using cybersecurity reports. To the best
of our knowledge, we introduce the world’s
largest publicly available dataset of annotated
malware reports in this task. This task received
in total 18 submissions from 9 participating
teams.

1 Introduction

As a result of the world getting more connected
and digitized, cyber attacks become increasingly
common and pose serious issues for the society.
More recently in 2017, a ransomware called Wan-
naCry, which has the capability to lock down the
data files using strong encryption, spread around
the world targeting public utilities and large cor-
porations (Mohurle and Patil, 2017). Another ex-
ample is the botnet known as Mirai, which used
infected Internet of Things (IoT) devices to dis-
able Internet access for millions of users in the
US West Coast (US-CERT, 2016) through large-
scale Distributed Denial of Service (DDoS) at-
tacks. The impact levels of these attacks is ranging
from simple ransomware on personal laptops (An-
dronio et al., 2015) to taking over the control of
moving cars (Checkoway et al., 2011).

Along with the importance of cybersecurity in
today’s context, there is an increasing potential for
substantial contribution in cybersecurity using nat-
ural language processing (NLP) techniques, even
though this has not been significantly addressed.
We introduced this task as a shared task on Se-
mEval for the first time with the intention of mo-
tivating NLP researchers for this critical research

Figure 1: Annotated sentence and sentence frag-
ment from MalwareTextDB. Such annotations provide
semantic-level information to the text.

area. Even though there exists a large repository
of malware related texts online, the sheer volume
and diversity of these texts make it difficult for
NLP researchers to quickly move to this research
field. Another challenge is that most of the data
is unannotated. Lim et al. (2017) has introduced
a dataset of annotated malware reports for facil-
itating future NLP work in cybersecurity. In the
light of that, we improved Lim’s malware dataset
to create, to the best of our knowledge, the world’s
largest publicly available dataset of annotated mal-
ware reports. The aim of our annotation is to mark
the words and phrases in malware reports that de-
scribe the behaviour and capabilities of the mal-
ware and assign them to some certain categories.

Most of the machine learning efforts in the
task of malware detection were based on the sys-
tem calls. Rieck et al. (2011) and Alazab et al.
(2010) proposed models using machine learning
techniques for detecting and classifying malware
through system calls. Previously, our group has
proposed models to predict a malware’s signatures
based on the text describing the malware (Lim
et al., 2017). We defined the same SubTasks men-
tioned in this paper and used the proposed models
as the standard baselines for the shared task. This
shared task is hosted on CodaLab1.

The remainder of this paper is organized as

1https://competitions.codalab.org/competitions/17262

697

follows: the information regarding the annotated
dataset and its statistics, together with the Sub-
Tasks are described in Section 2. Information
about the evaluation measures and the baselines
is described in Section 3. Different approaches
used by the participants are described in Section 4.
The evaluation scores of the participating systems
and rankings are presented and discussed in Sec-
tion 5. Finally, the paper concludes with an overall
assessment of the task.

2 Data description and Task Definition

In this shared task we expanded upon our previous
work, MalwareTextDB (Lim et al., 2017), which
was published in ACL 2017. In this paper, we
initiated a framework for annotating malware re-
ports and annotated 39 Advanced Persistent Threat
(APT) reports (containing 6,819 sentences) with
attribute labels from the Malware Attribute Enu-
meration and Characterization (MAEC) vocabu-
lary (Kirillov et al., 2010). An example of such an-
notation is shown in Figure 1. During this shared
task, we have further annotated 46 APT reports
(6,099 sentences), bringing the total number of an-
notated APT reports to 85 (12,918 sentences). We
continue to follow our annotation procedure from
the paper, which we will describe in the following
subsection.

2.1 Annotation Procedure

This subsection contains the explanation of our an-
notation procedure.

2.1.1 Data Collection
The APT reports in our dataset are taken from
APTnotes, a GitHub repository of publicly-
released reports related to APT groups (Blanda,
2016). It provides a constant source of APT re-
ports for annotations with consistent updates. At
the time this paper was written, the repository con-
tains 488 reports. We have chosen 85 reports from
year 2014 and 2015 for annotation.

We consulted the cybersecurity team from DSO
National Laboratories2 when selecting the APT re-
ports in order to ensure that the preliminary dataset
will be relevant for the cybersecurity community.

2.1.2 Preprocessing
The APT reports from APTnotes are in PDF
format, hence we used the PDFMiner tool

2https://www.dso.org.sg/

(Shinyama, 2004) to convert the PDF files into
plaintext format. We also manually removed the
non-sentences, such as the cover page or document
header and footer, before the annotation. Hence
only complete sentences were considered for sub-
sequent steps.

2.1.3 Annotation

The annotation was performed using the Brat
Rapid Annotation Tool (Stenetorp et al., 2012) . In
this annotation, our aim is to mark the words and
phrases that describe malware behaviors and map
them to the relevant attribute labels, which are the
labels we extracted from the MAEC vocabulary.
There are a total of 444 attribute labels, consisting
of 211 ActionName labels, 20 Capability labels,
65 StrategicObjectives labels and 148 TacticalOb-
jectives labels. The annotation was performed by
a team of research assistants and student interns.
The annotation work done by the student interns
was further reviewed by the research assistants to
ensure the quality.

The annotation was performed in three main
stages:

2.1.4 Stage 1 - Token Labels

The first stage involves annotating the text with
the following token labels, illustrated in Fig-
ure 2:

Action This refers to an event, such as “imple-
ments”, “deploy”, and “transferred”.

Subject This refers to the initiator of the Action
such as “Babar” and “they”.

Object This refers to the recipient of the Ac-
tion such as “an obfuscation technique”, “the
data”, and “privilege escalation tools”; it also
refers to word phrases that provide elabora-
tion on the Action such as “hide certain API
names” and “external FTP servers”.

Modifier This refers to the tokens that link to
other word phrases that provide elaboration on
the Action such as “to”.

This stage helps to identify word phrases that
are relevant to the MAEC vocabulary.

2.1.5 Stage 2 - Relation Labels

The second stage involves annotating the text with
the following relation labels:

SubjAction links an Action with its relevant Sub-
ject.

698

Figure 2: Examples of annotated sentences.

Figure 3: Examples of irrelevant sentences.

ActionObj links an Action with its relevant Ob-
ject.

ActionMod links an Action with its relevant
Modifier.

ModObj links a Modifier with the Object that
provides elaboration.

This stage indicates the links between the la-
beled tokens. Such annotations are important in
cases where an Action has more than one Subjects,
Objects or Modifiers. The illustration on how the
relation label links token labels is shown in Figure
2.

2.1.6 Stage 3 - Attribute Labels
The third stage involves annotating the text with
the attribute labels extracted from the MAEC vo-
cabulary. We decided to annotate the attribute
labels onto the Action tokens tagged in the first
stage. This is because Action is usually the main
indicator of the malware’s behaviour. This scheme
requires each Action token to be annotated with at
least one attribute label.

The attribute labels are categorized into four
classes: ActionName, Capability, StrategicObjec-
tives and TacticalObjectives. These classes de-
scribe different kinds of actions and capabilities
of the malware.

2.1.7 Irrelevant Sentences
The document also contains sentences that provide
no indication of malware action or capability. We
call these sentences irrelevant sentences and do
not annotate them. Examples of such sentences

can be seen in Figure 3.

2.1.8 Annotation Challenges
We took a portion of the dataset and calculated the
agreement for the token labels annotation based on
Cohen’s kappa (Cohen, 1960). The agreement be-
tween annotators is quite low at 0.36, suggesting
that this is a difficult task. The main challenges
the annotators faced are:

Multiple ways of annotating the same sentence
There might be multiple ways of annotating
the same sentence that are equally valid. An
example of this is demonstrated in Figure 4.
Both annotations highlight the malware abil-
ity to conduct profiling.

Large amount of annotation labels
There are 444 attribute labels and it is very
challenging for the annotators to remember
all of them. There are also some attribute la-
bels that are very similar to each other, such
as ActionName 084: load library and Action-
Name 119: map library into process.

Required special domain knowledge
The annotation requires the annotator to have
some cybersecurity domain knowledge. For
example, given the phrase “conduct profil-
ing”, the annotator must be able to classify
it as Capability 015: probing.

2.2 SubTask Description
We focus on the evaluations for the following 4
different SubTasks, which are formulated as fol-
lows:

699

Figure 4: Two different ways of annotating an example sentence.

• SubTask 1: Classify relevant sentences for in-
ferring malware actions and capabilities

• SubTask 2: Predict token labels for a mal-
ware related text

• SubTask 3: Predict relation labels between
tokens for a malware-related text

• SubTask 4: Predict attribute labels for a
malware-related text

In SubTask 1, participants were asked to solve
the challenge of sifting out critical sentences from
lengthy malware reports and articles. This is mod-
eled as a binary classification task, where each
sentence had to be labeled as either relevent or ir-
relevant. The participants are provided with a list
of sentences.

In SubTask2, special tokens in a relevant sen-
tence had to be identified and labeled with one
of the following token labels (examples are taken
from Figure 2):

• Action This refers to an event, such as “im-
plements”, “deploys”, and “transferred”.

• Entity This refers to the initiator of the Ac-
tion such as “Babar” and “They” or the re-
cipient of the Action such as “an obfusca-
tion technique”, “privilege-escalation tools”,
and “the data”; it also refers to word phrases
that provide elaboration on the Action such as
“hide certain API names” and “external FTP
servers”.

• Modifier This refers to tokens that link to
other word phrases that provide elaboration
on the Action such as “to”.

#Documents #Sentences
Train 65 9,424
Dev 5 1,213
SubTask1,2 test 5 618
SubTask3 test 5 668
SubTask4 test 5 995
Total 85 12,918

Table 1: Statistics of the MalwareTextDBv2.0.

The formulation is similar to the token labels in
section 2.1.4. The only difference is the Entity la-
bel, which is a combination of the Subject and Ob-
ject labels. This is to accommodate cases where
a single word-phrase is annotated as both the ini-
tiator and the recipient of an Action (as seen in
Figure 5). This SubTask uses the same list of sen-
tences used in SubTask 1.

In SubTask 3, participants were asked to iden-
tify the relation between the tokens. We decided
to provide the gold labels for the tokens here due
to the low performance of our initial models on
SubTask 2. The relation labels are as we described
in section 2.1.5.

In SubTask 4, participants were asked to label
each action token with the corresponding attribute
label(s). In our ACL paper, we did the evaluation
on token groups (a set of token labels connected
by relation labels) instead of action tokens. How-
ever, we decided to evaluate on action tokens in
order to encourage the participants to make use of
the surrounding context, not limiting themselves
just to the tokens in the token group. We also pro-
vided the gold labels for the token and relation la-
bels here, following the same consideration as we
described for SubTask 3.

In our ACL paper, we also had the experiments

700

Figure 5: An example of a token (a cmd.exe process) labelled as both Subject and Object. In the first case, it is
the recipient of the Action spawning, while in the latter case, it is the initiator of the Action deleting.

#Relevant #Irrelevant #Sentences
Train 2,204 7,220 9,424
Dev 79 1,134 1,213
Test 90 528 618

Table 2: Data distribution of SubTask 1.

on predicting the malware signatures for each doc-
ument. The list of malware signatures are taken
from Cuckoo Sandbox3. We excluded such an
evaluation at this stage as precise information like
malware signatures might be easily obtained from
external resources such as malware information
websites.

2.3 Data Statistics
We decided to call the dataset we used for
this shared task MalwareTextDBv2.04, which has
twice the number of documents compared to Mal-
wareTextDB. The total statistics are shown in Ta-
ble 1. The training data for this shared task con-
tains 9,424 sentences, the dev set contains 1,213
sentences, and each test set has various amount of
sentences. SubTask 1 and 2 share the same test
set, while SubTask 3 and 4 use different test sets.
This is because the gold labels from the previous
annotation stages are provided for SubTask 3 and
4.

The data distribution for SubTask 1, 2, 3, and 4
can be seen in Table 2, 3, 4, and 5 respectively.

We can see from the distribution of SubTask
1 that the dataset mostly contains irrelevant sen-
tences. This shows the importance of SubTask 1 in
which the participants filter out the irrelevant sen-
tences. Our preliminary result in the ACL paper
also shows that removing the irrelevant sentences
can improve the score for SubTask 2.

From the distribution of SubTask 2, an interest-
ing observation is that the number of Entity tokens
is roughly double the number of Action tokens.

3https://cuckoosandbox.org/
4http://www.statnlp.org/research/resources

This is quite intuitive since Entity token refers to
either Subject or Object token and an Action usu-
ally has one Subject and one Object.

In the distribution table for SubTask 3, we can
observe that the number of ActionMod is roughly
the same as the number of ModObj. This is in-
line with our observation that a Modifier is usually
connected to an Action and an Object.

For SubTask 4, we can see that the Capability
attribute class has the highest count in the dataset.
This is also the category that has the least amount
of unique labels (with only 20 different labels). On
the other hand, ActionName class appears the least
in the dataset but has the highest number of unique
labels (with 211 different labels).

3 Evaluation Measures and Baselines

Our baseline and evaluation measures follow our
ACL paper (Lim et al., 2017). We used F1
score for the evaluation metric for all the Sub-
Tasks. Simple baselines were utilized, such as
linear support vector machines (SVM) and multi-
nomial Naive Bayes (NB) implementation from
the scikit-learn library (Pedregosa et al., 2011).
For the conditional random fields (CRF) (Lafferty
et al., 2001) models, we used the CRF++ imple-
mentation (Kudo, 2005). For the feature extrac-
tion, we used spaCy5 to extract the part-of-speech
(POS) features and a C++ implementation (Liang,
2005) of the Brown clustering algorithm.

For SubTask 1, our baseline models are the
SVM and NB baselines with bag-of-words fea-
tures. We also performed some hyper-parameter
tuning based on the development set. Other simple
baselines, such as random uniform and stratified,
are also included as a comparison.

For SubTask 2, we used the CRF baseline with
unigrams, bigrams, POS, and Brown clustering
features (Brown et al., 1992). CRF model was
trained only on the malware related sentences in

5https://spacy.io/

701

Action Entity Modifier Total
Train 3,202 6,875 2,011 12,088
Dev 122 254 79 455
Test 125 249 79 453

Table 3: Data distribution of SubTask 2.

#Root #ActionMod #ActionObj #ModObj #SubjAction Total
Train 3,378 1,859 2,552 1,760 2,307 11,856
Dev 111 74 110 74 82 451
Test 97 52 86 53 72 360

Table 4: Data distribution of SubTask 3.

#ActName #Capability #StratObj #TactObj Total
Train 1,154 2,817 2,206 1,783 7,960
Dev 46 102 77 63 288
Test 34 88 70 64 256

Table 5: Data distribution of SubTask 4.

the training set. The Brown clustering features for
words were trained on the 84 additional unanno-
tated APT reports provided with the training ma-
terials.

For SubTask 3, a simple rule-based model was
utilized. The rules are listed in the Appendix sec-
tion of our ACL paper. They consist of simple
rules, such as connecting a Modifier token to the
nearest Action token with ActionMod relation.

Finally, for SubTask 4, we trained SVM and NB
model with bag-of-words features. The features
for SubTask 4 are extracted from token groups,
which are the set of tokens connected via rela-
tion labels. In creating the token groups, we only
traverse the direction of Action → Subj, Action
→ Mod, Action → Obj, and Mod → Obj. This
will prevent multiple Action tokens from having
the same token group when they are connected to
a common Subject or Modifier.

4 Participants

We received 18 submissions from 9 different
teams; 9 submissions to SubTask 1, 8 submissions
to SubTask 2, and 1 submission to SubTask 4. Un-
fortunately, none of the teams submitted to Sub-
Task 3. Participants generally submitted to both
SubTask 1 and 2. Here is the list of the partic-
ipants who submitted a system description paper
together with a brief summary of the method they
used:

Villani (Loyola et al., 2018) submitted only
to SubTask 1. They used word-embeddings
initialized using Glove vectors (Pennington
et al., 2014) trained on Wikipedia text to
represent the tokens. In addition to that,
they also used an LSTM to get another token
representation from the characters. After
that, they trained a binary classifier using
Bi-directional Long Short-Term Memory
network (BiLSTM) (Graves et al., 2013).
They made use of attention mechanism
(Luong et al., 2015) to weigh the importance
of the tokens.

Flytxt NTNU (Sikdar et al., 2018) submitted
to both SubTask 1 and SubTask 2. They
constructed an ensemble of CRF and NB
classifiers for SubTask 1. The CRF model
used lexical-based and context-based fea-
tures. The same CRF model was also used to
predict the answers for SubTask 2. If the CRF
predicts any token labels for the sentence, the
sentence is considered relevant in SubTask
1. They did SubTask 2 in 2 steps. First, they
detect whether a token is either an Action,
Entity, or Modifier (Mention identification).
After that, they classify the tokens into one of
the three types (Token identification).

DM NLP (Ma et al., 2018) also submitted to

702

SubTask 1 and 2, but focuses on SubTask 2
and just used the predicted output labels from
SubTask 2 to get the predictions for SubTask
1. They model this task as a sequence
labeling task and used a hybrid approach with
BiLSTM-CNN-CRF following the method of
Ma and Hovy (2016). The CNN layer was
used to extract char-level feature representa-
tion. They then added other features, such
as POS, dependency labels, chunk labels,
NER labels, and brown clustering labels as
the input to BiLSTM layer. They also made
use of word-embeddings, pre-trained using
unlabeled data. The output of the BiLSTM
layer is then fed into a CRF layer that makes
the entity label prediction.

HCCL (Fu et al., 2018) submitted to SubTask
1 and 2. They performed a very similar
approach to team DM NLP using the same
BiLSTM-CNN-CRF architecture. The main
difference is that they just used POS features,
instead of the more complicated linguistic
features used by team DM NLP. They aim
to build an end-to-end system that does
not require any feature engineering or data
preprocessing. Their output for SubTask 1
was also generated from their predictions for
SubTask 2.

Digital Operatives (Brew, 2018) participated
in SubTask 1 and 2. They utilized a passive
aggressive classifier (Crammer et al., 2006),
which has similar cost and performance with
the linear SVM classifier, for SubTask 1.
The features they used include POS, lemma,
dependency links, and bigrams. For SubTask
2, they implemented a linear CRF approach
using a window of words and POS tags
surrounding the focus token as features.

TeamDL (R et al., 2018) made the submissions
for SubTask 1 and 2. For SubTask 1, they
built a convolutional neural network with
original glove embeddings. Their model
followed the work of Kim (2014). They
also used a CRF for SubTask 2 with features
like N-grams (N∈{1,2,..6}), POS tags, word
lemmas, word shape features, etc. In order to
tackle unknown malware entities, they used
additional set of features taken from malware

documents from the web and the training
corpus.

UMBC (Padia et al., 2018) participated in Sub-
Task 1, 2 and 4. They are the only team par-
ticipated in SubTask 4. They used a Multi-
Layer Perceptron model for the submission
of SubTask 1. After the submission deadline,
they have explored other methods for Sub-
Task 1 like LSTM. For SubTask 2, they used a
CRF model with features similar to TeamDL.
The main difference is that their model had
less features compared to TeamDL’s model.
For SubTask 4, they mainly focused on learn-
ing better word embedding features. They
developed an Annotation Word Embedding
(AWE) model that is capable of incorporat-
ing domain-specific knowledge to the embed-
dings.

5 Results and Discussion

5.1 SubTask 1 Results

Table 6 shows the scores of the submissions to
SubTask 1. We also added the precision, recall,
and accuracy scores as additional metrics. All 9
participating teams submitted to SubTask 1. This
might be because SubTask 1 is the simplest and
can be done as a by-product of doing SubTask 2.
We can see that by guessing randomly we get an
F1 score of 25.06%. However, this does not mean
that this SubTask is not challenging as we can see
that the scores of top systems are far from perfect.
We submitted the NB baseline result in the compe-
tition page since it achieved a better performance
compared to the SVM baseline in the development
data.

Most of the teams used neural network models
to tackle this task, which were shown to perform
quite well. However, approaches using classifiers
such as naive Bayes are still competitive. Team
Villani achieved the best F1 score of 57.14% using
a neural approach and Flytxt NTNU reached the
second place with an F1 score of 56.87% using an
ensemble of naive Bayes and CRF approach.

Some of the teams utilized their results from
SubTask 2 to generate predictions for SubTask
1. This method seems to have performed quite
well too, with 3 of the top-5 teams using it. Fly-
txt NTNU is notable for combining this method
with a naive Bayes approach as an ensemble sys-
tem.

703

Prec Recall F1 Acc
Our baselines

Our SVM baseline 49.55 62.22 55.17 80.58
Our NB baseline 38.17 78.89 51.45 78.32
Random uniform baseline 16.09 56.67 25.06 50.65
Random stratified baseline 11.45 16.67 13.57 69.09

Participants Outputs
Villani 47.76 71.11 57.14 84.47
Flytxt NTNU 49.59 66.67 56.87 85.28
DM NLP 39.43 76.67 52.08 79.45
HCCL 53.57 50.00 51.72 86.41
Digital Operatives 39.31 75.56 51.71 79.45
TeamDL 38.46 72.22 50.19 79.13
NLP Foundation 36.13 76.67 49.11 76.86
UMBC 11.14 43.33 17.73 41.42
NanshanNLP 13.56 17.78 15.38 71.52

Table 6: SubTask 1 results sorted by F1 score, the highest score in each column from the baselines and the
participants outputs are marked in bold.

5.2 SubTask 2 Results

The scores of the submissions for SubTask 2 are
shown in Table 7. This task attracted 8 teams and 4
teams were able to outperform our baseline which
is a CRF model with unigrams, bigrams, POS, and
Brown clustering features. Though all participants
have used the CRF model as the final layer of their
models, 3 teams used neural architectures like Bi-
LSTM and CNN-BiRNN architectures to generate
better embeddings for the features.

Team DM NLP achieved the best F1 score of
29.23%. In addition, we considered a relaxed scor-
ing scheme where predictions are scored at token
level instead of phrase level to give credit to the
model when the span for a predicted label inter-
sects with the span for the actual label. The model
from team DM NLP still achieved the highest F1
score of 39.18% under this scoring scheme. Team
HCCL showed significant improvement in their
scores for the relaxed scoring schemes for their
model based on CNN-BiRNN-CRF architecture.

5.3 SubTask 3 Results

The results of our baselines for SubTask 3 can be
seen in Table 8. As we mentioned in an earlier
section, no participant submitted to this SubTask.
From our baselines, we can see that this task can-
not be done using random prediction. However,
our rule-based method still works well on this new
test set.

5.4 SubTask 4 Results

We summarized the results for SubTask 4 in Ta-
ble 9. The main challenges to this SubTask are the
data sparsity and the number of attribute labels.
The only participant who submitted to this Sub-
Task is from team UMBC. They used a domain-
specific word embedding model trained on APT
reports and their automatically generated text an-
notations to train an SVM classifier.

6 Conclusion and Future Work

In this work, we have presented the results of
SemEval 2018 shared task on Semantic Extrac-
tion from CybersecUrity REports using Natural
Language Processing (SecureNLP). This new Se-
mEval task attracted 9 participating teams with 18
submissions. We have provided a new dataset on
annotated malware report and also the evaluation
criteria for the 4 SubTasks that we proposed. We
also described the methods that the participants
used to tackle this shared task. We hope that this
shared task can spark the interest of the research
community to use NLP techniques for cybersecu-
rity purposes.

The participants have improved the state-of-the-
art results for SubTask 1 and 2. They explored
many interesting methods to tackle the SubTasks
that we proposed. Since the post evaluation phase
is still ongoing on the competition website, hope-
fully other people will be interested in testing their
models.

704

Normal Scores Relaxed Scores
Prec Recall F1 Prec Recall F1

Our baselines
CRF baseline 24.05 22.30 23.14 31.22 30.80 31.01

Participants Outputs
DM NLP 23.35 39.07 29.23 30.14 55.98 39.18
Flytxt NTNU 25.98 29.36 27.56 32.96 40.06 36.17
NLP Foundation 25.57 29.80 27.52 35.42 42.46 38.62
TeamDL 22.90 28.26 25.30 30.64 43.08 35.81
UMBC 18.19 28.48 22.20 24.42 46.31 31.98
HCCL 7.64 17.88 21.72 38.39 36.84 37.60
NanshanNLP 26.96 17.44 21.18 34.03 23.84 28.03
Digital Operatives 16.58 14.57 15.51 23.65 26.43 24.96

Table 7: SubTask 2 results sorted by F1 score, the highest score in each column from the baselines and the
participants outputs are marked in bold.

Prec Recall F1
Rule-based baseline 85.60 85.83 85.71
Random uniform baseline 3.24 14.17 5.27
Random stratified baseline 3.14 2.22 2.60

Table 8: SubTask 3 baseline results sorted by F1 score.

Prec Recall F1
Our baselines

SVM baseline 40.30 31.64 35.45
NB baseline 36.77 32.03 34.24

Participants Outputs
UMBC 15.23 26.17 19.25

Table 9: SubTask 4 results sorted by F1 score, the highest score in each column from the baselines and the
participants outputs are marked in bold.

Acknowledgments

We would like to thank all the teams who partici-
pated in this shared task. Special mention to Chris
Brew and Arpita Roy for their valuable feedback.
We also thank the authors of the ACL 2017 paper:
Swee Kiat Lim, Aldrian Obaja Muis for doing the
initial work, and Chen Hui Ong from DSO for her
feedback during the annotation.

References
Mamoun Alazab, Sitalakshmi Venkataraman, and Paul

Watters. 2010. Towards understanding malware be-
haviour by the extraction of api calls. In Proc. of
CTC, pages 52–59.

Nicoló Andronio, Stefano Zanero, and Federico Maggi.
2015. Heldroid: Dissecting and detecting mobile
ransomware. In Proc. of RAID, pages 382–404.

Kiran Blanda. 2016. APTnotes. https://
github.com/aptnotes/.

Chris Brew. 2018. Digital Operatives at SemEval-
2018 Task 8: Using dependency features for mal-
ware NLP. In Proc. of SemEval.

Peter F. Brown, Peter V. deSouza, Robert L. Mercer,
Vincent J. Della Pietra, and Jenifer C. Lai. 1992.
Class-based N-gram Models of Natural Language.
Comput. Linguist., 18:467–479.

Stephen Checkoway, Damon McCoy, Brian Kantor,
Danny Anderson, Hovav Shacham, Stefan Savage,
Karl Koscher, Alexei Czeskis, Franziska Roesner,
Tadayoshi Kohno, et al. 2011. Comprehensive ex-
perimental analyses of automotive attack surfaces.
In Proc. of USENIX Security Symposium. San Fran-
cisco.

Jacob Cohen. 1960. A Coefficient of Agreement for
Nominal Scales. Educational and Psychological
Measurement, 20(1):37–46.

Koby Crammer, Ofer Dekel, Joseph Keshet, Shai
Shalev-Shwartz, and Yoram Singer. 2006. Online
passive-aggressive algorithms. Journal of Machine
Learning Research, 7:551–585.

705

Mingming Fu, Xuemin Zhao, and Yonghong Yan.
2018. HCCL at SemEval-2018 Task 8: An End-
to-End System for Sequence Labeling from Cyber-
security Reports. In Proc. of SemEval.

Alex Graves, Abdel-rahman Mohamed, and Geoffrey
Hinton. 2013. Speech recognition with deep recur-
rent neural networks. In Proc. of ICASSP, pages
6645–6649.

Yoon Kim. 2014. Convolutional neural networks for
sentence classification. In Proc. of EMNLP.

Ivan Kirillov, Desiree Beck, Penny Chase, and Robert
Martin. 2010. Malware Attribute Enumeration and
Characterization. The MITRE Corporation, Tech.
Rep.

Taku Kudo. 2005. CRF++. https://taku910.
github.io/crfpp/.

John Lafferty, Andrew McCallum, and Fernando
Pereira. 2001. Conditional Random Fields: Prob-
abilistic Models for Segmenting and Labeling Se-
quence Data. In Proc. of ICML, pages 282–289.

Percy Liang. 2005. Semi-supervised learning for nat-
ural language. Master’s thesis, Massachusetts Insti-
tute of Technology.

Swee Kiat Lim, Aldrian Obaja Muis, Wei Lu, and
Chen Hui Ong. 2017. MalwareTextDB: A Database
for Annotated Malware Articles. In Proc. of ACL,
volume 1, pages 1557–1567.

Pablo Loyola, Kugamoorthy Gajananan, Yuji Watan-
abe, and Fumiko Satoh. 2018. Villani at SemEval-
2018 Task 8: Semantic Extraction from Cybersecu-
rity Reports using Natural Language Processing (Se-
cureNLP). In Proc. of SemEval.

Thang Luong, Hieu Pham, and Christopher D Man-
ning. 2015. Effective approaches to attention-based
neural machine translation. In Proc. of EMNLP,
pages 1412–1421.

Chunping Ma, Huafei Zheng, Pengjun Xie, Chen Li,
Linlin Li, and Si Luo. 2018. DM NLP at SemEval-
2018 Task 8: neural sequence labeling with linguis-
tic features. In Proc. of SemEval.

Xuezhe Ma and Eduard Hovy. 2016. End-to-end se-
quence labeling via bi-directional lstm-cnns-crf. In
Proc. of ACL, volume 1, pages 1064–1074.

Savita Mohurle and Manisha Patil. 2017. A brief study
of Wannacry Threat: Ransomware Attack 2017. In-
ternational Journal of Advanced Research in Com-
puter Science, 8(5).

Ankur Padia, Arpita Roy, Taneeya Satyapanich, Fran-
cis Ferraro, Shimei Pan, Anupam Joshi, and Tim
Finin. 2018. UMBC at SemEval-2018 Task 8: Un-
derstanding Text about Malware. In Proc. of Se-
mEval.

Fabian Pedregosa, Gaël Varoquaux, Alexandre Gram-
fort, Vincent Michel, Bertrand Thirion, Olivier
Grisel, Mathieu Blondel, Peter Prettenhofer, Ron
Weiss, Vincent Dubourg, Jake Vanderplas, Alexan-
dre Passos, David Cournapeau, Matthieu Brucher,
Matthieu Perrot, and Édouard Duchesnay. 2011.
Scikit-learn: Machine Learning in Python. Journal
of Machine Learning Research, 12:2825–2830.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. Glove: Global vectors for word
representation. In Proc. of EMNLP, pages 1532–
1543.

Manikandan R, Krishna Madgula, and Snehanshu
Saha. 2018. TeamDL at SemEval-2018 Task 8: Cy-
bersecurity Text Analysis using Convolutional Neu-
ral Network and Conditional Random Fields. In
Proc. of SemEval.

Konrad Rieck, Philipp Trinius, Carsten Willems, and
Thorsten Holz. 2011. Automatic analysis of mal-
ware behavior using machine learning. Journal of
Computer Security, 19:639–668.

Yusuke Shinyama. 2004. PDFMiner. https://
euske.github.io/pdfminer/.

Utpal Kumar Sikdar, Biswanath Barik, and Björn
Gambäck. 2018. Flytxt NTNU at SemEval-2018
Task 8: Identifying and Classifying Malware Text
Using Conditional Random Fields and Nave Bayes
Classifiers. In Proc. of SemEval.

Pontus Stenetorp, Sampo Pyysalo, Goran Topić,
Tomoko Ohta, Sophia Ananiadou, and Jun’ichi Tsu-
jii. 2012. BRAT: A Web-based Tool for NLP-
assisted Text Annotation. In Proc. of EACL, pages
102–107.

US-CERT. 2016. Heightened ddos threat posed by mi-
rai and other botnets.

706

Proceedings of the 12th International Workshop on Semantic Evaluation (SemEval-2018), pages 707–711
New Orleans, Louisiana, June 5–6, 2018. ©2018 Association for Computational Linguistics

DM NLP at SemEval-2018 Task 8:
Neural Sequence Labeling with Linguistic Features

Chunping Ma, Huafei Zheng, Pengjun Xie, Chen Li, Linlin Li, Si Luo
Alibaba Group, China

{chunping.mcp, huafei.zhf, chengchen.xpj, puji.lc, linyan.lll, luo.si}@alibaba-inc.com

Abstract

This paper describes our submissions for
SemEval-2018 Task 8: Semantic Extraction
from CybersecUrity REports using NLP. The
DM NLP participated in two subtasks: Sub-
Task 1 classifies if a sentence is useful for in-
ferring malware actions and capabilities, and
SubTask 2 predicts token labels (”Action”,
”Entity”, ”Modifier” and ”Others”) for a given
malware-related sentence. Since we leverage
results of Subtask 2 directly to infer the result
of Subtask 1, the paper focus on the system
solving Subtask 2. By taking Subtask 2 as a se-
quence labeling task, our system relies on a re-
current neural network named BiLSTM-CNN-
CRF with rich linguistic features, such as POS
tags, dependency parsing labels, chunking la-
bels, NER labels, Brown clustering. Our sys-
tem achieved the highest F1 score in both to-
ken level and phrase level.

1 Introduction

As a growing number of mobile devices and facil-
ities are getting connected and digitized, malware
attacks become increasingly rampant and danger-
ous. CybersecUrity attracts more public attention
but few NLP research and efforts. A large number
of malware-related texts is available online, such
as malware reports and relevant blogs (DiMaggio,
2015). However due to the sheer volume and di-
versity of these texts, NLP researchers encounter
problems to obtain valuable information, such as
the specific actions taken by a certain malware
and the capabilities described. Therefore, auto-
matic screening malware-related contents and la-
beling every token of the contents become poten-
tial applications of NLP and have drawn growing
research interests.

In order to create a database in CybersecUrity
domain which helps researchers to parse malware-
related texts, the organizers of SemEval 2018 Task

8 (Phandi et al., 2018) (Lim et al., 2017)proposed
the follow tasks:

1. SubTask1: Classify if a sentence is relevant
for inferring malware actions and capabili-
ties.

2. SubTask2: Predict token labels for a given
malware-related text.

3. SubTask3: Predict relation labels for a given
malware-related text.

4. SubTask4: Predict attribute labels for a given
malware-related text.

However, due to lack of time, we decided to ad-
dress only SubTask 1 and SubTask 2. In this paper,
we describe the system that we submitted for the
SemEval 2018 shared task. Our system is based on
RNN network and ranked first in both token level
and phrase level.

Most existing high performance sequence label-
ing methods are linear statistical models, such as
HMM (Hidden Markov Models) (Eddy, 1996) and
CRF (Conditional Random Fields) (Lafferty et al.,
2001). In the past few years, neural networks have
been widely used to solve NLP problems. Spe-
cially, several RNN-based neural networks have
been proposed to handle sequence labeling tasks
including Chinese word segmentation (Yao and
Huang, 2016), POS tagging (Huang et al., 2015),
NER (Chiu and Nichols, 2015) (Lample et al.,
2016), which achieved outstanding performance
against traditional methods.

In this paper, we simple derive the result of
SubTask1 from SubTask2 and regard SubTask 2
as the preorder. Namely, our system firstly out-
puts sequence labels of a given sentence, and then
checks whether some target labels turn out, such
as Action, Entity, Modifier. Sentences which have

707

those target labels will be classify as malware-
related one. Focusing on SubTask1, We pro-
pose a neural network architecture using a hybrid
bidirectional LSTM and CNN architecture which
takes character-level and word-level representa-
tions combined with rich linguistic features as in-
put. Instead of decoding each label independently,
we feed the output vectors of BiLSTM to a CRF
layer. Experiments show the significant improve-
ment of our system compared with baselines.

The remainder of this paper includes a detail de-
scription of our system in Section 2. Experiments
and analysis of results are presented in Section 3.
Finally, Section 4 draws a conclusion and Section
5 describes our future work.

2 System Overview

We treat Subtask 2 as a sequence labeling prob-
lem and design a neural network architecture with
some hand-crafted features. Our system is mainly
based on the BiLSTM-CNN-CRF model and ap-
ply model average strategy to avoid over-fitting
problem.

2.1 Data Preprocessing

In order to exclude the noise from data provided
by the organizers, we use a python program to
correct spelling mistakes and unreadable charac-
ters. After that, in order to avoid data distribution
problem, we mix the training set development set,
and then shuffle and split them into five parts ran-
domly. We take four parts as training set and the
rest as development set.

2.2 Feature Extraction

Based upon many previous work on sequence la-
beling, our system incorporates 5 types of fea-
tures: POS tags, dependency parsing, NER labels,
Chunking labels and Brown clustering. All fea-
tures are generated automatically. In detail, we use
Stanford CoreNLP (Manning et al., 2014) 1 to an-
notate POS tags, dependency parsing, NER labels,
and use Apache OpenNLP 2 to annotate Chunking
labels. Brown clustering labels are generated by
an open source implementation.

2.2.1 POS Tags
POS Tagging (part-of-speech Tagging), which at-
taches each word of a sentence a part of speech tag

1https://stanfordnlp.github.io/CoreNLP/
2https://opennlp.apache.org/

based on both its definition and its context, pro-
duces a generalization of words and is a funda-
mental procedure of other NLP tasks such as syn-
tactic parsing and information extraction.

2.2.2 Dependency Labels
Dependency parsing describes the syntactic struc-
ture of a sentence in terms of the words (or lem-
mas) in a sentence and an associated set of directed
binary grammatical relations that hold among the
words. For a given word, our system takes the
concatenation the dependency edge and its syntac-
tic head as its dependency label, or ’ROOT’ if the
word has no syntactic head.

2.2.3 NER Labels
Named Entity Recognition (NER) labels se-
quences of words in a text which are the names
of things, such as person and company names, or
gene and protein names. We utilize NER labels
as significant information to detect named token
labels, such as Subject and Object.

2.2.4 Chunking Labels
Text chunking divides a text into phrases in such a
way that syntactically related words become mem-
ber of the same phrase. For instance, ”technology
organizations” is a noun phrase, our system anno-
tates ”technology” as ”B-NP” and ”organizations”
as ”I-NP”.

2.2.5 Brown Clustering Labels
Similar words have similar distributions of words
to their immediate left and right. Motivated by
this intuition, Brown Clustering algorithm (Brown
et al., 1992) gives an unsupervised class label to a
word. Our system uses a C++ implementation3 of
the Brown clustering algorithm (Liang, 2005) and
sets cluster number as 50. The Brown clusters was
trained on a large corpus of APT reports4 provided
by the organizer.

2.3 Model Introduction

Similar to (Ma and Hovy, 2016), as shown in Fig-
ure 1, before feeding into the BiLSTM network,
the model concatenates character-level represen-
tations obtained from CNN (LeCun et al., 1989),
word-level representations and linguistic feature
representations to acquire the final representation
of the word. At the end, the model feeds the output

3https://github.com/percyliang/brown-cluster
4https://www.atp.dk

708

vectors of BiLSTM into a CRF layer, using sen-
tence level tag information to jointly decode se-
quence labels.

The

B-Entity

attackers

I-Entity

0

having

O

compromised

B-Action

Word
Embedding

Char
Representation

Linguistic
Features

Forward
LSTM

Backward
LSTM

Output Layers

CRF Layers

Sequence
Labels

LSTM

LSTM

Output

LSTM

LSTM

Output

LSTM

LSTM

Output

LSTM

LSTM

Output

0

Figure 1: BiLSTM + CRF network architecture

Designing a neural network architecture with
character representation as input is appealing for
several reasons. First, words which have the same
morphological properties(like the prefix or suf-
fix of a word) often share the same grammati-
cal function or meaning. Second, a character-
level analysis can help to dual with the OOV
(out-of-vocabulary) problem and the word starts
with a capital letter may provide additional infor-
mation. Previous studies (Santos and Zadrozny,
2014) (Chiu and Nichols, 2015) have shown that
CNN is an effective approach to extract morpho-
logical information from characters of words, and
consequently help to improve the performance of
NER and POS tagging. As shown in Figure 2, we
employ a max-pooling and a convolution layer to
extract a new feature vector from character embed-
dings for each word. Then words are padded with
a number of PADDING characters on both sides
depending on the window size of the CNN.

2.3.1 BiLSTM for Word Representation
RNNs are well-studied solutions for a neural net-
work to process variable length input and have

Padding PaddingH t t p

Char
Embedding

Convolution

Max-pooling

Char features

Figure 2: CNN feature extraction

long term memory. As a variant of RNNs, the
long-short term memory (LSTM) unit with three
multiplicative gates allows highly non-trivial long-
distance dependencies to be easily learned. For
sequence labeling tasks, we use a bidirectional
LSTM network proposed in (Graves et al., 2013)
in order to efficiently utilize both past features (via
forward states) and future features (via backward
states) for a specific time frame. Furthermore, pre-
trained word embeddings learned from large unla-
beled data are used.

2.3.2 Neural Network with Features
Before feeding into the BiLSTM network, we con-
catenate the char embedding, word embedding,
POS embedding, NER embedding, Chunking la-
bels embedding, Brown Clustering labels embed-
ding as input.

2.3.3 CRF Layer
For sequence labeling task, such as POS tagging or
NER, the output labels adjacent are often strongly
related(e.g. I-ORG cannot follow B-PER or I-
LOC in NER task of CoNLL2003). Therefore,
we model BiLSTM networks jointly using a CRF
layer to decode each label.

2.3.4 Model Average
Random initialization and shuffling order of train-
ing sentences introduce randomization into model
training. During experiments, we found that
model predictions vary considerably even when
the same pre-trained data and parameters are used.
In order to utilize the power of models ensem-
bling and avoid over-fitting problem, we use a
script provided by tensor2tensor to average values

709

Model
Phrase Level Token Level

Precision Recall F1-score Precision Recall F1-score

CRF 0.4867 0.2374 0.3191 0.5766 0.2739 0.3714
CRF with Linguistic Features 0.4971 0.2627 0.3438 0.5839 0.2911 0.3885
BiLSTM-CRF 0.5082 0.4305 0.4661 0.6273 0.4296 0.5100
BiLSTM-CRF with Linguistic Features 0.5265 0.4410 0.4799 0.6354 0.4437 0.5225
BiLSTM-CNN-CRF 0.5289 0.4461 0.4840 0.6370 0.4456 0.5243
BiLSTM-CNN-CRF with Linguistic Features 0.5436 0.4623 0.4997 0.6428 0.4531 0.5315

Table 1: Experiment results in phrase level and token level.

of variables in a list of checkpoint files generated
by BiLSTM-CNN-CRF networks5.

3 Experiments and Analysis

3.1 Experiment Settings

We found that in the original dataset provided
by organizers, the average percentage of positive
samples dropped from 23% in training set to less
than 6.6% in development set, which suggests that
a model may be strongly biased if trained on the
training set and fine-tuned on the development
set without randomization. Therefore we com-
bined the training data and development data af-
ter spelling correction and removal of unreadable
characters. In order to avoid over-fitting problem,
we adopted 5-fold cross validation by randomly
splitting the combined data into five folds. Each
time we took four folds as training data and the
rest as development data.

We downloaded GloVe (Pennington et al.,
2014) data as the source of pre-trained word em-
beddings. For char and feature embeddings, we
randomly initialized them with values drawn from
the standard normal distribution.

The evaluation metrics were calculated by the
CoNLL2000 Perl script at token level and phrase
level. For each level, precision, recall and F1-
score were calculated. Based on the highest
F1-score we selected the best hyper-parameters
(CNN output size, LSTM State size, learning rate,
dropout, etc.) for single model in 5-fold cross val-
idation. Besides, for the submission generated by
the BiLSTM-CNN-CRF, we adopted model aver-
age strategy by averaging values of variables of 5
checkpoint files from 5 independent experiments
sharing the same experiment settings.

3.2 Experiment Results

Our experiments focus on improving the perfor-
mance in phrase level because of two motivations:
phrase level is more meaningful than token level

5https://github.com/tensorflow/tensor2tensor

and the model superior in phrase level also outper-
forms the others in token level.

The comparison of models in Table 1 shows that
neural networks models significantly outperform
the traditional model based on CRF. Meanwhile
models including character-level features in pre-
trained word embeddings show better result. Last
but not least, models with additional linguistic fea-
tures improve the performance in both phrase level
and token level significantly.

4 Conclusion

This paper describes our system for Subtask 1 and
Subtask 2 of SemEval-2018 Task 8. For Subtask
2 we design a BiLSTM-CNN-CRF model combin-
ing several hand-crafted features, such as POS tag-
ging, NER labels, Chunking labels, etc. For Sub-
task 1 we simply use the output labels generated
by Subtask 2 to classify where a sentence is rele-
vant to malware. It can be observed that rich lin-
guistic features and pre-trained word embeddings
for large unlabeled data benefit the task. The sys-
tem is proven valid and effective to achieve the
highest F1-score in Subtask 2.

5 Future Work

The fact is our system is not good enough to help
semantic extraction from CybersecUrity reports.
In the future, we will design a multi-task network
to solve Subtask 1 and Subtask 2 simultaneously
since they are highly related. Besides, more fea-
tures, e.g., stemming and lemmatization, can be
utilized in predicting token labels.

Acknowledgments

We thank the task organizers for providing mal-
ware corpus and organizing the shared task 8. Fur-
thermore, we also appreciate the peer reviewers
for their helpful comments on our first draft. We
are especially grateful to Li Xiaoning for his in-
sightful advice on the understanding of Cyberse-
cUrity reports.

710

References
Peter F Brown, Peter V Desouza, Robert L Mercer,

Vincent J Della Pietra, and Jenifer C Lai. 1992.
Class-based n-gram models of natural language.
Computational linguistics, 18(4):467–479.

Jason PC Chiu and Eric Nichols. 2015. Named en-
tity recognition with bidirectional lstm-cnns. arXiv
preprint arXiv:1511.08308.

Jon DiMaggio. 2015. The black vine cyberespionage
group. Retrieved January, 26:2016.

Sean R Eddy. 1996. Hidden markov models. Current
opinion in structural biology, 6(3):361–365.

Alex Graves, Abdel-rahman Mohamed, and Geoffrey
Hinton. 2013. Speech recognition with deep recur-
rent neural networks. In Acoustics, speech and sig-
nal processing (icassp), 2013 ieee international con-
ference on, pages 6645–6649. IEEE.

Zhiheng Huang, Wei Xu, and Kai Yu. 2015. Bidirec-
tional lstm-crf models for sequence tagging. arXiv
preprint arXiv:1508.01991.

John Lafferty, Andrew McCallum, and Fernando CN
Pereira. 2001. Conditional random fields: Prob-
abilistic models for segmenting and labeling se-
quence data.

Guillaume Lample, Miguel Ballesteros, Sandeep Sub-
ramanian, Kazuya Kawakami, and Chris Dyer. 2016.
Neural architectures for named entity recognition.
arXiv preprint arXiv:1603.01360.

Yann LeCun, Bernhard Boser, John S Denker, Don-
nie Henderson, Richard E Howard, Wayne Hubbard,
and Lawrence D Jackel. 1989. Backpropagation ap-
plied to handwritten zip code recognition. Neural
computation, 1(4):541–551.

Percy Liang. 2005. Semi-supervised learning for nat-
ural language. Ph.D. thesis, Massachusetts Institute
of Technology.

Swee Kiat Lim, Aldrian Obaja Muis, Wei Lu, and
Chen Hui Ong. 2017. Malwaretextdb: A database
for annotated malware articles. In Proceedings of
the 55th Annual Meeting of the Association for Com-
putational Linguistics (Volume 1: Long Papers),
volume 1, pages 1557–1567.

Xuezhe Ma and Eduard Hovy. 2016. End-to-end
sequence labeling via bi-directional lstm-cnns-crf.
arXiv preprint arXiv:1603.01354.

Christopher Manning, Mihai Surdeanu, John Bauer,
Jenny Finkel, Steven Bethard, and David McClosky.
2014. The stanford corenlp natural language pro-
cessing toolkit. In Proceedings of 52nd annual
meeting of the association for computational lin-
guistics: system demonstrations, pages 55–60.

Jeffrey Pennington, Richard Socher, and Christo-
pher D. Manning. 2014. Glove: Global vectors for
word representation. In Empirical Methods in Nat-
ural Language Processing (EMNLP), pages 1532–
1543.

Peter Phandi, Amila Silva, and Wei Lu. 2018.
Semeval-2018 Task 8: Semantic Extraction from
CybersecUrity REports using Natural Language
Processing (SecureNLP). In Proceedings of
International Workshop on Semantic Evaluation
(SemEval-2018), New Orleans, LA, USA.

Cicero D Santos and Bianca Zadrozny. 2014. Learning
character-level representations for part-of-speech
tagging. In Proceedings of the 31st International
Conference on Machine Learning (ICML-14), pages
1818–1826.

Yushi Yao and Zheng Huang. 2016. Bi-directional lstm
recurrent neural network for chinese word segmen-
tation. In International Conference on Neural Infor-
mation Processing, pages 345–353. Springer.

711

Proceedings of the 12th International Workshop on Semantic Evaluation (SemEval-2018), pages 712–724
New Orleans, Louisiana, June 5–6, 2018. ©2018 Association for Computational Linguistics

SemEval-2018 Task 9: Hypernym Discovery

Jose Camacho-Collados♣ Claudio Delli Bovi♥ Luis Espinosa-Anke♣
Sergio Oramas♦ Tommaso Pasini♥ Enrico Santus♥

Vered Shwartz♠ Roberto Navigli♥ Horacio Saggion♦
♣School of Computer Science and Informatics, Cardiff University, United Kingdom

♥ Computer Science Department, Sapienza University of Rome, Italy
♦ Pompeu Fabra University, Barcelona, Spain ♥ MIT, United States

♠ Bar-Ilan University, Ramat Gan, Israel
♣{camachocolladosj,espinosa-ankel}@cardiff.ac.uk,

♥{dellibovi,pasini,navigli}@di.uniroma1.it,
♦{name.surname}@upf.edu, ♥esantus@mit.edu, ♠vered1986@gmail.com

Abstract

This paper describes the SemEval 2018 Shared
Task on Hypernym Discovery. We put for-
ward this task as a complementary benchmark
for modeling hypernymy, a problem which has
traditionally been cast as a binary classifica-
tion task, taking a pair of candidate words as
input. Instead, our reformulated task is de-
fined as follows: given an input term, retrieve
(or discover) its suitable hypernyms from a tar-
get corpus. We proposed five different sub-
tasks covering three languages (English, Span-
ish, and Italian), and two specific domains of
knowledge in English (Medical and Music).
Participants were allowed to compete in any or
all of the subtasks. Overall, a total of 11 teams
participated, with a total of 39 different sys-
tems submitted through all subtasks. Data, re-
sults and further information about the task can
be found at https://competitions.
codalab.org/competitions/17119.

1 Introduction

Hypernymy, i.e. the capability to relate generic
terms or classes to their specific instances, lies at
the core of human cognition. It is not surpris-
ing, therefore, that identifying hypernymic (is-a)
relations has been pursued in NLP for more than
two decades (Shwartz et al., 2016): indeed, suc-
cessfully identifying this lexical relation substan-
tially improves Question Answering applications
(Prager et al., 2008; Yahya et al., 2013), Textual
Entailment and Semantic Search systems (Hoffart
et al., 2014; Roller et al., 2014; Roller and Erk,
2016). In addition, hypernymic relations are the
backbone of almost every ontology, semantic net-
work and taxonomy (Yu et al., 2015), which are in
turn useful resources for downstream tasks such as

web retrieval, website navigation or records man-
agement (Bordea et al., 2015).

Generally, evaluation benchmarks for modeling
hypernymy have been designed such that in most
cases they are reduced to binary classification (Ba-
roni and Lenci, 2011; Snow et al., 2004; Boleda
et al., 2017; Vyas and Carpuat, 2017), where a
system has to decide whether a hypernymic rela-
tion holds between a given candidate pair of terms.
Criticisms to this experimental setting point out
that supervised systems tend to benefit from the
inherent modeling of the datasets in the hyper-
nym detection task, leading to lexical memoriza-
tion phenomena (Levy et al., 2015; Santus et al.,
2016a; Shwartz et al., 2017). In this respect, re-
cent work has attempted to alleviate this issue by
including a graded scale for evaluating the degree
of hypernymy on a given pair (Vulić et al., 2017).

Crucially, Espinosa-Anke et al. (2016) proposed
to frame the problem as Hypernym Discovery, i.e.
given the search space of a domain’s vocabulary,
and given an input term, discover its best (list
of) candidate hypernyms. This formulation ad-
dresses one of the main drawbacks of the evalu-
ation criterion described above, and better frames
the evaluated systems within downstream real-
world applications (Camacho-Collados, 2017). In
fact, lessons learned from these studies have mo-
tivated the construction of a full-fledged bench-
marking dataset for the shared task we present
here, which covers multiple languages and knowl-
edge domains. The main goal of this task is that
of complementing current research in hypernymy
modeling with this novel discovery setting.

712

Term Hypernym(s) Source
1A: English sorrow sadness, unhappiness WordNet
1B: Italian Nina Simone musicista, pianista, persona MultiWibi
1C: Spanish guacamole salsa para mojar, salsa, alimento Wikidata (via BabelNet)

2A: Medical pulmonary embolism
pulmonary artery finding,
trunk arterial embolus,

embolism
SnomedCT

2B: Music Green Day artist, rock band, band MusicBrainz

Table 1: Some example terms and hypernyms extracted from different sources (see Section 4.1.4), for each of the
subtasks and languages considered in the task.

2 Related Work

Traditionally, identifying hypernymic relations
from text corpora has been addressed with two
main approaches: pattern-based and distributional
(Wang et al., 2017). Pattern-based (path-based)
methods, which provide higher precision at the
price of lower coverage, exploit the co-occurrence
of a hyponym and its hypernym in a textual corpus
(Hearst, 1992; Navigli and Velardi, 2010; Boella
and Di Caro, 2013; Flati et al., 2016; Gupta et al.,
2016; Pavlick and Pasca, 2017). Conversely, dis-
tributional models rely on a distributional repre-
sentation for each observed word, and are capa-
ble of identifying hypernymic relations between
concepts even when they do not co-occur explic-
itly in text. Earlier work on hypernym modeling
was unsupervised, and leveraged various interpre-
tations of the distributional hypothesis.1 Most of
the recent work on the subject is however super-
vised, and in the main based on using word em-
beddings as input for classification or prediction
(e.g Baroni et al., 2012; Santus et al., 2014; Fu
et al., 2014; Weeds et al., 2014; Espinosa-Anke
et al., 2016; Sanchez Carmona and Riedel, 2017;
Nguyen et al., 2017). As shown by Shwartz et al.
(2016), pattern-based and distributional evidences
can be effectively combined within a neural archi-
tecture. In this shared task we have actually re-
ceived systems of both natures, including a com-
bination of pattern-based and distributional cues,
similar to the one mentioned above, which also
proved to be highly effective (see Section 5).

3 Task Description

We define Hypernym Discovery operatively as the
task of finding and extracting the appropriate hy-
pernym(s) for a target input term. As input for

1See Shwartz et al. (2017) for a detailed review on unsu-
pervised distributional hypernymy detection.

the task, together with the target term,2 a large
textual corpus (source corpus henceforth) is pro-
vided, and participating systems are intended to
exploit this large source of textual data to retrieve
(i.e. “discover”) as many suitable hypernyms as
possible for the target term. A different source
corpus, as well as the corresponding vocabulary, is
specified for each subtask and language (cf. Sec-
tion 4) in order to set a level playing field for com-
peting systems, and constrain their search space.

For each input term (or hyponym) the expected
output is a ranked list of candidate hypernyms (up
to 15) drawn from the provided vocabulary. Some
example input-output pairs (i.e. terms and corre-
sponding hypernym lists) are shown in Table 1 for
each subtask and language. Table 1 also reports
the sources of hypernymy information beside each
pair, which vary depending on the subtask and lan-
guage, as detailed in Section 4.1.4.

The structure of our Hypernym Discovery task
consists of five independent but related subtasks,
split into two larger groups: general-purpose hy-
pernym discovery and domain-specific hypernym
discovery. Participants were allowed to submit
systems for any individual subtask. Along with
a specific source corpus and vocabulary, each sub-
task features its specific training and testing data,
consisting of input terms and corresponding gold
hypernym lists, obtained as described throughout
Section 4.

General-Purpose Hypernym Discovery con-
sists in discovering hypernyms in a large corpus of
general-purpose textual data, gathered from differ-
ent and heterogeneous sources. A system operat-
ing in this setting requires the flexibility to provide
hypernyms for terms in a wide range of domains.
In this shared task we consider three different lan-

2A valid input term is any word or multi-word expression
drawn from the predefined vocabulary (cf. Section 4.1.2) up
to trigrams.

713

guages for general-purpose hypernym discovery:

• English (subtask 1A), with a gold standard
of 3,000 labeled terms;

• Italian (subtask 1B) and Spanish (subtask
1C), each with a gold standard of 2,000 la-
beled terms;

All the gold standards provide a balanced set of
input terms, with different degrees of frequency
and for different domains. The corresponding
gold hypernyms have been extracted from multi-
ple resources and manually validated (cf. Sections
4.1.4-4.1.5). Training and testing data are split
evenly (50% training - 50% testing).

Domain-Specific Hypernym Discovery deals
with the same problem, but constrains it to a spe-
cific domain of knowledge. As a consequence,
in this case participants test their systems (which
might be general or specifically tailored to the
target domain) in a much more focused and re-
duced environment. In this shared task we focus
on English and consider two different domains of
knowledge:

• Medical (subtask 2A), with a gold standard
of 1,000 labeled terms;

• Music (subtask 2B), also with a gold stan-
dard of 1,000 labeled terms;

As in the previous subtask, we provide a bal-
anced set of terms and gold hypernyms, with dif-
ferent degrees of frequency and for different sub-
domains. Again, training and testing data are split
evenly (50% training - 50% testing).

Subclass vs. Instance. Although many hy-
pernym detection approaches tend to overlook
this distinction, it is customary to consider
two different varieties of the “is-a” relation: a
subclass-of variety (e.g. a dog is a mam-
mal), and an instance-of variety (e.g. Rome
is a city).3 From a practical standpoint, the for-
mer occurs between two concepts, while the latter
connects a named entity with a concept. We make
this distinction explicit in our shared task by hand-
labeling each input term as either a concept or a

3In fact, WordNet encodes hypernym and instance
as two separate semantic relations. Instances are always leaf
(terminal) nodes in their hierarchies.

named entity. This strategy serves a double pur-
pose: on one hand, it helps reducing lexical am-
biguity, and narrowing the search space of poten-
tial hypernyms even further;4 on the other hand,
it enables participants to study and develop mod-
els specifically tailored to one of the two varieties,
and possibly submit them separately. In this re-
spect, Boleda et al. (2017) has indeed shown how
systems tend to perform differently on these two
kinds of hypernymy relation.

4 Task Data

In this section we present the data collection pro-
cess carried out for each source corpus and gold
standard featured in the task (Section 4.1). We
then summarize and provide some global statistics
on all these datasets (Section 4.2).

4.1 Data Collection Process
The process of collecting data for each subtask and
language comprised five successive steps: com-
pilation of the source corpus (Section 4.1.1), cre-
ation of the vocabulary (Section 4.1.2), collection
and selection of the input terms (Section 4.1.3),
extraction of the gold hypernyms (Section 4.1.4),
and final filtering and validation of such hyper-
nyms (Section 4.1.5).

4.1.1 Corpus Compilation
First, we selected and compiled a source corpus
for each dataset, which was also considered in the
vocabulary creation step (Section 4.1.2). Natu-
rally, we considered three corpora as general and
as large as possible for the general-purpose track,
whereas for the domain-specific datasets we opted
for more targeted and specific text collections.

General-purpose corpora. As source corpus
for the English subtask (1A) we used the 3-billion-
word UMBC corpus5 (Han et al., 2013), which
is a resource composed of paragraphs extracted
from the web as part of the Stanford WebBase
Project6 (Hirai et al. 2000). The UMBC cor-
pus is considerably large and contains informa-
tion from many and diverse domains. This cor-
pus presents additional challenges and different

4As an example, the term apple could either refer to a fruit
(if labeled as concept) or to a company (if labeled as named
entity).

5http://ebiquity.umbc.
edu/blogger/2013/05/01/
umbc-webbase-corpus-of-3b-english-words/

6http://dbpubs.stanford.edu:8091/
˜testbed/doc2/WebBase/

714

sources of information with respect to the corpora
used in previous tasks, such as Wikipedia in the
SemEval 2016 task on taxonomy extraction (Bor-
dea et al., 2016). In fact, the encyclopedic na-
ture of Wikipedia has been exploited in a wide va-
riety of works (Ponzetto and Strube, 2007; Flati
et al., 2016; Gupta et al., 2016), and differs sub-
stantially from the web-based corpus we put for-
ward here. As source corpus for the Italian subtask
(1B) we instead used the 1.3-billion-word itWac
corpus7 (Baroni et al., 2009), extracted from dif-
ferent sources of the web within the .it domain.
Finally, as source corpus for the Spanish subtask
(1C) we considered the 1.8-billion-word Spanish
corpus8 (Cardellino, 2016), which also contains
heterogeneous documents from different sources.

Domain-specific corpora. As source corpus for
the medical domain (subtask 2A) we provided a
combination of texts drawn from the MEDLINE9

(Medical Literature Analysis and Retrieval Sys-
tem) repository, which contains academic docu-
ments such as scientific publications and paper ab-
stracts. This corpus contains 130 million words.
As regards the music domain (subtask 2B), in-
stead, the source corpus we compiled is a con-
catenation of several music-specific corpora, i.e.
music biographies from Last.fm contained in
ELMD 2.0 (Oramas et al., 2016), articles from the
music branch of Wikipedia, and a corpus of album
customer reviews from Amazon (Oramas et al.,
2017). The resulting corpus reaches 100 million
words in total.

4.1.2 Vocabulary Creation

With the aim of simplifying the task for partic-
ipants by providing a unified hypernym search
space, we built a series of vocabulary files includ-
ing all the possible hypernyms on each dataset.
Each vocabulary was constructed by considering
all the words occurring at least N times across the
source corpus of the corresponding subtask. We
set N to five and three in the general-purpose and
domain-specific subtasks, respectively. We also
included bigrams and trigrams, by considering all
the instances present in any of the resources that
we leveraged as part of the hypernym extraction

7http://wacky.sslmit.unibo.it/doku.
php?id=corpora

8http://crscardellino.me/SBWCE/
9https://www.nlm.nih.gov/databases/

download/pubmed_medline.html

process (see Section 4.1.4), provided that they also
surpassed the corresponding frequency thresholds.

In order to reduce the high granularity of some
hypernymy relations (for example, dog is an en-
tity) we created an additional blacklist of very gen-
eral terms not considered in the vocabulary files.
This list was obtained semi-automatically. We first
extracted the most common hypernyms from the
lexical sources we used for creating the datasets.
Then, we filtered the resulting blacklist by remov-
ing manually a number of suitable hypernyms that,
despite being general, provided useful information
worthy to be taken into account (e.g. animal).

4.1.3 Term Collection
After compiling a source corpus and a correspond-
ing vocabulary, we selected a suitable collection
of input terms (i.e. hyponyms) to construct the
gold standard for each subtask. Term selection
was based on three key constraints. First, as in vo-
cabulary creation step (Section 4.1.2), input terms
were required to occur five and three times in the
general-purpose and domain-specific datasets, re-
spectively. Second, only terms up to trigrams were
considered. Finally, we only allowed terms with at
least one extracted hypernym (see Section 4.1.4)
present in the corresponding vocabulary file.

We carried out the term collection process with
a semi-automatic two-pass procedure, which we
applied to the source corpus of each subtask. First,
candidate terms were extracted automatically from
the source corpus, taking into account frequency,
type (i.e. concept and entity) and knowledge do-
main10 in order to produce a list as balanced and
representative as possible. After a preliminary list
of input terms was obtained, we carried out an ex-
tensive validation and refinement step by manually
normalizing each item (e.g. changing plurals to
singulars, capitalizing named entities and lower-
casing concepts), and by pruning all the terms that
appeared too vague or general, as well as terms
with mis-attributed domains.

4.1.4 Automatic Hypernym Extraction
Once the terms were collected we proceeded
to extract a set of candidate hypernyms from a
number of heterogeneous taxonomies. We drew
taxonomic information from the following lexi-
cal resources: WordNet (Miller, 1995), Wikidata

10We leveraged the domains from the Wikipedia fea-
tured articles pages available in BabelDomains (Camacho-
Collados and Navigli, 2017).

715

(Vrandečić and Krötzsch, 2014), MultiWiBi (Flati
et al., 2016), and Yago (Suchanek et al., 2007). In
order to be able to use seamlessly all hypernymy
information for languages other than English, we
exploited the inter-resource mappings provided by
BabelNet (Navigli and Ponzetto, 2012).11 For
the domain-specific datasets we additionally used
SnomedCT (Spackman et al., 1997) and Mu-
sicBrainz (Swartz, 2002) for the medical and mu-
sic datasets, respectively.

The hypernym extraction process was carried
out as follows: given a term (hyponym), we first
retrieved all the BabelNet synsets which included
the given term as lexicalization; then, starting from
that synset, we iteratively visited the father nodes
across all the reference taxonomies up to five lev-
els12 and selected all the lexicalizations of the tra-
versed synsets (i.e. concepts) as given by Ba-
belNet, provided that they appeared in the corre-
sponding vocabulary files (see Section 4.1.2).

4.1.5 Hypernym Validation
Starting from the candidate gold hypernyms ex-
tracted in the previous step, we carried out a val-
idation step using human annotators. We lever-
aged crowdsourcing for the English data in sub-
task 1A (which featured the largest dataset), and
then expert verification in all subtasks (including
English).

Crowdsourcing. We validated the English gold
standard (both training and test set) by using
crowdsourcing workers from Amazon Mechani-
cal Turk. To ensure the quality of workers, we
required workers to have answered at least 500
prior HITs with an approval rate of at least 95%,
and applied a qualification test. For each target
term, we showed the workers multiple candidate
hypernyms, extracted in the previous step (Sec-
tion 4.1.4), and asked them to select all the cor-
rect hypernyms. We also added 20% of random
false candidates to prevent bias towards a positive
answer. Finally, we assigned each HIT to 3 work-
ers and determined the gold label with majority
voting. The resulting annotations yielded an inter-
annotator agreement of 73%.

11Yago is the only resource which is not mapped to Babel-
Net. For the mapping we simply relied on the WordNet and
Wikipedia identifiers provided in Yago.

12We decided to consider only five levels for two reasons:
first, to avoid very general hypernyms; and second, to avoid
errors which would propagate to other levels and make the
validation task much harder. To this aim, five levels seemed
to provide a fine balance between precision and recall.

1A 1B 1C 2A 2B
Trial 50 25 25 15 15
Training 1,500 1,000 1,000 500 500
Test 1,500 1,000 1,000 500 500

Table 2: Number of terms (hyponyms) for each dataset
in trial, training and test sets.

Expert verification. Expert verification com-
prised two steps. First, all the extracted data was
verified by an expert human annotator. In this first
step, the annotator was focused on removing the
incorrect hypernyms, or normalizing them if re-
quired (e.g. plural to singular). This first verifica-
tion was performed in all dataset except English,
which underwent the crowsourcing validation ex-
plained earlier. Then, all datasets (including the
English one) were again verified by other experts.
However, in this case the annotators were given
different guidelines: in particular, they were asked
to fix clear hypernym errors (which may have been
missed in the previous step) and to add obvious
hypernyms which they found to be missing.

4.2 Statistics

Table 2 shows the number of input terms in each
dataset. The dataset was split equally in training
and testing, while the trial data provided a fewer
examples and could also be used as development
set. English (subtask 1A) was the largest dataset
with 1,500 terms (hyponyms) and for training and
other 1,500 for testing. Then, for the Italian (sub-
task 1B) and Spanish (subtask 1C) datasets, 2,000
terms were given overall between training and
testing. Finally, both domain-specific datasets (i.e.
medical, subtask 2A, and music, subtask 2B) con-
tained half of this quantity, with 1,000 terms each.

Note that each term may be associated with
one or (in most cases) more than one hypernym.
Therefore, counting all the term-hypernym pairs
per dataset, as it is done in hypernymy detection
datasets, would provide much larger figures. As
an example, the number of term-hypernym pairs in
the test gold standard is 7,048 for English, 4,770
for Italian, 6,070 for Spanish, 4,116 for the medi-
cal dataset, and 5,233 for the music dataset.

5 Evaluation

Parting ways from the classic precision-recall-
F1 metrics used so far in hypernym detec-
tion/extraction, we decided to evaluate this shared

716

task as a soft ranking problem. Systems were
evaluated over the top 15 (at most) hypernyms re-
trieved for each input term, which let us assess
their performance through Information Retrieval
metrics. Let us briefly introduce each of them.

Mean Average Precision (MAP). We use MAP
as the main evaluation metric of this task. In-
tuitively, this metric should give a fine estimate
on the capability of a system to retrieve a sizable
number of hypernyms from textual data, as well
as considering the precision of each of them. For-
mally:

MAP =
1

|Q|
∑

q∈Q
AP(q)

where Q is a sample of experiment runs, AP(·)
refers to average precision, i.e. an average of the
correctness of each individual obtained hypernym
from the search space.

Mean Reciprocal Rank (MRR). MRR rewards
the position of the first correct result in a ranked
list of outcomes, and is defined as:

MRR =
1

|Q|

|Q|∑

i=1

1

ranki

where ranki refers to the rank position of the
first relevant outcome for the ith run. While its
main field of application is Information Retrieval,
it has also been used in NLP tasks such as col-
location recognition (Wu et al., 2010; Rodrı́guez-
Fernández et al., 2016).

In addition to the above, we also provide results
according to P@k, i.e. the number of correctly re-
trieved hypernyms at different cut-off thresholds,
specifically k ∈ {1, 3, 5, 15}.13

5.1 Baselines

We compared the participating systems with both
supervised and unsupervised baselines for each
subtask, inspired by recent work on hypernym de-
tection and discovery. In this section we briefly
describe each of them.

5.1.1 Supervised Baselines
We first used a naı̈ve most frequent hypernym
(MFH) baseline, which simply returns, for each
input term, the 15 most frequent hypernyms found

13Although only P@5 is displayed in the tables due to lack
of space, the other thresholds were used in the official evalu-
ation as well.

in the training data. As a less naı̈ve baseline,
we also trained a transformation matrix (Mikolov
et al., 2013; Fu et al., 2014), using the same
optimization described by Espinosa-Anke et al.
(2016). For this baseline the hypernyms in the vo-
cabulary which are among the fifteen closest vec-
tors by applying the transformation matrix are re-
trieved. However, unlike in the original implemen-
tation, in this case we did not perform any a priori
domain clustering of the embeddings space, and
thus used the same matrix for all input terms.14

This second supervised baseline is referred to as
vTE (vanilla Taxoembed).

5.1.2 Unsupervised Baselines
We developed an unsupervised baseline by reduc-
ing hypernymy discovery to hypernymy detection.
We generated a list of candidate hypernyms for
each target word, and then employed unsupervised
hypernymy detection measures to decide whether
a hypernymy relation holds. We used the open-
source code by Shwartz et al. (2017).15

Our baseline starts by creating a distributional
semantic model (DSM) for each domain/language
(English, Spanish, Italian, Music and Medical).
We used a non-directional window of size 5 as
context type, and PPMI as feature weighting.
Similarly to the hyponym selection step (Section
4.1.3), all the terms with frequency of at least 3
occurrences in the source corpus are considered
as valid targets. For the context words, instead,
we required a minimum of 100 occurrences, as in
Shwartz et al. (2017). To generate candidates, we
took the 50 most similar terms for each target word
via cosine similarity in the DSM.

We chose the hypernym detection measures as
representative algorithms from each “family” of
unsupervised measures: APSyn (Santus et al.,
2016b) as similarity measure, balAPInc (Kotler-
man et al., 2010) as measure based on the dis-
tributional inclusion hypothesis, and SLQS (San-
tus et al., 2014) as measure based on informative-
ness.16 Finally, we tuned the thresholds for the
above measures by maximizing the average of the
performance metrics on the training set, separately
for each subtask and measure.

14We used the open-source code available at https://
bitbucket.org/luisespinosa/taxoembed

15https://github.com/vered1986/
UnsupervisedHypernymy

16Following the conclusions from Shwartz et al. (2017), we
set the hyper-parameters to: SLQS: median, PLMI, N = 100
and APSyn: N = 500.

717

5.2 Participant Systems

Table 3 shows a summary of all participant sys-
tems, displaying their main features with respect
to supervison and external resources used, if any.

5.3 Results

A summary of the results is provided in tables 3
to 7, respectively describing results for English,
Italian, Spanish and Music and Medical domains.
Almost all systems performed better than the un-
supervised baselines, while the supervised ones
showed to be more challenging, with few sys-
tems outperforming them. For English, Music
and Medical domains, CRIM (Bernier-Colborne
and Barriere, 2018) obtained the best results, with
a large margin on the other systems and base-
lines. This system is based on learning a projec-
tion between hyponym-hypernym pairs in terms
of their corresponding embeddings, and combines
this module with an unsupervised system which
uses Hearst-style patterns. Moreover, in Ital-
ian, the best system was 300-sparsans r1 (Berend
et al., 2018), a logistic regression model informed
mostly with information coming from word em-
beddings; whereas for Spanish, the best perform-
ing team was NLP HZ (Qiu et al., 2018), who ap-
proached the task with a nearest neighbors algo-
rithm trained with the provided training data.

From the summary tables we can also appreci-
ate the difference in performance of the systems
on concepts and entities. Such difference is due
to several factors, including the quantity and type
of hypernyms that needed to be identified for the
two subclasses. Except for the Music domain, sys-
tems tended to perform better with entities than
with concepts. This is probably due to the fact that
entities contain many hypernyms which appear of-
ten (e.g. person, company), which in principle fa-
vor the inherent lexical memorization (Levy et al.,
2015) of supervised systems. Hence, as expected,
systems performed better in the specialized do-
mains (i.e. medical and music) than in the general-
domain dataset (34.05% and 40.97% MAP perfor-
mance by the best systems in the medical and mu-
sic domains, respectively, compared to the 19.78%
result of the best system in the English dataset).

Finally, the results also show the clear supe-
riority of supervised systems over unsupervised
approaches in all languages and domains. As
far as fully unsupervised systems are concerned,
they achieved a diverse degree of success. While

in general they were outperformed by supervised
systems, in some cases their performance came
close, especially for concepts. For instance, the
ADAPT (Maldonado and Klubika, 2018) system,
which is based on a simple similarity measure ap-
plied to word embeddings, achieved a very de-
cent 8.13 MAP percentage performance on the
medical dataset, using neither supervision nor ex-
ternal resources. Supervised systems produced a
larger gap for entities, probably due, as mentioned
above, to the lower diversity of possible hyper-
nyms.

Cross-evaluation. In addition to the normal set-
ting on which supervised systems trained their sys-
tem on the same dataset training data, we ask par-
ticipants to train systems on the English general-
purpose data and trained on the domain-specific
datasets. This experiment could enable us to test
how a system could perform on a particular dataset
when training data is not available. A few teams
provided results on this setting and the results
showed that even though trained on general data,
they are still competitive with respect to other ap-
proaches. In fact, they tend to equally outperform
unsupervised systems and in the medical dataset,
for example, CRIM trained on the general En-
glish corpora outperformed all remaining partic-
ipant systems trained on the medical training data.

6 Analysis

Inspired by previous tasks in taxonomy learning
(Bordea et al., 2015), we sampled for each system
50 incorrect hypernyms (25 entities, 25 concepts)
which were retrieved as first choice, and manu-
ally assessed their correctness. This evaluation of
false positives is intended to account for the in-
evitable scenario in which not all possible correct
hypernyms according to human judgement were
included in the gold standard. The results in false
positives were measured by accuracy (i.e. percent-
age of correct false positives on the given sample)
and are displayed in Tables 4-8 under FPs.

In general, we observe that the systems’ per-
formances in this false positives experiment are
correlated with the figures they obtained with the
other automatic evaluation measures. Nonethe-
less, according to this false positives evaluation,
most systems (both supervised and unsupervised)
were able to retrieve some hypernyms which were
not present in the gold standard. This result is en-
couraging, as not only hypernym discovery sys-

718

Team Name Reference Supervision External Resources

Systems

CRIM (Bernier-Colborne and Barriere, 2018) X -
MSCG-SANITY - X Microsoft Concept Graph
NLP HZ (Qiu et al., 2018) X -
300-sparsans (Berend et al., 2018) X -
SJTU BCMI (Zhang et al., 2018) X -
UMDuluth (Hassan et al., 2018) X -
ADAPT (Maldonado and Klubika, 2018) -
Apollo (Onofrei et al., 2018) -
EXPR (Issa Alaa Aldine et al., 2018) -
Team 13 - -
Anu - WordNet

Baselines

vanillaTaxoEmbed (Espinosa-Anke et al., 2016) X -
MFH - X -
APSyn (Shwartz et al., 2017) -
balAPInc (Shwartz et al., 2017) -
SLQS (Shwartz et al., 2017) -

Table 3: Summary of participating systems and baselines, along with their main features (i.e. with or without
supervision, and usage of external resources).

1A: English
Concepts Entities All

MAP MRR P@5 FPs MAP MRR P@5 FPs MAP MRR P@5 FPs
CRIM r1 16.08 30.04 15.41 20 29.21 51.82 27.74 24 19.78 36.10 19.03 22
CRIM r2 15.49 29.29 14.97 24 28.63 50.55 27.65 20 19.54 35.94 18.74 22
MSCG-SANITY r1 9.36 18.9 9.38 28 17.72 38.85 16.91 20 11.83 24.79 11.60 24
vTE* 6.99 16.05 6.55 36 19.22 42.39 17.92 12 10.60 23.83 9.91 24
MSCG-SANITY r2 8.66 17.24 8.76 24 12.49 28.20 12.09 40 9.80 20.48 9.74 32
NLP HZ 7.17 13.13 7.11 24 14.61 27.21 14.14 20 9.37 17.29 9.19 22
300-sparsans r1 6.41 13.92 6.33 24 15.02 32.61 14.10 16 8.95 19.44 8.63 20
MFH* 4.73 12.48 4.13 0 18.42 42.65 16.59 16 8.77 21.39 7.81 8
300-sparsans r2 5.97 12.72 5.73 20 14.78 30.62 14.21 20 8.58 18.00 8.23 20
SJTU BCMI 3.29 5.68 3.57 0 11.70 22.19 11.67 12 5.77 10.56 5.96 6
Team 13 3.70 7.92 3.66 12 0.52 1.65 0.46 20 2.77 6.07 2.72 16
Apollo r2 2.72 6.05 2.76 16 2.60 5.91 2.51 20 2.68 6.01 2.69 18
Apollo r1 1.36 3.28 1.34 16 1.48 4.05 1.31 16 1.40 3.51 1.33 16
APSyn* 1.73 3.69 1.74 16 0.55 1.41 0.55 4 1.38 3.02 1.39 10
balAPInc* 1.73 3.87 1.67 8 0.47 1.53 0.44 4 1.36 3.18 1.30 6
SLQS* 0.70 1.68 0.73 4 0.37 0.92 0.33 4 0.60 1.46 0.61 4
UMDuluth C 8.13 18.93 7.53 20 - - - - - - - -
EXPR C 4.94 11.64 4.52 16 - - - - - - - -
UMDuluth E - - - - 3.79 9.99 3.66 28 - - - -

Table 4: Results for the English subtask (1A). Baselines are marked with *, and those system participating only on
Concepts or Entities are shown at the bottom and marked with either ‘C’ or ‘E’.

tems can be used to speed up the hypernym dis-
covery process, but they can also provide new hy-
pernyms not considered beforehand.

Unsupervised distributional methods (e.g. the
unsupervised baselines) seemed to perform poorly
overall, as these systems tended to retrieve sim-
ilar words which are not necessarily hypernyms.
For example, false positives for APSyn and bal-
APInc are characterized by a large number of co-
hyponyms (e.g. Exodus and Genesis) and syntag-

matically related words (e.g. orange and juice).
As regards the top performing systems, it is

worth noting that they often tended to retrieve
correct or near-correct hypernyms. The hyper-
nyms that were retrieved on the gold standard
were of several kinds: first, some hypernyms
were present in the gold standard but normalized
differently (for example, for About.com the gold
standard contained website but not web site re-
trieved by CRIM r1); second, they retrieved hy-

719

1B: Italian
Concepts Entities All

MAP MRR P@5 FPs MAP MRR P@5 FPs MAP MRR P@5 FPs
300-sparsans r1 8.94 18.77 8.71 12 22.56 46.34 21.79 16 12.08 25.14 11.73 14
NLP HZ 9.28 15.23 9.12 12 18.32 32.37 18.26 28 11.37 19.19 11.23 20
300-sparsans r2 7.32 16.02 7.31 16 16.18 36.12 16.02 12 9.36 19.94 9.32 14
MFH* 5.07 13.30 4.31 0 16.71 39.56 15.18 8 7.76 19.37 6.82 4
vTE* 4.85 11.09 4.62 12 13.74 33.08 12.63 16 6.91 16.17 6.47 14
balAPInc* 4.84 10.71 4.84 16 0.72 1.96 0.77 4 3.89 8.69 3.90 10
APSyn* 4.30 9.50 4.33 12 1.00 2.06 1.00 4 3.54 7.56 3.56 8
SLQS* 2.02 4.02 2.07 4 0.26 0.75 0.17 0 1.62 3.26 1.63 2
Team 13 0.62 1.69 0.57 8 0.13 0.27 0.17 8 0.51 1.36 0.48 8

Table 5: Results for the Italian subtask (1B). Baselines are marked with *.

1C: Spanish
Concepts Entities All

MAP MRR P@5 FPs MAP MRR P@5 FPs MAP MRR P@5 FPs
NLP HZ 18.17 25.17 18.71 12 23.19 33.48 23.21 24 20.04 28.27 20.39 18
300-sparsans r1 13.21 28.07 12.80 8 25.91 53.51 24.24 4 17.94 37.56 17.06 6
300-sparsans r2 11.10 22.90 11.07 20 14.92 30.87 15.14 12 12.52 25.87 12.59 16
MFH* 8.33 17.19 8.51 0 18.58 50.89 15.88 8 12.16 29.76 11.26 4
vTE* 6.08 14.32 6.01 12 8.84 20.96 9.10 4 7.11 16.80 7.16 8
balAPInc* 3.52 7.99 3.62 0 0.59 1.39 0.55 0 2.43 5.53 2.48 0
APSyn* 3.28 6.76 3.29 8 0.74 1.71 0.79 0 2.33 4.88 2.35 4
Team 13 2.57 6.08 2.06 12 0.06 0.13 0.05 4 1.63 4.31 1.65 8
SLQS* 1.21 2.27 1.14 0 0.37 0.89 0.32 0 0.90 1.75 0.83 0

Table 6: Results for the Spanish subtask (1C). Baselines are marked with *.

2B: Music
Concepts Entities All

MAP MRR P@5 FPs MAP MRR P@5 FPs MAP MRR P@5 FPs
CRIM r1 43.38 63.79 43.87 24 38.42 55.54 38.76 12 40.97 60.93 41.31 16
CRIM r2 41.98 63.07 42.32 20 34.59 51.08 35.80 8 40.88 60.18 41.58 16
MFH* 33.56 56.82 35.22 0 32.72 38.03 37.11 0 33.32 51.48 35.76 0
300-sparsans r1 23.52 39.26 22.66 16 44.71 64.53 44.48 20 29.54 46.43 28.86 18
CRIM CE 24.62 42.92 25.46 8 11.93 24.03 12.24 16 21.20 37.55 21.70 12
300-sparsans r2 12.49 27.33 12.79 20 35.72 60.35 38.63 4 19.08 36.71 20.13 12
vTE* 11.53 35.78 10.28 12 16.67 48.39 17.77 20 12.99 39.36 12.41 16
Anu 10.68 27.13 10.84 32 3.43 7.19 3.90 8 8.62 21.47 8.87 20
vTE* CE 6.31 16.54 6.81 4 13.37 33.58 14.87 4 3.51 9.79 3.62 4
SJTU BCMI 5.16 9.84 5.41 4 6.30 11.57 6.67 4 4.71 9.15 4.91 4
Team 13 4.83 14.33 4.51 12 2.82 7.92 3 8 5.62 16.87 5.11 16
ADAPT 1.88 5.34 1.89 2 0.00 0.00 0.00 0 2.63 7.46 2.64 4
balAPInc* 1.44 3.65 1.58 4 0.15 0.23 0.14 0 1.95 5.01 2.15 2
APSyn* 1.13 2.55 1.30 8 0.15 0.23 0.18 4 1.51 3.47 1.74 6
SLQS* 0.64 1.25 0.65 0 0.11 0.14 0 0.86 1.69 0.85 0

Table 7: Results for the Music subtask (2B). Baselines are marked with *.

pernyms which were either more or less fine-
grained than the gold standard hypernyms (e.g.
the list of gold hypernyms for downfall includes
natural phenomenon but not storm, discovered by
some supervised systems); third, some systems

were able to retrieve hypernyms which correspond
to another hyponym’s sense not captured in the
gold standard (e.g. facultad in Spanish can be ei-
ther an educational institution or a virtue/ability,
the latter not being captured by the gold standard

720

2A: Medical
MAP MRR P@5 FPs

CRIM r1 34.05 54.64 36.77 20
CRIM r2 31.54 46.19 35.49 12
MFH* 28.93 35.80 34.20 4
CRIM CE 27.18 49.51 29.10 12
300-sparsans r1 20.75 40.60 21.43 16
vTE* 18.84 41.07 20.71 12
300-sparsans r2 14.96 32.18 15.81 12
EXPR C 13.77 40.76 12.76 40
SJTU BCMI 11.69 25.95 11.69 12
vTE* CE 11.66 23.83 12.64 32
ADAPT 8.13 20.56 8.32 20
Anu 7.05 17.51 7.29 32
Team 13 2.55 7.19 2.52 8
EXPR C CE 1.36 3.70 1.42 12
balAPInc* 0.91 2.10 1.08 0
APSyn* 0.65 1.43 0.72 4
SLQS* 0.29 0.66 0.33 0

Table 8: Results for the Medical subtask (2A). Base-
lines are marked with * and cross evaluation systems
are followed by ‘ CE’.

but retrieved by the 300-sparsans r2 system). Per-
haps surprisingly, this latter case also extends to
baselines such as MFH: in fact, many named enti-
ties have very skewed sense distributions, with less
popular senses corresponding to people, cities, or
companies often unbeknownst to most human an-
notators.17 In addition to these three common pat-
terns, there are also other correct false positives
which do not clearly correspond to any of these
three.

7 Conclusion

In this paper we have presented the SemEval 2018
task on Hypernym Discovery. We provided a
large, reliable framework to evaluate hypernym
discovery system in various languages (English,
Italian, and Spanish) and domains (medical and
music). This evaluation framework aims at going
beyond the common practice of seeing hypernymy
detection as a binary classification task, and pro-
vides a more challenging setting, inherently closer
to how the task should be modeled within down-
stream applications. We hope this framework will
contribute to the development of hypernym dis-
covery systems in several languages and, more

17As an example, Cervantes is universally known as the
famous Spanish writer who authored ‘Don Quixote’, but the
word might also refer to a town in Western Australia.

generally, to a wider understanding of hypernymy
from a computational perspective.

As far as the results are concerned, this newly-
proposed task proved to be challenging for all par-
ticipating systems, leaving considerable room for
improvement. It is clear from the figures that su-
pervised systems perform considerably better than
unsupervised systems. This might suggests that,
given a well-defined downstream task, it could be
more valuable to annotate hypernyms manually or
semi-automatically (whenever possible) and then
train a supervised system, than proposing unsuper-
vised solutions with suboptimal performances. On
the other hand, it is also noteworthy that the best
system across three of the subtasks (i.e. CRIM)
combined a supervised neural network architec-
ture with the output of an unsupervised system us-
ing Hearst-style patterns (Hearst, 1992).

Acknowledgements

The authors gratefully acknowledge the economic
support in the construction of the datasets from
the Maria de Maeztu-UPF Grant provided to Hora-
cio Saggion, Luis Espinosa-Anke and Sergio Ora-
mas; Google Research through the Google Doc-
toral Fellowship in Natural Language Processing
to Jose Camacho-Collados; and Bar-Ilan Univer-
sity through Vered Shwartz. This work is par-
tially supported by the TUNER project (TIN2015-
65308-C5-5-R, MINECO/FEDER, UE), Spanish
Ministry of Economy and Competitiveness.

We would also like to thank the task participants
who provided helpful inputs to improve the task
through their comments in the Google Group.

References
Marco Baroni, Raffaella Bernardi, Ngoc-Quynh Do,

and Chung-chieh Shan. 2012. Entailment above the
word level in distributional semantics. In Proceed-
ings of EACL, pages 23–32.

Marco Baroni, Silvia Bernardini, Adriano Ferraresi,
and Eros Zanchetta. 2009. The wacky wide web:
a collection of very large linguistically processed
web-crawled corpora. Language resources and
evaluation, 43(3):209–226.

Marco Baroni and Alessandro Lenci. 2011. How we
blessed distributional semantic evaluation. In Pro-
ceedings of the GEMS 2011 Workshop on GEomet-
rical Models of Natural Language Semantics, pages
1–10. Association for Computational Linguistics.

Gbor Berend, Mrton Makrai, and Pter Fldik. 2018.
300-sparsans at semeval-2018 task 9: Hypernymy

721

as interaction of sparse attributes. In Proceedings of
The 12th International Workshop on Semantic Eval-
uation, pages 925–931, New Orleans, Louisiana.
Association for Computational Linguistics.

Gabriel Bernier-Colborne and Caroline Barriere. 2018.
Crim at semeval-2018 task 9: A hybrid approach
to hypernym discovery. In Proceedings of The
12th International Workshop on Semantic Evalua-
tion, pages 722–728, New Orleans, Louisiana. As-
sociation for Computational Linguistics.

Guido Boella and Luigi Di Caro. 2013. Supervised
learning of syntactic contexts for uncovering def-
initions and extracting hypernym relations in text
databases. In Machine learning and knowledge dis-
covery in databases, pages 64–79. Springer.

Gemma Boleda, Abhijeet Gupta, and Sebastian Padó.
2017. Instances and concepts in distributional space.
In Proceedings of EACL (2), Valencia, Spain. Asso-
ciation for Computational Linguistics.

Georgeta Bordea, Paul Buitelaar, Stefano Faralli, and
Roberto Navigli. 2015. Semeval-2015 task 17: Tax-
onomy extraction evaluation (texeval). In Proceed-
ings of the SemEval workshop.

Georgeta Bordea, Els Lefever, and Paul Buitelaar.
2016. Semeval-2016 task 13: Taxonomy extrac-
tion evaluation (texeval-2). In SemEval-2016, pages
1081–1091. Association for Computational Linguis-
tics.

Jose Camacho-Collados. 2017. Why we have switched
from building full-fledged taxonomies to simply
detecting hypernymy relations. arXiv preprint
arXiv:1703.04178.

Jose Camacho-Collados and Roberto Navigli. 2017.
BabelDomains: Large-Scale Domain Labeling of
Lexical Resources. In Proceedings of EACL (2), Va-
lencia, Spain.

Cristian Cardellino. 2016. Spanish Billion Words Cor-
pus and Embeddings.

Luis Espinosa-Anke, Jose Camacho-Collados, Claudio
Delli Bovi, and Horacio Saggion. 2016. Supervised
distributional hypernym discovery via domain adap-
tation. In Proceedings of EMNLP, pages 424–435.

Tiziano Flati, Daniele Vannella, Tommaso Pasini, and
Roberto Navigli. 2016. MultiWiBi: the Multilin-
gual Wikipedia Bitaxonomy Project. Artificial In-
telligence.

Ruiji Fu, Jiang Guo, Bing Qin, Wanxiang Che, Haifeng
Wang, and Ting Liu. 2014. Learning semantic hi-
erarchies via word embeddings. In Proceedings of
ACL.

Amit Gupta, Francesco Piccinno, Mikhail
Kozhevnikov, Marius Pasca, and Daniele Pighin.
2016. Revisiting taxonomy induction over
wikipedia. In Proceedings of COLING 2016, the

26th International Conference on Computational
Linguistics: Technical Papers, pages 2300–2309,
Osaka, Japan.

Lushan Han, Abhay L Kashyap, Tim Finin,
James Mayfield, and Jonathan Weese. 2013.
Umbc ebiquity-core: semantic textual similarity
systems. In Second Joint Conference on Lexical
and Computational Semantics (* SEM), Volume 1:
Proceedings of the Main Conference and the Shared
Task: Semantic Textual Similarity, volume 1, pages
44–52.

Arshia Zernab Hassan, Manikya Swathi Vallabha-
josyula, and Ted Pedersen. 2018. Umduluth-cs8761
at semeval-2018 task 9: Hypernym discovery us-
ing hearst patterns, co-occurrence frequencies and
word embeddings. In Proceedings of The 12th Inter-
national Workshop on Semantic Evaluation, pages
911–915, New Orleans, Louisiana. Association for
Computational Linguistics.

Marti A Hearst. 1992. Automatic acquisition of hy-
ponyms from large text corpora. In Proceedings of
the 14th conference on Computational linguistics,
pages 539–545.

Johannes Hoffart, Dragan Milchevski, and Gerhard
Weikum. 2014. Stics: searching with strings, things,
and cats. In Proceedings of the 37th international
ACM SIGIR conference on Research & development
in information retrieval, pages 1247–1248. ACM.

Ahmad Issa Alaa Aldine, Mounira Harzallah, Giuseppe
Berio, Nicolas Bchet, and Ahmad Faour. 2018. Expr
at semeval-2018 task 9: A combined approach for
hypernym discovery. In Proceedings of The 12th
International Workshop on Semantic Evaluation,
pages 916–920, New Orleans, Louisiana. Associa-
tion for Computational Linguistics.

Lili Kotlerman, Ido Dagan, Idan Szpektor, and Maayan
Zhitomirsky-Geffet. 2010. Directional distribu-
tional similarity for lexical inference. Natural Lan-
guage Engineering, 16(04):359–389.

Omer Levy, Steffen Remus, Chris Biemann, Ido Da-
gan, and Israel Ramat-Gan. 2015. Do supervised
distributional methods really learn lexical inference
relations? In Proceedings of NAACL 2015, Denver,
Colorado, USA.

Alfredo Maldonado and Filip Klubika. 2018. Adapt at
semeval-2018 task 9: Skip-gram word embeddings
for unsupervised hypernym discovery in specialised
corpora. In Proceedings of The 12th International
Workshop on Semantic Evaluation, pages 921–924,
New Orleans, Louisiana. Association for Computa-
tional Linguistics.

Tomas Mikolov, Quoc V Le, and Ilya Sutskever. 2013.
Exploiting similarities among languages for ma-
chine translation. arXiv preprint arXiv:1309.4168.

George A Miller. 1995. Wordnet: a lexical database for
english. Communications of the ACM, 38(11):39–
41.

722

Roberto Navigli and Simone Paolo Ponzetto. 2012.
BabelNet: The automatic construction, evaluation
and application of a wide-coverage multilingual se-
mantic network. Artificial Intelligence, 193:217–
250.

Roberto Navigli and Paola Velardi. 2010. Learning
word-class lattices for definition and hypernym ex-
traction. In ACL, pages 1318–1327.

Kim Anh Nguyen, Maximilian Köper, Sabine
Schulte im Walde, and Ngoc Thang Vu. 2017.
Hierarchical embeddings for hypernymy detection
and directionality. In Proceedings of the 2017 Con-
ference on Empirical Methods in Natural Language
Processing, pages 233–243, Copenhagen, Denmark.

Mihaela Onofrei, Ionut Hulub, Diana Trandabat, and
Daniela Gifu. 2018. Apollo at semeval-2018 task
9: Detecting hypernymy relations using syntactic
dependencies. In Proceedings of The 12th Inter-
national Workshop on Semantic Evaluation, pages
895–899, New Orleans, Louisiana. Association for
Computational Linguistics.

Sergio Oramas, Luis Espinosa-Anke, Mohamed Sordo,
Horacio Saggion, and Xavier Serra. 2016. Elmd:
An automatically generated entity linking gold stan-
dard dataset in the music domain. In Proceedings
of the 10th International Conference on Language
Resources and Evaluation (LREC 2016). European
Language Resources Association.

Sergio Oramas, Oriol Nieto, Francesco Barbieri, and
Xavier Serra. 2017. Multi-label music genre clas-
sification from audio, text, and images using deep
features. In Proceedings of the 18th International
Society of Music Information Retrieval Conference
(ISMIR 2017).

Ellie Pavlick and Marius Pasca. 2017. Identifying
1950s american jazz musicians: Fine-grained isa
extraction via modifier composition. In Proceed-
ings of the 55th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Pa-
pers), pages 2099–2109. Association for Computa-
tional Linguistics.

Simone Paolo Ponzetto and Michael Strube. 2007. De-
riving a large scale taxonomy from wikipedia. In
AAAI, volume 7, pages 1440–1445.

John Prager, Jennifer Chu-Carroll, Eric W Brown, and
Krzysztof Czuba. 2008. Question answering by pre-
dictive annotation. In Advances in Open Domain
Question Answering, pages 307–347. Springer.

Wei Qiu, Mosha Chen, Linlin Li, and Luo Si. 2018.
Nlp hz at semeval-2018 task 9: a nearest neighbor
approach. In Proceedings of The 12th International
Workshop on Semantic Evaluation, pages 906–910,
New Orleans, Louisiana. Association for Computa-
tional Linguistics.

Sara Rodrı́guez-Fernández, Luis Espinosa Anke,
Roberto Carlini, and Leo Wanner. 2016. Semantics-
driven recognition of collocations using word em-
beddings. In Proceedings of the 54th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 2: Short Papers), volume 2, pages 499–505.

Stephen Roller and Katrin Erk. 2016. Relations such
as hypernymy: Identifying and exploiting hearst
patterns in distributional vectors for lexical entail-
ment. In Proceedings of EMNLP, pages 2163–2172,
Austin, Texas.

Stephen Roller, Katrin Erk, and Gemma Boleda. 2014.
Inclusive yet selective: Supervised distributional hy-
pernymy detection. In Proceedings of COLING
2014, Dublin, Ireland.

V. Ivan Sanchez Carmona and Sebastian Riedel. 2017.
How Well Can We Predict Hypernyms from Word
Embeddings? A Dataset-Centric Analysis. In Pro-
ceedings of EACL (short), pages 401–407.

Enrico Santus, Alessandro Lenci, Tin-Shing Chiu, Qin
Lu, and Chu-Ren Huang. 2016a. Nine features in
a random forest to learn taxonomical semantic rela-
tions. arXiv preprint arXiv:1603.08702.

Enrico Santus, Alessandro Lenci, Tin-Shing Chiu, Qin
Lu, and Chu-Ren Huang. 2016b. Unsupervised
measure of word similarity: How to outperform co-
occurrence and vector cosine in vsms. In Thirtieth
AAAI Conference on Artificial Intelligence, pages
4260–4261.

Enrico Santus, Alessandro Lenci, Qin Lu, and Sabine
Schulte im Walde. 2014. Chasing hypernyms in
vector spaces with entropy. In Proceedings of the
14th Conference of the European Chapter of the As-
sociation for Computational Linguistics, volume 2:
Short Papers, pages 38–42. Association for Compu-
tational Linguistics.

Vered Shwartz, Yoav Goldberg, and Ido Dagan. 2016.
Improving hypernymy detection with an integrated
path-based and distributional method. In Proceed-
ings of ACL, Berlin, Germany.

Vered Shwartz, Enrico Santus, and Dominik
Schlechtweg. 2017. Hypernyms under siege:
Linguistically-motivated artillery for hypernymy
detection. In Proceedings of EACL, Valencia, Spain.
Association for Computational Linguistics.

Rion Snow, Daniel Jurafsky, and Andrew Y Ng. 2004.
Learning syntactic patterns for automatic hypernym
discovery. Advances in Neural Information Process-
ing Systems 17.

Kent A Spackman, Keith E Campbell, and Roger A
Côté. 1997. Snomed rt: a reference terminology for
health care. In Proceedings of the AMIA annual fall
symposium, page 640. American Medical Informat-
ics Association.

723

Fabian M Suchanek, Gjergji Kasneci, and Gerhard
Weikum. 2007. Yago: A core of semantic knowl-
edge. In WWW, pages 697–706. ACM.

Aaron Swartz. 2002. Musicbrainz: A semantic web
service. IEEE Intelligent Systems, 17(1):76–77.

Denny Vrandečić and Markus Krötzsch. 2014. Wiki-
data: a free collaborative knowledgebase. Commu-
nications of the ACM, 57(10):78–85.

Ivan Vulić, Daniela Gerz, Douwe Kiela, Felix Hill,
and Anna Korhonen. 2017. Hyperlex: A large-scale
evaluation of graded lexical entailment. Computa-
tional Linguistics.

Yogarshi Vyas and Marine Carpuat. 2017. Detecting
asymmetric semantic relations in context: A case-
study on hypernymy detection. In Proceedings of
the 6th Joint Conference on Lexical and Computa-
tional Semantics (*SEM 2017), pages 33–43. Asso-
ciation for Computational Linguistics.

Chengyu Wang, Xiaofeng He, and Aoying Zhou. 2017.
A short survey on taxonomy learning from text cor-
pora: Issues, resources and recent advances. In Pro-
ceedings of the 2017 Conference on Empirical Meth-
ods in Natural Language Processing, pages 1190–
1203.

Julie Weeds, Daoud Clarke, Jeremy Reffin, David Weir,
and Bill Keller. 2014. Learning to distinguish hyper-
nyms and co-hyponyms. In Proceedings of COL-
ING 2014, the 25th International Conference on
Computational Linguistics: Technical Papers, pages
2249–2259.

J.C. Wu, Y.C. Chang, T. Mitamura, and J.S. Chang.
2010. Automatic collocation suggestion in aca-
demic writing. In Proceedings of the ACL Confer-
ence, Short paper track, Uppsala.

Mohamed Yahya, Klaus Berberich, Shady Elbassuoni,
and Gerhard Weikum. 2013. Robust question an-
swering over the web of linked data. In Proceedings
of the 22nd ACM international conference on Con-
ference on information & knowledge management,
pages 1107–1116. ACM.

Zheng Yu, Haixun Wang, Xuemin Lin, and Min Wang.
2015. Learning term embeddings for hypernymy
identification. In Proceedings of IJCAI, pages
1390–1397.

Zhousheng Zhang, Jiangtong Li, Hai Zhao, and Bingjie
Tang. 2018. Sjtu-nlp at semeval-2018 task 9: Neu-
ral hypernym discovery with term embeddings. In
Proceedings of The 12th International Workshop on
Semantic Evaluation, pages 900–905, New Orleans,
Louisiana. Association for Computational Linguis-
tics.

724

Proceedings of the 12th International Workshop on Semantic Evaluation (SemEval-2018), pages 725–731
New Orleans, Louisiana, June 5–6, 2018. ©2018 Association for Computational Linguistics

CRIM at SemEval-2018 Task 9: A Hybrid Approach to Hypernym
Discovery

Gabriel Bernier-Colborne
g.b.colborne@gmail.com

Caroline Barrière
caroline barriere@yahoo.ca

Abstract

This report describes the system developed by
the CRIM team for the hypernym discovery
task at SemEval 2018. This system exploits a
combination of supervised projection learning
and unsupervised pattern-based hypernym dis-
covery. It was ranked first on the 3 sub-tasks
for which we submitted results.

1 Introduction

The goal of the hypernym discovery task at Sem-
Eval 2018 is to predict the hypernyms of a query
given a large vocabulary of candidate hypernyms.
A query can be either a concept (e.g. cocktail or
epistemology) or a named entity (e.g. Craig An-
derson or City of Whitehorse). Two types of data
were provided to train the systems: a large unla-
beled text corpus and a small training set of exam-
ples comprising a query and its hypernyms. More
details on this task may be found in the task de-
scription paper (Camacho-Collados et al., 2018).

The system developed by the CRIM team for
the task of hypernym discovery exploits a com-
bination of two approaches: an unsupervised,
pattern-based approach and a supervised, projec-
tion learning approach. These two approaches are
described in Sections 2 and 3, then Section 4 de-
scribes our hybrid system and Section 5 presents
our results.

2 Pattern-Based Hypernym Discovery

Pattern-based approaches to relation extraction
have been discussed in the literature for quite some
time (see surveys by Auger and Barrière (2008)
and Nastase et al. (2013)). They can be used to dis-
cover various relations, including domain-specific
ones (Halskov and Barrière, 2008) and more gen-
eral ones, such as hypernymy. The pattern-
based approach to hypernym discovery was pi-
oneered by Hearst (1992), who defined specific

textual patterns (e.g. Y such as X) to mine hy-
ponym/hypernym pairs from corpora.

This approach is known to suffer from low re-
call because it assumes that hyponym/hypernym
pairs will occur together in one of these patterns,
which is often not the case. For instance, using the
training data of sub-task 1A, we found that the ma-
jority of training pairs never co-occur within the
same paragraph in corpus 1A, let alone within a
pattern that suggests hypernymy.

To increase recall, we extend the basic pattern-
based approach to hypernym discovery in two
ways. First, we identify co-hyponyms for each
query and add the hypernyms discovered for these
terms to those found for the query. These co-
hyponyms are identified using patterns, and fil-
tered based on distributional similarity using the
embeddings described in Section 3.3. Further-
more, we discover additional hypernyms using a
method based on the following assumptions: most
multi-word expressions are compositional, and the
prevailing head-modifier relation is hypernymy.

The co-hyponym patterns we use are limited to
enumeration patterns (e.g. X1, X2 and X3). For
hypernyms, we use an extended set of Hearst-like
patterns which we selected empirically (e.g. Y
such as X, Y other than X, not all Y are X, Y in-
cluding X, Y especially X, Y like X, Y for example
X, Y which includes X, X are also Y, X are all Y,
not Y so much as X).

Our pattern-based hypernym discovery algo-
rithm can be defined as follows: given a query q,

1. Create the empty set Q, which will contain
an extended set of queries.

2. Search for the co-hyponym patterns in the
corpus to discover co-hyponyms of q. Add
these to Q and store their frequency (number
of times a given co-hyponym was found us-
ing these patterns).

725

3. Score each co-hyponym q′ ∈ Q by multiply-
ing the frequency of q′ by the cosine similar-
ity of the embeddings of q and q′. Rank the
co-hyponyms in Q according to this score,
keep the top n,1 and discard the rest.

4. Add the original query q to Q.

5. Create the empty set of hypernyms Hq.

6. For each query q′ ∈ Q, search for the hyper-
nym patterns in the corpus to discover hyper-
nyms of q′. Add these to Hq.

7. Add the head of each term in Hq to this set,
as well as the head of the original query q.

8. Score each candidate c ∈ Hq by multiplying
its normalized frequency2 by the cosine simi-
larity between the embeddings of c and q, and
rank the candidates according to this score.

Although the pattern-based search for both co-
hyponyms and hypernyms can find terms not in-
cluded in the provided vocabulary (which could
also be useful), we discarded out-of-vocabulary
terms because we had not learned embeddings for
them.

3 Learning Projections for Hypernym
Discovery

Several supervised learning approaches based on
word embeddings have recently been developed
for the task of hypernym detection and the related
task of hypernym discovery (Camacho-Collados,
2017). The general idea is to learn a function that
takes as input the word embeddings of a query q
and a candidate hypernym h and outputs the like-
lihood that there is a hypernymy relationship be-
tween q and h. To discover hypernyms for a given
query q (rather than classify a given pair of words),
we apply this decision function to all candidate hy-
pernyms, and select the most likely candidates (or
all those classified as hypernyms).

This decision function can be learned in a su-
pervised fashion using examples of pairs of words
that are related by hypernymy and pairs that are
not. The supervised model can take as input a
combination of the embeddings of q and h, and
different ways of combining the embeddings for
this purpose have been used (Baroni et al., 2012;

1We set n = 5 empirically.
2Frequencies were normalized in the range [0.05, 1.0].

Roller et al., 2014; Weeds et al., 2014). In related
work, models have been proposed that learn to
project the embedding of q such that its projection
is close to that of its hypernym h (Fu et al., 2014;
Yamane et al., 2016; Espinosa-Anke et al., 2016).
This has been termed projection learning (Ustalov
et al., 2017). The decision function is then based
on how close the projection of q is to a given can-
didate h.

Fu et al. (2014) introduced a model that learns
multiple projection matrices representing different
kinds of hypernymy relationships. In this model,
each (q, h) pair is first assigned to a cluster based
on their vector offsets, then projection matrices are
learned for each cluster. Based on this work, Ya-
mane et al. (2016) proposed a model that jointly
learns the clusters and projection matrices.

We use a similar method to learn projections
for hypernym discovery, but our approach dif-
fers from that of Yamane et al. (2016) in sev-
eral ways: our model performs a soft clustering
of query-hypernym pairs rather than a hard clus-
tering, and we modified the training algorithm in
several ways.

3.1 The Model
Given a query q and a candidate hypernym h, the
model retrieves their embeddings eq, eh ∈ Rd×1

using a lookup table. These embeddings were
learned beforehand on a large unlabeled text cor-
pus (i.e. the corpora provided for this task).
The embedding eq is then multiplied by a 3-D
tensor containing k square projection matrices
φi ∈ Rd×d for i ∈ {1, . . . , k}, producing a ma-
trix P ∈ Rk×d containing the projections of eq:

Pi = (φi · eq)T (1)

The model then checks how close each of the k
projections of eq are to eh by taking the dot prod-
uct:

s = P · eh (2)

The column vector s ∈ Rk×1 is then fed to
an affine transformation and a sigmoid activation
function (in other words, a logistic regression clas-
sifier) to obtain an estimate of the likelihood that q
and h are related by hypernymy:

y = σ(W · s+ b) (3)

To discover the hypernyms of a given query, we
compute the likelihood y for all candidates and se-
lect the top-ranked ones.

726

3.2 The Training Algorithm

We train the model using negative sampling: for
each positive example of a (query, hypernym) pair
in the training data, we generate a fixed number
m of negative examples by replacing the hyper-
nym with a word randomly drawn from the vocab-
ulary.3 We then train the model to output a likeli-
hood (y) close to 1 for positive examples and close
to 0 for negative examples. This is accomplished
by minimizing the binary cross-entropy of the pos-
itive and negative training examples. For a partic-
ular example, this is computed as follows:

H(q, h, t) = t× log(y) + (1− t)× log(1− y)

where q is a query, h is a candidate hypernym, t
is the target (1 for positive examples, 0 for neg-
ative), and y is the likelihood predicted by the
model. If we sum H for every example in the
training set D (containing both the positive and
negative examples), we obtain the cost function
J =

∑
(q,h,t)∈DH(q, h, t). This function is min-

imized by gradient descent, using the Adam opti-
mizer4 (Kingma and Ba, 2014).

A few details of the setup we use for training
are worth mentioning:

• We use a fixed number of projections (k)
rather than the dynamic clustering algorithm
of Yamane et al. (2016). For our official runs,
we used k = 24.

• The word embeddings are normalized to unit-
length before training.

• For the initialization of the projection matri-
ces, we add random noise to an identity ma-
trix, which means that at first, the projections
of a query are simply k randomly corrupted
copies of the query’s embedding.

• We train the model on random mini-batches
containing 32 positive examples and 32 ×m
negative examples (m being the number of
negative examples).

• Dropout is applied to the embeddings eq and
eh and the query projections P . For regular-
ization, we also use gradient clipping, as well
as early stopping.

3Different ways of selecting the negative examples for this
purpose have been proposed. See Ustalov et al. (2017).

4We use β1 = β2 = 0.9.

• We sample positive examples using a func-
tion based on the frequency of the hypernyms
in the training data, such that we subsample
(q, h) pairs where h occurs often in the train-
ing data. The probability of sampling (q, h)
is given by:

P (q, h) =

√
minh′∈D(freq(h′))

freq(h)

where freq(h) returns the frequency of h in
the training data.5

• The word embeddings are optimized (or
“fine-tuned”) during training.

• We use a multi-task learning setup whereby
we train two separate logistic regression clas-
sifiers, each with their own parameters W
and b, and use one for queries that are named
entities, and the other for queries that are con-
cepts.6 The rest of the parameters (i.e. the
projection matrices φ) are shared.

The various hyperparameters mentioned above
were tuned on the trial set (i.e. development set)
provided for sub-task 1A.

3.3 The Word Embeddings
We learned term embeddings for all queries and
candidates using the pre-tokenized corpora pro-
vided for sub-tasks 1A, 2A, and 2B. We pre-
processed the corpora by converting all charac-
ters to lower case and replacing multi-word terms
found in the vocabulary (candidates and lower-
cased queries) with a single token, starting with
trigrams, then bigrams.7 We then used the skip-
gram algorithm with negative sampling (Mikolov
et al., 2013) to learn the embeddings.

3.4 Data Augmentation
For one of our 2 runs, we experimented with a
method to add synthetic examples to the positive
examples in the training set provided (D). This

5On the training data of subtask 1A, this produces a sam-
pling probability of 0.06 for the most frequent hypernym
(person), while the least frequent hypernyms have a sampling
probability of 1.

6Multi-task learning was not used on subtask 2A, because
all queries were concepts.

7It is worth noting that a small number of candidates (e.g.
less than 0.1% of candidates on corpus 1A) had a frequency
of 0 in this preprocessed corpus, so we could not train an
embedding for these candidates. These appear to be terms
that always occur within a longer candidate.

727

was meant to provide additional training data and
avoid overfitting the embeddings of the words in
the training set. We use 2 heuristics to generate
these synthetic examples:

1. Given a positive example (q, h) ∈ D, add
(q′, h) to the positive examples, where q′ is
the nearest neighbour of q, based on the co-
sine similarity of the embeddings of all the
words in the vocabulary. This was motivated
by the observation that nearest neighbours
were often co-hyponyms.

2. Given a query q and the set Hq containing
the hypernyms of q according to the train-
ing data, compute the α nearest neighbours
of each hypernym in Hq, and for each neigh-
bour that is shared by at least 2 of the hyper-
nyms in Hq, add that neighbour to Hq.8

Negative examples are generated for each of the
synthetic examples, as with the actual positive ex-
amples in the training set.

4 Hybrid Hypernym Discovery

Our hybrid approach to hypernym discovery com-
bines supervised projection learning and unsuper-
vised pattern-based hypernym discovery (see Sec-
tions 2 and 3). To combine the outputs of the 2
systems, we take the top 100 candidates accord-
ing to each,9 normalize their scores and sum them,
then rerank the candidates according to this new
score. This reranking function favours candidates
found by both systems, but also gives a chance to
strong candidates found by a single system.

5 Experiments and Results

We submitted 2 runs on 3 of the 5 sub-tasks: 1A
(general), 2A (medical), and 2B (music). The sys-
tem outputs its top 15 predictions in all cases. The
difference between the 2 runs is that for run 1, we
used data augmentation (see Section 3.4) to train
the supervised system – the same unsupervised
output was used for both runs. We also submitted
one run for cross-evaluation (training on 1A, but
testing on 2A or 2B). First, we added the queries
and candidates of 2A or 2B to those of 1A be-

8We use α = 2.
9Analyzing the individual and combined recall of the two

systems at various ranks indicated that using more than 100
candidates would not increase recall.

fore training embeddings on the corpus of 1A.10

These embeddings were used to train the super-
vised model on the 1A training data. We then com-
bined the predictions of the supervised and unsu-
pervised models on test set 2A/2B.11

A summary of our system’s results is shown in
Table 1. This table shows the mean average preci-
sion (MAP), mean reciprocal rank (MRR) and pre-
cision at rank 1 (P@1) of our system and those of
the 2 strongest baselines which were computed by
the task organizers. The first is a supervised base-
line12 and the second is based on the most frequent
hypernyms in the training data. For more details,
see (Camacho-Collados et al., 2018).

Our hybrid system was ranked 1st on all three
sub-tasks for which we submitted runs. As shown
in Table 1, the scores obtained using this system
are much higher than the strongest baselines for
this task. Furthermore, it is likely that we could
improve our scores on 2A and 2B, since we only
tuned the system on 1A.

If we compare runs 1 and 2 of our hybrid sys-
tem, we see that data augmentation improved our
scores slightly on 1A and 2B, and increased them
by several points on 2A.

Our cross-evaluation results are better than
the supervised baseline computed using the nor-
mal evaluation setup, so training our system on
general-purpose data produced better results on a
domain-specific test set than a strong, supervised
baseline trained on the domain-specific data.

Table 1 also shows the scores we would have
obtained on the test set if we had used only the
unsupervised (pattern-based) or supervised (pro-
jection learning) parts of our system. Note that the
unsupervised system outperformed all other unsu-
pervised systems evaluated on this task, and even
outperformed the supervised baseline on 2A.

Combining the outputs of the 2 systems im-
proves the best score of either system on all test
sets, sometimes by as much as 10 points.

Notice also that the results obtained using only
the supervised system indicate that data augmen-
tation had a positive effect on our 2A scores only
(compare runs 1 and 2), although our tests on the

10Several of the domain-specific queries that were added to
the vocab were not found in corpus 1A. We decided to only
use the output of the unsupervised system in these cases.

11Note that the unsupervised system used the corpora of
2A/2B, but no supervised learning was carried out on the
training data of 2A/2B.

12This is a “vanilla” version of TaxoEmbed (Espinosa-
Anke et al., 2016).

728

Test set 1A Test set 2A Test set 2B
MAP MRR P@1 MAP MRR P@1 MAP MRR P@1

Hybrid run 1 19.78 36.10 29.67 34.05 54.64 49.20 40.97 60.93 48.20
Hybrid run 2 19.54 35.94 29.67 31.54 46.19 41.40 40.88 60.18 47.60
Supervised run 1 19.09 34.53 28.33 30.63 44.18 40.00 38.24 53.45 38.20
Supervised run 2 19.11 34.99 28.80 28.51 37.63 34.40 39.95 57.34 43.00
Unsupervised 7.36 15.44 10.73 21.74 47.85 38.60 15.86 34.98 28.60
BaselineSUP 10.60 23.83 19.73 18.84 41.07 35.40 12.99 39.36 33.20
BaselineMFH 8.77 21.39 19.80 28.93 35.80 32.60 33.32 51.48 36.20
Hybrid cross-eval N/A N/A N/A 27.18 49.51 43.20 21.02 37.55 29.20
Supervised cross-eval N/A N/A N/A 22.89 38.30 30.60 16.80 29.28 19.20
BaselineSUP cross-eval N/A N/A N/A 11.66 23.83 17.20 6.31 16.54 9.60

Table 1: Our system’s results on test sets 1A, 2A, and 2B. The runs we submitted are the hybrid runs. The
supervised and unsupervised runs were produced by using our 2 sub-systems separately. BaselineSUP is a strong,
supervised baseline and BaselineMFH is the most-frequent-hypernym baseline. Cross-evaluation results were
obtained by training the supervised system on 1A and evaluating on 2A or 2B.

trial set suggested it would also have a positive
effect on our 1A scores. Given this observation,
we find it somewhat surprising that run 1 is the
best on all 3 test sets when we use the hybrid sys-
tem. One possible explanation is that adding the
synthetic examples makes the errors of the super-
vised system more different from those of the un-
supervised system, and that this in turn makes the
ensemble method more beneficial, but we haven’t
looked into this.

5.1 Ablation Tests

To assess the influence of different aspects of the
supervised system and its training algorithm, we
carried out a few simple ablation tests on sub-
task 1A. The baseline for these tests is our super-
vised projection learning system – we did not ap-
ply pattern-based hypernym discovery for any of
these tests. We used the setup of run 1 (with data
augmentation) and used the trial set for early stop-
ping. We conducted the following tests (one by
one, without combining any of the ablations):

1. No subsampling: we sample positive exam-
ples uniformly from the training set.

2. No MTL: instead of multi-task learning
(MTL), we use a single classifier for both
named entities and concepts.

3. Random init: the weights of φ are initialized
randomly, instead of adding random noise to
an identity matrix.

4. Single projection: k = 1 instead of 24.

5. Single neg. example: m = 1 instead of 10.

6. Frozen embeddings: the word embeddings
are not fine-tuned during training.

The results obtained on test set 1A are shown in
Table 2.13 These results show that 2 of the tech-
niques we used, namely subsampling and multi-
task learning, actually harmed our system’s per-
formance on test set 1A, although our experiments
on the trial set suggested that they would be ben-
eficial. This may be due to the small size of the
trial set (i.e. 50 queries) or some difference in the
underlying distributions of the trial and test sets.

MAP MRR P@1
Baseline 19.05 34.36 27.93
No subsampling 19.47 35.56 29.33
No MTL 19.22 35.09 28.67
Random init 16.54 30.60 24.93
Single projection 12.88 26.50 23.33
Single neg. example 11.58 21.75 15.20
Frozen embeddings 8.01 17.15 11.67

Table 2: Results of ablation tests on test set 1A. The
baseline is our supervised system (run 1).

On the other hand, fine-tuning the word embed-
dings during training seems to be one of the keys
to the success of this approach, as are the use of
multiple projection matrices, and the sampling of

13Note that the baseline results are slightly different than
those shown in Table 1 for run 1 (supervised), because we re-
trained the model to get the results on the trial set, and a ran-
dom number generator used during training was not seeded
with a fixed value.

729

Query Predictions
Suzy Favor Hamilton athlete, sportsperson, person, competitor, sport, olympic sport, . . .
wicketkeeper cricketer, sportsperson, athlete, competitor, footballer, person, . . .
aquamarine stone, crystal, precious stone, pebble, gem, rock, gemstone, . . .
tenpence monetary unit, metal money, note of hand, person, silver coin, coin, . . .
vegetarian dessert, dish, recipe, veggie, food product, organic food, meal, salad, . . .
Local Group voluntary association, locale, coalition, club, country, mapmaking, . . .
Swarthmore university, college, educational institution, school, student, . . .
hypostasis figure of speech, intellection, philosophy, ordinary language, . . .

Table 3: Examples of predictions made by our system (run 1) on the test queries of 1A. Correct predictions are in
bold. Midline separates high-accuracy examples from low-accuracy examples.

multiple negative examples for each positive ex-
ample. The way we initialize φ also seems to have
helped quite a bit.

It is important to remember that a more thor-
ough exploration of hyperparameter space would
produce results very different from those of sim-
ple ablation tests such as these.

It is worth noting that our supervised model out-
performs the supervised baseline provided for this
task (see Table 1) even when it exploits a single
projection matrix, however the difference in scores
between these 2 systems is only 2 or 3 points, de-
pending on the evaluation metric.

We should also note that the supervised model is
prone to overfitting, and we found early stopping
to be particularly important.

5.2 Qualitative Analysis
We manually inspected the results of run 1 on
some of the 1A test queries to get a better idea
of the ability of the model to discover hypernyms,
and to identify potential sources of errors. Table 3
shows a few of these test cases. Below we will
outline a few of our observations, and will refer
repeatedly to examples in Table 3.

The model is indeed able to discover valid hy-
pernyms for both concepts and named entities. It
seems that it can even handle very low-frequency
queries in some cases (Suzy Favor Hamilton oc-
curs only 5 times in the corpus), but we have not
had the chance to investigate how sensitive the
model is to term frequency.

Lexical memorization (Levy et al., 2015) can
sometimes be observed. For example, person is
the most frequent hypernym in the 1A training
data, and the model often predicts this candidate
incorrectly, even when its other top predictions are
completely unrelated (e.g. tenpence).

The model can discover hypernyms of different

senses of the same query (e.g. aquamarine, for
which the top 15 predictions contain the valid hy-
pernyms spectral color and primary color), and
it sometimes discovers hypernyms for senses that
are not represented in the gold standard (e.g. there
is a college named Swarthmore, and hypostasis
has senses related to linguistics and philosophy). It
is likely that the senses that dominate the model’s
top predictions for a given query are its most fre-
quent senses in the corpus.

The case of vegetarian suggests that syntactic
ambiguity is a source of errors: the predicted hy-
pernyms include some that might be considered
valid for the query vegetarian food, where vege-
tarian is an adjective, but not for the noun vege-
tarian.

Lastly, the model sometimes confuses concepts
and named entities (e.g. Local Group, which
refers to a group of galaxies). Preserving the true
case of the characters in the corpus would mitigate
this issue.

6 Concluding Remarks

Our approach to hypernym discovery combines
a novel supervised projection learning algo-
rithm and an unsupervised pattern-based algo-
rithm which exploits co-hyponyms in its search for
hypernyms. This hybrid approach produced very
good results on the hypernym discovery task, and
was ranked first on all 3 sub-tasks for which we
submitted results.

Acknowledgments

This research was conducted while both authors
were affiliated with the Computer Research Insti-
tute of Montréal (CRIM), and was supported by
the Natural Sciences and Engineering Research
Council of Canada.

730

References
Alain Auger and Caroline Barrière. 2008. Pattern-

based approaches to semantic relation extraction:
A state-of-the-art. Terminology, Special Issue on
Pattern-based Approaches to Semantic Relation Ex-
traction, 14(1):1–19.

Marco Baroni, Raffaella Bernardi, Ngoc-Quynh Do,
and Chung-chieh Shan. 2012. Entailment above the
word level in distributional semantics. In Proceed-
ings of the 13th Conference of the European Chap-
ter of the Association for Computational Linguistics,
pages 23–32. Association for Computational Lin-
guistics.

José Camacho-Collados. 2017. Why we have
switched from building full-fledged taxonomies to
simply detecting hypernymy relations. CoRR,
abs/1703.04178.

Jose Camacho-Collados, Claudio Delli Bovi, Luis
Espinosa-Anke, Sergio Oramas, Tommaso Pasini,
Enrico Santus, Vered Shwartz, Roberto Navigli,
and Horacio Saggion. 2018. SemEval-2018 Task
9: Hypernym Discovery. In Proceedings of the
12th International Workshop on Semantic Evalu-
ation (SemEval-2018), New Orleans, LA, United
States. Association for Computational Linguistics.

Luis Espinosa-Anke, Jose Camacho-Collados, Clau-
dio Delli Bovi, and Horacio Saggion. 2016. Su-
pervised distributional hypernym discovery via do-
main adaptation. In Proceedings of the 2016 Con-
ference on Empirical Methods in Natural Language
Processing, pages 424–435.

Ruiji Fu, Jiang Guo, Bing Qin, Wanxiang Che, Haifeng
Wang, and Ting Liu. 2014. Learning semantic hier-
archies via word embeddings. In Proceedings of the
52nd Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), vol-
ume 1, pages 1199–1209.

Jakob Halskov and Caroline Barrière. 2008. Web-
based extraction of semantic relation instances for
terminology work. Terminology, 14(1):20–44.

Marti A. Hearst. 1992. Automatic acquisition of hy-
ponyms from large text corpora. In Proceedings of
the 14th conference on Computational linguistics -
Volume 2, volume 2, pages 539–545. Association for
Computational Linguistics.

Diederik P. Kingma and Jimmy Ba. 2014. Adam:
A method for stochastic optimization. CoRR,
abs/1412.6980.

Omer Levy, Steffen Remus, Chris Biemann, and Ido
Dagan. 2015. Do supervised distributional meth-
ods really learn lexical inference relations? In Pro-
ceedings of the 2015 Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics: Human Language Technologies, pages
970–976.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey
Dean. 2013. Efficient estimation of word represen-
tations in vector space. CoRR, abs/1301.3781.

Vivi Nastase, Preslav Nakov, Diarmuid Ó Séaghdha,
and Stan Szpakowicz. 2013. Semantic Relations Be-
tween Nominals. Morgan & Claypool, Toronto.

Stephen Roller, Katrin Erk, and Gemma Boleda. 2014.
Inclusive yet selective: Supervised distributional hy-
pernymy detection. In Proceedings of COLING
2014, the 25th International Conference on Compu-
tational Linguistics: Technical Papers, pages 1025–
1036.

Dmitry Ustalov, Nikolay Arefyev, Chris Biemann, and
Alexander Panchenko. 2017. Negative sampling im-
proves hypernymy extraction based on projection
learning. In Proceedings of the 15th Conference of
the European Chapter of the Association for Compu-
tational Linguistics: Volume 2, Short Papers, pages
543–550, Valencia, Spain. Association for Compu-
tational Linguistics.

Julie Weeds, Daoud Clarke, Jeremy Reffin, David Weir,
and Bill Keller. 2014. Learning to distinguish hyper-
nyms and co-hyponyms. In Proceedings of COL-
ING 2014, the 25th International Conference on
Computational Linguistics: Technical Papers, pages
2249–2259. Dublin City University and Association
for Computational Linguistics.

Josuke Yamane, Tomoya Takatani, Hitoshi Yamada,
Makoto Miwa, and Yutaka Sasaki. 2016. Distribu-
tional hypernym generation by jointly learning clus-
ters and projections. In Proceedings of COLING
2016, the 26th International Conference on Compu-
tational Linguistics: Technical Papers, pages 1871–
1879.

731

Proceedings of the 12th International Workshop on Semantic Evaluation (SemEval-2018), pages 732–740
New Orleans, Louisiana, June 5–6, 2018. ©2018 Association for Computational Linguistics

SemEval-2018 Task 10: Capturing Discriminative Attributes

Alicia Krebs
Textkernel
krebs@

textkernel.nl

Alessandro Lenci
University of Pisa

alessandro.lenci@
unipi.it

Denis Paperno
Loria (UMR 7503), CNRS
denis.paperno@

loria.fr

Abstract
This paper describes the SemEval 2018 Task
10 on Capturing Discriminative Attributes.
Participants were asked to identify whether an
attribute could help discriminate between two
concepts. For example, a successful system
should determine that urine is a discriminating
feature in the word pair kidney,bone. The aim
of the task is to better evaluate the capabili-
ties of state of the art semantic models, beyond
pure semantic similarity. The task attracted
submissions from 21 teams, and the best sys-
tem achieved a 0.75 F1 score.

1 Introduction

State of the art semantic models do an excellent
job at detecting semantic similarity, a traditional
semantic task; for example, they can tell us that
cappuccino, espresso and americano are similar to
each other. It is obvious, however, that no model
can claim to capture semantic competence if it
does not, in addition to similarity, predict seman-
tic differences between words. If one can tell that
americano is similar to cappuccino and espresso
but cannot tell the difference between them, one
only has a very approximate idea of the meaning
of these words. As a step beyond similarity, one
should at the very least recognize that americano is
bigger than espresso, and that capuccino contains
milk foam. In this spirit, we present Semeval 2018
Task 10 (Capturing Discriminative Attributes) as a
new challenge for lexical semantic models.

1.1 Task description
A semantic model that has only been evaluated
on similarity detection may very well fail to be
of practical use for specific applications. For ex-
ample, word sense disambiguation could benefit
greatly from representations that can model com-
plex semantic relations. This means that the eval-
uation of word representation models should not

only be centered on semantic similarity and relat-
edness, and should include different, complemen-
tary tasks. To fill this gap, we proposed a novel
task of semantic difference detection as Task 10 of
the SemEval 2018 workshop. The goal of the sys-
tems in this case was to predict whether a word is a
discriminative attribute between two other words.
For example, given the words apple and banana,
is the word red a discriminative attribute?

Semantic difference is a ternary relation be-
tween two concepts (apple, banana) and a dis-
criminative attribute (red) that characterizes the
first concept but not the other. By its nature, se-
mantic difference detection is a binary classifica-
tion task: given a triple apple,banana,red, the task
is to determine whether it exemplifies a semantic
difference or not.

In practice, when preparing the task, we
started out with defining potential discriminative
attributes as semantic features in the sense of
(McRae et al., 2005): properties that people tend
to think are important for a given concept. McRae
et al.’s features are expressed as phrases, but these
phrases can usually be reconstructed from a single
word (e.g. red as a feature of apple stands for the
phrase is red, carpentry as a feature of hammer can
be used as a shorthand of used for carpentry, etc.)
Given this general reconstructability, we have for
simplicity used single words rather than phrases
to represent features. The same solution was also
adopted in the feature norming studies by (Vinson
and Vigliocco, 2008) and (Lenci et al., 2013).

Following McRae et al., we did not define dis-
criminative features in purely logical but rather
in psychological terms. Accordingly, features are
prototypical properties that subjects tend to asso-
ciate to a certain concept. For example, not all ap-
ples are red and some bananas are, but red tends to
be judged as an important feature of apples and not
of bananas. We therefore fully trust human anno-

732

tators in deciding what counts as a distinguishing
attribute and what does not.

1.2 Motivation

Exploring semantic differences between words
can allow us to grasp subtle aspects of meaning:
while it is relatively easy to train a model to rec-
ognize that apple and banana are somewhat simi-
lar, it is less straightforward to learn that, contrary
to an apple, a typical banana is not red. This task
is therefore more challenging than, and comple-
mentary to, the traditional similarity task, and we
expect it to contribute to the progress in computa-
tional modeling of meaning.

While semantic similarity and relatedness mea-
sures have been used extensively to evaluate se-
mantic representations, they may not be sufficient
as a method for evaluating lexical semantic mod-
els (Faruqui et al., 2016; Batchkarov et al., 2016).
Firstly, it has been noted that the relevant notions
of similarity and relatedness can vary depending
on the linguistic context, on the downstream ap-
plication, etc. The difference task resolves this
concern by effectively providing a context. In
our example, comparison with bananas determines
the relevance of the redness attribute for apples,
which, out of context, might not necessarily be a
salient attribute of apples.

Existing similarity and relatedness datasets
have also been criticized for low inter-annotator
agreement. The semantic difference detection task
alleviates this issue, too. Binary choice is easier
for human annotators than rating on a continuous
scale, and produces more consistent patterns of an-
swers. In our pilot study, the agreement between
annotators was over 0.80. To further ensure the
quality of our data, we discarded any items that
caused disagreement.

1.3 Expected impact

The semantic difference task can enable further
progress in the field of word representation learn-
ing. Indeed, state of art models have reached ceil-
ing performance in the tasks of semantic similar-
ity and relatedness (in part because the ceiling, as
determined by the agreement of human subjects,
is relatively low). Another commonly employed
task, analogy, has its own issues (Linzen, 2016)
and effectivey boils down to similarity optimiza-
tion (Levy and Goldberg, 2014). A new general
evaluation task for lexical semantics is long due,

and we hope that the semantic difference task is
capable of filling this gap.

In the future, solving the discriminative at-
tributes task could help in a range of applica-
tions, from conversational agents (choosing lex-
ical items with contextually relevant differential
features can help create more pragmatically appro-
priate, human-like dialogues), to coreference res-
olution (differentiating features of concepts men-
tioned or alluded to in text could help in reference
disambiguation), to machine translation and text
generation, where explicitly taking into account
semantic differences between competing transla-
tion variants can improve the quality of the output.

2 Data and resources

2.1 Overview

One can express semantic differences between
concepts by referring to attributes of those con-
cepts. A difference can usually be expressed as
presence or absence of a specific attribute. For in-
stance, one of the differences between a narwhal
and a dolphin is the presence of a tusk.

The task dataset includes 5062 manually veri-
fied triples of the form <word1,word2,attribute>.
The set is built in such a way that the attribute
in each positive example characterizes the first
word of the triple. For example, in Table 1,
wings is an attribute of airplane. The word pair
[airplane,helicopter] is included in the
order [helicopter,airplane] if helicopter
has a feature that airplane does not have. We
thereby assume, in contrast to the standard for-
malization of similarity, that semantic difference
is not symmetric: the triple apple,banana,red is
a semantic difference but banana,apple,red is not
since red is not an attribute of bananas.1

We supplemented positive data (as described
above) with negative examples. Two types of
negative examples were added: examples where
the attribute is shared between word1 and word2
(both concepts have the attribute in question), and
examples where the attribute is neither an attribute
of word1 nor word2 (both concepts lack the at-
tribute). For that last type of attributes, since their

1This is a somewhat arbitrary choice. One could experi-
ment with a symmetric notion of a discriminative attribute,
whereby both apple,banana,red and banana,apple,red are
considered examples of semantic difference, but in our opin-
ion such an approach would only make the task more chal-
lenging.

733

word1 word2 attribute

airplane helicopter wings
bagpipe accordion pipes
dolphin seal fins
gorilla crocodile bananas
oak pine leaves
octopus lobster tentacles
pajamas necklace silk
skirt jacket pleats
subway train dirty

Table 1: Sample data: Word pairs and their distinguish-
ing features (positive examples)

number is potentially huge, the examples were se-
lected randomly so that the number of negative ex-
amples matches the number of positive examples.
Presence of both positive and negative examples
makes it possible to train a binary classifier that,
for a given triple, predicts whether the attribute is
a difference between word1 and word2.

word1 word2 attribute

tractor scooter wheels
crow owl black
squirrel leopard fur
pillow jacket white
dresser cupboard large
spider elephant legs
gloves pants wool
gorilla panther long
scarf slippers colours
lion zebra large

Table 2: Sample data: Word pairs and non-
distinguishing features (negative examples)

Approximately half of the manually checked
triples was given to participants as a validation
set for parameter tuning of their systems, the rest
was used for testing (cf. Section 2.4 for detailed
statistics about the dataset composition). A larger
training set of almost 18K examples (automati-
cally constructed by the procedure described be-
low, without manual filtering) was provided for
training parameter-rich systems.

2.2 Data collection and annotation
When creating the dataset, we started from the ap-
proach that Lazaridou et al. (2016) used for visual
discriminating attribute identification, followed by
manual filtering for the test and validation data.
Dataset creation consisted of three phases:

1. Semi-automatically created triples (section
2.2.1)

2. Manually created triples (section 2.2.2)

3. Automatically created triples (section 2.2.3)

As an initial source of data, we used the fea-
ture norms collected by McRae et al. (2005) and
created a pilot dataset (Krebs and Paperno, 2016).
This set was then reverified and manually ex-
tended to improve the quality and the variety of
the data. Finally, a large number of triples were
automatically generated for training purposes.

2.2.1 Triples from Mcrae norms
The first part of the dataset was created semi-
automatically by identifying discriminative at-
tributes of the concepts in the McRae norms,
which consist of a list of features for 541 concepts
(living and non-living entities), collected by ask-
ing 725 participants to produce features for each
concept. Production frequencies of these attributes
indicate how salient they are. Concepts that have
different meanings had been disambiguated be-
fore being shown to participants. For example,
there are two entries for bow, bow (weapon)
and bow (ribbon).

Because our task is not intended to test word
sense models, we did not differentiate between en-
tries that have multiple senses and ignored the dis-
ambiguating phrase. In our dataset, the concept
bow has the attributes of both the weapon and the
ribbon. This is not problematic because we do not
refer to more than one attribute at a time, so senses
of a word do not mix.2 The McRae dataset uses the
brain region taxonomy (Cree and McRae, 2003)
to classify attributes into different types, such as
function, sound or taxonomic. For the construc-
tion of our dataset, we decided to only work with
visual attributes, which exist for all concrete con-
cepts, while attributes such as sound or taste are
only relevant for some classes of concepts.

Any one word concept that has at least one vi-
sual attribute was considered a candidate. Each

2An anonymous reviewer points out that the presence or
absence of a feature in w1 can be influenced by the context
of w2: e.g. tail could be considered a distinguishing feature
for the pair mouse,cheese but not for mouse, keyboard, be-
cause keyboard primes the device sense of the word mouse
as opposed to the animal sense. Such strong contextualiza-
tion effects could make our task even more interesting, but
we believe that these cases are too rare to strongly influence
the outcomes.

734

candidate concept was paired with another candi-
date concept from the list of its 100 closest neigh-
bours in a PPMI-based distributional vector space
(using the best settings from Baroni et al. (2014)).
The motivation for this step is that finding non-
trivial semantic differences only makes sense in
the context of related words; detecting the differ-
ence between two unrelated concepts, such as a
narwhal and a tractor, is rather trivial and would
not constitute a very interesting task.

For each word pair, if there was an attribute
in McRae feature norms that the first word has
but the second doesn’t, the word pair – attribute
triple was added to the list of candidate positive
examples. For simplicity, multi-word attributes
were processed so that only the last word is taken
into account (e.g. has wings becomes wings).
At this point, we had 512 unique concepts, 1645
unique attributes, 6355 unique word pairs, and
41723 triples (word pair-concept combinations).
A random sample of triples was selected for man-
ual annotation.

For candidate positive examples, two annotators
agreed to keep 45.2% of items, agreed to discard
33% of items, and disagreed on 21.8% of items.
A total of 54.8% of candidate positive examples
were discarded. Among the negative examples,
12.5% of items were discarded. Annotators agreed
to keep 87.5% of items, agreed to discard 0.8% of
items, and disagreed on 11.6% of items. The ex-
amples that both annotators agreed to discard from
the positive examples were added to the negative
examples. Finally, the third author manually fil-
tered the data removing dubious examples.

2.2.2 Manual triples
In the second phase, we extended the dataset by
adding new concepts and attributes. Our intention
was to make the dataset more diverse and more
representative of the noun lexicon by including
words and features that are not part of the McRae
feature norms (e.g., human nouns such as doctor
or student).

To select new nouns, we used SimLex-999 (Hill
et al., 2015), one of the largest and most popu-
lar datasets for semantic similarity. We extracted
from SimLex all the nouns with a concreteness
rating above the median, and identified 204 can-
didate items that were not included in the McRae
Norms. Each selected noun was paired with candi-
date concepts from the list of its 20 closest neigh-
bours in the distributional vector space. We then

filtered the neighbors by frequency, keeping the
neighbors that belong to the frequency range of the
original McRae and SimLex vocabulary. We also
made sure at this step that candidate word pairs be-
long to the same WordNet supersense. This latter
constraint was added because distributional mod-
els often return neighbors that are only loosely re-
lated to the target, while finding non-trivial seman-
tic differences makes sense only for words that are
taxonomically similar. We also discarded gram-
matical number pairs like seed/seeds and hyper-
nym/hyponym pairs like doctor/surgeon, since by
definition there is no feature that a hypernym has
but its hyponym does not have.

Each of the three task organizers was given a
third of the resulting 1851 candidate noun pairs
to annotate, generating discriminative and non-
discriminative attributes for each pair. The sug-
gested triples were then manually filtered by the
other two authors.

2.2.3 Random triples

Finally, to further ensure the diversity of exam-
ples and to alleviate any biases unintentionally
introduced in the annotation pipeline, we gener-
ated 500 additional triples by randomly match-
ing words and features produced at earlier stages.
Each of the three authors annotated these ran-
dom triples, which contained mainly negative (mo-
torbike,rifle,liquor) and some positive examples
(e.g. maid,evening,help). Again, only those exam-
ples for which a full consensus of the three authors
existed were kept.

2.3 Training, test and validation partitions

The manually validated dataset of semantic dif-
ferences consists of examples from three sources
described above: combinations of nouns with
McRae features, triples with manually suggested
attributes, and random triples. All of these exam-
ples have been verified by the three authors and
were then randomly split into a validation partition
and a test partition, making sure that no feature oc-
curs in both.

McRae manual random
positive 897 1477 37
negative 634 1656 361

total 1531 3133 398

Table 3: Composition of the manually validated part of
the dataset

735

To enable development of systems that require
more training data, we also created a distinct, big-
ger training set that was not manually curated.
The training set was derived from McRae feature
norms using automatically matched examples as
described in 2.1.1, but without manual validation.
We have to note that this training partition is very
noisy, its main advantage being its size. In fact,
the best performing system in our task was trained
directly on validation data.

We further filtered the training set to minimize
lexical overlap between partitions, making sure
that no attribute present in the test set or the vali-
dation set is also present in the training set. For
example, if the attribute “red” appears in some
triple in the test partition, you will not find it any-
where in the training set. This was done to ensure
that models cannot rely on attribute memorization
from training data but are forced to transfer lexical
knowledge from other sources.

2.4 Dataset composition

The final dataset consists of 22884 items, divided
into:

1. A training set of 17782 examples with 515
distinct concepts and 1292 distinct features.

2. A validation set of 2722 examples with 1283
concepts and 576 distinct features.

3. A test set of 2340 triples with 1272 distinct
concepts and 577 distinct features.

The proportion of positive and negative examples
is reported in Table 2.4.

training validation testing
positive 6591 1364 1047
negative 11191 1358 1293

total 17782 2722 2340

Table 4: Total size of the final dataset.

All data used in this task can be accessed from
the competition’s github repository.3

3 Evaluation

3.1 Metrics

The submitted systems were evaluated on F1 mea-
sure, as is standard in binary classification tasks.

3https://github.com/dpaperno/DiscriminAtt/

The evaluation script can be found in the compe-
tition’s github repository. The competition results
can be seen at the corresponding Codalab page.4

Participants were allowed to make up to 2 submis-
sions, resulting in 47 total submissions from 28
different teams (but only 21 teams submitted pa-
pers). Only the better of the two submissions of
each team is included in final results.

3.2 Baselines

Since our task is formalized as binary classifica-
tion, the random baseline has 0.50 accuracy. As
our test set is not perfectly balanced, a most fre-
quent class baseline would get 0.517 F1.

We also computed an unsupervised distribu-
tional vector cosine baseline based on the idea
that a discriminative attribute is close to the word
it characterizes and further away from the other
member of the pair. In the cosine method, each
item is classified as a semantic difference if the co-
sine similarity of word1 and the attribute is greater
than the cosine similarity of word2 and the at-
tribute. To compute the cosine baseline, we used
a PPMI-based vector space with the best settings
from Baroni et al. (2014).

The cosine baseline correctly classifies 0.691 of
positive items and 0.539 of negative items in the
test data, which corresponds to an average F1 mea-
sure of 0.607.

3.3 Human upper bound

In order to obtain a performance upper bound for
our task, we measured how complex it is for ex-
pert human annotators to identify discriminative
attributes. We asked three PhD and post-doc com-
putational linguists to classify a batch of 100 items
randomly sampled from the test set. The annota-
tors received two rounds of training on the task
by classifying a batch of 100 triples from the val-
idation and test sets. The triples used at anno-
tator training and testing stages were all distinct.
Various questions and doubts about the annotation
were clarified before passing to the test annotation
phase. The agreement between aggregated human
judgments (majority vote) and the gold standard
was very high, with an accuracy of 0.9, an F1 of
0.89 for the positive class, and an F1 of 0.91 for
the negative class.

736

correct incorrect
positive 724 323
negative 697 596

Table 5: Number of correct and incorrect classifications
for the test set using the cosine baseline.

Rank Team Score
1 SUNNYNLP 0.75
2 Luminoso 0.74
3 BomJi 0.73
3 NTU NLP 0.73
4 UWB 0.72
5 ELiRF-UPV 0.69
5 Meaning Space 0.69
5 Wolves 0.69
6 Discriminator 0.67
6 ECNU 0.67
5 AmritaNLP 0.66
6 GHH 0.65
7 ALB 0.63
7 CitiusNLP 0.63
7 THU NGN 0.63
8 UNBNLP 0.61
9 UNAM 0.60

10 UMD 0.60
11 ABDN 0.52
12 Igevorse 0.51
13 bicici 0.47

ceiling human 0.90
baselines (strong) cosine 0.607

(weak) random 0.517

Table 6: Codalab competition results, compared to
baselines and the human-based performance ceiling.

System type Count Average F1 Best F1
NN 4 0.66 0.73

Rule-based 7 0.63 0.69
SVM / SVC 6 0.68 0.75

XGB 2 0.70 0.73

Table 7: Average and best F1 score per system type.

4 Systems Overview

Table 6 shows the best performing system submit-
ted by each participating team which submitted
descriptions of their systems.

Many participants created custom rules to
tackle the task, using for example cosine similar-

4https://competitions.codalab.org/competitions/17326

Resource type Average F1
WE + KB 0.678

WE 0.638

Table 8: Average F1 score per resource type (KB =
Knowledge Base, WE = Word Embeddings).

ity or co-occurrence frequency thresholds (Mean-
ing Space, Sommerauer et al.; ELiRF-UPV, Gon-
zlez et al.; CitiusNLP Gamallo; UNAM Arroyo-
Fernndez et al.; Discriminator, Kulmizev et al.;
UNBNLP, King et al.; ABDN, Mao et al.;
Igevorse, Grishin).

Some of the most successful systems employed
traditional machine learning algorithms such as
SVMs (SUNNYNLP, Lai et al.; ALB, Dumitru
et al.; Wolves, Taslimipoor et al.; ECNU, Zhou
et al.; UMD, Zhang and Carpuat), SVC (Lumi-
noso, Speer and Lowry-Duda) and Maximum En-
tropy Classifiers (UWB, Brychcn et al.).

Other teams chose to build their systems us-
ing deep learning systems such as neural networks
(GHH, Attia et al.; Shiue et al.), CNNs (THU
NGN, Wu et al.; AmritaNLP, Vinayan et al.) and
XGB classifiers (BomJi, Santus et al.; ECNU,
Zhou et al.).

Participants made use of a large number of re-
sources. Such resources can be divided into word
embeddings (e.g., Word2Vec, GloVe, fastText)
and knowledge base type resources (e.g., Word-
Net, ConceptNet, Probase). Participants’ analyses
of their results indicate that although using knowl-
edge bases can yield high precision results, they
cannot easily cover all cases. When employing
pre-trained word embeddings, participants noted
that out-of-vocabulary items become a challenge.
But most importantly, a shortcoming of word em-
beddings with regard to our task is their inability to
distinguish between different types of semantic re-
latedness. As noted by the GHH team (Attia et al.),
garlic is related to wings not because garlic has the
ability to fly but because garlic chicken wings are a
popular dish choice; a shallow cooccurence-based
model will fail to recognize that wings character-
ize chicken but not garlic.

On average, systems which combined word em-
beddings and knowledge bases outperformed sys-
tems that only used word embeddings (Table 8).

737

Subset Accuracy F1 pos F1 neg
Easy 0.98 0.97 0.98
Hard 0.56 0.61 0.66

Hardest 0.38 0.35 0.39

Table 9: Results of human annotation of the Easy,
Hard and Hardest subsets of the test data.

5 Results analysis

We have carried out an in-depth exploration of the
systems results in order to get a better insight on
the relationship between their performance and the
dataset structure and complexity. We ranked all
the test triples by the number of systems that an-
notated them correctly and we selected the 50 top
triples that were scored correctly by the most sys-
tems and the 50 top triples that were failed by most
systems. We called these two subsets the Easy and
the Hard data, respectively. Then, we focused on
the results produced by the top 5 systems in Ta-
ble 6, with an overall performance greater than
70%. Out of the 1340 triples that were failed by
at least one of these top systems, we selected the
112 triples (8.3%) that were failed by all 5 sys-
tems. We called this subset the Hardest data.
These datasets were annotated by the same three
expert annotators used to compute the human up-
per bound (cf. Section 3.3). The accuracy and
F1 of the aggregated human judgments (majority
vote) with respect to the gold standard are reported
in Table 9.

The annotation results show an interesting cor-
relation between the system and human perfor-
mances. The “easy” triples for the systems are
easy for humans too, and conversely the harder a
triple is for a system the harder it is for humans.
The lowest annotation accuracy is on the Hardest
subset, less than 40%. However, since this set con-
tains the triples that were failed by all top systems,
the human accuracy also proves that theres is still
plenty of room for improvement even for the best
performing models.

Table 9 shows that the F1 on the negative class
is usually higher than the one on the positive class.
This is again similar to systems behavior. In fact,
70% of the top 100 triples scored correctly by
most systems are negative cases, while 67% of the
top 100 triples failed by most systems are positive
cases. The 112 triples failed by all top file systems
contain 54% positive cases. This suggests that for
systems and humans alike it is usually harder to

McRae manual random
label pos neg pos neg pos neg
Easy 1 9 20 7 13 0
Hard 8 2 12 26 0 2

Table 10: Example label and source distribution for
the Easy and Hard subsets of the test data.

identify a discriminative attribute, rather than a
non-discriminative one. Finally, out of the 1340
triples that were failed by at least one of the top 5
systems, 502 (37%) were failed by just one model.
This shows that a great variance exists in the be-
havior and in the weaknesses of these systems, de-
spite their very close performance.

Types of attributes seem to vary in how difficult
they are to differentiate in the context of our task.
For example, attributes that stand in the whole-part
relation with the word, as in door,gate,handle, lean
on the hard side (9 examples in the Hard sam-
ple vs. 2 in the Easy one). Attributes that are
adjectives, as in rods,wire,hard, also tend to be
hard (25 examples in the Hard sample vs. 13 in
the Easy one), presumably because of the gradi-
ent and context-dependent meaning of adjectives;
indeed, 9 of the 13 “easy” examples with adjec-
tive attributes involve colours, which are relatively
context-independent (as opposed to 4 colour out of
the 25 “hard” adjective examples).

Further analysis reveals an unequal distribution
of positive and negative examples in the Easy and
Hard subsets across different types of data, as
shown in Table 10. While overall easy examples
tend to be the positive ones and hard examples
tend to be negative, among the examples derived
from McRae feature norms the pattern is reversed.

Lastly, it is an important issue to understand the
causes of the low human performance on the Hard
and especially on the Hardest subset. By looking
at the wrongly annotated triples in this dataset, we
can identify various possible reasons. The first one
are mistakes in the gold standard annotation. For
instance, peel was marked as a discriminative at-
tribute of banana from onion, but actually peeling
is a possible action for both entities. Other cases
are instead related to the inherent vagueness of
the notion of prototypical attribute. For example,
the feature acts was marked as non-discriminative
of actress from artist, because any artist can in
principle act. Conversely, humans annotators have
identified acting as a truly specific attribute for ac-

738

tress, but not for artist. The former type of prob-
lems prompt for a further revision of the gold stan-
dard, while the latter type reveals the complexity
of the notion of discriminative attribute and its dif-
ficult applications in some cases, which will re-
quire a deeper specification of annotation guide-
lines.

6 Conclusion

Discriminative attribute detection is an intuitively
simple and appealing yet challenging new task for
lexical semantic systems. For the SemEval com-
petition, we created a high quality dataset of se-
mantic differences, with estimated ceiling perfor-
mance of human annotators of 0.90. While the
task is far from being solved, participating systems
showed promising results, most of them beating
the cosine baseline.

It is clear that learning to discriminate differen-
tiating features is not trivial and requires training,
both for human annotators and for computational
systems; all of the top performing systems used
machine learning techniques of some kind.

While different teams employed different lin-
guistic resources, the results of the competition
do not allow us to conclude that a particular re-
source gives one’s system an edge. On the one
hand, exploiting information from knowledge base
resources like WordNet does improve the perfor-
mance on average. On the other hand, traditional
machine learning systems that entered our com-
petition were much more likely to make use of
knowledge bases. Therefore, combining neural
approaches with knowledge bases may very well
lead to improved performances.

As we mentioned above, ceiling performance
has already been achieved in traditional tasks such
as word similarity, causing a stagnation of lexical
semantic modeling. As the best systems in our
competition showed very promising results, we
hope to see novel semantic models demonstrate
their full potential on our task.

Acknowledgements

We thank Marco Baroni, Roberto Zamparelli, and
three anonymous reviewers for their helpful com-
ments. We thank Giulia Cappelli, Patrick Jeu-
nieaux, and Marco Senaldi for their valued support
in the data analysis. This work was supported by
the CNRS PEPS I3A project ReSeRVe.

References
Ignacio Arroyo-Fernndez, Carlos-Francisco Mendez-

Cruz, and Ivan Meza. 2018. Unam at semeval-
2018 task 10: Unsupervised semantic discrimina-
tive attribute identification in neural word embed-
ding cones. In Proceedings of the 12th international
workshop on semantic evaluation (SemEval 2018).

Mohammed Attia, Younes Samih, Manaal Faruqui, and
Wolfgang Maier. 2018. Ghh at semeval-2018 task
10: Discovering discriminative attributes in distri-
butional semantics. In Proceedings of the 12th inter-
national workshop on semantic evaluation (SemEval
2018).

Marco Baroni, Georgiana Dinu, and Germán
Kruszewski. 2014. Don’t count, predict! a
systematic comparison of context-counting vs.
context-predicting semantic vectors. In ACL (1),
pages 238–247.

Miroslav Batchkarov, Thomas Kober, Jeremy Reffin,
Julie Weeds, and David Weir. 2016. A critique of
word similarity as a method for evaluating distri-
butional semantic models. In First Workshop on
Evaluating Vector Space Representations for NLP
(RepEval 2016).

Tom Brychcn, Tom Hercig, Josef Steinberger, and
Michal Konkol. 2018. Uwb at semeval-2018 task
10: Capturing discriminative attributes from word
distributions. In Proceedings of the 12th interna-
tional workshop on semantic evaluation (SemEval
2018).

George S Cree and Ken McRae. 2003. Analyzing the
factors underlying the structure and computation of
the meaning of chipmunk, cherry, chisel, cheese, and
cello (and many other such concrete nouns). Journal
of Experimental Psychology: General, 132(2):163.

Bogdan Dumitru, Alina Maria Ciobanu, and P. Dinu
Liviu. 2018. Alb at semeval-2018 task 10: A system
for capturing discriminative attributes. In Proceed-
ings of the 12th international workshop on semantic
evaluation (SemEval 2018).

Manaal Faruqui, Yulia Tsvetkov, Pushpendre Rastogi,
and Chris Dyer. 2016. Problems with evaluation of
word embeddings using word similarity tasks. In
First Workshop on Evaluating Vector Space Repre-
sentations for NLP (RepEval 2016).

Pablo Gamallo. 2018. Citiusnlp at semeval-2018 task
10: The use of transparent distributional models and
salient contexts to discriminate word. In Proceed-
ings of the 12th international workshop on semantic
evaluation (SemEval 2018).

Jos-ngel Gonzlez, Llus-F. Hurtado, Encarna Segarra,
and Ferran Pla. 2018. Elirf-upv at semeval-2018
task 10: Capturing discriminative attributes. In Pro-
ceedings of the 12th international workshop on se-
mantic evaluation (SemEval 2018).

739

Maxim Grishin. 2018. Igevorse at semeval-2018 task
10: Exploring an impact of word embeddings con-
catenation for capturing discriminative attributes. In
Proceedings of the 12th international workshop on
semantic evaluation (SemEval 2018).

Felix Hill, Roi Reichart, and Anna Korhonen. 2015.
Simlex-999: Evaluating semantic models with (gen-
uine) similarity estimation. Computational Linguis-
tics, 41(4):665–695.

Milton King, Ali Hakimi Parizi, and Paul Cook. 2018.
Unbnlp at semeval-2018 task 10: Evaluating unsu-
pervised approaches to capturing discriminative at-
tributes. In Proceedings of the 12th international
workshop on semantic evaluation (SemEval 2018).

Alicia Krebs and Denis Paperno. 2016. Capturing dis-
criminative attributes in a distributional space: Task
proposal. In Proceedings of RepEval 2016: The
First Workshop on Evaluating Vector Space Repre-
sentations for NLP.

Artur Kulmizev, Mostafa Abdou, Vinit Ravishankar,
and Malvina Nissim. 2018. Discriminator at
semeval-2018 task ten: Zero-shot discrimination. In
Proceedings of the 12th international workshop on
semantic evaluation (SemEval 2018).

Sunny Lai, Kwong Sak Leung, and Yee Leung. 2018.
Sunnynlp at semeval-2018 task 10: A support-
vector-machine-based method for detecting seman-
tic difference using taxonomy and word embedding
features. In Proceedings of the 12th international
workshop on semantic evaluation (SemEval 2018).

Angeliki Lazaridou, Nghia The Pham, and Marco Ba-
roni. 2016. The red one!: On learning to refer
to things based on their discriminative properties.
arXiv preprint arXiv:1603.02618.

Alessandro Lenci, Marco Baroni, Giulia Cazzolli, and
Giovanna Marotta. 2013. BLIND: a set of semantic
feature norms from the congenitally blind. Behavior
Research Methods, 45(4):1218–1233.

Omer Levy and Yoav Goldberg. 2014. Linguistic reg-
ularities in sparse and explicit word representations.
In Proceedings of the eighteenth conference on com-
putational natural language learning, pages 171–
180.

Tal Linzen. 2016. Issues in evaluating seman-
tic spaces using word analogies. arXiv preprint
arXiv:1606.07736.

Rui Mao, Guanyi Chen, Ruizhe Li, and Chenghua Lin.
2018. Abdn at semeval-2018 task 10: Recognising
discriminative attributes using context embeddings
and wordnet. In Proceedings of the 12th interna-
tional workshop on semantic evaluation (SemEval
2018).

Ken McRae, George S Cree, Mark S Seidenberg, and
Chris McNorgan. 2005. Semantic feature produc-
tion norms for a large set of living and nonliving
things. Behavior research methods, 37(4):547–559.

Enrico Santus, Chris Biemann, and Emmanuele Cher-
soni. 2018. Bomji at semeval-2018 task 10: Com-
bining vector-, pattern- and graph-based information
to identify discriminative attributes. In Proceedings
of the 12th international workshop on semantic eval-
uation (SemEval 2018).

Yow-Ting Shiue, Hen-Hsen Huang, and Hsin-Hsi
Chen. 2018. Ntu nlp lab system at semeval-2018
task 10: Verifying semantic differences by integrat-
ing distributional information and expert knowledge.
In Proceedings of the 12th international workshop
on semantic evaluation (SemEval 2018).

Pia Sommerauer, Antske Fokkens, and Piek Vossen.
2018. Meaning space at semeval-2018 task 10:
Combining explicitly encoded knowledge with in-
formation extracted from word embeddings. In Pro-
ceedings of the 12th international workshop on se-
mantic evaluation (SemEval 2018).

Robert Speer and Joanna Lowry-Duda. 2018. Lumi-
noso at semeval-2018 task 10: Distinguishing at-
tributes using text corpora and relational knowledge.
In Proceedings of the 12th international workshop
on semantic evaluation (SemEval 2018).

Shiva Taslimipoor, Omid Rohanian, and Le An Ha.
2018. Wolves at semeval-2018 task 10: Semantic
discrimination based on knowledge and association.
In Proceedings of the 12th international workshop
on semantic evaluation (SemEval 2018).

Vivek Vinayan, Anand Kumar, and K P Soman. 2018.
Amritanlp@semeval-2018 task 10: Capturing dis-
criminative attributes using convolution neural net-
work over global vector representation. In Proceed-
ings of the 12th international workshop on semantic
evaluation (SemEval 2018).

David P Vinson and Gabriella Vigliocco. 2008. Se-
mantic feature production norms for a large set of
objects and events. Behavior Research Methods,
40(1):183–190.

Chuhan Wu, Fangzhao Wu, Sixing Wu, Zhigang Yuan,
and Yongfeng Huang. 2018. Thu ngn at semeval-
2018 task 10: Capturing discriminative attributes
with mlp-cnn model. In Proceedings of the 12th
international workshop on semantic evaluation (Se-
mEval 2018).

Alexander Zhang and Marine Carpuat. 2018. Umd at
semeval-2018 task 10: Can word embeddings cap-
ture discriminative attributes? In Proceedings of the
12th international workshop on semantic evaluation
(SemEval 2018).

Yunxiao Zhou, Man Lan, and Yuanbin Wu. 2018. Ecnu
at semeval-2018 task 10: Evaluating simple but ef-
fective features on machine learning methods for se-
mantic difference detection. In Proceedings of the
12th international workshop on semantic evaluation
(SemEval 2018).

740

Proceedings of the 12th International Workshop on Semantic Evaluation (SemEval-2018), pages 741–746
New Orleans, Louisiana, June 5–6, 2018. ©2018 Association for Computational Linguistics

SUNNYNLP at SemEval-2018 Task 10: A Support-Vector-Machine-Based
Method for Detecting Semantic Difference using Taxonomy and Word

Embedding Features
Sunny Lai1,3, Kwong Sak Leung1,3 and Yee Leung2,3

1Department of Computer Science and Engineering
2Department of Geography and Resource Management

3Institute of Future Cities
The Chinese University of Hong Kong

Shatin, N.T., Hong Kong
{slai, ksleung}@cse.cuhk.edu.hk, yeeleung@cuhk.edu.hk

Abstract

We present SUNNYNLP, our system for solv-
ing SemEval 2018 Task 10: “Capturing Dis-
criminative Attributes”. Our Support-Vector-
Machine(SVM)-based system combines fea-
tures extracted from pre-trained embeddings
and statistical information from Is-A taxon-
omy to detect semantic difference of concepts
pairs. Our system is demonstrated to be ef-
fective in detecting semantic difference and
is ranked 1st in the competition in terms of
F1 measure. The open source of our code is
coined SUNNYNLP1.

1 Introduction

Measuring semantic similarity between words has
been a fundamental issue in Natural Language
Processing (NLP). Semantic similarity measure-
ments are used to improve downstream applica-
tions including paraphrase detection (Xu et al.,
2014), question answering (Lin, 2007), taxonomy
enrichment (Jurgens and Pilehvar, 2016) and dia-
logue state tracking (Mrksic et al., 2016).

Despite the current success in using semantic
model to measure semantic similarity, lesser at-
tention is paid to teaching machines to make refer-
ence (Searle, 1969; Abbott, 2010) to the real world
in detecting semantic difference. The semantic
difference detection problem can be formalized as
a binary classification task: given a triplet (con-
cept1, concept2, attribute) which comprises two
concepts (e.g. apple, banana) and one attribute
(e.g. red), determine whether the attribute charac-
terizes the former concept but not the latter. Com-
pared to pairwise semantic similarity detection,
this problem is more complex than measuring sim-
ilarity in general because of its underlying asym-
metric property and the extra attribute involved.
The SemEval 2018 Task 10 (Krebs et al., 2018) is

1https://github.com/Yermouth/sunnynlp

therefore posed to attract attention to solving this
problem.

Although the task of semantic difference detec-
tion is novel, similar tasks like referring expres-
sion generation (REG) have been studied in the
literature. Resources such as ontologies, knowl-
edge bases (Krahmer and Van Deemter, 2012) and
images (Kazemzadeh et al., 2014; Lazaridou et al.,
2016) are used to learn referring expressions. The
major difference between the present task and re-
ferring expression is that REG systems can choose
salient attributes for making successful reference
to objects, while our system is required to decide
whether a given attribute can be used to differenti-
ate two similar objects.

The rest of the paper is organized as follows:
Section 2 explains our motivation and approach.
Section 3 describes the official and external data
used. Section 4 details our system implementa-
tion. We analyze and discuss the result in Section
5 and conclude our work in Section 6.

2 General Approach

Our approach to this problem is to divide
the ternary concept-concept-attribute relationship
(concept1, concept2, attribute) into two concept-
attribute relationships (concept, attribute)2. The
ternary relationship will hold only when the first
pair of concept-attribute relation is true and the
second false. This approach allows us to use well
developed pairwise similarity measurements to ex-
tract semantic information from the two concept-
attribute pairs, and aggregate the features to train a
support vector machine (Cortes and Vapnik, 1995)
to detect semantic difference of the triplet, i.e.
identifying whether a concept contains a specific
attribute is a key task of our system.

2For instance, dividing the concept-concept-attribute rela-
tionship (apple, banana, red) into two concept-attribute rela-
tionships: (apple, red) and (banana, red).

741

Concept-instance example (Is-A) from Probase
(yellow food, lemon)

Possible concept-attribute (Has-A) pairs
(yellow, food), (food, yellow), (yellow, lemon),
(lemon, yellow), (food, lemon), (lemon, food)

Useful concept-attribute (Has-A) pairs
(lemon, yellow)

Semantic difference triplet in official test cases
(lemon, cranberry, yellow)

Table 1: Concept-attribute pairs (Has-A) can be in-
ferred from concept-instance (Is-A) entries in taxon-
omy, and used to determine whether a semantic differ-
ence relationship (concept1, concept2, attribute) holds
in official test cases.

By observation, we draw similarities be-
tween concept-attribute relationship and meron-
omy (Has-A). They are similar in a sense that both
describe subtype relationships. Although linguis-
tics resources constructed by human subjects in-
cluding norms and priming effect data can help
us detect and verify these relationships effectively,
they are not allowed to be used in this SemEval
Task.

This SemEval Task also limits the scope of con-
cepts and attributes to concrete concepts and vi-
sual attributes only. As instances of the same con-
cept are likely to share common attributes from
our intuitive perspective3, we would like to ex-
periment on extracting meronomy (Has-A) infor-
mation from hypernymy (Is-A) pairs. Taxonomies
and ontologies which contain rich Is-A informa-
tion in terms of concept-instance pairs are there-
fore the key external linguistic resources which we
rely on to extract concept-attribute relationships.

Another intuition that guides our research direc-
tion is that modifiers such as adjectives, adverbs
and noun modifiers are useful for capturing salient
attribute of a specific class of objects4. As modi-
fiers are used to describe the scope of concepts or
specify context of instances, we can leverage on

3As both apple and banana are hypernyms of fruit, i.e. ap-
ple Is-A fruit and banana Is-A fruit. If we know apple is “edi-
ble”, then banana may have a higher chance of being “edible”
by intuition because “edible” can be a common attribute for
most fruits.

4When we want to differentiate one object from another,
we usually use a salient and outstanding attribute to describe
the object instead of using a common or similar attribute.
Similar viewpoint is previously raised in (Pechmann, 1989;
Dale and Haddock, 1991), which states that human beings
prefer using efficient and sufficiently distinguishing descrip-
tion when they are constructing referring expressions.

the co-occurrence probability of modifiers to ana-
lyze their dependence/independence relationships
with different concepts, and hence, to determine
whether a concept-attribute relationship holds.

As the SemEval Task limits the word length of
the concept and attribute to be 1, we can enu-
merate all possible pairs of modifiers and con-
cepts from large scale taxonomy and ontology and
use them as features to train our system. Table 1
shows an Is-A entry in taxonomies which we find
instructive for learning semantic difference rela-
tionship. For instance, verifying whether semantic
difference relationship holds for the triplet (lemon,
cranberry, yellow) would require the information
of “lemon has the attribute yellow?” and “cran-
berry does not have the attribute yellow?”. With
the Is-A pair (yellow food, lemon) from Probase,
we can extract possible concept-attribute pairs and
their frequency to train our system, such that our
system knows with high probability that lemon has
the attribute yellow while cranberry does not.

3 Data

We use the official dataset together with two exter-
nal linguistic resources, GloVe (Pennington et al.,
2014) and Probase (Wu et al., 2012; Cheng et al.,
2015), to train our system.

3.1 Official Dataset
Official datasets5 are split into three parts – train-
ing, validation and testing, where the testing holds
a disjoint attribute sets apart from training and val-
idation. This further increases the difficulty of
the task as it prevents lexical memorization (Roller
et al., 2014; Levy et al., 2015; Weeds et al., 2014)
and tests for generalization.

3.2 Probase
Probase is a web scale open domain taxonomy
which uses Hearst patterns (Hearst, 1992) to ex-
tract Is-A relationship from web documents. Each
Is-A entry in Probase is represented as a triplet
form: super-concept, sub-concept and number of
co-occurrence. We choose Probase for two main
reasons:

1. Large number of concepts covered: The
number of concepts covered in Probase (Wu
et al., 2012) exceeds other publicly available

5in the form of concept-concept-attribute triplet with hu-
man annotated label indicating whether semantic difference
exists.

742

Figure 1: System architecture pipeline diagram.

taxonomies and ontologies including Word-
Net (Miller, 1995) and YAGO (Suchanek
et al., 2007)6.

2. Rich in semantic features: Probase provides
Is-A relationship pairs with concepts of dif-
ferent senses and abstraction levels, which
allows our system to extract rich statistical
information for training. For instance, Is-A
pairs in Table 2 are extracted from Probase.

3.3 GloVe
Pre-trained embeddings such as Word2Vec
(Mikolov et al., 2013), GloVe (Pennington et al.,
2014) and FastText (Bojanowski et al., 2016)
encode syntactic and semantic relationships of
words in low-dimension space, which is crucial to
the capturing of semantic difference. We use the
GloVe embedding pre-trained on both Gigaword
corpus and 2014 Wikipedia dump in our final
submission system.

4 System Description

Our system architecture pipeline (Figure 1) in-
cludes the process of data preprocessing, feature
extraction and classifier selection.

4.1 Data Preprocessing
Preprocessing procedure is applied to Probase in-
cluding:

6Probase includes 2,653,872 concepts while WordNet and
YAGO contain 25,229 and 352,297, respectively.

Partition Concept-Instance(Is-A) example Size
1 to 1 (fruit, banana) 2.12M
N to 1 (high sugar fruit, banana) 7.91M
1 to N (plant, banana tree) 9.32M
N to N (dried fruit, banana chip) 14.01M
Total 33.37M

Table 2: Partitioning of dataset into 4 subsets with an
example entrand partition size provided.

Frequency Type Feature Extracted
Individual word (dried), (fruit), (banana), (chip)

Concept-Concept (dried, fruit)
Instance-Instance (banana, chip)
Concept-Instance (dried, banana), (dried, chip),

(fruit, banana), (fruit, chip)

Table 3: Example of how individual word frequency
(the first row) and three types of co-occurrences (the
last three rows) are counted for the Is-A pair (dried fruit,
banana chip) in Probase.

• Lemmatization: As Probase is crawled us-
ing a rule-based system, we lemmatize the
data using stanford CoreNLP (Manning et al.,
2014) to reduce words of different forms and
allow better matching between Is-A entries in
taxonomy and official dataset.

• Data partitioning: To give our system addi-
tional information regarding the adjectives,
adverbs and modifiers of both concepts and
instances, we partition Probase into 4 sub
datasets, according to the word length of the
concept and instance pair. For instance, par-
tition “1 to 1” indicates that both concept and
instance are of word length 1. Partition “N to
1” indicates concepts of arbitrary word length
(more than 1) and instances of word length 1.
Example of each partition are given in Table
2.

4.2 Feature Extraction

4.2.1 Statistical Features
As for statistical features, we consider the statisti-
cal features of the individual words, i.e. concept1,
concept2, attribute, and the two concept-attribute
relationship pairs, i.e. (concept1, attribute),
(concept2, attribute)) using individual or co-
occurrence frequency in Probase.

Word frequency is extracted from individual
words, and the following features are extracted
from the Is-A pairs:

• Co-occurrence frequency

743

Model (Features) Valid(cv=5) Train/Test Train+Valid/Test Valid/Test
SVM(GloVe, Probase) 0.790 0.644 0.714 0.754
SVM(FastText, Probase) 0.764 0.649 0.709 0.757
SVM(Word2Vec, Probase) 0.757 0.636 0.721 0.732
Logistic Regression(Probase) 0.698 0.602 0.644 0.717
SVM(Probase) 0.730 0.553 0.637 0.691
Logistic Regression(GloVe, Probase) 0.753 0.607 0.674 0.674
SVM(GloVe) 0.712 0.597 0.652 0.668
SVM(FastText) 0.689 0.563 0.593 0.650
SVM(Word2Vec) 0.667 0.556 0.581 0.634

Table 4: Result (F1-score) obtained by our system. The underlined value represents the score of our official
submission. Best scores for each partition are denoted in boldface.

• Pointwise Mutual Information(PMI) (Fano,
1961; Church and Hanks, 1990)

• Asymmetric Pointwise Mutual Informa-
tion(APMI)

There are three types of pairwise word
co-occurrence frequencies, including Concept-
Concept, Instance-Instance and Concept-Instance.
All types of frequencies are calculated for all parti-
tions as distinct features. Table 3 gives an example
of how occurrence and co-occurrence are counted.
We apply logarithm to the statistical features to re-
duce the scale of frequently occurring words.

4.2.2 Word Embedding Features

We use the Python package Gensim (Rehurek
and Sojka, 2010) to match each word in the
triplet (concept1, concept2, attribute) in the offi-
cial dataset with their corresponding pre-trained
vectors vcon1, vcon2, vattr, each of 300 dimen-
sions. We then divide the triplet into three pairwise
relationships i.e. (vcon1, vcon2), (vcon1, vattr), and
(vcon2, vattr), and calculate the cosine similarity
and L1-norm of the vector difference of these pairs
as features. Dot-product is considered initially but
removed as it adversely affects the performance of
our system.

4.3 Classifiers

Using the same set of word embedding and statisti-
cal features, we compared the performance of four
off-the-shelf classifiers including SVM (Cortes
and Vapnik, 1995), Logistic Regression Classifier,
Decision Tree Classifier and Random Forest Clas-
sifier. SVM classifier with RBF kernel (Vert et al.,
2004) is used in our system as it outperforms other
classifiers in terms of precision and F1-score.

5 Results and Discussion

5.1 Results

We provide the results of our system with different
combinations of features and datasets in Table 4.
Column Train+Valid/Test represents the F1-score
obtained by training our system with both the
training partition and validation partition, while
column Train/Test and Valid/Test are F1-score ob-
tained by training our system on the training parti-
tion and validation partition individually. Training
our SVM system with Probase and GloVe (or Fast-
Text) gives the best result in terms of F1-score for
official evaluation (column Valid/Test). Our sys-
tem achieves a F1-score of 0.754 and outperforms
those of the other teams.

5.2 Discussion

During the competition phase, we noticed that our
system performs better when we did not use train-
ing partition together with validation partition. As
the entries in the training partition are automati-
cally generated, there may be false entries or noise
which can adversely affect our system. Since the
validation partition comprises manually curated
examples, we evaluate our models using 5-fold
cross validation on the clean validation partition
only (indicated by column Valid(cv=5)).

6 Conclusion

In this paper, we have discussed how our sim-
ple yet effective SVM system leverages on hy-
pernymy (Is-A) relationships and word embed-
dings to detect single word semantic difference
relationship. SVM has been shown useful espe-
cially in performing semantic relationship detec-
tion tasks (Filice et al., 2016; Panchenko et al.,
2016). We would like to extend our system for
detecting multiple-words semantic difference re-
lationship, and to broaden the scope of concepts

744

and attributes from visual only to sound and taxo-
nomic.

As our system separates a concept-concept-
instance relationship into two concept-instance re-
lationships, our system is relatively weak in cap-
turing attributes that are comparative or fuzzy, for
instance, young and tall. It would be interesting to
explore how semantic difference relationship can
be embedded into taxonomies, ontologies and vec-
tor representations, so that comparative attributes
can be comprehensively and directly captured.

Acknowledgments

This research was supported by the Chinese Uni-
versity of Hong Kong - Utrecht University - Uni-
versity of Toronto tripartite collaboration fund of
The Chinese University of Hong Kong.

References
B. Abbott. 2010. Reference. Oxford Surveys in Se-

mantics & Pragmatics No.2. OUP Oxford.

Piotr Bojanowski, Edouard Grave, Armand Joulin,
and Tomas Mikolov. 2016. Enriching word vec-
tors with subword information. arXiv preprint
arXiv:1607.04606.

Jianpeng Cheng, Zhongyuan Wang, Ji-Rong Wen, Jun
Yan, and Zheng Chen. 2015. Contextual text under-
standing in distributional semantic space. In Pro-
ceedings of the 24th ACM International on Confer-
ence on Information and Knowledge Management,
pages 133–142. ACM.

Kenneth Ward Church and Patrick Hanks. 1990. Word
association norms, mutual information, and lexicog-
raphy. Computational linguistics, 16(1):22–29.

Corinna Cortes and Vladimir Vapnik. 1995. Support-
vector networks. Machine learning, 20(3):273–297.

Robert Dale and Nicholas Haddock. 1991. Content
determination in the generation of referring expres-
sions. Computational Intelligence, 7(4):252–265.

Robert M Fano. 1961. Transmission of information: A
statistical theory of communications.

Simone Filice, Danilo Croce, Alessandro Moschitti,
and Roberto Basili. 2016. Kelp at semeval-2016
task 3: Learning semantic relations between ques-
tions and answers. In Proceedings of the 10th
International Workshop on Semantic Evaluation
(SemEval-2016), pages 1116–1123, San Diego, Cal-
ifornia. Association for Computational Linguistics.

Marti A Hearst. 1992. Automatic acquisition of hy-
ponyms from large text corpora. In Proceedings of

the 14th conference on Computational linguistics-
Volume 2, pages 539–545. Association for Compu-
tational Linguistics.

David Jurgens and Mohammad Taher Pilehvar. 2016.
Semeval-2016 task 14: Semantic taxonomy enrich-
ment. In Proceedings of the 10th International
Workshop on Semantic Evaluation (SemEval-2016),
pages 1092–1102.

Sahar Kazemzadeh, Vicente Ordonez, Mark Matten,
and Tamara Berg. 2014. Referitgame: Referring to
objects in photographs of natural scenes. In Pro-
ceedings of the 2014 conference on empirical meth-
ods in natural language processing (EMNLP), pages
787–798.

Emiel Krahmer and Kees Van Deemter. 2012. Compu-
tational generation of referring expressions: A sur-
vey. Computational Linguistics, 38(1):173–218.

Alicia Krebs, Alessandro Lenci, and Denis Paperno.
2018. Semeval-2018 task 10: Capturing discrim-
inative attributes. In Proceedings of the 12th inter-
national workshop on semantic evaluation (SemEval
2018).

Angeliki Lazaridou, Marco Baroni, et al. 2016. The
red one!: On learning to refer to things based on dis-
criminative properties. In Proceedings of the 54th
Annual Meeting of the Association for Computa-
tional Linguistics (Volume 2: Short Papers), vol-
ume 2, pages 213–218.

Omer Levy, Steffen Remus, Chris Biemann, and Ido
Dagan. 2015. Do supervised distributional meth-
ods really learn lexical inference relations? In Pro-
ceedings of the 2015 Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics: Human Language Technologies, pages
970–976.

Jimmy Lin. 2007. An exploration of the principles
underlying redundancy-based factoid question an-
swering. ACM Transactions on Information Systems
(TOIS), 25(2):6.

Christopher D. Manning, Mihai Surdeanu, John Bauer,
Jenny Finkel, Steven J. Bethard, and David Mc-
Closky. 2014. The Stanford CoreNLP natural lan-
guage processing toolkit. In Association for Compu-
tational Linguistics (ACL) System Demonstrations,
pages 55–60.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013. Distributed representa-
tions of words and phrases and their compositional-
ity. In Advances in neural information processing
systems, pages 3111–3119.

George A Miller. 1995. Wordnet: a lexical database for
english. Communications of the ACM, 38(11):39–
41.

745

Nikola Mrksic, Diarmuid Ó Séaghdha, Tsung-Hsien
Wen, Blaise Thomson, and Steve J. Young. 2016.
Neural belief tracker: Data-driven dialogue state
tracking. CoRR, abs/1606.03777.

Alexander Panchenko, Stefano Faralli, Eugen Ruppert,
Steffen Remus, Hubert Naets, Cedrick Fairon, Si-
mone Paolo Ponzetto, and Chris Biemann. 2016.
Taxi at semeval-2016 task 13: a taxonomy induc-
tion method based on lexico-syntactic patterns, sub-
strings and focused crawling. In Proceedings of the
10th International Workshop on Semantic Evalua-
tion (SemEval-2016), pages 1320–1327, San Diego,
California. Association for Computational Linguis-
tics.

Thomas Pechmann. 1989. Incremental speech produc-
tion and referential overspecification. Linguistics,
27(1):89–110.

Jeffrey Pennington, Richard Socher, and Christo-
pher D. Manning. 2014. Glove: Global vectors for
word representation. In Empirical Methods in Nat-
ural Language Processing (EMNLP), pages 1532–
1543.

Radim Rehurek and Petr Sojka. 2010. Software frame-
work for topic modelling with large corpora. In In
Proceedings of the LREC 2010 Workshop on New
Challenges for NLP Frameworks. Citeseer.

Stephen Roller, Katrin Erk, and Gemma Boleda. 2014.
Inclusive yet selective: Supervised distributional hy-
pernymy detection. In Proceedings of COLING
2014, the 25th International Conference on Compu-
tational Linguistics: Technical Papers, pages 1025–
1036.

John R Searle. 1969. Speech acts: An essay in the phi-
losophy of language, volume 626. Cambridge uni-
versity press.

Fabian M Suchanek, Gjergji Kasneci, and Gerhard
Weikum. 2007. Yago: a core of semantic knowl-
edge. In Proceedings of the 16th international con-
ference on World Wide Web, pages 697–706. ACM.

Jean-Philippe Vert, Koji Tsuda, and Bernhard
Schölkopf. 2004. A primer on kernel meth-
ods. Kernel methods in computational biology,
47:35–70.

Julie Weeds, Daoud Clarke, Jeremy Reffin, David Weir,
and Bill Keller. 2014. Learning to distinguish hyper-
nyms and co-hyponyms. In Proceedings of COL-
ING 2014, the 25th International Conference on
Computational Linguistics: Technical Papers, pages
2249–2259. Dublin City University and Association
for Computational Linguistics.

Wentao Wu, Hongsong Li, Haixun Wang, and Kenny Q
Zhu. 2012. Probase: A probabilistic taxonomy for
text understanding. In Proceedings of the 2012 ACM
SIGMOD International Conference on Management
of Data, pages 481–492. ACM.

Wei Xu, Alan Ritter, Chris Callison-Burch, William B
Dolan, and Yangfeng Ji. 2014. Extracting lexically
divergent paraphrases from twitter. Transactions
of the Association for Computational Linguistics,
2:435–448.

746

Proceedings of the 12th International Workshop on Semantic Evaluation (SemEval-2018), pages 747–757
New Orleans, Louisiana, June 5–6, 2018. ©2018 Association for Computational Linguistics

SemEval-2018 Task 11: Machine Comprehension Using Commonsense
Knowledge

Simon Ostermann Michael Roth Ashutosh Modi Stefan Thater Manfred Pinkal
Saarland University

Saarbrücken, Germany
{simono|mroth|ashutosh|stth|pinkal}@coli.uni-saarland.de

Abstract

This report summarizes the results of the Se-
mEval 2018 task on machine comprehension
using commonsense knowledge. For this ma-
chine comprehension task, we created a new
corpus, MCScript. It contains a high num-
ber of questions that require commonsense
knowledge for finding the correct answer. 11
teams from 4 different countries participated
in this shared task, most of them used neu-
ral approaches. The best performing system
achieves an accuracy of 83.95%, outperform-
ing the baselines by a large margin, but still
far from the human upper bound, which was
found to be at 98%.

1 Introduction

Developing algorithms for understanding natural
language is not trivial. Natural language comes
with its own complexity and inherent ambiguities.
Ambiguities can occur, for example, at the level
of word meaning, syntactic structure, or semantic
interpretation. Traditionally, Natural Language Un-
derstanding (NLU) systems have resolved ambigui-
ties using information from the textual context (e.g.
neighboring words and sentences), for example via
distributional methods (Lenci, 2008). However,
many times context may be absent or may lack
sufficient information to resolve the ambiguity. In
such cases, it would be beneficial to include com-
monsense knowledge about the world in an NLU
system. For example, consider example (1).

(1) The waitress brought Rachel’s order. She
ate the food with great pleasure.

Looking at the example in isolation, the person
eating the food could be either Rachel or the wait-
ress. Using commonsense knowledge, or, more
specifically, script knowledge about the RESTAU-
RANT scenario, helps to resolve the referent of the
pronoun: Rachel ordered the food. The person who

orders the food is the customer. So Rachel should
eat the food, she thus refers to Rachel.

This shared task assesses how the inclusion of
commonsense knowledge benefits natural language
understanding systems. In particular, we focus on
commonsense knowledge about everyday activi-
ties, referred to as scripts. Scripts are sequences
of events describing stereotypical human activities
(also called scenarios), for example baking a cake,
taking a bus, etc. (Schank and Abelson, 1975). The
concept of scripts has its underpinnings in cognitive
psychology and has been shown to be an important
component of the human cognitive system (Bower
et al., 1979; Schank, 1982; Modi et al., 2017). From
an application perspective, scripts have been shown
to be useful for a variety of tasks, including story
understanding (Schank, 1990), information extrac-
tion (Rau et al., 1989), and drawing inferences from
texts (Miikkulainen, 1993).

Factual knowledge is mentioned explicitly in
texts from sources such as Wikipedia and news pa-
pers. On the contrary, script knowledge is often im-
plicit in the texts as it is assumed to be known to the
comprehender. Because of this implicitness, learn-
ing script knowledge from texts is very challenging.
There are few exceptions of corpora containing nar-
rative texts that explicitly instantiate script knowl-
edge. An example is the InScript (Modi et al.,
2016), which contains short and simple narratives,
that very explicitly mention script events and par-
ticipants. The Dinners from Hell corpus (Rudinger
et al., 2015a) is a similar dataset centered around
the EATING IN A RESTAURANT scenario.

In the past, script modeling systems have been
evaluated using intrinsic tasks such as event order-
ing (Modi and Titov, 2014), paraphrasing (Regneri
et al., 2010; Wanzare et al., 2017), event prediction
(namely, the narrative cloze task) (Chambers and
Jurafsky, 2008, 2009; Rudinger et al., 2015b; Modi,
2016) or story completion (e.g. the story cloze task

747

T It was a long day at work and I decided
to stop at the gym before going home.
I ran on the treadmill and lifted some
weights. I decided I would also swim a
few laps in the pool. Once I was done
working out, I went in the locker room
and stripped down and wrapped myself
in a towel. I went into the sauna and
turned on the heat. I let it get nice and
steamy. I sat down and relaxed. I let my
mind think about nothing but peaceful,
happy thoughts. I stayed in there for
only about ten minutes because it was so
hot and steamy. When I got out, I turned
the sauna off to save energy and took a
cool shower. I got out of the shower and
dried off. After that, I put on my extra
set of clean clothes I brought with me,
and got in my car and drove home.

Q1 Where did they sit inside the sauna?
a. on the floor b. on a bench

Q2 How long did they stay in the sauna?
a. about ten min-
utes

b. over thirty
minutes

Figure 1: An example for a text from MCScript with 2
reading comprehension questions.

(Mostafazadeh et al., 2016)). These tasks test a sys-
tem’s ability to learn script knowledge from a text
but they do not provide a mechanism to evaluate
how useful script knowledge is in natural language
understanding tasks.

Our shared task bridges this gap by directly re-
lating commonsense knowledge and language com-
prehension. The task has a machine comprehension
setting: A machine is given a text document and
asked questions based on the text. In addition to
what is mentioned in the text, answering the ques-
tions requires knowledge beyond the facts men-
tioned in the text. In particular, a substantial subset
of questions requires inference over commonsense
knowledge via scripts. For example, consider the
short narrative in (1). For the first question, the cor-
rect choice for an answer requires commonsense
knowledge about the activity of going to the sauna,
which goes beyond what is mentioned in the text:
Usually, people sit on benches inside a sauna, an

information that is not given in the text. The dataset
also comprises questions that can just be answered
from the text, as the second question: The informa-
tion about the duration of the stay is given literally
in the text.

The paper is organized as follows: In Section 2,
we give an overview of other machine comprehen-
sion datasets. In Section 3, we describe the dataset
used for our shared task. Section 4.2 gives details
about the setup of our task. In Section 5, informa-
tion about participating systems is given. Results
are presented and discussed in Sections 6 and 8,
respectively.

2 Related Work

Recently, a number of datasets have been pro-
posed for machine comprehension. One example is
MCTest (Richardson et al., 2013), a small curated
dataset of 660 stories, with 4 multiple choice ques-
tions per story. The stories are crowdsourced and
not limited to a domain. Answering questions in
MCTest requires drawing inferences from multiple
sentences from the text passage. In our dataset,
in contrast, answering requires drawing inferences
using knowledge not explicit in the text. Another
recently published multiple choice dataset is RACE
(Lai et al., 2017), which contains 100,000 questions
on reading examination data.

Rajpurkar et al. (2016) have proposed the Stan-
ford Question Answering Dataset (SQuAD), a data
set of 100,000 questions on Wikipedia articles col-
lected via crowdsourcing. In that dataset, the an-
swer to a question corresponds to a segment/span
from the reading passage. Since Wikipedia articles
mostly contain factual knowledge, SQuAD does not
assess how in practice, language comprehension
relies on implicit and underrepresented knowledge
about everyday activities i.e. script knowledge.

Weston et al. (2015) have created the BAbI
dataset. BAbI is a synthetic reading comprehen-
sion data set testing different types of reasoning
to solve different tasks. In contrast to our dataset,
the artificial texts in BAbI are not reflective of a
typically occurring narrative text.

Two recently published datasets that also have
a larger focus on commonsense reasoning are
NewsQA and TriviaQA. NewsQA (Trischler et al.,
2017) contains newswire texts from CNN with
crowdsourced questions and answers. During the
question collection, workers were only presented
with the title of the text, and a short summary. This

748

method ensures that literal repetitions of the text are
avoided and the generation of non-trivial questions
requiring background knowledge is supported. The
NewsQA text collection differs from MCScript in
domain and genre (newswire texts vs. narrative sto-
ries about everyday events). Knowledge required to
answer the questions is mostly factual knowledge
and script knowledge is only marginally relevant.

TriviaQA (Joshi et al., 2017) contains automat-
ically collected question-answer pairs from 14
trivia and quiz-league websites, together with web-
crawled evidence documents from Wikipedia and
Bing. While a majority of questions require world
knowledge for finding the correct answer, it is
mostly factual knowledge.

3 Data

In 3.1, we now briefly describe the machine com-
prehension dataset used for the shared task, MC-
Script. Parts of the following Section are taken
from Ostermann et al. (2018). For a more detailed
description of the resource collection and a more
thorough discussion of the dataset, we refer to the
original paper. Section 3.2 gives details about script
data collections that were made available to the par-
ticipants.

3.1 Machine Comprehension Data -
MCScript

For our shared task, we use the MCScript data
set (Ostermann et al., 2018). It is a collection of
narrative texts, questions of various types referring
to these texts, and pairs of answer candidates for
each question. It comprises 2,119 such texts and
a total of 13,939 questions. The texts in the data
set talk about everyday activities and cover 110
script scenarios of differing complexity. For the
text collection, we followed Modi et al. (2016): All
texts are simple and explicit in the description of
script events and script participants.

The data set was crowdsourced via Amazon Me-
chanical turk1. In the crowdsourcing experiments,
participants were asked to write questions inde-
pendent of a concrete narrative, but only based on
short descriptions of a scenario. By doing so, the
collected questions were related to the scenario
only and could be answered from different texts,
independent of story details.

The scenario-based questions were paired ran-
domly with texts from the same scenario. The

1www.mturk.com

how many/much
4 %

how long/often
5 %

when
6 %

how
7 %

where
9 %

why
12 %

who/whose
12 %

what/which
14 %

Rest
2 %

y/n
29 %

Figure 2: Distribution of question types in MCScript,
from Ostermann et al. (2018).

subsequent answer collection was divided up into
two steps: First, crowdsourcing workers had to an-
notate whether a question could be answered based
on the given text. If it could be answered, they had
to explicitly mark whether it could be answered
from the text directly or based on commonsense
knowledge. Second, they had to write a plausi-
ble correct and incorrect answer, if the question
was answerable. Afterwards, all texts, questions
and answers were manually validated by trained
annotators, and corrected, if necessary.

Due to the design of the data acquisition process,
a substantial subset of questions (27.4%) require
commonsense inference about everyday activities.
Figure 2 gives an overview of the distribution of
question types on the data. Yes/No questions form
the largest group, with 29%, followed by ques-
tions asking for details of a narration or scenario
(what/which and who).

For the task, the corpus was split into train-
ing (9,731 questions on 1,470 texts), development
(1,411 questions on 219 texts), and test set (2,797
questions on 430 texts). For 5 scenarios, all texts
were held out for the test set, in order to avoid that
models overfit and memorize the scenarios in the
training data. Texts, questions, and answers contain
on average 196.0 words, 7.8 words, and 3.6 words,
respectively. There are 6.7 questions per text on
average.

749

3.2 Script and Commonsense Knowledge
Data

We also encouraged participants to make use of
existing script data collections. Thus, we provided
several existing collections of script data together
with the machine comprehension corpus: DeScript
(Wanzare et al., 2016), RKP (Regneri et al., 2010)
and the OMCS stories (Singh et al., 2002). The
three datasets contain sequences of short, telegraph-
styled descriptions of all events that need to be con-
ducted in a scenario (event sequence descriptions,
ESDs). The data sets contain ESDs for different
numbers of scenarios, with a total coverage of over
200 scenarios. The complexity of scenarios varies
from simple activities, such as opening a window,
to more complex ones, such as attending a wed-
ding.

For 90 of the 110 scenarios in MCScript, there
exist multiple ESDs per scenario in at least one of
the 3 script data collections.

We also advised participants to make use of other
representations for script knowledge, such as nar-
rative chains (Chambers and Jurafsky, 2008), or
event embeddings (Modi and Titov, 2014).

Some participants also made use of ConceptNet
(Speer et al., 2017) as a resource for commonsense
knowledge. ConceptNet is a large-scale knowledge
graph that is built from several handcrafted and
crowdsourced sources, and that encodes various
types of commonsense knowledge.

4 Shared Task Setup

4.1 Evaluation Method
In our evaluation, we measured how well a system
was capable of correctly answering questions that
may involve commonsense knowledge. As evalu-
ation metric, we used accuracy, calculated as the
ratio between correctly answered questions and all
questions in our evaluation data. We also evaluated
systems with regard to specific question types and
based on whether a question is directly answerable,
or only inferable from the text.

4.2 Baselines
We provide results of two baseline systems as lower
bounds for comparison: a rule-based baseline (Slid-
ing Window) and a neural end-to-end system (At-
tentive Reader). Both baselines are described in

2IUCM cluster MCScript texts and try to find answers
also in other texts, that are topically similar. In that sense,
MCScript itself is used to represent commonsense knowledge.

more detail below. For details about the tuning
of hyperparameters, we refer to Ostermann et al.
(2018).

Sliding Window

The sliding window baseline is a simple rule-based
method that answers a question on a text by predict-
ing the answer option with the highest similarity
to the text. The intuition underlying this method is
that answers similar to a text should be more plau-
sible than answer options that are different from
the text (independent of the question). In our base-
line implementation, we compute similarity using
a sliding window that compares each answer op-
tion to any possible “window” of w tokens of the
text. For comparison, each window and each an-
swer is represented by an average vector, computed
over the components of word embeddings corre-
sponding to the words in the window and answer,
respectively. For each possible window, we com-
pute similarity as the cosine similarity between the
window and the answer representation. The answer
with the higher maximum similarity (over possible
windows) is predicted to be the correct answer.

Attentive Reader

The attentive reader is an established machine com-
prehension model that reaches good performance
e.g. on the CNN/Daily Mail corpus (Hermann et al.,
2015; Chen et al., 2016). It is a neural network-
based approach, which scores answers to a question
on a text by finding (“paying attention to”) and scor-
ing relevant passages in the text. The scoring and
attention mechanisms are learned directly (“end-to-
end”) from text–question–answer triples, without
the need for manual rule writing or feature engi-
neering. As a baseline for the shared task, we use
the model formulation by Chen et al. (2016) and
Lai et al. (2017), who employ bilinear weight func-
tions to compute both attention and answer-text
fit. Bi-directional gated recurrent units (GRUs) are
used to encode questions, texts and answers into
hidden representations. For a question q and an
answer a, the last state of the GRU, q and a, are
used as representations, while the text is encoded
as a sequence of hidden states t1...tn. We compute
an attention score sj for each hidden state tj us-
ing the question representation q, a weight matrix
Wa, and an attention bias b. The text representa-
tion t is computed as a weighted average of hidden

750

Rank Team name Main model Commonsense Other resources Acc.

1 Yuanfudao LSTM ConceptNet GloVe, Wikipedia,
POS and NE tagging

0.84

2 MITRE LSTM − word2vec, Twitter, stemming 0.82
3 Jiangnan LSTM − GloVe, CoVe,

POS and NE tagging
0.81

4 ELiRF-UPV LSTM ConceptNet − 0.75
5 YNU Deep LSTM − GloVe 0.75
6 ZMU LSTM − word2vec, GloVe 0.74
7 ECNU LSTM − GloVe 0.73
8 YNU AI1799 LSTM/CNN − word2vec, GloVe 0.72
9 YNU-HPCC LSTM/CNN − word2vec 0.71
10 CSReader LSTM − lemmatization, GloVe 0.63
11 IUCM k-means DeScript, MCScript2 NLTK 0.61

Table 1: Overview of techniques and resourced used by the participating systems.

representations:

sj =softmaxj(t>j Waq + b)

t =
∑

j

sjtj (1)

The probability p of answer a being correct is pre-
dicted using another bilinear weight matrix Ws,
followed by an application of the softmax function
over both answer options for the question:

p(a|t, q) = softmax(t>Wsa) (2)

5 Participants

We ran our shared task through the CodaLab plat-
form3. 24 teams submitted results during the evalu-
ation period, out of which 11 teams provided sys-
tem descriptions: 8 teams from China, and one
team each from Spain, Russia and the US. The full
leader board containing all 24 submissions can be
found on the shared task website.

Except for one team, all participating models
rely on recurrent neural network techniques to en-
code texts, questions and/or answers. The one
team that did not apply neural methods proposed
an alternative approach based on clustering tech-
niques and scoring word overlap. Only 3 of the 11
teams made explicit use of commonsense knowl-
edge: Two approaches used ConceptNet, either in
the form of features extracted from ConceptNet
relations or in the form of pretrained Numberbatch

3https://competitions.codalab.org/
competitions/17184

embeddings (Speer et al., 2017). One participating
system made use of script knowledge in the form of
event sequence descriptions. Resources commonly
used by participants include pretrained word em-
beddings such as GloVe (Pennington et al., 2014)
or word2vec (Mikolov et al., 2013), and prepro-
cessing pipelines such as NLTK4. In the following,
we provide short summaries of the participants’
systems and we give an overview of models and
resources used by them (Table 1).

Non-neural methods IUCM (Reznikova and
Derczynski, 2018) applied an unsupervised ap-
proach that assigns the correct answer to a question
based on text overlap. Text overlap is computed
based on the given passage and text sources of the
same topic. Different clustering and topic modeling
techniques are used to identify such text sources in
MCScript and DeScript.

Neural-network based models Apart from
IUCM, all participating systems are neural end-
to-end models that employ recurrent and/or con-
volutional neural network architectures. Systems
mainly differ with respect to details of the architec-
ture and the form of how words are represented.

Yuanfudao (Liang Wang, 2018) applies a three-
way attention mechanism to model interactions be-
tween the text, question and answers, on top of BiL-
STMs. Each word in a text, question, and answer is
represented by a vector of GloVe embeddings and
additional information from part-of-speech tagging,
name entity recognition, and relation extraction

4https://www.nltk.org/

751

Rank Team name Total Commonsense Text Out of Domain

1 Yuanfudao 0.84* 0.82 0.85 0.79
2 MITRE 0.82 0.79 0.83* 0.78
3 Jiangnan 0.81* 0.80 0.81* 0.75*
4 ELiRF-UVP 0.75 0.82 0.73 0.70
5 YNU Deep 0.75 0.79 0.73 0.66
6 ZMU 0.74 0.80 0.72 0.66
7 ECNU 0.73 0.77 0.72 0.69
8 YNU AI1799 0.72 0.76 0.71 0.67
9 YNU HPCC 0.71* 0.78* 0.69* 0.64*

10 CSReader 0.63 0.64* 0.63 0.59
11 IUCM 0.61 0.54 0.64 0.58

– Attentive Reader 0.72 0.75 0.71 0.69
– Sliding Window 0.55 0.53 0.56 0.52

– Human Performance 0.98

Table 2: The accuracy of participating systems and the two baselines in total, on commonsense-based questions
(CS), text-based questions (TXT) and on out-of-domain questions (from the 5 held-out testing scenarios). The best
performance for each column is marked in bold print. Significant differences in results between two adjacent lines
are marked by an asterisk (* p<0.05) in the upper line. The last line shows the human upper bound (Ostermann
et al., 2018) as comparison.

(based on ConceptNet). The model is pretrained
on another large machine comprehension dataset,
namely the RACE corpus.

MITRE (Merkhofer et al., 2018) use a combi-
nation of 3 systems - two LSTMs with attention
mechanisms, and one logistic regression model us-
ing patterns based on the vocabulary of the training
set. The two neural models use different word em-
beddings - one trained on GoogleNews, another
one trained on Twitter, which were enriched with
word overlap features. Interestingly, the simple
logistic regression model achieves competitive per-
formance and would have ranked 4th as an individ-
ual system.

Jiangnan (Xia, 2018) applies a BiLSTM over
GloVe and CoVe embeddings (McCann et al., 2017)
with an additional attention mechanism. The at-
tention mechanism computes soft word alignment
between words in the question and the text or an-
swer. Manual features, including part-of-speech
tags, named entitity types, and term frequencies,
are employed to enrich word token representations.

ELiRF-UPV (José -Ángel González et al., 2018)
employs a BiLSTM with attention to find similar-
ities between texts, questions, and answers. Each
word is represented based on Numberbatch embed-
dings, which encode information from ConceptNet.

YNU Deep (Ding and Zhou, 2018) test different
LSTMs and BiLSTMs variants to encode questions,
answers and texts. A simple attention mechanism is
applied between question–answer and text–answer
pairs. The final submission is an ensemble of five
model instances.

ZMU (Li and Zhou, 2018) consider a wide vari-
ety of neural models, ranging from CNNs, LSTMs
and BiLSTMs with attention, together with pre-
trained Word2Vec and GloVe embeddings. They
also employ data augmentation methods typically
used in image processing. Their best performing
model is a BiLSTM with attention mechanism and
combined GloVe and Word2Vec embeddings.

ECNU (Sheng et al., 2018) use BiGRUs and
BiLSTMs to encode questions, answers and texts.
They implement a multi-hop attention mechanism
from question to text (a Gated Attention Reader
(Dhingra et al., 2017)).

YNU AI1799 (Liu et al., 2018) submitted an en-
semble of neural network models based on LSTMs,
RNNs, and BiLSTM/CNN combinations, with at-
tention mechanisms. In addition to word2vec em-
beddings, positional embeddings are used that are
generated based on word embeddings.

752

Rank Team name y/n what why who where when

1 Yuanfudao 0.76 0.87 0.85 0.93 0.88 0.81
2 MITRE 0.76 0.83 0.82 0.91 0.85 0.77
3 Jiangnan 0.75* 0.80* 0.80 0.88 0.84* 0.82*
4 ELiRF-UVP 0.72 0.68 0.79 0.86 0.69 0.74
5 YNU Deep 0.73 0.66 0.75 0.86 0.71 0.72
6 ZMU 0.73 0.65 0.77 0.81 0.72 0.75
7 ECNU 0.71 0.66 0.75 0.82 0.73 0.68
8 YNU AI1799 0.70 0.68 0.78* 0.80 0.67 0.72
9 YNU HPCC 0.72* 0.66* 0.71 0.83* 0.65 0.66
10 CSReader 0.54 0.59* 0.68 0.76* 0.62* 0.63
11 IUCM 0.54 0.75 0.66 0.45 0.77 0.61

– Attentive Reader 0.67 0.66 0.75 0.84 0.73 0.71
– Sliding Window 0.47 0.69 0.56 0.48 0.61 0.51

Table 3: Accuracy of participating systems and the baselines on the six most frequent question types. The best
performance for each column is marked in bold print. Significant differences in results between two adjacent lines
are marked by an asterisk (* p<0.05) in the upper line.

YNU-HPCC (Yuan et al., 2018) use an ensemble
of neural networks with stacked CNN and LSTM
layers and attention.

CSReader (Jiang and Sun, 2018) use GRUs to
encode questions and texts. Answer and text are
combined by using an attention mechanism that
models soft word alignments, inspired by work on
Natural Language Inference (Bowman et al., 2015).
Two answer classifiers based on these representa-
tions are ensembled for prediction.

6 Results

Tables 2 and 3 give detailed results for all participat-
ing systems. We performed pairwise significance
tests using an approximate randomization test (Yeh,
2000) over texts. At an accuracy of 84%, the best
participating team Yuanfudao performed signifi-
cantly better (p<0.05) than the second best system,
MITRE (82%).

Except for when questions, Yuanfudao also
achieved the best performance at each question
type. However, individual differences in results
over the 2nd place system were not found to be sig-
nificant. The top three participating teams, Yuan-
fudao, MITRE and Jiangnan, all significantly out-
perform the remaining teams on text-based ques-
tions (>80% vs. <74%) as well as on yes/no, what,
where and when questions.

In comparison to our baselines, all teams but
Innopolis significantly outperform Sliding Win-
dow. Results of the Attentive Reader are in line

with those of the participating systems ranked 7–
9: ECNU, YNU AI1799 and YNU HPCC. The
six top-ranked systems all significantly outperform
both of our baselines. On out-of-domain questions,
only the top 3 performing models significantly out-
perform the Attentive Reader baseline, while all
models significantly outperform the Sliding Win-
dow approach.

For commonsense-based questions as well as for
questions on why and who, results are considerably
less consistent: while the top ranked system signifi-
cantly outperforms teams ranked 7th or lower, most
pairwise differences between the top teams are not
statistically significant. This implies that the set of
correctly answered questions considerably varies
between systems, either due to randomness or be-
cause they excel at different inference problems.

We found that 19.3 % of the questions in the test
set were answered correctly by each participating
system. These questions mainly contain text-based
questions with an answer that is literally given in
the text. Also, there are many commonsense-based
questions with a standardized correct answer, as
shown in Example 2. Only few of the stories in
MCScript cover a long timespan, so the answer to
such questions is always similar.

(2) Q: How long did it take to pump up the
tires?
a. just a few minutes b. a few hours

In contrast, only 1% of questions could not be an-
swered by any of the participating models. Answer-

753

ing these questions mainly requires complicated
inference steps, such as counting or plausibility
judgements.

7 Discussion

We briefly highlight some of the findings by the
shared task participants.

External knowledge sources. One of the main
goals of this shared task was to provide an extrin-
sic evaluation framework for models of common-
sense knowledge. However, only three participants
actually made use of resources of commonsense
knowledge.

Most prominent is the use of ConceptNet, a
large-scale knowledge graph that is built from sev-
eral handcrafted and crowdsourced sources. It
was employed by two of the top 5 scoring models:
Yuanfudao use it to learn their own ConceptNet-
based relation embeddings. ELiRF-UPV make
use of Numberbatch word embeddings, which are
learned based on ConceptNet data. Ablation anal-
yses conducted by Yuanfudao indicate that the ad-
dition of ConceptNet increases overall accuracy
by almost 1% absolute. In contrast, only one par-
ticipant used crowdsourced script data from the
DeScript corpus in their final submission, IUCM.
They found that the use of script data, instead of or
in addition to texts, improved performance by up
to 0.3% absolute.

CSReader tried to extend their neural model with
script data from OMCS, but report that it did not
result in an improvement.

No participant made use of narrative chains or
other forms of structured/learned representations
of scripts or events (such as event embeddings).

Pretraining. Most participants made use of pre-
training in the form of word embeddings such as
word2vec or GloVe, that were build on large data
collections. Yuanfudao used the RACE dataset,
which is the largest available multiple-choice ma-
chine comprehension corpus, for pretraining the
complete model for several epochs. In their abla-
tion analysis, they found pretraining to have the
largest effect on model performance, with improve-
ments in accuracy of up to 1.4% absolute. This
result underlines that the comparably small size
of MCScript naturally restricts how much neural
approaches can learn from the data without overfit-
ting.

Word representations. For representing tokens,
most participants used word2vec embeddings,
GloVe embeddings, or combinations thereof. The
participating teams used different dimensionality
sizes, and some of them refitted the vectors while
others did not, leading to differing outcomes for
both embedding types. In summary, none of both
representations seems to clearly outperform the
other.

In contrast, participants consistently found that
extending word representations with additional fea-
tures improves results: For example, Yuanfudao
and Jiangnan use predicted part-of-speech tags
and named entity information, as well as term fre-
quency, and report improvements of up to 1% ab-
solute in accuracy. Also, some participants report
the use of word overlap features. Most notably,
MITRE found that a logistic regression classifier
based on overlap features can achieve performance
competitive with neural approaches.

In general, additional features seem to be benefi-
cial, since they provide more explicit or additional
information that can be leveraged by neural net-
works and other classifiers.

Preprocessing. Several participants reported that
lemmatizing and stop word removal further im-
proved their results. A prominent example is the
submission by MITRE, who use a stemmer to de-
rive root forms for all words, in order to compute
overlap and co-occurrence statistics between an-
swers and text/questions.

8 Conclusions

This shared task provides an evaluation framework
for commonsense knowledge in a machine compre-
hension setting. We create the MCScript corpus,
which provides 2,119 stories and 13,939 answers
for 110 everyday activities of different complex-
ity. In contrast to previous datasets, MCScript was
created in a way that results in a relatively large
amount of common sense questions, i.e. questions
which can not be answered directly from the text
but require some form of common-sense knowl-
edge about the scenario under consideration to be
answered correctly.

24 teams submitted systems during the the eval-
uation period of the shared task, of which 11
teams submitted task description papers. The best-
performing system achieves an overall accuracy of
84%, which outperforms the two baselines by a

754

large margin; yet, there gap to the human upper
bound (98%) is still relative large.

Although participants were explicitly encour-
aged to use additional common-sense knowledge
resources like DeScript of OMCS, only 3 systems
(including the best-performing system) actually
used such additional resources. The evaluation re-
sults suggest that additional common-sense knowl-
edge is in fact beneficial for overall accuracy. How-
ever, the positive effect is relatively small, which
might be due to the fact that our dataset has been
created in a way that leads to relatively “easy” sto-
ries, and that the systems are able to learn a certain
amount of common sense knowledge directly from
the stories. In future work, it would be interesting
to see if the results of our shared task carry over
to other, presumably more complex stories like for
instance personal blog stories from the Spinn3r
corpus (Burton et al., 2011).

Acknowledgments

We thank the reviewers for their helpful comments.
Also, we thank all teams for their participation and
the effort they put into their submissions and the
discussions, making this shared task a success.

This research was funded by the German Re-
search Foundation (DFG) as part of SFB 1102 In-
formation Density and Linguistic Encoding and
EXC 284 Multimodal Computing and Interaction.

References

Gordon H Bower, John B Black, and Terrence J Turner.
1979. Scripts in memory for text. Cognitive psychol-
ogy, 11(2):177–220.

Samuel R Bowman, Gabor Angeli, Christopher Potts,
and Christopher D Manning. 2015. A large anno-
tated corpus for learning natural language inference.
In Proceedings of the 2015 Conference on Empiri-
cal Methods in Natural Language Processing, pages
632–642.

Kevin Burton, Niels Kasch, and Ian Soboroff. 2011.
The icwsm 2011 spinn3r dataset. In Proceedings of
the Annual Conference on Weblogs and Social Me-
dia (ICWSM 2011).

Nathanael Chambers and Dan Jurafsky. 2008. Unsu-
pervised Learning of Narrative Event Chains. In
Proceedings of the 46th Annual Meeting of the As-
sociation for Computational Linguistics: Human
Language Technologies, pages 789–797, Columbus,
Ohio. Association for Computational Linguistics.

Nathanael Chambers and Dan Jurafsky. 2009. Unsuper-
vised Learning of Narrative Schemas and their Par-
ticipants. In Proceedings of the Joint Conference of
the 47th Annual Meeting of the ACL and the 4th In-
ternational Joint Conference on Natural Language
Processing of the AFNLP, pages 602–610, Singa-
pore. Association for Computational Linguistics.

Danqi Chen, Jason Bolton, and Christopher D Man-
ning. 2016. A Thorough Examination of the
CNN/Daily Mail Reading Comprehension Task. In
Proceedings of the 54th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), volume 1, pages 2358–2367.

Bhuwan Dhingra, Hanxiao Liu, Zhilin Yang, William
Cohen, and Ruslan Salakhutdinov. 2017. Gated-
attention readers for text comprehension. In Pro-
ceedings of the 55th Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 1: Long
Papers), volume 1, pages 1832–1846.

Peng Ding and Xiaobing Zhou. 2018. YNU Deep at
SemEval-2018 Task 11: An Ensemble of Attention-
based BiLSTM Model for Machine Comprehension.
In Proceedings of the 12th International Workshop
on Semantic Evaluations (SemEval-2018).

Karl Moritz Hermann, Tomas Kocisky, Edward Grefen-
stette, Lasse Espeholt, Will Kay, Mustafa Suleyman,
and Phil Blunsom. 2015. Teaching machines to read
and comprehend. In Advances in Neural Informa-
tion Processing Systems, pages 1693–1701.

Zhengping Jiang and Qi Sun. 2018. CSReader at
SemEval-2018 Task 11: Multiple Choice Question
Answering as Textual Entailment. In Proceedings of
the 12th International Workshop on Semantic Evalu-
ations (SemEval-2018).

José -Ángel González, Lluı́s-F. Hurtado, Encarna
Segarra, and Ferran Pla. 2018. ELiRF-UPV at
SemEval-2018 Task 11: Machine Comprehension
using Commonsense Knowledge. In Proceedings of
the 12th International Workshop on Semantic Evalu-
ations (SemEval-2018).

Mandar Joshi, Eunsol Choi, Daniel S. Weld, and Luke
Zettlemoyer. 2017. TriviaQA: A Large Scale Dis-
tantly Supervised Challenge Dataset for Reading
Comprehension. In Proceedings of the 55th Annual
Meeting of the Association for Computational Lin-
guistics, Vancouver, Canada. Association for Com-
putational Linguistics.

Guokun Lai, Qizhe Xie, Hanxiao Liu, Yiming Yang,
and Eduard Hovy. 2017. Race: Large-scale reading
comprehension dataset from examinations. arXiv
preprint arXiv:1704.04683.

Alessandro Lenci. 2008. Distributional semantics in
linguistic and cognitive research. Italian journal of
linguistics, 20(1):1–31.

755

Yongbin Li and Xiaobing Zhou. 2018. ZMU at
SemEval-2018 Task 11: Machine Comprehension
Task using Deep Learning Models. In Proceed-
ings of the 12th International Workshop on Semantic
Evaluations (SemEval-2018).

Liang Wang. 2018. Yuanfudao at SemEval-2018 Task
11: Three-way Attention and Relational Knowledge
for Commonsense Machine Comprehension. In Pro-
ceedings of the 12th International Workshop on Se-
mantic Evaluations (SemEval-2018).

Qingxun Liu, HongDou Yao, and Xiaobing Zhou. 2018.
YNU AI1799 at SemEval-2018 Task 11: Machine
Comprehension using Commonsense Knowledge of
Different model ensemble. In Proceedings of the
12th International Workshop on Semantic Evalua-
tions (SemEval-2018).

Bryan McCann, James Bradbury, Caiming Xiong, and
Richard Socher. 2017. Learned in translation: Con-
textualized word vectors. In Advances in Neural In-
formation Processing Systems, pages 6297–6308.

Elizabeth M. Merkhofer, John Henderson, David
Bloom, Laura Strickhart, and Guido Zarrella. 2018.
MITRE at SemEval-2018 Task 11: Commonsense
Reasoning without Commonsense Knowledge. In
Proceedings of the 12th International Workshop on
Semantic Evaluations (SemEval-2018).

Risto Miikkulainen. 1993. Subsymbolic natural lan-
guage processing: An integrated model of scripts,
lexicon, and memory. MIT press.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013. Distributed representa-
tions of words and phrases and their compositional-
ity. In Advances in neural information processing
systems, pages 3111–3119.

Ashutosh Modi. 2016. Event Embeddings for Seman-
tic Script Modeling. In Proceedings of The 20th
SIGNLL Conference on Computational Natural Lan-
guage Learning, pages 75–83, Berlin, Germany. As-
sociation for Computational Linguistics.

Ashutosh Modi, Tatjana Anikina, Simon Ostermann,
and Manfred Pinkal. 2016. InScript: Narrative texts
annotated with script information. In Proceedings
of the Tenth International Conference on Language
Resources and Evaluation (LREC 2016), Portorož,
Slovenia. European Language Resources Associa-
tion (ELRA).

Ashutosh Modi and Ivan Titov. 2014. Inducing Neu-
ral Models of Script Knowledge. In Proceedings
of the Conference on Computational Natural Lan-
guage Learning (CoNLL), Baltimore, MD, USA.

Ashutosh Modi, Ivan Titov, Vera Demberg, Asad Say-
eed, and Manfred Pinkal. 2017. Modeling seman-
tic expectations: Using script knowledge for refer-
ent prediction. Transactions of the Association for
Computational Linguistics, 5:31–44.

Nasrin Mostafazadeh, Nathanael Chambers, Xiaodong
He, Devi Parikh, Dhruv Batra, Lucy Vanderwende,
Pushmeet Kohli, and James Allen. 2016. A cor-
pus and cloze evaluation for deeper understanding of
commonsense stories. In Proceedings of the 2016
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, pages 839–849, San Diego,
California. Association for Computational Linguis-
tics.

Simon Ostermann, Ashutosh Modi, Michael Roth, Ste-
fan Thater, and Manfred Pinkal. 2018. MCScript:
A Novel Dataset for Assessing Machine Compre-
hension Using Script Knowledge. In Proceedings
of the 11th International Conference on Language
Resources and Evaluation (LREC 2018), Miyazaki,
Japan.

Jeffrey Pennington, Richard Socher, and Christopher D.
Manning. 2014. GloVe: Global Vectors for Word
Representation. In Proceedings of the 2014 Con-
ference on Empirical Methods in Natural Language
Processing (EMNLP), pages 1532–1543.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. SQuAD: 100,000+ Questions
for Machine Comprehension of Text. In Proceed-
ings of the 2016 Conference on Empirical Methods
in Natural Language Processing, pages 2383–2392.

Lisa F Rau, Paul S Jacobs, and Uri Zernik. 1989. In-
formation extraction and text summarization using
linguistic knowledge acquisition. Information Pro-
cessing & Management, 25(4):419–428.

Michaela Regneri, Alexander Koller, and Manfred
Pinkal. 2010. Learning Script Knowledge with Web
Experiments. In Proceedings of the 48th Annual
Meeting of the Association for Computational Lin-
guistics, pages 979–988, Uppsala, Sweden. Associa-
tion for Computational Linguistics.

Sofia Reznikova and Leon Derczynski. 2018. IUCM
at SemEval-2018 Task 11: Similar-Topic Texts as
a Knowledge Source. In Proceedings of the 12th
International Workshop on Semantic Evaluations
(SemEval-2018).

Matthew Richardson, Christopher J.C. Burges, and
Erin Renshaw. 2013. MCTest: A Challenge Dataset
for the Open-Domain Machine Comprehension of
Text. In Proceedings of the 2013 Conference on
Empirical Methods in Natural Language Processing,
pages 193–203, Seattle, Washington, USA. Associa-
tion for Computational Linguistics.

Rachel Rudinger, Vera Demberg, Ashutosh Modi, Ben-
jamin Van Durme, and Manfred Pinkal. 2015a.
Learning to predict script events from domain-
specific text. Lexical and Computational Semantics
(* SEM 2015), page 205.

Rachel Rudinger, Pushpendre Rastogi, Francis Ferraro,
and Benjamin Van Durme. 2015b. Script induction

756

as language modeling. Proceedings of the 2015 Con-
ference on Empirical Methods in Natural Language
Processing, pages 1681–1686.

Roger C Schank. 1982. Dynamic memory: A theory of
learning in people and computers. Cambridge Uni-
versity Press.

Roger C Schank. 1990. Tell me a story: A new look at
real and artificial memory. Scribner New York.

Roger C Schank and Robert P Abelson. 1975. Scripts,
Plans, and Knowledge. In Proceedings of the
4th international joint conference on Artificial
intelligence-Volume 1, pages 151–157. Morgan
Kaufmann Publishers Inc.

Yixuan Sheng, Man Lan, and Yuanbin Wu. 2018.
ECNU at SemEval-2018 Task 11: Using Deep
Learning Method to Address Machine Comprehen-
sion Task. In Proceedings of the 12th Interna-
tional Workshop on Semantic Evaluations (SemEval-
2018).

Push Singh, Thomas Lin, Erik T Mueller, Grace Lim,
Travell Perkins, and Wan Li Zhu. 2002. Open Mind
Common Sense: Knowledge Acquisition from the
General Public. In On the move to Meaningful In-
ternet Systems 2002: CoopIS, DOA, and ODBASE,
pages 1223–1237. Springer.

Robert Speer, Joshua Chin, and Catherine Havasi. 2017.
Conceptnet 5.5: An open multilingual graph of gen-
eral knowledge. In Proceedings of the Thirty-First
AAAI Conference on Artificial Intelligence (AAAI-
17), pages 4444–4451.

Adam Trischler, Tong Wang, Xingdi Yuan, Justin Har-
ris, Alessandro Sordoni, Philip Bachman, and Ka-
heer Suleman. 2017. NewsQA: A Machine Compre-
hension Dataset. In Proceedings of the 2nd Work-
shop on Representation Learning for NLP, pages
191–200.

Lilian Wanzare, Alessandra Zarcone, Stefan Thater,
and Manfred Pinkal. 2016. DeScript: A Crowd-
sourced Database for the Acquisition of High-
quality Script Knowledge. In Proceedings of the
Tenth International Conference on Language Re-
sources and Evaluation (LREC 2016), Portorož,
Slovenia. European Language Resources Associa-
tion (ELRA).

Lilian Wanzare, Alessandra Zarcone, Stefan Thater,
and Manfred Pinkal. 2017. Inducing Script Struc-
ture from Crowdsourced Event Descriptions via
Semi-Supervised Clustering. In Proceedings of the
2nd Workshop on Linking Models of Lexical, Sen-
tential and Discourse-level Semantics, pages 1–11,
Valencia, Spain. Association for Computational Lin-
guistics.

Jason Weston, Antoine Bordes, Sumit Chopra, Alexan-
der M Rush, Bart van Merriënboer, Armand Joulin,
and Tomas Mikolov. 2015. Towards AI-complete
question answering: A set of prerequisite toy tasks.
arXiv preprint arXiv:1502.05698.

Jiangnan Xia. 2018. Jiangnan at SemEval-2018 Task
11: Attention-Based Reading Comprehension Sys-
tem. In Proceedings of the 12th International Work-
shop on Semantic Evaluations (SemEval-2018).

Alexander Yeh. 2000. More accurate tests for the statis-
tical significance of result differences. In Proceed-
ings of the 18th Conference on Computational Lin-
guistics, volume 2, pages 947–953.

Hang Yuan, Jin Wang, and Xuejie Zhang. 2018.
YNU-HPCC at Semeval-2018 Task 11: Using an
Attention-based CNN-LSTM for Machine Compre-
hension using Commonsense Knowledge. In Pro-
ceedings of the 12th International Workshop on Se-
mantic Evaluations (SemEval-2018).

757

Proceedings of the 12th International Workshop on Semantic Evaluation (SemEval-2018), pages 758–762
New Orleans, Louisiana, June 5–6, 2018. ©2018 Association for Computational Linguistics

Yuanfudao at SemEval-2018 Task 11: Three-way Attention and Relational
Knowledge for Commonsense Machine Comprehension

Liang Wang Meng Sun Wei Zhao Kewei Shen Jingming Liu
Yuanfudao Research

Beijing, China
{wangliang01,sunmeng,zhaowei01,shenkw,liujm}@fenbi.com

Abstract

This paper describes our system for SemEval-
2018 Task 11: Machine Comprehension
using Commonsense Knowledge (Oster-
mann et al., 2018b). We use Three-
way Attentive Networks (TriAN) to model
interactions between the passage, question
and answers. To incorporate commonsense
knowledge, we augment the input with re-
lation embedding from the graph of gen-
eral knowledge ConceptNet (Speer et al.,
2017). As a result, our system achieves
state-of-the-art performance with 83.95% ac-
curacy on the official test data. Code is pub-
licly available at https://github.com/
intfloat/commonsense-rc.

1 Introduction

It is well known that humans have a vast amount of
commonsense knowledge acquired from everyday
life. For machine reading comprehension, natu-
ral language inference and many other NLP tasks,
commonsense reasoning is one of the major obsta-
cles to make machines as intelligent as humans.

A large portion of previous work focus on com-
monsense knowledge acquisition with unsuper-
vised learning (Chambers and Jurafsky, 2008;
Tandon et al., 2017) or crowdsourcing approach
(Singh et al., 2002; Wanzare et al., 2016). Con-
ceptNet (Speer et al., 2017), WebChild (Tan-
don et al., 2017) and DeScript (Wanzare et al.,
2016) etc are all publicly available knowledge re-
sources. However, resources based on unsuper-
vised learning tend to be noisy, while crowdsourc-
ing approach has scalability issues. There is also
some research on incorporating knowledge into
NLP tasks such as reading comprehension (Lin
et al., 2017; Yang and Mitchell, 2017) neural ma-
chine translation (Zhang et al., 2017a) and text
classification (Zhang et al., 2017b) etc. Though

experiments show performance gains over base-
lines, these gains are often quite marginal over
the state-of-the-art system without external knowl-
edge.

In this paper, we present Three-way Attentive
Networks(TriAN) for multiple-choice common-
sense reading comprehension. The given task re-
quires modeling interactions between the passage,
question and answers. Different questions need to
focus on different parts of the passage, attention
mechanism is a natural choice and turns out to be
effective for reading comprehension. Due to the
relatively small size of training data, TriAN use
word-level attention and consists of only one layer
of LSTM (Hochreiter and Schmidhuber, 1997).
Deeper models result in serious overfitting and
poor generalization empirically.

To explicitly model commonsense knowledge,
relation embeddings based on ConceptNet (Speer
et al., 2017) are used as additional features.
ConceptNet is a large-scale graph of general
knowledge from both crowdsourced resources and
expert-created resources. It consists of over 21
million edges and 8 million nodes. ConceptNet
shows state-of-the-art performance on tasks like
word analogy and word relatedness.

Besides, we also find that pretraining our net-
work on other datasets helps to improve the overall
performance. There are some existing multiple-
choice English reading comprehension datasets
contributed by NLP community such as MCTest
(Richardson et al., 2013) and RACE (Lai et al.,
2017). Although those datasets don’t focus specif-
ically on commonsense comprehension, they pro-
vide a convenient way for data augmentation.
Augmented data can be used to learn shared regu-
larities of reading comprehension tasks.

Combining all of the aforementioned tech-
niques, our system achieves competitive perfor-
mance on the official test set.

758

Related_to

At_location

passage question answer

BiLSTM BiLSTM BiLSTM

y

self-attentionself-attention

seq attentiontransport
bus

bus stop
person

passenger

Used_for

Type_of

query

ConceptNet

p q a

Figure 1: TriAN Model Architecture.

2 Model

The overall architecture of TriAN is shown in Fig-
ure 1. It consists of an input layer, an attention
layer and an output layer.
Input Layer. A training example consists of a
passage {Pi}|P |

i=1, a question {Qi}|Q|
i=1, an answer

{Ai}|A|
i=1 and a label y∗ ∈ {0, 1} as input. P , Q

and A are all sequences of word indices. For a
word Pi in the given passage, the input represen-
tation of Pi is the concatenation of several vectors:

• GloVe embeddings. Pretrained 300-
dimensional GloVe vector Eglove

Pi
.

• Part-of-speech and named-entity embed-
dings. Randomly initialized 12-dimensional
part-of-speech embedding Epos

Pi
and 8-

dimensional named-entity embedding Ener
Pi

.

• Relation embeddings. Randomly initialized
10-dimensional relation embedding Erel

Pi
. The

relation is determined by querying ConceptNet
whether there is an edge between Pi and any
word in question {Qi}|Q|

i=1 or answer {Ai}|A|
i=1. If

there exist multiple different relations, just ran-
domly choose one.

• Handcrafted features. We also add logarith-
mic term frequency feature and co-occurrence
feature fPi . Term frequency is calculated based
on English Wikipedia. Co-occurrence feature is
a binary feature which is true if Pi appears in
question {Qi}|Q|

i=1 or answer {Ai}|A|
i=1.

The input representation for Pi is wPi :

wPi = [Eglove
Pi

;Epos
Pi

;Ener
Pi

;Erel
Pi

; fPi] (1)

In a similar way, we can get input representation
for question wQi and answer wAi .
Attention Layer. We use word-level attention
to model interactions between the given passage
{Pi}|P |

i=1, the question {Qi}|Q|
i=1 and the answer

{Ai}|A|
i=1. First, let’s define a sequence attention

function (Chen et al., 2017):

Attseq(u, {vi}n
i=1) =

n∑

i=1

αivi

αi = softmaxi(f(W1u)T f(W1vi))

(2)

u and vi are vectors and W1 is a matrix. f is a
non-linear activation function and is set to ReLU .

Question-aware passage representa-
tion {wq

Pi
}|P |

i=1 can be calculated as:

wq
Pi

= Attseq(E
glove
Pi

, {Eglove
Qi

}|Q|
i=1). Similarly,

we can get passage-aware answer representation
{wp

Ai
}|A|

i=1 and question-aware answer representa-

tion {wq
Ai

}|A|
i=1. Then three BiLSTMs are applied

to the concatenation of those vectors to model the
temporal dependency:

hq = BiLSTM({wQi}
|Q|
i=1)

hp = BiLSTM({[wPi ;w
q
Pi

]}|P |
i=1)

ha = BiLSTM({[wAi ;w
p
Ai

;wq
Ai

]}|A|
i=1)

(3)

hp,hq,ha are the new representation vectors
that incorporates more context information.
Output Layer. Question sequence and answer
sequence representation hq,ha are summarized
into fixed-length vectors with self-attention (Yang
et al., 2016). Self-attention function is defined as

759

follows:

Attself ({ui}n
i=1) =

n∑

i=1

αiui

αi = softmaxi(W
T
2 ui)

(4)

Then we have question representation q =

Attself ({hq
i }

|Q|
i=1), answer representation a =

Attself ({ha
i }

|A|
i=1) and passage representation p =

Attseq(q, {hp
i }

|P |
i=1). The final output y is based on

their bilinear interactions:

y = σ(pTW3a + qTW4a) (5)

Model Learning. We first pretrain TriAN on
RACE dataset for 10 epochs. Then our model is
fine-tuned on official training data. Standard cross
entropy function is used as the loss function to
minimize.

3 Experiments

3.1 Setup

Data. For data preprocessing, we use spaCy 1 for
tokenization, part-of-speech tagging and named-
entity recognition. Statistics for official dataset
MCScript (Ostermann et al., 2018a) are shown
in Table 1. RACE 2 dataset is used for net-
work pretraining. English stop words are ignored
when computing handcrafted features. Input word
embeddings are initialized with 300-dimensional
GloVe (Pennington et al., 2014) vectors 3.

train dev test
of examples 9731 1411 2797

Table 1: Official dataset statistics.

Hyperparameters. Our model TriAN is imple-
mented based on PyTorch 4. Models are trained
on a single GPU(Tesla P40) and each epoch takes
about 80 seconds. Only the word embeddings of
top 10 frequent words are fine-tuned during train-
ing. The dimension of both forward and back-
ward LSTM hidden state is set to 96. Dropout rate
is set to 0.4 for both input embeddings and BiL-
STM outputs (Srivastava et al., 2014). For param-
eter optimization, we use Adamax (Kingma and
1https://github.com/explosion/spaCy
2http://www.cs.cmu.edu/˜glai1/data/race/
3http://nlp.stanford.edu/data/glove.
840B.300d.zip

4http://pytorch.org/

Ba, 2014) with an initial learning rate 2 × 10−3.
Learning rate is then halved after 10 and 15 train-
ing epochs. The model converges after 50 epochs.
Gradients are clipped to have a maximum L2 norm
of 10. Minibatch with batch size 32 is used.
Hyperparameters are optimized by random search
strategy (Bergstra and Bengio, 2012). Our model
is quite robust over a wide range of hyperparame-
ter configurations.

3.2 Main Results
The experimental results are shown in Table 2.
Human performance is shared by task organiz-
ers. For TriAN-ensemble, we average the out-
put probabilities of 9 models trained with the
same datasets and network architecture but differ-
ent random seeds. TriAN-ensemble is the model
that we used for official submission.

model dev test
Random 50.00% 50.00%
TriAN-RACE 64.78% 64.28%
TriAN-single 83.84% 81.94%
TriAN-ensemble 85.27% 83.95%
HFL – 84.13%
Human – 98.00%

Table 2: Main results. TriAN-RACE only use RACE
dataset for training; HFL is the 1st place team for
SemEval-2018 Task 11. The evaluation metric is ac-
curacy.

From Table 2, we can see that even though
RACE dataset contains nearly 100k questions,
TriAN-RACE achieves quite poor results. The ac-
curacy on development set is only 64.78%, which
is worse than most participants’ systems. How-
ever, pretraining acts as a way of implicit knowl-
edge transfer and is beneficial for overall perfor-
mance, as will be seen in Section 3.3. The accu-
racy of our system TriAN-ensemble is very close to
the 1st place team HFL with 0.18% difference. Yet
there is still a large gap between machine learning
models and human.

We also compared the performances of shal-
low and deep TriAN models. On datasets such as
SQuAD (Rajpurkar et al., 2016), deep models typ-
ically works better than shallow ones. Notice that
the attention layer in our proposed TriAN model
can be stacked multiple times if we treat the output
vectors of BiLSTMs as new input representations.

Maybe a little bit surprising, Table 3 shows that
2-layer TriAN model performs worse than 1-layer

760

model dev test
1-layer TriAN-single 83.84% 81.94%
2-layer TriAN-single 82.71% 80.55%

Table 3: Accuracy comparison of shallow and deep
TriAN models.

TriAN. One possible explanation is that the labeled
dataset is relatively small and deeper models tend
to easily overfit.

3.3 Ablation Study
The input representation consists of several com-
ponents: part-of-speech embedding, relation em-
bedding and handcrafted features etc. We conduct
an ablation study to investigate the effects of each
component. The results are in Table 4.

model dev test
TriAN-single 83.84% 81.94%
w/o pretraining 82.71% 80.51%
w/o ConceptNet 82.78% 81.08%
w/o POS 82.84% 81.27%
w/o features 82.92% 81.35%
w/o NER 83.60% 81.87%

Table 4: Ablation study for input representation.

Pretraining on RACE dataset turns out to be the
most important factor. Without pretraining, the ac-
curacy drops by more than 1% on both develop-
ment and test set. Relation embeddings based on
ConceptNet make approximately 1% difference.
Part-of-speech and named-entity embeddings are
also helpful. In fact, combining input represen-
tations from multiple sources has been a standard
practice for reading comprehension tasks.

At attention layer, our proposed TriAN involves
applying several attention functions to model in-
teractions between different text sequences. It
would be interesting to examine the importance of
each attention function, as shown in Table 5.

model dev test
TriAN-single 83.84% 81.94%
w/o passage-question attention 83.51% 82.20%
w/o passage-answer attention 83.07% 81.39%
w/o question-answer attention 83.23% 81.84%
w/o attention 81.93% 80.65%

Table 5: Ablation study for attention. The last one “w/o
attention” removes all word-level attentions.

Interestingly, removing any of the three word-

level sequence attentions does not seem to hurt
the performance much. In fact, removing passage-
question attention even results in higher accuracy
on test set than TriAN-single. However, if we re-
move all word-level attentions, the performance
drastically drops by 1.9% on development set and
1.3% on test set.

3.4 Discussion

Even though our system is built for commonsense
reading comprehension, it doesn’t have any ex-
plicit knowledge reasoning component. Relation
embeddings based on ConceptNet only serve as
additional input features. Methods like event cal-
culus (Mueller, 2014) are more rigorous math-
ematically and resemble the way of how human
brain works. The problem of event calculus is that
it requires large amounts of domain-specific ax-
ioms and therefore doesn’t scale well.

Another limitation is that our system relies
on hard-coded commonsense knowledge bases,
just like most systems for commonsense reason-
ing. For humans, commonsense knowledge comes
from constant interactions with the real-world en-
vironment. From our point of view, it is quite
hopeless to enumerate all of them.

There are a lot of reading comprehension
datasets available. When the size of training data
is relatively small like this SemEval-2018 task,
transfer learning among different datasets is a use-
ful technique. This paper shows that pretraining
is a simple and effective method. However, it still
remains to be seen whether there is a better alter-
native approach.

4 Conclusion

In this paper, we present the core ideas and de-
sign philosophy for our system TriAN at SemEval-
2018 Task 11: Machine Comprehension using
Commonsense Knowledge. We build upon recent
progress on neural models for reading compre-
hension and incorporate commonsense knowledge
from ConceptNet. Pretraining and handcrafted
features are also proved to be helpful. As a result,
our proposed model TriAN achieves near state-of-
the-art performance.

Acknowledgements

We would like to thank SemEval 2018 task orga-
nizers and several anonymous reviewers for their
helpful comments.

761

References
James Bergstra and Yoshua Bengio. 2012. Random

search for hyper-parameter optimization. Journal of
Machine Learning Research, 13(Feb):281–305.

Nathanael Chambers and Dan Jurafsky. 2008. Unsu-
pervised learning of narrative event chains. Pro-
ceedings of ACL-08: HLT, pages 789–797.

Danqi Chen, Adam Fisch, Jason Weston, and An-
toine Bordes. 2017. Reading wikipedia to an-
swer open-domain questions. arXiv preprint
arXiv:1704.00051.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural computation,
9(8):1735–1780.

Diederik Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Guokun Lai, Qizhe Xie, Hanxiao Liu, Yiming Yang,
and Eduard Hovy. 2017. Race: Large-scale reading
comprehension dataset from examinations. arXiv
preprint arXiv:1704.04683.

Hongyu Lin, Le Sun, and Xianpei Han. 2017. Rea-
soning with heterogeneous knowledge for common-
sense machine comprehension. In Proceedings of
the 2017 Conference on Empirical Methods in Nat-
ural Language Processing, pages 2032–2043.

Erik T Mueller. 2014. Commonsense reasoning: an
event calculus based approach. Morgan Kaufmann.

Simon Ostermann, Ashutosh Modi, Michael Roth, Ste-
fan Thater, and Manfred Pinkal. 2018a. MCScript:
A Novel Dataset for Assessing Machine Compre-
hension Using Script Knowledge. In Proceedings
of the 11th International Conference on Language
Resources and Evaluation (LREC 2018), Miyazaki,
Japan.

Simon Ostermann, Michael Roth, Ashutosh Modi, Ste-
fan Thater, and Manfred Pinkal. 2018b. SemEval-
2018 Task 11: Machine Comprehension using Com-
monsense Knowledge. In Proceedings of Interna-
tional Workshop on Semantic Evaluation(SemEval-
2018), New Orleans, LA, USA.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. Glove: Global vectors for word
representation. In Proceedings of the 2014 confer-
ence on empirical methods in natural language pro-
cessing (EMNLP), pages 1532–1543.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. Squad: 100,000+ questions
for machine comprehension of text. arXiv preprint
arXiv:1606.05250.

Matthew Richardson, Christopher JC Burges, and Erin
Renshaw. 2013. Mctest: A challenge dataset for
the open-domain machine comprehension of text.

In Proceedings of the 2013 Conference on Empiri-
cal Methods in Natural Language Processing, pages
193–203.

Push Singh, Thomas Lin, Erik T Mueller, Grace Lim,
Travell Perkins, and Wan Li Zhu. 2002. Open mind
common sense: Knowledge acquisition from the
general public. In OTM Confederated International
Conferences” On the Move to Meaningful Internet
Systems”, pages 1223–1237. Springer.

Robert Speer, Joshua Chin, and Catherine Havasi.
2017. Conceptnet 5.5: An open multilingual graph
of general knowledge. In AAAI, pages 4444–4451.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky,
Ilya Sutskever, and Ruslan Salakhutdinov. 2014.
Dropout: A simple way to prevent neural networks
from overfitting. The Journal of Machine Learning
Research, 15(1):1929–1958.

Niket Tandon, Gerard de Melo, and Gerhard Weikum.
2017. Webchild 2.0: fine-grained commonsense
knowledge distillation. Proceedings of ACL 2017,
System Demonstrations, pages 115–120.

Lilian DA Wanzare, Alessandra Zarcone, Stefan
Thater, and Manfred Pinkal. 2016. Descript: A
crowdsourced corpus for the acquisition of high-
quality script knowledge. In The International Con-
ference on Language Resources and Evaluation.

Bishan Yang and Tom Mitchell. 2017. Leveraging
knowledge bases in lstms for improving machine
reading. In Proceedings of the 55th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), volume 1, pages 1436–
1446.

Zichao Yang, Diyi Yang, Chris Dyer, Xiaodong He,
Alex Smola, and Eduard Hovy. 2016. Hierarchi-
cal attention networks for document classification.
In Proceedings of the 2016 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 1480–1489.

Jiacheng Zhang, Yang Liu, Huanbo Luan, Jingfang Xu,
and Maosong Sun. 2017a. Prior knowledge integra-
tion for neural machine translation using posterior
regularization. In Proceedings of the 55th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), volume 1, pages
1514–1523.

Ye Zhang, Matthew Lease, and Byron C Wallace.
2017b. Exploiting domain knowledge via grouped
weight sharing with application to text categoriza-
tion. arXiv preprint arXiv:1702.02535.

762

Proceedings of the 12th International Workshop on Semantic Evaluation (SemEval-2018), pages 763–772
New Orleans, Louisiana, June 5–6, 2018. ©2018 Association for Computational Linguistics

SemEval-2018 Task 12: The Argument Reasoning Comprehension Task

Ivan Habernal† Henning Wachsmuth‡ Iryna Gurevych† Benno Stein‡

† Ubiquitous Knowledge Processing Lab (UKP) and Research Training Group AIPHES
Department of Computer Science, Technische Universität Darmstadt, Germany

www.ukp.tu-darmstadt.de www.aiphes.tu-darmstadt.de
‡ Faculty of Media, Bauhaus-Universität Weimar, Germany

<firstname>.<lastname>@uni-weimar.de

Abstract

A natural language argument is composed of a
claim as well as reasons given as premises for
the claim. The warrant explaining the reason-
ing is usually left implicit, as it is clear from
the context and common sense. This makes a
comprehension of arguments easy for humans
but hard for machines. This paper summarizes
the first shared task on argument reasoning
comprehension. Given a premise and a claim
along with some topic information, the goal
is to automatically identify the correct war-
rant among two candidates that are plausible
and lexically close, but in fact imply opposite
claims. We describe the dataset with 1970 in-
stances that we built for the task, and we out-
line the 21 computational approaches that par-
ticipated, most of which used neural networks.
The results reveal the complexity of the task,
with many approaches hardly improving over
the random accuracy of ≈ 0.5. Still, the best
observed accuracy (0.712) underlines the prin-
ciple feasibility of identifying warrants. Our
analysis indicates that an inclusion of external
knowledge is key to reasoning comprehension.

1 Introduction

When we argue in natural language, we give rea-
sons as premises for our claims. A fundamental
pragmatic instrument in this regard is to leave those
parts of an argument unstated that can be presup-
posed. This is particularly common for the reason-
ing between an argument’s premises and its claim,
called implicit warrants there (Toulmin, 1958). A
warrant takes the role of an inference rule, i.e.,
the abstract structure of an argument is reason→
(since) warrant → (therefore) claim. In princi-
ple, this structure applies to deductive arguments,
which allows us to validate arguments properly
formalized in propositional logic. However, most
natural language arguments are in fact inductive
(Govier, 2010) or defeasible (Walton, 2007).

Topic: Tax Break for Sports.
Additional Information: Should pro sports leagues enjoy
nonprofit status?

Premise (Reason): Government is already struggling to pay
for basic needs.
And since

4 Warrant 0: the government isn’t required to pay for all
the country’s needs

7 Warrant 1: the government is required to pay for the
country’s needs

Claim: Sport leagues should not enjoy nonprofit.

Figure 1: Instance of the argument reasoning compre-
hension task. The correct warrant has to be classified.

Now, when we comprehend an argument, we re-
construct its warrant driven by the cognitive princi-
ple of relevance (Wilson and Sperber, 2004). What
is easy for humans in many cases, however, turns
out to be hard for machines, because reasoning
usually depends on context and common sense. In
(Habernal et al., 2018), we have thus introduced the
argument reasoning comprehension task in order to
study the construction and identification of implicit
warrants for natural language arguments. It forms
the basis of the shared task presented here:

Task Given an argument with a reason serving
as a premise for a claim, along with the topic and
some additional information of the discussion they
occur in, identify the correct warrant among two
opposing candidates, warrant0 and warrant1.

With opposing, we here mean that the two candi-
date warrants actually imply contradicting claims,
the correct one and its opposite. An instance of the
task is shown in Figure 1. Being a binary classifica-
tion task, the main evaluation measure of argument
reasoning comprehension is accuracy.

To our knowledge, this is the first shared NLP
task directly targeting argumentation; others tasks
have only been sketched so far (Kiesel et al., 2015).

763

A solution to our task will represent a substan-
tial step towards automatic warrant reconstruction,
which in turn is important for the general long-
term goal of automatic argument evaluation. So far,
most research on computational argumentation fo-
cused on mining claims and premises from text and
assessing their properties. In contrast, filling the
gap between claims and premises computationally
remains an open issue, due to the inherent difficulty
of reconstructing the world knowledge and reason-
ing patterns in arguments (Feng and Hirst, 2011;
Green, 2014; Boltužić and Šnajder, 2016). Previ-
ous tasks have dealt with the textual entailment of a
hypothesis from a proposition (Dagan et al., 2009)
or with semantic inference (Bowman et al., 2015).
While understanding semantics is important in the
given task, argumentation also reasoning beyond
what is understood, i.e., pragmatics.

As a basis for the shared task, we built a new
dataset with 1970 instances based on authentic En-
glish arguments, whose concept and construction
process is detailed in Section 2. We outline the
systems that participated in the task in Section 3.
Most systems implement a computational approach
that employs one or more neural networks (often
LSTMs, often with attention) based on different
pre-trained embedding models. We then present
the results of all systems on the test set of the shared
task in Section 4 and analyze specific cases in Sec-
tion 5, before we finally conclude (Section 6).

2 Dataset

This section presents the dataset with all instances
used in the shared task. We summarize the main
points from its construction process, which is de-
scribed in detail in (Habernal et al., 2018).

2.1 Task Instances

Let R be the reason for the claim C in a natural
language argument. Then there is a warrant W that
explains why R supports C, but W is left implicit.
For example, if C is “It should be illegal to declaw
your cat” and R is “They need to use their claws for
defense and instinct”, then W could be specified as
‘If cat needs claws for instincts, declawing would
be against nature’ or similar.

The question is how to find a warrant W for a
given reason R and claim C. To obtain candidate
warrants systematically for our dataset, we propose
a trick. In particular, we first construct an alterna-
tive warrant AW that explains why R may serve as

Unit Text

Reason Cooperating with Russia on terrorism ignores
Russia’s overall objectives.

Claim Russia cannot be a partner.
Warrant0 Russia has the same objectives of the US.
Warrant1 Russia has the opposite objectives of the US.

Reason Economic growth needs innovation.
Claim 3-D printing will change the world.
Warrant0 There is no innovation in 3-d printing

since it’s unsustainable.
Warrant1 There is much innovation in 3-d printing

and it is sustainable.

Reason College students have the best chance of
knowing history.

Claim College students’ votes do matter in an election.
Warrant0 Knowing history doesn’t mean that we will

repeat it.
Warrant1 Knowing history means that we won’t repeat it.

Table 1: Three example task instances from the dataset.
In all cases, warrant1 is the alternative warrant. For
brevity, we omit the topic and additional information.

support for the opposite ¬C of the claim C. For the
example above, we invert C to “It should be legal to
declaw your cat” (¬C). ¬C may be explained based
on R quite plausibly with the alternative warrant
“Most house cats don’t face enemies” (AW). Ana-
log to C and ¬C, we then invert AW to “Most house
cats face enemies”, which is a plausible warrant W
for the original reason-claim pair (R,C).

Constructing a plausible alternative warrant is
not always possible, as many reasons already con-
vey the arguer’s stance. If it is, however, W and AW
usually capture the core of a reason’s relevance and
reveal the implicit presuppositions, due to the trick
we performed for construction. For such as cases,
we define an instance of our task as a 6-tuple:

Instance (reason, claim, warrant0, warrant1,
topic, additional information)

The question to be answered is whether warrant0
is W and warrant1 is AW , or vice versa. As context,
we provide a short topic specification and some ad-
ditional information describing the topic. Figure 1
has already shown an example. Further are given in
Table 1. They all result from the following process.

2.2 Data Acquisition and Annotation
To obtain a dataset with a permissive license, we
decided to build a new dataset from scratch. As
source data, we used user-generated web comments
from the well-moderated Room for Debate of the
New York Times, which covers arguments on a
variety of contemporary controversial issues.1

1https://www.nytimes.com/roomfordebate

764

We manually selected 188 debates with polar
questions in the title from a six-year span (2011–
2017). We converted each question into a claim C
(e.g., “It should be illegal to declaw your cat”) and
derived a directly opposing claim ¬C (“It should
be legal to declaw your cat”). Then, we crawled
all comments from the debates and sampled about
11,000 high-ranked, root-level comments2 from
which 5,000 were selected randomly as a basis for
the dataset construction. Each comment was split
into elementary discourse units using SistaNLP
(Surdeanu et al., 2015). To obtain task instances,
we then performed the following eight-step crowd-
sourcing process using Amazon Mechanical Turk:

1. Stance Annotation. For each comment, the
crowdworkers first classified what stance it takes, if
it remains neutral, or if it does not take any stance.

2. Reason Span Annotation. In all 2,884 comments
taking a stance, the workers then marked sequences
of discourse units that give a reason for the claim.

3. Reason Gist Summarization. In this step, the
workers rewrote all 5,119 marked reasons (2,026
within arguments), such that their gist remains the
same but the clutter is removed. The result is a
reason R for the claim C.

4. Reason Disambiguation. In order to ensure
that R implies C really holds, the workers next de-
cided whether C or ¬C is more plausible for R, or
whether both are similarly (im)plausible. We kept
only those 1,955 reason-claim pairs where workers
agreed that C is most plausible.

5. Alternative Warrant. This step was the trickiest.
As in the example above, the workers had to specify
a plausible alternative warrant AW , explaining why
R implies ¬C, or declare that impossible.

6. Alternative Warrant Validation. Afterwards,
other workers validated each of the 5,342 specified
alternative warrants AW as to whether it actually re-
lates to R, by identifying R among two alternatives:
R itself and the lexically most similar reason from
the same debate topic. For the 3,791 correctly vali-
dated cases, we let workers score how logical AW
is (0–2) and only kept those 2,613 that had a mean
score of at least 0.68. This threshold was chosen
based on a manual examination of the scores.

2We removed ‘noisy’ candidates based on several indica-
tors, such as the absence of quotations or URLs and certain
lengths. We did not check any quality criteria of arguments,
though, because this was not our focus; see, for instance,
(Wachsmuth et al., 2017) for argumentation quality.

1 2 3 4 5 6 7 8 9

Workers per "expert"

0,3

0,4

0,5

0,6

0,7

0,8

C
o
h
e
n
's

 k
a
p
p
a

MACE Threshold
0.85
0.9
0.95
1.0

Error bars = std. dev; only shown for two thresholds

Figure 2: Cohen’s κ agreement for stance annotation
on 98 comments. As a trade-off between the number
of kept instances and their reliability, we chose five an-
notators and a threshold of 0.95 for this task, which re-
sulted in κ = 0.58 (moderate to substantial agreement).

7. Warrant For Original Claim. Given R and C,
workers then should create a minimally modified
version of each AW that may serve as an actual war-
rant W for C (as in the second half of the example
above). They succeeded to do so in 2,447 cases.

8. Warrant Validation. To ensure that only W is
correct for R and C, all tuples (R,C,W,AW) were
validated again. Unclear cases were resolved by an
expert. We obtained 1,970 instances of the argu-
ment reasoning comprehension task, so 1,970 pairs
of warrant0 and warrant1 for a reason and a claim,
along with a topic and the additional information.

2.3 Agreement
To assess quality in the crowdsourcing process,
we relied on MACE (Hovy et al., 2013), which
estimates gold labels for a set of workers, outper-
forming simple majority votes. Given the number
of the different crowdsourcing tasks and their vari-
ety, here we only demonstrate the first step, namely
stance annotation. We collected 18 assignments per
item and split them into two groups (9+9) based
on their submission time. We then considered each
group as an independent experiment and estimated
gold labels for each group. Having two indepen-
dent “experts from the crowd” allowed us to com-
pute standard agreement scores. We also varied the
size of each group from 1 to 9 by repeated random
sampling of assignments, and we tuned the MACE
threshold for keeping only the most confident pre-
dictions. Figure 2 shows the Cohen’s κ agreement
for stance annotation with respect to the crowd
size computed by our method. The decision what
number of workers per task to take (five in case of

765

stance annotation) implies a trade-off between the
number of instances and their reliability. We per-
formed similar quality measures with reasonable
agreement for the other crowdsourcing steps too.
Details are given in (Habernal et al., 2018).

2.4 Datasets in the Shared Task

For the shared task, we split the 1,970 instances into
three sets based on the year of the debate they were
taken from: 2011–2015 became the training set
(1,210 instances), 2016 the development set (316
instances), and 2017 the test set (444 instances).
This follows the paradigm of learning on past data
and predicting on new ones. In addition, it removes
much lexical and topical overlap. The same split
has been used by Habernal et al. (2018).

The shared task had two phases, trial and test.
In the trial phase, the training and development set
were given, both with gold labels stating the correct
warrant for all instances. In the test phase, all three
datasets were available. Naturally, no labels were
given for the test set instances. All provided data is
licensed under Creative Commons-family license.

3 Approaches

This section briefly summarizes the computational
approaches of the systems that participated in the
shared task as well as baselines. Intuitions and
detailed explanations are given in the system de-
scription papers associated to the shared task.

3.1 Participating Systems

The following 20 systems participated in the shared
task, sorted alphabetically. In addition, a 21st sys-
tem called Joker took part, but the team behind did
not provide any description. For many of the sys-
tems, many more details are given in the respective
SemEval-2018 system description papers.

ArcNet uses GloVe embeddings and an LSTM
encoder to get the semantic representation of each
input (reason, claim, and both warrants). Then
an attention mechanism aligns the reason and the
warrant so that the reason-aware warrant repre-
sentation is generated. Finally, a bilinear function
matches the claim with the reason-aware warrant.
The network is trained to minimize margin loss.
The submission was based on an ensemble model
of 10 training runs with the identical architecture.

ArgEns-GRU votes a majority on an ensemble
of the following three systems: First, a shared GRU

network that learns one representation of the rea-
son, claim, and both warrants each, initialized with
100-dimensional GloVe embeddings. Its output is
concatenated and passed through a softmax layer
for the final predictions. Second, an extension of
the GRU with an attention on the reason, claim, and
both warrants each. And third, another GRU model
extended with negation and polarity features.

ART uses a bi-directional LSTM with an atten-
tion mechanism on top, followed by a multi-layer
perceptron network.

blcu nlp not only pays attention to the consen-
sual part between each warrant and other infor-
mation, but also to the contradictory part between
two warrants. On the model’s input (GloVe embed-
dings), warrant0, claim, reason, and debate info are
concatenated in order to put attention on warrant1.
An analog structure is used for the attention on war-
rant0. After obtaining two vectors ‘attented w0‘
and ‘attented w1‘ — referring to the ESIM model
(Chen et al., 2017) — the two warrants are aligned.
A similarity matrix helps to highlight the consen-
sual and the contradictory part. The decision is then
drawn after passing through feed-forward layers.
A majority voting strategy is used in the final en-
semble, which is based on five models performing
best on the development data.

Deepfinder shares one LSTM layer for warrant0,
warrant1, claim, and reason, while the topic part
uses one LSTM alone. All of them share the same
word embedding layer before LSTM layers. After
that, one individual dot product is computed for
the output of the warrant0 LSTM and each of the
claim, reason and claim (the same is done for the
warrant1 LSTM). The resulting dot products are
concatenated and fed into a softmax layer.

ECNU modifies the baseline intra-warrant atten-
tion (Habernal et al., 2018) by using a CNN and
an LSTM for representing each sentence (claim,
reason, debate, warrant0, and warrant1). Differ-
ent parts of warrant0 and warrant1 are used as
an attention vector to obtain representations of the
warrants. Similarly, different parts of claim and
the opposite claim serve as attention for the final
representation. The final decision is then given by
a vote from three networks.

GIST uses pretrained word2vec embeddings as
well as the ESIM model (Chen et al., 2017), trained
on the SNLI (Bowman et al., 2015) and MultiNLI

766

(Nangia et al., 2017) datasets. The parameters have
been frozen afterwards. Then, pairs of sentences
are fed into the the ESIM model. For warrant0, for
example, these pairs are (claim, warrant0), (war-
rant0, reason), and (warrant0, warrant1). Also,
another bi-LSTM module encoding claim, warrant,
and reason is added. The output vectors of each
pair and the bi-LSTM are concatenated after aver-
aging and max pooling, and the final prediction is
made through feed-forward layers.

HHU encodes reason, claim, and warrants us-
ing a bi-directional LSTM. Next, warrant0, reason,
and claim are fed into another LSTM; similarly,
warrant1, reason, and claim to another LSTM in
parallel. Both branches are followed by a dropout
and two common dense layers. Embeddings have
been pre-trained in four different flavors: fasttext-
embeddings trained on the entire Wikipedia corpus,
two embeddings trained on the task’s dataset using
the word2vec skip-gram model with different di-
mensionalities, and another word2vec model based
on the tasks vocabulary but augmented with related
articles from Wikipedia. For all embeddings, differ-
ent parameter combinations and seeds were used
to train an ensemble of 623 models in total.

ITNLP-ARC first encodes sentences (warrant,
reason, claim) using LSTMs. Attention is used to
merge the reason vector with the claim vector. A
shared weight matrix then holds the relationship
between the warrant and the attention vector, from
which the maximum is chosen as the answer. An
ensemble method is used for the final vote.

lyb3b encodes sentences using word2vec or
GloVe embeddings and a bi-directional LSTM. The
instances are treated as positive or negative, depend-
ing on the correct training warrant. The network
then combines the warrant with the reason, claim,
and additional info. Finally, a fully-connected layer
is used to decide whether the instance is correct.

mingyan performs a word-by-word attention that
is fused with the original representation then. Self-
attention pooling produces a single vector fed into
a sigmoid function, trained with cross-entropy loss.

NLITrans attempts to leverage the transfer of
semantic knowledge from a bi-directional LSTM
encoder with max pooling trained on the MultiNLI
corpus (Nangia et al., 2017). This yields a small
performance boost on the development set. All sen-
tences (claim, reason, warrant0, and warrant1) are

encoded with this a transferred encoder. Then, task-
specific representations of two ‘arguments’, one
for each warrant, are learned via fully-connected
layers. A final linear layer generates an indepen-
dent score representing the fit of each warrant to
the argument. These are concatenated and passed
through softmax to generate a probability distribu-
tion over the two warrants.

RW2C uses two neural networks. The first one
classifies each warrant as true or false separately
and chooses the one with higher confidence as the
right one. The second model makes a decision
given two warrant candidates. The final prediction
is an ensemble over the previous predictions. Both
models represent sentences using a CNN.

SNU IDS decides whether a logic built on a set
of given sentences (claim, reason, and warrant) is
plausible. It accepts only one warrant at a time
and outputs a score on the warrant’s validity. The
intuition is that the model can learn what has more
meaningful semantics of natural language when it
judges whether the logic of the given sequence is
correct, instead of just selecting the more probable
warrant among two candidates. The model consists
of an encoding layer with GloVe embeddings (Pen-
nington et al., 2014) and a CoVe sentence encoder
(McCann et al., 2017), a ‘localization’ layer (a set
of fully connected layers), and output layers that
combine calculating several arithmetic measures
over the input representation and compute a final
score using a logistic layer on top.

TakeLab preprocesses sentences from the data-
set, applies some arithmetic, converts them to Skip-
Thought vectors, and feeds them into an SVM clas-
sifier with fine-tuned hyperparameters. The Skip-
Thought vectors are sentence representation vec-
tors whose encoder and decoder (with an identical
structure to RNN encoder-decoders used for neural
machine translation) are trained on a large corpus
of books unbiased in domain (Kiros et al., 2015).

TRANSRW learns the semantic representation
of sentences (reason, warrants, claim) using a con-
volutional neural network. The assumption behind
is that a composition of the reason and the warrant
is close to the representation of the claim.

UniMelb combines 3 stacked LSTMs, one for
the reason, one for the claim, and one shared
Siamese Network for the two warrants under inves-
tigation. It generates semantic feature vectors that

767

serve as input to a shared compressed feature space
by using simple vector operations and semantic
similarity classification to enforce the interrelation-
ships between them. In doing so, the aim is to
learn a form of “generative implication” through
the semantic feature vectors. The vectors are able
to correctly encode the interrelationships between
a reason, a claim, and both the correct and incorrect
warrants. The given data is augmented by utilizing
WordNet synonym fuzzing.

YNU-HPCC uses a bi-directional LSTM with
attention whose input is divided into three parts
(claim, reason, and both warrants). To prevent
overfitting, dropout is added before the final layer.

YNU Deep combines the reason and the claim
with a so-called ‘story’ feature. The story feature
is merged with the warrant. The network is a bi-
directional LSTM with attention and uses GloVe
embeddings. Ensemble technology is put on top to
mitigate the small size of the data.

ztangfdu first concatenates the claim and the rea-
son as one sentence named ‘sent1’, and denotes the
correct warrant as ‘sent2’ and the wrong warrant
as ‘sent3’, respectively. The output of an LSTM
layer with non-trained embeddings then represents
each of the sentences. After applying mean pool-
ing to transform the output matrices to vectors, two
fully connected layers cater for obtaining the dif-
ference score between ‘sent2’ and ‘sent3’, whose
minimization is the core of the loss function.

3.2 Baselines

For the official task, we provided only a simple
naı̈ve random baseline. The outcome (warrant0 or
warrant1) is drawn from a Bernoulli distribution
(θ = 0.5) resulting in a theoretical accuracy of 0.5.
The reported baseline was a single random draw.

Further computational baseline approaches, such
as a language model, are evaluated in (Habernal
et al., 2018), but we did not consider them within
the official competition. There, we also report hu-
man bounds for argument reasoning comprehen-
sion based on a crowdsourcing study, where each
of 173 participants had to solve 10 instances. The
mean accuracy was 0.798, but varied depending
on the participants’ prior knowledge of reasoning,
logic, and argumentation. Those with extensive
prior knowledge achieved 0.909, and 30 partici-
pants solved all instances correctly. We conclude
that the task is reasonably solvable for humans.

Rank System Accuracy

1 GIST 0.712
2 blcu nlp 0.606
3 ECNU 0.604
4 NLITrans 0.590
5 Joker* 0.586
6 YNU Deep 0.583
7 mingyan 0.581
8 ArcNet 0.577
8 UniMelb 0.577

10 TRANSRW 0.570
11 lyb3b 0.568
12 SNU IDS 0.565
13 ArgEns-GRU 0.556
14 ITNLP-ARC 0.552
15 YNU-HPCC 0.550
16 TakeLab 0.541
17 HHU 0.534
18 Random baseline 0.527
19 Deepfinder 0.525
20 ART 0.518
21 RW2C 0.500
22 ztangfdu 0.464

Table 2: Final results of the competition. For the star-
denoted system, no description has been provided.

4 Results

The final accuracies of all participating systems
are ranked in Table 2. Due to the limited size of
the test set (444 instances) and the subtle accuracy
differences of many systems, we also measured
significance using the approximate randomization
test, as described in (Riezler and Maxwell, 2005).3

Table 3 shows p-values of all system pairs, includ-
ing the random baseline. As p-values lower than
0.05 are usually considered statistically significant,
only three systems outperform the random baseline.
However, we would like to emphasize that drawing
a strong conclusion about superiority of a partic-
ular neural-based system given only one bench-
mark value might be misleading, as Reimers and
Gurevych (2017) showed for several NLP tasks.

We see that the winning system GIST signifi-
cantly outperforms all other systems on this partic-
ular test data (p� 0.05). For future SemEval tasks,
however, we encourage task organizers to solicit
multiple submissions of the same system trained
with different random initializations, and perform a
proper Bayesian system comparison. The machine
learning community has already abandoned the
controversial p-value and replaced it with Bayesian
methods that are easily interpretable and account
well for uncertainty (Benavoli et al., 2017).

3The implementation of the complete task evalu-
ation is available at https://github.com/habernal/
semeval2018-task12-results.

768

G
IS

T

bl
cu

nl
p

E
C

N
U

N
L

IT
ra

ns

Y
N

U
D

ee
p

m
in

gy
an

A
rc

N
et

U
ni

M
el

b

T
R

A
N

SR
W

ly
b3

b

SN
U

ID
S

A
rg

E
ns

-G
R

U

IT
N

L
P-

A
R

C

Y
N

U
-H

PC
C

Ta
ke

L
ab

H
H

U

R
an

do
m

bs
l.

D
ee

pfi
nd

er

A
R

T

R
W

2C

zt
an

gf
du

GIST .71
blcu nlp .00 .61
ECNU .00 1.0 .60
NLITrans .00 .59 .67 .59
YNU Deep .00 .42 .47 .85 .58
mingyan .00 .39 .45 .80 1.0 .58
ArcNet .00 .25 .34 .64 .84 .90 .58
UniMelb .00 .33 .37 .69 .87 .94 1.0 .58
TRANSRW .00 .25 .29 .55 .71 .76 .88 .87 .57
lyb3b .00 .12 .17 .38 .54 .62 .74 .80 1.0 .57
SNU IDS .00 .13 .13 .37 .50 .60 .70 .74 .94 1.0 .57
ArgEns-GRU .00 .09 .08 .23 .31 .41 .47 .52 .71 .71 .78 .56
ITNLP-ARC .00 .03 .05 .11 .15 .21 .19 .40 .58 .47 .63 .92 .55
YNU-HPCC .00 .02 .03 .12 .17 .22 .24 .35 .54 .35 .54 .86 1.0 .55
TakeLab .00 .02 .03 .09 .16 .18 .21 .28 .37 .39 .42 .63 .73 .80 .54
HHU .00 .00 .01 .03 .03 .04 .04 .12 .23 .10 .18 .41 .39 .49 .87 .53

Random bsl. .00 .03 .03 .08 .11 .13 .16 .17 .23 .25 .30 .42 .50 .54 .74 .89 .53

Deepfinder .00 .00 .00 .02 .03 .04 .04 .07 .14 .06 .09 .25 .26 .27 .64 .75 1.0 .52
ART .00 .00 .00 .00 .01 .01 .01 .03 .07 .00 .04 .15 .10 .10 .47 .44 .84 .83 .52
RW2C .00 .00 .00 .00 .01 .01 .01 .02 .01 .02 .03 .07 .07 .10 .20 .24 .47 .45 .58 .50
ztangfdu .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .01 .00 .07 .02 .02 .24 .46

Table 3: p-values obtained by running the approximate randomization test among all systems. For convenience,
the diagonal (bold values) shows the accuracy of each system as in Table 2 but rounded to two decimal numbers.
Only the three top systems (GIST, blcu nlp, and ECNU) are significantly better than the random baseline (p-values
< 0.05). The first system (GIST) also significantly outperforms the second system (blcu nlp) (p-value� 0.05).

5 Analysis

First, we show a quantitative analysis of the results
on the test instances. Figure 3 displays the distri-
bution of all instances over the number of systems
that classified each of them correctly. The shape of
this rather bi-modal distribution reveals that there
are both easy and hard cases. In particular, there
are 13 instances completely unsolved and about
90 instances solved by fewer than five participat-
ing systems. On the other hand, 32 instances were
solved by all systems.

5.1 Easy instances
We qualitatively investigated instances that were
classified correctly by all participating systems. It
turned out that systems needed to learn only one sin-
gle property common to all of them: negation. Cor-
rect warrants in these instances contain negating
words (“not”, “don’t”) or negated modals (“can’t”,
“wouldn’t”), as shown in Figure 4. This artifact
originates from the process of intentionally creat-
ing the dichotomy between the alternative warrant
and warrant (see Section 2) that in many cases con-
sist of an assertion firstly created for the alternative
warrant, and its negation for the correct warrant.

Figure 3: Despite many solvable instances (centered
around the right mode), there are hard cases that most
systems were not able to cope with (the left mode).

5.2 Difficult instances

A similar problem arises for the difficult instances,
such as those not solved by any system. We man-
ually analyzed them and found that the opposite
of the easy instances caused misclassification here,
namely misleading negation. In these instances,
the correct warrant is a positive assertion while the
alternative warrant is negated. It seems that the

769

Topic: Have Comment Sections Failed?
Additional Information: In recent years, many media com-
panies have disabled them because of widespread abuse and
obscenity.

Premise (Reason): Comment sections are just a propaganda
device.
And since

7 Warrant 0: propaganda is the grease of the democratic
wheels

4 Warrant 1: propaganda is not the grease of the demo-
cratic wheels

Claim: Comment sections have failed.

Topic: Does Turkey Still Belong in NATO?
Additional Information: Given President Erdogan’s record
on human rights and how his focus on the Kurdish minority
has interfered with his fight against ISIS, is he a reliable ally?

Premise (Reason): Turkey does not have much in common
with the rest of the countries in NATO.
And since

4 Warrant 0: diversity wouldn’t be good for NATO
7 Warrant 1: diversity would be good for NATO

Claim: Turkey doesn’t belong to NATO

Figure 4: Examples of “easy” instances from the test
data solved by all systems, revealing that relying solely
on the negation artifact in the correct warrant gives the
right answer (IDs: 18247022 132 A104V8NZIQFN2F,
18068301 176 A3TKD7EJ6BM0M5).

learned negation “feature” then makes the systems
fall into the trap; see examples in Figure 5.

This data analysis clearly shows that it is possi-
ble to guess some answers right only given their
surface or syntactic form, perhaps because such
“features” are prevalent in the training data. How-
ever, they do not really help to find any underlying
connections between the reasons, warrants, and
claims. One solution to test for such cases would
be to double the test set simply by adding to each
instance another one with an opposite claim and
switched warrants. From the reasoning perspective,
such an instance still makes sense (which is actu-
ally a backbone principle of creating our data), but
would clearly penalize systems relying on simple
features, such as negation.

6 Conclusion

This paper has overviewed the first shared task
on argument reasoning comprehension, one of the
tasks at SemEval-2018. Being able to identify the
correct warrant connecting an argument’s reason
to its claim automatically, which is the goal of the
task, is the first step of understanding the argu-

Topic: Have Christians Created a Harmful Atmosphere for
Gays?
Additional Information: Church-backed efforts to fight
L.G.B.T. rights have been blamed for feeding a hateful at-
mosphere that accommodates attacks on gays.

Premise (Reason): The Bible is not consistent in it’s treat-
ment of sex and marriage.
And since

4 Warrant 0: many Christians take the Bible literally
7 Warrant 1: many Christians do not take the Bible liter-

ally
Claim: Christians have created a harmful atmosphere for gays

Topic: Is Google a Harmful Monopoly?
Additional Information: European regulators say the com-
pany’s Android phone blocks rival services.

Premise (Reason): People can choose not to use Google.
And since

4 Warrant 0: they can opt-out from being indexed by
their search engine

7 Warrant 1: they cannot opt-out from being indexed by
their search engine

Claim: Google is not a harmful monopoly

Figure 5: Examples of “difficult” instances from the
test data on which all systems failed. One possibly ex-
planation is the misleading negation contained in these
instances (IDs: 18865357 593 A1CF6U3GF7DZEJ,
18362833 247 A1CF6U3GF7DZEJ).

ment’s reasoning. We have outlined the dataset
used in the task, the participating system, and the
performance they achieved. The results have re-
vealed how challenging the task is: Many systems
improved only little over the random baseline. At
the same time, the accuracy of GIST, the best sys-
tem in the evaluation, suggests that it is possible in
principle to identify warrants computationally.

Our analysis of the results showed that the par-
ticipating systems were capable to solve cases with
discriminative surface features, but failed where ex-
actly these were misleading. The strongest systems
relied on models trained on natural language infer-
ence corpora, which suggests that external knowl-
edge may be key to argument reasoning compre-
hension. Still, more research needs to be done in
the future to further investigate this hypothesis.

Acknowledgments

This work was supported by the German Research
Foundation (DFG) within the ArguAna Project GU
798/20-1, and by the DFG-funded research training
group “Adaptive Preparation of Information form
Heterogeneous Sources” (AIPHES, GRK 1994/1).

770

References
Alessio Benavoli, Giorgio Corani, Janez Demsar, and

Marco Zaffalon. 2017. Time for a Change: a Tu-
torial for Comparing Multiple Classifiers Through
Bayesian Analysis. Journal of Machine Learning
Research, 18:1–36.

Filip Boltužić and Jan Šnajder. 2016. Fill the Gap! An-
alyzing Implicit Premises between Claims from On-
line Debates. In Proceedings of the Third Workshop
on Argument Mining, pages 124–133, Berlin, Ger-
many. Association for Computational Linguistics.

Samuel R. Bowman, Gabor Angeli, Christopher Potts,
and Christopher D. Manning. 2015. A large anno-
tated corpus for learning natural language inference.
In Proceedings of the 2015 Conference on Empiri-
cal Methods in Natural Language Processing, pages
632–642, Lisbon, Portugal. Association for Compu-
tational Linguistics.

Qian Chen, Xiaodan Zhu, Zhenhua Ling, Si Wei, Hui
Jiang, and Diana Inkpen. 2017. Enhanced LSTM
for Natural Language Inference. In Proceedings
of the 55th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 1657–1668, Vancouver, Canada. Association
for Computational Linguistics.

Ido Dagan, Bill Dolan, Bernardo Magnini, and Dan
Roth. 2009. Recognizing textual entailment: Ratio-
nal, evaluation and approaches. Natural Language
Engineering, 15(Special Issue 04):i–xvii.

Vanessa Wei Feng and Graeme Hirst. 2011. Classify-
ing arguments by scheme. In Proceedings of the
49th Annual Meeting of the Association for Com-
putational Linguistics: Human Language Technolo-
gies - Volume 1, HLT ’11, pages 987–996, Portland,
Oregon. Association for Computational Linguistics.

Trudy Govier. 2010. A Practical Study of Argument,
7th edition. Wadsworth, Cengage Learning.

Nancy L Green. 2014. Towards Creation of a Corpus
for Argumentation Mining the Biomedical Genetics
Research Literature. In Proceedings of the First
Workshop on Argumentation Mining, pages 11–18,
Baltimore, Maryland USA. Association for Compu-
tational Linguistics.

Ivan Habernal, Henning Wachsmuth, Iryna Gurevych,
and Benno Stein. 2018. The argument reasoning
comprehension task: Identification and reconstruc-
tion of implicit warrants. In Proceedings of the 2018
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, page (to appear), New Or-
leans, LA, USA. Association for Computational Lin-
guistics.

Dirk Hovy, Taylor Berg-Kirkpatrick, Ashish Vaswani,
and Eduard Hovy. 2013. Learning whom to trust
with MACE. In Proceedings of NAACL-HLT 2013,
pages 1120–1130, Atlanta, Georgia. Association for
Computational Linguistics.

Johannes Kiesel, Khalid Al Khatib, Matthias Hagen,
and Benno Stein. 2015. A shared task on argumen-
tation mining in newspaper editorials. In Proceed-
ings of the 2nd Workshop on Argumentation Mining,
pages 35–38. Association for Computational Lin-
guistics.

Ryan Kiros, Yukun Zhu, Ruslan R Salakhutdinov,
Richard Zemel, Raquel Urtasun, Antonio Torralba,
and Sanja Fidler. 2015. Skip-Thought Vectors. In
Advances in Neural Information Processing Systems
28, pages 3276–3284, Montreal, CA. Curran Asso-
ciates, Inc.

Bryan McCann, James Bradbury, Caiming Xiong, and
Richard Socher. 2017. Learned in Translation: Con-
textualized Word Vectors. In Advances in Neural In-
formation Processing Systems 30, pages 6294–6305,
Long Beach, CA, USA. Curran Associates, Inc.

Nikita Nangia, Adina Williams, Angeliki Lazaridou,
and Samuel Bowman. 2017. The repeval 2017
shared task: Multi-genre natural language inference
with sentence representations. In Proceedings of the
2nd Workshop on Evaluating Vector Space Represen-
tations for NLP, pages 1–10, Copenhagen, Denmark.
Association for Computational Linguistics.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. Glove: Global vectors for word rep-
resentation. In Proceedings of the 2014 Conference
on Empirical Methods in Natural Language Process-
ing (EMNLP), pages 1532–1543, Doha, Qatar. Asso-
ciation for Computational Linguistics.

Nils Reimers and Iryna Gurevych. 2017. Reporting
Score Distributions Makes a Difference: Perfor-
mance Study of LSTM-networks for Sequence Tag-
ging. In Proceedings of the 2017 Conference on
Empirical Methods in Natural Language Processing,
pages 338–348, Copenhagen, Denmark. Association
for Computational Linguistics.

Stefan Riezler and John T. Maxwell. 2005. On some
pitfalls in automatic evaluation and significance test-
ing for MT. In Proceedings of the ACL Workshop
on Intrinsic and Extrinsic Evaluation Measures for
Machine Translation and/or Summarization, pages
57–64, Ann Arbor, Michigan. Association for Com-
putational Linguistics.

Mihai Surdeanu, Tom Hicks, and Marco Antonio
Valenzuela-Escarcega. 2015. Two practical rhetori-
cal structure theory parsers. In Proceedings of the
2015 Conference of the North American Chapter
of the Association for Computational Linguistics:
Demonstrations, pages 1–5, Denver, Colorado. As-
sociation for Computational Linguistics.

Stephen E. Toulmin. 1958. The Uses of Argument.
Cambridge University Press.

Henning Wachsmuth, Nona Naderi, Ivan Habernal,
Yufang Hou, Graeme Hirst, Iryna Gurevych, and
Benno Stein. 2017. Argumentation Quality Assess-
ment: Theory vs. Practice. In Proceedings of the

771

55th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 2: Short Papers), pages
250–255, Vancouver, Canada. Association for Com-
putational Linguistics.

Douglas Walton. 2007. Media Argumentation: Di-
alect, Persuasion and Rhetoric. Cambridge Univer-
sity Press.

Deirdre Wilson and Dan Sperber. 2004. Relevance
Theory. In Laurence R. Horn and Gregory Ward,
editors, The Handbook of Pragmatics, chapter 27,
pages 607–632. Wiley-Blackwell, Oxford, UK.

772

Proceedings of the 12th International Workshop on Semantic Evaluation (SemEval-2018), pages 773–777
New Orleans, Louisiana, June 5–6, 2018. ©2018 Association for Computational Linguistics

GIST at SemEval-2018 Task 12: A network transferring inference
knowledge to Argument Reasoning Comprehension task

HongSeok Choi, Hyunju Lee
Department of Electrical Engineering and Computer Science,

Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
Data Mining and Computational Biology Laboratory
{hongking9,hyunjulee}@gist.ac.kr

Abstract

This paper describes our GIST team sys-
tem that participated in SemEval-2018 Argu-
ment Reasoning Comprehension task (Task
12). Here, we address two challenging fac-
tors: unstated common senses and two lexi-
cally close warrants that lead to contradicting
claims. A key idea for our system is full use
of transfer learning from the Natural Language
Inference (NLI) task to this task. We used En-
hanced Sequential Inference Model (ESIM) to
learn the NLI dataset. We describe how to
use ESIM for transfer learning to choose cor-
rect warrant through a proposed system. We
show comparable results through ablation ex-
periments. Our system ranked 1st among 22
systems, outperforming all the systems more
than 10%.

1 Introduction

Argument Reasoning Comprehension is a task that
choose correct warrant from two options given a
claim and a reason. The Argument Reasoning
Comprehension is a very important task because
“argument comprehension requires not only lan-
guage understanding and logic skills, but it also
heavily depends on common sense”, as mentioned
by Habernal et al. (2018). There are two challeng-
ing factors. One is a certain part of an argument
is left unstated (Habernal et al., 2018). Because
of the unstated part, humans or machines need
reasoning ability about that part. Human can re-
construct the unstated part depending on common
knowledge. However, it has still remained diffi-
cult to machines. Another is that “both options are
plausible and lexically very close while leading to
contradicting claims”, as mentioned by Habernal
et al. (2018). To address these factors, we have two
assumptions. One is that similar and large datasets
may help to address the unstated common sense
by learning various cases. Another is that an in-

ferrence model to distinguish semantic differences
between two sentences may help to choose one of
two lexically close warrants that lead to contra-
dicting claims. There are two suitable datasets in
the Natural Language Inference (NLI) task, Stan-
ford NLI (SNLI) (Bowman et al., 2015) and Multi
NLI (MNLI) (Williams et al., 2017) datasets. NLI
is a task choosing one of relationships (Entail-
ment, Contradiction, Neutral) between two sen-
tences. Both SNLI and MNLI are very large cor-
pus (each 0.5M sentence pairs). In addition, there
is a good performance model for the task, En-
hanced Sequential Inference Model (ESIM) (Chen
et al., 2017). To make use of other datasets for
our task, we use transfer learning. About trans-
fer learning, Conneau et al. (2017) showed a good
precedent, using SNLI dataset. By learning the
NLI task, the model can obtain inference knowl-
edge. Therefore, we propose a network transfer-
ring inference knowledge to argument reasoning
comprehension task. We summarize our system
with 5 main components.

1. ESIM is trained on SNLI and MNLI datasets.
Then, parameters are frozen and used to
transfer the inference knowledge.

2. As inputs of the ESIM, we make sentence
pairs such as (claim, warrant), (warrant, rea-
son) and (warrant, other warrant).

3. To add flexibility, we added biLSTM module
encoding claim, reason and warrant.

4. To make a fixed length vector from variable
one, we used average and max pooling.

5. Finally, all the fixed length vectors from
ESIM and biLSTM are concatenated and fed
into a fully-connected neural network to de-
termine whether the warrant is correct or not.

The detail process is described in Section 2.

773

Figure 1: Overview of our system

2 System Description

Figure 1 shows an overview of our system.
The preprocessing is described in subsection 2.1.
ESIM is described in subsection 2.2. Then, to
apply transfer learning, we describe how to com-
pose the inputs of the ESIM in subsection 2.3. In
the subsection 2.4, we describe a simple biLSTM
module added to our model. Pooling is described
in subsection 2.5. Finally, the fully-connected
neural network is described in subsection 2.6 to
determine whether the warrant is correct or not.
We introduce our notations for following sections.
A sentence is notated as S = (wS

1 , ..., w
S
len(S)).

len(S) denotes the length of the sentence S. The
wS
i ∈ Rd is a d-dimensional word embeddings.

Also C , R, W0 and W1 denote the sentence of
Claim, Reason, Warrant0 and Warrant1 respec-
tively. Our goal is to predict which warrant (W0
or W1) is more correct given a claim (C) and a
reason (R).

2.1 Preprocessing

First, we initialize all words that exist in the vocab-
ulary with pre-trained 300 dimension word2vec
(Mikolov et al., 2013). When the word does not
exist in the vocabulary, we use following several
preprocessing rules.

1. All [’s] are removed. (ex. He’ s, something’s)

2. All words with number are split into number
and word. (ex. 17th→ 17, th)

3. All abbreviations are replaced with
<abbreviation> token.

Figure 2: A high-level view of ESIM with prediction
part. The prediction part is used when training on the
NLI task, and two sentence vectors generated after in-
ference composition are used in our system. This pic-
ture is taken from the author (Chen et al., 2017) with a
few modifications.

4. All number is replaced with <number> to-
ken.

After this preprocessing, if the preprocessed word
exists in the vocabulary, we initialized it with the
word2vec again. Otherwise, we replaced it with
<unknown> token. Each token is randomly ini-
tialized.

2.2 Pre-trained ESIM on NLI dataset
Because of page limit, we briefly explain this part.
Chen et al. (2017) described that ESIM is com-
posed of the following major components: input
encoding, local inference modeling, and inference
composition. Figure 2 shows a high-level view of
the architecture. For more details, refer to the pa-
per (Chen et al., 2017). ESIM generates two sen-
tence vectors after comparing two input sentences
with each other. We notate it as follows.

sv
(S1,S2)
S1

, sv
(S1,S2)
S2

= ESIM(S1, S2) (1)

The sv consists of vectors of l dimension, the
number of which correspond to the length of each
sentence. The sv is the output of the inference
composition part. We implemented it as 300 di-
mensions. The ESIM was trained on SNLI and
MNLI datasets. The training was stopped when
the average of development set accuracies was
maximum. Then, the parameters were frozen so
as to be not updated.

2.3 Input sentence pair for transfer learning
To exploit transfer learning, the sentence pairs are
composed of (C , W0), (W0 , R) and (W0 , W1)
for Warrant0. In the case of Warrant1, the pairs are
composed of (C , W1), (W1 , R) and (W1 , W0).
Then, these sentence pairs are fed into the ESIM.

774

2.4 BiLSTM for Flexibility

LSTM (Hochreiter and Schmidhuber, 1997) is a
building block well-suited to learn long and short
information in a sequence. We employed bidirec-
tional LSTM, where forward and backward direc-
tional LSTMs are concatenated. For more detailes,
refer to the paper (Hochreiter and Schmidhuber,
1997).

svS = biLSTM(S) (2)

We add 100 dimension biLSTMs to our model.
Since the ESIM is only trained on NLI dataset, it
may be over-fitted to the NLI task. By adding a
new module that is not trained on the NLI task, our
system may have a chance to learn new knowledge
about the target task. We feed Claim, Warrants
and Reason into the biLSTM. The biLSTMs for
Warrant0 and Warrant1 share the parameters.

2.5 Pooling Layer

To generate a fixed length sentence vector, we use
both average and max pooling per one sentence.
The equations are as follow:

svS,ave =
1

len(S)

len(S)∑

i=1

svS,i (3)

svS,max =
len(S)
max
i=1

(svS,i) (4)

After pooling, the vector of average pooling and
max pooling are concatenated. We notate it as
svS,pool = [svS,ave; svS,max].

2.6 Fully-connected neural network

To determine whether the warrant is correct or not,
a fully-connected neural network (FCNN) is used.
Finally, all the vectors from ESIM and biLSTM
are concatenated. For Warrant0, the vectors are
concatenated as follow: [sv

(C,W0)
C,pool ; sv

(C,W0)
W0,pool;

sv
(W0,R)
W0,pool; sv

(W0,R)
R,pool ; sv

(W0,W1)
W0,pool ; sv

(W0,W1)
W1,pool ;

svC,pool; svW0,pool; svR,pool]. The Warrant1 is
also composed as the same way. The concatenated
vector is fed into FCNN. We build two layers of
FCNN. The first layer has 600 dimension with
the ReLu function. The second layer has only 1
dimension without any activation function. Then,
the 1 dimension value for Warrant0 and Warrant1
are concatenated with the softmax function.

3 Experimental setup

Pre-training First, to learn the inference knowl-
edge, we implemented ESIM and trained on NLI
training dataset. Our implemented ESIM dimen-
sion is 300. Except for the ESIM dimension, we
used the same hyperparameter values as those in
Chen et al. (2017). The preprocessing process
is implemented in the same way with subsection
2.1. The word embeddings are not updated during
training. The training was stopped when the av-
erage of development set accuracies is maximum.
We got development accuracy of 86.58%, 74.09%,
74.67% on SNLI, MNLI match, MNLI mismatch
datasets, respectively.
Training We used the ADAM (Kingma and Ba,
2014) optimizer for updating weight parameters.
The parameters of ADAM set to be as follow:
β1 = 0.9, β2 = 0.999, ε = 10−8. The initial
learning rate is 0.0002 and is decayed with 0.9 rate
per one epoch. We did not use dropout but added
L2 regularization on the first FCNN layer. The
regularization parameter λ was set to be 5× 10−4.
The word embeddings were not updated during
training. We randomly shuffled training data dur-
ing training. The minibatch size was 25. We
trained 10 epochs and chose our model when the
development set reached the max accuracy. We
implemented our system by using lasagne (Diele-
man et al., 2015) and theano (Theano Develop-
ment Team, 2016) library. Our code is available
at here1.

4 Results and Discussion

To get more reliable results, all accuracies were
calculated by averaging after repeating ten exper-
iments. In this competition, the official accuracy
of our system recorded 0.712 on test set. Table 1
shows accuracies of other approaches and ours on
Argument Reasoning Comprehension task. Our
approach showed best performance except human,
outperforming all the systems more than 10%. Ta-
ble 2 shows the results of ablation experiments.
Model (a) is our proposed system. Model (d) indi-
cates a model that is same as the model (a), except
that the inference knowledge is not transferred.
This model is directly trained on our task. Mod-
els (b) and (e) indicate that the modules includ-
ing warrant pair inputs (W0,W1) and (W1,W0)
are removed from model (a) and (d), respectively.

1https://github.com/hongking9/SemEval-2018-task12

775

Approach Dev Test
Human average - 0.798
Human w/ training in resoning - 0.909

Our system
0.716 0.711
± 0.006 ± 0.007

Random baseline 0.473 0.491
2nd ranked system - 0.606
Attention† 0.488 0.513
Attention w/ context † 0.502 0.512
Intra-warrant attention† 0.638 0.556
Intra-warrant attent. w/ context† 0.637 0.560

Table 1: Accuracy of each approch. The human and
baseline results are taken from Habernal et al. (2018).
Our approach ranked 1st among 22 systems, outper-
forming all the systems more than 10%. † indicates ap-
proaches implemented by Habernal et al. (2018). Read-
ers can check all system results at here2.

Model Dev Test
(a) Our system 0.716 0.711
(b) − warrants pair input 0.685 0.696
(c) − biLSTM 0.726 0.706
(d) No Transferring 0.652 0.599
(e) − warrants pair input 0.653 0.605
(f) − biLSTM 0.656 0.608

Table 2: Ablation experiments.

Models (c) and (f) indicate that the biLSTM mod-
ule is removed from model (a) and (d), respec-
tively.

As we mentioned above introduction section,
our proposed model addresses two challenging
factors. The one is about common sense and the
other is about the two lexically close warrants that
lead to contradicting claims.
Transfer learning First, by comparing models (a)
and (d), we can observe that the inference knowl-
edge of the NLI task is very helpful to the ar-
gument reasoning comprehension task. We may
assume that machine can accommodate common
sense by learning similar tasks and large corpus.
Warrants pair input Second, by comparing mod-
els (a) and (b), we can observe that the warrants
pair input result in improved performance. We
may infer that the model can distinguish fine dif-
ference of the two warrants well by directly feed-
ing the warrant pair. However, in the case of model
(d) and (e), there is no sufficient difference of the
performance. We think this is because the model

2https://github.com/habernal/semeval2018-task12-results

did not learn to infer the relationship between two
sentences.
Adding biLSTM Finally, by comparing (a) and
(c), we can observe that adding biLSTM results
in a little improved performance on the test set.
Also, the performance on the test set was nearly
similar with those in development set in model (a)
whereas there was 2% difference in model (c). We
carefully infer that the performance on the devel-
opment set was more reliable and the model be-
comes flexible to the target task when adding not-
trained module to pre-trained and frozen model.
However, since the data is not large enough to
prove it, we leave it as future work.

5 Conclusion

To address argument reasoning comprehension
task, we proposed a network transferring inference
knowledge to the Argument Reasoning Compre-
hension task. First, we implemented ESIM and
trained it on a large NLI task corpus. We took
full advantage of the model to transfer inference
knowledge of NLI task, appropriately building the
network. Our approach showed robustness on this
task. Through ablation experiment, we showed
the following effects: transfer learning, warrants
pair input, and adding biLSTM. Also, we showed
our system can address the factors about common
sense and two lexically close warrants that lead to
contradicting claims.

Acknowledgments

This research was supported by the Bio-Synergy
Research Project (NRF-2016M3A9C4939665) of
the Ministry of Science, ICT and Future Planning
through the National Research Foundation.

References
Samuel R Bowman, Gabor Angeli, Christopher Potts,

and Christopher D Manning. 2015. A large anno-
tated corpus for learning natural language inference.
arXiv preprint arXiv:1508.05326.

Qian Chen, Xiaodan Zhu, Zhen-Hua Ling, Si Wei, Hui
Jiang, and Diana Inkpen. 2017. Enhanced lstm for
natural language inference. In Proceedings of the
55th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), vol-
ume 1, pages 1657–1668.

Alexis Conneau, Douwe Kiela, Holger Schwenk, Loic
Barrault, and Antoine Bordes. 2017. Supervised
learning of universal sentence representations from

776

natural language inference data. arXiv preprint
arXiv:1705.02364.

Sander Dieleman, Jan Schlter, Colin Raffel, Eben Ol-
son, Sren Kaae Snderby, Daniel Nouri, et al. 2015.
Lasagne: First release.

Ivan Habernal, Henning Wachsmuth, Iryna Gurevych,
and Benno Stein. 2018. The argument reasoning
comprehension task: Identification and reconstruc-
tion of implicit warrants. In Proceedings of the
2018 Conference of the North American Chapter of
the Association for Computational Linguistics: Hu-
man Language Technologies, page (to appear), New
Orleans, LA, USA. Association for Computational
Linguistics.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural computation,
9(8):1735–1780.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013. Distributed representa-
tions of words and phrases and their compositional-
ity. In Advances in neural information processing
systems, pages 3111–3119.

Theano Development Team. 2016. Theano: A Python
framework for fast computation of mathematical ex-
pressions. arXiv e-prints, abs/1605.02688.

Adina Williams, Nikita Nangia, and Samuel R Bow-
man. 2017. A broad-coverage challenge corpus for
sentence understanding through inference. arXiv
preprint arXiv:1704.05426.

777

Proceedings of the 12th International Workshop on Semantic Evaluation (SemEval-2018), pages 778–782
New Orleans, Louisiana, June 5–6, 2018. ©2018 Association for Computational Linguistics

LIGHTREL at SemEval-2018 Task 7: Lightweight and Fast Relation
Classification

Tyler Renslow
DFKI, Saarbrücken, Germany
tdrenslow@gmail.com

Günter Neumann
DFKI, Saarbrücken, Germany

neumann@dfki.de

Abstract

We present LIGHTREL, a lightweight and fast
relation classifier. Our goal is to develop a
high baseline for different relation extraction
tasks. By defining only very few data-internal,
word-level features and external knowledge
sources in the form of word clusters and word
embeddings, we train a fast and simple linear
classifier.

1 Introduction

The main motivation for our participation at
SemEval-2018 (Gábor et al., 2018) was the ideal
opportunity to test and improve our relation ex-
traction system LIGHTREL. The system design
and development was inspired by the work de-
scribed in (Nguyen and Grishman, 2015). Their
goal was to depart from traditional relation ex-
traction approaches with complicated feature en-
gineering by exploring a deep neural network that
would minimize its dependence on external toolk-
its and resources, e.g. external word embeddings.
That allowed them to design a rather lightweight
relation extraction approach that would basically
only require supervised training data, external
word embeddings and a few hyperparameters.
Their ”end-to-end” relation extraction approach
produced competitive results.

Since tuning hyperparameters for neural net-
works can be a intricate process, we considered
whether it would be possible to define an even sim-
pler system and use it as a baseline for our future
research. Thus, we adopted some of the design
decisions made by (Nguyen and Grishman, 2015)
and combined them with a well-known, fast linear
classifier, viz. LibLinear (Fan et al., 2008).

Following Nguyen and Grishman (2015), we
represent a relation mention as a sequence of to-
kens. The core idea of our approach consists of
transforming this sequence into a a vector of fixed

length, such that each token (or word) is repre-
sented only by: 1) the word itself, 2) its shape (a
small, fixed amount of character-based features),
3) the word’s cluster id, and 4) the word’s embed-
ding of fixed size.

For this competition, we introduce a new
relation-level feature, namely the ID of the word
directly following and preceding entities one and
two, respectively. Furthermore, we ignore all to-
kens to the left of the first entity and to the right of
second entity. The size of the whole vector there-
fore hinges on the maximum number of elements
between the two entities found in the training set.

These representations are then used to train a
LibLinear model. Note that this reduces man-
ual feature engineering to defining the shape fea-
tures, finding an appropriate number of clusters
and word embedding dimensions, and hyperpa-
rameters for LibLinear. All other information is
automatically computed from the training data. In
this sense, we consider our system lightweight.

We initially developed and tested our approach
on the previous and widely-used SemEval-2010
Task 8 data set (Hendrickx et al., 2010), and
obtained as our best result an F1 measure of
79.78% on the test-data using the standard eval-
uation script from SemEval-2010 (see also Sec.
3). Although this result is behind the best reported
ones (the majority between 83%-85%, and the best
88.0%, cf. (Wang et al., 2016)), we think it pro-
vides a strong baseline compared to the manually-
engineered, feature-heavy approaches or complex
neural architectures. Thus, when the SemEval-
2018 Task 7 challenge was announced, it was a
natural decision to use it as an additional testing
ground for LIGHTREL.

2 Approach

LIGHTREL can be divided into three major steps:

778

1) extracting information from the training data
and external sources and storing it in an internal
representation; 2) converting the internal represen-
tation into feature vectors; 3) using feature vectors
to train a logistic regression classification model
to predict classes.

In the first step of the system, pertinent infor-
mation is extracted from the training data. Each
relation instance (the two entities and the text be-
tween them) is collected. Along with the relation
instance, the ID of the abstract, the IDs of the en-
tities, the relation type and the length of the sen-
tence are all gathered into one internal representa-
tion to facilitate vector computation later. We do
not include additional data in our training set, e.g.
from other tasks or subtasks, previous SemEval
years, etc. For example, the following relation:
<entity id="E89-1006.1">French tenses
</entity> in the framework of <entity
id="E89-1006.2">Discourse
Representation Theory</entity>

would be represented in our system as:
(’E89-1006’, [’French_tenses’, ’in’,
’the’, ’framework’, ’of’,
’Discourse_Representation_Theory’],
’E89-1006.1’, ’E89-1006.2’,
’MODEL-FEATURE REVERSE’, 6)

The only processing done on the text is: 1)
merging any punctuation and the word before it
into a single string and 2) joining multi-word enti-
ties into a single string with an underscore. Using
the words from these instances, we index a unique
vocabulary and the single word immediately fol-
lowing or preceding entity one or entity two, re-
spectively, provided that the word isn’t the other
entity. The unique relation types are also indexed
later so that their unique identifiers can be used as
a feature in the training vectors for LibLinear. In
the case of the competition, the test data is used to
expand the unique vocabulary and entity context
words. Once this information is collected, it can
be converted into vector representations to train a
LibLinear model.

The next step involves converting our relation
instances into feature vectors. In addition to the
information gleaned from the training data, we use
features that are independent of our training data.
For instance, we include a word-shape feature, a
unique vector representing certain character-level
features found in a word. In particular the features
are based on whether: any character is capitalized;
a comma is present; the first character is capital-
ized and the word is the first in the relation (repre-

senting the beginning of a sentence); the first char-
acter is lower-case; there is an underscore present
(representing a multi-word entity); and if quotes
are present in the token. These features were left
unchanged from the ones that achieved the best re-
sults on SemEval-2010 Task 8.

We also incorporate our own word embeddings
into our feature vectors. Our previous system de-
veloped for the SemEval-2010 task used Number-
batch embeddings from ConceptNet (Speer et al.,
2017) to yield the best results, but development
was slower than desired due to the size of the em-
bedding file. We therefore hand-pick the data used
to calculate the new, smaller embeddings in order
to experiment with domain-specific word embed-
dings better tuned to the task at hand.

We pre-compute two word embedding files: one
based on the ACM-Citation-network V9 corpus
of abstracts and the other on the DBLP-Citation-
network V5 corpus.1 The embeddings are cal-
culated using the word2vec2 tool with the fol-
lowing constraints: the continuous bag-of-words
model, 300-dimension vectors (chosen for porta-
bility from the old system that used 300-d Num-
berbatch vectors) and leaving out tokens occurring
fewer than five times. The DBLP corpus embed-
ding file used for the final system was around half
the size of the Numberbatch embeddings.

Cluster-membership features are also included
in our feature vectors. We used the MarLin
(Müller and Schuetze, 2015) clustering tool to
pre-compute word clusters for the aforementioned
two corpora based on their bigram context. In
particular, we ran five training epochs to cluster
the words into 1000 classes. MarLin was chosen
over the Brown clustering algorithm (Brown et al.,
1992), as these clusters produced better results
for SemEval-2010 Task 8. Using all of our fea-
tures, we convert our internal representation into
the proper input format for training a LibLinear
model. All features are binary besides the word
embeddings. The test data is converted into the
same format for predicting, albeit without relation
IDs in the case of the competition run.

In the same way as (Nguyen and Grishman,
2015), we represent a relation mention x of length
n as a sequence of tokens x = [x1, x2, ..., xn],
where xi is the i-th word in the mention. Further-

1Corpora available at https://aminer.org/
citation.

2https://code.google.com/archive/p/
word2vec/

779

more, let xi1 and xi2 be the head of the two entity
mentions of interest. Now, we transform this into
a vector of fixed length l, whose size is determined
by the relation mention with highest number of to-
kens k between its entity head tokens, and by using
L tokens left to the entity token xi1 , and R tokens
to the right of xi2 . In all experiments described
below, L and R are set to 0, which is also done
by (Nguyen and Grishman, 2015). If a relation
mention has fewer than k elements between enti-
ties, we add padding elements (i.e. dummy word
tokens). One of the system parameters we tuned
was the padding strategy employed: in the end, we
got better results when padding after entity one as
opposed to padding before entity two. Thus, ini-
tially, all relation mentions are represented by a
fixed length vector x′ = [x′1, x

′
2, ..., x

′
k+2], where

x′1 = xi1 and x′k+2 = xi2 , with words plus the
necessary number of padding elements between.

Once we have a fixed-length vector for each
relation, we append the word-context feature to
the vector. The motivation behind this feature is
to provide some distributional information to the
model regarding the syntactic contexts in which
entities occur. In the case where there are no words
between entities, we use no word context in our
feature vector. If a single word occurs between
entities, they share the same context. Otherwise,
word context is represented by the word directly
to the right and left of entity one and two, respec-
tively. The context features are calculated based
on the original, non-normalized sentence, so that
padding elements are not involved.

The last step involves training a model to pre-
dict classes based on our vector representations of
the training data. We employ LibLinear’s default
classifier (version 2.11), cf. also Sec. 3. Once the
model is trained, it can then make predictions on
the vectors that represent test relation instances.
The predictions are then converted back into the
format necessary for evaluating our system using
the scorer script provided by SemEval.

3 Experiments

As mentioned before, our system was an adapta-
tion to the one that produced the optimal result on
SemEval-2010 Task 8. Through cross-validation,
we tuned our system parameters to produce the
best results on SemEval-2018 training data, bear-
ing in mind the goal of keeping our system as
lightweight as possible. It is important to note that

hyperparameter tuning was only done according to
system performance on task 1.1’s training data; we
simply used the optimal parameters from this task
while participating in task 1.2 for the competition.

Through experimentation, we found a LibLin-
ear classifier that performed better on the current
task than the one that we used for the SemEval-
2010 task. We also developed a novel word-
context feature for the 2018 task, which modestly
improved our cross-validation results (anywhere
from a 1% to 3% increase in F1 score, depend-
ing on the different parameters used). We will dis-
play the parameters that produced optimal results
in cross-validation, as well as the results obtained
using these same parameters in the competition
phase in tabular form below.

For the SemEval-2010 task, we obtained the
best results using LibLinear’s support vector clas-
sifier by Crammer and Singer (Crammer and
Singer, 2000) with a cost of 0.1 and a stopping
tolerance of 0.3. Given the fewer relation types
and smaller training vectors in the SemEval-2018
task, we experimented with different classifiers. In
development, we achieved the best performance
in using LibLinear’s default classifier, which per-
forms dual L2-regularized L2-loss support vector
classification, cf. (Fan et al., 2008). We set cost
and stopping tolerance parameters equal to 0.1, us-
ing default settings for all other parameters.

The total competition data was made up of
1228+355 = 1583 relation instances (#training +
#test), corresponding to an approximate train-test
split of ≈78%-22%. Because of this, we devel-
oped our system using 5-fold cross-validation on
the training set, which entails an even 80%-20%
split of data, i.e. 982 + 246 = 1228 instances.
Even though a subset of the training data was pro-
vided by the organizers for system development,
we opted to split the data in accordance with the
proportion of training and test instances, in order
to get the best estimate of system performance in
the competition phase.

We obtained the best average F1 score for
tasks 1.1 and 1.2 when using all features but the
shape feature (word, embeddings, clusters, entity
one context, entity two context); the second best
score was obtained when using all features and
the third best by removing the entity two context
feature from the entire feature set. These fea-
ture sets represent a modest approach to the task
at hand compared to more complex systems in-

780

corporating knowledge from sources like part-of-
speech tagging or dependency parsing. An ex-
ception to these feature sets was cross-validation
on task 1.2’s training data, where an average F1
score of 61.83% was obtained when using neither
context-related feature. However, since removing
a context-related feature (no e2 context) already
produced the best results in development, we de-
cided to hedge our bets in the competition with a
feature set composed of all features but the shape
feature, i.e. of no manually engineered features.

The results from cross-validation on task 1.1
and task 1.2 are shown in Table 1 below. Based on
these results, we expected our system to perform
similarly in the competition.

feature set task 1.1 task 1.2
all features 45.4% 62.0%
w/o shape 46.4% 61.7%

w/o e2 context 45.5% 62.1%

Table 1: Average F1 scores from 5-fold cross-
validation.

The actual results of the competition can be
seen below in Table 2. These results placed us in
18th out of 28 groups in subtask 1.1 and 12th out
of 20 in subtask 1.2.

feature set task 1.1 task 1.2
all features 39.3% 67.5%
w/o shape 39.9% 68.2%

w/o e2 context 39.2% 67.5%

Table 2: Competition F1 scores.

The best result was obtained when using all
features except the shape feature. This points to
evidence that there is overlap in the information
gained from the shape feature and the word fea-
ture. The same token, differing only in punctua-
tion (e.g. the strings ’IR’ and ’IR,’), is represented
with both different word and different shape IDs
in our system. However, for the shape feature to
provide extra information to the model, the word
feature would have to remain the same, since the
shape feature changed.

The results on the first task were worse than the
cross-validation results suggested. Since we incor-
porated the words from the test data into our word
and context features, there was no information that
the model could have missed in the competition
phase. Therefore, we attribute the slight decrease

in performance to the fact that more training and
less test data were used in development, meaning
that our models were overfitting in training.

Surprisingly, our system performed better on
noisily annotated data, given no extra development
in relation to the task. It is difficult to say with con-
viction why these results occurred, as our features
do not incorporate the entity markup. Another dif-
ference in this task is the data itself; it could be
that more tokens were found in the embedding and
cluster features, providing more information to the
model. However, this fact alone hardly explains an
almost 30% increase in F1.

Finally, we assessed our system’s speed. The
final system which produced the best results for
subtask 1.1 needed a total of 35 seconds to run on a
2012 MacBook Pro with 16GB of RAM and a 2.6
GHz quad-core Intel Core i7 processor3. The bot-
tleneck occurred in the creating of vectors (80%
of total time), which can be attributed to the sim-
ple way we stored and accessed the embeddings.
Training lasted 5 seconds, while testing/prediction
only required a fraction of a second. These re-
sults demonstrate our system’s agility in relation
to complex neural architectures, which typically
need hours, or even days, to train.

4 Conclusion

We believe our system has established a useful
baseline for relation classification. Our approach
is simple in that it involves few features. These
few features yield remarkable results given the
amount of time required to deploy the system, al-
lowing for quicker development and prototyping
of models compared to more cumbersome neural
networks. The performance on task 1.2 as opposed
to task 1.1 demonstrates our system’s flexibility,
as we obtained fair results with no extra develop-
ment. However, further research is needed to ex-
plain the jump in performance between the tasks.

Acknowledgments

This work was partially funded by the BMBF
through the project DEEPLEE (01IW17001) and
the European Union’s Horizon 2020 grant agree-
ment No. 731724 (iREAD).

3implementation available at https://github.com/
trenslow/LightRel

781

References
Peter F. Brown, Peter V. deSouza, Robert L. Mer-

cer, Vincent J. Della Pietra, and Jenifer C. Lai.
1992. Class-based n-gram models of natural lan-
guage. Comput. Linguist. 18(4):467–479.

Koby Crammer and Yoram Singer. 2000. On the learn-
ability and design of output codes for multiclass
problems. In Proceedings of the Thirteenth An-
nual Conference on Computational Learning The-
ory (COLT 2000), June 28 - July 1, 2000, Palo Alto,
California. pages 35–46.

Rong-En Fan, Kai-Wei Chang, Cho-Jui Hsieh, Xiang-
Rui Wang, and Chih-Jen Lin. 2008. Liblinear: A
library for large linear classification. Journal of ma-
chine learning research 9(Aug):1871–1874.

Kata Gábor, Davide Buscaldi, Anne-Kathrin Schu-
mann, Behrang QasemiZadeh, Haı̈fa Zargayouna,
and Thierry Charnois. 2018. Semeval-2018 Task
7: Semantic relation extraction and classification in
scientific papers. In Proceedings of International
Workshop on Semantic Evaluation (SemEval-2018).
New Orleans, LA, USA.

Iris Hendrickx, Su Nam Kim, Zornitsa Kozareva,
Preslav Nakov, Diarmuid Ó Séaghdha, Sebastian
Padó, Marco Pennacchiotti, Lorenza Romano, and
Stan Szpakowicz. 2010. Semeval-2010 task 8:
Multi-way classification of semantic relations be-
tween pairs of nominals. In Proceedings of the 5th
International Workshop on Semantic Evaluation, Se-
mEval@ACL 2010, Uppsala University, Uppsala,
Sweden, July 15-16, 2010. pages 33–38.

Thomas Müller and Hinrich Schuetze. 2015. Robust
morphological tagging with word representations.
In Proceedings of the 2015 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies.
Association for Computational Linguistics, Denver,
Colorado, pages 526–536.

Thien Huu Nguyen and Ralph Grishman. 2015. Rela-
tion extraction: Perspective from convolutional neu-
ral networks. In Proceedings of the 1st Workshop on
Vector Space Modeling for Natural Language Pro-
cessing, VS@NAACL-HLT 2015, June 5, 2015, Den-
ver, Colorado, USA. pages 39–48.

Robert Speer, Joshua Chin, and Catherine Havasi.
2017. Conceptnet 5.5: An open multilingual graph
of general knowledge. In 31st AAAI Conference on
Artificial Intelligence. San Francisco, USA, pages
4444–4451.

Linlin Wang, Zhu Cao, Gerard de Melo, and Zhiyuan
Liu. 2016. Relation classification via multi-level at-
tention cnns. In Proceedings of the 54th Annual
Meeting of the Association for Computational Lin-
guistics, ACL 2016, August 7-12, 2016, Berlin, Ger-
many, Volume 1: Long Papers.

782

Proceedings of the 12th International Workshop on Semantic Evaluation (SemEval-2018), pages 783–787
New Orleans, Louisiana, June 5–6, 2018. ©2018 Association for Computational Linguistics

OhioState at SemEval-2018 Task 7: Exploiting Data Augmentation for
Relation Classification in Scientific Papers Using Piecewise Convolutional

Neural Networks

Dushyanta Dhyani
The Ohio State University OH, USA

dhyani.2@osu.edu

Abstract

We describe our system for SemEval-2018
Shared Task on Semantic Relation Extraction
and Classification in Scientific Papers where
we focus on the Classification task. Our
simple piecewise convolution neural network
(PCNN) performs decently in an end to end
manner. A simple inter-task data augmenta-
tion significantly boosts the performance of
the model. Our best-performing systems stood
8th out of 20 teams on the classification task
on noisy data and 12th out of 28 teams on the
classification task on clean data.

1 Introduction

Relation extraction (RE) and Classification (RC)
is an integral component of information extraction
systems which aim to extract all the entity pairs
and their relation 〈e1, r, e2〉 from a given text cor-
pora. An alternate formulation of relation extrac-
tion task focuses on identifying if a relation exists
between a predefined pair of entities, and if yes
classify from a given set of class relations. RE
finds applications in a variety of domains, rang-
ing from knowledge base construction to semantic
parsing and question answering. However, the ap-
plicability of existing efforts in relation extraction
to scientific text calls for a quantitative and quali-
tative analysis which is the aim of this shared task.

2 Related Work

Existing efforts for RE range from traditional
strategies (Qian et al., 2008; Bunescu and
Mooney, 2006, 2005; Mintz et al., 2009; Riedel
et al., 2010) to more recent end to end deep learn-
ing based methods (Zeng et al., 2014, 2015; Lin
et al., 2016; Wu et al., 2017) that are more suit-
able in situations where a lot of training data is
available. While a majority of efforts in the RE
community are specifically focused towards using

distantly supervised data and reduce the associ-
ated noise, their discussion is not relevant to the
current scenario. The most relevant work is that
of (Zeng et al., 2014) who demonstrated the effi-
cacy of convolution neural networks for relation
classification and (Zeng et al., 2015) who further
enhanced the architecture by proposing the piece-
wise max-pooling strategy.

3 Task Description

The semantic relation extraction and classification
in scientific papers task (Gábor et al., 2018) aims
at identifying semantic relations expressed by en-
tity pairs in scientific literature. The contest is fur-
ther divided into three subtasks, where the first two
focus on classification of varying nature of data
and the third focuses on extraction task. Since our
submitted systems focused only on the classifica-
tion task, we would from here on discuss mostly
about the classification sub-tasks.

3.1 Dataset
The data contains titles and abstracts of papers
from ACL Anthology Corpus where entity men-
tions are either manually annotated (Subtask 1.1
and Subtask 2) or heuristically (Subtask 1.2) de-
termined. However, the relations are manu-
ally annotated across all subtasks. For the clas-
sification scenario, we are provided with rele-
vant entities and the directionality of their rela-
tion. There are 6 class labels: USAGE, RE-
SULT, MODEL, PART WHOLE, TOPIC, COM-
PARISON. The classes are highly imbalanced in
nature as shown in Fig. 2

3.2 Evaluation
For both Task 1.1 and 1.2, given that the classes
are imbalanced, macro-f1 score is used as the of-
ficial evaluation metric and thus the metric we use
for hyperparameter tuning. For more details, we

783

Figure 1: PCNN Encoder with Word, Position and Directionality embeddings.

(a) Task 1

(b) Task 2

Figure 2: Class Sizes for Task 1 & Task 2.

would refer the reader to the task description pa-
per (Gábor et al., 2018)

4 Methodology

As shown in Fig. 1, we use the piecewise
convolutional encoder proposed by (Zeng et al.,
2015) which encodes the sentence into an embed-
ding space taking into account the context of text
around the entities in an end to end manner. The
various components of the encoder are described
below

4.1 Preprocessing

Since the original training dataset provided is an-
notated using XML tags which can be utilized in
a variety of ways, we briefly describe our prepro-
cessing steps. Each text item contains a title of
a paper and its abstract. Both the entities for a
particular training/testing instance could only ei-
ther be in the title or in the abstract. While it
would be interesting to see the impact of incor-
porating the effect of paper titles on the entities in
abstracts and vice versa, to simplify the architec-
ture, we simply treat titles and abstracts as sepa-
rate and independent sentences. For the represen-
tation of entities, the two most obvious options are
to either combine sub-words in an entity using a

784

special character (e.g. word sense disambiguation
becomes word sense disambiguation) or to sim-
ply use entity head words to represent the starting
position of the entity as proposed by (Nguyen and
Grishman, 2015). We chose the latter approach
for two reasons: 1) The amount of data is rela-
tively small to learn word embeddings on the data
itself 2) The conjoined entity representation as in
the former approach would probably not exist in
the pre-trained word embeddings and thus would
have to be replaced by an unknown token. Finally,
we used common text cleaning techniques like
removing non-alphanumeric characters, replacing
all numbers by a unique token, etc.

4.2 Word Representation
Each word in the input is transformed to a static,
dense feature representation by looking up a pre-
trained word embedding dictionary. We use
dependency based word embeddings (Levy and
Goldberg, 2014) which incorporate long-range de-
pendencies between words and thus generate em-
beddings that are more functional in nature (than
the traditional bag of words based embeddings)
which is presumably more suitable to the cur-
rent task as dependency based features have been
shown to be useful for relation extraction (Xu
et al., 2015; Bunescu and Mooney, 2005). All
words that do not exist in the dictionary are re-
placed by UNK token and initialized randomly.

4.3 Position Embedding
Since convolved representations are position in-
variant, incorporating positional information us-
ing embeddings has been shown to be useful for a
variety of task (Zeng et al., 2014; Gehring et al.,
2017) when using a convolutional encoder. We
evaluate the distance of each word in the sen-
tence with respect to both entity 1 and entity 2 (we
limit the values to a maximum distance of posi-
tion window size). These position values are then
projected into a relatively small embedding space
using a trainable embedding layer.

4.4 Directionality Embedding
Since the relations are directional in nature, it is
important to incorporate the available direction-
ality information in the sentence representation.
While this can be implicitly done when using de-
pendency tree base input representation, to incor-
porate the directionality of the relation exhibited
by the two entities (< e1, r, e2 > or < e2, r, e1 >)

we also project the direction information into the
embedding space by another embedding layer that
is trained along with the entire network.

4.5 Convolution and Piecewise Max-Pooling

CNN’s have been shown to be good at encoding
sentences into vector representations for text clas-
sification tasks (Kim, 2014; Zhang et al., 2015; Hu
et al., 2014; Kim et al., 2016) and at the same time
also speed up the training and inference time. The
word representations and position embeddings are
concatenated and fed into a convolution encoder
which generates features using varying width of
filters. To take into account the context of text
around and between the entities in consideration,
we then perform a piecewise max-pooling oper-
ation as shown in Fig. 1. The input represen-
tations (word-embedding ⊕ position-embedding)
are appropriately padded before the convolution
operation to ensure that the convolved features
have the same length as the input sentence in or-
der to correctly use entity positions for piecewise
max-pooling. These features generated by the
PCNN are finally concatenated with the direction-
ality embeddings discussed above to generate the
sentence level representation.

4.6 Regularization, Output and Training

We use dropout (Srivastava et al., 2014) on the
sentence representations with a keep probability of
0.5 as a simple regularization strategy. This is fol-
lowed by a fully connected layer and a softmax op-
eration for the classification task. We use the stan-
dard multi-class cross-entropy loss as our training
objective and Adam (Kingma and Ba, 2014) for
optimization.

Parameter Values
Number of Epochs 100,200,400

Maximum Sequence Length 100,200
Batch Size 32,64

Number of Filters 32,64,128
Learning Rate 0.001, 0.0005

Table 1: Hyperparameter Values.

5 Experiments

5.1 Data Augmentation

Deep neural models require significant amount of
training data to extract relevant features. While

785

Task Data Epoch Batch Size No. of Filters Macro-F1 Score
1.1 1.1 200 32 64 35.3

1.1 1.1 + 1.2 200 64 32 48.1

1.2 1.2 200 32 64 64.4

1.2 1.1 + 1.2 100 64 128 74.7

Table 2: Results of our best performing systems on the official test set with/without data augmentation.

our neural model is relatively shallow, the data
size for each of the subtask is also small. As a
workaround, we simply mix the data from subtask
1.1 with data from subtask 1.2 which hopefully
helps in improving the model’s generalizability.

5.2 Experimental Settings

While the final training and prediction was per-
formed on the entire training dataset, we use the
official validation split provided by contest orga-
nizers to perform hyper-parameter tuning. For
the data augmentation scenario, however, we also
make use of the validation data from the other
task. Given that CNN’s are fast to train, we eas-
ily use grid search to find the optimal combina-
tion of a subset of parameters for each task and
each data configuration (with or without augmen-
tation) which are listed in Table 1. For the remain-
ing parameters, we used standard values as recom-
mended by prior literature as follows: convolution
filters of width 3,4 and 5; position and directional-
ity embeddings of size 5; windows size for relative
positions from entities was set to 30.

6 Results

We report our performance on the classification
tasks (Subtask 1.1 and 1.2) according to the of-
ficial evaluation. While all task settings perform
best for a maximum sequence length of 200 and
learning rate of 0.001, the rest of the parameters
and their corresponding results are listed in Table
2. Even a simple mixing of the two datasets which
differ significantly in the nature of tagged entities
lead to a significant improvement. Surprisingly
though, adding the noisy data to the clean dataset
also leads to a 36% increase in performance. This
could be attributed to the fact that while heuris-
tically annotated entities are high-level concepts
thus sharing a lot of context with similar concepts,
most of the manually annotated entities are full
noun phrases, thus adding to the complexity of the

task. These results also falsify our initial assump-
tion/expectation of Task 1.1 to be easier.

7 Conclusion

We presented a simple end to end model that
is fast to train and though does not perform
competitively well, makes effective use of addi-
tional data for a significant improvement in per-
formance. These results show the effectiveness
of mixing/transferring supervision from data com-
ing from a different distribution and thus invites
further exploration in semi-supervised/supervised
domain adaptation scenarios.

References
Razvan Bunescu and Raymond Mooney. 2005. A

shortest path dependency kernel for relation extrac-
tion. In Proceedings of Human Language Technol-
ogy Conference and Conference on Empirical Meth-
ods in Natural Language Processing, pages 724–
731, Vancouver, British Columbia, Canada. Associ-
ation for Computational Linguistics.

Razvan Bunescu and Raymond J. Mooney. 2006.
Subsequence kernels for relation extraction. In
Advances in Neural Information Processing Sys-
tems, Vol. 18: Proceedings of the 2005 Conference
(NIPS).

Kata Gábor, Davide Buscaldi, Anne-Kathrin Schu-
mann, Behrang QasemiZadeh, Haı̈fa Zargayouna,
and Thierry Charnois. 2018. Semeval-2018 Task
7: Semantic relation extraction and classification in
scientific papers. In Proceedings of International
Workshop on Semantic Evaluation (SemEval-2018),
New Orleans, LA, USA.

Jonas Gehring, Michael Auli, David Grangier, and
Yann Dauphin. 2017. A convolutional encoder
model for neural machine translation. In Proceed-
ings of the 55th Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 1: Long
Papers), pages 123–135. Association for Computa-
tional Linguistics.

Baotian Hu, Zhengdong Lu, Hang Li, and Qingcai
Chen. 2014. Convolutional neural network archi-
tectures for matching natural language sentences.

786

In Z. Ghahramani, M. Welling, C. Cortes, N. D.
Lawrence, and K. Q. Weinberger, editors, Advances
in Neural Information Processing Systems 27, pages
2042–2050. Curran Associates, Inc.

Yoon Kim. 2014. Convolutional neural networks
for sentence classification. In Proceedings of the
2014 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 1746–1751,
Doha, Qatar. Association for Computational Lin-
guistics.

Yoon Kim, Yacine Jernite, David Sontag, and Alexan-
der M Rush. 2016. Character-aware neural language
models. In AAAI, pages 2741–2749.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Omer Levy and Yoav Goldberg. 2014. Dependency-
based word embeddings. In Proceedings of the
52nd Annual Meeting of the Association for Com-
putational Linguistics (Volume 2: Short Papers),
pages 302–308, Baltimore, Maryland. Association
for Computational Linguistics.

Yankai Lin, Shiqi Shen, Zhiyuan Liu, Huanbo Luan,
and Maosong Sun. 2016. Neural relation extraction
with selective attention over instances. In Proceed-
ings of the 54th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Pa-
pers), pages 2124–2133, Berlin, Germany. Associa-
tion for Computational Linguistics.

Mike Mintz, Steven Bills, Rion Snow, and Daniel Ju-
rafsky. 2009. Distant supervision for relation ex-
traction without labeled data. In Proceedings of
the Joint Conference of the 47th Annual Meeting of
the ACL and the 4th International Joint Conference
on Natural Language Processing of the AFNLP,
pages 1003–1011, Suntec, Singapore. Association
for Computational Linguistics.

Thien Huu Nguyen and Ralph Grishman. 2015. Rela-
tion extraction: Perspective from convolutional neu-
ral networks. In Proceedings of the 1st Workshop on
Vector Space Modeling for Natural Language Pro-
cessing, pages 39–48.

Longhua Qian, Guodong Zhou, Fang Kong, Qiaom-
ing Zhu, and Peide Qian. 2008. Exploiting con-
stituent dependencies for tree kernel-based semantic
relation extraction. In Proceedings of the 22nd In-
ternational Conference on Computational Linguis-
tics (Coling 2008), pages 697–704, Manchester, UK.
Coling 2008 Organizing Committee.

Sebastian Riedel, Limin Yao, and Andrew McCallum.
2010. Modeling relations and their mentions with-
out labeled text. In Proceedings of the European
Conference on Machine Learning and Knowledge
Discovery in Databases (ECML PKDD).

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky,
Ilya Sutskever, and Ruslan Salakhutdinov. 2014.
Dropout: A simple way to prevent neural networks
from overfitting. Journal of Machine Learning Re-
search, 15:1929–1958.

Yi Wu, David Bamman, and Stuart Russell. 2017. Ad-
versarial training for relation extraction. In Proceed-
ings of the 2017 Conference on Empirical Methods
in Natural Language Processing, pages 1778–1783,
Copenhagen, Denmark. Association for Computa-
tional Linguistics.

Yan Xu, Lili Mou, Ge Li, Yunchuan Chen, Hao Peng,
and Zhi Jin. 2015. Classifying relations via long
short term memory networks along shortest depen-
dency paths. In Proceedings of the 2015 Confer-
ence on Empirical Methods in Natural Language
Processing, pages 1785–1794. Association for Com-
putational Linguistics.

Daojian Zeng, Kang Liu, Yubo Chen, and Jun Zhao.
2015. Distant supervision for relation extraction via
piecewise convolutional neural networks. In Pro-
ceedings of the 2015 Conference on Empirical Meth-
ods in Natural Language Processing, pages 1753–
1762, Lisbon, Portugal. Association for Computa-
tional Linguistics.

Daojian Zeng, Kang Liu, Siwei Lai, Guangyou Zhou,
and Jun Zhao. 2014. Relation classification via con-
volutional deep neural network. In Proceedings of
COLING 2014, the 25th International Conference
on Computational Linguistics: Technical Papers,
pages 2335–2344, Dublin, Ireland. Dublin City Uni-
versity and Association for Computational Linguis-
tics.

Xiang Zhang, Junbo Zhao, and Yann LeCun. 2015.
Character-level convolutional networks for text clas-
sification. In C. Cortes, N. D. Lawrence, D. D. Lee,
M. Sugiyama, and R. Garnett, editors, Advances in
Neural Information Processing Systems 28, pages
649–657. Curran Associates, Inc.

787

Proceedings of the 12th International Workshop on Semantic Evaluation (SemEval-2018), pages 788–792
New Orleans, Louisiana, June 5–6, 2018. ©2018 Association for Computational Linguistics

The UWNLP system at SemEval-2018 Task 7: Neural Relation Extraction
Model with Selectively Incorporated Concept Embeddings

Yi Luan Mari Ostendorf Hannaneh Hajishirzi
University of Washington

{luanyi, ostendor, hannaneh}@uw.edu

Abstract
This paper describes our submission for the
SemEval 2018 Task 7 shared task on seman-
tic relation extraction and classification in sci-
entific papers. We extend the end-to-end re-
lation extraction model of (Miwa and Bansal,
2016) with enhancements such as a character-
level encoding attention mechanism on select-
ing pretrained concept candidate embeddings.
Our official submission ranked the second in
relation classification task (Subtask 1.1 and
Subtask 2 Senerio 2), and the first in the re-
lation extraction task (Subtask 2 Scenario 1).

1 Task Overview

The SemEval 2018 Task 7 Shared Task (Gábor
et al., 2018) focuses on the task of recognizing the
semantic relation that holds between scientific con-
cepts. The task involves semantic relation extrac-
tion and classification into six categories specific
to scientific literature: USAGE, RESULT, MODEL-
FEATURE, PART WHOLE, TOPIC, COMPARE. Two
types of tasks are proposed: 1) identifying pairs of
entities that are instances of any of the six seman-
tic relations (extraction task), and 2) classifying
instances into one of the specific relation types
(classification task).

Consider the following input sentence: “[Unsu-
pervised training] is first used to train a [phone
n-gram model] for a particular domain.” Given the
concept pair [Unsupervised training] and [phone
n-gram model], the relation extraction task is to
identify whether there is a relation between the
concepts, while the the relation classification task
is to identity the relation as USAGE. Relation direc-
tionality is not taken into account for the evaluation
of the extraction task. Directionality is taken into
account when relevant for the classification task (5
out of the 6 semantic relations are asymmetrical).
We will use this example throughout the paper to
illustrate various parts of our system.

The SemEval 2018 Task 7 dataset contains 350
abstracts from the ACL Anthology for training and
validation, and 150 abstracts for testing each sub-
task. Since the scale of the data is small for su-
pervised training of neural systems, we introduce
several strategies to leverage a large quantity of un-
labeled scientific articles. In addition to initializing
a neural system with pre-trained word embeddings,
as in (Luan et al., 2017), we also try to incorporate
embeddings of concepts that span multiple words.
In neural models such as (Miwa and Bansal, 2016),
phrases are often represented by an average (or
weighted average) of the token’s sequential LSTM
representation. The intuition behind explicit mod-
eling of multi-word concept embeddings is that the
concept use may be different from that of its indi-
vidual words. Due to the size of the dataset and the
nature of scientific literature, a large number of the
scientific terms in the test set have never appeared
in the training set, so supervised learning of the
phrase embeddings is not feasible. Therefore, we
pre-trained scientific term embeddings on a large
scientific corpus and provide a strategy to selec-
tively incorporate the pre-trained embeddings into
the relation extraction system.

2 System Description

2.1 Neural Architecture Model

Our system is an extension of (Luan et al., 2017)
and (Miwa and Bansal, 2016) with LSTM RNNs
that represent both word sequences and dependency
tree structures, and perform relation extraction be-
tween concepts on top of these RNNs. As illus-
trated in Figure 1, it is composed of a 5 types of
layers in a hierarchical neural model to encode
context information. The first two layers (token,
token LSTM) use the neural modeling framework
in (Luan et al., 2017). The forward and backward
dependency layers and the relation classification

788

layer are based on (Miwa and Bansal, 2016). The
concept selection layer is novel, to the best of our
knowledge. The different layers are described in
more detail below.

Token Layer. The token layer concatenates three
types of vector space embeddings. Word embed-
dings are learned for words from a fixed vocabulary
(plus the unknown word token), initialized using
Word2vec pre-training with large scholarly corpora.
The character-based embedding for a token is de-
rived from its characters as the concatenation of
forward and backward representations from a bidi-
rectional LSTM. The character look-up table is
initialized at random. The advantage of building a
character-based embedding layer is that it can han-
dle out-of-vocabulary words and equations, which
are frequent in this data, all of which are mapped to
“UNK” tokens in the Word Embedding Layer. Word
embeddings are learned for words from a fixed vo-
cabulary (plus the unknown word token), initialized
using Word2vec pre-training with large scholarly
corpora. A feature embedding is learned as a map-
ping from features associated with capitalization
(all capital, first capital, all lower, any capital but
first letter) and part-of-speech tags. The embed-
dings are randomly initialized and trained jointly
with other parameters during supervised training.

Token LSTM Layer We apply a bidirectional
LSTM at the token level taking the concatenated
character-word-feature embedding as input. An
LSTM hidden state generated in this layer is de-
noted as hS .

Forward & Backward Dependency Layers
Given the concept pair (Cl, Cr), the Forward
Dependency Layer (generating hF) traces from
the closest common ancestor wa (for example
the word “used” in Fig. 1) to the headword wj

(word “model”) of the right target concept Cr

(“phone n-gram model”). The Backward De-
pendency Layer (generating hB) traces from the
ancestor to the headword wi of the left concept
Cl. We map the dependency relation into vec-
tor space and concatenate the resulting embed-
ding to the embedding (hS) of the headword of
the concepts Cl or Cr for the backward and for-
ward dependency layers, respectively. We con-
catenate the resulting bi-directional LSTM vector
for the headwords together with the common an-
cestor in both Forward & Backward Dependency
Layer as input to Relation Classification Layer

hDP = [
←−
hBwi

;
−→
hBwi

,
←−
hFwj

;
−→
hFwj

;
←−−
hBwa

;
−−→
hBwa

;
←−−
hFwa

;
−−→
hFwa

] .

Concept Selection Layer The concepts in the
task are mostly phrases rather than single words, in
the SemEval Task 7. We therefore seek ways to ob-
tain prior knowledge for those terms. We train a sci-
entific concept extraction model using the state-of-
the-art scientific neural tagging technique in (Luan
et al., 2017), given the scientific concept annota-
tion in the SemEval 2018 Task7 training data. We
were able to achieve 79.8% F1 score (span level)
to identify the scientific concepts. We then use the
model to extract all scientific concepts in the ACL
anthology and AI2 dataset (refer to Sec. 3). We
keep all the concepts that occur more than 10 times
in the whole corpus, which results in around 15k
concepts. We treat each of the 15k concepts as an
individual token and retrain word2vec embeddings
vk together with all other single words. At training
time, given a scientific concept pair (Cl, Cr), we
search through the 15k concepts to get all the con-
cept candidates that have n-gram string match with
Cl and Cr respectively (n is from 1 to the length
of the target concept C). For example, for the con-
cept phone n-gram model, the candidate concepts
we get are {phone n-gram, n-gram model, n-gram,
model, phone}. Since there may exist cases where
no match could be found in the 15k concepts, we
introduce a null vector v∅. v∅ is learned with other
neural network parameters. Assume there are K
concept candidates in the candidate list, we de-
note the embeddings for the concept candidates to
be V = {v1 . . . vK , v∅}. The attention weights
are calculated by αlk ∝ exp(hSCl

WATT vk), where
vk ∈ V . hSCl

is the concatenation of bidirectional
LSTM hidden states of the first and last word in
Cl.1 WATT is a parameter matrix for the bilinear
score for hSCl

and vk. The final concept embedding
vCl

is vCl
=
∑

vk∈V αlkvk. For a target concept
C, if exact match exists in the 15K concepts, we
set the pre-trained concept embedding to be vCl

.
We concatenate the resulting embedding for both
concepts in the concept pair as input to the final
classification layer (vC = [vCl

; vCr]).

Relation Classification Layer We concatenate
the output of Forward & Backward Dependency
Layer hDP and Concept Embedding Selection
Layer vC as input to Relation Classification Layer.

1We also tried using the weighted average of all LSTM
word embeddings in the span to calculate hS

Cl
; this yields a

slightly worse result.

789

Figure 1: Neural relation extraction model with bidirectional sequential and dependency path LSTMs.

Besides, we also introduce a distance feature be-
tween the two concepts which indicates how many
other concepts there are in between the target con-
cept pairs. We concatenate the distance embedding
with all the other features. The concatenated fea-
tures are then projected down to a lower dimension
through tanh function and make the final predic-
tion through a softmax function.

3 Experimental Setup
External Data We use two external resources
for pretraining word embeddings: i) the Semantic
Scholar Corpus,2 a collection of over 20 million
research papers from which we extract a subset of
110k abstracts of publications in the artificial intelli-
gence area; and ii) the ACL Anothology Reference
Corpus, which contains 22k full papers published
in the ACL Anothology (Bird et al., 2008).

Baseline We compare our model with a baseline
that removes the Concept Selection Layer and re-
places it with a weighted sum (using attention) of
hidden states (from the Sequential LSTM Layer)
for all words in a concept.

Implementation details All parameters are
tuned based on dev set performance; the best pa-
rameters are selected and used for final evaluation.

2http://labs.semanticscholar.org/corpus/

For all experiments, we explore tuning with two
different evaluation metrics: macro-F1 score and
micro-F1 score.3 We keep the pre-trained concept
embedding fixed as additional input feature. The
word embedding dimension is 250; the LSTM hid-
den dimension is 100 (for both sequential and de-
pendency layer); the character-level hidden dimen-
sion is 25; and the optimization algorithm is SGD
with a learning rate of 0.05. For Subtask 2, since 5
out of 6 relation types have directionality, we add
relation label “ REVERSE” to all the 5 directional
relations together with a “NONE” type, which re-
sult in 12 labels in total. For each epoch, we also
randomly filter out some “NONE” samples with
probability p during training, since the “NONE”
type relation dominates the training set and would
bias the model towards predicting “NONE” types.
We tune p according to dev set, and use p = 0.4
for the final evaluation.

4 Experimental Results

Ablation Study Table 1 provides the results of
an ablation study on the dev set showing the impact
of removing different components of our system.

3The official evaluation is macro-F1, but since the number
of instances in each class is highly unbalanced, the observed
macro-F1 scores were unstable. We therefore introduce micro-
F1 score for tuning and evaluation as well.

790

Macro Micro
Model P R F1 P R F1

Our system 49.4 36.7 42.1 46.2 42.2 44.1

-DepFeat 38.2 39.6 39.0 45.2 41.9 43.0
-DistFeat 43.4 37.8 40.4 38.7 47.8 42.7
-DepLSTM 51.5 30.0 37.9 48.6 32.6 39.0
-Concept 36.2 41.8 38.8 37.6 46.5 41.6

Baseline 40.9 32.5 36.2 41.9 38.0 39.9

Table 1: Ablation study showing the impact of neu-
ral network configurations on system performance on
the dev set for the relation classification task (Subtask
2, senerio 2). -DepFeat removes the input dependency
relation embeddings from the Backward & Forward De-
pendency Layers. -DistFeat and -Concept omit the dis-
tance and concept selection features, respectively, from
the final classification layer. -DepLSTM removes the
Backward & Forward Dependency Layers entirely (us-
ing the LSTM embeddings in the weighted token aver-
age).

Looking at micro F1 scores, dependency path in-
formation is very important (performance dropped
11.5% without it), and the Concept Selection Layer
is also important as it gives 2.5 absolute improve-
ment. The Dependency relation feature and the
distance feature also show 1-2 points gain. It is
worth noticing that removing the Concept Layer
(-Concept) does better than replacing it with the
weighted sequential LSTM sum (Baseline). With
the small amount of training data, it is difficult for
the baseline system to learn a good transformation
from word to phrase.

Competition Result The results of our system is
in Table 2. We submit two sets of results, one tuned
with micro F1 and the other with macro F1. It turns
out that even though the official evaluation metric is
macro F1 score, our model tuned by micro F1 gets
better results in the final competition. In Subtask
1.1 and Subtask 2 scenario 2, we were the second
place team with F1 score of 78.9% and 39.1% re-
spectively. We were the first place in Subtask 2
scenario 1 with 50.0% F1.

5 Related Work

There has been growing interest in research on au-
tomatic methods to help researchers search and
extract information from scientific literature. Past
research has addressed citation sentiment (Athar
and Teufel, 2012b,a), citation networks (Kas, 2011;
Gabor et al., 2016; Sim et al., 2012; Do et al., 2013;
Jaidka et al., 2014), summarization (Abu-Jbara and

Model T1.1 T2-E T2-C

Our system (Micro) 78.9 50.0 39.1
Our system (Macro) 78.4 49.3 37.0

Team-1 81.7 48.8 49.3
Team-2 76.7 37.4 33.6

Table 2: Competition result for the top 3 teams. The of-
ficial evaluation metric is macro F1 score. T1.1 means
Subtask 1.1, T2-E means Subtask 2 senerio 1 (extrac-
tion task), T2-C means Subtask 2 senerio 2 (classifica-
tion task).

Radev, 2011) and some analysis of research com-
munity (Vogel and Jurafsky, 2012; Anderson et al.,
2012). However, due to scarce hand-annotated data
resources, previous work on information extraction
(IE) for scientific literature is very limited. Most
previous work focuses on unsupervised methods
for extracting scientific terms such as bootstrapping
Gupta and Manning (2011); Tsai et al. (2013), or
extracting relations (Gábor et al., 2016). Luan et al.
(2017); Augenstein and Søgaard (2017) applied
semi-supervised learning and multi-task learning to
neural based models to leverage large unannotated
scholarly datasets for a scientific term extraction
task (Augenstein and Søgaard, 2017).

Although not much supervised relation extrac-
tion work has been done on scientific literature,
neural network techniqueshave obtained the state
of the art for general domain relation extraction.
Both convolutional (Santos et al., 2015) and RNN-
based architectures (Xu et al., 2016; Miwa and
Bansal, 2016; Peng et al., 2017; Quirk and Poon,
2017) have been successfully applied to the task
and significantly improve performance.

6 Conclusion

This paper describes the system of the UWNLP
team submitted to SemEval 2018 Task 7. We ex-
tend state-of-the-art neural models for information
extraction by proposing a Concept Selection mod-
ule which can leverage the semantic information of
concepts pre-trained from a large scholarly dataset.
Our system ranked second in the relation classifi-
cation task (subtask 1.1 and subtask 2 senerio 2),
and first in the relation extraction task (subtask 2
scenario 1).

Acknowledgments

This research was supported by the NSF (IIS
1616112), Allen Distinguished Investigator Award,
and gifts from Allen Institute of AI, Google, Ama-

791

zon, Samsung, and Bloomberg. We thank the
anonymous reviewers for their helpful comments

References
Amjad Abu-Jbara and Dragomir Radev. 2011. Co-

herent citation-based summarization of scientific pa-
pers. In Proc. Annual Meeting of the Association for
Computational Linguistics: Human Language Tech-
nologies. volume 1, pages 500–509.

Ashton Anderson, Dan McFarland, and Dan Jurafsky.
2012. Towards a computational history of the ACL:
1980-2008. In Proc. ACL Special Workshop on Re-
discovering 50 Years of Discoveries. pages 13–21.

Awais Athar and Simone Teufel. 2012a. Context-
enhanced citation sentiment detection. In Proc.
Conf. North American Assoc. for Computational Lin-
guistics: Human Language Technologies (NAACL-
HLT). pages 597–601.

Awais Athar and Simone Teufel. 2012b. Detection of
implicit citations for sentiment detection. In Proc.
ACL Workshop on Detecting Structure in Scholarly
Discourse. pages 18–26.

Isabelle Augenstein and Anders Søgaard. 2017. Multi-
task learning of keyphrase boundary classification.
In Proc. Annu. Meeting Assoc. for Computational
Linguistics (ACL). pages 341–346.

Steven Bird, Robert Dale, Bonnie J Dorr, Bryan R Gib-
son, Mark Thomas Joseph, Min-Yen Kan, Dongwon
Lee, Brett Powley, Dragomir R Radev, Yee Fan Tan,
et al. 2008. The ACL anthology reference corpus: A
reference dataset for bibliographic research in com-
putational linguistics. In Proc. Language Resources
and Evaluation Conference (LREC).

Huy Hoang Nhat Do, Muthu Kumar Chandrasekaran,
Philip S Cho, and Min Yen Kan. 2013. Extracting
and matching authors and affiliations in scholarly
documents. In Proc. ACM/IEEE-CS Joint Confer-
ence on Digital libraries. pages 219–228.

Kata Gábor, Davide Buscaldi, Anne-Kathrin Schu-
mann, Behrang QasemiZadeh, Haı̈fa Zargayouna,
and Thierry Charnois. 2018. Semeval-2018 Task 7:
Semantic relation extraction and classification in sci-
entific papers. In Proc. Int. Workshop on Semantic
Evaluation (SemEval).

Kata Gabor, Haifa Zargayouna, Davide Buscaldi, Is-
abelle Tellier, and Thierry Charnois. 2016. Se-
mantic annotation of the ACL anthology corpus for
the automatic analysis of scientific literature. In
Proc. Language Resources and Evaluation Confer-
ence (LREC).

Kata Gábor, Haı̈fa Zargayouna, Isabelle Tellier, Davide
Buscaldi, and Thierry Charnois. 2016. Unsuper-
vised relation extraction in specialized corpora using
sequence mining. In International Symposium on In-
telligent Data Analysis. Springer, pages 237–248.

Sonal Gupta and Christopher D Manning. 2011. An-
alyzing the dynamics of research by extracting key
aspects of scientific papers. In Proc. IJCNLP. pages
1–9.

Kokil Jaidka, Muthu Kumar Chandrasekaran, Beat-
riz Fisas Elizalde, Rahul Jha, Christopher Jones,
Min-Yen Kan, Ankur Khanna, Diego Molla-Aliod,
Dragomir R Radev, Francesco Ronzano, et al. 2014.
The computational linguistics summarization pilot
task. In Proc. Text Analysis Conference.

Miray Kas. 2011. Structures and statistics of citation
networks. Technical report, DTIC Document.

Yi Luan, Mari Ostendorf, and Hannaneh Hajishirzi.
2017. Scientific information extraction with semi-
supervised neural tagging. In Proc. Conf. Empirical
Methods Natural Language Process. (EMNLP).

Makoto Miwa and Mohit Bansal. 2016. End-to-end re-
lation extraction using lstms on sequences and tree
structures. In Proc. Annu. Meeting Assoc. for Com-
putational Linguistics (ACL). pages 1105–1116.

Nanyun Peng, Hoifung Poon, Chris Quirk, Kristina
Toutanova, and Wen-tau Yih. 2017. Cross-sentence
n-ary relation extraction with graph lstms. Trans.
Assoc. for Computational Linguistics (TACL) 5:101–
115.

Chris Quirk and Hoifung Poon. 2017. Distant super-
vision for relation extraction beyond the sentence
boundary. In Proc. Meeting of the European Asso-
ciation of Computational Linguistics. pages 1171–
1182.

Cicero Nogueira dos Santos, Bing Xiang, and Bowen
Zhou. 2015. Classifying relations by ranking with
convolutional neural networks. In Proc. Annual
Meeting of the Association for Computational Lin-
guistics and the 7th International Joint Conference
on Natural Language Processing. pages 626–634.

Yanchuan Sim, Noah A Smith, and David A Smith.
2012. Discovering factions in the computational lin-
guistics community. In Proc. ACL Special Workshop
on Rediscovering 50 Years of Discoveries. pages 22–
32.

Chen-Tse Tsai, Gourab Kundu, and Dan Roth. 2013.
Concept-based analysis of scientific literature. In
Proc. ACM Int. Conference on Information & Knowl-
edge Management. ACM, pages 1733–1738.

Adam Vogel and Dan Jurafsky. 2012. He said, she said:
Gender in the ACL anthology. In Proc. ACL Special
Workshop on Rediscovering 50 Years of Discoveries.
pages 33–41.

Yan Xu, Ran Jia, Lili Mou, Ge Li, Yunchuan Chen,
Yangyang Lu, and Zhi Jin. 2016. Improved rela-
tion classification by deep recurrent neural networks
with data augmentation. In Proc. Int. Conf. Compu-
tational Linguistics (COLING). pages 1461–1470.

792

Proceedings of the 12th International Workshop on Semantic Evaluation (SemEval-2018), pages 793–797
New Orleans, Louisiana, June 5–6, 2018. ©2018 Association for Computational Linguistics

UC3M-NII Team at SemEval-2018 Task 7: Semantic Relation
Classification in Scientific Papers via Convolutional Neural Network

Vı́ctor Suárez-Paniagua, Isabel Segura-Bedmar
Computer Science Department

Universidad Carlos III de Madrid
Leganés 28911, Madrid, Spain

vspaniag,isegura@inf.uc3m.es

Akiko Aizawa
National Institute of Informatics
2-1-2 Hitotsubashi, Chiyoda-ku

Tokyo, Japan
aizawa@nii.ac.jp

Abstract

This paper reports our participation for
SemEval-2018 Task 7 on extraction and clas-
sification of relationships between entities in
scientific papers. Our approach is based on the
use of a Convolutional Neural Network (CNN)
trained on 350 abstract with manually anno-
tated entities and relations. Our hypothesis is
that this deep learning model can be applied
to extract and classify relations between en-
tities for scientific papers at the same time.
We use the Part-of-Speech and the distances
to the target entities as part of the embedding
for each word and we blind all the entities by
marker names. In addition, we use sampling
techniques to overcome the imbalance issues
of this dataset. Our architecture obtained an
F1-score of 35.4% for the relation extraction
task and 18.5% for the relation classification
task with a basic configuration of the one step
CNN.

1 Introduction

Nowadays, there is a high increase in the publica-
tion of scientific articles every year, which demon-
strates that we are living in an emerging knowl-
edge era. Experts cannot deal with this explo-
sion of information and it is very hard to be up
to date about the state-of-the-art techniques in a
given field. This arduous task could be reduced
if we automatically identify concepts from scien-
tific articles and recognize the semantic relations
between them with Natural Language Processing
(NLP) techniques.

The Semantic Relation Extraction and Classifi-
cation in Scientific Papers task at SemEval-2018
task 7 (Gábor et al., 2018) provides a framework
for measuring the automatic annotation perfor-
mance by models which are trained on scientific
publications abstracts. The task defines six cate-
gories of relations between concepts and two tasks

are proposed: (1) the classification of the relations
between two entities in the predefined categories,
which is divided in two scenarios according to the
data used: clean or noisy; and (2) the extraction of
the relations given the entities from the clean data,
which also could involve their subsequent classifi-
cation.

In this paper, we describe our participation for
SemEval-2018 Task 7 on the extraction of rela-
tionships between entities in scientific papers and
also the subsequent classification in the predefined
classes of this relations with one step classifier.
The model is based on the Convolutional Neural
Network (CNN) proposed in (Kim, 2014), which
was the first work to exploit this architecture for
the task of sentence classification. CNN is a ro-
bust deep-learning architecture which has exhib-
ited good performance in others NLP tasks such
as semantic clustering (Wang et al., 2016), senti-
ment analysis (Dos Santos and Gatti, 2014) and
event detection (Nguyen and Grishman, 2015).
The model uses as the input of each instance the
transformation into real value vectors of the words
of the sentence, the distances to the target entities
of each word and the Part-of-Speech types. Fur-
thermore, we carry out a sampling technique to al-
leviate the imbalance issues of the dataset equaliz-
ing the number of the instances for all the classes.

2 Dataset

An annotated corpus for training and testing
the participating systems was provided in the
SemEval-2018 Task 7. The dataset contains 350
and 150 abstract from scientific articles for train-
ing and testing set, respectively.

The relation instances are divided into the fol-
lowing classes: USAGE, RESULT, MODEL, PART
WHOLE, TOPIC and COMPARISON. All of them
are asymmetrical except COMPARISON, where

793

both entities are involved in the same bidirectional
relation. A detailed description and analysis of
the corpus and its methodology used to collect
and process the scientific abstracts can be found
in (Gábor et al., 2018).

2.1 Pre-processing phase

The relations between scientific concepts are an-
notated pair by pair in the abstracts. All annotated
relations span within one sentence, thus, we split
the paragraphs of the abstracts into sentences with
NLTK tool1 to generate all the possible instances
in the corpus.

After that, each instance was tokenized, all
words were converted to lower-case and special
character were removed in order to clean the sen-
tences as the approach described in (Kim, 2014).
In addition, we used entity blinding for each rela-
tion to generalize the model, in which the two tar-
get entities of the relations were replaced by en-
tity markers as ”entity1” and ”entity2”, and ”en-
tity0” for the remaining entities. Since relations
can be asymmetrical, we considered both direc-
tions. In other words, for each pair of candidates
entities, we generated two different instances. For
the COMPARISON class, which is a bidirectional
relationship, we annotated both instances with the
same class label. For example, the sentence: ’We
suggest a method that mimics the behaviour of
the oracle using a neural network or a decision
tree.’ should be transformed to the relation in-
stances showed in Table 1.

Instances after entity blinding (entity1, entity2)
(oracle, neural network)
’We suggest a method that mimics the behaviour of
the entity1 using a entity2 or a entity0.’
(neural network, oracle)
’We suggest a method that mimics the behaviour of
the entity2 using a entity1 or a entity0.’
(oracle, decision tree)
’We suggest a method that mimics the behaviour of
the entity1 using a entity0 or a entity2.’
(decision tree, oracle)
’We suggest a method that mimics the behaviour of
the entity2 using a entity0 or a entity1.’
(neural network, decision tree)
’We suggest a method that mimics the behaviour of
the entity0 using a entity1 or a entity2.’
(decision tree, neural network)
’We suggest a method that mimics the behaviour of
the entity0 using a entity2 or a entity1.’

Table 1: Instances of a sentence in the corpus after ap-
plying the pre-processing phase with entity blinding.

1http://www.nltk.org

Table 2 shows the number of the instances ex-
tracted in the training set per each class. The None
class represents the number of pairs of entities that
are not related (negative instances). The number of
positive instances is very low compared to the neg-
ative ones, 1323 over 19210 (around 7%), mainly
because most classes are unidirectional and we an-
notated the reverse instance as None.

We followed a similar sampling technique de-
scribed in (Wang et al., 2017) to adjust the same
numbers of instances per each class. Therefore,
we randomly discard 60% of the negative in-
stances and we duplicate the instances in each
class until having the same number as the more
representative class, 483 corresponding to US-
AGE. Thus, we try to solve possible issues asso-
ciated with the imbalanced dataset.

Classes Instances
COMPARE 190
MODEL-FEATURE 326
PART WHOLE 234
RESULT 72
TOPIC 18
USAGE 483
None 17887
Total 19210

Table 2: Number of instances in the dataset.

3 Method

In this section, we present a CNN model to detect
and classify relationships between scientific con-
cepts. Figure 1 shows the whole process from its
input, which is a sentence with blinded entities,
until the output, which is the classification of the
instance into one of the relation types defined by
the task.

3.1 Word table layer

Firstly, we determined n as the maximum sentence
length in the training dataset. Those sentences
with lengths shorter than n are padded with an
auxiliary token ”0”. After that, we assigned a ran-
domly initialized vector for each different word,
creating thus a word embedding matrix: We ∈
R|V |×me where V is the vocabulary size and me

is the word embedding dimension. Finally, we ob-
tained a matrix x = [x1;x2; ...;xn] for each in-
stance where the words are represented by their
corresponding word embedding vectors.

In addition, we used the word position em-
bedding described in (Zeng et al., 2014), which

794

Position
embeddings

POS
embeddings

We

on

mPOS

Wd2Wd1

Position
embeddingsWord embeddings

Convolutional layer Pooling
layer

Softmax layer
with dropout

Look-up table layer

The <e1>classification accuracy</e1> of the method is evaluated on <e2>spoken language system domains</e2>

Preprocessing

me

md md

entity2

…

the
entity1

of
the

method
is

evaluated

0

0
0

w

n-w+1 m

|V| 2n-1

n

X
S

z

Ws

k

o

WPOS

|P|

0

the entity1 of the method is evaluated on entity2
DT NN DT NNIN NNINVBZ VBNPOS:

Sentence:

distance1:
distance2:

-1 0 2 31 764 5
-8 -7 -5 -4-6 0-1-3 -2

Figure 1: CNN model for the semantic relation classification in scientific papers of SemEval-2018 Task 7.

maps the distances of each word with respect to
the two candidate entities into a real value vec-
tor using two position embedding matrices Wd1 ∈
R(2n−1)×md and Wd2 ∈ R(2n−1)×md where md is
the position embedding dimension. Moreover, we
extracted the Part-of-Speech (POS) feature of each
word (entities are marked as common nouns) and
create a POS embedding matrix as (Zhao et al.,
2016) WPOS ∈ R|P |×mPOS where P is the POS
types vocabulary size and mPOS is the POS em-
bedding dimension.

Finally, we created an input matrix X ∈
Rn×(me+mPOS+2md) which is represented by the
concatenation of the word embedding, the POS
embedding and the two position embeddings for
each word in the instance.

3.2 Convolutional layer
Once we obtained the input matrix, we applied the
convolutional operation with a context window of
size w to create higher level features. For each fil-
ter in f = [f1; f2; ...; fw], we created a score matrix
for the whole sentence as

si = g(

w∑

j=1

fjx
T
i+j−1 + b)

where b is a bias term and g is a non-linear func-
tion (such as tangent or sigmoid) of m number of
filters.

3.3 Pooling layer
We extracted the most relevant features of each
filter using the max function, which produces a
single value in each filter as zf = max{s} =
max{s1; s2; ...; sn−w+1}. Thus, we created a vec-
tor z = [z1, z2, ..., zm], whose dimension is the
total number of filters m representing the relation
instance. In the end, we concatenated the output
values of the different filters in this layer.

3.4 Softmax layer
In this layer, we performed a dropout to pre-
vent over-fitting obtaining a reduced vector zd ran-
domly dropping elements in z. After that, we fed
this vector into a fully connected softmax layer
with weights Ws ∈ Rm×k to compute the output
prediction values for the classification as

o = zdWs + d

where d is a bias term. At test time, the vector z of
a new instance is directly classified by the softmax
layer without a dropout.

3.5 Learning
We defined the CNN parameter set to be learned in
the training phase as θ = (We, WPOS , Wd1, Wd2,
Ws, Fm), where Fm are all of the m filters f. For
this purpose, we used the conditional probability

795

of a relation r obtained by the softmax operation
as

p(r|x, θ) = exp(or)∑k
l=1 exp(ol)

to minimize the cross-entropy function for all in-
stances (xi,yi) in the training set T as follows

J(θ) =
T∑

i=1

log p(yi|xi, θ)

In addition, we minimized the objective function
by using stochastic gradient descent over shuffled
mini-batches and the Adam update rule (Kingma
and Ba, 2014) to learn the parameters.

4 Results and Discussion

We define the CNN parameters for the experi-
ments using the values described in Table 3. The
number of epochs was fine-tuned in the validation
set using the stopping criteria.

Parameter Value
Maximal length in the dataset , n 152
Word embeddings dimension, Me 300
POS embeddings dimension, MPOS 10
Position embeddings dimension, Md 5
Filters for each window size, m 200
Filter sizes, w (3, 4, 5)
Dropout rate, p 50%
Mini-batch size 50
Non-linear function, g ReLU

Table 3: The CNN model parameters and their values
used for the results.

Our CNN system obtained an F1-score of
35.4% for the relation extraction task in which
only the detection of relation is taken into consid-
eration. The official results obtained for the rela-
tion classification task are showed in Table 4. Our
model reaches an F1-score in Macro-average of
18.5% with one step classifier, which means that
the extraction and classification are considered at
the same time. This performance was expected be-
cause we reached the similar results with a valida-
tion set created from the training set. Furthermore,
we correctly predicted 147 instances with correct
directionality over 367 (i.e. 40.05% in coverage).

The main problem is the high number of FP in
the majority of classes, which are the None in-
stances classified as a class. In some classes such
as PART WHOLE and USAGE we have also a high
number of FN compared to the total number of in-
stances. We consider that the main reason is that

the representation of the two directions of each re-
lation is very similar, only the position distances
and the target entity names are inverted, and the
CNN cannot distinguish between them.

Classes TP FP FN P R F1
COMPARE 8 116 11 6.45% 42.11% 11.19%
MODEL-FEATURE 36 185 37 16.29% 49.32% 24.49%
PART WHOLE 22 66 60 25% 26.83% 25.88%
RESULT 2 21 14 8.7% 12.5% 10.26%
TOPIC 0 0 3 0% 0% 0%
USAGE 41 96 133 29.93% 23.56% 26.37%
Micro-averaged - - - 18.38% 29.7% 22.71%
Macro-averaged - - - 14.39% 25.72% 18.46%

Table 4: Results over the dataset using a CNN model
measured by True Positives, False Positives, False Neg-
atives, Precision, Recall and F1-measure, respectively.

5 Conclusions and Future work

A CNN model is used for the Relation Classifica-
tion task of SemEval 2018 by UC3M-NII Team.
Moreover, we balanced the dataset using sampling
techniques, blinded the entities in the sentence and
aggregated position embedding and POS embed-
ding to the word embedding of each word to have
more representation of each instance. This archi-
tecture obtained an F1-score of 35.4% and 18.5%
for the relation extraction and classification task,
respectively.

As future work, we proposed to use a two steps
model to overcome the extraction of the rela-
tionships between two concepts and subsequently
classify them in the different semantic classes. In
addition, we also plan to rule out the reverse in-
stances of each class as None in order to avoid
having very similar representation with different
labels. We plan to tackle the directionality prob-
lem with post-processing rules after the classifica-
tion. Furthermore, we will train a CNN with dif-
ferent pre-trained word embedding models instead
of using a random initialization.

Funding

This work was supported by the Research Program
of the Ministry of Economy and Competitive-
ness - Government of Spain, (DeepEMR project
TIN2017-87548-C2-1-R) and the TEAM project
(Erasmus Mundus Action 2-Strand 2 Programme)
funded by the European Commission.

Acknowledgments

We would like to thank the members of the Aizawa
Laboratory and the HULAT research group for
their fruitful discussions which were held.

796

References
C.N. Dos Santos and M. Gatti. 2014. Deep convo-

lutional neural networks for sentiment analysis of
short texts. In Proceedings of the 25th International
Conference on Computational Linguistics, (COL-
ING 2014), Technical Papers, pages 69–78.

Kata Gábor, Davide Buscaldi, Anne-Kathrin Schu-
mann, Behrang QasemiZadeh, Haı̈fa Zargayouna,
and Thierry Charnois. 2018. Semeval-2018 Task
7: Semantic relation extraction and classification in
scientific papers. In Proceedings of International
Workshop on Semantic Evaluation (SemEval-2018),
New Orleans, LA, USA.

Y. Kim. 2014. Convolutional neural networks for sen-
tence classification. In Proceedings of the 2014
Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP), pages 1746–1751.

Diederik P. Kingma and Jimmy Ba. 2014. Adam:
A method for stochastic optimization. CoRR,
abs/1412.6980.

Thien Huu Nguyen and Ralph Grishman. 2015. Event
detection and domain adaptation with convolutional
neural networks. In ACL-IJCNLP 2015 - 53rd
Annual Meeting of the Association for Computa-
tional Linguistics and the 7th International Joint
Conference on Natural Language Processing of the
Asian Federation of Natural Language Processing,
Proceedings of the Conference, volume 2, pages
365–371. Association for Computational Linguistics
(ACL).

Peng Wang, Bo Xu, Jiaming Xu, Guanhua Tian,
Cheng-Lin Liu, and Hongwei Hao. 2016. Se-
mantic expansion using word embedding cluster-
ing and convolutional neural network for improving
short text classification. Neurocomputing, 174, Part
B:806 – 814.

Wei Wang, Xi Yang, Canqun Yang, Xiaowei Guo, Xi-
ang Zhang, and Chengkun Wu. 2017. Dependency-
based long short term memory network for drug-
drug interaction extraction. BMC Bioinformatics,
18(16):578.

Daojian Zeng, Kang Liu, Siwei Lai, Guangyou Zhou,
and Jun Zhao. 2014. Relation classification via con-
volutional deep neural network. In Proceedings
of the 25th International Conference on Computa-
tional Linguistics (COLING 2014), Technical Pa-
pers, pages 2335–2344, Dublin, Ireland. Dublin City
University and Association for Computational Lin-
guistics.

Zhehuan Zhao, Zhihao Yang, Ling Luo, Hongfei Lin,
and Jian Wang. 2016. Drug drug interaction extrac-
tion from biomedical literature using syntax convo-
lutional neural network. Bioinformatics.

797

Proceedings of the 12th International Workshop on Semantic Evaluation (SemEval-2018), pages 798–804
New Orleans, Louisiana, June 5–6, 2018. ©2018 Association for Computational Linguistics

MIT-MEDG at SemEval-2018 Task 7: Semantic Relation Classification
via Convolution Neural Network

Di Jin
MIT CSAIL

Cambridge, MA
jindi15@mit.edu

Franck Dernoncourt
Adobe Research

San Jose, CA
dernonco@adobe.com

Elena Sergeeva
MIT CSAIL

Cambridge, MA
elenaser@mit.edu

Matthew B. A. McDermott
MIT CSAIL

Cambridge, MA
mmd@mit.edu

Geeticka Chauhan
MIT CSAIL

Cambridge, MA
geeticka@mit.edu

Abstract

SemEval 2018 Task 7 tasked participants to
build a system to classify two entities within
a sentence into one of the 6 possible relation
types. We tested 3 classes of models: Linear
classifiers, Long Short-Term Memory (LSTM)
models, and Convolutional Neural Network
(CNN) models. Ultimately, the CNN model
class proved most performant, so we special-
ized to this model for our final submissions.

We improved performance beyond a vanilla
CNN by including a variant of negative sam-
pling, using custom word embeddings learned
over a corpus of ACL articles, training over
corpora of both tasks 1.1 and 1.2, using re-
versed feature, using part of context words
beyond the entity pairs and using ensem-
ble methods to improve our final predictions.
We also tested attention based pooling, up-
sampling, and data augmentation, but none
improved performance. Our model achieved
rank 6 out of 28 (macro-averaged F1-score:
72.7) in subtask 1.1, and rank 4 out of 20
(macro F1: 80.6) in subtask 1.2.

1 Introduction

SemEval 2018 Task 7 (Gbor et al., 2018) focuses
on relation classification and extraction on a cor-
pus of 350 scientific paper abstracts consisting of
1228 and 1248 annotated sentences for subtasks
1.1 and 1.2, respectively. There are six possible
relations: USAGE, RESULT, MODEL-FEATURE,
PART WHOLE, TOPIC, and COMPARE.

Given this data, our task is to take an exam-
ple sentence, as well as the left and right enti-
ties within that sentence, and an indicator as to
whether the relation is reversed, and predict the
relation type for that sentence. In subtasks 1.1
and 1.2, all presented sentences have a relation.

We submitted predictions based on a self-
ensembled convolutional neural network (CNN)
model trained with a negative sampling aug-
mented loss using ACL-specific embeddings as
input features. We achieved rank 6 out of 28
(macro-averaged F1-score: 72.7) in subtask 1.1,
and rank 4 out of 20 (macro F1 80.6) in sub-
task 1.2.

2 Related Work

Previous SemEval challenges have explored re-
lation identification and extraction. The 2010
SemEval Task 8 (Hendrickx et al., 2010) explored
classification of natural language relations, such
as CONTENT-CONTAINER or ENTITY-ORIGIN.
This challenge differs from ours in its generaliz-
ability; our relations are specific to ACL papers
(e.g. MODEL-FEATURE) whereas the 2010 rela-
tions are more general, and may necessitate more
common-sense knowledge than the 2018 relations.
The 2010 data has been extensively studied and
has offered significant opportunity for other re-
searchers to test their model. Rink and Harabagiu
(2010) produced a strong SVM/LR model to at-
tack this challenge. Several deep architectures
have also been proposed for this task, including
the work of Cai et al. (2016), which demonstrated
a novel approach merging ideas from recurrent
networks and convolutional networks based on
shortest dependency path (SDP). Xu et al. (2015a)
and Santos et al. (2015) both used convolutional
architectures along with negative sampling to pur-
sue this task. More recently, Wang et al. (2016)
used two levels of attention, one for input selec-
tion and the other for output pooling, to boost the
performance of their model to state of the art.

The 2017 SemEval Task 10 (Augenstein et al.,
2017) also featured relation extraction within

798

Model Acc. (%)
SVM 64.0± 5.3
LR 65.3± 4.3
DEEP RF 63.1± 4.1
LSTM 61.4± 5.5
CNN 66.3 ± 4.4

Table 1: Comparison of best performance of different
model types in our initial experimentation.

scientific publications. Here, however, there
were only 2 relation types, HYPONYM-OF and
SYNONYM-OF. One successful model on this
task utilized a convolutional network operating on
word, tag, position, and part-of-speech features
(Lee et al., 2017), and found that restricting net-
work focus to only the words between the req-
uisite entities offered a notable performance im-
provement.

3 Methods

3.1 Pre-processing
Data was tokenized using the SpaCy tokenizer1.
Part of speech (POS) tags were extracted using
SpaCy, while lemmas and hypernyms were ex-
tracted via WordNet (Miller et al., 1990), inspired
by Rink and Harabagiu (2010).

3.2 Initial Experiments
We tested several machine learning methods on
these data, including a logistic regression classifier
over tf-idf features extracted from words, lem-
mas, hypernyms, and POS. Additionally, we tested
deep random forests with multi-grain sequence
scanning over word embeddings sequences (Zhou
and Feng, 2017) and LSTM with attention (Zhou
et al., 2016) over both word/lemma/hypernym em-
beddings, character sequence embeddings, and
position indicators. Lastly, we tested a CNN
model over these data, using word/lemma embed-
dings, position embeddings, and a variant of neg-
ative sampling. After optimizing all model con-
figurations and doing preliminary hyperparame-
ter optimization via automatic grid search, early
comparisons between the differing model classes
yielded the results in Table 1. These results were
measured in accuracy over 15-fold cross valida-
tion on the 1.1 train set.

Given these initial results, we focused princi-
pally on the CNN model.

1https://github.com/explosion/spaCy

3.3 CNN Model Details

Figure 1 presents the architecture of the CNN
model. The model first takes the tokenized sen-
tence, as well as the targeted entities, and trans-
forms it to a sequence of continuous embedding
vectors (Subsection 3.3.1). Next, the model uses a
convolution layer to transform the embedded sen-
tence to a fixed-size representation of the whole
sentence (Subsection 3.3.2). Finally, it computes
the score for each relation class via a linear trans-
formation (Subsection 3.3.3). The overall system
is trained end-to-end via a cross entropy loss aug-
mented with a variant of negative sampling (Sub-
section 3.3.4).

3.3.1 Feature Embeddings
Given a sentence x =

[
x1, . . . , xn

]
, the tokens xi

are featurized into continuous embedding vectors
via concatenated word embeddings (ewi) and word
position embeddings (ewpi): ei = [ewi , ewpi].

Word Embeddings Word representations are
encoded by the column vector in the embedding
matrix Wword ∈ Rdw×|V |, where V is the vocab-
ulary of the dataset. Each column Wword

i ∈ Rdw

is the word embedding vector for the ith word in
the vocabulary. This matrix is trainable during the
optimization process and initialized by pre-trained
embedding vectors described in Section 3.4.

Word Position Embeddings (WPEs) In gen-
eral, the information needed to determine the sen-
tence’s relations mostly comes from the words
close to the two entities. In addition, some infor-
mation needs to be input into the model to indicate
which words are entities. We use the word’s rel-
ative position to either entity as a feature to fulfill
the above-mentioned two functions. For instance,
in the sentence “the probabilistic model used in
the alignment” shown in Figure 1, the relative dis-
tance of all the words to the left entity “probabilis-
tic model” is−1, 0, 0, 1, 2, 3, 4 and that to the right
entity “alignment” is −6,−5,−4,−3,−2,−1, 0.
Each relative distance is mapped into a vector of
dimension dwp, which is randomly initialized then
updated during training. Each word w has two
relative distances wp1 and wp2 with respect to
two entities entity1 and entity2, and each dis-
tance is mapped to corresponding embedding vec-
tor and the position embedding ewp of word w is
the concatenation of these two vectors: ewp =
[ewp1 , ewp2].

799

Figure 1: Illustration of CNN model architecture.

3.3.2 Sentence Representation

After featurization, a sentence x of length N
is represented as e = [e1, e2, ...eN]. We de-
note ei:i+j as the concatenation of featurized to-
kens: ei:i+j = [ei, ei+1, ..., ei+j]. A convolu-
tion operation involves a filter weight matrix W ∈
R(dw+2dwp)×k, which is applied to a window of k
words to produce a new feature ci, as represented
by:

ci = tanh(W · ei:i+k−1 + b),

where b ∈ R is a bias term. This filter is ap-
plied to each possible window of words in the sen-
tence e1:h, e2:h+1, ..., eN−h+1:N to produce a fea-
ture map vector c = [c1, c2, ..., cN−k+1]. We then
apply a max pooling operation to this feature map
to obtain the maximum value ĉ = max{c} as the
feature corresponding to this particular filter. This
is how we extract one feature by one filter. And the
model can use multiple filters with varying win-
dow sizes and filter parameters to produce multi-
ple features. We concatenate all the obtained fea-
tures to form the fixed size sentence representation
rx.

3.3.3 Inference Scoring

Given the vector representation rx of the sentence
x, class scores are computed via a linear transfor-

mation mediated by a trainable matrix W classes:

s(x) =W classesrx.

At prediction time, the relation class is inferred by
taking the index of maximum score.

3.3.4 Loss with Negative Sampling
After obtaining the score vector s(x) for the sen-
tence x, we use a loss function motivated by ideas
in negative sampling as follows. Let y be the cor-
rect label for sentence x, and I = Y \ {y} be the
set of all incorrect labels for x. Then, we compute
the loss:

L = log
(
1 + eγ(m

+−s(x)y)
)

+ log
(
1 + eγ(m

−+maxy′∈I(s(x)y′))
)
,

wherem+ andm− are margins, γ is the penalty
scale factor. Minimizing this loss function will
both increase the score of the correct label and de-
crease that of the wrong label. We used Adam op-
timizer (Kingma and Ba, 2014) to minimize the
loss function.

3.4 ACL Corpus Embeddings
We pretrained 50-dimensional word embeddings
on the ACL anthology corpus (Radev et al., 2013)
using word2vec (Mikolov et al., 2013a,b) (we

800

Symbol Name Value
dw Word Embed. Size 50
dwp Pos. Embed. Size 42
dc Convolution Units 900
k Convolution Kernel 2,3,4
m+ Correct Label Margin 2.2
m− Incorrect Label Margin 0.7
γ Penalty Scale Factor 3.1
λ Learning Rate 0.0008
β L2 Regularization 0.01
d Dropout Ratio 0.5

Table 2: CNN model final hyperparameters.

have also tried 100-dimensional word embeddings
pre-trained in the same way but it performed
worse in this small dataset). The corpus was
derived by downloading all ACL anthology ar-
ticles in PDF format, then converting them into
text via some imperfect optical character recog-
nition (OCR). The corpus contains 25,938 pa-
pers totaling 136,772,370 tokens, with 49,600
unique tokens. We used the following parameters
for word2vec: skip-gram model, maximum skip
length between words of 10, negative sampling
with 10 negative examples, discard words that ap-
pear less than 5 times, and 5 training iterations2.

4 Results

4.1 Model Tuning

We first optimized the CNN model hyperparame-
ters via random search with 90 samples; final hy-
perparameters are shown in Table 2.

Beyond traditional hyperparameter optimiza-
tion, a number of modifications with this model
incurred performance gains during our final stages
of experimentation, as determined by cross valida-
tion over either the 1.1 or 1.2 data. We detail the
types of these changes below, then show the per-
formance results obtained on the test set (not the
cross validation results which motivated their use
in our system) in Table 3.

Merged Training Sets Merging the 1.1 & 1.2
training datasets as a new training set had a
large impact on the macro F1 score of our
models. Both training datasets are relatively
small, containing only approximately 1200
examples. Merging the 1.1 and 1.2 training

2-cbow 0 -window 10 -negative 10 -hs 0 -sample 1e-3
-threads 15 -binary 0 -iter 5 -min-count 5 -size 50

sets helps equalize class imbalance and ex-
pand the dataset size, at the cost of introduc-
ing a biased distribution of relation types for
either class alone.

Reversal Indicator Features Each entity pair
was given the information whether the
relation of it is reversed or not. We added
this binary feature, which proved performant.

Custom ACL Embeddings Specializing our
word vector embeddings pre-training source
to an ACL-specific corpus (described in
section 3.4) offered notable gains.

Context words We explored using a context win-
dow of varying sizes around the entity-
enclosed text within the sentence. Our pre-
submission cross validation experiments sug-
gested a context window of ±50 words was
optimal, but post-submission evaluation on
the provided test set yielded better results
with a ±20 word window. Empirically,
the number of context words to be included
needs to be optimized on the specific dataset.

Ensembling We trained 50 copies of our net-
work, using different random initializations
and dev sets (for early stopping), then aver-
aged their scores for prediction. This reduced
variance of our predictions and improved per-
formance.

Besides the above successful strategies, we also
tested some settings that, in reality had a nega-
tive effect. We experimented with attention based
pooling as suggested by (Wang et al., 2016), but
it hurt performance in our cross validation ex-
periments so we discarded that mechanism. Ad-
ditionally, we also tried replacing the original
words with their corresponding lemmas—this in-
creased performance in our cross validation re-
sults, however, (post-submission evaluation re-
vealed) harmed our results on the SemEval test
set, where it yielded average macro-F1 scores of
71.48% and 77.01% for subtasks 1.1 and 1.2, re-
spectively, after 10 runs. The potential reason for
this degradation could be that the word embed-
dings are all trained on original words instead of
lemmas so the embeddings of lemmas cannot be
as well initialized as original words. Additionally,
we tried data augmentation (via synonym substitu-
tion), and up-sampling (via duplication to equalize

801

Condition 1.1 (%) 1.2 (%)
1.1 Train Set 49.0± 1.2 N/A
1.2 Train Set N/A 66.5± 3.2
Merged Train Sets 68.5± 3.8 74.4± 3.2
Reversed Feature 69.0± 1.2 78.0± 3.6
ACL Embeddings 71.7± 0.7 80.5± 1.5
Context Words 71.3± 1.0 82.5± 1.6
Ensemble 72.7 85.0

Table 3: CNN Improvements over a series of modifica-
tions. Each row includes the modifications of the previ-
ous rows. All numbers are macro-F1 scores on test set
after 10 runs in the form of {average}±{standard de-
viation} (the “Ensemble” row lacks deviation numbers
as it, being a variance reduction technique, does not
have the same sources of variation as the other models).
We report±20 context words here, which was found to
be optimal in post-submission experimentation, but our
submitted models used ±50 context words, which was
preferred under initial cross validation.

data size of each label), but all proved ineffective
at the cross validation level and were not included
in our final submission.

4.2 Submission Results
We entered 6 submissions in total, 3 for subtask
1.1, and 3 for subtask 1.2. Their final perfor-
mances are listed in Table 4. All the submissions
were based on the ensemble model listed in Ta-
ble 3 except that the lemmas were used instead of
original words and we used ±50 context words.
The major difference between submissions was
the strategy for early stopping. Detailed settings
for each submission of subtask 1.1 are:

Submission 1 We randomly extracted 10% train-
ing data as validation set and made test set
predictions when the highest validation accu-
racy was reached.

Submission 2 We randomly extracted 10% train-
ing data as validation set with stratification
(stratification is based on the proportion of
labels in the train set) and made test set pre-
dictions when the highest validation accuracy
was reached.

Submission 3 No validation set was used. Test
set predictions were made at fixed number of
training epochs, chosen by cross validation
using training data.

Detailed settings for each submission of subtask
1.2 are:

Subtask Submission Macro-F1 (%)

1.1
1 71.5
2 72.3
3 72.7

1.2
1 80.6
2 76.4
3 79.8

Table 4: Final submission performance.

Submission 1 We randomly extracted 10% train-
ing data as validation set and made test set
predictions when the highest validation accu-
racy was reached.

Submission 2 No validation set was used. Test
set predictions were made at fixed number of
training epochs, chosen by cross validation
using training data.

Submission 3 Settings are the same as submis-
sion 2 except that we added the embeddings
of the two entities (max pooled) to the sen-
tence representation vector extracted by CNN
model as additional features prior to scoring
and inference.

In summary, early stopping made based on the
validation set accuracy does not guarantee better
test set performance than that using a fixed num-
ber of training epochs. Stratifying the label ratio
of validation set according to the training set does
help improve the test set performance. The benefit
of adding embeddings of entities as extra features
is not clear.

5 Future Work

Our custom ACL embeddings offered significant
performance boosts over embeddings pre-trained
on the corpus in the general domain such as
wikipedia, but the corpus we obtained for pre-
training is noisy due to the imperfect OCR. Clean-
ing up the input ACL dataset may result in bet-
ter embeddings, offering even larger performance
gains. Additionally, we could try restricting the
ACL dataset to only those papers published more
recently, in hopes to further specify the embedding
space to a relevant subset—of course, this would
also have reduced the embedding dataset size, so
it may have cost more than it gained and experi-
mentation would be warranted.

We also never explored any dependency tree-
based featurizations of our data, though those were

802

found to be helpful in prior works (Cai et al., 2016;
Xu et al., 2015b).

The class imbalance of the training dataset is
one of the greatest obstacles, where performance
of common classes is a lot better than the rare
classes. To tackle this problem, adversarial gener-
ative network (GAN) models (Goodfellow et al.,
2014) could be used for data augmentation so that
the data size of all labels can be equalized.

6 Conclusion

We tested linear classifiers, sequential random
forests, LSTM models, and CNN models on these
data. Within each model, we explored many vari-
ations, including two models of attention, nega-
tive sampling, entity embedding or sentence-only
embeddings, among others. The most performant
combination found was a CNN model trained over
ACL-specific embeddings and a negative sam-
pling augmented loss, without attention. We sub-
mitted self-ensembled predictions from this model
both with and without early stop–ultimately early
stop proved efficacious only on task 2. This model
achieved rank 6 out of 28 (macro F1 72.7) in sub-
task 1.1, and rank 4 out of 20 (macro F1 80.6) in
subtask 1.2.

Acknowledgements

This work was supported (in part) by fund-
ing grants U54-HG007963 from National Hu-
man Genome Research Institute (NHGRI) and
P50-MH106933 from National Institute of Mental
Health (NIMH).

References
Isabelle Augenstein, Mrinal Das, Sebastian Riedel,

Lakshmi Vikraman, and Andrew McCallum. 2017.
Semeval 2017 task 10: Scienceie - extracting
keyphrases and relations from scientific publica-
tions. CoRR, abs/1704.02853.

Rui Cai, Xiaodong Zhang, and Houfeng Wang. 2016.
Bidirectional recurrent convolutional neural network
for relation classification. In Proceedings of the
54th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), vol-
ume 1, pages 756–765.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza,
Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron
Courville, and Yoshua Bengio. 2014. Generative ad-
versarial nets. In Advances in neural information
processing systems, pages 2672–2680.

Kata Gbor, Davide Buscaldi, Anne-Kathrin Schu-
mann, Behrang QasemiZadeh, Hafa Zargayouna,
and Thierry Charnois. 2018. Semeval-2018 task 7:
Semantic relation extraction and classification in sci-
entific papers. In Proceedings of the 12th Interna-
tional Workshop on Semantic Evaluation (SemEval-
2018), New Orleans, LA, USA, June 2018.

Iris Hendrickx, Su Nam Kim, Zornitsa Kozareva,
Preslav Nakov, Diarmuid Ó Séaghdha, Sebastian
Padó, Marco Pennacchiotti, Lorenza Romano, and
Stan Szpakowicz. 2010. SemEval-2010 Task 8 :
Multi-Way Classification of Semantic Relations Be-
tween Pairs of Nominals. Computational Linguis-
tics, (June 2009):94–99.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Ji Young Lee, Franck Dernoncourt, and Peter
Szolovits. 2017. MIT at SemEval-2017 Task 10:
Relation Extraction with Convolutional Neural Net-
works.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jef-
frey Dean. 2013a. Efficient estimation of word
representations in vector space. arXiv preprint
arXiv:1301.3781.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013b. Distributed representa-
tions of words and phrases and their compositional-
ity. In Advances in neural information processing
systems, pages 3111–3119.

George A Miller, Richard Beckwith, Christiane Fell-
baum, Derek Gross, and Katherine J Miller.
1990. Introduction to wordnet: An on-line lexi-
cal database. International journal of lexicography,
3(4):235–244.

DragomirR. Radev, Pradeep Muthukrishnan, Vahed
Qazvinian, and Amjad Abu-Jbara. 2013. The ACL
anthology network corpus. Language Resources
and Evaluation, pages 1–26.

Bryan Rink and Sanda Harabagiu. 2010. UTD: Clas-
sifying Semantic Relations by Combining Lexical
and Semantic Resources. Proceedings of the 5th
International Workshop on Semantic Evaluation,
(July):256–259.

Cicero Nogueira dos Santos, Bing Xiang, and Bowen
Zhou. 2015. Classifying relations by ranking with
convolutional neural networks. arXiv preprint
arXiv:1504.06580.

Linlin Wang, Zhu Cao, Gerard de Melo, and Zhiyuan
Liu. 2016. Relation Classification via Multi-Level
Attention CNNs. In Proceedings of the 54th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers).

803

Kun Xu, Yansong Feng, Songfang Huang, and
Dongyan Zhao. 2015a. Semantic relation classifica-
tion via convolutional neural networks with simple
negative sampling. CoRR, abs/1506.07650.

Yan Xu, Lili Mou, Ge Li, Yunchuan Chen, Hao Peng,
and Zhi Jin. 2015b. Classifying relations via long
short term memory networks along shortest depen-
dency paths. In Proceedings of the 2015 Confer-
ence on Empirical Methods in Natural Language
Processing, pages 1785–1794.

Peng Zhou, Wei Shi, Jun Tian, Zhenyu Qi, Bingchen
Li, Hongwei Hao, and Bo Xu. 2016. Attention-
based bidirectional long short-term memory net-
works for relation classification. In Proceedings of
the 54th Annual Meeting of the Association for Com-
putational Linguistics (Volume 2: Short Papers),
volume 2, pages 207–212.

Zhi-Hua Zhou and Ji Feng. 2017. Deep forest: To-
wards an alternative to deep neural networks. arXiv
preprint arXiv:1702.08835.

804

Proceedings of the 12th International Workshop on Semantic Evaluation (SemEval-2018), pages 805–810
New Orleans, Louisiana, June 5–6, 2018. ©2018 Association for Computational Linguistics

SIRIUS-LTG-UiO at SemEval-2018 Task 7:
Convolutional Neural Networks with Shortest Dependency Paths for
Semantic Relation Extraction and Classification in Scientific Papers

Farhad Nooralahzadeh, Lilja Øvrelid, Jan Tore Lønning
Department of Informatics
University of Oslo, Norway

{farhadno,liljao,jtl}@ifi.uio.no

Abstract
This article presents the SIRIUS-LTG-UiO
system for the SemEval 2018 Task 7 on Se-
mantic Relation Extraction and Classification
in Scientific Papers. First we extract the short-
est dependency path (sdp) between two enti-
ties, then we introduce a convolutional neural
network (CNN) which takes the shortest de-
pendency path embeddings as input and per-
forms relation classification with differing ob-
jectives for each subtask of the shared task.
This approach achieved overall F1 scores of
76.7 and 83.2 for relation classification on
clean and noisy data, respectively. Further-
more, for combined relation extraction and
classification on clean data, it obtained F1
scores of 37.4 and 33.6 for each phase. Our
system ranks 3rd in all three sub-tasks of the
shared task.

1 Introduction

Relation extraction and classification can be de-
fined as follows: given a sentence where entities
are manually annotated, we aim to identify the
pairs of entities that are instances of the seman-
tic relations of interest and classify them based on
a pre-defined set of relation types. A range of dif-
ferent approaches have been applied to solve this
task in previous work. Conventional classification
approaches have made use of contextual, lexical
and syntactic features combined with richer lin-
guistic and background knowledge such as Word-
Net and FrameNet (Hendrickx et al., 2010; Rink
and Harabagiu, 2010).

Recently, the re-emergence of deep neural net-
works provides a way to develop highly auto-
matic features and representations to handle com-
plex interpretation tasks. These approaches have
yielded impressive results for many different NLP
tasks. The use of deep neural networks for re-
lation classification has been investigated in sev-
eral recent studies (Socher et al., 2012; Lin et al.,

2016; Zhou et al., 2016). Convolutional neural
networks (CNNs) have been effectively applied to
extract lexical and sentence level features for re-
lation classification (Zhang and Wang, 2015; Lee
et al., 2017; Nguyen and Grishman, 2015). How-
ever, these works consider whole sentences or the
context between two target entities as input for the
CNN. Such representations suffer from irrelevant
sub-sequences or clauses when target entities oc-
cur far from each other or there are other target
entities in the same sentence. To avoid negative
effects from irrelevant chunks or clauses and cap-
ture the relation between two entities, Xu et al.
(2015a); Liu et al. (2015) and Xu et al. (2015b)
employ a CNN to learn more robust and effec-
tive relation representations from the shortest de-
pendency path (sdp) between two entities. The
sdp between two entities in the dependency graph
captures a condensed representation of the infor-
mation required to assert a relationship between
two entities (Bunescu and Mooney, 2005). In this
work, we continue this line of work and present a
system based on a CNN architecture over shortest
dependency paths combined with domain-specific
word embeddings to extract and classify semantic
relations in scientific papers.

2 System description

In this section, we describe the various compo-
nents of our system.

Text pre-processing. For each relation instance
in the training data set, we assign a sentence that
contains the participant entities. Sentence and to-
ken boundaries are detected using the Stanford
CoreNLP tool (Manning et al., 2014). Since most
of the entities are multi-word units, in order to ob-
tain a precise dependency path between entities,
we replace the entities with their codes. The ex-
ample sentence in (1) below is thus transformed to

805

(2).

(1) Syntax-based statistical machine translation
(MT) aims at applying statistical models to
structured data .

(2) P05-1067.1 aims at applying P05-1067.2 to
P05-1067.3 .

Given an encoded sentence, we find the sdp con-
necting two target entities for each relation in-
stance using a syntactic parser, see below.

For syntactic parsing we employ the parser de-
scribed in Bohnet and Nivre (2012), a transition-
based parser which performs joint PoS-tagging
and parsing. We train the parser on the standard
training sections 02-21 of the Wall Street Jour-
nal (WSJ) portion of the Penn Treebank (Mar-
cus et al., 1993). The constituency-based tree-
bank is converted to dependencies using two dif-
ferent conversion tools: (i) the pennconverter soft-
ware1 (Johansson and Nugues, 2007), which pro-
duces the so-called CoNLL-style dependencies
employed in the CoNLL08 shared task on depen-
dency parsing (Surdeanu et al., 2008)2, and (ii) the
Stanford parser using the option to produce basic
Stanford dependencies (de Marneffe et al., 2014)3.
The parser achieves a labeled accuracy score of
91.23 when trained on the CoNLL08 represen-
tation and 91.31 for the Stanford basic model,
when evaluated against the standard evaluation set
(section 23) of the WSJ. We also experimented
with the pre-trained parsing model for English in-
cluded in the Stanford CoreNLP toolkit (Manning
et al., 2014), which outputs Universal Dependen-
cies. However, it was clearly outperformed by our
version of the Bohnet and Nivre (2012) parser in
the initial development experiments.

Based on the dependency graphs output by the
parser, we extract the shortest dependency path
connecting two entities. The path records the di-
rection of arc traversal using left and right arrows
(i.e. ← and→) as well as the dependency relation
of the traversed arcs and the predicates involved,
following Xu et al. (2015a). The entity codes in
the final sdp are replaced with the corresponding
word tokens at the end of the pre-processing step.

1http://nlp.cs.lth.se/software/
treebank-converter/

2The pennconverter tool is run using the
rightBranching=false flag.

3The Stanford parser is run using the -basic flag to pro-
duce the basic version of Stanford dependencies.

For the sentence in (1) and the two entities statisti-
cal models and structured data we thus extract the
path in (3) below.

(3) statistical models ← OBJ ←
applying → DIR → to → PMOD
→ structured data

Label encoding. The classification sub-tasks
contain five asymmetric relations (USAGE,
RESULT, MODEL-FEATURE, PART WHOLE,
TOPIC) and one symmetric relation (COM-
PARE). The relation instance along with its
directionality are provided in both the training
and the test data sets. For these sub-tasks we
therefore use the same labels in our system. For
sub-task 2 which combines the extraction and
classification tasks, however, we construct an
extra set of relation types. First, we collect every
pair of entities within a single sentence that are
not included in the annotated relation set. To
minimize the noise, we retain only the entity
pairs which are not further away than 6 tokens.
From these entity pairs we generate negative
instances with the NONE class and extract the
corresponding sdp. Second, to preserve the
directionality in the asymmetric relations, we
add the ¬ symbol to the instances with reverse
directionality (e.g., USAGE(e1,e2,REVERSE)
becomes ¬USAGE(e1,e2)). The final label set for
sub-task 2 thus consists of 12 relations.

Word embeddings. In our system, two differ-
ent sets of pre-trained word embeddings are used
for initialization. One is the 300-d pre-trained em-
beddings provided by the NLPL repository 4(Fares
et al., 2017), trained on English Wikipedia data
with word2vec (Mikolov et al., 2013), here dubbed
wiki-w2v. In addition, we train a second set of
domain-specific embeddings on the ACL Anthol-
ogy corpus. We obtain the XML versions of
22,878 articles from ACL Anthology 5. After ex-
tracting the raw texts, for training of the 300-d
word embeddings (acl-w2v), we exploit the avail-
able word2vec (Mikolov et al., 2013) implementa-
tion gensim (Řehůřek and Sojka, 2010) for train-
ing.

Classification Model Our system is based on
a Convolutional Neural Network (CNN) architec-
ture similar to the one used for sentence classifica-
tion in Kim (2014). Figure 1 provides an overview

4http://vectors.nlpl.eu/repository/
5https://acl-arc.comp.nus.edu.sg/

806

Figure 1: Model architecture with two channels for an example shortest dependency path (CNN model
from Kim (2014)).

of the proposed model. It consists of 4 main layers
as follows:

Look-up Table and Embedding layer: In the
first step, the model takes a dependency path, as in
(3) as input and transforms it into a matrix repre-
sentation by looking up the pre-trained word em-
beddings.

Convolutional Layer: The next layer per-
forms convolutions with the ReLU activation to
the embedding layer using multiple filter sizes (fil-
ter sizes ∈ [3, 4, 5]) and extracts feature maps over
the tokens.

Max pooling Layer: By applying the max op-
erator, the most effective local features are gener-
ated from each feature map.

Fully connected Layer: Finally, the higher
level syntactic features are fed to a fully connected
softmax layer which outputs the probability distri-
bution over each relation.

3 Experiments

Dataset For each sub-task, the training data in-
cludes abstracts of papers from the ACL Anthol-
ogy corpus with pre-annotated entities. For sub-
task 1.1 and 2, the training datasets are the same.
It contains entities that are manually annotated and
they represent domain concepts specific to Natu-
ral Language Processing (NLP). In sub-task 1.2
the entities are automatically assigned and there-
fore contain a fair amount of noise (verbs, irrele-
vant words). The terms include high-level terms
(e.g. ”algorithm”, ”paper”, ”method”) and are not
always full NPs (Gábor et al., 2018). Since the
related entity pairs and the relation types are pro-
vided for the full dataset, we extend the dataset for
sub-task 1.1 and 2 by extracting the related entities
and their corresponding sdp from the sub-task 1.2

Subtask Reverse

Relation 1.1 & 2 1.2 False True Total

USAGE 483 464 615 332 947
MODEL-FEATURE 326 172 346 152 498
RESULT 72 121 135 58 193
TOPIC 18 240 235 23 258
PART WHOLE 233 192 273 152 425
COMPARE 95 41 136 - 136
NONE 2315 - 2315 - 2315

Table 1: Number of instances for each relation in
the final dataset.

dataset. In order to train a model for sub-task 2, we
also augment the dataset by extracting NONE re-
lation instances (see Section 2), extracted from the
corresponding dataset. Table 1 shows the number
of instances for each relation class. As we can see,
the class distribution is clearly unbalanced.

Model settings We keep the value of hyperpa-
rameters equal to the ones that are reported in the
original work (Kim, 2014), i.e., 128 filters for each
window size, a dropout rate of ρ = 0.5 and l2
regularization of 3. To deal with the effects of
class imbalance, we weight the cost by the ratio
of class instances, thus each observation receives
a weight, depending on the class it belongs to. The
effect of the minority class observations is thereby
increased simply by a higher weight of these in-
stances and is decreased for majority class obser-
vations. Furthermore, to guarantee that each fold
in n-fold cross validation will have the proportion
of same classes during training, evaluation and
test, we apply the stratification technique proposed
by Sechidis et al. (2011). We use the validation set
to detect when overfitting starts during the train-
ing of our model; using early stopping, training is

807

F1

Sub-task Model Representation Ext. Class.

1.1
cnn.multi.acl-w2v.rand Stanford Basic

- 74.16
1.2 - 77.70
2 cnn.acl-w2v CoNLL08 74.26 60.31

Table 2: F1 (macro-average) scores for selected configurations during training.

then stopped before convergence to avoid overfit-
ting (Prechelt, 1998). The official evaluation met-
ric is the macro-averaged F1-score, therefore we
implement early-stopping (patience= 20) based on
macro-F1 score in the development set.

Model variants We run experiments with
several variants of the model as follows:
cnn.rand: A baseline model, where all
elements in the embedding layer are randomly
initialized and updated in the training process.
cnn.wiki-w2v: The embedding layer is
initialized with the pre-trained Wikipeida word
embeddings and fine-tuned for the target task.
cnn.acl-w2v: The embedding layer is ini-
tialized with the pre-trained ACL Anthology
word embeddings and fine-tuned for the target
task. cnn.multi.rand: There are two
embedding layers as a ’channel’ in the CNN
architecture. Both channels are initialized
randomly and only one of them is updated
during training while the other remains static.
cnn.multi.wiki-w2v: Same as before, but
the channels are initialized with Wikipedia em-
bedding vectors. cnn.multi.acl-w2v: The
two channels are initialized with ACL embedding
vectors. cnn.multi.wiki-w2v.rand:
First channel is initialized with Wikipedia
embeddings in static mode and the second
initialized randomly with a non-static mode.
cnn.multi.acl-w2v.rand: Same as pre-
vious setting, but the first channel makes use of
ACL embeddings.

Results During development, we investigate the
performance of different configurations; different
dependency representations (CoNLL08 and Stan-
ford basic) and model variants (see above); by run-
ning 5-fold cross validation (i.e. 3 folds for train-
ing, 1 fold for evaluation and 1 fold for test). The
experiments show that, the multi-channel mode
performs better only in the classification sub-tasks
compared to the single channel setting. The re-
sults suggest that having a significant amount of

instances per relation assists the model to clas-
sify better. The use of the pre-trained embed-
dings helps the model in class assignment. Partic-
ularly, the domain-specific embeddings (i.e. acl-
w2v) provide higher performance gains when used
in the model. Table 2 presents the F1-score of
the best performing model for each sub-task via
5-fold cross validation on the training data. In the
evaluation period, we re-run 5-fold cross valida-
tion using selected model for each sub-task. How-
ever, in this setting we use 4 folds as training and
1 fold as development set, and we apply the output
model to the evaluation dataset. We select the 1st
and 2nd best performing models on the develop-
ment datasets as well as the majority vote (mv) of
5 models for the final submission. The final results
are shown in Table 3.

1st 2nd mv

Sub-task Ext. Class. Ext. Class. Ext. Class.

1.1 - 72.1 - 74.7 - 76.7
1.2 - 83.2 - 82.9 - 80.1
2 37.4 33.6 36.5 28.8 35.6 28.3

Table 3: Official evaluation results of the submitted
runs on the test set.

4 Conclusion

We present a CNN model over shortest depen-
dency paths between entity pairs for relation ex-
traction and classification. We examine various
architectures for the proposed model. The exper-
iments demonstrate the effectiveness of domain-
specific word embeddings for all sub-tasks as well
as sensitivity to the specific dependency represen-
tation employed in the input layer. Our future
work includes: 1) to perform error analysis for the
different sub-tasks, and 2) to investigate the effects
of different dependency representations in relation
extraction and classification.

808

References
Bernd Bohnet and Joakim Nivre. 2012. A transition-

based system for joint part-of-speech tagging and
labeled non-projective dependency parsing. In Pro-
ceedings of EMNLP, pages 1455–1465, Jeju Island,
Korea. ACL.

Razvan C. Bunescu and Raymond J. Mooney. 2005.
A shortest path dependency kernel for relation ex-
traction. In Proceedings of the Conference on Hu-
man Language Technology and Empirical Methods
in Natural Language Processing, HLT ’05, pages
724–731, Stroudsburg, PA, USA. Association for
Computational Linguistics.

Murhaf Fares, Andrey Kutuzov, Stephan Oepen, and
Erik Velldal. 2017. Word vectors, reuse, and replica-
bility: Towards a community repository of large-text
resources. In Proceedings of the 21st Nordic Con-
ference on Computational Linguistics, NoDaLiDa,
22-24 May 2017, Gothenburg, Sweden, 131, pages
271–276. Linköping University Electronic Press,
Linköpings universitet.

Kata Gábor, Davide Buscaldi, Anne-Kathrin Schu-
mann, Behrang QasemiZadeh, Haı̈fa Zargayouna,
and Thierry Charnois. 2018. Semeval-2018 Task
7: Semantic relation extraction and classification in
scientific papers. In Proceedings of International
Workshop on Semantic Evaluation (SemEval-2018),
New Orleans, LA, USA.

Iris Hendrickx, Su Nam Kim, Zornitsa Kozareva,
Preslav Nakov, Diarmuid Ó. Séaghdha, Sebastian
Padó, Marco Pennacchiotti, Lorenza Romano, and
Stan Szpakowicz. 2010. Semeval-2010 task 8:
Multi-way classification of semantic relations be-
tween pairs of nominals. In Proceedings of the
5th International Workshop on Semantic Evaluation,
pages 33–38. Association for Computational Lin-
guistics.

Richard Johansson and Pierre Nugues. 2007. Ex-
tended constituent-to-dependency conversion for en-
glish. In NODALIDA 2007 Proceedings, pages 105–
112. University of Tartu.

Yoon Kim. 2014. Convolutional neural networks for
sentence classification. In Proceedings of the 2014
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 1746–1751. Association
for Computational Linguistics.

Ji Young Lee, Franck Dernoncourt, and Peter
Szolovits. 2017. MIT at semeval-2017 task 10:
Relation extraction with convolutional neural net-
works. CoRR, abs/1704.01523.

Yankai Lin, Shiqi Shen, Zhiyuan Liu, Huanbo Luan,
and Maosong Sun. 2016. Neural relation extraction
with selective attention over instances. In Proceed-
ings of the 54th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Pa-
pers), pages 2124–2133. Association for Computa-
tional Linguistics.

Yang Liu, Furu Wei, Sujian Li, Heng Ji, Ming Zhou,
and Houfeng Wang. 2015. A dependency-based
neural network for relation classification. CoRR,
abs/1507.04646.

Christopher D. Manning, Mihai Surdeanu, John Bauer,
Jenny Finkel, Steven J. Bethard, and David Mc-
Closky. 2014. The Stanford CoreNLP natural lan-
guage processing toolkit. In Association for Compu-
tational Linguistics (ACL) System Demonstrations,
pages 55–60.

Mitchell Marcus, Beatrice Santorini, and Mary Ann
Marcinkiewicz. 1993. Building a large annotated
corpora of English. The Penn Treebank. Journal of
Computational Linguistics, 19:313–330.

Marie-Catherine de Marneffe, Timothy Dozat, Na-
talia Silveira, Katri Haverinen, Filip Ginter, Joakim
Nivre, and Christopher D. Manning. 2014. Univer-
sal Stanford dependencies. A cross-linguistic typol-
ogy. In International Conference on Language Re-
sources and Evaluation, pages 4585–4592, Reyk-
javik, Iceland.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey
Dean. 2013. Efficient estimation of word represen-
tations in vector space. CoRR, abs/1301.3781.

Thien Huu Nguyen and Ralph Grishman. 2015. Rela-
tion extraction: Perspective from convolutional neu-
ral networks. In Proceedings of the 1st Workshop
on Vector Space Modeling for Natural Language
Processing, pages 39–48. Association for Compu-
tational Linguistics.

Lutz Prechelt. 1998. Early stopping-but when? In
Neural Networks: Tricks of the Trade, This Book is
an Outgrowth of a 1996 NIPS Workshop, pages 55–
69, London, UK, UK. Springer-Verlag.

Radim Řehůřek and Petr Sojka. 2010. Software Frame-
work for Topic Modelling with Large Corpora. In
Proceedings of the LREC 2010 Workshop on New
Challenges for NLP Frameworks, pages 45–50, Val-
letta, Malta. ELRA.

Bryan Rink and Sanda Harabagiu. 2010. Utd: Clas-
sifying semantic relations by combining lexical and
semantic resources. In Proceedings of the 5th In-
ternational Workshop on Semantic Evaluation, Se-
mEval ’10, pages 256–259, Stroudsburg, PA, USA.
Association for Computational Linguistics.

Konstantinos Sechidis, Grigorios Tsoumakas, and
Ioannis Vlahavas. 2011. On the stratification of
multi-label data. In Proceedings of the 2011 Euro-
pean Conference on Machine Learning and Knowl-
edge Discovery in Databases - Volume Part III,
ECML PKDD’11, pages 145–158, Berlin, Heidel-
berg. Springer-Verlag.

Richard Socher, Brody Huval, Christopher D. Man-
ning, and Andrew Y. Ng. 2012. Semantic composi-
tionality through recursive matrix-vector spaces. In

809

Proceedings of the 2012 Joint Conference on Empir-
ical Methods in Natural Language Processing and
Computational Natural Language Learning, pages
1201–1211. Association for Computational Linguis-
tics.

Mihai Surdeanu, Richard Johansson, Adam Meyers,
Lluı́s Màrquez, and Joakim Nivre. 2008. The
CoNLL 2008 Shared Task on Joint Parsing of Syn-
tactic and Semantic Dependencies. In Proceedings
of the Conference on Natural Language Learning,
pages 159–177, Manchester, UK.

Kun Xu, Yansong Feng, Songfang Huang, and
Dongyan Zhao. 2015a. Semantic relation classifica-
tion via convolutional neural networks with simple
negative sampling. CoRR, abs/1506.07650.

Yan Xu, Lili Mou, Ge Li, Yunchuan Chen, Hao Peng,
and Zhi Jin. 2015b. Classifying relations via long
short term memory networks along shortest depen-
dency path. CoRR, abs/1508.03720.

Dongxu Zhang and Dong Wang. 2015. Relation clas-
sification via recurrent neural network. CoRR,
abs/1508.01006.

Peng Zhou, Wei Shi, Jun Tian, Zhenyu Qi, Bingchen
Li, Hongwei Hao, and Bo Xu. 2016. Attention-
based bidirectional long short-term memory net-
works for relation classification. In Proceedings
of the 54th Annual Meeting of the Association for
Computational Linguistics. Association for Compu-
tational Linguistics.

810

Proceedings of the 12th International Workshop on Semantic Evaluation (SemEval-2018), pages 811–815
New Orleans, Louisiana, June 5–6, 2018. ©2018 Association for Computational Linguistics

IRCMS at SemEval-2018 Task 7 : Evaluating a basic CNN Method and
Traditional Pipeline Method for Relation Classification

Zhongbo Yin, Zhunchen Luo, Wei Luo∗, Bin Mao, Changhai Tian, Yuming Ye, Shuai Wu
Information Research Center of Military Science, PLA Academy of Military Science, China
zhongboyin@foxmail.com; {zhunchenluo,lwowen79}@gmail.com;
{miscy210,jamestch,yuming ye}@163.com; wus1986@gmail.com

Abstract

This paper presents our participation for sub-
task1 (1.1 and 1.2) in SemEval 2018 task 7:
Semantic Relation Extraction and Classifica-
tion in Scientific Papers (Gábor et al., 2018).
We experimented on this task with two meth-
ods: CNN method and traditional pipeline
method. We use the context between two en-
tities (included) as input information for both
methods, which extremely reduce the noise
effect. For the CNN method, we construct
a simple convolution neural network to auto-
matically learn features from raw texts with-
out any manual processing. Moreover, we use
the softmax function to classify the entity pair
into a specific relation category. For the tradi-
tional pipeline method, we use the Hackabout
method as a representation which is described
in section3.5. The CNN method’s result is
much better than traditional pipeline method
(49.1% vs. 42.3% and 71.1% vs. 54.6%).

1 Introduction

Scientific paper, as a major source of new tech-
nology, is a common way for tracing the dynam-
ics of a research domain. With lots of papers
published every year, scholars can’t read all of
them to extract useful aspects for our research do-
main. Information extraction (IE) is a main NLP
aspects for analyzing scientific papers, which in-
cludes named entity recognition (NER) and rela-
tion extraction (RE). Scientific papers’ informa-
tion extraction is identify concepts or semantic re-
lation between these concepts. This paper focuses
on the relation classification between relative con-
cepts in scientific paper.

Relation classification is one of the most impor-
tant topics for analyzing scientific papers. Most
of the traditional relation classification methods

∗Corresponding author

are influenced by the handcrafted features or ex-
tra NLP tools to derive lexical features (Surdeanu
et al., 2012; Kozareva, 2012). However, these
methods are time consuming and there is a prob-
lem of error propagation. Additionally, the tra-
ditional semantic textual similarity measuring ap-
proaches are using a large number of pairwise sim-
ilarity features to represent the text. It is difficult
for these features to represent the syntactic infor-
mation.

To address these problems, DNN methods have
been proposed and made remarkable achievement
(Qin et al., 2016a; Guo et al., 2016). This paper
is based on the work of (Qin et al., 2016b) which
uses a CNN architecture to control feature learn-
ing automatically. As a result, Qin et al. (2016b)
minimize the application of external toolkits and
resources, which is used for part of speech (POS)
or other basic pretreatment. Additionally, Zeng
et al. (2014) proposes position feature to locate
the entity pair, so as to highlight its promotion for
the semantic relation. Owing to this position fea-
ture is mapped to several (e.g. 5) dimension fol-
lowed each word’s vector (e.g. 100 dimension),
which represents the relative distances of current
word to first and second entity. This position fea-
ture will disappear because of the excessive train-
ing times or error propagation during the training
procedure. Thus we use the Qin et al. (2016b)’s
entity tag features to strengthen the entity pair in-
formation, which use the tag words (〈e1s〉 ,〈e1e〉
,〈e2s〉 ,〈e2e〉) to represent start and end position
features of entities. What’s more, these tag fea-
tures are represented as independent vector so as
to avoid position feature’s disappeared defect in
Zeng et al. (2014).

As far as we know, most of the pervious DNN
methods used entire sentence’s words embedding
as the input information for DNN to extracting fea-
tures for relation classification such as (Xu et al.,

811

Figure 1: The architecture of CNN

2015; Liu et al., 2015). However, our goal is to
achieve relation classification instead of sentence
classification. Even though we use the position
feature or entity tag feature to highlight the entity
effect, it still suffers from that the long sentences
have lots of noise words which is useless for rela-
tion classification. In pervious working, Qin et al.
(2016b) just use the context between two entities,
which got a remarkable performance promotion.
Thus, we use Qin et al. (2016b)’s context scope as
our CNN’s input information.

The contributions of this paper can be sum-
marized as follows: Firstly, we construct a sim-
ple convolution neural network architecture for
relation classification without sophisticated NLP
preprocessing. Secondly, we use a more effec-
tive context input for convolution neural network,
which extremely reduce the useless context’s noise
effect. Then, we use entity tag feature to replace
the entity position feature. Finally, we conduct ex-
periments on subtasks 1.1 and 1.2 datasets, and
the experiment results reveal that the proposed ap-
proaches is helpful to improve the performance.

2 Methodology

Our relation classification architecture is depicted
as Figure 1. First, we select the scope of context

words and convert them to word embeddings. In
the word representation step, the entity tag feature
(〈e1s〉, 〈e1e〉, 〈e2s〉, 〈e2e〉) will also be encoded
into embeddings. Then, all the embeddings will
be transmitted to three convolution network whose
kernel size is 3, 4 and 5. Finally, these three con-
volution outputs are pooled into the same dimen-
sional vector which will be concatenated as a input
of a softmax classifier.

2.1 Context Scope for Convolution Neural
Network

Most of the existing DNN relation classification
methods use entire sentence’s words embedding
as context information. As the following sen-
tence, the entity bag-of-words method and segment
order-sensitive methods have a Compare relation.
However, the sub sentence Further, in their opti-
mum configuration and in terms of retrieval ac-
curacy, but much faster have little relevance to
the target relation category. However, the sub sen-
tence 〈e1s〉 bag-of-words method 〈e1e〉 are equiv-
alent to 〈e2s〉 segment order-sensitive methods
〈e2e〉 have more relevant information to the tar-
get relation. As a result, we extract the context
between two entities for relation classification. As
for the no-words between entities’ condition, only
two entities’ names have been extracted.

Further, in their optimum configuration,
〈e1s〉 bag-of-words method 〈e1e〉 are equivalent
to 〈e2s〉 segment order-sensitive methods 〈e2e〉 in
terms of retrieval accuracy, but much faster.

2.2 Convolution Neural Network
Architecture

As the Convolution part in Figure 1, the input em-
bedding is delivered to three convolution neural
networks whose kernel size is 3, 4 and 5 respec-
tively. It means that all the 3-grams, 4-grams and
5-grams features will be considered. Since each
input sentence has a different length, the convolu-
tion output will be pooled into the same dimen-
sional vector space. Finally, we use the multi-
class classifier softmax to classify the relation into
a specific category.

3 Experiment

3.1 Dataset

We use the SemEval-2018 Task 7.1.1 & 7.1.2
datasets Gábor et al. (2018) in experiment, which
is in computational linguistic domain. This task

812

Embedding dim Batch size Dropout Learning rate Filter num Epoch num Activation
300 30 0.5 1e-4 100 30 Softmax

Table 1: CNN Parameters

Description
Macro-F1

sub1.1 sub1.2
CNN input: all words in the sentence (scope1) 47.2 67.8

+ Zeng et al. (2014)’s position feature 47.5 67.9
+Qin et al. (2016b)’s position feature 48.1 69.1

CNN input: entity pair and words between them (scope2) 48.2 68.9
+ Zeng et al. (2014)’s position feature 48.6 69.6
+Qin et al. (2016b)’s position feature 49.1 71.1

rules filtering before CNN 48.1 69.6
traditional pipeline method 42.3 54.6

Table 2: Experiment Results

addresses 6 semantic relation categories (5 re-
lationships with bi-directions and an undirected
Compare class) in scientific papers. We use
datasets of subtasks 1.1 and 1.2 that contain ti-
tles and abstracts of papers in computational lin-
guistic domain where entity mentions are either
manually annotated (Subtask 1.1) or automatically
annotated (Subtask 1.2). The relations are man-
ually annotated and belong to 6 semantic rela-
tion categories (5 relationships with bi-directions
and an undirected Compare class). There are
1228/1248 training examples and 355/255 test-
ing examples in dataset 1.1/1.2. These relation
instances are classified into one of the follow-
ing relations: USAGE, RESULT, MODEL, PART-
WHOLE, TOPIC, COMPARISON. The official
evaluation metric is macro-F1 score.

3.2 Parameter Settings

The experiment settings are listed in Table 2.2,
we use the Wikipedia general English 300 di-
mensional embeddings which have 408 million
words1. After testing, we find the parameters in
the Table 2.2 achieve the most effective perfor-
mance. As there are lots of parameters in CNN,
we list some primary data in Table 2.2. For more
detailed, we will share the whole project in our
Github2.

1https://www.cs.york.ac.uk/nlp/extvec/wiki extvec.gz
2https://github.com/zhongboyin/SemEval2018 task7

Rule Category
”than” between entity pair Compare
”used” between entity pair Usage
”propose” between entity pair Topic
”contain” between entity pair Part-Whole
”precision” in entity name Result
”model” in entity name Model-Feature

Table 3: Filtering Rules.

3.3 Effect of Position Feature

As described in previous sections, position feature
is helpful to promote the classification’s perfor-
mance. Moreover, results in table 2.2 (first 3 lines
or 4th to 6th lines) proved that Qin et al. (2016b)’s
position features have a better performance than
Zeng et al. (2014)’s features.

3.4 Effect of New Context Scope

By comparing 1st and 4th lines’ result, we could
conclude that the entity names and words between
them contain more accurate and cleaner semantic
relation information.

By analyzing the predicted relation of the two
experiments, we find that many wrong predicted
long sentence instances in entire scope (scope1)
experiment have been corrected in words between
entity pair scope (scope2) as Table 4.

3.5 Result of Rule-based Experiment

In our early research, we explored lots of heuristic
rules (as in Table 3.5) for each category by ob-

813

Sentence Scope Prediction True/False

We present an implementation of the model based on
finite-state models, demonstrate the 〈e1s〉 model’s 〈e1e〉
ability to significantly reduce 〈e2s〉 character and word
error rate 〈e2e〉, and provide evaluation results involving
extraction of translation.

scope1 Compare False

scope2 Result True

Table 4: Input Scope Experiment Result Analyzing.

serving the provided training set manually. How-
ever, most of sentences’ category couldn’t be de-
termined by these rules. Thus, we divided this
task into two-steps method. For the first step, we
use the heuristic rules to classify some sentences
into a specific category. Then, for the second step,
we use our CNN method to classify the remaining
sentence into a specific category. Before the test-
ing set published, the heuristic rules achieved re-
markable improvement in development set. On the
contrary, the heuristic rules’ filtering step drops
the performance in the testing set as the 7th line
result in Table 2. After analyzing the result, we
noticed that the rules are overfitting, since all of
them are explored by training set and promoted by
development set. As a result, it causes the decrease
of the final evolution performance in the testing
set.

3.6 Results of Comparison Experiment

To further prove the better performance of our
CNN’s relation classification method, we also
evaluated the same dataset using a more tradi-
tional NLP method which is based on the Multi-
nomial Naive Bayes Classifier3. First the data
from the training text file is extracted. The la-
bels are extracted and encoded using a LabelEn-
coder. All the words from e1 to e2 in a sentence
are considered for training the Multinomial Naive
Bayes classifier. These words are also lemma-
tized and stemmed for better prediction. How-
ever, traditional pipeline method not only excises
the error propagation problem, but also can’t de-
tect some complicated semantic information such
as hyponymy or synonymy. As a result, CNN
method has a better performance than traditional
method. The 8th line’s result in Table 2 shows that
our CNN method is better than the general NLP
processing method.

3https://github.com/shouryaj98/Hackabout-2017-Round-
1

4 Conclusion and Future Work

In this paper, we propose a new convolution neu-
ral network architecture for relation classification
in scientific paper. We showed that the words be-
tween entity pairs are the most important for re-
lation classification. Finally, our proposed method
gets the macro-f1 value of 49.1 for subtask 1.1 and
71.1 for subtask 1.2.

For the future work, we will explore more fea-
tures which are helpful for relation classification
such as entity type and preposition features. More-
over, we will explore a more flexible sub-sentence
scope as the context information for relation clas-
sification.

Acknowledgements

Firstly, we want to express gratitudes to the anony-
mous reviewers for their hard work and kind com-
ments, which will further improve our work in the
future. Additionally, this work was supported by
the National Natural Science Foundation of China
(No. 61602490).

References
Kata Gábor, Davide Buscaldi, Anne-Kathrin Schu-

mann, Behrang QasemiZadeh, Haı̈fa Zargayouna,
and Thierry Charnois. 2018. Semeval-2018 Task
7: Semantic relation extraction and classification in
scientific papers. In Proceedings of International
Workshop on Semantic Evaluation (SemEval-2018),
New Orleans, LA, USA.

Jiang Guo, Wanxiang Che, Haifeng Wang, Ting Liu,
and Jun Xu. 2016. A unified architecture for seman-
tic role labeling and relation classification. In Pro-
ceedings of COLING 2016, the 26th International
Conference on Computational Linguistics: Techni-
cal Papers, pages 1264–1274.

Zornitsa Kozareva. 2012. Cause-effect relation learn-
ing. In Workshop Proceedings of TextGraphs-7 on
Graph-based Methods for Natural Language Pro-
cessing, pages 39–43. Association for Computa-
tional Linguistics.

814

Yang Liu, Furu Wei, Sujian Li, Heng Ji, Ming Zhou,
and Houfeng Wang. 2015. A dependency-based
neural network for relation classification. arXiv
preprint arXiv:1507.04646.

Lianhui Qin, Zhisong Zhang, and Hai Zhao. 2016a. A
stacking gated neural architecture for implicit dis-
course relation classification. In Proceedings of the
2016 Conference on Empirical Methods in Natural
Language Processing, pages 2263–2270.

Pengda Qin, Weiran Xu, and Jun Guo. 2016b. An em-
pirical convolutional neural network approach for
semantic relation classification. Neurocomputing,
190:1–9.

Mihai Surdeanu, Julie Tibshirani, Ramesh Nallapati,
and Christopher D Manning. 2012. Multi-instance
multi-label learning for relation extraction. In Pro-
ceedings of the 2012 joint conference on empirical
methods in natural language processing and compu-
tational natural language learning, pages 455–465.
Association for Computational Linguistics.

Kun Xu, Yansong Feng, Songfang Huang, and
Dongyan Zhao. 2015. Semantic relation clas-
sification via convolutional neural networks
with simple negative sampling. arXiv preprint
arXiv:1506.07650.

Daojian Zeng, Kang Liu, Siwei Lai, Guangyou Zhou,
and Jun Zhao. 2014. Relation classification via con-
volutional deep neural network. In Proceedings of
COLING 2014, the 25th International Conference
on Computational Linguistics: Technical Papers,
pages 2335–2344.

815

Proceedings of the 12th International Workshop on Semantic Evaluation (SemEval-2018), pages 816–820
New Orleans, Louisiana, June 5–6, 2018. ©2018 Association for Computational Linguistics

Bf3R at SemEval-2018 Task 7: Evaluating Two Relation Extraction Tools
for Finding Semantic Relations in Biomedical Abstracts

Mariana Neves1, Daniel Butzke1, Gilbert Schönfelder1,2, Barbara Grune1
1 German Federal Institute for Risk Assessment (BfR)

Diedersdorfer Weg 1, 12277, Berlin, Germany
2 Charité - Universitätsmedizin Berlin, Institute of Clinical Pharmacology and Toxicology,

Charitéplatz 1, 10117 Berlin, Germany
mariana.lara-neves@bfr.bund.de

Abstract

Automatic extraction of semantic relations
from text can support finding relevant infor-
mation from scientific publications. We de-
scribe our participation in Task 7 of SemEval-
2018 for which we experimented with two re-
lations extraction tools - jSRE and TEES -
for the extraction and classification of six re-
lation types. The results we obtained with
TEES were significantly superior than those
with jSRE (33.4% vs. 30.09% and 20.3% vs.
16%). Additionally, we utilized the model
trained with TEES for extracting semantic re-
lations from biomedical abstracts, for which
we present a preliminary evaluation.

1 Introduction

Finding relevant publications for a certain topic is
an important task daily carried out by most re-
searchers in various domains, such as computer
science or biomedicine. However, most informa-
tion retrieval methods usually consider only words
and terms (named entities) and do not usually
profit from semantic relationships between these
entities (Lu, 2011). Many approaches frequently
consider words and entities as bags of words but
do not take advantage from intrinsic properties of
scientific texts, such as subsections (e.g., introduc-
tion, methods, results), common concepts (e.g.,
task, material) and relations between these con-
cepts (e.g., model-feature, part-whole). However,
extracting semantic relations from scientific text
can potentially support finding relevant informa-
tion for a certain topic by focusing on particular
terms which participate in those relations. In ad-
dition, the relation type and the corresponding ar-
guments provide further information regarding the
role that a certain entity plays in the text.

We describe the experiments that we car-
ried out during our participation in Subtask

2 of SemEval-2018 Task 71 (Gábor et al.,
2018). The task consisted on the extraction of
six semantic relations from scientific abstracts,
namely: “USAGE”, “RESULT”, “MODEL”,
“PART WHOLE”, “TOPIC” and “COMPARI-
SON”. While the entities were given (and all be-
long to the general type “ENTITY”), participants
of subtask 2 were required to identify the rela-
tions and classify these into one of the six types.
All relations were asymmetrical (regarding their
direction), except for “COMPARISON”, and the
identification of the direction of the relations was
mandatory. The documents came from the ACL
Anthology2, thus belonged to the domain of com-
putational linguistic, and were derived from a
more comprehensive corpus which includes more
relations than the ones under evaluation in the
challenge (Gábor et al., 2016).

Our contribution in this work is two-fold: (a)
we experimented with two available relation ex-
traction (RE) tools in the context of the Subtask 2
of SemEval-2018 Task 7; and (b) we evaluated the
models trained on the task data for the extraction
of the relations mentioned above from biomedical
abstracts. In the next section, we present a short
overview of related work, followed by a detailed
description of our methods in section 3, the results
that we obtained both during the development and
official evaluation phases (section 4) and the dis-
cussion of our results and the preliminary experi-
ments with biomedical publications.

2 Related Work

Despite the importance of the task, few previous
work has focused on the identification of seman-
tic elements in publications. Document zoning is
probably the task that more attention received in

1https://competitions.codalab.org/
competitions/17422

2http://aclweb.org/anthology/

816

the last years and covered the identification of sec-
tions both in abstracts (Hirohata et al., 2008) and
full text (Liakata et al., 2012). A more comprehen-
sive study and comparison of different schemes for
zoning was carried out in (Guo et al., 2010).

Regarding automatic extraction of scientific re-
lations, many researchers have proposed various
scheme based on either (or both) concepts or rela-
tions. For instance, (Gupta and Manning, 2011)
proposed the annotation of the focus, technique
and domain in scientific publications. A more
comprehensive schema was proposed by (Tateisi
et al., 2016), who developed an ontology of se-
mantic structures in research articles. More re-
cently, the ScienceIE task in SemEval-2017 (Au-
genstein et al., 2017) proposed the automatic ex-
traction of both entities (Task, Process and Ma-
terial) and relations from scientific abstracts. Fi-
nally, (Gábor et al., 2016) recently proposed a
schema of about 20 relations, some of which are
considered in the challenge.

The current task focuses on relation extrac-
tion and classification, for which many approaches
have been proposed in the past years and for which
some tools are readily available, including the
ones we describe here. Similar to other natural
language processing (NLP) tasks, recent work has
shifted to the use of neural networks, as reported
in (Nguyen and Grishman, 2015) and (Sorokin
and Gurevych, 2017).

3 Methods

We evaluated the performance of two existing
tools for relation extraction, namely, jSRE (Giu-
liano et al., 2006) and TEES (Björne et al., 2012).
Both tools can be trained for any RE task, provided
that a corpus in the appropriate format is available.
The methods behind jSRE utilize kernel methods,
features derived from shallow linguistic informa-
tion and both global (sentence level) and local
(regarding the relations) contexts (Giuliano et al.,
2006). TEES trains support vector machines algo-
rithms using a variety of features derived from the
sentence, tokens and dependency chains (Björne
et al., 2012).

The workflow of our experiments is shown in
Figure 1. After parsing the corpus provided by
the organizers, we performed standard NLP pre-
processing, followed by preparing input files in the
appropriate format required by the two RE tools.
This included the generation of negative examples,

which are necessary for the jSRE tool. After train-
ing the models with each tool and classifying the
test documents, we merged predictions (only for
jSRE) and printed the predicted relations in the
format required by the challenge.

Corpus reader. The main corpus was provided
in two files: (a) one XML file which includes the
text and entities (all belonging to the general for-
mat “ENTITY”); and (b) one file in plain text for-
mat with the list of the positive relations and one
of the corresponding types listed above. For read-
ing the data, we utilized the BioC format (Comeau
et al., 2013). Our model also includes the identi-
fication of the direction of the relation (which is
necessary for the task).

Pre-processing. We processed all documents
using the Stanford CoreNLP library3 (Manning
et al., 2014), including sentence splitting, tok-
enization, part-of-speech (POS) tagging, chunk-
ing, constituency parsing and dependency parsing.
While jSRE is based on shallow parsing, TEES re-
lies on both dependency and constituency parsing.

Corpus preparation. We prepared the input
format required by each RE tool as specified in
their documentation. For jSRE, we generated
plain text files for each relation type. These
included the original tokens, lemma, POS tag-
ging, indicative of participation in the relation
(T or O, otherwise) and the relation category.
For multi-token entities, the corresponding to-
kens should be merged into one, e.g., “stor-
age media and networks” instead of the four in-
dividual tokens. The relation category were the
following: -1 (unknown), 1 (positive), (2 positive
reverse) and 0 (negative). For TEES, we gener-
ated a combined XML file which included com-
plete pre-processing analysis (sentences, tokens,
full parse tree, constituents and dependency pars-
ing), as well as entities and relations (including
their types). The indicative for the direction of the
relation is provided as an attribute.

Negative examples generation. We automati-
cally generated negative examples for jSRE. We
produced negative examples for each pair of enti-
ties following the following guidelines: (a) the en-
tities should belong to the same sentence (accord-
ing to the sentence splitting analysis); (b) just one

3https://stanfordnlp.github.io/
CoreNLP/

817

Figure 1: Workflow of the components in our approach. The components that we developed are displayed in blue.

training example (negative or positive) for each
pair (always in the order that these appear in the
sentence). We generated negatives examples also
for sentences which contain no positive example
at all. This step was not necessary for TEES, as
the tool includes it in its training procedure.

Relation extraction and classification. Pro-
vided the training and development files in the for-
mat required by each tool, we trained the system
according to their documentation. In the case of
jSRE, we build six models, one for each relation
type. Each model from jSRE calculates scores for
one of the categories: 1 (positive), 2 (positive re-
verse) and 0 (negative). We tried the three ker-
nels included in jSRE (LC - Local Context, GC -
Global Context and SL - Shallow Linguistic), and
we obtained best results with the later. In the case
of TEES, we only trained one model, which per-
forms the both the automatic extraction and clas-
sification into a category.

Predictions merger. This component is only
necessary for jSRE and it consisted on reading the
prediction for each of the categories (0, 1 or 2)
from each of the six models and choosing the one
that scored higher.

Output writer. We converted the output from
both tools to the output (submission) format re-
quired by the challenge. We also checked whether
a reverse relation was predicted for the “COM-
PARISON” type and avoided printing it, given that
this is a symmetrical relation.

4 Data and Results

The training set released by the organizers con-
sisted of 350 documents which we split in the

following datasets: 250 for training, 50 for tun-
ing (only for TEES) and 50 for development test.
The whole dataset contained the following dis-
tribution of relation types which appear in 342
(out of 350) documents: 483 for “USAGE”, 326
for “MODEL”, 234 for “PART WHOLE”, 95 for
“COMPARE”, 72 for “RESULT” and only 18 for
“TOPIC”. Our evaluation during the development
of the system (over the development test dataset)
is shown in Table 1. We did not obtain predictions
for the “TOPIC” from none of the RE tools, given
the low frequency of this relation in the training
set. Indeed, only three instances of this relation
type are present in the development set.

Regarding the official test set, the organizers re-
leased 152 documents for this aim. All our sub-
missions were based on models trained only on the
250 documents, i.e., we did not train models based
on the totality of the 350 documents. Our official
results for Subtask 2 is shown in Table 2.

5 Discussion

Relation extraction and classification. We
tried two available RE tools for extracting seman-
tic relations from scientific publications. TEES
performed significantly superior to jSRE and we
chose to use this tool for our further experiments
with biomedical publications (cf. below). How-
ever, the performance of TEES is rather low in
comparison to the best results in the challenge (cf.
Table 4). Finally, we did experiment with a simple
union of predictions generated by both tools, but
adding the predictions from jSRE only harmed the
performance of TEES (cf. Table 1).

With respect to both tools, we found TEES eas-
ier to use and run, also given our previous expe-
rience with it (Thomas et al., 2013). Addition-

818

Tool USAGE RESULT MODEL PART WHOLE COMPARISON TOPIC
TEES (t) 29.63% 38.10% 26.23% 26.32% 28.57% 0.00%
jSRE (j) 16.67% 12.50% 24.56% 6.67% 20.00% 0.00%
(t) + (j) 19.58% 28.57% 24.62% 20.00% 28.57% 0.00%

Table 1: Results for each category for the development set (50 documents).

Tool
Extraction Classification
D T D T

TEES (t) 44.69% 33.4% 25.45% 20.3%
jSRE (j) 22.32% 30.9% 15.03% 16.0%
(t) + (j) 37.63% - 20.88% -

Table 2: Results for Sub-task 2 of SemEval-2018 Task
7, for the extraction and classification tasks, for both
development (D) and official test (T) sets. The highest
F1 in the official test set were 50% and 49.3% for the
extraction and classification tasks, respectively.

ally, we found the input format from jSRE harder
to process. On the other hand, TEES requires
full parsing while jSRE is based on shallow pars-
ing. Finally, TEES is readily available for down-
load while we needed to contact the developers of
jSRE in order to get a copy of it and needed to
do some changes on the code in order to run it.
Changes on the code were also necessary in or-
der to obtain scores (probabilities) for the various
categories and thus, obtain the predicted relation
type. TEES, on the other hand, supports both rela-
tion extraction and classification by default.

Semantic relations in biomedical abstracts.
We experimented with the model trained on
TEES to extract the same semantic relations from
biomedical abstracts. Our aim was to evaluate
whether the predicted relations is part of either
the research goal or the methods in the publica-
tion. In particular, we were interested in assess-
ing whether the relations could potentially support
the automatic extraction of either an animal exper-
iment or an alternative method to animal experi-
ment (e.g., in vitro or in silico experiments) (Lieb-
sch et al., 2011). This information could later sup-
port the automatic identification of abstracts which
describe either of the two experiments (animal or
alternative to animal).

We processed a set of 161 abstracts retrieved
from PubMed4. We followed the same workflow
showed on Figure 1 only that we performed NER
on the abstracts using the Metamap tool (Aronson

4http://www.ncbi.nlm.nih.gov/pubmed/

and Lang, 2010). We used exactly the same model
(from TEES) that we used to predict relations for
the official test set of the challenge. We obtained a
total of 241 relations from 108 abstracts (out of a
total of 161). The number of relations detected for
each type were the following: 99 for “MODEL”,
87 for “USAGE”, 30 for “PART WHOLE”, 22 for
“RESULT”, two for “COMPARISON” and one
for “TOPIC”.

We manually checked 28 relations detected
from a sample of 13 abstracts. During these at-
tempts, the definitions of the semantic relations
as provided by the organizers gave much room
for individual interpretations by the evaluating re-
searcher. Being aware of this possible pitfall, how-
ever, we judged 9 out of 28 suggested relations as
correct.

6 Conclusions

During our participation in the SemEval-2018
Task 7, we experimented with two available rela-
tion extraction tools - jSRE and TEES. As future
work, we plan to run additional experiments with
the current tools, such as using the totality of the
training data as well as combination of the sys-
tems, as carried out in (Thomas et al., 2013). Ad-
ditionally, we plan to use additional tools, such as
ones based on neural networks (Nguyen and Gr-
ishman, 2015).

We applied the generated model from TEES for
extraction of semantic relations from biomedical
abstracts. Our manual evaluation of some of those
relations shows that these have the potential to
support the identification of the methods that are
part of the research goal. We now plan to run a
comprehensive evaluation based on a larger col-
lection of biomedical abstracts as well as a task-
specific assessment.

Acknowledgments

We would like to thank Jari Björne for support
with TEES, Alberto Lavelli for providing a copy
of jSRE and Roland Roller for fruitful discussions
on the generation of negative examples.

819

References
Alan R Aronson and Franois-Michel Lang. 2010. An

overview of metamap: historical perspective and re-
cent advances. Journal of the American Medical In-
formatics Association 17(3):229–236.

Isabelle Augenstein, Mrinal Das, Sebastian Riedel,
Lakshmi Vikraman, and Andrew McCallum. 2017.
Semeval 2017 Task 10: ScienceIE - Extracting
Keyphrases and Relations from Scientific Publica-
tions. In Proceedings of the 11th International
Workshop on Semantic Evaluation (SemEval-2017).
Association for Computational Linguistics, Vancou-
ver, Canada, pages 546–555.

Jari Björne, Filip Ginter, and Tapio Salakoski. 2012.
University of Turku in the Bionlp’11 Shared Task.
BMC Bioinformatics 13(11):S4.

Donald C. Comeau, Rezarta Islamaj Doan, Paolo Ci-
ccarese, Kevin Bretonnel Cohen, Martin Krallinger,
Florian Leitner, Zhiyong Lu, Yifan Peng, Fabio Ri-
naldi, Manabu Torii, Alfonso Valencia, Karin Ver-
spoor, Thomas C. Wiegers, Cathy H. Wu, and
W. John Wilbur. 2013. Bioc: a minimalist approach
to interoperability for biomedical text processing.
Database 2013:bat064.

Kata Gábor, Davide Buscaldi, Anne-Kathrin Schu-
mann, Behrang QasemiZadeh, Haı̈fa Zargayouna,
and Thierry Charnois. 2018. Semeval-2018 Task
7: Semantic relation extraction and classification in
scientific papers. In Proceedings of International
Workshop on Semantic Evaluation (SemEval-2018).
New Orleans, LA, USA.

Kata Gábor, Haifa Zargayouna, Davide Buscaldi, Is-
abelle Tellier, and Thierry Charnois. 2016. Seman-
tic annotation of the acl anthology corpus for the
automatic analysis of scientific literature. In Nico-
letta Calzolari (Conference Chair), Khalid Choukri,
Thierry Declerck, Sara Goggi, Marko Grobelnik,
Bente Maegaard, Joseph Mariani, Helene Mazo,
Asuncion Moreno, Jan Odijk, and Stelios Piperidis,
editors, Proceedings of the Tenth International Con-
ference on Language Resources and Evaluation
(LREC 2016). European Language Resources Asso-
ciation (ELRA), Paris, France.

Claudio Giuliano, Alberto Lavelli, and Lorenza Ro-
mano. 2006. Exploiting shallow linguistic informa-
tion for relation extraction from biomedical litera-
ture. In Proceedings of the 11th Conference of the
European Chapter of the Association for Computa-
tional Linguistics (EACL 2006). Trento, Italy.

Yufan Guo, Anna Korhonen, Maria Liakata,
Ilona Silins Karolinska, Lin Sun, and Ulla Ste-
nius. 2010. Identifying the information structure
of scientific abstracts: An investigation of three
different schemes. In Proceedings of the 2010
Workshop on Biomedical Natural Language Pro-
cessing. Association for Computational Linguistics,
Stroudsburg, PA, USA, BioNLP ’10, pages 99–107.

Sonal Gupta and Christopher D. Manning. 2011. An-
alyzing the dynamics of research by extracting key
aspects of scientific papers. In In Proceedings of
IJCNLP.

Kenji Hirohata, Naoaki Okazaki, Sophia Ananiadou,
and Mitsuru Ishizuka. 2008. Identifying sections in
scientific abstracts using conditional random fields.
In In Proc. of the IJCNLP 2008.

Maria Liakata, Shyamasree Saha, Simon Dobnik,
Colin Batchelor, and Dietrich Rebholz-Schuhmann.
2012. Automatic recognition of conceptualization
zones in scientific articles and two life science ap-
plications. Bioinformatics 28(7):991–1000.

Manfred Liebsch, Barbara Grune, Andrea Seiler,
Daniel Butzke, Michael Oelgeschläger, Ralph
Pirow, Sarah Adler, Christian Riebeling, and An-
dreas Luch. 2011. Alternatives to animal testing:
current status and future perspectives. Archives of
Toxicology 85(8):841–858.

Zhiyong Lu. 2011. Pubmed and beyond: a survey
of web tools for searching biomedical literature.
Database 2011:baq036.

Christopher D. Manning, Mihai Surdeanu, John Bauer,
Jenny Finkel, Steven J. Bethard, and David Mc-
Closky. 2014. The Stanford CoreNLP natural lan-
guage processing toolkit. In Association for Compu-
tational Linguistics (ACL) System Demonstrations.
pages 55–60.

Thien Huu Nguyen and Ralph Grishman. 2015. Rela-
tion extraction: Perspective from convolutional neu-
ral networks.

Daniil Sorokin and Iryna Gurevych. 2017. Context-
aware representations for knowledge base relation
extraction. In Proceedings of the 2017 Conference
on Empirical Methods in Natural Language Pro-
cessing. Association for Computational Linguistics,
Copenhagen, Denmark, pages 1784–1789.

Yuka Tateisi, Tomoko Ohta, Sampo Pyysalo, Yusuke
Miyao, and Akiko Aizawa. 2016. Typed entity
and relation annotation on computer science papers.
In Nicoletta Calzolari (Conference Chair), Khalid
Choukri, Thierry Declerck, Sara Goggi, Marko Gro-
belnik, Bente Maegaard, Joseph Mariani, Helene
Mazo, Asuncion Moreno, Jan Odijk, and Stelios
Piperidis, editors, Proceedings of the Tenth Interna-
tional Conference on Language Resources and Eval-
uation (LREC 2016). European Language Resources
Association (ELRA), Paris, France.

Philippe Thomas, Mariana Neves, Tim Rocktäschel,
and Ulf Leser. 2013. Wbi-ddi: Drug-drug inter-
action extraction using majority voting. In Second
Joint Conference on Lexical and Computational Se-
mantics (*SEM), Volume 2: Proceedings of the Sev-
enth International Workshop on Semantic Evalua-
tion (SemEval 2013). Association for Computational
Linguistics, pages 628–635.

820

Proceedings of the 12th International Workshop on Semantic Evaluation (SemEval-2018), pages 821–825
New Orleans, Louisiana, June 5–6, 2018. ©2018 Association for Computational Linguistics

Texterra at SemEval-2018 Task 7: Exploiting Syntactic Information for
Relation Extraction and Classification in Scientific Papers

Andrey Sysoev and Vladimir Mayorov
Ivannikov Institute for System Programming of the Russian Academy of Sciences

25 Alexander Solzhenitsyn Street
Moscow, Russia

sysoev@ispras.ru, vmayorov@ispras.ru

Abstract

In this work we evaluate applicability of en-
tity pair models and neural network architec-
tures for relation extraction and classification
in scientific papers at SemEval-2018. We carry
out experiments with representing entity pairs
through sentence tokens and through short-
est path in dependency tree, comparing ap-
proaches based on convolutional and recurrent
neural networks. With convolutional network
applied to shortest path in dependency tree
we managed to be ranked eighth in subtask
1.1 (”clean data”), ninth in 1.2 (”noisy data”).
Similar model applied to separate parts of the
shortest path was mounted to ninth (extraction
track) and seventh (classification track) posi-
tions in subtask 2 ranking.

1 Introduction

Information extraction is an important part of nat-
ural language processing. During SemEval-2018
an evaluation devoted to extraction and classifi-
cation of relations in scientific papers was held
(Gábor et al., 2018). The task is described as fol-
lows: given abstracts of scientific articles with de-
tected entities, the goal is to choose correct re-
lations for provided 〈source, target〉 entity pairs
(subtask 1 - relation classification) and to deter-
mine correct relations among all entity pairs (sub-
task 2 - relation extraction and classification). The
target quality metric in classification is macro-
average of F1-scores of every class; for extraction
scenario the target metric is F1-score.

Our method is based on multinomial classifica-
tion of entity pairs and their sentences with neural
networks. We experiment with representing entity
pairs through all sentence tokens and through to-
kens along the shortest path between entities in de-
pendency tree (Bunescu and Mooney, 2005). We
employ convolutional (CNN) (LeCun et al., 1989)

and bidirectional Long Short-Term Memory (biL-
STM) (Hochreiter and Schmidhuber, 1997; Tan
et al., 2015) neural network based approaches to
encode sentences and dependency tree paths.

In this work we mainly focus on relation clas-
sification, so most of analysis and experiments are
carried out for this task. Slightly modified mod-
els which achieve the best results on subtask 1 are
adapted for solving relation extraction and classi-
fication problem.

The rest of the paper is organized as follows: in
section 2 we describe some known approaches for
relation extraction and classification. In section 3
our approach is presented in details. Section 4 out-
lines results of described approach evaluation on
official SemEval-2018 task 7 test set. We wrap up
with some final thoughts in section 5.

2 Related Work

The relation extraction and classification prob-
lem has a long history. Early approaches were
based on manually constructed patterns, used to
detect entities in the relation under considera-
tion (Blaschke and Valencia, 2001). Further
approaches utilized machine learning algorithms
(Zelenko et al., 2003) with various hand-crafted
features (GuoDong et al., 2005) - syntactic labels,
part of speech tags, morphological properties and
so on. A brief overview of such methods is pre-
sented in (Bach and Badaskar, 2007). Significant
part of recent approaches is based on neural net-
works, trying to eliminate dependency on natu-
ral language processing tools: (dos Santos et al.,
2015; Lin et al., 2016) use CNNs to extract and
classify relations; (Zeng et al., 2014) adapts deep
CNNs for the same task. (Socher et al., 2012) in-
troduces recursive neural networks which capture
information from phrases and sentences and ap-
plies it to relation classification task.

821

In this work we try to inject extra - syntactic -
information gained from natural language process-
ing tools into neural networks based approaches.

3 System Description

Our method is based on multinomial classification
with neural networks. The decision about the re-
lation being held is made by analysing sentence,
which contains examined entities. Each sentence
is represented as a sequence of tokens or as a de-
pendency tree.

3.1 Modelling Tokens

Tokens are encoded with fasttext (Bojanowski
et al., 2017). Each token embedding also contains
binary indicators of its belonging to source or tar-
get entity or other part of the sentence.

3.2 Modelling Entity Pair

The basic way to model entity pair is just to take
all tokens of the sentence containing these enti-
ties and to encode them with described embedding
(section 3.1). Binary indicators of token belonging
to entities allow us to distinguish several relations
in a single sentence.

Another idea is to use path from source to tar-
get entity tokens in dependency tree. In our ap-
proach the shortest path is considered: it rises up
from source entity directly to the lowest common
ancestor and then immediately goes down to tar-
get entity tokens (Figure 1). Note that dependency
trees are built automatically and are sometimes in-
consistent with layout of entities, which may be
represented differently in the tree.

When using shortest path in dependency tree,
each token embedding is extended with additional
information - fasttext of the parent token, syntac-
tic label and direction indicator (whether token is
on path from source or target entity to lowest com-
mon ancestor).

3.3 Neural Network Architectures

General architecture can be described as follows:
some method is utilized to encode sequence of in-
put embeddings into a vector, which is then passed
through fully-connected layer L and finally fed
into softmax to output predicted label. We ex-
periment with two well-known approaches to en-
code sequences of input embeddings - biLSTM
and CNN.

Figure 1: Modelling 〈source, target〉 entity pair in de-
pendency tree with shortest path.

3.3.1 BiLSTM
BiLSTM-based method is hugely inspired by
(Yang et al., 2016). For each sequence item w0

k

we analyse its nearest context - two items to the
left (w−2

k , w−1
k) and to the right (w1

k, w2
k). Instead

of using w0
k directly, its ”attentioned” version ωk

is used:

ωk =
2∑

i=−2

αi
kw

i
k, αi

k = tanh(Wwi
k + b)Tu,

where wi
k are D-dimensional embedding vectors;

b and u are A-dimensional attention vectors; W is
an A×D-dimensional attention matrix.

Computed ωk are further fed into biLSTM net-
work (hidden layer size B). Its final cells out-
put and hidden state together with attention vector
(computed similarly to what has been described
earlier, but on all biLSTM outputs) are concate-
nated to form final sequence coding vector.

3.3.2 CNN
Another method is based on CNN. All input se-
quences are trimmed or padded to fit the same size.
Then a number of filters F are applied. Each fil-
ter application yields a vector of dimensionality
sequence length − filter height + 1; a single
maximum value is pulled from each such vector.
These values are finally concatenated to form final
sequence encoding.

3.3.3 Separate CNNs for Shortest Path Parts
The final method is a modification of CNN one,
which is specifically designed to be used when

822

modelling entity pairs with shortest paths. Instead
of merging different parts of the path into a sin-
gle sequence, we use four individual sequences by
analogy with (Zeng et al., 2015) - source entity
tokens, tokens on path from source to lowest com-
mon ancestor, tokens on path from lowest com-
mon ancestor to target and target entity tokens -
and four separate CNNs for them (sCNN). Out-
puts of all networks are merged into a single final
vector.

3.4 Relation Extraction

We adapt classification approach to relation ex-
traction subtask. The first idea is to apply the same
model for seven-class classification (six known re-
lations and absence of relation). Secondly we
try two-step approach with successive classifiers
of the same architecture: extraction classifier de-
tects entity pairs associated with any relation and
then another classifier assigns relation labels for
extracted pairs of entities.

For negative examples generation the follow-
ing strategies are examined: reflection - reversed
correct asymmetric (all except COMPARE) re-
lations are supposed to be negative examples;
in-sentence - some random portion of entity pairs
which co-occur in the same sentence is treated as
negative examples.

Finally an attempt to filter out excess relations
is made (according to guidelines each entity is al-
lowed to participate in not more than a single rela-
tion). We employ greedy method that chooses the
most confident relation being held using classifier
output weights.

4 Evaluation

We took part in both relation classification and re-
lation extraction subtasks. All results reported in
this section are gained on official SemEval-2018
task 7 test data developed by organizers and re-
leased after the evaluation phase. Official scores
for corresponding submissions are specified in Ta-
bles 2 and 3 after the slash sign. The difference is
explained by minor parameter variations, typically
randomness in variables initialization and number
of training epochs.

Relation classification (subtask 1) has two
datasets - with manually annotated entities
(subtask 1.1 - ”clean data”) and with automati-
cally detected entities (subtask 1.2 - ”noisy data”).
We decided to construct a single model merging

Relation 1.1 1.2 1.1+1.2
COMPARE 95 41 136
MODEL-FEATURE 326 175 501
PART WHOLE 234 196 430
RESULT 72 123 195
TOPIC 18 243 261
USAGE 483 470 953

Table 1: Number of relations in subtask datasets.

both datasets into one in order to increase the
amount of training examples and to diminish skew
in number of sample relations for different types
(Table 1).

To encode tokens fasttext (skipgram; minimum
length of character n-gram is 1, maximum - 5) is
used. We build two separate models with different
embedding dimensions - 100 and 300 - using the
English Wikipedia.

Evaluation results are presented in Table 2. The
target metric is F1. The first part of method name
specifies whether all sentence tokens or tokens
from shortest path in dependency tree are used.
The second part specifies neural network archi-
tecture being utilized. We report results for the
following neural network parameter values: atten-
tion size A is 400; biLSTM hidden layer size B
is 1000; CNN filters F - 200 with height 3, 50
with heights 2 and 4, width matches the embed-
ding dimensionality; size of fully-connected layer
L is 1000 for biLSTM and 900 for CNN. Specified
values are selected during experiments, which are
out of this paper scope.

As for subtask 1.1, we conclude that: context at-
tention tends to be beneficial (the only counterex-
ample is sentence biLSTM with fasttext size 300);
larger token embeddings are typically better (the
only counterexample is sentence biLSTM); syn-
tactic information is helpful for relation classifica-
tion with neural networks.

For subtask 1.2 the results are more contro-
versial: smaller embeddings sometimes surpass
larger ones; utilizing syntactic information seems
still beneficial, but the results are not as convinc-
ing as in 1.1; in contrast to subtask 1.1 context
attention does not tend to improve quality of the
approach. From our point of view, such strange
behaviour on subtask 1.2 dataset requires further
investigation.

Quality evaluations for subtask 2 solutions are
presented in Table 3. Target metrics are extrac-

823

Method Context Fasttext 1.1 1.2
attention size P R F1 P R F1

sentence biLSTM - 100 47.29 57.07 51.72 63.78 60.73 62.21
sentence biLSTM - 300 52.88 52.21 52.54 73.55 74.92 74.23
sentence biLSTM + 100 51.14 56.36 53.62 68.17 74.77 71.32
sentence biLSTM + 300 49.45 55.37 52.24 65.25 67.11 66.17
sentence CNN - 100 53.53 54.10 53.81 71.62 67.71 69.61
sentence CNN - 300 57.16 54.96 56.04 73.81 75.35 74.57
syntax biLSTM - 100 55.31 61.71 58.33 71.74 75.13 73.39
syntax biLSTM - 300 62.35 61.57 61.95 73.76 74.43 74.10
syntax biLSTM + 100 55.29 70.97 62.16 69.52 72.60 71.02
syntax biLSTM + 300 58.15 70.42 63.70 / 55.8 63.75 68.62 66.10 / 69.0
syntax CNN - 100 50.42 61.66 55.48 62.80 65.51 64.13
syntax CNN - 300 56.27 58.62 57.42 / 64.9 71.79 72.74 72.26 / 74.4
syntax sCNN - 100 62.83 59.82 61.29 86.49 72.87 79.10
syntax sCNN - 300 64.21 63.12 63.66 / 62.4 74.22 75.27 74.74 / 73.7

Table 2: Final quality results for subtasks 1.1 and 1.2.

Method Negative examples Extraction Classification
P R F1 P R F1

7-class biLSTM reflections 8.11 81.74 14.76 4.43 53.58 8.19
7-class CNN reflections 8.37 82.83 15.21 5.26 56.31 9.63
7-class sCNN reflections 7.94 80.11 14.44 / 15.6 6.12 66.08 11.21 / 9.6
2-step biLSTM reflections 7.77 92.64 14.33 / 14.4 3.49 53.35 6.55 / 8.0
2-step CNN reflections 7.98 88.56 14.63 / 13.9 4.64 52.11 8.53 / 8.2
2-step sCNN reflections 7.97 79.84 14.50 4.81 52.03 8.80
7-class sCNN reflections + 20% 8.20 83.65 14.94 8.05 57.71 14.13
7-class sCNN reflections + 50% 8.55 67.85 15.19 6.22 57.78 11.23
7-class sCNN reflections + 100% 8.43 93.19 15.46 5.37 66.13 9.94
2-step sCNN reflections + 20% 10.36 81.47 18.38 6.47 53.24 11.55
2-step sCNN reflections + 50% 14.67 65.94 24.00 9.53 41.25 15.49
2-step sCNN reflections + 100% 11.40 81.20 19.99 6.66 52.17 11.81
7-class sCNN + filter reflections + 20% 14.73 43.05 21.94 13.69 36.54 19.91
2-step sCNN + filter reflections + 50% 20.36 28.07 23.60 17.25 26.47 20.89

Table 3: Final quality results for subtask 2.

tion and evaluation F1. All experiments are per-
formed with the same input vector size (fasttext
dimensionality equals to 300); entity pairs are
modelled with shortest path in dependency tree.
The second column specifies negative examples
generation strategy: reflection with some portion
(0-100%) of in-sentence negative examples is al-
ways used. For training purposes both subtask 1.1
and 1.2 data is utilized.

When reflection strategy for negative examples
generation is used seven-class approach performs
better. With utilization of both strategies two-step
approach breaks forward. Post-processing im-

proves quality for both approaches, however it is
still rather low compared with the results of other
participants.

5 Conclusion

In this work we tried to study how utilization of
syntactic information influences the quality of re-
lation extraction and classification in scientific pa-
pers. According to our experiments the approach
based on shortest path in dependency tree yields
the best results. The actual network architecture
delivering the best result depends on the subtask
being solved.

824

References

Nguyen Bach and Sameer Badaskar. 2007. A review of
relation extraction. Literature review for Language
and Statistics II, 2.

Christian Blaschke and Alfonso Valencia. 2001. Can
bibliographic pointers for known biological data
be found automatically? protein interactions as a
case study. Comparative and Functional Genomics,
2(4):196–206.

Piotr Bojanowski, Edouard Grave, Armand Joulin, and
Tomas Mikolov. 2017. Enriching word vectors with
subword information. Transactions of the Associa-
tion for Computational Linguistics, 5:135–146.

Razvan C Bunescu and Raymond J Mooney. 2005. A
shortest path dependency kernel for relation extrac-
tion. In Proceedings of the conference on human
language technology and empirical methods in nat-
ural language processing, pages 724–731. Associa-
tion for Computational Linguistics.

Kata Gábor, Davide Buscaldi, Anne-Kathrin Schu-
mann, Behrang QasemiZadeh, Haı̈fa Zargayouna,
and Thierry Charnois. 2018. Semeval-2018 Task
7: Semantic relation extraction and classification in
scientific papers. In Proceedings of International
Workshop on Semantic Evaluation (SemEval-2018),
New Orleans, LA, USA.

Zhou GuoDong, Su Jian, Zhang Jie, and Zhang Min.
2005. Exploring various knowledge in relation ex-
traction. In Proceedings of the 43rd annual meeting
on association for computational linguistics, pages
427–434. Association for Computational Linguis-
tics.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural computation,
9(8):1735–1780.

Yann LeCun, Bernhard Boser, John S Denker, Don-
nie Henderson, Richard E Howard, Wayne Hubbard,
and Lawrence D Jackel. 1989. Backpropagation ap-
plied to handwritten zip code recognition. Neural
computation, 1(4):541–551.

Yankai Lin, Shiqi Shen, Zhiyuan Liu, Huanbo Luan,
and Maosong Sun. 2016. Neural relation extraction
with selective attention over instances. In Proceed-
ings of the 54th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Pa-
pers), volume 1, pages 2124–2133.

Cicero dos Santos, Bing Xiang, and Bowen Zhou.
2015. Classifying relations by ranking with con-
volutional neural networks. In Proceedings of the
53rd Annual Meeting of the Association for Compu-
tational Linguistics and the 7th International Joint
Conference on Natural Language Processing (Vol-
ume 1: Long Papers), volume 1, pages 626–634.

Richard Socher, Brody Huval, Christopher D Manning,
and Andrew Y Ng. 2012. Semantic compositional-
ity through recursive matrix-vector spaces. In Pro-
ceedings of the 2012 joint conference on empirical
methods in natural language processing and com-
putational natural language learning, pages 1201–
1211. Association for Computational Linguistics.

Ming Tan, Cicero dos Santos, Bing Xiang, and Bowen
Zhou. 2015. Lstm-based deep learning models
for non-factoid answer selection. arXiv preprint
arXiv:1511.04108.

Zichao Yang, Diyi Yang, Chris Dyer, Xiaodong He,
Alex Smola, and Eduard Hovy. 2016. Hierarchi-
cal attention networks for document classification.
In Proceedings of the 2016 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 1480–1489.

Dmitry Zelenko, Chinatsu Aone, and Anthony
Richardella. 2003. Kernel methods for relation ex-
traction. Journal of machine learning research,
3(Feb):1083–1106.

Daojian Zeng, Kang Liu, Yubo Chen, and Jun Zhao.
2015. Distant supervision for relation extraction via
piecewise convolutional neural networks. In Pro-
ceedings of the 2015 Conference on Empirical Meth-
ods in Natural Language Processing, pages 1753–
1762.

Daojian Zeng, Kang Liu, Siwei Lai, Guangyou Zhou,
and Jun Zhao. 2014. Relation classification via con-
volutional deep neural network. In Proceedings of
COLING 2014, the 25th International Conference
on Computational Linguistics: Technical Papers,
pages 2335–2344.

825

Proceedings of the 12th International Workshop on Semantic Evaluation (SemEval-2018), pages 826–830
New Orleans, Louisiana, June 5–6, 2018. ©2018 Association for Computational Linguistics

UniMa at SemEval-2018 Task 7: Semantic Relation Extraction and
Classification from Scientific Publications

Thorsten Keiper,1 Zhonghao Lyu,1 Sara Pooladzadeh,1 Yuan Xu,1 Jingyi Zhang,1
Anne Lauscher,1,2 and Simone Paolo Ponzetto1

1University of Mannheim, Germany
2Stuttgart Media University, Germany

{tkeiper, zlyu, spooladz, yuaxu, jizhang}@mail.uni-mannheim.de
{anne, simone}@informatik.uni-mannheim.de

Abstract

Large repositories of scientific literature
call for the development of robust meth-
ods to extract information from scholarly
papers. This problem is addressed by the
SemEval 2018 Task 7 on extracting and
classifying relations found within scien-
tific publications. In this paper, we present
a feature-based and a deep learning-based
approach to the task and discuss the results
of the system runs that we submitted for
evaluation.

1 Introduction

Nowadays, the exploding amount of scientific lit-
erature makes it ever more problematic for re-
searchers and scholars to get focused access to the
state-of-the-art in a certain field of science. There-
fore, it is getting increasingly important to de-
velop effective computational approaches for ex-
tracting information from large scholarly corpora.
SemEval 2018 Task 7 (Gábor et al., 2018) ad-
dresses this problem with a shared task on extract-
ing and classifying semantic relations in scientific
papers. The task is divided into two subtasks:

1. Relation Classification. Given an existing rela-
tion between two entities and their context, the
task is to predict the label of the relation out
of the set of possible classes, namely USAGE,
RESULT, MODEL-FEATURE, PART WHOLE,
TOPIC, COMPARISON. The task is decom-
posed into two different scenarios according to
the data used, namely with either manually an-
notated entities (1.1) or noisy data with auto-
matically extracted entities (1.2).

2. Relation Extraction and Classification.
This subtask addresses the whole end-to-end
pipeline of relation extraction. Given abstracts

of scientific papers annotated with entities,
systems are required to extract pairs of entities
in a semantic relation, as well as assign a label
and directionality to the extracted relation.

We participated in the subtask 1.1, relation classi-
fication on clean data, and subtask 2 (relation ex-
traction only). Our approach relies on supervised
learning using Support Vector Machines (SVMs),
k-Nearest Neighbors (kNNs), and Convolutional
Neural Networks (CNNs). We were ranked 16th
on task 1.1 with an F1 score 44.0% and 7th on
task 2 with an F1 of 28.4%.

2 Related Work

A series of supervised systems for extracting
keyphrases and relations in scientific publications
was presented in the context of the SemEval task
10 in 2017 (Augenstein et al., 2017). In contrast
to the present task formulation, the set of relations
consisted only of two, namely hyponymy and syn-
onymy. For this task, the best systems were those
based on neural approaches.

Lee et al. (2017) obtained the highest score by
employing a convolutional neural network with
a specific embedding layer encoding manually
crafted features such as the word, the position of
the word and the part-of-speech (POS) tag. The
second best system was a neural end-to-end model
by Ammar et al. (2017). It predicted the relation
types based on a context-sensitive representation
of the keyphrases which they obtained by using
a variety of information, e.g., entity type embed-
dings and syntactic and sequential path informa-
tion generated by a bidirectional Long Short-Term
Memory (LSTM) layer. As opposed to the former
systems, the approach of Barik and Marsi (2017),
ranked third, was based on manually crafted fea-
tures and more traditional classifiers such as deci-
sion trees and SVMs.

826

Outside SemEval, Zelenko et al. (2003) pro-
posed different kernel methods combined with
the SVM and Voted Perceptron learning algo-
rithms for extracting person-affiliation
and organization-location relations. An-
other kernel-based approach using different
sources of syntactic information was presented by
Zhao and Grishman (2005).

Our neural approach is inspired by the work
of Nguyen and Grishman (2015), who employ a
CNN with word embedding and position embed-
ding lookup. Embeddings are concatenated for
obtaining positionally and semantically sensitive
token representations and then fed into a convolu-
tional layer, followed by a maximum pooling layer
and a fully connected feed-forward network with
a softmax classifier.

3 Methodology

3.1 Feature-based Approach

Feature Engineering. For our feature-based ap-
proach we explored the following pool of features.

1. Structural Features. We compute for each en-
tity the distance to the last and next entity and
the relative position of the entity in the sentence.
Furthermore, assuming that verb phrases are a
strong indicator for the specific type of relation-
ship, we also add the distance to the next verb.

2. Lexical features. We include the first and last
five letters of the given surface form of each en-
tity. Furthermore, for each word we add the last
and next three words in the surrounding context
window and the word length. Again emphasiz-
ing the relative importance of verbs, we specif-
ically encode the last and the next verb. Man-
ual exploration of the training data revealed pat-
terns such as the preposition ‘of’ and the verb
‘use’ being a strong indicator of the relations
PART WHOLE and USAGE respectively. There-
fore, we add two binary features hasOf and
hasUse. The last lexical feature we employ
is the Tf-Idf representation of the sentence.

3. Syntactic features. We use the POS tag of each
word as shallow syntactic feature.

4. Semantic features. In order to add semantic in-
formation we employ an embedding represen-
tation of the sentence by averaging the GloVe

word embeddings pretrained on Wikipedia
2014 and Gigaword 5.1

Experimental Setup. We experimented with
two classifiers, namely linear SVM and kNN. Both
models were wrapped in a 5-fold cross validation
in order to obtain performance estimates on the
whole training set. Furthermore, we tuned the hy-
perparameters of the models by nesting the cross
validation in a grid search, optimizing the penalty
term c of the linear SVM given the search space
c ∈ {0, 001, 0.01, 0.1, 1, 10} and weighting the
penalty term either balanced according to the dis-
tribution of the classes or leaving all classes with
equal penalty. In the relation classification, we
also experimented with one-vs-rest and Crammer-
Singer as multi-class classification strategies.

Similarly, for the kNN we optimized the num-
ber of neighbors in the search space k ∈
{3, 5, 7, 9} and tried uniform weighting and
weighting neighbors based on their inverse dis-
tance. All other parameters were left to the default
values provided by scikit-learn,2 which we used as
implementation framework.

To find suitable subsets of our heuristically ex-
tracted pool of features, a forward feature selec-
tion was employed.

3.2 Deep Learning-based Approach
Model Architecture. We employ a CNN (Le-
Cun and Bengio, 1998) for the relation extrac-
tion task, which was first introduced to the natural
language processing community by Collobert and
Weston (2008). Our CNN architecture is inspired
by Nguyen and Grishman (2015) and consists of
four main layers: (1) embedding layer, (2) convo-
lutional layer, (3) maximum pooling layer, and (4)
fully connected output layer.

In a first step, given a word and its relative po-
sition in the sentence, we lookup the accompany-
ing vector representations and concatenate them in
order to obtain a position-sensitive semantic repre-
sentation of the token. Next, the model convolutes,
i.e., slides, over the embeddings to capture the
context of the token in a window of size k, which
is followed by subsampling the obtained matrices
using maximum pooling, e.g., preserving the N
maximal values. This allows the model to recog-
nize the most informative k-grams for the task. In
a last step, the representations are fed into a fully

1
https://nlp.stanford.edu/projects/glove/

2
http://scikit-learn.org/

827

word d1 d2 entity ID
word 0 -9 C08-1105.1
Semantic 0 -8 C08-1105.1
Role 0 -7 C08-1105.1
Labeling 1 -6 none
are 2 -5 none
usually 3 -4 none
limited 4 -3 none
in 5 -2 none
a 6 -1 none
syntax 7 0 C08-1105.3
subtree 8 0 C08-1105.3

Table 1: Example of how we assign relative posi-
tion to training and test instances.

connected layer followed by a softmax classifier
predicting the label.

Experimental Setup. As input to the model we
feed pairs of candidate entities together with the
textual content between them. As the CNN ex-
pects fixed-size vector representations, we pad the
texts to the length of the longest sequence us-
ing a special token to which we assign a ran-
dom embedding vector. We compute the rela-
tive position for each word wi as distance vec-
tor di = [di1, di2]. Table 1 shows a example
of how we assign relative distances to each word
in our instances. The word embedding matrix is
initialized with 300-dimensional domain-specific
word embeddings from Lauscher et al. (2017),
which showed during prototyping superior per-
formance when compared with standard domain-
independent ones. Finally, we obtain a position-
sensitive representation of the word wi by concate-
nating its embedding ei as well as the position em-
bedding into a single vector vi = [ei, di1, di2].

Since the data for the relation extraction task
is highly skewed towards the number of negative
instances (i.e., only 1,228 out of 8,768 are posi-
tive), we decided to experiment with data balanc-
ing techniques. More specifically, we tried upsam-
pling the positive instances applying an upsam-
pling rate ru ∈ [1, 5] and similarly, downsampling
the negative instances with a rate rd ∈ [0.1, 1].

Optimizing the hyperparameters of our model,
we experimented with the numbers of CNN fil-
ters in range f ∈ [50, 500] and with a filter size
s ∈ [3, 15]. For the regularization of our model
we apply dropout before the fully connected layer
and experimented with a dropout keep probabil-

Class Count Ratio
Usage 483 39.33%
Model-Feature 326 26.55%
Part whole 234 19.06%
Topic 95 07.74%
Result 72 05.86%
Compare 18 01.47%
Total 1,228 100%

Table 2: Class distribution in the training data.

ity of d ∈ [0, 1]. For all other hyperparameters
we use the values from Nguyen and Grishman
(2015). Last, in order to make our models com-
parable among each other, we nested the CNN in
a 5-fold cross validation.

4 Evaluation

Here, we briefly give an overview of the data pro-
vided by the organizers of the shared task as well
as our submitted runs. We also present and discuss
the final results achieved.

Data. The training data provided by the task or-
ganizers for subtask 1.1 and subtask 2 is com-
posed of 350 abstracts of scientific publications
with manually annotated entities and relations. In
total, the number of relation instances amounts to
1,228 samples. Table 2 shows the distribution of
the labels for the relation classification.

For the relation extraction task, entity pairs for
all semantic relations appear in the very same sen-
tence. Therefore, we generate relation candidates
by pairing all entity mentions found within the
same sentence boundary. This way we end up with
8,386 candidate entity pairs among which 1,228
are positive instances.

The test data for task 1.1 and 2 was provided in
the same format as training data, containing 150
abstracts and 355 relation instances (for subtask
1.1 only).

Submitted runs. We selected two models for
the relation classification and three models for the
relation extraction task for the final submission ac-
cording to their scores on the development data us-
ing the official scoring script. The model config-
urations are summarized in Table 3 and Table 4,
respectively.

Final Results. The official scores for the sub-
mitted models are listed in Tables 5 and 6.

828

Model Hyperparameter Choice Features
SVM c 1 tfidf

multi class one-vs-rest isReverse
class weight balanced nextEntityDist(x)

position(y)
POStag(x)

kNN k 5 tfidf
weights distance isReverse

hasOf

Table 3: Submitted models for task 1.1 (relation
classification). In the features listed, x represents
the first entity while y represents the second entity
of a candidate pair.

Model Hyperparameter Choice Features
SVM c 0.1 position(x,y)

class weight balanced lastEntityDist(y)
nextEntityDist(x)
tokenLength(y)
POStag(x,y)
firstLetter(y)

kNN k 3 relativePosition(x,y)
weights distance lastEntityDist(y)

position(y)
avgEmbedding
hasUse
POStag(x,y)

CNN dropout 0.5 word embedding
upsampling rate 3 relative position
number of filters 200
filter size 3-8

Table 4: Submitted models for task 2 (relation ex-
traction). In the features listed, x represents the
first entity while y represents the second entity of
a candidate pair.

In the relation classification task, SVM achieves
better performance than kNN by a large margin,
while in the relation extraction task, it is the deep
learning models that perform best. Within the
scope of the traditional models, SVM consistently
outperforms kNN for both the classification (on
every relation type, cf. Table 5), as well as the ex-
traction task (Table 6). Furthermore, for task 1.1,
SVM performed better than kNN, in every relation
type. The reason could be that the vector-like fea-
tures we used, such as Tf-Idf and the binary POS-
tags, suit better for SVM, while kNN was not able
to handle the high-dimensional dataset.

For task 2 the linear SVM model results in a
relatively high recall but considerably low preci-
sion. This result could be related to the follow-
ing reasons. First, since the training data is highly
skewed towards negative examples as described in
subsection 4, more false positive cases are pre-
dicted. Second, the data is likely to be nonlin-

Class SVM kNN
Usage 73.68% 63.04%
Model-Feature 51.70% 43.97%
Part Whole 45.53% 34.90%
Topic 22.22% 00.00%
Result 37.50% 37.50%
Compare 26.32% 12.12%
Macro F1 44.00% 32.49%

Table 5: Results (F1) on relation classification
(task 1.1).

Precision Recall F1
SVM 15.67% 90.19% 26.70%
kNN 9.93% 11.44% 10.63%
CNN 18.84% 57.49% 28.38%

Table 6: Results on relation extraction (task 2).

early distributed. As a result, the linear SVM is
not able to perform better even when increasing
feature dimensionality. In addition to a better fea-
ture engineering, we explored the use of an Radial
Basis Function (RBF) kernel and Gradient Boost-
ing Tree to increase the precision without hurting
the recall. Another interesting point is that the
improvement of precision contributed more to the
overall F1-score in this official evaluation method.
This can be inferred from the results listed in Ta-
ble 6, where the CNN has higher F1-score, with a
higher precision but much lower recall compared
to the SVM.

5 Conclusion

In this paper we have presented our approach to
the SemEval 2018 Task 7 on extracting and clas-
sifying semantic relations from scientific publica-
tions. We experimented with feature-based versus
neural models. For the classification task, SVM
performed better than kNN, although both show
problems in predicting minority classes with few
examples. For the extraction task, the deep learn-
ing method outperformed SVM by a narrow mar-
gin. The overall comparable results across meth-
ods seem to indicate that, in the future, more work
should turn to devising better features or architec-
tures that are able to capture the nuances of seman-
tic relations in the domain of scientific texts.

Acknowledgements. This work was partly
funded by the German Research Foundation
(DFG), project number EC 477/5-1 (LOC-DB).

829

References
Waleed Ammar, Matthew Peters, Chandra Bhaga-

vatula, and Russell Power. 2017. The AI2
system at SemEval-2017 task 10 (ScienceIE):
semi-supervised end-to-end entity and relation
extraction. In Proceedings of the 11th In-
ternational Workshop on Semantic Evaluation
(SemEval-2017). Association for Computational
Linguistics, Vancouver, Canada, pages 592–596.
http://www.aclweb.org/anthology/S17-2097.

Isabelle Augenstein, Mrinal Das, Sebastian Riedel,
Lakshmi Vikraman, and Andrew McCallum. 2017.
Semeval 2017 task 10: ScienceIE - extract-
ing keyphrases and relations from scientific pub-
lications. In Proceedings of the 11th In-
ternational Workshop on Semantic Evaluation
(SemEval-2017). Association for Computational
Linguistics, Vancouver, Canada, pages 546–555.
http://www.aclweb.org/anthology/S17-2091.

Biswanath Barik and Erwin Marsi. 2017. NTNU-
2 at SemEval-2017 task 10: Identifying syn-
onym and hyponym relations among keyphrases
in scientific documents. In Proceedings of the
11th International Workshop on Semantic Evalu-
ation (SemEval-2017). Association for Computa-
tional Linguistics, Vancouver, Canada, pages 965–
968. http://www.aclweb.org/anthology/S17-2168.

Ronan Collobert and Jason Weston. 2008. A uni-
fied architecture for natural language processing:
deep neural networks with multitask learning. In
Machine Learning, Proceedings of the Twenty-
Fifth International Conference (ICML 2008),
Helsinki, Finland, June 5-9, 2008. pages 160–167.
https://doi.org/10.1145/1390156.1390177.

Kata Gábor, Davide Buscaldi, Anne-Kathrin Schu-
mann, Behrang QasemiZadeh, Hafa Zargayouna,
and Thierry Charnois. 2018. Semeval-2018 task 7:
Semantic relation extraction and classification in sci-
entific papers. In Proceedings of the 12th Interna-
tional Workshop on Semantic Evaluation (SemEval-
2018). Association for Computational Linguistics,
New Orleans, LA, USA, page tba.

Anne Lauscher, Goran Glavaš, Simone Paolo Ponzetto,
and Kai Eckert. 2017. Investigating convolutional
networks and domain-specific embeddings for se-
mantic classification of citations. In Proceedings of
the 6th International Workshop on Mining Scientific
Publications. ACM, New York, NY, USA, pages 24–
28. https://doi.org/10.1145/3127526.3127531.

Yann LeCun and Yoshua Bengio. 1998. The handbook
of brain theory and neural networks. MIT Press,
Cambridge, MA, USA, chapter Convolutional Net-
works for Images, Speech, and Time Series, pages
255–258.

Ji Young Lee, Franck Dernoncourt, and Peter
Szolovits. 2017. MIT at SemEval-2017 task
10: Relation extraction with convolutional neu-
ral networks. In Proceedings of the 11th

International Workshop on Semantic Evaluation
(SemEval-2017). Association for Computational
Linguistics, Vancouver, Canada, pages 978–984.
http://www.aclweb.org/anthology/S17-2171.

Thien Huu Nguyen and Ralph Grishman. 2015. Re-
lation extraction: Perspective from convolutional
neural networks. In Proceedings of the 1st
Workshop on Vector Space Modeling for Natural
Language Processing. Association for Computa-
tional Linguistics, Denver, Colorado, pages 39–48.
http://www.aclweb.org/anthology/W15-1506.

Dmitry Zelenko, Chinatsu Aone, and An-
thony Richardella. 2003. Kernel meth-
ods for relation extraction. Journal of
Machine Learning Research 3:1083–1106.
http://www.jmlr.org/papers/v3/zelenko03a.html.

Shubin Zhao and Ralph Grishman. 2005. Extract-
ing relations with integrated information using ker-
nel methods. In Proceedings of the 43rd Annual
Meeting of the Association for Computational Lin-
guistics (ACL’05). Association for Computational
Linguistics, Ann Arbor, Michigan, pages 419–426.
https://doi.org/10.3115/1219840.1219892.

830

Proceedings of the 12th International Workshop on Semantic Evaluation (SemEval-2018), pages 831–835
New Orleans, Louisiana, June 5–6, 2018. ©2018 Association for Computational Linguistics

GU IRLAB at SemEval-2018 Task 7:
Tree-LSTMs for Scientific Relation Classification

Sean MacAvaney, Luca Soldaini, Arman Cohan, and Nazli Goharian
Information Retrieval Lab

Department of Computer Science
Georgetown University

{firstname}@ir.cs.georgetown.edu

Abstract

SemEval 2018 Task 7 focuses on relation ex-
traction and classification in scientific litera-
ture. In this work, we present our tree-based
LSTM network for this shared task. Our ap-
proach placed 9th (of 28) for subtask 1.1 (rela-
tion classification), and 5th (of 20) for subtask
1.2 (relation classification with noisy entities).
We also provide an ablation study of features
included as input to the network.

1 Introduction

Information Extraction (IE) has applications in a
variety of domains, including in scientific litera-
ture. Extracted entities and relations from scien-
tific articles could be used for a variety of tasks, in-
cluding abstractive summarization, identification
of articles that make similar or contrastive claims,
and filtering based on article topics. While onto-
logical resources can be leveraged for entity ex-
traction (Gábor et al., 2016), relation extraction
and classification still remains a challenging task.
Relations are particularly valuable because (unlike
simple entity occurrences) relations between enti-
ties capture lexical semantics. SemEval 2018 Task
7 (Semantic Relation Extraction and Classification
in Scientific Papers) encourages research in rela-
tion extraction in scientific literature by providing
common training and evaluation datasets (Gábor
et al., 2018). In this work, we describe our ap-
proach using a tree-structured recursive neural net-
work, and provide an analysis of its performance.

There has been considerable previous work with
scientific literature due to its availability and inter-
est to the research community. A previous shared
task (SemEval 2017 Task 10) investigated the ex-
traction of both keyphrases (entities) and relations
in scientific literature (Augenstein et al., 2017).
However, the relation set for this shared task was
limited to just synonym and hypernym relation-

ships. The top three approaches used for relation-
only extraction included convolutional neural net-
works (Lee et al., 2017a), bi-directional recur-
rent neural networks with Long Short-Term Mem-
ory (LSTM, Hochreiter and Schmidhuber, 1997)
cells (Ammar et al., 2017), and conditional ran-
dom fields (Lee et al., 2017b).

There are several challenges related to scientific
relation extraction. One is the extraction of the
entities themselves. Luan et al. (2017) produce
the best published results on the 2017 ScienceIE
shared task for entity extraction using a semi-
supervised approach with a bidirectional LSTM
and a CRF tagger. Zheng et al. (2014) provide an
unsupervised technique for entity linking scientific
entities in the biomedical domain to an ontology.

Contribution. Our approach employs a tree-
based LSTM network using a variety of syntac-
tic features to perform relation label classification.
We rank 9th (of 28) when manual entities are used
for training, and 5th (of 20) when noisy entities are
used for training. Furthermore, we provide an ab-
lation analysis of the features used by our model.
Code for our model and experiments is available.1

2 Methodology

Syntactic information between entities plays an
important role in relation extraction and classi-
fication (Mintz et al., 2009; MacAvaney et al.,
2017). Similarly, sequential neural models, such
as LSTM, have shown promising results on sci-
entific literature (Ammar et al., 2017). There-
fore, in our approach, we leverage both syntac-
tic structures and neural sequential models by em-
ploying a tree-based long-short term memory cell
(tree-LSTM). Tree-LSTMs, originally introduced
by Tai et al. (2015), have been successfully used to

1https://github.com/Georgetown-IR-Lab/
semeval2018-task7

831

t1,j=H(e1)

softmax

y

t4,j=H(e2)

t3,j

t2,j

dense

LSTM

LSTM LSTM

LSTM

Figure 1: Our tree LSTM network.

capture relation information in other domains (Xu
et al., 2015; Miwa and Bansal, 2016). On a high
level, tree-LSTMs operate very similarly to se-
quential models; however, rather than processing
tokens sequentially, they follow syntactic depen-
dencies; once the model reaches the root of the
tree, the output is used to compute a prediction,
usually through a dense layer. We use the child-
sum variant of tree-LSTM (Tai et al., 2015).

Formally, let Sj = {t1,j , . . . , tn,j} be a
sentence of length n, e1 = {ti, . . . , tk} and
e2 = {tp, . . . , tq} two entities whose relation-
ship we intend to classify; let H(e1), H(e2) be
the root of the syntactic subtree spanning over
entities e1 and e2. Finally, let T(e1, e2) be
the syntactic sub-tree spanning from H(e1) to
H(e2). For the first example in Table 1, e1 =
{‘Oral’, ‘communication’} , e2 = {‘indices’},
H(e1) = {‘communication’}, T(e1, e2) =
{‘communication’, ‘offer’, ‘indices’}. The pro-
posed model uses word embeddings of terms in
T(e1, e2) as inputs; the output of the tree-LSTM
cell on the root of the syntactic tree is used to pre-
dict one of the six relation types (y) using a soft-
max layer. A diagram of our tree LSTM network
is shown in Figure 1.

In order to overcome the limitation imposed by
the small amount of training data available for this
task, we modify the general architecture proposed
in (Miwa and Bansal, 2016) in two crucial ways.
First, rather than using the representation of enti-
ties as input, we only consider the syntactic head
of each entity. This approach improves the gen-
eralizability of the model, as it prevents overfit-
ting on very specific entities in the corpus. For
example, by reducing ‘Bag-of-words methods’ to
‘methods’ and ‘segment order-sensitive models’ to
‘models’, the model is able to recognize the COM-

Relation (abbr.) Example

USAGE (U) Oral communication may offer
additional indices...

MODEL-FEATURE
(M-F)

We look at the intelligibility of
MT output...

PART WHOLE
(P-W)

As the operational semantics of
natural language applications
improve...

COMPARE (C) Bag-of-words methods are shown
to be equivalent to
segment order-sensitive methods
in terms of...

RESULT (R) We find that interpolation methods
improve the performance...

TOPIC (T) A formal analysis for a large class
of words called
alternative markers...

Table 1: Example relations for each type. Entities are
underlined, and all relations are from the first entity to
the second entity (non-reversed).

PARE relation between these two entities (see Ta-
ble 1). Second, we experimented with augmenting
each term representation with the following fea-
tures:

• Dependency labels (DEP): we append to
each term embedding the label representing
the dependency between the term and its par-
ent.

• PoS tags (POS): the part-of-speech tag for
each term is append to its embedding.

• Entity length (ENTLEN): we concatenate the
number of tokens in e1 and e2 to embed-
dings representation of heads H(e1) to H(e2).
For terms that are not entity heads, the entity
length feature is replaced by ‘0’.

• Height: the height of each term in the syntac-
tic subtree connecting two entities.

3 Experimental Setup

SemEval 2018 Task 7 focuses on relation extrac-
tion, assuming a gold set of entities. This al-
lows participants to focus on specific issues related
to relation extraction with a rich set of seman-
tic relations. These include relations for USAGE,
MODEL-FEATURE, PART WHOLE, COMPARE, RE-
SULT, and TOPIC. Examples of each type of rela-
tion are given in Table 1.

The shared task evaluates three separate sub-
tasks (1.1, 1.2, and 2). We tuned and submitted

832

Dataset U M-F P-W C R T

Subtask 1.1
Train 409 289 215 86 57 15
Valid. 74 37 19 9 15 3
Test 175 66 70 21 20 3

Subtask 1.2
Train 363 124 162 29 94 207
Valid. 107 51 34 12 29 36
Test 123 75 56 3 29 69

Table 2: Frequency of relation labels in train, valida-
tion, and test sets. See Table 1 for relation label ab-
breviations. Subtask 1.1 uses manual entity labels, and
subtask 1.2 uses automatic entity labels (which may be
noisy).

our system for subtasks 1.1 and 1.2. In both of
these subtasks, participants are given scientific ab-
stracts with entities and candidate relation pairs,
and are asked to determine the relation label of
each pair. For subtask 1.1, both the entities and
relations are manually annotated. For subtask 1.2,
the entities are automatically generated using the
procedure described in Gábor et al. (2016). This
procedure introduces noise, but represents a more
realistic evaluation environment than subtask 1.1.
In both cases, relations and gold labels are pro-
duced by human annotators. All abstracts are from
the ACL Anthology Reference Corpus (Bird et al.,
2008). We randomly select 50 texts from the train-
ing datasets for validation of our system. We pro-
vide a summary of the datasets for training, vali-
dation, and testing in Table 2. Notice how the pro-
portions of each relation label vary considerably
among the datasets.

We experiment with two sets of word embed-
dings: Wiki News and arXiv. The Wiki News em-
beddings benefit from the large amount of general
language, and the arXiv embeddings capture spe-
cialized domain language. The Wiki News em-
beddings are pretrained using fastText with a di-
mension of 300 (Mikolov et al., 2018). The arXiv
embeddings are trained on a corpus of text from
the cs section of arXiv.org2 using a window of 8
(to capture adequate term context) and a dimen-
sion of 100 (Cohan et al., 2018). A third variation
of the embeddings simply concatenates the Wiki
News and arXiv embeddings, yielding a dimen-
sion of 400; for words that appear in only one of

2https://github.com/acohan/
long-summarization

System F1 Rank

Subtask 1.1 (28 teams)
Our submission 60.9 9
Median team 45.5
Mean team 37.1

Subtask 1.2 (20 teams)
Our submission 78.9 5
Median team 70.3
Mean team 54.0

Table 3: Performance result comparison to other task
participants for subtasks 1.1 and 1.2.

U M-F P-W C R T
Predicted label

U

M-F

P-W

C

R

T
Tr

ue
la

be
l

143 15 9 6 1 1

13 38 10 0 3 1

15 8 44 3 0 0

1 1 2 14 3 0

4 2 0 1 13 0

2 0 0 0 0 1

Figure 2: Confusion matrix for subtask 1.1.

the two embedding sources, the available embed-
dings are concatenated with a vector of appropri-
ate size sampled from N (0, 10−8).

For our official SemEval submission, we train
our model using the concatenated embeddings and
one-hot encoded dependency label features. We
use a hidden layer of 200 nodes, a 0.2 dropout
rate, and a training batch size of 16. Syntactic
trees were extracted using SpaCy3, and the neural
model was implemented using MxNet4.

The official evaluation metric is the macro-
averaged F1 score of all relation labels. For ad-
ditional analysis, we use the macro precision and
recall, and the F1 score for each relation label.

4 Results and Discussion

In Table 3, we provide our official SemEval re-
sults in the context of other task participants. In
both subtasks, we ranked above both the median
and mean team scores, treating the top-ranking
approach for each team as the team’s score. For
Subtask 1.1, we ranked 9 out of 28, and for Sub-
task 1.2, we ranked 5 out of 20. This indicates

3https://spacy.io/
4https://mxnet.incubator.apache.org/

833

Overall F1 by label

Features P R F1 U M-F P-W C R T

Subtask 1.1
(no features) 56.9 64.1 59.5 81.4 51.5 59.9 57.8 61.9 44.4
DEP 53.5 54.1 53.6 79.1 55.5 58.2 63.8 64.9 0.0
DEP + POS 60.1 59.1 59.5 79.9 57.1 58.5 68.3 60.0 33.3
DEP + POS + EntLen 59.4 64.1 60.9 80.0 59.0 56.9 58.3 61.1 50.0
DEP + POS + EntLen + Height 52.1 53.3 52.4 79.2 57.4 62.2 56.0 59.5 0.0

Subtask 1.2
(no features) 74.2 78.9 75.4 80.0 65.6 72.6 57.1 80.0 97.1
DEP 76.4 78.5 76.4 79.2 67.2 73.0 66.7 79.4 93.1
DEP + POS 75.5 80.3 77.3 82.0 73.9 73.6 57.1 80.0 97.1
DEP + POS + EntLen 78.2 79.7 78.0 81.9 69.3 70.5 66.7 82.5 97.1
DEP + POS + EntLen + Height 73.0 78.7 74.8 79.5 70.7 70.3 57.1 74.3 97.1

Table 4: Feature ablation results for subtasks 1.1 and 1.2. DEP are dependency labels, POS are part of speech
labels, EntLen is is the length of the input entities, and Height is the height of the entities in the dependency tree.
In both subtasks 1.1 and 1.2, the combination of dependency labels, parts of speech, and entity lengths yield the
best performance in terms of overall F1 score.

Embeddings P R F1

Subtask 1.1
Wiki News 59.2 57.3 57.6
arXiv 58.5 55.1 56.4
Wiki News + arXiv 59.4 64.1 60.9
Subtask 1.2
Wiki News 73.1 76.2 72.7
arXiv 65.4 67.4 65.9
Wiki News + arXiv 78.2 79.7 78.0

Table 5: Performance comparison for subtasks 1.1 and
1.2 when using Wiki News and arXiv embeddings.
The concatenated embeddings outperform the individ-
ual methods.

that our approach is generally more tolerant to the
noisy entities given in Subtask 1.2 than most other
approaches. Figure 2 is a confusion matrix for
the official submission for subtask 1.1. The three
most frequent labels in the training data (USAGE,
MODEL-FEATURE, and PART WHOLE) are also the
most frequently confused relation labels. This be-
havior can be partially attributed to the class im-
balance.

In Table 4, we examine the effects of various
feature combinations on the model. Specifically,
we check the macro averaged precision, recall, and
F1 scores for both subtask 1.1 and 1.2 with various
sets of features on the test set. Of the combinations
we investigated, including the dependency labels,
part of speech tags, and the token length of entities

yielded the best results in terms of overall F1 score
for both subtasks. The results by individual rela-
tion label are more mixed, with the overall best
combination simply yielding better performance
on average, not on each label individually. Inter-
estingly, the entity height feature reduces perfor-
mance, perhaps indicating that it is easy to overfit
the model using this feature.

Table 5 examines the effect of the choice of
word embeddings on performance. In both sub-
tasks, concatenating the Wiki News and arXiv
embeddings yields better performance than using
a single type of embedding. This suggests that
the two types of embeddings are useful in dif-
ferent cases; perhaps Wiki News better captures
the general language linking the entities, whereas
the arXiv embeddings capture the specialized lan-
guage of the entities themselves.

5 Conclusion

In this work, we investigated the use of a tree
LSTM-based approach for relation classification
in scientific literature. Our results at SemEval
2018 were encouraging, placing 9th (of 28) at
subtask 1.1 (relation classification with manually-
annotated entities), and 5th (of 20) at subtask
1.2 (relation classification using automatically-
generated entities). Furthermore, we conducted an
analysis of our system by varying the system pa-
rameters and features.

834

References
Waleed Ammar, Matthew E. Peters, Chandra Bhaga-

vatula, and Russell Power. 2017. The AI2 sys-
tem at SemEval-2017 Task 10 (ScienceIE): semi-
supervised end-to-end entity and relation extraction.
In SemEval-2017.

Isabelle Augenstein, Mrinal Das, Sebastian Riedel,
Lakshmi Vikraman, and Andrew D McCallum.
2017. SemEval 2017 Task 10: ScienceIE - extract-
ing keyphrases and relations from scientific publica-
tions. In SemEval-2017.

Steven Bird, Robert Dale, Bonnie J. Dorr, Bryan R.
Gibson, Mark Thomas Joseph, Min-Yen Kan, Dong-
won Lee, Brett Powley, Dragomir R. Radev, and
Yee Fan Tan. 2008. The ACL anthology reference
corpus: A reference dataset for bibliographic re-
search in computational linguistics. In LREC.

Arman Cohan, Franck Dernoncourt, Doo Soon Kim,
Kim Seokhwan Bui, Trung, Walter Chang, and Nazli
Goharian. 2018. A discourse-aware attention model
for abstractive summarization of long documents. In
NAACL-HLT.

Kata Gábor, Davide Buscaldi, Anne-Kathrin Schu-
mann, Behrang QasemiZadeh, Haı̈fa Zargayouna,
and Thierry Charnois. 2018. SemEval-2018 Task
7: Semantic relation extraction and classification in
scientific papers. In SemEval-2018.

Kata Gábor, Haı̈fa Zargayouna, Davide Buscaldi, Is-
abelle Tellier, and Thierry Charnois. 2016. Seman-
tic annotation of the ACL anthology corpus for the
automatic analysis of scientific literature. In LREC.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural computation,
9(8):1735–1780.

Ji Young Lee, Franck Dernoncourt, and Peter
Szolovits. 2017a. MIT at SemEval-2017 Task 10:
Relation extraction with convolutional neural net-
works. In SemEval-2017.

Lung-Hao Lee, Kuei-Ching Lee, and Y Jane Tseng.
2017b. The NTNU system at SemEval-2017 Task
10: Extracting keyphrases and relations from scien-
tific publications using multiple conditional random
fields. In SemEval-2017.

Yi Luan, Mari Ostendorf, and Hannaneh Hajishirzi.
2017. Scientific information extraction with semi-
supervised neural tagging. In EMNLP.

Sean MacAvaney, Arman Cohan, and Nazli Goharian.
2017. GUIR at SemEval-2017 Task 12: A frame-
work for cross-domain clinical temporal information
extraction. In SemEval-2017.

Tomas Mikolov, Edouard Grave, Piotr Bojanowski,
Christian Puhrsch, and Armand Joulin. 2018. Ad-
vances in pre-training distributed word representa-
tions. In LREC.

Mike Mintz, Steven Bills, Rion Snow, and Dan Juraf-
sky. 2009. Distant supervision for relation extrac-
tion without labeled data. In ACL/IJCNLP. Associ-
ation for Computational Linguistics.

Makoto Miwa and Mohit Bansal. 2016. End-to-end re-
lation extraction using lstms on sequences and tree
structures. In ACL.

Kai Sheng Tai, Richard Socher, and Christopher D
Manning. 2015. Improved semantic representations
from tree-structured long short-term memory net-
works. arXiv preprint arXiv:1503.00075.

Yan Xu, Lili Mou, Ge Li, Yunchuan Chen, Hao Peng,
and Zhi Jin. 2015. Classifying relations via long
short term memory networks along shortest depen-
dency paths. In EMNLP.

Jinguang Zheng, Daniel P Howsmon, Boliang Zhang,
Juergen Hahn, Deborah L. McGuinness, James A.
Hendler, and Heng Ji. 2014. Entity linking for
biomedical literature. In DTMBIO@CIKM.

835

Proceedings of the 12th International Workshop on Semantic Evaluation (SemEval-2018), pages 836–841
New Orleans, Louisiana, June 5–6, 2018. ©2018 Association for Computational Linguistics

ClaiRE at SemEval-2018 Task 7: Classification of Relations using
Embeddings

Lena Hettinger, Alexander Dallmann, Albin Zehe, Thomas Niebler and Andreas Hotho
DMIR Group

University of Wuerzburg
{hettinger,dallmann,zehe,niebler,hotho}

@informatik.uni-wuerzburg.de

Abstract
In this paper we describe our system for
SemEval-2018 Task 7 on classification of se-
mantic relations in scientific literature for
clean (subtask 1.1) and noisy data (subtask
1.2). We compare two models for classifica-
tion, a C-LSTM which utilizes only word em-
beddings and an SVM that also takes hand-
crafted features into account. To adapt to the
domain of science we train word embeddings
on scientific papers collected from arXiv.org.
The hand-crafted features consist of lexical
features to model the semantic relations as
well as the entities between which the rela-
tion holds. Classification of Relations using
Embeddings (ClaiRE) achieved an F1 score of
74.89% for the first subtask and 78.39% for
the second.

1 Introduction

The goal of SemEval-2018 Task 7 is to extract and
classify semantic relations between entities into
six categories that are specific to scientific liter-
ature (Gábor et al., 2018). In this work, we fo-
cus on the subtask of classifying relations between
entities in manually (subtask 1.1) and automati-
cally annotated and therefore noisy data (subtask
1.2). Given a pair of related entities, the task is to
classify the type of their relation among the fol-
lowing options: Compare, Model-Feature,
Part Whole, Result, Topic or Usage. Re-
lation types are explained in detail in the task de-
scription paper (Gábor et al., 2018). The follow-
ing sentence shows an example of a Result rela-
tion between the two entities combination meth-
ods and system performance:

Combination methods are an effec-
tive way of improving system perfor-
mance.

This sentence is a good example for two chal-
lenges we face in this task. First, almost half of

all entities consist of noun phrases which has to be
considered when constructing features. Secondly,
the vocabulary is domain dependent and therefore
background knowledge should be adopted.

Previous approaches for semantic relation clas-
sification tasks mainly employed two strategies.
Either they made use of a lot of hand-crafted fea-
tures or they utilized a neural network with as few
background knowledge as possible. The winning
system of an earlier SemEval challenge on relation
classification (Hendrickx et al., 2009) adopted the
first approach and achieved an F1 score of 82.2%
(Rink and Harabagiu, 2010). Later, other works
outperformed this approach by using CNNs with
and without hand-crafted features (Santos et al.,
2015; Xu et al., 2015) as well as RNNs (Miwa and
Bansal, 2016).

Approach We present two approaches that
use different levels of preliminary information.
Our first approach is inspired by the winning
method of the SemEval-2010 challenge (Rink and
Harabagiu, 2010). It models semantic relations
by describing the two entities, between which the
semantic relation holds, as well as the words be-
tween those entities. We call those in-between
words the context of the semantic relation. We
classify relations by using an SVM on lexical fea-
tures, such as part-of-speech tags. Additionally
we make use of semantic background knowledge
and add pre-trained word embeddings to the SVM,
as word embeddings have been shown to improve
performance in a series of NLP tasks, such as sen-
timent analysis (Kim, 2014), question answering
(Chen et al., 2017) or relation extraction (Dligach
et al., 2017). Besides using existing word embed-
dings generated from a general corpus, we also
train embeddings on scientific articles that better
reflect scientific vocabulary.

In contrast, our second approach relies on word

836

embeddings only, which are fed into a convo-
lutional long-short term memory (C-LSTM) net-
work, a model that combines convolutional and
recurrent neural networks (Zhou et al., 2015).
Therefore no hand-crafted features are used. Be-
cause both CNN and RNN models have shown
good performance for this task, we assume that a
combination of them will positively impact clas-
sification performance compared to the individual
models.

By combining lexical information and domain-
adapted scientific word embeddings, our system
ClaiRE achieved an F1 score of 74.89% for the
first subtask with manually annotated data and
78.39% for the second subtask with automatically
annotated data.

2 Features

In this section, we describe the features which are
used in our two approaches. All sentences are first
preprocessed before constructing boolean lexical
features on the one hand and word embedding vec-
tors on the other. Both feature groups are based on
the entities of relations as well as the context in
which those entities appear.

Apart from the Compare relation, all relation
types are asymmetric, and therefore the distinction
between start and end entity of a relation is impor-
tant. If entities appear in reverse order, that means
the end entity of a relation appears first in the sen-
tence, this is marked by a direction feature which
is part of the data set.

In our entrance example, combination meth-
ods denotes the start entity, system performance
the end entity, and are an effective way of im-
proving the context.

2.1 Preprocessing

Early experiments showed that it is beneficial to
filter the vocabulary of our data and reduce noise
by leaving out infrequent context words. The best
setting was found to be a frequency threshold of
5 on lemmatized words. Therefore we discard a
context word if its lemma appears less than 5 times
in the corpus of the respective subtask.

2.2 Context features

First we will explain feature construction based on
the context of a relation. Abbreviations for fea-
ture names are denoted in brackets. Context is
defined as the words between two entities. Early

tests showed that using those words described the
relation better than the words surrounding the re-
lation entities.

Lexical We construct several lexical boolean
features which are illustrated in Table 1. First
we apply a bag of words (bow) approach where
each lemmatized word forms one boolean feature,
which for example takes 1 as value if the lemma
improve is present and 0 if it is not. Second we de-
termine whether the context words contain certain
part-of-speech (POS) tags (pos), such as VERB.
POS-tagging was done with the help of SpaCy1

(v.2.0.2). To represent the structure of the con-
text phrase we add a path of POS tags feature,
which contains the order in which POS tags appear
(pospath). The distance feature depicts whether
the POS-path and therefore the context phrase has
a certain length (dist).

Additionally we add background knowledge by
extracting the top-level Levin classes of intermedi-
ary verbs from VerbNet2 (lc), a verb lexicon com-
patible with WordNet. It contains explicitly stated
syntactic and semantic information, using Levin
verb classes to systematically construct lexical en-
tries (Schuler, 2005). For example the verb im-
prove belongs to class 45.4, which is described
by Levin as consisting of “alternating change of
state“ verbs.3

Embeddings Aside from lexical features we
also use word embedding vectors to leverage in-
formation from the context of entities (c). For
each filtered context word we extract its word em-
beddding from a pre-trained corpus, where out-of-
vocabulary words (OOV) are represented by the
zero vector. The individual word vectors are later
applied to train a C-LSTM.

In contrast, for use in an SVM we found it ben-
eficial to represent the context embedding features
as the average over all context word embeddings.

2.3 Entity features

In the second set of features, we model the relation
entities themselves as they may be connected to
a certain relation class. For example, the token
performance or one form of it mostly appears as
an end entity of a Result relation, and in the rare

1https://spacy.io/
2http://verbs.colorado.edu/˜mpalmer/

projects/verbnet.html
3http://www-personal.umich.edu/

˜jlawler/levin.verbs

837

Example Sentence: Combination methods are an effective way of improving system performance.

Lexical Feature Set Exemplary Boolean Features

BagOfWords (bow) an, be, effective, improve, of, way
POS tags (pos) ADJ, ADP, DET, NOUN, VERB
POS path (pospath) VDANAV
Distance (dist) 6
Levin classes (lc) 45

Entities without order (ents) combination methods, methods, system performance, performance
Start entity (startEnt) combination methods, methods
End entitiy (endEnt) system performance, performance
Similarity (sim100) 0.43
Similarity bucket (simb) q50

Table 1: Examples for lexical context and entity features.

case when it represents a start entity, it is almost
always part of a Compare relation. Therefore we
leverage information about entity position for the
creation of lexical and embedding entity features.

Lexical For the creation of boolean lexical fea-
tures, we first take the lowercased string of each
entity and construct up to three distinct features
from it. One feature which marks its general ap-
pearance in the corpus without order (ents) and
one each if it occurs as start (startEnt) or end
(endEnt) entity of a relation, taking its direction
into account. Additionally we add the head noun
to the respective feature set if the entity consists of
a nominal phrase to create greater overlap between
instances.

Furthermore we measure the semantic similar-
ity of the relation entities using the cosine of the
corresponding word embedding vectors (sim100).
While the cosine takes every value from [-1, 1] in
theory, we cut off after two digits to reduce the fea-
ture space and get 99 boolean similarity features
for our corpus. To again enable learning across
instances we additionally discretize the similar-
ity range and form another five boolean similar-
ity features (simb) that capture into which of the
following buckets the similarity score falls: q0 =
[−1, 0), q25 = [0, 0.25), q50 = [0.25, 0.5), q75 =
[0.5, 0.75), q100 = [0.75, 1] (values below zero
are very rare in this corpus).

Embeddings Similar to the context features we
also want to add word embeddings of entities to
our entity feature set. This is not straighforward
as more than 44% of all entities consist of nomi-
nal phrases, while a word embedding usually cor-
responds to a single word. By way of comparison,
the proportion of nominals in the relation classifi-
cation corpus of the SemEval-2010 challenge was

only 5%. Thus we tested different strategies to ob-
tain a word embedding for nominal phrases and
found that averaging over the individual word vec-
tors of the phrase yielded the best results for this
task. These word embeddings for start (es) and
end (ee) entities of relations were then presented
to our two classification methods, which will be
described in detail in the following section.

3 Classification Methods

We utilize two different models for classifying se-
mantic relations: an SVM which incorporates both
the lexical and embedding features described in
Section 2 and a Convolutional Long Short Term
Memory (C-LSTM) neural network that only uses
word embedding vectors

To fully exploit our hand-crafted lexical fea-
tures we employ a traditional classifier. In compar-
ison to Naive Bayes, Decision Trees and Random
Forests we found a Support Vector Machine to per-
form best for this task. Instead of utilizing the de-
cision function of the SVM to predict test labels
we decided to make use of the probability esti-
mates according to Wu et al. (2004) as this proved
to be more successful. As mentioned before, the
lexical features are fed into the SVM as boolean
features whereas the word embeddings are nor-
malized using MinMax-Scaling to the range [0, 1]
to make it easier for the SVM to handle both fea-
ture groups.

In contrast to SVM, neural network models do
not necessarily rely on handcrafted features and
are therefore faster to implement. We experiment
with standard C-LSTM (Zhou et al., 2015) which
extracts a sentence representation by combining
one-dimensional convolution and an LSTM net-
work and uses the representation to perform a clas-
sification.

838

label subtask 1.1 subtask 1.2 total

COMPARE 95 (8%) 41 (3%) 136 (5%)
MODEL-F. 326 (27%) 174 (14%) 500 (20%)
PART W. 234 (19%) 196 (16%) 430 (17%)
RESULT 72 (6%) 123 (10%) 195 (8%)
TOPIC 18 (1%) 243 (20%) 261 (11%)
USAGE 483 (39%) 468 (38%) 951 (38%)

Table 2: Distribution of class labels for training data
as absolute and relative values.

4 Evaluation

After describing the two models we employ for re-
lation classification, we now portray the data set
we use and present results for both SVM and C-
LSTM as micro-F1 and macro-F1. The latter is
the official evaluation score of the SemEval Chal-
lenge. We describe the experimental setup for both
models and compare different feature sets and pre-
trained embeddings.

4.1 Data and Background Knowledge
We evaluate our approach on a set of scientific ab-
stracts, Dtest. It consists of 355 semantic relations
for each subtask which are similarly distributed as
its respective training data set. As training data we
received 350 abstracts of scientific articles per sub-
task, which resulted in 1228 labeled training rela-
tions for subtask 1.1 and 1245 training instances
for subtask 1.2 (c.f. Table 2). We combine data
sets of both subtasks for training, resulting in 2473
training examples in total (Dtrain).

Background Knowledge In our experiments,
we compare different pre-trained word embed-
dings as a source of background knowledge. As
a baseline, we employ a publicly available set of
300-dimensional word embeddings trained with
GloVe (Pennington et al., 2014) on the Common
Crawl data4 (CC). To better reflect the semantics
of scientific language, we trained our own scien-
tific embeddings using word2vec (Mikolov et al.,
2013) on a large corpus of papers collected from
arXiv.org5 (arXiv).

In order to create the scientific embeddings, we
downloaded LATEX sources for all papers published
in 2016 on arXiv.org using the provided dumps.6

After originally trying to extract the plain text
from the sources, we found that it was more fea-
sible to first compile the sources to pdf (exclud-

4http://commoncrawl.org/
5https://arxiv.org
6https://arxiv.org/help/bulk_data

context + entities
data macro F1 micro F1 macro F1 micro F1

1.1 44.35 58.87 50.30 65.63
+1.2 47.43 61.69 64.38 69.30

CC 51.79 65.07 72.47 74.93
arXiv 52.15 65.92 74.89 76.90

Table 3: SVM results for subtask 1.1.

context + entities
data macro F1 micro F1 macro F1 micro F1

1.2 67.25 69.75 72.48 80.39
+1.1 64.54 69.30 74.69 83.10

CC 62.64 70.70 75.87 84.79
arXiv 63.07 70.70 78.39 83.10

Table 4: SVM results for subtask 1.2.

ing all graphics etc.) and then use pdftotext7 to
convert the documents to plain text. This resulted
in a dataset of about 166 000 papers. Using gen-
sim (Řehůřek and Sojka, 2010), for each docu-
ment we extracted tokens of minimum length 1
with the wikicorpus tokenizer and used word2vec
to train 300-dimensional word embeddings on the
data. We kept most hyper-parameters at their de-
fault values, but limited the vocabulary to words
occurring at least 100 times in the dataset, reduc-
ing for example the noise introduced by artifacts
from equations.

4.2 Parameters and Results
After an extensive grid search per cross validation
the best parameters for the SVM were found to be
a rbf-kernel with C = 100 and γ = 0.001 for both
tasks.

Results of the SVM for subtask 1.1. are shown
in Table 3. Adding entity features proves to be
very beneficial compared to using only context
features, as we could improve macro-F1 by 12
points on average. Results are further improved
by enlarging the data set with the training samples
of subtask 1.2 and by adding word embeddings to
the feature set. While adding the CC embeddings
enhances the micro-F1 by more than 4 points, our
domain-adapted arXiv embeddings prove to per-
form even better and deliver the best result with
a macro-F1 score of 74.89% and a micro-F1 of
76.90%.

Similar observations can be made for subtask
1.2., as is pictured in Table 4.

Due to space limitations we publish parameter
7https://poppler.freedesktop.org

839

details and elaborate results for the C-LSTM on
arXiv.org (Hettinger et al., 2018). In comparison
to the SVM, which additionally uses hand-crafted
features, the C-LSTM achieves lower scores. For
arXiv embeddings it reaches a macro-F1 of 63.3%
for the first subtask and 68.0% for the second.

5 Discussion

We briefly discuss our approach during the train-
ing phase of the SemEval-Challenge and how label
distribution and evaluation measure influences our
results. Ahead of the final evaluation phase where
the concealed test data Dtest was presented to the
participants we were given a preliminary test par-
tition Dpre as part of the training data Dtrain. To
be able to estimate our performance we evaluated
it on Dpre as well as for a 10-fold stratified cross
validation setting. We chose this procedure to be
sure to pick the best system for submission at the
challenge.

As some classes were strongly underrepre-
sented in the training corpus and Dpre, we as-
sumed that this is also true for the final test set
Dtest. When in doubt we therefore chose to opti-
mize according toDpre as cross validation is based
on a slightly more balanced data set (of train data
for subtask 1.1 + 1.2). The best system we sub-
mitted for subtask 1.1 of the challenge achieved a
macro-F1 of 75.05% on Dpre during the training
phase which shows that we were able to estimate
our final result pretty closely.

During training we also noticed that for heavily
skewed class distributions as in this case, macro-
F1 as an evaluation measure strongly depends on
a good prediction of very small classes. For exam-
ple, macro-F1 of subtask 1.1 increases by 5 points
if we correctly predict one Topic instance out of
three instead of none. Thus we pick a configura-
tion that optimizes the small classes.

We also omitted some lexical feature sets from
our system as performance on the temporary and
final test set showed that they did not improve re-
sults. These features were hypernyms of context
and entity tokens from WordNet and dependency
paths between entities. Using tf-idf normalization
instead of boolean for lexical features also wors-
ened our results.

6 Conclusion

In this paper, we described our SemEval-2018
Task 7 system to classify semantic relations in sci-

entific literature for clean (subtask 1.1) and noisy
(subtask 1.2) data. We constructed features based
on relation entities and their context by means of
hand-crafted lexical features as well as word em-
beddings. To better adapt to the scientific do-
main, we trained scientific word embeddings on
a large corpus of scientific papers obtained from
arXiv.org. We used an SVM to classify rela-
tions and additionally contrasted these results with
those obtained from training a C-LSTM model on
the scientific embeddings. We were able to ob-
tain a macro-F1 score of 74.89% on clean data
and rank 4th out of 28 and 78.39% on noisy data,
which resulted in a 6th place out of 20.

In future work, we will improve the tokeniza-
tion of the scientific word embeddings and also
take noun compounds into account, as they make
up a large part of the scientific vocabulary. We
will also investigate more complex neural network
based models, that can leverage additional infor-
mation, for example relation direction and POS
tags. Some minor changes we applied to the fea-
ture generation during the post-evaluation phase
and which further improved our results by more
than 2% are published on arXiv.org together with
more detailed evaluation (Hettinger et al., 2018).

References
Danqi Chen, Adam Fisch, Jason Weston, and Antoine

Bordes. 2017. Reading wikipedia to answer open-
domain questions. In ACL (1), pages 1870–1879.
Association for Computational Linguistics.

Dmitriy Dligach, Timothy Miller, Chen Lin, Steven
Bethard, and Guergana Savova. 2017. Neural tem-
poral relation extraction. In Proceedings of the 15th
Conference of the European Chapter of the Associa-
tion for Computational Linguistics: Volume 2, Short
Papers, volume 2, pages 746–751.

Kata Gábor, Davide Buscaldi, Anne-Kathrin Schu-
mann, Behrang QasemiZadeh, Haı̈fa Zargayouna,
and Thierry Charnois. 2018. Semeval-2018 Task
7: Semantic relation extraction and classification in
scientific papers. In Proceedings of International
Workshop on Semantic Evaluation (SemEval-2018),
New Orleans, LA, USA.

Iris Hendrickx, Su Nam Kim, Zornitsa Kozareva,
Preslav Nakov, Diarmuid Ó Séaghdha, Sebastian
Padó, Marco Pennacchiotti, Lorenza Romano, and
Stan Szpakowicz. 2009. Semeval-2010 task 8:
Multi-way classification of semantic relations be-
tween pairs of nominals. In Proceedings of
the Workshop on Semantic Evaluations: Recent
Achievements and Future Directions, pages 94–99.
Association for Computational Linguistics.

840

Lena Hettinger, Alexander Dallmann, Albin Zehe,
Thomas Niebler, and Andreas Hotho. 2018. Claire
at semeval-2018 task 7 - extended version. Compu-
tation and Language Repository, arXiv:1804.05825.

Yoon Kim. 2014. Convolutional neural networks for
sentence classification. In Proceedings of the 2014
Conference on Empirical Methods in Natural Lan-
guage Processing, EMNLP 2014, October 25-29,
2014, Doha, Qatar, A meeting of SIGDAT, a Special
Interest Group of the ACL, pages 1746–1751.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013. Distributed representa-
tions of words and phrases and their compositional-
ity. In NIPS, pages 3111–3119. Curran Associates,
Inc.

Makoto Miwa and Mohit Bansal. 2016. End-to-end re-
lation extraction using lstms on sequences and tree
structures. Cite arxiv:1601.00770Comment: Ac-
cepted for publication at the Association for Compu-
tational Linguistics (ACL), 2016. 13 pages, 1 figure,
6 tables.

Jeffrey Pennington, Richard Socher, and Christopher D
Manning. 2014. Glove: Global vectors for word
representation. In EMNLP, volume 14, pages 1532–
1543.

Radim Řehůřek and Petr Sojka. 2010. Software Frame-
work for Topic Modelling with Large Corpora. In
Proceedings of the LREC 2010 Workshop on New
Challenges for NLP Frameworks, pages 45–50, Val-
letta, Malta. ELRA. http://is.muni.cz/
publication/884893/en.

Bryan Rink and Sanda Harabagiu. 2010. Utd: Clas-
sifying semantic relations by combining lexical and
semantic resources. In Proceedings of the 5th Inter-
national Workshop on Semantic Evaluation, pages
256–259. Association for Computational Linguis-
tics.

Cicero Nogueira dos Santos, Bing Xiang, and Bowen
Zhou. 2015. Classifying relations by ranking with
convolutional neural networks. Proceedings of the
7th International Joint Conference on Natural Lan-
guage Processing [IJCNLP].

Karin Kipper Schuler. 2005. Verbnet: A Broad-
coverage, Comprehensive Verb Lexicon. Ph.D. the-
sis, University of Pennsylvania, Philadelphia, PA,
USA. AAI3179808.

Ting-Fan Wu, Chih-Jen Lin, and Ruby C. Weng. 2004.
Probability estimates for multi-class classification
by pairwise coupling. Journal of Machine Learning
Research, 5(Aug):975–1005.

Kun Xu, Yansong Feng, Songfang Huang, and
Dongyan Zhao. 2015. Semantic relation classifica-
tion via convolutional neural networks with simple
negative sampling. In Proceedings of the 2015 Con-
ference on Empirical Methods in Natural Language
Processing [EMNLP], pages 536–540.

Chunting Zhou, Chonglin Sun, Zhiyuan Liu, and Fran-
cis C. M. Lau. 2015. A c-lstm neural network for
text classification. CoRR, abs/1511.08630.

841

Proceedings of the 12th International Workshop on Semantic Evaluation (SemEval-2018), pages 842–847
New Orleans, Louisiana, June 5–6, 2018. ©2018 Association for Computational Linguistics

TakeLab at SemEval-2018 Task 7: Combining Sparse and Dense Features
for Relation Classification in Scientific Texts

Martin Gluhak, Maria Pia di Buono, Abbas Akkasi, Jan Šnajder
Text Analysis and Knowledge Engineering Lab

Faculty of Electrical Engineering and Computing
University of Zagreb

Unska 3, 10000 Zagreb, Croatia
{name.surname}@fer.hr

Abstract

We describe two systems for semantic relation
classification with which we participated in the
SemEval 2018 Task 7, subtask 1 on seman-
tic relation classification: an SVM model and
a CNN model. Both models combine dense
pretrained word2vec features and hancrafted
sparse features. For training the models, we
combine the two datasets provided for the sub-
tasks in order to balance the under-represented
classes. The SVM model performed better
than CNN, achieving an F1-macro score of
69.98% on subtask 1.1 and 75.69% on subtask
1.2. The system ranked 7th among 28 submis-
sions on subtask 1.1 and 7th among 20 sub-
missions on subtask 1.2.

1 Introduction

Relation extraction is a traditional information ex-
traction task which aims at detecting and classi-
fying semantic relations between entities in text
(Pawar et al., 2017). The task essentially induces
structure from unstructured textual information,
allowing us to obtain valuable information about
the way in which entities interact, thus improv-
ing human capacity to analyze (often large) quan-
tities of textual data. Relation extraction is typi-
cally framed as a classification task: pairs of en-
tities from a document are inspected and the type
of relation is predicted by means of local linguistic
cues (Culotta et al., 2006).

Relation extraction has been extensively stud-
ied in the literature; see (Konstantinova, 2014) for
a comprehensive overview. Etzioni et al. (2008)
group the relation extraction approaches into three
classes: (1) knowledge-based methods, (2) super-
vised methods, and (3) self-supervised methods.
Traditional approaches mostly relied on shallow
machine learning models with handcrafted fea-
tures (GuoDong et al., 2005) and specific kernel
methods (Zelenko et al., 2003). Some systems

leverage unlabeled data to improve classification
and use semi-supervised or unsupervised learning
(Chen et al., 2006; Hasegawa et al., 2004). The
current state of the art is a deep recurrent neu-
ral network model by Xu et al. (2016). Most re-
search on relation extraction has leveraged stan-
dard benchmark datasets from the ACE (Dodding-
ton et al.) and SemEval-2010 Task 8 (Hendrickx
et al., 2009).

This paper describes the systems with which
we participated in the SemEval 2018 task 7 on
Semantic relation extraction and classification in
scientific papers. We focused on the subtask 1
(relation classification), which featured two sce-
narios: 1.1 Relation classification on clean (i.e.,
manually annotated) data and 1.2 Relation clas-
sification on noisy (i.e., automatically annotated)
data. Both scenarios start out with pre-extracted
entity pairs, which makes the task simpler than re-
lation extraction proper. On the other hand, the
task remains challenging because of the choice of
the domain: scientific publications abound with
complex syntactic structures and rely on special-
ist terminology, which makes it more difficult to
predict the correct relation type. We framed the
problem as a supervised classification task and
devised two models: a support vector machine
(SVM) model, which utilizes a rich set of fea-
tures combining dense pretrained word2vec fea-
tures and handcrafted sparse features, and a con-
volutional neural network (CNN) model. The best
result was achieved with the SVM model, which
ranked 7th in both scenarios of subtask 1.

2 Dataset

The organizers have provided different training
datasets for scenarios 1.1 and 1.2 of subtask 1,
each consisting of 350 abstracts of scientific pa-
pers from the Natural Language Processing (NLP)

842

domain (Gábor et al., 2018) to be used for training
the models. All entities representing domain con-
cepts (e.g., word sense disambiguation and trans-
lation) are already annotated and listed in pairs
according to one of the relations that holds be-
tween them. For example, in the sentence “High
quality translation via word sense disambiguation
and accurate word order generation of the target
language”, the entity word sense disambiguation
is used for translation, hence it is annotated as
an instance of the USAGE relation type. There
are six distinct relation types: USAGE, TOPIC,
COMPARE, MODEL-FEATURE, RESULT, PART-
WHOLE. Except for COMPARE, all relations are
asymmetric, which means that the direction of re-
lation matters. For this reason, every asymmetri-
cal relation instance has additionally been anno-
tated with the direction of the relation using the
“reverse” flag to indicate that the order of entities
should be flipped.

The total number of training instances is 1228
and 1248 for subtask 1.1 and subtask 1.2 datasets,
respectively. Each instance contains exactly two
entities and both appear in the same sentence.
The subtask 1.2 dataset uses the same annotation
scheme as the first subtask, but the entities are au-
tomatically extracted rather than manually anno-
tated, thus introducing noise.

Table 1 shows the breakdown of relation types
for the two datasets. In general, the class distri-
bution is rather imbalanced, especially the TOPIC

relation, which is heavily under-represented in the
dataset for subtask 1.1.

3 System Description

We devised two supervised machine learning
models: an SVM with a rich set of features and
a CNN model. We next describe these models in
more detail.

3.1 SVM Model
Our best-performing model uses an SVM classi-
fier with a combination of sparse and dense fea-
tures.

Sparse feature encoding. To encode the sparse
features, we adopt the method of Chen et al.
(2006) who divide the sentence into contexts. In
a nutshell, the method consists in describing the
context in which the entities occur by dividing the
sentence into five contexts around the entity men-
tions. Two of these five contexts are related to the

entities involved in the relation, while the remain-
ing three contexts represent the words before, be-
tween, and after the entity mention pair. Every
feature describing a word contains the information
about which context it is located in. It also addi-
tionally contains the position of the word relative
to the start of that context. While this increases
the total number of parameters, it also provides in-
formation about the word ordering in the context
independently of the size of other contexts.

This encoding scheme is used to create fea-
tures of word tokens, part-of-speech tags, and
named entities. Similarly as Chen et al. (2006),
who in turn followed Charniak (2000) and Zhang
(2004), we experimented with additional con-
stituency parse features describing grammatical
functions and chunk tag information for all five
contexts, and IOB-chains of the heads of the two
entities. However, as preliminary experiments
showed that these additional features do not pro-
vide any performance gains, we decided not to in-
clude them in our final models, intending to eval-
uate these results in future work.

Word windows. In the scientific domain sen-
tence structures may be very complex, increasing
the distance between the two entity mentions. This
presents a considerable problem for sparse feature
encoding of the context between two entities: as
there the features are encoded for each word sep-
arately, the increase in distance yields a propor-
tional increase in the number of parameters, which
may cause overfitting. To mitigate this problem,
instead of representing the contexts for the whole
sentence, we use word windows that focus on the
words around the entity mentions. Based on pre-
liminary experiments, we decided to use different
sizes of word windows for before, between, and
after contexts: the window size for the context in
between the entities is a maximum of eight words
(at most four on the side of each entity; for longer
distance the middle words get ignored), while the
window size of the before and after contexts is at
most two words to the left and right, respectively.
The rationale for this is the assumption that words
indicative of relation type are more likely to lie in
between and close to one of the two entities.

Dependency features. Many systems from the
literature make use of dependency features
(Nguyen and Grishman, 2015a; Xu et al., 2016,
2015), which, intuitively, should be useful for re-

843

Subtask 1.1 Subtask 1.2

Relation type Regular Reversed All Regular Reversed All Combined

USAGE 296 187 483 323 147 470 953
TOPIC 8 10 18 230 13 243 261

COMPARE 95 – 95 41 – 41 136
MODEL-FEATURE 226 100 326 123 52 175 501

RESULT 52 20 72 85 38 123 195
PART-WHOLE 158 76 234 117 79 196 430

Total 835 393 1228 919 329 1248 2476

Table 1: Class distribution in subtask 1 training datasets for scenario 1.1 (clean annotation) and scenario 1.2 (noisy
annotation). Last column shows the combined counts of both datasets.

lation extraction and classification. Specifically
for the relation classification task, we are inter-
ested in the connection between the two entities
involved in a relation within an instance. Thus,
after performing a dependency parse of the whole
sentence in which the relation appears, we find the
shortest dependency path between the two entities.
As demonstrated by Xu et al. (2016), the shortest
dependency path between two entities is advanta-
geous over a raw word sequence or a whole parse
tree, because it reduces irrelevant information and
because the shortest path dependency relations fo-
cus on the action and agents in a sentence and
are thus naturally suitable for relation classifica-
tion. The dependency parsing was done using the
SpaCy parser.1

Considering that the edges on the shortest de-
pendency path also have directions, we split the
path into two sub-paths based on the edge direc-
tion. Usually, the first path goes from the first
entity node towards the lowest common ancestor
in the dependency parse tree, while the other path
goes downwards to the second entity from the an-
cestor node. Then, each sub-path is encoded into a
series of one-hot sparse features that represent the
edge dependency type and the distance of the edge
from the starting point. Preliminary experiments
showed that these features lead to substantial per-
formance improvement.

Word embeddings and OOV words. To cap-
ture the semantic meaning of the words we used
300-dimensional pre-trained Google word2vec
word embeddings.2 In accordance with stan-
dard practice, which leverages the additive com-
positionality of word embeddings (Gittens et al.,
2017), we represent each context as a sum of its
word embeddings. As we divided the sentence

1https://spacy.io/
2https://code.google.com/archive/p/word2vec/

into five context, the result is five vectors, which
are subsequently concatenated into a single 1500-
dimensional vector.

Using a pre-trained word2vec model combined
with a scientific domain dataset led to many out-
of-vocabulary (OOV) words. After some very ba-
sic word preprocessing, e.g., handling of hyphens
and underscores, 1108 out of 9319 unique words
from the datasets (combined datasets of subtasks
1.1. and 1.2) remained uncovered by the word2vec
model. To tackle the OOV problem, we experi-
mented with a fallback mechanism based on the
context2vec (Melamud et al., 2016), an off-the-
shelf lexical substitution system. Our idea was
to retrieve the lexical substitutes for each OOV
word3 and retrieve their vectors instead – a tech-
nique akin to query expansion in information re-
trieval. We experimented with a number of vari-
ants of this method, however as none led to perfor-
mance improvements, we decided not to include
lexical substitution fallback in the final model.

Reversed relations. We use a boolean feature
to indicate the reverse direction of a relation in
an instance, as provided in the training datasets.
With the addition of that feature the model can
more easily differentiate between the regular and
reversed instances of a class. We expand the num-
ber of classes from the initial six types of relations
to include reversed relations as distinct classes, re-
sulting in an 11-way classification model. The
results obtained this way were better then using
a 6-way classification model; while this appears
counter-intuitive, we leave a more thorough in-
vestigation for future work. Once the predicted
classes are obtained, we map regular and reversed
relation types into one class, as in the original task.

Considering that COMPARE relation cannot be
3A lexical substitute is a meaning-preserving replacement

of a word in its context.

844

reversed, we perform a post-prediction correction
if a relation instance has an active reverse flag in
the test set but the model predicted the instance
to be of the COMPARE class. In this case, we
change the prediction for that instance to be the
second most probable class according to the pre-
dicted class probabilities.

3.2 CNN model

Motivated by the high performance that deep
learning techniques have achieved in this area
(Kumar, 2017), we experimented with a con-
volutional neural network (CNN) model. This
model outperforms traditional feature-engineered
approaches on relation extraction benchmarks, as
shown by Nguyen and Grishman (2015b).

Architecture. The idea behind the use of a CNN
model is to use the convolutional layer to capture
the local content and meaning of a few consecu-
tive words, depending on the size of the convo-
lution kernel. Our CNN model comprises a sin-
gle convolution layer connected to a max-pooling
layer. As proposed by Nguyen and Grishman
(2015b), pooling is followed by a dropout layer,
which has been shown to work working well in
fully-connected layers (Hinton et al., 2012; Wan
et al., 2013; Krizhevsky et al., 2012). We use
the softmax function at the output layer activation
function. The model is implemented using Ten-
sorFlow.4

Features. The CNN model uses the same pre-
trained word2vec embeddings as the SVM model.
Since the training data is limited, the word embed-
dings are kept static and not adjusted during train-
ing. In addition to word embeddings, the model
is fed as input the position of words relative to
the entities. In this way, the model is provided
with the information on the positions of entities
and the distance of context words, which could af-
fect their relevance for predicting the relation type
(Nguyen and Grishman, 2015b). Thus, each word
has two position features: (1) a relative distance
to the closest word for the first entity and (2) a
relative distance to the closest word for the sec-
ond entity. Position embeddings are randomly ini-
tialized to 50-dimensional vectors and are shared
for the two entities. Unlike with the word embed-
dings, the position embeddings are adjusted dur-
ing training. The assumption is that this relative

4https://www.tensorflow.org/

distance from the entity mentions is inversely pro-
portional to the importance of words. In line with
this assumption, we capped the distance values at
15, as words at longer distances are likely not to
have much effect on relation type.

Another feature that we added is the informa-
tion about the shortest dependency path, as de-
scribed by Nguyen and Grishman (2015a). As-
suming that words from the shortest dependency
path are more relevant than others, we add for each
word a boolean value feature indicating whether
that word belongs to the shortest dependency path.
We also use an additional indicator feature to dis-
tinguish the relation instances with the REVERSE
attribute, even though the CNN model has been
trained as a 6-way classifier. All the features per-
taining to a word are concatenated and considered
as a single element when passed to the first layer
of the network.

Lastly, we include word windows into the CNN
model, in the same manner as we did for the SVM
model, but this time increasing the window sizes
of contexts around the entities, as this has less of
an effect on the number of parameters than it was
the case for the SVM model. Thus, we set the win-
dow size for between context to four words from
each side, while the window size of before and af-
ter contexts has been set to the five words closest to
the entities. For clarification, word windows sim-
ply decide the size of the sentence (not to be con-
fused with position features, which embed previ-
ously discussed distances of each word inside the
window).

4 Evaluation and Results

As subtask 1.1 and 1.2 are very similar and dif-
fer only in how the labeling was carried out (man-
ual or automatic), we decided to combine the
training sets of the two tasks in one training set.
This allowed us to increase the number of in-
stances for the TOPIC relation type, which was
severely under-represented in subtask 1.1 training
set (cf. Table 1).

The hyperparameters for the SVM model were
selected using cross-validated grid search. The
CNN model was trained using early stopping with
batch size of 64. Kernel sizes of the convolution
layers are 3, 4, and 5 words, each size having 32
kernels. Adam algorithm was used for the model
optimization. A dropout rate of 0.5 was used dur-
ing the training.

845

Test set Model P R F1

Subtask 1.1 SVM 64.64 75.57 69.68
CNN 63.35 72.42 67.58

Subtask 1.2. SVM 71.64 80.24 75.69
CNN 14.78 15.81 15.28

Table 2: Relation classification results

The evaluation was performed on the test sets
provided by the task organizers. Each test set is
comprised of 150 scientific paper abstracts with
350 relation instances. Table 2 shows macro-
averaged precision, recall, and F1 score for the two
models on the two test sets.

Differently from previous findings (Nguyen and
Grishman, 2015b), in our case the SVM outper-
formed the CNN model. This might be explained
by the relatively small size size of the training set.
On subtask 1.1, the CNN performs slightly worse
than the SVM model, while it fails completely on
the second subtask. We presume this might be due
to an implementation error, but we were unable
to identify the problem. In the official SemEval
competition, the SVM model ranked 7th among
28 submissions on subtask 1.1 and 7th among 20
submissions on subtask 1.2.

5 Conclusion

We described two models for relation classifica-
tion with which participated in the SemEval-2018
Task 7, subtasks 1.1 and 1.2 on relation classifi-
cation: an SVM model and a CNN model. Our
models combine sparse, handcrafted features and
dense features based on word embeddings. Al-
though deep learning models currently excels at
relation extraction tasks, in our case, probably due
to the small relatively small training set available,
SVM outperformed the CNN model, ranking 7th
in both evaluation runs. Overall, the tasks proved
to be very challenging, mainly due to the peculiar-
ities of the domain.

For future work, we intend to retrain our mod-
els on a larger dataset using distant supervision
based on publicly available scientific corpora,
and also experiment with training domain-specific
word2vec embeddings.

Acknowledgments

This research has been partly supported by the
European Regional Development Fund under the
grant KK.01.1.1.01.0009 (DATACROSS).

References
Eugene Charniak. 2000. A maximum-entropy-inspired

parser. In Proceedings of the 1st North American
chapter of the Association for Computational Lin-
guistics conference, pages 132–139. Association for
Computational Linguistics.

Jinxiu Chen, Donghong Ji, Chew Lim Tan, and
Zhengyu Niu. 2006. Relation extraction using la-
bel propagation based semi-supervised learning. In
Proceedings of the 21st International Conference
on Computational Linguistics and the 44th annual
meeting of the Association for Computational Lin-
guistics, pages 129–136. Association for Computa-
tional Linguistics.

Aron Culotta, Andrew McCallum, and Jonathan Betz.
2006. Integrating probabilistic extraction models
and data mining to discover relations and patterns in
text. In Proceedings of the main conference on Hu-
man Language Technology Conference of the North
American Chapter of the Association of Computa-
tional Linguistics, pages 296–303. Association for
Computational Linguistics.

George R Doddington, Alexis Mitchell, Mark A Przy-
bocki, Lance A Ramshaw, Stephanie Strassel, and
Ralph M Weischedel. The automatic content extrac-
tion (ACE) program-tasks, data, and evaluation.

Oren Etzioni, Michele Banko, Stephen Soderland, and
Daniel S. Weld. 2008. Open information extrac-
tion from the web. Communications of the ACM,
51(12):68–74.

Kata Gábor, Davide Buscaldi, Anne-Kathrin Schu-
mann, Behrang QasemiZadeh, Haı̈fa Zargayouna,
and Thierry Charnois. 2018. Semeval-2018 Task
7: Semantic relation extraction and classification in
scientific papers. In Proceedings of International
Workshop on Semantic Evaluation (SemEval-2018),
New Orleans, LA, USA.

Alex Gittens, Dimitris Achlioptas, and Michael W. Ma-
honey. 2017. Skip-gram-zipf+ uniform= vector ad-
ditivity. In Proceedings of the 55th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), volume 1, pages 69–76.

Zhou GuoDong, Su Jian, Zhang Jie, and Zhang Min.
2005. Exploring various knowledge in relation ex-
traction. In Proceedings of the 43rd annual meeting
on association for computational linguistics, pages
427–434. Association for Computational Linguis-
tics.

Takaaki Hasegawa, Satoshi Sekine, and Ralph Grish-
man. 2004. Discovering relations among named
entities from large corpora. In Proceedings of the
42nd Annual Meeting on Association for Computa-
tional Linguistics, page 415. Association for Com-
putational Linguistics.

Iris Hendrickx, Su Nam Kim, Zornitsa Kozareva,
Preslav Nakov, Diarmuid Ó Séaghdha, Sebastian

846

Padó, Marco Pennacchiotti, Lorenza Romano, and
Stan Szpakowicz. 2009. SemEval-2010 Task 8:
Multi-way classification of semantic relations be-
tween pairs of nominals. In Proceedings of
the Workshop on Semantic Evaluations: Recent
Achievements and Future Directions, pages 94–99.
Association for Computational Linguistics.

Geoffrey E. Hinton, Nitish Srivastava, Alex
Krizhevsky, Ilya Sutskever, and Ruslan R. Salakhut-
dinov. 2012. Improving neural networks by
preventing co-adaptation of feature detectors. arXiv
preprint arXiv:1207.0580.

Natalia Konstantinova. 2014. Review of relation ex-
traction methods: What is new out there? In Inter-
national Conference on Analysis of Images, Social
Networks and Texts x000D , pages 15–28. Springer.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hin-
ton. 2012. ImageNet classification with deep con-
volutional neural networks. In Advances in neural
information processing systems, pages 1097–1105.

Shantanu Kumar. 2017. A survey of deep learn-
ing methods for relation extraction. arXiv preprint
arXiv:1705.03645.

Oren Melamud, Jacob Goldberger, and Ido Dagan.
2016. context2vec: Learning generic context em-
bedding with bidirectional lstm. In Proceedings
of The 20th SIGNLL Conference on Computational
Natural Language Learning, pages 51–61.

Thien Huu Nguyen and Ralph Grishman. 2015a.
Combining neural networks and log-linear mod-
els to improve relation extraction. arXiv preprint
arXiv:1511.05926.

Thien Huu Nguyen and Ralph Grishman. 2015b. Rela-
tion extraction: Perspective from convolutional neu-
ral networks. In Proceedings of the 1st Workshop on
Vector Space Modeling for Natural Language Pro-
cessing, pages 39–48.

Sachin Pawar, Girish K Palshikar, and Pushpak Bhat-
tacharyya. 2017. Relation extraction: A survey.
arXiv preprint arXiv:1712.05191.

Li Wan, Matthew Zeiler, Sixin Zhang, Yann Le Cun,
and Rob Fergus. 2013. Regularization of neural net-
works using dropconnect. In International Confer-
ence on Machine Learning, pages 1058–1066.

Yan Xu, Ran Jia, Lili Mou, Ge Li, Yunchuan Chen,
Yangyang Lu, and Zhi Jin. 2016. Improved re-
lation classification by deep recurrent neural net-
works with data augmentation. arXiv preprint
arXiv:1601.03651.

Yan Xu, Lili Mou, Ge Li, Yunchuan Chen, Hao Peng,
and Zhi Jin. 2015. Classifying relations via long
short term memory networks along shortest depen-
dency paths. In Proceedings of the 2015 Confer-
ence on Empirical Methods in Natural Language
Processing, pages 1785–1794.

Dmitry Zelenko, Chinatsu Aone, and Anthony
Richardella. 2003. Kernel methods for relation ex-
traction. Journal of machine learning research,
3(Feb):1083–1106.

Zhu Zhang. 2004. Weakly-supervised relation classifi-
cation for information extraction. In Proceedings of
the thirteenth ACM international conference on In-
formation and knowledge management, pages 581–
588. ACM.

847

Proceedings of the 12th International Workshop on Semantic Evaluation (SemEval-2018), pages 848–852
New Orleans, Louisiana, June 5–6, 2018. ©2018 Association for Computational Linguistics

NEUROSENT-PDI at SemEval-2018 Task 7: Discovering Textual
Relations With a Neural Network Model

Mauro Dragoni
Fondazione Bruno Kessler

Via Sommarive 18
Povo, Trento, Italy
dragoni@fbk.eu

Abstract
Discovering semantic relations within textual
documents is a timely topic worthy of inves-
tigation. Natural language processing strate-
gies are generally used for linking chunks of
text in order to extract information that can be
exploited by semantic search engines for per-
forming complex queries. The scientific do-
main is an interesting area where these tech-
niques can be applied. In this paper, we de-
scribe a system based on neural networks ap-
plied to the SemEval 2018 Task 7. The sys-
tem relies on the use of word embeddings
for composing the vectorial representation of
text chunks. Such representations are used
for feeding a neural network aims to learn the
structure of paths connecting chunks associ-
ated with a specific relation. Preliminary re-
sults demonstrated the suitability of the pro-
posed approach encouraging the investigation
of this research direction.

1 Introduction

One of the emerging trends of natural language
technologies is their application to scientific litera-
ture. There is a constant increase in the production
of scientific papers and experts are faced with an
explosion of information that makes it difficult to
have an overview of the state of the art in a given
domain. Recent works from the semantic web, sci-
entometry, and natural language processing (NLP)
communities aimed to improve the access to scien-
tific literature, in particular to answer queries that
are currently beyond the capabilities of standard
search engines. Examples of such queries include
finding all papers that address a given problem in
a specific way, or to discover the roots of a certain
idea.

The NLP tasks that underlie intelligent process-
ing of scientific documents are those of informa-
tion extraction: identifying concepts and recog-
nizing the semantic relation that holds between

them. Information extraction from corpora includ-
ing relation extraction and classification normally
involves a complicated multiple-step process.

In this paper, we present a neural network strat-
egy for addressing the challenge of extracting in-
formative entities from scientific papers and infer-
ring their semantic relation among a set of six al-
ternatives. This challenge is part of the SemEval
2018 Task 7 (Gábor et al., 2018). One of the pil-
lar of the proposed approach is that the word em-
beddings used for representing the text within the
neural network have been generated from a cor-
pus containing only scientific papers instead of
a general purpose one, like news repositories or
Wikipedia.

2 System Implementation

NeuroSent has been entirely developed in Java
with the support of the Deeplearning4j library 1

and it is composed by following two main phases:

• Generation of Word vectors (Section 2.1):
raw text, appropriately tokenized using the
Stanford CoreNLP Toolkit, is provided as in-
put to a 2-layers neural network implement-
ing the skip-gram approach with the aim of
generating word vectors.

• Learning of Relations Model (Section 2.2):
word vectors are used for training a recur-
rent neural network (RNN) (Gelenbe, 1993)
with an output layer containing one node for
each type of relation supported by the model.
We decided to use RNN due to the necessity
of working with input information provided
through a sequence of input instances (i.e. the
ordered arrays of embeddings corresponding
to each word of the text to analyze).

1https://deeplearning4j.org/

848

In the following subsections, we describe in
more detail each phase by providing also the set-
tings used for managing our data.

2.1 Generation of Word Vectors

The generation of the word vectors has been per-
formed by applying the skip-gram algorithm on
the raw natural language text extracted from a
collection of 2,459,264 scientific papers collected
from proceedings of past conferences and jour-
nals. In particular, we used the text extracted from
the papers contained within the ACM Digital li-
brary, IEEE Xplore and Springer LNCS website.
The rationale behind the choice of this dataset fo-
cuses on two reasons:

• the dataset contains only scientific docu-
ments. This way, we are able to build word
embeddings focused on the scientific context.

• the dataset is smaller with respect to other
corpora used in the literature for building
other word embeddings that are currently
freely available, like the Google News ones. 2

Indeed, as introduced in Section 1, one of our
goal is to demonstrate how we can leverage
the use of dedicated resources for generating
word embeddings, instead of corpora’s size,
for improving the effectiveness of classifica-
tion systems.

These two points represent the main original
contributions of this work, in particular the as-
pect of considering only scientific information for
generating word embeddings. While embeddings
currently available are created from big corpora
of general purpose texts (like news archives or
Wikipedia pages), ours are generated by using a
smaller corpus containing documents strongly re-
lated to the problem that the model will be thought
for. On the one hand, this aspect may be consid-
ered a limitation of the proposed solution due to
the requirement of training a new model in case
of problem change. However, on the other hand,
the usage of dedicated resources would lead to the
construction of more effective models.

Word embeddings have been generated by
the Word2Vec implementation integrated into the
Deeplearning4j library. The algorithm has been
set up with the following parameters: the size of

2https://github.com/mmihaltz/word2vec-GoogleNews-
vectors

the vector to 64, the size of the window used as in-
put of the skip-gram algorithm to 5, and the mini-
mum word frequency was set to 1. The reason for
which we kept the minimum word frequency set to
1 is to avoid the loss of rare but important words
that can occur in specific documents.

2.2 Learning of The Relations Model

The relations model is built by starting from the
word embeddings generated during the previous
phase.

The first step consists in converting each textual
sentence contained within the dataset into the cor-
responding numerical matrix S. Given a sentence
s, we extract all tokens ti, with i ∈ [0, n], and we
replace each ti with the corresponding embedding
w. During the conversion of each word in its cor-
responding embedding, if such embedding is not
found, the word is discarded. At the end of this
step, each sentence contained in the training set is
converted in a matrix S = [w〈1〉, . . . ,w〈n〉].

Before giving all matrices as input to the neu-
ral network, we need to include both padding and
masking vectors in order to train our model cor-
rectly. Padding and masking allows us to support
different training situations depending on the num-
ber of the input vectors and on the number of pre-
dictions that the network has to provide at each
time step. In our scenario, we work in a many-
to-one situation where our neural network has to
provide one prediction as result of the analysis of
many input vectors (word embeddings).

Padding vectors are required because we have
to deal with the different length of sentences. In-
deed, the neural network needs to know the num-
ber of time steps that the input layer has to import.
This problem is solved by including, if necessary,
into each matrix Sk, with k ∈ [0, z] and z the
number of sentences contained in the training set,
null word vectors that are used for filling empty
word’s slots. These null vectors are accompanied
by a further vector telling to the neural network
if data contained in a specific positions has to be
considered as an informative embedding or not.

A final note concerns the back propagation
of the error. Training recurrent neural net-
works can be quite computationally demanding in
cases when each training instance is composed by
many time steps. A possible optimization is the
use of truncated back propagation through time
(BPTT) (Werbos, 1990) that was developed for re-

849

ducing the computational complexity of each pa-
rameter update in a recurrent neural network. On
the one hand, this strategy allows to reduce the
time needed for training our model. However, on
the other hand, there is the risk of not flowing
backward the gradients for the full unrolled net-
work. This prevents the full update of all network
parameters. For this reason, even if we work with
recurrent neural networks, we decided to do not
implement a BPTT approach but to use the de-
fault backpropagation implemented into the DL4J
library.

Concerning information about network struc-
ture, the input layer was composed by 64 neu-
rons (i.e. embedding vector size), the hidden RNN
layer was composed by 128 nodes, and the out-
put layer contained 6 nodes, one for each relation
(described in Section 3). The network has been
trained by using the Stochastic Gradient Descent
with 1000 epochs and a learning rate of 0.002.

3 The Tasks

The SemEval 2018 Task 7 is composed by two dif-
ferent subtasks concerning the identification and
classification of semantic relations. For the first
subtask the participants had to identify pairs of en-
tities that are instances of any of the six semantic
relations. This was an extraction task. While for
the second subtask, participants had to classify ex-
tracted instances into one of the six semantic rela-
tion types. This was a classification task.

The six semantic relations subject of this task
are the following.

• USAGE: this is an asymmetrical relation
holds between two entities X and Y, where,
for example: “X is used for Y”.

• RESULT: this is an asymmetrical relation
holds between two entities X and Y, where,
for example: “X gives as a result Y” (where
Y is typically a measure of evaluation).

• MODEL-FEATURE: this is an asymmetri-
cal relation holds between two entities X and
Y, where, for example: “X is a feature/an ob-
served characteristic of Y”.

• PART WHOLE: this is an asymmetrical re-
lation holds between two entities X and Y,
where, for example: “X is a part, a compo-
nent of Y”.

• TOPIC: this is an asymmetrical relation
holds between two entities X and Y, where,
for example: “X deals with topic Y” or “X
(author, paper) puts forward Y” (an idea, an
approach).

• COMPARE: this is a symmetrical relation
holds between two entities X and Y, where
“X is compared to Y” (e.g. two systems, two
feature sets or two results).

Below, we briefly described the two subtasks
composing the SemEval 2018 Task 7.

Subtask #1: Relation classification The sub-
task is decomposed into two scenarios according
to the data used: classification on clean data and
classification on noisy data.

For this subtask, instances with directionality
are provided in both the training data and the test
data and they are not to be modified or completed
in the test data.

This subtask was then split in two separated ac-
tivities.

1.1 Relation classification on clean data. The
classification task is performed on data where
entities were manually annotated following
the ACL RD-TEC 2.0 guidelines 3. Entities
represent domain concepts specific to NLP,
while high-level scientific terms (e.g. “hy-
pothesis”, “experiment”) are not annotated.

1.2 Relation classification on noisy data. This
activity is identical to the previous one with
the difference is that the entities are anno-
tated automatically and contain noise. The
annotation comes from the ACL-RelAcS cor-
pus 4 (Gábor et al., 2016) and it is based
on a combination of automatic terminology
extraction and external ontologies. Entities
are therefore terms specific to the given cor-
pus, and include high-level terms (e.g. “algo-
rithm”, “paper”, “method”). Relations were
manually annotated in the training data and
in the gold standard, between automatically
annotated entities.

Subtask #2: Relation extraction and classifica-
tion This subtask combines the extraction task
and the classification task. The training data for

3https://lipn.univ-paris13.fr/ gabor/Relacs/
4http://pars.ie/publications/papers/pre-prints/acl-rd-tec-

guidelines-ver2.pdf

850

this scenario is the same that is used for the previ-
ous subtask, i.e. manually annotated entities, se-
mantic relations with relation types between these
entities. The test data contains different abstracts
than the previous subtask and only entity annota-
tions were provided. For the extraction task, par-
ticipants need to identify pairs of entities in the
abstracts that correspond to an instance of any of
the six relations. While, for the classification task,
relation labels of the extracted relations need to be
predicted similarly to Subtask #1.

The NeuroSent system has been applied to
both subtasks. In Section 4, we report the prelim-
inary results obtained by NeuroSent on the train-
ing set compared with a set of baselines.

4 In-Vitro Evaluation

Approach Task #1.1 Task #1.2
Support Vector Machine 0.4534 0.4551

Naive-Bayes 0.4788 0.4787
Maximum Entropy 0.4917 0.4892
CNN Architecture 0.5329 0.4918

NeuroSent 0.5572 0.5749

Table 1: Results obtained on the training set by Neu-
roSent and by the four baselines for the Task#1.

Approach Task #2.1 Task #2.2
Support Vector Machine 0.3591 0.3498

Naive-Bayes 0.3842 0.3658
Maximum Entropy 0.3982 0.3755
CNN Architecture 0.4103 0.3814

NeuroSent 0.4274 0.4009

Table 2: Results obtained on the training set by Neu-
roSent and by the four baselines for the Task#2.

Approach Task #1.1 Task #1.2
ETH-DS3Lab 0.817 0.904
NeuroSent 0.180 0.218

Table 3: Results obtained on the test set by NeuroSent
and by the best system of Task#1.

The NeuroSent approach have been prelimi-
narily evaluated by adopting the Dranziera pro-
tocol (Dragoni et al., 2016). This protocol, even if
it was thought for the sentiment analysis task, can
be easily adapted to any NLP task.

Approach Task #2.1 Task #2.2
ETH-DS3Lab 0.488 0.493

UWNLP 0.500 0.391
NeuroSent 0.256 0.031

Table 4: Results obtained on the test set by NeuroSent
and by the best systems of Task#2.

The validation procedure leverage on a five-fold
cross evaluation setting in order to validate the ro-
bustness of the proposed solution. The approach
has been compared with four baselines:

• Support Vector Machine (SVM): classifica-
tion was run with a linear kernel type by us-
ing the Libsvm (Chang and Lin, 2011). Lib-
svm uses a sparse format so that zero values
do not need to be captured for training files.
This can cause training time to be longer, but
keeps Libsvm flexible for sparse cases.

• Naive Bayes (NB) and Maximum Entropy
(ME): the MALLET: MAchine Learning for
LanguagE Toolkit (McCallum, 2002) was
used for classification by using both Naive
Bayes and Maximum Entropy algorithms.
For the experiments conducted in our eval-
uation, the Maximum Entropy classification
has been performed by using a Gaussian prior
variance of 1.0.

• Convolutional Neural Network (Chaturvedi
et al., 2016) (CNN): we compared our ar-
chitecture with a classic CNN. Models have
been trained with the embeddings created
from the Blitzer dataset.

Tables 1 and 2 show the results obtained on
Tasks #1 and #2 respectively. In each table, we
provide averaged F1-Score obtained on the five
folds in which the training set has been split.

We performed a detailed error analysis concern-
ing the performance of NeuroSent. In general,
we observed how our strategy tends to provide
false negative predictions. Unfortunately, on the
test set our approach obtained significant worse re-
sults with respect to the other systems participated
to the competition (Tables 3 and 4). We are investi-
gating about the reasons of these low performance.

On the one hand, a possible action for improv-
ing the effectiveness our strategy is to increase
the granularity of the embeddings (i.e. augment-
ing the size of the embedding vectors) in order

851

to increase the distance between the space re-
gions of each kind of relation. On the other hand,
by increasing the size of embedding vectors, the
computational time for building, or updating, the
model and for evaluating a single instance in-
creases as well. Part of the future work, will be
the analysis of more efficient neural network ar-
chitectures able to manage augmented embedding
vectors without negatively affecting the efficiency
of the platform.

5 Conclusion

In this paper, we described the NeuroSent sys-
tem presented at SemEval 2018 Task 7. Our sys-
tem makes use of artificial neural networks to ex-
tract relevant text chunk from scientific documents
and to label pairs of them with semantic rela-
tion tags. Obtained results demonstrated the suit-
ability of NeuroSent with respect to the adopted
baselines. We may also observed how solutions
based on neural networks obtained a significant
improvement with respect to the others for both
tasks. Future work will focus on improving the
system by exploring the integration of knowledge
bases (Dragoni et al., 2015) in order to move to-
ward a more cognitive approach.

References
Chih-Chung Chang and Chih-Jen Lin. 2011. Libsvm:

A library for support vector machines. ACM TIST,
2(3):27:1–27:27.

Iti Chaturvedi, Erik Cambria, and David Vilares. 2016.
Lyapunov filtering of objectivity for spanish senti-
ment model. In 2016 International Joint Conference
on Neural Networks, IJCNN 2016, Vancouver, BC,
Canada, July 24-29, 2016, pages 4474–4481. IEEE.

Mauro Dragoni, Andrea Tettamanzi, and Célia
da Costa Pereira. 2016. DRANZIERA: an eval-
uation protocol for multi-domain opinion mining.
In Proceedings of the Tenth International Confer-
ence on Language Resources and Evaluation LREC
2016, Portorož, Slovenia, May 23-28, 2016. Euro-
pean Language Resources Association (ELRA).

Mauro Dragoni, Andrea G. B. Tettamanzi, and Célia
da Costa Pereira. 2015. Propagating and aggregat-
ing fuzzy polarities for concept-level sentiment anal-
ysis. Cognitive Computation, 7(2):186–197.

Kata Gábor, Davide Buscaldi, Anne-Kathrin Schu-
mann, Behrang QasemiZadeh, Haı̈fa Zargayouna,
and Thierry Charnois. 2018. Semeval-2018 Task
7: Semantic relation extraction and classification in
scientific papers. In Proceedings of International

Workshop on Semantic Evaluation (SemEval-2018),
New Orleans, LA, USA.

Kata Gábor, Haı̈fa Zargayouna, Davide Buscaldi, Is-
abelle Tellier, and Thierry Charnois. 2016. Semantic
annotation of the ACL anthology corpus for the au-
tomatic analysis of scientific literature. In Proceed-
ings of the Tenth International Conference on Lan-
guage Resources and Evaluation LREC 2016, Por-
torož, Slovenia, May 23-28, 2016. European Lan-
guage Resources Association (ELRA).

Erol Gelenbe. 1993. Learning in the recurrent random
neural network. Neural Computation, 5(1):154–
164.

Andrew Kachites McCallum. 2002. Mallet: A machine
learning for language toolkit. http://mallet.
cs.umass.edu.

P. J. Werbos. 1990. Backpropagation through time:
what it does and how to do it. Proceedings of the
IEEE, 78(10):1550–1560.

852

Proceedings of the 12th International Workshop on Semantic Evaluation (SemEval-2018), pages 853–857
New Orleans, Louisiana, June 5–6, 2018. ©2018 Association for Computational Linguistics

SciREL at SemEval-2018 Task 7: A System for Semantic Relation
Extraction and Classification

Darshini Mahendran Chathurika S. Wickramasinghe Bridget T. McInnes
Virginia Commonwealth University, Richmond, Virginia
{mahendrand, brahmanacsw, btmcinnes}@vcu.edu

Abstract

This paper describes our system, SciREL (Sci-
entific abstract RELation extraction system),
developed for the SemEval 2018 Task 7: Se-
mantic Relation Extraction and Classification
in Scientific Papers. We present a feature-
vector based system to extract explicit se-
mantic relation and classify them. Our sys-
tem is trained in the ACL corpus (Bird et al.,
2008) that contains annotated abstracts given
by the task organizers. When an abstract with
annotated entities is given as the input into
our system, it extracts the semantic relations
through a set of defined features and classi-
fies them into one of the given six categories
of relations through feature engineering and
a learned model. For the best combination
of features our system SciREL obtained an F-
measure of 20.03 on the official test corpus in
the relation classification Subtask 1.1. In this
paper, we provide an in-depth error analysis of
our results to prevent duplication of research
efforts in the development of future systems.

1 Introduction

Automatic detection and extraction of semantic
relations among the entities from unstructured
text has received growing attention in the recent
years (Konstantinova, 2014), (Augenstein et al.,
2017), (Fundel et al., 2006), (Luo et al., 2016).
Text mining is the process of automatically ex-
tracting knowledge from unstructured text docu-
ments and this idea of text mining is to link ex-
tracted information together which possibly re-
sults in new facts or hypothesis to be explored fur-
ther through conventional scientific experimenta-
tions (Delen and Crossland, 2008), (Fleuren and
Alkema, 2015).

SemEval 2018 Task 7 (Gábor et al., 2018) aims
to extract and classify semantic relations to im-
prove the access to scientific literature. Their tasks

focus on identifying pairs of entities that are in-
stances of six semantic relation types and classi-
fying those instances into one of the six seman-
tic relation types. To address this challenge, we
implemented a supervised machine learning based
approach in order to extract explicit semantic rela-
tions from the ACL anthology corpus (Bird et al.,
2008) for Subtask 1.1.

2 Methodology

In this section, we describe our relation extraction
system (SciREL) which classifies the semantic re-
lations into one of the given six categories of rela-
tions. The main steps of our approach can be sum-
marized as follows. First, an abstract with anno-
tated entities is given as the input into our system
and all the sentences in the abstract are segmented,
preprocessed, and the entity pairs are identified.
Second, a set of features are defined and are com-
bined into a feature vector which is used to train
a machine learning model. This is the most cru-
cial part of our system, as the idea is to decrease
the size of the effective vocabulary which would in
turn increase the classification accuracy by elimi-
nating the noise in the features (GuoDong et al.,
2005). Relations between entities are extracted
and classified into one of the six relations through
this learned model. Each step of our approach is
discussed in detail in the following subsections.

2.1 Preprocessing Steps
All sentences in the abstracts are preprocessed
to normalize the text so that the input text is
guaranteed to be consistent and feature extrac-
tion/classification is simplified. Some of the exist-
ing NLP techniques and tools are used for prepro-
cessing. Preprocessing is performed as follows 1:

1Natural Language Toolkit’s (NLTK) Tokenizers, part-of-
speech (POS) tagger and Porter Stemmer are used in text pre-
processing.

853

1) tokenization; 2) convert text to lower case; 3)
removal of special characters; and 4) lemmatiza-
tion.

2.2 Feature selection

The most challenging part of our system is the
feature selection and the feature vector generation
(Sammons et al., 2016). After preprocessing the
input text, a subset of words which contain the
respective entity pair are selected from each sen-
tences, a set of features are computed and a fea-
ture vector is created by combining the computed
features.

After the initial text processing, a separate set
of steps are followed where each feature is com-
puted. Some features are extracted in two differ-
ent scenarios: before removing the stop words and
after removing the stop words. Stop words are the
most common words of the language that do not
contribute to the semantics of the documents or
contain any significance but has a high frequency.
Filtering out such words prevents from returning
vast amount of unnecessary information.

Bigram is a sequence of words formed from two
adjacent words, and bigram frequency of the word
pairs between entities is calculated in some fea-
tures. Collocations 2 are words that appear succes-
sively and the frequencies of such words appearing
in the the context of other words are calculated in
some features and the highest value of the bigram
collocations is considered during the feature selec-
tion. The bag-of-words model which represents a
text as the bag of its words, ignoring its grammar
and word order is used in some features to group
the words from the sentence for further processing
(Peng et al., 2016).

Part-of-speech tagging (POS tagging) is applied
on words in some features which assigns parts
of speech to those words (Fundel et al., 2006).
This helps in disambiguating homonyms and im-
proving the efficiency of feature selection. Term
frequency-inverse document frequency (TF-IDF)
values are calculated for a set of selected words
in some features to distinguish important words
based on how frequently they appear across multi-
ple documents (GuoDong et al., 2005). During the
feature selection, a representative set of features is
computed for each entity pair. Features used in
building our system are listed below; E1 refers to

2Natural Language Toolkit’s (NLTK) bigramcollocation-
finder is used.

the first entity and E2 refers to the second entity.

1. Number of words before E1 with / without
stop words

2. Number of words after E2 with / without stop
words

3. Word before E1
4. Word after E2
5. POS of the words before E1 with / without

stop words
6. POS of the words after E1 with / without stop

words
7. POS of the words before E2 with / without

stop words
8. POS of the words after E2 with / without stop

words
9. Bigram of the first word before E1 with /

without stop words
10. Bigram of the first word after E2 with / with-

out stop words
11. Bigram of E1
12. Bigram of E2
13. Highest bigram value of words in between

entities with / without stop words
14. Number of unique POS types in between the

entities with / without stop words
15. Number of unique POS types before E1 with

/ without stop words
16. Number of unique POS types after E2 with /

without stop words
17. POS type of the word with highest tf-idf score

in between the entities
18. POS type of the word with highest tf-idf score

in before E1
19. POS type of the word with highest tf-idf score

in after E2

2.3 Multi-class classification
In the final step of our approach, a feature vector
is generated for each sentence by incorporating the
extracted features in the previous step. The gener-
ated feature vector is then used to train a classi-
fier which classifies the relation into the given six
categories. The following classifiers which repre-
sent three main classification algorithms are used
to train and evaluate the data set in our approach: 3

Decision Trees, Naive Bayes, and Support Vector
Machines (SVMs). The resulting model is then
used to classify the extracted semantic relations
into one of the six categories below: Usage, Re-
sult, Model-feature, Part-whole, Topic, Compare.

3Natural Language Toolkit’s (NLTK) scikit-learn library
classifiers are used.

854

3 Dataset

We evaluated our system on the dataset provided
by the SemEval 2018 - Task 7. The dataset con-
tains abstracts from the ACL Anthology Corpus
(Bird et al., 2008) with pre-annotated entities that
represent concepts. The dataset provided for the
evaluation is divided into two subsets: training set
and test set. The training set includes 350 abstracts
containing 5259 entities and 1228 annotated types
of relations between entities. The test set includes
150 abstracts containing 2246 entities and 355 an-
notated types of relations between entities. During
the development, the training set is split into 60/40
and k-fold cross validation was used to evaluate
the performance.

4 Results

Our system was evaluated on both the develop-
ment corpus and the official test corpus and the set
of features are extracted for each entity pair from
the training corpus which was used to compute the
feature vector. The feature set of our model in-
cluded 37 features in total which resulted in 237

combinations of features. We conducted an abla-
tion study to determine the efficacy of the differ-
ent combinations of features when run with differ-
ent classifiers and selected the feature combination
that resulted in high performance. Consequently,
it was found that the following features produce
the best performance:

1. Lexical information

• Bigram of the first word after E1 with
stop words
• Bigram of the first word before E2 with-

out stop words
• Highest bigram value of words in be-

tween entities with stop words
• Highest bigram value of words in be-

tween entities without stop words
2. Syntactic information

• POS of the word before E2 with stop
words
• Number of unique POS types in be-

tween the entities with stop words
• Number of unique POS types in be-

tween the entities without stop words

Validation was performed using 60/40 split
evaluation. Performance of each classifier was

Development Test
Accuracy 48.07
F1-measure 29.25 20.03
Precision 34.29 20.58
Recall 28.55 20.03

Table 1: Performance of our model on the develop-
ment and official test corpus.

U MF PW R C T
USAGE (U) 119 5 24 18 2 7
MODEL-FEATURE (MF) 12 1 5 1 0 1
PART-WHOLE (PW) 29 1 17 18 0 1
RESULT (R) 48 0 13 5 0 4
COMPARE (C) 2 0 1 0 0 0
TOPIC (T) 15 1 2 0 0 3

Table 2: Confusion matrix of the model trained on the
official test corpus where the predicted tags are hori-
zontal and the actual tags are vertical.

measured by the following commonly used eval-
uation metrics: Accuracy, F-measure, Precision,
Recall. Our model was evaluated using three clas-
sifiers and it was found that SVMs is the most suit-
able classifier for our approach through a set of
experiments. The results for our development cor-
pus and the official test corpus are presented in the
Table 1.

From the Table 1 we can see that our system
(SciREL) achieves the accuracy of 48.07 and the
F-measure of 29.25 on the development corpus
which includes 350 abstracts and the F-measure
of 20.03 on the official test corpus which includes
150 abstracts.

5 Error analysis

The performance of our system is quite low there-
fore, we performed an error analysis to identify
some of the mistakes from our system output and
find ways to improve it. Our classification model
was trained to distinguish between six semantic re-
lations and the confusion matrix displays the re-
sults of testing the model for further inspection.
Table 2 shows the confusion matrix based on the
performance of our classification model trained on
the test corpus. We identified three main areas
which affected the performance of our system: 1)
feature selection; 2) vector representation; and 3)
class imbalance.

Feature Selection. We compared the effects of
different features and from this analysis, we found
several reasons for their poor performance. First,

855

for the lexical information, we are only incorpo-
rating the word prior to each of the entities and
a single bigram that exists between them. This
misses information such as if there is only a sin-
gle word in between the entities, and in the case
were there are more than two words, we miss ad-
ditional contextual information describing the re-
lationship. Second the syntactic information does
not contain an explicit representation of what was
seen between the two entities. We focused on the
number of unique types of POS tags rather than
what type of tags were actually present. In conclu-
sion, we believe that our feature set does contain
enough contextual information from between the
two entities.

Vector representation. Another major reason
for the poor performance of our system is the way
the feature vectors are representing the relation-
ship. We generated a feature vector for each en-
tity pair and for all the proposed features which
resulted in a feature vector with only 37 features
initially. Then, we selected the best set of features
that gave the best performance with the model and
eliminated the rest, which reduced the size of the
feature vector further and we ended up with the
feature vector that contained only 7 features. Each
feature was represented numerically, therefore if
there were more than one bigram, or POS tag se-
quence between the entities, we were not able to
incorporate it into our representation. In addition,
analysis of the test instances show that for 100 of
the 355 instances, we do not have any contextual
or syntactic information due to the stop word re-
moval for three of the features. In conclusion, we
believe that this feature vector representation is too
compact and does not hold sufficient contextual
information to identify patterns between the rela-
tionships.

Class Imbalance. From Table 2, we can see
most of the instances of the USAGE class are cor-
rectly classified and most of the misclassified in-
stances are classified under PART-WHOLE and
RESULT. Most of the instances that should have
been classified under PART-WHOLE are classi-
fied under USAGE and RESULT. None of the in-
stances of the class COMPARE are classified cor-
rect and again most of them are classified un-
der the class USAGE. A similar behavior is ob-
served with TOPIC where almost all instances
are classified under USAGE. Reason for this ob-
servation is mainly due to the imbalanced na-

U MF PW R C T
number of instances 175 66 70 20 21 3
F-measure 59.50 7.14 26.56 8.93 0 16.22

Table 3: Number of instances and the F-measure of
the given six classes on the official test corpus where
U - USAGE, MF- MODEL-FEATURE, PW- PART-
WHOLE, R- RESULT, C- COMPARE, T- TOPIC.

ture of the dataset used to train our system. The
number of instances belonging to the classes US-
AGE, MODEL-FEATURE and PART-WHOLE is
approximately five times larger than the number
of instances of the rest of the classes. For com-
parison purposes, we have provided the number
of instances of each class and their individual F-
measures in the Table 3. From the results, we
can clearly see that USAGE which is the majority
class shows high performance compared to other
categories. In conclusion, we can say most of the
misclassified instances belong to the category of
USAGE indicating that the machine learning al-
gorithm was unable to identify discriminating fea-
tures between the classes and defaulted to the ma-
jority class.

6 Conclusions

Our goal is to design a system that identify pairs
of entities that are instances of any of the given
semantic relations. Our system (SciREL) is built
to serve this purpose, so that when an input with
annotated entities is fed into the model it identi-
fies, extracts and classify the semantic relations.
The model selects the set of features that shows
the best performance with the classifier and com-
bines the features to compute a feature vector. The
classifier then classifies the instances into one of
the six semantic relation types. Our system clas-
sifies the given ACL anthology corpus with the F-
measure of 20.03 on the official test corpus with
the SVM classifier. Due to the low results, we
provide an in-depth error analysis of our results to
prevent duplication of research efforts in the de-
velopment of future systems. We identified three
main areas which affected the performance of our
system: 1) feature selection; 2) vector represen-
tation; and 3) class imbalance. In conclusion, we
believe our feature set does contain enough con-
textual information from between the two entities
and the feature vector representation is too com-
pact to hold sufficient contextual information to
discriminate between the classes.

856

References
Isabelle Augenstein, Mrinal Das, Sebastian Riedel,

Lakshmi Vikraman, and Andrew McCallum.
2017. Semeval 2017 task 10: Scienceie-extracting
keyphrases and relations from scientific publica-
tions. arXiv preprint arXiv:1704.02853.

Steven Bird, Robert Dale, Bonnie J Dorr, Bryan Gib-
son, Mark Thomas Joseph, Min-Yen Kan, Dongwon
Lee, Brett Powley, Dragomir R Radev, and Yee Fan
Tan. 2008. The ACL anthology reference corpus: A
reference dataset for bibliographic research in com-
putational linguistics. pages 1755–1759.

Dursun Delen and Martin D Crossland. 2008. Seed-
ing the survey and analysis of research literature
with text mining. Expert Systems with Applications,
34(3):1707–1720.

Wilco WM Fleuren and Wynand Alkema. 2015. Ap-
plication of text mining in the biomedical domain.
Methods, 74:97–106.

Katrin Fundel, Robert Küffner, and Ralf Zimmer.
2006. Relexrelation extraction using dependency
parse trees. Bioinformatics, 23(3):365–371.

Kata Gábor, Davide Buscaldi, Anne-Kathrin Schu-
mann, Behrang QasemiZadeh, Haı̈fa Zargayouna,
and Thierry Charnois. 2018. Semeval-2018 Task
7: Semantic relation extraction and classification in
scientific papers. In Proceedings of International
Workshop on Semantic Evaluation (SemEval-2018),
New Orleans, LA, USA.

Zhou GuoDong, Su Jian, Zhang Jie, and Zhang Min.
2005. Exploring various knowledge in relation ex-
traction. In Proceedings of the 43rd annual meeting
on association for computational linguistics, pages
427–434. Association for Computational Linguis-
tics.

Natalia Konstantinova. 2014. Review of relation ex-
traction methods: What is new out there? In Inter-
national Conference on Analysis of Images, Social
Networks and Texts, pages 15–28. Springer.

Yuan Luo, Özlem Uzuner, and Peter Szolovits.
2016. Bridging semantics and syntax with graph
algorithmsstate-of-the-art of extracting biomedical
relations. Briefings in bioinformatics, 18(1):160–
178.

Yifan Peng, Chih-Hsuan Wei, and Zhiyong Lu. 2016.
Improving chemical disease relation extraction with
rich features and weakly labeled data. Journal of
Cheminformatics, 8(1):53.

Mark Sammons, Christos Christodoulopoulos, Parisa
Kordjamshidi, Daniel Khashabi, Vivek Srikumar,
and Dan Roth. 2016. Edison: Feature extraction for
NLP, simplified. In LREC, pages 4085–4092.

857

Proceedings of the 12th International Workshop on Semantic Evaluation (SemEval-2018), pages 858–862
New Orleans, Louisiana, June 5–6, 2018. ©2018 Association for Computational Linguistics

NTNU at SemEval-2018 Task 7: Classifier Ensembling for
Semantic Relation Identification and Classification in Scientific Papers

Biswanath Barik1, Utpal Kumar Sikdar2 and Björn Gambäck1

1Department of Computer Science, NTNU, Norway
2Flytxt, Thiruvananthapuram, India

{biswanath.barik,gamback}@ntnu.no
utpal.sikdar@gmail.com

Abstract

The paper presents NTNU’s contribution to
SemEval-2018 Task 7 on relation identifica-
tion and classification. The class weights and
parameters of five alternative supervised clas-
sifiers were optimized through grid search and
cross-validation. The outputs of the classi-
fiers were combined through voting for the fi-
nal prediction. A wide variety of features were
explored, with the most informative identified
by feature selection. The best setting achieved
F1 scores of 47.4% and 66.0% in the relation
classification subtasks 1.1 and 1.2. For relation
identification and classification in subtask 2, it
achieved F1 scores of 33.9% and 17.0%,

1 Introduction

Scientific papers are valuable knowledge sources
providing authentic insights about certain aspects
of the research domains. With the advancement of
scientific research, a massive growth of published
articles are observed. As per the American Journal
Experts (AJE) scholarly publishing report1, ap-
proximately 2.2 million articles were added to the
literature in 2016 only. The sheer volume of the
ever increasing literature of any scientific disci-
pline makes it hard for human capability and ex-
pertise to quickly process and identify information
of interest. Therefore, there is a need to efficiently
exploit automatic means of accessing this reliable
unstructured knowledge repository.

Semantic relation extraction is one of the main
information extraction tasks, and aims to identify
a pair of arguments connected by certain prede-
fined relation types based on a target application.
The relation arguments are of different types such
as Named Entities (Freitas et al., 2009), nomi-
nals (Hendrickx et al., 2009), general keyphrases

1https://www.aje.com/en/arc/dist/docs/International-
scholarly-publishing-report-2016.pdf

(Gábor et al., 2016; Augenstein et al., 2017), quan-
titative variables (Marsi et al., 2014) or events
(Barik et al., 2017), and are syntactically repre-
sented by noun phrases, clauses or larger complex
structures. A semantic relation may be either sym-
metric (undirected) or asymmetric (hierarchical).

Supervised machine learning approaches have
been successfully used for identifying semantic
relations encoded in texts. Broadly, three types
of supervised approaches to relation extraction
have been investigated: feature-based (Kamb-
hatla, 2004; Jiang and Zhai, 2007), kernel-based
(Zelenko et al., 2003), and neural network based
(Zeng et al., 2014; Miwa and Bansal, 2016).

In this work, various relation identification and
classification subtasks of SemEval 2018 Task 7
(Gábor et al., 2018) were addressed using feature-
based approaches. A wide variety of features
was explored, including lexical (e.g., bag-of-
words, lemmata, n-grams), syntactic (e.g., part-of-
speech, parsing information), semantic (e.g., de-
pendency information, WordNet (Miller, 1995)),
and other binary indicators. A χ2-based feature
selection technique was used to identify infor-
mative features. The class weights and parame-
ters of five different classifiers—Support Vector
Machines (SVM), Decision Trees (DT), Random
Forests (RF), Multinomial Naı̈ve Bayes (MNB),
and k-Nearest Neighbor (kNN)—were optimized
for each subtask through grid search and k-fold
cross-validation. These classifiers were chosen
as they are effective in identifying and classify-
ing semantic relations in feature-based classifi-
cation scenario (Barik and Marsi, 2017). The
trained classifiers were ensembled using majority
class labels (hard voting) for the final predictions.
All classifier, feature selection and classifier en-
sembling modules used were implemented in the
scikit-learn (Pedregosa et al., 2011) machine
learning library.

858

Relation Data Frequency/ Percentage
Type Set Total (%) Fwd % Rev %

USAGE
D1 483 39.33 61.28 38.72
D2 470 37.67 68.72 31.28

RESULT
D1 72 5.86 72.22 27.78
D2 123 9.86 69.10 30.90

MODEL- D1 326 26.55 69.32 30.68
FEATURE D2 175 14.02 70.29 29.71
PART_ D1 234 19.05 67.52 32.48
WHOLE D2 196 15.70 59.70 40.30

TOPIC
D1 18 1.46 44.44 55.56
D2 243 19.47 94.65 5.35

COMPARE
D1 95 7.74 100
D2 41 3.28 100

Total D1 1228 100 68.00 32.00
D2 1248 100 73.63 26.37

Table 1: Relation type statistics in datasets D1 and D2

The tasks and the datasets are described in Sec-
tion 2, while Section 3 outlines the experimental
setup, system architecture and parameter optimi-
sation. Section 4 discusses the results of the fi-
nal evaluation of SemEval 2018 Task 7, where the
system achieved 47.4% and 66.0% F1 scores on
the relation classification subtasks 1.1 and 1.2. In
subtask 2, the system reached 33.9% and 17.0% F1

scores for relation identification and relation clas-
sification, respectively. These results are elobo-
rated on in Section 5, before Section 6 concludes
and points to future research.

2 Task and Dataset Description

SemEval 2018 Task 7 (Gábor et al., 2018) con-
sisted of two main relation extraction subtasks:

(a) identifying entity mentions related with any
predefined set of relation (Subtask 2), and

(b) classifying them into specific relation types
(Subtasks 1.1, 1.2, and 2).

There are six relation types, among which
USAGE, RESULT, MODEL-FEATURE, PART_WHOLE, and
TOPIC are asymmetric, while COMPARE is the only
symmetric relation. All the relations are intra-
sentential and there are no referring expressions.

The training dataset consisted of two subsets:

D1: 350 abstracts of scientific papers that have
been manually annotated with entity men-
tions and relation labels (clean data), and

D2: 350 abstracts with entity mentions automati-
cally labelled, but with the relations labelled
manually (noisy data).

Figure 1: Relation detection and classification pipeline:
5 classifiers (Clfn) work on extracted feature sets (FS)

Subtask 1.1 and subtask 2 are associated with the
clean dataset D1, while subtask 1.2 is associated
with the noisy D2 dataset. The test data consisted
of 150 abstracts each for subtask 1.1, 1.2 and 2.

Table 1 shows the distribution of relation in-
stances into different relation types, and their for-
ward (Fwd) and reverse (Rev) directionalities in
datasets D1 and D2. The highest number of in-
stances are of the USAGE type in both datasets,
whereas TOPIC is the least frequent relation type
(1.46%) in D1, but significant (19.47%) in D2.
The overall forward directionalities of relations
are 68% in D1 and 73.63% in D2. The direction-
alities of individual relation types are similar.

The most frequent lengths of the entity
mentions are two and one word(s) in D1

and D2, respectively, with maximum lengths
of 13 and 4. The most frequent con-
text lengths of the relation instances are two
words, with a highest length of 31 words
(RESULT(I05-3022.6, I05-3022.16)) inD1 and
24 words (USAGE(E91-1004.30, E91-1004.37))
in D2. The average number of entities in the sen-
tences are 3 and 6 in D1 and D2, with highest
number of entities being 17 and 29, respectively.

3 Experimental Setup

Figure 1 shows the processing pipeline common to
both relation identification and classification. The
processing steps are elaborated on below.

859

Inputs to brat annotation: The input train-
ing and test files are in xml format with the
entity mentions marked. Each entity men-
tion has an ID with two parts, abstract ID
and entity number. For example, the en-
tity ID H91-1045.18 denotes abstract ID
H91-1045 and entity number 18. The rela-
tion labels are in a separate file with the for-
mat TOPIC(A92-1023.7,A92-1023.8,REVERSE),
where the first two arguments of the relation type
are entity IDs and the last is the directionality of
the relation. The xml and relation label files were
converted into ‘brat’ (Stenetorp et al., 2012) for-
mat, with the text content of each abstract ID kept
in a text file, and entity and relation information
kept in an annotation file. Conversion to brat for-
mat helps to visualize and study the annotations of
the training and test set output. Also, the text con-
tent (without entity tags) is used for preprocessing.

Text Processing: The text content of each ab-
stract is analyzed with the Stanford CoreNLP
toolkit (Manning et al., 2014) for sentence bound-
ary detection, tokenization, lemmatization, part-
of-speech (POS) tagging, and constituent and de-
pendency parsing. Character offset-based brat en-
tity annotations are mapped into word level indices
using the tokens’ character offsets. Finally, the
dependency heads of entity mentions, in between
context and the text window representing the rela-
tion expression are identified.

Feature Extraction: Given a sentence with
more than one entity mention, all possible entity
pairs are considered in left to right order. For each
entity pair, the text span containing the entities and
their middle context is considered as the represen-
tation of the relation instance. As word features,
unigrams and bigrams of the context and entity
mentions (excluding articles, adjectives, cardinals,
ordinals, pronouns, brackets and punctuations) are
considered. Corresponding to word features, POS,
word+POS, and lemma+POS combinations are in-
cluded, as well as word and POS of entity depen-
dency heads, context dependency heads, and their
combinations.

As the shortest dependency path between the
entity pair contains major information for relation
identification (Bunescu and Mooney, 2005), de-
pendency path features are added for the distance
from left entity head to right entity head, words
belonging to the dependency path and their rela-

tions to the parent node. WordNet synonyms and
hyponyms of dependency head of entities and con-
texts are included. Also, other binary indicators
such as adjacent or overlapping entities are in-
cluded.

Parameters Optimization through Cross-
Validation (CV): As there was no development
data available for model parameter tuning, 20%
of the training data was kept as development
data, and the remaining training data was used
for parameters optimization with 5-fold cross-
validation. For relation labeling in subtask 1.1
and 1.2, the relation type is predicted against 11
classes (five directed and one undirected relation).
Relation instance identification in subtask 2 is
a binary classification problem, and the class
weights of positive instances are optimized
through CV. In the final system, the parameters
are optimized on the entire training set.

Classifiers Ensembling and Final Prediction:
The optimized parameters of the classifiers and
class weights are set to the classifiers. For
each classifier, the χ2-based SelectKBest()
method selects the top k features from the input
feature space, where the k for each classifier is
determined through cross-validation. The predic-
tions of the classifiers are then ensembled with
(majority) voting where each participating classi-
fier uses its own feature selection method.

4 Results

Three separate submissions were made on the test
data. The first two submissions were on rela-
tion classification on clean (subtask 1.1) and noisy
data (subtask 1.2). The third submission (sub-
task 2) consisted of relation identification followed
by classification on clean data. In subtask 2, a sep-
arate system was created for the relation identifi-
cation, while the relation classification system of
subtask 1.1 was used for the classification.

Table 2 shows the performance (precision, re-
call and F1 score) of individual classifiers, as well
as their combinations in the relation classification
subtask 1.1, where the scores are micro-averaged
over all (11) classes. Among the individual classi-
fiers, SVM gives the best result (56% F1 score).
Voting with the top-3 classifiers (SVM, DT &
MNB) gave a slightly higher F1 score of 58%.

Table 3 shows the scores of the relation classifi-
cation subtask on noisy training data (subtask 1.2).

860

Classifier #Features P R F1

SVM 13,200 0.59 0.56 0.56
DT 3,400 0.58 0.53 0.54

RF 6,600 0.38 0.42 0.40

MNB 2,300 0.40 0.79 0.53

kNN 7,800 0.43 0.30 0.35

Ensemble-all – 0.56 0.42 0.48

Ensemble-best – 0.57 0.63 0.58

Table 2: Precision, recall and F-scores of individual
and ensemble classifiers on subtask 1.1. The scores
are micro-averaged over 11 classes. Ensemble-best is
SVM+DT+MNB.

Classifier #Features P R F1

SVM 9,700 0.71 0.70 0.69
DT 7,200 0.72 0.66 0.65

RF 8,900 0.60 0.58 0.53

MNB 3,700 0.70 0.67 0.62

kNN 6,700 0.48 0.70 0.57

Ensemble-all – 0.57 0.71 0.63

Ensemble-best – 0.81 0.67 0.73

Table 3: Result of individual and ensemble classifiers
on subtask 1.2. Scores are micro-averaged over 11
classes. Ensemble-best is SVM+RF+MNB.

As individual classifier, SVM gave the best perfor-
mance with 69% F1 score followed by Decision
Trees (65%) and Multinomial Naı̈ve Bayes (62%).
The best performance of voting classifiers scored
73% using the classifiers SVM, RF and MNB.

Table 4 shows the results of the relation iden-
tification in subtask 2. Again SVM gave the best
single classifier level performance.

5 Discussion

The total relation instances in the clean data and
in the noisy data are almost the same (1228 and
1248, respectively). However, it is interesting to
observe that the best performance in relation clas-
sification both at the single classifier level and in
ensemble voting on noisy data (subtask 1.2) is sig-
nificantly higher than on clean data (subtask 1.1).
This behaviour is consistent also on the test data.

One explanation may be the differences in rela-
tion expressions in datasetD1 andD2. In the clean
data (D1), 25.66% of the entity mentions have
three or more words with a maximum length of 13
words, whereas in the noisy data (D2) only 0.96%

Classifier #Features P R F1

SVM 18,100 0.39 0.46 0.42
DT 5,800 0.50 0.29 0.36

RF 6,300 0.33 0.26 0.29

MNB 4,900 0.43 0.30 0.35

KNN 8,100 0.14 0.25 0.18

Ensemble-all – 0.31 0.26 0.28

Ensemble-best – 0.44 0.31 0.36

Table 4: Performance of positive class in relation iden-
tification on clean data (subtask 2). Ensemble-best is
SVM+DT+MNB.

of the mentions have more than three words. The
feature-based approach with n-grams as major fea-
ture source might not be able to capture the se-
mantics of entity mentions having very large text
spans. Furthermore, the context length between
entity pairs in the clean data is larger than in the
noisy data. Therefore, the shortest dependency
paths and context n-grams—which are the two
major feature sources—generate many insignif-
icant features. Modeling the relation instances
through a neural network could be a better alter-
native in this scenario.

Feature selection has a positive impact on pre-
diction both in relation identification and in clas-
sification. SVM gave the best results at the single
classifier level on all subtasks, but needs a larger
feature space, whereas MNB performed reason-
ably although needing the smallest number of fea-
tures for training the classifier.

6 Conclusion

In this work, we experimented with the relation
identification and classification subtasks of Sem-
Eval 2018 Task 7 using a feature-based approach.
A wide variety of features are explored, including
lexical, syntactic, semantic, and other binary fea-
tures. Two relation classification systems are de-
veloped on clean and noisy data and the third sys-
tem is developed to identify relations in clean data.
Five classifiers are trained for each subtask, with
the final predictions made through voting based
on the corresponding predictions of the individ-
ual classifiers. Experimental results shows that the
lengths of the entity mentions and the lengths of
the context in-between a pair of entities have sig-
nificant impact on the relation identification and
relation classification.

861

References
Isabelle Augenstein, Mrinal Das, Sebastian Riedel,

Lakshmi Vikraman, and Andrew McCallum. 2017.
Semeval 2017 task 10: ScienceIE—extracting
keyphrases and relations from scientific publica-
tions. In Proceedings of the 11th International
Workshop on Semantic Evaluation (SemEval-2017),
pages 546–555, Vancouver, Canada.

Biswanath Barik and Erwin Marsi. 2017. NTNU-2 at
SemEval-2017 Task 10: Identifying synonym and
hyponym relations among keyphrases in scientific
documents. In Proceedings of the 11th International
Workshop on Semantic Evaluation (SemEval-2017),
pages 965–968, Vancouver, Canada.

Biswanath Barik, Erwin Marsi, and Pinar Öztürk. 2017.
Extracting causal relations among complex events
in natural science literature. In International Con-
ference on Applications of Natural Language to In-
formation Systems, pages 131–137, Liège, Belgium.
Springer.

Razvan C. Bunescu and Raymond J. Mooney. 2005.
A shortest path dependency kernel for relation ex-
traction. In Proceedings of the Conference on Hu-
man Language Technology and Empirical Methods
in Natural Language Processing, pages 724–731,
Vancouver, Canada.

Cláudia Freitas, Diana Santos, Cristina Mota,
Hugo Gonçalo Oliveira, and Paula Carvalho. 2009.
Relation detection between named entities: report
of a shared task. In Proceedings of the Workshop
on Semantic Evaluations: Recent Achievements
and Future Directions, pages 129–137, Boulder,
Colorado. ACL.

Kata Gábor, Davide Buscaldi, Anne-Kathrin Schu-
mann, Behrang QasemiZadeh, Haı̈fa Zargayouna,
and Thierry Charnois. 2018. Semeval-2018 task
7: Semantic relation extraction and classification in
scientific papers. In Proceedings of International
Workshop on Semantic Evaluation (SemEval-2018),
New Orleans, Louisiana.

Kata Gábor, Haı̈fa Zargayouna, Davide Buscaldi, Is-
abelle Tellier, and Thierry Charnois. 2016. Seman-
tic annotation of the ACL anthology corpus for the
automatic analysis of scientific literature. In LREC
2016, pages 3694–3701, Portoroz̆, Slovenia.

Iris Hendrickx, Su Nam Kim, Zornitsa Kozareva,
Preslav Nakov, Diarmuid Ó Séaghdha, Sebastian
Padó, Marco Pennacchiotti, Lorenza Romano, and
Stan Szpakowicz. 2009. Semeval-2010 task 8:
Multi-way classification of semantic relations be-
tween pairs of nominals. In Proceedings of
the Workshop on Semantic Evaluations: Recent
Achievements and Future Directions, pages 94–99,
Boulder, Colorado. ACL.

Jing Jiang and ChengXiang Zhai. 2007. A system-
atic exploration of the feature space for relation ex-
traction. In Human Language Technologies 2007:

The Conference of the North American Chapter of
the Association for Computational Linguistics; Pro-
ceedings of the Main Conference, pages 113–120,
Rochester, New York.

Nanda Kambhatla. 2004. Combining lexical, syntactic,
and semantic features with maximum entropy mod-
els for information extraction. In Proceedings of the
42nd Annual Meeting of the Association for Compu-
tational Linguistics: Interactive Poster and Demon-
stration Sessions, Barcelona, Spain. ACL. Paper 22.

Christopher Manning, Mihai Surdeanu, John Bauer,
Jenny Finkel, Steven Bethard, and David McClosky.
2014. The Stanford CoreNLP natural language pro-
cessing toolkit. In Proceedings of 52nd Annual
Meeting of the Association for Computational Lin-
guistics: System Demonstrations, pages 55–60, Bal-
timore, Maryland. ACL.

Erwin Marsi, Pinar Øzturk, Elias Aamot, Gleb Sizov,
and Murat Van Ardelan. 2014. Towards text min-
ing in climate science: Extraction of quantitative
variables and their relations. In Proceedings of
Bio-Text Mining, Reykjavik, Iceland. European Lan-
guage Resources Association.

George A. Miller. 1995. WordNet: a lexical
database for English. Communications of the ACM,
38(11):39–41.

Makoto Miwa and Mohit Bansal. 2016. End-to-end
relation extraction using LSTMs on sequences and
tree structures. In Proceedings of the 54th Annual
Meeting of the Association for Computational Lin-
guistics, pages 1105–1116, Austin, Texas.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Pretten-
hofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Pas-
sos, D. Cournapeau, M. Brucher, M. Perrot, and
E. Duchesnay. 2011. Scikit-learn: Machine learning
in Python. Journal of Machine Learning Research,
12:2825–2830.

Pontus Stenetorp, Sampo Pyysalo, Goran Topić,
Tomoko Ohta, Sophia Ananiadou, and Jun’ichi Tsu-
jii. 2012. BRAT: A web-based tool for NLP-assisted
text annotation. In Proceedings of the 13th Confer-
ence of the European Chapter of the Association for
Computational Linguistics: Demonstrations, pages
102–107, Jeju Island, Republic of Korea. ACL.

Dmitry Zelenko, Chinatsu Aone, and Anthony
Richardella. 2003. Kernel methods for relation ex-
traction. Journal of Machine Learning Research,
3(Feb):1083–1106.

Daojian Zeng, Kang Liu, Siwei Lai, Guangyou Zhou,
and Jun Zhao. 2014. Relation classification via con-
volutional deep neural network. In Proceedings of
COLING 2014, the 25th International Conference
on Computational Linguistics: Technical Papers,
pages 2335–2344, Dublin, Ireland.

862

Proceedings of the 12th International Workshop on Semantic Evaluation (SemEval-2018), pages 863–867
New Orleans, Louisiana, June 5–6, 2018. ©2018 Association for Computational Linguistics

Talla at SemEval-2018 Task 7: Hybrid Loss Optimization for Relation
Classification using Convolutional Neural Networks

Bhanu Pratap, Daniel Shank, Oladipo Ositelu, Byron V. Galbraith
Talla Inc.

Boston, MA, USA
{bhanu, daniel, ladi, byron}@talla.com

Abstract

This paper describes our approach to
SemEval-2018 Task 7 – given an entity-
tagged text from the ACL Anthology corpus,
identify and classify pairs of entities that have
one of six possible semantic relationships.
Our model consists of a convolutional neural
network leveraging pre-trained word embed-
dings, unlabeled ACL-abstracts, and multiple
window sizes to automatically learn useful
features from entity-tagged sentences. We
also experiment with a hybrid loss function, a
combination of cross-entropy loss and ranking
loss, to boost the separation in classification
scores. Lastly, we include WordNet-based
features to further improve the performance
of our model. Our best model achieves an
F1(macro) score of 74.2 and 84.8 on subtasks
1.1 and 1.2, respectively.

1 Introduction

Classifying the relationship between entities is an
important natural language processing (NLP) task
that serves as a building block for a variety of
NLP applications such as knowledge base con-
struction and question-answering tasks. SemEval-
2018 Task 7 (Gábor et al., 2018) provided entity-
tagged texts from the ACL Anthology corpus and
asked participants to identify and classify entity
pairs into one of six semantic relationships.

Our approach to this problem consisted of se-
lecting two architectures shown to be successful
(Zeng et al., 2014; Nguyen and Grishman, 2015)
in this problem domain and adapting them to this
particular task. We found that pre-trained word
embeddings were effective for this problem, as
well as a combined loss function, and using Word-
Net features at a later stage of our model.

Figure 1: An example of sentence-level relation In-
stance. Sentences marked with entity positions were
the input to our model.

2 System Description

Convolutional neural networks (CNNs) have been
proven to significantly outperform other methods
for Relation Classification (Zeng et al., 2014; dos
Santos et al., 2015; Nguyen and Grishman, 2015).
Our approach was inspired by Nguyen and Grish-
man (2015) and dos Santos et al. (2015), both sys-
tems being minimally dependent on explicit fea-
ture engineering. While Nguyen and Grishman
(2015) relied solely on their model architecture to
automatically extract useful features, we also in-
cluded additional features based on part-of-speech
tags and WordNet hypernyms. Following dos San-
tos et al. (2015), we trained our model on a hybrid
objective function, a combination of cross entropy
loss and ranking loss. Finally, we also trained our
model in two stages to utilize large amounts of un-
labeled ACL corpus abstracts (Bird et al., 2008).
We describe these stages in detail in section 4.1.

Each abstract is first tokenized into sentences.
For each sentence, we then formed training exam-
ples by taking all combinations of pairs of enti-
ties annotated in the sentence. If a pair is anno-
tated with a relation label, we labeled the sentence
as this relation. Otherwise, we labeled the sen-
tence as an artificial class called OTHER . Figure
1 shows an example of a training instance in our
sentence-level dataset.

For an input sentence, each word was mapped
to a word-vector to form a sentence matrix. These
sentence matrices were provided as inputs to the

863

CNN. The output of this layer was then fed into a
softmax layer to classify the relationship between
two entities. Section 3 provides a detailed descrip-
tion of the underlying CNN.

3 Convolutional Neural Network for
Relation Classification

Our model consists of a preprocessing feature gen-
eration step followed by a 2D convolutional layer
with max pooling and then a fully connected layer
with softmax output.

3.1 Preprocessing and Feature Generation

The input to our model was a raw sentence marked
with entity positions. This raw sentence was first
converted into a real-valued sentence matrix by to-
kenizing the sentence and then replacing each to-
ken with a corresponding word embedding. We
used three different look-up tables: publicly avail-
able pre-trained word embeddings, randomly ini-
tialized word positions, and randomly initialized
part-of-speech tags. Following Collobert et al.
(2011), the final word embedding for each token
in the sentence was a concatenation of these three
embeddings.

For pre-trained word embeddings, we evaluated
word2vec (Mikolov et al., 2013), GloVe (Penning-
ton et al., 2014), and Numberbatch (Speer and
Chin, 2016), ultimately choosing word2vec as the
best performer for this task.

The specific process used to generate the fea-
ture vector for a given token in a sentence is as
follows. Let n be the number of tokens in a sen-
tence x = [x1, x2, ..., xn] with xi1 and xi2 being
the two head words of the two entities in relation-
ship r. Relative positions between a token xi and
two entities are given by (i − i1) and (i − i2).
These positions are also mapped into real-valued
vectors using a position embeddings look-up table
Wp. Also, We, andWt embeddings look-up tables
are used to map each word and its part-of-speech
tag into a real valued vector. Finally, xi is trans-
formed into a vector vi = [ei;ui1 ;ui2 ; ti]

T , where
vi is the concatenation of vectors ei, ui1 , ui2 , ti,
ei is the word-vector mapped using the We look-
up table, ui1 and ui2 are the word-position vec-
tors mapped using the Wp look-up table, and ti is
the word-part-of-speech vector mapped using the
Wt look-up table. Dimension d of the final in-
put vector is given by d = (de + 2 ∗ dp + dt),
where de, dp and dt are the dimensions of pre-

trained word-embeddings, word-position embed-
dings and word-part-of-speech tag embeddings.
As a result of these look-up operations, the raw
sentence x = [x1, x2, ..., xn] is transformed into
a real-valued sentence matrix x = [x1,x2, ...,xn]
of size d× n.

3.2 2D Convolution with Max Pooling

We used multiple window sizes to extract features
corresponding to various n-grams. Letw be a win-
dow size and nw be the number of unique win-
dow sizes, a filter f = [f1, f2, .., fw] is a weight
matrix where fi is a column vector of size d =
(de + 2 ∗ dp + dt). A convolutional operation is
then performed using x and f to produce a feature
map s = [s1, s2, ..., sn−w+1] as:

si = g(
w−1∑

j=0

fTj+1x
T
j+i + b)

where b and g are bias and ReLU (Nair and Hin-
ton, 2010) activation function respectively. This
convolutional operation was repeated for different
filters and window sizes, and then a max pooling
strategy Zhang and Wallace (2017) was applied to
extract only 1 feature (the one with highest acti-
vation) from each feature map. That is, for each
feature map s, a max function was applied to pro-
duce a single value: pf = max(s).

3.3 Classification Layer

We took all the individually selected features from
the max pooling operation and concatenated them
together, producing z = [p1, p2, ..., pm], where m
is the number of feature maps and pi is the pooled
value for ith feature map. A random proportion
of input vector z was set to zero for regulariza-
tion purposes to produce a drop-out version zd of
input vector z. The vector zd was then fed into
a dense layer followed by a softmax operation to
produce the final classification probability for a re-
lation class r as:

o = Czd + b

p(r|θ) = eoi
∑L

k=1 e
ok

where o is the output of the dense layer, b is a
bias term, L is the number of relation categories,
and C is a weight matrix of size (nwm× L) with
nw being the number of unique window sizes and
m being the number of filters.

864

3.4 Additional Features
In addition to the output of the CNN layer, we ex-
plored a variety of additional features derived from
the input sentences.

Part-of-speech features, pos We randomly ini-
tialized embeddings for each part-of-speech tag
and used these embeddings as additional input to
our network. Part-of-speech tags for raw sentences
were generated using spaCy1.

WordNet hypernym features, hyp We incorpo-
rated WordNet hypernyms using the implementa-
tion2 provided by Ciaramita and Altun (2006).

Semantic Similarity between two entities, sim
We computed the cosine similarity between the
word-embeddings of the head-words of the two
entities in a relation instance.

REVERSE flag feature, rev We applied an in-
dicator function on the REVERSE flag of the rela-
tionship instance.

We fed hyp, sim and rev features as additional
inputs to the classification layer. While pos fea-
tures were provided as input to the convolution
layer.

4 Training Methods

We evaluated three different loss functions for
training our model: cross-entropy loss, ranking
loss (dos Santos et al., 2015), and a weighted com-
bination of the two, where

Lcombined = αLranking + (1− α)Lcross entropy

with α as a weighting parameter. The combined
loss function was determined to be the most effec-
tive.

4.1 Two-Staged Training
To make use of unlabeled data for fine-tuning
word-position and word-part-of-speech embed-
dings, we trained our model in two-stages follow-
ing Severyn and Moschitti (2015): a distant train-
ing stage and a supervised training stage.

Distant Training We first created a distantly
supervised training dataset using unlabeled ACL
corpus abstracts (Bird et al., 2008) based on the
naive assumption that two entities have the same
relationship across all aligned sentences. By

1spacy.io
2sourceforge.net/projects/supersensetag/

aligned sentences, we mean all sentences which
have exactly two entities. In order to create dis-
tantly supervised training data based on the above
assumption, we performed the following opera-
tions:

i) All the sentences in the ACL-corpus were in-
dexed in an IR system. Here we used Whoosh3.

ii) For each relation instance in the labeled train-
ing data, the top 40 sentences which contained
both the entity texts in the relation were returned
from the IR system.

iii) Result sentences in which the distance
(number of characters) between the two entity
texts was greater than 170 were removed. This
number was derived from distance statistics from
given labeled datasets.

iv) The remaining sentences were labeled with
the same relationship as the relation instance in
(ii).

Following above steps, we created distant-
datasets of around 1600 and 11000 training in-
stances for subtasks 1.1 and 1.2, respectively. We
also verified that there is no overlap between these
generated distant-datasets and the provided test
datasets.

Once the distantly supervised training data is
created, we train our model using these datasets
to fine-tune only word-position and part-of-speech
tag embeddings, while keeping word-embeddings
fixed.

Supervised Training In the second stage, we
initialized our model with the fine-tuned embed-
dings trained in the distantly supervised training
stage and then train our model using the pro-
vided labeled training data. In this stage we also
train word-embeddings but freeze them for first 10
epochs to prevent any large updates.

5 Experiments and Results

The class labels for subtasks 1.1 and 1.2 are highly
imbalanced (Table 1). To compensate for this im-
balance, we trained our models for subtasks 1.1
and 1.2 jointly on a combined dataset and used
class-weights to weight our loss function.

5.1 Resources and Hyperparameters
We chose all the hyperparameters based on the
model performance on our validation set. All
experiments below use the hyperparameters as
shown in Table 2.

3http://Whoosh.readthedocs.io/en/latest/index.html

865

Class Train Test Train Test
1.1 1.1 1.2 1.2

USAGE 0.39 0.49 0.38 0.35
PART-WHOLE 0.19 0.20 0.16 0.16

MODEL-FEATURE 0.27 0.19 0.14 0.21
COMPARE 0.08 0.06 0.03 0.01

RESULT 0.06 0.06 0.10 0.08
TOPIC 0.01 0.01 0.19 0.19

n 1228 355 1249 355

Table 1: Distribution of classes within datasets. Here,
n is the total number of instances in a dataset.

Parameter Value
Window Sizes 2,3,4,5

Number of Filters 25
Word-Embeddings Size (de) 300

Word-Position Embeddings Size (dp) 25
Positive Class Margin (m+) 2.5
Negative Class Margin (m−) 0.5

λ 1.0
α 0.1

learning rate 0.01

Table 2: Hyperparameters used in all experiments.

Our final model is a soft-voting ensemble of
the best models obtained using 10-fold strati-
fied cross-validation. All the models were im-
plemented using TensorFlow4. We trained our
models using a stochastic gradient descent opti-
mizer with momentum (Sutskever et al., 2013).
Lastly, based on our experiments, we chose the
300-dimensional word2vec pre-trained word em-
beddings trained on the Google News corpus.

5.2 Evaluation

F1-Macro F1-Macro
Model Subtask 1.1 Subtask 1.2
CNN 72.8 84.1

CNN+pos 72.1 82.8
CNN+pos+hyp 74.4 82.4

CNN+ pos+hyp+sim 73.7 84.8a

CNN+pos+hyp+sim+rev 74.2b 84.7
—”— (2-staged) 73.9 84.7

Overall Best(DS3Lab) 81.7 90.4

aour official submission ranked second
bour official submission ranked fifth

Table 3: Performance of our final model on Subtasks
1.1 and 1.2. Additional features are incrementally
added to our plain CNN model. Here (2-staged) refers
to the results of our experiments using 2-staged training
method.

.

Table 3 shows the results of our ablation stud-
ies using different feature sets on subtasks 1.1

4https://www.tensorflow.org/

and 1.2. It shows that the simple similarity (sim)
feature helps in case of subtask 1.2, while it de-
grades the performance in case of subtask 1.1.
Similarly, WordNet features with part-of-speech
features boosted the performance only of subtask
1.1. Fine tuning using the two-staged training ap-
proach did not yield any performance gain in ei-
ther the subtasks.

We also evaluated the effect of loss function
choice. Table 4 shows the results of our final

F1-Macro F1-Macro
Loss Function Subtask 1.1 Subtask 1.2

Cross Entropy Loss 72.7 83.9
Ranking Loss 70.6 81.5

Combined Loss 74.2 84.7

Table 4: Effect of Loss Functions

model trained on different loss functions. A com-
bination of ranking loss and cross entropy loss
does yield a performance boost.

While we did not provide a formal submission
for subtask 2, we evaluated our approach on it
given the labeled test data. Table 5 shows the re-

F1-Macro
Model Subtask 2(ANY)
CNN 35.0

CNN+pos 36.6
CNN+pos+hyp 34.7

Overall Best(UWNLP) 50.0

Table 5: Performance of our final model on Subtask
2(Relation Extraction).

sults of our experiments on subtask 2 (relation ex-
traction). While this method did not outperform
the top submissions, it still demonstrated compet-
itive results.

6 Conclusion

Our experiments indicate that pre-training on an
unlabeled corpus did not noticeably impact per-
formance on our evaluation set. Our plain CNN
model (without any external features) has compa-
rable performance to the competition’s best sub-
mission. We also observed improved performance
of our model on Subtask 1.1 when using the Word-
Net features as additional input to the final layer.
Finally, when we combine the cross-entropy and
ranking loss functions, performance of our model
improved on both Subtasks 1.1 and 1.2.

866

References

Steven Bird, Robert Dale, Bonnie Dorr, Bryan Gibson,
Mark Joseph, Min-Yen Kan, Dongwon Lee, Brett
Powley, Dragomir Radev, and Yee Fan Tan. 2008.
The acl anthology reference corpus: A reference
dataset for bibliographic research in computational
linguistics. In Proceedings of the Sixth International
Conference on Language Resources and Evaluation
(LREC-08), Marrakech, Morocco. European Lan-
guage Resources Association (ELRA). ACL An-
thology Identifier: L08-1005.

Massimiliano Ciaramita and Yasemin Altun. 2006.
Broad-coverage sense disambiguation and informa-
tion extraction with a supersense sequence tagger.
In Proceedings of the 2006 Conference on Empirical
Methods in Natural Language Processing, EMNLP
’06, pages 594–602, Stroudsburg, PA, USA. Associ-
ation for Computational Linguistics.

Ronan Collobert, Jason Weston, Léon Bottou, Michael
Karlen, Koray Kavukcuoglu, and Pavel Kuksa.
2011. Natural language processing (almost) from
scratch. J. Mach. Learn. Res., 12:2493–2537.

Kata Gábor, Davide Buscaldi, Anne-Kathrin Schu-
mann, Behrang QasemiZadeh, Haı̈fa Zargayouna,
and Thierry Charnois. 2018. Semeval-2018 Task
7: Semantic relation extraction and classification in
scientific papers. In Proceedings of International
Workshop on Semantic Evaluation (SemEval-2018),
New Orleans, LA, USA.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Cor-
rado, and Jeffrey Dean. 2013. Distributed represen-
tations of words and phrases and their composition-
ality. In Proceedings of the 26th International Con-
ference on Neural Information Processing Systems -
Volume 2, NIPS’13, pages 3111–3119, USA. Curran
Associates Inc.

Vinod Nair and Geoffrey E. Hinton. 2010. Rectified
linear units improve restricted boltzmann machines.
In ICML, pages 807–814. Omnipress.

Thien Huu Nguyen and Ralph Grishman. 2015. Rela-
tion extraction: Perspective from convolutional neu-
ral networks.

Jeffrey Pennington, Richard Socher, and Christo-
pher D. Manning. 2014. Glove: Global vectors for
word representation. In Proceedings of the 2014
Conference on Empirical Methods in Natural Lan-
guage Processing, EMNLP 2014, October 25-29,
2014, Doha, Qatar, A meeting of SIGDAT, a Special
Interest Group of the ACL, pages 1532–1543.

CÃcero Nogueira dos Santos, Bing Xiang, and Bowen
Zhou. 2015. Classifying relations by ranking with
convolutional neural networks. In ACL (1), pages
626–634. The Association for Computer Linguis-
tics.

Aliaksei Severyn and Alessandro Moschitti. 2015.
Unitn: Training deep convolutional neural net-
work for twitter sentiment classification. In
SemEval@NAACL-HLT, pages 464–469. The Asso-
ciation for Computer Linguistics.

Robert Speer and Joshua Chin. 2016. An ensemble
method to produce high-quality word embeddings.
CoRR, abs/1604.01692.

Ilya Sutskever, James Martens, George Dahl, and Geof-
frey Hinton. 2013. On the importance of initializa-
tion and momentum in deep learning. In Proceed-
ings of the 30th International Conference on Inter-
national Conference on Machine Learning - Volume
28, ICML’13, pages III–1139–III–1147. JMLR.org.

Daojian Zeng, Kang Liu, Siwei Lai, Guangyou Zhou,
and Jun Zhao. 2014. Relation classification via
convolutional deep neural network. In COLING
2014, 25th International Conference on Computa-
tional Linguistics, Proceedings of the Conference:
Technical Papers, August 23-29, 2014, Dublin, Ire-
land, pages 2335–2344.

Ye Zhang and Byron C. Wallace. 2017. A sensitiv-
ity analysis of (and practitioners’ guide to) convo-
lutional neural networks for sentence classification.
In IJCNLP(1), pages 253–263. Asian Federation of
Natural Language Processing.

867

Proceedings of the 12th International Workshop on Semantic Evaluation (SemEval-2018), pages 868–873
New Orleans, Louisiana, June 5–6, 2018. ©2018 Association for Computational Linguistics

TeamDL at SemEval-2018 Task 8: Cybersecurity Text Analysis using
Convolutional Neural Network and Conditional Random Fields

Manikandan R 1∗, Krishna Madgula2, Snehanshu Saha1,2

1CAMMS, Dept of CSE ,PESIT-Bangalore South Campus
2PESIT-Bangalore South Campus

manikandan.ravikiran@gmail.com
krishnac.madgula@gmail.com
snehangshusaha@gmail.com

Abstract

In this paper we present our participation to
SemEval-2018 Task 8 subtasks 1 & 2 respec-
tively. We developed Convolution Neural Net-
work system for malware sentence classifi-
cation (subtask 1) and Conditional Random
Fields system for malware token label pre-
diction (subtask 2). We experimented with
couple of word embedding strategies, fea-
ture sets and achieved competitive perfor-
mance across the two subtasks. Code is made
available at https://bitbucket.org/
vishnumani2009/securenlp

1 Introduction

Cybersecurity risks and malware threats are be-
coming common and increasingly dangerous re-
quiring analysis of large repositories of malware
related information in realtime to understand its
capabilities and mount an effective defense. The
sheer volume of data and its potential applica-
tions alone have increased traction in recent times
among NLP researchers. In this line, SemEval
2018 Task-8 offers 4 subtasks addressing text clas-
sification and token, relation and attribute label
prediction in cybersecurity domain using Mal-
wareTextDB (Lim et al., 2017). While subtask 1
focuses on predicting sentences relevance to mal-
ware , subtasks 2, 3 and 4 focus on predicting to-
ken, relation and attribute labels for malware text
from subtask 1. More details about the each of the
subtasks can be found in Phandi et al. (2018).

Concerning subtask 1, which was inherently
formulated as a text classification problem very
few works are done till date in cybersecurity do-
main (Lim et al., 2017; Zhang et al., 2016). How-
ever, in general domain the problem of text clas-
sification is well addressed with extensive usage

∗Work performed during weekend part time assistantship
at CAMMS

of deep learning approaches (Zhou et al., 2016;
Liang and Zhang, 2016; Kim, 2014; Kalchbrenner
et al., 2014; Zhang et al., 2015), Support vector
machines, logistic regression (Genkin et al., 2007;
Jiang et al., 2016) and Tree based approaches
(Bouaziz et al., 2014). On the other hand, sub-
task 2 was formulated as sequence tagging prob-
lem which is addressed till date by CRF (Finkel
et al., 2005; R. et al., 2016, 2017), deep learn-
ing approaches (Chiu and Nichols, 2016; Ma and
Hovy, 2016; Lample et al., 2016) and SVM (Ekbal
and Bandyopadhyay, 2012).

In this paper, we describe our system that ad-
dresses subtasks 1 and 2 involving malware sen-
tence classification and malware token label pre-
diction. We designed these systems by adapting
various insights from previous works on text clas-
sification and sequence tagging. We submitted a
Convolutional Neural Network(CNN) based sys-
tem based system for subtask 1 and Conditional
Random Field (CRF) based system for subtask 2.

The rest of the paper is organized as follows. In
section section 2, we discuss datasets and prepro-
cessing. In section 3, we describe the algorithms
and features used in the process of model devel-
opment. In section 4, we describe our results and
some of our findings. Finally in section 5, we con-
clude with summary and possible implications on
future work.

2 Dataset and Preprocessing

The MalwareTextDB corpus used for this work
consists of APT reports describing malware re-
ported information taken from APTnotes1. We de-
signed an end-to-end pipeline consisting on three
module which process input text across multiple
stages. In stage 1, the input sentence is fed to
a preprocessing module which pre-processes the

1https://github.com/aptnotes/

868

Ţoken P̧laceholder
C:/ProgramData/Mail/ __PATH__
www.ducklink.com/ __URL__
securityblog@gdata.de __EMAILID__
profapi.dll __EXE__
"epsilon" __SPECIAL__

Table 1: Tokens and placeholders used in stage 1

text for stage 2 where the sentence are subject to
classification and finally stage 3 sequence tags the
tokens of the input sentence. We used following
preprocessing steps in stage 1.

1. All the words are lower-cased.

2. All the words that can be grouped under com-
mon category were replaced by a category
placeholder as shown in table 1.

We used following opensource tools 1) Stanford
Core-NLP (Manning et al., 2014) 2) Keras (Chol-
let et al., 2015) 3) CNTK (Seide and Agarwal,
2016) 4) Gensim (Řehůřek and Sojka, 2010) 5)
NLTK for preprocessing (Loper and Bird, 2002)
6) Scikit-learn (Pedregosa et al., 2011) for grid
search 7) Glove (Pennington et al., 2014).

3 Model

In this section, we explain the algorithms and
hyperparameters used for system development.
More specifically, in section 3.1 we explain our
CNN architecture for subtask 1 and in section 3.2
we show our CRF architecture for subtask 2.

3.1 Algorithm - Subtask 1

For subtask 1, we focused more towards deep
learning. Previous works (Yin et al., 2017) sug-
gests that both Convolutional Neural Network
(CNN) and Recurrent Neural Network (RNN) ar-
chitectures has been successfully applied for vari-
ous instances of text classification analysis at var-
ious level. With most of recent works (Zhang and
Wallace, 2017) showing success of CNN, we de-
veloped a CNN architecture based on work of Kim
(2014). The architecture developed in this work is
as shown in figure 1.

3.1.1 Convolutional Neural Network
Our CNN architecture was derived from original
works of Kim (2014) by using grid search over in-
put channel size, number of convolution layers and
number of filters. We use a multichannel model ar-
chitecture with five input channels for processing

Figure 1: CNN Architecture

2-6 grams of input malware text. Each channel is
comprised of the following elements:

1. Input layer that defines the length of input se-
quences.

2. Embedding layer set to the size of the vocab-
ulary and 100-dimensional real-valued repre-
sentations.

3. One-dimensional convolutional layer with
128 filters and a kernel size set to the num-
ber of words to read at once.

4. Channel wise Pooling layer with pool size of
5 to consolidate the output from the convolu-
tional layer.

Following CNN, we use a Fully Connected
Neural Network (FCNN) to transfer the the con-
catenated feature map (600 dimension) to a prob-
ability distribution over the two class labels. The
number of layers in FCNN is set to be 2. The first
layer uses 128 units with a tanh activation func-
tion. The second layer produces the classifica-
tion probability distribution over 2 units combined
with a softmax activation function.

Further to handle overfitting we use regular-
ization via dropout (Srivastava et al., 2014) with

869

F̧eature V̧alue
Sentence pad length 1000
Dimensions of wordvectors 100
Number of CNN layers 8
Dimension of CNN layers 1
Number of CNN filters 128
Activation function relu
Initialization function Xavier
Number of FC layers 2
Dimension of 1st FC layers 128
Dimension of 2nd FC layers 2
Activation of Final layer Softmax
Optimizer Adam
Batch size 32
Max Epoch 10
Loss function Cross Entropy

Table 2: Hyper parameters of CNN

threshold of 0.25. Additionally, we also apply cost
sensitive learning (Zhou and Liu, 2006) in order
to balance the effect of the larger negative samples
present in the training dataset. For each class, we
assigned weight proportional to class frequency.
We implemented the neural network model using
Keras. We trained our networks using Adam opti-
mizer (Kingma and Ba, 2014). All the hyper pa-
rameters are listed in table 2.

3.1.2 Input Embeddings
We experimented with two category of word
embeddings namely native embeddings and task
specific embedding using Word2vec (Le and
Mikolov, 2014) and Glove (Pennington et al.,
2014) algorithms. Characteristics of each of the
embedding is as explained below.

1. Native Embeddings: All words includ-
ing the unknown ones that are randomly
initialized use embeddings from original
Word2vec/Glove models.

2. Task specific : The embeddings are gener-
ated by training Word2vec/Glove algorithms
on sentences from MalwareTextDB.

3.2 Algorithm - Subtask 2
For subtask 2, we developed a Conditional Ran-
dom Field (CRF) system (Finkel et al., 2005)
based on previous works of Lim et al.(2017).

3.2.1 Conditional Random Fields
We used Conditional Random Fields with follow-
ing features that is available as part of Stanford
CoreNLP ToolKit.

Common Features: N-grams of size 6, previ-
ous, next tokens and labels, features giving dis-
junctions of words anywhere in the left or right,

Word2vec Glove
P R F P R F

test17 0.47 0.77 0.58 0.48 0.78 0.47
dev18 0.18 0.32 0.23 0.35 0.80 0.18
test18 0.24 0.34 0.28 0.38 0.72 0.50

Table 3: Results of subtask 1 on native Embeddings

Word2vec-Task Glove-Task
P R F P R F

test17 0.28 0.50 0.36 0.43 0.71 0.54
dev18 0.18 0.30 0.22 0.33 0.72 0.45
test18 0.20 0.30 0.24 0.38 0.67 0.48

Table 4: Results of subtask 1 on task specific embed-
dings

word shape features, word lemma of current, pre-
vious and next words, word-tag pair features, POS
tags, prefix and suffixes. The description of the
features are given in CoreNLP(2014).

Additional features: Based on analysis of cor-
pus, to tackle unknown malware entities we used
a gazette with token that describes malware entity.
These tokens were taken from training corpus and
internet2.

4 Experiments and Results

In this section, we present results for each of the
developed systems. The original dataset was split
into train17, test-173 released at the start of com-
petition and dev-18, test-18 released during the
competition pre-evaluation period for tuning of
parameters and final evaluation respectively . We
submitted CNN system for subtask 1 and CRF sys-
tem for subtask 2. Tables 3-5 show the results of
subtasks 1 and 2 respectively across the datasets.
Our systems achieve F-score of 0.5 for subtask 1
and 0.25, 0.36 for subtask 2 over strict, relaxed
runs of subtask 2.

4.1 Discussion

In previous sections we described the system de-
veloped for malware text analysis using which we
achieved competitive performance for subtask 1
and subtask 2.

For subtask 1, we developed a CNN system and
experimented the same with different embedding
strategies as explained in section 3.1.2. Across all

2https://www.mcafee.com/threat-intelligence/malware/
3(train/dev/test)-(17/18) is not an official naming conven-

tion , instead used here for ease of understanding

870

CRF-Strict CRF-Relaxed
P R F P R F

test17 0.51 0.26 0.34 0.45 0.36 0.40
dev18 0.18 0.25 0.21 0.38 0.22 0.29
test18 0.29 0.23 0.25 0.42 0.30 0.36

Table 5: Results of subtask 2 on Conditional Random
fields

the subset of datasets, glove embeddings consis-
tently outperformed Word2Vec embeddings. This
is in line with works of Kim (2014). We ini-
tially hypothesized that since ”the context of the
malware texts are different from normal English
texts”, task-specific embeddings would improve
the results of subtask 1. However, we observe
that task specific embeddings produced lower re-
sults compared to native embeddings. Observa-
tions of results revealed high false negative pre-
dictions of non-malware texts, we believe that this
may attributed to limited dataset used for develop-
ing embeddings, unlike native embeddings which
was created using very large corpus. This results
also agrees the general observation, that the size
of the training corpus has often a greater impact
on results than its strict matching with the target
domain(Tourille et al., 2017).

For subtask 1, we achieved an accuracy of
0.50 and were 7% behind the top performing sys-
tems. We identified three different sources of er-
rors across the sentences in line with previous
works(Lim et al., 2017) namely misclassification
of i) Sentences consisting of malware related key-
words without implication on actions; ii) Sen-
tences describing attacker actions and addition-
ally we also found iii) misclassification of sen-
tences containing specific patterns like presence of

PATH and EXE . Further, we had initially
hoped that the multichannel architecture would
prevent overfitting(Kim, 2014) and thus work bet-
ter than the single channel model, especially on
small datasets like MalwareTextDB. The results,
however, are vice versa and hence further work on
regularizing the training process and simpler sin-
gle channel architecture is warranted.

For subtask 2, during analysis we found that
there were multiple malware names which were
previously unseen and felt only orthographic fea-
tures would be insufficient. Hence in addition to
commonly used features, we also included gazette
features with words that quantify malware entity.
However, during evaluation on development set

we found high drop in precision when we used
gazette features owing to its deterministic nature.
Hence, we submitted CRF only with common fea-
tures described in section 3.2.1 for final evalua-
tion. With this system we achieved a result of
0.25 and 0.36 in strict and relaxed evaluation re-
spectively. Our accuracy is 3.5% (avg) behind the
top performing system across the evaluations. We
identified following sources of errors i) Tagging of
tokens in sentences containing only actions but not
entities - these are sentences with only attackers
actions in line with error from subtask 1 ii) Lack
of sensitivity to context - some tokens in test doc-
ument are given same label from train irrespective
of context iii) Miss tagging of some of the tokens
with common suffixes. For subtask 2, we exper-
imented with simple CRF architecture with basic
features, hence we believe further exploration of
future engineering is needed to reduce context re-
lated errors. As far as addressing rest of the errors,
we plan to explore combination of rule based and
deep learning approaches.

5 Conclusion

In this work, we developed CNN and CRF sys-
tems for malware text classification and token la-
bel prediction, achieving competitive results. For
subtask 1, we experimented with couple of word
embedding strategies and found native glove em-
bedding to be useful. For subtask 2, we used CRF
with simple features achieving results closer to top
performing system and above the official bench-
mark. Further, we described various sources of er-
rors identified in the due process of analysis. In
future, we plan to further improve our system to
show higher performance based on the above ob-
servations.

Acknowledgments

We thank the task organizers for providing ac-
cess to MalwareTextDB corpus and organizing the
shared task. Further, we would like to thank vari-
ous authors for open sourcing the codes of various
algorithms used in this work.

References
Ameni Bouaziz, Christel Dartigues-Pallez, Célia

da Costa Pereira, Frédéric Precioso, and Patrick
Lloret. 2014. Short text classification using seman-
tic random forest. In DaWaK.

871

Jason P. C. Chiu and Eric Nichols. 2016. Named en-
tity recognition with bidirectional lstm-cnns. TACL,
4:357–370.

François Chollet et al. 2015. Keras. https://
github.com/fchollet/keras.

Stanford CoreNLP. 2014. Nerfeaturefactory.
https://nlp.stanford.edu/nlp/
javadoc/javanlp/edu/stanford/nlp/
ie/NERFeatureFactory.html.

Asif Ekbal and Sivaji Bandyopadhyay. 2012. Named
entity recognition using support vector machine: A
language independent approach.

Jenny Rose Finkel, Trond Grenager, and Christo-
pher D. Manning. 2005. Incorporating non-local
information into information extraction systems by
gibbs sampling. In ACL.

Alexander Genkin, David D. Lewis, and David Madi-
gan. 2007. Large-scale bayesian logistic regression
for text categorization. Technometrics, 49:291–304.

Mingyang Jiang, Yanchun Liang, Xiaoyue Feng, Xiao-
jing Fan, Zhili Pei, Yu Xue, and Renchu Guan. 2016.
Text classification based on deep belief network and
softmax regression. Neural Computing and Appli-
cations, pages 1–10.

Nal Kalchbrenner, Edward Grefenstette, and Phil Blun-
som. 2014. A convolutional neural network for
modelling sentences. In ACL.

Yoon Kim. 2014. Convolutional neural networks for
sentence classification. In EMNLP.

Diederik P. Kingma and Jimmy Ba. 2014. Adam:
A method for stochastic optimization. CoRR,
abs/1412.6980.

Guillaume Lample, Miguel Ballesteros, Sandeep Sub-
ramanian, Kazuya Kawakami, and Chris Dyer. 2016.
Neural architectures for named entity recognition.
In HLT-NAACL.

Quoc V. Le and Tomas Mikolov. 2014. Distributed rep-
resentations of sentences and documents. In ICML.

Depeng Liang and Yongdong Zhang. 2016. Ac-
blstm: Asymmetric convolutional bidirectional
lstm networks for text classification. CoRR,
abs/1611.01884.

Swee Kiat Lim, Aldrian Obaja Muis, Wei Lu, and
Ong Chen Hui. 2017. Malwaretextdb: A database
for annotated malware articles. In ACL.

Edward Loper and Steven B Bird. 2002. Nltk: The
natural language toolkit. CoRR, cs.CL/0205028.

Xuezhe Ma and Eduard H. Hovy. 2016. End-to-end
sequence labeling via bi-directional lstm-cnns-crf.
CoRR, abs/1603.01354.

Christopher D. Manning, Mihai Surdeanu, John Bauer,
Jenny Rose Finkel, Steven Bethard, and David Mc-
Closky. 2014. The stanford corenlp natural language
processing toolkit. In ACL.

Fabian Pedregosa, Gaël Varoquaux, Alexandre Gram-
fort, Vincent Michel, Bertrand Thirion, Olivier
Grisel, Mathieu Blondel, Peter Prettenhofer, Ron
Weiss, Vincent Dubourg, Jacob VanderPlas, Alexan-
dre Passos, David Cournapeau, Matthieu Brucher,
Matthieu Perrot, and Edouard Duchesnay. 2011.
Scikit-learn: Machine learning in python. Journal
of Machine Learning Research, 12:2825–2830.

Jeffrey Pennington, Richard Socher, and Christo-
pher D. Manning. 2014. Glove: Global vectors for
word representation. In EMNLP.

Peter Phandi, Amila Silva, and Wei Lu. 2018.
Semeval-2018 Task 8: Semantic Extraction from
CybersecUrity REports using Natural Language
Processing (SecureNLP). In Proceedings of
International Workshop on Semantic Evaluation
(SemEval-2018), New Orleans, LA, USA.

Sarath P. R., Manikandan R, and Yoshiki Niwa. 2016.
Hitachi at semeval-2016 task 12: A hybrid approach
for temporal information extraction from clinical
notes. In SemEval@NAACL-HLT.

Sarath P. R., Manikandan R, and Yoshiki Niwa. 2017.
Hitachi at semeval-2017 task 12: System for tem-
poral information extraction from clinical notes. In
SemEval@ACL.

Radim Řehůřek and Petr Sojka. 2010. Software Frame-
work for Topic Modelling with Large Corpora. In
Proceedings of the LREC 2010 Workshop on New
Challenges for NLP Frameworks, pages 45–50, Val-
letta, Malta. ELRA. http://is.muni.cz/
publication/884893/en.

Frank Seide and Amit Agarwal. 2016. Cntk: Mi-
crosoft’s open-source deep-learning toolkit. In
KDD.

Nitish Srivastava, Geoffrey E. Hinton, Alex
Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdi-
nov. 2014. Dropout: a simple way to prevent neural
networks from overfitting. Journal of Machine
Learning Research, 15:1929–1958.

Julien Tourille, Olivier Ferret, Xavier Tannier, and
Aurélie Névéol. 2017. Limsi-cot at semeval-2017
task 12: Neural architecture for temporal infor-
mation extraction from clinical narratives. In Se-
mEval@ACL.

Wenpeng Yin, Katharina Kann, Mo Yu, and Hin-
rich Schütze. 2017. Comparative study of cnn
and rnn for natural language processing. CoRR,
abs/1702.01923.

Xiang Zhang, Junbo Jake Zhao, and Yann LeCun.
2015. Character-level convolutional networks for
text classification. In NIPS.

872

Ye Zhang and Byron C. Wallace. 2017. A sensitiv-
ity analysis of (and practitioners’ guide to) convo-
lutional neural networks for sentence classification.
In IJCNLP.

Yunan Zhang, Qingjia Huang, Xinjian Ma, Zeming
Yang, and Jianguo Jiang. 2016. Using multi-
features and ensemble learning method for imbal-
anced malware classification. 2016 IEEE Trust-
com/BigDataSE/ISPA, pages 965–973.

Peng Zhou, Zhenyu Qi, Suncong Zheng, Jiaming Xu,
Hongyun Bao, and Bo Xu. 2016. Text classification
improved by integrating bidirectional lstm with two-
dimensional max pooling. In COLING.

Zhi-Hua Zhou and Xu-Ying Liu. 2006. Training cost-
sensitive neural networks with methods addressing
the class imbalance problem. IEEE Transactions on
Knowledge and Data Engineering, 18:63–77.

873

Proceedings of the 12th International Workshop on Semantic Evaluation (SemEval-2018), pages 874–877
New Orleans, Louisiana, June 5–6, 2018. ©2018 Association for Computational Linguistics

HCCL at SemEval-2018 Task 8: An End-to-End System for Sequence
Labeling from Cybersecurity Reports

Mingming Fu 1,2, Xuemin Zhao 1 , Yonghong Yan 1,2,3

1The Key Laboratory of Speech Acoustics and Content Understanding
Institute of Acoustics, Chinese Academy of Sciences

2University of Chinese Academy of Sciences
3Xinjiang Laboratory of Minority Speech and Language Information Processing

Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences
{fumingming,zhaoxuemin,yanyonghong}@hccl.ioa.ac.cn

Abstract

This paper describes HCCL team systems that
participated in SemEval 2018 Task 8: Se-
cureNLP (Semantic Extraction from cyberse-
curity reports using NLP). To solve the prob-
lem, our team applied a neural network ar-
chitecture that benefits from both word and
character level representaions automatically,
by using combination of Bi-directional LSTM,
CNN and CRF (Ma and Hovy, 2016). Our
system is truly end-to-end, requiring no fea-
ture engineering or data preprocessing, and we
ranked 4th in the subtask 1, 7th in the subtask
2 and 3rd in the SubTask2-relaxed.

1 Introduction

Recently, cybersecurity defense has also been rec-
ognized as one of the problem areas likely to be
important both for advancing AI and for its long-
run impact on society. In particular, natural lan-
guage processing (NLP) has the potential for sub-
stantial contribution in cybersecurity and that this
is a critical research area given the urgency and
risks involved (Lim et al., 2017).

In SemEval 2018 Task 8 (Phandi et al., 2018),
there are four subtask:

1. SubTask1: Classify if a sentence is useful for
inferring malware actions and capabilities

2. SubTask2: predict the token labels in the sen-
tences. The output needs to be in BIO format.
There are 3 types of token labels: ”Action”,
”Entity”, and ”Modifier”.

3. SubTask3: predict the relations between the
token labels

4. SubTask4: predict the attributes for each en-
tity token

In this evaluation, our team submitted the re-
sults of Subtask 1 and Subtask 2. To tackle this

problem, we treat subtask 2 as a sequence labeling
problem. Most traditional high performance se-
quence labeling models are linear statistical mod-
els, including Hidden Markov Models (HMM) and
Conditional Random Fields (CRF) (Luo et al.,
2015), which rely heavily on hand-crafted features
and taskspecific resources.

Recently, many neural network based meth-
ods have been successfully applied to sequence
labeling task: Named Entity Recognition (Lam-
ple et al., 2016). In this paper, we present an
end-to-end System (combined CNN, LSTM and
CRF) for sequence labeling that uses no compli-
cated handcrafted features or domain knowledge.
LSTM is capable of learning long-term depen-
dencies, which is beneficial to sequence modeling
tasks. And character level CNN can get character-
level representation. For sequence labeling (or
general structured prediction) tasks, it is benefi-
cial to consider the correlations between labels in
neighborhoods and jointly decode the best chain
of labels for a given input sentence. So we model
label sequence jointly using a conditional random
field (CRF), instead of decoding each label inde-
pendently. Therefore, the system we proposed is
based on CNN, Bi-directional LSTM and CRF.
And in the SubTask2-relaxed our group ranked
third. As for SubTask1, we proposed a ruled based
method that if any token in the sentence is labled
”Action”, ”Entity”, or ”Modifier”, the sentence
would be considered relevant. Our team ranked
4th in the subtask 1.

2 System Description

In this section, we describe the components (lay-
ers) of our end-to-end system. We design our
model with CNN-BiLSTM-CRF that combined
word level representation, character level repre-
sentation and POS representation as feature in-

874

put, and outperform than the baseline in subtask2-
relaxed.

2.1 Feature Embedding

Feature representation as the meta input of neu-
ral network have received a great deal of attention,
and there are many outstanding achievements. In
our system, the word level embedding is trained
by the Google’s Word2Vec (Mikolov et al., 2013)
tool. Previous studies (Santos and Guimaraes,
2015; Chiu and Nichols, 2015)have shown that
CNN is an effective approach to extract morpho-
logical information (like the prefix or suffix of
a word) from characters of words and encode it
into neural representations. To get more diverse
information, our team decided to use Part-Of-
Speech(POS) as extra feature input.

Word level Embeddings: Taking into account
the particularity of the cybersecurity, we use the
evaluation data to train our own word embeddings.
Word level embeddings are trained by Word2Vec1,
and we set embedding dim = 300.

Character level Embeddings: Character level
embeddings are random initialization(trainable),
and we set embedding dim = 30.

POS Embeddings: POS embeddings are ran-
dom initialization(trainable), and we set embed-
ding dim = 30.

2.2 Model

We provide a brief description of CNN, LSTM and
CRF, and present a hybrid sequence labeling ar-
chitecture. This architecture is similar to the ones
presented by (Ma and Hovy, 2016).

Figure 1: The CNN network for extracting character-
level embedding of words.

1https://code.google.com/archive/p/word2vec/

2.2.1 CNN
Figure 1 shows the CNN we use to extract

character-level representation of a given word.
The CNN is similar to the (Chiu and Nichols,
2015), except that we use only character embed-
dings as the inputs to CNN, without character type
features. A dropout layer (Srivastava et al., 2014)
is applied before character embeddings are input
to CNN.

2.2.2 LSTM
Recurrent neural networks (RNNs) are a family

of neural networks that operate on sequential data.
Although RNN can, in theory, learn long depen-
dencies, in practice they fail to do so and tend to
be biased towards their most recent inputs in the
sequence (Bengio et al., 1994). Long Short-term
Memory Network (LSTM) have been designed to
combat this issue by incorporating a memory-cell
and have been shown to capture long-range depen-
dencies. They do so using several gates that con-
trol the proportion of the input to give to the mem-
ory cell, and the proportion from the previous state
to forget (Hochreiter and Schmidhuber, 1997). We
use the following implementation:

We will refer to the former as the forward
LSTM and the latter as the backward LSTM. This
forward and backward LSTM pair is referred to
as a bidirectional LSTM (Graves and Schmidhu-
ber, 2005; Dyer et al., 2015).The basic idea is to
present each sequence forwards and backwards to
two separate hidden states to capture past and fu-
ture information, respectively.

2.2.3 CRF
For sequence labeling (or general structured

prediction) tasks, it is beneficial to consider the
correlations between labels in neighborhoods and
jointly decode the best chain of labels for a given
input sentence. Therefore, we model label se-
quence jointly using a conditional random field
(CRF) (Lafferty et al., 2001), instead of decoding
each label independently.

For a sequence CRF model (only interactions
between two successive labels are considered),
training and decoding can be solved efficiently by
adopting the Viterbi algorithm.

2.2.4 CNN-BiLSTM-CRF
Finally, we construct our neural network model

by feeding the output vectors of BiLSTM into a

875

CRF layer. Figure 2 illustrates the architecture
of our network in detail. For each word, the
character-level is computed by the CNN in Fig-
ure 1 with character embeddings as inputs, and
we use NLTK2 to get POS information. Then the
character-level representation vector the POS rep-
resentation vector are concatenated with the word
embedding vector to feed into the BiLSTM net-
work. Finally, the output vectors of BiLSTM are
fed to the CRF layer to jointly decode the best la-
bel sequence. As shown in Figure 2, dropout lay-
ers are applied on both the input and output vectors
of BiLSTM. Experimental results show that using
dropout significantly improve the performance of
our model.

Figure 2: Main architecture of the network. Concate-
nated feature embeddings are given to BiLSTM.

3 Experiments and Results

3.1 Training
For model presented, we train our networks using
the back-propagation algorithm updating our pa-
rameters on every training batch, using Adam with
a learning rate of 0.001 and a gradient clipping of
5.0. Our CNN-BiLSTM-CRF model uses a sin-
gle layer for the forward and backward LSTMs
whose dimensions are set to 300. Tuning this di-
mension did not significantly impact model per-
formance. We set the dropout rate to 0.5. Using

2http://www.nltk.org/

higher rates negatively impacted our results, while
smaller rates led to longer training time. The mod-
els were implemented in TensorFlow3 and experi-
ments were run on K80 GPU.

3.2 Result

In this work, our team submitted the subtask 1 and
subtask 2 results. The results of all the teams are
shown in Table 2.

For subtask1, its goal is to classify if a sentence
is relevant for inferring malware actions and capa-
bilities. We make use of the result in subtask2 for
this subtask and consider a sentence to be relevant
as long as it has an annotated token label. Table
2 shows that our system is ranked 4th and behave
better than baseline for subtask1.

For subtask2, our CNN-BiLSTM-CRF model is
then trained to predict token labels from cyberse-
curity reports. From Table 2 we can see that in
subtask2, our system is slightly worse than the
baseline. However, our system has a 22.5% im-
provement in subtask2-relaxed than baseline.

3.3 Error Analysis

For subTask1, a lot of non-malware sentences are
regarded as malware sentences. May be due to
the fact that we use the subTask2 output to esti-
mate whether the current sentence is non-malware
sentence or malware sentence, so the errors of
subTask2 will affect subTask1. And both non-
malware sentences and malware sentences contain
annotated tokens.

For subTask2, we find that many unannotated
tokens are labeled as annotated tokens and anno-
tated tokens are not labeled. By analyzing the
data, we found that the same words occurring as
both unannotated and annotated tokens in the sen-
tences, which might make our system achieve a
low F-score.

4 Conclusion

In this paper we presented the system we used to
compete in the SemEval-2018 Semantic Extrac-
tion from cybersecurity reports using NLP com-
petition. Our goal is to implement a deep learn-
ing based end-to-end system that can solve cross
domain sequence labeling issues without compli-
cated feature engineering.

For future work, it would be interesting to ex-
plore systems that can solve the problem of self-

3https://www.tensorflow.org/

876

Team SubTask1 SubTask2 SubTask2-relaxed
Team 1 0.57 0.23 0.31
Team 2 0.57 0.28 0.36
Team 3 0.52 0.29 0.39
Our Team 0.52 (4) 0.22 (7) 0.38 (3)
Team 5 0.52 0.16 0.25
Team 6 0.50 0.25 0.36
Team 7 0.49 0.28 0.39
Team 8 0.18 0.22 0.32
Team 9 0.15 0.21 0.28
Baseline 0.51 0.23 0.31

Table 1: Results on subtask1 and subtask2.

adaptation between different domains. And trans-
fer learning might be a way to handle the lack of
labeled data.

5 Acknowledgments

This work is partially supported by the Na-
tional Natural Science Foundation of China
(Nos. 11590770-4, 61650202, U1536117,
61671442, 11674352, 11504406, 61601453), the
National Key Research and Development Program
(Nos. 2016YFB0801203, 2016YFC0800503)
and the Key Science and Technology Project of
the Xinjiang Uygur Autonomous Region (No.
2016A03007-1).

References
Yoshua Bengio, Patrice Y Simard, and Paolo Frasconi.

1994. Learning long-term dependencies with gradi-
ent descent is difficult. IEEE Transactions on Neu-
ral Networks, 5(2):157–166.

Jason P C Chiu and Eric Nichols. 2015. Named entity
recognition with bidirectional lstm-cnns. Transac-
tions of the Association for Computational Linguis-
tics, 4(0):357–370.

Chris Dyer, Miguel Ballesteros, Wang Ling, Austin
Matthews, and Noah A Smith. 2015. Transition-
based dependency parsing with stack long short-
term memory. meeting of the association for com-
putational linguistics, pages 334–343.

Alex Graves and Jurgen Schmidhuber. 2005. Frame-
wise phoneme classification with bidirectional lstm
networks. 4:2047–2052.

Sepp Hochreiter and Jurgen Schmidhuber. 1997.
Long short-term memory. Neural Computation,
9(8):1735–1780.

John D Lafferty, Andrew Mccallum, and Fernando
Pereira. 2001. Conditional random fields: Prob-

abilistic models for segmenting and labeling se-
quence data. pages 282–289.

Guillaume Lample, Miguel Ballesteros, Sandeep Sub-
ramanian, Kazuya Kawakami, and Chris Dyer. 2016.
Neural architectures for named entity recognition.
pages 260–270.

Swee Kiat Lim, Aldrian Obaja Muis, Wei Lu, and
Chen Hui Ong. 2017. Malwaretextdb: A database
for annotated malware articles. In Proceedings of
the 55th Annual Meeting of the Association for Com-
putational Linguistics (Volume 1: Long Papers),
volume 1, pages 1557–1567.

Gang Luo, Xiaojiang Huang, Chin Yew Lin, and Za-
iqing Nie. 2015. Joint entity recognition and disam-
biguation. In Conference on Empirical Methods in
Natural Language Processing, pages 879–888.

Xuezhe Ma and Eduard Hovy. 2016. End-to-end se-
quence labeling via bi-directional lstm-cnns-crf. In
Proceedings of the 54th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 1064–1074, Berlin, Germany.
Association for Computational Linguistics.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey
Dean. 2013. Efficient estimation of word represen-
tations in vector space. arXiv: Computation and
Language.

Peter Phandi, Amila Silva, and Wei Lu. 2018.
Semeval-2018 Task 8: Semantic Extraction from
CybersecUrity REports using Natural Language
Processing (SecureNLP). In Proceedings of
International Workshop on Semantic Evaluation
(SemEval-2018), New Orleans, LA, USA.

Cicero Nogueira Dos Santos and Victor Guimaraes.
2015. Boosting named entity recognition with neu-
ral character embeddings. arXiv: Computation and
Language, pages 25–33.

Nitish Srivastava, Geoffrey E Hinton, Alex Krizhevsky,
Ilya Sutskever, and Ruslan Salakhutdinov. 2014.
Dropout: a simple way to prevent neural networks
from overfitting. Journal of Machine Learning Re-
search, 15(1):1929–1958.

877

Proceedings of the 12th International Workshop on Semantic Evaluation (SemEval-2018), pages 878–884
New Orleans, Louisiana, June 5–6, 2018. ©2018 Association for Computational Linguistics

UMBC at SemEval-2018 Task 8: Understanding Text about Malware
Ankur Padia1, Arpita Roy1, Taneeya Satyapanich1, Francis Ferraro1, Shimei Pan1,

Youngja Park2, Anupam Joshi1, Tim Finin1

1 University of Maryland, Baltimore County
Baltimore, MD, 21250 USA

{pankur1,arpita2,taneeya1,ferraro,shimei,joshi,finin}@umbc.edu
2 IBM T. J. Watson Research Center
Yorktown Heights, New York, USA
young park@us.ibm.com

Abstract

We describe the systems developed by the
UMBC team for 2018 SemEval Task 8, Se-
cureNLP (Semantic Extraction from Cyberse-
cUrity REports using Natural Language Pro-
cessing). We participated in three of the sub-
tasks: (1) classifying sentences as being rele-
vant or irrelevant to malware, (2) predicting to-
ken labels for sentences, and (4) predicting at-
tribute labels from the Malware Attribute Enu-
meration and Characterization vocabulary for
defining malware characteristics. We achieved
F1 scores of 50.34/18.0 (dev/test), 22.23 (test-
data), and 31.98 (test-data) for Task1, Task2
and Task2 respectively. We also make our cy-
bersecurity embeddings publicly available at
https://bit.ly/cybr2vec.

1 Introduction

Task 8 for SemEval 2018 asked participants to
work on a set of related sub-tasks involving ana-
lyzing information from text about malware drawn
from the Advanced Persistent Threats Notes col-
lection (Blanda and Westcott, 2018) using the se-
mantic framework found in the Malware Attribute
Enumeration and Characterization language (Kir-
illov et al., 2011; Beck et al., 2014). The task
was composed of four related sub-tasks that could
be part of a processing pipeline for an informa-
tion extraction system for cybersecurity related
text (Phandi et al., 2018).

Subtask 1 required classifying a sentence as be-
ing relevant or irrelevant for inferring malware ac-
tions and capabilities. Subtask 2 involved predict-
ing token labels for entities, actions and modifiers
in sentences. Subtask 3, which we did not under-
take, expanded on subtask 2 by asking participants
to label relevant relations between the entities.
Subtask 4 required predicting more detailed at-
tribute labels, including ActionName, Capability,

StrategicObjectives and TacticalObjectives, drawn
from the MAEC vocabulary.

One of our aims is to better understand the dif-
ferences between cybersecurity text and general,
non-cybersecurity text; another is to also better
understand differences and variation within cyber-
security texts. To that end, we focus on learn-
ing and extracting better representations of the in-
put reports. Specifically, for our approaches, we
focus on approaches that incorporate additional,
domain-specific knowledge into our system, and
we use these enhanced representations and fea-
tures in well-studied classification, representation,
and sequence prediction models.

2 Subtask 1

In this section we describe our approaches to
classify a given sentence as relevant or irrele-
vant to malware. We used logistic regression
(LR), multi-layer perceptron (MLP), and Long-
Short Term Memory (Hochreiter and Schmidhu-
ber, 1997, LSTM) as classifiers, and we used mul-
tiple encoding schemes to represent features for
the classification task.

2.1 Models

We experimented with and evaluated three dif-
ferent techniques for implementing the Subtask
1 relevance classifier. Each approach used simi-
lar features; we opted for bag-of-words or bag-of-
embeddings due to their simplicity and competi-
tive performance (Wang and Manning, 2012).

• Logistic Regression: We used logistic re-
gression, as a baseline classifier with an L2
penalty of 10.

• Multi-Layer Perceptron: We used two ar-
chitectures for MLP for two different kinds
of input; one was bag-of-words, the other

878

LR MLP
ACC AUC F1 ACC AUC F1

Avg. Binary BOW 89.78 81.58 47.9 90.85 77.44 46.89
Binary BOW 78.9 79.29 32.98 65.05 77.77 25.61

Avg. Count BOW 89.94 79.31 46.49 91.01 75.76 45.77
Count BOW 78.4 81.38 33.84 83.35 75.2 33.99

Wiki embeddings 93.49 50 0 93.49 50 0
Cyber embeddings 88.38 79.65 43.82 83.51 82.35 39.02

Table 1: Performance on Task 1 (dev-data) for each of the model we implemented. We used the best MLP model
for SemEval submission (test-data) and had F1 score of 18. We found LR and MLP to always label majority class
resulting in zero F1 score using Wiki embeddings.

was dense embeddings. When the input rep-
resentation was bag-of-words, we used one
hidden layer of dimension 32 followed by
a classification layer. When embeddings
were used we used a network of three hid-
den layers followed by a classification layer;
we found adding up to 3 layers to the net-
work helped improving training accuracy.
We used L2 regularization (Tibshirani, 1996)
of 0.1 and dropout (Srivastava et al., 2014)
of 0.1 to avoid overfitting. We fixed the
value of dropout and experimented with mul-
tiple values of L2 and chose one giving the
best performance on the development dataset.
Performance decreased gradually when L2
penalty was either increased to {0.2, 0.25,
0.5} or decreased to {0.01, 0.001, 0.0001}.
We set the size of the hidden layer to 100
when embeddings were used.

• LSTM (for embeddings): We applied an
LSTM network with one hidden layer of size
128. We used dense, pre-trained embeddings
(§2.2) for each word in the input sentence.

2.2 Features for the models

We experimented with the following four feature
sets in order to determine the best performing rep-
resentation for Task 1.

• (Average) Count Bag-Of-Words: We cre-
ated standard bag-of-words features from the
training dataset. We experimented with nor-
malizing each vector via averaging.

• (Average) Binary Bag-Of-Words: We also
considered binary bag-of-words features, by
replacing each term frequency count with bi-
nary value where positive value is set to one
and a negative value to zero. We also experi-

mented with normalizing each feature vector
by averaging.

• Cybersecurity embeddings: The cyber-
security embeddings were generated using
word2vec Skipgram model with negative
samplings of 100 dimension and a window
size of five (Mikolov et al., 2013b) on one
million cybersecurity related documents.1

• Wikipedia embeddings: We generated 400
dimensional word2vec skip-gram embed-
dings from a recent Wikipedia dump. We
used a window size of 5.2

2.3 Datasets, embeddings &
hyperparameters

For Subtask 1, we used all 65 files available as part
of SemEval Task 8. We tuned and tested our model
on development data available as part of SemEval.
For logistic regression we swept the L2 regular-
ization coefficient ({100, 10, 1, 0.1, 0.01, 0.001})
and chose the value that gave best performance on
the development dataset. For neural approaches
we used stochastic gradient descent with momen-
tum of 0.4 for LSTM and 0.9 for MLP. We tried
multiple learning rates and chose one which gave
best performance on the development dataset. We
chose starting learning rate of 0.2 for LSTM and
0.1 for MLP. We also tried using Adam optimizer
(Kingma and Ba, 2014) with the same learning
rate as MLP but found the resulting model labeled
all test instances with the majority class.

For our implementation we used Keras (Chollet,

1We used an embedding model produced by IBM Re-
search trained on a collection of 1 million cybersecurity-
related documents with a vocabulary size of 6.4 millions
words and 100 dimensions.

2Reported models use the 20180220 English Wikipedia
dump; we did not notice large differences in performance
when using this vs. an earlier version for the competition.

879

LSTM
ACC AUC F1

Wiki embeddings 80.21 82.35 35.83
Cyber embeddings 93.98 72.05 50.34

Table 2: LSTM Performance (dev data). We offer these
as supplementary evaluations.

2015) with a Tensorflow backend to train neural
network based models and Gensim (Řehůřek and
Sojka, 2010) to train word embeddings. We used
Scikit-learn (Pedregosa et al., 2011) for Logistic
Regression. For the LSTM, we let the size of the
input sequence be the maximum length of all sen-
tences in the batch and padded shorter sentences
with zero vectors.

The input was a matrix of dimension l×d where
d is the size of embedding vector and l is the length
of the longest sentence.

2.4 Discussion
As evident from Tables 1 and 2, the neural network
based classifiers perform better compared to other
methods depending on the features.

However, we find a considerable gap between
the score from Table 1 and 2. As explained later,
we believe that the models’ low scores are related
to the scope of the task. Overall, the LSTM per-
forms better compared to the MLP due its ability
to capture subtle nuances.

We note the positive impact that domain-
centered cybersecurity embeddings have. Never-
theless, not all cybersecurity texts may accurately
reflect other cybersecurity texts, especially ones
with the task-specific annotations as considered
here. We posit that the performance of all our
models, in particular the LSTM, may be improved
with embeddings that are learned from documents
more representative of those evaluated.3

Comparing the results of Wikipedia embed-
dings and embeddings trained on cybersecurity
text we found Wikipedia based embeddings to
consistently perform poorly. We believe one of the
reasons Wikipedia embeddings performed poorly
for this task is due to less overlap between the
technicality of the task and content.

Moreover the F1 score is zero sometimes as the
features are rich enough to classify positive in-
stance and predicts only negative (as evident from

3The actual collection of APT notes included about 400
documents, vs. the 1 million documents trained on broader
cybersecurity texts.

False Positive: Attackers always use this mini-
mal effort approach in order to bypass a victim
s defenses.
False Negative: Trojan.Karagany first checks
for a live Internet connection by visiting Mi-
crosoft or Adobe websites.
General Information: The group has used
two main malware tools: Trojan.Karagany and
Backdoor.Oldrea.

Table 3: Task 1 classification examples.

AUC). On the other hand, the cybersecurity em-
beddings performed better when compared with
Wikipedia embeddings, due to the more focused
corpus, but we believe there is scope to improve
the quality of embeddings. Frequency based fea-
tures tend to perform better than binary features;
averaging the features improves the performance
score across all classifiers.

2.5 Error analysis
Among the classifiers, the MLP makes mistakes
by getting caught into to domain specific words
that occur frequently, like attack and attackers,
and skips less frequent but indicative words like
Trojan.Karagany. Additionally we found the MLP
incorrectly classifies general sentences as relevant.
We demonstrate examples in Table 3.

Looking at the example sentences from 3, we
see that whether or not a sentence is “relevant” is
task-dependent. For example, the general infor-
mation sentence above could be useful for iden-
tifying relationships among different malware in-
stances or families. However, the sentence would
be irrelevant in the context of action and capabili-
ties of a particular malware mention.

3 Subtask 2

In this section we describe our approach for Task
2, which required participants to predict token la-
bels for malware-related documents. The Task 2
system served as an automatic labeling tool using
one of four labels:

• Action, referring to an malware-related
event;

• Entities, referring to either Subjects or
Objects in the malware-related sentence; or

• Modifiers, referring to prepositions that link
between action and phrases.

880

Each label is represented by a tag using the in-
side, outside, beginning (IOB) format (Ramshaw
and Marcus, 1999). The performance was mea-
sured using F1 score and the relaxed measurement
by omitting the IOB tags.

3.1 Our Approach

We extended the previous work Lim et al. (2017),
who trained a conditional random field (CRF) on
unigram and bigram features of the surface words,
part-of-speech tags and Brown clustering signa-
tures (Brown et al., 1992). Like Lim et al. (2017),
we also trained a CRF. Our features include:

• unigrams and bigrams of words in the depen-
dency parse tree,

• unigrams and bigrams of the word lemmas,

• wordshape equivalence class analysis
(Christopher, 2016), and

• Brown clustering signatures from a larger
APT collection .

The word’s context, which are words in the win-
dow of size three, was included. These features
were extracted using Stanford CoreNLP (Manning
et al., 2014). We did not use the surface word as
in development we found it yielded lower perfor-
mance. The dependency function will help to rec-
ognize the similar sentence by comparing similar
sentence’s structure. The wordshape features rep-
resent the classes of upper case, lower case, digits,
and punctuations, and also groups the sequence of
the same class. The wordshape features help to
recognize named entities.4

We trained our own Brown clustering features
(Liang, 2005) with our own APT corpus of 456
APT files from 2008 to 2017. We experimented
with the Brown clustering hyperparameters: the
Brown cluster size (1000,10000) and its prefix
length (6,8,10,12,16). The best result from the ex-
periment is the prefix of size 8 and cluster size
1000. We built our own Brown clustering for
two reasons. First, we will not be able to iden-
tify Brown clustering feature when we encounter
out of vocabulary word; we found the larger cor-
pus to partially alleviate this concern. Second, we
believed that the bigger size of the corpus, with
an appropriate clustering size and prefix length,
would yield better clustering features.

4 We use the ‘dan2’ wordshape classes from CoreNLP
(Manning et al., 2014).

P R F1
Action 24.50 39.20 30.15
Entity 11.26 17.34 13.65

Modifier 29.37 46.84 36.10
Average 18.22 28.54 22.24

Table 4: Official Task 2 scores on Test set

P R F1
Action 25.67 50.00 33.92
Entity 23.71 45.45 31.16

Modifier 29.92 48.10 36.89
Average 24.42 46.31 31.98

Table 5: Official Task 2 relaxed/token-level scores on
Test set

3.2 Experimental Results

We used the CRF++ toolkit (Kudo, 2005) to
develop our conditional random field (CRF)
models. For the official evaluation, we ran our
system on Test set provided by SemEval2018.
The test set contains 13,080 tokens in total. The
official scoring reported our F1 performance
of 22 for strict scoring, and 32 for relaxed
scoring. Our F1-score for subtask 2 are gen-
erally on par with the baselines (23 for the
strict, and 31 for the relaxed, measures). Detailed
performance analyses are shown in Tables 4 and 5.

3.3 Discussion

Table 4 demonstrates that our system performance
of predicting Entity is lower than Action and Mod-
ifier. We believe this is because malware-related
entities are different from other text; in particular,
they can be quite long. For example, the follow-
ing (gold test) entity is a long clause with com-
plex syntactic structure: ‘method of leaving the
encoded file on disk and only decoding it in mem-
ories.’ This entire clause is labeled as an Entity.
Despite the dependency features, our system can-
not identify these long spans as an entity. Another
example of this limitation is shown in Figure 1.
This is a rich area for future improvement.

4 Subtask 4

In this section we describe our approach for task
4. The task is to predict attribute labels (Action-
Name, Capability, StrategicObjectives and Tac-
ticalObjectives) for a given malware-related text

881

Figure 1: An example of wrong prediction of Task 2. Above the line is the gold standard annotation. Under the
line is our predictions.

describing action of a malware.

4.1 Our Approach
For this task we focus on learning better quality
word embedding features for a classifier, as classi-
fier performance depends on the quality of its fea-
tures. In addition to encoding semantics present
in the text via embeddings, we want to encode do-
main specific knowledge in the embeddings. For
this purpose, we developed an Annotation Word
Embedding (AWE) model that is capable of in-
corporating diverse types of domain knowledge,
such as metadata, keyword information, ontology
knowledge, and manual annotation. The AWE
model learns to predict this knowledge from the
text, resulting in better quality embedding since
domain knowledge can be incorporated in the em-
beddings. We then train a classifier with these
high quality word embedding features to classify
attribute labels.

4.1.1 Annotation Word Embedding
The AWE model’s learning task is to predict an-
notations and context words given a target word.
A sliding window on the input text generates the
training samples. In each sliding window the task
is to use target word to predict its own annotation
as well as the context words. Formally, we maxi-
mize the log probability of context words and an-
notations given target word.

Given a sequence of T training words
(W1,W2...Wt−1, Wt,Wt+1...WT) and their an-
notations ((A1,1, A1,2...A1,M1), (A2,1...A2,M2) ...
(AT,1,...AT,MT

)), our objective is to maximize the
average log probability shown in Equation 1:

1

T

T∑

t=1


 ∑

−C≤j≤C,j 6=0

logP (Wt+j |Wt)+

∑

0≤k≤Mt

logP (At,k|Wt)


 (1)

where C is the size of the context window, Wt is
the target word, Wt+j is a context word, At,k is

the kth annotation of target word Wt. In addition
to using the target word to predict context words,
like Mikolov et al. (2013a)’s skipgram model, the
AWE embedding model predicts annotations of
target word using target word itself.

4.2 Experiments

To train the AWE model we used all 456 APT re-
ports as text corpus. In addition we used keywords
for each attribute label described in MAEC vocab-
ulary (Kirillov et al., 2011) and gold annotation
given for 65 APT reports available as part of the
SemEval task to create text annotation.

To create text annotation we collected keywords
from attribute label descriptions and extracted the
token groups from the gold annotations. Token
groups consist of the subject, action and object
linked to each other via relation labels. We used
these token words and keywords to create text an-
notation; we deleted stop words.

For example, one token group extracted from
gold annotation is “these configuration issued
commands to attack following domain and IPs.”
After deleting stop words this token group we get
“configuration,” “issued,” “commands,” “attack,”
“domain,” and “IPs.” In the gold annotation, this
token group has label Capability12 in attribute cat-
egory of Capability. In MAEC vocabulary (Kir-
illov et al., 2011) keywords given for this capa-
bility label are “machine access,” “control,” “exe-
cute,” “terminate,” and “create.” All these token
words and keywords will have an annotation of
Capability12 in our AWE model.

After creating the text annotation we train an
AWE model with 100 dimension feature vectors,
window size 5 and negative sampling. After train-
ing embeddings we use these embeddings to create
features for classifier. We use average embeddings
of all the words in each token group to create clas-
sifier instance. We use SVM as classifier. On the
test dataset we get F-score of 0.19.

882

4.3 Discussion

This task is one of the most challenging tasks be-
cause of data sparsity and large number of at-
tribute labels. In fact, out of the 444 attribute
labels, 185 labels do not appear in dataset. For
the remaining 259 attribute labels 169 labels oc-
cur less than five times. In addition, among 3348
instances there are 2298 instances without any Ac-
tionName attribute, 642 instances without a Capa-
bility attribute, 1244 instances without a Strategic-
Objective attribute and 1675 instances without a
TacticalObjective attribute.

To improve classifier performance future work
can try training a classifier that focuses on the
common classes, with non frequent classes labeled
as “other.” Applying other techniques like similar-
ity score to classify infrequent classes may also
be beneficial. Additionally, we noticed that in the
gold annotation there are often missing relation
labels. This missing relation labels result in in-
complete token group as token groups are tokens
linked by relation labels.

5 Conclusion

We described the systems developed by the
UMBC team for 2018 SemEval Task 8, Se-
cureNLP (Semantic Extraction from CybersecU-
rity REports using Natural Language Processing).
We participated in three of the subtasks: (1) clas-
sifying sentences as relevant or irrelevant for fur-
ther malware analysis, (2) predicting token la-
bels for sentences about malware, and (4) adding
detained attribute labels to sentences from the
MAEC vocabulary for defining malware charac-
teristics. Our cybersecurity embeddings are avail-
able at https://bit.ly/cybr2vec.

We plan to continue development our systems
by getting additional annotations for training, ex-
ploring the application of different machine learn-
ing algorithms, making use of the knowledge in
our Unified Cybersecurity Ontology (Syed et al.,
2016) and associated data, and through our ongo-
ing collaboration with colleagues at IBM as part
of the AI Horizons Network.

Acknowledgments

The research described in this paper was partially
supported by gifts from IBM and Northrop Grum-
man. We thank Agniva Banerjee, Sudip Mittal,
Sandeep Narayanan, Maithilee Prabodh, Vishal

Rathod, and Arya Renjan for helping with anno-
tations.

References
Desiree Beck, Ivan Kirillov, and Penny Chase. 2014.

The MAEC language. Technical report, MITRE.

Kiran Blanda and David Westcott. 2018. APTnotes.

Peter F. Brown, Peter V. deSouza, Robert L. Mer-
cer, Vincent J. Della Pietra, and Jenifer C. Lai.
1992. Class-based n-gram models of natural lan-
guage. Comput. Linguist., 18(4):467–479.

Franois Chollet. 2015. keras. https://github.
com/fchollet/keras.

M Bishop Christopher. 2016. PATTERN RECOG-
NITION AND MACHINE LEARNING. Springer-
Verlag New York.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural computation,
9(8):1735–1780.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Ivan Kirillov, Desiree Beck, Penny Chase, and Robert
Martin. 2011. Malware attribute enumeration and
characterization. Technical report, MITRE.

Taku Kudo. 2005. CRF++: Yet another CRF toolkit.
https://taku910.github.io/crfpp/.

Percy Liang. 2005. Semi-supervised learning for nat-
ural language. Ph.D. thesis, Massachusetts Institute
of Technology.

Swee Kiat Lim, Aldrian Obaja Muis, Wei Lu, and
Chen Hui Ong. 2017. Malwaretextdb: A database
for annotated malware articles. In Proceedings of
the 55th Annual Meeting of the Association for Com-
putational Linguistics (Volume 1: Long Papers),
pages 1557–1567. Association for Computational
Linguistics.

Christopher D. Manning, Mihai Surdeanu, John Bauer,
Jenny Finkel, Steven J. Bethard, and David Mc-
Closky. 2014. The Stanford CoreNLP natural lan-
guage processing toolkit. In Association for Compu-
tational Linguistics (ACL) System Demonstrations,
pages 55–60.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jef-
frey Dean. 2013a. Efficient estimation of word
representations in vector space. arXiv preprint
arXiv:1301.3781.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013b. Distributed representa-
tions of words and phrases and their compositional-
ity. In Advances in neural information processing
systems, pages 3111–3119.

883

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Pretten-
hofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Pas-
sos, D. Cournapeau, M. Brucher, M. Perrot, and
E. Duchesnay. 2011. Scikit-learn: Machine learning
in Python. Journal of Machine Learning Research,
12:2825–2830.

Peter Phandi, Amila Silva, and Wei Lu. 2018.
Semeval-2018 Task 8: Semantic Extraction from
CybersecUrity REports using Natural Language
Processing (SecureNLP). In Proceedings of
International Workshop on Semantic Evaluation
(SemEval-2018), New Orleans, LA, USA.

Lance A Ramshaw and Mitchell P Marcus. 1999. Text
chunking using transformation-based learning. In
Natural language processing using very large cor-
pora, pages 157–176. Springer.

Radim Řehůřek and Petr Sojka. 2010. Software Frame-
work for Topic Modelling with Large Corpora. In
Proceedings of the LREC 2010 Workshop on New
Challenges for NLP Frameworks, pages 45–50, Val-
letta, Malta. ELRA. http://is.muni.cz/
publication/884893/en.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky,
Ilya Sutskever, and Ruslan Salakhutdinov. 2014.
Dropout: A simple way to prevent neural networks
from overfitting. The Journal of Machine Learning
Research, 15(1):1929–1958.

Zareen Syed, Ankur Padia, Tim Finin, M Lisa Math-
ews, and Anupam Joshi. 2016. Uco: A unified cy-
bersecurity ontology. In AAAI Workshop: Artificial
Intelligence for Cyber Security.

Robert Tibshirani. 1996. Regression shrinkage and se-
lection via the lasso. Journal of the Royal Statistical
Society. Series B (Methodological), pages 267–288.

Sida Wang and Christopher D Manning. 2012. Base-
lines and bigrams: Simple, good sentiment and topic
classification. In Proceedings of the 50th Annual
Meeting of the Association for Computational Lin-
guistics: Short Papers-Volume 2, pages 90–94. As-
sociation for Computational Linguistics.

884

Proceedings of the 12th International Workshop on Semantic Evaluation (SemEval-2018), pages 885–889
New Orleans, Louisiana, June 5–6, 2018. ©2018 Association for Computational Linguistics

Villani at SemEval-2018 Task 8: Semantic Extraction from Cybersecurity
Reports using Representation Learning

Pablo Loyola, Kugamoorthy Gajananan, Yuji Watanabe and Fumiko Satoh
IBM Research Tokyo

Tokyo, Japan
{e57095,gajan,muew,sfumiko}@jp.ibm.com

Abstract

In this paper, we describe our proposal for the
task of Semantic Extraction from Cybersecu-
rity Reports. The goal is to explore if natu-
ral language processing methods can provide
relevant and actionable knowledge to con-
tribute to better understand malicious behav-
ior. Our method consists of an attention-based
Bi-LSTM which achieved competitive perfor-
mance of 0.57 for the Subtask 1. In the due
process we also present ablation studies across
multiple embeddings and their level of rep-
resentation and also report the strategies we
used to mitigate the extreme imbalance be-
tween classes.

1 Introduction

Cybersecurity represents one of the most com-
prehensive and challenging tasks to tackle from a
data-driven perspective. It is inherently technical,
covering field such as networking and program-
ming languages, but at the same time, it considers
human aspects, such as intent, trust and strategy
among benign and malicious agents (Buczak and
Guven, 2016).

This rich mixture makes it an ideal playground
for machine learning, to extract patterns and char-
acterize the interaction between the different set
of actors involved. Moreover, as we can col-
lect large amounts of data from security related
sources, such as trace logs and reports, the level
of generalization that machine learning methods
could achieve could increase. Nevertheless, sev-
eral challenges also emerge such as noise, lack
structure, unavailability of annotated sources and
a characteristic class imbalance when data is la-
beled. Therefore, for machine learning to be con-
sidered useful in a cybersecurity context, it must
provide robust and reliable results, overcoming the
aforementioned issues.

In that sense, how we represent the data plays a
key role, as it is known that in any machine learn-
ing setting, different feature representations yield
to different results, entangling different explana-
tory factors of variation on the data (Bengio et al.,
2013). We are interested in study the tradeoff be-
tween the use of hand crafted features the process
of automatically learning feature representations.

In that sense, the present SemEval Task 8
(Phandi et al., 2018) represents a relevant sce-
nario to test several hypotheses in the context of
a controlled semantic extraction competition. The
dataset, provided by Lim et al. (2017), contains
over 6,800 labeled sentences from 39 malware re-
ports. From the subtasks, we focused on the first
one, as it provides compact goal to assess a proof
of concept.

Our approach consists on the use of an at-
tention based LSTM-based recurrent architecture
(Hochreiter and Schmidhuber, 1997; Luong et al.,
2015) which is capable of learning sentence level
feature representations at both character and to-
ken level. Additionally, we prepend an embedding
layer from which pretrained feature vectors can be
associated to the tokens. Given the natural class
imbalance of the data, we tried several techniques
to alleviate generalization issues.

Our results show that out approach can outper-
form the baselines, reaching up to 0.57 in the com-
petition leaderboard for the Subtask 1. Neverthe-
less, the actual scores show that the task is far from
being solved, illustrating the difficulty of the prob-
lem and the need for more powerful methods that
allow us to obtain more expressive feature repre-
sentations.

2 Data Pre-processing

We tried to keep the data as natural as possible in
an attempt to retain most of the characteristics and

885

nuances from the original reports. Therefore, we
did not perform any transformation or cleaning on
the tokens extracted from each sentence.

Given the configuration of the contest, where
the leaderboard on the test set was kept hidden to
the public, the only way to obtain a reliable es-
timation of the performance of the experiments
were to look at the validation set. While this is
not usually a problem, in our exploratory study,
we found that the set of sentences on the provided
validation set differed in distributional terms from
the sentences on the provided testing set.

To alleviate this issue we implemented an ad-
justment procedure that consisted of merging all
the sources of data (training, validation and test)
into one set while re-labeling each sentence as part
to the test set or not.

Figure 1: Data Re-classification process.

With this relabeled set, we trained a classifier
to predict if a given sentence belonged to the test
set or not. In this case, for feature extraction, we
computed trigram based vectors for each sentence
using Scikit-learn package1, and a standard feed
forward neural network was used. Figure 1 illus-
trates the approach.

We then considered the sentences that originally
belonged to the training + validation set but that
obtained the highest probability to be part of the
test set by the trained model. This new set pre-
sented slightly more similar characteristics to the
original test set than the original validation set, in
both average sentence length and vocabulary over-
lap perspectives. For the empirical study, we ex-
perimented with both the original validation set
and the proposed variation.

3 Proposed Approach

The problem we are trying to solve is, given a sen-
tence from a report, estimates if it contains rele-
vant information about malware characterization
or not. Therefore, we can treat it as a binary clas-
sification.

1http://scikit-learn.org/

3.1 Use of pretrained feature vectors

The use of pretrained feature vectors has shown
positive effects when initializing recurrent archi-
tectures (Le et al., 2015). In that sense, we provide
three initialization sources.

The first one is the use of an external source
represented by Glove vectors (Pennington et al.,
2014). The decision of incorporating such source
is related to the fact that given that Glove vectors
are trained on a Wikipedia corpus, in theory they
can provide a considerable level of coverage. On
the other hand, we are aware that, as the corpus
for this competition is highly focused on security
topics, there is a chance that a portion of the to-
ken may not have a corresponding feature vector
from Glove source. For this cases, we decided to
initialize such tokens with a vector computed as
the average of the top 10 % less frequent words
appearing in Glove set.

In the second place, we wanted to test if pre-
training with the same sources used for the compe-
tition could have a positive outcome. This is nat-
ural decision as we are building an ad-hoc feature
representation that is narrowed to the security con-
text. To achieve that, we computed a feature vec-
tor based on i) bigrams and trigrams combination
and ii) learning a continuous vector representation
by means of a word2vec (Mikolov et al., 2013)
configuration. We experimented with these three
sources isolated as well as combined.

Finally, in addition to a token-level feature rep-
resentation, we implemented a character level fea-
ture learning pretraining that consists of a single
LSTM that passes through each token and from
which we capture the last hidden state to use as a
token representation.

3.2 Model Architecture

The resulting sequence of vectors associated to a
given sentence is then passed to a BiSTM mod-
ule. In this step, as we need to obtain a learned
representation of the entire sequence, we explored
three configurations. The first one consists of just
take the last hidden state and treat it as the sen-
tence level representation. The second one con-
sists of performing a simple averaging on all the
hidden states obtained from the sequence. This
average can be further complemented by means of
element wise operations, such as direct sum or the
dot product, following a schema similar to (Mou
et al., 2015). The third configuration was the use

886

the kernel sends commands to each module using its module id .
the victim is then redirected to a url which in turn determines the best exploit to use based on the information collected .
here also it uses hashes to look up apis .
pipe server is a special mode of the injected dll .
it appears this method makes sending sms easy .

Table 1: Sample of false positives from the custom validation set.

the data is sent encrypted with rc4 , and base64-encoded .
the malicious content is stored inside the document in encoded form , and the shellcode decodes and writes this to disk .
it is designed as a survey tool .
its method of exfiltrating the logged keystrokes relied upon a hardcoded email address stored in the binary .
the communication between the attacker and the sockss is encoded using the rc4 key .

Table 2: Sample of false negatives from the custom validation set.

of an attention mechanism, as proposed by (Luong
et al., 2015). In this case, a feedforward neural
network is trained jointly with the recurrent mod-
ule and it is in charge of learning the portions of
the sentences that are more expressive for the clas-
sification.

The learned sentence representations are then
passed to a binary classifier that estimates the like-
lihood of a sentence to be relevant or not by min-
imizing the categorical cross entropy loss. For
all our experiments we use as optimizer Rmsprop
(Tieleman and Hinton, 2012). For regularization,
we added Dropout (Srivastava et al., 2014) both in
the recurrent module as well as in the binary clas-
sifier.

4 Results and Discussion

The main results are shown on Table 3 and Table
4. From them, we can see that taking Glove as
a baseline and incorporating n-grams vectors pro-
duce the best results. The addition of word2vec
based vectors did not have a positive impact. We
hypothesize this is due to the size of the training
set used, the resulting vectors are based on a model
that could not converge.

In the case of the configurations used to obtain
a sentence representation, a clear improvement is
obtained by using an attention mechanism, which
outperforms both the selection of the last hidden
state and all the averaging alternatives. These re-
sults are aligned with the current state of the art
in language modeling, as attention is a robust way
to prioritize the elements the conforms a sentence.
The use of a character level representation learning
module slightly improved the results, while at the
same time increased the time consumption of the
model in approximately 15%. Therefore, it is not
clear if such addition is cost effective in all cases.

Name Accuracy
Glove 0.612
Glove+Ngrams 0.683
Glove+Ngrams+ w2v 0.681

Table 3: Classification results for different initializa-
tions.

We tried regularization via Dropout, from 0.2.
to 0.7 but it did not show relevant improvements.
Another technique we implemented was to re-
weight the labels to mitigate the imbalance prob-
lem, but such addition decreased the overall per-
formance of the model.

We repeated the experiments using the origi-
nal train-validation schema, as well as with the
variation proposed. On average using the pro-
posed variation only increased the performance
in around 2% (obtained once the test set was re-
leased) by the competition organizers.

From the results showed above, we can summa-
rize the best configuration for the proposed task as
follows:

• Initialize token vectors by means of a con-
catenation between Glove vectors and tri-
grams captured from the training set.

• The use of an BiLSTM module and an atten-
tion mechanism to efficiently weight the im-
portance of the tokens in a sentence.

4.1 Misclassification Analysis
To obtain a better understanding of the perfor-
mance of the model, we sampled a group of in-
stances coming from both the false positive and
false negative sets.

Table 1 shows a set of false positives, i.e., not
relevant sentences misclassified as relevant by the

887

Name Accuracy
Last hidden 0.692
Average hidden 0.694
Attention 0.822
Attention + char 0.828

Table 4: Classification results for different sentence
level representation learning.

model. One of the main characteristics is the lack
of specific details expressed on the sentences and
the shallow descriptions of processes or tasks. On
the other hand, on Table 2, the set of false nega-
tives, i.e., relevant sentences classified as not rele-
vant by the model, presents a denser population of
specific terms, usually associated to tools or pro-
tocols used by the attackers. From this, we can
hypothesize the model is not able to effectively
understand the context of the token usage, espe-
cially when it is rare and probably has very low
frequency. In that sense, this could represent the
need for additional information the model requires
treating this cases in a particular way (e.g. pass-
ing explicitly token dependencies). Further exper-
iments are needed to find ways to operationalize
such additions.

4.2 Parameter Sensibility Analysis

Given the considerable number of hyper-
parameters that can be configured, we decided to
study how such tuning impact model performance.
During training, we found that the learning rate
was key factor. While it is known that a small
learning rate is beneficial when working with
recurrent architectures, we found that in this case,
give the extreme class imbalance, it was required
to search for learning rates in a considerable lower
spectrum. Figure 2 and Figure 3 show different
learning dynamics sampled from several learning
rates configurations. Values higher than 0.0001
produce uniform increments in the validation
loss, which means the model was not able to
generalize (as seen on Figure 2, training loss
rapidly converged in such cases, not giving the
model enough space to learn efficiently). Learning
rates around 0.0001 or below started providing
a decreasing validation loss. This phenomenon
provides some insights on the difficulty of the
task and the challenges associated when trying to
achieve generalization.

Figure 2: Impact of the learning rate on the training
loss.

Figure 3: Impact of the learning rate on the validation
loss.

5 Conclusion and Future work

In this work, we described our experience on the
semantic extraction from cybersecurity reports.
We were able to produce a model the generate fea-
sible results for estimating the relevance of sen-
tences in the context of security information. For
future work, we consider that while keep improv-
ing the performance of the model is vital task,
equally important is to explore ways to allow de-
cision makers to have a clear understanding of the
internals of the model to assess how much they
can depend on it to support their actions. There-
fore, we consider working towards incorporating
an explanatory or interpretable layer in the design
of a model.

References
Yoshua Bengio, Aaron Courville, and Pascal Vincent.

2013. Representation learning: A review and new
perspectives. IEEE transactions on pattern analysis
and machine intelligence, 35(8):1798–1828.

Anna L Buczak and Erhan Guven. 2016. A survey of
data mining and machine learning methods for cyber
security intrusion detection. IEEE Communications
Surveys & Tutorials, 18(2):1153–1176.

888

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural computation,
9(8):1735–1780.

Quoc V Le, Navdeep Jaitly, and Geoffrey E Hin-
ton. 2015. A simple way to initialize recurrent
networks of rectified linear units. arXiv preprint
arXiv:1504.00941.

Swee Kiat Lim, Aldrian Obaja Muis, Wei Lu, and
Chen Hui Ong. 2017. Malwaretextdb: A database
for annotated malware articles. In Proceedings of
the 55th Annual Meeting of the Association for Com-
putational Linguistics (Volume 1: Long Papers),
volume 1, pages 1557–1567.

Minh-Thang Luong, Hieu Pham, and Christopher D
Manning. 2015. Effective approaches to attention-
based neural machine translation. arXiv preprint
arXiv:1508.04025.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013. Distributed representa-
tions of words and phrases and their compositional-
ity. In Advances in neural information processing
systems, pages 3111–3119.

Lili Mou, Hao Peng, Ge Li, Yan Xu, Lu Zhang, and
Zhi Jin. 2015. Discriminative neural sentence mod-
eling by tree-based convolution. arXiv preprint
arXiv:1504.01106.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. Glove: Global vectors for word
representation. In Proceedings of the 2014 confer-
ence on empirical methods in natural language pro-
cessing (EMNLP), pages 1532–1543.

Peter Phandi, Amila Silva, and Wei Lu. 2018.
Semeval-2018 Task 8: Semantic Extraction from
CybersecUrity REports using Natural Language
Processing (SecureNLP). In Proceedings of
International Workshop on Semantic Evaluation
(SemEval-2018), New Orleans, LA, USA.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky,
Ilya Sutskever, and Ruslan Salakhutdinov. 2014.
Dropout: A simple way to prevent neural networks
from overfitting. The Journal of Machine Learning
Research, 15(1):1929–1958.

Tijmen Tieleman and Geoffrey Hinton. 2012. Lecture
6.5-rmsprop: Divide the gradient by a running av-
erage of its recent magnitude. COURSERA: Neural
networks for machine learning, 4(2):26–31.

889

Proceedings of the 12th International Workshop on Semantic Evaluation (SemEval-2018), pages 890–893
New Orleans, Louisiana, June 5–6, 2018. ©2018 Association for Computational Linguistics

Flytxt NTNU at SemEval-2018 Task 8:
Identifying and Classifying Malware Text Using

Conditional Random Fields and Naı̈ve Bayes Classifiers

Utpal Kumar Sikdar1, Biswanath Barik2 and Björn Gambäck2

1Flytxt, Thiruvananthapuram, India
2Department of Computer Science, NTNU, Norway

utpal.sikdar@gmail.com
{biswanath.barik,gamback}@ntnu.no

Abstract

Cybersecurity risks such as malware threaten
the personal safety of users, but to identify
malware text is a major challenge. The pa-
per proposes a supervised learning approach
to identifying malware sentences given a doc-
ument (subTask1 of SemEval 2018, Task 8),
as well as to classifying malware tokens in the
sentences (subTask2). The approach achieved
good results, ranking second of twelve partic-
ipants for both subtasks, with F-scores of 57%
for subTask1 and 28% for subTask2.

1 Introduction

Malware is a major problem in the digital world.
Recently, Lim et al. (2017) addressed the mal-
ware threat by creating a new database of malware
texts. In addition, they constructed different mod-
els for identifying and classifying malware sen-
tences, and discussed the outstanding challenges.
Sutskever et al. (2016) also pointed to cybersecu-
rity defense as a key area because of its long-term
impact on society. Still, there have been very few
efforts addressing the problem. Many cybersecu-
rity agencies such as Cylance (Gross, 2016) and
Symantec (DiMaggio, 2015) have collected large
repositories of malware-related online texts. The
diversity of those texts shows that identifying mal-
ware is quite challenging.

The organizers of SemEval 2018, Task 8 de-
fined four subtasks for Semantic Extraction from
CybersecUrity REports using NLP, SecureNLP
(Phandi et al., 2018). The paper outlines a su-
pervised approach to the first two subtasks, on
malware sentence and token identification, respec-
tively. In subTask1, given a sentence, the systems
need to predict whether the sentence is relevant
for inferring the malware’s actions and capabili-
ties. For this subtask, two machine learning clas-
sifiers were used, Naı̈ve Bayes (Rish, 2001) and

Total Malware
Data Sents Tokens Sents Tokens

Train 9,435 231,180 2,204 12,165
Dev 1,213 32,029 79 459
Test 618 13,080 90 453

Table 1: Malware dataset statistics

Conditional Random Fields (CRF, Lafferty et al.,
2001), as well as a combination of the two models.

In subTask2, the systems should predict and
classify malware tokens in the sentences into three
different categories, namely Action, Entity, and
Modifier. A CRF-based classifier was used also
for the second subtask.

The paper is organized as follows: The datasets
are presented in Section 2. The malware sentence
identification is described in Section 3, while the
token label malware identification is described in
Section 4. Results are presented in Section 5, with
system comparison and error analysis reported in
Sections 6 and 7, respectively. Section 8 addresses
future work and concludes.

2 Datasets

The SecureNLP shared task organizers provided
three different datasets: training, development and
test sets. The statistics of the datasets are reported
in Table 1, with the total number of sentences and
tokens in each set as well as the number of those
sentences and tokens containing malware.

3 Malware Sentence Identification

Two classifiers, CRF and Naı̈ve Bayes were used
for malware sentence identification. When both
the classifiers identified a sentence as malware, the
outputs of the classifiers were combined. The sys-
tem architecture is shown in Figure 1.

890

Figure 1: Overall system architecture

3.1 Conditional Random Fields
Token level malware words were identified in the
texts described in Section 2. If a sentence con-
tains malware token(s) as identified by the CRF
classifier, the sentence is considered as a potential
malware sentence. A range of features (further de-
scribed in Section 4 below) were utilized to train
the CRF classifier to predict malware tokens.

3.2 Naı̈ve Bayes
A Naı̈ve Bayes classifier is a probabilistic clas-
sifier based on Bayes’ theorem an independence
assumption between the features. As an initial
step, a dictionary was created using the vocabu-
lary found in all the sentences. In the next step, a
term-document matrix was built for each sentence.
Then Bayes’ Theorem was applied to calculate the
malware (y = 1) and non-malware (y = 0) prob-
abilities for each sentence. Equation 1 represents
the malware probability, P for each sentence.

P (y = 1|S) = P (S|y = 1)× P (y = 1)

P (S)
(1)

Here S denotes the set of words in a particular sen-
tence and P (S) = P (S|y = 1) × P (y = 1) +
P (S|y = 0)× P (y = 0). The non-malware prob-
ability for each sentence can be calculated in the
same way. If P (malware) > P (non-malware),
the sentence is considered to be a malware sen-
tence, otherwise it is assumed to be non-malware.

3.3 Classifier Ensemble Prediction
An ensemble classifier was created by merging
the outputs of the two classifiers described above.
If both classifiers identify a sentence as malware,

it is considered to be malware, otherwise non-
malware. Combining the two classifiers gave bet-
ter accuracy than using each classifier individually.

4 CRF-based Malware Token
Identification and Classification

To identify and classify each token from unstruc-
tured text into the three categories Action, Entity
and Modifier, a supervised CRF-based approach
was used. The task was divided into two steps. In
the first step, each token (called a mention) was
identified as belonging to one of the three cate-
gories or not. In the next step, the identified tokens
were classified into one of the three categories.

The CRF token label malware identification
model was implemented using the C++ CRF++
package1, which allows for fast training by utiliz-
ing L-BFGS (Liu and Nocedal, 1989), a limited
memory quasi-Newton algorithm for large scale
numerical optimization. The classifier was trained
with L2 regularization and the following features:
• local context (with a -1 to +2 window, i.e.,

from one preceding to two following tokens),
• part-of-speech information (-1 to +3 tokens),
• suffix (last two or three characters)
• prefix characters (three initial characters)
• starts-with-upper-case,
• stem (-3 to +2 tokens),
• is-a-stop-word,
• is-alphanumeric,
• is-sentence-initial,
• identified mention (-3 to +3 tokens),
• bi-gram: a combination of the current token

output and previous token output.

1https://taku910.github.io/crfpp/

891

System Precision Recall F-score

CRF 0.30 0.80 0.43
Naı̈ve Bayes 0.30 0.89 0.45
Ensemble 0.43 0.75 0.55

Table 2: SubTask1 Development Results

System Precision Recall F-score

CRF 0.40 0.71 0.51
Naı̈ve Bayes 0.32 0.88 0.47
Ensemble 0.49 0.67 0.57

Table 3: SubTask1 Test Results

To identifying the mentions, the above features
(except the mention feature) were used together
with the current word and a context consisting of
the previous two and the next two words.

5 Results

The supervised learning approaches were applied
to subTask1 and subTask2. The systems were
learned from the training data and tested on the
development data. Table 2 reports the precision,
recall and F1-score on the subTask1 development
data for the CRF approach, the Naı̈ve Bayes, and
the combined ensemble approach. The ensemble
achieved 10% better F-score than the Naı̈ve Bayes
approach, which in turned slightly out-performed
the CRF classifier. Before evaluating on the un-
seen test data, the development set was merged
with the training set to build the classifiers. The
combined approach also produced the best results
on unseen test data, as reported in Table 3. Note
that the enlarged training set helped to increase
precision on the test set for all classifiers, while
recall went down in all cases.

For subTask2, token label malware identifica-
tion, we applied the Conditional Random Fields
classifier using the features given in Section 4. The
results are shown in Table 4. When tested on the
development data, the classifier and achieved an
F-score of 24.90%, with slightly higher recall than
precision. Again, the unseen test data results were
somewhat better, with an F-score of 28%. Ten-
tatively since also here the development data was
merged with the training data when learning the
classifier used for the unseen test data.

Data Precision Recall F-score

Dev 22.22 28.32 24.90
Test 26.00 29.40 28.00

Table 4: SubTask2 Results (%)

Team Name T1 T2 T2-rel

Villani 0.57 0.23 0.31
Flytxt NTNU 0.57 0.28 0.36
DM NLP 0.52 0.29 0.39
HCCL 0.52 0.22 0.38
TeamDL 0.50 0.25 0.36
NLP Found 0.49 0.28 0.39
ACL benchmark 0.51 0.23 0.31

Table 5: Top-7 results (F-score) for SubTask-1 (T1),
SubTask-2 (T2), and SubTask2-relaxed (T2-rel)

6 Comparison with Other Systems

Comparing our system (‘Flytxt NTNU’) with the
other systems participating in the shared task, Ta-
ble 5 reports the top 7 results and shows that in
subTask1 (malware sentence identification) we se-
cured second position, while achieving the same
F-score (57%) as the top-rated system (Villani).
Also for token label malware identification (sub-
Task2), our system got second position with a
28% F-score. For both subtasks, we achieved
clearly better scores than the baseline system
(‘ACL benchmark’).

7 Error Analysis and Discussion

To analyze the outputs of the development data for
subTask1 and subTask2, Tables 6 and 7 draws the
confusion matrices for each subtask.

For subTask1, Table 6 shows that many non-
malware sentences are identified as malware sen-
tences by both classifiers, tentatively since many
common words are shared by both malware and
non-malware sentences. Both classifiers gener-
ate higher recall than precision values because the
classifiers try to identify as many sentences as pos-
sible as malware. Once the outputs of the two
classifiers were combined (when both classifiers
agreed on a sentence being potential malware),
about half of the non-malware sentence classifica-
tion errors were removed, and the ensemble thus
produced better F-scores than the Naı̈ve Bayes and
CRF models in isolation.

892

CRF Naı̈ve Bayes Ensemble
Non-Malware Malware Non-Malware Malware Non-Malware Malware

Non-Malware 985 149 969 165 1057 77
Malware 16 63 9 70 20 59

Table 6: Confusion Matrix for SubTask1 on the development data

B-Entity I-Entity B-Action I-Action B-Modifier I-Modifier O

B-Entity 51 68 1 0 1 0 135
I-Entity 8 122 1 0 7 0 383
B-Action 2 1 57 7 0 0 57
I-Action 0 0 0 0 0 0 6
B-Modifier 0 6 0 0 28 1 44
I-Modifier 0 0 0 0 0 0 0
O 277 537 107 12 46 3 30061

Table 7: Confusion Matrix for SubTask2 on the development data

The confusion matrix for subTask2 is reported
in Table 7, in the BIO (beginning, inside, out-
side) format for each of the three classes (entity,
action, modifier). We observe that many non-
malware tokens (O) are identified as malware and
vice versa. Again, this might be due to same words
occurring as both malware and non-malware to-
kens in the sentences, which is why the system
achieved low precision and recall values. Further-
more, two of the inside mention classes (I-Action
and I-Modifier) are tiny, indicating that training
machine learners on them will be difficult.

8 Conclusion and Future Work

The paper has proposed Naı̈ve Bayes and CRF
based approaches to identify malware sentences
(subTask1). In the future, we will incorporate
other features such as tf-idf and information gain
to improve system performance. Furthermore, we
aim to apply deep learning-based approaches such
as LSTM (Long Short-Term Memory) and CNN
(Convolution Neural Network) to malware sen-
tence classification.

For subTask2, many features were developed to
identify malware tokens using Conditional Ran-
dom Fields. Most of the features were extracted
directly from training data, but the features could
have been further optimized using grid search and
evolutionary approaches. Also for this subtask, we
will in the future experiment with applying other
approaches, such as LSTM and CNN, to identify
the types of malware tokens in the sentences.

References
Jon DiMaggio. 2015. The Black Vine cyberespionage

group. Technical report, Symantec.

Jon Gross. 2016. Operation Dust Storm. Technical
report, Cylance.

John Lafferty, Andrew McCallum, and Fernando C.N.
Pereira. 2001. Conditional Random Fields: Prob-
abilistic models for segmenting and labeling se-
quence data. In Proceedings of the 18th Interna-
tional Conference on Machine Learning, pages 282–
289, Williamstown, MA, USA. IMIS.

Swee Kiat Lim, Aldrian Obaja Muis, Wei Lu, and
Chen Hui Ong. 2017. MalwareTextDB: A database
for annotated malware articles. In Proceedings
of the 55th Annual Meeting of the Association for
Computational Linguistics, volume 1: Long Papers,
pages 1557–1567, Vancouver, Canada. ACL.

Dong C. Liu and Jorge Nocedal. 1989. On the limited
memory BFGS method for large scale optimization.
Mathematical Programming, 45(1):503–528.

Peter Phandi, Amila Silva, and Wei Lu. 2018.
Semeval-2018 Task 8: Semantic Extraction from
CybersecUrity REports using Natural Language
Processing (SecureNLP). In Proceedings of
International Workshop on Semantic Evaluation
(SemEval-2018), New Orleans, Louisiana.

Irina Rish. 2001. An empirical study of the Naı̈ve
Bayes classifier. In Proceedings of the IJCAI-01
Workshop on Empirical Methods in Artificial Intelli-
gence, pages 41–46. AAAI.

Ilya Sutskever, Dario Amodei, and Sam Altman. 2016.
Special projects. Technical report, OpenAI.

893

Proceedings of the 12th International Workshop on Semantic Evaluation (SemEval-2018), pages 894–897
New Orleans, Louisiana, June 5–6, 2018. ©2018 Association for Computational Linguistics

Digital Operatives at SemEval-2018 Task 8: Using dependency features
for malware NLP

Chris Brew
Digital Operatives

chris.brew@digitaloperatives.com

Abstract
The four sub-tasks of SecureNLP build to-
wards a capability for quickly highlighting
critical information from malware reports,
such as the specific actions taken by a mal-
ware sample. Digital Operatives (DO) sub-
mitted to sub-tasks 1 and 2, using standard
text analysis technology (text classification for
sub-task 1, and a CRF for sub-task 2). Perfor-
mance is broadly competitive with other sub-
mitted systems on sub-task 1 and weak on sub-
task 2. The annotation guidelines for the in-
termediate sub-tasks create a linkage to the fi-
nal task, which is both an annotation challenge
and a potentially useful feature of the task. The
methods DO chose do not attempt to make use
of this linkage, which may be a missed oppor-
tunity. This motivates a post-hoc error analy-
sis. It appears that the annotation task is very
hard, and that in some cases both deep con-
ceptual knowledge and substantial surround-
ing context are needed in order to correctly
classify sentences.

1 Introduction

The SecureNLP challenge is motivated by (Lim
et al., 2017) and further described in (Phandi et al.,
2018), it aims to provide automation for malware
analysts who might otherwise be overwhelmed by
the task of finding key data in long threat reports.
The annotation guidelines used to create the task
ask analysts to include actions carried out by the
malware, but exclude actions carried out by the hu-
man designers of the malware. These actions are
related to the MAEC cybersecurity ontology (Kir-
illov et al., 2010). The guidelines include one sub-
stantial caveat:

As a general guide [for a positive an-
notation], the sentence should imply a
particular malware action or capability,
with reference to the list of attribute la-
bels. [i.e. the MAEC labels]

Sub-task 1 calls for a determination of relevance or
irrelevance to malware activity on a per-sentence
basis. However a number of issues make this diffi-
cult. See detail in (Lim et al., 2017). First, it is not
obvious what to do when a sentence describes mal-
ware activity but does not fit in with any MAEC
category. Second, the distinction between things
done by the malware and things done (or intended)
by its designers is not easy to maintain.

We describe the systems that we built for tasks
1 and 2 and use them to conduct ablation studies
and error analyses.

2 Digital Operatives Systems

The Digital Operatives submission used
spaCy (Honnibal and Johnson, 2015). to
generate features for each token, then aggregated
the features from the whole sentence. To estimate
performance, we used 5-fold cross-validation on
the combined training and development sets.

As an example, consider the word ”ago” in the
sentence:

”A few days ago we detected a watering hole
campaign in a website owned by one big industrial
company .”

We extract:

• the word itself

• the lemmatized form provided by spaCy,

• the orthographic shape (all lower case, repre-
sented as ”xxx”)

• the part-of-speech (”ADV”)

• the detailed part-of-speech (”RB”)

• Brown cluster (6442) (Brown et al., 1992)

• the fact that it does or does not look like a
URL

894

• the bigrams in which it participates (”days
ago” and ”ago we”)

• similar bigrams for lemma, Brown cluster
and shape.

• extract features from dependency links. Each
token has a head from which it depends, and
the relation that it holds to the head has a
name. The head of ”ago” is the verb ”de-
tected”, and the relation is ”advmod”. We
package this up into the feature detected-
ADVMOD-ago.

• features of the form X-advmod-Y where X
and Y are either both cluster ids or both or-
thographic shapes.

The result is passed to a passive aggressive
classifier (Crammer et al., 2006)1. This learner,
which is similar in cost and performance to a lin-
ear kernel SVM and to a number of other linear
classifiers, seems to be close to the best choice
from a large number of experiments. Grid search
was used to choose the C regularization parame-
ter for the classifier. On our 5 validation splits this
method had a mean f1 of 0.60 with standard de-
viation 0.045. Performance on the actual test set
was lower, at 0.52. This was rank 5 among the 11
submitted systems, well behind the top 2 systems
and slightly ahead of the organizers’ benchmark.

Our system classifies each sentence in isolation.
No attempt was made to establish the referents of
pronouns.

For sub-task 2 we used CRFsuite (Okazaki,
2007) to implement a linear-chain conditional ran-
dom field. Per-word features were: the lower-
cased word and its part-of-speech tag; a two-letter
prefix of the word; two- and three-letter character
prefixes of the word; shape indicators for whether
the word is numeric, title-case or upper-case; indi-
cators for whether the word is beginning or end of
sentence; the nltk part of speech of previous and
subsequent words, if present; the shape indicators
of previous and subsequent words, if present. We
would have preferred to use features from spaCy,
as in task 1, but did not overcome tokenization dif-
ferences in time. This system was not competitive,
with an F-score of 0.16 and a ranking of 9th. The
best system had an F1 score of 0.39.

1In scikit-learn’s implementation (Pedregosa et al.,
2011)

precision recall f1-score sup
irrelevant 0.96 0.83 0.89 528
relevant 0.44 0.79 0.57 90

avg / total 0.88 0.83 0.84 618

Table 1: F1-scores using only lemmas and dependen-
cies between lemmas.

2.1 Ablation study

The submitted system used all the features gener-
ated by spaCy. We augmented this with ablation
studies in which only subsets of the features were
used. The best performance came using only un-
igrams and bigrams derived from lemmas, along
with dependency features derived from lemmas.
Ablation actually improved performance over the
submission, as shown in table 1. Presumably,
these features give the sparse linear classifier an
appropriate level of generality. There are 89 false
positives in the complete test set and 19 false neg-
atives. There are only 71 true positives.

3 Task analysis

MAEC labels classify malware along several di-
mensions. We focus on a tractable subset that can
be assigned to Actions and that describe capa-
bilities of malware. Table 2 lists these labels.

3.1 Error analysis

We carried out our own annotation of the 112 ex-
amples from the test set for which our system did
not agree with the organizers annotations. To these
we added a further 111 randomly chosen examples
from the test set, for which our system did agree.
We assessed each of these examples against the 20
categories from table 2, There were differences of
judgment between our annotations and those of the
organizers. Potential reasons for this include sim-
ple errors, misunderstandings, and consequences
of the linkage between sub-task 1 and sub-task 4.

Table 4 shows performance when using the new
annotations. There are now 72 false positives in
the complete test set and 13 false negatives. True
positives now slightly outnumber false positives,
at 88. It is of course possible that some of our
annotations are unintentionally biased in our fa-
vor. See table 3. In future work, it may be benefi-
cial to apply the crowdsourcing methods and care-
ful evaluation of annotation found in, for example,
(Snow et al., 2008).

895

Number Capability Example Frequency
000 anti-behavioral analysis avoid detection and frustrate analysis, 36
001 anti-code analysis XOR 0xAA applied on top of it, 36
002 anti-detection making its open ports invisible to scan-

ners.
240

003 anti-removal block access to where the rootkit keeps its
file

5

004 availability violation DDoS attacks were launched 28
005 command and control C & C proxies talk to [other] proxies 580
006 data exfiltration exfiltrate data back to the C&C server 189
007 data theft extract Internet Explorer passwords 186
008 destruction collects file names and overwrites them 63
009 fraud smart meters could be manipulated 7
010 infection/propagation infected via a multi-stage attack 525
011 integrity violation attacker can hijack the network 85
012 machine access/control control the keyboard and mouse. 245
013 persistence the malware creates a registry key 57
014 privilege escalation achieve admin privileges 23
015 probing malware checks if an old versn is installed 77
016 remote machine manipulation the malware will access network shares 13
017 secondary operation The dropper installs a second file 280
018 security degradation bypass User Account Control (UAC) 33
019 spying Babar is able to sniff all keystrokes 128

Table 2: Malware capability labels. Note that the frequency distribution is highly skewed. Examples are edited to
fit.

Example DO SN MAEC
A screenshot of the desktop is saved into the
C:\\ProgramData\\Mail\\MailAg\\scs.jpg
file .

0 1 spying?

As you can see this powershell script simply extracts an-
other VBScript and executes it .’,

0 1

Cozyduke was used throughout these attacks to harvest and
exfiltrate sensitive information to the attackers .

1 0 exfiltration

Cozyduke will periodically contact these websites to re-
trieve task information to be executed on the local machine
.

0 1 C&C

Execute contents in unlabeled textbox1 as a SQL query and
return binary data to adversary.

0 1 exfiltration

The malware hides behind numerous layers of encryption
and obfuscation and is capable of quietly stealing and ex-
filtrating sensitive information such as email from the vic-
tim’s computer

1 0 anti-detection,data theft

To communicate with the C&C - server , the Trojan makes
use of asymmetric encryption with a hardcoded pair of pri-
vate and public keys .

1 0 c&c

Table 3: Sample annotation disagreements. The column labeled DO reflects our classification, SN represents that
given by the SecureNLP organizers. The column labeled MAEC gives detail on the capability that DO thinks is
being described. When we feel confident that one of the annotations for a sentence is clearly right, it is shown in
bold. If not, neither is bold.

896

P R F1 sup
irrelevant 0.97 0.86 0.91 517
relevant 0.55 0.87 0.67 101

avg / total 0.90 0.86 0.87 618

Table 4: Performance against DO’s (possibly uninten-
tionally biased) annotations.

4 Discussion and conclusions

We suspected that the secure NLP task is difficult
(Lim et al., 2017). Results bear this out:

• Our post-hoc annotation study suggests that
it is indeed difficult to distinguish between
things done by attackers and things done by
malware.

• Often, the system described is distributed,
consisting of downloaded malware, websites
and C&C servers. The MAEC classification
and the SecureNLP annotation guidelines
emphasize measurable properties of malware
samples. This puts tension into the annota-
tion scheme and may well be a contributor to
annotation errors.

• A more extensive effort using multiple anno-
tators and reformulated guidelines could be
beneficial.

• With the technology that we used, analysts
relying on the classifier’s judgment as a filter
will still need to read approximately double
the number of sentences that actually contain
relevant information, and will miss 10% to
20% of the relevant material, which the clas-
sifier regards as irrelevant.

Acknowledgments

Thanks to Nathan Landon and colleagues at Digi-
tal Operatives for resources, feedback and encour-
agement. Particular thanks to Jordan Bryant for
detailed discussions. This work was funded, in
part, by IARPA’s Cyber-attack Automated Uncon-
ventional Sensor Environment (CAUSE) program.
Judgments and opinions are our own. Thanks to
two anonymous reviewers for thoughtful sugges-
tions on how to improve the paper.

References
Peter F. Brown, Peter V. deSouza, Robert L. Mer-

cer, Vincent J. Della Pietra, and Jenifer C. Lai.

1992. Class-based n-gram models of natural lan-
guage. Comput. Linguist., 18(4):467–479.

Koby Crammer, Ofer Dekel, Joseph Keshet, Shai
Shalev-Shwartz, and Yoram Singer. 2006. On-
line passive-aggressive algorithms. J. Mach. Learn.
Res., 7:551–585.

Matthew Honnibal and Mark Johnson. 2015. An im-
proved non-monotonic transition system for depen-
dency parsing. In Proceedings of the 2015 Con-
ference on Empirical Methods in Natural Language
Processing, pages 1373–1378, Lisbon, Portugal. As-
sociation for Computational Linguistics.

Ivan Kirillov, Desiree Beck, Penny Chase, and Robert
Martin. 2010. Malware attribute enumeration and
characterization. Technical report, The MITRE Cor-
poration.

Swee Kiat Lim, Aldrian Obaja Muis, Wei Lu, and
Chen Hui Ong. 2017. Malwaretextdb: A database
for annotated malware articles. In Proceedings of
the 55th Annual Meeting of the Association for Com-
putational Linguistics (Volume 1: Long Papers),
pages 1557–1567, Vancouver, Canada. Association
for Computational Linguistics.

Naoaki Okazaki. 2007. Crfsuite: a fast implementation
of conditional random fields (CRFs).

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Pretten-
hofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Pas-
sos, D. Cournapeau, M. Brucher, M. Perrot, and
E. Duchesnay. 2011. Scikit-learn: Machine learning
in Python. Journal of Machine Learning Research,
12:2825–2830.

Peter Phandi, Amila Silva, and Wei Lu. 2018.
Semeval-2018 Task 8: Semantic Extraction from
CybersecUrity REports using Natural Language
Processing (SecureNLP). In Proceedings of
International Workshop on Semantic Evaluation
(SemEval-2018), New Orleans, LA, USA.

Rion Snow, Brendan O’Connor, Daniel Jurafsky, and
Andrew Y. Ng. 2008. Cheap and fast—but is it
good?: Evaluating non-expert annotations for nat-
ural language tasks. In Proceedings of the Con-
ference on Empirical Methods in Natural Language
Processing, EMNLP ’08, pages 254–263, Strouds-
burg, PA, USA. Association for Computational Lin-
guistics.

897

Proceedings of the 12th International Workshop on Semantic Evaluation (SemEval-2018), pages 898–902
New Orleans, Louisiana, June 5–6, 2018. ©2018 Association for Computational Linguistics 1

Apollo at SemEval-2018 Task 9: Detecting

Hypernymy Relations Using Syntactic Dependencies

Mihaela Onofrei, Ionuț Hulub,
Diana Trandabăț, Daniela Gîfu

University Alexandru Ioan Cuza of Iași, Romania

Institute of Computer Science of the Romanian Academy, Iași Branch

Cognos Business Consulting S.R.L., 32 Bd. Regina Maria, Bucharest, Romania

{mihaela.onofrei, ionut.hulub, daniela.gifu, dtrandabat} @info.uaic.ro

Abstract

This paper presents the participation of
Apollo’s team in the SemEval-2018 Task 9
“Hypernym Discovery”, Subtask 1: “Gen-
eral-Purpose Hypernym Discovery”,
which tries to produce a ranked list of hy-
pernyms for a specific term. We propose a
novel approach for automatic extraction of
hypernymy relations from a corpus by us-
ing dependency patterns. The results show
that the application of these patterns leads
to a higher score than using the traditional
lexical patterns.

Keywords: hypernymy relations, semantic
relations, corpus, taxonomy, syntactic de-
pendencies.

1 Introduction

This paper presents the Apollo team’s system for
hypernym discovery which participated in task 9
of Semeval 2018 (Camacho-Collados et al., 2018)
 based on unsupervised machine learning. It is a
rule-based system that exploits syntactic depend-
ency paths that generalize Hearst-style lexical
patterns.

The paper is structured in 4 sections: this sec-
tion presents existing approaches for automatic
extraction of hypernymy relations, Section 2

contains the current system architecture. The next
section presents the web interface of the project,
and, finally, Section 4 briefly analyses the results
and drafts some conclusions.

Since language is a “vital organ”, constantly
evolving and changing over time, there are many
words which lose one of their meanings or attach
a new meaning. For instance, when searching the
word “apple” in WordNet (Miller, 1995), it ap-
pears defined as “fruit with red or yellow or green
skin and sweet to tart crisp whitish flesh” and
“native Eurasian tree widely cultivated in many
varieties for its firm rounded edible fruits” but
searching in British National Corpus1, we will
remark that the term is used more frequently as a
named entity (referring to a “company”).

From this point of view, we consider that de-
veloping a system for hypernym discovery that
uses linguistic features from a corpus could be
more useful for this task than using a manually-
crafted taxonomy.

It is well known that in natural language pro-
cessing (NLP), one of the biggest challenges is to
understand the meaning of words. Also, detecting
hypernymy relations is an important task in NLP,
which has been pursued for over two decades, and
it is addressed in the literature using two comple-
mentary approaches: rule-based and distributional

1 https://corpus.byu.edu/bnc/

898

 2

methods. Rule-based methods (Hearst, 1992;
Snow et al., 2004) base the decision on the lexico-
syntactic paths connecting the joint occurrences of
two or more terms in a corpus. In the case of su-
pervised distributional methods (Baroni et al.,
2012; Roller et al., 2014, Weeds et al., 2014; Levy
et al., 2015, Kruszewski et al., 2015), term-pair is
represented using some combination of the terms’
embedding vectors.

This challenge has been shown to directly help
in downstream applications such automatic hy-
pernymy detection is useful for NLP tasks such
as: taxonomy creation, recognizing textual entail-
ment, text generation, Question Answering sys-
tems, semantic search, Natural Language Infer-
ence, Coreference Resolution and many others.

Traditional procedures to evaluate taxonomies
have focused on measuring the quality of the edg-
es, i.e., assessing the quality of the is-a relations.
This process typically consists of extracting a ran-
dom sample of edges and manually labeling them
by human judges. In addition to the manual effort
required to perform this evaluation, this procedure
is not easily replicable from taxonomy to taxono-
my (which would most likely include different
sets of concepts), and do not reflect the overall
quality of a taxonomy. Moreover, some taxonomy
learning approaches link their concepts to existing
resources such as Wikipedia.

2 A new Approach to Detect Hyper-
nymy Relation

The main purpose of this project was to identify
the best (set of) candidate hypernyms for a certain
term from the given corpus2.

In our system, we considered the rule-based
approach and, in order to extract the correspond-
ing patterns, we used syntactic dependencies rela-
tions (Universal Dependencies Parser3).

Below, we present our method of extracting
hypernyms from text:

2 For this subtask, we used the 3-billion-word UMBC cor-
pus, which consists of paragraphs extracted from the web as
part of the Stanford WebBase Project. This is a very large
corpus containing information from different domains.
3 Universal Dependencies (UD) is a framework for cross-
linguistically consistent grammatical annotation and an
open community effort with over 200 contributors produc-
ing more than 100 treebanks in over 60 languages.

• Tokenization: sentence boundaries are de-
tected and punctuation signs are separated
from words;

• Part-of-speech tagging: the process of as-
signing a part-of-speech or lexical class
marker to each word in a corpus. Words in
natural languages usually encode many
pieces of information, such as: what the
word “means” in the real world, what cate-
gories, if any, the word belongs to, what is
the function of the word in the sentence?
Many language processing applications need
to extract the information encoded in the
words. Parsers which analyze sentence struc-
ture need to know/check agreement between:
subjects and verbs, adjectives and nouns, de-
terminers and nouns, etc. Information re-
trieval systems benefit from know what the
stem of a word is. Machine translation sys-
tems need to analyze words to their compo-
nents and generate words with specific fea-
tures in the target language.

• Dependency parsing: the syntactic parsing
of a sentence consists of finding the correct
syntactic structure of that sentence in a given
formalism/grammar. Dependency parsing
structure consists of lexical items, linked by
binary asymmetric relations called depend-
encies. It is interested in grammatical rela-
tions between individual words (governing
& dependent words), it does not propose a
recursive structure, rather a network of rela-
tions. These relations can also have labels
and the phrasal nodes are missing in the de-
pendency structure, when compared to con-
stituency structure.

One of the boosts for this approach was to de-
velop new dependency patterns for identifying
hypernymy relations from text that are based on
dependency relations. The increased popularity
and the universal inventory of categories and
guidelines (which facilitate annotation across lan-
guages) of Universal Dependencies determined us
to use this resource in order to automatically ex-
tract the hypernyms from the corpus.

899

 3

Figure1: Project’s architecture

In this manner, we managed to compress a list
of 44 lexico-syntactic patterns used for the hyper-
nyms extraction4 in only 8 dependencies patterns.
In the next lines, we present few examples of lexi-
co-syntactic patterns that were replaced by de-
pendencies patterns:

{X and other Y; X or other
Y; X and any other Y; X and
some other Y; Y other than X;
X like other Y; Y other than
X} replaced by X “amod” Y;

{X is a Y; X was a Y; X are
a Y; X are Y; X will be a Y; X
is an adj Y; X was a adj. Y; X
are a adj. Y; X was a adj. Y;
X are examples of Y; X is ex-
ample of Y; Y for example X;
examples of Y is X; examples
of Y are X; X which is named
Y; X which is called Y; Y
which are similar to X; Y
which is similar to X} re-
placed by X “nmod” Y.

 Because we used syntactic dependencies rela-
tions (no lexical patterns were involved), our sys-
tem is language independent. Unfortunately, the
limited hardware resources determined us to run

4 http://webdatacommons.org/isadb/lrec2016.pdf

our system only in English but we are looking
forward to running it in both Spanish and Italian.

3 The Web Interface

The interface5 was implemented in the form of a
website. The site is backed by a Mongodb data-
base. When a user types in a query and hits enter a
post request is sent and the backend will do some
processing on the query (tokenizing, lemmatizing)
and then search in the database. The results are
then sent back to the user where they are rendered.

Figure 2: Project’s interface

4 Results

We consider that a qualitative way of analyzing
our system is to look at which relations are more
productive. Table 1 presents the percentages of the
most representative syntactic relations which we
have identified. While some relations have not
been very fruitful (such as X “obj” Y, for insance),
others, instead, have been very productive, gener-
ating tens of thousands relations.

5 http://hypernymy.arlc.ro

900

 4

Table 1: Percentages of the identified syntactic

relations

The project’s results show that we have man-
aged to accomplish the main objective of this pro-
ject, to outperform the random strategy. The lower
scores have been obtained for multiword expres-
sions, for which we plan to add dedicated mod-
ules.

An issue that we have noticed was that the giv-
en vocabulary was quite restrictive, for instance, it
contains words like "above-water", "artesian wa-
ter", "bath water" etc., but it doesn't contain the
word "water" (we had a case when our system
identified the word "water" as a hypernym and it
was a correct hypernym, but due to the fact that
the vocabulary doesn't contain the word "water", it
cannot be evaluated) and many other examples
like this.

Acknowledgements

This survey was published with the support by
two grants of the Romanian National Authority
for Scientific Research and Innovation,
UEFISCDI, project number PN-III-P2-2.1-BG-
2016-0390, contract 126BG/2016 and project
number PN-III-P1-1.2-PCCDI-2017-0818, con-
tract 73PCCDI/2018 within PNCDI III, and par-
tially by the README project "Interactive and
Innovative application for evaluating the readabil-
ity of texts in Romanian Language and for im-
proving users' writing styles", contract no.
114/15.09.2017, MySMIS 2014 code 119286.

References

Baroni, M., Lenci, A. 2011. How we blessed distribu-
tional semantic evaluation. In Proceedings of the
GEMS 2011 Workshop on GEometrical Models of
Natural Language Semantics, pages 1-10.

Bordea, G., Buitelaar, P., Faralli, S., Navigli, R.
2015. Semeval-2015 task 17: Taxonomy extraction
evaluation (Texeval). In Proceedings of the
SemEval workshop.

Camacho-Collados, J. 2017. Why we have switched
from building full-fledged taxonomies to simply
detecting hypernymy relations. arXiv preprint
arXiv:1703.04178.

Camacho-Collados, J., Deli Bovi, C., Espinosa-
Anke, L., Oramas, S., Pasini, T., Santus, E.,
Scwartz, V., Navigli, R., Saggion, H. 2018.
SemEval-2018 Task 9: Hypernymy Discovery. In
Proceedings of the 12th International Workshop on
Semantic Evaluation (Sem-Eval2018), New Orle-
ans, LA, United States. Association for Computa-
tional Linguistics.

Hearst, M. 1992. Automatic acquisition of hyponyms
from large text corpora. In ACL, pages 539-545.

Kruszewski, G., Paperno, D., Baroni, M. 2015. Deriv-
ing Boolean structures from distributional vectors.
Transactions of the Association for Computational
Linguistics, 3:375-388.

Levy, O., Remus, S., Biemann, C., Dagan, I. Ramat-
Gan, I. 2015. Do supervised distributional methods
really learn lexical inference relations? In Proceed-
ings of NAACL, pages 970–976.

Miller, G. 1995. WordNet: A lexical database for Eng-
lish. Communications of the ACM, 38(11): 39-41.

Roller, S., Erk, K. 2016. Relations such as Hyper-
nymy: Identifying and Exploiting Hearst Patterns
in Distributional Vectors for Lexical Entailment. In
Proceedings of EMNLP, pages 2163–2172.

Roller, S., Erk, K., Boleda, G. 2014. Inclusive yet se-
lective: Supervised distributional hypernymy detec-
tion. In COLING, pages 1025-1036.

Shwartz, V., Santus, E., Schlechtweg, D.
2017. Hypernyms under siege: Linguistically-
motivated artillery for hypernymy detection. In
Proceedings of EACL, pages 65–75.

Snow, R., Jurafsky, D., Y Ng, A. 2004. Learning syn-
tactic patterns for automatic hypernym discovery.
In NIPS.

Wang, Ch., He, X., Zho, A. 2017. A Short Survey on
Taxonomy Learning from Text Corpora: Issues, Re-
sources and Recent Advances. In Proceedings of
EMNLP, pages 1201–1214.

901

 5

Weeds, J., Clarke, D., Reffin, J., Weir, D., Keller, B.
2014. Learning to distinguish hypernyms and co-
hyponyms. In COLING, pages 2249-2259.

902

Proceedings of the 12th International Workshop on Semantic Evaluation (SemEval-2018), pages 903–908
New Orleans, Louisiana, June 5–6, 2018. ©2018 Association for Computational Linguistics

SJTU-NLP at SemEval-2018 Task 9:
Neural Hypernym Discovery with Term Embeddings
Zhuosheng Zhang1,2, Jiangtong Li3, Hai Zhao1,2,∗, Bingjie Tang4

1Department of Computer Science and Engineering, Shanghai Jiao Tong University
2Key Laboratory of Shanghai Education Commission for Intelligent Interaction

and Cognitive Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
3College of Zhiyuan, Shanghai Jiao Tong University, China

4School of Computer, Huazhong University of Science and Technology, China
{zhangzs, keep moving-lee}@sjtu.edu.cn, zhaohai@cs.sjtu.edu.cn,

alexistang@foxmail.com

Abstract

This paper describes a hypernym discovery
system for our participation in the SemEval-
2018 Task 9, which aims to discover the best
(set of) candidate hypernyms for input con-
cepts or entities, given the search space of a
pre-defined vocabulary. We introduce a neu-
ral network architecture for the concerned task
and empirically study various neural network
models to build the representations in latent
space for words and phrases. The evaluated
models include convolutional neural network,
long-short term memory network, gated re-
current unit and recurrent convolutional neural
network. We also explore different embedding
methods, including word embedding and sense
embedding for better performance.

1 Introduction

Hypernym-hyponym relationship is an is-a se-
mantic relation between terms as shown in Ta-
ble 1. Various natural language processing (NLP)
tasks, especially those semantically intensive ones
aiming for inference and reasoning with gen-
eralization capability, such as question answer-
ing (Harabagiu and Hickl, 2006; Yahya et al.,
2013) and textual entailment (Dagan et al., 2013;
Roller and Erk, 2016), can benefit from identify-
ing semantic relations between words beyond syn-
onymy.

The hypernym discovery task (Camacho-
Collados et al., 2018) aims to discover the most
appropriate hypernym(s) for input concepts or
entities from a pre-defined corpus. A relevant
well-known scenario is hypernym detection,

∗ Corresponding author. This paper was partially sup-
ported by National Key Research and Development Program
of China (No. 2017YFB0304100), National Natural Science
Foundation of China (No. 61672343 and No. 61733011),
Key Project of National Society Science Foundation of China
(No. 15-ZDA041), The Art and Science Interdisciplinary
Funds of Shanghai Jiao Tong University (No. 14JCRZ04).

which is a binary task to decide whether a
hypernymic relationship holds between a pair
of words or not. A hypernym detection system
should be capable of learning taxonomy and lex-
ical semantics, including pattern-based methods
(Boella and Caro, 2013; Espinosa-Anke et al.,
2016b) and graph-based approaches (Fountain
and Lapata, 2012; Velardi et al., 2013; Kang et al.,
2016). However, our concerned task, hypernym
discovery, is rather more challenging since it
requires the systems to explore the semantic
connection with all the exhausted candidates in
the latent space and rank a candidate set instead of
a binary classification in previous work. The other
challenge is representation for terms, including
words and phrases, where the phrase embedding
could not be obtained by word embeddings
directly. A simple method is to average the inner
word embeddings to form the phrase embedding.
However, this is too coarse since each word
might share different weights. Current systems
like (Espinosa-Anke et al., 2016a) commonly
discover hypernymic relations by exploiting linear
transformation matrix in embedding space, where
the embedding should contain words and phrases,
resulting to be parameter-exploded and hard to
train. Besides, these systems might be insufficient
to obtain the deep relationships between terms.

Hyponym Hypernyms
Heming actor, person, company
Kralendijk town, city, provincial capital, capital
StarCraft video game, pc game, computer game,

videogaming, comic, electronic game, sci-
entifiction

Table 1: Examples of hypernym-hyponym relation-
ship.

Recently, neural network (NN) models have
shown competitive or even better results than tra-
ditional linear models with handcrafted sparse fea-

903

tures (Qin et al., 2016b; Pang et al., 2016; Qin
et al., 2016a; Wang et al., 2016c; Zhao et al.,
2017a; Wang et al., 2017; Qin et al., 2017; Cai and
Zhao, 2017; Zhao et al., 2017b; Li et al., 2018). In
this work, we introduce a neural network architec-
ture for the concerned task and empirically study
various neural networks to model the distributed
representations for words and phrases.

In our system, we leverage an unambiguous
vector representation via term embedding, and we
take advantage of deep neural networks to dis-
cover the hypernym relationships between terms.

The rest of the paper is organized as follows:
Section 2 briefly describes our system, Section 3
shows our experiments on the hyperym discovery
task including the general-purpose and domain-
specific one. Section 4 concludes this paper.

2 System Overview

Our hypernym discovery system can be roughly
split into two parts, Term Embedding and Hy-
pernym Relationship Learning. We first train
term embeddings, either using word embedding or
sense embedding to represent each word. Then,
neural networks are used to discover and rank the
hypernym candidates for given terms.

2.1 Embedding

To use deep neural networks, symbolic data needs
to be transformed into distributed representa-
tions(Wang et al., 2016a; Qin et al., 2016b; Cai
and Zhao, 2016; Zhang et al., 2016; Wang et al.,
2016b, 2015; Cai et al., 2017). We use Glove
toolkit to train the word embeddings using UMBC
corpus (Han et al., 2013). Moreover, in order
to perform word sense induction and disambigua-
tion, the word embedding could be transformed to
sense embedding, which is induced from exhisting
word embeddings via clustering of ego-networks
(Pelevina et al., 2016) of related words. Thus, each
input word or phrase is embedded into vector se-
quence, w = {x1, x2, . . . , xl} where l denotes the
sequence length. If the input term is a word, then
l = 1 while for phrases, l means the number of
words.

2.2 Hypernym Learning

Previous work like TAXOEMBED (Espinosa-
Anke et al., 2016a) uses transformation matrix for
hypernm relationship learning, which might be not
optimal due to the lack of deeper nonlinear fea-

ture extraction. Thus, we empirically survey var-
ious neural networks to represent terms in latent
space. After obtaining the representation for in-
put term and all the candidate hypernyms, to give
the ranked hypernym list, the cosine similarity
between the term and the candidate hypernym is
computed by,

cosine =

∑n
i=1(xi × yi)∑n

i=1 x
2
i ×

∑n
i=1 y

2
i

where xi and yi denote the two concerned vectors.
Our candidate neural networks include Convolu-
tional Neural Network (CNN), Long-short Term
Memory network (LSTM), Gated Recurrent Unit
(GRU) and Recurrent Convolutional Neural Net-
work (RCNN).

GRU The structure of GRU (Cho et al., 2014)
used in this paper are described as follows.

rt = σ(Wrxt + Urht−1 + br),

zt = σ(Wzxt + Uzht−1 + bz),

h̃t = tanh(Whxt + Uh(rt� ht−1) + bh)

ht = (1− zt)� ht−1 + zt � h̃t
where � denotes the element-wise multiplication.
rt and zt are the reset and update gates respec-
tively, and h̃t the hidden states.

LSTM LSTM (Hochreiter and Schmidhuber,
1997) unit is defined as follows.

it = σ(Wixt +Whht−1 + bi),

ft = σ(Wfxt +Wfht−1 + bf),

ut = σ(Wuxt +Wuht−1 + bu),

ct = ft � ct−1 + it � tanh(Wcxt +Wcht−1 + bc),

ht = tanh(ct)� ut,

where σ stands for the sigmoid function,
� represents element-wise multiplication and
Wi,Wf ,Wu,Wc, bi, bf , bu, bc are model parame-
ters. it, ft, ut, ct, ht are the input gates, forget
gates, memory cells, output gates and the current
state, respectively.

CNN Convolutional neural networks have also
been successfully applied to various NLP tasks, in
which the temporal convolution operation and as-
sociated filters map local chunks (windows) of the
input into a feature representation.

Concretely, let n denote the filter width, filter
matrices [W1, W2, . . . , Wk] with several vari-
able sizes [l1, l2, . . . , lk] are utilized to perform the

904

convolution operations for input embeddings. For
the sake of simplicity, we will explain the proce-
dure for only one embedding sequence. The em-
bedding will be transformed to sequences cj(j ∈
[1, k]) :

cj = [. . . ; tanh(Wj · x[i:i+lj−1] + bj); . . .]

where [i : i+ lj − 1] indexes the convolution win-
dow. Additionally, we apply wide convolution op-
eration between embedding layer and filter matri-
ces, because it ensures that all weights in the fil-
ters reach the entire sentence, including the words
at the margins.

A one-max-pooling operation is adopted after
convolution and the output vector s is obtained
through concatenating all the mappings for those
k filters.

sj = max(cj)

s = [s1 ⊕ · · · ⊕ sj ⊕ · · · ⊕ sk]

In this way, the model can capture the critical fea-
tures in the sentence with different filters.

RCNN Since some input terms are phrases,
whose member words share different weights. In
RCNN, an adaptive gated decay mechanism is
used to weight the words in the convolution layer.
Following (Lei et al., 2016), we introduce neural
gates similar λ to LSTMs to specify when and how
to average the observed signals. The resulting ar-
chitecture integrates recurrent networks with non-
consecutive convolutions:

λ = σ(W λxt + Uλht−1 + bλ)

c1t = λt � c1t−1 + (1− λt)�W1xt

c2t = λt � c2t−1 + (1− λt)� (c1t−1 +W2xt)

· · ·
cnt = λt � cnt−1 + (1− λt)� (c1n−1 +Wnxt)

ht = tanh(cnt + b)

where c1t , c
2
t , · · · , cnt are accumulator vectors that

store weighted averages of 1-gram to n-gram fea-
tures.

For discriminative training, we use a max-
margin framework for learning (or fine-tuning)
parameters θ. Specifically, a scoring function
ϕ(·, ·; θ) is defined to measure the semantic sim-
ilarity between the corresponding representations
of input term and hypernym. Let p = {p1, ...pn}
denote the hypernym corpus and h ∈ p is the

ground-truth hypernym to the term ti, the optimal
parameters θ are learned by minimizing the max-
margin loss:

max{ϕ(ti, pi; θ)− ϕ(ti, a; θ) + δ(pi, a)}

where δ(., .) denotes a non-negative margin and
δ(pi, a) is a small constant when a 6= pi and 0
otherwise.

3 Experiment

In the following experiments, besides the neural
networks, we also simply average the embeddings
of an input phrase as our baseline to discover the
relationship of terms and their corresponding hy-
pernyms for comparison (denoted as term embed-
ding averaging, TEA).

3.1 Setting
Our hypernym discovery experiments include
general-purpose substask for English and domain-
specific ones for medical and music. Our evalua-
tion is based on the following information retrieval
metrics: Mean Average Precision (MAP), Mean
Reciprocal Rank (MRR), Precision at 1 (P@1),
Precision at 3 (P@3), Precision at 5 (P@5), Pre-
cision at 15 (P@15).

For the sake of computational efficiency, we
simply average the sense embedding if a word
has more than one sense embedding (among var-
ious domains). Our model was implemented us-
ing the Theano1 . The diagonal variant of Ada-
Grad (Duchi et al., 2011) is used for neural net-
work training. We tune the hyper-parameters
with the following range of values: learning
rate ∈ {1e− 3, 1e− 2}, dropout probability ∈
{0.1, 0.2}, CNN filter width ∈ {2, 3, 4}. The
hidden dimension of all neural models are 200.
The batch size is set to 20 and the word em-
bedding and sense embedding sizes are set to
300. All of our models are trained on a single
GPU (NVIDIA GTX 980Ti), with roughly 1.5h
for general-purpose subtask for English and 0.5h
domain-specific domain-specific ones for medical
and music. We run all our models up to 50 epoch
and select the best result in validation.

3.2 Result and analysis
Table 2 shows the result on general-domain sub-
task for English. All the neural models out-
perform term embedding averaging in terms of

1https://github.com/Theano/Theano

905

Embedding Model MAP MRR P@1 P@3 P@5 P 15

Word
TEA 6.10 11.13 4.00 6.00 5.40 5.14
GRU 8.13 16.22 8.00 8.00 6.67 6.94
LSTM 3.95 7.52 4.00 4.33 3.97 3.97
CNN 7.32 13.33 8.00 9.00 7.80 6.94
RCNN 8.74 12.83 6.00 9.67 8.87 9.15

Sense
TEA 4.42 8.71 0.00 4.04 4.19 5.31
GRU 5.42 9.44 0.00 4.44 4.89 5.83
LSTM 5.62 9.97 4.00 4.35 5.01 6.83
CNN 6.41 10.92 2.00 5.01 5.67 6.29
RCNN 5.79 9.24 0.00 4.71 5.29 6.43

Table 2: Gold standard evaluation on general-purpose subtask.

Embed Model medical music
MAP MRR P@1 P@3 P@5 P 15 MAP MRR P@1 P@3 P@5 P 15

Word

TEA 8.91 16.77 0.00 8.79 9.41 9.39 7.11 14.32 0.00 10.01 10.77 9.21
GRU 13.27 21.89 0.00 13.33 14.89 14.06 15.20 20.33 0.00 17.78 18.67 15.45
LSTM 11.49 21.11 0.00 17.78 12.22 11.83 14.08 20.77 0.07 13.33 16.00 15.00
CNN 18.31 24.52 0.00 15.56 20.44 20.00 17.58 27.15 0.00 20.00 20.00 16.04
RCNN 16.78 23.40 0.00 13.33 13.00 14.50 13.60 21.67 0.07 13.33 14.67 13.08

Sense

TEA 2.01 4.77 0.00 2.91 2.77 3.21 2.59 5.28 0.00 2.12 3.01 2.93
GRU 4.88 9.11 0.00 6.67 6.42 6.91 5.32 10.74 2.00 4.44 5.33 4.95
LSTM 5.10 10.22 0.00 6.67 6.12 6.94 4.39 10.21 0.00 8.89 5.33 3.61
CNN 4.15 7.84 0.00 4.44 6.09 6.42 4.75 9.61 0.00 6.67 6.67 4.43
RCNN 4.63 9.84 0.00 6.67 6.89 6.43 4.73 8.56 0.00 4.44 6.22 4.94

Table 3: Gold standard evaluation on domain-specific subtask. “Embed” is short for “Embedding”.

all the metrics. This result indicates simply av-
eraging the embedding of words in a phrase is
not an appropriate solution to represent a phrase.
Convolution or recurrent gated mechanisms in ei-
ther CNN-based (CNN, RCNN) or RNN (GRU,
LSTM) based neural networks could essentially be
helpful of modeling the semantic connections be-
tween words in a phrase, and guide the networks
to discover the hypernym relationships. We also
observe CNN-based network performance is bet-
ter than RNN-based, which indicates local fea-
tures between words could be more important than
long-term dependency in this task where the term
length is up to trigrams.

To investigate the performance of neural mod-
els on specific domains, we conduct experiments
on medical and medicine subtask. Table 3 shows
the result. All the neural models outperform term
embedding averaging in terms of all the metrics
and CNN-based network also performs better than
RNN-based ones in most of the metrics using
word embedding, which verifies our hypothesis in
the general-purpose task. Compared with word
embedding, the sense embedding shows a much
poorer result though they work closely in general-
purpose subtask. The reason might be the simple
averaging of sense embedding of various domains
for a word, which may introduce too much noise

and bias the overall sense representation. This also
discloses that modeling the sense embedding of
specific domains could be quite important for fur-
ther improvement.

4 Conclusion

In this paper, we introduce a neural network archi-
tecture for the hypernym discovery task and em-
pirically study various neural network models to
model the representations in latent space for words
and phrases. Experiments on three subtasks show
the neural models can yield satisfying results. We
also evaluate the performance of word embedding
and sense embedding, showing that in domain-
specific tasks, sense embedding could be much
more volatile.

References
Guido Boella and Luigi Di Caro. 2013. Supervised

learning of syntactic contexts for uncovering def-
initions and extracting hypernym relations in text
databases. Joint European Conference on Machine
Learning and Knowledge Discovery in Databases,
pages 64–79.

Deng Cai and Hai Zhao. 2016. Neural word segmen-
tation learning for Chinese. In Proceedings of the
54th Annual Meeting of the Association for Compu-
tational Linguistics (ACL 2016), pages 409–420.

906

Deng Cai and Hai Zhao. 2017. Pair-Aware Neural
Sentence Modeling for Implicit Discourse Relation
Classification. IEA/AIE 2017, Part II, LNAI 10351.

Deng Cai, Hai Zhao, Zhisong Zhang, Yuan Xin,
Yongjian Wu, and Feiyue Huang. 2017. Fast and
accurate neural word segmentation for Chinese. In
Proceedings of the 55th Annual Meeting of the Asso-
ciation for Computational Linguistics (ACL 2017),
pages 608–615.

Jose Camacho-Collados, Claudio Delli Bovi, Luis
Espinosa-Anke, Sergio Oramas, Tommaso Pasini,
Enrico Santus, Vered Shwartz, Roberto Navigli,
and Horacio Saggion. 2018. SemEval-2018 Task
9: Hypernym Discovery. In Proceedings of the
12th International Workshop on Semantic Evalu-
ation (SemEval-2018), New Orleans, LA, United
States. Association for Computational Linguistics.

Kyunghyun Cho, Bart Van Merrienboer, Caglar Gul-
cehre, Dzmitry Bahdanau, Fethi Bougares, Holger
Schwenk, and Yoshua Bengio. 2014. Learning
phrase representations using rnn encoder-decoder
for statistical machine translation. In Proceedings of
the 2014 Conference on Empirical Methods in Nat-
ural Language Processing (EMNLP 2014), pages
1724–1734.

Ido Dagan, Roth Dan, Fabio Zanzotto, and Mark
Sammons. 2013. Recognizing textual entail-
ment:models and applications. Computational Lin-
guistics, 41(1):157–160.

John C. Duchi, Elad Hazan, and Yoram Singer. 2011.
Adaptive subgradient methods for online learning
and stochastic optimization. Journal of Machine
Learning Research, 12(39):2121–2159.

Luis Espinosa-Anke, Jose Camacho-Collados, Clau-
dio Delli Bovi, and Horacio Saggion. 2016a. Su-
pervised distributional hypernym discovery via do-
main adaptation. In Proceedings of the 2016 Con-
ference on Empirical Methods in Natural Language
Processing (EMNLP 2016), page 424435.

Luis Espinosa-Anke, Horacio Saggion, Francesco Ron-
zano, and Roberto Navigli. 2016b. Extasem! ex-
tending, taxonomizing and semantifying domain
terminologies. In Proceedings of the Thirtieth
AAAI Conference on Artificial Intelligence (AAAI-
16), pages 2594–2600.

Trevor Fountain and Mirella Lapata. 2012. Taxonomy
induction using hierarchical random graphs. In Con-
ference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies, pages 466–476.

Lushan Han, Abhay Kashyap, Tim Finin, James May-
field, and Jonathan Weese. 2013. Umbc ebiquity-
core: Semantic textual similarity systems. Second
Joint Conference on Lexical and Computational Se-
mantics (*SEM), 1:4452.

Sanda Harabagiu and Andrew Hickl. 2006. Methods
for using textual entailment in open-domain ques-
tion answering. In Proceedings of the 21st Interna-
tional Conference on Computational Linguistics and
44th Annual Meeting of the ACL (ACL 2006), pages
905–912.

Sepp Hochreiter and Jrgen Schmidhuber. 1997.
Long short-term memory. Neural Computation,
9(8):1735–1780.

Yong Bin Kang, Pari Delir Haghighi, and Frada
Burstein. 2016. Taxofinder: A graph-based ap-
proach for taxonomy learning. IEEE Transactions
on Knowledge & Data Engineering, 28(2):524–536.

Tao Lei, Hrishikesh Joshi, Regina Barzilay, Tommi
Jaakkola, Katerina Tymoshenko, Alessandro Mos-
chitti, and Lluis Marquez. 2016. Semi-supervised
question retrieval with gated convolutions. In Pro-
ceedings of NAACL-HLT 2016, pages 1279–1289.

Haonan Li, Zhisong Zhang, Yuqi Ju, and Hai Zhao.
2018. Neural character-level dependency parsing
for Chinese. In The Thirty-Second AAAI Conference
on Artificial Intelligence (AAAI-18).

Chenxi Pang, Hai Zhao, and Zhongyi Li. 2016. I can
guess what you mean: A monolingual query en-
hancement for machine translation. In The Fifteenth
China National Conference on Computational Lin-
guistics (CCL 2016).

Maria Pelevina, Nikolay Arefiev, Chris Biemann, and
Alexander Panchenko. 2016. Making sense of word
embeddings. In Proceedings of the 1st Workshop on
Representation Learning for NLP, pages 174–183.

Lianhui Qin, Zhisong Zhang, and Hai Zhao. 2016a.
Shallow discourse parsing using convolutional neu-
ral network. In Proceedings of the 54th Annual
Meeting of the Association for Computational Lin-
guistics (ACL 2016), pages 70–77.

Lianhui Qin, Zhisong Zhang, and Hai Zhao. 2016b. A
stacking gated neural architecture for implicit dis-
course relation classification. In Conference on Em-
pirical Methods in Natural Language Processing
(EMNLP 2016), pages 2263–2270.

Lianhui Qin, Zhisong Zhang, Hai Zhao, Zhiting Hu,
and Eric P. Xing. 2017. Adversarial connective-
exploiting networks for implicit discourse relation
classification. In Proceedings of the 55th Annual
Meeting of the Association for Computational Lin-
guistics (ACL 2017), pages 1006–1017.

Stephen Roller and Katrin Erk. 2016. Relations such
as hypernymy: Identifying and exploiting hearst pat-
terns in distributional vectors for lexical entailment.
In Proceedings of the 2016 Conference on Empirical
Methods in Natural Language Processing (EMNLP
2016), page 21632172.

907

Paola Velardi, Stefano Faralli, and Roberto Navigli.
2013. Ontolearn reloaded: A graph-based algorithm
for taxonomy induction. Computational Linguistics,
39(3):665–707.

Hao Wang, Hai Zhao, and Zhisong Zhang. 2017. A
transition-based system for universal dependency
parsing. In CONLL 2017 Shared Task: Multilingual
Parsing From Raw Text To Universal Dependencies
(CONLL 2017), pages 191–197.

Peilu Wang, Yao Qian, Frank K. Soong, Lei He, and
Hai Zhao. 2016a. Learning distributed word rep-
resentations for bidirectional lstm recurrent neural
network. In Conference of the North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies (NAACL
2016), pages 527–533.

Rui Wang, Masao Utiyama, Isao Goto, Eiichiro
Sumita, Hai Zhao, and Bao Liang Lu. 2016b. Con-
verting continuous-space language models into n-
gram language models with efficient bilingual prun-
ing for statistical machine translation. ACM Trans-
actions on Asian and Low-Resource Language In-
formation Processing, 15(3):11.

Rui Wang, Hai Zhao, Bao Liang Lu, Masao Utiyama,
and Eiichiro Sumita. 2015. Bilingual continuous-
space language model growing for statistical ma-
chine translation. IEEE/ACM Transactions on Au-
dio Speech & Language Processing, 23(7):1209–
1220.

Rui Wang, Hai Zhao, Bao Liang Lu, Masao Utiyama,
and Eiichro Sumita. 2016c. Connecting phrase
based statistical machine translation adaptation. In
Proceedings of COLING 2016, the 26th Interna-
tional Conference on Computational Linguistics:
Technical Papers (COLING 2016), page 31353145.

Mohamed Yahya, Klaus Berberich, Shady Elbassuoni,
and Gerhard Weikum. 2013. Robust question an-
swering over the web of linked data. In Proceed-
ings of the 22nd ACM international conference on
Conference on information & knowledge manage-
ment (CIKM 2013), pages 1107–1116.

Zhisong Zhang, Hai Zhao, and Lianhui Qin. 2016.
Probabilistic graph-based dependency parsing with
convolutional neural network. In Proceedings of the
54th Annual Meeting of the Association for Compu-
tational Linguistics (ACL 2016), pages 1382–1392.

Hai Zhao, Deng Cai, Changning Huang, and Chunyu
Kit. 2017a. Chinese Word Segmentation, a decade
review (2007-2017). China Social Sciences Press,
Beijing, China.

Hai Zhao, Deng Cai, Yang Xin, Yuzhu Wang, and
Zhongye Jia. 2017b. A hybrid model for Chinese
spelling check. ACM Transactions on Asian Low-
Resource Language Information Process, pages 1–
22.

908

Proceedings of the 12th International Workshop on Semantic Evaluation (SemEval-2018), pages 909–913
New Orleans, Louisiana, June 5–6, 2018. ©2018 Association for Computational Linguistics

NLP HZ at SemEval-2018 Task 9: a Nearest Neighbor Approach

Wei Qiu
Alibaba Group, China

qiuwei.cw@alibaba-inc.com

Mosha Chen
Alibaba Group,China

chenmosha.cms@alibaba-inc.com

Linlin Li
Alibaba Group, China

linyan.lll@alibaba-inc.com

Luo Si
Alibaba Group, China

luo.si@alibaba-inc.com

Abstract

Hypernym discovery aims to discover the hy-
pernym word sets given a hyponym word and
proper corpus. This paper proposes a simple
but effective method for the discovery of hy-
pernym sets based on word embedding, which
can be used to measure the contextual simi-
larities between words. Given a test hyponym
word, we get its hypernym lists by comput-
ing the similarities between the hyponym word
and words in the training data, and fill the test
word’s hypernym lists with the hypernym list
in the training set of the nearest similarity dis-
tance to the test word. In SemEval 2018 task9,
our results, achieve 1st on Spanish, 2nd on
Italian, 6th on English in the metric of MAP.

1 Introduction

Hypernymy relationship plays a critical role in
language understanding because it enables gener-
alization, which lies at the core of human cogni-
tion (Yu et al. (2015)). It has been widely used
in various NLP applications (Espinosa Anke et al.
(2016)), from word sense disambiguation (Agirre
et al. (2014)) to information retrieval (Varelas et al.
(2005)) , question answering (Prager (2006)) and
textual entailment (Glickman et al. (2005)). To
date, the hypernymy relation also plays an impor-
tant role in Knowledge Base Construction task.

In the past SemEval contest (SemEval-2015
task 171, SemEval-2016 task 132), the “Hypernym
Detection” task was treated as a classfication task,
i.e., given a (hyponym, hypernym) pair, deciding
whether the pair is a true hypernymic relation or
not. This has led to criticisms regarding its over-
simplification (Levy et al., 2015). In the SemEval
2018 Task 9 (Camacho-Collados et al., 2018), the
task has shifted to “Hypernym Discovery” , i.e.,

1http://alt.qcri.org/semeval2015/task17/
2http://alt.qcri.org/semeval2016/task13/

given the search space of a domain’s vocabulary
and an input hyponym, discover its best (set of)
candidate hypernyms.

In this paper, the content is organized as fol-
lows: Section 2 gives an introduction to the re-
lated work; Section 3 describes our methods for
this task, including word embedding projection
learning as the baseline and the nearest-neighbour-
based method as the submission result; The exper-
imental results are presented in Section 4. We con-
clude the paper with Section 5.

2 Related Work

The work of identifying hypernymy relationship
can be categorized from different aspects accord-
ing to the learning methods and the task formuliza-
tion. The earlier work (Hearst (1992)) formalized
the task as an unsupervised hypernym discovery
task, i.e., none hyponym-hypernyms pairs (x, y)
are given as the training data. Hearst (1992) hand-
crafted a set of lexico-syntactic paths that connect
the joint occurrences of x and y which indicate
hypernymy in a large corpus. Snow et al. (2004)
trained a logistic regression classifier using all de-
pendency paths which connect a small number of
known hyponym-hypernym pairs. Paths that were
assigned high weights by the classifier are used to
extract unseen hypernym pairs from a new corpus.
Variations of Snow et al. (2004) were later used in
tasks such as taxonomy construction (Snow et al.
(2006); Kozareva and Hovy (2010); Carlson et al.
(2010)), analogy identification (Turney (2006)),
and definition extraction (Borg et al. (2009); Nav-
igli and Velardi (2010)).

A major limitation in relying on lexico-
syntactic paths is the requirement of the cooc-
curence of the hypernym pairs. Distributional
methods are developed to overcome this limita-
tion. Lin (1998) developed symmetric similarity

909

measures to detect hypernym in an unsupervised
manner. Weeds and Weir (2003); Kotlerman et al.
(2010) employed directional measures based on
the distributional inclusion hypothesis. More re-
cent work (Santus et al. (2014); Rimell (2014)) in-
troduces new measures, based on the distributional
informativeness hypothesis. Yu et al. (2015); Tuan
and Ng (2016); Nguyen et al. (2017) learn directly
the word embeddings which are optimized for cap-
turing the hypernymy relationship.

The supervised methods include Baroni and
Lenci (2011); Roller et al. (2014); Weeds and Weir
(2003). These methods were originally word-
count-based, but can be easily adapted using word
embeddings (Mikolov et al. (2013a); Pennington
et al. (2014)). However, it was criticized that the
supervised methods only learn prototypical hyper-
nymy (Levy et al. (2015)).

3 Hyponym-hypernym Discovery
method

3.1 Preprocessing

For the corpus and the train/gold/test data, we
have two preprocessing steps: 1) Lowercase all
the words; 2) Concatenate the phrases (hyponym
or hypernym composed with more than one word)
which occur in the training set or the test set with
underline, i.e., “executive president” is replaced
by “executive president”. It is quite useful for
training word embedding models because we want
to treat phrases as single words.

If there are multiple phrases in one sentence, we
generate multiple sentences, one per phrase. For
example, “executive president” and “vice execu-
tive president” both exist in the corpus sentence
“Hoang Van Dung , vice executive president of
the Vietnam Chamber of Commerce and Indus-
try.”. After preprocessing, two more sentences are
generated and included in the training corpus for
word embeddings:

• Hoang Van Dung , vice executive president
of the Vietnam Chamber of Commerce and
Industry.

• Hoang Van Dung , vice executive president
of the Vietnam Chamber of Commerce and
Industry.

The size of the original corpus has increased after
the preprocessing step, e.g., The English corpus
has increased from ∼18G to ∼32G.

3.2 Word Embedding

We train our word embedding models using the
Google word2vec (Mikolov et al. (2013a,b)) tool3

on the preprocessed corpus. We employ the skip-
gram model since the skip-gram model is shown
to perform best in identifying semantic relations
among words. The trained word embeddings
are used in the projection learning and nearest-
neighbour based method.

3.3 Method based on Projection Learning

The intuition of this method is to assume that there
is a linear transformation in the embedding space
which maps hyponyms to their correspondent hy-
pernyms. We first learn a projection matrix from
the training data, then apply the matrix to the test
data. Our method is similar to that described in Fu
et al. (2014), the main idea can be summarized as
follows:

1. Give a word x and its hypernym y, assum-
ing there exists a linear projection matrix Φ
to meet y = Φx. We need to learn a approxi-
mate Φ using the following equation to mini-
mize the MSE loss:

Φ∗ = arg min
Φ

1

N

∑

(x,y)

‖Φx− y‖2 (1)

2. Learn the piecewise linear projection by clus-
tering the training data into different groups
according to the vector offsets. The motiva-
tion for the clustering is two-fold: firstly, the
hypernym-hyponym relation is diverse, e.g.,
offset from “carpenter” and “laborer” is dis-
tant from the one from “gold fish” to “fish”;
Secondly, if a hyponym x has many hyper-
nyms (or hierarchical hypernyms), we can’t
use a single transition matrix Φ to project x
to different hypernym y. So a piecewise pro-
jection learning is needed in each individual
group. Thus, the optimization goal can be
formalized as follows:

Φ∗k = arg min
Φk

1

Nk

∑

(x,y∈Ck)

‖Φkx− y‖2

(2)

Where Nk is the number of word pairs in the
kth cluster Ck.

3https://code.google.com/archive/p/word2vec/

910

3. Learn the threshold δk for each cluster, by as-
summing that positive (hyponmy-hypernmy)
pairs can locate in radius δ while negative
pairs can not:

d(Φkx− y) = ‖Φkx− y‖2 < δk (3)

Where d stands for the euclidean distance.

4. Once the piecewise projection and the thresh-
old is learned, given a new hyponym x, all
of the hypernym candidates ys from the vo-
cabulary are paired with x. The pairs are as-
signed to the proper cluster by the vector off-
set (y-x). According to the threshold δ in that
group, it can be decided whether (x, y) is a
reasonable hyponym-hypernym pair.

3.4 Method Based on Nearest Neighbors
We noticed that the hypernyms are often very dis-
tant from the correspondent hyponyms in the em-
bedding space. Meanwhile, hyponyms which are
close to each other often share the same hyper-
nyms. We propose a simple yet effective approach
based on this observation.

Suppose the training setH consists of a number
of hyponyms and their correspondent hypernyms

H : {Hypok : Hyperk1 ...Hyper
k
i }

During the test time, for an unseen hyponym x, the
top K nearest hyponyms in the training set , i.e.,
Hypoi are found, and their hypernyms are used
as the output , i.e., the hypernyms of x. The found
hypernyms are sorted according to the distance be-
tween x and Hypoi. This can be formalized as
follows:

HypoN = [Hypoi].sort by(distance(Hypoi, x))

Hyper(x) = [Hyper(w)|w in HypoN]

where the distance function measures the simi-
larity between Hypoi and x, HypoN is the list
of words from the training set sorted according to
their distances to x. Consine similarity in the em-
bedding space is used for the distance function in
our setup. According to the requirements of Task
9, only the top 15 of Hyper(x) are submitted for
evaluation.

4 Evaluation

4.1 Experimental Setup
Word2vec is used to produce the word embed-
dings. The skip-gram model (-cbow 0) is used

with the embedding dimension set to 300 (-size
300). The other options are by default. We use 10-
fold cross validation to evaluate both methods on
the provided training data. The results are shown
in Table 1 4

4.2 Results Based on Projection Learning

For the projection learning method, we fol-
lowed experimental settings described in Fu et al.
(2014).The negative (hyponym, hypernym) pairs
are randomly sampled from the vocabulary. The
training set consists of the negative pairs and the
positive pairs in 3:1 ratio.

By using the same evaluating metrics as PRF
in the cited paper, our best F-value on the valida-
tion set is 0.68 (the paper result is 0.73) when the
best cluster number is 2 and the threshold is (17.7,
17.3). We apply the learned projection matrices
and thresholds on the validation data, extract out
the candidate hypernyms from the given vocabu-
lary and truncate the top 15 candidates by sorting
them according to the d(Φkx, y)/δk scores. The
generated results are not very promising, see Ta-
ble 1 for details.

This projection learning method performs not
very well on task9, we think the most probable
reason is that in Fu et al. (2014), the problem is
formalized as a classification problem, in which
the (hyponym, hypernym) pairs are given. How-
ever, our task is formalized as a hypernym dis-
covery problem given only hyponmys. This task
might be inherently much harder than the classifi-
cation task; a second reason might be related to the
relative small amount of training data, i.e., ∼7500
training pairs in total.

4.3 Results Based on NN

The results are shown in Table 1 from row 2 to
row 5. Table 2 shows the results evaluated on the
test data. The performance evaluated using either
cross validation or the test data is much worse than
that of a typical hypernym prediction task reported
by Weeds and Weir (2003). This illustrates that
hypernym discovery is indeed a much harder task
than the hypernym prediction task.

Although the method proposed by us is quite
simple, our submissions are the 1st on Spanish, the
2nd on Italian, the 6th on English, ranked by the

4The PL based method is not evaluated on Italian or Span-
ish corpus due to its poor performance on English corpus.
The result of PL method is not submitted for the task evalua-
tion either.

911

System Language MAP MRR P@1 P@3 P@5 P@15
PL English 2.8 7.6 7.5 3.3 2.6 2.0
NN English 13.3 25.1 18.7 13.9 13.5 12.5
NN Spanish 16.6 27.2 19.0 17.2 16.4 16.1
NN Italian 19.3 32.4 25 19.8 18.6 18.6

Table 1: Cross validation results of the two methods on training set(%). PL stands for the projection-learning
based system. NN stands for the nearest-neighbor based method.

Language MAP MRR P@1 P@3 P@5 P@15
English 9.37 17.29 12 10.14 9.19 8.78
Spanish 20.04 28.27 21.4 20.95 20.39 19.38
Italian 11.37 19.19 13.1 12.08 11.23 10.9

Table 2: Results on the test data for our submissions(%).

metric of MAP. This proves the effectiveness of
the method.

Compared with the results got by cross valida-
tion, the performance evaluated on the test data
(Table 2) dropped significantly on English (MAP
dropped by 4%) and Italian (MAP dropped by
8%), but increased by a margin on Spanish (MAP
increased by 3.6%). We consider that it is due
to the properties of provided data , i.e., the hy-
pernyms in the test set are similar to those in the
training set for Spanish, but dissimilar for English
or Italian.

The performance drop for English and Italian
exposes one of the main drawbacks of our method:
the method can not discover the hypernyms that
have never occurred in the training set. To over-
come this shortcoming, using syntactic patterns to
extract hyponym-hypernym with high confidence
can be employed to enlarge the training set. We
leave this to the future work.

5 Conclusion

In this paper we describe two methods we have
tried out for the hypernym discovery task in Se-
mEval 2018. We extended the method originally
proposed for hypernym prediction by Fu et al.
(2014) as a baseline system. However the per-
formance of this method is poor. The nearest-
neighbor-based method is relatively simple, yet
quite effective. We analyzed the experimental re-
sults, reveal some shortcomings, and propose a po-
tential extension to future improvement.

References
Eneko Agirre, Oier López de Lacalle, and Aitor Soroa.

2014. Random walks for knowledge-based word
sense disambiguation. Comput. Linguist., 40(1):57–
84.

Marco Baroni and Alessandro Lenci. 2011. How we
BLESSed distributional semantic evaluation. GEMS
’11 Proceedings of the GEMS 2011 Workshop on
GEometrical Models of Natural Language Seman-
tics, pages 1–10.

Claudia Borg, Mike Rosner, and Gordon Pace. 2009.
Evolutionary algorithms for definition extraction.
Proceedings of the 1st Workshop on Definition Ex-
traction, pages 26–32.

Jose Camacho-Collados, Claudio Delli Bovi, Luis
Espinosa-Anke, Sergio Oramas, Tommaso Pasini,
Enrico Santus, Vered Shwartz, Roberto Navigli,
and Horacio Saggion. 2018. SemEval-2018 Task
9: Hypernym Discovery. In Proceedings of the
12th International Workshop on Semantic Evalu-
ation (SemEval-2018), New Orleans, LA, United
States. Association for Computational Linguistics.

Andrew Carlson, Justin Betteridge, and Bryan Kisiel.
2010. Toward an Architecture for Never-Ending
Language Learning. In Proceedings of the Confer-
ence on Artificial Intelligence (AAAI) (2010), pages
1306–1313.

Luis Espinosa Anke, Jose Camacho-Collados, Claudio
Delli Bovi, and Horacio Saggion. 2016. Supervised
distributional hypernym discovery via domain adap-
tation. In Proceedings of the 2016 Conference on
Empirical Methods in Natural Language Process-
ing, pages 424–435. Association for Computational
Linguistics.

Ruiji Fu, Jiang Guo, Bing Qin, Wanxiang Che, Haifeng
Wang, and Ting Liu. 2014. Learning semantic hier-
archies via word embeddings. In Proceedings of the
52nd Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages

912

1199–1209, Baltimore, Maryland. Association for
Computational Linguistics.

Oren Glickman, Ido Dagan, and Moshe Koppel. 2005.
A probabilistic classification approach for lexical
textual entailment. In AAAI, pages 1050–1055.
AAAI Press / The MIT Press.

Marti A. Hearst. 1992. Automatic acquisition of hy-
ponyms from large text corpora. Proceedings of
the 14th conference on Computational linguistics -
, 2:539.

Lili Kotlerman, Ido Dagan, Idan Szpektor, and Maayan
Zhitomirsky-Geffet. 2010. Directional distribu-
tional similarity for lexical inference. Natural Lan-
guage Engineering, 16(4):359–389.

Zornitsa Kozareva and Eduard Hovy. 2010. A Semi-
Supervised Method to Learn and Construct Tax-
onomies using the Web. Proceedings of EMNLP,
MIT, Massachusets, USA, (October):1110–1118.

Omer Levy, Steffen Remus, Chris Biemann, and Ido
Dagan. 2015. Do supervised distributional meth-
ods really learn lexical inference relations? Pro-
ceedings of the 2015 Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics: Human Language Technologies, pages
970–976.

Dekang Lin. 1998. An Information-Theoretic Defini-
tion of Similarity. Proceedings of ICML, pages 296–
304.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jef-
frey Dean. 2013a. Distributed Representations of
Words and Phrases and Their Compositionality. In
Advances in neural information processing systems,
pages 3111–3119.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Cor-
rado, and Jeffrey Dean. 2013b. Distributed repre-
sentations of words and phrases and their composi-
tionality. CoRR, abs/1310.4546.

Roberto Navigli and Paola Velardi. 2010. Learning
Word-Class Lattices for Definition and Hypernym
Extraction. Proceedings of the 48th Annual Meet-
ing of the Association for Computational Linguistics
(ACL 2010)., (July):1318–1327.

Kim Anh Nguyen, Maximilian Köper, Sabine Schulte
im Walde, and Ngoc Thang Vu. 2017. Hierarchical
Embeddings for Hypernymy Detection and Direc-
tionality. pages 233–243.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. Glove: Global Vectors for Word
Representation. Proceedings of the 2014 Confer-
ence on Empirical Methods in Natural Language
Processing (EMNLP), pages 1532–1543.

John Prager. 2006. Open-domain question: Answer-
ing. Found. Trends Inf. Retr., 1(2):91–231.

Laura Rimell. 2014. Distributional Lexical Entailment
by Topic Coherence. In Proceedings of the 14th
Conference of the European Chapter of the Asso-
ciation for Computational Linguistics, Gothenburg,
Sweden, April 26-30 2014, pages 511–519.

Stephen Roller, Katrin Erk, and Gemma Boleda. 2014.
Inclusive yet Selective: Supervised Distributional
Hypernymy Detection. In Proceedings of COLING
2014, the 25th International Conference on Compu-
tational Linguistics: Technical Papers, Dublin, Ire-
land, August 23-29 2014, pages 1025–1036.

Enrico Santus, Alessandro Lenci, Qin Lu, and Sabine
Schulte im Walde. 2014. Chasing Hypernyms in
Vector Spaces with Entropy. Proc. European Chap-
ter of the Association for Computational Linguistics,
pages 38–42.

Rion Snow, Daniel Jurafsky, and Andrew Y Ng. 2004.
Learning syntactic patterns for automatic hypernym
discovery. Advances in Neural Information Pro-
cessing Systems 17, 17:1297–1304.

Rion Snow, Daniel Jurafsky, and Andrew Y Ng. 2006.
Semantic taxonomy induction from heterogenous
evidence. In Proceedings of the 21st International
Conference on Computational Linguistics and the
44th annual meeting of the ACL - ACL ’06, pages
801–808.

Luu Anh Tuan and See Kiong Ng. 2016. Learning
Term Embeddings for Taxonomic Relation Identifi-
cation Using Dynamic Weighting Neural Network.
Proceedings of the 2016 Conference on Empirical
Methods in Natural Language Processing (EMNLP-
16), pages 403–413.

Peter D. Turney. 2006. Similarity of Semantic Rela-
tions. (March 2005):1–39.

Giannis Varelas, Epimenidis Voutsakis, Paraskevi
Raftopoulou, Euripides G.M. Petrakis, and Evange-
los E. Milios. 2005. Semantic similarity methods
in wordnet and their application to information re-
trieval on the web. In Proceedings of the 7th Annual
ACM International Workshop on Web Information
and Data Management, WIDM ’05, pages 10–16,
New York, NY, USA. ACM.

Julie Weeds and David Weir. 2003. A general frame-
work for distributional similarity. Proceedings of
the 2003 Conference on Empirical Methods in Nat-
ural Language Processing, pages 81–88.

Zheng Yu, Haixun Wang, Xuemin Lin, and Min Wang.
2015. Learning term embeddings for hypernymy
identification. IJCAI International Joint Conference
on Artificial Intelligence, 2015-January(Ijcai):1390–
1397.

913

Proceedings of the 12th International Workshop on Semantic Evaluation (SemEval-2018), pages 914–918
New Orleans, Louisiana, June 5–6, 2018. ©2018 Association for Computational Linguistics

UMDuluth-CS8761 at SemEval-2018 Task 9: Hypernym Discovery using
Hearst Patterns, Co-occurrence frequencies and Word Embeddings

Arshia Z. Hassan and Manikya S. Vallabhajosyula and Ted Pedersen
Department of Computer Science

University of Minnesota
Duluth, MN 55812 USA

{hassa418,valla045,tpederse}@d.umn.edu
https://github.com/manikyaswathi/SemEval2018HypernymDiscovery

Abstract

Hypernym Discovery is the task of identify-
ing potential hypernyms for a given term. A
hypernym is a more generalized word that is
super-ordinate to more specific words. This
paper explores several approaches that rely
on co-occurrence frequencies of word pairs,
Hearst Patterns based on regular expressions,
and word embeddings created from the UMBC
corpus. Our system Babbage participated in
Subtask 1A for English and placed 6th of 19
systems when identifying concept hypernyms,
and 12th of 18 systems for entity hypernyms.

1 Introduction

Hypernym-hyponym pairs exhibit an is-a relation-
ship where a hypernym is a generalization of a hy-
ponym. The objective of SemEval–2018 Task 9
(Camacho-Collados et al., 2018) is to generate a
ranked list of hypernyms when given an input hy-
ponym and a vocabulary of candidate hypernyms.
For example, the input hyponym lemongrass could
yield the hypernyms [grass, oil plant, herb], where
herb would be the best candidate. This scenario is
illustrated in Figure 1, where the three leaf nodes
are hyponyms and the root is a hypernym.

Figure 1: Hypernym-hyponym example

Note that hypernym discovery is distinct from
hypernym detection, where the problem is to de-
tect if a hyponym-hypernym relationship exists
between a given pair, such as lemongrass-grass.

In our first module, we retrieve candidate hy-
pernyms for an input term using a paragraph-
length context-window and calculate their co-
occurrence frequencies, which is later used for

ranking the candidates. Our second module
uses Hearst Patterns (Hearst, 1992) to extract
hyponym-hypernym pairs and ranks candidate hy-
pernyms based on co-occurrence frequency of
the pairs. Our final module employs word-
embeddings created using word2vec (Mikolov
et al., 2013). This paper continues with a more
detailed discussion of each module, and then a re-
view of our results.

2 Implementation

Babbage begins by pre-processing (2.2.1) the
UMBC Corpus (2.1) and extracting candidate hy-
pernyms using four different strategies (2.2.2).
The first and second module calculates the co-
occurrence frequencies between the input term
and words in context using the pre-processed
UMBC Corpus and the Hearst Pattern set ex-
tracted from the UMBC Corpus. The third mod-
ule uses the IS-A Hearst Pattern set extracted from
UMBC Corpus to obtain hypernyms. The final
module constructs a word embedding over the
UMBC corpus and uses a distance measure to
fetch candidate hypernyms for a given input term.

2.1 UMBC Corpus

Our training corpus is the University of Mary-
land, Baltimore County (UMBC) WebBase Cor-
pus (Han et al., 2013). It contains 3 billion words
from paragraphs obtained from more than 100 mil-
lion web pages over various domains. We use the
28 GB tokenized version of UMBC corpus which
is part-of-speech tagged and divided among 408
files. There is also a vocabulary file with 218,755
unigram, bigram and trigram hypernym terms pro-
vided by task organizers. This file defines the set
of possible candidate hypernyms.

914

2.2 Architecture of System Babbage
The following are the steps involved in construct-
ing our system:

1. Pre-processing the input text corpus
[2.2.1]: Corpora obtained in this stage
include:

(a) Normalize the input corpus and store as
Normalized Corpus

(b) Fetch Hearst Patterns (see Figure 2)
from input corpus and store as Hearst
Corpus

(c) Fetch IS-A Pattern from the input cor-
pus and store as IS-A Corpus

(d) Creating the word-embedding matrix
UMBC Embedding using Normalized
Corpus.

The Hearst Corpus and the IS-A Corpus pat-
terns are extracted from the original text cor-
pus which has been preprocessed to eliminate
punctuation, prepositions, and conjunctions.
All possible combinations of bigram and tri-
gram noun phrases are retained in the Nor-
malized Corpus. A Word-Embedding matrix
is built over this Normalized Corpus.

2. Extracting candidate hypernyms [2.2.2]:

(a) Co-occurrence frequencies from Nor-
malized Corpus: A co-occurrence map
is built for the input terms with the
words in the context of the input term
and the frequency of their co-occurrence
using the Normalized Corpus. Words
with co-occurrence frequency higher
than 5 are listed as candidate hypernyms
for an input term. This is considered the
first module result.

(b) Co-occurrence frequencies from
Hearst Corpus: A co-occurrence map
similar to the previous step is built by
using the Hearst Corpus. All the words
which occur at least once in context of
the input term in the Hearst Patterns
are listed as candidate hypernyms for
this term. This is considered the second
module result.

(c) Co-occurrence frequencies from IS-A
Corpus: All the words which occur at
least once in the context of the input
term in the IS-A Corpus are listed as

candidate hypernyms for this term. If
the input term is a concept and is a bi-
gram or trigram term, then part of it is
considered as a hypernym for that term.
This is considered the third module re-
sult.

(d) Applying word similarity to word em-
beddings: A fixed distance value called
Phi is used to extract words at this dis-
tance to the input term in the UMBC
Embedding. These words are listed as
the candidate hypernyms for an input
term. This is considered our final mod-
ule result.

3. Merging results from various modules
[2.3]: The order of merging these results is
decided by the evaluation scores from these
modules for training data. The same order is
applied to the test data.

2.2.1 Pre-processing
The task description states that our system should
predict candidate hypernyms for an input word
which is either a concept or an entity. Hence, the
part-of-speech tag for all candidate hypernyms is
noun. This restricts our search space to words
with noun part-of-speech tag and bigram or tri-
gram phrases with a noun head word. Our system
focuses on concepts, so we do not have any mod-
ule specific for entities. To refine the input corpus
as per these specifications, the input UMBC Cor-
pus is processed through the following modules:

Normalized Corpus: The POS tagged input
corpus is processed per paragraph. Each para-
graph is converted to lower-case text. Then, bi-
gram and trigram noun phrases from each para-
graph are obtained using the POS tags given for
each word. It is further filtered by removing punc-
tuation marks and words with part-of-speech tags
other than noun, verb, adverb or adjective. This
filtered line is modified by appending it with bi-
gram and trigram noun phrases obtained earlier.

Hearst Corpus: The original input paragraph is
searched for the Hearst Patterns (shown in Figure
2) and all the possible matches are returned in the
form of hypernym : one or more hyponyms. Figure
2 shows the extraction of Hearst Patterns, where
NP represents a noun-phrase where the head word
is tagged as a noun, the loved-ones such as family
and friends is a match for Hearst Patterns (from

915

Figure 2) with noun phrases the loved-ones, family
and friends.

IS-A Corpus: A pattern which is not used in the
construction of the Hearst Corpus is used here:
Hyponym Noun Phrase is (a | an | the) Hyper-
nym Noun Phrase. Here the original input para-
graph is searched against this pattern and all the
possible matches are returned in the form of hy-
ponym : hypernym. a fennel is a plant is a match
for this pattern with noun phrases a fennel and
plant.

UMBC Embedding: A word embedding ma-
trix is created over the Normalized Corpus using
word2vec (Mikolov et al., 2013). The specifica-
tions of the model are as follows:

(a) Model : Continuous Bag of Words
(CBOW) - a term’s embedding value is determined
by its context words. The order of the words in the
window size does not matter.

(b) Window Size : 10. The context window
size for a term which determines its vector value.

(c) Minimum Frequency Count : 5. If the fre-
quency of a word is less than this value, the word
does not exist in the embedding.

(d) Embedding Dimension Size : 300. The
number of dimensions for the embedding matrix.

2.2.2 Extracting candidate hypernyms:
Once the UMBC corpus is pre-processed and the
three required corpora and an embedding matrix
are derived, candidate hypernyms are acquired by
applying the below processes.

Co-occurrence frequency from Normalized
Corpus: With this module, we hypothesized
that a hyponym and its possible hypernyms are
more likely to co-occur within a context-window.
The context window of a term is its own para-
graph. We start by creating a map for all the in-
put terms. If a normalized paragraph 2.2.1 con-
tains any of the input terms, then all the words
in the context are added to the map of this par-
ticular term which considers them to be hyper-
nyms for this input hyponym term. Every time
a hypernym-hyponym pair co-occurs in one line,
their co-occurrence count is increased by one. Fi-
nally, the candidate hypernyms are ranked in de-
scending order of their co-occurrence frequencies.

Co-occurrence frequency from Hearst Corpus:
In the pre-processing step 2.2.1, we extracted
possible hypernym-hyponym mapping data using

Hearst Patterns. Each line of the data is of the form
hypernym : hyponym-1 , hyponym-2, , hyponym-
n. In this module, we created a map where each
hyponym is a key mapped to hypernyms occurring
with that hyponym and their co-occurrence fre-
quencies. For example, values for keys hyponym-
1, hyponym-2, and hyponym-n are updated with
hypernym and the frequencies are increased by 1.
Finally the top 15 hyponyms (based on frequen-
cies) for each key are reported as the result hyper-
nyms.

Co-occurrence frequencies from IS-A Corpus:
This module uses hypernym-hyponym pairs from
the IS-A Corpus 2.2.1 which are in the form hy-
ponym : hypernym. We use the same strategy as
Co-occurrence frequency from Hearst Corpus to
obtain the result.

Applying word similarity to word embeddings:
We need a general distance vector which repre-
sents a hypernym-hyponym distance in the UMBC
Embedding. We use training data input term (x)
and the gold data hypernyms (y) to calculate this
distance(Φ∗) which is calculated by:

Φ∗ = argmin
Φ

1

N

∑

(x,y)

Φ‖x− y‖2 (1)

Φ is used to get candidate hypernyms from the
UMBC word embedding matrix for the input
terms (test data).

2.3 Merging results from various modules

For this task, our system is required to report
the 15 most probable hypernyms for each input
term. We have four modules each reporting their
top 15 candidate hypernyms. By looking at the
training scores of these modules, we merge the
co-occurrence frequencies from IS-A corpus that
have higher ranks followed by the co-occurrence
frequencies from Normalized corpus and Hearst
Pattern corpus. Results from word embedding
module are given the lowest ranks.

3 Experimental Results and Discussion

Output candidate hypernym lists are evaluated
against gold hypernym lists using the follow-
ing evaluation criteria : Mean Reciprocal Rank
(MRR), Mean Average Precision (MAP) and Pre-
cision At k (P@k), where k is 1, 3, 5 and 15. We
ran our model against two sets of data training data

916

Figure 2: Creating Hearst Corpus using 6 Hearst Patterns

Cooc Hearst Phi Is-A Merged
MRR .103 .020 .025 .165 .188
MAP .050 .008 .012 .071 .080
P@1 .061 .013 .012 .140 .152
P@3 .055 .008 .012 .076 .087
P@5 .048 .008 .012 .066 .075
P@15 .047 .007 .011 .062 .070

Table 1: Test Data 1A English - Concept Scores

Cooc Hearst Phi Is-A Merged
MRR .000 .000 .008 .090 .099
MAP .000 .000 .003 .036 .037
P@1 .000 .000 .004 .069 .081
P@3 .000 .000 .003 .041 .045
P@5 .000 .000 .003 .035 .036
P@15 .000 .000 .003 .031 .030

Table 2: Test Data 1A English - Entity Scores

and test data with 1500 input terms each. These re-
sults are shown in Tables 1 and 2, where it can be
clearly observed that our system performs much
better for concepts. However, the IS-A module
seemed to fetch good candidates for both entity
and concept data.

The gold data provided with the task does not
always consider all possible word senses or do-
mains of an input term. As a result, we observed
numerous candidate hypernyms that seem to be
plausible solutions that are not considered correct
when compared to the gold data.

For example, the input concept navigator has
gold standard hypernyms of [military branch, ex-

plorer, military machine, travel, adventurer, sea-
man]. Our system finds candidate hypernyms
[browser, web browser, website, application]. We
also noticed that due to our normalization deci-
sions (i.e., using all lower-case characters) and the
contents of the corpus, Babbage performs poorly
in some cases. For example, the gold hypernyms
for input entity Hurricane are [video game, soft-
ware program, computer program] but our system
produced [storm, windstorm, typhoon, tornado,
cyclone]. Clearly, our system did not differenti-
ate between the named entity Hurricane and the
common noun hurricane while training the word–
embedding models.

On the positive side, our system produced
promising results in some cases. Hyponym lib-
eralism produced [theory, philosophy, economic
policy] which is very similar to the gold data [eco-
nomic theory, theory]. It also correctly generated
the hyponym person for hypernyms such as collec-
tor, moderator, director, senior, and reporter. For
input reporter it produced [writer, person] which
matches the gold hypernym set.

Acknowledgments

This project was carried out as a part of CS 8761,
Natural Language Processing, a graduate level
class offered in Fall 2017 at the University of Min-
nesota, Duluth by Dr. Ted Pedersen. All authors of
this paper have contributed equally and are listed
in alphabetical order by first name.

917

References
Jose Camacho-Collados, Claudio Delli Bovi, Luis

Espinosa-Anke, Sergio Oramas, Tommaso Pasini,
Enrico Santus, Vered Shwartz, Roberto Navigli,
and Horacio Saggion. 2018. SemEval-2018 Task
9: Hypernym Discovery. In Proceedings of the
12th International Workshop on Semantic Evalu-
ation (SemEval-2018). Association for Computa-
tional Linguistics, New Orleans, LA, United States.

Lushan Han, Abhay L. Kashyap, Tim Finin,
James Mayfield, and Johnathan Weese. 2013.
Umbc ebiquity-core: Semantic textual similarity
systems. In proceedings of the Second Joint Con-
ference on Lexical and Computational Semantics.
Association for Computational Linguistics.

Marti A. Hearst. 1992. Automatic acquisition of hy-
ponyms from large text corpora. In Proceedings of
the 14th Conference on Computational Linguistics -
Volume 2. Association for Computational Linguis-
tics, Stroudsburg, PA, USA, COLING ’92, pages
539–545. https://doi.org/10.3115/992133.992154.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jef-
frey Dean. 2013. Efficient estimation of word rep-
resentations in vector space. CoRR abs/1301.3781.
http://arxiv.org/abs/1301.3781.

918

Proceedings of the 12th International Workshop on Semantic Evaluation (SemEval-2018), pages 919–923
New Orleans, Louisiana, June 5–6, 2018. ©2018 Association for Computational Linguistics

EXPR at SemEval-2018 Task 9: A Combined Approach for Hypernym
Discovery

Ahmad Issa Alaa Aldine1,3, Mounira Harzallah2

Berio Giuseppe1, Nicolas Béchet1, Ahmad Faour3
1 IRISA - University Bretagne Sud, France

2 LINA - University of Nantes, France, 3 Lebanese University, Lebanon
ahmad.issa-alaa-eddine@univ-ubs.fr

mounira.harzallah@univ-nantes.fr, giuseppe.berio@univ-ubs.fr
nicolas.bechet@irisa.fr, ahmad.faour@ul.edu.lb

Abstract

In this paper, we present our proposed sys-
tem (EXPR) to participate in the hypernym
discovery task of SemEval 2018. The task
addresses the challenge of discovering hyper-
nym relations from a text corpus. Our pro-
posal is a combined approach of path-based
technique and distributional technique. We use
dependency parser on a corpus to extract can-
didate hypernyms and represent their depen-
dency paths as a feature vector. The feature
vector is concatenated with a feature vector
obtained using Wikipedia pre-trained term em-
bedding model. The concatenated feature vec-
tor fits a supervised machine learning method
to learn a classifier model. This model is able
to classify new candidate hypernyms as hyper-
nym or not. Our system performs well to dis-
cover new hypernyms not defined in gold hy-
pernyms.

1 Introduction

Hypernymy is an important lexical-semantic rela-
tion that is useful for many applications such as
question answering, machine translation, informa-
tion retrieval, and so on. In addition, hypernym
relations are the backbone for building ontologies.

Various methods have been proposed to detect
hypernym relation from text corpora. Most of
these techniques are either path-based techniques
or distributional techniques. In path-based meth-
ods, the detection of hypernym relations is based
on the lexico-syntactic paths connecting a pair of
terms in a corpus. Conversely, distributional meth-
ods are based on the distribution of term pair con-
texts. Most of these methods were unsupervised.
Recently, focus shifted towards supervised meth-
ods.

This task inherits complexity and is far from be-
ing solved. The SemEval organizers address the
same task but with a novel formulation (Camacho-
Collados et al., 2018). They reformulate the task

from hypernym detection into hypernym discov-
ery. This novel formulation makes the task more
realistic in terms of actual downstream applica-
tion, while also enabling the benefits of informa-
tion retrieval evaluation metrics. Hypernym de-
tection focuses on deciding whether a hypernymic
relation holds between a given pair of terms or
not. Hypernym discovery focuses on discovering
a set containing the best hypernyms for a given
term from a given vocabulary search space. The
task is divided into two subtasks: General-Purpose
Hypernym Discovery and Domain-Specific Hy-
pernym Discovery. The first consists of discov-
ering hypernym in a general-purpose corpus, thus
the SemEval organizers provide the participants
with data for three languages: English, Italian,
and Spanish. The second consists of discovering
hypernym in a domain-specific corpus, thus they
provide the participants with data for two specific
domains: Medical and Music. The data contains a
list of training terms along with gold hypernyms,
a list of testing terms, and a vocabulary search
space. The term is either a concept or an entity.

To tackle this task, we propose an approach
that combines a path-based technique and distri-
butional technique via concatenating two feature
vectors: a feature vector constructed using de-
pendency parser output and a feature vector ob-
tained using term embeddings. Then, by using the
concatenated vector we create a binary supervised
classifier model based on support vector machine
(SVM) algorithm. The model predicts if a term
and its candidate hypernym are hypernym related
or not.

2 Related Work

Most of the previous approaches for hypernymy
detection are either path-based (patterns) or dis-
tributional based. Recently, some approaches are
taking advantages of the combination of path-
based and distributional techniques.

919

2.1 Path-Based

Path-based approaches are heuristic methods that
predict hypernymy between a pair of terms if they
match a particular pattern in a sentence of the cor-
pus. These patterns are either manually identified
(Hearst, 1992) or automatically extracted (Snow
et al., 2005; Navigli and Velardi, 2010; Sheena
et al., 2016). Approaches based on handcrafted
patterns yield a good precision, but their recall
is very low (Buitelaar et al., 2005). Approaches
based on automatic learning of patterns achieve
better performance by a small improvement in
terms of precision and a considerable improve-
ment in terms of recall, but the main limitation
of these approaches is the sparsity of the feature
space (Shwartz et al., 2016).

2.2 Distributional

Distributional approaches predict hypernym rela-
tions between terms based on their distributional
representation, by either unsupervised or super-
vised models. The early unsupervised distribu-
tional models are based on symmetric measures
(Lin, 1998). Later, asymmetric measures are in-
troduced based on the Distributional Inclusion Hy-
pothesis (DIH) (Weeds and Weir, 2003; Kotlerman
et al., 2010). More recent, Santus et al. (2014);
Rimell (2014) introduce new measures based on
assumption that DIH is not correct for all cases.
While, most of the supervised models rely on
term embedding (Mikolov et al., 2013; Penning-
ton et al., 2014) to represent the feature vector be-
tween the terms x and y. Various vector represen-
tations have been used such as concatenation ~x ⊕
~y (Baroni et al., 2012) and difference ~y− ~x (Roller
et al., 2014; Weeds et al., 2014). More recent,
Yu et al. (2015); Luu et al. (2016) suggested that
models rely on term embedding are useful to indi-
cate similarity between words, not to indicate hy-
pernymy relations. Consequently, they learn their
own term embedding models that are more rele-
vant to indicate hypernym relations.

2.3 Combined Approaches

Combined approaches of distributional and lexico-
syntactic paths are proposed based on the assump-
tion that distributional approaches and path-based
approaches have certain complementary proper-
ties. To our best knowledge, there are little works
on integrating them (Mirkin et al., 2006; Kaji and
Kitsuregawa, 2008). The recent work on integrat-

ing them is proposed by Shwartz et al. (2016).
They use a long short-term memory (LSTM) net-
work (Hochreiter and Schmidhuber, 1997) to en-
code dependency paths into a feature vector, then
they concatenate the feature vector by the term
embedding vectors of term x and term y.

3 System Description

As a preliminary step, we split each corpus into
a training corpus and a testing corpus. Training
corpus is a corpus of all sentences that contains
training data terms (Concept/Entity), while testing
corpus is a corpus of all sentences that contains
testing data terms (Concept/Entity). Some sen-
tences may contain training and testing data terms.
These sentences will exist in both training and test-
ing corpus.

3.1 Candidate Hypernyms

The first step in the system is to extract candidate
hypernyms for the given training and testing data
terms from a training corpus and a testing corpus
respectively. We consider a term as a candidate
hypernym if:

1. The term and its candidate occur in the same
sentence.

2. The candidate exists in the vocabulary list.

3. The term and its candidate are noun phrases.

4. The term and its candidate are linked by short
dependency path.

We consider a dependency path as short if it
doesn’t exceed two grammatical dependency re-
lations. Using the short dependency path, we are
capable representing paths similar to Hearst Pat-
terns and other patterns. For example of short
dependency paths, the dependency path between
X and Y in the sentence S1 “X such as Y ”
is {nmod:such as(X , Y)} and in the sen-
tence S2 “X includes Y ” is {nsubj(includes
, X), dobj(includes , Y)}. We use
Stanford dependency parser1 (Marneffe et al.,
2006) to extract dependency paths.

3.2 Feature Vector

The feature vector used to learn a model capable
of predicting hypernym relations between a term

1https://stanfordnlp.github.io/CoreNLP/

920

and a candidate hypernym consists of the concate-
nation of two vectors: the first one is a vector ex-
tracted using a path-based technique while the sec-
ond is extracted using a distributional technique.

The path-based vector consists of a set
of features representing the short depen-
dency path between a term y and its can-
didate hypernym x. The feature set is:
[Tag(x), GRel(x), HR,Freq, Tag(y), GRel(y)].
Tag(x) and Tag(y) are the POS tag of x and
y, GRel(x) and GRel(y) are the grammatical
dependency relation of x and y, HR is the hyper-
nym ratio of a dependency path and it is equal to
the number of occurrences of a dependency path
when indicating hypernm relation divided by the
total occurrences of the same dependency path,
and Freq is the relative frequency of a depen-
dency path and it is equal to the occurrence of a
dependency path divided by the total occurrences
of all dependency paths.

HR =
hypernym DP occurrences

DP occurrences

Freq =
DP occurrences

Total DPs occurrences

For a distributional based vector, We use pre-
trained 300 dimensional Word2Vec2 term embed-
dings, trained on Wikipedia (Mikolov et al., 2013).
We apply the difference between the embedding
vector of term y and the embedding vector of term
x (~y − ~x)(Roller et al., 2014; Weeds et al., 2014).
The term is either a single word or a multi-word
expression.

3.3 Model Learning and Hypernym
Discovery

In each training corpus, we extract a set of can-
didate hypernyms for each training term and label
them if they are hypernym related or not using the
gold hypernym data. Next, we represent each term
and its candidate hypernym by a concatenated fea-
ture vector. These concatenated vectors are used
for training the model. The classification method
we used is SVM3 with RBF kernel (C = 1.0,
gamma = 1/FeatureSize). The training dataset
was unbalanced, the ratio of hypernym instances
w.r.t. not hypernym is less than 0.05. To represent
the two categories (hypernym and not hypernym)

2https://radimrehurek.com/gensim/
3We use a machine learning python library scikit-learn

(http://scikit-learn.org/stable/)

in the training set, we improved this ratio to 0.2
by random elimination of not hypernym instances
(20% hypernym instances and 80% not hypernym
instances).

The classifier model is then used to discover hy-
pernyms from a set of candidate hypernyms ex-
tracted from a testing corpus for each testing term
by predicting if a term and its candidate hyper-
nym are hypernym related or not. Each predicted
hypernym is associated with a probability value.
These values are used as ranking values to select
the best fifteen hypernyms for each term (from
higher to lower probability).

4 Results and Analysis

We submit our systems predictions for three cor-
pora: English, Medical, and Music. The table 1
(a,b and c) below shows the result of our system
and other supervised systems to discover hyper-
nyms for Concept terms only. For the three cor-
pora, our system performs better than STJU sys-
tem, and it performs better than the MFH system
on the English corpora. In addition, the result
shows that our system performs well in discov-
ering new hypernyms not defined in the gold hy-
pernyms where it yields good False Positive val-
ues in the three corpora and we achieve the best
False Positive value in Medical corpus (40) with a
large difference to the second value (20) achieved
by CRIM system.

Systems MAP MRR P@1 P@3 P@5 P@15 False +
CRIM 16.08 30.04 23.94 17.23 15.41 14.88 20
MSCG 9.36 18.9 13.81 10.67 9.38 8.31 28
UMDuluth 8.13 18.93 15.33 8.83 7.53 7.07 20
NLP HZ 7.17 13.13 8.99 7.69 7.11 6.71 24
Vanilla 6.99 16.05 12.3 7.69 6.55 6.18
Begab 6.41 13.92 9.74 6.75 6.33 5.86 24
EXPR 4.94 11.64 10.12 5.27 4.52 4.28 16
MFH 4.73 12.48 11.92 4.84 4.13 3.93
SJTU 3.29 5.68 0.28 3.45 3.57 3.54 0

(a) English Corpus.

Systems MAP MRR P@1 P@3 P@5 P@15 False +
CRIM 34.05 54.64 49.2 40.13 36.77 27.1 20
MFH 28.93 35.8 32.6 34.27 34.2 21.39
Begab 20.75 40.6 31.6 23.5 21.43 17.05 16
Vanilla 18.84 41.07 35.4 27.07 20.71 12.4
EXPR 13.77 40.76 38.2 17.17 12.76 9.34 40
STJU 11.69 25.95 15.2 13.57 11.69 10.24 12

(b) Medical Corpus.

Systems MAP MRR P@1 P@3 P@5 P@15 False +
CRIM 43.38 63.79 52.79 47.16 43.87 40.14 24
MFH 33.56 56.82 46.65 38.41 35.22 27.47
Begab 23.52 39.26 24.02 23.23 22.66 23.13 16
Vanilla 11.53 35.78 31.28 13.59 10.28 8.46
EXPR 6.74 20.15 15.64 9.22 6.65 4.64 20
SJTU 4.71 9.15 2.23 4.98 4.91 4.67 4

(c) Music Corpus.

Table 1: The evaluation results of our system and
other supervised systems.

921

Our system result was beneath the expectation.
By a short look into the output result files, we no-
tice a lot of empty lines, meaning that our system
was unable to discover any hypernym for a lot of
terms and unexpectedly these terms correspond to
all entity terms. In other words, our system lacks
the ability to discover hypernyms for entity terms.

The table 2 (a,b and c) below shows the cov-
erage of Wikipedia pre-trained term embedding
model (TEM) and the coverage of candidate hy-
pernym extraction (CHE) for the training and test-
ing terms of the three corpora (English, Medical,
and Music). The table shows that our system is
unable to discover hypernyms for a considerable
number of terms due to two main reasons. The
first reason is that Wikipedia pre-trained term em-
bedding model is limited in coverage, where many
terms (Concepts/Entities) are not covered by the
pre-trained embeddings, which leads to failure to
discover hypernyms for these terms. For exam-
ple, the term embedding (TEM) coverage of Med-
ical Testing terms is 249 (50%), which means the
system is unable to discover hypernyms for 251
(50%) terms not covered by the pre-trained term
embedding. The second reason is that some con-
ditions used to extract candidate hypernyms re-
strict the number of candidate hypernyms. For in-
stance, the condition of the existence of a short de-
pendency link between the term and its candidate
causes the system to miss many candidate hyper-
nyms if they are not linked by a short dependency
path with the terms. In addition, the term and its
candidate hypernym must occur as noun phrases
in the sentence. This condition leads to failure to
extract candidate hypernyms for some entity terms
that can’t be identified as noun phrases in the cor-
pus such as “Up All Night”, “Someday Came Sud-
denly”, “Now What”, etc. As shown in the table
2, the candidate hypernym extraction (CHE) cov-
erage for English testing terms is 950 (63%), that
means our system is unable to extract any candi-
date hypernym for 550 (37%) terms (398 entities
and 152 concepts).

Furthermore, our system suffers from a major
computational issue when applied to a large cor-
pus. Parsing the corpus took to long and failed
to complete before the submission deadline. Ap-
proximately, we processed 50% sentences of En-
glish corpus and 80% sentences of Music corpus,
while we processed all sentences of Medical cor-
pus. This explains why the performance of our

Terms
Training Testing

Total TEM CHE Total TEM CHE
Concept 979 824 (84%) 825 (84%) 1057 862 (81%) 905 (86%)
Entity 521 361 (69%) 49 (9%) 443 298 (67%) 45 (10%)
Total 1500 1185 (79%) 874 (58%) 1500 1160 (77%) 950 (63%)

(a) English Corpus.

Terms
Training Testing

Total TEM CHE Total TEM CHE
Concept 500 151 (30%) 414 (83%) 500 249 (50%) 427 (85%)
Entity 0 0
Total 500 151 (30%) 414 (83%) 500 249 (50%) 427 (85%)

(b) Medical Corpus.

Terms
Training Testing

Total TEM CHE Total TEM CHE
Concept 387 227 (59%) 344 (89%) 358 228 (64%) 330 (92%)
Entity 113 57 (50%) 45 (40%) 142 82 (58%) 62 (44%)
Total 500 284 (57%) 389 (78%) 500 310 (62%) 392 (78%)

(c) Music Corpus.

Table 2: The coverage of wikipedia pre-trained
term embedding model and candidate hypernym
extraction.

system on Medical corpus is better than its perfor-
mance on the two others corpora.

5 Conclusion

In this paper, we presented our proposed system
(EXPR) that is a combination of path-based tech-
nique and distributional technique to participate in
Hypernym Discovery task of SemEval 2018. In
this work, two feature vectors were extracted and
concatenated: the first one is obtained using de-
pendency parser on sentences and the second vec-
tor is obtained using pre-trained term embedding.
A supervised classifier model based on SVM is
built using training dataset composed of concate-
nated vectors. This model is used to discover hy-
pernyms for new terms. The result was good but
didnt fulfill our ambition due to several issues.

Our future work is to improve our approach
for hypernym discovery by solving several issues.
We believe that relying on term embedding model
learned from the corpus provided in this task may
be a good choice. In addition, we will work on
the definition of a new dependency links not only
those defined in this paper. Also, we will work
to propose an unsupervised approach by using se-
quential pattern mining technique to automatically
extract frequent sequential pattern between hy-
ponym terms and their given hypernyms from the
corpus.

References
Marco Baroni, Raffaella Bernardi, Ngoc-Quynh Do,

and Chung chieh Shan. 2012. Entailment above the

922

word level in distributional semantics. In EACL,
pages 23–32.

Paul Buitelaar, Philipp Cimiano, and Bernardo
Magnini. 2005. Ontology learning from text: An
overview. In Ontology Learning from Text: Meth-
ods, Applications and Evaluation, pages 3–12.

Jose Camacho-Collados, Claudio Delli Bovi, Luis
Espinosa-Anke, Sergio Oramas, Tommaso Pasini,
Enrico Santus, Vered Shwartz, Roberto Navigli,
and Horacio Saggion. 2018. SemEval-2018 Task
9: Hypernym Discovery. In Proceedings of the
12th International Workshop on Semantic Evalu-
ation (SemEval-2018), New Orleans, LA, United
States. Association for Computational Linguistics.

M. A. Hearst. 1992. Automatic acquisition of hy-
ponyms from large text corpora. In Proceedings of
the 14th International Conference on Computational
Linguistics, pages 539–545.

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long
short-term memory. Neural Comput., 9(8):1735–
1780.

Nobuhiro Kaji and Masaru Kitsuregawa. 2008. Using
hidden markov random fields to combine distribu-
tional and pattern-based word clustering. In COL-
ING, pages 401–408.

Lili Kotlerman, Ido Dagan, Idan Szpektor, and Maayan
Zhitomirsky-Geffet. 2010. Directional distribu-
tional similarity for lexical inference. NLE, pages
359–389.

Dekang Lin. 1998. An information-theoretic definition
of similarity. In ICML, pages 296–304.

Anh Tuan Luu, Yi Tay, Siu Cheung Hui, and See-Kiong
Ng. 2016. Learning term embeddings for taxonomic
relation identification using dynamic weighting neu-
ral network. In Proceedings of the 2016 Conference
on Empirical Methods in Natural Language Pro-
cessing, EMNLP 2016, Austin, Texas, USA, Novem-
ber 1-4, 2016, pages 403–413.

Marie-Catherine De Marneffe, Bill MacCartney, and
Christopher D. Manning. 2006. Generating typed
dependency parses from phrase structure parses.
Proceedings of the 5th International Conference on
Language Resources and Evaluation (LREC 2006),
pages 449–454.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Gregory S.
Corrado, and Jeffrey Dean. 2013. Distributed repre-
sentations of words and phrases and their composi-
tionality. In NIPS, pages 3111–3119.

Shachar Mirkin, Ido Dagan, and Maayan Geffet. 2006.
Integrating pattern-based and distributional similar-
ity methods for lexical entailment acquisition. In
COLING and ACL, pages 579–586.

Roberto Navigli and Paola Velardi. 2010. Learning
word-class lattices for definition and hypernym ex-
traction. In Proceedings of the 48th Annual Meet-
ing of the Association for Computational Linguis-
tics, ACL ’10, pages 1318–1327, Stroudsburg, PA,
USA. Association for Computational Linguistics.

Jeffrey Pennington, Richard Socher, and Christo-
pher D. Manning. 2014. Glove: Global vectors for
word representation. In EMNLP, pages 1532–1543.

Laura Rimell. 2014. Distributional lexical entailment
by topic coherence. In EACL, pages 511–519.

Stephen Roller, Katrin Erk, and Gemma Boleda. 2014.
Inclusive yet selective: Supervised distributional hy-
pernymy detection. In COLING, pages 1025–1036.

Enrico Santus, Alessandro Lenci, Qin Lu, and Sabine
Schulte Im Walde. 2014. Chasing hypernyms in
vector spaces with entropy. In EACL, pages 38–42.

N. Sheena, Smitha M. Jasmine, and Shelbi Joseph.
2016. Automatic extraction of hypernym and
meronym relations in english sentences using depen-
dency parser. In Procedia Computer Science, pages
539–546.

Vered Shwartz, Yoav Goldberg, and Ido Dagan. 2016.
Improving hypernymy detection with an integrated
path-based and distributional method. CoRR,
abs/1603.06076.

Rion Snow, Daniel Jurafsky, and Andrew Ng. 2005.
Learning syntactic patterns for automatic hypernym
discovery. MIT Press, pages 1297–1304.

Julie Weeds, Daoud Clarke, Jeremy Reffin, David Weir,
and Bill Keller. 2014. Learning to distinguish hyper-
nyms and co-hyponyms. In COLING, pages 2249–
2259.

Julie Weeds and David Weir. 2003. A general frame-
work for distributional similarity. In EMLP, pages
81–88.

Zheng Yu, Haixun Wang, Xuemin Lin, and Min Wang.
2015. Learning term embeddings for hypernymy
identification. In Proceedings of the 24th Inter-
national Conference on Artificial Intelligence, IJ-
CAI’15, pages 1390–1397. AAAI Press.

923

Proceedings of the 12th International Workshop on Semantic Evaluation (SemEval-2018), pages 924–927
New Orleans, Louisiana, June 5–6, 2018. ©2018 Association for Computational Linguistics

ADAPT at SemEval-2018 Task 9: Skip-Gram Word Embeddings for
Unsupervised Hypernym Discovery in Specialised Corpora

Alfredo Maldonado
ADAPT Centre

Trinity College Dublin
Ireland

Filip Klubička
ADAPT Centre

Dublin Institute of Technology
Ireland

firstname.lastname@adaptcentre.ie

Abstract

This paper describes a simple but competitive
unsupervised system for hypernym discovery.
The system uses skip-gram word embeddings
with negative sampling, trained on specialised
corpora. Candidate hypernyms for an input
word are predicted based on cosine similar-
ity scores. Two sets of word embedding mod-
els were trained separately on two specialised
corpora: a medical corpus and a music indus-
try corpus. Our system scored highest in the
medical domain among the competing unsu-
pervised systems but performed poorly on the
music industry domain. Our approach does
not depend on any external data other than raw
specialised corpora.

1 Introduction

The SemEval-2018 shared task on Hypernymy
Discovery sought to study approaches for iden-
tifying words that hold a hypernymic relation
(Camacho-Collados et al., 2018). Two words have
a hypernymic relation if one of the words belongs
to a taxonomical class that is more general than
that of the other word. For example, the word ve-
hicle belongs to a more general taxonomical class
than car does, as car is a type of vehicle. Hy-
pernymy can be seen as an is-a relationship. Hy-
pernymy has been studied from different angles in
the natural language processing literature as it is
related to the human cognitive ability of generali-
sation.

This shared task differs from recent taxonomy
evaluation tasks (Bordea et al., 2015, 2016) by
concentrating on Hypernym Discovery: the task
of predicting (discovering) n hypernym candidates
for a given input word, within the vocabulary of
a specific domain (Espinosa-Anke et al., 2016).
This shared task provided a general language do-
main vocabulary and two specialised domain vo-
cabularies in English: medical and music indus-

try. For each vocabulary, a reference corpus was
also supplied. In addition to these English vo-
cabularies, general language domain vocabularies
for Spanish and Italian were also provided. The
ADAPT team focused on the two specialised do-
main English subtasks by developing an unsuper-
vised system that builds word embeddings from
the supplied reference corpora for these domains.

Word embeddings trained on large corpora have
been shown to capture semantic relations be-
tween words (Mikolov et al., 2013a,b), including
hypernym-hyponym relations. The word embed-
dings built and used by the system presented here
exploit this property. Although these word em-
beddings do not distinguish one semantic relation
from another, we expect that true hypernyms will
constitute a significant proportion of the predicted
candidate hypernyms. Indeed, we show that for
the medical domain subtask, our system beats the
other unsupervised systems, although it still ranks
behind the supervised systems.

Even though unsupervised systems tend to rank
behind supervised systems in NLP tasks in gen-
eral, our motivation to focus on an unsupervised
approach is derived from the fact that they do not
require explicit hand-annotated data, and from the
expectation that they are able to generalise more
easily to unseen hypernym-hyponym pairs.

The rest of this system description paper is or-
ganised as follows: Section 2 briefly surveys the
relevant literature and explains the reasons for
choosing to use a particular flavour of word em-
beddings. Section 3 describes the components of
the system and its settings. Section 4 summarises
the results and offers some insights behind the
numbers. Section 5 concludes and proposes av-
enues for future work.

924

2 Related Work

Modern neural methods for natural language pro-
cessing (NLP) use pre-trained word embeddings
as fixed-sized vector representations of lexical
units in running text as input data (Goldberg, 2017,
ch. 10). However, as mentioned previously, word
embedding vectors can be used on their own to
measure semantic relations between words in an
unsupervised manner by, for example, taking the
cosine similarity of two word embedding vectors
for which semantic similarity is to be measured.

There are several competing approaches for
producing word embedding vectors. One such
approach is skip-gram with negative sampling
(SGNS), introduced by Mikolov et al. (2013a,b)
as part of their Word2Vec software package. The
skip-gram approach assumes that a focus word
occurring in text depends on its context words
(the words the focus word co-occurs with inside a
fixed-sized window), but that those context words
occur independently of each other. This con-
ditional independence assumption in the context
words makes computation more efficient and pro-
duces vectors that work well in practice. The neg-
ative sampling portion of the algorithm is a way
of producing “negative” context words for the fo-
cus word by simply drawing random words from
the corpus. These random words are assumed to
be “bad” context words for the focus word. The
positive and negative examples are used by an ob-
jective function that seeks to maximise the prob-
ability that the positive examples came from the
corpus whilst the negative examples did not.

Cosine measures on word embeddings pairs (or
even on other distributional lexical semantic rep-
resentations) give an indication of the overall se-
mantic relatedness of the word pairs they rep-
resent (Turney and Pantel, 2010), without speci-
fying the type(s) of semantic relation(s) the two
words hold. There have been endeavours to train
word embeddings that emphasise one semantic re-
lation over another. For example, Nguyen et al.
(2016) modified the skip-gram objective function
to train word embeddings that distinguished syn-
onymy from antonymy. In a similar vein, Nguyen
et al. (2017) developed an algorithm called Hy-
pervec by adapting the skip-gram objective func-
tion to emphasise the non-symmetric hypernym-
hyponym relations.

Our team indeed implemented a variant of the
Hypervec method but failed to obtain better per-

formance scores on the training set than those ob-
tained by using traditional SGNS (see Section 4).
Whilst it is possible that a software bug in our im-
plementation could be the cause of this lower per-
formance, we decided to submit the SGNS results
to the official shared task due to time constraints.

3 System Description

Our system consists of two components: a trainer
that learns word vectors using an implementation
of the Skip-Gram with Negative Sampling algo-
rithm, and a predictor that outputs (predicts) the
top 10 hypernyms of an input word based on the
trained vectors. These two components and their
settings are described here.

Trainer The trainer is a modification of Py-
Torch SGNS1, a freely available implementation
of the Skip-Gram with Negative Sampling algo-
rithm. One set of vectors per specialised corpus
(medicine and music industry) were trained on a
vocabulary that consists of the 100,000 most fre-
quent words in each corpus, using a word window
of 5 words to the left and 5 words to the right of
a sliding focus word. The windows do not cross
sentence boundaries. For negative sampling, 20
words were randomly selected from the vocabu-
lary based on their frequency2. All vectors had a
dimensionality of 300.

Predictor For each input word in the test file,
the predictor attempts to produce 10 candidate hy-
pernyms based on the vectors it learned during
training. If there is no vector for an input word,
no output for that word is given. If the input word
is a multiword expression, then the learned vec-
tors for the individual component words are re-
trieved and averaged together. This averaged vec-
tor is interpreted to represent the input multiword
expression. After a vector is retrieved (or com-
puted, in the case of averaged multiword expres-
sions), pairwise cosine similarities are taken be-
tween this vector and all other vectors (i.e. the
vectors corresponding to the other 99,999 most
frequent words). The words represented by the
10 highest ranking cosine similarities are output
as the 10 candidate hypernyms for the input word
or multiword expression.

1https://github.com/theeluwin/pytorch-sgns
2The frequencies were smoothed by raising them to the

power of 0.75 before dividing by the total.

925

Domain Approach MAP MRR P@1 P@3 P@5 P@15
medical SGNS 8.13 20.56 13.20 10.80 8.32 6.33
medical HV 4.40 13.05 10.60 5.60 4.27 3.10
music SGNS 1.88 5.34 4.00 2.40 1.89 1.35
music HV 1.79 5.39 5.00 2.07 1.62 1.28

Table 1: Automatic evaluation results for the submitted system (SGNS) and a Hypervec variant (HV).

As can be seen, our system is completely unsu-
pervised as it does not require corpora with tagged
examples of words holding hypernym-hyponym
relations or any external linguistic or taxonomical
resources.

4 Results

Table 1 shows the results for our SGNS-based ap-
proach, which was submitted to the official shared
task (SGNS), and for our Hypervec variant (HV),
which was not submitted.

Our official submission ranked at eleven out of
eighteen on the medical domain subtask with a
Mean Average Precision (MAP) of 8.13. How-
ever, it ranked first place among all the unsuper-
vised systems on this subtask. On the music indus-
try domain subtask, our system ranked 13th out of
16 places with a MAP of 1.88, ranking 4th among
the unsupervised systems. We believe that one rea-
son why the music industry scores are so much
lower than the medical results is due to our sys-
tem not producing an output for 233 of the music
industry input words (45% of the total), compared
to the 128 medical input words (26%) it failed to
predict.

Another aspect that seems to work against our
system is its simplistic way of handling multiword
expressions, namely by averaging together the in-
dividual word’s vectors. The total number of mul-
tiword expressions in the medical test set is 264,
slightly higher than in the music test set, which
contains 220 multiword expressions. Similarly,
our system does not have a way of predicting mul-
tiword expressions as hypernym candidates, as it
can only output the unigrams for which it has vec-
tor representations. 82% of the medical domain
input words have at least one hypernym that is a
multi-word expression, whilst 92% of the music
industry domain input words have multi-word ex-
pression hypernyms.

5 Conclusions and Future Work

We presented a simple but competitive unsuper-
vised system to predict hypernym candidates for
input words, based on cosine similarity scores of
word embedding vectors trained on specialised
corpora.

Unsupervised systems in general tend to have
lower performance than supervised systems as
they lack explicit information to train on. So we
are encouraged that our system beat other unsu-
pervised systems on one corpus, as this gives us
more avenues to explore.

One such avenue is to revisit our Hypervec im-
plementation. We suspect that it might require
more training epochs than the traditional SGNS
method in order to achieve reasonable results. We
also seek to experiment with refining pre-trained
SGNS word embeddings with Hypervec, rather
than training word embeddings from scratch using
Hypervec directly.

Another avenue to explore involves incorporat-
ing taxonomical information into our word em-
beddings. One way to achieve this is by retrofitting
pre-trained SGNS word embeddings with infor-
mation derived from existing taxonomies like
WordNet (Faruqui et al., 2015). Another way
of incorporating taxonomical information is by
generating a pseudo-corpus via a random walk
over such a taxonomy and then learn SGNS word
embeddings in the usual way (Goikoetxea et al.,
2015).

These approaches (Hypervec, retrofitting and
taxonomy random-walk) however, would relax the
unsupervised constraint we followed in our imple-
mentation. So yet another avenue to explore is
to instead apply different similarity functions that
might be more sensitive to the one-way, general-
specific nature of hypernymic relationships be-
tween words.

Acknowledgements

We thank our anonymous reviewers for their in-
put. The ADAPT Centre for Digital Content Tech-

926

nology is funded under the SFI Research Centres
Programme (Grant 13/RC/2106) and is co-funded
under the European Regional Development Fund.

References
Georgeta Bordea, Paul Buitelaar, Stefano Faralli, and

Roberto Navigli. 2015. Semeval-2015 task 17: Tax-
onomy extraction evaluation (texeval). In Proceed-
ings of the 9th International Workshop on Semantic
Evaluation. Association for Computational Linguis-
tics.

Georgeta Bordea, Els Lefever, and Paul Buitelaar.
2016. Semeval-2016 task 13: Taxonomy extrac-
tion evaluation (texeval-2). In Proceedings of the
10th International Workshop on Semantic Evalua-
tion. Association for Computational Linguistics.

Jose Camacho-Collados, Claudio Delli Bovi, Luis
Espinosa-Anke, Sergio Oramas, Tommaso Pasini,
Enrico Santus, Vered Shwartz, Roberto Navigli,
and Horacio Saggion. 2018. SemEval-2018 Task
9: Hypernym Discovery. In Proceedings of the
12th International Workshop on Semantic Evalua-
tion (SemEval-2018), New Orleans, LA. Association
for Computational Linguistics.

Luis Espinosa-Anke, Jose Camacho-Collados, Clau-
dio Delli Bovi, and Horacio Saggion. 2016. Super-
vised Distributional Hypernym Discovery via Do-
main Adaptation. In Proceedings of the 2016 Con-
ference on Empirical Methods in Natural Language
Processing, pages 424–435, Austin, TX.

Manaal Faruqui, Jesse Dodge, Sujay K Jauhar, Chris
Dyer, Eduard Hovy, and Noah A Smith. 2015.
Retrofitting Word Vectors to Semantic Lexicons. In
Human Language Technologies: The 2015 Annual
Conference of the North American Chapter of the
ACL, pages 1606–1615.

Josu Goikoetxea, Aitor Soroa, and Eneko Agirre.
2015. Random Walks and Neural Network Lan-
guage Models on Knowledge Bases. In Human
Language Technologies: The 2015 Conference of
the North American Chapter of the Association for
Computational Linguistics, pages 1434–1439, Den-
ver, CO.

Yoav Goldberg. 2017. Neural Network Methods for
Natural Language Processing. Morgan & Claypool
Publishers.

Tomas Mikolov, Greg Corrado, Kai Chen, and Jeffrey
Dean. 2013a. Efficient Estimation of Word Repre-
sentations in Vector Space. In Proceedings of the
International Conference on Learning Representa-
tions (ICLR 2013), pages 1–12, Scottsdale, AZ.

Tomas Mikolov, Ilya Stutskever, Kai Chen, Greg Cor-
rado, and Jeffrey Dean. 2013b. Distributed Repre-
sentations of Words and Phrases and their Compo-
sitionality. In Proceedings of the Twenty-Seventh

Annual Conference on Neural Information Process-
ing Systems (NIPS) In Advances in Neural Informa-
tion Processing Systems 26, pages 3111–3119, Lake
Tahoe, NV.

Kim Anh Nguyen, Maximilian Köper, Sabine Schulte
im Walde, and Ngoc Thang Vu. 2017. Hierarchical
Embeddings for Hypernymy Detection and Direc-
tionality. In Proceedings of the 2017 Conference on
Empirical Methods in Natural Language Process-
ing, pages 233–243, Copenhagen.

Kim Anh Nguyen, Sabine Schulte im Walde, and
Ngoc Thang Vu. 2016. Integrating Distribu-
tional Lexical Contrast into Word Embeddings for
Antonym-Synonym Distinction. In Proceedings of
the 54th Annual Meeting of the Association for Com-
putational Linguistics, pages 454–459, Berlin.

Peter D. Turney and Patrick Pantel. 2010. From Fre-
quency to Meaning: Vector Space Models of Se-
mantics. Journal of Artificial Intelligence Research,
37:141–188.

927

Proceedings of the 12th International Workshop on Semantic Evaluation (SemEval-2018), pages 928–934
New Orleans, Louisiana, June 5–6, 2018. ©2018 Association for Computational Linguistics

300-sparsans at SemEval-2018 Task 9:
Hypernymy as interaction of sparse attributes

Gábor Berend
Department of Informatics

University of Szeged
Árpád tér 2, H6720 Szeged, Hungary
berendg@inf.u-szeged.hu

Márton Makrai
Institute for Linguistics

Hungarian Academy of Sciences
Benczúr u. 33, H1068 Budapest, Hungary
makrai.marton@nytud.mta.hu

Péter Földiák
Secret Sauce Partners

657 Mission Suite 410,
San Francisco CA 94105

Peter.Foldiak@gmail.com

Abstract

This paper describes 300-sparsans’ participa-
tion in SemEval-2018 Task 9: Hypernym Dis-
covery, with a system based on sparse coding
and a formal concept hierarchy obtained from
word embeddings. Our system took first place
in subtasks (1B) Italian (all and entities), (1C)
Spanish entities, and (2B) music entities.

1 Introduction

Natural language phenomena are extremely sparse
by their nature, whereas continuous word em-
beddings employ dense representations of words.
Turning these dense representations into a much
sparser form can help in focusing on most salient
parts of word representations (Faruqui et al., 2015;
Berend, 2017; Subramanian et al., 2018).

Sparsity-based techniques often involve the
coding of a large number of signals over the same
dictionary (Rubinstein et al., 2008). Sparse, over-
complete representations have been motivated in
various domains as a way to increase separability
and interpretability (Olshausen and Field, 1997)
and stability in the presence of noise.

Non-negativity has also been argued to be ad-
vantageous for interpretability (Faruqui et al.,
2015; Fyshe et al., 2015; Arora et al., 2016). As
Subramanian et al. (2018) illustrates this in the
language domain, where sparse features are inter-
preted as lexical attributes, “to describe the city
of Pittsburgh, one might talk about phenomena
typical of the city, like erratic weather and large
bridges. It is redundant and inefficient to list neg-
ative properties, like the absence of the Statue
of Liberty”. Berend (2018) utilizes non-negative
sparse coding for word translation by training

sparse word vectors for the two languages such
that coding bases correspond to each other.

Here we apply sparse feature pairs to hypernym
extraction. The role of an attribute pair 〈i, j〉 ∈
φ(q) × φ(h) (where q is the query word, h is the
hypernym candidate, and φ(w) is the index of a
non-zero component in the sparse representations
of w) is similar to interaction terms in regression,
see section 2 for details.

Sparse representation is related to hypernymy in
various natural ways. One of them is through For-
mal concept Analysis (FCA). The idea of acquir-
ing concept hierarchies from a text corpus with
the tools of Formal concept Analysis (FCA) is
relatively new (Cimiano et al., 2005). Our sub-
missions experiment with formal concept analysis
tool by Endres et al. (2010). See the next section
for a description of formal concept lattices, and
how hypernyms can be found in them.

Another natural formulation is related to hier-
archical sparse coding (Zhao et al., 2009), where
trees describe the order in which variables “enter
the model” (i.e., take non-zero values). A node
may take a non-zero value only if its ancestors also
do: the dimensions that correspond to top level
nodes should focus on “general” meaning compo-
nents that are present in most words. Yogatama
et al. (2015) offer an implementation that is effi-
cient for gigaword corpora. Exploiting the corre-
spondence between the variable tree and the hy-
pernym hierarchy offers itself as a natural choice.

The task (Camacho-Collados et al., 2018) eval-
uated systems on their ability to extract hypernyms
for query words in five subtasks (three languages,
English, Italian, and Spanish, and two domains,

928

medical and music). Queries have been catego-
rized as concepts or entities. Results were reported
for each category separately as well as in com-
bined form, thus resulting in 5 × 3 combinations.
Our system took first place in subtasks (1B) Ital-
ian (all and entities), (1C) Spanish entities, and
(2B) music entities. Detailed results for our system
appear in section 3. Our source code is available
online1.

1.1 Formal concept analysis

Formal concept Analysis (FCA) is the mathemati-
zation of concept and conceptual hierarchy (Gan-
ter and Wille, 2012; Endres et al., 2010). In FCA
terminology, a context is a set of objects O, a set
of attributes A, and a binary incidence relation
I ⊆ O × A between members of O and A. In
our application, I associates a word w ∈ O to the
indices of its non-zero sparse coding coordinates
i ∈ A. FCA finds formal concepts, pairs 〈O,A〉 of
object sets and attribute sets (O ⊆ O, A ⊆ A)
such that A consists of the shared attributes of ob-
jects in O (and no more), and O consists of the
objects in O that have all the attributes in A (and
no more). (There is a closure-operator related to
each FCA context, for which O and A are closed
sets iff 〈O,A〉 is a concept.) O is called the extent
and A is the intent of the concept.

There is an order defined in the context:
if 〈A1, B1〉 and 〈A2, B2〉 are concepts in C,
〈A1, B1〉 is a subconcept of 〈A2, B2〉 if A1 ⊆ A2
which is equivalent to B1 ⊇ B2. The concept or-
der forms a lattice. The smallest concept whose
extent contains a word is said to introduce the ob-
ject. We expect that h will be a hypernym of q iff
n(q) ≤ n(h) where n(w) denotes the node in the
concept lattice that introduces w.

The closedness of extents and intents has an im-
portant structural consequence. Adding attributes
to A (e.g. responses of additional neurons) will
very probably grow the model. However, the orig-
inal concepts will be embedded as a substructure
in the larger lattice, with their ordering relation-
ships preserved.

2 Our approach

Now we describe our system that is based on
sparse non-negative word representations and
FCA besides more traditional features.

1https://github.com/begab/fca_
hypernymy

We use the popular skip-gram (SG) approach
(Mikolov et al., 2013) to train d = 100 di-
mensional dense distributed word representations
for each sub-corpus. The word embeddings are
trained over the text corpora provided by the
shared task organizers with the default training pa-
rameters of word2vec (w2v), i.e. a window size
of 10 and 25 negative samples for each positive
context.

We derived multi-token units by relying on the
word2phrase software accompanying the w2v
toolkit. An additional source for identifying multi-
token units in the training corpora was the list of
potential hypernyms released for each subtask by
the shared task organizers.

Given the dense embedding matrix Wx ∈
Rd×|Vx|, for some subcorpus of the shared task
x ∈ {1A, 1B, 1C, 2A, 2B}, where |Vx| is the size
of the vocabulary and d is set to 100. As a subse-
quent step, we turn Wx into sparse word vectors
akin to Berend (2017) by solving for

min
D∈C,α∈R≥0

‖Dα−Wx‖F + λ‖α‖1, (1)

where C refers to the convex set of Rd×k matrices
consisting of d-dimensional columns vectors with
norm at most 1, and α contains the sparse coeffi-
cients for the elements of the vocabulary. The only
difference compared to Berend (2017) is that here
we ensure a non-negativity constraint over the el-
ements of α.

For the elements of the vocabulary we ran
the formal concept analysis tool of Endres et al.
(2010)2. In order to keep the size of the DAG out-
putted by the FCA algorithm manageable, we only
included the query words and those hypernyms in
the analysis which occur in the training dataset for
the corpora. As we will see in the next section,
this restriction turns out to be very useful.

Next, we determine a handful of features for
a pair of expressions (q, h) consisting of a query
q and its potential hypernym h. Table 1 pro-
vides an overview of the features employed for
a pair (q, h). We denote with q and h the 100-
dimensional dense vectorial representations of q
and h. Additionally, we denote with Q and H
the sequence of tokens constituting the query and
hypernym phrases. Finally, we refer to the set of
basis vectors (in the FCA terminology, attributes)

2www.compsens.uni-tuebingen.de/pub/
pages/personals/3/concepts.py

929

Core feature name

cosine qᵀh
‖q‖2‖h‖2

difference ‖q − h‖2
normRatio ‖q‖2

‖h‖2

qureyBeginsWith Q[0] = h
queryEndsWith Q[−1] = h
hasCommonWord Q ∩H 6= ∅
sameFirstWord Q[0] = H[0]
sameLastWord Q[−1] = H[−1]
logFrequencyRatio log10

count(q)
count(h)

isFrequentHypernym3 c ∈MF50(q.type)
sameConcept n(h) = n(q)
parent n(q) ≺ n(h)
child n(h) ≺ n(q)
overlappingBasis φ(q) ∩ φ(h) 6= ∅
sparseDifferenceq\h |φ(q)− φ(h)|
sparseDifferenceh\q |φ(h)− φ(q)|
attributePairij 〈i, j〉 ∈ φ(q)× φ(h)

Table 1: The features employed in our classifier.
MF50(q.type) refers to the set of top-50 most fre-
quent hypernyms for a given query type.

which are assigned non-zero weights in the recon-
struction of the vectorial representation of q and h
as φ(q) and φ(h). It is also considered as a feature
(isFrequentHypernym) whether a particular
candidate hypernym h belongs to the top-50 most
frequent hypernyms for the category of q (i.e. con-
cept or entity). Modeling the two categories sep-
arately played an important role in the success of
our systems.

Three additional features are defined for in-
corporating the concept lattice output by FCA.
With n(w) denoting the concept that introduces
w, i.e. the most specific location within the DAG
for w, our features indicate whether n(q) (1) coin-
cides with that of h, (2) is the parent (immediate
successor) for that of h, or (3) is the child (imme-
diate predictions) for that of h. Parents, and even
the inverse relation, proved to be more predictive
than the conceptually motivated q ≤ h. In Ta-
ble 1, n1 ≺ n2 denotes that n1 is an immediate
predecessor of n2. We will see in post-evaluation
ablation experiments, where we refer to the above
three features as the FCA features, that they were
not useful in our submissions.

3At submission time, this feature did not work properly.

The attributePairijs above, our most im-
portant features, are indicator features for every
possible interaction term between the sparse co-
efficients in α. That means that for a pair of words
(q, h) we defined φ(q) × φ(h), i.e. candidates get
assigned with the Cartesian product derived from
the indices of the non-zero coefficients in α. Note
that this feature template induces k2 features, with
k being the number of basis vectors introduced in
the dictionary matrix D according to Eq. 1.

In order to rank potential hypernym candidates
over the test set we trained a logistic regression
classifier for concepts and entities utilizing the
sklearn package (Pedregosa et al., 2011)4 with
the regularization parameter defaulting to 1.0.

For each appropriate (q, h) pair of words for
which h is a hypernym of q, we generated a num-
ber of negative samples (q, h′), such that the train-
ing data does not include h′ as a valid hypernym
for q. For a given query q, belonging to either of
the concept or entity category, we sampled h′ from
those hypernyms which were included as a valid
hypernym in the training data with respect to some
q′ 6= q query phrase.

When making predictions for the hypernyms of
a query, we relied on our query type sensitive lo-
gistic regression model to determine the ranking of
the hypernym candidates. In our official submis-
sion we treated such phrases to rank which were
included in the training data for being a proper hy-
pernym at least once.

After the appropriate model ranked the hyper-
nym candidates, we selected the top 15 ranked
candidates and applied a post-ranking heuristic
over them, i.e. reordered them according to their
background frequency from the training corpus.
Our assumption here is that more frequent words
tend to refer to more general concepts and more
general hypernymy relations potentially tend to be
more easily detectable than more specialized ones.

3 Results

3.1 Our submissions
Our submissions were based on k = 200 dimen-
sional sparse vectors computed from unit-normed
100-dimensional dense vectors with λ = .3. The
sum of the two dimensions motivates our group
name. For training the regression model with neg-
ative samples, 50 false hypernyms were sampled
for each query q in the training dataset. One of our

4scikit-learn.org

930

without attribute pairs with attribute pairs

MAP MRR P@1 P@3 P@5 P@15 MAP MRR P@1 P@3 P@5 P@15

1A offic 8.6 18.0 13.0 8.9 8.2 7.9 8.9 19.4 14.9 9.3 8.6 8.1
1A reprd 9.07 18.7 13.5 9.4 8.8 8.5 9.2 19.9 14.9 9.5 8.7 8.4
1B offic 9.4 19.9 13.2 9.5 9.3 8.8 12.1 25.1 17.6 12.9 11.7 11.2
1B reprd 9.2 19.5 12.8 8.9 8.9 8.7 12.8 26.7 18.9 13.6 12.4 11.9
1C offic 12.5 25.9 16.6 13.6 12.6 11.5 17.9 37.6 27.8 19.7 17.1 16.3
1C reprd 12.9 26.0 16.2 13.9 13.0 11.9 18.3 38.4 28.5 20.2 17.4 16.6
2A offic 15.0 32.2 24.8 17.7 15.8 11.6 20.8 40.6 31.6 23.5 21.4 17.1
2A reprd 15.1 32.4 24.4 18.0 16.2 11.8 21.5 43.7 35.6 25.3 21.8 17.0
2B offic 19.1 36.7 27.2 23.0 20.1 15.4 29.5 46.4 33.0 31.9 28.9 27.7
2B reprd 21.5 40.9 29.6 25.6 22.1 18.0 30.4 46.8 33.8 31.8 29.5 28.9

Table 2: Our submissions results: official and those that can be reproduced with the code in the
project repo (with the isFrequentHypernym feature being turned off).

MAP MRR P@1 P@3 P@5 P@10

1A 9.8 22.6 19.8 10.0 9.0 8.6
1A 8.8 21.4 19.8 8.9 7.8 7.5

1B 8.9 21.2 17.1 9.1 8.3 7.9
1B 7.8 19.4 17.1 8.3 6.8 6.5

1C 16.4 33.3 24.6 17.5 16.1 14.9
1C 12.2 29.8 24.6 12.0 11.3 11.0

2A 29.0 35.9 32.6 34.3 34.2 21.7
2A 28.9 35.8 32.6 34.3 34.2 21.4

2B 40.2 58.8 50.6 44.6 40.3 35.5
2B 33.3 51.5 36.2 40.1 35.8 28.4

Table 3: Baseline results, most frequent training
hypernyms. We (upper) consider the most fre-
quent hypernym in the given query type (concept
or entity). For comparison, we also show the MFH
baseline provided by the organizers (lower) that is
based on the most frequent hypernyms in general.

submissions involved attribute pairs, the other not.
Both submissions used the conceptually motivated
but practically harmful FCA-based features.

Table 2 shows submission results. The figures
that can be reproduced with the code in the project
repo (reprd) is slightly different from our official
submissions (offic) for two reasons: because
the implementation of isFreqHyp contained a
bug, and because of the natural randomness in
negative sampling. For reproducibility, we report
result without the isFreqHyp feature. The ran-
domness introduced by negative sampling is now
factored out by random seeding.

Train Test

1A 975(4) 0.41% 1055(4) 0.38%
1B 709(1) 0.14% 767(2) 0.26%
1C 776(2) 0.26% 625(2) 0.32%
2A 442(58) 11.60% 433(67) 13.40%
2B 366(21) 5.43% 341(17) 4.75%

(a) concept

Train Test

1A 379(142) 27.26% 344(99) 22.35%
1B 249(41) 14.14% 205(26) 11.26%
1C 184(38) 17.12% 328(45) 12.06%
2A 0(0) — 0(0) —
2B 79(34) 30.09% 102(40) 28.17%

(b) entity

Table 4: Number of in-vocabulary (and out-of-
vocabulary, OOV) queries per query type. The ra-
tio of the latter is also shown.

3.2 Query type sensitive baselining

Our submission with attribute pairs achieved first
place in categories (1B) Italian (all and entities),
(1C) Spanish entities, and (2B) music entities.
This is in part due to our good choice of a fallback
solution in the case of OOV queries: we applied a
category-sensitive baseline returning the most fre-
quent train hypernym in the corresponding query
type (concept or entity). Table 4 shows how fre-
quently we had to rely on this fallback, and Table 3
shows the corresponding pure baseline results.

931

candidate filtering off candidate filtering on

k ns MAP MRR P@1 P@3 P@5 P@15 MAP MRR P@1 P@3 P@5 P@15

200 50 6.5 14.9 13.1 7.4 6.1 5.5 12.1 25.4 18.9 12.9 11.6 10.9
200 all 6.9 15.8 14.1 7.6 6.3 5.8 13.0 27.1 19.9 14.2 12.5 11.8

300 50 6.9 15.8 13.9 7.6 6.4 5.9 12.1 25.7 19.5 13.0 11.5 11.0
300 all 8.0 17.8 15.4 8.9 7.4 6.8 13.5 28.0 21.1 14.5 12.9 12.3

1000 50 9.0 20.0 17.2 9.8 8.3 7.7 13.3 28.1 21.3 13.8 12.6 12.3
1000 all 11.6 26.1 22.5 12.5 10.8 10.0 13.6 27.2 19.4 13.9 13.2 12.8

Table 5: Post evaluation results on the 1A dataset investigating the effect of various hyperparameter
choices. k and ns denotes the number of basis vectors and negative samples generated during training
per each positive (q, h) pair. Best results obtained for each metric are marked as bold.

MAP MRR P@1 P@3 P@5 P@15

off off 10.3 21.3 15.0 10.6 10.1 9.6
off on 10.1 21.1 14.9 10.5 9.9 9.5
on off 12.1 25.4 18.9 12.9 11.6 10.9
on on 12.1 25.3 18.7 13.0 11.6 11.0

Table 6: Ablation experiments, on the 1A dataset
with k = 200, ns = 50 (and the implementa-
tion of isFreqHyp fixed). The first two columns
indicate whether attributePairij and FCA-derived
features are utilized, respectively.

3.3 Post-evaluation analysis
After the evaluation closed, we conducted ablation
experiments the results of which are included in
Table 6. In these experiments, we investigated the
contribution of the features derived from sparse
attribute pairs and FCA. These ablation experi-
ments corroborate the importance of features de-
rived from sparse attribute pairs and reveal that
turning off FCA-based features does not hurt per-
formance at all. For this reason – even though
our official shared task submission included FCA-
related features – we no longer employed them in
our post-evaluation experiments.

Table 5 includes the detailed behavior of our
model on subtask 1A with respect three distinct
factors, that is

1. the number of basis vectors employed during
sparse coding (k ∈ {200, 300, 1000}),

2. the number of negative training samples per
positive sample (ns ∈ {50, all}),

3. candidate filtering being turned on/off.

In our original submission we generated 50 neg-
ative samples (ns) generated per query q during

MAP MRR P@1 P@3 P@5 P@15

1A 76.1 92.2 92.2 82.3 76.4 71.6
1B 71.2 93.4 93.4 78.5 70.9 65.7
1C 81.0 95.9 95.9 87.2 81.7 76.4
2A 72.6 89.6 89.6 81.0 75.3 64.1
2B 95.4 98.8 98.8 97.3 96.0 93.7

Table 7: Test results of an oracle system which uses
candidate filtering.

training. In our post evaluation experiments we in-
vestigated the effects of generating more negative
samples, i.e. we regarded all the valid hypernyms
over the training set – not being a proper hyper-
nym for q – as h′ upon the creation of the (q, h′)
negative training instances. This latter strategy is
referenced as ns = all in Table 5.

In our official submission we regarded only
those hypernyms as potential candidates to rank
during test time which occurred at least once as
a correct hypernym in the training data. We call
this strategy as candidate filtering. Historically,
we applied this restriction to speed up the FCA
algorithm because this way the size of the concept
lattice could be made smaller. As there are valid
hypernyms on the test set which never occurred in
the training data, our official submission would not
be able to obtain a perfect score even in theory. Ta-
ble 7 contains the best possible metrics on the test
set that we could achieve when candidate filtering
is applied. In our post evaluation experiments we
also investigated the effects of turning this kind of
filtering step off. As Table 5 illustrates, however,
our scores degrade after turning candidate filtering
off.

Our post evaluation experiments in Table 5 sug-

932

MAP MRR P@1 P@3 P@10 P@15

1A 13.3 28.1 21.3 13.8 12.6 12.3
1A 19.8 36.1 29.7 21.1 19.0 18.3

1B 12.5 24.2 14.5 13.4 12.5 12.0
1B 12.1 25.1 17.6 12.9 11.7 11.2

1C 21.8 43.8 33.7 22.9 21.4 19.9
1C 20.0 28.3 21.4 20.9 21.0 19.4

2A 21.9 39.5 34.2 25.5 22.6 18.5
2A 34.0 54.6 49.2 40.1 36.8 27.1

2B 31.5 43.6 29.8 30.3 30.3 31.5
2B 41.0 60.9 48.2 44.9 41.3 38.0

Table 8: Post evaluation results for the different
subtasks using k = 1000, ns = 50 and hypernym
candidate filtering. Upper: our system, lower:
subtask winner.

gest that it is advantageous to apply sparse repre-
sentation of more expressive power (i.e. a higher
number of basis vectors). Generating more nega-
tive samples also provides some additional perfor-
mance boost. These previous observations hold ir-
respective whether candidate filtering is employed
or not, however, their effects are more pronounced
when hypernym candidates are not filtered.

Finally, we report our post-evaluation results for
all the subtasks and compare them to the official
scores of the best performing systems in Table 8.
It can be seen from these enhanced results for cat-
egory “all” (concepts and entities mixed) that we
would win (1B) Italian and (1C) Spanish. Our
post-evaluation system – which only differs from
our participating system that it fixes the calcula-
tion of a features, does not rely on FCA-based fea-
tures and uses k = 1000 – would also place third
in the rest of the subtasks.

4 Conclusion

In this paper we experimented with the integration
of sparse word representations into the task of hy-
pernymy discovery. We strived to utilize sparse
word representations in two ways, i.e. via build-
ing concept lattices using formal concept analy-
sis and modeling the hypernymy relation with the
help of interaction terms. While our former ap-
proach for deriving formal concepts from sparse
word representations was not successful, the inter-
action terms derived from sparse word representa-
tions proved to be highly beneficial.

Acknowledgements

We would like to thank András Kornai for use-
ful comments on negative sampling. This re-
search was supported by the project Integrated
program for training new generation of scientists
in the fields of computer science, no. EFOP-3.6.3-
VEKOP-16-2017-0002. The project has been sup-
ported by the European Union and co-funded by
the European Social Fund.

References
Sanjeev Arora, Yuanzhi Li, Yingyu Liang, Tengyu Ma,

and Andrej Risteski. 2016. Linear algebraic struc-
ture of word senses, with applications to polysemy.
arXiv:1601.03764v1.

Gábor Berend. 2017. Sparse coding of neural word em-
beddings for multilingual sequence labeling. Trans-
actions of the Association for Computational Lin-
guistics, 5:247–261.

Gábor Berend. 2018. Towards cross-lingual utiliza-
tion of sparse word representations. In MSZNY2018,
XVI. Magyar Számítógṕes Nyelvészeti Konferencia.

Jose Camacho-Collados, Claudio Delli Bovi, Luis
Espinosa-Anke, Sergio Oramas, Tommaso Pasini,
Enrico Santus, Vered Shwartz, Roberto Navigli,
and Horacio Saggion. 2018. SemEval-2018 Task
9: Hypernym Discovery. In Proceedings of the
12th International Workshop on Semantic Evalu-
ation (SemEval-2018), New Orleans, LA, United
States. Association for Computational Linguistics.

Philipp Cimiano, Andreas Hotho, and Steffen Staab.
2005. Learning concept hierarchies from text cor-
pora using formal concept analysis. Journal Artifi-
cial Intelligence Research (JAIR), 24:305–339.

Dominik Endres, Peter Földiák, and Uta Priss. 2010.
An Application of Formal Concept Analysis to Se-
mantic Neural Decoding. Annals of Mathematics
and Artificial Intelligence, 57(3-4):233–248. Re-
viewed.

Manaal Faruqui, Jesse Dodge, Sujay Jauhar, Chris
Dyer, Ed Hovy, and Noah Smith. 2015. Retrofitting
word vectors to semantic lexicons. In Proceedings
of NAACL 2015. Best Student Paper Award.

Alona Fyshe, Leila Wehbe, Partha P Talukdar, Brian
Murphy, and Tom M Mitchell. 2015. A composi-
tional and interpretable semantic space. In Proceed-
ings of the 2015 Conference of the North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, pages 32–
41.

Bernhard Ganter and Rudolf Wille. 2012. Formal con-
cept analysis: mathematical foundations. Springer
Science & Business Media.

933

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey
Dean. 2013. Efficient estimation of word represen-
tations in vector space. In International Conference
on Learning Representations (ICLR 2013).

Bruno A Olshausen and David J Field. 1997. Sparse
coding with an overcomplete basis set: A strategy
employed by v1? Vision research, 37(23):3311–
3325.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,
R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-
esnay. 2011. Scikit-learn: Machine learning in
Python. Journal of Machine Learning Research,
12:2825–2830.

Ron Rubinstein, Michael Zibulevsky, and Michael
Elad. 2008. Efficient implementation of the k-svd
algorithm and the batch-omp method. Department
of Computer Science, Technion, Israel, Tech. Rep.

Anant Subramanian, Danish Pruthi, Harsh Jhamtani,
Taylor Berg-Kirkpatrick, and Eduard Hovy. 2018.
Spine: Sparse interpretable neural embeddings.
AAAI.

Dani Yogatama, Manaal Faruqui, Chris Dyer, , and
Noah A. Smith. 2015. Learning word representa-
tions with hierarchical sparse coding. In ICML. Pre-
vious version in NIPS Deep Learning and Represen-
tation Learning Workshop 2014.

Peng Zhao, Gulherme Rocha, and Bin Yu. 2009. The
composite and absolute penalties for grouped and hi-
erarchical variable selection. The Annals of Statis-
tics, 37(6A):3468–3497.

934

Proceedings of the 12th International Workshop on Semantic Evaluation (SemEval-2018), pages 935–939
New Orleans, Louisiana, June 5–6, 2018. ©2018 Association for Computational Linguistics

UWB at SemEval-2018 Task 10: Capturing Discriminative Attributes
from Word Distributions

Tomáš Brychcı́n1, Tomáš Hercig1,2, Josef Steinberger2, and Michal Konkol1

1NTIS – New Technologies for the Information Society,
Faculty of Applied Sciences, University of West Bohemia, Czech Republic

2Department of Computer Science and Engineering,
Faculty of Applied Sciences, University of West Bohemia, Czech Republic

{brychcin,tigi,jstein,konkol}@kiv.zcu.cz
http://nlp.kiv.zcu.cz

Abstract

We present our UWB system for the task of
capturing discriminative attributes at SemEval
2018. Given two words and an attribute, the
system decides, whether this attribute is dis-
criminative between the words or not. As-
suming Distributional Hypothesis, i.e., a word
meaning is related to the distribution across
contexts, we introduce several approaches to
compare word contextual information.

We experiment with state-of-the-art semantic
spaces and with simple co-occurrence statis-
tics. We show the word distribution in the
corpus has potential for detecting discrimina-
tive attributes. Our system achieves F1 score
72.1% and is ranked #4 among 26 submitted
systems.

1 Introduction

In this paper, we describe our UWB system par-
ticipating in the pilot shared task on capturing
discriminative attributes held at SemEval 2018.
Given two words and an attribute, the goal of this
task is to decide, whether the attribute is discrim-
inative between them. For example, we can dis-
tinguish between the words car and boat by a dis-
criminative feature (attribute) wheels. On the other
hand, both tennis and basketball use a ball, so that
the ball is not discriminative between them. By
its nature, capturing discriminative attributes is a
binary classification task. In general, there is no
assumption on the input words and their attributes
(e.g., part of speech, etc.).

While most related works focus on extracting
discriminative features from images (Guo et al.,
2015; Huang et al., 2016; Lazaridou et al., 2016),
this shared task is oriented purely on textual level.
The first experiments have been performed by
Krebs and Paperno (2016) and have shown the
promising potential of this task.

The fundamental assumption of our work is
Distributional Hypothesis, i.e., two words are ex-
pected to be semantically similar if they occur
in similar contexts (they are similarly distributed
across the text). This hypothesis was formulated
by Harris (1954) several decades ago. Today it is
the basis of state-of-the-art distributional semantic
models (Mikolov et al., 2013; Pennington et al.,
2014; Bojanowski et al., 2017). We present several
approaches, which rely on Distributional Hypoth-
esis and employ the word contexts for statistical
comparison of their meanings.

2 Proposed Approach
Given two words w1 ∈ V , w2 ∈ V and the at-
tribute a ∈ V , where V is a word vocabulary. The
task is to predict, whether the attribute a is dis-
criminative between the words w1 and w2, which
leads to a binary classification task.

We propose several metrics, which estimate the
degree to which the attribute a is important for the
word w. We denote this importance as ϕ(w, a) ∈
R. Clearly, if the attribute is important for one
word and not for the other, it is likely to be dis-
criminative. In general, we do not place any as-
sumption on the importance metric ϕ(w, a). We
transform this score onto the binary vector bw,a

containing exactly one non-zero element (one-hot
vector). Let T : R 7→ {0, 1}b be the transfor-
mation function so that bw,a = T

(
ϕ(w, a)

)
. In

our case, we split the scores ϕ(w, a) for all pairs
(w, a) from training data into b bins according to
100
b % quantiles. The bin, where the importance

score belongs to, represents the value 1 in the vec-
tor bw,a.

Having the one-hot vectors bw1,a and bw2,a for
the pair of words w1 and w2, we represent the dis-
criminativeness of the attribute a as a conjunction
matrix Cw1,w2,a = bw1,ab

>
w2,a (note bw1,a is a

column vector). The matrix Cw1,w2,a ∈ {0, 1}b×b

935

has exactly one non-zero element at the coordi-
nates given by the bins, onto which the scores
ϕ(w1, a) and ϕ(w2, a) are mapped. Values in the
matrix are used as binary features for the classifier.
The main motivation behind this binarization is to
allow combining different importance metrics on
different scale.

In the following subsections, we introduce sev-
eral approaches to estimate the importance score
ϕ(w, a).

2.1 Semantic Spaces
Let S : V 7→ Rn be a semantic space, i.e., a func-
tion which projects word w into Euclidean space
with dimension n. The meaning of the word w is
represented as a real-valued vector S(w).

We assume, the more similar is the attribute a
to the word w in meaning, the more likely a rep-
resents some feature of w. We estimate this sim-
ilarity as a cosine of the angle between the corre-
sponding vectors

ϕ(w, a)[SS] = cos
(
S(w),S(a)

)
. (1)

2.2 Word Co-occurrences
We follow the intuition behind the Global Vectors
(GloVe) model (Pennington et al., 2014), i.e., that
the co-occurrence probabilities have the ability to
encode the meaning of words.

We are given the corpus c = {ci}ki=1, i.e., a
sequence of words ci ∈ V , where subscript i de-
notes the position in the corpus. Let N(w, a) de-
note the weighted frequency of the word w in the
context of the word a

N(w, a) =
∑

ci=w,cj=a,1≤|i−j|≤d
λ(|i− j|), (2)

where λ is a weighting function. We experiment
with two types of weighting: a) uniform weight-
ing, where λ(m) = 1 independently of the dis-
tance between words and b) hyperbolic weight-
ing, where λ(m) = 1

m . For uniform weighting
the equation expresses the number of times the
word w occurs in the context of word a. Hyper-
bolic weighting incorporates the assumption that
closer words are more important for each other
(the weight decreases with increasing distance).

Let N(w) =
∑

a∈V N(w, a) be the number of
times any word occurs in the context of w. We
estimate the conditional probability of an attribute
a given the word w and use it as an importance
metric

ϕ(w, a)[WC−a|w] = P (a|w) = N(w, a)

N(w)
. (3)

The core idea is that if a often occurs in the context
of w1 and not in the context of w2, then a is likely
to be discriminative attribute between w1 and w2.
The similar idea can also be expressed in an op-
posite way, i.e., to use probability of the word w
given the attribute a

ϕ(w, a)[WC−w|a] = P (w|a) = N(w, a)

N(a)
. (4)

2.3 ConceptNet
ConceptNet (Speer and Havasi, 2012) is a large se-
mantic graph, which connects words and phrases
with labeled edges. It is based on knowledge col-
lected from many sources, including Wiktionary,
WordNet, DBPedia, etc. When ConceptNet is
combined with state-of-the-art semantic spaces
(e.g., GloVe (Pennington et al., 2014) or Skip-
Gram (Mikolov et al., 2013)) it provides excep-
tional performance in intrinsic tasks (Speer and
Lowry-Duda, 2017).

In this paper, we use ConceptNet API, which
enables to measure the relatedness between
words1. It is built using an ensemble that com-
bines data from ConceptNet, SkipGram, GloVe,
and OpenSubtitles 2016, using a variation on
retrofitting (Speer et al., 2016). We use the related-
ness weight as an importance metric ϕ(w, a)[CN].

3 Experiments
In all our experiments we employ Maximum En-
tropy classifier (Berger et al., 1996) implemented
in the Brainy machine learning library (Konkol,
2014). For every importance metric we use map-
ping onto b = 5 bins. This leads to 5 × 5 = 25
binary features describing the discriminativeness
of an attribute for single importance metric.

We train the classifier on the validation dataset2

proposed by the organizers of this task, contain-
ing 2722 manually annotated examples (1364 pos-
itive and 1358 negative) with total 576 distinct at-
tributes. We do not use automatically generated
data train.txt. For the selection of optimal feature

1An example of the relatedness between the words bird
and bat: http://api.conceptnet.io/related/
c/en/bird?filter=/c/en/bat.

2Available at https://github.com/dpaperno/
DiscriminAtt.

936

set we perform 10-fold cross-validation. The offi-
cial test data consists of 2340 examples (1047 pos-
itive and 1293 negative). F1 score is the official
evaluation measure of this task. Note the majority
class system achieves F1 score 50.1% and 55.3%
on the validation and test data sets, respectively.

3.1 Settings

We estimate word co-occurrence probabilities
(Section 2.2) using the English Wikipedia corpus.
We experiment with several semantic spaces:

SkipGram is a neural-network based model
(Mikolov et al., 2013). Levy and Goldberg (2014)
provide pre-trained SkipGram models on English
Wikipedia with two sizes of the context window
(2 and 5) and their own model with dependency-
based context.

GloVe is a log-bilinear model for word represen-
tations, which encodes global word co-occurences
(Pennington et al., 2014). We use vectors provided
by authors of the model, pre-trained on various
corpus sizes (6, 42, and 840 billion words)3.

FastText (Bojanowski et al., 2017) is a
character-n-gram-based SkipGram model. We use
word vectors pre-trained on English Wikipedia4.

LexVec is based on factorization of posi-
tive point-wise mutual information matrix using
proven strategies from GloVe, SkipGram, and
methods based on singular value decomposition
(Salle et al., 2016). We use pre-trained word vec-
tors provided by the authors of the model5.

Latent Semantic Analysis (LSA) (Landauer
et al., 1998) first creates a word-document co-
occurrence matrix and then reduces its dimension
by singular value decomposition. We trained the
model on English Wikipedia.

Latent Dirichlet Allocation (LDA) (Blei et al.,
2003) represents the text as a topic distribution.
In our case, each value in the word vector corre-
sponds to the probability of this word conditioned
by the particular topic.

3.2 Results

In Table 1 we show F1 scores for individual im-
portance metrics including all three approaches,

3Available at https://nlp.stanford.edu/
projects/glove.

4Available at https://fasttext.cc.
5Available at https://github.com/

alexandres/lexvec.

Figure 1: Results of word co-occurrence metric
with different weighting and different window size
d.

namely, semantic spaces (Section 2.1), word co-
occurrences (Section 2.2), and ConceptNet (Sec-
tion 2.3). The last two columns in the table con-
tain F1 scores for 10-fold cross-validation on the
validation dataset and F1 scores on the official test
data. All three approaches provide comparable F1
scores on both datasets.

Detailed experiments with different context
window sizes 1 ≤ d ≤ 10 for estimating co-
occurrence probabilities are shown in Figure 1.
We show F1 scores achieved by 10-fold cross-
validation on the validation dataset. The hyper-
bolic weighting performs better than uniform for
both cases w|a and a|w independently on the size
of the context window. Bigger context window
seems to be more suitable for capturing discrim-
inativeness. We can see that both metrics enrich
each other and their combination leads to signifi-
cantly better results than using standalone metrics.
Based on this graph, we chose context window
size d = 9 and use it in all further experiments.

Based on the cross-validation F1 scores, we
combine different importance metrics to boost the
performance (see Table 2). LexVec proved to per-
form best among semantic spaces. We found out
that LDA enrich LexVec and improve the perfor-
mance by approximately 1%. We believe this is
because of the different context type (we used
Wikipedia articles as documents for LDA). Signif-
icant improvements are achieved when we com-
bine co-occurrence probabilities with semantics
spaces or with ConceptNet (both cases give ap-
proximately 70% F1 score on both validation and
test data). Combining all three approaches to-

937

Imp. metrics Training data Settings Cross- Testvalidation
se

m
an

tic
sp

ac
es

SS-GloVe 6B, Wikipedia + Gigaword 5 n = 300 62.0% 62.5%
SS-GloVe 42B, Common Crawl n = 300 62.6% 62.7%
SS-GloVe 840B, Common Crawl n = 300 62.1% 62.6%
SS-fastText 1-5B, Wikipedia n = 300 60.4% 63.3%
SS-LSA 1-5B, Wikipedia n = 300 55.7% 58.3%
SS-LDA 1-5B, Wikipedia n = 200 60.5% 63.1%
SS-LexVec 58B, Common Crawl n = 300 64.1% 64.9%
SS-LexVec 7B, Wikipedia + News Crawl n = 300 59.3% 64.3%
SS-SkipGram 1-5B, Wikipedia n = 300, BoW 2 59.0% 60.6%
SS-SkipGram 1-5B, Wikipedia n = 300, BoW 5 58.0% 62.0%
SS-SkipGram 1-5B, Wikipedia n = 300, Dependencies 54.9% 56.0%

w
or

d
co

-o
c. WC-a|w 1-5B, Wikipedia hyperbolic weighting, d = 9 63.8% 60.7%

WC-w|a 1-5B, Wikipedia hyperbolic weighting, d = 9 65.5% 65.5%
WC-a|w 1-5B, Wikipedia uniform weighting, d = 9 63.4% 59.9%
WC-w|a 1-5B, Wikipedia uniform weighting, d = 9 65.2% 66.8%
CN 65.1% 66.8%

Table 1: Results for individual importance metrics based on semantic spaces, word co-occurrences, and
ConceptNet.

Importance metric combinations Settings Cross- Testvalidation
SS-LexVec + SS-LDA 65.6% 66.0%
WC-a|w + WC-w|a hyperbolic weighting 69.6% 68.2%
WC-a|w + WC-w|a uniform weighting 68.6% 67.1%
WC-a|w + WC-w|a + CN hyperbolic weighting 70.4% 70.0%
WC-a|w + WC-w|a + SS-LexVec + SS-LDA hyperbolic weighting 70.6% 69.8%
WC-a|w + WC-w|a + CN + SS-LexVec + SS-LDA hyperbolic weighting 72.0% 71.3%
WC-a|w + WC-w|a + CN + SS-LexVec + SS-LDA hyperbolic weighting, conjunction 73.9% 72.1%
Winner of SemEval 2018 75%

Table 2: Combinations of proposed importance metrics.

gether yields additional improvements (72.0% and
71.3% on validation and test data, respectively).

Our final UWB system combines all three ap-
proaches with one extra trick. We create additional
binary features represented as a product of each
pair of features (xa × xb for a 6= b) and add them
into the classifier. We do this to better model the
dependencies between single features. In the ta-
ble, we denote this trick as a conjunction. Despite
the fact that this setting leads to increasing sparse-
ness of the feature set, it boosts F1 score on vali-
dation data by 1.9% and on test data by 0.8%.

4 Conclusion
In this paper we described our UWB system
participating in SemEval 2018 shared task for
capturing discriminative attributes. We explored

three approaches based on word distribution in
the corpus, including various semantic spaces, co-
occurrence probabilities, and ConceptNet. Our
best results have been achieved by Maximum En-
tropy classifier combining all three approaches
with careful feature engineering. Our system is
ranked #4 among 26 participating systems.

Acknowledgments.

This publication was supported by the project
LO1506 of the Czech Ministry of Education,
Youth and Sports under the program NPU I, by
university specific research project SGS-2016-018
Data and Software Engineering for Advanced Ap-
plications, and by the project MediaGist, EUs
FP7 People Programme (Marie Curie Actions),
no. 630786.

938

References
Adam L. Berger, Vincent J. D. Pietra, and Stephen

A. D. Pietra. 1996. A maximum entropy approach
to natural language processing. Computational Lin-
guistics, 22:39–71.

David M. Blei, Andrew Y. Ng, and Michael I. Jordan.
2003. Latent dirichlet allocation. Journal of Ma-
chine Learning Research, 3:993–1022.

Piotr Bojanowski, Edouard Grave, Armand Joulin, and
Tomáš Mikolov. 2017. Enriching word vectors with
subword information. Transactions of the Associa-
tion for Computational Linguistics, 5:135–146.

Yuchen Guo, Guiguang Ding, Xiaoming Jin, and Jian-
min Wang. 2015. Learning predictable and discrim-
inative attributes for visual recognition. In Pro-
ceedings of the Twenty-Ninth AAAI Conference on
Artificial Intelligence, AAAI’15, pages 3783–3789.
AAAI Press.

Zellig Harris. 1954. Distributional structure. Word,
10(23):146–162.

Chen Huang, Chen C. Loy, and Xiaoou Tang. 2016.
Unsupervised learning of discriminative attributes
and visual representations. In 2016 IEEE Confer-
ence on Computer Vision and Pattern Recognition
(CVPR), pages 5175–5184.

Michal Konkol. 2014. Brainy: A machine learn-
ing library. In Leszek Rutkowski, Marcin Ko-
rytkowski, Rafa Scherer, Ryszard Tadeusiewicz,
Lotfi A. Zadeh, and Jacek M. Zurada, editors, Artifi-
cial Intelligence and Soft Computing, volume 8468
of Lecture Notes in Computer Science. Springer
Berlin Heidelberg.

Alicia Krebs and Denis Paperno. 2016. Capturing dis-
criminative attributes in a distributional space: Task
proposal. In Proceedings of the 1st Workshop on
Evaluating Vector-Space Representations for NLP.
Association for Computational Linguistics.

Thomas K. Landauer, Peter W. Foltz, and Darrell La-
ham. 1998. An introduction to latent semantic anal-
ysis. Discourse processes, 25(2-3):259–284.

Angeliki Lazaridou, Nghia The Pham, and Marco Ba-
roni. 2016. The red one!: On learning to refer to
things based on discriminative properties. In Pro-
ceedings of the 54th Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 2: Short
Papers), pages 213–218, Berlin, Germany. Associa-
tion for Computational Linguistics.

Omer Levy and Yoav Goldberg. 2014. Dependency-
based word embeddings. In Proceedings of the
52nd Annual Meeting of the Association for Com-
putational Linguistics (Volume 2: Short Papers),
pages 302–308, Baltimore, Maryland. Association
for Computational Linguistics.

Tomáš Mikolov, Kai Chen, Greg Corrado, and Jeffrey
Dean. 2013. Efficient estimation of word represen-
tations in vector space. CoRR, abs/1301.3781.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. Glove: Global vectors for word
representation. In Proceedings of the 2014 Con-
ference on Empirical Methods in Natural Language
Processing (EMNLP), pages 1532–1543, Doha,
Qatar. Association for Computational Linguistics.

Alexandre Salle, Aline Villavicencio, and Marco Idiart.
2016. Matrix factorization using window sampling
and negative sampling for improved word represen-
tations. In Proceedings of the 54th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 2: Short Papers), pages 419–424, Berlin,
Germany. Association for Computational Linguis-
tics.

Robert Speer, Joshua Chin, and Catherine Havasi.
2016. Conceptnet 5.5: An open multilingual graph
of general knowledge. CoRR, abs/1612.03975.

Robert Speer and Catherine Havasi. 2012. Represent-
ing general relational knowledge in conceptnet 5. In
Proceedings of the Eight International Conference
on Language Resources and Evaluation (LREC’12),
Istanbul, Turkey. European Language Resources As-
sociation (ELRA).

Robert Speer and Joanna Lowry-Duda. 2017. Con-
ceptnet at semeval-2017 task 2: Extending word em-
beddings with multilingual relational knowledge. In
Proceedings of the 11th International Workshop on
Semantic Evaluation (SemEval-2017), pages 85–89,
Vancouver, Canada. Association for Computational
Linguistics.

939

Proceedings of the 12th International Workshop on Semantic Evaluation (SemEval-2018), pages 940–946
New Orleans, Louisiana, June 5–6, 2018. ©2018 Association for Computational Linguistics

Meaning space at SemEval-2018 Task 10: Combining explicitly encoded
knowledge with information extracted from word embeddings

Pia Sommerauer Antske Fokkens Piek Vossen
Computational Lexicology & Terminology Lab (CLTL)

Vrije Universiteit Amsterdam, the Netherlands
{pia.sommerauer,antske.fokkens,piek.vossen}@vu.nl

Abstract

This paper presents the two systems submitted
by the meaning space team in Task 10 of the
SemEval competition 2018 entitled Capturing
discriminative attributes. The systems consist
of combinations of approaches exploiting ex-
plicitly encoded knowledge about concepts in
WordNet and information encoded in distri-
butional semantic vectors. Rather than aim-
ing for high performance, we explore which
kind of semantic knowledge is best captured
by different methods. The results indicate that
WordNet glosses on different levels of the hier-
archy capture many attributes relevant for this
task. In combination with exploiting word em-
bedding similarities, this source of information
yielded our best results. Our best performing
system ranked 5th out of 13 final ranks. Our
analysis yields insights into the different kinds
of attributes represented by different sources
of knowledge.

1 Introduction

SemEval Task 10 “Capturing Discriminative At-
tributes” (Krebs et al., 2018) provides participants
with triples of words consisting of two concepts
and an attribute. The task is to determine whether
the attribute is a distinguishing property of the first
concept compared to the second concept. This
is the case in triple shrimp, spinach, pink, for
instance, because shrimp can be pink whereas
spinach is usually of a different color. When the
first concept does not have a semantic relation with
the attribute or both the concepts have the same se-
mantic relation with it, the attribute is considered
not to be discriminative.

In general, Task 10 can be understood as de-
tecting whether there is a semantic relation be-
tween the concepts and the attribute. The dataset
includes a wide range of variation. For instance,
the attribute may be a part of the concept (e.g.

tortoise, snail, legs) or category membership (e.g.
polyurethane, polyester, material), relations be-
tween entities and activities they engage in (e.g.
cheetah, lion, runs) as well as rather specific rela-
tions, for instance the relation between a specialist
and the phenomenon they are specialized in (e.g.
optician, dentist, eyes).

Rather than finding specific solutions for each
kind of relation, we investigate different ap-
proaches exploiting different sources of knowl-
edge. Both of our systems comprise a component
exploiting the glosses and hierarchical structure of
WordNet (Fellbaum, 1998) in order to determine
whether an attribute applies to a concept. Our un-
derlying assumption is that definitions should pro-
vide the most important distinctive attributes of a
concept. Since concepts are not necessarily al-
ways distinguished on the same level of concrete-
ness, but might also be distinguished on a more ab-
stract level (e.g. herbs, root, green v.s. apse, night-
gown, royal) we exploit the entire WordNet hier-
archy.

In both of our systems, the second component
exploits information encoded in distributional vec-
tor representations of words. Word vectors have
not only been shown to capture information about
semantic similarity and relatedness but, beyond
that, seem to encode information about individ-
ual components of word meaning that are neces-
sary to solve analogy tasks such as in the famous
example man is to woman as king is to queen
(Mikolov et al., 2013b). This indicates that the
dimensions of the distributional vector representa-
tions encode information about specific attributes
of words. We experiment with two approaches: a
basic approach comparing cosine similarities and
an exploratory approach that deducts word vectors
from one another to detect meaning differences.
Best performance was obtained by the system us-
ing cosine similarity. The second approach per-

940

forms lower in isolation, but performance is com-
parable to the first system in combination with the
WordNet component.

The main insights gained from our experiments
are the following. First, despite the limited cover-
age of information on attributes in WordNet (as
pointed out by Poesio and Almuhareb (2005)),
the contribution of the WordNet component to the
overall results indicates that definitions yield a
valuable source of knowledge with respect to dis-
criminative attributes. Second, we analyze how in-
dividual systems perform across different types of
attributes. Our analysis shows that similarity per-
forms best on general descriptive properties and
WordNet definitions help most for finding specific
properties. These observations indicate that more
sophisticated methods of combining these compo-
nents could lead to superior results in future work.

The remainder of this paper is structured as
follows: After presenting background and re-
lated work (Section 2), our system designs are
introduced in Section 3. Section 4 provides an
overview of the results achieved by different sys-
tems and system components, including our anal-
ysis across attribution types. This is followed by a
conclusion (Section 5).

2 Background and related work

Solving the task at hand requires both knowledge
about lexical relations and the world. We assume
that this knowledge cannot be found in one re-
source alone. Rather, different approaches of rep-
resenting word meaning may comprise comple-
mentary information. In this exploratory work, we
exploit explicitly encoded knowledge in a lexical
resource and information encoded in the distribu-
tion of words in large corpora. While attributes of
concepts have been studied before from a cogni-
tive (e.g. McRae et al. (2005)) and computational
(e.g. Poesio and Almuhareb (2005)) perspective,
this task is, to our knowledge, the first task aiming
at detecting discriminative features.

We use WordNet (Fellbaum, 1998) as a source
of explicitly represented knowledge. Whereas the
WordNet structure contains a vast amount of in-
formation about lexical relations (hyponymy, syn-
onymy, meronymy), its definitions constitute a
resource of world knowledge. WordNet defini-
tions have been used successfully in approaches to
word sense disambiguation (Lesk, 1986) and in-
ferring verb frames (Green et al., 2004). The only

study requiring knowledge and reasoning about at-
tributes we are aware of is an exploratory study ex-
amining what knowledge in definitions contributes
to question-answering tasks (Clark et al., 2008).

Vector representations of word meaning based
on the distribution of words in large corpora do
not yield explicit information about specific re-
lations, but implicitly encode all kinds of asso-
ciations between concepts. In contrast to manu-
ally constructed resources, their coverage is much
larger. More specifically, they have been shown
to encode information relevant in solving analogy
tasks (Mikolov et al., 2013a; Levy and Goldberg,
2014b; Gladkova et al., 2016; Gábor et al., 2017;
Linzen, 2016) and inferring semantic hierarchies
(Fu et al., 2014; Pocostales, 2016). This indicates
that the dimensions of distributional representa-
tions encode information about attributes of con-
cepts (Levy and Goldberg, 2014b, p.177). For in-
stance, in order to find the fourth component in
the analogy man is to woman as king is to queen,
a model has to detect the relation holding between
the pairs in the analogy. In this example, the rela-
tions are formed by the two features of royalty and
gender. One way of solving this is to use the vector
offsets resulting from woman - man + king. The
result should be closest to the fourth component
(queen). Thus, the first component for this calcu-
lation, B - A, should capture information about the
distinguishing features between A and B, as the
subtraction eliminates the identical (or very simi-
lar) dimensions in both representations, but keeps
the features associated with B.

Our first system follows the basic assumption
that if there is some kind of association between
a concept and an attribute, this should be reflected
by the vector representations. We assume that at-
tributes occur in the linguistic contexts of the con-
cepts they apply to and thus appear in proximity
to them. In a comparative set-up such as in this
task, the attribute should be closer to the concept
it applies to. In our second system, we attempt to
exploit the operations used for solving analogies
in order to determine whether an attribute distin-
guishes two concepts.

3 System description

Each of our systems1 consists of a WordNet com-
ponent and a component exploiting word embed-

1Code can be found at https://github.com/
cltl/meaning_space

941

ding vectors. If the WordNet component is un-
able to classify an example, it is passed on to
the word embedding component. After present-
ing the WordNet component, we describe the two
embedding-based systems. The word vectors used
in all approaches are taken from the Word2Vec
Google News model (Mikolov et al., 2013a).2 The
systems are developed using training and valida-
tion data and evaluated using test data.3

3.1 WordNet glosses and hierarchical
structure

We design rules to exploit explicitly encoded
knowledge in synset glosses and the hierarchical
structure. We assume that (1) the most important
discriminative attributes are mentioned in defini-
tions and (2) concepts can be distinguished on dif-
ferent levels of abstraction. Essentially, we check
whether the attribute is in any of the definitions of
the concepts. We employ two variants of the sys-
tem. The first variant simply relies on string match
(definition string match), whereas the second one
employs cosine similarity between the attribute
and the words in the glosses (definition similar-
ity). For both variants, we retrieve the glosses of
all WordNet synsets containing the concepts and
the glosses of all their hypernyms. We prepro-
cess the definitions by tokenizing them and ex-
cluding stopwords using NLTK (Bird et al., 2009).
In the two best-performing full systems, we used
the definition-similarity variant.

3.1.1 Definition string match
This variant employs one rule to detect positive
cases and two rules to detect negative cases:

POS The attribute matches a word in the glosses
of concept 1 and no word in the glosses of
concept 2.

NEG The attribute matches a word in the glosses
of both concepts.

NEG The attribute matches a word in the glosses
of concept 2 and no word in the glosses of
concept 1.

We could also count all cases in which the at-
tribute matches no word as negative cases, but

2Downloaded from https://drive.google.com/
file/d/0B7XkCwpI5KDYNlNUTTlSS21pQmM/edit,
Nov. 1, 2017.

3https://github.com/dpaperno/
DiscriminAtt/

since only a selection of attributes is mentioned
in the glosses, this would yield a high number of
false negative decisions. Instead, we fall back on
one of two distributional approaches in case none
of the above-mentioned cases applies. If run in
isolation, we label all instances for which none of
the conditions apply as negative.

3.1.2 Definition similarity
In the second variant, we replace words by their
vectors and measure the cosine similarity between
the attribute and the words in the glosses in order
to determine positive and negative cases. As a first
step, we search for the word in the glosses with
the highest cosine similarity to the attribute. Next,
we employ an upper and a lower threshold in or-
der to determine whether the attribute is similar or
dissimilar enough to the word in the glosses. We
assume this strategy allows us to extend the scope
from exact pattern match to highly similar words,
such as synonyms or hypernyms. The transformed
rules are shown below:

POS The similarity between concept 1 and the at-
tribute is above the upper threshold and the
similarity between concept 2 and the attribute
is below the lower threshold.

NEG The similarity between concept 2 and the
attribute is above the upper threshold and the
similarity between concept 1 and the attribute
is below the lower threshold.

NEG The similarity between concept 1 and the
attribute and the similarity between concept 2
and the attribute are above the upper thresh-
old.

NEG The similarity between concept 1 and the
attribute and the similarity between concept 2
and the attribute are below the lower thresh-
old.

Here, we do include a condition for cases in
which both similarities are below the threshold,
as we assume a wider coverage due to the vec-
tor representations. The best performing similar-
ity thresholds (0.75 for upper and 0.23 for lower
threshold) were determined by testing several con-
figurations on the validation data.

In addition to glosses, several other kinds of se-
mantic relations encoded in the WordNet hierar-
chy can be expected to increase the performance

942

on this task. We experimented with meronymy re-
lations, synonymy as well as the hypernyms them-
selves. Whereas these additions increased the per-
formance in a set-up consisting of only the Word-
Net component, they harmed the performance in
our overall system set-ups where we also use word
embeddings.

3.2 Word embeddings

As a second component, we employ two different
ways of extracting semantic knowledge from word
embeddings.

3.2.1 Vector similarity
This component compares the similarities between
the attribute and the concept and counts all cases
in which the similarity between concept 1 and the
attribute is higher than the similarity between con-
cept 2 and the attribute as positive cases. All other
cases are counted as negative. Setting even low
thresholds harmed performance.

3.2.2 Vector subtraction
We subtract the vector of concept 2 from the vec-
tor of concept 1 and assume that the resulting
vector representation is close to the kind of at-
tribute that distinguishes the concepts. If this vec-
tor is close to the attribute, we assume it is dis-
criminative. The subtraction should eliminate the
shared aspects leaving information about the dif-
ferences. The vector resulting from for instance
man - woman cannot be seen as a representation
of the specific word male, but rather reflects some-
thing like for instance ‘maleness’.

Rather than setting a definitive similarity thresh-
old, we employ a supervised classification ap-
proach in which we use the similarity between
the calculated vector and the attribute vector as a
sole feature. For reasons of time constraints, we
only experimented with a Multi-Layer Perceptron,
implemented in the SciKit learn toolkit (Buitinck
et al., 2013).4

4 Results

Table 1 provides an overview of our different im-
plementations on the test set. The highest perfor-
mance was reached by the combination of Word-
Net gloss information and embedding similar-
ity. In the overall SemEval ranking, performance

4http://scikit-learn.org/stable/index.
html, best configuration on the validation set: layer size:
(1,1) activation function: logistic.

Figure 1: System overview.

concept1

concept2

attribute

Definition

check 1:

Attribute is sim-

ilar to word in

def1 and not def2

Definition

check 2:

Attribute is sim-

ilar to word in

def1 and def2

Definition

check 3:

Attribute is sim-

ilar to word in

def2 and not def1

Definition

check 4:

Attribute is not

similar to word in

def1 nor def2

positive

negative negative negative

Embedding

similarity:

sim(concept1,

attribute)

>
sim(concept2,
attribute)

Vector subtrac-

tion classification:

sim

(concept1-concept2),
attribute)

positive

positivenegative

negative

no

yes

no

yes

no

yes yes

no

no

yes no

yes

System P-pos P-neg R-pos R-neg F1-av
def-emb-sim 0.63 0.75 0.73 0.65 0.69
def-emb-sub 0.69 0.68 0.52 0.82 0.67
sim 0.58 0.73 0.75 0.56 0.64
def-sim 0.65 0.59 0.22 0.90 0.52
def 0.65 0.59 0.22 0.90 0.52
sub 0.45 0.55 0.19 0.82 0.46

Table 1: Performance overview of systems and sys-
tem components on the test set.

ranges from 0.47 to 0.75. Our similarity-centered
systems rank in the upper mid range (performing
between 0.69 and 0.64), with the best run achiev-
ing 5th rank among 13 ranks (and 21 submitted
system).

The combination of WordNet gloss informa-
tion and information from subtracting word vec-
tors performs 2 points lower than our best per-
forming system. When comparing the two word
embedding approaches in isolation, we see that
the system based on subtraction performs almost
18 points lower than the system using embed-
ding similarity. This indicates that the over-
lap of correct answers between the Wordnet sys-
tem and the subtraction system is lower than be-
tween the WordNet system and the embedding
similarity system. The following sections pro-
vide insights into the level at which properties are
found in WordNet definitions and the kinds of at-
tributes successfully recognized by the different
approaches.

System P-pos P-neg R-pos R-neg F1-av
def-emb-sim 0.66 0.69 0.71 0.63 0.67
def-emb-sub 0.74 0.62 0.51 0.82 0.65
sim 0.60 0.64 0.72 0.51 0.61
sub 0.70 0.58 0.39 0.83 0.59
def-sim 0.70 0.54 0.24 0.90 0.52
def 0.70 0.54 0.24 0.90 0.52

Table 2: Performance of the systems and system
components on the validation set.

943

Figure 2: Comparison of f1-scores reached by the
three main system components on the 10 most fre-
quent attribute categories.

4.1 Level of distinction in the WordNet
hierarchy

We hypothesized that concepts might not always
be distinguished on the same level of concrete-
ness, but could also be distinguished on a more
abstract level. In order to test this, we counted how
many properties are found in glosses of synsets
containing the concept and how many are found in
glosses of their hypernyms. Out of the total 1,098
attributes found in WordNet glosses, 699 are found
on the same level as the concept (i.e. in the defini-
tions of one of the synsets containing the concept)
and 366 are found in gloss of one of the hyper-
nyms of the synsets containing the concept.5 In
total, the definition system is able to classify 799
(out of 2,340) concept-concept-attribute triples.

4.2 Comparison of systems across attribute
categories.

In this section, we aim at giving some insights into
the kinds of attributes systems can detect and iden-
tify as discriminative. The attributes in the vali-
dation set were categorized by one annotator. The
categories are not based on an existing framework,
but were chosen intuitively. In most cases, multi-
ple labels are used as the attributes are ambiguous.
As there is no overlap between attributes from the
validation set and the test set, we present the per-
formance of the systems across the different at-
tribute categories on the validation set. The over-

5Note that attributes can be found in glosses of both con-
cepts, meaning that these counts do not add up to the number
of triples in the test set.

(a) Embedding systems compared.

(b) WordNet definition match system compared to embed-
ding similarity system.

Figure 3: Comparison f1-scores reached by the
system components showing the categories with
the highest performance differences (frequency
>10).

all performance on the validation set (presented in
Table 2) is similar to the test set with the excep-
tion that on the validation set, the system based on
vector subtraction performed several points higher
than on the test set (0.59) and ranked higher than
the WordNet definition systems.

Figure 2 shows the performance of the three in-
dividual systems across the 10 most frequent cat-
egories. Overall, the vector similarity system out-
performs the other system in almost all categories.
Of these 10 most frequent categories, there is no
category in which the subtraction system outper-
forms the similarity system.

One of the most striking differences between
the embedding-based systems and the WordNet
definition system can be seen in the ‘activity’ cat-
egory, in which both embedding systems perform
almost seven times higher than the WordNet sys-
tem. This could be explained by the fact that ac-
tivities associated with concepts can be expected
to occur in large corpora, whereas they might not

944

be specific or relevant enough to be mentioned in
a definition. In contrast, WordNet outperforms
both embedding systems in the categories ‘object-
part’ and ‘animate-object-gender-person’ (usually
referring to a person of a specific gender), which
could be expected to consist of more specific at-
tributes.

We expected rather generic descriptions that are
not specific to a concept, but mostly relevant in
comparison to the other concept to be the most
difficult for any system. These kinds of attributes
are not relevant enough to be included in defini-
tions nor do we expect them to frequently co-occur
with concepts in texts and thus be apparent from
a distributional model. It turned out, however,
that these kinds of attributes (‘appearance-color’,
‘magnitude-size’) were accurately detected as dis-
criminative by the embedding similarity system.
A possible explanation might be that they can co-
occur with a wide number of concepts, leading to
proximity in the vector space.

When considering the categories with the
biggest performance differences and a frequency
of at least 10 (presented in Figure 3) the follow-
ing observations can be made: Whereas the em-
bedding similarity system outperforms the sub-
traction system in most categories, the subtraction
system captures about twice as many attributes
that indicate a category (usually meaning that the
attribute is a hypernym of one of the concepts)
and performs higher on ‘building-location-object-
organization’ attributes (Figure 3a). It could be the
case that despite their polysemy, these attributes
apply to a more limited range of concepts than
general descriptions on which the system performs
poorly. The subtraction system also correctly de-
tects attributes that are ambiguous between ‘ac-
tivity’, ‘object’ and ‘part’ (e.g. attributes such as
sail and bark) category, which is not detected by
the similarity system. Finally, we observe that
a number of attribute categories that are handled
correctly by the embedding-based systems are not
captured by WordNet definitions at all (Figure 3b).

Overall, the differences between the approaches
seem to indicate that distributional models are
stronger in capturing attributes expressing related
concepts than attributes expressing similar con-
cepts (e.g. hypernyms). This is in line with the
general trend observed in large-scale evaluations
(Levy et al., 2015; Baroni et al., 2014) of embed-
ding models using a bag-of-words approach (such

as the Google News model). Gamallo (2017) and
Levy and Goldberg (2014a) show that embedding
models using dependency structures perform bet-
ter on similarity than relatedness and could thus
improve the results for the attributes that are simi-
lar rather than related to the concepts.

5 Conclusion

For this SemEval task, we submitted systems con-
sisting of combinations of exploratory approaches.
Our best performing systems consisted of a com-
ponent exploiting knowledge in WordNet defini-
tions and a component extracting knowledge from
distributional representations. In our best perform-
ing system, the latter component consisted of com-
paring cosine similarities between concepts and
attributes. The vector component in our second
full system employs a different strategy of extract-
ing information from vector representations than
our highest ranked system. Despite its limitations,
its performance is comparable to our best perform-
ing system.

As expected, WordNet definitions encode rather
specific attributes that are probably most informa-
tive for distinguishing one concept from another,
while they give less importance to rather general
descriptions. In contrast, embedding approaches
seem to perform highly on attributes that are re-
lated rather than similar to the concepts, also en-
compassing rather general descriptions.

The main contribution of this paper is an explo-
ration of the different types of attributes that can be
recognized by different systems. These strengths
and weaknesses of the methods could be further
exploited by using the information obtained by
vector similarity and subtraction as input of a clas-
sifier. We plan to investigate the representation of
attribute categories in the semantic space in future
work.

6 Acknowledgments

This research is funded by the PhD in the Human-
ities Grant provided by the Netherlands Organi-
zation of Scientific Research (Nederlandse Organ-
isatie voor Wetenschappelijk Onderzoek, NWO)
PGW.17.041 awarded to Pia Sommerauer and
NWO VENI grant 275-89-029 awarded to Antske
Fokkens.

945

References
Marco Baroni, Georgiana Dinu, and Germán

Kruszewski. 2014. Don’t count, predict! a
systematic comparison of context-counting vs.
context-predicting semantic vectors. In Proceedings
of the 52nd Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long
Papers), volume 1, pages 238–247.

Steven Bird, Ewan Klein, and Edward Loper. 2009.
Natural language processing with Python: analyz-
ing text with the natural language toolkit. ” O’Reilly
Media, Inc.”.

Lars Buitinck, Gilles Louppe, Mathieu Blondel, Fabian
Pedregosa, Andreas Mueller, Olivier Grisel, Vlad
Niculae, Peter Prettenhofer, Alexandre Gramfort,
Jaques Grobler, Robert Layton, Jake VanderPlas,
Arnaud Joly, Brian Holt, and Gaël Varoquaux. 2013.
API design for machine learning software: experi-
ences from the scikit-learn project. In ECML PKDD
Workshop: Languages for Data Mining and Ma-
chine Learning, pages 108–122.

Peter Clark, Christiane Fellbaum, and Jerry Hobbs.
2008. Using and extending wordnet to support
question-answering. In Proceedings of the 4th
Global WordNet Conference (GWC08). Citeseer.

Christiane Fellbaum. 1998. WordNet. Wiley Online
Library.

Ruiji Fu, Jiang Guo, Bing Qin, Wanxiang Che, Haifeng
Wang, and Ting Liu. 2014. Learning semantic hier-
archies via word embeddings. In Proceedings of the
52nd Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), vol-
ume 1, pages 1199–1209.

Kata Gábor, Haifa Zargayouna, Isabelle Tellier, Davide
Buscaldi, and Thierry Charnois. 2017. Exploring
vector spaces for semantic relations. In Proceed-
ings of the 2017 Conference on Empirical Methods
in Natural Language Processing, pages 1815–1824,
Copenhagen, Denmark. Association for Computa-
tional Linguistics.

Pablo Gamallo. 2017. Comparing explicit and predic-
tive distributional semantic models endowed with
syntactic contexts. Language Resources and Eval-
uation, 51(3):727–743.

Anna Gladkova, Aleksandr Drozd, and Satoshi Mat-
suoka. 2016. Analogy-based detection of morpho-
logical and semantic relations with word embed-
dings: what works and what doesn’t. In Proceedings
of the NAACL Student Research Workshop, pages 8–
15.

Rebecca Green, Bonnie J Dorr, and Philip Resnik.
2004. Inducing frame semantic verb classes from
wordnet and ldoce. In Proceedings of the 42nd An-
nual Meeting on Association for Computational Lin-
guistics, page 375. Association for Computational
Linguistics.

Alicia Krebs, Alessandro Lenci, and Denis Paperno.
2018. Semeval 2018 task 10: Capturing discrimi-
native attributes. In Proceedings of the 12th inter-
nations workshop on semantic evaluation (SemEval
2018).

Michael Lesk. 1986. Automatic sense disambiguation
using machine readable dictionaries: how to tell a
pine cone from an ice cream cone. In Proceedings of
the 5th annual international conference on Systems
documentation, pages 24–26. ACM.

Omer Levy, Yaov Goldberg, and Ido Dagan. 2015. Im-
proving distributional similarity with lessons learned
from word embeddings. In Transactions of the As-
sociation for Computational Linguistics.

Omer Levy and Yoav Goldberg. 2014a. Dependency-
based word embeddings. In Proceedings of the 52nd
Annual Meeting of the Association for Computa-
tional Linguistics (Volume 2: Short Papers), vol-
ume 2, pages 302–308.

Omer Levy and Yoav Goldberg. 2014b. Linguistic reg-
ularities in sparse and explicit word representations.
In Proceedings of the eighteenth conference on com-
putational natural language learning, pages 171–
180.

Tal Linzen. 2016. Issues in evaluating semantic spaces
using word analogies. In Proceedings of the 1st
Workshop on Evaluating Vector-Space Representa-
tions for NLP, pages 13–18.

Ken McRae, George S Cree, Mark S Seidenberg, and
Chris McNorgan. 2005. Semantic feature produc-
tion norms for a large set of living and nonliving
things. Behavior research methods, 37(4):547–559.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jef-
frey Dean. 2013a. Efficient estimation of word
representations in vector space. arXiv preprint
arXiv:1301.3781.

Tomas Mikolov, Wen-tau Yih, and Geoffrey Zweig.
2013b. Linguistic regularities in continuous space
word representations. In Proceedings of the 2013
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, pages 746–751.

Joel Pocostales. 2016. Nuig-unlp at semeval-2016
task 13: A simple word embedding-based approach
for taxonomy extraction. In Proceedings of the
10th International Workshop on Semantic Evalua-
tion (SemEval-2016), pages 1298–1302.

Massimo Poesio and Abdulrahman Almuhareb. 2005.
Identifying concept attributes using a classifier. In
Proceedings of the ACL-SIGLEX Workshop on Deep
Lexical Acquisition, pages 18–27. Association for
Computational Linguistics.

946

Proceedings of the 12th International Workshop on Semantic Evaluation (SemEval-2018), pages 947–952
New Orleans, Louisiana, June 5–6, 2018. ©2018 Association for Computational Linguistics

GHH at SemEval-2018 Task 10: Discovering Discriminative Attributes in
Distributional Semantics

Mohammed Attia
Google Inc.

New York City
NY, 10011

attia@google.com

Younes Samih
Dept. of Computational Linguistics

Heinrich Heine University,
Düsseldorf, Germany

samih@phil.hhu.de

Manaal Faruqui
Google Inc.

New York City
NY, 10011

mfaruqui@google.com

Wolfgang Maier
Independent Researcher

Tübingen, Germany
wolfgang.maier@gmail.com

Abstract

This paper describes our system submission
to the SemEval 2018 Task 10 on Capturing
Discriminative Attributes. Given two con-
cepts and an attribute, the task is to determine
whether the attribute is semantically related to
one concept and not the other. In this work
we assume that discriminative attributes can
be detected by discovering the association (or
lack of association) between a pair of words.
The hypothesis we test in this contribution is
whether the semantic difference between two
pairs of concepts can be treated in terms of
measuring the distance between words in a
vector space, or can simply be obtained as a
by-product of word co-occurrence counts.

1 Introduction

Equipped with their cognitive skills, encyclope-
dic knowledge and linguistic competence, humans
generally can identify the lexical association or se-
mantic relation between two words or concepts
with relative ease. However, building a com-
putational model for identifying fine-grained se-
mantic relations (such as synonymy, antonymy,
hyponymy, or hypernymy, meronymy, holonymy,
metonymy, containment or causality) or even de-
tecting binary relatedness has proven to be a chal-
lenging task.

Efforts to model semantic representation com-
putationally are generally classified into statistical
and knowledge-driven semantics. This classifica-
tion depends on whether the assumption is that hu-
man knowledge is encapsulated in language man-

ifestation or that explicit manual encoding of this
knowledge is needed. The statistical approach to
the encoding of semantic relations is referred to
as “distributional semantics” or “distributed word
representations” (Speer et al., 2017), and its the-
oretical appeal stems from the fact that it gives
practical application to the Firthian dictum “You
shall know a word by the company it keeps” (Firth,
1957) which has become commonsense wisdom
in lexical semantics. Features of the statistical
model are extracted from unstructured data, such
as words embeddings, n-gram counts, or directly
from raw data.

The basic idea with word embeddings is to
formulate semantic relations in arithmetic fash-
ion by creating a vector space in which words
with similar contextual embeddings have closer
vectors distance (Hinton et al., 1986; Rumelhart
et al., 1986; Elman, 1990; Bengio et al., 2003;
Kann and Schtze, 2008; Mikolov et al., 2013c).
The public availability of word embedding train-
ing programs such as word2vec (Mikolov et al.,
2013a) and GloVe (Pennington et al., 2014) al-
lowed researchers to create models with different
parameters and dimensionality sizes for different
purposes including capturing semantic relations
(Gladkova et al., 2016; Attia et al., 2016).

The Google n-gram corpus (Brants and Franz,
2006) is a collection of English word n-grams and
their observed counts generated from 1 trillion
words of texts from web pages. This corpus has
been used in many different applications including
estimating word-relatedness (Islam et al., 2012),

947

comparison of semantic similarity (Joubarne and
Inkpen, 2011), information retrieval (Tandon and
De Melo, 2010; Klein and Nelson, 2009), lexical
disambiguation (Bergsma et al., 2009), improving
general purpose NLP classifiers (Bergsma et al.,
2010), and improving parsing performance (Pitler
et al., 2010).

Knowledge-driven approaches to the detection
of semantic relations rely on manually constructed
lexical and encyclopedic resources, such as Con-
ceptNet (Speer et al., 2017), ImageNet (Rus-
sakovsky et al., 2015), WordNet (Miller and Fell-
baum, 1998), Wiktionary, Open Mind Common
Sense (Singh et al., 2002) and DBpedia (Mendes
et al., 2012).

In this work we follow a statistical based ap-
proach and show the strengths and weakness of the
distributional semantics of the word vectors and n-
gram frequency counts in capturing the different
types of discriminative attributes.

2 Task and Data Description

The goal of the shared task on Capturing Dis-
criminative Attributes (Krebs et al., 2018) is to
detect semantic difference between pairs of con-
cepts, or in other words, determine whether a se-
mantic property differentiates between two possi-
bly related concepts. For example both ‘bear’ and
‘goat’ are animals, but only a ‘bear’ has ‘claws’.
Therefore ‘claws’ is considered as a discrimina-
tive feature.

The shared task data is formatted in triples
that represent a ternary relation between two con-
cepts (Word1, Word2) on one hand and an attribute
(Word3) on the other. Word3 is considered as a
discriminative attribute if, and only if, it charac-
terizes Word1 but not Word2. For example, in the
triple (sailboat,yacht,mast), ‘mast’ is discrimina-
tive as it is found in Word1, ‘sailboat’, but not in
Word2. By contrast, in the triple (goose,duck,flies)
the event ‘flies’ is not discriminative as it char-
acterizes both entities. Similarly in the triple
(pickle,lemon,round), ‘round’ is not a discrimina-
tive feature, as it characterizes Word2, not Word1.

The size of the shared task data is described in
Table 1. It is to be noted that there is no intersec-
tion between the discriminative attributes in any of
the datasets. We think the purpose is to make sure
that the participating systems are able to learn how
to estimate the relations, regardless of the lexical
items involved.

Dataset # of triples # of attributes
Training 17,547 1,292
Validation 2,722 576
Test 2,340 577

Table 1: Sizes of the shared task datasets.

3 System Description

In our system we use a deep neural network for the
binary classification of discriminative attributes.
The basic idea with deep learning is to use hid-
den layers of neural nets to automatically capture
the underlying factors that lead from the input to
the output, eliminating the need for feature engi-
neering.

The system is trained on features extracted from
two main publicly available resources that fall
within the paradigm of unstructured data as no
manual lexical or encyclopedic knowledge is en-
coded. The two resources are the Google n-gram
counts and the Google News Word2Vec.
Google n-gram counts. We use the Google
5-gram counts as provided by Google Books
ngrams1 (Michel et al., 2011; Lin et al., 2012).
Google News Word2Vec. This is a publicly
available pre-trained word vector2, built with the
word2vec architecture (Mikolov et al., 2013b)
from a news corpus of 100B words (3M vocab-
ulary entries) with 300 dimensions, negative sam-
pling, using continuous bag of words and window
size of 5.

3.1 Features Used

We describe the features used to train our DNN bi-
nary classifier to detect discriminative attributes.
In this section we use the abbreviations W1, W2,
and W3 for Word1, Word2, and Word3, respec-
tively.

We use pre-trained word vectors in order to ob-
tain similarity scores between words. This leads
to the following features.

• distW1W3: Cosine distance between W1 and
W3

• distW2W3: Cosine distance between W2 and
W3

• cosDiff : Difference between distW1W3 and
distW2W3

1https://books.google.com/ngrams/info
2https://goo.gl/tyVGqW

948

• similarityCompare: We compute the cosine
similarity between two sets of words using
the Gensim ‘n similarity’ function. So it
gives a single number for comparing the sim-
ilarity between W1 and W3, and W2 and W3.

In order to capture all morphological variations of
the words, we use word lemmas and then expand
to all variants that share the same lemma.

• lemmaDistW1W3Ex: The average cosine dis-
tance between W1 and all lemma expansions
of W3

• lemmaDistW2W3Ex: The average cosine dis-
tance between W2 and all lemma expansions
of W3

We use to Google 5-gram counts to obtain the
following features.

• cntW1W3: counts of W1 and W3 co-occurring

• cntW2W3: counts of W2 and W3 co-occurring

• cntW1W3Ex: counts of W1 and the lemma ex-
pansions of W3 co-occurring

• cntW2W3Ex: counts of W2 and the lemma ex-
pansions of W3 co-occurring

3.2 Machine Learning Models
We use a deep neural network model for the binary
classification of attributes as either True or False
(or discriminative or non-discriminative) based on
the set of features described above.

We use a simple and straight-forward architec-
ture consisting of 5 feed-forward fully-connected
(or dense) layers with single dropout layer with a
rate of 0.3. The network is narrow on the top and
wide on the bottom. The function of the dropout
layer (Hinton et al., 2012) is to mitigate overfit-
ting and make sure that our model learns signifi-
cant representations by randomly omitting a cer-
tain percentage of the neurons in the hidden layer
for each presentation of the samples during train-
ing. This encourages each neuron to depend less
on other neurons and to try to learn generaliza-
tions. Table 2 shows the layer configuration of the
model.

4 Experiments and Results

We test our system on various combination of the
features mentioned in subsection 3.1. We assume

Layer type Output Shape Param #
Dense1 (None, 12) 132
Dropout1 (None, 12) 0
Dense2 (None, 12) 156
Dense3 (None, 100) 1300
Dense4 (None, 200) 20200
Dense5 (None, 1) 201

Table 2: Neural Network Layout.

the baseline is 50% as this is what a random sys-
tem would generate given that the validation set
has an almost equal number of True’s and False’s.
Table 3 shows the system results on the dev set,
with the last row showing results on the test set
using our best model, “all features”. Surprisingly,
using the cosine distance between pairs of words
gives a low score (56.17%) which is slightly above
the baseline, indicating the ineffectiveness of co-
sine distances in capturing this kind of relation-
ships. Word counts alone were the most impactful
of all the features.

5 Error Analysis

In order to be able to analyze the performance of
the system and identify where it is faring well and
where it is failing, we first manually classify the
relations between concepts and attributes in the
validation set into 8 types.

1. Part-whole. This is when the attribute de-
notes an entity that can be part or whole of
concept1, e.g. tractor, wheels; moose, legs;
cat, eyes; iguana, tongue; condos, rooms.

2. Container-contained. This is when the en-
tity attribute can be located/situated physi-
cally or temporally in concept1, e.g. oven,
kitchen; fort, cannons; mouse, house; priest,
parish; surfboard, water.

3. Made-of. This is when the entity attribute is
a material of which concept1 can be made,
e.g. cart, wood; wire, metal; rum, sugarcane;
scarf, wool; wine, grape; roof, clay.

4. Agent-patient. This is when the attribute is
a topic or theme on which concept1 can act
on, e.g. politician, politics; physiotherapist,
muscles; dermatologist, skin; mammals, milk.

5. HasAttribute. This is when the attribute is
an adjective that can be used to describe con-

949

Features Accuracy
baseline 50.00
distW1W3, distW2W3 56.17
distW1W3, distW2W3, lemmaDistW1W3Ex, lemmaDistW2W3Ex 55.79
cosDiff, similarityCompare 59.12
cntW1W3, cntW2W3 65.27
cntW1W3, cntW2W3, cntW1W3Ex, cntW2W3Ex 65.45
all features 66.50
result on the test set 65.17

Table 3: System results with different feature combinations.

class Total % correct %
event 346 12.71 260 75.14
containment 228 8.38 167 73.25
made-of 158 5.80 113 71.52
relates-to 164 6.02 115 70.12
agent-patient 121 4.45 84 69.42
part-whole 524 19.25 361 68.89
hasAttribute 850 31.23 515 60.59
hyper-hypo 331 12.16 196 59.21
Total 2,722 1,811 66.53

Table 4: Discriminative classes sorted by system per-
formance.

cept1, e.g. garlic, white; girl, virgin; alliga-
tor, long; tuna, large; honey, sweet; pumpkin,
round.

6. Hyper-hypo. That is when the attribute is
a hyponym or hypernym of the concept, e.g.
rum, alcohol; orthodontist, profession; steak,
meat; mother, female; lorry, vehicle; laven-
der, plant.

7. Event. That is when the attribute is a verb
that is associated with the concept/entity,
e.g. woman, talk; educator, teaches; knee,
bend; tuna, swims; frog, jumps; shirt, wear;
seabirds, fly; novelist, write.

8. Relates-to. This is when the relationship
cannot stated with any of the aforementioned
types, e.g. bus, passengers; knee, pads; lung,
transplant; widow, death; brother, sister; un-
cle, nephew.

Table 4 shows our manual classification of the
discriminative attributes in the validation set. It is
to be noted that the majority of relations (62.64%)
are of three types: hasAttribute, part-whole and
hyper-hypo.

The types of discriminative features in Ta-
ble 4 are sorted by system performance, high-
lighting strengths and weaknesses of the sys-
tem. The deep learning algorithm assumes that
the attribute is discriminative for concept1 if it
has considerably higher n-gram counts with con-
cept1 than with concept2. In the upper end n-
gram counts shows strength in dealing with events
and container-contained relationships, where co-
occurrence statistics showed to be very help-
ful. The examples below shows frequency counts
that indicate stronger relation between Word1 and
Word2 than between Word2 and Word3. Gold
answers are the numbers (0 or 1) following the
triples.
(shoulder, cheek, carry, 1), cntW1W3: 104620,
cntW2W3: 498
(teacher, pupil, teaches, 1), cntW1W3: 134656,
cntW2W3: 0
(albums, music, picture, 1), cntW1W3: 3937564,
cntW2W3: 374572

It is to be mentioned that in the validation set,
there were 246 (9%) instances where no frequency
counts were found for either concepts.

In the lower end of our system performance
there were the classes of hasAttribute, part-whole
and hyper-hypo. As these classes constitute the
majority of the data, the overall system perfor-
mance is compromised. We make further detailed
analysis of our top losses with hasAttribute and
part-whole.

Analysis of Errors with hasAttribute
Most of the errors in this class can be identified
with one of three reasons.

• N-gram counts are not aware of the qualifi-
cation scope. For example, in the tuple be-
low, ‘large’ has equally high frequency with
‘brick’, not because a brick can be large, but

950

they co-occur in phrases like, “large brick
house/ranch”
(garage, brick, large, 1), cntW1W3: 245802,
cntW2W3: 193816

• Contrary to common sense knowledge, data
could prove the association between a con-
cept and attribute that might not be readily
perceived. The example below shows that
“green tomato” is not a rarity. This could in-
dicate an error with manual annotation of the
data.
(zucchini, tomato, green, 1), cntW1W3:
29280, cntW2W3: 179646

• The collocation between the attribute and
concept2 could be higher than with concept1.
(drizzle, rain, light, 1), cntW1W3: 231348,
cntW2W3: 4108548

Analysis of Errors with part-whole
Similarly the errors in this class can be attributed
to one of three causes.

• Disproportionate frequency count, which
could be tied to the disparity in the individual
frequency of the concepts themselves. This
might be solved by taking the n-gram count
as a function of the unigram counts of the
concepts themselves.
(car, taxi, wheels, 0), cntW1W3: 504848,
cntW2W3: 2734

• There could be an association of different
kind between concept2 and the attribute that
yield higher frequency counts. For instance
in the example below, ‘garlic’ and ‘wings’
have higher frequency, not because garlic has
wings, but because they co-occur in phrases
like “garlic chicken wings”.
(pheasant, garlic, wings, 1), cntW1W3: 500,
cntW2W3: 11136

• Either of the two concepts has no n-gram co-
occurrence with the given attribute leading to
missing information.
(owl, buzzard, eyes, 0), cntW1W3: 10088,
cntW2W3: 0

6 Conclusion

In this paper we have presented our system for de-
tecting discriminative features using distributional
semantics. We have shown that, without resort

to human knowledge, a great deal of encyclope-
dic knowledge can be captured from unstructured
data. We also conducted a detailed error analysis
which shows the strengths and weaknesses of the
system.

In its quest to approximate the distance be-
tween words with similar contexts, the cosine dis-
tance becomes oblivious to the internal intrinsic
relationship between words and their immediate
neighbors, and this is why many relations that are
induced from co-occurrence counts are not cap-
tured by cosine distance.

While n-gram counts from raw data can present
a great wealth for mining for lexical information
and inducing semantic knowledge, co-occurrence
counts can suffer from considerable constraints
when two or more adjacent words have different
scope of predication or qualification. For exam-
ple, while “wood spoon” has a high frequency due
to the semantic relation of ‘made-of’, “wood pep-
per” has an even higher frequency count, not due
to any semantic relationship, but because ‘wood’
is scoped to a subsequent word, “wood pepper
mill”. If syntactic information related to the head
of noun compounds and scope of modification,
more meaningful assumptions can be made.

References
Mohammed Attia, Suraj Maharjan, Younes Samih,

Laura Kallmeyer, and Thamar Solorio. 2016.
Cogalex-v shared task: Ghhh - detecting semantic
relations via word embeddings. In Proceedings of
the 5th Workshop on Cognitive Aspects of the Lexi-
con (CogALex-V), pages 86–91.

Y. Bengio, R. Ducharme, and P. Vincent. 2003. A neu-
ral probabilistic language model. Journal of Ma-
chine Learning Research, 3:1137–1155.

Shane Bergsma, Dekang Lin, and Randy Goebel. 2009.
Web-scale n-gram models for lexical disambigua-
tion. In IJCAI, volume 9, pages 1507–1512.

Shane Bergsma, Emily Pitler, and Dekang Lin. 2010.
Creating robust supervised classifiers via web-scale
n-gram data. In Proceedings of the 48th Annual
Meeting of the Association for Computational Lin-
guistics, pages 865–874. Association for Computa-
tional Linguistics.

Thorsten Brants and Alex Franz. 2006. The google
web 1t 5-gram corpus version 1.1. In LDC2006T13.

J. Elman. 1990. Finding structure in time. Cognitive
Science, 14:179–211.

John R Firth. 1957. A synopsis of linguistic theory,
1930-1955. Studies in Linguistic Analysis.

951

Anna Gladkova, Aleksandr Drozd, and Satoshi Mat-
suoka. 2016. Analogy-based detection of morpho-
logical and semantic relations with word embed-
dings: What works and what doesn’t. In Pro-
ceedings of the NAACL Student Research Workshop,
pages 8–15.

G.E. Hinton, J.L. McClelland, and D.E. Rumelhart.
1986. Distributed representations. In: Parallel dis-
tributed processing: Explorations in the microstruc-
ture of cognition, 1.

Geoffrey E Hinton, Nitish Srivastava, Alex Krizhevsky,
Ilya Sutskever, and Ruslan R Salakhutdinov. 2012.
Improving neural networks by preventing co-
adaptation of feature detectors. arXiv preprint
arXiv:1207.0580.

Aminul Islam, Evangelos Milios, and Vlado Keselj.
2012. Comparing word relatedness measures based
on google n-grams. Proceedings of COLING 2012:
Posters, pages 495–506.

Colette Joubarne and Diana Inkpen. 2011. Compar-
ison of semantic similarity for different languages
using the google n-gram corpus and second-order
co-occurrence measures. In Canadian Conference
on Artificial Intelligence, pages 216–221. Springer.

Katharina Kann and Hinrich Schtze. 2008. A unified
architecture for natural language processing: Deep
neural networks with multitask learning. In Pro-
ceedings of the 25th International Conference on
Machine Learning, pages 160–167.

Martin Klein and Michael L Nelson. 2009. Correlation
of term count and document frequency for google
n-grams. In European Conference on Information
Retrieval, pages 620–627. Springer.

Alicia Krebs, Alessandro Lenci, and Denis Paperno.
2018. Semeval-2018 task 10: Capturing discrim-
inative attributes. In Proceedings of the 12th inter-
national workshop on semantic evaluation (SemEval
2018).

Yuri Lin, Jean-Baptiste Michel, Erez Lieberman Aiden,
Jon Orwant, William Brockman, and Slav Petrov.
2012. Syntactic annotations for the Google Books
Ngram Corpus. In Proceedings of the 50th Annual
Meeting of the Association for Computational Lin-
guistics Volume 2: Demo Papers (ACL ’12).

Pablo N Mendes, Max Jakob, and Christian Bizer.
2012. Dbpedia: A multilingual cross-domain
knowledge base. In LREC, pages 1813–1817. Cite-
seer.

Jean-Baptiste Michel, Yuan Kui Shen, Aviva
Presser Aiden, Adrian Veres, Matthew K. Gray,
William Brockman, The Google Books Team,
Joseph P. Pickett, Dale Hoiberg, Dan Clancy, Peter
Norvig, Jon Orwant, Steven Pinker, Martin A.
Nowak, and Erez Aiden Lieberman. 2011. Quanti-
tative analysis of culture using millions of digitized
books. Science, 331(6014):176–182.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey
Dean. 2013a. Efficient estimation of word repre-
sentations in vector space. In In Proceedings of
International Conference on Learning Representa-
tions (ICLR) 2013. arXiv:1301.3781v3, pages 746–
751, Scottsdale, AZ.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Cor-
rado, and Jeffrey Dean. 2013b. Distributed repre-
sentations of words and phrases and their composi-
tionality. Advances in neural information process-
ing systems, pages 3111–3119.

Tomas Mikolov, Wen tau Yih, and Geoffrey Zweig.
2013c. Linguistic regularities in continuous space
word representations. In Proceedings of NAACL-
HLT 2013, pages 746–751, Atlanta, Georgia.

George Miller and Christiane Fellbaum. 1998. Word-
net: An electronic lexical database.

Jeffrey Pennington, Richard Socher, and Christo-
pher D. Manning. 2014. Glove: Global vectors
for word representation. In Proceedings of the
2014 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 1532–1543,
Doha, Qatar.

Emily Pitler, Shane Bergsma, Dekang Lin, and Ken-
neth Church. 2010. Using web-scale n-grams to im-
prove base np parsing performance. In Proceedings
of the 23rd International Conference on Computa-
tional Linguistics, pages 886–894. Association for
Computational Linguistics.

D. E. Rumelhart, G. E. Hinton, and R. J. Williams.
1986. Learning internal representations by back-
propagating errors. Nature. 323:533.536.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause,
Sanjeev Satheesh, Sean Ma, Zhiheng Huang, Andrej
Karpathy, Aditya Khosla, Michael Bernstein, et al.
2015. Imagenet large scale visual recognition chal-
lenge. International Journal of Computer Vision,
115(3):211–252.

Push Singh, Thomas Lin, Erik T Mueller, Grace Lim,
Travell Perkins, and Wan Li Zhu. 2002. Open mind
common sense: Knowledge acquisition from the
general public. In OTM Confederated International
Conferences” On the Move to Meaningful Internet
Systems”, pages 1223–1237. Springer.

Robert Speer, Joshua Chin, and Catherine Havasi.
2017. Conceptnet 5.5: An open multilingual graph
of general knowledge. In AAAI, pages 4444–4451.

Niket Tandon and Gerard De Melo. 2010. Information
extraction from web-scale n-gram data. In Web N-
gram Workshop, volume 7.

952

Proceedings of the 12th International Workshop on Semantic Evaluation (SemEval-2018), pages 953–957
New Orleans, Louisiana, June 5–6, 2018. ©2018 Association for Computational Linguistics

CitiusNLP at SemEval-2018 Task 10: The Use of Transparent
Distributional Models and Salient Contexts to Discriminate Word

Attributes

Pablo Gamallo
Centro Singular de Investigación en

Tecnoloxı́as da Información (CiTIUS)
Universidade de Santiago de Compostela, Galiza

pablo.gamallo@usc.es

Abstract

This article describes the unsupervised strat-
egy submitted by the CitiusNLP team to Se-
mEval 2018 Task 10, a task which consists
of predicting whether a word is a discrimina-
tive attribute between two other words. The
proposed strategy relies on the correspondence
between discriminative attributes and relevant
contexts of a word. More precisely, the
method uses transparent distributional models
to extract salient contexts of words which are
identified as discriminative attributes. The sys-
tem performance reaches about 70% accuracy
when it is applied on the development dataset,
but its accuracy goes down (63%) on the offi-
cial test dataset.

1 Introduction

The goal of SemEval-2018 Task 10 (Paperno,
Lenci and Krebs, To Appear) is to predict whether
a word is a discriminative attribute between two
other words. The key idea underlying this task
is to capture semantic attributes of words in or-
der to discriminate their senses. Distributional se-
mantics is based on the assumption that two words
have similar senses if they tend to appear with
the same contextual words (Firth, 1957). As con-
textual words actually refer to the semantic at-
tributes of a given word, I will focus on identifying
the most salient word contexts. So, my method
to identify discriminative attributes relies on the
identification of salient contexts, since they repre-
sent the main semantic attributes of a word.

For this purpose, in this paper we will make use
of distributional models built with transparent and
lexico-syntactic contexts. To capture discrimina-
tive attributes, I will rank the most relevant con-
texts of a word by using lexical association mea-
sures between a given word and their contexts.
My method is unsupervised and only requires pre-
trained distributional models.

This paper is organized as follows. The method
is described in Section 2. Experiments, results,
and a discussion on them are presented in Section
3. Finally, conclusions are addressed in Section 4.

2 The method

As mentioned in the previous section, discrimi-
native attributes might be captured by searching
for the most salient contexts of words. For this
purpose, the distributional vector space I have
adopted is a transparent count-based model with
explicit and sparse dimensions. Sparseness re-
duction is performed by selecting the most salient
contexts per word using a filtering strategy (Bor-
dag, 2008; Gamallo and Bordag, 2011; Gamallo,
2017). The filtering strategy to select the most
salient contexts consists of selecting, for each
word, the S (salient) contexts with highest lexi-
cal association scores (e.g. loglikelihood, ppmi,
etc). The top S contexts are considered to be the
most relevant and informative for each word. S is
a global, arbitrarily defined constant whose usual
values range from 10 to 1000 (Biemann et al.,
2013; Padró et al., 2014). In short, I keep at most
the S most relevant contexts for each target word.
This is an explicit and transparent distributional
representation giving rise to a non-zero matrix. By
contrast, methods based on dimensionality reduc-
tion, such as LSA (Landauer and Dumais, 1997) or
neural-based embeddings (Mikolov et al., 2013),
make the vector space more compact with dimen-
sions that are not transparent in linguistic terms
(Gamallo, 2017).

SemEval-2018 Task 10 to detect discriminative
attributes consists of predicting whether a word
is a discriminative attribute between two other
words. For instance, given a triple <car, table,
wheels>, the system must determine if the last
word of the triple, wheels, represents a semantic

953

feature that characterizes the first word, car, but
not the second one, table. The task is a binary
classification task. For this particular example, the
classifier must return a positive answer since cars
have wheels but tables have not. By taking into ac-
count the objective of SemEval-2018 Task 10 and
my concept of salient context introduced above,
the classification method I propose is the follow-
ing very simple rule:

Given the triplet < w1, w2, att >, att is
a discriminative attribute of w1 and not
of w2 if att belongs to the most salient
contexts of w1 and not to those of w2.

Concerning the type of context used to repre-
sent word distributions, there is a great number of
previous studies that evaluate and compare syn-
tactic contexts (usually dependencies) with bag-
of-words techniques (Grefenstette, 1993; Seretan
and Wehrli, 2006; Padó and Lapata, 2007; Peirs-
man et al., 2007; Gamallo, 2008, 2009; Levy and
Goldberg, 2014; Gamallo, 2017). The cited papers
state that syntax-based methods outperform bag-
of-words techniques, in particular when the ob-
jective is to compute semantic similarity between
functional equivalent words, such as detection of
co-hyponym/hypernym word relations (i.e. near
synonymy).

In my proposal, I use lexico-syntactic contexts
to model word distributions. When contexts are
defined as lexico-syntactic contexts, I consider
that a word is an attribute of w1 if that word is the
lexical element in at least one of the salient con-
texts of w1. For instance, consider the following
three lexico-syntactic contexts:

[NOUN,with, wheels]
[NOUN,nsubj, run]
[red, nmod,NOUN]

If they are salient contexts of the word car, then
the three lexical words of these three contexts, i.e.
wheels, run, and red, will be considered as at-
tributes of car.

The number of salient contexts considered per
word will be determined experimentally.

3 Experiments

3.1 Resources
The count-based, explicit and transparent distribu-
tional model used in the exeperiments was gen-
erated from the English Wikipedia (August 2013

dump) containing almost 2 billion tokens. The
description of this model is reported in Gamallo
(2017), and a version with the 500 most salient
contexts per word is freely available.1 To pro-
cess the corpus and create the transparent matri-
ces, I used the multilingual PoS tagger of Lin-
guaKit2 (Garcia and Gamallo, 2015) and DepPat-
tern, a rule-based and multilingual dependency
parser (Gamallo, 2015) also taking part of Lin-
guaKit. I also generated other models with dif-
ferent thresholds: from 10 to 2000 salient contexts
per word.

As will be described in the next subsection, I
will compare the transparent matrix with dense
word embeddings, in particular with those re-
ported in Levy and Goldberg (2014), which are
publicly available.3 These embeddings were gen-
erated from the same Wikipedia dump as the trans-
parent model. Given that embeddings are opaque
and, thereby, their dimensions are not easily asso-
ciated to specific words, I use Cosine similarity to
find discrimative attributes. A word is a discrim-
inative attribute of w1 and not of w2, if the simi-
larity score between the attribute and w1 is higher
than a given threshold whereas it is lower in the
case of w2.

3.2 Preliminary Experiments

To find the best configuration of the proposed sys-
tem, I carried out several experiments on the train
and validation datasets (20,510 examples). As the
system is unsupervised, I am not required to sepa-
rate training from validation. First, I searched for
the best lexical association by comparing loglikeli-
hood (Dunning, 1993) and positive pointwise mu-
tual information (ppmi) (Niwa and Nitta, 1994),
by using models with 400 and 500 salient con-
texts. As loglikelihood performed slightly better
than ppmi, I chose the former measure to carry
out the next experiments. Second, I searched for
the best number of salient contexts. For this pur-
pose, several evaluations were made with models
from 10 to 2000 salient contexts. Figure 1 shows
that the peak is quickly reached with 500 contexts
(more than 0.67 accuracy), while performance is
getting down slowly as more contexts are added.

1http://fegalaz.usc.es/˜gamallo/
resources/count-models.tar.gz

2https://github.com/citiususc/
Linguakit

3https://levyomer.wordpress.com/2014/
04/25/dependency-based-word-embeddings/

954

0 250 500 750 1000 1250 1500 1750 2000
number of salient contexts

0.475

0.500

0.525

0.550

0.575

0.600

0.625

0.650

0.675

ac
cu

ra
cy

transparent-model

Figure 1: Accuracy of the system at different settings:
from 10 to 2000 salient contexts. The experiments were
carried out with the development corpus: training +
validation.

models accuracy |word-cntx pairs|
wiki 0.674 36 million
wiki+bnc 0.690 38 million
wiki+bnc+reddit 0.701 45 million

Table 1: Accuracy obtained with three corpus-
based models: just Wikipedia, Wikipedia and BNC,
Wikipedia, BNC and Reddit. The experiments were
carried out with the development dataset: training and
validation. All models were built by filtering 500 con-
texts per word. The last column shows the size of the
filtered word-context pairs.

I therefore decided to use models with 500 salient
contexts per word for the next experiments.

Next, I merged the Wikipedia-based model with
other models generated from two different cor-
pora: British National Corpus (BNC),4 and a sam-
ple with 500 million words from Reddit corpus.5

Results are shown in Table 1. As expected, accu-
racy is improved as the model grows.

Given these preliminary experiments, I sub-
mitted the two best configurations to the test
evaluation (2,340 examples):

syst. meas. saliency corpora
run1 loglike 500 ctxs wiki+bnc
run2 loglike 500 ctxs wiki+bnc+reddit

In my preliminary experiment, I also used the
word embeddings described in the previous sub-
section to capture discriminative attributes. As

4https://corpus.byu.edu/bnc/
5https://www.reddit.com/r/datasets/

comments/3mg812/full_reddit_submission_
corpus_now_available_2006/

0.1 0.2 0.3 0.4 0.5 0.6 0.7
similarity thresholds

0.38

0.40

0.42

0.44

0.46

0.48

0.50

0.52

ac
cu

ra
cy

embeddings

Figure 2: Accuracy of the embedding-based system at
different settings: from 0.05 to 0.7 similarity values.
The experiments were carried out with the development
corpus: training + validation.

mentioned above, a word is considered to be an at-
tribute of a target word if their similarity is higher
than a specific threshold, otherwise it is not a
discriminative attribute. Several similarity scores
were set to determine whether a word is an at-
tribute or not. Figure 2 shows that the best similar-
ity threshold is around 0.3 (cosine value). Accu-
racy drops dramatically with higher threshold val-
ues. The best accuracy reached by this strategy
is about 20 points below the best models based on
salient contexts. Therefore, for this particular task,
transparent models consistently outperform word
embeddings.

3.3 Official Test

The test dataset consists of 2,340 examples.
My run1 (wiki+bnc) merely reached 0.625 accu-
racy while run2 (wiki+bnc+reddit) reached 0.634.
These results are very far below those obtained
with the development dataset, which is neverthe-
less 10 times larger.

3.4 Discussion

With regard to the rest of teams at the shared task,
my run2 is just in the middle of the ranking (13
out of 26 runs). However, its performance in the
development dataset (0.700 accuracy) is close to
the third best system. I am not able to explain
the difference between the development and the
test dataset. It would require a deep error analy-
sis to understand that significant difference. This
disparity is not due to a difference in the corpus
frequency of the words included in the test set. I
have checked the frequency of all words (test and

955

development) and there is no important contrast at
this regard. The reason could just be that the test
dataset might contain more difficult triples.

The best system at the shared task achieves
0.75, leading by 12 points my run2. Even though
the score of my system is lower, it is worth men-
tioning that my strategy is fully unsupervised and
no tunning or specific configuration has been car-
ried out to adapt the system to the test dataset.

4 Conclusions and Future Work

I presented a very basic unsupervised strategy to
predict whether a word is a discriminative attribute
between two other words. The current strategy
relies on the correspondence between discrimina-
tive attribute and context saliency, and it works on
transparent distributional models to extract salient
contexts of words.

As I observed that accuracy improves as the cor-
pus grows, in future work, I will compile specific
text corpora for just the words of the test. This
should lead to select more salient contexts (and so
more discriminative attributes) per word. In addi-
tion, I will make new experiments with relational
lexical resources, such as WordNet, to compare
them with distributional models in this particular
task.

Acknowledgments

This work has received financial support from a
2016 BBVA Foundation Grant for Researchers
and Cultural Creators, TelePares (MINECO,
ref:FFI2014-51978-C2-1-R), the Consellerı́a de
Cultura, Educación e Ordenación Universitaria
(accreditation 2016-2019, ED431G/08) and the
European Regional Development Fund (ERDF).

References
Biemann, C., and Riedl M. 2013. Text: Now in 2d!

a framework for lexical expansion with contextual
similarity. Journal of Language Modelling, 1(1):55–
95.

Stefan Bordag. 2008. A Comparison of Co-occurrence
and Similarity Measures as Simulations of Context.
In 9th CICLing, pages 52–63.

Ted Dunning. 1993. Accurate methods for the statistics
of surprise and coincidence. Computational Lin-
guistics, 19(1):61–74.

J.R. Firth. 1957. A synopsis of linguistic theory 1930-
1955. Studies in linguistic analysis, pages 1–32.

Pablo Gamallo. 2008. Comparing window and syn-
tax based strategies for semantic extraction. In
PROPOR-2008, pages 41–50. Lecture Notes in
Computer Science, Springer-Verlag.

Pablo Gamallo. 2009. Comparing different prop-
erties involved in word similarity extraction. In
14th Portuguese Conference on Artificial Intelli-
gence (EPIA’09), LNCS, Vol. 5816, pages 634–645,
Aveiro, Portugal. Springer-Verlag.

Pablo Gamallo. 2015. Dependency parsing with com-
pression rules. In Proceedings of the 14th Inter-
national Workshop on Parsing Technology (IWPT
2015), pages 107–117, Bilbao, Spain. Association
for Computational Linguistics.

Pablo Gamallo. 2017. Comparing explicit and predic-
tive distributional semantic models endowed with
syntactic contexts. Language Resources and Eval-
uation, 51(3):727–743.

Pablo Gamallo and Stefan Bordag. 2011. Is singu-
lar value decomposition useful for word simalirity
extraction. Language Resources and Evaluation,
45(2):95–119.

Marcos Garcia and Pablo Gamallo. 2015. Yet another
suite of multilingual NLP tools. In Languages, Ap-
plications and Technologies, volume 563 of Com-
munications in Computer and Information Science,
pages 65–75, Switzerland. Springer. Revised Se-
lected Papers of the Symposium on Languages, Ap-
plications and Technologies (SLATE 2015).

Gregory Grefenstette. 1993. Evaluation techniques
for automatic semantic extraction: Comparing syn-
tactic and window-based approaches. In Work-
shop on Acquisition of Lexical Knowledge from Text
SIGLEX/ACL, Columbus, OH.

T.K. Landauer and S.T. Dumais. 1997. A solution
to Plato’s problem: The Latent Semantic Analysis
theory of acquision, induction and representation of
knowledge. Psychological Review, 10(2):211–240.

Omer Levy and Yoav Goldberg. 2014. Dependency-
based word embeddings. In Proceedings of the
52nd Annual Meeting of the Association for Compu-
tational Linguistics, ACL 2014, June 22-27, 2014,
Baltimore, MD, USA, pages 302–308.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Gregory S.
Corrado, and Jeffrey Dean. 2013. Distributed rep-
resentations of words and phrases and their compo-
sitionality. In Advances in Neural Information Pro-
cessing Systems, pages 3111–3119.

Yoshiki Niwa and Yoshihiko Nitta. 1994. Co-
occurrence vectors from corpora vs. distance vec-
tors from dictionaries. In Proceedings of the 15th
Conference on Computational Linguistics - Volume
1, COLING ’94, pages 304–309, Stroudsburg, PA,
USA. Association for Computational Linguistics.

956

Sebastian Padó and Mirella Lapata. 2007.
Dependency-Based Construction of Seman-
tic Space Models. Computational Linguistics,
33(2):161–199.

Muntsa Padró, Marco Idiart, Aline Villavicencio, and
Carlos Ramisch. 2014. Nothing like good old fre-
quency: Studying context filters for distributional
thesauri. In Proceedings of the 2014 Conference
on Empirical Methods in Natural Language Pro-
cessing, EMNLP 2014, October 25-29, 2014, Doha,
Qatar, A meeting of SIGDAT, a Special Interest
Group of the ACL, pages 419–424.

Yves Peirsman, Kris Heylen, and Dirk Speelman.
2007. Finding semantically related words in
Dutch. Co-occurrences versus syntactic contexts. In
CoSMO Workshop, pages 9–16, Roskilde, Denmark.

Violeta Seretan and Eric Wehrli. 2006. Accurate
Collocation Extraction Using a Multilingual Parser.
In 21st International Conference on Computational
Linguistics and the 44th annual meeting of the ACL,
pages 953–960.

957

Proceedings of the 12th International Workshop on Semantic Evaluation (SemEval-2018), pages 958–962
New Orleans, Louisiana, June 5–6, 2018. ©2018 Association for Computational Linguistics

THU NGN at SemEval-2018 Task 10: Capturing Discriminative
Attributes with MLP-CNN model

Chuhan Wu1, Fangzhao Wu2, Zhigang Yuan1, Sixing Wu1 and Yongfeng Huang1

1Tsinghua National Laboratory for Information Science and Technology,
Department of Electronic Engineering, Tsinghua University Beijing 100084, China

2Microsoft Research Asia
{wuch15,yuanzg14,wu-sx15,yfhuang}@mails.tsinghua.edu.cn

wufangzhao@gmail.com

Abstract
Existing semantic models are capable of iden-
tifying the semantic similarity of words. How-
ever, it’s hard for these models to discrimi-
nate between a word and another similar word.
Thus, the aim of SemEval-2018 Task 10 is
to predict whether a word is a discrimina-
tive attribute between two concepts. In this
task, we apply a multilayer perceptron (MLP)-
convolutional neural network (CNN) model to
identify whether an attribute is discriminative.
The CNNs are used to extract low-level fea-
tures from the inputs. The MLP takes both the
flatten CNN maps and inputs to predict the la-
bels. The evaluation F-score of our system on
the test set is 0.629 (ranked 15th), which in-
dicates that our system still needs to be im-
proved. However, the behaviours of our sys-
tem in our experiments provide useful infor-
mation, which can help to improve the collec-
tive understanding of this novel task.

1 Introduction

Evaluating the similarity of words is an important
task in semantic modeling. There have been dif-
ferent approaches based on corpus statistics (Jiang
and Conrath, 1997; Mihalcea et al., 2006) and on-
tology (Seco et al., 2004; Sánchez et al., 2012).
After an effective word representation proposed by
mikolov et al (2013), word similarity can be evalu-
ated based on word embedding weights (Levy and
Goldberg, 2014). Usually higher cosine similar-
ity of word embedding vectors indicates higher se-
mantic similarity.

However, existing semantic methods are not
capable of discriminating similar words between
each other without additional information. For ex-
ample, it is easy for these models to tell “dog” and
“puppy” is similar, but they can’t tell the differ-
ences between each other. It limits the use of these
models to mine such fine-grained semantic infor-
mation from texts. Thus, the SemEval-2018 Task

10 is proposed to determine whether an attribute
can help to discriminate between two words(Krebs
et al., 2018). One can express semantic differences
between concepts by referring to attributes associ-
ated with those concepts. The differences between
concepts can usually be identified by the presence
or absence of specific attributes. For example, the
attributes “red” and “yellow” are discriminative
for concepts “apple” and “banana”, while “sweet”
or “fruit” are not discriminative.

Capturing such discriminative attributes can be
regarded as a binary classification task: given two
words and an attribute, predict whether the at-
tribute is a difference between the two words. Ex-
isting methods to capture discriminative attributes
are mainly based on dictionary (Parikh and Grau-
man, 2011). In recent years, CNN have been suc-
cessfully applied to text classification task (Kim,
2014). In order to address this task, we develop
a system based on MLP-CNN model. Firstly, the
input words will be converted into dense vectors
using the combination of different word embed-
dings. Then the CNN layers are used to extract
features from these vectors. Finally, a MLP classi-
fier is used to predict binary labels based on both
embedding and CNN features. The experimental
results show that our model outperforms several
baseline neural model, and the additional features
can improve the model performance. Our system
still has room for development according to the ex-
perimental analysis. The behaviours of our system
in our experiments can help to further fix and ex-
tend our model.

2 MLP-CNN model with Word Feature

2.1 Network Architecture

The architecture of our MLP-CNN model is
shown in Figure 1. The input of our system is
a pair of words with an attribute. First, an em-

958

bedding layer is used to provide different kinds of
pre-trained embedding weights (v1−dim) and the
word features (vf − dim) . We use three differ-
ent pre-trained embedding weights and concate-
nate them together with the additional features of
each word. Thus, the output of embedding layer is
(v1 + vf)− dim.

Second, a 2-layer convolutional neural network
take these vectors as input, and output the flatten
feature maps. We use zeros to pad in both sides
to keep the same output length. Since the length
of inputs is 3, the 3 time steps of the convolutional
feature maps can respectively extract the inherent
relatedness of the first word with attribute, the sec-
ond word with attribute and all three words. The
feature map dimensions of the two CNN layers are
v2 and v3 respectively. In order to reduce the diffi-
culties of gradient propagation in neural networks,
we use a over-layer connection between input and
output of CNN. We concatenate the flatten feature
maps with all word embedding and features to-
gether. Finally a MLP with ReLU and sigmoid ac-
tivation function is used to predict the normalized
binary label. With the help of the over-layer con-
nection, the MLP classifier can learn from high-
level word information and raw semantic infor-
mation at the same time. Since the final labels
are obtained from the triples of words through the
embedding, CNN and dense layers, all parameters
can be tuned in model training.

2.2 Word Embedding

Since there are several out-of-vocabulary words
in the dataset when using single pre-trained word
embedding, we use three different embedding
models to cover them. The three embedding mod-
els include pre-trained word2vec embedding1 pro-
vided by Mikolov et al. (Mikolov et al., 2013),
the Glove embedding2 provided by Pennington
et al. (Pennington et al., 2014) and the fastText
embedding3 released by bojanowski et al. (Bo-
janowski et al., 2016). These embedding weights
are all 300-dim. They are concatenated together as
the representation of input words.

2.3 Word Feature

In our model, we use one-hot encoded POS
tags and two binary features obtained by Word-

1https://code.google.com/archive/p/word2vec/
2http://nlp.stanford.edu/data/glove.840B.300d.zip
3https://s3-us-west-1.amazonaws.com/fasttext-

vectors/wiki.en.vec

banana long cucumber

Embedding

word

embedding

(𝑣1 − 𝑑𝑖𝑚)

Dense

layers
ReLU

sigmoid

Output

(feature1) (feature2) (feature3)

Convolutional layer

Convolutional layer

Flatten

3(𝑣1 + 𝑣𝑓)-
𝑑𝑖𝑚𝑣2 − 𝑑𝑖𝑚

𝑣3 − 𝑑𝑖𝑚

3𝑣3-
𝑑𝑖𝑚

Features

(𝑣𝑓 − 𝑑𝑖𝑚)

Figure 1: The architecture of our MLP-CNN model.

Net (Miller and Fellbaum, 1998). In the dataset,
the words to be discriminated are nouns, but at-
tributes are nouns, adjectives, verbs and so on.
Thus, POS tags of words can help to identify the
types of attributes and the relationship between
them.)We use the Stanford parser tool4 to get the
POS tags of words.

The WordNet feature we use is based on
synsets. Among every three input words, if one
word is in the synset of another word, the corre-
sponding feature digit will be set to 1, or it will be
set to 0. In this way, a 2-dim synset feature of each
word can be obtained. We use the nltk tool(Bird
et al., 2009) to generate the WordNet features. The
features above are concatenated with word embed-
ding as the input of MLP-CNN model.

2.4 Model Training and Ensemble

Since the train set is unbalanced, we randomly se-
lect same numbers of positive (the attribute is dis-
criminative) and negative (the attribute is not dis-
criminative) samples from the train set every time.
Thus, the training data we used in our experiments

4https://nlp.stanford.edu/software/lex-parser.shtml

959

consists of the sampled data from the train set and
80% data sampled from the dev set. The remaining
20% part in dev set is used for validation.

Model ensemble strategy has been proven use-
ful to neural networks (Wu et al., 2017). There-
fore, we build different training samples using the
method described in the above paragraph and train
our model for 10 times. The final predictions on
the test set are the average of the predictions of the
10 models. In this way, the performance of neural
model can be further improved.

3 Experiment

3.1 Experiment Settings

The dataset we use is constructed based on the ap-
proach proposed by Lazaridou et al. (2016) and
the initial source of data is provided by McRae et
al. (2005). The entire dataset contains 17,547 sam-
ples for training, 2,722 for validation and 2,340
for testing. The training set is automatically gen-
erated, while the validation and test set are manu-
ally refined. The models will be evaluated by F1-
measure, as is standard in a binary classification
task.

In our network, the kernel sizes of CNN are set
to 3. The dimensions of feature maps v2 and v3
are set to 256, and the dimensions of dense lay-
ers are 300. The dropout rate of both embedding
weights and CNN is set to 0.2. The training batch
size is set to 50. We use Adam as the optimizer for
network training, which takes 10 epochs per time.
We train our model for 10 times and average their
predictions on the test set.

3.2 Performance Evaluation

The experimental results on the test and validation
set are shown in Table 1. For comparison, we also
present several baseline models here. Our official
submission is the MLP-CNN model with ensem-
ble techniques. Our F-score is 62.9 (ranked 15th)
in the evaluation phase. From the evaluation re-
sults, we can see that our model outperforms these
baseline models. It shows that our network archi-
tecture can learn more semantic information from
the words and attributes. However, our system
needs to be improved compared with the top sys-
tem (75.0 of F-score). In addition, the testing re-
sults are much lower than validation results. Some
detailed information will be analysis in the next
section.

Model F-score
test validation

MLP 53.5 63
CNN 57.8 66.2

MLP-CNN 61.7 71.5
MLP-CNN w/o over-layer 61.0 70.3

MLP-CNN+ensemble (ours) 62.9 73.4

Table 1: Performance evaluation of our system and sev-
eral baselines.

4 Discussion

4.1 Influence of Trainable Word Embedding
The influence of different word embedding
weights and fine-tuning them or not is shown in
Table 2. Note that we don’t apply the model en-
semble technique here. From the results, we can
see that the combination of different word embed-
ding can significantly improve the model perfor-
mance. It may be because that using different
word embedding can provide richer semantic in-
formation. In addition, using the combinations of
different word embedding can cover more words
and the out-of-vocabulary words in the single em-
bedding file can be reduced. Thus, the predictions
of such words can be more accurate.

However, we find fine-tuning the pre-trained
word embedding is not a good choice. The fine-
tuned model performance is significantly worse
than models using untrainable embedding. Since
the training, validation and test sets have no fea-
ture overlap between them, fine-tuning the embed-
ding weights will lead to serious over-fitting and
poor model generalization ability. We fine-tuned
the embedding of our models used in the official
submission, so the results are lower than the mod-
els with untrainable embedding.

4.2 Influence of Word Features
The influence of the two types of features is shown
in Table 3. The results show that additional word
features can improve the performance of our neu-
ral model. Attributes with different POS tags pro-
vide different semantic information. For example,
given a pair of words “boy” and “woman”, the at-
tributes “young” and “run” describe very differ-
ent aspects. Therefore, POS tag features can help
the model to extract different features from the in-
put words. Another feature based on WordNet can
also improve our model. It may be because if the
attribute is in the synsets of a concept, it’s usu-

960

pre-trained
Embedding

F-score
test validation

w/o 44.9 63.7
word2vec+tune 50.6 65.8

Glove+tune 53.5 66.7
fastText+tune 51.5 64.4

all+tune 61.7 71.5
word2vec-tune 54.9 66

Glove-tune 57.7 69.6
fastText-tune 58.3 68.9

all-tune 65.7 75.5

Table 2: Comparisons of using different pre-trained
embedding.

ally an attribute of this concept. Thus, the synset
information can help the model to identify the re-
lationships between words and attibutes.

Features F-score
w/o 59.2

+POS 61
+WordNet 60.1

+POS+WordNet 61.7

Table 3: Influence of word features on the test set.

4.3 Case Study

Several examples of model predictions on the test
set are shown in Table 4. From the true predic-
tions, we can see that our model can capture sim-
ple attributes of concepts such as colors. How-
ever, more complex relationships between words
and attributes are difficult for our system to mine.
For example, the word “mouse” can be an animal
or electronic device. It’s hard to identify such se-
mantic differences without incorporating external
knowledge, since the information provided by the
training data is limited.

True Positive False Positive
corn,tomato,yellow alcohol,liquor,strong

ant,snail,black bar,shop,sell
True Negative False Negative

father,brother,family mouse,dog,plastic
father,mother,parent engine,vehicle,component

Table 4: Representative examples of the predictions on
the test set.

5 Conclusion

Discriminating similar words between each other
without additional information is difficult for ex-
isting semantic models. Therefore, the SemEval-
2018 task 10 is proposed to fill this gap. In this
paper, we apply a MLP-CNN model with word
feature to this task. In our model, the input and
output of our CNN are highway connected. They
are taken by a MLP classifier for binary classifi-
cation. Based on this model, the local relation-
ships between each pair of words can be mined.
Our evaluation F-score is 62.9 (ranked 15th). The
detailed analysis on our system shows our system
can be further improved.

Acknowledgments

The authors thank the reviewers for their in-
sightful comments and constructive suggestions
on improving this work. This work was sup-
ported in part by the National Key Research
and Development Program of China under Grant
2016YFB0800402 and in part by the National Nat-
ural Science Foundation of China under Grant
U1705261, Grant U1536207, Grant U1536201
and U1636113.

References
Steven Bird, Ewan Klein, and Edward Loper. 2009.

Natural language processing with Python: analyz-
ing text with the natural language toolkit. ” O’Reilly
Media, Inc.”.

Piotr Bojanowski, Edouard Grave, Armand Joulin,
and Tomas Mikolov. 2016. Enriching word vec-
tors with subword information. arXiv preprint
arXiv:1607.04606.

Jay J Jiang and David W Conrath. 1997. Semantic sim-
ilarity based on corpus statistics and lexical taxon-
omy. arXiv preprint cmp-lg/9709008.

Yoon Kim. 2014. Convolutional neural net-
works for sentence classification. arXiv preprint
arXiv:1408.5882.

Alicia Krebs, Alessandro Lenci, and Denis Paperno.
2018. Semeval-2018 task 10: Capturing discrim-
inative attributes. In Proceedings of the 12th inter-
national workshop on semantic evaluation (SemEval
2018).

Angeliki Lazaridou, Nghia The Pham, and Marco Ba-
roni. 2016. The red one!: On learning to refer
to things based on their discriminative properties.
arXiv preprint arXiv:1603.02618.

961

Omer Levy and Yoav Goldberg. 2014. Neural word
embedding as implicit matrix factorization. In Ad-
vances in neural information processing systems,
pages 2177–2185.

Ken McRae, George S Cree, Mark S Seidenberg, and
Chris McNorgan. 2005. Semantic feature produc-
tion norms for a large set of living and nonliving
things. Behavior research methods, 37(4):547–559.

Rada Mihalcea, Courtney Corley, Carlo Strapparava,
et al. 2006. Corpus-based and knowledge-based
measures of text semantic similarity. In AAAI, vol-
ume 6, pages 775–780.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jef-
frey Dean. 2013. Efficient estimation of word
representations in vector space. arXiv preprint
arXiv:1301.3781.

George Miller and Christiane Fellbaum. 1998. Word-
net: An electronic lexical database.

Devi Parikh and Kristen Grauman. 2011. Interactively
building a discriminative vocabulary of nameable at-
tributes. In Computer Vision and Pattern Recog-
nition (CVPR), 2011 IEEE Conference on, pages
1681–1688. IEEE.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. Glove: Global vectors for word
representation. In Proceedings of the 2014 confer-
ence on empirical methods in natural language pro-
cessing (EMNLP), pages 1532–1543.

David Sánchez, Montserrat Batet, David Isern, and
Aida Valls. 2012. Ontology-based semantic similar-
ity: A new feature-based approach. Expert Systems
with Applications, 39(9):7718–7728.

Nuno Seco, Tony Veale, and Jer Hayes. 2004. An in-
trinsic information content metric for semantic sim-
ilarity in wordnet. In ECAI, volume 16, page 1089.

Chuhan Wu, Fangzhao Wu, Yongfeng Huang, Sixing
Wu, and Zhigang Yuan. 2017. Thu ngn at ijcnlp-
2017 task 2: Dimensional sentiment analysis for chi-
nese phrases with deep lstm. Proceedings of the
IJCNLP 2017, Shared Tasks, pages 47–52.

962

Proceedings of the 12th International Workshop on Semantic Evaluation (SemEval-2018), pages 963–967
New Orleans, Louisiana, June 5–6, 2018. ©2018 Association for Computational Linguistics

ALB at SemEval-2018 Task 10:
A System for Capturing Discriminative Attributes

Bogdan Dumitru, Alina Maria Ciobanu, Liviu P. Dinu
Faculty of Mathematics and Computer Science, University of Bucharest

Human Language Technologies Research Center, University of Bucharest
bogdan27182@gmail.com,

alina.ciobanu@my.fmi.unibuc.ro, ldinu@fmi.unibuc.ro

Abstract

Semantic difference detection attempts to cap-
ture whether a word is a discriminative at-
tribute between two other words. For ex-
ample, the discriminative feature red charac-
terizes the first word from the (apple, ba-
nana) pair, but not the second. Modeling
semantic difference is essential for language
understanding systems, as it provides use-
ful information for identifying particular as-
pects of word senses. This paper describes
our system implementation (the ALB system
of the NLP@Unibuc team) for the 10th task
of the Semaval 2018 workshop, “Capturing
Discriminative Attributes”. We propose a
method for semantic difference detection that
uses an SVM classifier with features based
on co-occurrence counts and shallow semantic
parsing, achieving 0.63 F1 score in the compe-
tition.

1 Introduction and Related Work

Semantic similarity detection is a well-studied re-
search problem with numerous applications. State
of the art models are extremely capable, deter-
mining the degree of semantic similarity between
words with high accuracy.

However, looking the other way around, the se-
mantic difference between words has received sig-
nificantly less attention. As a result, one can argue
that a semantic similarity model without the capa-
bility of spotting the semantic difference as well
is not a complete system, and may not prove very
useful in practice.

Semantic difference is a ternary relation
(w1, w2, w3), where w1 and w2 are called concepts
and w3 is called discriminative feature. The dis-
criminative feature characterizes the first concept,
w1, but not the second one, w2. If the discrimina-
tive feature characterizes both w1 and w2 or none
of them, then we do not have semantic difference.

Semantic difference detection is a binary clas-
sification task where given a triplet of words, a
model needs to determine if a semantic difference
is present or not. As emphasized by Krebs and
Paperno (2016), this non-trivial task has numer-
ous applications, such as automatized lexicogra-
phy, conversational agents or machine translation.

Most research on discriminative features is re-
lated to computer vision (Farhadi et al., 2009; Rus-
sakovsky and Fei-Fei, 2012), as these attributes
proved to be very useful in interpreting visual data
(Huang et al., 2016), being able to link visual fea-
tures and semantic labels (Guo et al., 2015). A
recent study on this topic belongs to Lazaridou
et al. (2016), who proposed a method for iden-
tifying discriminative attributes when given word
pairs and their visual representations.

In this paper, we describe a system for semantic
difference detection that outputs a set of features
for every triplet in the input data, based on prepro-
cessed external resources (the English Wikipedia
database). Further, these features are used to train
an SVM for binary classification. The current fea-
ture selection allows even a direct approach such
as evaluating the following inequation:

|F1|∑

i=1

fi −
|F2|∑

i=1

fi > 0 (1)

to obtain similar results as the SVM. Here, F1 and
F2 are values of the same features, extracted for
(w1, w3) and (w2, w3), respectively.

Our model uses two different classes of fea-
tures. The first class is generated using simple
co-occurrence counts and the second class is gen-
erated by an arc-factored approach (McDonald
et al., 2005) for semantic dependency parsing.

Semantic dependency parsing aims to provide a
shallow semantic analysis of the text. As distinct

963

from deeper semantic analysis, shallow seman-
tic parsing captures relationships between pairs of
words or concepts in a sentence (Thomson et al.,
2014).

2 Dataset and Preprocessing

The input data (training, validation and testing)
is translated into an intermediary configuration as
described below.

Each word triplet from the input data is split
into two word pairs: (w1, w3) and (w2, w3). The
initial part of our model extracts features for each
pair, and in the last steps, where the performance is
computed, a cross-reference is done with the orig-
inal input database.

We use the English Wikipedia as an external
data source for feature extraction. We convert the
raw Wikipedia database to plain text and concate-
nate the sentences of all the articles in a large text
corpus.

3 System Framework

In this section we present our approach and
methodology for capturing discriminative at-
tributes.

3.1 Problem Reduction

First, we transform the problem of semantic dif-
ference detection into a simpler one: detecting if
a feature characterizes a concept. Every ternary
relation in the input data is split into two subprob-
lems of detecting if a feature (i.e. w3) character-
izes w1 and w2, respectively. Solving subproblems
independently gives us more flexibility in feature
extraction.

Determining the validity of the ternary relation
from the outputs of the newly created binary rela-
tions is achieved with the following equation:

o = ¬(p =⇒ q) (2)

which for convenience can be rewritten as:

o = p ∧ ¬q (3)

where p = C(w1, w3), q = C(w2, w3), o is the
triplet label and C(wa, wb) is the model or func-
tion that decides if wb characterizes wa.

3.2 Features
We use two categories of features in training our
system: co-occurrence and POS-tag features. Fea-
tures from both categories are extracted from En-
glish Wikipedia sentences.

3.2.1 Co-occurrence
This is a measure of occurrence of two words in
a text alongside each other and in a specific order.
For our system, we consider the two words as an
unordered pair and count accordingly. For every
pair of words (w1, w2) we extract the following
features:

• Co-occurrence1: counts the number of adja-
cent occurrences of w1 and w2 disregarding
the order.

• Co-occurrence2: counts the number of occur-
rences of both w1 and w2 in a text window of
size 2.

• Co-occurrence3: counts the number of occur-
rences of both w1 and w2 in a text window of
size 3.

If two words occur in the same sentence, it pro-
vides the intuition that there should be a relation
between the distance d = |w1 − w2| and their se-
mantic relation. This is what we attempt to cap-
ture with the features described above. We drop
co-occurrence2 and co-occurrence3 in our final
system configuration, since they do not add any
contribution to the final score, as shown in Table 2.

Figure 1: Syntactic dependency tree.

3.2.2 POS-tag Features
Every sentence that contains a pair of words
(w1, w2) is parsed and tagged. Based on a statis-
tical model, a prediction is made of which tag ap-
plies to each word. Next, a syntactic dependency
tree is built as shown in Figure 1 and used to derive
various rules that are used to extract POS-related
features.

964

For every sentence containing both words of the
pair, if a rule Ri hits, then we increment the total
hit count Hc of that specific pair. |R| represents
the total number of rules to be applied and Hc is
defined by the following formula:

Hc =

|R|∑

i=1

Ri(w1, w2) (4)

As an example, if we take the pair of words
(w1 = moth, w2 = flies), we obtain the follow-
ing values: 1,088 co-occurrence1 and a count of
763 hits of the rules on sentences containing both
words. Hence the pair (moth, flies) has feature val-
ues (1,088, 763). Several more examples are pre-
sented in Table 1.

w1, w2 co-occurrence1 Hc

desk, drawers 169 120
cod, honks 0 0
shirt, sleeves 450 1,109
tie, sleeves 16 13
lime, holes 0 3
cheese, holes 29 20

Table 1: Examples of word pairs and feature values.

3.3 Rules

We perform rules implementation in a purely
heuristic manner, using methods from previous re-
search (Kübler et al., 2009). While we keep rules
composition simple, they turn out to be very pow-
erful and we use only two of them in the final sys-
tem implementation. Rules are prone to both false
positives and false negatives, but provided enough
input sentences, both errors tend to be minimized.

• Rule1: if w2 is the root of an arc in the pars-
ing tree and w1 is one of its children and no
negation is present in the children list, then
the rule will return a hit.

• Rule2: if the child of a root noun is a verb,
then recursively the children of the verb will
be considered related to the noun and the
pairs (root noun, verb child) will be com-
pared with (w1, w2), increasing the hit count
if the pairs match.

3.4 Linear SVM

For classification we use a linear SVM (Vapnik,
1995). The output of the SVM is given by the
equation:

u = wx− b (5)

where w is the normal vector to the hyperplane and
x represents the input data.

In the linear case, the margin is defined as the
distance between the closest positive and negative
example, and the hyperplane defined by the above
equation (see Figure 2). Maximizing the margin
can be approached as an optimization problem:

Minimize 1
2‖w‖

2 subject to yi(wxi−b) ≥ 1,∀i;

where xi is the ith training sample and yi is the
correct classification of the sample.

Figure 2: Linear SVM.

3.5 System Workflow

Until now we have described all the building
blocks of our system. Now we chain them to-
gether.

The first step is to transform the original
datasets into datasets of pairs. For all training, val-
idation and testing data we run Algorithm 1. After
this step, we end up with a dataset containing the
features of all pairs, of all three datasets.

The next step is to train and validate the SVM
on the datasets of triplets. The last step is to use
the trained SVM to predict labels for the triplets in

965

for every dataset do
transform data into pairs of words;
for every pair of words do

extract all sentences from Wikipedia
containing w1 and w2;
extract co-occurrence features;
for every sentence do

run active rules;
end
compute Hc using active rules;

end
end

Algorithm 1: Dataset preparation.

the test dataset. A slightly different approach that
we try is to train the SVM on pairs extracted from
triplets with label 1, and then apply Equation 2 to
obtain the labels for the initial test dataset triplets.

In another system configuration, we eliminate
the SVM and compute the final triplet score from
the existing features using Equation 1. By doing
so, we eliminate the training and validation steps,
thus transforming our system from a learning one
to a purely deterministic one. However, if the
number of features is increased, such an approach
may prove unfeasible and inefficient.

4 Results

We have implemented several system configura-
tions by selecting different rules, features and
learning methods. We have chosen three config-
urations: two of them produced the top results in
our experiments on the development dataset, and
the other had the peculiarity of not having a learn-
ing mechanism. The performance of these systems
on the development dataset is reported in Table 2.
The systems are evaluated using the F1 score.

The first system, ALB, uses only the first
co-occurrence score, along with Hc. Even if only
two features per pair of words are used, this sys-
tem configuration produced the best F1 score of
0.69. This is the only system that we submitted
for evaluation, obtaining 0.63 F1 score on the test
dataset.

The second system, ALB+, uses all three
co-occurrence scores as features and treats rules
output as separate features. Both ALB and ALB+
use the SVM trained on triplets.

The third system, EQ1, uses the same two fea-
tures as ALB and replaces the SVM component

with Equation 1. This system obtained the lowest
F1 score, but not too distant from the others.

It is interesting to mention that if we use only
co-occurrence1 as a discriminant, the score is
> 0.6. Analyzing the output of our best system,
we observe that the errors it produces are not bi-
ased towards one of the labels (417 errors for
label 0 and 430 for label 1).

System F1 Score
ALB 0.69
ALB+ 0.67
EQ1 0.62

Table 2: Results for capturing discriminative attributes
on the validation dataset.

5 Conclusions

In this paper we have presented our results and
system description for Task 10 of SemEval 2018,
“Capturing Discriminative Attributes”.

Our approach shows promising results in using
the relation between words in context for seman-
tic differences. The obtained results are compet-
itive, although being outperformed by other ap-
proaches in the official ranking. There is enough
room for improvements and at least two possible
approaches are already being analyzed.

The first one is straightforward: extending the
feature set with at least one order of magnitude
compared with ALB+, and if necessary replacing
the SVM with a fully connected neural network.
The heavily used sequence-to-sequence model can
also be applied on sentences to automatically cap-
ture relations between word pairs.

The second possible approach is to use a neural
network to automatically infer rules. Next, we can
apply generated rules to compute Hc and assign a
semantic difference probability to every pair in our
dataset. We can use a pruned version of the train-
ing dataset from this task, extract word pairs in the
same manner as we did in our system implementa-
tion and feed word pairs along with sentences and
labels to a convolutional neural network.

6 Acknowledgments

Research supported by UEFISCDI, project num-
ber 53BG/2016.

966

References
Ali Farhadi, Ian Endres, Derek Hoiem, and David A.

Forsyth. 2009. Describing Objects by Their At-
tributes. In Proceedings of the Conference on Com-
puter Vision and Pattern Recognition, pages 1778–
1785.

Yuchen Guo, Guiguang Ding, Xiaoming Jin, and Jian-
min Wang. 2015. Learning Predictable and Discrim-
inative Attributes for Visual Recognition. In Pro-
ceedings of the Twenty-Ninth AAAI Conference on
Artificial Intelligence, pages 3783–3789.

Chen Huang, Chen Change Loy, and Xiaoou Tang.
2016. Unsupervised Learning of Discriminative At-
tributes and Visual Representations. In Proceedings
of the Conference on Computer Vision and Pattern
Recognition, pages 5175–5184.

Alicia Krebs and Denis Paperno. 2016. Capturing
Discriminative Attributes in a Distributional Space:
Task Proposal. In Proceedings of the 1st Work-
shop on Evaluating Vector-Space Representations
for NLP, pages 51–54.

Sandra Kübler, Ryan McDonald, and Joakim Nivre.
2009. Dependency Parsing. Morgan and Claypool
Publishers.

Angeliki Lazaridou, Nghia The Pham, and Marco Ba-
roni. 2016. “The red one!”: On Learning to Refer
to Things Based on Discriminative Properties. In
Proceedings of the 54th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 2:
Short Papers), pages 213–218.

Ryan McDonald, Koby Crammer, and Fernando
Pereira. 2005. Online Large-margin Training of De-
pendency Parsers. In Proceedings of the 43rd An-
nual Meeting on Association for Computational Lin-
guistics, pages 91–98.

Olga Russakovsky and Li Fei-Fei. 2012. Attribute
Learning in Large-Scale Datasets. In Trends and
Topics in Computer Vision, pages 1–14. Springer
Berlin Heidelberg.

Sam Thomson, Brendan O’Connor, Jeffrey Flani-
gan, David Bamman, Jesse Dodge, Swabha
Swayamdipta, Nathan Schneider, Chris Dyer, and
Noah A Smith. 2014. CMU: Arc-Factored, Discrim-
inative Semantic Dependency Parsing. In Proceed-
ings of the 8th International Workshop on Semantic
Evaluation (SemEval 2014), pages 176–180.

Vladimir Vapnik. 1995. The Nature of Statistical
Learning Theory. Springer-Verlag New York.

967

Proceedings of the 12th International Workshop on Semantic Evaluation (SemEval-2018), pages 968–971
New Orleans, Louisiana, June 5–6, 2018. ©2018 Association for Computational Linguistics

ELiRF-UPV at SemEval-2018 Task 10: Capturing Discriminative
Attributes with Knowledge Graphs and Wikipedia

José-Ángel González, Lluı́s-F. Hurtado, Encarna Segarra, Ferran Pla
Universitat Politècnica de València
Camı́ de Vera sn, 46022, València

{jogonba2|lhurtado|esegarra|fpla}@dsic.upv.es

Abstract

This paper describes the participation of
ELiRF-UPV team at task 10, Capturing Dis-
criminative Attributes, of SemEval-2018. Our
best approach consists of using ConceptNet,
Wikipedia and NumberBatch embeddings in
order to stablish relationships between con-
cepts and attributes. Furthermore, this sys-
tem achieves competitive results in the official
evaluation.

1 Introduction

Capturing Discriminative Attributes, task 10 of
SemEval-2018 (Krebs et al., 2018), proposes
working on semantic difference detection . The
goal of the task is to predict whether a word is a
discriminative attribute between two other words.
This problem is known as semantic difference de-
tection, which is a binary classification task: given
a triple (apple, banana, red), it consists in de-
termining whether it exemplifies a semantic dif-
ference. Regarding semantic difference, it is a
ternary relation between two concepts, for in-
stance, (apple, banana) and a discriminative fea-
ture (red) that characterizes the first concept but
not the other.

As task 10 is related to the semantic relations
among different words, knowledge graphs seems
the most appropriate resources to be used. An
interesting knowledge resource that we used for
this task is ConceptNet. In particular, Concept-
Net (Speer et al., 2016) is a knowledge graph that
connects words and phrases of natural language
using labeled edges. It was designed to repre-
sent some general knowledge involved in natu-
ral language and could be used in combination
with other resources. The combination of Con-
ceptNet with distributed representations such as
Word2Vec (Mikolov et al., 2013) and GloVe (Pen-
nington et al., 2014), is known as NumberBatch

embeddings (Speer et al., 2016).
Regarding the relations specified in Concept-

Net, there are a total of 36 relations such as IsA
(A banana is a dessert), UsedFor (A net is used for
catching fish), or FormOf (“Leaves” is a form of
the word “leaf”), intended to represent a relation-
ship independently of the language or the source
of the terms it connects.

In this work, we propose five knowledge based
systems and one additional machine learning sys-
tem based on Siamese networks. We used Con-
ceptNet in order to determine if each input con-
cept and the input attribute are related through a
relation edge or path. When there is a relation-
ship between the first concept and the attribute and
there is no relationship between the second con-
cept and the attribute, then the answer is 1, other-
wise, the answer is 0. However, there are cases in
which ConceptNet does not provide enough infor-
mation to take a decision. In those cases, we have
implemented a system that seeks the information
in Wikipedia articles by using distances between
NumberBatch embeddings.

2 Resources and Preprocess

As we stated in Section 1, ConceptNet 5 is used
in order to find the relationships among con-
cepts and attributes. ConceptNet 5 is freely avail-
able under the Creative Commons Attribution-
ShareAlike license (CC BY SA 4.0) from http:
//conceptnet.io. Moreover, we use two ad-
ditional resources next to ConceptNet.

On the one hand, in order to use more infor-
mation of each concept we used the Wikipedia
articles. In this way, we get the most related ar-
ticle for each concept, following the recommen-
dation of the Wikipedia disambiguation system.
Wikipedia articles had been preprocessed. First,
we remove non relevant sections such as “See

968

Also”, “References” and “External Links” which
links to other resources. After that, we normalized
tokens like numbers or urls e.g. “678.2”→ “num-
ber” y “https://en.wikipedia.org” → “url” and we
made a tokenization of the articles.

On the other hand, we used distributed repre-
sentations of words, more specifically, we used
NumberBatch embeddings (Speer et al., 2016).

3 System Description

We tested several approaches to address this task,
mostly knowledge-based. Let (c1, c2, at) be a
triple where, c1 and c2 are concepts and at is an at-
tribute. The goal of the task is to define a function
d to decide whether at is a discriminative feature
of c1 (value 1 for d) or not (value 0 for d). That is,
if at characterizes c1 but not c2.

Although the training and the development sets
were not very large, we wanted to test the per-
formance of Machine Learning (ML) approaches
for this task. We selected a siamese neural net-
work (Bromley et al., 1993) because these kind
of systems are suitable for similar tasks such as
knowledge base completion (Yang et al., 2014).
This system works as follow. First, the input to
this network are the NumberBatch embeddings of
c1, c2 and at. From this, a shared Multilayer
Perceptron is applied in order to extract a com-
plex representation of each term, f(c1), f(c2) and
f(at). With these representations, we compute the
differences s1 and s2 where s1 = f(c1)–f(at)
and s2 = f(c2)–f(at) with the aim of establish-
ing relationships between each concept and the at-
tribute. Finally, we concatenate s1 and s2 and we
apply a fully-connected layer with softmax acti-
vation functions to carry out a classification i.e.
dSia = 1 if at is discriminative for c1 and not for
c2 or dSia = 0 otherwise.

The rest of the systems were knowledge-based.
As first knowledge-based approach, we use the re-
lationships between each concept and the attribute
to determine if the attribute is discriminant. To
do this, we use the ConceptNet relations. Note
that, ConceptNet contains both positive (IsA, For-
mOf, DerivedFrom, SimilarTo, ...) and negative
relations (DistinctFrom, NotHasProperty). In our
proposals, we only consider positive edges, that is,
those that denote positive relationships.

We look for positive edges between each con-
cept and the attribute. If an edge between c1 and
at exists but there is not any edge between c2 and

at, we assume that at is discriminant. In other
words, at is discriminant if it is reachable from c1
but not from c2. In this way, the function dCN

that determines if the attribute at is discriminant
for concepts c1 and c2 can be defined as shown in
Equation 1.

dCN =

{
1 : if at ∈ R(c1) ∧ at /∈ R(c2)
0 : otherwise

(1)
where, R(c1) and R(c2) are the sets of reach-

able nodes from c1 and c2 respectively using posi-
tive edges.

The main problem of this proposal is its low
coverage. In many cases, there is no edge be-
tween any of the two concepts and the attribute,
and therefore, it is decided that the attribute is not
discriminant. In order to increase the coverage of
dCN , we extend the set of reachable nodes from
a concept to those nodes reachable from other
concepts closely related to the original concept.
We have considered as related concepts those that
are linked by the FormOf relation in ConceptNet.
Considering the extended sets of reachable nodes,
we can redefine the function dCN of Equation 1 as
shown in Equation 2.

dCN2 =

{
1 : if at ∈ R2(c1) ∧ at /∈ R2(c2)
0 : otherwise

(2)
where R2(c) is the set of nodes reachable from

c or from any concept closely related to c.
Nevertheless, this approach still has cover-

age problems. In order to mitigate this prob-
lem, we proposed two new approaches based on
Wikipedia. The main idea is simple, we search
for the attribute at in the Wikipedia article of con-
cepts c1 and c2 (doc(c1) and doc(c2)) and, we de-
cide if at is discriminant based on the result of this
search. In this way, function dW e can be defined
as shown in Equation 3.

dWe =

{
1 : if at ∈ doc(c1) ∧ at /∈ doc(c2)
0 : otherwise

(3)
Further, we can relax the exact match criterion.

Concretely, if we use NumberBatch distributed
representations of words (h), we can compute sim-
ilarities between at and all the tokens of doc(c1)
and doc(c2) in order to decide which concept is
the closest to at.

969

We define a threshold ε to ensure that
there is enough difference between the max-
imum similarity max

w∈doc(c1)
cos(h(w), h(at)) and

max
w∈doc(c2)

cos(h(w), h(at)). Using the develop-

ment set, the value of ε was fixed to 0.2. This new
decision function dWt is presented in the Equation
4.

dWt =





1 : if max
w∈doc(c1)

cos(h(w), h(at))

− max
w∈doc(c2)

cos(h(w), h(at)) ≥ ε
0 : otherwise

(4)
Finally, in order to explore the joint behavior of

the knowledge-based approaches, we propose the
combination of dCN2 and dWt. When there is a re-
lationship between at and any concept –it does not
matter if it is c1, c2 or both– we decide if at is dis-
criminant using dCN2 . But if there is no relation-
ship in ConceptNet between them, we smooth the
decision using dWt. Thus, we only use dCN2 when
we really have information in ConceptNet. The
definition of this new decision function dCN2+Wt

is shown in Equation 5.

dCN2+Wt =





dCN2 : if at ∈ R2(c1)
∨ at ∈ R2(c2)

dWt : otherwise
(5)

4 Experimental Results

In order to validate the correctness of the proposed
approaches and also to select the one with the best
performance for the competition, we carried out
an evaluation of the approaches using the develop-
ment set provided by the organizers. The results
obtained are shown in Table 4.

d Approach Macro F1

dSia Siamese network 57.07
dCN ConceptNet 58.51
dCN2 ConceptNet 2 61.94
dWe Wiki. exact match 58.46
dWt Wiki. threshold 60.34

dCN2+Wt ConceptNet + Wiki. 68.20

Table 1: Results on the development set.

As can be seen in Table 4, the knowledge-based
systems which use knowledge resources obtain
among 1.31 and 11.13 points of macro F1 more

than the Siamese network which uses only Num-
berBatch embeddings. The approaches that use
only ConceptNet (dCN and dCN2) achieved as
good results as those based on Wikipedia (dWe

and dWt). Note that the coverage of dCN and
dCN2 is very low, 48.71% for dCN and 56.61%
for dCN2 . In cases where there are no links in
ConceptNet –more than fifty percent of the time
for dCN– it is decided that the attribute is not
discriminant. Moreover, the more knowledge in-
corporated into the system, the better results are
obtained. We achieved the best results using the
combination of ConceptNet graph and Wikipedia
articles (dCN2+Wt), achieving 68.20 macro F1.

Regarding the evaluation with the test set, we
used dCN2+Wt as decision function for the Se-
mEval competition. Our system achieved compet-
itive results (69.00 macro F1, 6 points of macro
F1 below the best system that obtains 75.00 macro
F1). Our proposal was ranked in 5th place out of
a total of 26 participating teams. Several results
from the official evaluation are shown in Table 4.

Team Macro F1

Sunnynlp (1/26) 75.00
Esantus (2/26) 73.00
ELiRF-UPV (5/26) 69.00

· · ·
Amrita student (25/26) 49.00
Luminoso (26/26) 49.00

Table 2: Official results

5 Analysis of Results

Once the evaluation is finished, we want to carry
out an analysis of the behavior of our system. Our
goal is to detect in which types of attribute the sys-
tem works worse. This way, we could add specific
knowledge resources to deal with these attributes.

Although we have not completed this analysis,
a group of attributes that caught our attention were
the colors. While the overall error rate of our sys-
tem was about 30%, the error in samples with at-
tributes related to colors was about 50%. More de-
tails about the behavior of our system can be seen
in Table 5.

Therefore, it would be possible to improve the
system behavior by treating the color attributes in
a specific way. For instance, by using image re-
sources, such as ImageNet (Deng et al., 2009), to
compute the color palette of images of each con-
cept and compare it with the color attribute.

970

Attributes Errors Occurences
Black 56 116
Brown 41 56
Yellow 11 46
Red 12 19
Blue 1 3
Color 121 (50.42%) 240
Other 586 (27.90%) 2100
Total 707 2340

Table 3: Error analysis in samples with attributes re-
lated to colors.

6 Conclusions and Future Work

In this work, we proposed a knowledge-based sys-
tem for the discriminative attributes task. This sys-
tem is based on the combination of two knowledge
resources: a knowledge graph with semantic links
such as ConceptNet and a general resource such as
Wikipedia.

With this system, we achieved good results
in the development set, compared to a super-
vised learning approach like siamese neural net-
works. That is, a combination of knowledge-based
approaches produces significative improvements
compared to the supervised approach. Regarding
the evaluation with the test set, we obtained com-
petitive results.

As future work, we propose an extension of our
system based on the addition of more knowledge
resources such DBpedia (Lehmann et al., 2015),
Wordnet (Fellbaum, 1998) or Microsoft Concept
Graph (Wang et al., 2015). Moreover, it could be
interesting to consider the sections of Wikipedia
with links to other resources in order to extract
more information.

Finally, we propose the incorporation of knowl-
edge resources into Deep Learning systems, be-
yond using only distributed representations of
words. This offers us end-to-end systems capa-
ble of learning more complex decision algorithms.
Concretely, the siamese neural networks seems to
be promising for this work due to their good re-
sults in related fields such as knowledge-based
completion (Yang et al., 2014).

7 Acknowledgements

This work has been partially supported by the
Spanish MINECO and FEDER founds under
projects ASLP-MULAN: Audio, Speech and
Language Processing for Multimedia Analytics

(TIN2014-54288-C4-3-R); and AMIC: Affective
Multimedia Analytics with Inclusive and Natural
Communication (TIN2017-85854-C4-2-R). Work
of José-Ángel González is also financed by Uni-
versitat Politècnica de València under grant PAID-
01-17.

References
Jane Bromley, Isabelle Guyon, Yann LeCun, Eduard

Säckinger, and Roopak Shah. 1993. Signature ver-
ification using a ”siamese” time delay neural net-
work. In Proceedings of the 6th International Con-
ference on Neural Information Processing Systems,
NIPS’93, pages 737–744, San Francisco, CA, USA.
Morgan Kaufmann Publishers Inc.

J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-
Fei. 2009. ImageNet: A Large-Scale Hierarchical
Image Database. In CVPR09.

Christiane Fellbaum. 1998. WordNet: An Electronic
Lexical Database. Bradford Books.

Alicia Krebs, Alessandro Lenci, and Denis Paperno.
2018. SemEval-2018 Task 10: Capturing discrim-
inative attributes. In Proceedings of International
Workshop on Semantic Evaluation (SemEval-2018),
New Orleans, LA, USA.

Jens Lehmann, Robert Isele, Max Jakob, Anja
Jentzsch, Dimitris Kontokostas, Pablo N. Mendes,
Sebastian Hellmann, Mohamed Morsey, Patrick van
Kleef, Sören Auer, and Christian Bizer. 2015. DB-
pedia - A Large-scale, Multilingual Knowledge Base
Extracted from Wikipedia. Semantic Web Journal,
6(2):167–195.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Cor-
rado, and Jeffrey Dean. 2013. Distributed represen-
tations of words and phrases and their composition-
ality. CoRR, abs/1310.4546.

Jeffrey Pennington, Richard Socher, and Christopher D
Manning. 2014. Glove: Global vectors for word
representation. In EMNLP, volume 14, pages 1532–
1543.

Robert Speer, Joshua Chin, and Catherine Havasi.
2016. Conceptnet 5.5: An open multilingual graph
of general knowledge. CoRR, abs/1612.03975.

Zhongyuan Wang, Haixun Wang, Ji-Rong Wen, and
Yanghua Xiao. 2015. An inference approach to ba-
sic level of categorization. In Proceedings of the
24th ACM International on Conference on Informa-
tion and Knowledge Management, CIKM ’15, pages
653–662, New York, NY, USA. ACM.

Bishan Yang, Wen-tau Yih, Xiaodong He, Jianfeng
Gao, and Li Deng. 2014. Embedding entities and
relations for learning and inference in knowledge
bases. CoRR, abs/1412.6575.

971

Proceedings of the 12th International Workshop on Semantic Evaluation (SemEval-2018), pages 972–976
New Orleans, Louisiana, June 5–6, 2018. ©2018 Association for Computational Linguistics

Wolves at SemEval-2018 Task 10: Semantic Discrimination based on
Knowledge and Association

Shiva Taslimipoor1, Omid Rohanian1, Le An Ha1, Gloria Corpas Pastor2 and Ruslan Mitkov1

1Research Group in Computational Linguistics, University of Wolverhampton, UK
2University of Malaga, Spain

{shiva.taslimi, m.rohanian, l.a.ha, r.mitkov}@wlv.ac.uk
gcorpas@uma.es

Abstract

This paper describes the system submitted to
SemEval 2018 shared task 10 ‘Capturing Dis-
criminative Attributes’. We use a combina-
tion of knowledge-based and co-occurrence
features to capture the semantic difference be-
tween two words in relation to an attribute. We
define scores based on association measures,
ngram counts, word similarity, and Concept-
Net relations. The system is ranked 4th (joint)
on the official leaderboard of the task.

1 Introduction

When it comes to investigating semantic similari-
ties, it is worth noting that similarity between two
words can be too general to quantify. Accordingly,
the discriminating power of a model is also im-
portant in limiting the scope of similarity between
words.

The main idea behind distributional semantics,
known as Distributional Hypothesis (DH), states
that linguistic items with similar distributions have
similar meanings (Blevins, 2016). Therefore these
methods are biased towards finding similarities
between concepts. The SemEval shared task 10
‘Capturing Discriminative Attributes’ poses the
new problem of semantic difference detection,
thus putting difference, rather than similarity at the
forefront. It is about modeling semantic difference
in the case of already related words. The idea is
that while similarity can group words together in
a generic way, understanding semantic differences
sheds additional light on the meaning of each in-
dividual word.

A semantic model can potentially become more
robust if it can benefit from sensitivity to differ-
ences alongside similarities in meaning. Consid-
ering difference can also help researchers assess
semantic representations more rigorously. The
effectiveness of a semantic similarity model can

be evaluated further by quantifying its strength in
finding differences between words.

In the shared task, semantic difference is oper-
ationalised as the relation between two semanti-
cally related words and a discriminative feature.
This relation is realised if the feature characterises
only the first word. An example is the triple air-
plane, helicopter, wings. In this formulation, se-
mantic difference is an asymmetric relation.

In this work, we compute several scores for
word pairs and triples with the aim of capturing
different semantic relations. Specifically, we de-
fine scores based on a knowledge-based ontology
and co-occurrence counts. For knowledge-based
features we rely on ConceptNet semantic network
(Speer and Havasi, 2013), and our co-occurrence
based features are derived from association mea-
sures, ngrams and pre-trained embeddings. We
use the scores in both supervised and unsupervised
scenarios to identify triples that constitute seman-
tic difference; i.e. the attribute (third) word is dis-
criminative between the first two words. The code
and data used for this system are freely available.1

The rest of this paper is organised as follows:
Section 2 describes related work. Section 3 pro-
vides a description of the approach including the
details of the features we use. Sections 4 and 5 dis-
cuss experiments and results. Section 6 involves
error analysis and some closing remarks and fi-
nally the paper concludes with Section 7.

2 Related Work

Distributional similarity methods rely on classical
DH, meaning in order to determine how similar
two words are, they consider similarity of their
contexts. This similarity is usually approximated
by taking the cosine of the word vectors. In this

1https://github.com/shivaat/
discriminative_attribute

972

way, semantic difference can be modeled as the
subtraction of vectors from semantically related
words. As a classic example, subtraction of word
vectors for king and man is similar to that of queen
from woman (Mikolov et al., 2013).

However not all semantic differences can be
adequately captured using this method. There
are many cases where the difference between two
words originates from the lack or presence of a
feature that cannot be directly mapped to the vec-
tor difference between two related words. One
such example is dolphin and narwhal that only dif-
fer in having a horn (Krebs and Paperno, 2016).

Therefore, combining linguistic and conceptual
information would potentially strengthen a seman-
tic model in capturing meaning of a word. To
tackle this issue, some studies rely on human an-
notated list of different attributes related to a con-
cept which are called feature norms (McRae et al.,
2005). Despite their strength in encoding seman-
tic knowledge, feature norms have not been widely
used in practice because they are small in size and
require a lot of work to assemble (Fagarasan et al.,
2015). Lazaridou et al. (2016) is an earlier attempt
at identification of discriminative features which
focuses on visual attributes.

3 Approach

Our goal is to define a simple interpretable metric,
using which we can gauge semantic difference and
identify discriminative attributes. We hypothesise
that for a triple in this task, a stronger relation be-
tween the first word and the attribute (in compari-
son with the second word and the attribute)2 is in-
dicative of the attribute word being discriminative
between the two words.

For each triple we define a discriminative score
Disc Score(w1, w2, attr) as follows:

Disc Score(w1, w2, attr) =

Score(w1, attr)− Score(w2, attr) (1)

where w1, w2 and attr are the first, second, and
third word respectively. Score is a variable func-
tion of relation between two words that can be any
of the scores explained in Sections 3.1, 3.2, 3.3,
and 3.4.

2This stronger relation corresponds to more common se-
mantic context and/or higher co-occurrence probability.

3.1 Association-based Score

Statistical association measures have a long his-
tory in language processing. With the availabil-
ity of huge corpora, these measures can be even
more effective than before in finding collocations
and associations between words.

Collocational behaviour between two words is
a strong signal that suggests one of the words
can identify the other. As an example, in the
triple (hair, body, curly), the association score in
(hair, curly) is much more than (body, curly),
suggesting that curly is a discriminative attribute
between the other two words.

For each triple in this task, collocational be-
haviour of the attribute word with the first two
words is measured to see whether the first word
can be a better collocate than the other. To this
end, we use several different association measures
to compute the outputs of the Score function in
Eq. 1.

We measure the association of two words based
on their co-occurrence in the span of 5 words.
We use SketchEngine (Kilgarriff et al., 2004) to
extract these statistics from the huge enTenTen
corpus (Jakubı́ček et al., 2013). Specifically, for
each pair of words, we extract PMI (Church and
Hanks, 1990) (known as MI in SketcEngine), MI3
(Oakes, 1998), log-likelihood (Dunning, 1993), T-
score (Krenn and Evert, 2001), log-Dice (Dice,
1945), and Salience (Kilgarriff et al., 2004) all as
defined in SketchEngine.

3.2 Google Ngrams

Ngrams are frequently used in computational lin-
guistics for a variety of purposes including lan-
guage modeling and association measures based
on lexical co-occurrence. Google Books Ngram
Dataset3 is a collection of phrases (between 1 and
5 words long) extracted from over 8 million books
printed between 1500 and 2008.

We use PhraseFinder (Trenkmann, 2016), a free
web API that makes it possible to look up words
or phrases from this dataset using a wildcard-
supporting query language. Using this resource,
we derive two different features. In the first
one, we only consider bigrams, and in the other,
we consider up to 5-grams. In both cases, we
count the number of times that words occur near
one another in a span of interest regardless of
order. We follow the same formula as defined

3https://books.google.com/ngrams

973

in Eq. 1. In order to eliminate the bias of
high/low frequency words we devide Disc Score
by Score(w1, attr) + Score(w2, attr) that we
compute from ngram co-occurrence counts.

3.3 Word Embedding Based Score

In distributional semantics, word embeddings are
used to induce meaning representations for words.
These methods are inspired by neural network lan-
guage modeling and have become a basic build-
ing block for most applications in computational
linguistics. The most popular word embedding
method is word2vec (with the skip-gram architec-
ture) which learns dense vector representations for
words using an unsupervised model. Word2vec’s
training objective is based on DH, defined so that
the model can learn word vectors that are good at
predicting nearby words (Mikolov et al., 2013).
Another popular embedding technique is GloVe,
which like word2vec, preserves semantic analo-
gies in the vector space. One major difference be-
tween the two models is that GloVe utilises cor-
pus statistics by training on global co-occurrence
counts rather than local context windows (Pen-
nington et al., 2014).

In our system we use a concatenation of two sets
of pre-trained embeddings. The first is trained on
English Wikipedia using a variation of word2vec
(Bojanowski et al., 2016). The other called Con-
ceptNet Numberbatch (Speer and Lowry-Duda,
2017), is an ensemble of pre-trained Glove and
word2vec vectors whose values are readjusted us-
ing a technique called retrofitting (Faruqui et al.,
2014). In retrofitting, the values of the embed-
dings are updated using a training function that
considers relational knowledge.

Using each word embedding, we compute co-
sine similarity between each word in a triple and
the attribute word to account for the statistics
Score(w1, attr) and Score(w2, attr) in Eq. 1.

3.4 ConceptNet Score

Co-occurrence based measures are not sufficient
to account for all the various semantic relations
that can exist between two words. Knowledge-
based ontologies (e.g. ConceptNet, BabelNet etc)
encode information about words and their rela-
tions in a structured way. This additional source
of semantic information can be used to determine
whether or not an attribute is discriminative. Be-
cause of its free web interface and ease of use, we

use ConceptNet to empower our system with rela-
tional knowledge (Speer and Havasi, 2013).

For any given (w1, w2, attr) triple, using Con-
ceptNet’s REST API we query w1, limiting the
number of search results to 1, 000. The output
is a JSON file that contains all relations between
the queried word and other concepts. We traverse
all the relations and count the number of times
attr is linked to w1 to compute score(w1, attr).
We repeat the procedure for w2 and compute
score(w2, attr) and substitute them in Eq. 1.

4 Experimental Settings

We use the data as provided by the organisers of
the shared task. We train our model on the train
set and find the optimised parameters based on
the validations set. Predictions were made on the
held-out test data.

The final feature set is the collection of
Disc Score measures based on the set of pro-
posed scores. As a result we have 6 association-
based scores, 2 google ngram based scores, 2 em-
bedding based scores, and 1 ConceptNet score. In
total, we have 11 scores as our features.

In ConceptNet, reliability of each relation is
given by a weight score. We decided to ignore
this information and opted for raw counts because
it didn’t help performance. Furthermore, binaris-
ing the scores based on raw counts (with 0 as a
threshold) slightly improved the results.

We use the features in both a supervised sce-
nario (using SVM) and an unsupervised scenario
(using KMeans). In both cases all of the 11 fea-
tures are exploited.

The evaluation in this shared task is in terms of
the average of positive and negative F1-scores. In
this paper, we report the precision, recall and F1-
score for both positive and negative labels sepa-
rately, along with the average F1-score.

5 Results and Discussion

Table 1 shows the results on the validation set both
in the supervised (SVM) and the unsupervised sce-
nario (KMeans).

In this table, we mainly focus on the results that
we achieved with our best system after the offi-
cial evaluation. We also briefly report our offi-
cial result for TEST as recorded on the shared
task leaderboard. The only difference between our
system in official evaluation and post evaluation
is the setting we have used to extract measures

974

Precision Recall F1-score Average F1-score

Validation
SVM pos 0.7679 0.5652 0.6512 0.6913neg 0.6548 0.8284 0.7315

KMeans pos 0.7039 0.6833 0.6935 0.6972neg 0.6910 0.7113 0.7010

TEST (Official Evaluation) SVM 0.69

TEST (Post Evaluation)
SVM pos 0.7299 0.6065 0.6625 0.7142neg 0.7197 0.8183 0.7658

KMeans pos 0.6464 0.7001 0.6722 0.6930neg 0.7396 0.6899 0.7139

Table 1: Results on Validation and TEST sets.

from SketchEngine. For the official evaluation, by
querying SketchEngine we extracted all the collo-
cations of an attribute word. However, the lists of
resulted entries in SketchEngine are limited to a
1, 000 for each query. We later bypassed this limi-
tation by searching for the attribute word with only
a limited number of words (from the dataset) in its
context. This improves the results on validation
and test sets.

Surprisingly, it can be seen in the first part of
Table 1 that the unsupervised model (KMeans)
can cluster the validation data as well as or even
better than the supervised classification approach
(SVM).4 This can be explained by the fact that
the features we employ for this task are all com-
puted using a formula that is specifically defined to
represent semantic difference, and finding whether
a feature is discriminative between two words
closely correlates with the semantic difference be-
tween them.

It can be concluded from the results that the fea-
tures are well generalised as they lead to even bet-
ter performance on the held-out test data.

6 Error Analysis

A sizable portion of the train and test
triples bear on genealogical and kinship re-
lations, as in (grandson, brother,male).
Some require hierarchical reasoning, as in
(invertebrate, insect, shell). Our model cap-
tures these kinds of relations very well, as it has
access to information from a knowledge base.

In order to see the effectiveness of the scores we
obtain from ConceptNet, we re-train the model ex-
cluding the ConceptNet based measure and also

4In order to evaluate the results from KMeans, we label
the clusters in a way that best matches the truth values. These
values need to be known to perform this analysis. Therefore,
we used SVM for official submission since the TEST data is
blind.

the vectors derived from Numberbatch embed-
ding. As a result, the validation performance
dropped to 0.6857 and the test result decreased to
0.6969 in terms of average F1-score.

A large part of the test triples require
the knowledge to understand whether some-
thing is a constituent of another entity, as in
(beer, wine, foam). It appears that these rela-
tions are well captured using co-occurrence based
metrics alone since deleting knowledge-base fea-
tures leaves the results for these triples for the most
part unchanged.

7 Conclusions

For this shared task we develop a classification
system to determine whether an attribute word can
distinguish one word from another. To model
semantic difference, we define a discriminative
score, and make use of a variety of different asso-
ciation measures derived from huge corpora, and
also pre-trained distributional semantic vectors.
To augment our method with structured knowl-
edge, we utilise a knowledge-based ontology. We
use the feature set in supervised and unsupervised
settings. The results suggest that the defined score
is capable of generating features that can help our
model in capturing instances where a feature is
discriminative between two words. Our system
shows particular strength in recognising kinship
and genealogical relations that are not consistently
captured using naive distributional semantic tech-
niques.

In the future, we intend to exploit ConceptNet
in a more sophisticated way rather than limiting
ourselves to number of relations. It would also
be interesting to extract co-occurrence measures
from various corpora including domain-specific
resources in order to improve the coverage of the
model.

975

References
James P Blevins. 2016. Word and paradigm morphol-

ogy. Oxford University Press.

Piotr Bojanowski, Edouard Grave, Armand Joulin,
and Tomas Mikolov. 2016. Enriching word vec-
tors with subword information. arXiv preprint
arXiv:1607.04606.

Kenneth Ward Church and Patrick Hanks. 1990. Word
association norms, mutual information, and lexicog-
raphy. Computational Linguistics, 16(1):22–29.

Lee R. Dice. 1945. Measures of the amount of ecologic
association between species. Ecology, 26:297–302.

Ted Dunning. 1993. Accurate methods for the statistics
of surprise and coincidence. COMPUTATIONAL
LINGUISTICS, 19(1):61–74.

Luana Fagarasan, Eva Maria Vecchi, and Stephen
Clark. 2015. From distributional semantics to fea-
ture norms: grounding semantic models in human
perceptual data. In Proceedings of the 11th Inter-
national Conference on Computational Semantics,
pages 52–57.

Manaal Faruqui, Jesse Dodge, Sujay K Jauhar, Chris
Dyer, Eduard Hovy, and Noah A Smith. 2014.
Retrofitting word vectors to semantic lexicons.
arXiv preprint arXiv:1411.4166.

Miloš Jakubı́ček, Adam Kilgarriff, Vojtěch Kovář,
Pavel Rychlỳ, and Vı́t Suchomel. 2013. The tenten
corpus family. In 7th International Corpus Linguis-
tics Conference CL, pages 125–127.

Adam Kilgarriff, Pavel Rychly, Pavel Smrz, and David
Tugwell. 2004. Itri-04-08 the Sketch Engine. Infor-
mation Technology, 105:116.

Alicia Krebs and Denis Paperno. 2016. Capturing dis-
criminative attributes in a distributional space: Task
proposal. In Proceedings of the 1st Workshop on
Evaluating Vector-Space Representations for NLP,
pages 51–54.

Brigitte Krenn and Stefan Evert. 2001. Can we do bet-
ter than frequency? a case study on extracting pp-
verb collocations. Proceedings of the ACL Work-
shop on Collocations, pages 39–46.

Angeliki Lazaridou, Marco Baroni, et al. 2016. The
red one!: On learning to refer to things based on dis-
criminative properties. In Proceedings of the 54th
Annual Meeting of the Association for Computa-
tional Linguistics (Volume 2: Short Papers), vol-
ume 2, pages 213–218.

Ken McRae, George S Cree, Mark S Seidenberg, and
Chris McNorgan. 2005. Semantic feature produc-
tion norms for a large set of living and nonliving
things. Behavior research methods, 37(4):547–559.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013. Distributed representa-
tions of words and phrases and their compositional-
ity. In Advances in neural information processing
systems, pages 3111–3119.

Michael P. Oakes. 1998. Statistics for Corpus Linguis-
tics. Edinburgh University Press.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. Glove: Global vectors for word
representation. In Proceedings of the 2014 confer-
ence on empirical methods in natural language pro-
cessing (EMNLP), pages 1532–1543.

Robert Speer and Catherine Havasi. 2013. Conceptnet
5: A large semantic network for relational knowl-
edge. In The Peoples Web Meets NLP, pages 161–
176. Springer.

Robert Speer and Joanna Lowry-Duda. 2017. Con-
ceptnet at semeval-2017 task 2: Extending word em-
beddings with multilingual relational knowledge. In
Proceedings of the 11th International Workshop on
Semantic Evaluation (SemEval-2017), pages 85–89.

Martin Trenkmann. 2016. PhraseFinder – Search
millions of books for language use. http://
phrasefinder.io/. Accessed: 2018-01-30.

976

Proceedings of the 12th International Workshop on Semantic Evaluation (SemEval-2018), pages 977–984
New Orleans, Louisiana, June 5–6, 2018. ©2018 Association for Computational Linguistics

UNAM at SemEval-2018 Task 10: Unsupervised Semantic Discriminative
Attribute Identification in Neural Word Embedding Cones

Ignacio Arroyo-Fernández
Universidad Nacional

Autónoma de México (UNAM)
iaf@ccg.unam.mx

Ivan Meza
Instituto de Investigaciones
en Matemáticas Aplicadas

y en Sistemas – UNAM
ivanvladimir@turing

.iimas.unam.mx

Carlos F. Méndez-Cruz
Centro de Ciencias

Genómicas – UNAM
cmendezc@ccg.unam.mx

Abstract

In this paper we report an unsupervised
method aimed to identify whether an at-
tribute is discriminative for two words
(which are treated as concepts, in our par-
ticular case). To this end, we use geo-
metrically inspired vector operations un-
derlying unsupervised decision functions.
These decision functions operate on state-
of-the-art neural word embeddings of the
attribute and the concepts. The main idea
can be described as follows: if attribute
q discriminates concept a from concept
b, then q is excluded from the feature set
shared by these two concepts: the inter-
section. That is, the membership q ∈
(a ∩ b) does not hold. As a, b, q are
represented with neural word embeddings,
we tested vector operations allowing us to
measure membership, i.e. fuzzy set oper-
ations (t-norm, for fuzzy intersection, and
t-conorm, for fuzzy union) and the simi-
larity between q and the convex cone de-
scribed by a and b.

1 Introduction

There exist nowadays a number of arithmetic vec-
tor operations for computing word relationships
interpreted as linguistic regularities. A very pop-
ular setting is solving word analogies (Lepage,
1998), which is mainly used to evaluate the quality
of word embeddings (Mikolov et al., 2013). Re-
cently other alternatives to solve word analogies
have been proposed (Linzen, 2016), including su-
pervised methods (Drozd et al., 2016).

Solving word analogies requires three word ar-
guments, and a fourth one is inferred. Such an
inference raises from the similarity between com-
mon or similar contexts shared by the two pairs

of words. Thus, given words “queen”, “woman”,
“king”, “man”, the following arithmetic operation
holds for their corresponding embeddings x(·):
xking − xman + xwoman = xqueen.

In this work, we explore similar approaches
for Discriminative Attribute Identification (DAI).
This task requires tree word arguments a, b, q,
and a binary label y ∈ {0, 1} is inferred from
them (Cree and McRae, 2003; Lazaridou et al.,
2016; McRae et al., 2005). Such a label indi-
cates whether the third word, q, is identified as a
discriminative (semantic) attribute between words
(concepts) a, b. We observed that the task of iden-
tifying discriminative attributes between words,
represented via word embeddings, evokes that of
solving word analogies.

We propose geometrically inspired vector oper-
ations on word embeddings xa, xb, xq ∈ Rn of the
words a, b, q, respectively. The output of each of
these operations is in turn operated by a unsuper-
vised decision function aimed to predict the label
y. The decision functions are based on the reason-
ing given originally in (Lepage, 1998) for solving
word analogies. Under this reasoning, the impor-
tant thing is to look for those items shared by the
objects compared, and verify whether the item of
interest is included among them.

In other words, in the case of DAI, if we are
asked whether xq, the attribute embedding, dis-
criminates xa from xb, then an idea is to verify
whether the attribute is contained in the set shared
by the two concepts in question, i.e. does the set
operation q ∈ (a∩b) hold? Our hypothesis, is that
xq discriminates xa from xb if the result of such
an operation is false in terms of the subspace de-
limited by xa and xb, i.e. a convex cone. Thus,
a number of vector operations and decision func-
tions were tested as different vector versions of
this set operation on state-of-the-art neural word
embeddings.

977

The proposed method does not rely on language
or knowledge resources (i.e. knowledge bases and
graphs, PoS or any kind of taggers, etc.). Further-
more, with the help of the geometrical insight that
our method provides, we also discuss the possi-
bilities of it for being used to study measures of
how concepts can be generated from attributes in
the sense of vector space modeling of natural lan-
guage. Thus, this study can be considered, e.g.,
for designing semantically driven word embed-
ding methods or to explore alternatives for build-
ing knowledge resource applications.

Our results showed that the proposed approach
hold coherence with respect to the semantic no-
tions proposed in the DAI task. This approach
reached 0.622 of F-measure in predicting discrim-
inative attributes.

2 Literature Review

Up to our knowledge, there is not work proposing
unsupervised methods for discriminative attribute
identification or extraction with a direct link to
word embeddings. Most related work deals with
semantic relation extraction or with labeling se-
mantic relations in lexical semantics, e.g. given
a hypernym, to perform hyponym extraction (Fu
et al., 2014).

There is also work on using semantic attributes
to classify images of objects in a supervised fash-
ion (Chen et al., 2012; Lazaridou et al., 2016). In
this case, dictionaries of discriminative attributes
of objects are used (e.g. fruits by their color or
form), but experiments are not performed on text
data, e.g., a snippet describing the object. In more
applicative cases, the use of dictionaries of ob-
ject attributes has shown to be a good approach
in clothing recommender systems. These systems
group images of items sharing attributes the cus-
tomers are usually interested in, e.g. images of
jackets with a hat (Chen et al., 2012; Kalra et al.,
2016; Zhou et al., 2016).

Other contributions provide methods for object
classification by using multiple data sources, in-
cluding text. In (Farhadi et al., 2009, 2010; Lam-
pert et al., 2009) it is proposed supervised learn-
ing of semantic attributes and textual descriptions
of objects. Their methods are aimed to generalize
recognition and (template) textual description of
unseen objects with similar and shared attributes.
In the particular case of (Berg et al., 2010), a su-
pervised algorithm learns to label object attributes

by fitting multinomial associations between text
segments and recognized image segments as co-
occurring objects within a Web corpus (Su and
Jurie, 2012). After that, the learned attributes of
the objects are detected and used as features for
feeding an unsupervised method for categorizing
images and text. In (Deeptimahanti and Sanyal,
2011; Overmyer et al., 2001) natural language
descriptions of case uses of user requirements
are parsed to obtain Unified Modeling Language
(UML) diagrams including object attributes. This
approach is aimed to facilitate design in software
engineering by semi-automatically building code
objects (Yue et al., 2011).

3 A Convex Combination

Lepage (1998) proposed solving word analogies
based on characters shared by words and sen-
tences. We extrapolated such an idea for fea-
ture similarities, similarly to what (Mikolov et al.,
2013) did on vectors for solving word analogies.
Thus, our method attempts taking into account
these two ideas in the following way. Thinking
about neural word embeddings as vectors gener-
ated by axis of attributes, our approach is to ob-
serve the linear subspace A delimited by embed-
dings of words a and b, and to see how the embed-
ding of q is contained in it. This linear subspace
has the properties of a convex cone. Thus, in ge-
ometrical terms, to assess whether an attribute can
generate a pair of concepts or not, we propose to
measure the degree, λ, to which the embedding xq

is a convex combination of the embeddings xa and
xb. This measure can be derived from the convex
combination

λxa + (1 − λ)xb = xq, (1)

where λ ∈ [0, 1]. The embeddings xa, xb, xq ∈ Rd

represent nouns a and b and the query attribute q,
respectively (see Figure 1). The requirement of
xa, xb to describe a convex cone A is due to the
fact that, geometrically, features shared by these
embeddings would be enclosed within such cone.
This can be observed by testing extreme values in
Eq. (1). Assume all embeddings are normalized in
magnitude. Let us making q to be, simultaneously,
as far as possible from a and b while keeping the
volume of A greater than zero. Also make that
⟨xa, xb⟩ to be small. In this scenario, embeddings
xa, xb delimit a cone of less than 90 degrees. As
the embedding xq is as far as possible from the

978

xa xb

xq

A

cos−1⟨xa, xq⟩ cos−1⟨xq, xb⟩

Sd

x′
b

b

Figure 1: The d−dimensional vector space de-
fined in the unitary-sphere Sd.

xa and xb and it is contained in A, then it passes
close to the center of the circular basis of the cone.
Thus, we have

∥xq − xa∥ ≈ ∥xq − xb∥.

This geometrical scenario indicates that q is shared
equably by a and b, so it is not discriminative for
them. In the case of ⟨xa, xb⟩ ≈ −1 it means that
the set A is not convex. This is because xa and xb

describe a unique line and have opposite directions
(they are anti-parallel). This geometrical scenario
prevents the pair of word embeddings from being
generated by linear combinations of attributes in
common to them (see xa and x′

b in Figure 1). In
the case when a, b are semantically very similar,
we have that1 ⟨xa, xb⟩ → 1. It means that both
vectors are (almost) parallel, so they refer concepts
sharing most of their attributes. In this case, if xq

is far away from both xa and xb, then determining
discriminativeness has not sense (probably xq is
not an attribute of either of them).

The geometrical scenario of identifying a dis-
criminative attribute q can occur when ⟨xa, xb⟩ is
small and either ⟨xq, xa⟩ → 1 or ⟨xq, xb⟩ → 1.
For example, if ⟨xq, xb⟩ → 1, it means that xq

tends to be parallel to xb and we can see xb as
a linear combination of xq. As ⟨xa, xb⟩ is small
(xa and xb are almost orthogonal), then ⟨xa, xq⟩
is also small. Therefore, this analysis leads us to
think that q discriminates a from b, and that q is an
attribute of b rather than of a.

1The symbol ‘→’ denotes tendency (“tends to”).

4 The Convex Cone Method

The scenarios depicted in Section 3 overall show
how projections among word embeddings form
convex combinations and how these projections
can be exploited in DAI. Without loss of gener-
ality, these projections can be seen as distances. In
this sense, the convex parameter λ in Eq. (1) in-
deed weighs distances involving xa, xb, xq. Now,
notice that Eq. (1) expresses xq in terms of xa and
xb. However, in DAI they are know and we would
like to measure the relationship among them given
they are d−dimensional vectors. This measure
is can be given by λ, which now becomes into
the unknown. In this case, λ acts as a bounded
measure of how much a given pair of concepts
a, b shares a given attribute q. Thus, by perform-
ing some comprehensive algebra starting from Eq.
(1), we arrive at

λ(xa − xb) + xb = xq,

which leads to the d−dimensional Euclidean
(cone) version of the convex parameter

λ =
∥xq − xb∥
∥xa − xb∥

. (2)

Furthermore, in addition to (2), we consider an al-
ternative distance criterion. That is, it is possible
measuring distance in terms of arcs instead of do-
ing it in terms of straight line segments. Therefore,
we have the arc (arcone) version of the convex pa-
rameter:

λ =
cos−1⟨xq, xb⟩
cos−1⟨xa, xb⟩

, (3)

where ⟨x, x′⟩ ∈ [−1, 1] given that ∥x∥ = 1
for all x ∈ Sd (the unitary sphere). Both arcs
cos−1⟨x, x′⟩ in the numerator and in the denom-
inator of (3) are in the interval [0, 2π].

The convex parameter λ measures the degree
to which xq is a convex combination of xa and
xb. Form the point of view of the combination
degree, rather than from the point of view of the
absolute value of λ, some function f(λ) must be
maximum at λ = 0.5 (see Figure 2). When it oc-
curs, xq passes close to the axis of the cone A (so
it also passes close to the center of the shaded cir-
cular area of radius 0.5∥xa − xb∥ in Figure 1).
Therefore, λ → 0.5 indicates that the attribute q
is highly shared by both concepts a and b.

The extreme values of λ must be interpreted
contrarily by f , i.e. λ → 0 means that, on the

979

0.5 λ

f(λ)

δ

−2|λ − 1/2| + 1

1.00.0

1.0

Figure 2: The decision function f(λ).

one hand, the attribute q uniquely characterizes (or
generates) the concept a, so xa is approximately
parallel to xq. On the other hand, λ → 1 means
that the attribute q uniquely characterizes the con-
cept b. Thus, we need that some decision func-
tion f to take advantage of extreme values of λ
for making decision on whether an attribute q is
discriminative of a pair of concepts a and b.

Therefore, we define our decision criterion sub-
ject to some threshold δ ∈ [0, 1] (say δ = 0.7):

f(λ) =

{
1 if − 2|λ − 1/2| + 1 < δ
0 if − 2|λ − 1/2| + 1 ≥ δ

(4)

where if upper inequality (4) holds, it means ei-
ther that λ → 0 or that λ → 1.0, so f(λ) = 1
and therefore attribute q discriminates concepts a
and b. Conversely, if lower inequality (4) holds,
it means that λ → 0.5. Therefore, f(λ) = 0 and
the decision function determines that q does not
discriminate a and b. See Figure 2.

5 Other Geometrical Methods

In addition to the convex cone method, we also
tested mean-based, sum-based and fuzzy methods
for quantifying the containment q ∈ (a ∩ b).

5.1 Similarity with Respect to the Sum and to
the Mean

The sum-based method computes the resultant
vector of xa and xb. The similarity between such
a vector and the candidate attribute xq should be
smaller than some threshold δ so as to consider
that q discriminates a from b, that is:

f(xq; xa, xb) =

{
1 if ⟨xq, xa + xb⟩ < δ
0 if ⟨xq, xa + xb⟩ ≥ δ

(5)

Unlike to the convex cone method, Eq. (5) indi-
cates that the sum-based method measures directly
the similarity between the resultant vector xa +xb

and xq. The motivation of this operation is similar
to that of the convex cone method. That is, xa+xb

is an embedding that embeddings xa and xb have
in common. Therefore, probably such embedding
is similar to xq if this latter also is common to xa

and xb.
The mean-based method follows exactly the

same principle, but only requires multiplying xa +
xb in (5) by 0.5.

5.2 Similarity with Respect to a Fuzzy
Connective

The fuzzy method computes the connective:

x{a,b} = α min{xa, xb} + (1 − α)max{xa, xb}

between the fuzzy intersection (min{·}) and the
fuzzy union (max{·}) of the embeddings xa, xb

(Zadeh, 1965). These set operations are known as
the Gödel’s t-norm and t-conorm (Klement et al.,
2013), respectively and they are defined element-
wise for vectors. α is known as the compensation
parameter and controls the mixture between union
and intersection. Thus, the connective acts as a
convex combination of the fuzzy union and the
fuzzy intersection operators, so if α → 0 it causes
that the intersection (min{·}) vanishes whereas
the union (max{·}) survives. The contrary effect
can be induced if α → 1.

Fuzzy set operations are conceptually more akin
to the idea of observing whether the intersection
set of concept attributes contains some query at-
tribute. To contextualize word embeddings with
fuzzy sets, we assume the embedding xa ∈ Rd

is given by a membership function xa = µ(A).
Herein, A is the set of items in some subset (of
cardinality d) of the contexts of the word a. We
also assume that the subset of contexts was statis-
tically estimated by the word embedding method,
which is in this case though as the membership
function defined on the set C ⊃ A of all contexts
in the corpus µ : C → Sd.

As a first attempt to explore a relationship be-
tween fuzzy sets and word embeddings, in this pa-
per we induced bias α to a decision function f
based on the inner product between the connective
x{a,b} (a biased version of xa + xb) and the query
attribute xq. In this way, the decision of DAI is
made according to the threshold δ, i.e.:

f(xq; α; xa, xb) =

{
1 if ⟨xq, x{a,b}⟩ < δ

0 if ⟨xq, x{a,b}⟩ ≥ δ
(6)

980

where α is the tolerance parameter of the fuzzy
connective and it must be manually set.

6 Experiments and Results

For our experiments, we computed our de-
cision functions f(·) on tuples of the form
{xa, xb, xq, y}. To this end, we used state-of-
the-art word embeddings, i.e. Glove (Penning-
ton et al., 2014), FastText (Bojanowski et al.,
2016), Word2Vec (Mikolov et al., 2013) and
Dependency-Based Word2Vec (DBW2V) (Levy
and Goldberg, 2014). We also explored embed-
dings tanking into account external knowledge.
This is the case of ConceptNet embeddings (Speer
and Lowry-Duda, 2017). DBW2V embeddings
are W2V embeddings enriched by using syntac-
tic dependencies and Conceptnet are embeddings
enriched with both syntactic dependencies and
knowledge graphs (Faruqui et al., 2015). We
trained W2V and FastText by using the Wikipedia
dataset2. In the case of Glove3, ConceptNet4 and
DBW2V5 we downloaded pretrained embeddings
from authors’ websites. For Word2Vec and Fast-
Text we trained models of 200, 300, 400, 500 and
1000 dimensions. In our results we only report the
dimensionality that performed best.

As our approach is unsupervised, we report ex-
periments on the validation dataset available on
the competition’s repository6. We can see in Table
1 that the arcone operation defined in (3) provided
the best results for all word embedding methods.
Our general best result was obtained by using
Glove embeddings of 300 dimensions. We ex-
pected a good result from these embeddings as
they specifically learn from mutual information
statistics of word pairs. This enables Glove to
encode feature contrasts, which also allows it for
being the state-of-the-art method in word analogy
tasks. During the competition we submitted our
best configuration as unique run (Glove 300d and
arcone operation with δ = 0.4), which gave us
F1 = 0.60 (place 19/26).

2The 2012 English Wikipedia available at
http://inex.mmci.uni-saarland.de/data/
documentcollection.html

3https://nlp.stanford.edu/projects/
glove

4https://github.com/commonsense/
conceptnet-numberbatch

5https://levyomer.wordpress.com/2014/
04/25/dependency-based-word-embeddings

6https://github.com/dpaperno/
DiscriminAtt/tree/master/training

Regarding to the threshold δ of the decision
functions f(·), we tested a set of values δ ∈
{0.0, 0.1, 0.4, 0.7, 1.0}. Our best result was ob-
tained when δ = 0.4 for almost all embedding
methods, excepting DBW2V. This means that the
convex parameter λ can vary 60% around the max-
imum (0.5) in order to consider that an attribute q
is shared by (or to generate) both concepts a, b.
Thus, by evaluating δ in (4) we see either that
xq is too biased towards xa if it holds that λ <
0.4(0.5) = 0.2, or that xq is too biased towards xb

if it holds that λ > 0.3 + 0.5 = 0.8. In these cases
we can say that q is discriminative for the concepts
a, b as it is an attribute only (or mainly) of one of
them.

Embedding Dim. f(·) δ F1-score

Glove 300

arcone 0.4 0.622
cone 0.4 0.615
sum -0.4 0.457

fuzzy -0.4 0.438
mean -0.4 0.426

ConceptNet 300

arcone 0.4 0.585
cone 0.4 0.581
mean 0.1 0.469
fuzzy -0.1 0.465
sum -0.4 0.451

Word2Vec 300

arcone 0.4 0.584
cone 0.4 0.577
fuzzy -0.1 0.448
mean -0.1 0.444
sum -0.4 0.439

FastText 500

arcone 0.4 0.570
cone 0.4 0.568
fuzzy 0.4 0.451
mean 0.4 0.450
sum 0.7 0.437

DBW2V 300

arcone 0.7 0.541
cone 0.7 0.536
sum -0.7 0.498

fuzzy -0.4 0.485
mean -0.4 0.475

Table 1: Best results for all the word embed-
ding and vector operation methods on the valida-
tion dataset.

Given that it was needed δ = 0.7 for DBW2V,
we inferred that these embeddings allowed much
less bias from the center of the cone and λ must be
within 30% of its maximum in order to decide that
an attribute is shared by two concepts. In other

981

words, with DBW2V, it is more difficult to distin-
guish whether the attribute q is discriminative of
a, b because it is allowed to be distant from both
them even when it can be discriminative. This
condition allows for much more feature overlap-
ping and therefore the ranking on bottom of these
embeddings can be explained.

Notice that the Euclidean version of the cone
vector operation was the second best method for
all word embedding methods. In fact, no differ-
ence was registered greater than 0.7% between
cone and arcone operations.

The fuzzy approach did not show noticeable re-
sults. The variation of both, the threshold and the
compensation parameter.

7 Discussion

We consider a bit surprising the difference in
performance of Glove with respect to knowledge-
based (ConceptNet) and Dependency-based
(DBW2V) embeddings: 5.9% with respect to
ConceptNet and 13.0% with respect to DBW2V.
Such embeddings were expected to provide much
more information about discriminative features
because they are trained by taking into account
semantic features explicitly by using knowledge
and language resources for training.By using
our arcone vector operation, W2V was ranked
barely next to ConceptNet with a small difference
of 0.17%. We think there are three possible
motivations for this behavior. The first one is
that the nature of our decision functions did not
allowed to capture semantic features embedded
into ConceptNet and into DBW2V. The second
possibility is that semantic features are better
embedded by Glove and, the third possibility,
is that embedding semantic features explicitly
can lead to overfitting of the resulting word
representations. This latter possibility could be
an additional explanation that DBW2V ended at
bottom of our ranking.

In the case of FastText, these embeddings have
been tested in word analogy tasks with success.
However, as in the case of DBW2V, they are better
than W2V or Glove mainly for syntactic analogies,
which probably makes better FastText (and prob-
ably DBW2V) for NLP tasks other than DAI, e.g.
sentence representation (Arroyo-Fernández et al.,
2017).

Some assumptions were made for practical rea-
sons in the case of fuzzy set operations. We are

aware that this could affected drastically the re-
sults. The first assumption was that word embed-
dings were produced by membership functions,
which take values in [0, 1] ⊂ R exclusively. This
is not the case of word embeddings and they can-
not directly mapped to identifiable textual items.
Therefore, applying the t-norm and the t-conorm
to these vectors is not completely intuitive. Nev-
ertheless, with real-valued vectors we still had: as
both embeddings tend to be in the same quadrant,
the larger the magnitude of the connective embed-
ding x{a,b}. This latter embedding is somewhat
oriented to the direction of the resultant xa + xb,
which can be regulated by α, inducing a bias with
respect to that direction. Although, this interpreta-
tion was worth exploring it did not gave us inter-
esting results. Thus a better version of this fuzzy
approach is pending.

At this moment, we have not clear what was
the reason several of our results were contradic-
tory with respect to the F-measure. Particularly
for distributed representations. That is, we have
balanced binary labels in the gold standard, but
some scores resulted less than 50%. It is difficult
to figure out how it happened analyzing directly
distributed representations. Therefore, it remains
an open issue proposing an alternative geometrical
approach to tackle this inconsistency with respect
to the main hypothesis of this paper.

8 Conclusions

The results of our experiments showed that the ar-
cone vector operation is a simple method for quan-
tifying discriminativeness. This operation showed
to be correlated with respect to human judgments
annotated in the validation dataset when Glove
word embeddings were used. From the vector op-
erations presented in this paper, the arcone opera-
tion, Eq. (3), best represents the abstract operation
between sets a ∩ b = A. Notice that the concept
of cone is limited to euclidean metrics neither on
Rd nor on Sd. Therefore, other kind of transfor-
mations and related theories can be explored.

The effectiveness of our approach can be further
explored as part of a learning algorithm aimed to
obtain specialized (or enriched) word embeddings
such that their geometrical structure is fitted in sets
of convex volumes. An immediate experiment is
using vector operations proposed in this paper as
restrictions or as objectives for learning such em-
beddings for building knowledge resources.

982

Acknowledgments

Thanks to Laboratorio Universitario de Cómputo
de Alto Rendimiento (IIMAS-UNAM); to Sis-
temas Linux y SuperCómputo (Secretarı́a de Tele-
comunicaciones e Informática, IINGEN-UNAM)
to the CONACyT (grant No. 386128) and to the
CS graduate program (UNAM).

References
Ignacio Arroyo-Fernández, Carlos-Francisco Méndez-

Cruz, Gerardo Sierra, Juan-Manuel Torres-Moreno,
and Grigori Sidorov. 2017. Unsupervised sentence
representations as word information series: Revisit-
ing TF–IDF. arXiv preprint arXiv:1710.06524 .

Tamara L. Berg, Alexander C. Berg, and Jonathan Shih.
2010. Automatic attribute discovery and character-
ization from noisy web data. In Kostas Daniilidis,
Petros Maragos, and Nikos Paragios, editors, Com-
puter Vision – ECCV 2010. Springer Berlin Heidel-
berg, Berlin, Heidelberg, pages 663–676.

Piotr Bojanowski, Edouard Grave, Armand Joulin,
and Tomas Mikolov. 2016. Enriching word vec-
tors with subword information. arXiv preprint
arXiv:1607.04606 .

Huizhong Chen, Andrew Gallagher, and Bernd Girod.
2012. Describing clothing by semantic attributes.
Computer Vision–ECCV 2012 pages 609–623.

George S Cree and Ken McRae. 2003. Analyzing the
factors underlying the structure and computation of
the meaning of chipmunk, cherry, chisel, cheese, and
cello (and many other such concrete nouns). Journal
of Experimental Psychology: General 132(2):163.

Deva Kumar Deeptimahanti and Ratna Sanyal. 2011.
Semi-automatic generation of UML models from
natural language requirements. In Proceedings
of the 4th India Software Engineering Conference.
ACM, New York, NY, USA, ISEC ’11, pages 165–
174.

Aleksandr Drozd, Anna Gladkova, and Satoshi Mat-
suoka. 2016. Word embeddings, analogies, and ma-
chine learning: Beyond king-man+ woman= queen.
In COLING. pages 3519–3530.

Ali Farhadi, Ian Endres, and Derek Hoiem. 2010.
Attribute-centric recognition for cross-category gen-
eralization. 2010 IEEE Computer Society Confer-
ence on Computer Vision and Pattern Recognition
pages 2352–2359.

Ali Farhadi, Ian Endres, Derek Hoiem, and David A.
Forsyth. 2009. Describing objects by their at-
tributes. 2009 IEEE Conference on Computer Vision
and Pattern Recognition pages 1778–1785.

Manaal Faruqui, Jesse Dodge, Sujay K. Jauhar, Chris
Dyer, Eduard Hovy, and Noah A. Smith. 2015.
Retrofitting word vectors to semantic lexicons. In
Proceedings of NAACL.

Ruiji Fu, Jiang Guo, Bing Qin, Wanxiang Che, Haifeng
Wang, and Ting Liu. 2014. Learning semantic hier-
archies via word embeddings. In Proceedings of the
52nd Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers). vol-
ume 1, pages 1199–1209.

Bhavya Kalra, Kingshuk Srivastava, and Manish Pra-
teek. 2016. Computer vision based personalized
clothing assistance system: A proposed model. In
Next Generation Computing Technologies (NGCT),
2016 2nd International Conference on. IEEE, pages
341–346.

Erich Peter Klement, Radko Mesiar, and Endre Pap.
2013. Triangular norms, volume 8. Springer Sci-
ence & Business Media.

C. H. Lampert, H. Nickisch, and S. Harmeling. 2009.
Learning to detect unseen object classes by between-
class attribute transfer. In 2009 IEEE Conference
on Computer Vision and Pattern Recognition. pages
951–958.

Angeliki Lazaridou, Nghia The Pham, and Marco Ba-
roni. 2016. The red one!: On learning to refer
to things based on their discriminative properties.
arXiv preprint arXiv:1603.02618 .

Yves Lepage. 1998. Solving analogies on words: an
algorithm. In Proceedings of the 36th Annual Meet-
ing of the Association for Computational Linguis-
tics and 17th International Conference on Compu-
tational Linguistics-Volume 1. Association for Com-
putational Linguistics, pages 728–734.

Omer Levy and Yoav Goldberg. 2014. Dependency-
based word embeddings. In ACL (2). pages 302–
308.

Tal Linzen. 2016. Issues in evaluating semantic spaces
using word analogies. In Proceedings of the 1st
Workshop on Evaluating Vector-Space Representa-
tions for NLP. Association for Computational Lin-
guistics, Berlin, Germany, pages 13–18.

Ken McRae, George S Cree, Mark S Seidenberg, and
Chris McNorgan. 2005. Semantic feature produc-
tion norms for a large set of living and nonliving
things. Behavior research methods 37(4):547–559.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013. Distributed representa-
tions of words and phrases and their compositional-
ity. In Advances in Neural Information Processing
Systems. pages 3111–3119.

Scott P. Overmyer, Benoit Lavoie, and Owen Rambow.
2001. Conceptual modeling through linguistic anal-
ysis using LIDA. In Proceedings of the 23rd Inter-
national Conference on Software Engineering. IEEE

983

Computer Society, Washington, DC, USA, ICSE
’01, pages 401–410.

Jeffrey Pennington, Richard Socher, and Christo-
pher D. Manning. 2014. GloVe: Global vectors for
word representation. In Empirical Methods in Nat-
ural Language Processing (EMNLP). pages 1532–
1543. http://www.aclweb.org/anthology/D14-1162.

Robert Speer and Joanna Lowry-Duda. 2017. Concept-
Net at semeval-2017 task 2: Extending word em-
beddings with multilingual relational knowledge. In
Proceedings of the 11th International Workshop on
Semantic Evaluation (SemEval-2017). Association
for Computational Linguistics, pages 85–89.

Yu Su and Frédéric Jurie. 2012. Improving image clas-
sification using semantic attributes. International
journal of computer vision 100(1):59–77.

Tao Yue, Lionel C. Briand, and Yvan Labiche. 2011. A
systematic review of transformation approaches be-
tween user requirements and analysis models. Re-
quirements Engineering 16(2):75–99.

L.A. Zadeh. 1965. Fuzzy sets. Information and Con-
trol 8(3):338 – 353.

Jingjin Zhou, Zhengzhong Zhou, and Liqing Zhang.
2016. Hierarchical semantic classification and at-
tribute relations analysis with clothing region detec-
tion. In Advanced Multimedia and Ubiquitous En-
gineering, Springer, pages 429–435.

984

Proceedings of the 12th International Workshop on Semantic Evaluation (SemEval-2018), pages 985–989
New Orleans, Louisiana, June 5–6, 2018. ©2018 Association for Computational Linguistics

Luminoso at SemEval-2018 Task 10: Distinguishing Attributes Using Text
Corpora and Relational Knowledge

Robert Speer
Luminoso Technologies, Inc.
675 Massachusetts Avenue

Cambridge, MA 02139
rspeer@luminoso.com

Joanna Lowry-Duda
Luminoso Technologies, Inc.
675 Massachusetts Avenue

Cambridge, MA 02139
jlowry-duda@luminoso.com

Abstract

Luminoso participated in the SemEval 2018
task on “Capturing Discriminative Attributes”
with a system based on ConceptNet, an open
knowledge graph focused on general knowl-
edge. In this paper, we describe how we
trained a linear classifier on a small number of
semantically-informed features to achieve an
F1 score of 0.7368 on the task, close to the
task’s high score of 0.75.

1 Introduction

Word embeddings are most effective when they
learn from both unstructured text and a graph
of general knowledge (Speer and Lowry-Duda,
2017). ConceptNet 5 (Speer et al., 2017) is an
open-data knowledge graph that is well suited for
this purpose. It is accompanied by a pre-built word
embedding model known as ConceptNet Number-
batch1, which combines skip-gram embeddings
learned from unstructured text with the relational
knowledge in ConceptNet.

A straightforward application of the Concept-
Net Numberbatch embeddings took first place in
SemEval 2017 task 2, on semantic word similarity.
For SemEval 2018, we built a system with these
embeddings as a major component for a slightly
more complex task.

The Capturing Discriminative Attributes task
(Paperno et al., 2018) emphasizes the ability of a
semantic model to recognize relevant differences
between terms, not just their similarities. As the
task description states, “If you can tell that ameri-
cano is similar to capuccino and espresso but you
can’t tell the difference between them, you don’t
know what americano is.”

The ConceptNet Numberbatch embeddings
only measure the similarity of terms, and we hy-

1https://github.com/commonsense/
conceptnet-numberbatch

pothesized that we would need to represent more
specific relationships. For example, the input
triple “frog, snail, legs” asks us to determine
whether “legs” is an attribute that distinguishes
“frog” from “snail”. The answer is yes, because
a frog has legs while a snail does not. The has re-
lationship is one example of a specific relationship
that is represented in ConceptNet.

To capture this kind of specific relationship, we
built a model that infers relations between Con-
ceptNet nodes, trained on the existing edges in
ConceptNet and random negative examples. There
are many models designed for this purpose; the
one we decided on is based on Semantic Matching
Energy (SME) (Bordes et al., 2014).

Our features consisted of direct similarity over
ConceptNet Numberbatch embeddings, the rela-
tionships inferred over ConceptNet by SME, fea-
tures that compose ConceptNet with other re-
sources (WordNet and Wikipedia), and a purely
corpus-based feature that looks up two-word
phrases in the Google Books dataset.

We combined these features based on Concept-
Net with features extracted from a few other re-
sources in a LinearSVC classifier, using liblinear
(Fan et al., 2008) via scikit-learn (Pedregosa et al.,
2011). The classifier used only 15 features, of
which 12 ended up with non-zero weights, from
the five sources described. We aimed to avoid
complexity in the classifier in order to prevent
overfitting to the validation set; the power of the
classifier should be in its features.

The classifier produced by this design (submit-
ted late to the contest leaderboard) successfully
avoided overfitting. It performed better on the test
set than on the validation set, with a test F1 score
of 0.7368, whose margin of error overlaps with the
evaluation’s reported high score of 0.75.

At evaluation time, we accidentally submitted
our results on the validation data, instead of the

985

test data, to the SemEval leaderboard. Our code
had truncated the results to the length of the test
data, causing us to not notice the mismatch. This
erroneous submission got a very low score, of
course. This paper presents the corrected test re-
sults, which we submitted to the post-evaluation
CodaLab leaderboard immediately after the results
appeared. We did not change the classifier or data;
the change was a one-line change to our code for
outputting the classifier’s predictions on the test
set instead on the validation set.

2 Features

In detail, these are the five sources of features we
used:

ConceptNet vector similarity. Given the triple
(term1, term2, att), we look up the ConceptNet
Numberbatch embeddings for the root words of
the three terms (with root words determined using
ConceptNet’s built-in lemmatizer). We determine
the cosine similarity of (term1, att) and the co-
sine similarity of (term2, att). We then subtract
the square roots of the similarity scores (floored at
0). If this difference is large enough, it indicates
a positive example, a discriminative attribute that
applies to term1 and not to term2.

ConceptNet relational inference. We train a
Semantic Matching Energy model to represent
ConceptNet nodes and relations as vectors, along
with a 3-tensor of interactions between them. This
model can then assign a confidence score to any
triple (a relation connecting two terms). We used
this model to infer values for each of 11 differ-
ent ConceptNet relations. As in the case of vector
similarity, each feature value is the difference be-
tween the value inferred for rel(term1, att) and
rel(term2, att). This model is described in more
detail in the next section.

Wikipedia lead sections. This feature expands
on ConceptNet vector similarity: instead of com-
puting the similarity between the attribute and the
term, it computes the maximum of the similarity
between the attribute and any word that appears
in the lead section of the Wikipedia article for the
term (Wikipedia, 2017). This helps to identify at-
tributes that would be used to define the term, such
as “amphibian” as an attribute for “frog”.

WordNet entries. This feature is similar to the
“Wikipedia lead sections” feature. It expands

each term by looking up its synonyms in Word-
Net (Miller et al., 1998), the synonyms in synsets
it is connected to, and the words in its gloss (defi-
nition), and taking the maximum similarity of the
attribute to any of these terms.

Google Books 2-grams. This feature deter-
mines if term1 forms a significant two-word
phrase with att , more than term2 does, based
on the Google Books English Fiction data (Lin
et al., 2012). The “significance” (s) of a two-word
phrase is determined by comparing the smoothed
log-likelihood of the individual unigrams to the
smoothed log-likelihood of the phrase:

s(term, att) = 10 + log10(#(term, att) + 1)

− log10((#(term) + 105)(#(att) + 105))

where # represents the number of occurrences of
a unigram or bigram in the corpus.

The “ConceptNet relational inference” feature
provides 11 entries to the feature vectors, while
the other sources each provide one. In total, there
are 15 features that represent each input triple.

Across multiple data sources, we use the square
root of cosine similarity to measure the strength
of the match between a term and an attribute. Be-
cause attributes should be at least somewhat re-
lated to the terms they describe, and because weak
semantic similarity can be interpreted as related-
ness, the square root helps us emphasize the im-
portant part of the scale. The difference between
“somewhat related” and “not related” is more im-
portant to the task than the difference between
“very similar” and “somewhat related”, as a dis-
criminative attribute should ideally be unrelated to
the second term.

2.1 The Relational Inference Model
To infer truth values for ConceptNet relations, we
use a variant of the Semantic Matching Energy
model (Bordes et al., 2014), adapted to work well
on ConceptNet’s vocabulary of relations. Instead
of embedding relations in the same space as the
terms, this model assigns new 10-dimensional em-
beddings to ConceptNet relations, yielding a com-
pact model for ConceptNet’s relatively small set
of relations.

The model is trained to distinguish positive ex-
amples of ConceptNet edges from negative ones.
The positive examples are edges directly con-
tained in ConceptNet, or those that are entailed
by changing the relation to a more general one or

986

switching the directionality of a symmetric rela-
tion. The negative examples come from replac-
ing one of the terms with a random other term,
the relation with a random unentailed relation, or
switching the directionality of an asymmetric re-
lation.

We trained this model for approximately 3
million iterations (about 4 days of computa-
tion on an nVidia Titan Xp) using PyTorch
(Paszke et al., 2017). The code of the
model is available at https://github.com/
LuminosoInsight/conceptnet-sme.

To extract features for the discriminative at-
tribute task, we focus on a subset of Concept-
Net relations that would plausibly be used as at-
tributes: RelatedTo, IsA, HasA, PartOf, Capa-
bleOf, UsedFor, HasContext, HasProperty, and
AtLocation.

For most of these relations, the first argument is
the term, and the second argument is the attribute.
We use two additional features for PartOf and At-
Location with their arguments swapped, so that the
attribute is the first argument. The generic rela-
tion RelatedTo, unlike the others, is intended to be
symmetric, so we add its value to the value of its
swapped version and use it as a single feature.

3 The Overfitting-Resistant Classifier

The classifier that we use to make a decision based
on these features is scikit-learn’s LinearSVC, us-
ing the default parameters in scikit-learn 0.19.1.
(In Section 4, we discuss other models and param-
eters that we tried.) This classifier makes effective
use of the features while being simple enough to
avoid some amount of overfitting.

One aspect of the classifier that made a notice-
able difference was the scaling of the features. We
tried L1 and L2-normalizing the columns of the in-
put matrix, representing the values of each feature,
and decided on L2 normalization.

We took advantage of the design of our features
and the asymmetry of the task as a way to further
mitigate overfitting. All of the features were de-
signed to identify a property that term1 has and
term2 does not, as is the case for the discrimi-
native examples, so they should all make a non-
negative contribution to a feature being discrimi-
native. We can inspect the coefficients of the fea-
tures in the SVC’s decision boundary. If any fea-
ture gets a negative weight, it is likely a spurious
result from overfitting to the training data. So, af-

Feature Coefficient
ConceptNet vector similarity 13.82
SME: RelatedTo 14.01
SME: (x IsA a) 2.13
SME: (x HasA a) 0.00
SME: (x PartOf a) 0.56
SME: (x CapableOf a) 3.72
SME: (x UsedFor a) 0.92
SME: (x HasContext a) 0.88
SME: (x HasProperty a) 0.00
SME: (x AtLocation a) 0.00
SME: (a PartOf x) 3.22
SME: (a AtLocation x) 0.69
Wikipedia lead sections 12.46
WordNet relatedness 13.95
Google Ngrams 28.82

Table 1: Coefficients of each feature in our linear clas-
sifier. x represents a term and a represents the attribute.

ter training the classifier, we clip the coefficients
of the decision boundary, setting all negative coef-
ficients to zero.

If we were to remove these features and re-train,
or require non-negative coefficients as a constraint
on the classifier, then other features would inher-
ently become responsible for overfitting. By neu-
tralizing the features after training, we keep the
features that are working well as they are, and re-
move a part of the model that appears to purely
represent overfitting. Indeed, clipping the negative
coefficients in this way increased our performance
on the validation set.

Table 1 shows the coeffcients assigned to each
feature based on the training data.

4 Other experiments

There are other features that we tried and later dis-
carded. We experimented with a feature similar to
the Google Books 2-grams feature, based on the
AOL query logs dataset (Pass et al., 2006). It did
not add to the performance, most likely because
any information it could provide was also provided
by Google Books 2-grams. Similiarly, we tried ex-
tending the Google Books 2-grams data to include
the first and third words of a selection of 3-grams,
but this, too, appeared redundant with the 2-grams.

We also experimented with a feature based on
bounding box annotations available in the Open-
Images dataset (Krasin et al., 2017). We hoped
it would help us capture attributes such as colors,
materials, and shapes. While this feature did not
improve the classifier’s performance on the vali-
dation set, it did slightly improve the performance
on the test set.

Before deciding on scikit-learn’s LinearSVC,

987

Dataset F1 Error (SEM)
train .7617 ± .0032
validation .7281 ± .0085
test .7368 ± .0091

Table 2: F1 scores by dataset. The reported F1 score is
the arithmetic mean of the F1 scores for both classes.

0.60 0.62 0.64 0.66 0.68 0.70 0.72 0.74
Validation accuracy (F1)

0.64

0.66

0.68

0.70

0.72

0.74

Te
st

 a
cc

ur
ac

y
(F

1)

A

B

C = (0.563, 0.606)

D E

ABAC

AD
AE

BC

BD

BE

CD

CE
DE

ABC

ABD
ABE

ACD
ACE
ADE

BCD

BCE
BDE

CDE

ABCD ABCE
ABDE

ACDE

BCDE

ABCDE
A
B
C
D
E

= ConceptNet vector similarity
= ConceptNet inference using SME
= Wikipedia lead sections
= WordNet links and glosses
= Google Books 2-grams

Figure 1: This ablation analysis shows the contribu-
tions of subsets of the five sources of features. Ellipses
indicate standard error of the mean, assuming that the
data is sampled from a larger, unseen set.

we experimented with a number of other classi-
fiers. This included random forests, differentiable
models made of multiple ReLU and sigmoid lay-
ers, and SVM with an RBF kernel or a polynomial
kernel.

We also experimented with different parame-
ters to LinearSVC, such as changing the default
value of the penalty parameter C of the error
term, changing the penalty from L2 to L1, solv-
ing the primal optimization problem instead of the
dual problem, and changing the loss from squared
hinge to hinge. These changes either led to lower
performance or had no significant effect, so in the
end we used LinearSVC with the default parame-
ters for scikit-learn version 0.19.1.

5 Results

When trained on the training set, the classifier
we describe achieved an F1 score of 0.7617 on
the training set, 0.7281 on the validation set, and
0.7368 on the test set. Table 2 shows these scores
along with their standard error of the mean, sup-
posing that these data sets were randomly sampled
from larger sets.

5.1 Ablation Analysis

We performed an ablation analysis to see what the
contribution of each of our five sources of features
was. We evaluated classifiers that used all non-
empty subsets of these sources. Figure 1 plots the
results of these 31 classifiers when evaluated on
the validation set and the test set.

It is likely that the classifier with all five sources
(ABCDE) performed the best overall. It is in a sta-
tistical tie (p > .05) with ABDE, the classifier that
omits Wikipedia as a source.

Most of the classifiers perfomed better on the
test set than on the validation set, as shown by
the dotted line. Some simple classifiers with very
few features performed particularly well on the
test set. One surprisingly high-performing clas-
sifier was A (ConceptNet vector similarity), which
gets a test F1 score of 0.7355 ± 0.0091. This is
simple enough to be called a heuristic instead of
a classifier, and we can express it in closed form.
It is equivalent to this expression over ConceptNet
Numberbatch embeddings:

sim(term1, att)− sim(term2, att) > 0.0961

where sim(a, b) =

√
max

(
a·b

||a||·||b|| , 0
)

.

It is interesting to note that source A (Concept-
Net vector similarity) appears to dominate source
B (ConceptNet SME) on the test data. SME led to
improvements on the validation set, but on the test
set, any classifier containing AB performs equal to
or worse than the same classifier with B removed.
This may indicate that the SME features were the
most prone to overfitting, or that the validation set
generally required making more difficult distinc-
tions than the test set.

6 Reproducing These Results

The code for our classifier is avail-
able on GitHub at https://
github.com/LuminosoInsight/
semeval-discriminatt, and its in-
put data is downloadable from https:
//zenodo.org/record/1183358.

References
Antoine Bordes, Xavier Glorot, Jason Weston, and

Yoshua Bengio. 2014. A semantic matching energy
function for learning with multi-relational data. Ma-
chine Learning, 94(2):233–259.

988

Rong-En Fan, Kai-Wei Chang, Cho-Jui Hsieh, Xiang-
Rui Wang, and Chih-Jen Lin. 2008. LIBLINEAR:
A library for large linear classification. Journal of
Machine Learning Research, 9(Aug):1871–1874.

Ivan Krasin, Tom Duerig, Neil Alldrin, Vittorio Fer-
rari, Sami Abu-El-Haija, Alina Kuznetsova, Hassan
Rom, Jasper Uijlings, Stefan Popov, Andreas Veit,
Serge Belongie, Victor Gomes, Abhinav Gupta,
Chen Sun, Gal Chechik, David Cai, Zheyun Feng,
Dhyanesh Narayanan, and Kevin Murphy. 2017.
OpenImages: A public dataset for large-scale multi-
label and multi-class image classification.

Yuri Lin, Jean-Baptiste Michel, Erez Lieberman Aiden,
Jon Orwant, Will Brockman, and Slav Petrov. 2012.
Syntactic annotations for the Google Books Ngram
Corpus. In Proceedings of the ACL 2012 sys-
tem demonstrations, pages 169–174. Association for
Computational Linguistics.

George Miller, Christiane Fellbaum, Randee Tengi,
P Wakefield, H Langone, and BR Haskell. 1998.
WordNet. MIT Press Cambridge.

Denis Paperno, Alessandro Lenci, and Alicia Krebs.
2018. SemEval-2018 Task 10: Capturing discrimi-
native attributes. In Proceedings of the 12th Interna-
tional Workshop on Semantic Evaluation (SemEval-
2018), New Orleans, LA, United States. Association
for Computational Linguistics.

Greg Pass, Abdur Chowdhury, and Cayley Torgeson.
2006. A picture of search. In Proceedings of the
1st International Conference on Scalable Informa-
tion Systems, InfoScale ’06, New York, NY, USA.
ACM.

Adam Paszke, Sam Gross, Soumith Chintala, Gre-
gory Chanan, Edward Yang, Zachary DeVito, Zem-
ing Lin, Alban Desmaison, Luca Antiga, and Adam
Lerer. 2017. Automatic differentiation in pytorch.

Fabian Pedregosa, Gaël Varoquaux, Alexandre Gram-
fort, Vincent Michel, Bertrand Thirion, Olivier
Grisel, Mathieu Blondel, Peter Prettenhofer, Ron
Weiss, Vincent Dubourg, et al. 2011. Scikit-learn:
Machine learning in Python. Journal of machine
learning research, 12(Oct):2825–2830.

Robert Speer, Joshua Chin, and Catherine Havasi.
2017. ConceptNet 5.5: An open multilingual graph
of general knowledge. In AAAI, San Francisco.

Robert Speer and Joanna Lowry-Duda. 2017. Concept-
Net at SemEval-2017 task 2: Extending word em-
beddings with multilingual relational knowledge. In
Proceedings of the 11th International Workshop on
Semantic Evaluation (SemEval-2017), pages 85–89,
Vancouver, Canada. Association for Computational
Linguistics.

Wikipedia. 2017. Wikipedia, the free encyclopedia —
English data export. (A collaborative project with
thousands of authors.) Retrieved from https://
dumps.wikimedia.org/enwiki/ on 2017-
12-20.

989

Proceedings of the 12th International Workshop on Semantic Evaluation (SemEval-2018), pages 990–994
New Orleans, Louisiana, June 5–6, 2018. ©2018 Association for Computational Linguistics

BomJi at SemEval-2018 Task 10:
Combining Vector-, Pattern- and Graph-based Information

to Identify Discriminative Attributes
Enrico Santus1, Chris Biemann2, Emmanuele Chersoni3

esantus@mit.edu,
biemann@informatik.uni-hamburg.de,

emmanuelechersoni@gmail.com
1 Massachussetts Institute of Technology,

2 Universität Hamburg,
3 Aix-Marseille University

Abstract

This paper describes BomJi, a supervised sys-
tem for capturing discriminative attributes in
word pairs (e.g. yellow as discriminative for
banana over watermelon). The system relies
on an XGB classifier trained on carefully engi-
neered graph-, pattern- and word embedding-
based features. It participated in the SemEval-
2018 Task 10 on Capturing Discriminative At-
tributes, achieving an F1 score of 0.73 and
ranking 2nd out of 26 participant systems.

1 Introduction

The recent introduction of popular software
packages for training neural word embeddings
(Mikolov et al., 2013a,b; Levy and Goldberg,
2014) has led to an increase of the number of stud-
ies dedicated to lexical similarity and to remark-
able performance improvements on related tasks
(Baroni et al., 2014).

However, the validity of similarity estimation
as the only benchmark for semantic representa-
tions has been questioned, for several reasons.
One for all, most evaluation datasets provide
human-elicited similarity scores, with the conse-
quences that the ratings are subjective and the
performance of some automated systems is al-
ready above the upper bound of the inter-annotator
agreement (Batchkarov et al., 2016; Faruqui et al.,
2016; Santus et al., 2016a).

Originally proposed as an alternative bench-
mark for Distributional Semantic Models (DSMs),
the Discriminative Attributes task focuses in-
stead on the extraction of semantic differences
between lexical meanings (Krebs and Paperno,
2016): given two words and an attribute (i.e., a
discrete semantic feature), a system has to pre-
dict whether the attribute describes a difference
between the corresponding concepts or not (e.g.
wing is an attribute of plane, but not of helicopter).

Since even related words may differ for some
non-shared attributes (e.g. hypernyms and hy-
ponyms), the ability of automatically recognize
discriminative features would be an extremely
useful addition for the creation of ontologies and
other types of lexical resources and would make
machine decisions interpretable, enabling human
validation (Biemann et al., 2018). Moreover, one
can think to applications to many other NLP do-
mains, such as machine translation and dialogue
systems (Krebs and Paperno, 2016).

In the present contribution, we describe the
BomJi classification system, which we used for
the identification of discriminative features be-
tween concept pairs. According to the official
evaluation results provided by the organizers1, our
system ranked second out of 26 participants. Our
score, F1 = 0.73 lags slightly behind the best
score of 0.75. After the evaluation period, we run
further experiments including all investigated fea-
tures and found that the system can achieve up to
0.75 F1 score.

2 Capturing Discriminative Attributes

2.1 Task and Dataset Description

The task of capturing discriminative attributes be-
tween words can be described as a binary classi-
fication task, in which the system has to assign a
positive label if the feature is discriminative for the
first concept over the second one, and a negative
label otherwise.

In the test data, the first two words correspond to
the concepts being compared (they are called, re-
spectively, the pivot and the comparison term) and
the third word is the feature, which could describe
a discriminative attribute or not (some examples
are shown in Table 1). In the paper, we will refer

1https://competitions.codalab.org/
competitions/17326#results

990

Pivot Comparison Feature Label
belt plate buckles 1

orange cherry sections 1
razor brush mink 0

necklace bracelet clasp 0

Table 1: Examples of triples from the training dataset.

Dataset Examples Features Split P-N
Training 17,782 1,292 37.06%-62.94%

Validation 2,722 576 50.1%-49.9%
Test 2,340 577 44.74%-55.26%

Table 2: Number of examples, distinctive features and
Positive-Negative split for each dataset.

to the elements of the triples as w1, w2 and feat.
A training and validation set have been provided

for system development (figures in Table 2).

2.2 Embeddings and Graphs

For the Discriminative Attributes task, we com-
bined word embeddings, patterns and information
extracted from a graph-based distributional model.

Concerning the word embeddings, we used the
vectors produced by two popular frameworks for
word embeddings: Word2Vec (Mikolov et al.,
2013a,b) and GloVe (Pennington et al., 2014).2

The Word2Vec Skip-Gram architecture is a single-
layer neural network, based on the dot-product be-
tween word vectors, in which the vector represen-
tation is optimized to predict the context of a tar-
get word given the word itself. The context gen-
erally consists of a word window of a fixed width
around the target. The other framework, GloVe, is
similar to traditional count models based on ma-
trix factorization (Turney and Pantel, 2010; Baroni
et al., 2014), in the sense that vectors are trained
on global word-word co-occurrence counts. In the
case of GloVe, the training objective is to learn
word vectors such that their dot product equals
the logarithm of the probability of the word to co-
occur (Pennington et al., 2014).

As for graph-based information, we used the Jo-
BimText architecture introduced by Biemann and
Riedl (2013). In JoBimText, lexical items are rep-
resented as the set of their p most salient contexts,
where the contexts are words connected to the tar-
get by a given syntactic link or by a lexical pattern,
and saliency is defined as an association measure

2The pre-trained vectors are available, respectively,
at https://code.google.com/archive/p/
word2vec/ (Google News, 300 dimensions) and at
https://nlp.stanford.edu/projects/glove/
(Common Crawl, 840B tokens, 300 dimensions).

between target and context, such as Positive Lo-
cal Mutual Information (Evert, 2004). Differently
from vector models, similarity between words in
JoBimText is simply based on the overlap count
of their common contexts.

Regarding patterns, first we extracted sentences
where words and their features co-occur from a
web-scale sentence-based index of English web
(Panchenko et al., 2018) and then we extracted the
patterns connecting our target words.

2.3 Methodology

The predictions submitted for the evaluation of
Task 10 were obtained with a system that consists
of a classifier, the Extreme Gradient Boosting (or
XGBoost, Chen and Guestrin (2016)), trained on
vectors aggregating carefully engineered graph-,
pattern- and word embedding features.

In this section, we provide an overview of each
feature type, leaving the discussion of their contri-
bution to Section 3. The total of 55,026 features
we used can be divided into five major groups.

CO-OCCURRENCE. Thirteen features re-
lated to word and word-feature frequency were
calculated on the basis of the information ex-
tracted from a corpus of 3.2B words, correspond-
ing to about 20% of the Common Crawl. For each
word-feature combination (i.e. w1 − feat and
w2 − feat), we calculated: i) the co-occurrence
count; ii) word count; iii) feature count; iv) Posi-
tive Pointwise Mutual Information (PPMI (Church
and Hanks, 1990)) between each word and the fea-
ture; v) Positive Local Mutual Information (PLMI
(Evert, 2004)) between each word and the feature.
Further, we added three features representing the
subtractions between the values of i), iv) and v)
for the two word-feature combinations.

JOBIMTEXT. Another set of twenty-four fea-
tures comes directly from JoBimText. They were
calculated after extracting information through
the public accessible JoBimText API3, which re-
turns a JSON file containing - for every tar-
get - a sorted list of N features and their as-
sociation scores (up to N = 1, 000). As Jo-
BimText distinguishes features according to their
POS and dependency roles (i.e. features are
in form WORD#POS#DEPENDENCY), a given
feat may appear multiple times in different POS-
dependency combinations. However, we found
that feat rarely appears in the top N features

3See www.jobimtext.org

991

of w1 and w2, so we calculated our features not
only for the given targets (i.e. wx), but also
for the first among their top 10 neighbors for
which feat was found (i.e. top(neighbor(wx) 3
feat,max = 10)) and the first among the top 10
feat neighbors for which the target was found (i.e.
top(neighbor(feat) 3 wx,max = 10)). This al-
lowed us to check also whether the neighbors of
the given words were associated with the candi-
date discriminative attributes or vice versa. The
features are defined as follows (here they are de-
scribed only with reference to the query on wx,
but this should be generalized to the other cases):

• prediction by rank: it is 1 if feat is ranked higher for
w1 than for w2, 0 otherwise;

• prediction by score: it is 1 if the total score between
w1− feat is higher than for w2 − feat, 0 otherwise;

• total score: sum of the scores of w1−feat if prediction
by score is 1, of w2 − feat otherwise;

• top rank: top rank of feat for w1 if prediction by score
is 1, for w2 otherwise;

• bottom rank: last rank of feat for w1 if prediction by
score is 1, for w2 otherwise;

• number of occurrences: count of how many times a
feature appears among the features of w1 if prediction
by score is 1, otherwise the occurrences among the fea-
tures w2 are counted;

• which neighbor?: integer showing whether the query
was performed on w1/w2 (in this case it would be ini-
tialized to 0), or on its neighbors (in this case it would
be initialized with the rank of the first neighbor where
feat was found);

• which feat neighbor?: integer showing whether the
query was performed on w1/w2 (in this case it would
be initialized to 0) or on the feat neighbors (in this
case it would be initialized with the rank of the first
feat neighbor where w1 or w2 was found).

WORD EMBEDDING FEATURES. Mikolov
et al. (2013a) showed how vector offsets encode
semantic information. We decided to include five
features computed from either the Word2Vec or
the Glove vectors, in order to take advantage of
the offset information.

They are computed, respectively, as: cos((w1−
w2), feat), cos((w1 − feat), (w2 − feat)),
cos((w1− feat), w2), cos((w2− feat), w1). Fi-
nally, also the cosine between the word vectors
(i.e. cos((w1, w2)) has been included.

WORD EMBEDDING VECTORS. These
features are the simple concatenation of the three
vectors of w1, w2 and feat. Again, we have two

versions of these features, one for Word2Vec and
one for Glove.

PATTERNS. In order to characterize the rela-
tion between words and features, we used an index
to extract patterns occurring between them, inde-
pendently of the order in which they appeared, and
limited the maximum number of results to 10,000
sentences.

The patterns consist of sequences of either lem-
matized tokens, POS or dependency tags, which
are used to abstract from the surface form, thereby
increasing the recall. Since the number of ex-
tracted patterns was far too high, we decided to use
only patterns with a frequency higher than 100,
obtaining a set of 53,136 items, using the observed
pattern frequency per word pair as a predictor.

3 Experiments

3.1 Choosing the Training Set

During the practice phase, we noticed that the
training set and the validation set show very differ-
ent distributions. Running 5-fold cross validation
experiments on either dataset, we obtained very
high scores (sometimes close to 0.95). However,
such scores did not generalize to the other dataset,
where they dropped to about 0.60.

This was only partially due to lexical memo-
rization (some lexemes were present in multiple
triples of the same dataset, cf. Levy et al. (2015);
Santus et al. (2016b)). In fact, investigating the
frequency of the words in the triples, we found
that, on average, in our index, the first and the
second words, w1 and w2, were about four times
more frequent in the validation than in the train-
ing set (respectively 4.7M and 5.4M versus 0.9M
and 1M); similarly, the third word (i.e. feat)
was almost twice more frequent in the validation
than in the training set (i.e. 3.9M versus 2.9M).
When the test set was made available, we could
verify that its frequency distribution resembled the
one in the validation set, with the first and second
words respectively at 3.3M and 2M , and the third
at about 4.5M occurrences.

Given these differences, we have chosen to train
our system only on the validation set, tuning the
hyper-parameters by means of 5-fold cross vali-
dation. Because of its small size, we decided to
train our second submission on a derived train-
ing set (henceforth New Validation), consisting of
the 2,722 triples from the validation set plus 2,278
triples randomly extracted from the training, for a

992

Feature Type # Feat
Training/Test Validation/Test NewValidation/Test
17547 vs. 2340 2722 vs 2340 5000 vs 2340

F1 F1++ F1 F1++ F1 F1++
1 Co-occurrence 13 0.68 0.68 0.72 0.72 0.72 0.72
2 W2V Features 5 0.55 NA 0.66 NA 0.63 NA
3 W2V + Vectors 905 0.57 0.68 (1 & 3) 0.67 0.75 (1 & 3) 0.66 0.73 (1 & 3)
4 Glove Features 5 0.61 NA 0.66 NA 0.67 NA
5 Glove + Vectors 905 0.62 0.66 (1 & 5) 0.68 0.74 (1 & 5) 0.68 0.73 (1 & 5)

6 JoBim Features 24 0.53
0.68 (1 & 6)

0.67 (1, 3 & 6)
0.66 (1, 5 & 6)

0.62
0.74 (1 & 6)

0.75 (1, 3 & 6)
*0.74 (1, 5 & 6)

0.62
0.74 (1 & 6)

0.75 (1, 3 & 6)
*0.73 (1, 5 & 6)

7 Patterns 53176 0.56
0.67 (1, 3, 6 & 7)
0.67 (1, 5, 6 & 7)

0.68 (1, 3, 5, 6 & 7)
0.52

0.75 (1, 3, 6 & 7)
0.74 (1, 5, 6 & 7)

0.74 (1, 3, 5, 6 & 7)
0.51

0.71 (1, 3, 6 & 7)
0.69 (1, 5, 6 & 7)

0.69 (1, 3, 5, 6 & 7)

Table 3: Results both in absolute (F1) and in incremental terms (F1++: in brackets the features used to obtain the
score) on the test set, organized by training set. In bold, we report the best results. In bold-italics, we report the
submitted systems.

total of 5,000 samples. The use of different train-
ing data was the only difference between the two
submissions.

3.2 Model Selection

During the practice phase, we performed ex-
periments with several classifiers, including K-
Neighbors (with K = 3), Decision Tree
(with max depth = 5), Random Forest (with
max depth = 5, n estimators = 10 and
max features = 1), Multilayer Perceptron (with
alpha = 1), AdaBoost and XGB (the latter two
with default settings).

Before running the classifiers, we also used
Linear Support Vector Classification (SVC) with
penalty =′ l1′ and we tested several values of C
(i.e. 0.05, 0.1, 0.25, 0.5, 1) for feature selection.

In almost all settings we found that the best per-
forming classifiers were the Random Forest, the
Multilayer Perceptron and, above all others, XGB.
With respect to the value of C for the feature se-
lection, instead, we noticed that it varied in rela-
tion to the feature types, with minor influence on
the performance of XGB (+/-2%). In the final sub-
mission, therefore, we opted for removing this step
from the pipeline and for keeping the full vector.

Concerning feature selection, we found that the
pattern features had a neutral effect on the perfor-
mance during cross validation. Similarly we no-
ticed that Glove and Word2Vec performed compa-
rably. Thus, we opted for submitting the output of
the systems without using the pattern features and
only Glove features (Word2Vec had lower cover-
age on the dataset). As it can be noticed in Table
3, however, this decision has slightly lowered the

performance of our system in the competition.

3.3 Feature Contribution

In order to measure the contribution of the fea-
tures, we re-ran the experiments over the test set,
after training our model on the three available sets:
training, validation and new validation sets.

Results are reported in Table 3, in which it is
easy to notice a few things: the performance is
strongly related to the choice of the training set,
with Validation being better that New Validation,
which is in turn better than the original Training
set; the thirteen co-occurrence features are those
that provide the major contribution to the perfor-
mance, reaching a F1 score of 0.72. Further useful
features are the word embedding vectors (900 fea-
tures), the word embedding features (5 features)
and, to some extent, the information from JoBim-
Text. Pattern-based features perform the worst, al-
most on par with random guessing.

The submitted systems do not correspond to the
systems obtaining the best performance in post-
evaluation experiments (see the bold and bold-
italics scores in Table 3); this was due to the use of
Glove instead of Word2Vec in our submitted sys-
tems, because none of the embedding models had
an edge over the other in the validation process.

4 Conclusions

In this paper we have presented BomJi, a su-
pervised system for capturing discriminative at-
tributes in word pairs (e.g. yellow as discrimina-
tive for banana over watermelon). BomJi relies on
an XGB classifier trained on carefully engineered

993

graph-, pattern- and word embedding-based fea-
tures. In the paper we have reported the contribu-
tion for each features, discussing the model selec-
tion and showing that a major factor affecting the
performance was the choice of the training data.

In the official Task 10 evaluation, our submitted
systems achieved an F1 score of 0.73, ranking 2nd
out of 26 participant systems.

References

Marco Baroni, Georgiana Dinu, and Germán
Kruszewski. 2014. Don’t Count, Predict! A
Systematic Comparison of Context-Counting
vs. Context-Predicting Semantic Vectors. In
Proceedings of ACL, pages 238–247.

Miroslav Batchkarov, Thomas Kober, Jeremy Reffin,
Julie Weeds, and David Weir. 2016. A Critique of
Word Similarity as a Method for Evaluating Distri-
butional Semantic Models. In Proceedings of the 1st
Workshop on Evaluating Vector-Space Representa-
tions for NLP, pages 7–12.

Chris Biemann, Stefano Faralli, Alexander Panchenko,
and Simone Paolo Ponzetto. 2018. A Framework
for Enriching Lexical Semantic Resources with Dis-
tributional Semantics. Natural Language Engineer-
ing, 24(2):265–312.

Chris Biemann and Martin Riedl. 2013. Text: Now in
2D! A Framework for Lexical Expansion with Con-
textual Similarity. Journal of Language Modeling,
1(1):55–95.

Tianqi Chen and Carlos Guestrin. 2016. XGBoost: A
Scalable Tree Boosting System. In Proceedings of
the 22nd ACM Sigkdd International Conference on
Knowledge Discovery and Data Mining, pages 785–
794.

Kenneth W. Church and Patrick Hanks. 1990. Word
Association Norms, Mutual Information, and Lexi-
cography. Computational Linguistics, 16(1):22–29.

Stefan Evert. 2004. The Statistics of Word Cooccur-
rences: Word Pairs and Collocations. Ph.D. thesis.

Manaal Faruqui, Yulia Tsvetkov, Pushpendre Rastogi,
and Chris Dyer. 2016. Problems With Evaluation
of Word Embeddings Using Word Similarity Tasks.
In Proceedings of the 1st Workshop on Evaluating
Vector-Space Representations for NLP, pages 30–
35.

Alicia Krebs and Denis Paperno. 2016. Capturing
Discriminative Attributes in a Distributional Space:
Task Proposal. In Proceedings of the 1st Work-
shop on Evaluating Vector-Space Representations
for NLP, pages 51–54.

Omer Levy and Yoav Goldberg. 2014. Neural Word
Embedding as Implicit Matrix Factorization. In Ad-
vances in Neural Information Processing Systems
27, pages 2177–2185.

Omer Levy, Steffen Remus, Chris Biemann, and Ido
Dagan. 2015. Do Supervised Distributional Meth-
ods Really Learn Lexical Inference Relations? In
Proceedings of NAACL-HLT, pages 970–976.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jef-
frey Dean. 2013a. Efficient Estimation of Word
Representations in Vector Space. arXiv preprint
arXiv:1301.3781.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Cor-
rado, and Jeffrey Dean. 2013b. Distributed Repre-
sentations of Words and Phrases and Their Compo-
sitionality. In Proceedings of the 26th International
Conference on Neural Information Processing Sys-
tems - Volume 2, NIPS, pages 3111–3119.

Alexander Panchenko, Eugen Ruppert, Stefano Faralli,
Simone Paolo Ponzetto, and Chris Biemann. 2018.
Building a Web-Scale Dependency-Parsed Corpus
from Common Crawl. In Proceedings of LREC.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. Glove: Global vectors for word
representation. In Proceedings of EMNLP, pages
1532–1543.

Enrico Santus, Emmanuele Chersoni, Alessandro
Lenci, Chu-Ren Huang, and Philippe Blache. 2016a.
Testing APSyn Against Vector Cosine on Similarity
Estimation. In Proceedings of PACLIC, pages 229–
238.

Enrico Santus, Alessandro Lenci, Tin-Shing Chiu, Qin
Lu, and Chu-Ren Huang. 2016b. Nine Features in a
Random Forest to Learn Taxonomical Semantic Re-
lations. In Proceedings of LREC.

Peter D. Turney and Patrick Pantel. 2010. From Fre-
quency to Meaning: Vector Space Models of Se-
mantics. Journal of Artificial Intelligence Research,
37:141–188.

994

Proceedings of the 12th International Workshop on Semantic Evaluation (SemEval-2018), pages 995–998
New Orleans, Louisiana, June 5–6, 2018. ©2018 Association for Computational Linguistics

Igevorse at SemEval-2018 Task 10: Exploring an Impact of Word
Embeddings Concatenation for Capturing Discriminative Attributes

Maxim Grishin
Innopois University
Innopolis, Russia

m.grishin@innopolis.ru
igevorse@gmail.com

Abstract

Semantic differences extraction is a challeng-
ing problem in Natural Language Processing
and its solution is necessary for a realistic se-
mantic representation as similarity informa-
tion is not sufficient to capture individual as-
pects of meaning. This paper presents a com-
parison of several approaches for capturing
discriminative attributes and considers an im-
pact of concatenation of several word embed-
dings of different nature on the classification
performance. A similarity-based method is
proposed and compared with machine learn-
ing approaches. It is shown that this method
outperforms others on all the considered word
vector models and there is a performance in-
crease when concatenated datasets are used.

1 Introduction

Detecting semantic similarity is done well by
state-of-the-art models. However, if the model is
only good at similarity detection, it would have a
limited practical usage (Krebs et al., 2018), since
the task of understanding the semantics of words
cannot be done without capturing semantic differ-
ences.

Semantic difference is a ternary relation be-
tween two concepts (apple, banana) and a dis-
criminative feature (red) that characterizes the
first concept but not the other. Semantic differ-
ence detection is a binary classification task: given
a triple (apple, banana, red), the task is to deter-
mine whether it exemplifies a semantic difference
or not (Krebs et al., 2018). In this paper two con-
cepts and a discriminative attribute attr are repre-
sented as (word1, word2, attr).

This research was done during the participation
in ”Capturing Discriminative Attributes” task of
SemEval 2018 competition.

The paper is organized as follows. Section 2
describes the methods used. Section 3 shows the

results and analyzes them. Section 4 mentions fu-
ture directions. Section 5 concludes the paper.

2 Methods

There were several approaches considered: classi-
cal machine learning algorithms and a similarity-
based model.

2.1 Data Preparation

Dataset is provided by SemEval 2018 challenge
organizers.

• The train set consists of 17501 auto-
matically generated samples of the form
(word1, word2, attr, y), where y is a bi-
nary target variable indicating whether attr
is a discriminative attribute for word1 and
word2. Classes are imbalanced: there are
63.83% samples for class 0 (not a discrimi-
native attribute) and 36.16% for class 1 (is a
discriminative attribute).

• The validation set contains 2722 manually
curated samples of the same form. Classes
are almost balanced: 50.1% of samples have
class 0, 49.9% - class 1.

• There are 2340 samples in the test set, 55.3%
for class 0, 44.7% for class 1.

Each triple (word1, word2, attr) was con-
verted to a numeric vector using pre-trained word
embeddings. These vectors form a vector space,
such that words that share common contexts in the
corpus are located in close proximity to one an-
other in space.

Three word embedding models were used:

1. Google News (Mihltz, 2017) corpus word
vector model (3 million 300-dimension En-
glish word vectors). The disadvantage of this

995

model is that despite having a lot of words,
it includes misspellings and multiple cases of
the same word (McCormick, 2017). Its vo-
cabulary does not contain all words from the
dataset, so 45 samples (1.27%) are missing.

2. Wikipedia 2014 + Gigaword 5 (Pennington
et al., 2014) dataset has 400 thousand 300-
dimension word vectors. It contains almost
all words from the dataset: only 4 samples
(0.11 %) are missing.

3. Concatenated word embeddings of different
nature, i.e. collected on different corporas us-
ing different methods. It consists of concate-
nated word vectors from both Google News
and Wikipedia models. Thus, each word is
represented as a 600-dimensional vector.

The problem of missing words was solved by
replacing them with another spelling or a syn-
onym. For each triple (word1, word2, attr) cor-
responding word vectors were concatenated, so
each triple is converted to a 900-dimensional vec-
tor when using Google News or Wikipedia word
vectors, and 1800-dimensional for concatenated
word embeddings.

2.2 Machine Learning Approaches

There were several machine learning classification
approaches chosen for comparison: logistic re-
gression, stochastic gradient descent (SGD) clas-
sifier, k-nearest neighbors classifier and artificial
neural network.

The best parameters that maximize F1 score on
the validation set:

• Logistic regression with L2 regularization
with regularization strength set to 10.

• Stochastic gradient descent classifier with
perceptron loss and regularization term set to
1e-05.

• K-nearest neighbors with k = 1 using Man-
hattan distance metric and weighting points
by the inverse of their distance.

• The multilayer perceptron neural network
model was built using Keras with TensorFlow
as a backend. Structure of this network is de-
scribed in Table 1.

Layer # of inputs Activation function
Input 900 -
Dense 128 tanh
Dense 64 relu
Dense 1 sigmoid

Table 1: Structure of the neural network.

2.3 Similarity-based Approach

Another approach is to derive an interpretable al-
gorithm based on knowledge about word seman-
tics. The intention is to use word similarities
for distinguishing discriminative attributes while
keeping the model as simple as possible. Cosine
similarity between words a and b is represented as
the cosine between corresponding word vectors A
and B.

sim(a, b) = cos(A,B) =
A ·B
‖A‖‖B‖ .

For each given triple (word1, word2, attr) sim-
ilarities of attr with word1 and attr with word2
are computed. Then obtained similarities are com-
pared using a threshold t. If the gap between them
is big enough, i.e.

sim(word1, attr) > sim(word2, attr) + t,

attr is treated as a discriminative attribute of
word1. It means that the attr word vector is much
closer to word1 than to word2 in vector space.
Thus, this model has only one tunable hyperpa-
rameter: t. Dependency of F1 score on the thresh-
old is shown in Figure 1.

0.000 0.025 0.050 0.075 0.100 0.125 0.150
Threshold

0.54

0.56

0.58

0.60

0.62

0.64

F
1

sc
or

e

Google News

Wikipedia + Gigaword

Combined word vectors

Figure 1: Dependency of F1 score on the threshold in
similarity-based model.

996

Model
Embeddings Google News Wikipedia Concatenated

K-nearest neighbors 0.4778 0.4832 0.4809
SGD classifier 0.5211 0.5036 0.5169
Logistic regression 0.4843 0.5036 0.5120
Neural network 0.5169 0.5625 0.5440
Similarity-based 0.6066 0.6126 0.6131

Table 2: Experimental results on the validation set (F1 score).

3 Results and Discussions

3.1 Experimental Results

Models are evaluated on F1 measure.

Figure 1 shows that the behavior of the
similarity-based model is highly dependent on the
selected word vectors model. Thresholds, learned
from the train set for Google News, Wikipedia
and concatenated word vectors are 0.053030,
0.066667 and 0.060606 correspondingly.

Experimental results on the validation set are
presented in Table 2. K-nearest neighbors showed
the worst F1 score, while neural network is the
best among machine learning methods. The pro-
posed similarity-based method outperforms all
other models on all considered word embeddings.

Word embeddings with the highest F1 score
on the validation set were chosen for the final
comparison: Google News for SGD classifier,
Wikipedia for k-nearest neighbors and neural net-
work, concatenated embeddings for logistic re-
gression and similarity-based model. The results
on the test set are presented in Table 3. K-nearest
neighbors has the smallest F1 score. In contrast
with the performance on the validation set, the re-
sult of neural network is noticeably worse, which
means that overfitting took place. Logistic regres-
sion performed better than SGD classifier, while
similarity-based method showed the highest score.

Model Best F1 score
K-nearest neighbors 0.502
SGD classifier 0.515
Logistic regression 0.527
Neural network 0.503
Similarity-based 0.646

Table 3: Experimental results on the test set.

3.2 Error Analysis

In this section error analysis of similarity-based
model is provided. During the evaluation on the
test set 65.5% of samples were classified correctly,
while 34.5% were not. Predicted classes are im-
balanced: 1436 (61.4%) samples were classified
as 0 and 904 (38.6%) samples as 1.

Considering misclassified samples, 332 of them
were assigned class 1 while it should have been
0, whereas 475 of them got label 0, when it should
have got 1. As we can see, the model is more likely
to consider attributes as non-discriminative.

108 distinct attributes (130 samples) were mis-
classified completely. 270 distinct attributes (480
samples) were classified 100% correctly. 70 at-
tributes (180 samples) were classified 50% cor-
rectly.

Attributes could be divided in several cate-
gories. For example, there are attributes represent-
ing colors: ‘black’, ‘brown’, ‘red’, ‘blue’ and ‘yel-
low’. It worth mentioning that 43.36% of samples
with color attributes were misclassified, which is
more than 34.5% of misclassified samples for the
whole test set.

As can be seen from Table 4, other categories of
attributes have 33.4% of misclassified samples.

Attribute Misclassified Total occurences
Color 111 (43.36%) 256
Other 696 (33.4%) 2084
Total 807 (34.5%) 2340

Table 4: Error analysis of attribute categories.

4 Future Work

It was shown that there is a performance increase
of the similarity-based model when concatenated
word vectors are used. Training a Word2Vec
model specifically for the task instead of using
pre-trained models can solve the mentioned prob-

997

lem of missing words and multiple cases of the
same word in word embeddings.

According to SemEval Task 10 organizers,
training set contains noisy data, which was not
verified by humans. Another potential improve-
ment is training models only on validation dataset,
since it was created manually and should not have
noise.

It was discovered that samples with color at-
tributes have higher misclassification rate than
other samples. There are proposed solutions
for learning discriminative properties of images
(Lazaridou et al., 2016), which could be combined
with a text-based approach to derive a multimodal
classifier.

It also worth analyzing other categories of at-
tributes and their misclassification rate.

5 Conclusion

This paper presents several approaches for cap-
turing discriminative attributes. The main con-
tribution is the proposed similarity-based method,
which is interpretable and takes into account the
semantic similarity of words. This method is com-
pared with machine learning methods, such as Lo-
gistic regression, SGD classifier, KNN and Multi-
layer perceptron neural network. Experiments on

three pre-trained word vector models show that
similarity-based method outperforms others. It
was discovered that concatenation of word em-
beddings of different nature leads to a quality im-
provement for several methods.

References
Alicia Krebs, Alessandro Lenci, and Denis Paperno.

2018. Semeval-2018 task 10: Capturing discrim-
inative attributes. In Proceedings of the 12th inter-
national workshop on semantic evaluation (SemEval
2018).

Angeliki Lazaridou, Nghia The Pham, and Marco Ba-
roni. 2016. The red one!: On learning to refer
to things based on their discriminative properties.
CoRR, abs/1603.02618.

Chris McCormick. 2017. Google’s pre-trained
word2vec model in Matlab. https://github.com/
chrisjmccormick/word2vec matlab. [Online; ac-
cessed 15-April-2018].

Mrton Mihltz. 2017. Pre-trained Word2vec Google
News corpus. https://github.com/mmihaltz/
word2vec-GoogleNews-vectors. [Online; accessed
15-April-2018].

Jeffrey Pennington, Richard Socher, and Christopher D
Manning. 2014. GloVe: Global Vectors for Word
Representation. In Empirical Methods in Natural
Language Processing (EMNLP), pages 1532–1543.

998

Proceedings of the 12th International Workshop on Semantic Evaluation (SemEval-2018), pages 999–1002
New Orleans, Louisiana, June 5–6, 2018. ©2018 Association for Computational Linguistics

ECNU at SemEval-2018 Task 10: Evaluating Simple but Effective
Features on Machine Learning Methods for Semantic Difference Detection

Yunxiao Zhou1, Man Lan1,2∗ ,Yuanbin Wu1,2

1Department of Computer Science and Technology,
East China Normal University, Shanghai, P.R.China

2Shanghai Key Laboratory of Multidimensional Information Processing
51164500061@stu.ecnu.edu.cn, {mlan, ybwu}@cs.ecnu.edu.cn

Abstract

This paper describes the system we submit-
ted to Task 10 (Capturing Discriminative At-
tributes) in SemEval 2018. Given a triple
(word1, word2, attribute), this task is to predic-
t whether it exemplifies a semantic difference
or not. We design and investigate several word
embedding features, PMI features and Word-
Net features together with supervised machine
learning methods to address this task. Official-
ly released results show that our system ranks
above average.

1 Introduction

The Capturing Discriminative Attributes task (Pa-
perno et al., 2018) in SemEval 2018 is to provide
a standard testbed for semantic difference detec-
tion, which will benefit many other application-
s in Natural Language Processing (NLP), such as
automatized lexicography and machine translation
(Krebs and Paperno, 2016). The goal of this task
is to predict whether a word is a discriminative at-
tribute between two concepts. Specifically, given
two concepts and an attribute, the task is to predict
whether the first concept has this attribute but the
second concept does not. For example, given the
concepts apple and pineapple, participants are re-
quired to predict whether the attribute seeds char-
acterizes the first concept but not the other. In oth-
er words, semantic difference detection is a binary
classification task: given a triple (apple, pineap-
ple, seeds), the task is to determine whether it ex-
emplifies a semantic difference or not, i.e., positive
or negative. Table 1 shows more data examples.

If word1 has a specific attribute but word2
does not, then the correlation of attribute and
word1 should be higher than that of attribute and
word2. The semantic similarity is in the same way.
In view of the above considerations, to address
this task, we explore supervised machine learn-

word1 word2 attribute label
apple pineapple seeds positive
candle chandelier melts positive
apple coconut brine negative
apple cucumber seeds negative

Table 1: Examples from the training data.

ing methods which use PMI features and Word-
Net features. In recent years, more and more s-
tudies have focused on word embeddings as an al-
ternative to traditional hand-crafted features (Pen-
nington et al., 2014; Tang et al., 2014). Therefore
we use word embeddings to obtain the semantic
similarity as word embedding features. Besides,
we perform a series of experiments to explore the
effectiveness of feature types and supervised ma-
chine learning algorithms.

2 System Description

To perform semantic difference detection of given
triples, we adopt supervised learning algorithms
with several features that represent semantic sim-
ilarity and correlation. In the next paragraphs, we
will introduce feature engineering and learning al-
gorithms.

2.1 Feature Engineering
In this task, we design three types of features:
WordNet features, PMI features and word embed-
ding features.

2.1.1 WordNet Features
WordNet (Miller et al., 1990) is an on-line lexical
reference system, which is organized by semantic
properties of words. Therefore, the WordNet fea-
tures are designed to utilize WordNet to obtain the
semantic information.

Each word may have a number of different se-
mantics, corresponding to different senses in the

999

WordNet. And the WordNet provides the defi-
nitions of the senses for each word. If a word
is an attribute of the target word, the attribute
word may appear in the sense definition of the
target word. For example, a semantic definition
of “snow” is “white crystals of frozen water” and
“white” is the attribute of “snow” which appears
in the above definition. Therefore, we design the
following features to record the semantic informa-
tion. Given the triple (word1, word2, attribute),
we first load all senses definitions of word1, word2
and attribute. Then we implement four types of
binary features: (1) whether attribute appears in
the senses definitions of word1, (2) whether at-
tribute appears in the senses definitions of word2,
(3) whether word1 appears in the senses definition-
s of attribute and (4) whether word2 appears in the
senses definitions of attribute. As a result, we get
four features.

2.1.2 PMI Features
Pointwise mutual information (PMI) (Church and
Hanks, 1990) is a measure of association between
two things used in information theory and statistic-
s. And in NLP, this metric can be used to measure
the correlation between two words. The higher the
PMI, the stronger the correlation between the two
words. So we obtain the PMI features of the given
triple (word1, word2, attribute). We record the P-
MI value of word1 and attribute as well as the PMI
value of word2 and attribute as PMI features. The
PMI values we used are calculated using Wikime-
dia dumps1 and directly obtained from SEMILAR
(Rus et al., 2013). As a result, we get four PMI
features.

2.1.3 Word Embedding Features
Word embedding is a continuous-valued vector
representation for each word, which usually car-
ries syntactic and semantic information. In this
work, we employ two types of word embed-
dings which are pre-trained word vectors down-
loaded from Internet with dimensionality of 300:
GoogleW2V (Mikolov et al., 2013) and GloVe
(Pennington et al., 2014). The former is pre-
trained on News domain, available in Google2.
And the latter is pre-trained on tweets, available
in GloVe3.

• WE similarity: Given the triple (word1,
1https://dumps.wikimedia.org/enwiki/20170724/
2https://code.google.com/archive/p/word2vec
3http://nlp.stanford.edu/projects/glove

word2, attribute), if attribute characterizes
word1 rather than word2, the semantic sim-
ilarity score of attribute and word1 should be
higher than that of attribute and word2. Af-
ter acquiring the vectors of three words in
the triple, we calculate the similarity scores
of attribute and word1 as well as attribute
and word2 using cosine similarity and pear-
son coefficient. Finally, we got four word em-
bedding similarity features.

• WE operation: In addition to the above sim-
ilarity functions, we also explore two differ-
ent ways of interaction between word vec-
tors in order to capture the semantic infor-
mation as much as possible. The operations
between three vectors include concatenation
and subtraction. Specifically, given the vec-
tors V1, V2 and Va of the triple (word1, word2,
attribute), the concatenation operation is to
concatenate three vectors as [V1 ⊕ V2 ⊕ Va],
and the subtraction operation is the element-
wise subtraction of attribute from word1 and
word2 respectively, i.e., [V1 − Va] and [V2 −
Va]. Since we employ two types of word em-
beddings, finally, we get 3, 000 dimension-
al vectors as word embedding operation fea-
tures.

2.2 Learning Algorithm
We grant this task as a binary classification task
and explore six supervised machine learning al-
gorithms: Logistic Regression (LR) and Support
Vector Machine (SVM) both implemented in Lib-
linear toolkit (Fan et al., 2008), Stochastic Gradi-
ent Descent (SGD), RandomForest and AdaBoost
all implemented in scikit-learn tools (Pedregosa
et al., 2011), and XGBoost4 provided in (Chen
and Guestrin, 2016). All these algorithms are used
with default parameters.

3 Experiments

3.1 Datasets
Table 2 shows the statistics and distributions of
training, development, test data sets of this task
provided by task organizers.

3.2 Evaluation Metric
To evaluate the system performance, the official
evaluation criterion is macro-averaged F1-score,

4https://github.com/dmlc/xgboost

1000

Dataset Positive Negative Total
train 6,330 (36%) 11,171 (64%) 17,501
dev 1,364 (50%) 1,358 (50%) 2,722
test 1,293 (55%) 1,047 (45%) 2,340

Table 2: The statistics of data sets in training, devel-
opment and test data. The numbers in brackets are the
percentages of different classes in each data set.

which is calculated among two classes (positive
and negative) as follows:

Fmacro =
FPos + FNeg

2

3.3 Experiments on Training Data
Firstly, in order to explore the effectiveness of
each feature type, we perform a series of exper-
iments. Table 3 lists the comparison of different
contributions made by different features on devel-
opment data with Logistic Regression algorithm.
We observe the following findings.

(1) The simple PMI features and word embed-
ding similarity features are effective for semantic
difference detection and it shows the effectiveness
of semantic similarity and correlation for semantic
difference detection.

(2) The combination of the first three features
not only achieves the best performance for the
overall classification but also for each class. These
three types of features make contributions to se-
mantic difference detection task. Therefore we use
these features in following experiments.

(3) The result of merging the WE operation
features is not as good as we expected and
the possible reason is that the dimensionality of
WE operation features is quite huger than the oth-
er three features(3, 000 Vs. 16), which dominates
the performance of classification rather than oth-
er low dimension features. And the operations of
word vectors are too simple to detect the semantic
difference.

(4) The WordNet features are not as effective
as expected, and the reason maybe that in many
cases the attribute words do not appear in the sense
definitions of concepts, so we can not get nonzero
features.

Secondly, we also explore the performance of
different supervised machine learning algorithms.
Table 4 lists the comparison of different learning
algorithms with WordNet, PMI and WE similarity
features. We find:

Features FPos FNeg Fmacro

WordNet 0.683 0.237 0.459
.+PMI 0.653 0.598 0.625 (+0.166)
.+WE similarity 0.684 0.64 0.662 (+0.037)
.+WE operation 0.561 0.616 0.588 (-0.074)

Table 3: Performance of different features on develop-
ment data in terms of F1-score. “.+” means to add cur-
rent features to the previous feature set. The numbers in
the brackets are the performance increments compared
with the previous results.

(1) LR and SVM achive better results than the
other supervised machine learning algorithms and
Logistic Regression algorithm achieves the best
performance when considering single classifica-
tion algorithm.

(2) The ensemble of the top 3 machine learning
algorithms (LR + SVM + XGBoost) achives high-
er performance than any single learning algorithm,
i.e., 0.663.

Algorithms FPos FNeg Fmacro

LR 0.684 0.64 0.662
SVM 0.681 0.64 0.661
XGBoost 0.598 0.613 0.606
SGD 0.623 0.559 0.591
AdaBoost 0.631 0.551 0.591
RandomForest 0.565 0.607 0.586
Ensemble 0.683 0.643 0.663

Table 4: Performance of different learning algorithms
on development data in terms of F1-score.

Based on the above results, the system configu-
ration of our final submission is ensemble of LR,
SVM and XGBoost algorithms with WordNet, P-
MI and WE similarity features. The models are
trained on both training and development data set-
s.

3.4 Results on Test Data

Table 5 shows the results of our system and the
top-ranked systems provided by organizers for this
semantic difference detection task. Compared
with the top ranked systems, there is much room
for improvement in our work. There are several
possible reasons for this performance lag. First,
the features we used are simple. We only record
some semantic similarity information and correla-
tions between words. More complex interactions
of word vectors could be tried. Second, we on-
ly extract features from three words that need to

1001

be classified and have not used some extended re-
sources like the sentences returned from search en-
gines when retrieving these words.

Team ID Fmacro

ECNU 0.67 (8)
SUNNYNLP 0.75 (1)

BomJi 0.73 (2)
NTU NLP Lab 0.73 (2)

Table 5: Performance of our system and the top-ranked
systems. The numbers in the brackets are the official
rankings.

4 Conclusion

In this paper, we extract WordNet features, PMI
features and word embedding features from triples
and adopt supervised machine learning algorithms
to perform semantic difference detection. The sys-
tem performance ranks above average. In future
work, we consider to try more complex interac-
tions of word vectors and use more web resources
to capture semantic information.

Acknowledgements

This work is is supported by the Science and
Technology Commission of Shanghai Municipali-
ty Grant (No. 15ZR1410700) and the open project
of Shanghai Key Laboratory of Trustworthy Com-
puting (No.07dz22304201604).

References

Tianqi Chen and Carlos Guestrin. 2016. XGBoost: A
scalable tree boosting system. In Proceedings of the
22nd acm sigkdd international conference on knowl-
edge discovery and data mining, pages 785–794.
ACM.

Kenneth Ward Church and Patrick Hanks. 1990. Word
association norms, mutual information, and lexicog-
raphy. Computational linguistics, 16(1):22–29.

Rong-En Fan, Kai-Wei Chang, Cho-Jui Hsieh, Xiang-
Rui Wang, and Chih-Jen Lin. 2008. Liblinear: A
library for large linear classification. Journal of ma-
chine learning research, 9(Aug):1871–1874.

Alicia Krebs and Denis Paperno. 2016. Capturing dis-
criminative attributes in a distributional space: Task
proposal. In Proceedings of the 1st Workshop on
Evaluating Vector-Space Representations for NLP,
pages 51–54.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013. Distributed representa-
tions of words and phrases and their compositional-
ity. In Advances in neural information processing
systems, pages 3111–3119.

George A Miller, Richard Beckwith, Christiane Fell-
baum, Derek Gross, and Katherine J Miller.
1990. Introduction to WordNet: An on-line lexi-
cal database. International journal of lexicography,
3(4):235–244.

Denis Paperno, Alessandro Lenci, and Alicia Krebs.
2018. Semeval-2018 Task 10: Capturing discrim-
inative attributes. In Proceedings of International
Workshop on Semantic Evaluation (SemEval-2018),
New Orleans, LA, USA.

Fabian Pedregosa, Gaël Varoquaux, Alexandre Gram-
fort, Vincent Michel, Bertrand Thirion, Olivier
Grisel, Mathieu Blondel, Peter Prettenhofer, Ron
Weiss, Vincent Dubourg, et al. 2011. Scikit-learn:
Machine learning in python. Journal of machine
learning research, 12(Oct):2825–2830.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. GloVe: Global vectors for word
representation. In Proceedings of the 2014 confer-
ence on empirical methods in natural language pro-
cessing (EMNLP), pages 1532–1543.

Vasile Rus, Mihai Lintean, Rajendra Banjade, Nobal
Niraula, and Dan Stefanescu. 2013. Semilar: The
semantic similarity toolkit. In Proceedings of the
51st Annual Meeting of the Association for Compu-
tational Linguistics: System Demonstrations, pages
163–168.

Duyu Tang, Furu Wei, Nan Yang, Ming Zhou, Ting Li-
u, and Bing Qin. 2014. Learning sentiment-specific
word embedding for twitter sentiment classification.
In Proceedings of the 52nd Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), volume 1, pages 1555–1565.

1002

Proceedings of the 12th International Workshop on Semantic Evaluation (SemEval-2018), pages 1003–1007
New Orleans, Louisiana, June 5–6, 2018. ©2018 Association for Computational Linguistics

AmritaNLP at SemEval-2018 Task 10: Capturing discriminative
attributes using convolution neural network over global vector

representation.
Vivek Vinayan, Anand Kumar M, Soman K P

Center for Computational Engineering and Networking (CEN)
Amrita School of Engineering, Coimbatore

Amrita Vishwa Vidyapeetham, India
cb.en.p2cen16018@cb.students.amrita.edu,

m anandkumar@cb.amrita.edu

Abstract

The ”Capturing Discriminative Attributes”
sharedtask is the tenth task, conjoint with Se-
mEval2018. The task is to predict if a word
can capture distinguishing attributes of one
word from another. We use GloVe word em-
bedding, pre-trained on openly sourced cor-
pus for this task. A base representation is
initially established over varied dimensions.
These representations are evaluated based on
validation scores over two models, first on an
SVM based classifier and second on a one di-
mension CNN model. The scores are used to
further develop the representation with vector
combinations, by considering various distance
measures. These measures correspond to off-
set vectors which are concatenated as features,
mainly to improve upon the F1score, with the
best accuracy. The features are then further
tuned on the validation scores, to achieve high-
est F1score. Our evaluation narrowed down to
two representations, classified on CNN mod-
els, having a total dimension length of 1204 &
1203 for the final submissions. Of the two, the
latter feature representation delivered our best
F1score of 0.658024 (as per result1.)

1 Introduction

As famously quoted by firth ”You shall know a
word by the company it keeps” that is, the se-
mantic information embedded in a representation
can only be described by the words surrounding it.
This can only get you somewhere when, company
itself is unambiguous and a representation goes
through capturing ”hypothetically” every sense of
the word over a corpus. The capturing discrim-
inative attributes sharedtask, conducted with Se-
mEval(2018) is a task proposed by alicia kerbs
and denis paperno (2016). It describes, how lexi-
cal similarity may not be enough to access qualita-
tively, the semantic information for a multitude of
tasks. Wherein they propose that, with this task, a

1Results/Evaluation under the team name ”AmritaNLP”

system can be modelled for effectively extracting
certain semantic differences in the words for un-
derstanding the sense embedded within them. This
is provided as a proof of concept dataset for this
sharedtask, where a certain word is used to check
if it can distinguish between a pair of words. The
dataset in itself seems simple where, in the training
set a label information for the two classes, positive
or negative are provided making this a binary clas-
sification task.

The three words that are provided in each instance
are given in the order as, a pivot word followed
by a compare word and ending with a attribute or
feature word, that may or may not be associated
with the pivot word. Based on the last word it
is decided, if that attribute word actually is a dis-
tinguishing feature that is able to discriminate the
pivot word from that of the compare word. e.g (ap-
ple,banana,red) here apple is the pivot word, ba-
nana the compare word and red, the word which
decides if this is a feature that can be associate
with apple to distinguish it from banana. This is a
rather oversimplified example to a human, as from
a very young age we are taught to distinguish ob-
jects based on visual aid, which simplifies the task
for us as we have embedded subconsciously to dif-
ferentiate the fruits mainly based on their color
or size. This information is seldom used to de-
scribe the fruits when illustrated in written form,
thus lacking that visual form of information for
a machine to make this judgment call, making it
that much more difficult to take an informed deci-
sion. Their work is based on a method, that was
presented by Lazaridou et al. (2016) for predic-
tion of distinguishing feature with use of image as
reference for visual discrimination attribute iden-
tification task, more prominently it was related to
capturing of lexical information using offset vec-
tors.

1003

Figure 1: SVM architecture for feature representation.

2 Dataset

The dataset in the sharedtask2018 (Krebs and Pa-
perno, 2018) is divided into three sets namely train
test and validation. The training set contains auto-
matically generated examples which are not man-
ually curated. Whereas, the test and validation set
are manually verified examples which include just
over 5000 instances. The test set instances are
made keeping in consideration that feature word
overlap between the words in train and test are
minimal. The validation set is similar to that of
the test set and is used for parameter tuning of the
models.

There are in total 17782 instances in the train-
ing set, 2722 in the validation set and 2340 in the
test set. With the automated nature of the data, the
training set is noisier in comparison to that of the
validation and test set.
In the dataset, positive examples are anno-
tated with the label ’1’, signifying that the at-
tribute/feature word is a positive association only
to the pivot word in the order presented and
not vice verse. e.g. (airplane,helicopter,wings)
here ’wings’ is an attribute only associated to
’airplane’, whereas (helicopter,airplane,wings) is
an invalid entry. The combination of (heli-
copter,airplane) in this order will only be added if
the concept ’helicopter’ has a feature that airplane
does not have in this set.
On the other hand, the negative examples are an-
notated with label ’0’ at the end. These are con-
sidered when the attribute/feature words are either
similar to both pivot and the compare word or are
dissimilar to them, e.g. (Tractor,scooter,wheels),
(Spider,elephant,legs) e.t.c.

In the training dataset, there is a total of 508
unique concepts (pivot) words, of which 375
words have positive attributes and 505 of these
have negative attributes, seeing the big contrast be-
tween the two labeled attributes we can infer that

not every concept word has an equal proportion of
labeled instances.

Wp Pivot word
Wc Compare word
Wa Attribute word

Cos p cosine similarity (WpWa)
Cos c cosine similarity (WcWa)
Dis p kulsinski(WpWa)
Dis c kulsinski(WcWa)
Min p minkowski(WpWap=1)
Min c minkowski(WcWap=1)

Coref p corrcoef(WpWa)
Coref c corrcoef(WcWa)

Sqeu sqeuclidean(W,Wa)

Table 1: Nomenclature for feature representation.

Figure 2: Convolution neural network architecture for
feature representation.

3 Methodology

Here discussed are methods which are considered
in our implementation. On a cursory look at the
dataset, we decided to go with a pre-trained rep-
resentation of the words, rather than preparing a
word embedded representation of the dataset. This
is devised with a notion that, word pair associated
models on this dataset would not help educate the

1004

SN
GloVe

Pre-trained
word Vectors

Representation
Representation

Length

Validation

Accuracy F1score

1

6B 50d

Wp,Wc,Wa 150 51.16 42.20
2 Wp,Wa,Wc,Wa 200 51.08 42.10

3
Wp,Wa,Wc,Wa,

Cos p
201 51.48 51.10

4
Wp,Wa,Wc,Wa,

Cos p, Dis p
202 51.37 50.90

5 CR 1 200 50.28 41.90
6 CR 2,Cos 202 47.59 46.00
7 CR 2,Cos,Min c,Min p 204 49.61 46.80
8

6B 300d
Wp,Wc,Wa 900 52.04 45.80

9 Wp,Wa,Wc,Wa 1200 51.64 45.57
10

840B 300d
Wp,Wc,Wa 900 51.10 41.00

11 Wp,Wa,Wc,Wa 1200 51.41 40.34

Table 2: Validation accuracy for varied dimension GloVe representation using SVM.

SN
GloVe

Pre-trained
word Vectors

Representation
Representation

Length

Validation

Accuracy F1score

1
6B 300d

Wp,Wc,Wa 900 51.3 41.1
2 Wp,Wa,Wc,Wa 1200 50.9 43.8
3 CR 1 1200 50.8 42.2
4

840B 300d
Wp,Wc,Wa 900 52.0 51.0

5 Wp,Wa,Wc,Wa 1200 52.0 45.3
6 CR 1 1200 53.8 48.4

Table 3: Validation accuracy for varied dimension GloVe representation using CNN.

embedding. Further, using the pre-trained embed-
dings, the representation are evaluated based on
validation accuracy with machine learning tech-
niques like SVM, where we use ten fold ten cross
with linear kernel for validation. This algorithm
was earlier explored for sense disambiguation of
a native language (Tamil), having rich feature rep-
resentation presented in his work by Anand Ku-
mar et al. (2014a), and is also implemented in
his work (2014b). A simple one dimension con-
volution neural networks model is also illustrated
upon, based on the works by Vinayakumar et al.
(2017). The CNN model is fixed on an empiri-
cal method where the representation is convoluted
with twenty filters, of size three, on a batch size
of sixty-four, with activation ReLU over a way-
ward ten epochs, which are flattened and reduced
to thirty-two and later to one at the final layer for
evaluation. The architectures for the models, are
as shown in Figure 1 & 2 respectively.
Moving ahead, a GloVe pre-trained word embed-

ding (Pennington et al., 2014) of various dimen-
sions are considered, which is learned over pub-
lic data, available under the PDDL.2 (100, 300 di-
mension word representation, embedded over 6B,
840B sizes common crawl corpus are considered).
The focus is on using one of these representations
for our base method. Upon these embedding, vari-
ous distance, dissimilarity and similarity measures
are considered, to provide a measure between vec-
tors or in our case between the words.

In Table 1, provided are abbreviations that we
used through out the upcoming discussion regard-
ing the methods and the representations. With
the implementation of pre-trained vectors, we re-
fer few vector measurement technique that could
be used to measure a sense of semantic similar-
ity among them. These vector carry within them
a spacial correlation between words which has
be discussed in their work by (Pennington et al.,

2 Public Domain Dedication and License v1.0.
http://www.opendatacommons.org/licenses/pddl/1.0/.

1005

SN Conditional representation (CR)
If : Else :

1 Wp,(Wp + Wa),Wc,Wa Wp,(Wp – Wa),Wc,(Wc – Wa)
2 Wp,(Wp+ Wa),Wc,Wa,(Dis c – Dis p) Wp,(Wp– Wa),Wc,(Wc – Wa),(Dis c – Dis p)

Table 4: Various feature representation taken for the classification task.

SN
GloVe

Pre-trained
word Vectors

Representation
Representation

length
Validation

Accuracy F1score
1

840B 300d

CR 1, Dis 1201 53.1 47.3
2 CR 1, Cos 1201 50.3 50.1
3 CR 1, Dis, Cos 1202 55.1 53.1
4 CR 1, Min, Dis p, Dis c 1203 50.9 51.6
5 CR 1, (Coref p – Coref c), Min c, Min p 1203 51.1 56.8
6 CR 1, Cos, Min c, Min p 1203 54.6 58.9
7 CR 2 1201 51.3 45.6
8 CR 2, (Coref p – Coref c), Min c, Min p 1204 55.7 56.4
9 CR 2, (Min c – Min p) 1202 61.5 55.8
10 CR 2, Cos, Min c, Min p 1204 60.1 56.1
11 CR 2, Min c, Min p 1203 61.1 60.2
12 CR 2, (Cos p – Cos c), Min c, Min p 1204 58.9 51.3
13 CR 2, Cos, Min c, Min p, Sqeu 1205 54.4 54.9

Table 5: Validation accuracy of 300 dimension, GloVe representations on 840B common crawl tokens using CNN.

2014).
Initially, a simple concatenation of the three

words is considered as an instance, which are the
pivot(Wp), compare(Wc) and attribute(Wa) words,
for the entire dataset. The same representation is
taken of two different dimensions lengths as men-
tioned earlier. Based on the model fit across train-
ing data, the validation accuracy and F1score are
measured, these are as shown in Table 2. Simi-
larly, these representations are also passed on to a
convolution neural network, where their respective
accuracy and F1scores are measured and shown in
Table 3.
With an empirical approach, the representations
are further extended by appending (Wa) to (Wp)
and (Wc) sequentially and passing it to the two
models(As shown by representation two in the Ta-
ble 2). The SVM model did not show any sig-
nificant improvement in the score, over the rep-
resentations. In comparison, the CNN model ob-
served a slight improvement in scores on the same
representation. Word embedding being a vec-
tor representation in higher dimensional space,
has proved (Pennington et al., 2014) to captures
spatial information, that can be employed to use
as features for the representation. This is ex-
erted by using certain measures between the (Wp),
(Wa) and (Wc), (Wa). These measures are cal-

culated using Scipy libraries (Jones et al., 2001)
and Sklearn library (Pedregosa et al., 2011) to find
the distance, similarity and dissimilarity measure
between the two 1-D array words. The similar-
ity of the two words indicates how similarly as-
sociated these words are, this measure is calcu-
lated using the cosine distance which is a scalar
representation that signifies, larger the number be-
tween the two words the more similar they are.
Whereas, the dissimilarity is the vice-versa of this
measure. Of the various distance measures ex-
plored, we considered euclidean, chebyshev, sqeu-
clidean, minkowski and for dissimilarity measures
jaccard, kulsinski, Hamming and these are imple-
mented using the Scipy (Jones et al., 2001) li-
brary. Amongst the measures considered, kulsin-
ski dissimilarity gave the nearest disambiguation
between the comparison of Wp, Wa and Wc, Wa,
thus we chose it as the threshold measured for dif-
ferentiating the representations between a positive
and a negative instances i.e if the dissimilarity of
Wc, Wa is greater than that of the Wp, Wa then
the Wa were added to the WP and concatenated
to form a representation. Otherwise the second
representation is considered where the Wa is sub-
tracted from both the words. This is as shown in
the first conditional representation (CR) of the Ta-
ble 4.

1006

The CR based representation accuracy de-
creased for SVM models. Whereas, the F1score
and accuracy increased for the CNN model over
the initial representations shown in Table 3. Thus,
the further representation where improved on the
CNN model to achieve better F1score with good
accuracy. Comparing the two GloVe pre-trained
vectors of 300 dimension for varied corpus size
shown in Table 3, the 840B 300d trained model
has achieved better F1score and accuracy com-
pared to the other, thus moving along further with
word embedding.

In Table 5 we see that subsequent represen-
tations, built upon the simple representation of
CR1 are concatenated with kulsinski(Dis3) dis-
tance and Cosine similarity (Cos3) have improved
the F1score. As show in the third representa-
tion, where the F1score increased to 53.1% with a
considerable accuracy over the previous iteration.
Further improvisation on CR1 representation with
different features like correlation coefficient have
increased the F1score to 56.8% but brought down
the accuracy. Representation six is the next fea-
ture representation for which the accuracy, as well
as the F1score, increases to 54.6% and 58.9% re-
spectively. After many iterations of adding fea-
tures, the representation eleven is the one that gave
the highest F1score with the best accuracy, and
this representation based model is submitted along
with the representation ten, which also had good
F1score, but a lower accuracy on the validation
dataset.

4 Results & Conclusion

The tenth and eleventh representation of Table 5
are the two feature set based on CNN models,
which are predicted on the test set and submit-
ted for the competition. The results published for
our models showed that the first set was scored at
0.52, where as the second set was scored at 0.66
for F1score. Comparing the predicted labels of
the two systems with that of the gold standard, we
see that our system fit over the tenth representation
predicted correctly only 399 of 1293 as negative
example and 855 of 1047 as the positive example.
On the eleventh representation it gave 857 of 1293
and 687 of 1047 for negative and positive example
respectively. Comparing the outcomes of the sys-

3These representations are same as earlier mentioned in
Table 1 wherein here the pivot word based measure is taken
for the ’if’ condition and the compare word based on the other

tems we see that majority of negative sample are
mis-classified for system ten, on the other hand,
the eleventh system improved upon this classifica-
tion of the negative samples which increased the
F1score for the system.

References
M Anand Kumar, S Rajendran, and KP Soman. 2014a.

Tamil word sense disambiguation using support vec-
tor machines with rich features. International Jour-
nal of Applied Engineering Research, 9(20):7609–
20.

M Anand Kumar and KP Soman. 2014b. Amrita-cen@
fire-2014: Morpheme extraction and lemmatization
for tamil using machine learning. In ACM Interna-
tional Conference Proceeding Series, pages 112–20.

Eric Jones, Travis Oliphant, Pearu Peterson, et al. 2001.
SciPy: Open source scientific tools for Python.

Alicia Krebs and Denis Paperno. 2016. Capturing dis-
criminative attributes in a distributional space: Task
proposal. In Proceedings of the 1st Workshop on
Evaluating Vector-Space Representations for NLP,
pages 51–54.

Alicia Krebs and Denis Paperno. 2018. Semeval-2018
Task 10: Capturing discriminative attributes. In
Proceedings of International Workshop on Semantic
Evaluation (SemEval-2018).

Angeliki Lazaridou, Nghia The Pham, and Marco Ba-
roni. 2016. The red one!: On learning to refer
to things based on their discriminative properties.
arXiv preprint arXiv:1603.02618.

Fabian Pedregosa, Gaël Varoquaux, Alexandre Gram-
fort, Vincent Michel, Bertrand Thirion, Olivier
Grisel, Mathieu Blondel, Peter Prettenhofer, Ron
Weiss, Vincent Dubourg, et al. 2011. Scikit-learn:
Machine learning in python. Journal of machine
learning research, 12(Oct):2825–2830.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. Glove: Global vectors for word
representation. In Proceedings of the 2014 confer-
ence on empirical methods in natural language pro-
cessing (EMNLP), pages 1532–1543.

R. Vinayakumar, K. P. Soman, and Prabaharan Poor-
nachandran. 2017. Applying convolutional neural
network for network intrusion detection. 2017 In-
ternational Conference on Advances in Computing,
Communications and Informatics (ICACCI), pages
1222–1228.

1007

Proceedings of the 12th International Workshop on Semantic Evaluation (SemEval-2018), pages 1008–1012
New Orleans, Louisiana, June 5–6, 2018. ©2018 Association for Computational Linguistics

Discriminator at SemEval-2018 Task 10: Minimally Supervised
Discrimination

Artur Kulmizev
CLCG

University of Groningen
a.kulmizev@student.rug.nl

Mostafa Abdou
CLCG

University of Groningen
m.abdou@student.rug.nl

Vinit Ravishankar
Institute of Formal and Applied Linguistics

Charles University in Prague
vinit.ravishankar@gmail.com

Malvina Nissim
CLCG

University of Groningen
m.nissim@rug.nl

Abstract

We participated to the SemEval-2018 shared
task on capturing discriminative attributes
(Task 10) with a simple system that ranked
8th amongst the 26 teams that took part in the
evaluation. Our final score was 0.67, which
is competitive with the winning score of 0.75,
particularly given that our system is a mini-
mally supervised system that requires no train-
ing and minimal parameter optimisation. In
addition to describing the submitted system,
and discussing the implications of the relative
success of such a system on this task, we also
report on other, more complex models we ex-
perimented with.

1 Introduction and Background

Traditional evaluation tasks for semantic mod-
els have aimed to evaluate semantic relatedness
(Bruni et al., 2014; Agirre et al., 2009) or similar-
ity (Hill et al., 2014). More recently, analogy tasks
(Mikolov et al., 2013; Gladkova et al., 2016; Ab-
dou et al., 2018) have emerged in order to assess
a model’s ability to correctly answer questions in
the form of “a is to b as c is to ?” using vector
arithmetic. However, these approaches are not suf-
ficient in evaluating the semantic competence of
any given model: there are numerous flaws with
similarity and analogy-based evaluation, the most
pressing being the lack of correlation with down-
stream performance in real-world tasks (Schnabel
et al., 2015). Furthermore, though analogy ques-
tions can assess how well certain semantic rela-
tions are modeled (country : capital, country: lan-
guage), this is arguably more of a measure of con-
text co-occurrence than it is a testament to any se-
mantic understanding.

Capturing Discriminative Attributes is a novel
semantic evaluation task which aims to assess the
extent to which semantic models can capture se-
mantic differences between words. Particularly,

the task is concerned with identifying how well
a given model represents attributes that discrimi-
nate between two related semantic concepts. For
instance, given the terms steak and salad, meat
would serve as a discriminative attribute, drawing
a distinction between the former and latter as a
quality that the two do not have in common.

2 Data

The data provided for this task was split between
training and validation sections, with 17,500 and
2,721 samples comprising the former and latter,
respectively. Every sample was composed of three
terms (pivot, comparison, and feature) and their
corresponding label ∈ {0, 1}. A sample was
deemed as discriminative (label 1) if the feature
served as an attribute that distinguished the pivot
from the comparison. Otherwise, the sample was
labeled as non-discriminative (0). Examples from
the data are shown in Table 2. Please note that di-
rectionality is meaningful, i.e., swapping the pivot
and comparison columns for the first two exam-
ples can change the label. For instance, pink is
considered as discriminative for pig with regard to
sheep (label is 1), but not the other way round (la-
bel would be 0). For a detailed description of the
dataset, see (Krebs et al., 2018).

pivot comparison feature label

sandwiches breakfast lunch 1
pig sheep pink 1
banana raisin round 0
uncle father male 0

Table 1: Samples of provided data. In the first two
samples, the feature is discriminative (sandwiches are
eaten at lunch; pigs are pink). In the last two, the fea-
ture is not discriminative (neither bananas nor raisins
are round; an uncle and a father are both male).

1008

It is important to note that only 5,000 instances
were manually verified for consistency out of the
combined training and validation datasets. Thus,
whilst the entire validation set comprised of a
subset of these verified samples (2,721), only
2,279 were represented in the training set (13%).
Furthermore, the training set was heavily im-
balanced towards negative (“non-discriminative”)
samples, accounting for a total 11,171 out of
17,500 (63.8%). As such, we largely focused
our experiments on the validation set, since it was
comprised entirely of manually curated data.

3 Models

In all models we describe, words not present in the
vocabulary of a vector-space model were assigned
the same ‘unknown’ vector drawn randomly from
a normal distribution.

3.1 Baseline

The baseline we constructed was a simple support-
vector machine classifier. We converted each word
into a vector from a vector-space model. For ev-
ery 4-tuple example, we passed the concatenation
of vectors of the three words as a feature with the
fourth as a label. This model failed to learn suf-
ficiently, performing at near-chance levels on the
validation set for all vector-space models.

3.2 Neural Models

Another model (NN) that we investigated was a
feed-forward network with the concatenation of
the word vector representations as an input layer,
and a single binary output neuron as the output.
Ultimately, we employed three hidden layers of
sizes 450, 200 and 100, with ReLU as the ac-
tivation function for each, and 20% dropout be-
tween each layer. Our output function was a sig-
moid function. We used binary cross-entropy loss
with a learning rate of 10−5 and Adam (Kingma
and Ba, 2014) as our stochastic optimization func-
tion. This model outperformed the baseline for all
vector-space models on the validation set.

Our next model (NN-WN) was built on the in-
tuition that representations of more descriptive el-
ements than just words could prove to be more
helpful. We therefore converted each word into
its first matching definition in WordNet (Miller,
1995), and condensed this definition into a di-
mension 4096 representation using Conneau et al.
(2017)’s BiLSTM-max pooling encoder which is

pre-trained on the Stanford Natural Language In-
ference dataset (Bowman et al., 2015). Similar to
the previous model, this representation was passed
to a feed-forward network, albeit with two hidden
layers of sizes 1024 and 128 and sigmoid non-
linearities. We did not evaluate this model with
every set of embeddings due to time constraints
and disappointing initial results; evaluated on stan-
dard GloVe (840B) embeddings, the performance
of this model on the validation set was slightly
lower than the feed-forward network (NN) (when
utilizing the same vector-space model).

3.3 Discriminator
Our final submitted system (Discriminator), un-
like any of our other models, consisted of a sur-
prisingly simple set of rules which were designed
to leverage the information encoded in distribu-
tional semantic vector-space models (VSM) for
the purpose of classifying an attribute as discrim-
inative or non-discriminative. We relied on the
widely-used metric of cosine similarity; we mea-
sured the cosine similarities between the vector as-
signed to the pivot (word 1), comparison (word 2),
and feature (word 3) in a given VSM. Words not
found in the VSM were assigned the vector for the
UNK token. Our algorithm is summarized in Algo-
rithm 1.

Algorithm 1 Classification algorithm
1: procedure CLASSIFY(w)
2: s12 ← SIM(w1, w2)
3: s13 ← SIM(w1, w3)
4: s23 ← SIM(w2, w3)
5: if s13−s23 > 0.015&s12 > 0.30&s13 >

0.1 & s23 < 0.54 then
6: return 1
7: else
8: return 0

These thresholds were obtained via grid-search
over both the training data and validation data,
per VSM. The range of evaluated thresholds was
between 0 and 0.50, with strides of 0.02. Be-
sides choice of VSM, these thresholds were the
only variable parameters in our model. The VSM
used in our final submission consisted of an av-
erage of three sets of embeddings: GloVe word
embeddings trained on Common Crawl (840B to-
kens) (Pennington et al., 2014), the same GloVe
embeddings post counter-fitting (Mrkšić et al.,
2016) using data from the training and valida-

1009

tion sets, and Paragramsl999 embeddings provided
by Wieting et al. (2015), also post counter-fitting.
Counter-fitting is detailed in Section 4.2. The
VSM obtained by averaging these three models
(AvgVSM) outperformed each individual VSM,
and was therefore submitted as our official system.

4 Model Variations

4.1 Distributional Vector-Space models

In the course of our investigation we tested a large
number of vector-space models which were gen-
erated using different methods. All VSMs were
evaluated with each of our models and with our fi-
nal system in order to determine the model which
best encodes the discriminative information re-
quired for this task. Below is a description of all
VSMs we tried:

(a) Skipgram embeddings trained on the Google
News Corpus (Mikolov et al., 2013).

(b) Glove embeddings trained on Common
Crawl (6B and 840B tokens).

(c) LexVec embeddings trained on Common
Crawl (58B tokens) (Salle et al., 2016).

(d) Paragram embeddings trained on English
Wikipedia1 and tuned on SimLex-999.

(e) Items (b) (840B), (c), and (d) counter-fitted
using the training and validation sets.

(f) AvgVSM: Average of three models cf. Sec-
tion 3.3.

4.2 Counter-fitting

Counter-fitting is a method of post-processing
VSMs to adapt them to certain linguistic con-
straints such as information from semantic lexi-
cons or ontologies. Mrkšić et al. (2016) for in-
stance, successfully used counter-fitting with se-
mantic lexicons to achieve a new state of the art
on the SimLex-999 similarity judgment dataset.

We employed counter-fitting to move pivot and
comparison vectors (from the training set)2 closer
together in the vector-space for all training and
validation examples with label 1, under the ratio-
nale that pivot and comparison words should be
related for a feature to be considered discrimina-
tive.

1December 2, 2013 snapshot
2The lexicon used for counter fitting can be found at

https://github.com/rutrastone/discrimemb

4.3 kNN Averaging

In evaluating VSMs, we experimented with words
outside of the pivot, comparison, feature triples
that occurred in the data. For all three words,
we extracted the respective k-nearest neighbors
(k ∈ {5, 10, 20}) and averaged their correspond-
ing vectors. This was motivated by the intu-
ition that it is not just the pivot, comparison pairs
that determine a discriminative feature distance
threshold, but also their general semantic neigh-
borhoods. As in the main approach, we computed
cosine difference thresholds via grid search for
a variety of term-neighborhood, neighborhood-
neighborhood combinations. Unfortunately, this
approach brought marginal improvements (when
tested on the validation set) at best under any con-
figuration of thresholds, models, etc. and was thus
discarded in favor of the much more lightweight
Discriminator model.

4.4 Hierarchical Vector-Space models

Poincaré embeddings (Nickel and Kiela, 2017)
are a new approach to learning representations
for datasets with a latent hierarchal structure.
By learning embeddings in hyperbolic spaces in-
stead of euclidean vector spaces using an al-
gorithm based on Riemannian optimization, this
method has been shown to outperform Euclidean
embeddings on datasets with latent hierarchies,
such as HYPERLEX (Véronis, 2004), a dataset
used to evaluate if semantic models can capture
hyponymy-hypernymy or lexical entailment rela-
tionships. This can be seen as closely related to
capturing concept attribute relationships, as is re-
quired in this task. We used two different sets:

• Size 50 embeddings, trained on the all Word-
Net common-noun hypernyms, provided by
Nickel and Kiela (2017)3;

• Size 50 embeddings trained on all feature
norm derived concept-attribute pairs (i.e. all
pivot-feature pairs when label is 1).

Since there was no overlap between the features
in the training and testing sets, this method was
not of immediate use for the task, as it could not
account for the features in the test set. Therefore,
our objective was solely to measure the embedding
method’s effectiveness in modeling the dataset’s

3https://github.com/TatsuyaShirakawa/poincare-
embedding

1010

VSM NN (T) Dsc. (T) Dsc. (V)

Skipgram 55.00 65.42 64.62
GloVe (6B) 55.38 66.06 64.30

GloVe (840B) 58.50 65.85 64.96
GloVe-cf (840B) 57.74 64.82 63.47

LexVec 59.66 65.98 64.71
LexVec-cf 60.94 66.29 64.92

Paragramsl999 58.60 66.32 62.68
Paragramsl999-cf 57.80 57.86 62.27
Poincare (Wnet) 51.71 53.56 51.78

Poincare (FN) 57.22 62.29 56.91
AvgVSM 58.63 67.01 68.21

Table 2: Performance of different Vector-space models
on the official test set (T) and the validation set (V).

concept-attribute relations. To achieve this, we
trained it on attribute concept pairs extracted from
the feature norms which were used to build the
task’s dataset (McRae et al., 2005; Krebs et al.,
2018). Since the use of feature norms was not
permitted in this shared task, the results from this
method were not submitted.

5 Results and Discussion

We report the performance of all vector-space
models for each classification system in Table 2.
The NN model is trained on the validation set4

and all results for both models are reported on
the official test set. Validation set results are only
reported for the Discriminator models as the NN
model fails to learn when training on the training
set and testing on the validation set.

5.1 Discriminator
Considering its simple architecture, our system’s
performance was remarkable. Using nothing but
cosine similarity, it performed on a level that is
well above our far more complex models, and
competitive with the task’s best performing sys-
tems. This is demonstrative of two things: a) the
information required to classify an attribute as dis-
criminative or not with respect to two concepts is
(to different extents) present in the distributional
vector-space models, and b) the concatenation of
the vectors associated with each word is not a suf-
ficient feature for our trained models to learn the
simple thresholds which our final model uses. We
hypothesize that this is because concatenation fails

4While larger, the training set is very noisy.

to account for the interactions between the pivot,
comparison, and feature. Further investigation is
needed to assert this.

5.2 Vector-space models
Examining the degree to which different VSM
could capture whether an attribute is discrimina-
tive was one of our main goals. Our initial in-
tuition was that the relationship between concept
and attribute is too specific to be adequately cap-
tured by distributional vector-space models which
are, after all, based only on co-occurrence. Our re-
sults, however, contradict this expectation, show-
ing that they are, to a certain extent, success-
ful. For Discriminator, the best performing vector-
space model was AvgVSM.

Furthermore, we found that counter-fitting us-
ing the training and validation sets did not prove
effective, leading to a degradation in performance,
with the exception of LexVec-cf when it did lead
to improvements and AvgVSM when it was aver-
aged with non-counter-fit models. Further investi-
gation is required to determine exactly under what
conditions counter-fitting works well.

Finally, we note that the WordNet-trained
Poincaré hierarchical vector-space model had low
coverage and performed poorly. However, the
model trained on feature norms showed promise,
particularly as it required far less space, training
time, and data in order to model the dataset when
compared to the distributional models.

6 Conclusion and Future work

In this paper we present Discriminator, our contri-
bution to SemEval 2018 Task 10: Capturing Dis-
criminative Attributes. Though this model is sim-
ple and does not require any training, our mini-
mally supervised thresholding system achieved a
score of 0.67, which was 0.08% below the top sub-
mitted system. We found the average of GloVe
(840B), GloVe counter-fitted, and Paragramsl999

counter-fitted vector-space models to achieve best
performance in our system, out of a set of 8 dif-
ferent models. Future work will explore leverag-
ing image-processing inspired models, given the
intuition that such methods have the ability to
capture attributes-concept relations. Preliminary
work with a 2D convolutional architecture, where
different sets of word embeddings serve as chan-
nels in the feature space, has shown promise.

1011

References
Mostafa Abdou, Artur Kulmizev, and Vinit Ravis-

hankar. 2018. MGAD: Multilingual Generation of
Analogy Datasets. In Proceedings of the Twelfth In-
ternational Conference on Language Resources and
Evaluation (LREC 2018), Paris, France. European
Language Resources Association (ELRA).

Eneko Agirre, Enrique Alfonseca, Keith Hall, Jana
Kravalova, Marius Paşca, and Aitor Soroa. 2009. A
study on similarity and relatedness using distribu-
tional and wordnet-based approaches. In Proceed-
ings of Human Language Technologies: The 2009
Annual Conference of the North American Chap-
ter of the Association for Computational Linguistics,
pages 19–27. Association for Computational Lin-
guistics.

Samuel R Bowman, Gabor Angeli, Christopher Potts,
and Christopher D Manning. 2015. A large anno-
tated corpus for learning natural language inference.
arXiv preprint arXiv:1508.05326.

Elia Bruni, Nam Khanh Tran, and Marco Baroni. 2014.
Multimodal distributional semantics.

Alexis Conneau, Douwe Kiela, Holger Schwenk, Loic
Barrault, and Antoine Bordes. 2017. Supervised
learning of universal sentence representations from
natural language inference data. arXiv preprint
arXiv:1705.02364.

Anna Gladkova, Aleksandr Drozd, and Satoshi Mat-
suoka. 2016. Analogy-based detection of morpho-
logical and semantic relations with word embed-
dings: what works and what doesn’t. In Proceedings
of the NAACL Student Research Workshop, pages 8–
15.

Felix Hill, Roi Reichart, and Anna Korhonen. 2014.
Simlex-999: Evaluating semantic models with (gen-
uine) similarity estimation. CoRR, abs/1408.3456.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Alicia Krebs, Alessandro Lenci, and Denis Paperno.
2018. Semeval-2018 task 10: Capturing discrim-
inative attributes. In Proceedings of the 12th inter-
national workshop on semantic evaluation (SemEval
2018).

Ken McRae, George S Cree, Mark S Seidenberg, and
Chris McNorgan. 2005. Semantic feature produc-
tion norms for a large set of living and nonliving
things. Behavior research methods, 37(4):547–559.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey
Dean. 2013. Efficient estimation of word represen-
tations in vector space. CoRR, abs/1301.3781.

George A Miller. 1995. Wordnet: a lexical database for
english. Communications of the ACM, 38(11):39–
41.

Nikola Mrkšić, Diarmuid O Séaghdha, Blaise Thom-
son, Milica Gašić, Lina Rojas-Barahona, Pei-
Hao Su, David Vandyke, Tsung-Hsien Wen, and
Steve Young. 2016. Counter-fitting word vec-
tors to linguistic constraints. arXiv preprint
arXiv:1603.00892.

Maximillian Nickel and Douwe Kiela. 2017. Poincaré
embeddings for learning hierarchical representa-
tions. In Advances in Neural Information Process-
ing Systems, pages 6341–6350.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. Glove: Global vectors for word
representation. In Proceedings of the 2014 confer-
ence on empirical methods in natural language pro-
cessing (EMNLP), pages 1532–1543.

Alexandre Salle, Marco Idiart, and Aline Villavicencio.
2016. Matrix factorization using window sampling
and negative sampling for improved word represen-
tations. arXiv preprint arXiv:1606.00819.

Tobias Schnabel, Igor Labutov, David M Mimno, and
Thorsten Joachims. 2015. Evaluation methods for
unsupervised word embeddings. In EMNLP, pages
298–307.

Jean Véronis. 2004. Hyperlex: lexical cartography
for information retrieval. Computer Speech & Lan-
guage, 18(3):223–252.

John Wieting, Mohit Bansal, Kevin Gimpel, and
Karen Livescu. 2015. Towards universal para-
phrastic sentence embeddings. arXiv preprint
arXiv:1511.08198.

1012

Proceedings of the 12th International Workshop on Semantic Evaluation (SemEval-2018), pages 1013–1016
New Orleans, Louisiana, June 5–6, 2018. ©2018 Association for Computational Linguistics

UNBNLP at SemEval-2018 Task 10: Evaluating unsupervised approaches
to capturing discriminative attributes

Milton King and Ali Hakimi Parizi and Paul Cook
Faculty of Computer Science, University of New Brunswick

Fredericton, NB E3B 5A3, Canada
milton.king@unb.ca, ahakimi@unb.ca, paul.cook@unb.ca

Abstract

In this paper we present three unsupervised
models for capturing discriminative attributes
based on information from word embed-
dings, WordNet, and sentence-level word co-
occurrence frequency. We show that, of these
approaches, the simple approach based on
word co-occurrence performs best. We fur-
ther consider supervised and unsupervised ap-
proaches to combining information from these
models, but these approaches do not improve
on the word co-occurrence model.

1 Introduction

In the task of capturing discriminative attributes,
a system is presented with three words, and
must determine whether the third word — the
attribute — characterizes the first word, but
not the second. For example, for the triple
(chicken,bread,legs), legs is a discriminative at-
tribute because chickens typically have legs, but
bread typically does not. On the other hand, for
the triple (mother,woman,female), female is not a
discriminative attribute because both mothers and
women are typically female. In the case of the
triple (brush,chocolate,chicken), chicken is not a
discriminative attribute because there is no clear
relationship between chicken and brushes, or be-
tween chicken and chocolate.

In this paper we focus primarily on unsuper-
vised approaches to the task of capturing discrim-
inative attributes. We consider three unsupervised
models drawing on information from word embed-
dings, WordNet (Fellbaum, 1998), and sentence-
level word co-occurrence frequency. We then con-
sider three approaches to combining information
from these models: one unsupervised majority
vote approach, and two supervised approaches.
Somewhat surprisingly, we achieve our best F1
score of 0.61 with the remarkably simple approach

based on word co-occurrence. None of the ap-
proaches to model combination improve over this.

2 Base models

In this section, we discuss three unsupervised
models for identifying discriminative attributes
that incorporate information from word embed-
dings, WordNet, and word co-occurrences. We
refer to these models as “base models”. In
Section 3 we describe unsupervised and super-
vised approaches to combining these base models.
Throughout the description of our models we refer
to the words in the triples in the dataset as word1,
word2, and attribute, respectively.

2.1 Word2vec

If an attribute is a discriminative attribute for
word1, then we hypothesize that word1 and the
attribute will be more semantically similar than
word2 and the attribute. We use similarity of word
embeddings as a proxy for semantic similarity.

We train word2vec’s skip-gram model (Mikolov
et al., 2013) on a snapshot of English Wikipedia
from 1 September 2015 containing roughly 2.6
billion tokens, tokenized using the tokenizer avail-
able in the Stanford CoreNLP tools (Manning
et al., 2014).1 We use a window size of ± 8 and
300 dimensions. We remove all words that occur
less than 15 times in the corpus. We did not set a
maximum vocabulary size. We train our model us-
ing negative sampling, and set the number of train-
ing epochs to 5.

We then calculate the cosine similarity be-
tween the word embeddings for word1 and the
attribute (cos(word1, attribute)), and word2
and the attribute (cos(word2, attribute)).
We label the instance as a discriminative at-

1http://nlp.stanford.edu/software/
corenlp.shtml

1013

tribute if cos(word1, attribute) is greater than
cos(word2, attribute).

2.2 WordNet

In this approach we again hypothesize that if an at-
tribute is a discriminative attribute for word1, then
word1 and the attribute will be more similar than
word2 and the attribute. Here, however, we take
an approach loosely inspired by (Lesk, 1986) and
(Banerjee and Pedersen, 2002), and measure sim-
ilarity based on word overlap in definitions, and
information available through various lexical rela-
tions, in WordNet (Fellbaum, 1998).

For each of word1, word2, and the attribute, we
represent that word by a set of words that includes,
for each synset for the word, all lemmas in each
synset, and all words in the definition and exam-
ple sentences in each synset.2 We then optionally
also include the same information — i.e., the lem-
mas, and the words in the definition and example
sentences — for hypernyms up to level three, and
meronyms. Casefolding was applied to all words
in the sets of words representing word1, word2,
and the attribute.

An instance is labeled as a discriminative at-
tribute if the size of the intersection of the set of
words representing word1 and the set of words
representing the attribute is greater than the inter-
section of the set of words representing word2 and
the set of words representing the attribute.

We considered various configurations of this
model, differing with respect to the level of hy-
pernyms considered, and whether meronyms were
included, for word1, word2, or the attribute. The
specific configurations considered, and their aver-
age F1 score on the validation data, are shown in
Table 1. In subsequent experiments we only use
the configuration found to perform best in Table 1.

2.3 Word co-occurrence

We hypothesize that if an attribute is a discrimi-
native attribute for word1, then word1 and the at-
tribute will co-occur more frequently than word2
and the attribute. Various definitions of co-
occurrence could be used to operationalize this,
for example, co-occurrence within a window of
±n words, a sentence, or a document. In this pre-
liminary work we consider co-occurrence within a
sentence.

2We tokenize the definitions and example sentences us-
ing a simple regular expression-based tokenizer, and exclude
stopwords.

We calculate sentence-level co-occurrences
for each pair of (word1,attribute) and
(word2,attribute) in the provided shared task
datasets using the ukWaC (Ferraresi et al., 2008),
a corpus of roughly 1.9 billion tokens auto-
matically constructed from a web crawl of the
.uk domain. This model then predicts that an
attribute is a discriminative attribute if the number
of sentences in which word1 and the attribute
co-occur is greater than the number of sentences
in which word2 and the attribute co-occur. Based
on its performance on the validation data (see
Section 4), this model was submitted as one of
our two official runs.

3 Combined models

In this section, we consider one unsupervised, and
two supervised, approaches to combining the indi-
vidual models discussed in Section 2.

3.1 Majority vote
In this unsupervised approach we use a majority
vote of the output of the word2vec, WordNet, and
word co-occurrence models. We label an attribute
as a discriminative attribute if at least two of the
three models predict that it is. This approach was
submitted as our second official run, again based
on its performance over the validation data (see
Section 4), and because we are particularly inter-
ested in unsupervised approaches to this task.

3.2 Supervised: output
In this supervised approach, we represent each in-
stance as a vector of three binary features, corre-
sponding to the output of the word2vec, Word-
Net, and word co-occurrence models. We then
train a logistic regression classifier on these rep-
resentations of the instances. Specifically, we use
the logistic regression implementation available in
scikit-learn (Pedregosa et al., 2011), with l2 nor-
malization using the liblinear solver for a maxi-
mum of 100 iterations and a stopping criteria of
0.0001.

3.3 Supervised: features
In this supervised approach we use a total of 8
features that are based on the information used by
the word2vec, WordNet, and word co-occurrence
models. The following features are used:

1. the cosine similarity between the word em-
beddings for word1 and the attribute, based

1014

Synsets
Hypernymy Hypernymy Hypernymy

Meronymy
Validation

level 1 level 2 level 3 average F1
w1,w2,att w1,w2,att w1,w2,att w1,w2,att w1,w2,att 0.544
w1,w2,att w1,w2 w1,w2 w1,w2 w1,w2 0.566
w1,w2,att w1,w2 w1,w2 w1,w2 w1 0.567
w1,w2,att w1,w2 w1,w2 0.565
w1,w2,att w1 0.553
w1,w2,att 0.553

Table 1: F1 score on the validation data for the WordNet method. Each row corresponds to a different configuration
for this model, with information for word1 (w1), word2 (w2), and the attribute (att) taken from the indicated
relations in WordNet. The best F1 is indicated in boldface.

on the word2vec approach (Section 2.1);

2. the cosine similarity between the word em-
beddings for word2 and the attribute;

3. the size of the intersection between the set
of words representing word1 and the set of
words representing the attribute, as formed
for the WordNet approach (Section 2.2);

4. the size of the intersection between the set
of words representing word2 and the set of
words representing the attribute;

5. 3−4, i.e., the difference between the previous
two features;

6. the number of times word1 and the attribute
co-occur, using the sentence-level approach
to co-occurrence (Section 2.3);

7. the number of times word2 and the attribute
co-occur;

8. 6−7, i.e., the difference between the previous
two features.

Similarly to the supervised: output approach (Sec-
tion 3.2), we train a logistic regression classifier
(using the same settings as for that model) on these
representations of the instances.

4 Results

Table 2, shows the average F1 score for each of
our models on the validation and test sets. For the
test set, the supervised models (supervised: out-
put and supervised: features) were trained on the
validation data, and tested on the test set; for the
validation data, results for the supervised models
are for 10-fold cross-validation.3

3We did not use the training data, which was not con-
structed in the same way as the test data, for training our

Model
Average F1

Validation Test
Word2vec 0.57 0.58
WordNet 0.57 0.56

X Word co-occurrence 0.61 0.61
X Majority vote 0.60 0.61

Supervised: output 0.59 0.61
Supervised: features 0.60 0.59

Table 2: Average F1 score for each of our models on
the validation and test sets. Officially submitted runs
are indicated with checkmarks. The highest F1 for each
dataset is shown in boldface.

On the validation data, the word co-occurrence
model achieved the highest F1 of the base mod-
els of 0.61, and indeed the highest F1 overall;
none of the approaches to combining information
from the base models (i.e., majority vote, super-
vised: output, or supervised: features) improved
over the word co-occurrence model. The word
co-occurrence model was therefore submitted as
an official run. The majority vote and supervised:
features models achieved the next best F1 of 0.60.
Keeping with our primary interest of exploring un-
supervised approaches to this task, the majority
vote model was selected as our second official run.

Turning to results on the test set, the word co-
occurrence, majority vote, and supervised: out-
put models all achieved the highest F1 of 0.61.
That the word-cooccurrence model outperforms
the other two base models — word2vec and
WordNet — shows that sentence-level word co-
occurrence is more informative about discrimi-
native attributes than the information carried by

supervised models. In preliminary experiments we consid-
ered models trained on the training data, and tested on the
validation data, but found the performance to be relatively
poor.

1015

word embeddings and the information available in
WordNet, at least as it has been incorporated in
these models. That none of the combined models
is able to improve on the best base model suggests
that, although these models are based on very dif-
ferent sources of information, they are not com-
plementary.

5 Conclusions

In this paper we evaluated three unsupervised
models for capturing discriminative attributes
based on information from word embeddings,
WordNet, and sentence-level word co-occurrence
frequency. Surprisingly we found that the simple
approach based on word co-occurrence performed
best. We further considered supervised and un-
supervised approaches to combining information
from these models, but were unable to improve on
the word co-occurrence model.

In future work, because of its relatively good
performance, we intend to further explore the
word co-occurrence model. In this work we only
considered sentence-level co-occurrence. In fu-
ture work we intend to consider other definitions
of co-occurrence, such as co-occurrence within
a window of ±n words, and document-level co-
occurrence. We also only considered raw fre-
quency in the word co-occurrence model. As an
alternative to this, we also intend to consider us-
ing various lexical association measures, such as
pointwise mutual information (Church and Hanks,
1990) and log-likelihood ratio (Dunning, 1993). In
a similar vein, we also intend to explore the impact
of the window size and number of dimensions on
the word2vec model. Finally, we intend to con-
sider other WordNet-based measures of similarity
(e.g., Resnik, 1995; Jiang and Conrath, 1997).

References
Satanjeev Banerjee and Ted Pedersen. 2002. An

adapted Lesk algorithm for word sense disambigua-
tion using WordNet. In Proceedings of the 3rd In-
ternational Conference on Intelligent Text Process-
ing and Computational Linguistics (CICLing-2002),
pages 136–145, Mexico City, Mexico.

Kenneth W. Church and Patrick Hanks. 1990. Word
association norms, mutual information, and lexicog-
raphy. Computational Linguistics, 16(1):22–29.

Ted Dunning. 1993. Accurate methods for the statistics
of surprise and coincidence. Computational Lin-
guistics, 19(1):61–74.

Christiane Fellbaum, editor. 1998. WordNet: An Elec-
tronic Lexical Database. MIT Press, Cambridge,
MA.

Adriano Ferraresi, Eros Zanchetta, Marco Baroni, and
Silvia Bernardini. 2008. Introducing and evaluating
ukWaC, a very large web-derived corpus of English.
In Proceedings of the 4th Web as Corpus Workshop
(WAC-4): Can we beat Google?, pages 47–54, Mar-
rakech, Morocco.

Jay J. Jiang and David W. Conrath. 1997. Semantic
similarity based on corpus statistics and lexical tax-
onomy. In Proceedings of International Conference
Research on Computational Linguistics (ROCLING
X), pages 19–33, Taipei, Taiwan.

Michael Lesk. 1986. Automatic sense disambiguation
using machine readable dictionaries: How to tell a
pine cone from an ice cream cone. In Proceed-
ings of the 1986 SIGDOC Conference, pages 24–26,
Toronto, Canada.

Christopher Manning, Mihai Surdeanu, John Bauer,
Jenny Finkel, Steven Bethard, and David McClosky.
2014. The Stanford CoreNLP Natural Language
Processing Toolkit. In Proceedings of the 52nd An-
nual Meeting of the Association for Computational
Linguistics: System Demonstrations, pages 55–60,
Baltimore, USA.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey
Dean. 2013. Efficient estimation of word represen-
tations in vector space. In Proceedings of Workshop
at the International Conference on Learning Repre-
sentations, 2013, Scottsdale, USA.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Pretten-
hofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Pas-
sos, D. Cournapeau, M. Brucher, M. Perrot, and
E. Duchesnay. 2011. Scikit-learn: Machine learning
in Python. Journal of Machine Learning Research,
12:2825–2830.

Philip Resnik. 1995. Using information content to
evaluate semantic similarity. In Proceedings of the
14th International Joint Conference on Artificial In-
telligence, pages 448–453, Montreal, Canada.

1016

Proceedings of the 12th International Workshop on Semantic Evaluation (SemEval-2018), pages 1017–1021
New Orleans, Louisiana, June 5–6, 2018. ©2018 Association for Computational Linguistics

ABDN at SemEval-2018 Task 10: Recognising Discriminative Attributes
using Context Embeddings and WordNet

Rui Mao, Guanyi Chen, Ruizhe Li and Chenghua Lin
Computing Science Department

University of Aberdeen
Aberdeen, Scotland, UK

{r03rm16, g.chen, ruizhe.li, chenghua.lin}@abdn.ac.uk

Abstract

This paper describes the system that we sub-
mitted for SemEval-2018 task 10: capturing
discriminative attributes. Our system is built
upon a simple idea of measuring the attribute
word’s similarity with each of the two seman-
tically similar words, based on an extended
word embedding method and WordNet. In-
stead of computing the similarities between
the attribute and semantically similar words
by using standard word embeddings, we pro-
pose a novel method that combines word and
context embeddings which can better measure
similarities. Our model is simple and effective,
which achieves an average F1 score of 0.62 on
the test set.

1 Introduction

Capturing discriminative attributes is a novel task,
which is very different from classical semantic
tasks that model similarities in semantics. The
task aims to recognise semantic differences be-
tween words. Traditional semantic similarity eval-
uation tasks were designed for evaluating the qual-
ity of word representations based on the fact that
words with similar semantics will be close to each
other in vector space. Recent state-of-the-art dis-
tributed semantic models (Ling et al., 2015; Bo-
janowski et al., 2017) inspired by the success of
word2vec (Mikolov et al., 2013) gave good per-
formance in these similarity measure tasks. Nev-
ertheless, how to capture discriminative attributes
between semantically similar words is still a chal-
lenge for traditional word embedding methods, be-
cause these methods are designed to capture simi-
lar semantics.

We have two observations for the nature of
the task and the provided data: (1) only limited
data is available for model training; (2) the in-
puts of the model are merely isolated words them-
selves, which lack context information for apply-

ing complex models. Therefore, we propose a
novel framework that differentiates two semanti-
cally similar words with the attribute word by us-
ing their word and context embeddings. We ex-
perimented with both Continuous Bag of Words
(CBOW) and Skip-gram, demonstrating that using
the combination of word and context embeddings
outperforms using word embeddings alone.

The contribution of this work can be sum-
marised as follows. We examine word and con-
text embeddings in CBOW and Skip-gram, show-
ing that using both word and context embeddings
can better measure the co-occurrence of two words
in sentences than simply using word embeddings.
Hence our similarity measure can recognise the
discriminative attributes of two semantically simi-
lar words more accurately.

2 System Description

Our system is trained based on word and context
embedding features as well as WordNet features
(Fellbaum, 1998). Before introducing our frame-
work in detail, we first introduce the two key tech-
nical parts of our framework, i.e., context embed-
ding and WordNet.

2.1 Context embeddings
In contrast to simply using traditional word em-
beddings which model semantic similarities based
on contextual similarities, we consider using both
word and context embeddings. Word and context
embeddings are the vectors of target words and
context words in CBOW and Skip-gram. Using
them together can model the co-occurrence of at-
tribute words and distinguished words in a sen-
tence, which is useful in predicting whether the at-
tribute word can distinguish two semantically sim-
ilar words.

Take the Skip-gram model as an example. Skip-
gram uses a neural network with a single hidden

1017

layer of neurons. Given a target word, the objec-
tive function is to maximize the probability of pre-
dicting each context word (several words before
and after the target word in a training sentence)
(Rong, 2014):

argmax p(wc|wt) (1)

where wt is a target word in a training sentence,
wc is a context word of wt, appearing within the
same sentence.

During every training epoch on each context
word, the weight matrices before and after the hid-
den layer will be updated. A row vector in the ma-
trix before the hidden layer is a traditional word
embedding vt, as the vector is updated when the
corresponding word wt is in the target word po-
sition. A column vector in the matrix after the
hidden layer is defined as context embedding vc,
as the column vector is updated when the cor-
responding word wc is in the context word po-
sition. Each word has two vectors, vt and vc,
as each word can be a target word or a context
word of other target words. Some popular toolkits,
e.g., gensim word2vec (Řehůřek and Sojka, 2010),
abandon Skip-gram’s context embeddings vc after
training, as experimental research (Nalisnick et al.,
2016) proves that simply using vt or vc (IN-IN or
OUT-OUT in the original paper) for two function
or type similar words to measure their similarity
yields higher scores.

Actually, the conditional probability in the ob-
jective function in Eq. 1 can be expanded as:

p(wc|wt) =
exp (vt · vc)∑

i∈|V | exp (vt · vi)
(2)

where V is the vocabulary of the training set, the
dot product vt · vc in numerator computes the sim-
ilarity between the target word vector and the con-
text word vector. The denominator is to normalise
the similarity into a probability. Thus, given a tar-
get word, training the whole model involves up-
dating the matrices before and after the hidden
layer to maximize the probability of predicting the
context word. This is similar to maximizing the
similarity between the target word embeddings vt
and context word embeddings vc. It means that
if we can reuse this trained similarity measure, to
compute e.g., cosine similarity, then we will get a
much better result. In other words, using both the
word and context embeddings of two words that
frequently appeared within each other’s contexts

will result in a better similarity measure, which
may be incorporating the co-occurrence informa-
tion of the two words.

CBOW can be considered as the reverse of
Skip-gram. Given a context, the target is to maxi-
mize the probability of predicting the target word
appearing in the context. Later, we will examine
both CBOW and Skip-gram’s word and context
embeddings in our model.

2.2 Word definition in WordNet
We also introduce features based on word sense
definitions in WordNet (Fellbaum, 1998), consid-
ering the differences between the definitions of
two semantically similar words. The two words
may be similar in semantics, but different in def-
initions. An eligible discriminative attribute word
may have high possibility to appear within one
of the two word definitions, rather than both of
them. For example, ears can distinguish corn and
broccoli, as in WordNet, ears occurs in the defi-
nition of corn as “tall annual cereal grass bear-
ing kernels on large ears: widely cultivated in
America in many varieties; the principal cereal
in Mexico and Central and South America since
pre-Columbian times”, rather than broccoli’s defi-
nition that “plant with dense clusters of tight green
flower buds”. We will also capture such characters
to distinguish two words.

2.3 Hypothesis and framework
Our first hypothesis is that an attribute word wA

can distinguish two semantically similar words w1

and w2, if the attribute word co-occurs much more
frequently with one word than the other in the cor-
pora. In vector space, the attribute word can be
closer to a distinguished word than the other one.
Our second hypothesis is that if wA can distin-
guish w1 and w2, wA may appear within one of
the definitions of w1 and w2 in WordNet.

The framework of our model can be summa-
rized as: (1) we firstly train word embeddings vt
and context embeddings vc on a Wikipedia dump.
(2) Given a triple (w1, w2, wA), we then com-
pute wA’s cosine similarities with w1 and w2, and
the difference in their similarities, which are used
as three input features in the following classifi-
cations. For example, given the context embed-
dings of w1 and w2 and the word embedding of
wA, we compute Feature 1: cosine(vw1

c , vwA
t);

Feature 2: cosine(vw2
c , vwA

t); and Feature 3:
|cosine(vw1

c , vwA
t) − cosine(vw2

c , vwA
t)|, respec-

1018

1 cosine(w1, wA)
2 cosine(w2, wA)
3 |cosine(w1, wA)− cosine(w2, wA)|
4 binary variable, indicating if wA appears in the

WordNet definitions of w1

5 binary variable, indicating if wA appears in the
WordNet definitions of w2

Table 1: Feature descriptions.

tively. (3) Next, we introduce two binary features
to indicate whether wA appears in any sense def-
initions of w1 and w2 in WordNet (Feature 4 and
5), respectively. (4) We train a random forest clas-
sifier with the above five features (see Table 1) to
classify if the attribute word wA can distinguish
two semantically similar words w1 and w2.

3 Experimental Settings

Data. The data was provided by the organizers
of SemEval 2018 Task 10: Capturing Discrimi-
native Attributes1. There are 17,501, 2,722 and
2,340 triples (w1, w2, wA) in training, validation
and testing sets, respectively. All the words in the
triples are nouns. Note that the discriminative at-
tribute words wA in the given dataset are selected,
because they represent the visual attribute of one
of two semantically similar words. For example,
red can differentiate apple and banana, because
visually, apple is red, while banana is yellow. The
task does not consider other discriminative fea-
tures, such as sound and taste. So, using image
features may take advantages in this dataset, how-
ever, semantic features can also capture invisible
discriminative attributes.
Word and context embedding. We first it-
eratively train 300 dimensional word and context
embeddings based on CBOW and Skip-gram with
a Wikipedia dump2 for 3 epochs respectively, set-
ting a context window of 5 words before and after
the target word. Words with frequency less than 5
in the Wikipedia are ignored. The down sampling
rate is 10−4.

Based on CBOW and Skip-gram, we test all
possible combinations of word and context em-
beddings to compute cosine similarities. The first
combination is context embeddings of the two se-
mantically similar words w1 and w2, and word
embeddings of the attribute word wA. In Table 2

1https://competitions.codalab.org/
competitions/17326

2https://dumps.wikimedia.org/enwiki/
20170920/

and 4, this approach is represented as vw1
c vw2

c vwA
t .

The second vw1
t vw2

t vwA
c uses word embeddings of

w1 and w2, and context embeddings of wA. The
third vw1

c vw2
c vwA

c is simply context embeddings of
w1, w2 and wA. The fourth vw1

t vw2
t vwA

t is simply
word embeddings of w1, w2 and wA.

4 Results

We cast the challenge task as a supervised classi-
fication problem. We first examine which combi-
nation of word and context embeddings and which
training method (CBOW or Skip-gram) is optimal
in this task. In this step, we only use Feature 1-3
(see Table 1) to classify the triple (w1, w2, wA).

As can be seen in Table 2, both the CBOW
based methods that use word and context embed-
dings yield the highest average F1 of 0.55 in the
validation set. Skip-gram based models generally
perform worse than CBOW based models, but us-
ing Skip-gram word embeddings of w1 and w2

and context embeddings of wA also outperforms
the word embedding based model in the validation
set. The experiments running on the test set show
similar trends that word and context embedding
based models outperform word embedding based
models. Such results demonstrate that using word
and context embeddings together can better dis-
tinguish two semantically similar words with an
attribute word, than simply using standard word
embeddings. The results also support our first hy-
pothesis that if the attribute word frequently ap-
pears in one word’s context than the other one, it
can distinguish the two words.

We also examine WordNet definition features
individually. As shown in Table 3, simply using
Feature 4-5 cannot classify the triple accurately.
The F1 score of setting positive label as 1 is very
low on the validation set (F1=36%). This is for
the reason that an eligible discriminative attribute
word cannot always associate with the definitions
of one of two semantically similar words. So, sim-
ply using such features cannot identify discrimina-
tive words precisely.

Finally, we combine both similarity and Word-
Net features together to address this challenge.
There is no significant difference between CBOW
based vw1

c vw2
c vwA

t and vw1
t vw2

c vwA
c in the vali-

dation set in terms of average F1. We select
vw1
c vw2

c vwA
t as the winner combination of word

and context embeddings, because this approach
has closer F1 scores, when setting different la-

1019

setup positive=1 positive=0 average F1P R F1 P R F1

validation

CBOW

vw1
c vw2

c vwA
t 0.56 0.46 0.51 0.54 0.64 0.59 0.55

vw1
t vw2

t vwA
c 0.57 0.45 0.50 0.55 0.66 0.60 0.55

vw1
c vw2

c vwA
c 0.50 0.37 0.43 0.50 0.63 0.56 0.49

vw1
t vw2

t vwA
t 0.50 0.30 0.37 0.50 0.70 0.58 0.48

Skip-gram

vw1
c vw2

c vwA
t 0.54 0.38 0.45 0.52 0.68 0.59 0.52

vw1
t vw2

t vwA
c 0.55 0.47 0.51 0.54 0.62 0.58 0.54

vw1
c vw2

c vwA
c 0.52 0.33 0.40 0.51 0.70 0.59 0.49

vw1
t vw2

t vwA
t 0.53 0.41 0.46 0.52 0.64 0.57 0.52

test

CBOW

vw1
c vw2

c vwA
t 0.54 0.56 0.55 0.63 0.62 0.63 0.59

vw1
t vw2

t vwA
c 0.54 0.53 0.53 0.62 0.63 0.63 0.58

vw1
c vw2

c vwA
c 0.50 0.47 0.49 0.59 0.62 0.61 0.55

vw1
t vw2

t vwA
t 0.49 0.39 0.44 0.58 0.67 0.62 0.53

Skip-gram

vw1
c vw2

c vwA
t 0.52 0.50 0.51 0.61 0.63 0.62 0.56

vw1
t vw2

t vwA
c 0.52 0.56 0.54 0.62 0.59 0.60 0.57

vw1
c vw2

c vwA
c 0.50 0.43 0.46 0.59 0.65 0.62 0.54

vw1
t vw2

t vwA
t 0.51 0.51 0.51 0.60 0.61 0.61 0.56

Table 2: Experimental results by using word and context embeddings (Feature 1-3).

setup positive=1 positive=0 average F1P R F1 P R F1

WordNet validation 0.66 0.24 0.36 0.53 0.87 0.66 0.51
test 0.66 0.26 0.37 0.60 0.89 0.71 0.54

Table 3: Experimental results by using WordNet definition features (Feature 4-5).

setup positive=1 positive=0 average F1P R F1 P R F1

CBOW+WordNet validation vw1
c vw2

c vwA
t +WN 0.57 0.53 0.55 0.56 0.59 0.57 0.56

test vw1
c vw2

c vwA
t +WN 0.58 0.60 0.59 0.66 0.65 0.65 0.62

Table 4: Final results by using CBOW word and context embeddings, and WordNet features (Feature 1-5).

bels (1 or 0) as the positive label. Thus, in the
final submission, we use CBOW trained context
embeddings of w1 and w2, and word embeddings
of wA to compute similarity features. We identify
whether an attribute word wA can distinguish w1

and w2 by using the above similarity features and
WordNet definition features together. Although
word and context embedding based similarity fea-
tures are much more effective than WordNet fea-
tures, by introducing WordNet features, the model
further improves its performance, achieving 62%
F1 on the test set (Table 4). WordNet definitions
are also supportive features in this task.

Error analysis. We found that a significant por-
tion of failures appear in those examples that the
textual associations of the attribute words and the
semantically similar words are not always discrim-
inative. E.g., given a triple, (sons, father, young),
our model failed in identifying young as a discrim-
inative attribute, because young has been widely
used to describe sons and father in the text (e.g.,
young sons and a young father). In this case, our
word co-occurrence based method is suboptimal.

5 Conclusion

In this paper, we extended traditional word em-
bedding methods (CBOW and Skip-gram) to dis-
tinguish two semantically similar words using an
attribute word. In contrast with simply using tra-
ditional word representations, using both context
and word embeddings can better model the co-
occurrence between the two similar words and
their discriminative attribute word. If the at-
tribute word frequently co-occurs with one of the
similar words more than another one within the
same sentences, then the two semantically sim-
ilar words can be distinguished by the attribute
word. By using CBOW word and context embed-
ding based similarity features and simple WordNet
based word sense definition features, our model
performs an average F1 of 62% on the test set.

Acknowledgments

This work is supported by the award made by the
UK Engineering and Physical Sciences Research
Council (Grant number: EP/P005810/1).

1020

References
Piotr Bojanowski, Edouard Grave, Armand Joulin, and

Tomas Mikolov. 2017. Enriching word vectors with
subword information. Transactions of the Associa-
tion for Computational Linguistics, 5:135–146.

Christiane Fellbaum. 1998. WordNet: An Electronic
Lexical Database. Bradford Books.

Wang Ling, Chris Dyer, Alan Black, and Isabel
Trancoso. 2015. Two/too simple adaptations of
word2vec for syntax problems. In Proceedings of
the 2015 Conference of the North American Chap-
ter of the Association for Computational Linguis-
tics: Human Language Technologies. Association
for Computational Linguistics.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey
Dean. 2013. Efficient estimation of word represen-
tations in vector space. Proceedings of International
Conference on Learning Representations.

Eric Nalisnick, Bhaskar Mitra, Nick Craswell, and
Rich Caruana. 2016. Improving document ranking
with dual word embeddings. In Proceedings of the
25th International Conference Companion on World
Wide Web, pages 83–84. International World Wide
Web Conferences Steering Committee.

Radim Řehůřek and Petr Sojka. 2010. Software Frame-
work for Topic Modelling with Large Corpora. In
Proceedings of the LREC 2010 Workshop on New
Challenges for NLP Frameworks, pages 45–50, Val-
letta, Malta. ELRA. http://is.muni.cz/
publication/884893/en.

Xin Rong. 2014. word2vec parameter learning ex-
plained. arXiv preprint arXiv:1411.2738.

1021

Proceedings of the 12th International Workshop on Semantic Evaluation (SemEval-2018), pages 1022–1026
New Orleans, Louisiana, June 5–6, 2018. ©2018 Association for Computational Linguistics

UMD at SemEval-2018 Task 10:
Can Word Embeddings Capture Discriminative Attributes?

Alexander Zhang and Marine Carpuat
Department of Computer Science

University of Maryland
College Park, MD 20742, USA

alexz@umd.edu, marine@cs.umd.edu

Abstract

We describe the University of Mary-
land’s submission to SemEval-018 Task
10, “Capturing Discriminative Attributes”:
given word triples (w1, w2, d), the goal is
to determine whether d is a discriminat-
ing attribute belonging to w1 but not w2.
Our study aims to determine whether word
embeddings can address this challenging
task. Our submission casts this problem as
supervised binary classification using only
word embedding features. Using a gaus-
sian SVM model trained only on valida-
tion data results in an F-score of 60%. We
also show that cosine similarity features
are more effective, both in unsupervised
systems (F-score of 65%) and supervised
systems (F-score of 67%).

1 Introduction

SemEval-2018 Task 10 (Krebs et al., 2018) offers
an opportunity to evaluate word embeddings on
a challenging lexical semantics problem. Much
prior work on word embeddings has focused
on the well-established task of detecting seman-
tic similarity (Mikolov et al., 2013a; Pennington
et al., 2014; Baroni et al., 2014; Upadhyay et al.,
2016). However, semantic similarity tasks alone
cannot fully characterize the differences in mean-
ing between words. For example, we would ex-
pect the word car to have high semantic similar-
ity with truck and with vehicle in distributional
vector spaces, while the relation between car and
truck differs from the relation between car and
vehicle. In addition, popular datasets for simi-
larity tasks are small, and similarity annotations
are subjective with low inter-annotator agreement
(Krebs and Paperno, 2016).

Task 10 focuses instead on determining seman-
tic difference: given a word triple (w1, w2, d), the
task consists in predicting whether d is a discrim-
inating attribute applicable to w1, but not to w2.
For instance, (w1 =apple, w2 =banana, d =red)
is a positive example as red is a typical attribute of
apple, but not of banana.

This work asks to what extent word embed-
dings can address the challenging task of detect-
ing discriminating attributes. On the one hand,
word embeddings have proven useful for a wide
range of NLP tasks, including semantic similar-
ity (Mikolov et al., 2013a; Pennington et al., 2014;
Baroni et al., 2014; Upadhyay et al., 2016) and de-
tection of lexical semantic relations, either explic-
itly by detecting hypernymy, lexical entailment
(Baroni et al., 2012; Roller et al., 2014; Turney and
Mohammad, 2013), or implicitly using analogies
(Mikolov et al., 2013b). On the other hand, de-
tecting discriminating attributes requires making
fine-grained meaning distinctions, and it is unclear
to what extent they can be captured with opaque
dense representations.

We start our study with unsupervised models.
We propose a straightforward approach where pre-
dictions are based on a learned threshold for the
cosine similarity difference between (w1, d) and
(w2, d), representing words using Glove embed-
dings (Pennington et al., 2014). We use this unsu-
pervised approach to evaluate the impact of word
embedding dimensions on performance.

We then compare the best unsupervised config-
uration to supervised models, exploring the impact
of different classifiers and training configurations.
Using word embeddings as features, supervised
models yield high F-scores on development data,
on the final test set they perform worse than the
unsupervised models. Our supervised submission
yields an F-score of 60%. In later experiments,
we show that using cosine similarity as features

1022

is more effective than directly using word embed-
dings, reaching an F-score of 67%.

2 Task Data Overview

Dataset Pos Neg Total d Vocab

train 6,591 11,191 17,782 1,292
validation 1,364 1,358 2,722 576

test 1,047 1,293 2,340 577

Table 1: Dataset statistics for the training and val-
idation set: number of positive examples (Pos),
number of negative examples (Neg), total number
of examples (total), size of vocabulary for discrim-
inant words d (d Vocab)

For development purposes, we are provided
with two datasets: a training set and a validation
set, whose statistics are summarized in Table 1.

Word triples (w1, w2, d) were selected using the
feature norms set from McRae et al. (2005). Only
visual discriminant features were considered for
d, such as is green. Positive triples (w1, w2, d)
were formed by selecting w2 among the 100 near-
est neighbors of w1 such that a visual feature d
is attributable to w1 but not w2. Negative triples
were formed by either selecting an attribute at-
tributable to both words, or by randomly selecting
a feature not attributable to either word.

The distribution of the training and validation
sets differ: the validation and test sets are bal-
anced, while only 37% of examples are positive
in the training set. In addition, the validation and
test sets were manually filtered to improve quality,
so the training examples are more noisy. The data
split was chosen to have minimal overlap between
discriminant features.

3 Unsupervised Systems

All our models rely on Glove (Pennington et al.,
2014), generic word embeddings models, pre-
trained on large corpora: the Wikipedia and En-
glish Gigaword newswire corpora. In addition to
capturing semantic similarity with distances be-
tween words, Glove aims for vector differences to
capture the meaning specified by the juxtaposition
of two words, which is a good fit for our task.

Because the discriminant features are distinct
between train, validation and test, our systems
should be able to generalize to previously unseen

discriminants. This makes approaches based on
word embeddings attractive, as information about
word identity is not directly encoded in our model.

3.1 Baseline
We first consider the baseline approach introduced
by Krebs and Paperno (2016) to detect the positive
examples, where cs denotes the cosine similarity
function:

cs(word1, disc) > cs(word2, disc) (1)

3.2 2-Step Unsupervised System
We refine this baseline with a 2-step approach.
Our intuition is that d is a discriminant between
w1 and w2 if the following two conditions hold si-
multaneously:

1. w1 is more similar to d than w2 by more than
a threshold tthresh:

cs(w1, d)− cs(w2, d) > tthresh (2)

2. d is highly similar to w1:

cs(w1, d) > tdiverge (3)

The condition in Equation 2 aims at detecting
negative examples that share the discriminant at-
tribute, and the condition defined by Equation 3
targets negative examples that share a random dis-
criminant. Thresholds tthresh and tdiverge are
hyper-parameters tuned on the train.txt.

3.3 Results
We evaluate unsupervised systems using word em-
beddings of varying dimensions on the validation
set, and report averaged F-scores. As can be seen
in Table 2, increasing the dimension of word em-
beddings improves performance for both systems,
and the 2-step model consistently outperforms the
baseline. The best performance is obtained by the
2-step model with 300-dimensional word embed-
dings. We therefore select these embeddings for
further experiments.

Vector Dim 50 100 200 300

baseline .5765 .5965 .6171 .6183
2-step model .4034 .6130 .6266 .6312

Table 2: Averaged F-Score across GloVe Dimen-
sions between our 2-step unsupervised system and
the baseline from Krebs and Paperno (2016), for
word vectors of size 50, 100, 200 and 300.

1023

4 Supervised Systems

4.1 Submitted System

During system development, we consider a range
of binary classifiers that operate on feature repre-
sentations derived from word embeddings ~w1, ~w2

and ~d. We describe the system used for submis-
sion which was selected based on 10-fold cross-
validation using the concatenation of the training
and validation data.

Feature Representations We seek to capture
the difference in meaning between w1 and w2

and its relation to the meaning of the discrimi-
nant word d. Given word embeddings for each of
these words ~w1, ~w2 and ~d, respectively, we there-
fore construct input features based on various em-
bedding vector differences. We experimented with
the concatenation of ~w1, ~w2, ~d, ~w1− ~d and ~w1− ~d.
Based on cross-validation performance on training
and validation data, we eventually settled on the
concatenation of ~w1 − ~d and ~w1 − ~d, which yields
a compact representation of 2D features, if D is
the embedding dimension.

Binary Classifier We consider a number of bi-
nary classification models found in scikit-learn:
logarithmic regression (LR), decision tree (DT),
naı̈ve Bayes (NB), K nearest neighbors (KNN),
and SVM with linear (SVM-L), and Gaussian
(SVM-G) kernels. We compare linear combina-
tions of word embeddings to the more complex
combinations enabled by non-linear models.

Submission Our submission used the refined
SVM-G trained on validation.txt. There were
three input triplets for which one word was out
of the vocabulary of the Glove embedding model:
random predictions were used for these. This
system achieved an F-Score of .6018. This
is a substantial drop from the averaged cross-
validation F-scores obtained during development
which reached F-scores of 0.9318 using cross-
validation on the validation and training sets to-
gether, and 0.9674 using cross-validation on the
training set only. Using the released test dataset,
truth.txt, we consider various experiments to un-
derstand the poor performance of the model.

4.2 Analysis: Embedding Selection

We first evaluate our hypothesis that word embed-
dings that perform well in the unsupervised setting

would also, in general, perform well for classifica-
tion. We vary embedding dimensions keeping the
rest of the experimental set-up constant (train on
validation.txt, evaluate on truth.txt).

Table 3 shows the performance of all supervised
model configurations and of the 2-step unsuper-
vised system. Increasing the word embedding di-
mensions improves the performance of the 2-step
unsupervised system, as observed during the de-
velopment phase (Section 3). However, the su-
pervised classifier behaves differently: for sev-
eral linear classifiers (e.g., LR, DT, SVM-L) the
best performance is achieved with smaller word
embeddings. For the non-linear SVM used for
submission (SVM-G), varying the embedding di-
mensions has little impact on overall performance.
The SVM-G classifier’s performance is now on
par with the linear classifiers, while it performed
better on development data.

The best performance overall is achieved by the
unsupervised model, and taken together, the su-
pervised results suggest that the submitted system
overfit the validation set, and was not able to gen-
eralize to make good predictions on test examples.

4.3 Analysis: Feature Variants
Motivated by the good performance of the un-
supervised model based on cosine similarity, we
consider four feature representations variants for
the supervised classifiers,1:

V 1 = [cs(w1, w2), cs(w1, wd), cs(w2, d)]
V 2 = [V 1, w1 − w2, wd]
V 3 = [V 1, w1 − wd, w2]
V 4 = [V 1, cs(w1 − w2, wd), cs(w1 − wd, w2)]

Variant V1 based only on cosine similarity be-
tween all pairs yields competitive F-scores from
both the SVM-G and LR models (Table 4), and
it competitive with the best-performing unsuper-
vised model. We thus use it as a starting point
for subsequent variants. Variants V2 and V3 en-
code the intuition that we expect w1 − w2 ≈ wd

and w1 − wd ≈ w2 for positive examples, and
therefore, it is possible that these input represen-
tations may perform better than the differences-
only model. In doing so, we also risk memo-
rizing actual input words as wd and w2 are en-
coded directly as features. These two variants per-
formed worse than the cosine-only models, sug-
gesting that cosine similarity captures semantic

1The KNN, SVM-L, and SVM-G used tuned hyperparam-
eters.

1024

Model dim=50 dim=100 dim=200 dim=300
F P R F P R F P R F P R

LR .5742 .5750 .5741 .5769 .5788 .5770 .5739 .5741 .5738 .5525 .5525 .5524
DT .5494 .5498 .5503 .5356 .5357 .5359 .5304 .5311 .5314 .5283 .5290 .5293

NB .5618 .5674 .5634 .5873 .5999 .5903 .5885 .5904 .5884 .5908 .5972 .5918
KNN .5640 .5746 .5677 .5677 .5715 .5720 .5738 .5737 .5740 .5537 .5575 .5579

SVM-L .5769 .5778 .5768 .5847 .5904 .5856 .5781 .5791 .5779 .5364 .5372 .5376
SVM-G .5901 .5909 .5919 .6098 .6099 .6097 .5924 .5923 .5924 .5995 .6002 .5993

2-step .5937 .5938 .5947 .6042 .6041 .6044 .6278 .6278 .6290 .6484 .6481 .6490

Table 3: F-Score, Precision and Recall computed on truth.txt for the full range of supervised classi-
fication models across different embedding dimensions trained on validation.txt. The first 6 row are
supervised systems, the last row shows the performance of the unsupervised 2-step system.

Vector Dim. 50 100 200 300

V1-LR .6083 .6076 .6369 .6526
V1-KNN .6045 .6115 .6335 .6587
V1-SVMG .6039 .6227 .6479 .6681

V2-LR .6398 .6475 .6463 .6490
V2-KNN .5376 .5239 .5334 .5221
V2-SVMG .6304 .6435 .6592 .6598

V3-LR .6203 .6108 .6167 .6193
V3-KNN .5356 .5182 .5116 .5308
V3-SVMG .6099 .6233 .6269 .6309

V4-LR .6089 .6072 .6378 .6525
V4-KNN .6088 .6120 .6402 .6589
V4-SVMG .6102 .6239 .6451 .6708

Table 4: F-score for well-performing models of
alternative input variant representations

difference better than the high-dimensional word
vectors themselves. Also interestingly, the KNN
model performed significantly worse in these two
variants. The best result is achieved using V4,
which augments V1 with cosine features that bet-
ter capture word relations through embedding dif-
ferences, with an averaged F-score of .6708 using
the SVM-G classifier.

4.4 Analysis: Cross-Validation Set-up
We further explore why cross-validation scores
differed greatly from the final test scores. We con-
structed initial cross-validation sets using sequen-
tial 10% cuts of the training set. This is inconsis-
tent with the actual experimental setup, which had
distinct sets of d, the discriminating attribute, be-
tween the training and test sets. We experiment
segmenting the validation dataset so that each of
the cross-validation sets had distinct discriminat-

ing attributes. This yields only minor gains (Ta-
ble 5), suggesting that overfitting to the identity of
the discriminating attributes was not an issue.

Vector Dim. 50 100 200 300

V4-KNN .6050 .6172 .6394 .6574
V4-SVML .6109 .6042 .6301 .6478
V4-SVMG .6104 .624 .6404 .6716

Table 5: F-score from well-formed cross-
validation sets

5 Conclusion

This study showed the limits of directly using
word embeddings as features for the challeng-
ing task of capturing discriminative attributes be-
tween words. Supervised models based on raw
embedding features are highly sensitive to the na-
ture and distribution of training examples. Our
Gaussian Kernel SVM overfit the training set and
performed worse than unsupervised models that
threshold cosine similarity scores on the official
evaluation data. Based on this finding, we ex-
plore the use of cosine similarity scores as fea-
tures for supervised classifiers, to capture similar-
ity between word pairs, and between words and
word relations as represented by embedding dif-
ferences. These features turn out to be more use-
ful than directly using the word embedding them-
selves, yielding our best performing system (F-
score of 67%).

While these results are encouraging, it remains
to be seen how to best design models and fea-
tures that capture nuanced meaning differences,
for instance by leveraging metrics complementary
to cosine and resources complementary to distri-
butional embeddings.

1025

References
Marco Baroni, Raffaella Bernardi, Ngoc-Quynh Do,

and Chung-chieh Shan. 2012. Entailment above the
word level in distributional semantics. In Proceed-
ings of EACL 2012, pages 23–32.

Marco Baroni, Georgiana Dinu, and Germán
Kruszewski. 2014. Don’t count, predict! A
systematic comparison of context-counting vs.
context-predicting semantic vectors. In ACL (1),
pages 238–247.

Alicia Krebs, Alessandro Lenci, and Denis Paperno.
2018. Semeval-2018 task 10: Capturing discrimi-
native attributes. In Proceedings of SemEval-2018:
International Workshop on Semantic Evaluation.

Alicia Krebs and Denis Paperno. 2016. Capturing dis-
criminative attributes in a distributional space: Task
proposal. In RepEval@ACL.

Ken McRae, George S. Cree, Mark S. Seidenberg, and
Chris Mcnorgan. 2005. Semantic feature production
norms for a large set of living and nonliving things.
Behavior Research Methods, 37(4):547–559.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey
Dean. 2013a. Efficient estimation of word represen-
tations in vector space. In arXiv Preprint.

Tomas Mikolov, Wen-tau Yih, and Geoffrey Zweig.
2013b. Linguistic Regularities in Continuous Space
Word Representations. In HLT-NAACL, volume 13,
pages 746–751.

Jeffrey Pennington, Richard Socher, and Christo-
pher D. Manning. 2014. GloVe: Global Vectors
for Word Representation. In EMNLP 2014, pages
1532–1543.

Stephen Roller, Katrin Erk, and Gemma Boleda. 2014.
Inclusive yet Selective: Supervised Distributional
Hypernymy Detection. Proceedings of COLING
2014, pages 1025–1036.

Peter Turney and Saif Mohammad. 2013. Experiments
with three approaches to recognizing lexical entail-
ment. Natural Language Engineering, 1(1):1–42.

Shyam Upadhyay, Manaal Faruqui, Chris Dyer, and
Dan Roth. 2016. Cross-lingual Models of Word Em-
beddings: An Empirical Comparison. In Proceed-
ings of ACL, Berlin, Germany.

1026

Proceedings of the 12th International Workshop on Semantic Evaluation (SemEval-2018), pages 1027–1033
New Orleans, Louisiana, June 5–6, 2018. ©2018 Association for Computational Linguistics

NTU NLP Lab System at SemEval-2018 Task 10: Verifying Semantic
Differences by Integrating Distributional Information and Expert

Knowledge

Yow-Ting Shiue1, Hen-Hsen Huang1, and Hsin-Hsi Chen1,2

1Department of Computer Science and Information Engineering,
National Taiwan University, Taipei, Taiwan

2MOST Joint Research Center for AI Technology and All Vista Healthcare, Taiwan
orina1123@gmail.com,hhhuang@nlg.csie.ntu.edu.tw,hhchen@ntu.edu.tw

Abstract

This paper presents the NTU NLP Lab system
for the SemEval-2018 Capturing Discrimina-
tive Attributes task. Word embeddings, point-
wise mutual information (PMI), ConceptNet
edges and shortest path lengths are utilized
as input features to build binary classifiers to
tell whether an attribute is discriminative for
a pair of concepts. Our neural network model
reaches about 73% F1 score on the test set and
ranks the 3rd in the task. Though the attributes
to deal with in this task are all visual, our mod-
els are not provided with any image data. The
results indicate that visual information can be
derived from textual data.

1 Introduction

Modern semantic models are good at captur-
ing semantic similarity and relatedness. The
widely-used distributional word representations,
or word embeddings, have achieved promising
performance on various semantic tasks. The word
pair similarities calculated with these models are
to some extent consistent with human judgments,
and many downstream applications such as senti-
ment analysis and machine translation have bene-
fited from word embeddings’ ability to aggregate
the information of lexical items with similar mean-
ing but different surface forms.

However, the ability to distinguish one concept
from another similar concept is also core to lin-
guistic competence. Our knowledge about what is
a “subway”, for example, may contain “it is a kind
of train that runs underground”. Also, discriminat-
ing things is an important mechanism for teaching
and learning. For example, if we would like to ex-
plain how a “plate” is different from a “bowl”, we
may use expressions like “a plate is flatter” or “a
bowl is deeper”. All these examples show that one
form of semantic difference is a discriminative at-

tribute which applies to one of the two concepts
being compared but does not apply to the other.

In the SemEval-2018 Capturing Discriminative
Attributes task (Krebs et al., 2018), participants
need to put forward semantic models that are
aware of semantic differences. A data instance
consists of a triple and a label. In this paper, we
denote a triple with < w1, w2, a >, in which w1

and w2 are the two words (concepts) to be com-
pared, and a is an attribute. The label is either
positive (1) or negative (0). In a positive exam-
ple, a is an attribute of w1 but not an attribute of
w2. For negative examples, there are two cases:
1) both w1 and w2 have attribute a ; 2) neither w1

nor w2 has attribute a. In this task, a is limited to
visual ones such as color and shape. The evalua-
tion metric is the macro-averaged F1 score of the
positive and the negative classes.

Visual attribute learning has been investigated
by past researchers. Silberer et al. (2013) build
a dataset of concept-level attribute annotations
based on images in ImageNet (Deng et al., 2009).
For each attribute, they train a classifier to pre-
dict its presence or absence in the input image.
Lazaridou et al. (2016) propose a model that does
not learn visual attributes explicitly, but learns dis-
criminativeness. Their model predicts whether an
attribute can be used to discriminate a referent
from a context. Both the referent and the context
are represented by visual instances sampled from
ImageNet. This setting is similar to that of this
SemEval task. However, one critical difference is
that in this task, the set of attributes is open. The
dataset is partitioned so that all the attributes in the
test set are unseen in the training set, which makes
this task more challenging.

The use of word embeddings for detecting se-
mantic properties is studied by Rubinstein et al.
(2015). They focus on a fixed set of properties and
train a binary classifier for each property. Their

1027

results indicate that word embeddings capture tax-
onomic properties (e.g. “an animal”) better than
attributive properties (e.g. “is fast”), possibly be-
cause attributive signal is weak in text.

In this task, most visual attributes are attributive
properties. The signal of “visual” attributes can
be even weaker in text since they are not mainly
communicated through language in human cog-
nition. The word “red” in “I bought a red ap-
ple” sounds more like a linguistic redundancy than
that in “I bought a red jacket” does, since “red”
is a typical attribute of apples. However, these vi-
sual attributes may impose constraints on valid ex-
pressions. For instance, we can say “the bananas
turned yellow”, but it would be extremely difficult
to find some context where “the bananas turned
red” makes sense. Therefore, visual attributes can
be signaled in some implicit and indirect ways.
By utilizing several computational approaches, we
reveal to what extent visual attributes can be ac-
quired from text.

This paper aims at capturing semantic differ-
ence by incorporating information from both cor-
pus statistics and expert-constructed knowledge
bases. We build a rule-based system and a
learning-based system for the binary classifica-
tion problem, i.e., to tell whether an attribute is
discriminative for two concepts. The learning-
based system achieved F1 score of 0.7294, which
is the third best in the official evaluation period of
SemEval-2018 Task 10. Our approach is purely
based on textual data, without access to image in-
stances, which indicates that it is possible to figure
out substantial visual information from text.

2 Distributional Information

We utilize two kinds of computational approaches
to derive information from co-occurrence statistics
in large copora. The first one is word embedding,
which has been shown to encode semantic infor-
mation in low-dimensional vectors. The second
one is pointwise mutual information (PMI), which
is a commonly-used measurement of the strength
of association between two words. We analyze the
performance of rule-based or learning-based mod-
els with different sets of features to reflect their
effectiveness.

2.1 Concatenation of Word Embeddings

A very straight-forward approach is concatenat-
ing the embedding of w1, w2 and a into a fea-

Embeddings Train Validation
w1 w2 a Acc. Macro F1 Acc. Macro F1
V V V 0.7468 0.6484 0.5184 0.3409

V 0.6379 0.5216 0.5180 0.2908
V V 0.7017 0.5040 0.4996 0.2748
V V 0.6790 0.5938 0.4945 0.3558

V V 0.6733 0.5421 0.5029 0.3170

Table 1: Training and validation scores of MLP model
with embeddings of different subsets of the triple.

ture vector to train a binary classifier. We use
the pre-trained 300-dimensional Word2vec em-
beddings (Mikolov et al., 2013) trained on Google
News1 as input features. We construct a multi-
layer perceptron (MLP) model with two hidden
layers of size 1,024 to conduct preliminary exper-
iments. The activation function is ReLU and the
dropout rate is 0.5. The model is implemented
with Keras (Chollet, 2015). We train for 20 epochs
and report the best validation scores.

However, we find out that there is a serious is-
sue of overfitting. As shown in Table 1, the gap be-
tween training and validation scores is large. We
also experimented simpler models such as Logis-
tic Regression and Random Forest, and got simi-
lar results. A possible cause of overffiting is that
the model does not learn to extract and compare
attributes, but learns the “pattern” of some combi-
nation of words in the triples.

To verify the above speculation, we train simi-
lar MLP models which only take “partial” triples
as input. Theoretically, the label cannot be deter-
mined correctly with an incomplete triple. How-
ever, according to the results shown in Table 1,
the models considering solely a part of every triple
can still “learn” some information from the train-
ing set (majority-class baseline accuracy on the
training set: 0.6383). Some models with partial
information even achieve better validation scores
than that with complete information. This indi-
cates that the models overfit to the vocabulary of
the training set. At the test time, all the attributes
are unknown, so the model cannot make effective
predictions. In fact, these results are similar to
the lexical memorization phenomenon reported by
Levy et al. (2015) on the hypernym detection task.

2.2 Embeddings Similarity Difference

Because “raw” word embedding features do not
work, we turn to more abstract features. Let sim1

and sim2 be the cosine similarity of the vector of a

1https://code.google.com/archive/p/word2vec/

1028

to the vector of w1 and w2 respectively. We com-
pare the values sim1 and sim2. The rationale is
that if a word w has an attribute a, then it tends to,
though not necessarily, be more similar to a than
other words without a.

The following six embedding models are exper-
imented with. The embedding size is fixed to 300.
1. W2V(GNews): The standard Word2vec model

as described in Section 2.1.
2. fastText: fastText (Bojanowski et al., 2017) is

a modification of Word2vec that takes subword
information into account. We adopt the pre-
trained vectors trained on 6B tokens2.

3. Numberbatch: Numberbatch embeddings are
built upon several corpus-based word embed-
dings and improved by retrofitting on Concept-
Net, a large semantic network containing an
abundance of general knowledge (Speer et al.,
2017). We use the pre-trained embeddings of
English concepts3.

4. GloVe(Common Crawl): The GloVe model
(Pennington et al., 2014) obtains word rep-
resentation according to global co-occurrence
statistics. We use the pre-trained vectors
trained on 840B tokens of Common Crawl4.

5. Sense(enwiki)-c: Sense vectors may encode
more fine-grained semantic information than
word vectors do, so we also experimented with
sense vectors. We perform word sense disam-
biguation (WSD) on the English Wikipedia cor-
pus to get a sense-annotated corpus, using the
Adapted Lesk algorithm implemented in py-
wsd5. The sense inventory is based on synsets
in WordNet. We train a Word2vec Skip-gram
(SG) model with this corpus to obtain sense
vectors. To apply sense vectors to words and
attributes in this SemEval task, we propose the
following closest sense-selection method (de-
noted by -c) to choose a sense for each of w1,
w2 and a. S(w) denotes the set of synsets that
a word w belongs to and emb(s) denotes the
vector of synset (sense) s.

s1∗, sa∗ = argmax
s1∈S(w1)
sa∈S(a)

cos(emb(s1), emb(sa))

s2∗ = argmax
s2∈S(w2)

cos(emb(s1∗), emb(s2))

2https://fasttext.cc/docs/en/english-vectors.html
3https://github.com/commonsense/conceptnet-

numberbatch
4https://nlp.stanford.edu/projects/glove/
5https://github.com/alvations/pywsd

Since a might be an attribute of w1, we choose
the closest pair of senses for them. Then, we
choose the sense of w2 that is closest to s1∗, the
selected sense for w1. The reason is that a se-
mantic difference is more likely to be meaning-
ful for two similar concepts. Finally, we use the
vector of the selected senses to compute simi-
larities.

6. Sense(enwiki)-f : We use the same sense em-
beddings as described previously but directly
select the first sense (predominant sense) in
WordNet for w1, w2 and a respectively, with-
out performing WSD. This method is denoted
by -f.
We first use these similarities in a simple rule-

based model: if sim1 > sim2 then output 1; oth-
erwise output 0. The results are summarized in Ta-
ble 2. In general, this similarity comparison rule
performs better on the positive class than on the
negative class. GloVe results in the highest neg-
ative F1, while Numberbatch results in the best
macro-averaged F1. We show the confusion ma-
trix for this rule with Numberbatch in Table 3. As
can be seen, similarity differences are helpful for
discriminating the positive examples, but they are
not good indicators of negative examples.

We use sim1 − sim2 of different kinds of em-
beddings as features and train MLP models as de-
scribed in the previous section. The results of dif-
ferent combinations of embeddings are shown in
Table 4. However, there is only slight macro-

Embeddings Acc. Pos. F1 Neg. F1 Macro F1
1. W2V 0.6128 0.6512 0.5648 0.6080
2. fastText 0.6047 0.6435 0.5565 0.6000
3. Numberbatch 0.6653 0.7142 0.5964 0.6553
4. GloVe 0.6330 0.6594 0.6022 0.6308
5. Sense-c 0.5981 0.6609 0.5068 0.5838
6. Sense-f 0.5816 0.5597 0.6013 0.5805

Table 2: Performance of the sim1 > sim2 rule with
different embeddings on the validation set.

True label sim1 > sim2 otherwise
1 1138 226
0 685 673

Table 3: Confusion matrix of the sim1 > sim2 rule
with Numberbatch embeddings on the validation set.

Embeddings Acc. Pos. F1 Neg. F1 Macro F1
[sim x3] 1. – 3. 0.6598 0.6640 0.6555 0.6598
[sim x4] 1. – 4. 0.6547 0.6572 0.6521 0.6546
[sim x6] 1. – 6. 0.6565 0.6609 0.6520 0.6564

Table 4: Performance of MLP models with different
combinations of word vector similarity differences.

1029

F1 improvement over the rule-based models. On
the other hand, though including the last three em-
bedding models does not yield better result in this
setting, we find them useful when combined with
other kinds of features. Therefore, they are in-
cluded in one of our submitted systems.

2.3 PMI Difference

Similar to word embedding, PMI reflects the co-
occurrence tendencies of words. It has been
shown that the Skip-gram with Negative Sampling
(SGNS) algorithm in Word2vec corresponds to
implicit factorization of the PMI matrix (Levy and
Goldberg, 2014). Nevertheless, PMI should be
interpreted differently from word vector similar-
ity. Since PMI is calculated in an exact match-
ing manner, there is no propagation of similarity
as in the case of word vectors. That is, suppose
that both PMI(“red”, “yellow”) and PMI(“apple”,
“banana”) are high, this does not imply that
PMI(“red”, “banana”) will be high. Thus, PMI
might be less prone to confusion of similar con-
cepts.

We calculate PMI on the English Wikipedia
corpus. We first experimented with a
PMI1 > PMI2 rule that is similar to the
one for vector similarities. In Table 5, we report

Context window Acc. Pos. F1 Neg. F1 Macro F1
10 words 0.6550 0.6986 0.5968 0.6477
20 words 0.6561 0.7013 0.5948 0.6481
30 words 0.6506 0.6959 0.5896 0.6427
whole sentence 0.6447 0.6906 0.5830 0.6368

Table 5: Performance of the PMI1 > PMI2 rule
with different context windows on the validation set.

True label PMI1 > PMI2 otherwise
1 1099 265
0 671 687

Table 6: Confusion matrix of the PMI1 > PMI2
rule with context window size 20 on the validation set.

True label sim1 > sim2 & PMI1 > PMI2 otherwise
1 964 400
0 429 929

Table 7: Confusion matrix of the sim1 >
sim2 & PMI1 > PMI2 rule on the validation set.

Features Acc. Pos. F1 Neg. F1 Macro F1
PMI(10+20+30) 0.6492 0.7026 0.5723 0.6375
sim x6 + PMI x3 0.6763 0.7039 0.6432 0.6735

Table 8: Performance of MLP models with combina-
tions of word vector similarity differences and sign of
PMI differences.

the results of PMI calculated with different sizes
of context window within which a pair of words
is considered to be a co-occurrence. 20-word
context window yields the best performance so
we show its corresponding confusion matrix
in Table 6. As can be seen, PMI performs
slightly better in discriminating the negative class,
compared to word similarities (Table 3).

Based on the above observation, we propose a
heuristic rule of combining vector similarity and
PMI: if sim1 > sim2 and PMI1 > PMI2 then
output 1. We use the Numberbatch embeddings
and PMI of 20-word context. This majority-voting
model is more reliable and achieves macro-F1
above 0.69. It is one of our submitted systems so
the result is shown in Table 14. According to the
confusion matrix in Table 7, both the positive and
the negative classes can be discriminated well with
the combination of distributional vectors and PMI.

We also build learning-based models with com-
binations of PMI of different context window
sizes. Since the range of PMI can be large, we
only consider the sign of the difference. The sign
of zero is defined to be negative. In addition, we
also combine vector similarities to train the MLP
model. The results are all shown in Table 8. How-
ever, none of the results show improvement over
the corresponding rule-based models.

3 Expert Knowledge from ConceptNet

3.1 Edge Connection

ConceptNet can be regarded as a directed graph
of concepts (vertices) connected by different rela-
tions (edges). There are 47 relation types in Con-
ceptNet. Some of them, such as HasProperty
and CapableOf, are directly related to attributes.
Other relations such as RelatedTo can also re-
flect some kinds of attributes.

We experiment with a simple rule-based model
that outputs 1 if there exists a relation from w1 to
a and there is no relation from w2 to a. Addi-
tionally, we augment the ConceptNet graph with
reverse edges and apply the rule again. The re-
sults of both versions are shown in Table 9. The

Graph Acc. Pos. F1 Neg. F1 Macro F1
ConceptNet edges 0.5996 0.4593 0.6820 0.5707
+ reverse edges 0.6297 0.5140 0.7009 0.6074

Table 9: Performance of the w1 → a & w2 9 a
rule with the ConceptNet graph and its extension on
the validation set.

1030

Features Acc. Pos. F1 Neg. F1 Macro F1
w1/w2

r↔ a for each r 0.5724 0.4785 0.6376 0.5581
w1/w2

r↔ a for any r 0.5974 0.4931 0.6661 0.5796

Table 10: Performance of MLP models with Concept-
Net edge features on the validation set.

version with reverse edges performs competitively
with the vector similarity rule (macro F1 about
0.6), but the behavior is quite different. As can be
seen, the ConceptNet features help achieve better
negative F1. The relatively low performance on
the positive class might be due to the sparseness
of the knowledge graph. Some w1 might have at-
tribute a but it is not directly connected to a on the
graph.

To encode edge connection information for
training learning-based models, we compute the
following four binary features:
• Is there an edge from w1 to a?
• Is there an edge from a to w1?
• Is there an edge from w2 to a?
• Is there an edge from a to w2?

We also experimented with two versions. In the
first version, each type of relations are considered
separately, so the total dimensionality is 4 * 47 =
188. In the second version, we set a binary fea-
ture to 1 if there is at least one edge that satisfies
its condition, so the feature dimensionality is only
4. The results are shown in Table 10. Although
different types of relations have different seman-
tics and should be treated differently, the version
considering relation type does not perform better.
A possible reason is that it can suffer from the
data sparseness problem, since some dimensions
are zero for almost all the instances.

3.2 Shortest Path Length

To include connections between words and at-
tributes that take more than one step, we cal-
culate the shortest path lengths. Let dis(wi, a)
be the shortest path length between wi and a
on the ConceptNet graph. We first experiment
with a simple rule-based model that outputs 1
when dis(w1, a) < dis(w2, a) , that is, when w1

is closer to a. The results are reported in Table 11.
Including reverse edges slightly improves the ac-
curacy but does not improve the macro F1 score. A
confusion matrix is presented in Table 12, showing
that this rule is a strong indicator for the negative
class. Compared to the ones with edge connec-
tion features, however, these rule-based classifiers

Graph Acc. Pos. F1 Neg. F1 Macro F1
ConceptNet edges 0.6308 0.5740 0.6742 0.6241
+ reverse edges 0.6315 0.5622 0.6819 0.6220

Table 11: Performance of the dis(w1, a) < dis(w2, a)
rule with the ConceptNet graph and its extension on the
validation set.

True label dis(w1, a) < dis(w2, a) otherwise
1 644 720
0 283 1075

Table 12: Confusion matrix of the dis(w1, a) <
dis(w2, a) rule (reverse edges considered) on the vali-
dation set.

Graph Acc. Pos. F1 Neg. F1 Macro F1
ConceptNet edges 0.6532 0.6629 0.6430 0.6529
+ reverse edges 0.6646 0.6984 0.6223 0.6603

Table 13: Performance of MLP models with one-hot
representation of ConceptNet shortest path lengths on
the validation set.

achieve slightly lower negative F1 but higher pos-
itive F1.

Since the maximum shortest path distance be-
tween a word and an attribute in the training set
is 5 (when reverse edges are included), we encode
dis(wi, a) into 6-dimensional discrete binary fea-
tures as follows.
• No path from wi to a
• dis(wi, a) = 1
• dis(wi, a) = 2
• dis(wi, a) = 3
• dis(wi, a) = 4
• dis(wi, a) ≥ 5

We build similar MLP models that take these fea-
tures as input. The features for w1 and w2 are com-
puted separately and then concatenated., There are
clear improvements of learning-based models (Ta-
ble 13) over rule-based ones (Table 11). The im-
provements are mostly contributed by the higher
positive F1 scores. On the other hand, in general
it is helpful to include a separate set of features
calculated on the graph with reverse edges.

4 Submitted Systems

We submitted the predictions of a rule-based sys-
tem and a learning-based system. The evaluation
results are summarized in Table 14. Run 1 sys-
tem is a rule-based combination of similarity dif-
ferences of the Numberbatch embedding and the
sign of PMI differences (window size 20). Run 2
is an MLP model with three size-2048 hidden lay-
ers that takes input features of the similarity dif-

1031

Validation Test
Model Acc. Pos. F1 Neg. F1 Macro F1 Acc. Pos. F1 Neg. F1 Macro F1
[1] Rule: sim1 > sim2 & PMI1 > PMI2 0.6954 0.6993 0.6915 0.6954 0.7047 0.6944 0.7143 0.7044
[2] MLP: sim x6 + PMI(10,20,30) + ConceptNet 0.7175 0.7213 0.7136 0.7174 0.7303 0.7138 0.7451 0.7294

Table 14: Evaluation results of the two submitted systems.

ference of the six kinds of embeddings, the sign of
PMI differences of three different context window
sizes and the ConceptNet edge and shortest path
length features.

Our run 2 system performed the third best
among all 26 participants with macro-F1 0.7294,
showing that the features we proposed are highly
effective. On the other hand, our run 1 system
got an only slightly lower macro-F1 of 0.7044 and
would get a rank between 5 (0.69) and 4 (0.72) if
it was considered. This again proves the comple-
mentary effect of word vector similarity and PMI.

5 Error Analysis

Since even the top system in this task did not
achieve macro-F1 above 75%, we think that there
might be some cases that are very difficult to han-
dle. Based on the test ground-truth released offi-
cially, we analyze the errors of our best system.
We find out that the difficulties mainly arise from
the following cases.
Ambiguous concept: Word ambiguity is not con-
sidered in this task. However, this may be prob-
lematic in some cases such as the positive exam-
ple <mouse, squirrel, plastic>. According to the
answer, we know that the word “mouse” is inter-
preted as a “computer device” instead of an “ani-
mal”. Therefore, sometimes the answer is depen-
dent on which sense is selected.
Vague or ambiguous attribute: Since the at-
tribute is expressed only with a single word in this
task, sometimes it is hard to tell what the attribute
means, even from a human’s perspective. For ex-
ample, the triple <philanthropist, lawyer, active>
is labeled 0 in the gold answer. Nevertheless, a
positive interpretation also makes sense: philan-
thropists usually engage in philanthropy actively,
while lawyers usually handle matters under the au-
thorization of someone.
Relative attribute: In some positive examples,
w1 does not necessarily have a, but only more
likely to have it. In the positive example <father,
brother, old>, “father” might be “old” when be-
ing compared to “brother”, but not necessarily so
when considered isolatedly. It is even more diffi-

cult to determine when to evaluate the absence of
an attribute relatively, given that we also encounter
cases such as <banker, lawyer, rich>, whose gold
label is 0.

6 Conclusions

We propose several approaches to tackle the Se-
mEval 2018 Capturing Discriminative Attributes
task in this paper. We utilize information derived
from both corpus distribution statistics and ex-
pert knowledge in ConceptNet to build our sys-
tems. According to the experimental results, word
embedding and PMI, though both based on co-
occurrence, can complement each other in a sim-
ple heuristic rule-based system. Moreover, the
ConceptNet features with high sensitivity to the
negative class can complement the corpus-based
features, which are more sensitive to the positive
class. Our best learning-based system achieved F1
score of 0.7294 and got the 3rd place in the official
run. We did not adopt image features, which sug-
gests that it is possible to learn substantially about
visual attributes solely from text.

Given the limited advancement of the learning-
based model over the rule-based one, it is worth
studying how to design some mechanism in ma-
chine learning models that can guide them to
“compare” the features of the two concepts and
determine the discriminativeness.

Acknowledgements

This research was partially supported by Min-
istry of Science and Technology, Taiwan, under
grants MOST-107-2634-F-002-011-, MOST-106-
2923-E-002-012-MY3, and MOST-105-2221-E-
002-154-MY3.

References
Piotr Bojanowski, Edouard Grave, Armand Joulin, and

Tomas Mikolov. 2017. Enriching Word Vectors with
Subword Information. Transactions of the Associa-
tion for Computational Linguistics, 5:135–146.

François Chollet. 2015. Keras. https://github.
com/fchollet/keras.

1032

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,
and Fei-Fei Li. 2009. ImageNet: A large-scale hi-
erarchical image database. In 2009 IEEE Computer
Society Conference on Computer Vision and Pattern
Recognition (CVPR 2009), pages 248–255.

Alicia Krebs, Alessandro Lenci, and Denis Paperno.
2018. Semeval-2018 task 10: Capturing discrim-
inative attributes. In Proceedings of the 12th inter-
national workshop on semantic evaluation (SemEval
2018).

Angeliki Lazaridou, Nghia The Pham, and Marco Ba-
roni. 2016. The red one!: On learning to refer to
things based on discriminative properties. In Pro-
ceedings of the 54th Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 2: Short
Papers), pages 213–218. Association for Computa-
tional Linguistics.

Omer Levy and Yoav Goldberg. 2014. Neural word
embedding as implicit matrix factorization. In Ad-
vances in neural information processing systems,
pages 2177–2185.

Omer Levy, Steffen Remus, Chris Biemann, and Ido
Dagan. 2015. Do Supervised Distributional Meth-
ods Really Learn Lexical Inference Relations? In
Proceedings of the 2015 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 970–976. Association for Computational Lin-
guistics.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jef-
frey Dean. 2013. Efficient estimation of word
representations in vector space. arXiv preprint
arXiv:1301.3781.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. GloVe: Global Vectors for Word
Representation. In Proceedings of the 2014 Con-
ference on Empirical Methods in Natural Language
Processing (EMNLP), pages 1532–1543. Associa-
tion for Computational Linguistics.

Dana Rubinstein, Effi Levi, Roy Schwartz, and Ari
Rappoport. 2015. How Well Do Distributional Mod-
els Capture Different Types of Semantic Knowl-
edge? In Proceedings of the 53rd Annual Meet-
ing of the Association for Computational Linguistics
and the 7th International Joint Conference on Natu-
ral Language Processing (Volume 2: Short Papers),
pages 726–730. Association for Computational Lin-
guistics.

Carina Silberer, Vittorio Ferrari, and Mirella Lapata.
2013. Models of Semantic Representation with Vi-
sual Attributes. In Proceedings of the 51st Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 572–582.
Association for Computational Linguistics.

Robert Speer, Joshua Chin, and Catherine Havasi.
2017. ConceptNet 5.5: An Open Multilingual

Graph of General Knowledge. In Proceedings of
the 31st AAAI Conference on Artificial Intelligence,
pages 4444–4451.

1033

Proceedings of the 12th International Workshop on Semantic Evaluation (SemEval-2018), pages 1034–1037
New Orleans, Louisiana, June 5–6, 2018. ©2018 Association for Computational Linguistics

ELiRF-UPV at SemEval-2018 Task 11: Machine Comprehension using
Commonsense Knowledge

José-Ángel González, Lluı́s-F. Hurtado, Encarna Segarra, Ferran Pla
Universitat Politècnica de València
Camı́ de Vera sn, 46022, València

{jogonba2|lhurtado|esegarra|fpla}@dsic.upv.es

Abstract
This paper describes the participation of
ELiRF-UPV team at task 11, Machine Com-
prehension using Commonsense Knowledge,
of SemEval-2018. Our approach is based on
the use of word embeddings, NumberBatch
Embeddings, and a Deep Learning architec-
ture to find the best answer for the multiple-
choice questions based on the narrative text.
The results obtained are in line with those ob-
tained by the other participants and they en-
courage us to continue working on this prob-
lem.

1 Introduction

In the Machine Comprehension using Common-
sense Knowledge task, systems must answer
multiple-choice questions given narrative texts
about everyday activities. In addition to what is
mentioned in the text, a substantial number of
questions require inference using script knowl-
edge about different scenarios.

In order to capture some script knowledge we
decided to use a word representation based not
only on distributional semantics word models but
also on a knowledge graph, ConceptNet (Speer
et al., 2016). ConceptNet is a knowledge graph
that connects words and phrases of natural lan-
guage with labeled edges. It is designed to rep-
resent the general knowledge involved in under-
standing language. ConceptNet could be used
in combination with sources of distributional se-
mantics, particularly the word2vec Google News
skip-gram embeddings (Mikolov et al., 2013)) and
GloVe 1.2 (Pennington et al., 2014), to produce
new embeddings, NumberBatch embeddings, with
state-of-the-art performance across many word-
relatedness evaluations (Speer and Lowry-Duda,
2017).

More specifically, NumberBatch is a list of se-
mantic word vectors which contains a complex

meaning of those terms, beyond containing only
contextual information like other kinds of em-
beddings based on distributional semantics e.g.
Word2Vec or Glove. These embeddings are ob-
tained through a combination of Word2Vec and
Glove embeddings with knowledge extracted from
ConceptNet by means of a technique known as
retrofitting (Faruqui et al., 2014).

In this work, we used word representations
based on NumberBatch embeddings because these
representations encode semantically rich informa-
tion related to the commonsense. Moreover, in or-
der to tackle this machine comprehension task, we
used a Deep Learning architecture with new atten-
tion mechanisms. The inclusion of these new at-
tention mechanisms allow us to better capture the
similarities among the elements of the input. The
attention mechanisms we introduce in this work
are suggested in the work (Seo et al., 2016), that
obtained very competitive results in Question An-
swering tasks.

2 Resources and Preprocess

As we pointed in Section 1, NumberBatch embed-
dings were used for the representation of words.
These embedding are provided by ConceptNet 5,
which was compiled by the Commonsense Com-
puting Initiative. ConceptNet 5 is freely avail-
able under the Creative Commons Attribution-
ShareAlike license (CC BY SA 4.0) from http:
//conceptnet.io.

We explored several preprocessing techniques
in the development phase The best results were
obtained with the following preprocess: the con-
version of all text to lowercase and the elimination
of the question marks “?”. After this, we carried
out a tokenization process.

1034

3 System Description

We tested Deep Learning architectures based on
similarities between d-dimensional NumberBatch
embeddings of story (x), question (q) and answer
(r). Specifically, our approaches learn representa-
tions of x, q and r to first compute similarities, and
then make a classification decision.

These kind of systems work well in Question
Answering tasks, for instance, BiDAF (Seo et al.,
2016) or QA-LSTM-Story(Pal and Sharma, 2016).
For this reason, with the aim of improving the ac-
curacy of these systems for this task, we incorpo-
rated some attention mechanisms of BiDAF in the
QA-LSTM-Story system. A scheme of our system
is shown in Figure 1.

Figure 1: System architecture.

All Deep Learning systems tested in this work
take first a story (x ∈ R{T,d}), a question (q ∈
R{J,d}) and an answer (r ∈ R{P,d}) as input.
Specifically, each of these elements is a matrix
with their word embeddings as rows. Note that
the length of the representations (T , J and P) is
fixed by adding zero padding at the beginning to
reach the length of the longest element.

Second, x, q and r are processed by means of
three non-shared Bidirectional Long Short Term
Memory (BLSTM) (Hochreiter and Schmidhuber,
1997) (Schuster and Paliwal, 1997). These net-
works capture useful features (X , Q and R) to
make decisions based on similarities among the
inputs. Moreover, we used BatchNormalization
(Ioffe and Szegedy, 2015) and Dropout (Srivastava
et al., 2014) with p = 0.3, after the input layer and

after the BLSTM output to improve the general-
ization of the model.

After that, we compute similarities between
each term of Q and each term of X (S1 = QX ∈
R{J,T}) and similarities between each term of R
and each term of Q (in a similar way, S2 = RQ ∈
R{P,J}).

Now, if we concatenate S1 and S2, and we ap-
ply a fully-connected layer with softmax activa-
tion functions to classify, we reproduce exactly the
QA-LSTM-Story system. However, in this work,
we incorporated several attention mechanisms to
this architecture in order to learn more complex
relationships among the inputs.

One of these attention mechanisms is an adap-
tation of BiDAF. This adaptation used, in addi-
tion to Query2Context (Q2X) and Context2Query
(X2Q), two additional attention mechanisms, An-
swer2Query (R2Q) and Query2Answer (Q2R).
R2Q and Q2R are identical to X2Q and Q2X but
applied to the question q and the answer r.

We have also tested many other attentions, but
the best system obtained in the development phase
only contains X2Q. In order to obtain this atten-
tion, we first transform the similarities S1 by ap-
plying a softmax activation function to each row
i.e. A[i, j] = eS1[i,j]∑T

t=0 e
S1[i,t]

. After this, we com-

pute Q̃ = AX , to represent each row of Q as a
weighted sum of the rows in X . That is, each row
of Q is adapted in order to consider the most rele-
vant rows of X .

From Q̃, we can consider more explicit relation-
ships between x and r if we compute the similari-
ties between Q̃ and R, in the same way as S1 and
S2, to obtain S3.

With all, we transpose the matrix S1 to later
concatenate all the similarity matrices. The re-
sult, (Sᵀ

1 , S2, S3) ∈ R{(T+2P),J}, is flattened by
concatenating all rows as columns to obtain a vec-
tor O(T+2P)∗J . Finally, we apply a softmax fully-
connected layer to O to carry out the classification.

To train the system, we generated a training set
consisting of all the triples of the corpus (x, q, r).
Thus, for each x and q, we generate two triples,
(x, q, r1) and (x, q, r2). Then, if r1 is correct,
y(x, q, r1) = 1, else y(x, q, r1) = 0. At inference
time, given x, q and their two possible answers
r1 and r2, we first build two triples (x, q, r1) and
(x, q, r2) and, second, we obtain the network out-
puts y1 and y2, respectively. Finally, in order to
decide which answer is correct, we select the one

1035

Sys. System Description Acc. (%)
1 QA-LSTM-Story 79.21
2 BiDAF Adaptation 76.47
3 QA-LSTM-Story with X2Q 80.08

Table 1: Results on the development set.

Team Acc. (%)
Yuanfudao (1/11) 83.95
Mitre (2/11) 82.27
Jiangnan (3/11) 80.91
ELiRF-UPV (4/11) 74.97
YNU Deep (5/11) 74.72

· · ·
IUCM (11/11) 61.35

Table 2: Official results on the test set.

that maximizes the output for the correct class i.e.
yi[1] (2nd component of the network output for a
triple i).

4 Experimental Results

The results obtained during the development phase
for the different systems above mentioned are
shown in the Table 1. It can be observed that Deep
Learning systems with simpler attention mecha-
nisms worked better than those with more com-
plex attention mechanisms (system 2 versus sys-
tems 1 and 3). If X2Q was added to compute more
explicit relations between x and r, the accuracy
slightly improved from 79.21% to 80.08% (system
1 versus system 3). Moreover, we tested system 3
with word2vec (Google News skip-gram) instead
of NumberBatch embeddings obtaining an accu-
racy of 78.84%.

With these results, we chose the best system in
the development phase (system 3 in Table 1).

The results obtained with this system on the test
set are shown in Table 2.

5 Analysis of Results

Now, we make an analysis of the results obtained
with our best system. In particular, we analyze
the network confidence at intervals when deciding
what is the correct answer (r1 or r2) given a story
x and a question q. This confidence c is defined as
the absolute difference between the outputs for the
correct class of each answer (y1[1] and y2[1]) i.e.
c = |y1[1]− y2[1]|.

During this analysis, we get a maximum con-
fidence c

max
= 0.999 and a minimum confidence

c
min

= 0.000. Thus, there are extreme cases where

the system is totally sure about what is the correct
answer, or has total uncertainty. In the instance
(ix = 235, iq = 1), we observe that the system
is totally sure about the correct answer due to the
answer has been explicitly found in the story. In
a second instance (ix = 131, iq = 4), the sys-
tem has total uncertainty because “$20.00” and
“$15.00” do not appear in the NumberBatch em-
beddings. (Where ix and iq refers to the index of
the story and the question in the test set).

Figure 2: Accuracy in each confidence interval.

Figure 3: Number of samples in each confidence inter-
val.

Moreover, we have also performed a study on
the system accuracy and the number of samples for
each confidence level between [0, 1]. The results
obtained are shown in the Figures 2 and 3.

In general, as it can be observed in Figure 2,

1036

the greater the confidence, the better results were
obtained. However, in Figure 3, we observed that
there are many samples with very low confidence
values, e.g. 0.0-0.1. We think that in order to re-
duce the number of samples in this confidence in-
terval, it would be necessary to incorporate new
knowledge resources.

6 Conclusions

In this work, we presented a Deep Learning archi-
tecture with new attention mechanisms in order to
learn more complex representations and similari-
ties among input elements (story x, question q and
answer r). In order to capture some script knowl-
edge, NumberBatch embeddings were used for the
representation of words. With this approach we
obtained competitive results.

As future work, we propose the study and de-
velopment of new attention mechanisms to learn
complex features and relationships. Moreover, we
also find interesting the enrichment of the Deep
Learning architectures with some commonsense
information beyond the use of NumberBatch em-
beddings, such as the script knowledge resources
suggested by the competition organizers.

7 Acknowledgements

This work has been partially supported by the
Spanish MINECO and FEDER founds under
projects ASLP-MULAN: Audio, Speech and
Language Processing for Multimedia Analytics
(TIN2014-54288-C4-3-R); and AMIC: Affective
Multimedia Analytics with Inclusive and Natural
Communication (TIN2017-85854-C4-2-R). Work
of José-Ángel González is also financed by Uni-
versitat Politècnica de València under grant PAID-
01-17.

References
Manaal Faruqui, Jesse Dodge, Sujay Kumar Jauhar,

Chris Dyer, Eduard H. Hovy, and Noah A. Smith.
2014. Retrofitting word vectors to semantic lexi-
cons. CoRR, abs/1411.4166.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long Short-Term Memory. Neural Computation,
9(8):1735–1780.

Sergey Ioffe and Christian Szegedy. 2015. Batch
normalization: Accelerating deep network train-
ing by reducing internal covariate shift. CoRR,
abs/1502.03167.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Cor-
rado, and Jeffrey Dean. 2013. Distributed represen-
tations of words and phrases and their composition-
ality. CoRR, abs/1310.4546.

Sujit Pal and Abhishek Sharma. 2016. Deep learn-
ing models for question answering. Elsevier Search
Guild Question Answering Workshop.

Jeffrey Pennington, Richard Socher, and Christopher D
Manning. 2014. Glove: Global vectors for word
representation. In EMNLP, volume 14, pages 1532–
1543.

M. Schuster and K.K. Paliwal. 1997. Bidirectional
recurrent neural networks. Trans. Sig. Proc.,
45(11):2673–2681.

Min Joon Seo, Aniruddha Kembhavi, Ali Farhadi,
and Hannaneh Hajishirzi. 2016. Bidirectional at-
tention flow for machine comprehension. CoRR,
abs/1611.01603.

Robert Speer, Joshua Chin, and Catherine Havasi.
2016. Conceptnet 5.5: An open multilingual graph
of general knowledge. CoRR, abs/1612.03975.

Robert Speer and Joanna Lowry-Duda. 2017. Con-
ceptnet at semeval-2017 task 2: Extending word
embeddings with multilingual relational knowledge.
CoRR, abs/1704.03560.

Nitish Srivastava, Geoffrey E. Hinton, Alex
Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdi-
nov. 2014. Dropout: a simple way to prevent neural
networks from overfitting. Journal of Machine
Learning Research, 15(1):1929–1958.

1037

Proceedings of the 12th International Workshop on Semantic Evaluation (SemEval-2018), pages 1038–1042
New Orleans, Louisiana, June 5–6, 2018. ©2018 Association for Computational Linguistics

YNU AI1799 at SemEval-2018 Task 11: Machine Comprehension using
Commonsense Knowledge of Different model ensemble

QingXun Liu, HongDou Yao, Xiaobing Zhou∗, Ge Xie
School of Information Science and Engineering

Yunnan University, Yunnan, P.R. China
∗Corresponding author, zhouxb.cn@gmail.com

Abstract

In this paper, we describe a machine read-
ing comprehension system that participated in
SemEval-2018 Task 11: Machine Compre-
hension using commonsense knowledge. In
this work, we train a series of neural network
models such as multi-LSTM, BiLSTM, multi-
BiLSTM-CNN and attention-based BiLSTM,
etc. On top of some sub models, there are two
kinds of word embedding: (a) general word
embedding generated from unsupervised neu-
ral language model; and (b) position embed-
ding generated from general word embedding.
Finally, we make a hard vote on the predictions
of these models and achieve relatively good
result. The proposed approach achieves 8th
place in Task 11 with the accuracy of 0.7213.

1 Introduction

Machine Comprehension using Commonsense
Knowledge is a well-researched problem in NLP.
In order to simplify the task of the process, we
turn this task into text classification work and
use a deep learning neural network to fulfill it.
The method of deep learning models used in
text analysis has achieved numerous notable ad-
vances in recently years (e.g., (Breck et al., 2007),
(Yessenalina and Cardie, 2011) and (Socher et al.,
2011)). However, in most previous works, the
tasks are to apply a single model to a particular
data set task.

The single model is a vertical stack of multiple
hidden layers, which is not good for text analy-
sis and processing. The first drawback is the need
to consume more hardware resources, followed by
over-fitting and loss of feature information. So the
task here is to apply different structure sub models
to the same train-set. We train many classic sub
models with one layer on top of word embedding,
like LSTM, CNN, Attention,Attention+BiLSTM,
multi-BiLSTM+CNN and some other models

which are slightly different from the above mod-
els with different activation functions and differ-
ent layers inside the model. In each single model,
we use a flag to determine which embedding tool
is used or not.

Most of the deep learning involve word vectors
represented by neural language models ((Morin
and Bengio, 2005) , (Yih et al., 2011) and
(Mikolov et al., 2013)). Using the learned word
vectors for classification task will naturally in-
crease the effect. Word vectors are expressed as
a hidden-layer word vector of the specified di-
mension (1-of-V, here V is the vocabulary size),
the training methods can be found here1. In our
system, we introduce different word vectors: 100
billion words of Google News, Glove vectors of
100 dimensions and word vectors self-trained on
the basis of official task data. Finally, a hard
vote(the majority voting from result document)
is made on the results of those different models.
Many tasks often suffer from insufficient training
data. In this work, we parse external data from
CodaLab introduction data, including DeScript(?)
data, RKP(Regneri et al., 2010) data and OMCS
(Singh et al., 2002) data to trained embedding.

2 System Description

We treat this task as a classification process. First
we repeat the question and answer text, making it
match instance texts. The final number of samples
are same as the number of answers in the data-set.
After statistical analysis of the data-set, we treat
Instance texts, Question texts and Answers texts as
to a rational text length of words {w1,w2,. . . ,wn}
in which n is the max length of a text. Here, the
length of Instance is controlled as 350, and the
length of Question is controlled as 14 as well as
Answer. Before that, we count the frequency of

1https://radimrehurek.com/gensim/models/word2vec.html

1038

occurrence of each word in the data-set, and use
this word frequency to create a dictionary, then
express each word in terms of frequency order of
corresponding word (Kim, 2014). Next, we train
word embeddding according to (Chiu et al., 2016),
and at the same time download the trained embed-
ding sets that have been trained2.

The ensemble model architecture, shown in fig-
ure 1, is an ensemble of many single models(We
call them sub models). Because each sub model
is independent of each other, their weights are
not shared and just use the same word embed-
ding when training each sub model. The process
of the whole ensemble model is carried out model
by model. First, each model is run independently,
and then the result file is saved. After running all
the independent models, the result files are taken
out and the final result is determined by the major-
ity vote. In model training, we use the early stop
mechanism (Sarle, 1995) to terminate the train-
ing of subsequent epoch when the overfitting is
appeared. At the same time, the data is shuffled
on every epoch. The core of our paper is based
on classic models, adding other network layers, so
that the independent models have their own struc-
ture. Next, are introduced the input structures of
the sub models.

···

···

···

In
st

an
ce

 w
or

d
Fr

eq
Q

u
es

tio
n

 w
or

d
Fr

eq
A

ns
w

er
 w

or
d

Fr
eq

···

··· ···

···

···

···
···
···

··· ······
···
···

··· ·········
···

the g ardener

text length

···

···

models

0 1

1 0

0 1

1 0

0 1

···

0 1

···
···

0 1

1 0

0 1

1 0

sa
m

p
le

s
n

um
sa

m
p

le
s

n
um

sa
m

p
le

s
n

um

0 1

0 1

1 0

vote

vote

vote

···

1 0

0 1

1 0

1 0

0 1

model_1

model_2

model_n

···

Figure 1: The architecture of the models ensemble.

??

In
st

an
ce

 le
n

gt
h

qu
es

tio
n

le
n

gt
h

A
ns

w
er

 le
n

gt
h

A
 s

am
pl

e

embedding size

em
b

ed
di

ng

Position embedding layer

em
b

ed
di

ng
em

b
ed

di
n

g

yes

yes

yes

no

no

no

yes

yes

model layer

model layer

model layer

su
bs

eq
ue

n
t

ac
ti

on
s

Figure 2: The input structure of the submodel
2https://github.com/xgli/word2vec-api

2.1 Similar input structures

Figure 2 shows the architecture of the sub models
input. The input part of all sub models uses this
structure. Within the structure, two flag variables
are used to control the use of word embedding.
One is whether to use the position embedding, and
the other is to control whether or not the trained
word embedding is used. From this structure, data
flow to the subsequent network layer such as the
classic model layer CNN, LSTM, BiLSTM and
Attention.

2.2 The merge layer

In order to combine three text feature information,
we have a merge layer in all of our sub models.
The merge layer of these sub models is almost
the same. Only the attention layer merge is dif-
ferent from other sub models. The merge of most
sub models first combines the instance matrix data
with the question in sum operation, while combin-
ing the matrix data with the answer, and finally
combining the two sets of matrix data in the dot
operation. However, in the sub model with Atten-
tion, merge layer combines the matrix data of the
three texts with dot operation. Next, we will focus
on two sub models using classical models,while
the rest of the other part of each sub models are
similar to the two models.

2.3 Based on multi-BiLSTM+CNN model

Long short-term memory (LSTM or BiLSTM) is
applied to text classification ((Liu et al., 2016) and
(Lai et al., 2015)). The Convolutional Neural Net-
works (CNN) is for local feature extraction (Le-
Cun et al., 1998). CNN can achieve good results in
the semantic analysis (Yih et al., 2014), and other
traditional NLP tasks (Collobert et al., 2011), es-
pecially in sentiment analysis and question clas-
sification (Kim et al., 2016). It is our novelty to
combine CNN with multiple layers of BiLSTM
with BiLSTM in front.

Here set the multi = 2, of course, it can be 3
or more. Each multi-BiLSTM internal implies a
dropout layer to prevent over-fitting (Srivastava
et al., 2014). Multi-BiLSTM is one of the core
layers in this model which takes an input sequence
of word embedding. Just like (Liu et al., 2016)
and (Lai et al., 2015), this layer runs on the data
of word embedding. After these three branches
running (Just as the three model layers in Figure
2), we make batch normalization and then merge

1039

them into CNN1D layer. Finally, we use the Soft-
max classifier to predict the results. Other sub
models that do not use Attention are similar to the
sub model structure, instead of replacing CNN1D
with other structures.

2.4 Based on Attention + BiLSTM model

Attention is mostly used for document categoriza-
tion (Yang et al., 2016).The model architecture
is different from the multi-BiLSTM+CNN archi-
tecture of word embedding layer. The structure
of this model is roughly: a word embedding in-
put structure, followed by attention layer which
include the merge layer. Next to the batch nor-
malization layer, BiLSTM layer , Softmax layer.
We do a position embedding operation before in-
putting the word embedding into attention layer.
According to (Vaswani et al., 2017), the formula
for constructing Position Embedding is as follows:

{
PE2i(p) = sin(p/100002i/dpos)

PE2i+1(p) = sin(p/100002i/dpos)
(1)

Here is to map the position p to the position vec-
tor of dpos dimension. The value of the i th ele-
ment of this vector is PEi(p). Word embedding
first goes through the position embedding layer
which is included in the architecture of the sub
model input. Then the feature data enters into at-
tention layer. In attention layer, weights and bias
are randomly added to position embedding and ex-
cess numbers are masked as zero. We do batch
normalization for the data coming out of attention
layer, then input them into BiLSTM. Similarly, the
results are obtained after Softmax layer.

3 Data Preparation

Although official data is regular, we have done
a further normalization. All data set used by
each model undergoes the following preprocess-
ing steps:

1) The texts were lowercased

2) Using NLTK to tokenize each text

3) Abbreviations:
We’re very careful about the abbreviation, as
”’s” in ”it’s time for me to take her out.” is not
the same as ”s” in ”Tom’s dad ordered pizza
yesterday for the family.” We treat the first ”s”

examples normalization
I‘m I am
n‘t not
does‘t does not
it‘s it is
.
that‘s that is
neighbor‘s neighbor
wouldn‘t would not
wont‘t will not

Table 1: normalization patterns.

as ”is,” and the second, of course, is an adjec-
tive. We restore those abbreviations in Table 1
to normal forms.

4) Removing other characters:
Removing other characters, such as “!”,“%
”,“?”, “#”, “”,“@” Etc. Of course, not all other
symbols that seem useless are removed. Like
“$” are not removed.

4 Experiments and Results

In order to optimize our network, we use (Kingma
and Ba, 2014) optimizer on training model. All
our experiments have been developed using an
open source software library of Tensorflow with
CUDA enabled, and run on a computer with In-
tel Core(TM) i3 CPU 760 @2.8GHz, 8GB of
RAM and GeForce GTX960 GPU. Due to the
lack of hardware capacity, we do not run the en-
tire system in one time. Instead, we run sin-
gle model each time with different word embed-
dings. When we use the word embedding of
Google News 300d on some sub models, the sys-
tem gives memory exhausted, and we switch to a
smaller glove 27B 100d to run successfully. Ta-
ble 2 shows our results for various models. As it
can be seen from the table, ensemble results from
the more different models get better results when
other conditions are similar. Here we ensem-
ble these models: RNN, GRU, BiLSTM, multi-
BiLSTM+CNN and Attention+BiLSTM, based on
their high accuracy. The dropout probability is 0.6
in each model, and the initial learning rate is 0.01.

5 Conclusion

In this project, we ensemble a variety of struc-
turally different models to tackle this task. The

1040

model self trained glove twitter 27B 100d GoogleNews 300d.bin
RNN — 0.6638 —
LSTM 0.7001 0.7042 0.6932
GRU — 0.6732 —
CNN1D 0.5634 0.6324 —
CNN2D — 0.5683 —
CNN2D+LSTM — 0.5573 —
BiLSTM 0.6734 0.7135 —
Attention — 0.6731 0.6863
Attention+BiLSTM 0.6653 0.6943 0.6934
multi-BiLSTM+CNN 0.6725 0.6834 —
Combine to all models 0.6550 0.7213 0.6923

Table 2: Result for various models on task data set.

performance of a single model is poorer than the
ensemble model. And the bigger the difference
between the models, the higher performance the
ensemble model makes. Still our results are less
satisfying than top teams on the leaderboard. We
will adjust the model, improve the hardware con-
figuration of the computer, collect more external
data, and do more experiments to get a better re-
sult in the future.

Acknowledgments

This work was supported by the Natural Science
Foundation of China No.61463050, No.61702443,
No.61762091, the NSF of Yunnan Province
No.2015FB113, the Project of Innovative Re-
search Team of Yunnan Province.

References
Eric Breck, Yejin Choi, and Claire Cardie. 2007. Iden-

tifying expressions of opinion in context. In Inter-
national Joint Conference on Artificial Intelligence,
pages 2683–2688.

Billy Chiu, Gamal Crichton, Anna Korhonen, and
Sampo Pyysalo. 2016. How to train good word
embeddings for biomedical nlp. In Proceedings of
the 15th Workshop on Biomedical Natural Language
Processing, pages 166–174.

Ronan Collobert, Jason Weston, Léon Bottou, Michael
Karlen, Koray Kavukcuoglu, and Pavel Kuksa.
2011. Natural language processing (almost) from
scratch. Journal of Machine Learning Research,
12(Aug):2493–2537.

Yoon Kim. 2014. Convolutional neural networks for
sentence classification. In Proceedings of the 2014
Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP), pages 1746–1751.

Yoon Kim, Yacine Jernite, David Sontag, and Alexan-
der M Rush. 2016. Character-aware neural language
models. In AAAI, pages 2741–2749.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. In International
Conference on Learning Representations (ICLR).

Siwei Lai, Liheng Xu, Kang Liu, and Jun Zhao. 2015.
Recurrent convolutional neural networks for text
classification. In AAAI, volume 333, pages 2267–
2273.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick
Haffner. 1998. Gradient-based learning applied to
document recognition. Proceedings of the IEEE,
86(11):2278–2324.

Pengfei Liu, Xipeng Qiu, and Xuanjing Huang. 2016.
Recurrent neural network for text classification with
multi-task learning. In International Joint Confer-
ence on Artificial Intelligence, pages 2873–2879.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013. Distributed representa-
tions of words and phrases and their compositional-
ity. In Advances in neural information processing
systems, pages 3111–3119.

Frederic Morin and Yoshua Bengio. 2005. Hierarchi-
cal probabilistic neural network language model. In
Aistats, volume 5, pages 246–252.

Michaela Regneri, Alexander Koller, and Manfred
Pinkal. 2010. Learning script knowledge with web
experiments. In Meeting of the Association for Com-
putational Linguistics, pages 979–988.

Warren S. Sarle. 1995. Stopped training and other
remedies for overfitting. In Proceedings of Sympo-
sium on the Interface, pages 352–360.

Push Singh, Thomas Lin, Erik T. Mueller, Grace Lim,
Travell Perkins, and Wan Li Zhu. 2002. Open mind
common sense: Knowledge acquisition from the
general public. 2519(5):1223–1237.

1041

Richard Socher, Jeffrey Pennington, Eric H Huang,
Andrew Y Ng, and Christopher D Manning. 2011.
Semi-supervised recursive autoencoders for predict-
ing sentiment distributions. In Conference on Em-
pirical Methods in Natural Language Processing,
EMNLP 2011, 27-31 July 2011, John Mcintyre Con-
ference Centre, Edinburgh, Uk, A Meeting of Sigdat,
A Special Interest Group of the ACL, pages 151–161.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky,
Ilya Sutskever, and Ruslan Salakhutdinov. 2014.
Dropout: a simple way to prevent neural networks
from overfitting. Journal of Machine Learning Re-
search, 15(1):1929–1958.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In I., editor, Advances in Neural Informa-
tion Processing Systems 30, pages 5998–6008.

Zichao Yang, Diyi Yang, Chris Dyer, Xiaodong He,
Alex Smola, and Eduard Hovy. 2016. Hierarchi-
cal attention networks for document classification.
In Proceedings of the 2016 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 1480–1489.

Ainur Yessenalina and Claire Cardie. 2011. Compo-
sitional matrix-space models for sentiment analy-
sis. In Conference on Empirical Methods in Natu-
ral Language Processing, EMNLP 2011, 27-31 July
2011, John Mcintyre Conference Centre, Edinburgh,
Uk, A Meeting of Sigdat, A Special Interest Group of
the ACL, pages 172–182.

Wen-tau Yih, Xiaodong He, and Christopher Meek.
2014. Semantic parsing for single-relation ques-
tion answering. In Proceedings of the 52nd Annual
Meeting of the Association for Computational Lin-
guistics (Volume 2: Short Papers), volume 2, pages
643–648.

Wen-tau Yih, Kristina Toutanova, John C Platt, and
Christopher Meek. 2011. Learning discriminative
projections for text similarity measures. In Proceed-
ings of the Fifteenth Conference on Computational
Natural Language Learning, pages 247–256.

1042

Proceedings of the 12th International Workshop on Semantic Evaluation (SemEval-2018), pages 1043–1047
New Orleans, Louisiana, June 5–6, 2018. ©2018 Association for Computational Linguistics

YNU Deep at SemEval-2018 Task 11: An Ensemble of Attention-based
BiLSTM Models for Machine Comprehension

Peng Ding, Xiaobing Zhou∗

School of Information Science and Engineering
Yunnan University, Yunnan, P.R. China

∗Corresponding author, zhouxb.cn@gmail.com

Abstract

This paper reports our submission to task
11 (Machine Comprehension using Common-
sense Knowledge) in SemEval 2018. We
firstly use GloVe to learn the distributed rep-
resentations automatically from the instance,
question and answer triples. Then an attention-
based Bidirectional LSTM (BiLSTM) model
is used to encode the triples. We also perform
a simple ensemble method to improve the ef-
fectiveness of our model. The system we de-
veloped obtains an encouraging result on this
task. It achieves the accuracy 0.7472 on the
test set. We rank 5th according to the official
ranking.

1 Introduction

Machine comprehension of text is one of the ulti-
mate goals of natural language processing. The
machine comprehension problem can be formu-
lated as follows: Given an instance i, a question
q and an answer candidate pool {a1, a2, . . ., as},
the aim is to search for the best answer candidate
ak, where 1 ≤ k ≤ s. The major challenge of this
task is that the words in the answer do not neces-
sarily appear in the instance.

In recent years, deep learning models are widely
used in the field of NLP, such as semantic analysis
(Tang et al., 2015), machine translation (Bahdanau
et al., 2014) and text summarization (Rush et al.,
2015). (Bahdanau et al., 2014) also introduced the
attention mechanism into NLP task for the first
time. This attention-based model yielded state-
of-the-art performance on the machine translation
task. (Hermann et al., 2015) built a supervised
reading comprehension data set, the CNN/Daily
Mail data sets1. They also presented Attentive
Reader for machine comprehension, which allows
a model to focus on the aspects of an instance that

1http://www.github.com/deepmind/rc-data/

can help to answer a question, and also allows us
to visualize its inference process (Hermann et al.,
2015). The key point of the attention-based mod-
els is the design of attention function. Com-
pared to Attentive Reader, Attention Sum Reader
(Kadlec et al., 2016) used the dot products instead
of a tanh layer to compute the attention between
question and contextual embeddings. Stanford At-
tention Reader (Chen et al., 2016) took a bilinear
term as the attention function and obtained state-
of-the-art results on the CNN/Daily Mail data sets.

The reasoning process was implemented in
some models for machine comprehension. Mem-
ory Networks (Sukhbaatar et al., 2015) was the
first model to propose reasoning process, which
had important influence on other follow-up mod-
els. Compared to the traditional attention model,
Memory Networks additionally uses a function t
that constantly updates the representation of the
instance and the question so as to realize the rea-
soning process. (Tseng et al., 2016) proposed
an attention-based multi-hop recurrent neural net-
work which achieved good performance on the
machine listening comprehension test of TOEFL.
Other reasoning models (Dhingra et al., 2017; Sor-
doni et al., 2016) shared the same idea as pre-
vious models, i.e., the representations of the in-
stance and the question embedding were updated
through continuous conversion of attention. Some
more complex models (Hu et al., 2017; Liu et al.,
2017) were proposed based on SQuAD data set
(Rajpurkar et al., 2016). Their performances have
been very close to or even exceeded the human
performance on this dataset.

In this paper, we introduce a simple ensemble
method on multiple identical attention-based BiL-
STM models, only changing the dropout parame-
ters in each model. We use each model to generate
a soft prediction, and sum each result, then take
the sum as the final prediction result. Experiments

1043

Instance Question Answer

Embedding Layer Embedding Layer Embedding Layer

BiLSTM Layer BiLSTM Layer BiLSTM Layer

* *Attention Attention

||

Dense + Softmax

Candidate Answer Correct? (Y/N)

Concatenation

Figure 1: Our attention-based BiLSTM model for ma-
chine comprehension.

show that the ensemble model is about 2% higher
than the single model in terms of accuracy on both
development and test sets. Besides, we also made
our code available online2.

2 System Description

Our model is called an ensemble of attention-
based BiLSTM models. Firstly, we use an em-
bedding layer to obtain the distributed representa-
tions of the instance, question and answer triples.
They are encoded by three different BiLSTM lay-
ers. The attention mechanism is implemented by
dot products via a merge layer. Finally, we assign
the same weight to each model when ensembling.
The final result is the sum of the soft probabili-
ties yielded by each single model. We keep the
structure of each model the same, just fine tune
the dropout parameters. The model architecture
is shown in Figure 1. The attention mechanism
is developed by calculating the dot product of the
outputs from two BiLSTM layers. Then we use
’||’ operation to concatenate two matrices from
the previous layer in the specified dimension. Fi-
nally, a Dense fully connected layer with activa-
tion softmax is used to get the predicted proba-
bilities.

2https://github.com/Deep1994/An-Ensemble-
of-Attention-based-BiLSTM-Model-for-Machine-
Comprehension

2.1 BiLSTM

Single direction LSTM (Hochreiter and Schmid-
huber, 1997) suffers a weakness of not using the
contextual information from the future tokens.
Bidirectional LSTM (BiLSTM) exploits both the
previous and future context by processing the se-
quence on two directions and generates two inde-
pendent sequences of LSTM output vectors. One
processes the input sequence in the forward di-
rection, while the other processes the input in the
backward direction. The words in the instances,
questions and answers are represented by the con-
catenation of the hidden layer outputs in both di-
rections at each time step.

2.2 Word Embedding

Word embedding is arguably the most widely
known technology in the recent history of NLP.
It is well-known that using pre-trained embed-
ding helps (Kim, 2014). We try two word em-
bedding tools, GloVe (Pennington et al., 2014) and
Word2Vec (Mikolov et al., 2013) on this task.

Tool Size Vocab Dimension
GloVe 5.5G 2.2million 300

Word2Vec 3.5G 3million 300

Table 1: Summary statistics for the embedding tools:
Size is the file size after decompression. Both tools
have a dimension of 300. The Vocab is the number of
word vectors contained in the tool.

2.3 Attention Mechanism

The LSTM model can alleviate the problem of gra-
dient vanishing, but this problem persists in long
range reading comprehension contexts. The atten-
tion mechanism breaks the constraint on fix-length
vector as the context vector, enables the model to
focus on those more helpful to outputs. (Luong
et al., 2015) presented several attention computa-
tion ways, such as dot, general, concat. In our
model, we adopt the dot mode to compute the at-
tention. After BiLSTM layer, we implement a dot
product operation on the output vectors produced
by previous layer. It is proven effective to improve
the performance of our model.

The attention mechanism in our model uses a
matching function f to associate the target mod-
ule with the source module, the function f is im-
plemented as follows:

f(mt,ms) = mt
Tms (1)

1044

Model 1
(dropout = 0.2)

Model 2
(dropout = 0.3)

Model 3
(dropout = 0.4)

Model 4
(dropout = 0.5)

Model 5
(dropout = 0.6)

Soft prediction 1 Soft prediction 2 Soft prediction 3 Soft prediction 4 Soft prediction 5

+

1
1

1
1

1

Final prediction

Correct answer
(0 or 1)

Figure 2: The ensemble method used in our model. The
dropout parameters for the five models varied from 0.2
to 0.6 after the BiLSTM layer.

where mt and ms correspond to instance and
question vectors, or answer and question vectors
produced by previous BiLSTM layers, respec-
tively.

2.4 Model Ensemble
Combining multiple models into an ensemble by
averaging their predictions is a proven strategy
to improve model performance. While predict-
ing with an ensemble is expensive at test time, re-
cent advances in distillation allow us to compress
an expensive ensemble into a much smaller model
(Hinton et al., 2015; Kuncoro et al., 2016; Kim and
Rush, 2016).

In our model, each single model will yield a soft
probability to determine if the candidate answer is
correct or not. As is shown in figure 2, we train
several models and sum the results produced by
them. Then we use the sum of the probabilities
as the final prediction. We found that the perfor-
mance of the ensemble model is always better than
that of a single model.

3 Experiments

We run each model 10 times, taking the average
results as the final experimental results to enhance
reliability. In all single models, the dropout pa-
rameter is taken as 0.3, and the ensemble model is
trained through 5 BiLSTM models. Their dropout
parameters are changed from 0.2 to 0.6, respec-
tively, and then the results of the 5 models are
summed as the final prediction. We set epoch =
6, batch size = 512 and LSTM Units = 64. Op-
timization is carried out using Adaptive Moment
Estimation (Adam).

3.1 Data Processing
The organizers provided training, development,
and test sets, containing 9837, 1417, 2797 ques-
tions, respectively. Each question corresponds two
answers, only one is correct.

We firstly substitute the abbreviation characters
and remove the meaningless characters. Then we
combine the instance, question and answer as the
supervised training set. Labels are represented
by 0 (False) or 1 (True). The TweetTokenizer3 in
NLTK is adopted for word segmentation. Further-
more, we find the maximum length of instances is
much longer than that of questions and answers,
so we remove the stop words in the instances. Our
experiments show that doing so not only does not
harm the accuracy, but also drastically reduces the
training time.

3.2 Experiments and Result Analysis
We compare two word embedding tools,
Word2Vec and GloVe, and the experimental
results show that GloVe almost always outper-
forms Word2Vec on this task. Although the
vocabularies in GloVe are less than those in
Word2Vec, GloVe contains more abbreviations,
which are especially useful after tokenizing
the instance, question and answer triples, and
greatly reduce the number of unknown words in
word embedding, making the context semantics
better learned by the model. We make random
assignments on unknown words, ranging from
-0.25 to 0.25.

Tool Ukw Time Dev Acc Test Acc
GloVe 33 597s 0.7448 0.7276

Word2Vec 276 40s 0.7415 0.7087

Table 2: Comparison between Word2Vec and GloVe
tools on BiLSTM models. Ukw is the number of un-
known words. Time is the loading time of two tools.
We can see GloVe performs better, but its loading time
is much longer than that of Word2Vec.

As seen in Table 3, we compare two network ar-
chitectures, LSTM and BiLSTM. The results show
that the BiLSTM model performs better than the
LSTM model on this task.

Based on Glove word embedding and BiLSTM
architecture, we train 5 single models for ensem-
ble. The only difference between them is the dif-
ference in dropout parameters, which increases
from 0.2 to 0.6. In our experiments, we train the

3http://www.nltk.org/api/nltk.tokenize.html

1045

Network Tool Dev Acc Test Acc
LSTM GloVe 0.7448 0.7276

BiLSTM GloVe 0.7508 0.7301

Table 3: Comparison between LSTM and BiLSTM.
BiLSTM performs better than LSTM on both datasets.

single model with the dropout in order of 0.3, 0.5,
0.4, 0.2, 0.6, then the first ensemble is the result
of adding the first two models with the dropout
of 0.3, 0.5 as the predictive result, the result of
the second ensemble is based on the first ensemble
plus the single model with dropout of 0.4, and so
on. We perform a total of 4 ensemble experiments,
the results show that the accuracy of each ensem-
ble model improved on both datasets. The final
ensemble model has an accuracy rate of 0.7699
on the development set and 0.7472 on the test set.
However, we find that our model was slightly more
accurate on the test set without the ensemble of
the model with a dropout of 0.6, but the overall
effect is not obvious. Ensemble makes our model
perform well on this task, ranking 5th out of 11
submissions.

Dropout Dev Acc Test Acc
0.3 0.7476 0.7311
0.5 0.7516 0.7183

Ensemble 1 0.7608 0.7386
0.4 0.7615 0.7294

Ensemble 2 0.7692 0.7408
0.2 0.7354 0.7143

Ensemble 3 0.7664 0.7479
0.6 0.7410 0.7308

Ensemble 4 0.7699 0.7472

Table 4: Results on single and ensemble models. All
models adopt GloVe + Attention-based BiLSTM archi-
tecture. The dropout layer is behind the BiLSTM layer.

4 Conclusion and Future Work

In this paper, we present an ensemble of attention-
based BiLSTM models for machine comprehen-
sion task. We find GloVe is superior to Word2Vec
on this task, a simple ensemble method can signif-
icantly enhance the overall performance.

In the future, we plan to explore more ways
to compute the attention, such as a bilinear term.
Future work also involves using more external
knowledge and deeper network to improve model
performance. We will explore the ensemble
method in greater depth, trying ensemble on the
models with more structural difference.

Acknowledgments

This work was supported by the Natural Science
Foundations of China No.61463050, No.617-
02443, No.61762091, the NSF of Yunnan
Province No. 2015FB113, the Project of Innova-
tive Research Team of Yunnan Province.

References
Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-

gio. 2014. Neural machine translation by jointly
learning to align and translate. arXiv preprint
arXiv:1409.0473.

Danqi Chen, Jason Bolton, and Christopher D Man-
ning. 2016. A thorough examination of the
cnn/daily mail reading comprehension task. In Pro-
ceedings of the 54th Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 1: Long
Papers), volume 1, pages 2358–2367.

Bhuwan Dhingra, Hanxiao Liu, Zhilin Yang, William
Cohen, and Ruslan Salakhutdinov. 2017. Gated-
attention readers for text comprehension. In Pro-
ceedings of the 55th Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 1: Long
Papers), volume 1, pages 1832–1846.

Karl Moritz Hermann, Tomas Kocisky, Edward
Grefenstette, Lasse Espeholt, Will Kay, Mustafa Su-
leyman, and Phil Blunsom. 2015. Teaching ma-
chines to read and comprehend. In Advances in Neu-
ral Information Processing Systems, pages 1693–
1701.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. 2015.
Distilling the knowledge in a neural network. stat,
1050:9.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural computation,
9(8):1735–1780.

Minghao Hu, Yuxing Peng, and Xipeng Qiu. 2017. Re-
inforced mnemonic reader for machine comprehen-
sion. CoRR, abs/1705.02798.

Rudolf Kadlec, Martin Schmid, Ondřej Bajgar, and Jan
Kleindienst. 2016. Text understanding with the at-
tention sum reader network. In Proceedings of the
54th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), vol-
ume 1, pages 908–918.

Yoon Kim. 2014. Convolutional neural networks for
sentence classification. In Proceedings of the 2014
Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP), pages 1746–1751.

Yoon Kim and Alexander M Rush. 2016. Sequence-
level knowledge distillation. In Proceedings of the
2016 Conference on Empirical Methods in Natural
Language Processing, pages 1317–1327.

1046

Adhiguna Kuncoro, Miguel Ballesteros, Lingpeng
Kong, Chris Dyer, and Noah A Smith. 2016. Distill-
ing an ensemble of greedy dependency parsers into
one mst parser. In Proceedings of the 2016 Con-
ference on Empirical Methods in Natural Language
Processing, pages 1744–1753.

Xiaodong Liu, Yelong Shen, Kevin Duh, and Jian-
feng Gao. 2017. Stochastic answer networks for
machine reading comprehension. arXiv preprint
arXiv:1712.03556.

Thang Luong, Hieu Pham, and Christopher D Man-
ning. 2015. Effective approaches to attention-based
neural machine translation. In Proceedings of the
2015 Conference on Empirical Methods in Natural
Language Processing, pages 1412–1421.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013. Distributed representa-
tions of words and phrases and their compositional-
ity. In Advances in neural information processing
systems, pages 3111–3119.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. Glove: Global vectors for word
representation. In Proceedings of the 2014 confer-
ence on empirical methods in natural language pro-
cessing (EMNLP), pages 1532–1543.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. Squad: 100,000+ questions for
machine comprehension of text. In Proceedings of
the 2016 Conference on Empirical Methods in Nat-
ural Language Processing, pages 2383–2392.

Alexander M Rush, Sumit Chopra, and Jason Weston.
2015. A neural attention model for abstractive sen-
tence summarization. In Proceedings of the 2015
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 379–389.

Alessandro Sordoni, Philip Bachman, Adam Trischler,
and Yoshua Bengio. 2016. Iterative alternating neu-
ral attention for machine reading. arXiv preprint
arXiv:1606.02245.

Sainbayar Sukhbaatar, Jason Weston, Rob Fergus, et al.
2015. End-to-end memory networks. In Advances
in neural information processing systems, pages
2440–2448.

Duyu Tang, Bing Qin, and Ting Liu. 2015. Docu-
ment modeling with gated recurrent neural network
for sentiment classification. In Proceedings of the
2015 conference on empirical methods in natural
language processing, pages 1422–1432.

Bo-Hsiang Tseng, Sheng-syun Shen, Hung-Yi Lee,
and Lin-Shan Lee. 2016. Towards machine com-
prehension of spoken content: Initial toefl listening
comprehension test by machine. Interspeech 2016,
pages 2731–2735.

1047

Proceedings of the 12th International Workshop on Semantic Evaluation (SemEval-2018), pages 1048–1052
New Orleans, Louisiana, June 5–6, 2018. ©2018 Association for Computational Linguistics

ECNU at SemEval-2018 Task 11: Using Deep Learning Method to
Address Machine Comprehension Task

Yixuan Sheng1, Man Lan1,2∗, Yuanbin Wu1,2

1Department of Computer Science and Technology,
East China Normal University, Shanghai, P.R.China

2Shanghai Key Laboratory of Multidimensional Information Processing
51164500026@stu.ecnu.edu.cn, {mlan, ybwu}@cs.ecnu.edu.cn

Abstract
This paper describes the system we submitted
to the Task 11 in SemEval 2018, i.e., Machine
Comprehension using Commonsense Knowl-
edge. Given a passage and some questions that
each have two candidate answers, this task re-
quires the participate system to select out one
answer meet the meaning of original text or
commonsense knowledge from the candidate
answers. For this task, we use a deep learning
method to obtain final predict answer by calcu-
lating relevance of choices representations and
question-aware document representation.

1 Introduction

In recent years, the presentation of challenge and
large-scale reading comprehension corpora has
driven the development of technology for machine
reading comprehension, and most of these ma-
chine comprehension datasets do not need com-
monsense knowledge to answer questions. The
purpose of Machine Comprehension using Com-
monsense Knowledge task in Semeval 2018 is
to provide a platform for finding a way for the
machine to better understand the text and enable
the machine answer questions based on the text,
and encourage participants to make use any ex-
ternal resources (e.g., DeScript, narrative chains,
Wikipedia, etc) to improve the system perfor-
mance (Ostermann et al., 2018b). The task 11 is
a multiple-choice machine comprehension, which
requires a system read a narrative text about every-
day activities (Ostermann et al., 2018a) and then
answer multiple-choice questions based on this
text. Some questions need to be answered accord-
ing to the original text, and others can be answered
by commonsense knowledge. Each question is as-
sociated with a set of two answers. Table 1 gives
an example of the dataset.

To address this machine comprehension task,
we utilized rule-based methods and a deep learn-

document: Early this morning I woke up to the
sound of my newspaper landing on my driveway.
I sat up and wrapped my pink robe around me. I
slipped my feet into my slippers and looked at the
clock. It was only 7:00 but it was time for me to get
my newspaper and drink some coffee. I looked out
the window and noticed it was raining quite a bit.
I saw the newspaper at the end of my driveway, as
far away as it could be. I grabbed my umbrella out
of my coat closet and opened my front door enough
to stick the umbrella through and open it outside. I
stepped out the door and quickly covered my head
with the umbrella. Then I ran to the end of my
driveway, scooped up the newspaper in its plastic
wrapping, and ran back to my front door. I closed
my umbrella, took off my slippers, and dried off.
Then, I unwrapped my newspaper and sat down to
read it.
question: Do they read the paper daily?
candidate answers:
0. No they usually watch TV in the mornings.
1. Yes
answer: 1

Table 1: An example from the SemEval2018 task11
dataset.

ing method. Our final submission use Gated-
Attention Reader (Dhingra et al., 2016) to fuse
question information into document and acquire
a question-awared document representation, the
degree of interaction between choices and docu-
ment are regard as the probabilities of choices be-
ing returned as an answer. The above two meth-
ods do not use additional commonsense knowl-
edge, which may lead to the poor preformance
of our system. In future work, we may explore
more methods to integrate common knowledge
into models.

The rest of this paper is organized as follows.
Section 2 describes our systems. Section 3 de-
scribes datasets, experimental setting and analyse
results on datasets. Finally, Section 4 concludes
this work.

1048

2 System Description

2.1 Task Description
Formally, this multiple-choice machine compre-
hension task can be expressed as a quadruple:<D,
Q, A, a>. Where D represents a narrative text
about everyday activities, Q represents a question
for the content of the narrative text, A is the can-
didate answer choice set to the question(this task
contains two candidate answers choice a0 and a1)
and a represents the correct answer. The system is
expected to select an answer from A that best an-
swers Q according to the evidences in document
D or commonsense knowledge.

2.2 Two Rule-based Baselines
First of all, we implemented a rule-based system
proposed in (Richardson et al., 2013), which used
the sliding-window (SW) and word distance-based
(WD) algorithms to calculate the answer scores
according to the rules and return the highest-score
answer. We also tried the improved SW and
WD algorithms proposed in (Smith et al., 2015),
and the system performance has improvement.
Sliding-window and Word Distance-based algo-
rithms are are described as follows:

Sliding-Window: Given a data sample <D, Q,
a0(or a1), a>, firstly, we calculate the inverse
word counts of each word in the document D.
Then we set a window that slides word by word
from the beginning of the document to the end.
When the window slides to a position, the sum of
inverse word counts of all the words that appears
in the question Q or the candidate choice a0 (or a1)
is the score of the window at this moment. Until
the window slides to the end of the passage, we
choose the highest window score as the final score
of the candidate choice a0 (or a1). Window size is
size of union of the question Q and the choice a0
(or a1), and the window slides over full passage
only once. In the improved SW algorithm, the
window size is 2-30, and window passes full pas-
sage window several times, and increasing the size
of the window by one after each sliding over the
full passage. The summing up values of all passes
is served as improved sliding window score.

Word Distance-based: Given a data sample
<D, Q, a0(or a1), a>, firstly, we define two col-
lections, setdq and setdc, setdq represents the in-
tersection of the question words and the document
words, and setdc represents the intersection of the
words in the choice and the words of the docu-

ment. If neither setdq nor setdc is empty set, we
calculate the shortest distance between words of
setdp and words of setdc in the document, denote
the shortest distance as dmin, and the word dis-
tance score of the choice is dmin+1

|D|−1 , otherwise, the
word distance score of the choice is zero.

The sliding-window score minus the word
distance-based score is the final score of the
choice. We separately calculated the scores of the
two choices for the question and then selected the
choice with higher score as the answer to the ques-
tion.

2.3 Deep Learning model

Both of the above unsupervised methods score the
overlap that between each answer and the doc-
ument by making a sliding-window passes over
the document. Therefore, we roughly count the
proportion of words in correct answers appear in
the document1, and we find that the proportion
of correct answers whose words appear entirely
in the article is not high in all correct answers.
The proportion show that there is a limit to us-
ing the above method to improve system perfor-
mance. Hence we used a deep learning approach
to passage representations modeling. Inspired by
(Lai et al., 2017), we use the state-of-art Gated-
Attention Reader which performs well on several
datasets. When a sample data <D, Q, A, a> is
given, the steps of the model processing this data
sample are described below, Figure 1 shows the
system.

2.3.1 Passage, Question and Choice Encoder
First, each word in D, Q, and choices (two
choices in candidate answer set A) is mapped to
d-dimendional vector. The 300-dim GloVe em-
bedding (Pennington et al., 2014) is used. For
the input word vectors of D, we also include a
5-dim binary feature to indicates the overlap be-
tween the ducument and the question(or choices)
which inspired by (Chen et al., 2017). Each di-
mension of the 5-dim binary match feature repre-
sent whether the word present in the query, in the
choice a0, in the choice a1, in both question and

1We use the following equations to estimate how many
answers appear entirely in the document: if |answer word∩
document word|/|answer word|= 1, it means the answer
appears entirely in the document, where |A| means size of set
A. Then we calculate |ansce|/|ansc|, where ansce means
correct answers which entirely appeared in document, and
ansc means correct answers. The percentage of the correct
answers entirely appeared in document is about 24%.

1049

choice a0 , in both question and choice a1, respec-
tively. Take passage as an example, we have doc-
ument D: xD

1 , x
D
2 , ..., x

D
m ∈ R|D|∗dim, and next we

use bi-directional GRU to encode each document
word embedding xD

i ,
−→
hD
i = biGRU(

−−→
hD
i−1, x

D
1), i = 1, 2, ...,m

←−
hD
i = biGRU(

←−−
hD
i+1, x

D
1), i = m,m− 1, ..., 1

we define hD
i ∈ R2d is concatenation of the

−→
hD
i

and
←−
hD
i , where d is hidden size. At this time, we

get the encoded document representation De = {
hD
1 , hD

2 , ... , hD
m }. Meanwhile, we use separate bi-

directional GRU to form representation for ques-
tion, we denote these representations as Qe = { hQ

1 ,

hQ
2 , ... , hQ

n }. As for choices, we concat
−→
hC
n and←−

hC
1 to make up a vector represent a choice, so we

get C0 ∈ R2d and C1 ∈ R2d.

2.3.2 Summarize Question-aware Passage
Representation

The interaction layer of Gated-Attention Reader
is a l-layers multi-hop architecture with gated-
attention units. Each multi-hop layer contain a bi-
GRU and a gated-attention unit. As shown in Fig-
ure 1, we sent Qe ∈ R|Q|∗2d and De ∈ R|D|∗2d

into a gated-attention unit. Gated-attention unit
fuses information from question to each docu-
ment tokens and generates a set of vectors DGA

l =

{ d(l)
1 ,d

(l)
2 , ...,d

(l)
m }, where superscript (l) denote

l-th multi-hop layer. To generates DGA
l , firstly,

the question soft attention to each document word
to obtain attention weight αi, and then we use
αi to calculate a weighted question representation
qi for i-th word in D, finally, the weighted ques-
tion qi representation is element-wise multiplied
by hi makes di. The specific calculation steps of a
gated-attention unit are as follows.

αi = softmax(Qehi) (1)

qi = QeTαi (2)

di = hi · qi (3)

After obtaining the current layer question-aware
document representation, we put this representa-
tion into next hop layer, until after l layers multi-
hops, we generate the a set of question-aware vec-
tors DGA

l for document. Finally, we sent DGA
l into a

layer biGRU and concat the last outputs of each di-

rection (
−−→
hGA
l+1 and

←−−
hGA
l+1) to get a ultimate question-

aware document representation vector D̃ ∈ R2d

Figure 1: Architecture of our system.

2.3.3 Answer Selection

Now, we have a question-aware representation D̃,
two choice representations C0 and C1. We es-
timate the probability that the choice selected as
the correct answer by equation (4), and the choice
with a higher-probability is returned as the predict
answer.

[p0, p1] = softmax([C0,C1]W D̃) (4)

3 Experiments

3.1 Datasets and Evaluation Metric
Table 2 shows the statistics of articles and ques-
tions in training, development, test data sets of this
task. Here “#text” and “#commonsense” repre-
sent the question types, which are unknown during
test and officially provided by organizors after test.
Therefore, we do not use the class information of
questions for system construction. Clearly, around
70% questions are from text and 30% are from
commonsense. Without the aid of additional com-
monsense knowledge base, these questions from
commonsense makes this task a huge challenge.

1050

Dataset Articles Questions
#text #commonsense #total

train 1,470 7,032 2,699 9,731
dev 219 1,006 405 1,411
test 429 2,074 723 2,797

Table 2: The statistics of data sets in training, develop-
ment and test data.

To evaluate the system performance, the official
evaluation criterion is accuracy.

3.2 Preprocessing and Experimental Setting
For rule-based baselines, we first converted words
into their lowercase and then performed tokeniza-
tion and stemming using Stanford CoreNLP2. For
deep learning system, we use 300-D pretrained
word vectors provided by GloVe3 as initial word
embedding, which are fine-tuned during training.
The encoding layer use one layer biGRU with 128-
dims hidden size to encoder texts. Learning rate
is 0.3, droprate is 0.5, epoch is 100, and num
of multi-hops is 2. We use cross entropy and
vanilla stochastic gradient descent (SGD) to train
our models.

3.3 Experiments on Training Data
Table 3 shows the results of Task 11 with different
methods on dev dataset, where “GA(biGRU)” de-
notes the final system we submit, “GA(biLSTM)”
represents the experiment that we replace all bi-
GRU units in the system with biLSTM units, “GA
−fmatch” represents the system without 5-dim
match feature, “#text” and “#commonsens” rep-
resent the accuracy under different question types,
respectively.

Methods Accuracy
#text #commonsense #total

SW + WD 62.62% 45.92% 57.83%
improved SW+WD65.01% 47.65% 60.02%
GA(biGRU) 77.33% 78.51% 77.63%
GA(biLSTM) 76.41% 77.53% 76.76%
GA −fmatch 76.34% 78.02% 76.82%

Table 3: The results on dev.

Based on above experimental results, we find
that the performance of GA system is much bet-
ter than rule-based approaches, this is because

2https://stanfordnlp.github.io/CoreNLP/
3http://nlp.stanford.edu/data/wordvecs/glove.6B.zip

the multi-hop structure merges the information of
the question and the document repeatedly which
is helpful to select final answer, unlike the rule-
based approach that considers only word match-
ing within a window-size distance. Furthermore,
we find that the improved SW + WD algorithm
is better than SW + WD algorithm, because the
improved SW + WD algorithm considers the de-
gree of word matching at different distances. From
the GA system results, we find the performance of
using biGRU units is better than that of biLSTM
units and matching features also improves the sys-
tem performance. Compare the accuracy of dif-
ferent types of questions under different methods,
we find that the rule-based approaches considers
only the word-matched features lead to lower ac-
curacy on the commonsense type questions. GA
systems perform better than rule-based systems
on both types of questions, because the GA sys-
tem takes into account the semantic similarity of
the question-aware document and choices. Fur-
ther, there are some commonsense types questions
which the document content does not clearly indi-
cate the correct answer but clearly does not meet
the meaning of wrong answer. This may be the
reason why we did not use external resources but
the accuracy of the commonsense type question
predicted by GA system is improved.

3.4 Results on Test Data

Table 4 shows the our result and official results of
top-ranked teams on SemEval 2018 Task 11 test
set.

Teamname Rank Accuracy(total)

ECNU 10 0.7311
iFLYTEK & HIT (HFL) 1 0.8413
Yuanfudao 2 0.8395
MITRE 3 0.8227

Table 4: Our result and the top three results on test sets.

The final result we submitted is generated by
GA system used biGRU units, the specific con-
figuration of which is mentioned in Section 3.2.
Compared with the top ranked systems, there is
much room for improvement in our work. In ad-
dition, the use of external knowledge resources by
the system also have an impact on system perfor-
mance because there are about 26% commonsense
type questions in the dataset. This is where our

1051

system lacks.

4 Conclusion

In this paper, we implement rule-based and deep
learning approaches to address Machine Compre-
hension Using Commonsense Knowledge task in
SemEval 2018. We explored two rule-based al-
gorithm i.e., sliding window and word distance-
based algorithm. We also utilized a deep learn-
ing method which use a multi-hop architecture
(Gated-attention Reader). The above two methods
do not use additional commonsense knowledge,
this is a point that we need to improve.

Acknowledgements

This work is is supported by the Science and
Technology Commission of Shanghai Municipal-
ity Grant (No.15ZR1410700) and the open project
of Shanghai Key Laboratory of Trustworthy Com-
puting (No.07dz22304201604).

References

Danqi Chen, Adam Fisch, Jason Weston, and An-
toine Bordes. 2017. Reading wikipedia to an-
swer open-domain questions. arXiv preprint
arXiv:1704.00051.

Bhuwan Dhingra, Hanxiao Liu, Zhilin Yang,
William W Cohen, and Ruslan Salakhutdinov.
2016. Gated-attention readers for text comprehen-
sion.

Guokun Lai, Qizhe Xie, Hanxiao Liu, Yiming Yang,
and Eduard Hovy. 2017. Race: Large-scale read-
ing comprehension dataset from examinations. In
EMNLP.

Simon Ostermann, Ashutosh Modi, Michael Roth, Ste-
fan Thater, and Manfred Pinkal. 2018a. MCScript:
A Novel Dataset for Assessing Machine Compre-
hension Using Script Knowledge. In Proceedings
of the 11th International Conference on Language
Resources and Evaluation (LREC 2018), Miyazaki,
Japan.

Simon Ostermann, Michael Roth, Ashutosh Modi, Ste-
fan Thater, and Manfred Pinkal. 2018b. SemEval-
2018 Task 11: Machine Comprehension using Com-
monsense Knowledge. In Proceedings of Interna-
tional Workshop on Semantic Evaluation (SemEval-
2018), New Orleans, LA, USA.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. Glove: Global vectors for word
representation. In Proceedings of the 2014 confer-
ence on empirical methods in natural language pro-
cessing (EMNLP), pages 1532–1543.

Matthew Richardson, Christopher J. C. Burges, and
Erin Renshaw. 2013. Mctest: A challenge dataset
for the open-domain machine comprehension of
text. In EMNLP, pages 193–203. ACL.

Ellery Smith, Nicola Greco, Matko Bosnjak, and An-
dreas Vlachos. 2015. A strong lexical matching
method for the machine comprehension test. In Pro-
ceedings of the 2015 Conference on Empirical Meth-
ods in Natural Language Processing, pages 1693–
1698, Lisbon, Portugal. Association for Computa-
tional Linguistics.

1052

Proceedings of the 12th International Workshop on Semantic Evaluation (SemEval-2018), pages 1053–1057
New Orleans, Louisiana, June 5–6, 2018. ©2018 Association for Computational Linguistics

CSReader at SemEval-2018 Task 11: Multiple Choice Question
Answering as Textual Entailment

Zhengping Jiang
Laboratory of Machine Perception

Peking University
tony.jiang.zhengping@gmail.com

Qi Sun
Laboratory of Machine Perception

Peking University
1500012917@pku.edu.cn

Abstract

In this document we present an end-to-end
machine reading comprehension system that
solves multiple choice questions with a tex-
tual entailment perspective. Since some of
the knowledge required is not explicitly men-
tioned in the text, we try to exploit common
sense knowledge by using pretrained word em-
beddings during contextual embeddings and
by dynamically generating a weighted repre-
sentation of related script knowledge. In the
model two kinds of prediction structure are en-
sembled, and the final accuracy of our system
is 10 percent higher than the naiive baseline.

1 Introduction

K. M. Arivuchelvan et al.(2017) stated that ma-
chine reading comprehension can be defined as
a task that deals with the automatic understand-
ing of texts. In their paper, it was also men-
tioned that machine comprehension can be eval-
uated by two methods, namely (1) translating the
text into formal language representations and eval-
uating it using structured queries. (2) evaluat-
ing it through natural language questions. Re-
cently a lot of datasets are available for eval-
uating machine reading comprehension systems,
for example, there are SQuAD(Rajpurkar et al.,
2016) and the MCTest(Richardson et al., 2013).
On many of these datasets human-like perfor-
mance has been achieved. However, one of the
biggest challenges in machine comprehension is
how to provide common sense knowledge regard-
ing daily events to machines(Mostafazadeh et al.,
2016). The SemEval2018-Task11(Ostermann
et al., 2018) provides a dataset containing ques-
tions that can only be answered with the help of
common sense knowledge.To address this prob-
lem, we first propose a model to solve normal
reading comprehension problems and then try
to modify the model to embody common sense
knowledge. In section two, we give a brief in-

troduction to ideas and models that might be use-
ful to a comprehensive understanding of our work.
Section three carefully describes our model imple-
mentation, and why we chose this kind of model
structure. And section four briefly examines the
datasets used. Section five provides a simple eval-
uation of our result. Finally, our conclusion can be
found in section six.

2 Background Knowledge

In this section, we present some basic knowledge
required for a comprehensive understanding of our
model. We first give a basic introduction to RNN
models and the implementation of GRU Cell, then
cast a little glance upon the textual entailment
problems.

2.1 Recurent Neural Network

Lipton et al.(2015) stated that Recurrent neural
networks (RNNs) are “connectionist models with
the ability to selectively pass information across
sequence steps, while processing sequential data
one element at a time.” An RNN model captures
features of a sequence by updating a hidden set of
variables at every input element, as illustrated in
figure 1. In many language modelling tasks, the
output of every RNN iteration step will simply be
a prediction of the one-hot representation of the
next element in the sequence. However, as we in-
tended to train our model end-to-end, we will not
care much about the output of the RNN model, but
pay attention instead to the hidden state because
it is likely to be a contextual representation influ-
enced by every input element.

2.2 GRU Cell

One of the commonly used RNN hidden units is
LSTM (Hochreiter and Schmidhuber, 1997). This
kind of hidden unit can retain short-term memory
for a long time during sequence processing, thus

1053

W

V

W

U

V

W

U

V

W

U

st−1 st st+1

xt−1 xt xt+1

ot−1 ot ot+1

Figure 1: An illustration of unfolded RNN cells.

is able to recognize long-term dependency infor-
mation. GRU Cell (Cho et al., 2014) is inspired
by LSTM, and is simpler to compute. For each
timestep t, two gating vector is computed, i.e., the
reset gate r and the update gate z by

rj =σ([Wrx]j + [Urh
<t−1>]j)

zj =σ([Wzx]j + [Uzh
<t−1>]j)

Where x is the input vector and h is the hidden-
state vector, and [·]j means the jth element of a
given vector. W(·) U(·) are matrix parameters to be
trained. With these variables defined, the hidden
state can be updated as

h<t>
j = zjh

<t−1>
j + (1− zj)h̃<t>

j

where h̃ is calculated as

h̃<t>
j = φ([Wx]j + [U(r � h<t−1>)]j)

Therefore with the interaction of these two gate
the cell is able to learn a pattern whether to reset
the hidden state using current input, or to retain the
previous hidden state largely.

2.3 Textual Entailment Model

We try to first adapt an existing textual entail-
ment model to this machine comprehension prob-
lem. The model is first proposed by Rocktaschel et
al. (2015)., in which the premise is first contextu-
ally encoded, then a hypothesis-to-premise word
by word attention is calculated. The model im-
plicitly modify a hidden variable rt to regulate the
attention distribution at timestep t as

Mt =tanh(WyY+ (Whht +Wrrt−1)⊗ eL)
αt =softmax(wTMt)

rt =YαT
t + tanh(Wtrt−1)

Here we have maintained the original symbol
usage of Rocktaschel et al., where W(·) and U(·)
are variable matrices to be trained, and Y is the
matrix containing all hidden states of the premise

WWA GRU

wq wp

WWA

GRU

wa

dense

bilinear

denseensemble

Figure 2: Our basic model, where “dense” represents
fully connected layers, and WWA represents word-
wise-attention structure described in section 2.3.

encoder. We generally follow the framework of
this model, with modifications made to embody
common sense knowledge and answer multiple
choice questions.

3 Method

3.1 Bilinear Form
One of our classifiers uses the bilinear form. Ac-
cording to Milnor et al. (1973), a bilinear form is
a function:

β:X ×X → R

such that β(x, y) is R-linear as a function of x for
fixed y, and is R-linear as a function of y for fixed
x. Then such a bilinear form can be called as an in-
ner product on X . Thus this kind of inner product
can intuitively be used to measure similarity be-
tween two representations of the same space, we
design our bilinear classifier as follow:
Let αN

1 and αN
2 denote answer representations

generated by our word-wise-attention mechanism
from answers to text described in last section, and
let qN denote the question representation gener-
ated through the same process. Then we construct
a trainable matrix BN×N . Then we can get a sim-
ilarity score vector s where:

si = αT
i Bq

Then to normalize probability representation we
perform a softmax function upon s to give our
classification result.

3.2 Dense Classifier
We have another fully-connected classifier that
works as described below. Let αN

1 and αN
2 de-

note the answer representations generated with

1054

pure RNN layer with GRU cell (compare with
the WWA generated representation in the bilinear
classifier), and let qN denote the attended question
representation generated by word-wise-attention
mechanism described in subsection 2.3. Then we
concatenate these three representation as c:

c = [q : α1 : α2]

Then we use c as the input of a two layer fully-
connected neural network, where the hidden layer
in the middle has nodes only half the number of
the input, and the output layer is a softmaxed prob-
ability distribution representing our model’s final
choice.

3.3 General Model

Our model answers the multiple choice question
by first encoding the question and the passage
combined using the aforementioned textual entail-
ment encoding, and then using two different ques-
tion answering classifier to choose one of the two
choices. A weighted sum is then calculated from
the two answers each represented by a binary dis-
tribution. The weight is dynamically decided by a
feed-forward network taking two contextually en-
coded answer strings as input. First the contextual
embedded answer string representations of two
answer choices are calculated by RNN-encoder,
then we concatenate them and put them into a
feed-forward network to calculate weights for the
ensemble of the two aforementioned classifier. A
general illustration can be seen in figure 2. Here
GRU stands for an rnn unit using GRU cell, while
WWA stands for word-wise attention used in tex-
tual entailment. We can see that our model can be
trained end-to-end, and most of the weights can be
dynamically learnt during training.
During training, the text is tokenized and lemma-
tized using python NLTK (Bird and Loper, 2002),
and word stemming is not performed. We have
made this choice because which words should be
classified as stop word is hard to decide for an
RNN model that are likely to capture some of the
syntactic features of a given language.
The motivation for our using two different classi-
fier is that we want to softly provide different solu-
tions to different kinds of problems. The bilinear
classifier measures similarity between question-
attended and answer-attended contextual represen-
tations, which we believe should have better re-
sult on non-TF questions (By non-TF questions

we mean those open questions which can not be
answered by “Yes—True” or “No—False”), while
the dense classifier should do better on TF ques-
tions according to our expectation. A detailed
analysis of the model weights can be seen in next
section.

3.4 Common Sense Knowledge
However some of the question in the test set can-
not be answered merely with information provided
in the passage. We try to embody some kinds of
common sense knowledge representation into the
general model, however their influence to system
performance varies.

3.4.1 Word Embedding
In the general model, the embedding layer that
converts the one-hot representation of an input
word to its corresponding embedding vector is
trainable, and is optimized during training us-
ing back-propagation(Rumelhart et al., 1986) al-
gorithm. However, due to the relatively small
database size, we have finally marked the embed-
ding layer untrainable, and use GloVe (Pennington
et al., 2014) word embeddings instead.

3.4.2 Script Knowledge
The script knowledge we have chosen is the
OMCS (Singh et al., 2002) database. In the
database are presented many different step by step
descriptions of some daily events. To use this
script knowledge, we first encode every single de-
scription as a passage using the RNN that was
once used to encode our mission text. Then for ev-
ery event ei we calculate the event representation
as an average of each description representation in
that event category:

ei =
1

M

M∑

j=1

xNi,j

Where xi,j is the jth description representation of
event i. Then letE denote the event representation
matrix with its ith row representing event i, then
every time context representation rt is calculated,
we calculate a similarity vector s as:

s = softmax(EWrt)

Then if maxi<M (si) > t where t is a threshold
hyper-parameter, we substitute rt and its time se-
ries matrix with corresponding ei and its time se-
ries matrix. But as this treatment provided lit-
tle enhancement to our accuracy, we excluded

1055

System Accuracy
1st place 0.843

SCReader 0.631
baseline About 0.53

Figure 3: Table comparing performance of different
systems.

this structure from our final submission. Still we
believe that other common sense representation
might be helpful, like ConceptNet (Liu and Singh,
2004).

4 Experiment Setting and Evaluation

4.1 Overview
We Trained our model using SGD with weight
decay. No minibatch grouping is used, and we
trained our model on training set for 20000 time
steps. When near convergence, our model can
reach around 80% to 90% accuracy upon train-
ing set (The accuracy is sampled), and in last two
model we trained that finally lead to our only sub-
mission, we get an accuracy result of about 68%
on developing set. This accuracy is a little higher
than our final accuracy on test set. Our final result
compared with baseline and the first rank system
is given in the form.

4.2 Preprocessing
Before inputting the raw text into out model, we
first transform words into their one-hot represen-
tation without stemming and lemmatization, and
tokenization is done using NLTK toolkit. Then
we push the data through an embedding layer in
which the GloVe 50 was used due to time con-
cerns.

4.3 Further Discussion
Providing our scarce usage of common sense
knowledge, our model performed surprisingly
well on time deduction problems. Even in ques-
tions where an addition of fifteen minutes to thirty
minutes to get forty-five minutes as answer is re-
quired, our model successfully chose the right an-
swer. However, the ensemble didn’t work as we
intended. The bilinear classifier was unalterably
providing [0, 1] after softmaxing, probably due to
machine floating point precision limit. And the
result weight determiner always assign the GRU
related classifier a far greater weight. This is

Figure 4: The loss change of our two classifier.

very counterintuitive, and we are still trying hard
to find its real cause. Pre-trained word embed-
ding boosted our accuracy for about 5% - 10%
on developing set, and the training became faster
and converged far more quickly. To further anal-
yse the prediction ability of our two classification,
we trained our two classifer separately by 20,000
steps, and calculated a sampled loss function ac-
cording to 100 samples every 100 steps. The re-
sult is given in figure 4. We found that the bi-
linear classifier converges very slowly, while the
dense classifier, if used separately, has a converg-
ing tendency even in 20,000 timesteps. This result
corresponds with our observation that when used
together, the weights assigned to these two clas-
sifiers always converge to [0, 1], where little im-
portance is given to the bilinear classifier, which is
counter-intuitive.

5 Conclusions and Future Work

Our model is a machine comprehension model
based on textual entailment logics, and on the ba-
sis of previous works we made several renovations
to embody common sense knowledge representa-
tion. We finally reached accuracy for about 63%
on test dataset, however due to time limit, we have
never tried any fine-tuning techniques. Observing
this model we are able to say that it is useful to
have common sense knowledge data integrated to
machine comprehension problems, though a por-
per knowledge representation should be worked
out. We are currently switching to other kinds
of common sense knowledge representations, and
trying to devise new answer selection logics. From
the competition result it is very clear that there’s
still much space for our accuracy improvements.

1056

References
KM ARIVUCHELVAN and K LAKAHMI. 2017.

Reading comprehension system–a review. Indian J.
Sci. Res, 14(1):83–90.

Steven Bird and Edward Loper. 2002. Nltk: The natu-
ral language toolkit. CoRR, cs.CL/0205028.

Kyunghyun Cho, Bart Van Merriënboer, Caglar Gul-
cehre, Dzmitry Bahdanau, Fethi Bougares, Holger
Schwenk, and Yoshua Bengio. 2014. Learning
phrase representations using rnn encoder-decoder
for statistical machine translation. arXiv preprint
arXiv:1406.1078.

Sepp Hochreiter and Jrgen Schmidhuber. 1997. Long
short-term memory. 9:1735–80.

Zachary C Lipton, John Berkowitz, and Charles
Elkan. 2015. A critical review of recurrent neu-
ral networks for sequence learning. arXiv preprint
arXiv:1506.00019.

Hugo Liu and Push Singh. 2004. Conceptneta practi-
cal commonsense reasoning tool-kit. BT technology
journal, 22(4):211–226.

John Willard Milnor and Dale Husemoller. 1973. Sym-
metric bilinear forms, volume 60. Springer.

Nasrin Mostafazadeh, Nathanael Chambers, Xiaodong
He, Devi Parikh, Dhruv Batra, Lucy Vanderwende,
Pushmeet Kohli, and James Allen. 2016. A cor-
pus and evaluation framework for deeper under-
standing of commonsense stories. arXiv preprint
arXiv:1604.01696.

Simon Ostermann, Michael Roth, Ashutosh Modi, Ste-
fan Thater, and Manfred Pinkal. 2018. Semeval2018
task 11: Machine comprehension using common-
sense knowledge. In Proceedings of International
Workshop on Semantic Evaluation(SemEval2018).

Jeffrey Pennington, Richard Socher, and Christo-
pher D. Manning. 2014. Glove: Global vectors for
word representation. In Empirical Methods in Nat-
ural Language Processing (EMNLP), pages 1532–
1543.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. Squad: 100,000+ questions
for machine comprehension of text. arXiv preprint
arXiv:1606.05250.

Matthew Richardson, Christopher JC Burges, and Erin
Renshaw. 2013. Mctest: A challenge dataset for
the open-domain machine comprehension of text.
In Proceedings of the 2013 Conference on Empiri-
cal Methods in Natural Language Processing, pages
193–203.

Tim Rocktäschel, Edward Grefenstette, Karl Moritz
Hermann, Tomáš Kočiskỳ, and Phil Blunsom. 2015.
Reasoning about entailment with neural attention.
arXiv preprint arXiv:1509.06664.

David E Rumelhart, Geoffrey E Hinton, and Ronald J
Williams. 1986. Learning representations by back-
propagating errors. nature, 323(6088):533.

Push Singh, Thomas Lin, Erik T Mueller, Grace Lim,
Travell Perkins, and Wan Li Zhu. 2002. Open mind
common sense: Knowledge acquisition from the
general public. In OTM Confederated International
Conferences” On the Move to Meaningful Internet
Systems”, pages 1223–1237. Springer.

1057

Proceedings of the 12th International Workshop on Semantic Evaluation (SemEval-2018), pages 1058–1062
New Orleans, Louisiana, June 5–6, 2018. ©2018 Association for Computational Linguistics

YNU-HPCC at SemEval-2018 Task 11: Using an Attention-based
CNN-LSTM for Machine Comprehension Using Commonsense

Knowledge

Hang Yuan, Jin Wang and Xuejie Zhang
School of Information Science and Engineering

Yunnan University
Kunming, P.R. China

Contact:xjzhang@ynu.edu.cn

Abstract

This shared task is a typical question answer-
ing (QA) task. Specially, this task must give
the answer to the question based on the text
provided. The essence of the problem is ac-
tually reading comprehension. For each ques-
tion, there are two candidate answers, and on-
ly one of them is correct. Existing method
for this task is to use convolutional neural
network (CNN) and recurrent neural network
(RNN) or their improved models, such as long
short-term memory (LSTM). In this paper,
an attention-based CNN-LSTM model is pro-
posed for this task. By adding an attention
mechanism and combining the two models,
the experimental results have been significant-
ly improved. The accuracy of our final sub-
mission is 0.7143.

1 Introduction

Question answering has long been an important re-
search topic in the field of natural language pro-
cessing. Prior to this, there have been many sim-
ilar tasks, and many scholars have made very sig-
nificant contributions to the research in this field.
Such as the Allen AI Science Challenge on the K-
aggle (Schoenick et al., 2016) and the IJCNLP-
2017 shared task 5: Multi-choice Question An-
swering in Exams (Yuan et al., 2017).

Machine comprehension using commonsense
knowledge is required to answer multiple-choice
questions based on narrative texts about daily ac-
tivities of human beings. The answer to many
questions does not appear directly in the text, but
requires simple reasoning to achieve. In terms of
the nature of the problem, this task can be consid-
ered as a binary classification. That is, for each
question, the candidate answers are divided into
two categories: the correct answers and the wrong
answers.

In recent years, many achievements have been
made in machine comprehension-based question
answering. Among the existing methods, the main
differences are in the data processing and the ap-
plication of the model. A dataset for multi-choice
question answering was released by Richardson
et al. (2013). Clark (2015) described how to obtain
more information from the background knowledge
base by introducing the use of background knowl-
edge to build the best scene. A large cloze-style
dataset using CNN and Daily Mail news articles
was created by Hermann et al. (2015). Unlike
previous datasets, Rajpurkar et al. (2016) released
a machine comprehension-based dataset (SQuAD
dataset). It contains over 1M text-question-answer
triples crawled from 536 Wikipedia articles, and
the questions and answers are structured primarily
through crowdsourcing. It also requires people to
submit up to five article-based questions and pro-
vide the correct answer that has appeared in the
original text. For the open-domain QA dataset, it
is even more challenging to get answers because
it requires simple word matching and some simple
reasoning. In SearchQA (Dunn et al., 2017), the
question-answer pairs are crawled from the Jeop-
ardy archives and are augmented with text snip-
pets retrieved from Google search. Kundu and Ng
(2018) proposed an end-to-end, problem-based,
multi-factor attention network that addresses the
task of answering document-based questions. This
model can collect scattered evidence from multi-
ple sentences for the generation of answers.

In this paper, we mainly propose to use
an attention-based CNN-LSTM model for this
task. The word-embedding model we choose is
Word2Vec. Then, the word vectors are fed in-
to the convolutional neural network (CNN) layer.
After that, the results of the CNN layer are fed into
the long short-term memory (LSTM) layer. Final-
ly, an attention mechanism is added into the neu-

1058

ral networks, and the prediction results are output
via the softmax activation. All the data is pro-
cessed into (text-question-answer) form. For each
candidate answer, the system will give a correc-
t probability (probability of a correct answer) and
a wrong probability (probability of a wrong an-
swer), and the sum of these probabilities is 1. The
answer with the larger correct probability of those
two candidate answers will be selected by the sys-
tem as the correct answer. Furthermore, in order to
exclude the experimental error caused by chance,
nine such models are assembled together for train-
ing. The answers are obtained by hard voting. At
the same time, we also selected a number of oth-
er models (such as the Bi-LSTM, the attention-
based Bi-LSTM and the attention-based LSTM)
for comparative experiments. The experimental
results show that attention-based CNN-LSTM can
achieve better results when using Word2Vec as the
word embedding technique.

The rest of our paper is structured as fol-
lows. Section 2 introduces the CNN, LSTM and
attention-based CNN-LSTM. Experiments and
evaluation will be described in Section 3. The con-
clusions are drawn in Section 4.

2 Model

For this task, we select 10 models for comparison.
Among these models, the attention-based CNN-
LSTM models can get the best results. This mod-
el combines the CNN with the LSTM and incor-
porates the attention mechanism. The most im-
portant elements of this model are the CNN, the
LSTM and the attention mechanism.

The CNN has been proven to be very effective
for local feature extraction. Since the operation
of the CNN layer will lose the long-distance de-
pendency, a LSTM layer is added to handle the
sequential information of the input vectors. The
attention mechanism is a good solution to the in-
formation vanish problem in long sequence input
situations. When dealing with machine compre-
hension problems, their combined use is more ef-
fective than their use individually.

2.1 Convolutional Neural Network

The convolutional neural network was original-
ly used to process image data. In recent years,
the application of the convolution neural network
has gradually infiltrated into many fields, such as
speech recognition and natural language process-

ing. The convolutional neural network consists of
three parts. The first part is the input layer. The
second part consists of a combination of n convo-
lution layers and a pooling layer. The third part
consists of a fully connected multi-layer percep-
tron classifier. The difference between the convo-
lutional neural networks and ordinary neural net-
works is that the convolutional neural networks
consist of a feature extractor made up of the con-
volutional layers and the sub-sampling layers. In
the convolutional layers, one neuron is connected
to only a few adjacent neurons.

In our experiment, the convolution layer was
mainly used to extract features. The convolution
matrix has m columns, and m is the maximum
length of the sentence. The convolution matrix has
n rows, and n refers to the number of sentences.
The direct benefit of sharing weights (convolution
kernels) is to reduce the number of connections
between layers of the network while reducing the
risk of overfitting.

2.2 Long Short-Term Memory
Traditional recursive neural networks are ineffec-
tive when dealing with very long sentences. The
LSTM model is developed to solve the gradient
vanishing or exploding problems in the RNN. Cur-
rently, the LSTM is mainly used in natural lan-
guage processing such as speech recognition and
machine translation. Compared with the tradition-
al RNN, a LSTM unit is added to the traditional
model for judging the usefulness of information.
Each unit mainly contains three gates (the forget
gate, the input gate, and the output gate) and a
memory cell. The system will judge the useful-
ness of the information after the input information
is fed into an LSTM. Only the information that
matches the rules of the algorithm will be saved,
and the other information will be discarded by the
forget gate.

In our experiment, the LSTM layer is designed
to ensure that important information in the fron-
t part of a long sequence can also have an impact
on the processing of the latter part of the long se-
quence.

2.3 Attention-based CNN-LSTM
Both the CNN and LSTM models have their own
advantages and disadvantages. The former per-
forms well in local feature extraction, but easily
loses the long-distance dependency of words. The
latter can only solve the problem of information

1059

Text Question Answer

CNN CNN CNN

LSTM LSTM LSTM

Dense

Softmax

Input

Output

Figure 1: Architecture of a AT-CNN-LSTM.

vanish in long sequence input situations to a cer-
tain extent. Therefore, we combined the two mod-
els with additional attention mechanisms to for-
m an attention-based CNN-LSTM model for this
task, as shown in Fig 1.

In this model, all the texts, questions, and an-
swers will be converted into word vectors through
the word-embedding layer. These word vectors
will be first fed into the CNN layer, and then the
output feature vectors will be fed into the LSTM
layer. Subsequently, the word vectors are ex-
pressed as hidden vectors. Next, the attention
mechanism assigns a weight to each hidden vec-
tor. The attention mechanism produces an atten-
tion weight vector and a weighted hidden repre-
sentation. The attention weight vector is mainly
obtained by calculating the similarity. The main
operation here is dot. An attention weight vector
is generated by computing the question vector ma-
trix and answer vector matrix. Another attention
weight vector is generated by computing the ques-
tion vector matrix and text vector matrix. Nex-
t, two attention weight vectors are connected via
contact method. Then the attention weight vector
is fed into the softmax layer.

The attention mechanism allows the model to
retain some important hidden information when
the sentences are quite long. In our task, the tex-
t, questions and answers are relatively long sen-
tences. The use of a standard CNN or LSTM will
result in the loss of hidden information. To address
this possible problem, the attention-based CNN-
LSTM model is used to design the machine com-
prehension system.

Word2Vec Acc
CNN 0.638
LSTM 0.651
BiLSTM 0.654
AT-BiLSTM 0.669
CNN-LSTM 0.687
AT-CNN-LSTM 0.699
AT-CNN-LSTM Ensemble 0.714
GloVe Acc
CNN 0.629
LSTM 0.642
BiLSTM 0.649
AT-BiLSTM 0.658
CNN-LSTM 0.666
AT-CNN-LSTM 0.678
AT-CNN-LSTM Ensemble 0.692

Table 1: Comparative experiment results

3 Experiments and Evaluation

3.1 Experiments
Data Pre-processing. The dataset provided by the
organizer mainly include three parts: texts, ques-
tions, and answers. In the data pre-processing
phase, texts and questions-answers pairs are di-
vided into two separate files. The content of each
piece of text data mainly includes the text id and
the text content. Each question-answer pair data
mainly includes the text id, the question id, and
the question-answer pair content. In the final ex-
periment, we added validation data to the training
set to expand the training data. We also tried sort-
ing the training data randomly to expand the data
set, but the result was not satisfactory. All input
data is converted into word vectors through the
word-embedding layer, and the word-embedding
model is Word2Vec. Here, all the punctuation is
ignored, and all non-English characters are treated
as unknown words. In the word vectors, unknown
word vectors are randomly generated from a uni-
form distribution U (-0.25, 0.25).

Two different methods of word-embedding are
used in this experiment: Word2Vec and GloVe
(Pennington et al., 2014). They are used to initial-
ize the weights of the embedding layer in building
300-dimension word vectors for all the texts and
question-answer pairs. Word2Vec achieved better
performance than GloVe in every model we used.
Through the list of unknown words, we know that
the use of Word2Vec results in fewer unknown
words than GloVe.
Implementation Details. All the code involved
in this experiment was written in Python 3.5.2.
Keras 2.0.4 is used as the framework for the pro-
gram. The backend used in this experiment is Ten-

1060

Parameters Optimal
Filter size 250

Kernel size 3
Dropout rate 0.3

Epoch 10
Batch size 64

Word embedding dim 300
Accuracy 0.7143

Table 2: Optimal parameters

sorFlow 1.1.0. We use the attention-based CNN-
LSTM to obtain the results for the test dataset.

The first model we use is a standard CNN mod-
el. As shown in Table 1, it can achieve an accu-
racy of 0.638 and 0.629 when respectively using
Word2Vec and GloVe as the word-embedding lay-
er. Due to the impact of jagged sentences, the poor
result obtained by the CNN model is predictable.
After that, a standard LSTM model is used to com-
plete this task. It can achieve an accuracy of 0.651
and 0.642 when respectively using Word2Vec and
GloVe as the word-embedding layer. However, the
results obtained by the LSTM model have been
somewhat improved over the CNN model. Nex-
t, we also apply the BiLSTM model and the best
result is 0.654, but there are still many points that
can be improved. Combining the two models ef-
fectively seems to be the perfect choice. In this
way, we achieve an accuracy of 0.687. Finally,
after adding the attention mechanism, the result
is raised to 0.699. Under the same experimental
conditions, the attention-based CNN-LSTM mod-
el obtained a better result than other models we
used in most cases (Wang et al., 2016). To ex-
clude the experimental error caused by chance,
nine such models are assembled together for train-
ing. The final accuracy can be raised to 0.714. Ta-
ble 1 presents the results of a comparative experi-
ment for all models we used.

The choice of model parameters has a signif-
icant effect on the final accuracy. The main pa-
rameters of this model are the word-embedding di-
mension, the batch size, the epoch, the filter size,
the kernel size, the dropout and so on. To get the
optimal parameters, the Sklearn grid search func-
tion (Liu et al., 2015) is used to determine the best
combination of the parameters. Table 2 lists the
parameters of the model when the best result is
obtained.

3.2 Evaluation
Evaluation Metrics. For this experiment, it mea-
sures how well a system is capable of correctly an-

swering questions that may involve commonsense
knowledge. This problem is a typical binary clas-
sification problem. Therefore, the system is eval-
uated by calculating the accuracy.

Results. According to the final results provided by
the organizers, a total of 199 teams enrolled in the
competition. Only 24 teams eventually submitted
their results. Our team ranked 13th overall among
all teams. As shown in Table 1, the attention-
based CNN-LSTM model can achieve the high-
est accuracy when using Word2Vec as the word-
embedding layer. This model combines the ad-
vantages of the CNN model, the LSTM model and
the attention mechanism. Furthermore, the use of
Word2Vec for word-embedding is better than the
GloVe word-embedding. The main difference be-
tween the two embeddings is in the training sets.
The training sets of Word2Vec are practically from
the news, while the training sets of GloVe are from
Twitter. Therefore, the Word2Vec data source is
better suited to this task.

4 Conclusion

This paper mainly focuses on our attention-based
CNN-LSTM system for the task of machine com-
prehension using commonsense knowledge. It
gives a brief introduction of the model and gives
a detailed description for the experimental process
and results. Compared with the attention-based
LSTM model, the attention-based CNN-LSTM is
better at feature extraction. The experimental re-
sults also show that the use of multiple models for
ensemble training can also, to some extent, avoid
the accidental results and improve the accuracy of
the experiment. In the future, we will focus on
methods combination and models ensemble. In
addition, our team will also continue to propose
a new model that can improve the existing results.

Acknowledgments

This work was supported by the National Nat-
ural Science Foundation of China (NSFC) un-
der Grants No.61702443 and No.61762091, and
in part by Educational Commission of Yunnan
Province of China under Grant No.2017ZZX030.
The authors would like to thank the anonymous
reviewers and the area chairs for their constructive
comments.

1061

References
Peter Clark. 2015. Elementary School Science and

Math Tests as a Driver for AI: Take the Aristo Chal-
lenge! In Proceedings of the Twenty Ninth AAAI
Conference on Artificial Intelligence, pages 4019–
4021.

Matthew Dunn, Levent Sagun, Mike Higgins, V. Ugur
Guney, Volkan Cirik, and Kyunghyun Cho. 2017.
SearchQA: A New QA Dataset Augmented with
Context from a Search Engine. In arX-
iv:1704.05179.

Hermann, Kocisky, Grefenstette, Espeholt, Kay, Suley-
man, and Blunsom. 2015. Teaching Machines to
Read and Comprehend. In Advances in NIPS.

Souvik Kundu and Hwee Tou Ng. 2018. A Question-
Focused Multi-Factor Attention Network for Ques-
tion Answering. In arXiv:1801.08290v1.

Pengfei Liu, Shafiq Joty, and Helen Meng. 2015. Fine-
grained Opinion Mining with Recurrent Neural Net-
works and Word Embeddings. In Proceedings of the
2015 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 1433–1443.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. Glove: Global Vectors for Word
Representation. In Proceedings of the 2014 Con-
ference on Empirical Methods in Natural Language
Processing (EMNLP), pages 1532–1543.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. SQuAD: 100,000+ Questions
for Machine Comprehension of Text. In Proceed-
ings of the 2016 Conference on Empirical Method-
s in Natural Language Processing (EMNLP), pages
2383–2392.

Matthew Richardson, Christopher, J.C. Burges, and
Erin Renshaw. 2013. MCTest: A Challenge Dataset
for the Opendomain Machine Comprehension of
Text. In Proceedings of the 2013 Conference on
Empirical Methods on Natural Language Process-
ing (EMNLP), pages 397–401.

Carissa Schoenick, Peter Clark, Oyvind Tafjord, Peter
Turney, and Oren Etzioni. 2016. Moving beyond the
Turing Test with the Allen AI Science Challenge. In
arXiv:1604.04315.

Jin Wang, Liang Chih Yu, K. Robert Lai, and Xue-
jie Zhang. 2016. Dimensional Sentiment Analysis
Using a Regional CNN-LSTM Model. In Proceed-
ings of the Association for Computational Linguis-
tics(ACL), pages 225–230.

Hang Yuan, You Zhang, Jin Wang, and Xuejie Zhang.
2017. YNU-HPCC at IJCNLP-2017 Task 5: Multi-
choice Question Answering in Exams Using an
Attention-based LSTM Model. In Proceedings of
IJCNLP, Shared Tasks, pages 208–212.

1062

Proceedings of the 12th International Workshop on Semantic Evaluation (SemEval-2018), pages 1063–1067
New Orleans, Louisiana, June 5–6, 2018. ©2018 Association for Computational Linguistics

Jiangnan at SemEval-2018 Task 11: Deep Neural Network with Attention
Method for Machine Comprehension Task

Jiangnan Xia
Alibaba Group

Hangzhou, China
jiangnan xjn@alibaba-inc.com

Abstract

This paper describes our submission for the
International Workshop on Semantic Evalua-
tion (SemEval-2018) shared task 11– Machine
Comprehension using Commonsense Knowl-
edge (Ostermann et al., 2018b). We use a
deep neural network model to choose the cor-
rect answer from the candidate answers pair
when the document and question are given.
The interactions between document, question
and answers are modeled by attention mech-
anism and a variety of manual features are
used to improve model performance. We also
use CoVe (McCann et al., 2017) as an exter-
nal source of knowledge which is not men-
tioned in the document. As a result, our sys-
tem achieves 80.91% accuracy on the test data,
which is on the third place of the leaderboard.

1 Introduction

In recent years, machine reading comprehension
(MRC) which attempts to enable machines to an-
swer questions when given a set of documents, has
attracted great attentions. Several MRC datasets
have been released such as the Stanford Question
Answering Dataset (SQuAD) (Rajpurkar et al.,
2016) and the Microsoft MAchine Reading COm-
prehension Dataset (MS-MARCO) (Nguyen et al.,
2016). These datasets provide large scale of man-
ually created data, greatly inspired the research in
this field. And a series of neural network model,
such as BiDAF (Seo et al., 2016), R-Net (Wang
et al., 2017), have achieved promising results on
these evaluation tasks. However, machine read-
ing comprehension is still a difficult task because
without knowledge, machines cannot really under-
stand the question and make a correct answer.

As an effort to discover how machine read-
ing comprehension systems would be benefited
from commonsense knowledge, (Ostermann et al.,
2018b) developed the Machine Comprehension

using Commonsense Knowledge task. In this task,
commonsense knowledge is given as the form of
script knowledge. Script knowledge is defined as
the knowledge about everyday activities which is
mentioned in narrative documents. For each doc-
ument, a series questions are asked and each ques-
tion is associated with a pair of candidate answers.
Machines have to choose which is the correct an-
swer. To let machines make correct decisions, ex-
plicit information which can be found in the doc-
ument and external commonsense knowledge are
both required. Table 1 shows an example of the
dataset in this task.

In this paper, we make a description about our
submission system for the task. The system is
based on a deep neural network model. The input
of the model is a (document, question, answer)
triple and the output is the probability that the an-
swer is the correct one for the given document and
question. We also combine the neural network
model with a variety of manual features, including
word exact match features and token features such
as part-of-speech (POS) ,named entity recognition
(NER) and term frequency (TF). These manual
features are helpful in solving the problem that the
correct answer can be easily found in the given
document.

Furthermore, for more complicated problem
that the answer is not explicitly mentioned in the
document, we try to model the interactions be-
tween document, question and answer by comput-
ing the attention score of question to document
and question to answer respectively, which is de-
scribed in (Lee et al., 2016). These features add
soft alignments between similar but non-identical
words (Chen et al., 2017). We evaluate our sys-
tem on the shared task and obtain 80.91% accu-
racy on the test set, which is on the third place of
the leaderboard.

The rest of this paper is organized as follows.

1063

Document:
I went into my bedroom and flipped the light
switch. Oh, I see that the ceiling lamp is not
turning on. It must be that the light bulb needs
replacement. I go through my closet and find a
new light bulb that will fit this lamp and place
it in my pocket. I also get my stepladder and
place it under the lamp. I make sure the light
switch is in the off position. I climb up the lad-
der and unscrew the old light bulb. I place the
old bulb in my pocket and take out the new one.
I then screw in the new bulb. I climb down the
stepladder and place it back into the closet. I
then throw out the old bulb into the recycling
bin. I go back to my bedroom and turn on the
light switch. I am happy to see that there is
again light in my room.
Question1: Which room did the light go out
in?
0. Kitchen. (Wrong)
1. Bedroom. (Correct)
Question2: Was the light bulb still hot?
0. yes. (Wrong)
1. No. (Correct)

Table 1: An example from the machine comprehen-
sion using commonsense knowledge task (Ostermann
et al., 2018b). The first line shows the document and
the following lines show question and answer pair re-
spectively. The answer of question1 can be easily
found in the text while answering question2 requires
external knowledge which is not mentioned in the text.

Section 2 describes the submission system. Sec-
tion 3 presents and discusses the experiment re-
sults. Section 4 makes a conclusion about our
work.

2 Model

In this task, a document (D), a question (Q), and
a pair of answers (A0, A1) are given and a ma-
chine comprehension system should choose the
correct answer from the answers pair. We attempt
to solve this problem by leveraging a deep neural
network model which can generate the probability
pθ(Ai|D,Q), i = 0 or 1 that the input answer is
correct for the given document and question. The
system predicts the probability for each answer in
(A0, A1) respectively and decides which is the cor-
rect answer by comparing their probability scores.
We represent the set of all trainable parameters of

the neural network model as θ. The model basi-
cally consists 3 parts: an encode layer, an inter-
action layer and a final inference layer, which is
depicted in figure 1. Below we will discuss the
model in more detail.

2.1 Encode layer

We first represent all tokens of document
{d1, ..., dm}, question {q1, ..., qn} and answer
{a1, ..., al} as sequences of word embeddings
{Ed1 , ..., Edm}, {Eq1 , ..., Eqn} and {Ea1 , ..., Eal },
where m, n and l are sequence lengths of docu-
ment, question and answer respectively. In this
task, we use the 300-dimensional 840B Glove
word embeddings (Pennington et al., 2014). We
then pass each sequence through a multi-layer
bidirectional long short term memory network
(BiLSTM) to get the word level semantic repre-
sentations of each sequence:

hdj = BiLSTMj({Edi }mi=1) (1)

hqj = BiLSTMj({Eqi }ni=1) (2)

haj = BiLSTMj({Eai }li=1) (3)

The index j represents the jth BiLSTM layer.
We concat all the output units of each BiLSTM
layer and get the final word level representations:
hd, hq and ha. The BiLSTM layers used to
encode document, question and answer sequence
share same parameters in order to reduce the num-
ber of trainable parameters and make the model
uneasily overfitting.

2.2 Interaction layer

This layer models the interactions between doc-
ument, question and answer. We first align each
word representation vectors in the question se-
quence to document and answer by leveraging at-
tention mechanism and get question-aware repre-
sentation Attd, Atta for document and answer re-
spectively:

Attdi = Σjs
d
i,jh

q
j (4)

Attai = Σjs
a
i,jh

q
j (5)

The attention score sdi,j captures the similarity
between the word representation vector di and qj
in document sequence and question sequence re-
spectively. And sai,j captures the similarity be-
tween answer vector ai and question vector qj .

1064

Figure 1: Neural network model architecture for the machine comprehension task

We get sdi,j and sai,j by computing the dot prod-
ucts between the nonlinear mappings of two word
representation vectors:

sdi,j =
exp(α(di) · α(qj))

Σj′exp(α(di) · α(qj′))
(6)

sai,j =
exp(α(ai) · α(qj))

Σj′exp(α(ai) · α(qj′))
(7)

α(·) is a single dense layer with ReLU nonlin-
earity. We concat Attdi and Attai behind each hdi
and hai and get new word representation vectors rd

and ra for document and answer.
Following (Chen et al., 2017), we combine the

model with a variety of manual features, includ-
ing word exact match features and token features.
For exact match features, we use three binary fea-
tures indicating whether a token in d and a can
be exactly matched by one token in q, either in
its original, lowercase or lemma form. For token
features, we use part-of-speech (POS), named en-
tity recognition (NER) and term frequency (TF).
For document and answer, we combine the man-
ual features as vectors fdi , fai and concat to rdi , rai
and get new word level representation vectors r′di
and r′ai :

r′d = {r′di }mi=1 = {[rdi ; fdi]}mi=1 (8)

r′a = {r′ai }li=1 = {[rai ; fai]}li=1 (9)

2.3 Inference layer
In inference layer, we first convert the document
and answer sequence r′d, r′a into fixed length

vectors with weighted pooling method and get se-
quence level representation vectors Rd and Ra:

Rd = Σm
i=1u

d
i r

′d
i (10)

Ra = Σl
i=1u

a
i r

′a
i (11)

udi =
exp(wd · r′di)

Σm
j′=1exp(w

d · r′dj′)
(12)

uai =
exp(wa · r′ai)

Σl
j′=1exp(w

a · r′aj′)
(13)

The weight vectorwd andwa are learnable param-
eters of the model.

As we haven’t use any external source of knowl-
edge, we attempt to use other pre-trained language
model as external knowledge, in order to get more
implicit information which is not mentioned in the
document. Here we use CoVe (McCann et al.,
2017) in document and answer sequences. The
Glove embedding of each token will pass through
a pre-trained BiLSTM layer. The BiLSTM layer
outputs a sequence of CoVe vectors of document
and answer cd = {cdi }mi=1, ca = {cai }li=1. We
then convert the sequences into fixed length vec-
tors Cd and Ca by using the weighted pooling
method which is mentioned above.

We fuse the pooled CoVe vectors with the se-
quence level representation vectors with semantic
fusion unit (SFU) (Hu et al., 2017) and get the fi-
nal sequence level representation vectors R′

d and
R′
a:

R′
d = SFUd(Rd, Cd) (14)

1065

R′
a = SFUa(Ra, Ca) (15)

Finally, we represent the probability that the an-
swer is correct by computing the bilinear match
score of document and answer vectors:

P = σ(R′
dWR′

a) (16)

W is a trainable matrix and σ(·) is the sigmoid
function. In this task, we use this model to predict
the probability for each answer in (A0, A1) and
decide which is the correct one by selecting the
answer with higher probability score.

3 Experiments

3.1 Datasets

The statistics of official training, development and
test data are shown in Table 2.

Training Dev Test
Num of examples 9,731 1,411 2,797

Table 2: Statistics of the official datasets

We remove the words occurring less than 2
times and finally get about 12000 words in the
vocabulary. We keep most pre-trained word em-
beddings fixed during training and only fine-tune
the 100 most frequent words. For manual features,
we get POS and NER features by using Stanford
CoreNLP1 toolkits.

3.2 Experimental Settings

We implement our model by using PyTorch 2. The
model is trained in the given training set and we
choose the model which performs best on the de-
velopment set among training epochs. We train the
model with mini batch size 32. We use two layers
BiLSTM with 128 hidden units. A dropout rate of
0.4 is applied to word embeddings and all hidden
units in BiLSTM layers. We use logistic loss as
the loss function optimized by using Adamax op-
timizer (Kingma and Ba, 2014) with learning rate
η = 0.002.

3.3 Results

The performances of our model are depicted in
Table 3. The single model achieves accuracy of
85.05% on the development data and 79.03% on

1https://stanfordnlp.github.io/CoreNLP/
2http://pytorch.org/

the test data. The ensemble model which we fi-
nally submitted to the shared task achieves ac-
curacy of 87.30% on the development data and
80.91% on the test data. From the result we can
see that there is a gap between development data
and test data for both single model and ensemble
model. The model overfits the development data
but does not perform well on the test data. Shows
that the robustness of our model needs to be im-
proved.

We conduct ablation analysis of different fea-
tures used in the model on the development data.
Table 4 shows the ablation analysis results from
which we can see that all the features we used can
contribute to model performance. Without manual
features, the model accuracy is 83.70%, which is
1.3% less than the full model. and without CoVe,
the accuracy drops 1.8%. The accuracy drops
6.6% when neither manual features nor CoVe are
used. The results show that the model requires
both explicit information which can be found in
the document and external source of knowledge to
make correct decisions.

Model Acc.(Dev) Acc.(Test)
Single Model 0.8505 0.7903
Ensemble Model 0.8730 0.8091

Table 3: Results of the single and ensemble model on
development data and test data.

Features Acc.(Dev)
Full 0.8505
w/o Manual features 0.8370
w/o CoVe 0.8320
w/o Manual features and CoVe 0.7845

Table 4: Ablation analysis of features.

4 Conclusion

In this paper, we make a description of our sub-
mitted system to the SemEval-2018 shared task
11. The system is based on a deep neural network
model which will choose the correct answer from
the answers pair when the document and question
are given. We combine the model with a variety
of manual features which are helpful in solving
the problem that the correct answer can be eas-
ily found in the given document. For the prob-
lem that the answer is not explicitly mentioned in
the document, we model the interactions between

1066

document, question and answers by using atten-
tion mechanism. We also attempt to use CoVe as
an external source of knowledge. We conduct ex-
periment and prove that the features we used are
helpful in contributing to the model performance.
Our system achieves 80.91% accuracy on the test
data, which is on the third place of the leaderboard.

References
Danqi Chen, Adam Fisch, Jason Weston, and Antoine

Bordes. 2017. Reading Wikipedia to answer open-
domain questions. In Association for Computa-
tional Linguistics (ACL).

Minghao Hu, Yuxing Peng, and Xipeng Qiu. 2017.
Mnemonic reader for machine comprehension.
arXiv preprint arXiv:1705.02798.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Kenton Lee, Shimi Salant, Tom Kwiatkowski, Ankur
Parikh, Dipanjan Das, and Jonathan Berant. 2016.
Learning recurrent span representations for ex-
tractive question answering. arXiv preprint
arXiv:1611.01436.

Bryan McCann, James Bradbury, Caiming Xiong, and
Richard Socher. 2017. Learned in translation: Con-
textualized word vectors. In Advances in Neural In-
formation Processing Systems, pages 6297–6308.

Tri Nguyen, Mir Rosenberg, Xia Song, Jianfeng Gao,
Saurabh Tiwary, Rangan Majumder, and Li Deng.
2016. Ms marco: A human generated machine
reading comprehension dataset. arXiv preprint
arXiv:1611.09268.

Simon Ostermann, Michael Roth, Modi Ashutosh, Ste-
fan Thater, and Manfred Pinkal. 2018b. Semeval-
2018 task 11: Machine comprehension using com-
monsense knowledge. In Proceedings of Interna-
tional Workshop on Semantic Evaluation(SemEval-
2018).

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. Glove: Global vectors for word
representation. In Proceedings of the 2014 confer-
ence on empirical methods in natural language pro-
cessing (EMNLP), pages 1532–1543.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. Squad: 100,000+ questions
for machine comprehension of text. arXiv preprint
arXiv:1606.05250.

Minjoon Seo, Aniruddha Kembhavi, Ali Farhadi, and
Hannaneh Hajishirzi. 2016. Bidirectional attention
flow for machine comprehension. arXiv preprint
arXiv:1611.01603.

Wenhui Wang, Nan Yang, Furu Wei, Baobao Chang,
and Ming Zhou. 2017. Gated self-matching net-
works for reading comprehension and question an-
swering. In Proceedings of the 55th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), volume 1, pages 189–198.

1067

Proceedings of the 12th International Workshop on Semantic Evaluation (SemEval-2018), pages 1068–1072
New Orleans, Louisiana, June 5–6, 2018. ©2018 Association for Computational Linguistics

IUCM at SemEval-2018 Task 11: Similar-Topic Texts as a
Comprehension Knowledge Source

Sofia Reznikova
Innopolis University

Innopolis, Russia
s.reznikova@innopolis.ru

Leon Derczynski
IT University of Copenhagen

Denmark
leod@itu.dk

Abstract

This paper describes the IUCM entry at
SemEval-2018 Task 11, on machine com-
prehension using commonsense knowledge.
First, clustering and topic modeling are used to
divide given texts into topics. Then, during the
answering phase, other texts of the same topic
are retrieved and used as commonsense knowl-
edge. Finally, the answer is selected. While
clustering itself shows good results, finding an
answer proves to be more challenging. This
paper reports the results of system evaluation
and suggests potential improvements.

1 Introduction

The goal of SemEval-2018 Task 11 is to find
a way to incorporate commonsense knowledge
into a question-answering task (Ostermann et al.,
2018b). In this case, questions are either directly
or indirectly related to given English texts; some
questions may be answered using the text while
others require background (commonsense) knowl-
edge. The challenge is to use this knowledge in
such a way as to enhance the quality of chosen an-
swers.

There are many approaches to question answer-
ing including using structured knowledge (Yao
and Durme, 2014), knowledge databases (Yih
et al., 2015), deep learning methods (Minaee and
Liu, 2017) and hybrid methods (Xu et al., 2016;
Das et al., 2017). The present task accepts any
method or any source of background knowledge.

The training data consists of 1469 texts covering
more than 100 topics. The number of questions
per text varies from 1 to 14 and there are two an-
swer options. The development data has 219 texts
and the test data has 430. (Ostermann et al., 2018a)

The main idea behind the method proposed in
this paper is to use the given texts as potential
sources of knowledge. Texts from training and

development data can be divided into topics us-
ing existing clustering algorithms (e.g. k-Means,
Hierarchical, Grid-based or Density-based). The
hypothesis is that texts which come from the same
topic as the current question’s text may contain the
correct answer. A matching function with a scor-
ing scheme is used to identify the correct combi-
nation of words for the answer.

Another potential source of knowledge is
scripts (Wanzare et al., 2016) that have been used
to search for an answer. The DeScript dataset in-
cludes descriptions of everyday activities such as
baking, getting a haircut, going grocery shopping,
and others, corresponding to topics present in the
given data.

Section 2 describes the methods as well as
specifics of implementation. Section 3 provide in-
terpretation and analysis of the results. Section 4
concludes the present paper.

2 Methodology

All texts, questions and answers were tokenized,
punctuation and extra symbols were removed.
WordNet (Fellbaum, 1998) was used for lemma-
tization using its morphy() function. Transform-
ing all words into their initial form resulted in an
approximately 1% increase of accuracy.

The overall process of answering a question
could be broadly divided into two phases: clus-
tering texts (or searching for the most similar De-
Script’s topic), and finding the correct answer. The
former is discussed in the following subsections,
and the latter is described below.

There are minor modifications to the base
choose-answer method across all solutions but
overall the structure is as follows. First, we search
for a full-length match. If one is found, then we
consider it to be a correct one. If not, we remove
all common words (such as articles, prepositions

1068

and auxiliary verbs) from the answer, and count
how many words can be found in text. Finally, we
compare all answers and choose the one with the
highest match count.

A modification was introduced to account for
yes-no questions. If words from the question were
present in the text, the “yes” answer was selected;
otherwise, the “no” answer was selected. This,
however, actually decreased the accuracy as it did
not consider negations that occurred in the text and
were tokenized separately. Therefore, the prior
version of the method was used in all submissions.

The baseline solution used the method de-
scribed above to find the answer in the given text
only. This resulted in accuracy of around 60% for
all data sets (see Section 3).

2.1 Comparison of BigARTM and KMeans

The next step was to cluster texts from train-
ing and development data into topics, in order to
use them later as sources of background knowl-
edge. BigARTM, a tool to infer topics based on
additive regularization of topic models proposed
in Vorontsov and Potapenko (2014), was used to
model the texts as topics.

Since the language of the given texts consisted
of many everyday words, it was necessary to
first make sure that the data used for clustering
was clear of common, uninformative words. Bi-
gARTM provides tools to make the resulting ma-
trix of document-topic mapping sparser, however,
it did not provide as good a result as simple re-
moval of the English stopwords contained in the
NLTK library (Bird and Loper, 2004).

The texts then were transformed into batches in
vectorized form, the number of topics varied be-
tween 100 and 110, and the model initialized with
scores for sparsity (PhiScore and ThetaScore) and
perplexity. The model was then trained with 15
passes through the collection of texts (bigger num-
bers didn’t result in better accuracy).

Topic Probability
topic 33 0.024480
topic 90 0.021954
topic 26 0.020483
topic 37 0.017545
topic 82 0.016841

Table 1: Probability of the topic being the top choice
for the text

Table 1 shows five most frequent topics and the
probability of the topic being the top one for the
text. Below are the top 15 tokens for three most
frequent topics:

• ’pan’, ’eggs’, ’milk’, ’heat’, ’stove’, ’egg’,
’turn’, ’make’, ’pour’, ’cook’, ’add’, ’hot’,
’get’, ’omelette’, ’bowl’

• ’wall’, ’paint’, ’room’, ’new’, ’floor’, ’look’,
’decide’, ’house’, ’want’, ’put’, ’buy’,
’color’, ’get’, ’painting’, ’work’

• ’water’, ’shower’, ’get’, ’soap’, ’rinse’,
’towel’, ’turn’, ’body’, ’hot’, ’take’, ’bucket’,
’dry’, ’clean’, ’start’, ’warm’

Another approach to clustering was to use k-
Means. First, texts were embedded in the vec-
tor space using the gensim (Řehůřek and So-
jka, 2010) implementation of Doc2Vec (Le and
Mikolov, 2014), and then NLTK’s k-Means was
applied over the result.

The Doc2Vec model was trained on the texts
from all data sets and for several runs DeScript’s
gold standard was also added. At each step the
learning rate was decreased by 0.002. Number of
epochs varied from 20 to 30 and window size was
also experimented with.

The top 15 tokens for three most frequent topics
are as follows:

• ’wall’, ’paint’, ’painting’, ’room’, ’look’,
’get’, ’would’, ’want’, ’go’, ’hang’, ’decide’,
’put’, ’nail’, ’wallpaper’, ’color’

• ’bed’, ’sheet’, ’pillow’, ’put’, ’make’, ’take’,
’top’, ’get’, ’corner’, ’tuck’, ’fit’, ’sure’,
’clean’, ’mattress’

• ’dish’, ’put’, ’dishwasher’, ’dry’, ’sink’,
’plate’, ’water’, ’clean’, ’rack’, ’wash’, ’sil-
verware’, ’one’, ’start’, ’top’, ’take’

The top clusters for the two methods are slightly
different in terms of their topics but there are ob-
vious differences in words: k-Means clusters in-
clude more general language (e.g. verbs like ’go’,
’take’, ’make’) and less specific language related
to the topic. At the same time k-Means’ distri-
bution of classes has a larger number of texts per
cluster on average. This can be seen in Figures 1
and 2. The horizontal axis is number of texts and
the vertical one is the cluster ID number.

1069

Figure 1: Distribution of texts for KMeans (y-axis:
topic numbers, x-axis: number of texts belonging to
the topic

Figure 2: Distribution of texts for BigARTM (y-axis:
topic numbers, x-axis: number of texts belonging to
the topic

For both clustering methods, choosing the cor-
rect answer was done in two steps. The first step
was the same as in the baseline, finding full an-
swers or scoring individual words. If the answer
was not found, the second step was carried out,
which involved looking up other texts from the
same cluster as the given text and searching for
an answer in them.

2.2 Using DeScript

DeScript (Wanzare et al., 2016) sequences are di-
vided into events which, in turn, include many dif-
ferent paraphrases of the same event (check time-
table, locate a train schedule, check train sched-
ules and other similar ones).

To simplify comparison between training data
texts and DeScript sequences, all events corre-
sponding to the same topic were combined. Then
the vector for each topic was built using the 15
most frequent words from the topic as keys and

their TF-IDFs as values. The same was done for
each text.

The method for choosing the answer was as de-
scribed above. The difference was that instead of
using texts from the same cluster as a source of
commonsense knowledge, DeScript paraphrases
were used. Cosine similarity between the given
text and each DeScript topic was calculated based
on most frequent word vectors, in order to find the
most suitable events. This approach resulted in
better performance than with clustering methods
(Section 3).

3 Evaluation

The results for the test data are summarized in Ta-
ble 2. These are the configurations that resulted in
the best performance.

Model Accuracy
Baseline 60.70
Yes/No Modification 59.52
BigARTM topics 61.38
DeScript paraphrases 61.67
Doc2Vec/KMeans 61.95

Table 2: Results

BigARTM’s advantage over the baseline solu-
tion is not much, but there is an interesting trend
that explains why the score is higher. Ques-
tions with no word-for-word answer in the texts
were answered correctly when individual words
were found within the same-topic clusters. This
showed that given texts could be a useful knowl-
edge source.

There are also cases when both answers get zero
scores and in that case the first one is chosen.

Another observation is that correct answers
were more often selected if they contained full
sentences rather than a couple of words.

The DeScript and BigARTM methods answered
6% of questions differently. These were, for the
most part, for answers that were not explicitly
phrased in the text but obvious to a human (such as
evening when the text talked about dinner, or bed-
room when a bed was mentioned). This requires
an additional logical step, so this kind of questions
can be in a category of their own – neither text nor
commonsense.

For k-Means the number of clusters was 100.
Table 3 describes the results for Doc2Vec/k-Means
method with various configurations (number of

1070

epochs, window size, whether DeScript texts were
included into the training or not).

Epochs Window DeScript Accuracy
20 10 No 61.70
20 12 No 61.60
20 10 Yes 61.56
30 10 No 61.74
30 12 No 61.88
30 10 Yes 61.24
30 12 Yes 61.95

Table 3: Doc2Vec/KMeans configurations and accu-
racy

The model with a larger window size performs
better as it takes into account more words at
the same time, sometimes spanning multiple sen-
tences at once. Adding DeScript dat does not have
significant impact on the results. However, as the
scripts are succinct and topic-related they give a
slight boost to the overall accuracy.

The k-Means-based system generally does bet-
ter in questions related to timing (e.g. how much
some activity takes) and in questions about text’s
meta-information (answers that include author or
narrator). This observation could be explained by
the fact that there are some activities that happen
at a specific time of the day (e.g. breakfast, go-
ing out and others) and Doc2Vec could do a better
embedding for numbers.

Overall, while the clustering step provided com-
monsense knowledge for the system and success-
fully mapped texts to topics, the bottleneck was
the method of choosing an answer. It is based on
the assumption that finding the exact answer or in-
dividual words from it leads to the correct solu-
tion. Different scoring and prioritizing methods
for searching did not improve accuracy in any sig-
nificant way. Therefore, a function that incorpo-
rates different approaches (e.g. comparing vector
representations of questions and answers, POS-
tagging for the question, deep similarity) along
with simple matching might lead to better results.

4 Conclusion

This paper described the methodology be-
hind the IUCM at SemEval-2018 Task 11
on machine comprehension using commonsense
knowledge. The proposed solution is based
on different techniques of unsupervised learn-
ing. The method shows above-the-baseline

performance and results in clear topic divi-
sion and mapping. The code for the system
is available here: https://github.com/
sonyareznikova/semeval2018task11.

References
Steven Bird and Edward Loper. 2004. NLTK: the nat-

ural language toolkit. In Proceedings of the ACL
2004 on Interactive poster and demonstration ses-
sions, page 31. Association for Computational Lin-
guistics.

Rajarshi Das, Manzil Zaheer, Siva Reddy, and Andrew
McCallum. 2017. Question answering on knowl-
edge bases and text using universal schema and
memory networks. In ACL, arXiv:1704.08384.

Christiane Fellbaum. 1998. WordNet: An Electronic
Lexical Database. MIT Press, Cambridge, MA.

Quoc V. Le and Tomas Mikolov. 2014. Dis-
tributed representations of sentences and documents.
arXiv:1405.4053.

Shervin Minaee and Zhu Liu. 2017. Automatic
Question-Answering Using A Deep Similarity Neu-
ral Network., arXiv:1708.01713.

Simon Ostermann, Ashutosh Modi, Michael Roth, Ste-
fan Thater, and Manfred Pinkal. 2018a. MCScript:
A Novel Dataset for Assessing Machine Compre-
hension Using Script Knowledge. In Proceedings
of the 11th International Conference on Language
Resources and Evaluation (LREC 2018), Miyazaki,
Japan.

Simon Ostermann, Michael Roth, Ashutosh Modi, Ste-
fan Thater, and Manfred Pinkal. 2018b. SemEval-
2018 Task 11: Machine Comprehension using Com-
monsense Knowledge. In Proceedings of Interna-
tional Workshop on Semantic Evaluation (SemEval-
2018), New Orleans, LA, USA.

Radim Řehůřek and Petr Sojka. 2010. Software Frame-
work for Topic Modelling with Large Corpora. In
Proceedings of the LREC 2010 Workshop on New
Challenges for NLP Frameworks, pages 45–50, Val-
letta, Malta. ELRA. http://is.muni.cz/
publication/884893/en.

Konstantin Vorontsov and Anna Potapenko. 2014. Tu-
torial on probabilistic topic modeling: Additive reg-
ularization for stochastic matrix factorization. Inter-
national Conference on Analysis of Images, Social
Networks and Texts.

Lilian D. A. Wanzare, Alessandra Zarcone, Stefan
Thater, and Manfred Pinkal. 2016. DeScript: A
Crowdsourced Corpus for the Acquisition of High-
Quality Script Knowledge.

Kun Xu, Yansong Feng, Songfang Huang, and
Dongyan Zhao. 2016. Hybrid question answering
over knowledge base and free text. In COLING.

1071

Xuchen Yao and Benjamin Van Durme. 2014. Infor-
mation extraction over structured data: Question an-
swering with Freebase. In ACL.

Scott Wen-tau Yih, Ming-Wei Chang, Xiaodong He,
and Jianfeng Gao. 2015. Semantic parsing via
staged query graph generation: Question answering
with knowledge base. ACL Association for Com-
putational Linguistics.

1072

Proceedings of the 12th International Workshop on Semantic Evaluation (SemEval-2018), pages 1073–1077
New Orleans, Louisiana, June 5–6, 2018. ©2018 Association for Computational Linguistics

ZMU at SemEval-2018 Task 11: Machine Comprehension Task using
Deep Learning Models

Yongbin Li1,2, Xiaobing Zhou1,∗
1Yunnan University, Kunming, Yunnan, P.R. China

2Zunyi Medical University, Zunyi, Guizhou, P.R. China
∗ Corresponding author, zhouxb.cn@gmail.com

Abstract

Machine Comprehension of text is a typical
Natural Language Processing task which re-
mains an elusive challenge. This paper is to
solve the task 11 of SemEval-2018, Machine
Comprehension using Commonsense Knowl-
edge task. We use deep learning model to
solve the problem. We build distributed word
embedding of text, question and answering re-
spectively instead of manually extracting fea-
tures by linguistic tools. Meanwhile, we use
a series of frameworks such as CNN model,
LSTM model, LSTM with attention model and
biLSTM with attention model for processing
word vector. Experiments demonstrate the su-
perior performance of biLSTM with attention
framework compared to other models. We
also delete high frequency words and combine
word vector and data augmentation methods,
achieved a certain effect. The approach we
proposed rank 6th in official results, with ac-
curacy rate of 0.7437 in test dataset.

1 Introduction

Machine Comprehension of text is one of the
important goals of natural language processing.
The traditional approaches to machine reading and
comprehension have been based on either hand en-
gineered grammars (Riloff and Thelen, 2000), or
information extraction methods of detecting pred-
icate argument triples that can later be queried as
a relational database (Poon et al., 2010). These
methods show effectiveness, but they rely on fea-
ture extraction and language tools. Recently, with
the advances of neural networks, there have been
great interests in building neural architectures for
various NLP task, including several pieces of work
on machine comprehension (Hermann et al., 2015;
Hill et al., 2015; Yin et al., 2016; Kadlec et al.,
2016; Cui et al., 2016), which have gained signif-
icant performance in machine comprehension do-

main. We also adopt deep learning models to solve
this task.

The goal of Machine Comprehension using
Commonsense Knowledge task is to choose a cor-
rect answer in two candidates to the question based
on the contents of text. This task relates to how
the inclusion of commonsense knowledge in the
form of script knowledge would benefit machine
comprehension systems, answering the questions
requires knowledge beyond the facts mentioned in
the text. We do not employ extra commonsense
knowledge resources in the proposed approach,
we assume that word vectors have contained some
commonsense knowledge information, so we only
use the deep learning model to solve this problem.

In the train dataset provided by this task, there
are 1432 instances, each instance contains a text
and several questions, and each question is asso-
ciated with a set of two answers which are short
and limited to a few words. The texts used in
this task cover more than 100 everyday scenarios,
hence include a wide variety of human activities.
Therefore, each example can be summed up as
{text, question, answer 0, answer 1, correct op-
tion}. There are 9731, 1411, 2797 examples in
train, validation, test datasets, respectively.

Being a binary classification task, we split an
example into two triples, which are {text, ques-
tion, answer 0} and {text, question, answer 1},
the label is true or false. In validation and test
datasets, we employ the same processing mode
to determine the matching degree of fit between
triples, the highest will be chosen. We adopt the
method of word distributed representation from
(Mikolov et al., 2013) and a series of deep learning
(DL) models, such as Convolutional Neural Net-
work (CNN) from (Kim, 2014), Long Short-Term
Memory (LSTM) model proposed from (Hochre-
iter and Schmidhuber, 1997) and improved by
(Graves et al., 2013), attention mechanism from

1073

Figure 1: The architecture of CNN framework, T for
text, Q for question, A for answer.

(Graves and Schmidhuber, 2005). The four main
frameworks we applied are as follows:

• CNN framework

• LSTM framework

• LSTM with attention framework

• biLSTM with attention framework

Above the framework, a joint feature vector is
constructed, which is used to classify (Tan et al.,
2015). In order to increase the accuracy of the
model, we also delete high frequency word and
combine word vector and data augmentation meth-
ods, thus achieve a better effect. Experiments
demonstrate the superior performance of biLSTM
with attention framework compared to other mod-
els, and data preprocessing is also important to im-
prove the model accuracy.

2 Model description

In this section, we describe the four main proposed
deep learning frameworks, which are shown in fig-
ures 1 to 4. The main idea of these systems is the
same: learn a distributed vector representation of
given text, question and answer candidates, then
use a dense layer which processes the joint feature
to measure the matching degree.

2.1 CNN framework

The first framework is based on CNN model. Step
one is to obtain word embedding from pre-trained
word distributed representation models. In prelim-
inary experiment, there are two distributed rep-
resentation models used. One is the pre-trained
word2vec model which is trained by 100 billion
words of Google News and has a dimensionality

Figure 2: The architecture of LSTM framework.

of 300, the other is pre-trained Glove model which
is trained by Wikipedia data and has a dimension-
ality of 300 too. The two models are all initial-
ized from an unsupervised neural language model.
The word embedding provides the distributed rep-
resentation for each token in sequence.

Text, question and answer will be transformed
to a word vector matrix and be entered into CNN
layer respectively. In order to get more compre-
hensive representation of semantic features, we
adopt double layer CNN model. The numbers of
filters are 64 and 32, respectively, and the filter
size is set as 3. After each CNN layer, we resort to
a MaxPooling layer of size 2.

Above the CNN layer, the output of text, ques-
tion and answer is merged to one and performs
flatten operations, through a dense layer, the final
output is passed through a two-dimensional soft-
max layer.

2.2 LSTM framework

Its the same way of producing word vector rep-
resentation in embedding layer. Because LSTM
model can process variable length sequence,
masking method is introduced. The main princi-
ple of masking is to skip time steps which tokens
are equal to zero, thus ignoring the meaningless
padding in the text.

Above the embedding layer, we introduce the
LSTM layer with a unit number of 64. LSTM is
a special type of RNN that has three gates (input
i, forget f and output o), and a cell memory vector
C, and can learn to rely on long-distance history
and the immediate previous hidden vector. Its a
remarkable variations of RNN to alleviate the gra-
dient vanish problem. Through the LSTM layer,
text, question and answer will be transformed to a
vector respectively.

1074

Figure 3: The architecture of LSTM with attention
framework.

2.3 LSTM with attention framework
Like the LSTM framework, the masking method
is used in the embedding layer. Text, question
and answer are respectively processed through the
embedded layer and the LSTM layer, generating
three sequences of LSTM output vectors. Unlike
the LSTM framework, here returns full output se-
quences, instead of the final output of model.

Now, we investigate a state-of-the-art attention
model for the question vector generated by text,
and the answer vector generated by question, in-
stead of generating representation respectively. If
the input sentence is long, semantics are expressed
by an intermediate semantic vector, and the infor-
mation of the word itself has disappeared, which
results in the loss of a great deal of detail informa-
tion. An attention mechanism is used to alleviate
the weakness by dynamically aligning the more
informative parts. Specifically, attention model
gives more weights on certain words, just like tf-
idf for each word, while the weight is calculated
by another vector. Therefore, the formula of the
attention matrix f of text and question vectors is
as follows:

f(mt,mq) = mt
Tmq (1)

where mt and mq correspond to text and ques-
tion vectors produced by previous LSTM layers,
respectively. The attention matrix of answer and
question is constructed in the same way.

2.4 biLSTM with attention framework
The framework is similar to the above, just chang-
ing the LSTM model into a biLSTM model. Sin-
gle direction LSTMs suffer a weakness of not
utilizing the contextual information from the fu-
ture tokens. biLSTM utilizes both the previous
and future context by processing the sequence on

Figure 4: The architecture of biLSTM with attention
framework.

two directions, and generates two independent se-
quences of LSTM output vectors.

3 Data Preprocessing

In order to improve the accuracy of the model, we
have tried a series of data preprocessing methods,
such as deleting high frequency words, combin-
ing word vectors and data augmentation methods,
which achieve a certain effect.

3.1 Deleting high frequency words

In a large corpus, many common words appear,
such as ”the”, ”a” and so on. Although these
words have higher word frequency, few useful
information can be provided. We try to delete
stopwords through the NLTK tools, but the ef-
fect was not ideal. So we calculate the word fre-
quency statistics on the words in all dataset, and
delete the top 20 words in frequency, that is, the
most frequently occurring 20 words. We also tried
other numbers in preliminary experiment, but 20
worked best.

3.2 Combining word vectors

Pre-trained word2vec model is trained by Google
News, Glove model is trained by Wikipedia data.
The effect of the former is slightly better. In order
to obtain more comprehensive semantic features,
we try to combine two vectors of each token, so
that the word vector of each token is transformed
into 600 dimensions, which is better than using
only one word vector model.

3.3 Data augmentation

Our idea is inspired by data augmentation in the
image domain, where one can increase the amount
of train data by the geometric transformation of
the image. In order to enrich the train dataset of

1075

Framework val test
1 CNN 71.32 70.13
2 CNN(data augmentation) 72.86 70.65
3 LSTM 72.10 69.57
4 LSTM(data augmentation) 72.57 70.36
5 LSTM with attention 73.11 69.97
6 LSTM with attention(data augmentation) 73.99 70.15
7 biLSTM with attention 75.90 71.11
8 biLSTM with attention(data augmentation) 76.61 72.47
9 biLSTM with attention(data augmentation and combine word vector) 77.75 74.37

Table 1: Results of four main framework

images, extract image features better and general-
ize models (prevent models from over fitting), data
augmentation is done on images data. We know
that in text understanding, we can still read arti-
cles even if we disorder the order of the words. In
this task, we’ve implemented the data augmenta-
tion by randomly disordering the word order in the
sentence. The preliminary implementation proves
that this method is effective.

4 Experimental setup

Our approach in this task use the accuracy on vali-
dation dataset to locate the best parameters. The fi-
nal rate of accuracy is expressed in the correct pro-
portion chosen in test dataset. All the model pa-
rameters were adjusted by preliminary exper-
iment, at the same time, the results are taken
three times, and the average value is taken.

In the experiment, we use the loss function
of categorical cross entropy and the optimizer of
adaptive moment estimation. The length of text,
question and answer tokens sequence all take the
maximum length, if the length is not enough, then
zero is added. To prevent over fitting, we employ
dropout layers which the parameter is 0.3.

For comparison, we report the performance and
analysis of four framework in Table 1, which sum-
marizes the results of our system for this task. All
the experiments have deleted the high frequency
words. The word embedding we employed is
word2vec in Rows (1) to (8). Because in pre-
liminary experiment, the accuracy of model using
word2vec is generally better than Glove.

In Row (1) to (2), we list the results on valida-
tion dataset and test dataset respectively of CNN
framework which employ filter size of 3, and fil-
ter number of 64. The difference is that Row (2)
model uses the data augmentation. Row (3) to

(4) correspond to LSTM framework which uses
64 as output dimensionality parameter of LSTM
unit. The framework results in similar result with
the CNN framework. In Row (5) to (6), we can
observe that the framework for using the attention
mechanism has been significantly improved in the
accuracy rate. In Row (7) to (8), the improve-
ment from biLSTM with attention compared to
LSTM with attention is remarkable, increase more
than 2%, illustrating that Bi-directional LSTM can
achieve more comprehensive features than unidi-
rectional LSTM. Row (9) is the approach proposed
in this paper, which combines word2vec vector
and Glove vector of each tokens. The model
gets a significantly result, achieving a precision of
77.75% in validation dataset and 74.37% in test
dataset. Compared to single word2vec, the im-
provement on the test set is more significant.

5 Conclusion

In this paper, we solve the Machine Comprehen-
sion Task by employing four main frameworks
and a series of Data Preprocessing methods. Al-
though the commonsense knowledge library is not
used, the results are acceptable. The experiment
results demonstrate the effectiveness of the biL-
STM with attention framework in dealing with this
task, the Bi-directional LSTM model is more ad-
vanced than the unidirectional LSTM model, and
attention mechanism allows a model to focus on
the aspects of a text that it will help answering a
question. For a deep learning model, the Data Pre-
processing is more critical, data augmentation and
combining word vectors are beneficial to improve
the model ability in some task backgrounds.

1076

Acknowledgments

This work was supported by the Natural Sci-
ence Foundations of China No.61463050, No.617-
02443, No.61762091, the NSF of Yunnan
Province No. 2015FB113, the Project of Innova-
tive Research Team of Yunnan Province.

References
Yiming Cui, Ting Liu, Zhipeng Chen, Shijin Wang,

and Guoping Hu. 2016. Consensus attention-based
neural networks for chinese reading comprehension.
arXiv preprint arXiv:1607.02250.

Alex Graves, Abdel-rahman Mohamed, and Geoffrey
Hinton. 2013. Speech recognition with deep re-
current neural networks. In Acoustics, speech and
signal processing (icassp), 2013 IEEE international
conference on, pages 6645–6649. IEEE.

Alex Graves and Jürgen Schmidhuber. 2005. Frame-
wise phoneme classification with bidirectional lstm
networks. In Neural Networks, 2005. IJCNN’05.
Proceedings. 2005 IEEE International Joint Confer-
ence on, volume 4, pages 2047–2052. IEEE.

Karl Moritz Hermann, Tomas Kocisky, Edward
Grefenstette, Lasse Espeholt, Will Kay, Mustafa Su-
leyman, and Phil Blunsom. 2015. Teaching ma-
chines to read and comprehend. In Advances in Neu-
ral Information Processing Systems, pages 1693–
1701.

Felix Hill, Antoine Bordes, Sumit Chopra, and Jason
Weston. 2015. The goldilocks principle: Reading
children’s books with explicit memory representa-
tions. arXiv preprint arXiv:1511.02301.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural computation,
9(8):1735–1780.

Rudolf Kadlec, Martin Schmid, Ondrej Bajgar, and
Jan Kleindienst. 2016. Text understanding with
the attention sum reader network. arXiv preprint
arXiv:1603.01547.

Yoon Kim. 2014. Convolutional neural net-
works for sentence classification. arXiv preprint
arXiv:1408.5882.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013. Distributed representa-
tions of words and phrases and their compositional-
ity. In Advances in neural information processing
systems, pages 3111–3119.

Hoifung Poon, Janara Christensen, Pedro Domingos,
Oren Etzioni, Raphael Hoffmann, Chloe Kiddon,
Thomas Lin, Xiao Ling, Alan Ritter, Stefan Schoen-
mackers, et al. 2010. Machine reading at the univer-
sity of washington. In Proceedings of the NAACL

HLT 2010 First International Workshop on For-
malisms and Methodology for Learning by Reading,
pages 87–95. Association for Computational Lin-
guistics.

Ellen Riloff and Michael Thelen. 2000. A rule-based
question answering system for reading comprehen-
sion tests. In Proceedings of the 2000 ANLP/NAACL
Workshop on Reading comprehension tests as eval-
uation for computer-based language understand-
ing sytems-Volume 6, pages 13–19. Association for
Computational Linguistics.

Ming Tan, Cicero dos Santos, Bing Xiang, and Bowen
Zhou. 2015. Lstm-based deep learning models
for non-factoid answer selection. arXiv preprint
arXiv:1511.04108.

Wenpeng Yin, Sebastian Ebert, and Hinrich Schütze.
2016. Attention-based convolutional neural net-
work for machine comprehension. arXiv preprint
arXiv:1602.04341.

1077

Proceedings of the 12th International Workshop on Semantic Evaluation (SemEval-2018), pages 1078–1082
New Orleans, Louisiana, June 5–6, 2018. ©2018 Association for Computational Linguistics

MITRE at SemEval-2018 Task 11: Commonsense Reasoning without
Commonsense Knowledge

Elizabeth M. Merkhofer, John Henderson, David Bloom,
Laura Strickhart and Guido Zarrella

The MITRE Corporation
202 Burlington Road

Bedford, MA 01730-1420, USA
{emerkhofer,jhndrsn,dtbloom,lstrickhart,jzarrella}@mitre.org

Abstract

This paper describes MITRE’s participation in
SemEval-2018 Task 11: Machine Comprehen-
sion using Commonsense Knowledge. The
techniques explored range from simple bag-
of-ngrams classifiers to neural architectures
with varied attention and alignment mecha-
nisms. Logistic regression ties the systems to-
gether into an ensemble submitted for evalu-
ation. The resulting system answers reading
comprehension questions with 82.27% accu-
racy.

1 Introduction

Reading comprehension tasks measure the ability
to answer questions that require inference from a
free text story. This SemEval task, like many stan-
dardized tests (e.g., the SAT), provides multiple-
choice answers. Reading comprehension may rely
on information explicitly contained in the text,
such as which actors are present, as well as el-
ements of world knowledge, like understanding
common scripts.

Early attempts at statistical reading comprehen-
sion include fill-in-the-blank questions and com-
bine rich question categorization, information re-
trieval techniques, and entity recognition with
type-specific, hand-crafted tactics (Hirschman
et al., 1999; Anand et al., 2000).

More recent neural work uses continuous, dis-
tributed semantic space rather than n-gram overlap
to find answers similar to the story. Trischler et al.
(2016) compute a version of word overlap by find-
ing cosine similarity of word representations be-
tween sections. Yin et al. (2016) restate the ques-
tion and answer and incorporate a question-type
classifier.

In this effort we explored neural distributed rep-
resentations and lexicon-based machine learning
approaches, especially attention and word overlap.

2 Task, Data and Evaluation

Machine Comprehension using Commonsense
Knowledge was a shared task organized within
SemEval-2018 (Ostermann et al., 2018b).

The task organizers released a dataset of 1,689
stories and 10,872 questions (up to 14 questions
per story), split into training and development sets.
The stories were first-person, English language
narratives written by Mechanical Turk workers in
response to prompts asking them to describe a sce-
nario, like going on a date. Stories were up to 860
words long, with 90% under 273 words and a me-
dian length of 183 words. Questions are up to 22
words long, with a median length of seven. Each
question has two possible answers. Answers vary
in length from a single word, including yes or no,
to 30 words, with a median length of three. Many
questions are repeated between multiple stories. A
sample story and questions are shown in Figure 1.
Dataset construction is detailed in Ostermann et al.
(2018a). The evaluation metric for the task is sim-
ple accuracy: the portion of correct answers.

Question types Table 1 quantifies the question
types in the development set. We created this tax-
onomy to better understand the dataset. It also al-
lowed us to direct our development toward model
weaknesses.

Common Sense Knowledge and Inference
Types Reading comprehension relies on infer-
ence. We explored an inference taxonomy out-
lined in Chikalanga (1992) to better characterize
the types of questions and answers involved in this
shared task. For a subset of the training dataset,
we manually classified whether questions required
a reader to make lexical, propositional, or prag-
matic inferences about the story. We found that
many questions could be answered with more than
one type of inference and some questions required
multiple inferences. We considered which infer-

1078

I went to the airport to go see my friend in North Car-
olina. So I drove up and had to go to the gate to go
park. I paid my money to go park and went to park.
From there I walked up into the airport to figure out
where I need to check in. After much confusion, I
found the place to check in and walked up. I gave them
my boarding pass and they took my bags. From there
they weighed them to make sure that they were not over
the weight limit for carry on items. After that I went
to security. I arrived super early so that I would have
plenty of time in the line. I got in line for security and
just waited. After getting to the front of the line, I took
off my shoes and belt and put those on an x-ray scanner
and got scanned myself. I put them back on and went
to my flight.
Did they check in any baggage?
Xyes
X no
Where were they flying to?
XNorth Carolina
X South Carolina
Why did they arrive to the airport early?
X They were not early, they were late.
XTo have enough time to wait in line
Why do they have to check in?
XTo board their flight
X They had to check in because they were going over-
seas.

Figure 1: Sample story with questions.

ences could require knowledge and data sources
external to the story, like temporal-spatial relation-
ships or physical properties such as temperature.
Our analysis determined that this was unnecessary
for task completion.

3 System Overview

We created an ensemble of three systems, each of
which independently predicted the correct answer.
Two of the systems use a neural attention architec-
ture, and the third is a logistic regression.

3.1 Neural Attention
A recurrent neural system uses attention to cre-
ate a representation for each answer that consid-
ers the question and story. Our ensemble includes
two versions of this model with word embeddings
trained on different corpora.

The words of each section (story, question, and
answer) are embedded using a frozen projection
layer, a fully-connected layer, and a recurrent
layer. Another Long Short-Term Memory (LSTM)
layer operates over the words in each story sen-
tence to represent the story as a sequence of sen-
tence embeddings. Each embedded answer se-
quence attends the words of the question using a
parameterized attention mechanism (described be-
low). This output attends the story sentences using

% description
22.8 yes/no questions – One answer began with the

string yes and the other answer began with the
string no

9.4 yes/no only questions – answers were entirely the
word yes or no

13.0 who questions
12.8 what questions

8.9 where questions
5.4 when questions

17.6 how questions
12.1 why questions

0.4 which questions
23.7 all correct answer words are in the story
30.7 none of the correct answer words are in the story
13.7 all incorrect answer words are in the story
37.6 none of the incorrect answer words are in the story
15.6 none of the correct or incorrect answer words are

in the story

Table 1: Question types in the development set.

a similar attention mechanism, and an LSTM re-
duces the sequence. A fully-connected layer pro-
duces a prediction for each answer output, and a
softmax converts these to probabilities over the
two answers. All hidden layers are of size 128,
50% dropout follows on the embedding and RNN
layers, and the adam optimizer is used for training.

Components of this neural system include: pre-
trained distributed word representations, word
overlap/hard attention features, and an attention
mechanism.

For one model, NN-T, we used word2vec
(Mikolov et al., 2013) to learn distributed rep-
resentations of words from the text of English
tweets collected from 2011 to 2016. We applied
word2phrase twice to identify phrases of up
to four words, and trained a skip-gram model of
size 256, using a context window of 10 words and
15 negative samples per example. Twitter embed-
dings were chosen because at least some of the
corpus matches the informal, first-person register
of the task dataset. Our other set of word vectors,
used in NN-GN, was released by Google along-
side the tool and is made up of 300-vectors trained
on a billion words of Google News (GoogleCode,
2013 (accessed March 3, 2018). For both vector
sets, we used only the 100,000 most frequent vo-
cabulary items, since the shared data vocabulary
was quite limited.

Word-overlap features were concatenated to the
pretrained word embeddings. These consist of
four channels that compare the present section
(question or answer) with the story and question.
The first two channels are binary overlap: whether

1079

σ|w| w description
1 1.99 1.2814 |S ∩A|
2 1.18 -0.5591 answer length (words)
3 0.49 0.0394 answer length (chars)
4 0.15 -0.1728 |Q ∩A|
5 0.11 -0.0005 story length (chars)
6 0.09 0.0026 story length (words)
7 0.04 0.0041 question length (chars)
8 0.03 -0.0219 |S ∩Q|
9 0.02 0.0114 question length (words)

Table 2: Length and count features in the logistic re-
gression model, ranked by influence (σ|w|).

the word in this position appears in the compared
section. The cosine similarity channels contain
the similarity of the present word with the clos-
est word in the other section, computed using the
same set of pretrained word vectors used by the
neural model.

Our model adapts the attention mechanism de-
scribed in Vaswani et al. (2017). The scaled dot
product attention mechanism takes a memory and
a query representation, e.g., the embedded words
of the question and answer, respectively. Linear
transformations are used to create a key and value
from the former, and a query from the latter. Com-
patibility is computed as the scaled dot product of
the key and query. This determines the weights
over each timestep in the value, for each timestep
of the query. Our model did not improve using
parallel multi-head memory mechanisms nor by
including fully-connected layers on top of them.

3.2 Logistic Regression

A logistic regression (LR) system was developed
as a baseline against which the neural approach
would be compared. This system was competitive
enough to be included in the final ensemble.

The vocabulary of the LR system was limited
to the training set. The Porter stemmer (Porter,
1980) was used to strip the non-information bear-
ing suffixes from all of the words. Standard stop-
word lists removed words like yes and no that
were important to the questions and answers, so
the stopword list was reduced to just {a,an,the}.
Various lengths were included as features. Tak-
ing S, Q, and A as the sets of words in the story,
question, and answer respectively, the following
three counts were added to the feature set: |S∩A|,
|Q∩A| and |S ∩Q|. Table 2 shows the full list of
length and word count features.

The rest of the features were lexicalized pat-
terns. Table 3 shows examples. Features include

σ|w| w story question answer
1 0.61 1.85 ye
2 0.50 -1.89 it it
3 0.45 -2.22 they they
4 0.35 1.00 they
5 0.34 -1.64 wa wa
6 0.33 -1.42 in in
7 0.28 -2.25 at at
8 0.27 -1.97 friend
9 0.26 1.98 narrat

10 0.24 -1.66 for for
11 0.22 -1.60 of of
12 0.22 2.03 friend friend
13 0.21 -1.39 on on
14 0.20 -1.90 with with
15 0.20 0.82 did no
16 0.19 -0.57 no
17 0.19 -1.78 were were
18 0.19 -1.88 them them
19 0.18 1.84 author
20 0.17 1.86 who author
21 0.16 -1.75 one one
22 0.16 -1.85 had had
23 0.15 -1.09 hour
24 0.14 -1.82 neighbor
25 0.14 1.12 who narrat
26 0.13 2.10 long not
27 0.13 -1.73 out out
28 0.13 1.20 home
29 0.13 1.50 mani one
30 0.13 -1.22 minut minut
31 0.13 -1.49 after after
32 0.13 0.57 did it
33 0.12 1.80 morn morn
34 0.12 1.76 who they
35 0.12 0.74 they their
36 0.12 2.00 speaker

Table 3: Stemmed word factors in the logistic regres-
sion model ranked by influence (σ|w|).

the set of words in the answer (A), the words
common to the story and the answer (S ∩ A) and
the Cartesian product of the question and answer
(Q×A).

A bias term was added and Liblinear (Fan
et al., 2008) was used to compute the model. L2
regularization was used to encourage generaliza-
tion. The best value for the regularization param-
eter was the default, 1. The target variable for the
LR model to predict was the distinction between
a correct answer and an incorrect answer. At de-
code time, the answer with the higher probability
of being correct was chosen. This simple logistic
regression model performed surprisingly well, less
than 1% off from our best neural model.

Tables 2 and 3 show each feature’s influence on
fitting the training set. The rank ordering is stan-
dard deviation times the magnitude of the feature
weight, σ|w|. This figure of merit balances fea-
tures with high weights that were rare and features
with low weights that were common.

3.3 Ensemble
An L2-regularized logistic regression weights the
predictions of the above systems. MITRE’s offi-

1080

cial submission is an ensemble of the subsystems’
binary class predictions. We submitted this system
because it is simpler than an ensemble of continu-
ous predictions and found it had the same accuracy
on the development data, though more than 50 test
set predictions were different.

4 Additional Experiments

We applied several approaches to the problem that
did not generalize as well to the development data
and were not included in the final ensemble.

Baselines We trained two baseline classifiers
with incomplete information to gauge the diffi-
culty of the task and to measure the relative im-
portance of the story, question, and answers sep-
arately. Each baseline was a recurrent neural net-
work with a layer of pretrained word embeddings
and a stack of two 128-dimensional GRU layers.
The QA-only baseline received as input only a con-
catenation of a question and its candidate answers,
separated by special tokens. The A-only baseline
received only a concatenation of the two candi-
date answers. A-only scored at 71.9% accuracy
on the dev set, while QA-only was slightly higher
at 73.2% accuracy. Other attempts to augment
these models with attention over a lengthy story
sequence frequently failed to eclipse the QA-only
baseline, leading us to investigate hierarchical at-
tention models and explicit overlap features.

Negative sampling We explored negative sam-
pling to augment the training data, to improve our
models’ ability to exclude wrong answers. We se-
lected the 10 nearest neighbors for each question
and supplemented the original positive and neg-
ative answer with the other questions’ answers.
These were deduplicated after minimal prepro-
cessing (normalizing case and punctuation), in-
creasing the number of answers per question to
between four and 20. Our nearest neighbors cal-
culation is based on the average of word vectors
for the in-vocabulary words in the questions.

Negative sampling did not improve accuracy.
We tested conditions where 1) the original neg-
ative answer was sampled with equal probability
or 2) always kept, and considered different val-
ues of N, where N is the total number of answers
the model considered. We found no accuracy gain
from using negative sampling beyond normal vari-
ance when the original negative was always in-
cluded. When N was small, not necessarily in-

Factored Ablated
Component dev test dev test
NN-T 81.93 80.23 81.72 79.76
NN-GN 81.01 80.12 83.06 79.51
LR 81.36 79.66 81.64 79.87
All In 85.12 82.27

Table 4: Factored and ablated system components eval-
uated on our dev set and the official test set.

cluding the original negative seems to hurt accu-
racy, suggesting that the randomly drawn nega-
tives were not as plausible as the original nega-
tives. For larger values of N, both conditions hurt
performance.

We experimented with condition 1 and the LR
model. The best value of N was 5 for this model,
but accuracy was still below the model trained
with the original dataset.

5 Experiment Details

The systems included in our model were trained
only on the data released for this task, aside from
word vector pretraining. The dev set was used to
select hyperparameters for individual components
and final ensemble.

6 Results

The columns of Table 4 show the accuracy of each
system in isolation on the dev and test data (”Fac-
tored”) and the performance of the ensemble when
the individual system was removed (”Ablated”).
The final line shows the overall accuracy of the
submission.

7 Conclusion

An ensemble of models was used to answer
multiple-choice reading comprehension questions
about informal, first person narratives. The result-
ing official system ranked second in the shared
task. Our system relies heavily on lexical and
overlap features, without an explicit reasoning
component or external sources of world knowl-
edge. Word embeddings trained on larger corpora
contribute a semantic space that supports some in-
ference beyond simple word overlap.

Acknowledgments

Approved for Public Release; Distribution Unlim-
ited. Case Number 18-1298.

1081

References
Pranav Anand, Eric Breck, Brianne Brown, Marc

Light, Gideon Mann, Ellen Riloff, Mats Rooth, and
Michael Thelen. 2000. Fun with reading compre-
hension. In Final report, Reading Comprehension
group, Johns Hopkins Center for Language and
Speech Processing Summer Workshop.

Israel Chikalanga. 1992. A suggested taxonomy of in-
ferences for the reading teacher. Reading in a For-
eign Language.

Rong-En Fan, Kai-Wei Chang, Cho-Jui Hsieh, Xiang-
Rui Wang, and Chih-Jen Lin. 2008. LIBLINEAR:
A library for large linear classification. Journal of
Machine Learning Research, 9:1871–1874.

GoogleCode. 2013 (accessed March 3, 2018).
Word2vec. https://code.google.com/
archive/p/word2vec/.

Lynette Hirschman, Marc Light, Eric Breck, and
John D. Burger. 1999. Deep read: a reading com-
prehension system. In Proceedings of the 37th An-
nual Meeting of the Association for Computational
Linguistics on Computational Linguistics, ACL ’99,
pages 325–332, Stroudsburg, PA, USA. Association
for Computational Linguistics.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013. Distributed representa-
tions of words and phrases and their compositional-
ity. In Advances in Neural Information Processing
Systems.

Simon Ostermann, Ashutosh Modi, Michael Roth, Ste-
fan Thater, and Manfred Pinkal. 2018a. MCScript:
A Novel Dataset for Assessing Machine Compre-
hension Using Script Knowledge. In Proceedings
of the 11th International Conference on Language
Resources and Evaluation (LREC 2018), Miyazaki,
Japan.

Simon Ostermann, Michael Roth, Ashutosh Modi, Ste-
fan Thater, and Manfred Pinkal. 2018b. SemEval-
2018 Task 11: Machine Comprehension using Com-
monsense Knowledge. In Proceedings of Interna-
tional Workshop on Semantic Evaluation (SemEval-
2018), New Orleans, LA, USA.

Martin F Porter. 1980. An algorithm for suffix strip-
ping. Program, 14(3):130–137.

Adam Trischler, Zheng Ye, Xingdi Yuan, Jing He,
Phillip Bachman, and Kaheer Suleman. 2016.
A parallel-hierarchical model for machine com-
prehension on sparse data. arXiv preprint
arXiv:1603.08884.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems, pages 6000–6010.

Wenpeng Yin, Sebastian Ebert, and Hinrich Schütze.
2016. Attention-based convolutional neural net-
work for machine comprehension. arXiv preprint
arXiv:1602.04341.

1082

Proceedings of the 12th International Workshop on Semantic Evaluation (SemEval-2018), pages 1083–1088
New Orleans, Louisiana, June 5–6, 2018. ©2018 Association for Computational Linguistics

SNU IDS at SemEval-2018 Task 12: Sentence Encoder with
Contextualized Vectors for Argument Reasoning Comprehension

Taeuk Kim, Jihun Choi and Sang-goo Lee
Department of Computer Science and Engineering,

Seoul National University, Seoul, Korea
{taeuk,jhchoi,sglee}@europa.snu.ac.kr

Abstract

We present a novel neural architecture for the
Argument Reasoning Comprehension task of
SemEval 2018. It is a simple neural network
consisting of three parts, collectively judging
whether the logic built on a set of given sen-
tences (a claim, reason, and warrant) is plau-
sible or not. The model utilizes contextual-
ized word vectors pre-trained on large machine
translation (MT) datasets as a form of trans-
fer learning, which can help to mitigate the
lack of training data. Quantitative analysis
shows that simply leveraging LSTMs trained
on MT datasets outperforms several baselines
and non-transferred models, achieving accura-
cies of about 70% on the development set and
about 60% on the test set.

1 Introduction

The Argument Reasoning Comprehension Task
(Habernal et al., 2018) is a newly released task
that tackles the core of reasoning in natural lan-
guage argumentation, highlighting the importance
of implicit warrants.

Even though the task could be regarded as sim-
ple binary classification, it is quite challenging
in several perspectives. First, the task requires
human-level reasoning to judge whether a claim
supported by a reason and a warrant is logically
correct. Second, common knowledge, which is
not present in the input sentences themselves, is
often required to solve the problem. Third, even
though each instance of the data is helpful, the
number of training data is relatively small to train
prevailing complex neural models such as con-
volutional neural networks (Kim, 2014; Kalch-
brenner et al., 2014) and recurrent neural net-
works (Hochreiter and Schmidhuber, 1997; Chung
et al., 2014) with (or without) attention mecha-
nisms (Liu et al., 2016; Lin et al., 2017).

In this paper, we propose a new architec-
ture named SECOVARC1(Sentence Encoder with
COnextualized Vectors for Argument Reasoning
Comprehension) to deal with the complicated task.
The main idea behind our model is that transfer
learning can be a remedy to resolve the difficulties
we face. With experimental results and analysis,
we show that the simple neural model enhanced by
transferred knowledge can be competitive, com-
pared to complex models trained on the given data
only.

2 Related Work

2.1 Argument Reasoning Comprehension

The argument reasoning comprehension task is a
new dataset whose goal is to choose the correct
implicit reasoning from two warrants, given a nat-
ural language argument with a reason and a claim.
It consists of about 2K crowdsourced instances,
each of which has a title and a short description
of the debate from which the claim, reason, and
two candidates arose. For more details, refer to
Habernal et al. (2018).

2.2 Transfer Learning in NLP

Transfer learning is a classic technique in machine
learning, which seeks to transfer beneficial knowl-
edge from external resources to target models. It
is well-known to be effective especially when one
suffers from the lack of training data.

An important example showing the successful-
ness of transfer learning in natural language pro-
cessing (NLP) is pre-trained word representations
such as Word2Vec (Mikolov et al., 2013) and
GloVe (Pennington et al., 2014), on which most
of the modern models for NLP have been built.

1The implementation of our model is available at
https://github.com/galsang/SemEval2018-task12

1083

Furthermore, there are some recent works (Col-
lobert et al., 2011; Mou et al., 2016; Min et al.,
2017) that concentrate on pre-training more so-
phisticated neural modules over word embed-
dings, proving that transfer learning can be a key
to boost the performance of NLP systems.

2.3 Unsupervised Sentence Representation

Following the success of unsupervised word repre-
sentations, there arises another line of research to
facilitate transfer learning in sentence-level. The
idea is that a generic sentence encoder, which is
pre-trained in an unsupervised way, can generate
sentence representations suitable for downstream
tasks.

For instance, Kiros et al. (2015) propose an ap-
proach called Skip-Thoughts vectors that abstracts
the skip-gram of Word2Vec (Mikolov et al., 2013)
to the sentence-level. Moreover, many other un-
supervised methods (Le and Mikolov, 2014; Dai
and Le, 2015; Hill et al., 2016; Gan et al., 2017;
Chen, 2017) are also introduced as a way of build-
ing sentence representations.

2.4 Supervised Sentence Representation

Despite several attempts at learning sentence rep-
resentations in an unsupervised manner, there has
been no consensus established thus far, on which
is the best method and can be adopted as a stan-
dard.

Meanwhile, sentence encoders trained on la-
beled datasets are proposed as an alternative,
showing that they outperform the previous mod-
els even with the limited number of data. Conneau
et al. (2017) suggest a method named InferSent,
which uses a simple bidirectional LSTM (Long
Short Term Memory, Hochreiter and Schmidhu-
ber (1997)) with max-pooling trained on the Stan-
ford Natural Language Inference (SNLI, Bowman
et al. (2015)). And McCann et al. (2017) propose
CoVe and demonstrate that the encoder part of
the trained sequence-to-sequence (Sutskever et al.,
2014) model for machine translation can be reused
as a generic sentence encoder.

In the paper, we focus on supervised pre-
training with external data as an instantiation of
transfer learning.

3 Model

In this section, We describe SECOVARC (Figure
1) which takes a set of 3 sentences, i.e. a claim,

reason, and warrant, as input and outputs a score
between 0 and 1, indicating how reasonable the
claim is when it is based on the reason and the
warrant.

3.1 Model Design

Before jumping into the details, we explain about
our motivation upon which the decisions on model
design were made.

First, we let the model accept only one warrant
instead of two candidates. This decision comes
from the intuition that it may learn how to reason
better when it judges whether the logic constructed
on a set of a claim, reason, and warrant is plausi-
ble, instead of just choosing the more probable one
between the two candidates.

Second, as mentioned earlier, one of the main
concerns behind the model design is the lack of
training data. To alleviate this problem, we de-
cide to utilize transfer learning while maintaining
the model as simple as possible (e.g. without in-
troducing complex architectures such as attention
mechanism).

3.2 Model Specification

In this part, we describe the details of the proposed
model, which is composed of three layers.

3.2.1 Encoding Layer
The encoding layer is the first part of our model,
which is in charge of encoding three input sen-
tences to corresponding sentence representations.
In detail, it accepts the sequence of n words
(w1, w2, . . . , wn) in a sentence at a time and out-
puts a fixed-length sentence representation s. Note
that the same generic encoder is used to encode
each input sentence.

Formally, each one-hot encoded word wi ∈ RV

of the input sentence is converted into the corre-
sponding word vector xi ∈ Rdw by a word em-
bedding matrix E ∈ Rdw×V . Then, a sequence
of the word vectors x = [x1,x2, . . . ,xn] is com-
bined into s ∈ Rds by an encoder. While a wide
range of selection for the encoder is possible, in
our case we utilize CoVe2 (McCann et al., 2017)
(with pooling operation), which is a two-layered
Bi-LSTM pre-trained on large MT datasets, to ob-
tain meaningful and contextualized sentence rep-
resentations that would not be achieved if we train
the encoder from scratch.

2Available at https://github.com/salesforce/cove

1084

As a result, each representation for the claim
(sc), reason (sr), and warrant (sw) is derived from
xc,xr and xw as follows.

sc = Pooling(CoVe(xc))

sr = Pooling(CoVe(xr))

sw = Pooling(CoVe(xw))

From various options for the pooling operation,
we use max-pooling, which selects the maximum
value over each dimension of the output, and last-
pooling that just selects the last state of the out-
put. We call the CoVe encoder with max-pooling
as SECOVARC-max and the encoder with last-
pooling as SECOVARC-last.

3.2.2 Localization Layer
Although all of the input sentences (i.e. the claim,
reason, and warrant) are encoded by the univer-
sal encoder, there is a need to make a difference
among them so that each of the sentence repre-
sentations keeps its own role. For this reason, the
localization layer is introduced to project (or ‘lo-
calize’) each s onto its own semantic space.

We implement this layer simply in the form
of three separate fully-connected layers, pursu-
ing the intuition that our model should be simple.
Therefore, a set of the sentence representations
{sc, sr, sw} is converted into {vc,vr,vw} ∈ Rdf

as follows.

vc = tanh(Wcsc + bc)

vr = tanh(Wrsr + br)

vw = tanh(Wwsw + bw)

3.2.3 Output Layer
The output layer collects all features extracted
from the previous layer and computes a final score
between 0 and 1. To help the model make correct
decisions, we introduce heuristic methods such as
|vw − vr − vc| and vw � vr � vc

3, inspired from
the work of Mou et al. (2015) for the SNLI task.

In the end, a final feature vf for computing a
score y ∈ R (0 ≤ y ≤ 1) becomes a concatenation
of the five vectors,

vf =




vc

vr

vw

|vw − vr − vc|
vw � vr � vc




3�: element-wise multiplication

Encoding

Localization

Output

wc1 . . . wcn

Claim

wr1 . . . wrm

Reason

ww1
. . . wwp

Warrant

xc1 . . . xcn

x̂c1
. . . x̂cn

sc

vc

xr1 . . . xrm

x̂r1
. . . x̂rm

sr

vr

xw1
. . . xwp

x̂w1
. . . x̂wp

sw

vw

vc vr vw vd vm

y

GloVe

CoVe

Pooling

FC FC FC

Sigmoid

Figure 1: The architecture of SECOVARC. Dotted
boxes represent the elements computed by parameter-
shared modules (GloVe and CoVe) for all inputs. Note
that vd : |vw − vc − vr| and vm : vw � vc � vr. FC
means a fully connected layer.

where vf ∈ R5df . Then, logistic regression (for
simplicity) is performed on vf to compute the fi-
nal score.

y = σ(Wfvf + bf)

During training, the score can be directly uti-
lized to optimize the model. At test time, on the
other hand, we derive y1 and y2 from the trained
model with the input sentences such that

y1 = SECOVARC(c, r,w1)

y2 = SECOVARC(c, r,w2)

where c, r,w1 and w2 is the claim, the reason, the
first warrant, and the second warrant respectively.
Then, we select the warrant whose score is greater
than that of the other as a final decision.

4 Experiment and Discussion

4.1 Data Manipulation
As our model requires only one warrant at a time,
data preprocessing is inevitable before training.
We manipulate the original data so that the correct
warrant has a score of 1 and the opposite warrant
has 0. Note that this pre-processing procedure has
a side effect of doubling the original training data.

4.2 Training Details
The dimension of a word vector (de) is fixed to
300. And hyper-parameters for other vectors are

1085

Approach Dev (±) Test (±)

Human average - - .798 .162
Human w/ training in reasoning - - .909 .114
Random baseline .473 .039 .491 .031
Language model .617 - .500 -
Attention .488 .006 .513 .012
Attention w/ context .502 .031 .512 .014
Intra-warrant attention .638 .024 .556 .016
Intra-warrant attent. w/ context .637 .040 .560 .055

SECOVARC (official record) .731 - .565 -
SECOVARC-last (w/o heuristics) .701 .011 .559 .019
SECOVARC-last (w/ heuristics) .706 .014 .554 .015
SECOVARC-max (w/o heuristics) .680 .007 .591 .016
SECOVARC-max (w/ heuristics) .684 .008 .592 .016

Table 1: Comparison of baselines and variants of our
model on the development set and the test set.

set to ds = 600, df = 300. We use 840B GloVe
to initialize a word embedding matrix. Other
model weights are randomly sampled from uni-
form distribution(-0.005, 0.005), except for the
CoVe encoder, and biases are initialized with 0.

Our model is trained using Adam (Kingma and
Ba, 2014) optimizer with a learning rate 0.001 and
a batch size 64. The maximum number of train-
ing epoch is limited to 10 and we choose the best
model based on development accuracy. All param-
eters in the model, including the word vectors, are
fine-tuned during training.

For regularization, L2-norm of the parameters
is added to the Cross Entropy objective with the
weight of 1e-5, and Dropout (Srivastava et al.,
2014) technique is also applied with p = 0.1.

4.3 Experimental Results
Table 1 shows the accuracies of variants of our
model and baselines (Habernal et al., 2018) on
the development set and the test set. Due to the
instability of results caused by random initializa-
tion, we report the mean and standard deviation
of 20 experimental runs (with the same hyper-
parameters) for each model.

The reported results show that SECOVARC-last
(w/ heuristics) outperforms all the baselines on the
development set, with a mean accuracy of 70.6%.
However, it is SECOVARC-max (w/ heuristics)
that performs best on the test set, with a mean ac-
curacy of 59.2%. We submitted an instance ob-
tained from SECOVARC-last (w/ heuristics) and
achieved the official result of 56.5% on the leader-
board. Table 1 also demonstrates that our model
benefits from the heuristics applied in the output

Approach Dev (±) Test (±)
BoW .677 .006 .502 .014
Bi-LSTM-last .678 .010 .554 .024
Bi-LSTM-max .670 .011 .543 .027
SECOVARC-last .706 .014 .554 .015
SECOVARC-max .684 .008 .592 .016

Table 2: Experiment on the possibility of transfer learn-
ing in case of the argument reasoning comprehension
task. Note that the heuristic methods are employed for
all models.

layer, except for the test accuracy of SECOVARC-
last.

4.3.1 Does transfer learning really work?
Even with the promising outcome presented by
SECOVARC, an issue remains regarding how to
show the effectiveness of transfer learning for the
task. For this objective, we conduct additional
experiments with three baselines called BoW, Bi-
LSTM-last, and Bi-LSTM-max. Bi-LSTM-last
and Bi-LSTM-max have the same architecture
with SECOVARC, but the Bi-LSTMs in the en-
coding layer are randomly initialized rather than
pre-trained. BoW is different from our proposed
model in that it leverages the average of word vec-
tors as a sentence representation instead of using
CoVe with pooling.

Table 2 reports the comparison of the baselines
and the variants of our model. The results show
that our model consistently outperforms the base-
lines which are trained from scratch. Moreover,
the smaller deviations of SECOVARCs demon-
strate that transfer learning can lead to more stable
and successful training of models.

5 Conclusion

In this paper, we present a novel neural archi-
tecture called SECOVARC, that utilizes a two-
layered Bi-LSTM trained first on a large amount
of machine translation data. And we demonstrate
that the neural model for the argument reason-
ing comprehension task can benefit from transfer
learning when it is properly designed.

As a future work, there is a way to apply con-
temporary works for generic sentence encoders
such as Subramanian et al. (2018) and Peters et al.
(2018) instead of CoVe. On the other hand, we can
consider expanding the data itself directly with so-
phisticated rules or heuristics.

1086

Acknowledgments

This work was supported by the National
Research Foundation of Korea (NRF) grant
funded by the Korea government (MSIT) (NRF-
2016M3C4A7952587).

References
Samuel R Bowman, Gabor Angeli, Christopher Potts,

and Christopher D Manning. 2015. A large anno-
tated corpus for learning natural language inference.
arXiv preprint arXiv:1508.05326.

Minmin Chen. 2017. Efficient vector representation
for documents through corruption. arXiv preprint
arXiv:1707.02377.

Junyoung Chung, Caglar Gulcehre, KyungHyun Cho,
and Yoshua Bengio. 2014. Empirical evaluation of
gated recurrent neural networks on sequence model-
ing. arXiv preprint arXiv:1412.3555.

Ronan Collobert, Jason Weston, Léon Bottou, Michael
Karlen, Koray Kavukcuoglu, and Pavel Kuksa.
2011. Natural language processing (almost) from
scratch. Journal of Machine Learning Research,
12(Aug):2493–2537.

Alexis Conneau, Douwe Kiela, Holger Schwenk, Loic
Barrault, and Antoine Bordes. 2017. Supervised
learning of universal sentence representations from
natural language inference data. arXiv preprint
arXiv:1705.02364.

Andrew M Dai and Quoc V Le. 2015. Semi-supervised
sequence learning. In Advances in Neural Informa-
tion Processing Systems, pages 3079–3087.

Zhe Gan, Yunchen Pu, Ricardo Henao, Chunyuan Li,
Xiaodong He, and Lawrence Carin. 2017. Learning
generic sentence representations using convolutional
neural networks. In Proceedings of the 2017 Con-
ference on Empirical Methods in Natural Language
Processing, pages 2380–2390.

Ivan Habernal, Henning Wachsmuth, Iryna Gurevych,
and Benno Stein. 2018. The argument reasoning
comprehension task: Identification and reconstruc-
tion of implicit warrants. In Proceedings of the
2018 Conference of the North American Chapter of
the Association for Computational Linguistics: Hu-
man Language Technologies, page (to appear), New
Orleans, LA, USA. Association for Computational
Linguistics.

Felix Hill, Kyunghyun Cho, and Anna Korhonen.
2016. Learning distributed representations of
sentences from unlabelled data. arXiv preprint
arXiv:1602.03483.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural computation,
9(8):1735–1780.

Nal Kalchbrenner, Edward Grefenstette, and Phil
Blunsom. 2014. A convolutional neural net-
work for modelling sentences. arXiv preprint
arXiv:1404.2188.

Yoon Kim. 2014. Convolutional neural net-
works for sentence classification. arXiv preprint
arXiv:1408.5882.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Ryan Kiros, Yukun Zhu, Ruslan R Salakhutdinov,
Richard Zemel, Raquel Urtasun, Antonio Torralba,
and Sanja Fidler. 2015. Skip-thought vectors. In
Advances in neural information processing systems,
pages 3294–3302.

Quoc Le and Tomas Mikolov. 2014. Distributed rep-
resentations of sentences and documents. In Inter-
national Conference on Machine Learning, pages
1188–1196.

Zhouhan Lin, Minwei Feng, Cicero Nogueira dos San-
tos, Mo Yu, Bing Xiang, Bowen Zhou, and Yoshua
Bengio. 2017. A structured self-attentive sentence
embedding. arXiv preprint arXiv:1703.03130.

Yang Liu, Chengjie Sun, Lei Lin, and Xiaolong Wang.
2016. Learning natural language inference using
bidirectional lstm model and inner-attention. arXiv
preprint arXiv:1605.09090.

Bryan McCann, James Bradbury, Caiming Xiong, and
Richard Socher. 2017. Learned in translation: Con-
textualized word vectors. In Advances in Neural In-
formation Processing Systems, pages 6297–6308.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jef-
frey Dean. 2013. Efficient estimation of word
representations in vector space. arXiv preprint
arXiv:1301.3781.

Sewon Min, Minjoon Seo, and Hannaneh Hajishirzi.
2017. Question answering through transfer learn-
ing from large fine-grained supervision data. arXiv
preprint arXiv:1702.02171.

Lili Mou, Rui Men, Ge Li, Yan Xu, Lu Zhang, Rui
Yan, and Zhi Jin. 2015. Natural language inference
by tree-based convolution and heuristic matching.
arXiv preprint arXiv:1512.08422.

Lili Mou, Zhao Meng, Rui Yan, Ge Li, Yan Xu,
Lu Zhang, and Zhi Jin. 2016. How transferable are
neural networks in nlp applications? arXiv preprint
arXiv:1603.06111.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. Glove: Global vectors for word
representation. In Proceedings of the 2014 confer-
ence on empirical methods in natural language pro-
cessing (EMNLP), pages 1532–1543.

1087

Matthew E Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word rep-
resentations. arXiv preprint arXiv:1802.05365.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky,
Ilya Sutskever, and Ruslan Salakhutdinov. 2014.
Dropout: A simple way to prevent neural networks
from overfitting. The Journal of Machine Learning
Research, 15(1):1929–1958.

Sandeep Subramanian, Adam Trischler, Yoshua Ben-
gio, and Christopher J Pal. 2018. Learning gen-
eral purpose distributed sentence representations via
large scale multi-task learning. In International
Conference on Learning Representations.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014.
Sequence to sequence learning with neural net-
works. In Advances in neural information process-
ing systems, pages 3104–3112.

1088

Proceedings of the 12th International Workshop on Semantic Evaluation (SemEval-2018), pages 1089–1093
New Orleans, Louisiana, June 5–6, 2018. ©2018 Association for Computational Linguistics

ITNLP-ARC at SemEval-2018 Task 12: Argument Reasoning
Comprehension with Attention

Wenjie Liu, Chengjie Sun, Lei Lin, Bingquan Liu
School of Computer Science and Technology

Harbin Institute of Technology
Harbin, China

{wjliu, cjsun, linl, liubq}@insun.hit.edu.cn

Abstract

Reasoning is a very important topic and has
many important applications in the field of
natural language processing. Semantic Eval-
uation (SemEval) 2018 Task 12 “The Argu-
ment Reasoning Comprehension” committed
to research natural language reasoning. In this
task, we proposed a novel argument reasoning
comprehension system, ITNLP-ARC, which
use Neural Networks technology to solve this
problem. In our system, the LSTM model
is involved to encode both the premise sen-
tences and the warrant sentences. The atten-
tion model is used to merge the two premise
sentence vectors. Through comparing the sim-
ilarity between the attention vector and each
of the two warrant vectors, we choose the one
with higher similarity as our system’s final an-
swer.

1 Introduction

Reasoning is a very challenging, but basic part of
Natural Language Inference (NLI) (Chen et al.,
2017), and many relevant tasks have been pro-
posed such as Recognizing Textual Entailment
(RTE) and so on. Stanford University provided
Stanford Natural Language Inference (SNLI) cor-
pus to support Natural Language Inference task. It
contained two kinds of sentences-the premise sen-
tence and the warrant sentence.The mission is to
judge whether the two sentences are inference or
not. Semantic Evaluation (SemEval) 2018 Task
12-The Argument Reasoning Comprehension-
give an argument consisting of the claim, the rea-
son and two warrants. The goal is to select the
correct warrant that explains reasoning with this
particular argument. There are two options given
and only one is correct. Compare with Stanford
Natural Language Inference (SNLI) task (Bow-
man et al., 2015; Shen et al., 2018), it has more
challenges. Because it has abundant premise in-

formation such as the reason, the claim, text infor-
mation, as well as the option warrants have high
semantic textual similarity (Habernal et al., 2017).
In this task, we need to find an effective method to
extract important information from these premise
sentences.

Natural Language Reasoning can be applied to
various fields such as question and answering,
information retrieval and so on. With the de-
velopment of Neural Networks applied in Natu-
ral Language Processing, sentence representation
and reasoning have been researched and taken
significant step forwards. In order to deal with
the sequence problem, recurrent neural networks
(RNN) (Mikolov et al., 2010, 2011) proposes the
concept of hidden state, which can extract features
from sequence-shaped data and then convert it to
output. It can be used to encode the sentence to
fixed-length vector representations. In most re-
cent years, long short-term memory (LSTM) net-
work (Bengio et al., 1994; Hochreiter and Schmid-
huber, 1997), BiLSTM (Pennington et al., 2014a)
and gated recurrent unit (GRU) (Cho et al., 2014)
are widely used to get sentence representative vec-
tor, and achieved better result compared with tra-
ditional methods. Attention model also known
as alignment model pays more attention to two
sentences interaction (Zheng et al., 2018; Gao
et al., 2018), which is usually applied in infor-
mation extraction, relation extraction, text sum-
marization and machine translation. In machine
translation, the attention model can be focused on
one or a few words of input to make the trans-
lation more accurate when generating each new
word. (Rocktäschel et al., 2015) extend a neural
word-by-word attention mechanism to encourage
reasoning over entailment of pairs of words and
phrases.

In our system, we use long short-term memory
network to encode sentence. To make full use of

1089

the information of the reason and the claim, we
use attention model to get the attention sentence
vector. Then, we compare the warrant sentence
vector and the attention sentence vector similarity.
The warrant with higher similarity is taken as an
answer. In order to make the system more accu-
rate, we use ensemble result as our final answer.

2 Method

The dataset composes with four items which are
the reason, the claim, the warrant and the alter-
native warrant (R, C, W, AW), and two additional
information: debateTitle and debateInfo. Let R be
a reason for a claim C, both of which are propo-
sitions extracted from debateTitle and debateInfo.
There are two warrants (AW, W) that justify the
use of the reason R as support for the claim C. In
this task, we choose the correct warrant by these
premise information. In our system, we encode
sentence with LSTM, and merge two sentences
with attention. Then choose the one (AW or W)
with higher similarity between the warrant vector
and the attention vector as our answer. The sys-
tem’s neural networks model shown as Fig 1. We
build the system with five parts, the following is a
detailed description.

2.1 LSTM

Long short-term memory (LSTM) network is a
variant of RNN, and it has been successfully ap-
plied to various kinds of NLP tasks. It can solve
RNN’s problem of gradient vanishing and gradient
explosion and be good at dealing with sequence-
shaped data. LSTM model controls the memory
unit through the input gate, output gate and for-
get gate. The input is a sequence of sentence
X = {x1, x2, . . . , xn}, where xi is the word vec-
tor of i’th word in the sentence. The output is
H = {h1, h2, . . . , hn}, where hi is the i’th step
of the LSTM’s output. Here, we use the pre-
trained vector of global vectors (GloVe) (Penning-
ton et al., 2014b) as the embedding layer initializa-
tion, and the word embedding dimension is 300.
The formulas for LSTM include:

it = σ(Wi · [ht−1, xt] + bi) (1)

ft = σ(Wf · [ht−1, xt] + bf) (2)

C̃t = tanh(Wc · [ht−1, xt] + bc) (3)

Ct = ft ∗ Ct−1 + it ∗ C̃t (4)

ot = σ(Wo · [ht−1, xt] + bo) (5)

ht = ot ∗ tanh(Ct) (6)

In our experiment,we encode the reason sen-
tence and the claim sentence with one LSTM en-
coder, and encode the warrant sentence with an-
other. We try to use the LSTM’s last output, mean
pooling and max pooling as the sentence vector
representation.

2.2 Attention
In argument reasoning comprehension task, the
claim sentence is extracted from title and infor-
mation, and it supports the result. Therefore, the
claim has a great impact on the reason sentence.
So, we use attention model to force the reason’s
and the claim’s similarity word, and get the better
premise sentence representation. In this task, we
use two kinds of attention model to merge reasons
and claims vector representation. Let’sR ∈ Rk×lr

be a matrix consisting of the reason’s LSTM out-
put vector R = {r1, r2, . . . , rlr}, and C ∈ Rk×lc

be a matrix consisting of the claim’s LSTM layer
output vector C = {c1, c2, . . . , clc}, where lr is
the length of the reason, lc is the length of the
claim, and k is the LSTM’s outputs dimension.

One of the attention model is seq-attention
model. In our system, we try to represent the
claim sentence vector as c ∈ Rk, where c is the
LSTM’s last output, mean pooling or max pool-
ing. Then, calculating the claim sentence vector c
and the reason sentence vecotor’s {r1, r2, . . . , rlr}
similarity as the attention weight. We use the re-
sult of two vectors multiplication as the similarity
weight. Finally, we can obtain the reason sentence
vector with weight. The calculation process is as
following:

ei = c • ri (7)

αi =
exp(ei)∑l
i=1 exp(ei)

(8)

Rtt∗ =
l∑

i=1

αi • ri (9)

where α is the attention weight. The attention vec-
tor represent as Rtt∗ ∈ Rk.

Another kind of attention uses matrix to calcu-
late the weight of the claim sentence vector and the
reason sentence vector. Give each sentence vector
a weight matrix, and obtain the attention vector by
learning the weight matrix. The formula is:

M = tanh(WyR+WhClc ⊗ elr) (10)

1090

Figure 1: Our system model with attention-encoding with LSTM, merge the reason and the claim with attention,
and calculating text similarity with belinear.

α = softmax(wTM) (11)

r = RαT (12)

Rtt∗ = tanh(Wpr +WxClc) (13)

where Wy ∈ Rk×k, Wh ∈ Rk×k, w ∈ Rk, Wp ∈
Rk×k and Wx ∈ Rk×k is a matrix with random
initialization. Cn is the LSTM’s last output, max
pooling or mean pooling, and α is the attention
weight. Rtt∗ ∈ Rk is the attention vector.

2.3 Text Similarity
There are many ways to calculate the similarity of
text vectors, such as cosine distance, dot product
and so on. In our system, we use a Bilinear way
to calculate the similarity of attention vector and
warrant vector. The formula is:

h = Rtt∗ ×Wm ×W (14)

where Rtt∗ is the attention vector, Wm ∈ Rk×k

is the randomly initialized weight matrix, and W
is the warrant sentence vector that using LSTM’s
last output, max pooling or mean pooling.

2.4 Ensemble
Since neural networks have a large number of ran-
dom parameters, we try to use different random
initialization or change the network layer dimen-
sions to adjust the network structure. In order to
make the prediction more accurate, we run the pro-
gram many times and use the voting method to ob-
tain the final result.

2.5 Loss Function and Evaluation

We treat this task as a classification problem, and
use log-loss as our loss function. The format is:

log− loss =
n∑

i=1

yilog(hi) + (1− yi)log(1− hi)

(15)
where yi is the label of i’th instance, and hi is the
probability calculated by the system.

We also treat it as a sort problem, and choosing
the top 1 of sorting results as the answer. The loss
function format is:

loss =

n∑

i=1

max(0, 1− sim(r, wa) + sim(r, w))

(16)
where sim(r, wa) is the true similarity of the
premise and the warrant, and sim(r, w) is the false
similarity of the premise and the warrant.

Systems will be scored using accuracy. The for-
mat is:

accuracy =
correct predictions

all instances
(17)

3 Experiments and Results

Table 1 shows the parameter setting in our system.
Because we use Tensorflow to build our system,
the sentence needs to be set to a fixed length. The
sentences with length greater than 30 words are

1091

lstm input unit lstm output unit lstm input dropout lstm output dropout epoch
300 200 0.6 0.6 40

Table 1: parameter setting in ITNLP ARC system.

Train acc Dev acc Test acc
lstm(last-output)+seq-attention 0.7450 0.6875 0.5315

lstm(max-pooling)+seq-attention 0.7519 0.6718 0.5382
lstm(mean-pooling)+seq-attention 0.8154 0.6906 0.5427

lstm(last-output)+attention 0.7737 0.6878 0.5257
lstm(max-pooling)+attention 0.7842 0.6827 0.5372
lstm(mean-pooling)+attention 0.7860 0.6932 0.5375

Table 2: The accuracy with log-loss on Semeval 2018 data sets.

Train acc Dev acc Test acc
lstm(last-output)+seq-attention 0.7926 0.6841 0.5292

lstm(max-pooling)+seq-attention 0.7838 0.6812 0.5395
lstm(mean-pooling)+seq-attention 0.8360 0.6927 0.5495

lstm(last-output)+attention 0.7871 0.6750 0.5270
lstm(max-pooling)+attention 0.7929 0.6812 0.5225
lstm(mean-pooling)+attention 0.8105 0.6906 0.5427

Table 3: The accuracy with sort loss function om Semeval 2018 data sets.

Train acc Dev acc Test acc
Ensemble 0.8319 0.7246 0.5521

Table 4: The accuracy of ensembling all neural network
model.

truncated from the back, with length less than 30
words are added 0 in the behind.

In our system, we build the argument reason-
ing comprehension task with neural networks. We
try to use the LSTM’s last output, max pooling or
mean pooling to represent the sentence vector, and
use two kinds of attention to merge the reason and
the claim. Because of neural networks contains a
lot number of randomly initialized parameters, we
run our system ten times and average the accuracy.
Table 2 shows the accuracy with log-loss function.
Table 3 shows the accuracy with sort loss function.
From Table 2 and Table 3, we can get conclusion
that mean pooling performed better than last out-
put and max pooling. Table 4 shows the accuracy
ensemble all neural network model, and this is our
system’s final result.

4 Conclusion and Future Works

We propose a neural network model to solve rea-
soning in NLP. We use attention model and bilin-
ear to calculate the similarity between the premise
and the warrant. Our system’s final result achieved
0.5521. From the experiment, we can see the train
accuracy and the development accuracy is much
higher than test accuracy. This may be due to over
fitting. Maybe decreasing learning rate, and using
batch normalization can reduce over fitting. We
will try it in the future work.

Acknowledgment

This work is sponsored by the National High
Technology Research and Development Program
of China (2015AA015405) and National Natu-
ral Science Foundation of China (61572151 and
61602131).

References
Yoshua Bengio, Patrice Y. Simard, and Paolo Frasconi.

1994. Learning long-term dependencies with gra-
dient descent is difficult. IEEE Trans. Neural Net-
works 5(2):157–166. https://doi.org/10.
1109/72.279181.

1092

Samuel R. Bowman, Gabor Angeli, Christopher Potts,
and Christopher D. Manning. 2015. A large an-
notated corpus for learning natural language infer-
ence. In Proceedings of the 2015 Conference on Em-
pirical Methods in Natural Language Processing,
EMNLP 2015, Lisbon, Portugal, September 17-21,
2015. pages 632–642. http://aclweb.org/
anthology/D/D15/D15-1075.pdf.

Qian Chen, Xiaodan Zhu, Zhen-Hua Ling, Si Wei, Hui
Jiang, and Diana Inkpen. 2017. Enhanced LSTM for
natural language inference. In Proceedings of the
55th Annual Meeting of the Association for Compu-
tational Linguistics, ACL 2017, Vancouver, Canada,
July 30 - August 4, Volume 1: Long Papers. pages
1657–1668. https://doi.org/10.18653/
v1/P17-1152.

Kyunghyun Cho, Bart van Merrienboer, Çaglar
Gülçehre, Dzmitry Bahdanau, Fethi Bougares, Hol-
ger Schwenk, and Yoshua Bengio. 2014. Learning
phrase representations using RNN encoder-decoder
for statistical machine translation. In Proceedings of
the 2014 Conference on Empirical Methods in Nat-
ural Language Processing, EMNLP 2014, October
25-29, 2014, Doha, Qatar, A meeting of SIGDAT,
a Special Interest Group of the ACL. pages 1724–
1734. http://aclweb.org/anthology/D/
D14/D14-1179.pdf.

Xinjian Gao, Tingting Mu, John Yannis Goulermas,
and Meng Wang. 2018. Attention driven multi-
modal similarity learning. Inf. Sci. 432:530–
542. https://doi.org/10.1016/j.ins.
2017.08.026.

Ivan Habernal, Henning Wachsmuth, Iryna Gurevych,
and Benno Stein. 2017. The argument reason-
ing comprehension task. CoRR abs/1708.01425.
http://arxiv.org/abs/1708.01425.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural Computa-
tion 9(8):1735–1780. https://doi.org/10.
1162/neco.1997.9.8.1735.

Tomas Mikolov, Martin Karafiát, Lukás Burget,
Jan Cernocký, and Sanjeev Khudanpur. 2010.
Recurrent neural network based language model.
In INTERSPEECH 2010, 11th Annual Confer-
ence of the International Speech Communication
Association, Makuhari, Chiba, Japan, Septem-
ber 26-30, 2010. pages 1045–1048. http:
//www.isca-speech.org/archive/
interspeech_2010/i10_1045.html.

Tomas Mikolov, Stefan Kombrink, Lukás Burget, Jan
Cernocký, and Sanjeev Khudanpur. 2011. Exten-
sions of recurrent neural network language model.
In Proceedings of the IEEE International Con-
ference on Acoustics, Speech, and Signal Pro-
cessing, ICASSP 2011, May 22-27, 2011, Prague
Congress Center, Prague, Czech Republic. pages
5528–5531. https://doi.org/10.1109/
ICASSP.2011.5947611.

Jeffrey Pennington, Richard Socher, and Christo-
pher D. Manning. 2014a. Glove: Global vectors
for word representation. In Proceedings of the
2014 Conference on Empirical Methods in Natu-
ral Language Processing, EMNLP 2014, October
25-29, 2014, Doha, Qatar, A meeting of SIGDAT,
a Special Interest Group of the ACL. pages 1532–
1543. http://aclweb.org/anthology/D/
D14/D14-1162.pdf.

Jeffrey Pennington, Richard Socher, and Christo-
pher D. Manning. 2014b. Glove: Global vectors
for word representation. In Proceedings of the
2014 Conference on Empirical Methods in Natu-
ral Language Processing, EMNLP 2014, October
25-29, 2014, Doha, Qatar, A meeting of SIGDAT,
a Special Interest Group of the ACL. pages 1532–
1543. http://aclweb.org/anthology/D/
D14/D14-1162.pdf.

Tim Rocktäschel, Edward Grefenstette, Karl Moritz
Hermann, Tomás Kociský, and Phil Blunsom. 2015.
Reasoning about entailment with neural attention.
CoRR abs/1509.06664. http://arxiv.org/
abs/1509.06664.

Tao Shen, Tianyi Zhou, Guodong Long, Jing Jiang, Sen
Wang, and Chengqi Zhang. 2018. Reinforced self-
attention network: a hybrid of hard and soft atten-
tion for sequence modeling. CoRR abs/1801.10296.
http://arxiv.org/abs/1801.10296.

Hai-Tao Zheng, Wei Wang, Wang Chen, and Arun Ku-
mar Sangaiah. 2018. Automatic generation of news
comments based on gated attention neural networks.
IEEE Access 6:702–710. https://doi.org/
10.1109/ACCESS.2017.2774839.

1093

Proceedings of the 12th International Workshop on Semantic Evaluation (SemEval-2018), pages 1094–1098
New Orleans, Louisiana, June 5–6, 2018. ©2018 Association for Computational Linguistics

ECNU at SemEval-2018 Task 12: An End-to-End Attention-based Neural
Network for the Argument Reasoning Comprehension Task

Junfeng Tian1, Man Lan1,2* and Yuanbin Wu1,2

1 School of Computer Science and Software Engineering,
East China Normal University, Shanghai, P.R.China

2 Shanghai Key Laboratory of Multidimensional Information Processing
51151201048@stu.ecnu.edu.cn, {mlan, ybwu}@cs.ecnu.edu.cn

Abstract

This paper presents our submissions to Se-
mEval 2018 Task 12: the Argument Reasoning
Comprehension Task. We investigate an end-
to-end attention-based neural network to rep-
resent the two lexically close candidate war-
rants. On the one hand, we extract their differ-
ent parts as attention vectors to obtain distin-
guishable representations. On the other hand,
we use their surrounds (i.e., claim, reason, de-
bate context) as another attention vectors to get
contextual representations, which work as fi-
nal clues to select the correct warrant. Our
model achieves 60.4% accuracy and ranks 3rd

among 22 participating systems.

1 Introduction

Reasoning is a crucial part of natural language ar-
gumentation. In order to comprehend an argumen-
t, one must analyze its warrant, which explains
why its claim follows form its premises (aka rea-
sons) (Habernal et al., 2018a).

SemEval-2018 Task 12 provides the argumen-
t reasoning comprehension task (Habernal et al.,
2018b). Given a reason and a claim along with the
title and a short description of the debate they oc-
cur in, the goal is to identify the correct warrant
from two candidates. Figure 1 gives an example.
The abstract structure of an argument is: reason
→ (since) warrant→ (therefore) claim.

The challenging factor is that both candidate
warrants are plausible and lexically very close
while leading to contradicting claims (Habernal
et al., 2018a). Here we give three examples of the
two candidate warrants:

Ex1: A huge pandemic would (not) be a great news story.

Ex2: The role of a citizen and a supreme court justice are
inseparable /separable.

Ex3: The rest of the comments can be skipped easily
/make the section unreadable.

Title: Have Comment Section Failed?
Description: In recent years, many media companies have
disabled them because of widespread abuse and obscenity.
Reason: Many comments are thoughtful and insightful. And
since {Warrant0 |Warrant1},
Claim: Comment sections have not failed.
3 Warrant0: The rest of the comments can be skipped eas-
ily.
7 Warrant1: The rest of the comments make the section un-
readable.

Figure 1: An example of a debate in the argument rea-
soning comprehension task.

The differences are either negative words, or
antonyms, or opposite phrases. Therefore, it is
important to emphasize the different parts to ob-
tain distinguish representations of the two war-
rants, which express the opposite meanings.

To address this factor, we proposed an end-to-
end attention-based neural network. On the one
hand, we extract the different parts of the two war-
rants and use them as attention vectors to obtain
warrants’ distinguishable representations. On the
other hand, we represent their surrounds (i.e., rea-
son, claim, debate context) as another attention
vector to get the contextual representations.

2 System Architecture

Formally, given an instance containing two candi-
date warrants (W0,W1) and the context around the
warrants (i.e., R,C, T, I), the goal is to choose the
correct warrant y ∈ {0, 1}, where y = 0 means
W0 is the correct answer, and y = 1 otherwise.

2.1 Overview

The network is inspired by Siamese network
(Mueller and Thyagarajan, 2016). The two can-
didate warrants are modeled in the same structure.
Figure 2 illustrates our system architecture.

First, we first extract the different parts of war-

1094

Figure 2: The system architecture

rant0, warrant1 and claim to get Diff W0, Diff W1

and Diff Claim (see in Sec. 2.2).
Then, we stack a CNN and a RNN to represent

each component to obtain representation of each
component, because the combination of CNN and
RNN can make use of the spatial and temporal
context information (in Sec. 2.3).

Next, the intra-temporal attention is adopted to
obtain distinguishable representations of warrants.
Similarly, we apply the same strategy to the claim.
The intra-temporal attention is introduced in Sec.
2.4).

After that, we concatenate the representation of
surrounds (i.e., reason, claim, debate context and
warrant) as another attention vector to obtain the
contextual representations of the warrants.

Last, we adopt a dense layer to obtain the prob-
ability of the two candidate warrants (in Sec. 2.5).
The contextual representations work as hidden
clues to select the correct warrant.

2.2 Extract the Different Part

The two candidate warrants are lexically close (s-
ince they often mean the opposite), thus we extract
the different part between them to serve as atten-
tion vector to guide the neural network to generate
distinguishable representation for the warrants.

To do this, we remove the longest common pre-
fix and suffix, and let the remain part as the differ-
ent part, denoted as Diff W0, Diff W1. Take cases

mentioned in Sec. 1 as examples, it would extract
“not be ” as Diff W0 and “be” as Diff W1 in Ex1;
“inseparable” as Diff W0 and “separable” as Dif-
f W1 in Ex2; “can be skipped easily” as Diff W0

and “make the section unreadable” as Diff W1 in
Ex3. Note that if the remain part is empty, we use
the word after the prefix as the different part.

Similarly, we also get the different part between
the claim and its opposite, denoted as Diff Claim.
There always exists the opposite claims in de-
bates, since the reason chains R → W → C
and R →qW →qC both exists. We collected the
claims and warrants under the same debate. If the
warrants express the opposite meaning, then the t-
wo claims are opposite. Besides, the organizers
also provide similar dataset in “data/train-w-swap-
doubled.tsv”.

2.3 Context Representation

To incorporate contextual information of each
components in a debate, we combine Convolu-
tional Neural Network (CNN) and Recurrent neu-
ral network (RNN) to encode the input word vec-
tors. CNN is good at dealing with spatially related
data, such as “sometimes warranted” and “rarely
warranted”, while RNN is good at temporal sig-
nals. Instead of using a typical vanilla RNN, we
use Long Short-Term Memory Network (Hochre-
iter and Schmidhuber, 1997) for eliminating the
issue of long term dependencies.

1095

Given a sentence S = {wi}n1 , we first map each
word wi into its vector representation xi ∈ Rd via
a look-up table of word embeddings (d is the di-
mension of the word embeddings).

Then, we adopt CNN on the input sequence
{xi}n1 to obtain the spatial representation {x′i}n1 :

eji = ReLU(wj [xi, . . . , xi+k−1]) (1)

x′i = [e1i , . . . , e
m
i](1 ≤ j ≤ m) (2)

where k is the window size, wj is the parameter of
a filter, m is the number of the filters. We also
adopt padding before the convolution operation.
As a result, we obtain the spatial representations
x′i ∈ Rm, which has the same length as the input
sequence.

After that, we utilize a bi-directional LSTM (Bi-
LSTM) to obtain the temporal information. For
each time step t, the LSTM unit computation cor-
responds to :

it = σ(Wix
′
t + Uiht−1 + bi) (3)

ft = σ(Wfx
′
t + Ufht−1 + bf) (4)

ot = σ(Wox
′
t + Uoht−1 + bo) (5)

c̃t = tanh(Wcx
′
t + Ucht−1 + bc) (6)

ct = it � c̃t + ft � ct−1 (7)

ht = ot � tanh(ct) (8)

where σ is the element-wise sigmoid function, �
is the element-wise product and it, ft, ot ,ct de-
mote the input gate, forget gate, output gate and
memory cell respectively.

2.4 Intra-Temporal Attention
Inspired from Habernal et al. (2018a), we use an
intra-temporal attention function to attend over
specific parts of the input sequence. This kind of
attention encourages the model to generate differ-
ent representation according to the attention vec-
tor. Habernal et al. (2018a) have shown that such
intra-temporal attention outperforms standard at-
tention.

We define va as the attention vector, and ht as
the hidden states at time step t:

mt = tanh(Umht � va + bm) (9)

at = σ(Wamt + ba) (10)

ht = ht � at (11)

where at is the attention weights over the hidden
states ht, � is element-wise multiplication.

We first apply the intra-temporal attention over
W0 and W1, in order to obtain different warran-
t representations from Diff W0 and Diff W1. As
a result, the model can easily distinguish the two
candidate warrants. Similarly, we apply the atten-
tion over claim to make the claim representation
distinguishable.

Moreover, we adopt another intra-temporal at-
tention over W0 and W1, with the concatenation
of {claim, reason, debate context} representation-
s as attention vector. The candidate warrants re-
ceive the information from the claim, reason and
debate context, and the model would select the
correct warrant which satisfies the reasoning chain
R→W → C.

Finally, we obtain two attended warrant vectors
attW0 , attW1 .

2.5 Output
To evaluate the probability distribution of the t-
wo candidate warrants, we employ a feed-forward
neural network with one dense layer, and apply the
Softmax function to predict the probability.

ho = ReLU(Wo[attW0 , attW1]) (12)

p̂ = Softmax(Wpho) (13)

As for the optimization, cross-entropy loss is used
as the loss function since we are handling a binary
classification problem:

L = −
(
yi log p̂i + (1− yi) log(1− p̂i)

)
(14)

where yi is the gold label.

3 Experiments

3.1 Datasets
SemEval 2018 provided 1,970 instances for the ar-
gument reasoning comprehension task (Habernal
et al., 2018b). The instances are divided into three
sets based on the year when the debates are taken
from. Table 1 lists the statistics of the datasets. We
also include the number of debate topics of each
set.

Dataset # Pairs # Topics Source Year
Train 1,210 111 2011-2015
Dev 316 31 2016
Test 444 30 2017

Table 1: The statistics of the datasets

Being a binary task, accuracy (Acc) is adopted
as the evaluation metric.

1096

Approach Dev
Intra-warrant attention 0.638 (±0.024)
Intra-warrant attention w/ context 0.637 (±0.040)
Our basic model 0.666 (±0.019)
· + Diff {W0, W1} 0.678 (±0.001)
· + Diff {W0, W1} + CNN 0.675 (±0.010)
· + Diff {W0, W1, Claim} + CNN 0.676 (±0.010)
Ensemble (Vote) 0.708

Table 2: Accuracy of each approach on the developing
dataset.

3.2 Parameters Setting

The word embeddings are initialized with the 300d
pre-trained word2vec (Mikolov et al., 2013), and
do not fine-tune during training. The window
sizes of CNN is (1,2,3) and the kernel size is
50. The dimensions of the hidden size in Bi-
LSTM and Att-LSTM are set to 50. The dense
layer in Output is 25. We train the model us-
ing Adam (Kingma and Ba, 2014) with gradient
clipping (the max norm is set to 30, batch size is
32), The networks are regularized by dropout (the
dropout ratio equals 0.8). We ran each model three
times with random initializations. Our code is
available at https://github.com/rgtjf/
SemEval2018-Task12.

3.3 Results on Training Data

Table 2 shows the results of each components of
our attention-based neural network. We have the
following findings:

(1) Comparing with the Intra-warrant attention
(w/ context) provided by the organizer, our basic
model obtains 2.8% improvement through sharing
parameters in Bi-LSTM. It indicates that the neu-
ral network need sufficient training data and pa-
rameters sharing could alleviate the demand.

(2) All of the three improvements achieves im-
proved accuracy. It suggests that utilizing the d-
ifferent part as attention vector can obtain dis-
criminative representation, which is beneficial for
choosing the correct answer.

(3) The introduction of CNN does not seem to
improve the performance of the model. The pos-
sible reason may be that RNN actually learn any
computational function and capture the spatial in-
formation.

(4) The ensemble of the three networks can fur-
ther improve the performance. Therefore, we con-
figure the ensemble model as our final submission.

Approach Test
Human average 0.798 (±0.162)
Human w/ training in reasoning 0.909 (±0.114)
Random baseline 0.508 (±0.015)
Intra-warrant attention w/ context 0.584 (±0.015)
Rank 1: GIST 0.712
Rank 2: blcu nlp 0.606
Rank 3: ECNU 0.604

Table 3: Accuracy of each approach (humans and sys-
tems) on the test set.

3.4 Results on Test Data

Table 3 lists the results of three top systems and
several baselines provided by the organizer. We
find that: (1) Comparing with Intra-warrant at-
tention w/ context model, our model outperform-
s it by 2% in terms of accuracy, which demon-
strates the efficiency of the proposed attention-
based model. (2) Comparing with GIST and
blcu nlp, our result is comparable to blcu nlp but
worse than GIST. Both of them use the pre-trained
ESIM model (Chen et al., 2017) trained on SNLI
(Bowman et al., 2015) and MultiNLI (Nangia
et al., 2017) dataset. Our model only uses the
training dataset and does not require any extra re-
sources. However, this is also the limitation of
our model because this small-size dataset is insuf-
ficient to learn parameters in our model.

4 Conclusion

In this work, we propose an end-to-end neural net-
work for the reading comprehension task. We s-
tack a CNN and a RNN to represent each com-
ponent in a debate and extract the warrants’ and
claim’s different part as attention vector to obtain
their distinguish representation. Moreover, we use
another attention network to incorporate the infor-
mation of reason, claim, debate context into the
contextual representation of the warrants for final
decisions. Our model achieves 60.4% accuracy
and ranks 3rd among 22 participating systems.

Acknowledgments

The authors would like to thank Changzhi Sun
for his valuable suggestions and the anonymous
reviewers for their helpful comments. This
work is supported by grants from Science and
Technology Commission of Shanghai Municipal-
ity (15ZR1410700), the Open Project of Shang-
hai Key Laboratory of Trustworthy Computing
(No.07dz22304201604).

1097

References
Samuel R. Bowman, Gabor Angeli, Christopher Potts,

and Christopher D. Manning. 2015. A large anno-
tated corpus for learning natural language inference.
In Proceedings of the 2015 Conference on Empiri-
cal Methods in Natural Language Processing, pages
632–642.

Qian Chen, Xiaodan Zhu, Zhen-Hua Ling, Si Wei, Hui
Jiang, and Diana Inkpen. 2017. Enhanced lstm for
natural language inference. In Proceedings of the
55th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers).

Ivan Habernal, Henning Wachsmuth, Iryna Gurevych,
and Benno Stein. 2018a. The argument reasoning
comprehension task: Identification and reconstruc-
tion of implicit warrants. In Proceedings of the 2018
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies.

Ivan Habernal, Henning Wachsmuth, Iryna Gurevych,
and Benno Stein. 2018b. Semeval-2018 task 12:
The argument reasoning comprehension task. In
Proceedings of the 12th International Workshop on
Semantic Evaluation (SemEval-2018), New Orleans,
LA, USA. Association for Computational Linguis-
tics.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural computation,
9(8):1735–1780.

Diederik P. Kingma and Jimmy Ba. 2014. Adam:
A method for stochastic optimization. CoRR, ab-
s/1412.6980.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013. Distributed representa-
tions of words and phrases and their compositional-
ity. In Advances in neural information processing
systems, pages 3111–3119.

Jonas Mueller and Aditya Thyagarajan. 2016. Siamese
recurrent architectures for learning sentence similar-
ity. In Thirtieth AAAI Conference on Artificial Intel-
ligence.

Nikita Nangia, Adina Williams, Angeliki Lazaridou,
and Samuel Bowman. 2017. The repeval 2017
shared task: Multi-genre natural language inference
with sentence representations. In Proceedings of the
2nd Workshop on Evaluating Vector Space Repre-
sentations for NLP, pages 1–10.

1098

Proceedings of the 12th International Workshop on Semantic Evaluation (SemEval-2018), pages 1099–1103
New Orleans, Louisiana, June 5–6, 2018. ©2018 Association for Computational Linguistics

NLITrans at SemEval-2018 Task 12: Transfer of Semantic Knowledge for
Argument Comprehension

Timothy Niven and Hung-Yu Kao
National Cheng Kung University

Tainan, Taiwan
tim.niven.public@gmail.com, hykao@mail.ncku.edu.tw

Abstract

The Argument Reasoning Comprehension
Task requires significant language understand-
ing and complex reasoning over world knowl-
edge. We focus on transfer of a sentence
encoder to bootstrap more complicated mod-
els given the small size of the dataset. Our
best model uses a pre-trained BiLSTM to en-
code input sentences, learns task-specific fea-
tures for the argument and warrants, then per-
forms independent argument-warrant match-
ing. This model achieves mean test set accu-
racy of 64.43%. Encoder transfer yields a sig-
nificant gain to our best model over random
initialization. Independent warrant matching
effectively doubles the size of the dataset and
provides additional regularization. We demon-
strate that regularization comes from ignoring
statistical correlations between warrant fea-
tures and position. We also report an exper-
iment with our best model that only matches
warrants to reasons, ignoring claims. Rela-
tively low performance degradation suggests
that our model is not necessarily learning the
intended task.

1 Introduction

The Argument Reasoning Comprehension Task
(ARCT) (Habernal et al., 2018) addresses a sig-
nificant open problem in argumentation mining:
connecting reasons and claims via inferential li-
censes, called warrants (Toulmin, 1958). War-
rants are a form of shared world knowledge and
are mostly implicit in argumentation. This makes
it difficult for machine learning algorithms to dis-
cover arguments, as they must acquire and use this
knowledge to identify argument components and
their relations. ARCT isolates the reasoning step
by not requiring warrants to be discovered. A cor-
rect warrant W and an incorrect alternative A are
given, and the correct one must be predicted given
the corresponding claim C and reason R.

Figure 1: Benefit of transfer to our best model, COMP.
Distributions come from 200 runs with different ran-
dom seeds. Mean accuracy for transfer (64.43%) is
higher than random (61.81%) and is significant with
p = 9.68× 10−41.

However, this does not eliminate the need for
other forms of world knowledge. Consider the fol-
lowing example from the test set:

C Google is not a harmful monopoly
R People can choose not to use Google
W Other search engines do not re-direct

to Google
A All other search engines re-direct to

Google

It is required to know how consumer choice and
web re-directs relate to the concept of monopoly
in this context, and that Google is a search engine.

We do not attempt to address these other forms
of world knowledge. Given the small size of the
dataset we focus on transfer of semantic knowl-
edge in the form of a sentence encoder to boot-
strap inference over learned features. Following
Conneau et al. (2017), we pre-train a BiLSTM
encoder with max pooling on natural language in-
ference (NLI) data (Williams et al., 2017; Bow-
man et al., 2015). Their results indicate transfer
from the NLI domain to be useful. They hypoth-
esized that due to the challenging nature of the

1099

Figure 2: COMP model architecture.

task, successful encoders must necessarily learn
good semantic representations. However, Nie et
al. (2017) argue that due to the relatively easy
nature of their out of domain generalization tasks
(sentiment classification and textual similarity),
they did not sufficiently demonstrate that deep se-
mantic understanding had been learned.

In this respect our work extends the results of
Conneau et al. (2017). They performed trans-
fer by passing encoded sentence vectors to a lo-
gistic regression classifier. Our implementation of
this model demonstrated very poor performance
on ARCT. However, we experiment with a more
complicated model (Figure 2) which significantly
benefits from transfer (Figure 1). We therefore
extend previous results to demonstrate the utility
of this technique not only for a more semantically
challenging task, but also a more complicated neu-
ral network architecture.

A key feature of our model is independent war-
rant classification which effectively doubles the
size of the dataset. We demonstrate that it also pro-
vides regularization due to ignoring statistical cor-
relations between warrant features and position.

Finally, we experiment with a version of our
model that only matches reasons to warrants, ig-
noring claims. The relatively low drop in perfor-
mance suggests that our model may not necessar-
ily be learning the intended task.

2 System Description

2.1 COMP Model

A diagram of our best model which we call COMP
is given in Figure 2. The key idea is to learn in-
dependent features for argument components and
then perform independent warrant matching.

The inputs are word vectors for the claim
C, reason R, and warrants W0 and W1. We
use GloVe embeddings with 300 dimensions pre-
trained on 640B tokens (Pennington et al., 2014).
First, a bi-directional LSTM (Hochreiter and
Schmidhuber, 1997) with max pooling learns se-
mantic representations of the input sentences.

c′ = BiLSTMmax(C)

r′ = BiLSTMmax(R)

w′0 = BiLSTMmax(W0)

w′1 = BiLSTMmax(W1)

Dropout (Srivastava et al., 2014) is then applied
to these vectors. If d is the encoder size then each
vector is of dimension 2d due to the concatenation
of forward and backward LSTMs.

Parameter matrix U ∈ R4d×h with ReLU acti-
vation (Nair and Hinton, 2010) learns argument
specific feature vectors of length h from the con-
catenation of the claim and reason. Parameter ma-
trix V ∈ R2d×h with ReLU activation learns spe-
cific features for each warrant independently. Bi-
ases are omitted for clarity.

a = ReLU(U[c′; r′])

w′′0 = ReLU(Vw′0)

w′′1 = ReLU(Vw′1)

Dropout is then applied to these vectors prior to
classification. Parameter vector z ∈ R2h is used
to independently determine a matching score for
each argument-warrant pair. The scores are con-
catenated and passed through softmax to deter-
mine a probability distribution ŷ over the two war-
rants. Cross entropy is then used to calculate loss
with respect to the gold label y.

s0 = z>[a;w′′0]

s1 = z>[a;w′′1]

ŷ = softmax([s0; s1])

J(θ) = CE(ŷ, y)

1100

Encoder Size Random Transfer Difference Significance (p)
2048 0.5975 0.5942 -0.55 % 1.72× 10−1

1024 0.6058 0.6025 -0.54 % 1.05× 10−1

512 0.6181 0.6443 +4.24 % 9.68× 10−41

300 0.6285 0.6260 -0.40 % 1.41× 10−1

100 0.6310 0.6329 +0.30 % 2.89× 10−1

Table 1: Transfer results for our COMP model with different encoder sizes. Learning rates and dropout are tuned
to specific encoder sizes. All other hyperparameters are the same. Results are the mean test set accuracy of 200
runs from different random seeds. “Difference” shows the percentage change of transfer relative to random.

2.2 Training Details

Pre-training BiLSTMs was done according to the
specifications of Conneau et al. (2017). For all
ARCT models we followed their annealing and
early stopping strategy: after each epoch, if devel-
opment set accuracy does not improve the learn-
ing rate is reduced by a factor of five. Training
stops when the learning rate drops below 1×10−5.
This algorithm was found to outperform a steadily
decaying learning rate. Adam (Kingma and Ba,
2014) was used for optimization.

We used grid search to find our best parameters.
Best results were achieved with a batch size of 16.
Dropout with p = 0.1 was found to be superior to
L2-regularization. For the COMP model, a hidden
representation size of 512 worked best. Tuning
word embeddings was found to overfit compared
to freezing them. However, tuning the transferred
encoder was far superior to freezing for the COMP
model.

We did not find reducing the learning rate on the
encoder helped transfer. Bowman et al. (2015)
also transfered AdaDelta accumulators along with
an encoder on the principle that lowering the start-
ing learning rate should help avoid blowing away
transferred knowledge. Our results rather agree
with Mou et al. (2016) who also found that learn-
ing rate reduction did not help transfer.

Our code is publicly available, including scripts
to reproduce our results.1

2.3 Submission

Our submission “NLITrans” was our COMP
model with a transferred encoder of dimension
2048. The principal learning rate was 0.002 and
we tuned embeddings at their own rate of 0.0002.
The encoder was tuned at the principal rate. Hid-
den representation size was 512.

Our submission test set accuracy of 59.0%

1https://github.com/IKMLab/arct

achieved fourth place. Following Riemers and
Gurevych (2017), we consider a single run an in-
sufficient indication of the performance of a model
due to the variation resulting from random initial-
ization. Evaluation over 20 runs with different
random seeds revealed our entry was close to the
mean for this configuration of 59.24%.

2.4 Best Configuration

Extended post-competition tuning on the develop-
ment set revealed better hyperparameter settings
that boost the generalization ability of our COMP
model. Specifically, we freeze word embeddings
and use an encoder of size 512. On the test set this
configuration achieves a mean accuracy of 64.43%
over 200 random initializations.

3 Analysis

3.1 Transfer Performance

We measure the performance of transfer by com-
parison with random initialization. The results in
Table 1 show the performance of different encoder
sizes for our best COMP model. Learning rate and
dropout are re-tuned via grid search for each en-
coder size. More investigation is required, how-
ever these results suggest that the success of trans-
fer depends on finding an optimal encoder size
for a given model. We note that the best random
performance came from the smallest encoder size,
confirming that transfer is helping us bootstrap the
use of more complicated models.

3.2 Independent Warrant Classification

Ablation studies showed that independent warrant
classification is a significant advantage. For com-
parison, we built a model that considers both war-
rants and the argument together by replacing pa-
rameter vector z with a matrix Z ∈ R3h×2. We
call this model CORR, as it considers correlations
between warrant features and position. The scores

1101

Model Dataset Train Test Overfit
COMP Full 0.8807 0.6443 36.69 %

Half 0.8925 0.6332 40.95 %
Unbal. 0.9109 0.6353 43.38 %

CORR Full 0.8155 0.5912 37.94 %
Half 0.8287 0.5649 46.70 %
Unbal. 0.9368 0.5750 62.92 %

Table 2: Comparison of independent (COMP) and cor-
related (CORR) models on full, half, and unbalanced
(Unbal.) datasets. COMP has 6,541,057 parameters
and CORR has 6,543,106.

for the warrants are then calculated as

s = Z[a;w′′0 ;w
′′
1]

The results in Table 2 demonstrate poorer gener-
alization and increased overfitting relative to the
independent model on the full dataset.

Independent warrant classification effectively
doubles the size of the dataset. It can be seen that
two separate multiplications of argument-warrant
vectors with z lead to two backpropagated super-
vision signals with each data sample. To quan-
tify this effect we evaluated the independent model
trained on a randomly sampled half of the the
training set. It still generalized better than CORR
on twice the data (Table 2).

We hypothesized that additional regularization
follows from ignoring statistical correlations be-
tween warrant features and position. To inves-
tigate this hypothesis, we picked an obvious lin-
guistic phenomenon and looked at the statistics of
its occurrence at each warrant position. We used
SpaCy’s dependency parser to identify tokens with
the negation relation to its head. Results showed
negation is ubiquitous in this dataset, covering ap-
proximately 70% of training samples - perhaps re-
flecting a natural way to generate pairs of conflict-
ing warrants. Whilst the warrant with negation is
correct half of the time in the training set, negation
in position one is slightly more likely to be correct
than position zero (26% to 25%).

To quantify model susceptibility to such corre-
lations we created an unbalanced training set in
which all correct warrants with negation occur in
position one. This resulted in relabeling 300 war-
rants. We randomly relabeled the same amount
of warrants without negation to position zero to
re-balance the dataset. The results (Table 2) con-

Figure 3: Results of our COMP-RW model that doesn’t
consider the claim, compared to our best model COMP.
Distributions are calculated from 200 runs with differ-
ent random seeds. The mean for COMP is 64.43%,
compared to 60.60% for COMP-RW.

firm that the CORR model is more susceptible to
this change, resulting in a large overfit, whilst the
generalization ability of the independent model is
essentially unaffected.

3.3 Matching Warrants to Reasons

In the following example a position toward the
claim seems to be embedded in the reason.

C Comment sections have not failed
R They add a lot to the piece and I look

forward to reading comments
W Comments sections are a welcome dis-

traction from my work
A Comments sections always distract me

from my work

Cases such as this may provide an alternative
learning signal and lead our model to stray from
the intended task. For example it might be possi-
ble to correctly classify this example by compar-
ing the sentiment of the warrants to that of the rea-
son.

To quantify this effect we experimented with a
model that considers only the reasons and war-
rants, called COMP-RW. Since we do not input the
claim we resize U from R4d×h to R2d×h. We use
an encoder of size 640 to balance this reduction
which evens the parameter count for a fair com-
parison. Figure 3 shows the relative performance
of COMP-RW versus our best COMP model. Test
set accuracy deteriorates from 64.43% to 60.60%.
This suggests there is enough signal coming from
the reasons alone to achieve approximately two
thirds of what our model is capable of above ran-
dom guessing. We therefore suspect our model is
not necessarily learning the intended task.

1102

4 Conclusion

Our entry NLITrans achieved test set accuracy of
59.0% for fourth place, close to the mean for its
configuration of 59.24% over 20 random initial-
izations. Extended post-competition tuning on the
development set led us to a superior configura-
tion of our COMP model that achieved a mean
of 64.43%. Transfer of an encoder pre-trained on
NLI data resulted in a 4.24% boost to test set ac-
curacy for this model. This extends previous re-
sults with this transfer technique, demonstrating
its effectiveness in a more complicated neural net-
work architecture, and for a much more semanti-
cally challenging task. An outstanding question is
whether there is an optimal encoder size for trans-
fer given a specific architecture, and how to effi-
ciently and reliably find it. Independent argument-
warrant matching proved to be beneficial, dou-
bling the effective size of the dataset and provid-
ing additional regularization. We demonstrated
that regularization comes from ignoring the cor-
relations between warrant features and position.
Adapting our model to ignore the claims resulted
in a relatively low drop in performance, suggesting
our model is not necessarily learning the intended
task. We leave a more thorough analysis of this
phenomenon for future work.

References
Samuel R. Bowman, Gabor Angeli, Christopher Potts,

and Christopher D. Manning. 2015. A large anno-
tated corpus for learning natural language inference.
CoRR, abs/1508.05326.

Alexis Conneau, Douwe Kiela, Holger Schwenk,
Loı̈c Barrault, and Antoine Bordes. 2017. Su-
pervised learning of universal sentence representa-
tions from natural language inference data. CoRR,
abs/1705.02364.

Ivan Habernal, Henning Wachsmuth, Iryna Gurevych,
and Benno Stein. 2018. The argument reasoning
comprehension task: Identification and reconstruc-
tion of implicit warrants. In Proceedings of the
2018 Conference of the North American Chapter of
the Association for Computational Linguistics: Hu-
man Language Technologies, page (to appear), New
Orleans, LA, USA. Association for Computational
Linguistics.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural computation,
9(8):1735–1780.

Diederik P. Kingma and Jimmy Ba. 2014. Adam:

A method for stochastic optimization. CoRR,
abs/1412.6980.

Lili Mou, Zhao Meng, Rui Yan, Ge Li, Yan Xu,
Lu Zhang, and Zhi Jin. 2016. How transferable
are neural networks in NLP applications? CoRR,
abs/1603.06111.

Vinod Nair and Geoffrey E. Hinton. 2010. Rectified
linear units improve restricted boltzmann machines.
In ICML.

Allen Nie, Erin D. Bennett, and Noah D. Good-
man. 2017. Dissent: Sentence representation
learning from explicit discourse relations. CoRR,
abs/1710.04334.

Jeffrey Pennington, Richard Socher, and Christo-
pher D. Manning. 2014. Glove: Global vectors for
word representation. In Empirical Methods in Nat-
ural Language Processing (EMNLP), pages 1532–
1543.

Nils Reimers and Iryna Gurevych. 2017. Reporting
score distributions makes a difference: Performance
study of lstm-networks for sequence tagging. CoRR,
abs/1707.09861.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky,
Ilya Sutskever, and Ruslan Salakhutdinov. 2014.
Dropout: A simple way to prevent neural networks
from overfitting. Journal of Machine Learning Re-
search, 15:1929–1958.

Stephen E. Toulmin. 1958. The Uses of Argument.
Cambridge University Press.

Adina Williams, Nikita Nangia, and Samuel R. Bow-
man. 2017. A broad-coverage challenge corpus for
sentence understanding through inference. CoRR,
abs/1704.05426.

1103

Proceedings of the 12th International Workshop on Semantic Evaluation (SemEval-2018), pages 1104–1108
New Orleans, Louisiana, June 5–6, 2018. ©2018 Association for Computational Linguistics

BLCU NLP at SemEval-2018 Task 12: An Ensemble Model for Argument
Reasoning Based on Hierarchical Attention

Meiqian Zhao, Chunhua Liu, Lu Liu, Yan Zhao, Dong Yu∗

Beijing Language and Culture University
{zhaomq195, chunhualiu596, luliu.nlp, zhaoyan.nlp}@gmail.com,

yudong@blcu.edu.cn

Abstract

The argument comprehension reasoning task
aims to reconstruct and analyze the argument
reasoning. To comprehend an argument and
fill the gap between claims and reasons, it is
vital to find the implicit supporting warrants
behind. In this paper, we propose a hierarchi-
cal attention model to identify the right war-
rant which explains why the reason stands for
the claim. Our model focuses not only on the
similar part between warrants and other infor-
mation but also on the contradictory part be-
tween two opposing warrants. In addition, we
use the ensemble method for different mod-
els. Our model achieves an accuracy of 61%,
ranking second in this task. Experimental re-
sults demonstrate that our model is effective to
make correct choices.

1 Introduction

The argument reasoning comprehension is a cru-
cial part for natural language understanding and
inference, since argument comprehension requires
reconstruction and analysis for its reasoning. Lack
of common sense makes it difficult to infer claims
from corresponding reasons directly. To fill the
gap between claims and reasons, several explo-
rations have been performed on argumentative
structure of a debate (Hastings, 1963; Walton
et al., 2008; Walton, 1990). Argument reason-
ing comprehension, a new task in SemEval 2018,
sheds some light on the core of reasoning in nat-
ural language argumentation: implicit warrants,
which are seen as a bridge between claims and rea-
sons. Given a reason R, a claim C and two alterna-
tive warrants W0 and W1, the goal of this task is to
identify the right warrant which can justify the use
of R as support for C. The difficulty of the task
is the warrants are plausible and lexically close

∗*The corresponding author

but lead to contradicting claims (Habernal et al.,
2018).

To be more specific, the reason R and the claim
C are propositions extracted from a natural lan-
guage argument. And warrant W is the relation
between R and C which is characterized by a rule
of inference (Newman and Marshall, 1992). Wal-
ton proposed that an argument refers to a claim
based on reasons given in the premises (Walton,
1990). The most central part of this task is how
to find the warrant for the given R and C. In the
argument reasoning comprehension task, the or-
ganizer extracts the instances from Room for De-
bate section of the New York Times. After a com-
plex crowd-sourcing process, 1970 valid instances
are provided for the task. Two alternative warrants
are provided as candidates, where one can justify
the use of R as support for C and the other one
can justify R as support for the opposite side of
C. We need to reconstruct the reasoning and se-
lect the right warrant which stands for claim in this
task. The average score for human is 79.8%, while
for those with extensive formal training is 90.9%
(Habernal et al., 2018).

In this paper, we not only pay attention to the
similar part between each warrant and other infor-
mation but also pay close attention to the contra-
dictory part between two warrants. We propose a
model for this task which consists of four com-
ponents: sentence representation layer, attended
warrant layer, enhanced attention layer and predic-
tion layer. All the sentences are represented with
word embeddings in the sentence representation
layer. And to better understand the meaning of
warrant, we incorporate the additional information
to re-represent the two warrants. Then we apply an
enhanced attention layer to emphasize the similar
and contradictory part between the two alternative
warrants W0 and W1. At last, we make prediction
through a feedforward neural network layer (Fine,

1104

2001). In addition to the primary model, we pro-
pose an ensemble method to achieve a stable and
credible accuracy. This method is well established
for obtaining highly accurate classifiers by com-
bining less accurate ones (Dietterich, 2000). Our
model improves the accuracy by 4% compared to
the baseline model.

2 Model Description

Our hierarchical attention model is composed of
the following major components: sentence repre-
sentation, attened warrant layer, enhanced atten-
tion layer and prediction layer. Figure 1 shows a
high-level view of sentence representation and at-
tended warrant layer. And Figure 2 shows a high-
level view of the enhanced attention layer and pre-
diction layer. Our code is implemented with Ten-
sorFlow and is available on github 1.

In the attended warrant layer, we pay attention
to the relevant part between each warrant and other
information, and get two attended representation
for the two warrants. While in the enhanced at-
tention layer, we focus on the similarities and dif-
ferences between two attended warrants. The out-
put of our model is the predicted label for each
instance, where label 0 means warrant0 stands for
the claim and label 1 means warrant1 does.

2.1 Sentence Representation
We implement five BiLSTM networks with shared
weights to learn each of the sentence representa-
tion. It is reasonable to use shared weights among
BiLSTM networks because all the sentences are in
the same vector space. The input of BiLSTM net-
work is the sentence represented with word em-
beddings. For later use, we use w0 for the hidden
states of W0 generated by the BiLSTM at time i
over the input sequence. And w1, c, r, d for the
hidden states of W1, C, R and D information at
each time step.

w0i = BiLSTM(W0, i), ∀i ∈ [1, ..., lW0] (1)

w1j = BiLSTM(W1, j),∀j ∈ [1, ..., lW1] (2)

ck = BiLSTM(C, k),∀k ∈ [1, ..., lC] (3)

rm = BiLSTM(R,m),∀m ∈ [1, ..., lR] (4)

dn = BiLSTM(D,n), ∀n ∈ [1, ..., lD] (5)

Where lW0, lW1, lC , lR and lD are the length of
W0, W1, C, R and D respectively.

1https://github.com/blcunlp/SemEval2018–
argument reasoning comprehension

Figure 1: Sentence representation and attended warrant
layer

2.2 Attended Warrant Layer

Considering the importance of the hint of reason
sentence and claim sentence, we try to pay atten-
tion to the most relevant part between each war-
rant and these additional information. So we im-
plement standard attention mechanism over each
warrant with additional information including C,
R and D, which is represented with A.

A = [c; r; d] (6)

For better comprehension, we apply intra-
attention over each warrant. For convenience, we
combine the two processes above by concatenat-
ing the two vectors for attention. For further use,
we denote attention vectors for W0 and W1 as W0
and W1.

W0 = [w0;A] (7)

W1 = [w1;A] (8)

Specifically, we apply attention over W0 and the
concatenate vector for W0 as the following formu-
las (Tan et al., 2015). We can get Ŵ0i to represent
the vector for W0 after attention.

M0i = tanh(Uw0i + VW0) (9)

S0i ∝ exp(wM0i(t)) (10)

Ŵ0i = w0iS0i (11)

Where U, V and w are attention weight param-
eters. In the same way, we can compute Ŵ1j to
represent the vector for W1 after attention.

1105

Figure 2: Enhanced attention layer and prediction layer

2.3 Enhanced Attention Layer
The similar and contradictory parts of the two war-
rants are the most important information for argu-
ment reasoning comprehension. In the enhanced
attention layer, our model align the two warrants
to focus on their similarities and differences.

ei,j = Ŵ0i
T

Ŵ1j (12)

W̃0 =
lW1∑

j=1

exp (ei,j)∑lW1
k=1 exp (ei,k)

Ŵ1j (13)

W̃1 =
lW0∑

i=1

exp (ei,j)∑lW0
k=1 exp (ek,j)

Ŵ0i (14)

Where W̃0 is a weighted summation of each el-
ement in W1, the relevant element in W1 is se-
lected and represented into W̃0. We can get W̃1
in the same way.

To extract the different part in W0, we let Ŵ0i
subtract W̃0. To get the similar part in warrant0,
we let Ŵ0i multiply W̃0 (Chen et al., 2017). In
the formulas, � is element-wise multiply of two
vectors. The same is performed for W1.

d0 = Ŵ0− W̃0 (15)

d1 = Ŵ1− W̃1 (16)

m0 = Ŵ0� W̃0 (17)

m1 = Ŵ1� W̃1 (18)

2.4 Prediction Layer
To make best use of all provided information, we
concatenate all the representations.

W0 inf = [Ŵ0; d0;m0] (19)

W1 inf = [Ŵ1; d1;m1] (20)

all info = [W0 inf ;W1 inf] (21)

We implement a simple feedforward neural net-
work to make the final prediction.

2.5 Model Ensemble

Ensemble learning helps improve machine learn-
ing performance by combining several models
(Zhou, 2012). This approach allows the produc-
tion of a better predictive performance compared
to a single model. To improve and stabilize the
performance of our model, we ensemble different
models by majority voting strategy. We choose
five models which have best performance on de-
velopment data. The final result is better than ev-
ery single model.

3 Experiments

3.1 Dataset

The argument reasoning comprehension task
chooses the Room for Debate section of the New
York Times as source data. The given reason sen-
tences come from stance-taking comments, and
the false warrant is generated by annotators. It is
validated manually that the created false warrant
can prove the reason which will lead to the oppo-
site claim. And the right warrant is written by min-
imal modifications to the false one, which can en-
sure that this warrant can be inferred from the rea-
son and stands for the claim. And also, to evaluate
the performance of the models, each instance in
the dataset is represented as a tuple (R;C;W0;W1)
along with a label (0 or 1). If the label is 0, W0
is the correct warrant, otherwise W1. More details
about dataset can be found in the work of Habernal
(2018)

All the data of the argument reasoning compre-
hension task is provided in the GitHub by task or-
ganizers2. For the availability and validity, after
complex manual processing, only 1955 instances
are selected from 11k comments.

3.2 Experimental Setup

We use the development set to select models for
testing. Training details are as follows. We
use ADAM optimizer (Kingma and Ba, 2014)
for training, setting the first hyperparameter to be

2the data can be found in github
https://github.com/habernal/semeval2018-
task12/tree/master/data

1106

0.9 and the second 0.999. The initial learning
rate is 0.001 and the batch size is 32. We use
word2vec((Mikolov et al., 2013)) to pre-train the
word embedding of 300 dimention and keep them
from updating while training. The numbers of hid-
den units and layers of biLSTM networks are 64
and 1 respectively. And the dropout rate is set to
be 0.1, and is applied to all biLSTM networks. For
the prediction layer, we choose standard FNN with
1 layer and set the hidden cells number to 64.

3.3 Evaluation Method

We use accuracy to evaluate the performance of
the models, that is, computing the ratio of the right
predicted labels of all instances. A scorer and de-
tail information are described in the task introduc-
tion website3.The scorer can give us the expected
accuracy of the model.

3.4 Results

models dev acc test acc
baseline model 0.632 0.548
attention model 0.653 0.585
hierarchical model 0.672 0.599
ensemble model-3 0.670 0.602
ensemble model-5 0.686 0.606
ensemble model-7 0.681 0.610

Table 1: results of different models

Table 1 shows the accuracy of different models
on development dataset and test dataset. The first
row is a baseline model which uses intra-warrant
attention between two warrants (Habernal et al.,
2018). In this model, all the representations of in-
put sentences except warrant0 are concatenated as
an attention vector for warrant0 , and all sentences
except warrant1 are concatenated as an attention
vector for warrant1. And the attentive representa-
tions is used for prediction .

To evaluate the performance of each part of
our model, we implement experiments on differ-
ent parts of our model. The attention model in
Table1 includes three parts: sentence representa-
tion, attended warrant layer and prediction layer.
In the prediction layer, the two attended warrant
vectors are used to predict the right label. And
the third model is a single hierarchical attention
model, which adds the enhanced attention layer

3scorer can be found in
https://github.com/habernal/semeval2018-task12

based on the second model. The accuracy im-
proved by 1.4% on the test data.

We use an ensemble method for different mod-
els with majority voting strategy. As we can see
in Table 1, the ensemble model for 5 single mod-
els achieves the highest accuracy on development
dataset.

3.5 Results Analysis

For the attended warrant layer, we use shared
weights of biLSTM networks to get the represen-
tations of sentences. Also we implement intra-
attention over each warrant and implement atten-
tion over each warrant and other sentences. These
changes help to better understand and represent
the warrant meaning itself. We introduce intra-
attention to emphasize the important meaning in
the warrant sentence. The alignment over warrants
and the additional information provide the relativ-
ity of words in warrant and other sentences. With
these attention information, we can see there is an
improvement of 2%.

In the enhanced attention layer based on at-
tended warrant layer, we emphasize the similar
part and the contrary part between two warrants.
The difference of attended warrant0 and warrant1
focuses on the contrary information and the mul-
tiplication of attended warrant0 and warrant1 em-
phasizes the similar part. So the model assigns
different weights to different words of warrants
according to their relativity. We can see there is
about 2% points improvement for this part.

All the results mentioned above are based on
the single model. And to get more stable perfor-
mance, we use an ensemble method for different
single models. In our experiment, the top 5 mod-
els voting result shows the best performance on
development dataset, and the top 7 models voting
result shows the best performance on test dataset.

4 Conclusion

In this paper, we propose a hierarchical attention
model to select the supporting warrant for the ar-
gument. The model performs well in SemEval-
2018 Task12: The Argument Reasoning Compre-
hension Task. We find that the information from
both the similar part and contrary part between
two alternative warrants is crucial to reconstruct
the argument reasoning. Moreover, the ensemble
method is of great help for the good performance
and stability of our model.

1107

Acknowledgments

We would like to thank the anonymous reviewers
for their helpful suggestions and comments.The
research work is funded by the Natural Science
Foundation of China (No.61300081), and the Fun-
damental Research Funds for the Central Univer-
sities in BLCU (No. 17PT05).

References
Qian Chen, Xiaodan Zhu, Zhenhua Ling, Si Wei, Hui

Jiang, and Diana Inkpen. 2017. Enhanced lstm for
natural language inference. pages 1657–1668.

Thomas G Dietterich. 2000. Ensemble methods in
machine learning. Proc International Workshgp on
Multiple Classifier Systems, 1857(1):1–15.

Terrence L. Fine. 2001. Feedforward neural network
methodology. Technometrics, 42(4):432–433.

Ivan Habernal, Henning Wachsmuth, Iryna Gurevych,
and Benno Stein. 2018. The argument reasoning
comprehension task: Identification and reconstruc-
tion of implicit warrants. In Proceedings of the
2018 Conference of the North American Chapter of
the Association for Computational Linguistics: Hu-
man Language Technologies, page (to appear), New
Orleans, LA, USA. Association for Computational
Linguistics.

Arthur Hastings. 1963. A reformulation of the modes
of reasoning in argumentation.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. Computer Sci-
ence.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey
Dean. 2013. Efficient estimation of word represen-
tations in vector space. Computer Science.

Susan E. Newman and Catherine C. Marshall. 1992.
Pushing toulmin too far: Learning from an argument
representation scheme. Xerox Parc Tech Rpt Ssl.

Ming Tan, Bing Xiang, and Bowen Zhou. 2015. Lstm-
based deep learning models for non-factoid answer
selection. CoRR, abs/1511.04108.

Douglas Walton, Chris Reed, and Fabrizio Macagno.
2008. Argumentation Schemes.

Douglas N. Walton. 1990. What is reasoning? what
is an argument? Journal of Philosophy, 87(8):399–
419.

Zhi Hua Zhou. 2012. Ensemble Methods: Foundations
and Algorithms. Taylor Francis.

1108

Proceedings of the 12th International Workshop on Semantic Evaluation (SemEval-2018), pages 1109–1113
New Orleans, Louisiana, June 5–6, 2018. ©2018 Association for Computational Linguistics

YUN-HPCC at SemEval-2018 Task 12: The Argument Reasoning
Comprehension Task Using a Bi-directional LSTM with Attention Model

Quanlei Liao, Xutao Yang, Jin Wang and Xuejie Zhang
School of Information Science and Engineering

Yunnan University
Kunming, P.R. China

Contact:xjzhang@ynu.edu.cn

Abstract

An argument is divided into two parts, the
claim and the reason. To obtain a clear-
er conclusion, some additional explanation
is required. In this task, the explanation-
s are called warrants. This paper introduces
a bi-directional long short term memory (Bi-
LSTM) with an attention model to select a
correct warrant from two to explain an argu-
ment. We address this question as a question-
answering system. For each warrant, the mod-
el produces a probability that it is correct. Fi-
nally, the system chooses the highest correc-
t probability as the answer. Ensemble learn-
ing is used to enhance the performance of the
model. Among all of the participants, we
ranked 15th on the test results.

1 Introduction

Reasoning is an important part of human logical
thinking. It gives us the ability to draw fresh con-
clusions from some of the known points (Judea,
1988). Argument is the basis for reasoning. Ex-
cept for the argument’s claim and reason, usually,
it needs some additional information. Therefore,
what we know is the additional information and
arguments reason. The claim also needs warrants
for an explanation. An example is shown in Table
1.

Obviously, A is a reasonable explanation. The
task is to get the reader to find a reasonable ex-
planation for the known messages and claims in
the two warrants. Due to the small number of al-
ternative warrants, this problem can be considered
to be a binary classification problem. This idea
can be used as the baseline model. However, for
system scalability and effectiveness, we treat this
problem as the regression problem of probability
prediction. The idea calculates the probability for
each warrant that it is correct. Because of the di-
versity of natural language expression, there are

Topic Should It Be Illegal to De-
claw Your Cat?

Additional Info With legislation pending,
New York could become
the first state to make re-
moving the claws of a cat
a crime.

Argument Declawing is a crime; in-
stead, people should be
educated on proper care
and training. And since
...,

Claim It should be illegal to de-
claw your cat .

Warrant0 A) owners should not
have the right to be in
charge of their animals.

Warrant1 B) owners should have the
right to be in charge of
their animals.

Table 1: An Example of the Task.

many ways in which the same meaning can be ex-
pressed. Thus, this approach can be better to ad-
dress this situation (Collobert et al., 2011).

Another benefit of addressing the problem in
this way is to make the problem similar in form to
the multi-choice question-answering system. The
question-answering system is a classic problem of
natural language processing. Many methods and
models can be used for reference.

The traditional question-answering system is
based on semantic and statistical methods (Alfon-
seca et al., 2002). This method requires an enor-
mous background knowledge base. In addition, it
is not very effective for nonstandard language ex-
pression. The state-of-the-art methods are usual-
ly based on neural networks. The trained word

1109

embedding can fully express the semantics and
knowledge. Therefore, the new method is usually
better than the traditional statistical-based method.

In this paper, we proposed a bi-directional L-
STM with an attention model. The model uses a
bi-LSTM network to encode the original word em-
bedding. Then, the semantic outputs are fed into
the dense decoder with an attention mechanism.
Due to the uncertainty of a single model, ensem-
ble learning is used to enhance the performance of
the model.

The remainder of the paper consists of 3 parts.
The second part introduces the proposed model in
detail, and the implementation is presented in the
third part, while the last part presents our conclu-
sions.

2 Model

The model contains several elements, word em-
beddings, the bi-directional recurrent neural net-
work (Bi-RNN), a semantic encoder (Chen et al.,
2016), the attention mechanism and dense layer
decoder. Word embedding is a layer before Bi-
RNN. This layer contains a map from a word index
to the word embedding. This map is a pre-trained
word vector look-up table. This task is dependent
on semantics, and the question-answering system
relies more on knowledge.Therefore, the choice
of the word embedding training corpus must pay
more attention to the correct grammar. Since a
sentence is a whole, a single word in a seman-
tic expression is context dependent. On the other
hand, due to the variable length of the input, the
Bi-RNN is the choice to complete this encoding
task.

Attention mechanisms are used to remind the
model of the claim’s information. The final result
is the probability of a fixed length. In a simple
consideration, we use the full connection layer to
decode under a softmax function.

2.1 Bi-directional LSTM

The RNN has a powerful ability to extract full-text
features (Schuster and Paliwal, 1997), and thus, it
is a good tool to obtain the word semantic infor-
mation. Based on past experience, an LSTM cell
is selected to avoid vanishing and exploding gradi-
ents. The LSTM is an improved RNN cell. It has
two distinct improvements over traditional RNN
cells. The first is the gradient problem mentioned
above, and the second is the ability to carry long-

Word Embedding Map

X1 X2 X3 X4

H1

H1

H2

H2

H3

H3

H4

H4

...

P1 P2 P3 P4

Bi-LSTM

Word

Embedding

Semantic Encoder

Figure 1: Semantic Encoder

term information. This arrangement is chosen be-
cause LSTM uses a gate structure to make the use-
ful information available for long-term transmis-
sion, and the useless information can be filtered
out over time. The Bi-directional network allows
the forward and backward information to both be
expressed.

The Bi-LSTM network is chosen to obtain se-
mantic information over all locations in a sen-
tence.

2.2 Semantic Encoder

Putting word embedding and Bi-LSTM together is
a semantic encoder. The original text is encoded
by it and has global information for each location.
The structure of the semantic encoder is shown in
Figure 1. The original text index sequence is fed
into the encoder. Then, the word embedding lay-
er turns it into a word embedding sequence by a
pre-trained word embedding map. Bi-LSTM has
forward and backward, 2 directions, to capture the
global features. It outputs the combination of t-
wo directions results. The final outputs of encoder
are the semantic information sequences for origi-
nal text.

2.3 Attention Mechanism

Attentional mechanisms in natural language pro-
cessing are usually used to provide the decoder
with the source text information (Bahdanau et al.,
2014). Semantic information in the original tex-
t can be fully obtained when decoding, instead of
relying only on the semantic vector.

1110

+

Fact Encoder Claim Encoder Warrant Encoder

Known Info Attention

Dense Decoder

(SoftMax)

Figure 2: Model Summary

In this task, the attention mechanism is used to
provide the model with the semantic information
of the claim as the model is decoded.

Overall, the structure of the model is shown in
Figure 2. As shown in Figure 2, the model con-
tains 3 semantic encoders. The Fact, Claim, and
Warrant are the 3 parts of the training data. Their
clear definitions are presented in Part 3.1. The dot
product of the two outputs of the fact encoder and
claim encoder are combined with the dot product
of the claim and warrants outputs. The fact and
claim is referenced as known information. The re-
sult of the combination is the dense layer that is
used to decode. In the decoding phase of the mod-
el, a softmax function arrives at the final prediction
probability that we need. The output of the claim
encoder is used twice during decoding. Its output
is the attention mechanism to remind the model to
focus on the valuable part of the claim.

3 Experiment

The experiment contains three parts. The first part
is the selection and preprocess of experimental da-
ta. The second part is the implementation details.
The third part is to show and analyze the results.

3.1 Dataset
The training corpus of the word vector, the training
set of the model and the test set must be selected
and processed.

As mentioned above, reading comprehension
focuses more on semantic understanding (Tang
et al., 2014), so GoogleNews is a good choice. Be-
cause news reports use more cautious words and
more rigorous grammar. The mainstream word
vector training tools are Word2Vec or GloVe. Ac-
cording to previous experimental results of related
tasks, Word2Vec trained vector of words signifi-
cantly better than GloVe (Yang et al., 2016). Thus,

in this experiment, Word2vec was chosen to train
the word vector.

The form of the task data is complicated. It is
more difficult to obtain the data by artificial gen-
eration or online acquisition. Thus, the training
data and test data are given by the official data
set. Each row of the test data set is divided into
several sections, including the id, topic, addition-
al information, reason, claim, warrant0, warrant1
and label. For each row of data, it is processed in-
to two test data of the model. Each training data
contains four parts. They are fact, warrant, claim
and label. Here, fact is the original topic, with
additional information of reason. Warrant, claim
and label are not changed. Because there are two
warrants in one line, it generates two training data.
This approach is similar to a question-answer sys-
tem, where claim is the question, and warrant is
the answer. Additionally, model is used to predict
whether this answer is correct for the question.

Because English words have some special form-
s, such as past tense, past participle, abbrevia-
tion and so on, the lemmatisation is needed(Karr,
2006).

3.2 Implementation Detail

The model is implemented using the Keras frame-
work with TensorFlow backend. The program
based on python 3.6. The LSTM network and Bi-
LSTM network are used as the baseline model.

The proposed model contains 3 semantic en-
coders, i.e., 3 Bi-LSTM layers and 3 word embed-
ding layers. Using the dense layer as the final de-
coder outputs the result. Thus, the model contain-
s 3 hyper-parameters, including the number of u-
nits of Bi-LSTM layers (Bi-LSTM Unit Number),
the dimension of the word embedding (Word Em-
bedding Dimension) and the epochs of the training
(Training Epoch).

Due to the lack of training data, when there are
more parameters of the model, it is easy to cause
over-fitting. There are two improvements to avoid
over-fitting. The first is dropout. Dropout is a clas-
sic way to avoid over-fitting. A dropout layer is
added behind each Bi-LSTM. Thus, the model has
one more hyper-parameter, which is the probabili-
ty of dropout (Dropout Probability).

The second method is ensemble learning. Be-
cause of the implicit relationship between claim
and reason, this task is very difficult (Habernal
et al., 2018). To express all of the features of the

1111

Parameter Pre-set Values
Bi-LSTM Unit Number 64, 96, 128
Word Embedding Dimension 200, 300
Training Epoch 5, 8
Dropout Probability 0.3, 0.4, 0.5
Ensemble Model Number 5, 7 , 9 , 11

Table 2: Pre-set Parameter.

Model Acc
LSTM 0.5126
Bi-LSTM w/o ATT 0.5253
Bi-LSTM w/ ATT 0.5696

Table 3: Results of Proposed Model and Baseline
Model.

input, a sufficiently complex model is required.
However, too little training data is not sufficien-
t for the model to learn all of the features. This
concern is a large limitation of a single model.
Ensemble learning can effectively alleviate over-
fitting and greatly enhance the performance of the
model.

The hard voting is chosen to implement the en-
semble model (Dietterich, 2000). The hard voting
means training multiple models at the same time.
After training, it takes all the results of the model
vote. The voting results are the result of the sys-
tem.

Finally, the model has a total of 5 hyper-
parameters, including the ensemble model num-
ber. The grid search algorithm is used as the pa-
rameter tuning method. However, because the s-
pace of the parameters are too large, a few pre-set
values are used to narrow the search. The pre-set
values are shown in Table 2.

3.3 Result Analysis

Because of the lack of data, the following re-
sults are the result of dev data test under official
train data training unless otherwise specified. Two
baseline models are used to test the performance
of the proposed model. In the case of no tuning
parameters, finding the average number of test re-
sults in 3 times is shown in Table 3. As seen from
the results in Table 3, the attention mechanism can
effectively improve the accuracy of the prediction
in this task. The result is also consistent with most
experimental results.

In Table 4, Epoch is used for the Training E-
poch, Bi-LSTM for Bi-LSTM Unit Number, Em-

Ensemble Model Number Acc
6 0.6646
7 0.6741
9 0.6803

11 0.6772

Table 5: Results of Ensemble Learning.

b Dim for Word Embedding Dimension, Dropout
for Dropout Probability, and Acc for Accuracy, the
best 3 results are shown for the parameter tuning
for the single model before the ensemble learning.
The time spent to tune the parameters on multiple
models is very large. Hence, during the implemen-
tation of hard voting, only the number of models
will be tuned. The remaining parameters are the
parameters that give the best result when there is
only one model. (the first line in Table 4). The
results are shown in Table 5.

It can be seen that the effect on the result tends
to be stable when the model is over seven. How-
ever, the improvement from ensemble learning in
the results is enormous. The accuracy increased
by approximately 6 percentage points.

In the official test data of the competition, we
chose the hard voting with nine models. The ac-
curacy is 0.550. We rank 15th in all 22 teams.

4 Conclusions

Due to the complexity and abstraction of the log-
ical system of human reasoning, it is not easy for
a machine to learn its laws. Thus, this task is very
challenging and difficult. The attention mechanis-
m and ensemble learning are the key points to im-
prove the performance of the model. In the ex-
periment, both have a very large impact on the ac-
curacy. The final result and rankings are not very
good. After analysis, there could be two reason-
s. The first reason is that the data cleaning was
not done well. The training data is mixed with a
large amount of useless information. The second
point is that the model parameter tuning was very
limited.

This competition has benefited us greatly. We
will continue to improve our model.

Acknowledgments

This work was supported by the National Natural
Science Foundation of China (NSFC) under Grant
No.61702443 and No.61762091, and in part by
Educational Commission of Yunnan Province of

1112

Epoch Bi-LSTM Emb Dim Dropout Acc
8 64 300 0.3 0.6171
8 128 300 0.4 0.6107
5 64 300 0.4 0.6012

Table 4: Results of Parameter Tuning of Single Model.

China under Grant No.2017ZZX030.The authors
would like to thank the anonymous reviewers and
the area chairs for their constructive comments.

References
Enrique Alfonseca, Marco Boni, Jos Jara, and Suresh

Manandhar. 2002. A prototype question answering
system using syntactic and semantic information for
answer retrieval. In Nurs Stand, pages 680–686.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2014. Neural machine translation by jointly
learning to align and translate. Computer Science.

Tao Chen, Ruifeng Xu, Yulan He, and Xuan Wang.
2016. Improving sentiment analysis via sentence
type classification using bilstm-crf and cnn. Expert
Systems with Applications.

Ronan Collobert, Jason Weston, Leon Bottou, Michael
Karlen, Koray Kavukcuoglu, and Pavel Kuksa.
2011. Natural language processing (almost) from
scratch. Journal of Machine Learning Research,
12(1):2493–2537.

Thomas Dietterich. 2000. Ensemble methods in ma-
chine learning. Proc International Workshop on
Multiple Classifier Systems, 1857(1):1–15.

Ivan Habernal, Henning Wachsmuth, Iryna Gurevych,
and Benno Stein. 2018. The argument reasoning
comprehension task: Identification and reconstruc-
tion of implicit warrants. In Proceedings of the
2018 Conference of the North American Chapter of
the Association for Computational Linguistics: Hu-
man Language Technologies, page (to appear), New
Orleans, LA, USA. Association for Computational
Linguistics.

Pearl Judea. 1988. Reasoning in Intelligent Systems:
Networks of Plausible Inference. Morgan Kaufman-
n Publishers,Inc.

Alan Karr. 2006. Exploratory data mining and data
cleaning. Proc International Workshop on Multiple
Classifier Systems, 101(473):399–399.

Mike Schuster and Kuldip Paliwal. 1997. Bidirectional
recurrent neural networks. IEEE Trans on Signal
Processing, 45(11):2673–2681.

Duyu Tang, Furu Wei, Nan Yang, Ming Zhou, Ting Li-
u, and Bing Qin. 2014. Learning sentiment-specific
word embedding for twitter sentiment classification.

In Meeting of the Association for Computational
Linguistics, pages 155–161.

Jinnan Yang, Bo Peng, Jin Wang, Jixian Zhang, and X-
uejie Zhang. 2016. Chinese grammatical error diag-
nosis using single word embedding. In Proceedings
of the 3rd Workshop on Natural Language Process-
ing Techniques for Educational Applications (NLP-
TEA-16), pages 155–161.

1113

Proceedings of the 12th International Workshop on Semantic Evaluation (SemEval-2018), pages 1114–1119
New Orleans, Louisiana, June 5–6, 2018. ©2018 Association for Computational Linguistics

HHU at SemEval-2018 Task 12: Analyzing an Ensemble-based Deep
Learning Approach for the Argument Mining Task of Choosing the

Correct Warrant

Matthias Liebeck, Andreas Funke, Stefan Conrad
Institute of Computer Science

Heinrich Heine University Düsseldorf
D-40225 Düsseldorf, Germany

{liebeck,conrad}@cs.uni-duesseldorf.de
andreas.funke@hhu.de

Abstract

This paper describes our participation in the
SemEval-2018 Task 12 Argument Reasoning
Comprehension Task which calls to develop
systems that, given a reason and a claim, pre-
dict the correct warrant from two opposing op-
tions. We decided to use a deep learning archi-
tecture and combined 623 models with differ-
ent hyperparameters into an ensemble. Our ex-
tensive analysis of our architecture and ensem-
ble reveals that the decision to use an ensemble
was suboptimal. Additionally, we benchmark
a support vector machine as a baseline. Fur-
thermore, we experimented with an alternative
data split and achieved more stable results.

1 Introduction

Argument mining is a trending research do-
main that focuses on the extraction of arguments
and their relations from text. It has been ap-
plied to multiple languages and multiple applica-
tion domains, including the legal domain (Palau
and Moens, 2009), persuasive essays (Stab and
Gurevych, 2014), online participation (Liebeck
et al., 2016), and web discourse (Habernal and
Gurevych, 2017). The three most common sub-
tasks are: argument identification, argument clas-
sification, and argument linking. These focus on
the identification of argumentative text content,
the extraction of argument components according
to a specific argument model, and the extraction of
relations between arguments components, respec-
tively.

Currently, different argument models compris-
ing different argument components are being used
throughout the community, such as the claim-
premise family or Toulmin’s model (Toulmin,
1958). In the scope of this paper, claims, premises,
and warrants are the most important argument
components. Claims are often defined as con-
troversial statements that are either true or false.

Premises are reasons that support or attack claims.
In Toulmin’s model, they are connected with war-
rants that state why the premise supports the claim.

Habernal et al. (2018b) introduced a new argu-
ment mining task called argument reasoning com-
prehension with the following definition: Given
a reason and a claim, identify the correct warrant
from two opposing options.

This paper describes our participation in the
SemEval-2018 Task 12 The Argument Reasoning
Comprehension Task (Habernal et al., 2018a) that
uses the dataset from Habernal et al. (2018b) as a
shared task. Besides a description of our machine
learning systems, we evaluate additional machine
learning models (we were only allowed to submit
a single set of predictions for the official ranking)
and we further analyze the test set.

The dataset for the challenge consists of anno-
tated news comments from the New York Times
user debate section. With Amazon Mechanical
Turk as a crowdsourcing platform, 5000 randomly
selected user comments were annotated in a multi-
step annotation process that included three free
text annotation steps (gist summarization, the cre-
ation of warrants, and of alternative warants). Af-
ter the final filtering, the dataset for the Argu-
ment Reasoning Comprehesion Task comprises
1970 instances, where each instance is a tuple of
(R,C,W,AW,G, T, I) comprising a reason (R),
a claim (C), a warrant (W), an alternative war-
rant (AW), a gold label (G) indicating which of
both warrants is correct, a debate title (T), and ad-
ditional debate information (I) about the debate.
The task organizers split the dataset into three dis-
tinct groups: training set (1,210 instances), devel-
opment set (316 instances), and a test set (444 in-
stances).

Figure 1 shows a training example of the
dataset. The machine learning task of predicting
the correct warrant is difficult since both warrants

1114

Title: Do We Still Need Libraries?
Debate information: Do We Still Need Li-
braries? What are libraries for, and how should
they evolve?
Claim: We need libraries
Reason: Libraries have lots to offer in addition to
books they provide music, dvd’s, magazines and
more.
X Warrant 1: all these things are readily avail-
able to everyone online
7 Warrant 2: none of these things are readily
available to everyone online

Figure 1: Example of a training instance with war-
rant 1 as the correct gold label.

are lexically similar, and can differ in just one or
two words.

In the trial phase of the challenge, the partici-
pants were given access to the training set and the
dev test with gold labels. In the test phase of the
challenge, the task participants were given access
to the test set (with omitted gold labels) and had to
submit predictions for all test instances.

2 Our Approach

For our participation in the challenge, we experi-
mented with deep learning architectures in Keras
(Chollet, 2015) with TensorFlow (Abadi et al.,
2015) as the backend. We tested multiple deep
learning architectures comprising different layers
and input channels. For each of these models,
we performed an extensive grid search for hyper-
parameters, such as layer sizes, embedding sizes,
activation functions, optimizers, loss functions,
batch sizes, dropout, number of training iterations,
and different seeds for the initialization.

In our final experiments, we evaluated four
different embeddings: pre-trained fastText em-
beddings (Bojanowski et al., 2017) on the entire
Wikipedia corpus, two word embeddings with dif-
ferent dimensionality trained on the task’s dataset
with the word2vec (Mikolov et al., 2013) skip-
gram model implemented in gensim (Řehůřek and
Sojka, 2010), and a fourth embedding based on the
task’s vocabulary and corresponding Wikipedia
articles.

We benchmarked each trained model on the de-
velopment set. This yielded thousands of trained
models. Ultimately, we selected a deep learning
architecture with high accuracy scores and a low

variance, as outlined below. Our motivation was
to select a model that we believed to be stable and
able to generalize well on the test set.

2.1 Archictecture
We now outline our deep learning architecture, as
visualized in Figure 2. We use warrants, reasons,
claims, and alternative warrants as input chan-
nels of our neural network. The preprocessing
for each channel consists of tokenization, padding,
and word embeddings as representations for indi-
vidual words, as it is common for recurrent neu-
ral networks in NLP. First, each input sequence is
fed into a bidirectional LSTM (Schuster and Pali-
wal, 1997; Graves and Schmidhuber, 2005). In the
next layer, we use two parallel LSTMs (Hochreiter
and Schmidhuber, 1997). The first LSTM uses a
concatenation of the warrant, the reason, and the
claim as the input, whereas the concatenation of
the alternative warrant, reason, and claim is used
as the input of the other LSTM. The output of both
LSTMs is then concatenated, dropout is applied,
and finally mapped as output through two dense
layers.

Warrant Reason Claim
Alternative
warrant

BI-LSTM BI-LSTM BI-LSTM BI-LSTM

LSTM LSTM

Droput

Dense

Dense

Figure 2: Illustration of our deep learning architec-
ture.

In our experiments, we benchmarked our model
with 10 different seeds and achieved an average
accuracy of 67.7% (± 2.2%) on the development
set.

2.2 Ensemble
We experimented with additional ways of increas-
ing our performance on the development set under
the assumption that the test set would be very simi-
lar. By using an ensemble of multiple trained mod-
els with a majority vote as the prediction, we were

1115

able to improve our results considerably. First, we
trained 2560 models of the above-described archi-
tecture with four different embeddings and various
hyperparameters. Then, we combined all 623 of
these models with a development set accuracy of
above 67% into our final ensemble. Our ensem-
ble yielded a promising result of 73.3% accuracy
on the development set, which is a higher accuracy
than all submitted and benchmarked systems in the
trial phase of the challenge. Therefore, we decided
to use the ensemble for our predictions instead of
a single model.

3 Results

We now report the official results of our ensemble
on the test set, as well as benchmarks of the single
models. Additionally, we compare our deep learn-
ing approaches with a support vector machine as a
classical machine learning baseline.

3.1 Deep Learning
Our ensemble achieved 17th place in the com-
petition and yielded an accuracy score of 53.4%,
which was lower than we anticipated based on our
good performance on the development set.

Since we were curious to see whether the deci-
sion to use an ensemble was beneficial and in order
to better understand the low results on the test set,
we further analyzed all trained models on the test
set after the release of the gold labels. The per-
formance difference in terms of accuracy scores
on the development set and the test set of all 2560
models that we considered for the ensemble is vi-
sualized in Figure 3. It can immediately be seen
that all our models achieved better scores on the
development set than on the test set and that some
hyperparameters lead to models yielding bad per-
formances. The most interesting insight from this
plot is that the majority of our single models per-
formed better than the ensemble score of 53.4%.
Upon further analysis of the 623 models with a
development set accuracy of above 67% that we
used for our ensemble, we can observe an average
accuracy score of 54.4% (± 2.0%) on the test set.
This also shows that the decision to opt for an en-
semble was disadvantageous, since the ensemble
was not able to generalize better than individual
models.

The influence of the number of selected mod-
els from the 2560 available models is further vi-
sualized in Figure 4a, where the models were be-

ing added in descending order based on the devel-
opment set performance. In our submission, we
decided to use the 623 best-ranked models with a
majority voting. Figure 4a shows that an ensem-
ble with a considerably smaller number of models
would have performed better on both sets, as the
test scores with the majority voting began to dete-
riorate quickly.

0.45 0.50 0.55 0.60 0.65 0.70 0.75
accuracy score: dev

0.45

0.50

0.55

0.60

0.65

ac
cu

ra
cy

 s
co

re
: t

es
t

Figure 3: Performances of 2560 trained models
with different hyperparameters on the develop-
ment set and the test set

3.2 Support Vector Machine Baseline
Furthermore, we compared our deep learning ap-
proaches with a support vector machine (SVM).
We used the same input data for the SVM as for
our neural networks by using claims, reasons, war-
rants, and alternative warrants. All four input
strings were tokenized, padded to a fixed length,
represented by embedding vectors, and concate-
nated to achieve a fixed input length for the SVM.

In total, we trained 72 SVMs with different hy-
perparameters. Their performances on both sets
are visualized in Figure 5. Compared with our
deep learning approach, the results of the SVMs
on the development set are lower, with an aver-
age score of 58.8% (± 2.8%), but comparable for
the test set, with 53.6% (± 2.3%). Again, we ob-
served lower accuracies for the test set than for the
development set.

4 Observations of an Alternative Data
Split

The performance difference on both sets motivated
us repeat our experiments on an alternative data
split, in which we shuffled all data points together
and created three new sets (training, development,
and test) with the same sizes as the original split.

1116

0 500 1000 1500 2000 2500
number of models

0.50

0.55

0.60

0.65

0.70

0.75
ac

cu
ra

cy

dev: majority vote
dev: sorted accuracy
test: majority vote
test: mean accuracy

(a) Original dataset

0 500 1000 1500 2000 2500
number of models

0.50

0.55

0.60

0.65

0.70

0.75

ac
cu

ra
cy

dev: majority vote
dev: sorted accuracy
test: majority vote
test: mean accuracy

(b) Ensemble experiment with our alternative data split

Figure 4: Influence of the number of models in our ensemble.

0.475 0.500 0.525 0.550 0.575 0.600 0.625 0.650
accuracy score: dev

0.475

0.500

0.525

0.550

0.575

0.600

0.625

ac
cu

ra
cy

 s
co

re
: t

es
t

Figure 5: Performances of support vector machines
on the development set and the test set.

4.1 Single Model
On the alternative split, we benchmarked our sin-
gle model with 20 different seeds and achieved
higher results of 63.7% (± 1.6%) on the dev set
and 62.1% (± 2.5%) on the test set.

4.2 Ensemble
For the ensemble, we trained 2560 models with the
same hyperparameters as for the original dataset.
The models behaved more similarly on both the al-
ternative development set (63% (± 3.0%)) and the
test set (62% (± 4.1%)), as visualized in Figure
6. If we take a look at the performance of the en-
semble’s majority vote in Figure 4b and compare
it with the original dataset in Figure 4a, we can see

that the idea of using an ensemble can be benefi-
cial. However, this is dependent on a more evenly
represented data split. In hindsight - with poste-
rior knowledge of the test set - it would have been
a better choice to decide for the ensemble’s peak
performance (original split dev: 76%, test: 55.6%;
alternative split dev: 75.6%, test: 71.3%).

0.45 0.50 0.55 0.60 0.65 0.70 0.75
accuracy score: dev

0.50

0.55

0.60

0.65

0.70

ac
cu

ra
cy

 s
co

re
: t

es
t

Figure 6: Performances of 2560 trained models
with different hyperparameters on the alternative
data split.

4.3 Support Vector Machine
We again trained 72 SVMs with different hyperpa-
rameters. With the alternative split, we achieved
an average score of 55.5% (± 2.3%) on the new
dev set and 57.7% (± 2.1%) on the new test set.
Compared with our neural network, the SVM ap-
proach now performs worse.

1117

5 Conclusion

For our participation in The Argument Reason-
ing Comprehension Task, we benchmarked sev-
eral deep learning approaches with different lay-
ers, embeddings, and hyperparameters. For our
final submission, we decided to use an ensem-
ble comprising 623 models with a majority voting
that performed much better on the development set
than a single model.

Unfortunately, our ensemble underperformed
on the test set. Therefore, we extensively analyzed
our ensemble approach after the release of the gold
labels. We ascertained that the use of an ensemble
was a suboptimal choice, and the predictions of
most single models would have performed better
and that the choices of hyperparameters and seeds
influenced the stability of the predictions, as illus-
trated in Figure 3.

We compared our deep learning approach with
a support vector machine as a baseline. Although
our models and our ensemble performed much
better on the development set, the SVM produced
slightly better results on the test set.

Finally, we repeated our experiments on an al-
ternative data split and achieved more stable re-
sults. Therefore, we conclude that the test set com-
prises data points with characteristics that are not
present in the original training data.

Because we - and other task participants with
deep learning approaches - had trouble providing
a satisfying solution to the task, we also believe
that additional preprocessing steps are required for
a machine learning approach, since the warrants
and alternative warrants are so lexically similar.

Acknowledgments

This work was funded by the PhD program On-
line Participation, supported by the North Rhine-
Westphalian funding scheme Fortschrittskollegs.
Computational support and infrastructure were
provided by the “Centre for Information and
Media Technology” (ZIM) at the University of
Düsseldorf (Germany).

References
Martı́n Abadi, Ashish Agarwal, Paul Barham, Eugene

Brevdo, Zhifeng Chen, Craig Citro, Greg S. Cor-
rado, Andy Davis, Jeffrey Dean, Matthieu Devin,
Sanjay Ghemawat, Ian Goodfellow, Andrew Harp,
Geoffrey Irving, Michael Isard, Yangqing Jia, Rafal
Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh

Levenberg, Dandelion Mané, Rajat Monga, Sherry
Moore, Derek Murray, Chris Olah, Mike Schus-
ter, Jonathon Shlens, Benoit Steiner, Ilya Sutskever,
Kunal Talwar, Paul Tucker, Vincent Vanhoucke,
Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals,
Pete Warden, Martin Wattenberg, Martin Wicke,
Yuan Yu, and Xiaoqiang Zheng. 2015. TensorFlow:
Large-scale machine learning on heterogeneous sys-
tems. Software available from tensorflow.org.

Piotr Bojanowski, Edouard Grave, Armand Joulin, and
Tomas Mikolov. 2017. Enriching Word Vectors with
Subword Information. Transactions of the Associa-
tion for Computational Linguistics, 5:135–146.

François Chollet. 2015. Keras. https://github.
com/fchollet/keras.

Alex Graves and Jürgen Schmidhuber. 2005. Frame-
wise phoneme classification with bidirectional
LSTM and other neural network architectures. Neu-
ral Networks, 18(5-6):602–610.

Ivan Habernal and Iryna Gurevych. 2017. Argumen-
tation Mining in User-Generated Web Discourse.
Computational Linguistics, 43(1):125–179.

Ivan Habernal, Henning Wachsmuth, Iryna Gurevych,
and Benno Stein. 2018a. SemEval-2018 Task 12:
The Argument Reasoning Comprehension Task. In
Proceedings of the 12th International Workshop on
Semantic Evaluation (SemEval-2018), page (to ap-
pear). Association for Computational Linguistics.

Ivan Habernal, Henning Wachsmuth, Iryna Gurevych,
and Benno Stein. 2018b. The Argument Reason-
ing Comprehension Task: Identification and Recon-
struction of Implicit Warrants. In Proceedings of the
2018 Conference of the North American Chapter of
the Association for Computational Linguistics: Hu-
man Language Technologies, page (to appear). As-
sociation for Computational Linguistics.

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long
Short-Term Memory. Neural Comput., 9(8):1735–
1780.

Matthias Liebeck, Katharina Esau, and Stefan Conrad.
2016. What to Do with an Airport? Mining Ar-
guments in the German Online Participation Project
Tempelhofer Feld. In Proceedings of the Third
Workshop on Argument Mining (ArgMining2016),
pages 144–153. Association for Computational Lin-
guistics.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey
Dean. 2013. Efficient Estimation of Word Represen-
tations in Vector Space. CoRR, abs/1301.3781.

Raquel Palau and Marie-Francine Moens. 2009. Ar-
gumentation Mining: The Detection, Classification
and Structure of Arguments in Text. In Proceedings
of the 12th International Conference on Artificial In-
telligence and Law, ICAIL ’09, pages 98–107. ACM.

1118

Radim Řehůřek and Petr Sojka. 2010. Software
Framework for Topic Modelling with Large Cor-
pora. In Proceedings of the LREC 2010 Workshop
on New Challenges for NLP Frameworks, pages 45–
50. ELRA.

Mike Schuster and Kuldip Paliwal. 1997. Bidirectional
Recurrent Neural Networks. IEEE Trans. Signal
Processing, 45(11):2673–2681.

Christian Stab and Iryna Gurevych. 2014. Identifying
Argumentative Discourse Structures in Persuasive
Essays. In Proceedings of the 2014 Conference on
Empirical Methods in Natural Language Processing
(EMNLP 2014), pages 46–56. Association for Com-
putational Linguistics.

Stephen Toulmin. 1958. The Uses of Argument. Cam-
bridge University Press.

1119

Proceedings of the 12th International Workshop on Semantic Evaluation (SemEval-2018), pages 1120–1123
New Orleans, Louisiana, June 5–6, 2018. ©2018 Association for Computational Linguistics

YNU Deep at SemEval-2018 Task 12: A BiLSTM Model with Neural
Attention for Argument Reasoning Comprehension

Peng Ding, Xiaobing Zhou∗

School of Information Science and Engineering
Yunnan University, Yunnan, P.R. China

∗Corresponding author, zhouxb.cn@gmail.com

Abstract

This paper describes the system submitted to
SemEval-2018 Task 12 (The Argument Rea-
soning Comprehension Task). Enabling a
computer to understand a text so that it can an-
swer comprehension questions is still a chal-
lenging goal of NLP. We propose a Bidirec-
tional LSTM (BiLSTM) model that reads two
sentences separated by a delimiter to deter-
mine which warrant is correct. We extend this
model with a neural attention mechanism that
encourages the model to make reasoning over
the given claims and reasons. Officially re-
leased results show that our system ranks 6th
among 22 submissions to this task.

1 Introduction

Machine comprehension of text is an important
problem in natural language processing. Tra-
ditional approaches to machine comprehension
are based on either hand engineered grammars
(Riloff and Thelen, 2000), or information extrac-
tion methods (Poon et al., 2010).

Recently, recurrent neural networks (RNNs)
with long short-term memory (LSTM) cells
(Hochreiter and Schmidhuber, 1997) have been
successfully applied to a wide range of NLP tasks,
such as machine translation (Sutskever et al.,
2014), constituency parsing (Vinyals et al., 2015),
language modeling (Zaremba et al., 2014) and ma-
chine comprehension (Hermann et al., 2015). A
potential issue with the LSTM models is that a
neural network needs to be able to compress all the
necessary information of a source sentence into a
fixed-length vector (Bahdanau et al., 2014). This
may make it difficult for the neural network to
cope with long sentences. In order to address this
issue, attention mechanisms have been success-
fully extended to the LSTMs. Attentive Reader
(Hermann et al., 2015) used a tanh layer to com-
pute the attention between document and question

embeddings. This allows a model to focus on the
aspects of a document that it believes helpful to an-
swer a question. The attention-based LSTM mod-
els have achieved state-of-the-art results in ma-
chine comprehension tasks (Kadlec et al., 2016;
Chen et al., 2016; Tseng et al., 2016).

The argument reasoning comprehension task
has been presented by (Habernal et al., 2018). The
problem can be described as follows: Given an
argument consisting of a claim and a reason, the
goal is to select the correct warrant that explains
reasoning of this particular argument. Compared
to traditional machine comprehension task, argu-
ment reasoning comprehension requires models
to possess extra reasoning abilities. Some mod-
els increase the depth of the network, continu-
ously updating the representations of the docu-
ments and questions to realize the reasoning pro-
cess (Sukhbaatar et al., 2015; Tseng et al., 2016;
Dhingra et al., 2017; Sordoni et al., 2016).

In this paper, we use a BiLSTM model to en-
code the reason and claim pairs (reason-claim) and
warrants. Then a word-to-sentence neural atten-
tion mechanism is implemented to improve the
model performance.

The rest of the paper is organized as follows:
Section 2 provides the details of the proposed
model; Experimental settings and results are dis-
cussed in section 3. Finally, we draw conclusions
in section 4.

2 System Description

Firstly, we concatenate the reason-claim and war-
rants with a delimiter, then we encode the reason-
claim via a BiLSTM. A second BiLSTM with dif-
ferent parameters is used to encode the delimiter
and the warrants, but its memory state is initialized
with the last cell state of the previous BiLSTM.
The attention mechanism is implemented by the

1120

x1 x2 x3 xT...

 reason-claim :: warrant

xT+1 xT+2 xT+3 xT+4 xT+N...

e1 e2 e3 eT eT+1 eT+2 eT+3 eT+4 eT+N

1h 2h 3h Th 1Th  2Th 

...

3Th  4Th 

...

... ...
T Nh 

1h 2h 3h
Th 1Th  2Th  3Th  4Th 

... ...
T Nh 

h1 h2 h3 hT hT+1 hT+2 hT+3 hT+4
... ... hT+N

Input Layer

 Embedding Layer

 BiLSTM Layer

Attention

Figure 1: Our BiLSTM model with neural attention for
argument reasoning comprehension, basically follows
the attention model described in (Rocktäschel et al.,
2015).

last output vector of the second BiLSTM and the
output vector at each time step produced by the
first BiLSTM. Then we use a tanh activation to
obtain the final representation. Finally, we predict
the correct label via a fully connected layer and a
softmax activation.

2.1 LSTM & BiLSTM

Recurrent Neural Networks (RNNs) have been
widely exploited to deal with variable-length se-
quence input. RNNs are networks with loops in
them, allowing information to persist. A poten-
tial issue of RNNs is that they become unable to
learn to connect the previous information when the
length of the document grows. LSTM (Hochre-
iter and Schmidhuber, 1997) is one of the popular
variations of RNN to mitigate the gradient vanish
problem. LSTMs have three gates: input gate, for-
get gate and output gate. Gates are a way to op-
tionally let information through. With these gates,
LSTMs can remember information for long peri-
ods of time and avoid the long-term dependency
problem. Given an input vector xt at time step
t, the previous output ht−1 and cell state ct−1, an
LSTM with hidden state size k computes the next
output ht and new cell state ct as:

H =
[
xt
ht−1

]
(1)

it = σ(WiH + bi) (2)

ft = σ(WfH + bf) (3)

ot = σ(WoH + bo) (4)

ct = ft � ct−1 + it � tanh(WcH + bc) (5)

ht = ot � tanh(ct) (6)
where Wi, Wf , Wo, Wc are trained matrices,

bi, bf , bo, bc are trained biases, σ and� denote the

sigmoid function and the element-wise multiplica-
tion of two vectors, respectively.

Single direction LSTM has one drawback of
not using the contextual information from the fu-
ture tokens. BiLSTM exploits both the previous
and future context by processing the sequence on
two directions and generates two independent se-
quences of LSTM output vectors. One processes
the input sequence in the forward direction, while
the other processes the input in the backward di-
rection. The output at each time step is the con-
catenation of the two output vectors from both di-
rections, i.e. ht =

−→
ht ‖

←−
ht .

2.2 Attention

The LSTM model can alleviate the problem of gra-
dient vanishing, but this problem persists in long
range contexts. The attention mechanism is in-
troduced to address this issue. Attention is the
idea of freeing the encoder-decoder architecture
from the fixed-length internal representation. This
is achieved by keeping the intermediate outputs
from the encoder LSTM and training the model
to learn to pay selective attention to these inputs
and relate them to items in the output sequence.
These attention-based models have achieved state-
of-the-art performance on many natural language
processing tasks.

Let C ∈ Rk×T be a matrix consisting of out-
put vectors [h1, h2, . . . , hT] produced by the first
BiLSTM when reading the T words of the reason-
claim, where k is a hyperparameter denoting the
hidden units of LSTM. Moreover, let hT+N be the
last output vector after the reason-claim and war-
rant are processed by the two BiLSTMs, respec-
tively. The attention mechanism will produce a
vector of attention weights and a weighted repre-
sentation r of the reason-claim via:

M = tanh(Wc +WhhT+N ⊗ eT) (7)

α = softmax(WmM) (8)

r = Cα (9)

where eT is a vector of ones, Wc,Wh ∈ Rk×k

are trained projection matrices. Wm ∈ Rk is a
trained parameter vector. The final sentence-pair
representation is obtained from a non-linear com-
bination of the attention-weighted representation
r of the reason-claim and the last output vector

1121

hT+N using

h∗ = tanh(Wir +WjhT+N) (10)

where Wi,Wj ∈ Rk×k are trained projection
matrices.

3 Experiments

The organizers provided training, development,
and test sets, containing 1210, 316, 444 instances,
respectively. We combine the reason and claim to
one sentence which can determine if the warrant
is correct or not. The word tokenizer we adopted
is TweetTokenizer in Natural Language Toolkit
(NLTK1).

We compare two word embedding tools,
Word2Vec (Mikolov et al., 2013) and GloVe (Pen-
nington et al., 2014). Out-of-vocabulary words in
the data sets are randomly initialized by sampling
values uniformly from (-0.25, 0.25) and optimized
during training. We set epoch = 10, batchsize
= 256 and LSTMUnits = 64. Optimization is
carried out using Adaptive Moment Estimation
(Adam). All models are attention-based LSTM or
BiLSTM architecture.

Model Tool Dev Acc Test Acc
LSTM Word2Vec 0.626 0.577
LSTM GloVe 0.646 0.567

Table 1: Comparison between Word2Vec and GloVe.
GloVe performs better on dev data set, but Word2Vec
outperforms GloVe on test data set.

We additionally try bidirectional LSTMs
through experiments. Given the small scale of
the data sets, we run each model 10 times, taking
their average as the final result. We also use data
augmentation such as shuffle the sentence order
to expand the data set. Specifically, we randomize
the word order of the reason-claims and the
warrants to double the data set. A randomseed is
set to ensure our results are reproducible.

Model Dev Acc Test Acc
BiLSTM 0.690 0.583

BiLSTM+Shuffle 0.642 0.570

Table 2: Performance on models with or without shuf-
fle. Both models are based on attention-based BiLSTM
+ GloVe architecture.

The results show that data augmentation like
shuffling the sentence order does not have much

1http://www.nltk.org/

effect on the performance of our models. So, we
use the attention-based BiLSTM model as our fi-
nal system to the task. Our final result on the test
set is 0.583, which ranks 6th according to the offi-
cial ranking.

4 Conclusion and Future Work

In this paper, we present a BiLSTM model for
argument reasoning comprehension. We adopt
a word-to-sentence attention mechanism to make
model perform better. In the future, we will utilize
external knowledge to enhance the reasoning abil-
ity of our models. We will also pay more attention
to the generalization of models on small data sets.

Acknowledgments

This work was supported by the Natural Science
Foundations of China No.61463050, No.617-
02443, No.61762091, the NSF of Yunnan
Province No. 2015FB113, the Project of Innova-
tive Research Team of Yunnan Province.

References
Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-

gio. 2014. Neural machine translation by jointly
learning to align and translate. arXiv preprint
arXiv:1409.0473.

Danqi Chen, Jason Bolton, and Christopher D Man-
ning. 2016. A thorough examination of the
cnn/daily mail reading comprehension task. In Pro-
ceedings of the 54th Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 1: Long
Papers), volume 1, pages 2358–2367.

Bhuwan Dhingra, Hanxiao Liu, Zhilin Yang, William
Cohen, and Ruslan Salakhutdinov. 2017. Gated-
attention readers for text comprehension. In Pro-
ceedings of the 55th Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 1: Long
Papers), volume 1, pages 1832–1846.

Ivan Habernal, Henning Wachsmuth, Iryna Gurevych,
and Benno Stein. 2018. The Argument Reason-
ing Comprehension Task: Identification and Recon-
struction of Implicit Warrants. In 16th Annual Con-
ference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies. Association for Computational
Linguistics.

Karl Moritz Hermann, Tomas Kocisky, Edward
Grefenstette, Lasse Espeholt, Will Kay, Mustafa Su-
leyman, and Phil Blunsom. 2015. Teaching ma-
chines to read and comprehend. In Advances in Neu-
ral Information Processing Systems, pages 1693–
1701.

1122

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural computation,
9(8):1735–1780.

Rudolf Kadlec, Martin Schmid, Ondřej Bajgar, and Jan
Kleindienst. 2016. Text understanding with the at-
tention sum reader network. In Proceedings of the
54th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), vol-
ume 1, pages 908–918.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013. Distributed representa-
tions of words and phrases and their compositional-
ity. In Advances in neural information processing
systems, pages 3111–3119.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. Glove: Global vectors for word
representation. In Proceedings of the 2014 confer-
ence on empirical methods in natural language pro-
cessing (EMNLP), pages 1532–1543.

Hoifung Poon, Janara Christensen, Pedro Domingos,
Oren Etzioni, Raphael Hoffmann, Chloe Kiddon,
Thomas Lin, Xiao Ling, Alan Ritter, Stefan Schoen-
mackers, et al. 2010. Machine reading at the univer-
sity of washington. In Proceedings of the NAACL
HLT 2010 First International Workshop on For-
malisms and Methodology for Learning by Reading,
pages 87–95. Association for Computational Lin-
guistics.

Ellen Riloff and Michael Thelen. 2000. A rule-based
question answering system for reading comprehen-
sion tests. In Proceedings of the 2000 ANLP/NAACL
Workshop on Reading comprehension tests as eval-
uation for computer-based language understand-
ing sytems-Volume 6, pages 13–19. Association for
Computational Linguistics.

Tim Rocktäschel, Edward Grefenstette, Karl Moritz
Hermann, Tomáš Kočiskỳ, and Phil Blunsom. 2015.
Reasoning about entailment with neural attention.
arXiv preprint arXiv:1509.06664.

Alessandro Sordoni, Philip Bachman, Adam Trischler,
and Yoshua Bengio. 2016. Iterative alternating neu-
ral attention for machine reading. arXiv preprint
arXiv:1606.02245.

Sainbayar Sukhbaatar, Jason Weston, Rob Fergus, et al.
2015. End-to-end memory networks. In Advances
in neural information processing systems, pages
2440–2448.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014.
Sequence to sequence learning with neural net-
works. In Advances in neural information process-
ing systems, pages 3104–3112.

Bo-Hsiang Tseng, Sheng-syun Shen, Hung-Yi Lee,
and Lin-Shan Lee. 2016. Towards machine com-
prehension of spoken content: Initial toefl listening
comprehension test by machine. Interspeech 2016,
pages 2731–2735.

Oriol Vinyals, Łukasz Kaiser, Terry Koo, Slav Petrov,
Ilya Sutskever, and Geoffrey Hinton. 2015. Gram-
mar as a foreign language. In Advances in Neural
Information Processing Systems, pages 2773–2781.

Wojciech Zaremba, Ilya Sutskever, and Oriol Vinyals.
2014. Recurrent neural network regularization.
arXiv preprint arXiv:1409.2329.

1123

Proceedings of the 12th International Workshop on Semantic Evaluation (SemEval-2018), pages 1124–1128
New Orleans, Louisiana, June 5–6, 2018. ©2018 Association for Computational Linguistics

UniMelb at SemEval-2018 Task 12: Generative Implication using LSTMs,
Siamese Networks and Semantic Representations with Synonym Fuzzing

Anirudh Joshi1,2 Timothy Baldwin1 Richard O. Sinnott1
Cecile Paris2

1 The University of Melbourne 2 CSIRO Data61
anirudhj@student.unimelb.edu.au, tb@ldwin.net

rsinnott@unimelb.edu.au, cecile.paris@data61.csiro.au

Abstract

This paper describes a warrant classification
system for SemEval 2018 Task 12, that at-
tempts to learn semantic representations of
reasons, claims and warrants. The system
consists of 3 stacked LSTMs: one for the
reason, one for the claim, and one shared
Siamese Network for the 2 candidate warrants.
Our main contribution is to force the embed-
dings into a shared feature space using vec-
tor operations, semantic similarity classifica-
tion, Siamese networks, and multi-task learn-
ing. In doing so, we learn a form of genera-
tive implication, in encoding implication inter-
relationships between reasons, claims, and the
associated correct and incorrect warrants. We
augment the limited data in the task further by
utilizing WordNet synonym “fuzzing”. When
applied to SemEval 2018 Task 12, our system
performs well on the development data, and
officially ranked 8th among 21 teams.

1 Introduction

This paper describes our system for the Argument
Reasoning Comprehension Task of SemEval 2018
(Habernal et al., 2018). The main goal of our sys-
tem is to learn semantic representations of reasons,
claims and warrants upon which vector operations
can be applied which encode their interrelation-
ships, whilst sharing encodings.

We train our system over the 1274 candidate
reason, claim, first and second warrant examples
from the edited Room for Debate New York Times
dataset provided by the task organizers (Haber-
nal et al., 2018), which we augment to generate
a dataset that is used with a multi-task based ob-
jective function to learn semantically meaningful
representations.

Our system combines these vectors to make a
determination, via vector operations and semantic

similarity classification, to determine which of the
two warrants best fits the reason and claim repre-
sentations, and best encodes the relationships be-
tween them. We replicate this for each sentence
type, and mirror it for each warrant. In doing so
we were able to achieve strong results on the de-
velopment set, and ranked 8th overall in the com-
petition.

2 Approach

2.1 Model Overview

As detailed in Figure 1, our system is made up
of 3 stacked LSTMs, with one being essentially
a Siamese network shared between the two war-
rants, and the other two encoding the reason and
the claim. We take an average pool over the top-
layer hidden representations and use them as the
semantic feature vectors for each respective sen-
tence. We take these semantic vectors and ap-
ply vector operations to them to generate embed-
dings for each reason, claim and warrant, which
we found in practice to perform well. We then do
semantic comparisons between the generated and
actual encodings, marking as the same those be-
tween generated and actual encodings that include
the correct warrant (i.e. correct interrelationships)
and not the same for those that do not (through a
logistic unit). We also do a joint loss on both war-
rant’s logistic output with a softmax to the ground
truth (same/not same), and use that as our tracking
metric during training.

We tokenize each sentence using Keras (Chol-
let, 2018) and utilize an embedding layer based on
the GloVe 300-dimensional, 840 billion token, un-
cased word embeddings (Pennington et al., 2014).
We then push these through three stacked LSTM
networks (Hochreiter and Schmidhuber, 1997) —
one each for the reasons, claims and warrants —

1124

Figure 1: An overview of our model.

to generate the pooled semantic feature vectors of
each phrase. Each stacked LSTM network is com-
prised of three layers, of 128, 64 and 32 nodes,
respectively. We do this to force compression and
to avoid overfitting on the dataset.

We take the final 32-dimensional embedding of
each reason, claim and warrant, and apply aver-
age pooling over time to create robust compressed
representations of each.

We take these representations and then perform
various vector operations (addition/subtraction)
between them. We use these operations as a form
of implication to generate a warrant using the rea-
son and claim representations. The generation op-
eration does not necessarily require vector additiv-
ity (e.g. operations need not be constrained across
tasks). For example the operation to learn the gen-
erative representation from a reason and a claim to
a warrant can be a simple addition/subtraction, or
an affine transformation, or in future scenarios it
can be even more complicated dense networks.

For example given a reason and a claim, we
wish to combine them together with an operation
that creates a generative representation of a war-
rant (simple vector operations for example), and

accordingly generate a representation using the
operation r⃗t − c⃗t = w⃗g (where the t subscript en-
tails the true representation, and the g the gener-
ated one). We then set up our loss function such
that we compare the absolute semantic difference
between the true generative encoding (generated
with the correct two representations) with that of
a query encoding and compare them to determine
whether or not they are the are the same (i.e. the
correct or incorrect warrant vs. the true generative
representation).

We additionally embed both the correct and in-
correct warrant for each example, and use these
representations to drive multi-task learning us-
ing a Siamese network (as each reason, claim
and warrant are compared to their true genera-
tive representations with only correct triplet com-
binations being classified as being the same). We
use Siamese networks as they have been shown
to work well in settings where semantic text doc-
ument comparisons are involved (Mueller and
Thyagarajan, 2016).

Our objective function is intended to minimize
the difference between generative and actual war-
rant representations, and maximize the difference
between generative and incorrect warrant repre-

1125

sentations. We do this via analogy to both Deep-
Face’s semantic similarity classification (Taigman
et al., 2014) and FaceNet’s anchor representations
(Schroff et al., 2015): for the similarity classifica-
tion we use a logistic regression atop the absolute
difference between the generative and the actual
representations for the multiple tasks (same/not
same), and we combine a joint softmax discrim-
inative function that selects between the candidate
warrants on that output, w1∥w2c⋀, as our tracking
objective (for early stopping and checkpointing).
In doing so we aim to push the generative and true
representations closer together, and push the gen-
erative and incorrect representations further apart.
In this process we should then be able to perform
Generative Implication, where the semantic repre-
sentations across implication tasks can be shared,
but where differing operations between the repre-
sentations can be used to generate each other.

Due to the small data size (~1k), we explored
a variety of approaches to augment the training
data. One approach is to use multiple implication
tasks to generate representations. Our tasks use
the two warrants and reason + conclusion to gen-
erate representations of each other. We tried mul-
tiple operations including affine transforms and
dense networks, as well as vector additivity con-
straints across tasks (i.e. the projection operations
from the shared embeddings must reconcile, cf.
Mikolov et al. (2013)). However we found that
they led to overfitting, and hence sought to split the
implication projection from the shared representa-
tions into unconstrained operations (two of which
are vector additive, r⃗g and c⃗g, with w⃗g being split
off, with the split likely acting as a regularizer):

r⃗g = c⃗t − w⃗t

w⃗g = r⃗t − c⃗t
c⃗g = r⃗t + w⃗t

From this, we have a multi-task output with the
generative representation of correct/incorrect war-
rants being compared to their semantic representa-
tions, correct with the true warrant, and incorrect
with the wrong warrant.

We also augmented the data by taking random
combinations of single synonym fuzzed Word-
Net (Miller, 1995) sentences using their sampled
closest synonyms (using the NLTK toolkit (Bird
et al., 2009) and pywsd (Tan, 2014)). Through this

method we generated a much larger dataset (~20×,
depending on how many synonyms we could sam-
ple per sentence). We also swapped the warrants
to double the size of the dataset. In doing so we
ended up with ~234K examples. We did this to
ensure a large enough dataset that included numer-
ous subtleties.

2.2 Training

2.2.1 Optimization and Regularisation

We used heavy dropout (Srivastava et al., 2014),
as we found overfitting to be an endemic prob-
lem, requiring heavy regularization. Along with
the layers being smaller as we go up the stack,
we applied progressively reduced dropout rates,
from 0.8 at the 128 layer, to 0.6 (64) and 0.4
(32). We found this led to better generalization
on the development set. We use Adam as our op-
timizer (Kingma and Ba, 2014), and checkpoint-
ing (with an accuracy max of the joint softmax
with w1∥w2c⋀) and early stopping (Caruana et al.,
2001). We trained our models using 3–10 epochs,
depending on when they began to overfit.

3 Results

We ranked 8th in the competition (among 21
teams) with a test accuracy of 0.577. Amongst
the teams there was a clear outlier in the GIST
system (which we note used transfer learning),
with the remaining systems incrementally falling
from ~0.6 downwards, with the random baseline at
0.527, and the example test system at 0.56 (Haber-
nal et al., 2018).

In terms of the different systems we trained, our
top three would have ranked 4th in the competi-
tion, two of which used more aggressive dropout,
and one of which used a combination of features
identified above (including attention between the
other two sentences). The development to test set
gap was wide, indicating generalization was ex-
tremely hard (similarly with others in the com-
petition). In terms of performance, we found
early on that constrained (i.e. vector additive op-
erations) led to lower development performance,
which continued on to the test set. With the re-
maining systems we used the operations as de-
fined previously (unconstrained). In general we
found that regularization dominates performance
measures, above and beyond operations.

1126

System Development Test

Higher Starting Dropout (0.9) 0.658 0.597
Lower Dropout Reduction Between LSTM Layers (0.1) 0.658 0.592
Combination 0.668 0.592
Equal Dropout on each LSTM Layer (0.5) 0.646 0.583
Extra Layer (4 Layer, 256 Base Latent LSTM) 0.652 0.579
Test System 0.671 0.577
Attention (with Double Batch Size for speed) 0.639 0.574
Test System (Constrained) 0.665 0.568
Large Batch Size (1024 minibatch) 0.617 0.538
Noise Semantic Output Layers (Gaussian) 0.627 0.527

Table 1: Accuracy over the development and test sets for various system configuration and our official submission
(“Test System”), sorted by test set accuracy. “Combination” = attention, equal dropout, 4-Layer, noise semantic
layer (with double batch size for speed)

4 Discussion

A few things helped performance (specifically
generalization): (1) average pooling, most likely
by making the overall meaning of the sentence
more stable; (2) WordNet fuzzing and the resul-
tant data augmentation; (3) progressively reduced
dropout; (4) adding layers somewhat improved
performance; (5) using progressively smaller
LSTM layers; (6) using uncased, larger token size
GloVe vectors, likely due to the larger coverage
and more specific embeddings; and (7) multi-task
learning.

We did not find that using dense networks for
generative semantic operations worked well, as
overfitting was endemic. We tried to enforce con-
strained vector additivity between tasks, but found
that this harmed performance, and instead we took
the path of multiple unconstrained tasks projected
from the shared embeddings. In future, these op-
erations should be fully-fledged generative func-
tions, to account for the inherent complexity of the
task itself. Adding noise to the embeddings (e.g.
Gaussian) as a form of data augmentation also did
not aid performance. Larger batches in general
did speed up training, but in general harmed over-
all performance. We experimented with L1/L2
regularization, but found dropout to be far more
robust. We attempted shared LSTM layers (be-
tween reason, claim, warrants), but again, found it
be to detrimental. We tried BiLSTMs (which did
not improve performance), and GRUs (which took
longer to train with comparable performance). We
also tried attention (e.g. a warrant on its respec-
tive reason and claim), but this too did not improve
performance.

4.1 Future Directions

There are numerous future directions from this
work, mostly in the integration of transfer learn-
ing, more complicated generation functions, and
low resource learning. As we found overfitting
to be an endemic problem across approaches, we
believe that aggressive use of transfer learning of
higher-level concepts from parallel domains will
likely be of use. The operations for the differ-
ent tasks were originally trained to be vector ad-
ditive, but we found in practice that they harmed
performance. Instead, complex embedding gener-
ation will almost certainly require more complex
operations than the simple ones we found to work
well in this work. This opens up new directions in
terms of classification and text generation within
argument mining, such as the generation of im-
plicit warrants between reasons and claims, or the
detection of reasoning triplets for dataset genera-
tion. We also believe aggressive use of low re-
source (e.g. few-shot) learning mechanisms will
be beneficial in the future.

5 Conclusion

In this paper we demonstrated a system that at-
tempts to learn a form of generative implication
from sets of reasons, claims and warrants. There
was a large generalization gap between the devel-
opment and test test results for both of the tested
systems, as well as the competition as a whole,
which highlights how large an issue overfitting is
for problems based on small datasets. We demon-
strated our tested models’ performance on both the
development and test sets, with our final submis-
sion coming in 8th (among 21).

1127

Acknowledgments

This research is based upon work supported in part
by CSIRO Data61 and the Office of the Director
of National Intelligence (ODNI), Intelligence Ad-
vanced Research projects Activity (IARPA), un-
der Contract [2017-16122000002]. The views and
conclusions contained herein are those of the au-
thors and should not be interpreted as necessarily
representing the official policies, either expressed
or implied, of ODNI, IARPA, or the U.S. Gov-
ernment. The U.S. Government is authorized to
reproduce and distribute reprints for governmen-
tal purposes notwithstanding any copyright anno-
tation therein.

References

Steven Bird, Ewan Klein, and Edward Loper. 2009.
Natural Language Processing with Python: An-
alyzing Text with the Natural Language Toolkit.
“O’Reilly Media, Inc.”.

Rich Caruana, Steve Lawrence, and C Lee Giles. 2001.
Overfitting in neural nets: Backpropagation, conju-
gate gradient, and early stopping. In T K Leen, T G
Dietterich, and V Tresp, editors, Advances in Neural
Information Processing Systems 13, pages 402–408.
MIT Press.

François et al Chollet. 2018. keras [software].
https://github.com/keras-team/
keras. Accessed: 2018-2-17.

Ivan Habernal, Henning Wachsmuth, Iryna Gurevych,
and Benno Stein. 2018. The argument reasoning
comprehension task: Identification and reconstruc-
tion of implicit warrants. In Proceedings of the 16th
Annual Conference of the North American Chap-
ter of the Association for Computational Linguis-
tics: Human Language Technologies, page to ap-
pear, New Orleans, USA. Association for Compu-
tational Linguistics.

S Hochreiter and J Schmidhuber. 1997. Long short-
term memory. Neural Comput., 9(8):1735–1780.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization.

Tomas Mikolov, Wen-Tau Yih, and Geoffrey Zweig.
2013. Linguistic regularities in continuous space
word representations. In Proceedings of the 2013
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, pages 746–751.

George A Miller. 1995. WordNet: a lexical database
for english. Commun. ACM, 38(11):39–41.

Jonas Mueller and Aditya Thyagarajan. 2016. Siamese
recurrent architectures for learning sentence similar-
ity. In AAAI, pages 2786–2792. aaai.org.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. Glove: Global vectors for word
representation. In Proceedings of the 2014 confer-
ence on empirical methods in natural language pro-
cessing (EMNLP), pages 1532–1543. aclweb.org.

Florian Schroff, Dmitry Kalenichenko, and James
Philbin. 2015. Facenet: A unified embedding for
face recognition and clustering. In Proceedings of
the IEEE conference on computer vision and pattern
recognition, pages 815–823.

Nitish Srivastava, Geo Rey Hinton, Alex Krizhevsky,
Ilya Sutskever, and Ruslan Salakhutdinov. 2014.
Dropout: A simple way to prevent neural networks
from overfitting. The Journal of Machine Learning
Research, 15(1):1929–1958.

Yaniv Taigman, Ming Yang, Marc’aurelio Ranzato, and
Lior Wolf. 2014. Deepface: Closing the gap to
human-level performance in face verification. In
Proceedings of the IEEE conference on computer vi-
sion and pattern recognition, pages 1701–1708. cv-
foundation.org.

Liling Tan. 2014. Pywsd: Python implementa-
tions of word sense disambiguation (WSD) tech-
nologies [software]. https://github.com/
alvations/pywsd.

1128

Proceedings of the 12th International Workshop on Semantic Evaluation (SemEval-2018), pages 1129–1132
New Orleans, Louisiana, June 5–6, 2018. ©2018 Association for Computational Linguistics

Joker at SemEval-2018 Task 12: The Argument Reasoning
Comprehension with Neural Attention

1Guobin Sui , 1Wenhan Chao , 2Zhunchen Luo∗
1School of Computer Science and Engineering / Beihang University

2Information Research Center of Military Science / PLA Academy of Military Science
1Beijing 100191, China; 2Beijing 100142, China

{suigb,chaowenhan}@buaa.edu.cn;zhunchenluo@gmail.com

Abstract

This paper describes a classification system
that participated in the SemEval-2018 Task
12: The Argument Reasoning Comprehension
Task. Briefly the task can be described as that a
natural language “argument” is what we have,
with reason, claim, and correct and incorrect
warrants, and we need to choose the correct
warrant. In order to make fully understand
of the semantic information of the sentences,
we proposed a neural network architecture
with attention mechanism to achieve this goal.
Besides we try to introduce keywords into
the model to improve accuracy. Finally the
proposed system achieved 5th place among 22
participating systems.

1 Introduction
In recent years, as an extremely important part of
argument mining, argument reasoning has received
considerable research. The argumentation reasoning
can be used in many situations such as automatic score,
policy decision, stance detection, and many others
(Habernal et al., 2018). The task can be described as
follows in detail: Given an argument consisting of a
claim and a reason, the goal is to select the correct
warrant that explains reasoning of this particular argu-
ment. There are only two warrants given and only one
answer is correct. The correct warrant inferred from the
argument has a supported relation with the argument.
However the other warrant either opposes the argument
or has no correlation with the argument. Actually, this
task could be treated as a binary classification(A vs. B).

The task could be regarded as an argumentative
relation work. The argumentative relation mining
aims at identifying relations of attack and support
between natural language arguments in text, by clas-
sifying pairs of pieces of text as attack, support or
neither attack nor support relations (Cocarascu and
Toni, 2017). The corrected warrant means supporting
the argument, while the other means attacking the
argument. So we refer to some literature methods on

∗ Corresponding author.

the relationship between arguments. Cocarascu and
Toni (2017) use Long Short Term Memory (LSTM) to
classify the relations between arguments. Rocktäschel
et al. (2016) propose neural network with attention
mechanism, making neural networks interpretable. We
infer to their methods and construct our model in new
manner. In this paper, we use the LSTM networks
with attention mechanism to construct the classification
system.

The following sections are arranged as follows. In
section 2, we will give an overview on the task and
have an analysis of the datasets. In section 3 we
describe the system used in this paper and introduce
some interesting attempt in detail. Section 4 introduces
the experiment and results. Finally, we get conclusions
and have an outlook of the future work.

2 Task Definition
We use the corpus provided by the SemEval-2018 Task
12, which has a training corpus of 2420 samples with
gold labels. The organization website also provides a
corpus of 316 samples with gold labels as verification
set. And finally about 444 samples without gold labels
are provided by the organization website as the final
test corpus. This data has a variety of contemporary
issues across topics in user-generated web comments
(Habernal et al., 2018).

For example:

Topic: There She Is, Miss America
Additional info: In 1968, feminists gathered in

Atlantic City to protest the Miss America pageant,
calling it racist and sexist. Is this beauty contest bad
for women?

Argument: Miss America gives honors and educa-
tion scholarships. And since ..., Miss America is good
for women.

Warrant options:
a) scholarships would give women a chance to study
b) scholarships would take women from the home
Only (a) fills the gap in this argument; (b) would in

fact lead to the opposite claim (such that Miss America
is not good for women).

Observing the data, we find this task has some
challenges. We notice that many warrants have high

1129

Figure 1: The system architecture - LSTM model with word-by-word attention mechanism.

semantic similarity, which makes it difficult to have
a correct choice. In order to distinguish the similar
sentences, the model must have the ability to model
sentence semantics well. Besides, we find that many
pairs of warrants’ difference is the negative words.
For example, consider the following warrant options
from the training corpus. One warrant is “we can’t
have citizens being loyal to their home country”, the
other is “we can have citizens being loyal to their
home country”. The difference of them is the first
one has the negative word “n’t”, which makes the
sentences have different semantics. Every sentence has
keywords which make a contribution to understand the
sentence. We hope that putting the keywords extracted
from the sentence into the model could enhance the
comprehension of the sentences. We have a try with
all these ideas.

3 System description

Our system is based on the LSTM model with word-
by-word attention which could been seen as an encoder
to decoder model. The encoder encodes the reason
and claim and gives the initialization to the decoder.
The decoder decodes the warrant and uses its output
to compute the weight of tokens from the reason and
claim. The higher the weight is, the more important
the token is to choose the correct warrant. Besides, we
introduce the keywords into the model to improve the
accuracy.

3.1 Sequence model

In order to have a full understanding of the sentences,
we try to use the neural network to model the sentences.
The LSTM model could capture long-term dependen-
cies (Hochreiter and Schmidhuber, 1997) so we use

that to construct the sequence model.

LSTM models, a type of RNNs, address the problem
of the vanishing gradients problem while trying to cap-
ture long-term dependencies by introducing memory
cells and gates into networks (Cocarascu and Toni,
2017). Although the LSTM models could solve the
problem of the long-term dependencies, it usually
capture the words behind the sentence, which causes a
problem that the words before the sentence make a little
contribution. In order to achieve full comprehension
of the sentences, an attention mechanism is introduced
into the model. The attention mechanism has been
demonstrated success in a wide range of tasks from
handwriting synthesis (Graves, 2013), machine transla-
tion (Bahdanau et al., 2015) and sentence summariza-
tion (Rush et al., 2015). In view of the effectiveness of
the attention mechanism, we combine it with the LSTM
model expecting a great performance.

Based on the statistics on sentence lengths in train-
ing corpus, we set the length of the reason, claim,
warrant to 50, 15, 30 respectively. In this paper, we
propose three deep learning methods to represent the
sentences. The first is that we use BiLSTMs to parse
the semantics of the sentences and then merge their
output of the BiLSTMs. The concatenated vector is
fed into a fully-connected neural network whose output
is concatenated with the softmax function to have a
prediction. The detailed computation is described in
(1-5). The Ri, Ci, W0i and W1i are the embedding
presentations of the reason, claim, warrant0 and war-
rant1 respectively and the Ro, Co, W0o and W1o are
the outputs of the BiLSTMs. V is the vector connecting

1130

them. This model is the baseline of our paper.

Ro = BiLSTMs(Ri) (1)
Co = BiLSTMs(Ci) (2)

W0o = BiLSTMs(W0i) (3)
W1o = BiLSTMs(W1i) (4)
V = [Ro;Co;W0o;W1o] (5)

The second and the third method refer to the meth-
ods (Rocktäschel et al., 2016) where the author pro-
posed LSTM with attention and word-by-word atten-
tion mechanism to solve the problem of reasoning
about entailment and achieved the state-of-the-art re-
sults. We refer to their model to construct our model.
The second and the third method are called LSTM
model with attention and LSTM model with word-by-
word attention. From the figure 1, there is the LSTM
with attention and word-by-word attention mechanism.
The two methods see reason and claim as the part of
encoder, which gives the initial weight to the warrant
and treats the warrant as decoder. The difference
between them is that attention is only based on the
last output vector of warrant, while the word-by-word
attention is based on all output vectors of warrant.

Y = BiLSTMs(Ri;Ci) (6)
H = BiLSTMs(Wi) (7)

Mt = tanh(W yY + (whht +W rrt−1)⊗ eL)
(8)

αt = softmax(wTMt) (9)

rt = Y αT
t + tanh(W trt−1) (10)

h∗ = tanh(W prN +W xhN) (11)

Equation (6-11) provide the details about the com-
putation on word-by-word attention. Y is the output
vector of the encoder whose input is embedding repre-
sentation of reason and claim. H is the output of the
decoder with the embedding representation of warrant.
ht is the state of H at time t. We use ht to compute
the weight of the token from reason and claim at every
time. Then we can get the weight matrix which means
how important the token is for the decoder at every
time. The weight matrix of attention is one dimension
while the word-by-word attention has n dimensions. So
the computation of the attention is simple and the same
as the word-by-word attention. The two warrants with
the reason and claim are used to construct the word-by-
word attention respectively. Then the outputs of them
are merged by concatenation and are put into a fully-
connected neural network to make a prediction.

3.2 Keywords
We expect that introducing the keywords into the model
could improve the accuracy. The sequence model
can only express the basic meaning of the sentence
and can’t grab the main part. So the keywords can
semantically enhance the sentence meaning. Based
on that, we carry out the keywords extraction using

text rank algorithm based on the graph. The specific
method is described in the paper (Mihalcea and Tarau,
2004). For getting the keywords, we let G=(V,E) be
a undirected graph with the set of vertices V and set of
edges E where V is the token corpus and E is the weight
between two tokens. The formula could be calculated
according to the following equation (12) where the
S(Vi) is the score of the vertex Vi, the w is the edges
and d is a damping factor that is usually set to 0.85.
Out(Vj) and In(Vi) are the adjacent vertices of Vi in
undirected graph. Based on the scores we could get the
keywords from the sentence. The higher the score is,
the more important the word is.

S(Vi) = (1−d)+d∗
∑

vj∈In(Vi)

wij∑
vk∈Out(Vj)

wjk
S(Vj)

(12)

According to observing the keywords from the two
warrants, we find that some pairs of warrants have the
same keywords but different negative word. So we
do statistics on negative words. If the number of the
negative words is odd, we will add a negative word
such as “not” into the keyword corpus. However, if the
number of the negative words is even, we won’t add
any negative word into the keyword corpus. We expect
to make a difference between the two warrants with
the same keywords. We use the bag-of-word model to
model the corpus of the keywords. Every keywords are
put into the pre-trained embedding layer to get the word
representation. In order to ignore the difference in the
number of keywords, we adopt the average operation.
The computation is introduced in equation (13-16)
where ri, ci, w0i and w1i are the word representations
of reason, claim, warrant0 and warrant1 generated from
the Glove vectors (Pennington et al., 2014). The output
Ii is then put into a fully-connected neural network to
make a classification decision.

Rave =
1

len(R)

len(R)∑

i=1

ri (13)

Cave =
1

len(C)

len(C)∑

i=1

ci (14)

W0ave =
1

len(W0)

len(W0)∑

i=1

w0i (15)

W1ave =
1

len(W1)

len(W1)∑

i=1

w1i (16)

Ii = [Rave;Cave;W0ave;W1ave] (17)

We introduce the keywords into the sequence model
and combine the bag-of-word model with the word-by-
word attention model. We train the bag-of-word model
and incorporate it into LSTM model with word-by-
word attention by averaging the predicted probabilities
to get the final label to make a correct choice. We
call the combination hybrid model. The details of the
experiment will be introduced in next section.

1131

Model dev corpus test corpus
LSTMs model 0.500 0.504
Attention 0.657 0.571
WBW attention 0.684 0.586
BOW model 0.606 0.524
hybrid model 0.654 0.585

Table 1: The results of the experiments. Attention,
WBW attention, BOW model stand for LSTM model
with attention, LSTM model with word-by-word
attention, bag-of-word model respectively. Training on
the training corpus while testing accuracy is computed
on the dev corpus and test corpus.

4 Experiment and result

While training the model, the input sentences are sep-
arately embedded as 100-dimensional GloVe vectors
(Pennington et al., 2014) and the embedding layer is
based on the 100-dimensional GloVe vectors. We use
ADAM (Kingma and Ba, 2015) for optimization and
set the initial learning rate 0.001. We trained for 13
epochs or until the performance on development set
stopped improving so as to avoid overfitting. Some
Hyper-parameters for model: the dropout is 0.9, the
embedding size is 100, the size of LSTM is 64 and the
batch size is 256.

We conduct experiment on the training, dev and
test corpus downloaded from the SemEval-2018 Task
12. There are five models used to make experiments
are LSTM model, LSTM model with attention, LSTM
model with word-by-word attention, bag-of-word mod-
el and hybrid model. The results of the experiments
could be seen in Table 1. We choose the LSTM model
without attention as baseline.

According to the experiment, the simple sequence
model couldn’t complete the semantic understanding
task well. The bag-of-word model performs better
than the LSTM model, which proves that the keywords
could express the semantics of the sentences. As for
the keywords can’t express all the information of the
sentences while the LSTM model with attention can not
only express the whole information but also grab the
important part, the bag-of-word performs worse than
the attention model. LSTM model with word-by-word
attention makes a great contribution to the best result.
The hybrid model doesn’t have an improvement in dev
corpus but have a similar results with the word-by-word
attention model. We guess that what causes such a
result is the small data corpus and simply mechanically
combining the models with each other. So we don’t get
a satisfactory result from the hybrid model. The LSTM
model with word-by-word attention gets the accuracy
of 0.586 in the final submission, achieving the fifth
place in the shared task.

In the future, we will consider more reasonable
combinations of the sentence model with keywords to
enhance the comprehension of the sentences. Besides,

we will introduce the CNN into our model to extract
the word character to improve the accuracy.

5 Acknowledgments
We very appreciate the comments from reviewers
which will help further improve our work. This
work is supported by National Key Research
and Development Program of China (Grant No.
2017YFB1402400) and National Science Foundation
of China (No. 61602490).

References
Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua

Bengio. 2015. Neural machine translation by
jointly learning to align and translate. international
conference on learning representations.

Oana Cocarascu and Francesca Toni. 2017. Identifying
attack and support argumentative relations using
deep learning. Proceedings of the 2017 Conference
on Empirical Methods in Natural Language Pro-
cessing, pages 1385–1390.

Alex Graves. 2013. Generating sequences with
recurrent neural networks. arXiv: Neural and
Evolutionary Computing.

Ivan Habernal, Henning Wachsmuth, Iryna Gurevych,
and Benno Stein. 2018. SemEval-2018 Task 12:
The Argument Reasoning Comprehension Task. In
Proceedings of the 12th International Workshop on
Semantic Evaluation (SemEval-2018), New Orleans,
LA, USA. Association for Computational Linguis-
tics.

Sepp Hochreiter and Jurgen Schmidhuber. 1997.
Long short-term memory. Neural Computation,
9(8):1735–1780.

Diederik P Kingma and Jimmy Lei Ba. 2015. Adam:
A method for stochastic optimization. international
conference on learning representations.

Rada Mihalcea and Paul Tarau. 2004. Textrank:
Bringing order into texts. pages 404–411.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. Glove: Global vectors for word
representation. In Conference on Empirical Meth-
ods in Natural Language Processing, pages 1532–
1543.

Tim Rocktäschel, Edward Grefenstette, Karl Moritz
Hermann, Tomas Ko Isky, and Phil Blunsom.
2016. Reasoning about entailment with neural
attention. international conference on learning
representations.

Alexander M Rush, Sumit Chopra, and Jason Weston.
2015. A neural attention model for abstractive
sentence summarization. empirical methods in
natural language processing, pages 379–389.

1132

Proceedings of the 12th International Workshop on Semantic Evaluation (SemEval-2018), pages 1133–1136
New Orleans, Louisiana, June 5–6, 2018. ©2018 Association for Computational Linguistics

TakeLab at SemEval-2018 Task12: Argument Reasoning Comprehension
with Skip-Thought Vectors

Ana Brassard, Tin Kuculo, Filip Boltužić, Jan Šnajder
Text Analysis and Knowledge Engineering Lab

Faculty of Electrical Engineering and Computing, University of Zagreb
Unska 3, 10000 Zagreb, Croatia
{name.surname}@fer.hr

Abstract
This paper describes our system for the
SemEval-2018 Task 12: Argument Reasoning
Comprehension Task. We utilize skip-thought
vectors, sentence-level distributional vectors
inspired by the popular word embeddings and
the skip-gram model. We encode preprocessed
sentences from the dataset into vectors, then
perform a binary supervised classification of
the warrant that justifies the use of the reason
as support for the claim. We explore a few vari-
ations of the model, reaching 54.1% accuracy
on the test set, which placed us 16th out of 22
teams participating in the task.

1 Introduction

Reasoning is the process of thinking in a logical
way to form a conclusion. Inferring conclusions us-
ing commonsense reasoning has become a popular
topic in NLP. Textual entailment (TE) aims to de-
termine whether a hypothesis can be inferred from
a premise (Dagan et al., 2006). Approaches to solv-
ing TE have ranged from robust approaches based
on shallow lexical and semantic features (Marelli
et al., 2014) to formal computational semantics
approaches based on translating sentences into log-
ical form (Beltagy et al., 2015). The current state-
of-the-art approaches to TE use deep learning for
natural logic inference to capture human deductive
reasoning (Bowman et al., 2015; Rocktäschel et al.,
2015).

In online discussions, when arguing for or
against a stance, people provide arguments leaving
their readers to rely on common sense and non-
deductive reasoning to evaluate the validity of their
arguments. Human annotators can infer the rea-
sons from claims fairly well (Boltužić and Šnajder,
2014; Hasan and Ng, 2014), even when additional
(implicit) premises are required to make reasoning
deductive (Boltužić and Šnajder, 2016). Habernal
et al. (2018) emphasize the importance of implicit

premises in argumentation by introducing the ar-
gument reasoning comprehension task, where one
chooses between two mutually exclusive warrants
to make a reason warrant the claim. They demon-
strate that human experts can perform this task
extremely well (up to 90% accuracy).

In this paper, we describe a system for solving
the argument reasoning comprehension task, with
which we participated in the SemEval-2018 Task
12. Given the reason R and claim C, debate title,
debate description, and two warrants, W1 and W2,
the task is to choose warrant W that justifies the
use of R as support for C. For all warrant pairs
(W1,W2), it holds that if warrant W1 is W , then
W2 is ¬W , which justifies the use of R as support
for ¬C and vice versa.

Our system frames the problem as supervised
classification and utilizes skip-thought vectors to
represent sentences. Our system (TakeLab) ranked
16th out of 22 systems submitted to the SemEval-
2018 Task 12, achieving 54.1% accuracy on the
test set and 69.0% on the development set.

2 Related Work

Structuring argumentative discussions using Toul-
min’s argumentation model (Toulmin, 2003) is an
established research area in argumentation mining,
involving detecting claims (Levy et al., 2014; Lippi
and Torroni, 2015; Rinott et al., 2015), detecting
claim relations (Cabrio and Villata, 2012; Boltužić
and Šnajder, 2014; Stab and Gurevych, 2014), and
even reconstructing entire argumentation graphs
from text (Stab and Gurevych, 2017). While sys-
tems have been proposed that tackle some of these
problems, they do not as yet provide mechanisms
for commonsense reasoning. The argument com-
prehension problem, warranting reasons for claim,
explores the problems when the gap between the
claim and reason is too wide for textual entailment.

1133

3 System Description

Our system works in three steps. First, we prepro-
cess the dataset ending up with the claim, reason,
both warrant sentences, and the correct warrant
sentence label per instance. Second, we utilize
skip-thought vectors (Kiros et al., 2015) to encode
sentences as vectors. Third, we use encoded sen-
tences as features in a supervised classification
setup where we predict the warrant label given the
encoded sentences.

3.1 Preprocessing

We extract only the warrants, reasons, claims, and
labels from the dataset, disregarding optional ad-
ditional information about the debates. We clean
up this data by merging multi-sentence elements in
a natural way, i.e., connecting the sentences with
the conjunction “and” and modifying the punctu-
ation accordingly. For example, the two-sentence
reason:

Biking is good for one’s health and the
environment. It is more expensive to
maintain roads than bike lanes.

becomes a single sentence:

Biking is good for one’s health and the
environment and it is more expensive to
maintain roads than bike lanes.

The motivation behind this is to obtain sentences
that convey a single idea behind the reason or war-
rant (claims were always single-sentence). This
way, we attempt to extract a vector per thought.
This results in a consistent set of four sentences per
instance.

As the warrant and alternative warrant were ex-
tremely similarly worded (68% had two or less
different words), we represent warrants W1 and
W2 as word-level relative complements:

W ′1 = W1 \W2 = {wi ∈W1 | wi /∈W2}
W ′2 = W2 \W1 = {wj ∈W2 | wj /∈W1}

where wi and wj denote words. This allowed us
to boil down the warrants to their meaningful dif-
ferences, e.g., just the words “does” and “doesn’t”
in instances where the warrants were negated, but
otherwise identically worded. We experimented
with other combinations, but as they did not lead
to performance improvement, we omit them here.

3.2 Skip-Thought Vectors

The skip-thoughts model (Kiros et al., 2015) is a
sentence-level abstraction of the skip-gram model
(Mikolov et al., 2013). Instead of predicting the
surrounding text from a word, it predicts sentences
around the target sentence in the text. Kiros et al.
(2015) chose to implement an encoder-decoder
model, using an RNN encoder with GRU (Chung
et al., 2014) activations and an RNN decoder with
a conditional GRU. This model is nearly identi-
cal to the RNN encoder used by Cho et al. (2014)
for machine translation. The encoder-decoder is
trained on a large dataset of English books – Book-
Corpus (Zhu et al., 2015), chosen for its abundance
of long, context-building sentences. A trained skip-
thoughts model can be used as an out-of-the-box
encoder-decoder able to convert sentences to skip-
thought vectors. The encoder maps words to a sen-
tence vector and the decoder is internally used by
the model to generate the surrounding sentences.

The skip-thoughts model was tested on the tasks
of semantic relatedness, image-sentence ranking,
and paraphrase detection. The last, when combined
with basic pairwise statistics, becomes competitive
with the state of the art which incorporates much
more complicated features and hand-engineering.
On the task of semantic relatedness, the model of
Kiros et al. (2015) outperformed all previous sys-
tems from the SemEval 2014 competition despite
its simplicity and the lack of feature engineering.
The authors also report good results on a number of
classification benchmarks for evaluating sentence
representation learning methods.

The model’s consistently good results on a va-
riety of tasks motivated us to apply these vectors
on our own task, which relies on the interpretation
of sentences. We encode the sentences obtained
from the preprocessing step into skip-thoughts us-
ing Kiros et al. (2015)’s encoder, which gives four
feature vectors with 4,800 dimensions with values
ranging from −0.2 to 0.2.

3.3 Classification

The final step in our system is classifying instances
using an SVM classifier, whose hyperparameters
were optimized with a 5-fold cross-validated grid
search.1 We also explored Gaussian Processes,
Random Forests, and AdaBoost models, which
were all outperformed by the SVM. Input features

1We obtained best results on the dev set with: gamma=0.3,
C=3.8, degree=2, kernel =‘poly’.

1134

Classifier Features Dev accuracy score Test accuracy score

AdaBoost W ′0,W
′
1, R, C 0.614 0.520

Random forest W ′0,W
′
1, R, C 0.623 0.498

Gaussian process W ′0,W
′
1, R, C 0.642 0.547

SVM W0,W1, R, C 0.630 0.538
W ′0,W

′
1, R, C 0.642 0.536

W0 −W1, R 0.661 0.570
W ′0 −W ′1, R, C 0.665 0.561
W ′0 −W ′1, R 0.687 0.552∗

Table 1: Accuracy scores of model variants. All models have skip-thought vectors as features, where R stands
for reason, C for claim, W1 and W2 for warrants, and, W

′
1 and W

′
2 for warrant word differences vectors. (∗ The

official results are lower (0.541) due to an error while preparing the output)

are created by concatenating skip-thought vectors
obtained in the previous step. We experimented
with different variants of features by applying arith-
metic operations on the vectors before concatenat-
ing them, i.e., calculating the difference between
warrants. It should be noted that this difference
is calculated as an element-wise subtraction of the
vectors, as opposed to the word set difference in the
preprocessing step. Furthermore, we experimented
with two variations of skip-thought vectors – one
with the original warrants intact (W0, W1) and one
with the warrant subset differences (W ′0, W ′1).

4 Evaluation

4.1 Dataset Analysis
The dataset consists of 1210 training in-
stances, 317 validation instances, and 445
test instances. Each instance is a tuple
(W1,W2, R, C, debateTitle, debateInfo, y), with
y as the label of the correct warrant (0 for W1 or 1
for W2). Among the 1210 training instances, there
are 111 different debate titles and 169 different
claims, indicating the diversity of the training set.
Furthermore, we found that 47.75% of the debate
titles had unanimous claims (all for or all against)
and 56.69% of the claims were affirmative, but
only 21.62% had a balanced number of claims for
both sides of the debate (a difference of 10% or
less). The debate title Do We Still Need Libraries?
was the most common debate title, and it had unan-
imously affirmative claims. Around 35% of the
instances contained warrants worded differently, as
opposed to being directly negated (by adding not).
All of this presented a challenge in training the sys-
tem, since the dataset is small, highly variable, and
involves multiple domains.

4.2 Results

The official evaluation measure for this task was
the accuracy of the classified instances. In the de-
velopment phase, the system showed promising
results – 0.690 accuracy on the validation set, after
training with only the training set. Table 1 shows
performances of the model variants we explored.
Interestingly, the best results were obtained using
the least amount of data – the difference between
the modified warrants and only the reason, com-
pletely disregarding the claim. On the test set, how-
ever, the results were much lower, the official result
being 0.541. The final result surprised us, since the
system showed good results using various “plain”
classifiers without fine-tuning the hyper-parameters
(around 0.60). We hypothesize that this was due to
overfitting, which was difficult to avoid completely
of the small size of the dataset.

5 Conclusion

The argument reasoning comprehension task, rec-
ognizing the warrant between a claim and a support-
ing reason, is a challenging but important task for
understanding human reasoning in argumentation.
We aim to solve the task by converting sentences
into skip-thought vectors and classifying justifying
warrants given claims and reasons using an SVM
model. This approach showed some promising re-
sults in the development stage (69% accuracy), but
did not succeed to adequately generalize in order to
provide competitive results in the test stage (54%
accuracy). Besides using a larger sample for train-
ing, this system could be improved by applying
transfer learning from other similar tasks, such as
paraphrase detection or textual entailment.

1135

Acknowledgment

This research has been partly supported by the
European Regional Development Fund under the
grant KK.01.1.1.01.0009 (DATACROSS).

References
Islam Beltagy, Stephen Roller, Pengxiang Cheng, Ka-

trin Erk, and Raymond J Mooney. 2015. Represent-
ing meaning with a combination of logical form and
vectors. CoRR, abs/1505.06816.

Filip Boltužić and Jan Šnajder. 2016. Fill the gap! Ana-
lyzing implicit premises between claims from online
debates. In Proceedings of the 3rd Workshop on Ar-
gument Mining, pages 124–133.

Filip Boltužić and Jan Šnajder. 2014. Back up your
stance: Recognizing arguments in online discus-
sions. In Proceedings of the First Workshop on Ar-
gumentation Mining, pages 49–58.

Samuel R. Bowman, Gabor Angeli, Christopher Potts,
and Christopher D. Manning. 2015. A large anno-
tated corpus for learning natural language inference.
arXiv preprint arXiv:1508.05326.

Elena Cabrio and Serena Villata. 2012. Natural lan-
guage arguments: A combined approach. In Pro-
ceedings of the 20th European Conference on Artifi-
cial Intelligence, pages 205–210. IOS Press.

Kyunghyun Cho, Bart van Merrienboer, Çaglar
Gülçehre, Fethi Bougares, Holger Schwenk, and
Yoshua Bengio. 2014. Learning phrase representa-
tions using RNN encoder-decoder for statistical ma-
chine translation. CoRR, abs/1406.1078.

Junyoung Chung, Çaglar Gülçehre, KyungHyun Cho,
and Yoshua Bengio. 2014. Empirical evaluation of
gated recurrent neural networks on sequence model-
ing. CoRR, abs/1412.3555.

Ido Dagan, Oren Glickman, and Bernardo Magnini.
2006. The PASCAL recognising textual entailment
challenge. In Machine learning challenges. evalu-
ating predictive uncertainty, visual object classifica-
tion, and recognising tectual entailment, pages 177–
190. Springer.

Ivan Habernal, Henning Wachsmuth, Iryna Gurevych,
and Benno Stein. 2018. SemEval-2018 Task 12:
The Argument Reasoning Comprehension Task. In
Proceedings of the 12th International Workshop on
Semantic Evaluation (SemEval-2018), page (to ap-
pear), New Orleans, LA, USA. Association for Com-
putational Linguistics.

Kazi Saidul Hasan and Vincent Ng. 2014. Why are
you taking this stance? Identifying and classifying
reasons in ideological debates. In Proceedings of the
2014 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 751–762.

Ryan Kiros, Yukun Zhu, Ruslan Salakhutdinov,
Richard S. Zemel, Antonio Torralba, Raquel Urta-
sun, and Sanja Fidler. 2015. Skip-thought vectors.
CoRR, abs/1506.06726.

Ran Levy, Yonatan Bilu, Daniel Hershcovich, Ehud
Aharoni, and Noam Slonim. 2014. Context depen-
dent claim detection. In Proceedings of COLING
2014, the 25th International Conference on Compu-
tational Linguistics: Technical Papers, pages 1489–
1500.

Marco Lippi and Paolo Torroni. 2015. Context-
independent claim detection for argument mining.
In IJCAI, volume 15, pages 185–191.

Marco Marelli, Luisa Bentivogli, Marco Baroni, Raf-
faella Bernardi, Stefano Menini, and Roberto Zam-
parelli. 2014. SemEval-2014 Task 1: Evaluation of
compositional distributional semantic models on full
sentences through semantic relatedness and textual
entailment. In Proceedings of the 8th international
workshop on semantic evaluation (SemEval 2014),
pages 1–8.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey
Dean. 2013. Efficient estimation of word represen-
tations in vector space. CoRR, abs/1301.3781.

Ruty Rinott, Lena Dankin, Carlos Alzate Perez,
Mitesh M. Khapra, Ehud Aharoni, and Noam
Slonim. 2015. Show me your evidence-an automatic
method for context dependent evidence detection.
In Proceedings of the 2015 Conference on Empiri-
cal Methods in Natural Language Processing, pages
440–450.

Tim Rocktäschel, Edward Grefenstette, Karl Moritz
Hermann, Tomáš Kočiskỳ, and Phil Blunsom. 2015.
Reasoning about entailment with neural attention.
arXiv preprint arXiv:1509.06664.

Christian Stab and Iryna Gurevych. 2014. Identifying
argumentative discourse structures in persuasive es-
says. In Proceedings of the 2014 Conference on
Empirical Methods in Natural Language Processing
(EMNLP), pages 46–56.

Christian Stab and Iryna Gurevych. 2017. Parsing ar-
gumentation structures in persuasive essays. Com-
putational Linguistics, 43(3):619–659.

Stephen E. Toulmin. 2003. The uses of argument.
Cambridge University Press.

Yukun Zhu, Ryan Kiros, Richard S. Zemel, Ruslan
Salakhutdinov, Raquel Urtasun, Antonio Torralba,
and Sanja Fidler. 2015. Aligning books and movies:
Towards story-like visual explanations by watching
movies and reading books. CoRR, abs/1506.06724.

1136

Proceedings of the 12th International Workshop on Semantic Evaluation (SemEval-2018), pages 1137–1141
New Orleans, Louisiana, June 5–6, 2018. ©2018 Association for Computational Linguistics

Lyb3b at SemEval-2018 Task 12: Ensemble-based Deep Learning Models
for Argument Reasoning Comprehension Task

Yongbin Li1,2, Xiaobing Zhou1,∗
1Yunnan University, Kunming, Yunnan, P.R. China

2Zunyi Medical University, Zunyi, Guizhou, P.R. China
∗ Corresponding author, zhouxb.cn@gmail.com

Abstract
Reasoning is a crucial part of natural language
argumentation. In order to comprehend an ar-
gument, we have to reconstruct and analyze its
reasoning. In this task, given a natural lan-
guage argument with a reason and a claim, the
goal is to choose the correct implicit reason-
ing from two options, in order to form a rea-
sonable structure of (Reason, Warrant, Claim).
Our approach is to build distributed word em-
bedding of reason, warrant and claim respec-
tively, meanwhile, we use a series of frame-
works such as CNN model, LSTM model,
GRU with attention model and biLSTM with
attention model for processing word vector.
Finally, ensemble mechanism is used to inte-
grate the results of each framework to improve
the final accuracy. Experiments demonstrate
superior performance of ensemble mechanism
compared to each separate framework. We are
the 11th in official results, the final model can
reach a 0.568 accuracy rate on the test dataset.

1 Introduction

Argument reasoning comprehension is a crucial
part of natural language argumentation, and the re-
alization of argument reasoning requires the un-
derstanding of the deep meaning of the text by
the computer. At the same time, argument rea-
soning is also an important evaluation criterion
for the understanding of natural language by com-
puter. This paper is based on the argument rea-
soning comprehension task proposed by (Haber-
nal et al., 2018), which proposed a complex, yet
scalable crowdsourcing process, and created a new
freely licensed dataset based on authentic argu-
ments from news comments. The dataset consists
of three parts: train dataset, validation dataset and
test dataset, with the quantity being 1210, 316 and
444 respectively.

The task is formally defined as follow: given
an argument consisting of a reason R and a claim

C along with the title and a short description of
the debate they occur in, identify the correct war-
rant W from two candidates, the goal is to select
the correct warrant W that explains reasoning of
this particular argument. There are only two op-
tions given and only one answer is correct. The
key point of the task is that it is difficult to find
the answer through the shallow semantics, and the
answer is usually implicit.

Being a binary classification task, through pre-
liminary experiment, our approach is combining
debate title and description into reason, and split-
ting a sample {R (with debate title and de-
scription) ; C; W 0; W 1; correct label} into
two quadruples, which are {R; C; W 0; label}
and {R; C; W 1; label}. On the validation,
we employ the same processing mode, determin-
ing the matching degree of fit between a quadru-
ples, the highest will be chosen. The four main
deep learning(DL) frameworks we employed are
based on Convolutional Neural Network(CNN)
model, Long Short-Term Memory(LSTM) model,
GRU with attention model and Bidirectional Long
Short-Term Memory (biLSTM) with attention
model, which are based on utilizing word dis-
tributed representation on R and C and W respec-
tively, on top of models, a dense layer is used to
determine the matching degree.

In our paper, an ensemble mechanism is intro-
duced into neural network (NN) models, we in-
tegrate the results of each model to improve the
final accuracy. Experiments demonstrate superior
performance of ensemble mechanism compared to
each separate model. For confirming the effect of
ensemble method, we use each separate model as
a reference.

1137

embedding embedding

reason warrant

embedding

claim

CNN

Maxpool

CNN

Maxpool

CNN

Maxpool

CNN

Maxpool

CNN

Maxpool

CNN

Maxpool

Dropout Dropout Dropout

Flatten Flatten Flatten

Dense

Softmax

concatenate
‖

Figure 1: The architecture of CNN framework

2 Related work

An argument consists of a claim and multiple
premises was pointed out in (Damer, 2009). Toul-
min elaborated on a model of argument in which
the reason supports the claim on behalf of a war-
rant. The abstract structure of an argument then
is reason → (since) warrant → (therefore) claim.
But, making comprehending and analyzing argu-
ments is hard, for claims and warrants are usu-
ally implicit (Freeman, 2011). The phenomenon is
referred to as common knowledge (Macagno and
Walton, 2014).

Previous, feature extraction and semantic anal-
ysis are usually used in natural language argumen-
tation. With the development of neural networks,
we adopt the method of word distributed repre-
sentation from (Hinton, 1986), CNN model refers
to (Kim, 2014), the LSTM model from (Hochre-
iter and Schmidhuber, 1997) and be improved
by (Graves et al., 2013), the attention mecha-
nism from (Hermann et al., 2015), eventually con-
verted the task into a classification problem (Wang
and Nyberg, 2015). Meanwhile, inspired by the
ensemble method in statistical learning domain,
we develop a very simple but efficient integrated
method.

3 Model description

In this section, we describe the four main pro-
posed deep learning frameworks, the framework
architectures are shown in figure 1 to 4. The main
idea of these different systems is the same: learn
a distributed vector representation of given reason
and claim and warrant candidates, and use a dense
layer to measure the matching degree.

embedding embedding

reason warrant

embedding

claim

LSTM

Dropout

LSTM LSTM

Softmax

DropoutDropout

Dense

‖ concatenate

Figure 2: The architecture of LSTM framework

3.1 CNN framework

The first framework is based on CNN model. Step
one is to obtain word embedding by pre-trained
word2vec (Mikolov et al., 2013), the word em-
bedding provides the distributed representation for
each token in reason, claim and warrant candi-
dates respectively. The vectors have dimension-
ality of 300 and were trained by 100 billion words
of Google News, and was initialized from an un-
supervised neural language model.

Reason, claim and warrant will be transformed
to a word vector matrix and be entered into CNN
layer respectively. In order to get more compos-
ite representation of semantic features, we adopted
double layer CNN model. The numbers of filters
are 64 and 32, and the filter size is set as 3, after
each CNN layer, we resort to a MaxPooling layer
of size 2.

Above the CNN layer, the output of rea-
son, claim and warrant are merged to one and
performed flatten operations, through a dense
layer, the final output is passed through a two-
dimensional softmax layer.

3.2 LSTM framework

LSTM is a special type of RNN that can learn to
rely on long-distance history and the immediate
previous hidden vector, its a remarkable variation
of RNN to alleviate the gradient vanish problem.

In the same way of producing word distribution
vector representation in embedding layer, the dif-
ference is that, as the LSTM model can process
variable length sequences, so we employ masking
method to skip (filter out) time steps whose tokens
are equal to zero. Above the embedding layer, we
introduced the LSTM layer with unit number of
64. Through the LSTM layer, reason, claim and
warrant will be transformed to a vector respec-
tively.

1138

embedding embedding

reason warrant

embedding

claim

LSTM

Dropout

LSTM LSTM

Dense

Softmax

concatenate

* *

DropoutDropout

multiply

Flatten

‖

Figure 3: The architecture of GRU framework

3.3 GRU with attention

Like the LSTM framework, the masking method
is used in the embedding layer. Reason, claim
and warrant will be transformed to a word vec-
tor matrix and be entered into GRU layer respec-
tively. Gated recurrent unit (GRU), was proposed
by (Cho et al., 2014) to make each recurrent unit to
adaptively capture dependencies of different time
scales. Similarly to the LSTM unit, the GRU has
gating units that modulates the flow of information
inside the unit, without having a separate memory
cells. Unlike the LSTM framework, GRU with at-
tention return full output sequences, instead of the
final output of the model.

Through the GRU layer, reason, claim and war-
rant are converted into three vector matrices. Now,
we investigate a state-of-the-art attention model
for the warrant vector generation based on claim
which is called fact matrix, and the claim vector
generation based on warrant which is called at-
tention matrix. An attention mechanism are used
to alleviate weakness by dynamically aligning the
more informative parts. Specifically, attention
model gives more weights on certain words, just
like tf-idf for each word, however, the weight is
calculated by another vector. Final, we merge the
two sequences to one and perform flatten opera-
tions.

3.4 biLSTM with attention

The framework is similar to the above one, just
changing the GRU model into a biLSTM model,
Single direction LSTMs suffers a weakness of not
utilizing the contextual information from the fu-
ture tokens. biLSTM utilizes both the previous
and future context by processing the sequence on
two directions, and generates two independent se-
quences of LSTM output vectors.

embedding embedding

reason warrant

embedding

claim

BiLSTM

Dropout

BiLSTM BiLSTM

Dense

Softmax

concatenate

* *

DropoutDropout

multiply

Flatten

‖

Figure 4: The architecture of biLSTM framework

4 Ensemble Methods

Ensemble methods is an important method in sta-
tistical learning, which combines a number of
weak models into a strong model through a certain
combination. The most famous of them are the
Bagging algorithm and the Boosting algorithm.

Our method is inspired by the bagging method,
the differences between our method and the tradi-
tional bagging method are as follows: we use sev-
eral strong classifiers for combination, and use all
the data to train a single model.

Specifically, we use three ensemble methods.
The first method is the soft voting based on Bag-
ging method, that is, each framework outputs a
class probability and takes the average to judge the
category. The second method is hard voting, each
framework predicts categories separately, and fi-
nally votes. Because four frameworks are used in
the paper, the weight of the best framework is set
to 2. The third method is finding the best weight
which is the best accuracy on the validation dataset
by the exhaustive method.

5 Experimental setup

Our approach in this task is realized by keras, we
use the accuracy on validation dataset to locate the
best parameters. All the results are taken three
times, and the average value is taken.

In the experiment, we use the loss function
of categorical cross entropy and the optimizer of
adaptive moment estimation. The length of rea-
son, claim and warrant tokens sequence all take
the maximum length, if the length is not enough,
then zero is added.

For comparison, we report the performance and
analysis of four frameworks in Table 1. Rows
(1) to (2), list accuracy of task originators models
on the validation set and the test set respectively

1139

Framework val test
1 Intra-warrant attention 63.8 55.6
2 Intra-warrant attention w/context 63.7 56.0
3 CNN 63.92 52.93
4 LSTM 66.46 54.95
5 GRU with attention 67.72 56.19
6 biLSTM with attention 67.09 57.21

Table 1: Results of originator and the four main frame-
works which our paper employed

Weight val test
soft voting 1 1 1 1 68.35 56.85
hard voting 1 1 1 2 68.03 56.63

exhaustion weight
1 4 2 3 69.93 55.50
0 2 1 5 69.62 56.41
1 0 1 5 69.30 55.28

Table 2: Results of ensemble method

(Habernal et al., 2018), we take the results as the
baseline to measure other frameworks. Rows (3)
to (6) corresponds to our main four frameworks.
Row (3) achieve acceptable results on validation
set compared to the baseline. Row (4) has been
greatly improved compared with CNN on the vali-
dation set and test set, especially on the validation
set, reaching a 66.46% accuracy rate, proving that
the LSTM model is more advantageous in process-
ing sequence text. Row (5) has a better effect on
the validation set and test set, the results have ex-
ceeded to the baseline. In these four major frame-
works, the result of Row (6) is the most satisfying,
improves over the baseline already, especially on
the validation set, 4% higher than the baseline, on
the test set, the accuracy rate of 57.21% is also
reached. From the Table 1, we can perceive that
the attention mechanism is beneficial to improve
the capability of the model.

We report the performance of ensemble method
in Table 2. As can be seen from the result, we can
observe that Row (1) uses the soft voting method,
which achieves a 68.35% accuracy rate on the val-
idation set, which surpasses all the single frame-
works. The performance on the test set is also
good, reaching 56.85%, more than the baseline
model 1%, though it is not as good as the best re-
sult of single framework, but it is also a good re-
sult. Row (2) is the hard voting method, which is
slightly worse than the soft voting. The weight of
Rows (3) to (5) which were found on validation set
achieve the highest accuracy on the validation set,
more than 69%, this is a huge improvement, but
the performance on the test dataset is not the best,
the reason may be the overfitting caused by this

method. It needs to be emphasized that soft vot-
ing method is adopted in the actual tasks, that
is, the Row (1). The other methods listed here
are only theoretical discussions on the ensemble
method from the perspective of research.

Through these experiments, we can conclude
that remarkable results can be achieved through
the ensemble method. At the same time, the soft
voting method is better than other methods, al-
though the results of the validation dataset are not
the best in three method, but the effect on test
dataset is the best.

6 Conclusion

In this paper, we solve the Argument Reason-
ing Comprehension Task by employing four main
frameworks and ensemble mechanism. Through
a series of attempts, our experimental results
demonstrate that: comparing to a single frame-
work, ensembling a series of models can effec-
tively improve the accuracy of the model; the re-
sults of the single framework are unstable, and the
stability of the model can be improved effectively
through the ensemble method, the accuracy of the
integrated system on the test set is guaranteed to
be above 55%; in the experiment, soft voting is a
good way to integrate and achieve better results.

Acknowledgments

This work was supported by the Natural Sci-
ence Foundations of China No.61463050, No.617-
02443, No.61762091, the NSF of Yunnan
Province No. 2015FB113, the Project of Innova-
tive Research Team of Yunnan Province.

References
Kyunghyun Cho, Bart Van Merriënboer, Caglar Gul-

cehre, Dzmitry Bahdanau, Fethi Bougares, Holger
Schwenk, and Yoshua Bengio. 2014. Learning
phrase representations using rnn encoder-decoder
for statistical machine translation. arXiv preprint
arXiv:1406.1078.

T Edward Damer. 2009. Attacking faulty reasoning: A
practical guide to fallacy-free reasoning. Wadsworth
Cengage Learning,.

James B Freeman. 2011. Argument structure: Rep-
resentation and theory. Argumentation Library,
121(7):1194–1206.

Alex Graves, Abdel-rahman Mohamed, and Geoffrey
Hinton. 2013. Speech recognition with deep re-
current neural networks. In Acoustics, speech and

1140

signal processing (icassp), 2013 IEEE international
conference on, pages 6645–6649. IEEE.

Ivan Habernal, Henning Wachsmuth, Iryna Gurevych,
and Benno Stein. 2018. The Argument Reason-
ing Comprehension Task: Identification and Recon-
struction of Implicit Warrants. In 16th Annual Con-
ference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies. Association for Computational
Linguistics.

Karl Moritz Hermann, Tomas Kocisky, Edward
Grefenstette, Lasse Espeholt, Will Kay, Mustafa Su-
leyman, and Phil Blunsom. 2015. Teaching ma-
chines to read and comprehend. In Advances in Neu-
ral Information Processing Systems, pages 1693–
1701.

Geoffrey E Hinton. 1986. Learning distributed repre-
sentations of concepts. In Proceedings of the eighth
annual conference of the cognitive science society,
volume 1, page 12. Amherst, MA.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural computation,
9(8):1735–1780.

Yoon Kim. 2014. Convolutional neural net-
works for sentence classification. arXiv preprint
arXiv:1408.5882.

Fabrizio Macagno and Douglas Walton. 2014. Emotive
language in argumentation. Cambridge University
Press.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013. Distributed representa-
tions of words and phrases and their compositional-
ity. In Advances in neural information processing
systems, pages 3111–3119.

Di Wang and Eric Nyberg. 2015. A long short-term
memory model for answer sentence selection in
question answering. In Proceedings of the 53rd An-
nual Meeting of the Association for Computational
Linguistics and the 7th International Joint Confer-
ence on Natural Language Processing (Volume 2:
Short Papers), volume 2, pages 707–712.

1141

Proceedings of the 12th International Workshop on Semantic Evaluation (SemEval-2018), pages 1142–1145
New Orleans, Louisiana, June 5–6, 2018. ©2018 Association for Computational Linguistics

TRANSRW at SemEval-2018 Task 12: Transforming Semantic
Representations for Argument Reasoning Comprehension

Zhimin Chen, Wei Song∗, Lizhen Liu
Information Engineering College

Capital Normal University
Beijing 100048, China

{zmchen, wsong, liz liu7480}@cnu.edu.cn

Abstract

This paper describes our system in SemEval-
2018 task 12: Argument Reasoning Compre-
hension. The task is to select the correct war-
rant that explains reasoning of a particular ar-
gument consisting of a claim and a reason. The
main idea of our methods is based on the as-
sumption that the semantic composition of the
reason and the warrant should be close to the
semantic representation of the corresponding
claim. We propose two neural network mod-
els. The first one considers two warrant can-
didates simultaneously, while the second one
processes each candidate separately and then
chooses the best one. We also incorporate
sentiment polarity by assuming that there are
kinds of sentiment associations between the
reason, the warrant and the claim. The exper-
iments show that the first framework is more
effective and sentiment polarity is useful.

1 Introduction

Argument reasoning is a key step in the process
of argumentation mining and is a very challeng-
ing task in natural language processing and artifi-
cial intelligence. Maccartney and Manning (2008)
suggested that the key factor in the study of natu-
ral language understanding is the mastery of nat-
ural language reasoning. When we argue for an
argument, it is necessary to reconstruct the implic-
it reasoning (Newman and Marshall, 1992; Haber-
nal et al., 2017) under the relevant assumption and
premise to get a simple and concise explanation of
the whole reasoning process.

The Argument Reasoning Comprehension task
is defined as following:

Given an argument consisting of a claim C and
a reason R, the goal is to select the correct war-
rant that explains reasoning of this particular ar-

∗*corresponding author

gument. There are only two options W0 and W1

given and only one answer is correct.
Our solution is based on the assumption that the

semantic composition of the reason and the true
warrant should be close to the semantic represen-
tation of the claim. We propose two frameworks.
First one is dependent on the task settings that two
warrant candidates are considered simultaneously
to make a decision. The second one is more gener-
al that the task is simplified as determine whether
a warrant candidate can explain argument reason-
ing. We found that the first one performed better.

In addition, we attempt to incorporate sentimen-
t polarity to capture the sentiment association be-
tween the reason, the warrant and the claim. The
experimental results demonstrate that adding sen-
timent polarity can improve the performance.

The final result is produced by an ensemble ap-
proach that combines the outputs of multiple s-
ingle models. Our system achieves an accuracy
of 0.67 on development dataset and 0.57 on test
dataset.

2 System Description

2.1 Model1: Competitive Model

The first proposed model is designed depending
on the specific task setting. The architecture of
Modell is shown in Figure 1. We first get the rep-
resentations of the claim C, the reason R and the
two warrant candidates W0 and W1. Then we use
a transformer to get the representation of a pseudo
claim, by compositing the reason R and a warran-
t candidate W . Finally, the model predicts which
warrant candidate is the correct one by consider-
ing the claim C and two pseudo claims.

2.1.1 Sentence Representation
Figure 2 illustrates the architecture for getting the
sentence representation.

1142

Softmax

composition

Concatenation

Sentence Representation

claim warrant0 reason warrant1

composition

Figure 1: The architecture of Model1: Competitive
Model.

word[1] …… word[80]

word embedding
+ sentiment polarity

sentence

Convolutional
neural

network

Sentence Representation

Representation layer

word embedding
+ sentiment polarity

……

Figure 2: The representation of the sentence obtained
by the convolutional neural network.

Word Embeddings. We first map each word to a
word embedding, which is a dense distributed vec-
tor. Since the dataset of this task is relatively smal-
l, we hope the word embeddings can improve gen-
eralization. The word embeddings we used were
pre-trained and released by Huang et al. (2012).
Sentiment Polarity of Words. We expect that
there are relations between the claim, the reason
and the warrant. For example, they may have the
same sentiment polarity, while there may be polar-
ity conflicts when involving a false warrant.

Therefore, we use the sentiment polarity of
words as a kind of common sense knowledge. The
negative words and positive words come from the
dictionary provided by Hu and Liu (2004). The
polarity representation of each word is a two di-
mensional vector. A positive word is represent-
ed as [1, 0] and a negative word is represented
as [0, 1]. The representation of out-of dictionary
words is [0, 0].

We concatenate the word embedding and senti-
ment polarity representation together as the final
representation of a word.
Convolutional Neural Networks. The word em-

beddings are feed into a convolutional neural net-
work (CNN) to get the representation of a sen-
tence. We mainly follow the architecture of Kim
(2014), which reports excellent performance for
several sentence classification tasks. The dimen-
sion of word embeddings is k and the sentence
length is fixed. A sentence s consisting of n word-
s can be represented as the concatenation of the
embeddings of the n words:

s = ~e1 ⊕ ~e2 ⊕ · · · ⊕ ~en, (1)

where ~ei is the k-dimensional word vector of the
ith word. A convolution operation involves a fil-
ter w ∈ Rh,k, which is applied to a window of h
words to produce a new feature ai:

ai = f(w · si:i+h−1 + b), (2)

where f is a non-linear activation function, which
is set to Relu (Nair and Hinton, 2010) and b is a
bias term. The feature map a can be represented
as

a = [a1, a2, · · · , an−h+1]. (3)

Then a max-pooling operation is applied to the re-
sulted feature map to get the sentence representa-
tion.

In experiments, k = 52, h = 3, and we used
64 filters. A dropout layer is added after the word
embedding layer with a probability 0.25. The rep-
resentations of the claim, reason and warrant can-
didates are all learned in this way.

2.1.2 Pseudo Claim Representation
We assume that the claim is a semantic composi-
tion of a reason and a warrant. Therefore, we use
a composition operator to combine the representa-
tions of the reason and a warrant candidate to get
the representation of a pseudo claim, noted as C0

and C1 respectively.
We have tried four composition operators: AD-

D, INNERPRODUCT, CONCATENATION and FUL-
LYCONNECTEDNETWORK. In experiments, ADD

performs best.

2.1.3 Prediction
Finally, we connect the representations of C, C0

and C1 to fully connect layers and concatenate
them into one representation. And we connect the
representation to the output layer through a non-
linear transformation layer (Relu). The output is
expected to be 1 if W1 is right and expected to be
0 if W0 is right. In experiments, we permuted the
order of W0 and W1 to enlarge the training dataset.

1143

2.2 Model2: Isolation Model

We consider a more general setting: Given the
claim and reason of argument, determine whether
a warrant candidate can support the argumenta-
tion. As shown in Figure 3, Model2 is just a
simplification of Model1. It processes one war-
rant candidate individually. The output indicates
whether the given warrant candidate is right.

claim reason warrant

Softmax

composition

Concatenation

Sentence Representation

Figure 3: The architecture of Model2: Isolation Model.

For W0 and W1, we can get their corresponding
probability p(1|W0) and p(1|W1). We choose the
one with a higher probability as the predicted right
warrant for the task.

2.3 Ensemble Model

We have already described the two proposed mod-
els. For each model, we trained several times
with different initialization parameters. Finally,
we chose 3 models from Model1 and 3 models
from Model2, which performed well on the de-
velopment dataset. We used the prediction prob-
abilities of the 6 models as features and trained a
random forest classifier for ensemble (Pal, 2005).

3 Evaluation

We conducted experiments on the official datasets
of SemEval-2018 Task 12. The model parameter-
s are trained using the training dataset and tuned
based on the performance of development dataset.
We will report the results on both development
dataset and test dataset. Accuracy is the official
evaluation metric. We also report precision, recall
and F1 score.

We are interested in two research questions:

• RQ1: Which proposed model is more effec-
tive?

• RQ2: Whether incorporating sentiment po-
larity can benefit this task?

3.1 Results on Development Dataset

Table 1 shows the results on the developmen-
t dataset. The accuracy of the random baseline is
0.503. The proposed models significantly outper-
form the baseline.

By adding sentiment polarity representations,
Model1 and Model2 both improve a lot. The ac-
curacy of Model1 increases 3.16%, while the ac-
curacy of Model2 increases 2.43%. The precision,
recall and F1 score all have the same trend. With
the sentiment polarity added, the Model1 performs
better than Model2. Without the sentiment polari-
ty, their performance is very close.

3.2 Results on Test Dataset

Table 2 shows the results on test dataset. The
random baseline submitted by task organizer is
0.527. The accuracy of the ensemble model is
0.57, which outperforms the random baseline by
4.3%. After the task organizer released the gold
test dataset, we predicted it again using the ensem-
ble model and the accuracy is 0.5811.

Similar to the results on development dataset,
with the sentiment polarity added, both Model1
and Model2 achieve a better performance. We can
see that on test dataset, Model1 outperforms Mod-
el2 no matter using or removing sentiment polari-
ty representations. When using sentiment polarity,
the performance difference is larger.

3.3 Discussion

From the experimental results on the development
dataset and the test dataset, we can see that sen-
timent polarity is always useful for distinguishing
the correct warrant from the false one. Model1
performs slightly better than Model2. It is rea-
sonable since Model1 considers richer information
than Model2. But Model2 actually is a more gen-
eral model. With sentiment polarity added, the ad-
vantage of Model1 is amplified. This also indi-
cates the usefulness of sentiment polarity of word-
s.

The model performance is better on the devel-
opment dataset than on the test dataset. The pro-
posed models may still suffer the overfitting prob-
lem, since the training dataset is not very large.

4 Conclusion

In this paper we presented our system that partic-
ipated in the SemEval-2018 Task 12: Argumen-
t Reasoning Comprehension. Our assumption is

1144

Model Precision Recall F1 score Accuracy
Random Baseline - - - 0.503

Model1 0.6380± 0.018 0.6276± 0.010 0.6216± 0.010 0.6276± 0.010
w/o polarity 0.5982± 0.007 0.5960± 0.006 0.5932± 0.005 0.5960± 0.006

Model2 0.6244± 0.013 0.6203± 0.016 0.6157± 0.019 0.6203± 0.016
w/o polarity 0.5968± 0.018 0.5960± 0.017 0.5946± 0.017 0.5960± 0.017

Table 1: Results on the development dataset and w/o polarity means sentiment polarity representations of words
are removed.

Model Precision Recall F1 score Accuracy
Random Baseline - - - 0.527

Model1 0.5457± 0.013 0.5420± 0.013 0.5347± 0.007 0.5420± 0.013
w/o polarity 0.5381± 0.009 0.5338± 0.011 0.5277± 0.010 0.5338± 0.011

Model2 0.5392± 0.019 0.5338± 0.021 0.5263± 0.028 0.5338± 0.021
w/o polarity 0.5340± 0.016 0.5285± 0.018 0.5227± 0.022 0.5285± 0.018

Ensemble 0.5806 0.5811 0.5805 0.5811

Table 2: Results on the test dataset and w/o polarity means sentiment polarity representations of words are
removed.

that the semantic composition of the reason and
the warrant should be close to the semantic rep-
resentation of the corresponding claim. We pro-
posed two neural networks based models: a com-
petitive model that knows two warrant candidates
and an isolation model that only considers one
candidate for classification. In particular, we in-
corporated sentiment polarity of words into the
models. The experimental results demonstrate that
incorporating sentiment polarity of words always
improves the performance. The competitive mod-
el is slightly better than the isolation model. All
proposed models outperform the random baseline
by a large margin.

Acknowledgements

The research work is funded by the National Nat-
ural Science Foundation of China (No.61402304),
Beijing Municipal Education Commission (K-
M201610028015, Connotation Development) and
Beijing Advanced Innovation Center for Imaging
Technology.

References
Ivan Habernal, Henning Wachsmuth, Iryna Gurevych,

and Benno Stein. 2017. The argument reasoning
comprehension task.

Minqing Hu and Bing Liu. 2004. Mining and summa-
rizing customer reviews. In Tenth ACM SIGKDD
International Conference on Knowledge Discovery

and Data Mining, Seattle, Washington, Usa, August,
pages 168–177.

Eric H. Huang, Richard Socher, Christopher D. Man-
ning, and Andrew Y. Ng. 2012. Improving word
representations via global context and multiple word
prototypes. In Meeting of the Association for Com-
putational Linguistics: Long Papers, pages 873–
882.

Yoon Kim. 2014. Convolutional neural networks for
sentence classification. In Proceedings of the 2014
Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP), pages 1746–1751.

Bill Maccartney and Christopher D. Manning. 2008.
Modeling semantic containment and exclusion in
natural language inference. In International Confer-
ence on Computational Linguistics, pages 521–528.

Vinod Nair and Geoffrey E. Hinton. 2010. Rectified
linear units improve restricted boltzmann machines.
In International Conference on International Con-
ference on Machine Learning, pages 807–814.

Susan E. Newman and Catherine C. Marshall. 1992.
Pushing toulmin too far: Learning from an argument
representation scheme. Xerox Parc Tech Rpt Ssl.

M. Pal. 2005. Random forest classifier for remote sens-
ing classification. International Journal of Remote
Sensing, 26(1):217–222.

1145

Index

Øvrelid, Lilja, 805
Çöltekin, Çağrı, 34
Šnajder, Jan, 842, 1133

Abdou, Mostafa, 210, 1008
Abdullah, Malak, 350
Abreu, Carla, 667
Ahmad, Tariq, 200
Ahmed, Hanady, 200
Ahmed, Usman, 581
Aina, Laura, 65
Aizawa, Akiko, 793
Akkasi, Abbas, 842
Alexa, Larisa, 405
Amarandei, Sandra Maria, 177
Angelova, Galia, 497
Aono, Masaki, 156
Arampatzis, Avi, 466
Arroyo-Fernández, Ignacio, 977
Arshad Islam, Muhammad, 581
Asamoah Owusu, Dennis, 400
Atanasov, Atanas, 497
Attia, Mohammed, 947
Augenstein, Isabelle, 385

Béchet, Nicolas, 919
Babaoglu, Ismail, 167
Badaro, Gilbert, 236
Balazs, Jorge, 537
Baldwin, Tim, 1124
Ballesteros, Miguel, 24
Barbieri, Francesco, 24
Barik, Biswanath, 858, 890
Baron, Alistair, 587
Barriere, Caroline, 725
Basile, Angelo, 470
Basile, Valerio, 24
Baziotis, Christos, 245, 438, 613
Beaulieu, Jonathan, 400
Bechikh Ali, Chedi, 167
Bellot, Patrice, 502
Berend, Gábor, 928
Berio, Giuseppe, 919
Bernier-Colborne, Gabriel, 725

Bethard, Steven, 88
Biemann, Chris, 990
Bin, Mao, 811
Bjerva, Johannes, 385
Bloom, David, 1078
Boleda, Gemma, 65
Boltuzic, Filip, 1133
Bouchekif, Abdesselam, 151
Brahmana, Chathurika, 853
Brassard, Ana, 1133
Bravo-Marquez, Felipe, 1
Brew, Chris, 894
Brychcín, Tomáš, 935
Buscaldi, Davide, 679
Butzke, Daniel, 816

Camacho-Collados, Jose, 24, 712
Can, Ethem F., 162
Cao, Jinghua, 286
Carpuat, Marine, 1022
Catt, Michael, 525
Changhai, Tian, 811
Charnois, Thierry, 679
Chauhan, Geeticka, 798
Chen, Chia-Ping, 226
Chen, Guanyi, 1017
Chen, Henry Y., 57
Chen, Hsin-Hsi, 1027
Chen, Jiangui, 313
Chen, Jing, 428
Chen, Mosha, 909
Chen, Wei, 428
Chen, Zhimin, 1142
Chersoni, Emmanuele, 990
Chi, Zewen, 313
Cho, Won Ik, 546
Choi, HongSeok, 773
Choi, Jihun, 1083
Choi, Jinho D., 57
Chronopoulou, Alexandra, 245
Ciobanu, Alina Maria, 963
Cohan, Arman, 831
Conrad, Stefan, 1114
Cook, Paul, 1013

1147

Corpas Pastor, Gloria, 972
Coster, Joël, 445

Dürlich, Luise, 607
Dallmann, Alexander, 836
Darari, Fariz, 81
Daval-Frerot, Guillaume, 151
De Bruyne, Luna, 123
De Clercq, Orphee, 123
de Wit, Simon, 454
Dearden, Edward, 587
Delli Bovi, Claudio, 712
Derczynski, Leon, 1068
Dernoncourt, Franck, 798
Dey, Lipika, 291
Dhyani, Dushyanta, 783
di Buono, Maria Pia, 842
Ding, Guanqi, 286
Ding, Peng, 1043, 1120
Dinu, Liviu P., 963
Dong, Zhenyuan, 286
Dragoni, Mauro, 102, 512, 848
Du, Pan, 345
Dumitru, Bogdan, 963
Duppada, Venkatesh, 18

Effrosynidis, Dimitrios, 466
El Jundi, Obeida, 236
El-Hajj, Wassim, 236
Elango, Venkatesh, 358
Ellinas, Nikolaos, 245, 438, 613
Elsayed, Ahmed, 88
Espinosa Anke, Luis, 24, 712
Evans, Richard, 553
Ezen-Can, Aysu, 162

Földiák, Péter, 928
Fan, Zhihao, 286
Faour, Ahmad, 919
Faruqui, Manaal, 947
Ferraro, Francis, 878
Finin, Tim, 878
Fles, can-Lovin-Arseni, Iuliana-Alexandra, 177
Fleischer, Daniel, 218
Fokkens, Antske, 940
Fu, Mingming, 874
Fung, Pascale, 264
Funke, Andreas, 1114

Gábor, Kata, 679
Gajananan, Kugamoorthy, 885
Galbraith, Byron, 863
Gamallo, Pablo, 953

Gambäck, Björn, 858, 890
Ganesh H. B., Barathi, 319, 329, 334, 486
Gao, Zi Yuan, 226
Ge, Xie, 1038
Gedeon, Tom, 449
Gee, Grace, 369
George, Anon, 334
Gerber, Luciano, 491
Ghanem, Bilal, 531
Ghazi, Wegdan, 576
Ghosh, Aniruddha, 570
Gifu, Daniela, 177, 405, 898
Ginés i Ametllé, Joan, 210
Girju, Roxana, 377
Gluhak, Martin, 842
Goharian, Nazli, 831
González, José-Ángel, 565, 968, 1034
Gowda, Prashanth, 339
Graff, Mario, 146
Grigoriev, Dmitry, 541
Grishin, Maxim, 995
Groot, Daphne, 454
Grune, Barbara, 816
Guibon, Gaël, 502
Guobin, Sui, 1129
Gupta, Raj Kumar, 256
Gurevych, Iryna, 763

Ha, Le An, 972
Haagsma, Hessel, 454
Habernal, Ivan, 763
Haddad, Hatem, 167
Haji Soleimani, Behrouz, 305
Hajishirzi, Hannaneh, 788
Hajj, Hazem, 236
Hakimi Parizi, Ali, 1013
Hardalov, Momchil, 497
Harzallah, Mounira, 919
Hassan, Arshia Zernab, 914
Helms, Casper Veistrup, 385
Henderson, John, 1078
Hercig, Tomáš, 133, 520, 935
Hernández Farías, Delia Irazú, 594, 643
Hettinger, Lena, 836
Himeno, Shinnosuke, 156
Hiray, Sushant, 18
Hollenstein, Nora, 689
Hongdou, Yao, 1038
Hoste, Veronique, 39, 123
Hotho, Andreas, 836
Huang, Hen-Hsen, 1027
Huang, Heyan, 313

Huang, Yongfeng, 51, 186, 410, 958
Hulub, Ionut, 898
Hurtado, Lluís-F., 565, 968, 1034
Husseini Orabi, Ahmed, 181
Husseini Orabi, Mahmoud, 181

Ilic, Suzana, 537
Ilievski, Filip, 70
Inkpen, Diana, 181
Issa Alaa Aldine, Ahmad, 919

J R, Naveen, 329, 486
Jabreel, Mohammed, 193
Jain, Royal, 18
Jiang, Zhengping, 1053
Jiménez-Zafra, Salud María, 128
Jin, Di, 798
Jin, Shuning, 482
Joshi, Anirudh, 1124
Joshi, Anupam, 878
Jung, Kyomin, 141

K P, Soman, 319, 329, 334, 486, 1003
K, Shalini, 319
Kain, Raslan, 236
Kang, Woo Hyun, 546
Kao, Hung-Yu, 1099
Karasalo, Maja, 109
Karyakin, Yuri, 541
Keiper, Thorsten, 826
Khaddaj, Alaa, 236
Kim, Nam Soo, 546
Kim, Taeuk, 1083
Kim, Yanghoon, 141
Kim, Youngmin, 300
King, Milton, 1013
Kiritchenko, Svetlana, 1, 305
Klubička, Filip, 924
Kolovou, Athanasia, 245, 438, 613
Konkol, Michal, 935
Kopev, Daniel, 497
Kotakonda, Bhaskar, 339
Koychev, Ivan, 497
Kravchenko, Dmitry, 172
Krebs, Alicia, 732
Kruizinga, Rémon, 454
Kuculo, Tin, 1133
Kuijper, Marloes, 279
Kulmizev, Artur, 210, 1008
Kulshreshtha, Devang, 638
Kumar M, Anand, 319, 329, 334, 486, 1003
Kumar Singh, Anil, 638

Lønning, Jan Tore, 805
Lai, Sunny, 741
Lall, Brejesh, 339
Lan, Man, 231, 433, 600, 999, 1048, 1094
Laparra, Egoitz, 88
Lauscher, Anne, 826
Lee, Changki, 655
Lee, Hwanhee, 141
Lee, Hyunju, 300, 773
Lee, Sang-goo, 1083
Lefever, Els, 39
Lenc, Ladislav, 133
Lenci, Alessandro, 732
Leoznov, Artem, 541
Leung, Kwong Sak, 741
Leung, Yee, 741
Li, Binyang, 286
Li, Chen, 707
Li, Jiangtong, 903
Li, Linlin, 707, 909
Li, Meng, 286
Li, Quanzhi, 674
Li, Ruizhe, 1017
Li, Xilian, 428
Li, Yongbin, 1073, 1137
Liang, He, 423
Liao, Quanlei, 1109
Liebeck, Matthias, 1114
Lin, Chenghua, 1017
Lin, Lei, 1089
Lino, Kenny W., 470
Liu, Bingquan, 1089
Liu, Chunhua, 1104
Liu, Jingming, 758
Liu, Junxin, 51, 186, 410
Liu, Lizhen, 1142
Liu, Lu, 1104
Liu, Man, 390
Liu, Wenjie, 1089
Liu, Yingchi, 674
Liu, Yuhan, 286
Lorent, Alina, 405
Lowry-Duda, Joanna, 985
Loyola, Pablo, 885
Lu, Wei, 697
Lu, Xingwu, 433
Luan, Yi, 788
Luo, Zhunchen, 811
Lyu, Zhonghao, 826

Ma, Chunping, 707
Maarouf, Alaa, 236

MacAvaney, Sean, 831
Madgula, Krishna, 868
Maffey, Luke, 97
Mahendra, Rahmad, 81
Mahendran, Darshini, 853
Maier, Wolfgang, 947
Makrai, Márton, 928
Maldonado, Alfredo, 924
Mamdouh, Sherine, 576
Mao, Rui, 1017
Mao, Xin, 433
Maoquan, Wang, 423
Marrese-Taylor, Edison, 537
Martin, Maite, 128
Matsuo, Yutaka, 537
Matwin, Stan, 305
Mayank Srivastava, Muktabh, 628
Mayorov, Vladimir, 821
McDermott, Matthew, 798
McInnes, Bridget, 97, 853
Meéndez-Cruz, Carlos-Francisco, 977
Meisheri, Hardik, 291
Meng, Kongming, 286
Merkhofer, Elizabeth, 1078
Meza, Ivan, 977
Mikhalkova, Elena, 541
Miranda-Jiménez, Sabino, 146
Mirza, Madiha, 507
Mirza, Paramita, 81
Mitkov, Ruslan, 553, 972
Moctezuma, Daniela, 146
Modi, Ashutosh, 747
Mohammad, Saif, 1, 305
Montes-y-Gómez, Manuel, 594
Moreau, Anatole, 151
Moreno, Antonio, 193
Morgan, Nicholas, 97
Mulki, Hala, 167

Naderi, Habibeh, 305
Nagoudi, El Moatez Billah, 364
Narayanan, Shrikanth, 245
Narwekar, Abhishek Avinash, 377
Navigli, Roberto, 712
Neumann, Günter, 778
Neves, Mariana, 816
Nguyen, Dai Quoc, 525
Nguyen, Dat Quoc, 525
Nie, Jian-Yun, 345
Niebler, Thomas, 836
Nikhil, Nishant, 628
Nikolaos, Athanasiou, 245, 438, 613

Nikolova, Ivelina, 497
Nilsson, Mattias, 109
Nissim, Malvina, 1008
Niven, Timothy, 1099
Nooralahzadeh, Farhad, 805
Nyegaard-Signori, Thomas, 385

Ochs, Magalie, 502
Olex, Amy, 97
Oliveira, Eugénio, 667
Onofrei, Mihaela, 898
Oramas, Sergio, 712
Ositelu, Oladipo, 863
Ostendorf, Mari, 788
Ostermann, Simon, 747

Přibáň, Pavel, 133
Padia, Ankur, 878
Palmer, Martha, 88
Pamungkas, Endang Wahyu, 649
Pan, Shimei, 878
Papalampidi, Pinelopi, 613
Paperno, Denis, 732
Paraskevopoulos, Georgios, 245, 438, 613
Paris, Cecile, 1124
Park, Cheoneum, 655
Park, Ji Ho, 264
Park, Youngja, 878
Pasini, Tommaso, 712
Patti, Viviana, 24, 643, 649
Pedersen, Ted, 395, 482, 507, 914
Peikos, Georgios, 466
Peng, Bo, 622
Phandi, Peter, 697
Pinkal, Manfred, 747
Pivovarova, Lidia, 172
Pla, Ferran, 565, 968, 1034
Plaza del Arco, Flor Miriam, 128
Ponzetto, Simone Paolo, 826
Pooladzadeh, Sara, 826
Postma, Marten, 70
Potamianos, Alexandros, 245, 438, 613
Pratap, Bhanu, 863
Prendinger, Helmut, 537

QasemiZadeh, Behrang, 679
Qayyum, Faiza, 581
Qingxun, Liu, 1038
Qiu, Wei, 909

R, Manikandan, 868
Rajendram, S Milton, 324, 633
Rama, Taraka, 34

Ramsay, Allan, 200
Rangel, Francisco, 531
Rangwani, Harsh, 638
Ravishankar, Vinit, 1008
Renslow, Tyler, 778
Reznikova, Sofia, 1068
Ribeiro, Alison, 415
Rohanian, Omid, 553, 972
Ronzano, Francesco, 24
Rosell, Magnus, 109
Rosso, Paolo, 531, 594, 643
Roth, Michael, 747
Rotsztejn, Jonathan, 689
Roy, Arpita, 878
Rozental, Alon, 218

S, Angel Deborah, 324, 633
S, Rajalakshmi, 324, 633
Sánchez-Vega, Fernando, 594
Saggion, Horacio, 24, 712
Saha, Snehanshu, 868
Salameh, Mohammad, 1
Samih, Younes, 947
San, Aidan, 560
Santilli, Andrea, 477
Santus, Enrico, 712, 990
Satoh, Fumiko, 885
Satyapanich, Taneeya, 878
Schönfelder, Gilbert, 816
Schumann, Anne-Kathrin, 679
Segarra, Encarna, 968, 1034
Segura-Bedmar, Isabel, 793
Sergeeva, Elena, 798
Shaikh, Samira, 350
Shan, Jiawei, 286
Shank, Daniel, 863
Shardlow, Matthew, 491
Shen, Kewei, 758
Sheng, Yixuan, 1048
Sherif, Myan, 576
Shiue, Yow-Ting, 1027
Shiyun, Chen, 423
Shuai, Wu, 811
Shwartz, Vered, 712
Si, Luo, 674, 707, 909
Sikdar, Utpal Kumar, 858, 890
Silberer, Carina, 65
Silva, Amila, 697
Silva, Nádia, 415
Sinnott, Richard O., 1124
Soldaini, Luca, 831
Sommerauer, Pia, 940

Song, Heejun, 655
Song, Qingqing, 419
Song, Wei, 1142
Sorodoc, Ionut-Teodor, 65
Speer, Robert, 985
Stein, Benno, 763
Steinberger, Josef, 935
Stierman, Nathalie Adriënne Jacqueline, 445
Strickhart, Laura, 1078
Suárez-Paniagua, Víctor, 793
Sun, Chengjie, 1089
Sun, Meng, 758
Sun, Qi, 1053
Suominen, Hanna, 449
Swanberg, Kevin, 507
Symeonidis, Symeon, 466
Sysoev, Andrey, 821

T T, Mirnalinee, 324, 633
Tang, Bingjie, 903
Taslimipoor, Shiva, 553, 972
Tellez, Eric S., 146
Thater, Stefan, 747
Tian, Junfeng, 1094
Trandabat, Diana, 177, 405, 898
Trenell, Michael, 525
Turcu, Ramona-Andreea, 177

Unnithan, Nidhin A, 319
Uppal, Karan, 358
Urena Lopez, L. Alfonso, 128

V, Hariharan, 486
Vallabhajosyula, Manikya Swathi, 914
Van Bruwaene, David, 181
van Dalen, Reinder Gerard, 445
Van Hee, Cynthia, 39
van Lenthe, Mike, 279
van Noord, Rik, 279
Veale, Tony, 570
Veldthuis, Hennie, 454
Vinayan, Vivek, 1003
Voronov, Alexander, 541
Vossen, Piek, 70, 660, 940
Vu, Thanh, 525
Vu, Xuan-Son, 525

Wachsmuth, Henning, 763
Wang, Eugene, 369
Wang, Feixiang, 600
Wang, Jin, 273, 459, 622, 1058, 1109
Wang, Liang, 758
Wang, Min, 205

Wang, Nan, 459
Wang, Tengjiao, 428
Wang, Wenting, 600
Wang, Zhenduo, 395, 507
Watanabe, Yuji, 885
Wei, Luo, 811
Wei, Ran, 313
Wenhan, Chao, 1129
Westera, Matthijs, 65
Wickenberg Bolin, Ulrika, 109
Wu, Chuhan, 51, 186, 410, 958
Wu, Fangzhao, 51, 186, 410, 958
Wu, Hao, 116, 313
Wu, Sixing, 51, 186, 410, 958
Wu, Yuanbin, 231, 433, 999, 1048, 1094

Xaobing, Zhou, 1038
Xia, Jiangnan, 1063
Xie, Pengjun, 707
Xie, Yufei, 419
Xu, Dongfang, 88
Xu, Huimin, 231
Xu, Peng, 264
Xu, Qiongkai, 449
Xu, Yuan, 826

Yan, Yonghong, 874
Yang, Dechuan, 428
Yang, Xutao, 1109
Yang, Yinping, 256
Yin, Zhenghang, 600
Yin, Zhongbo, 811
Yu, Dong, 1104
Yuan, Hang, 1058
Yuan, Zhigang, 51, 186, 410, 958
Yuming, Ye, 811

Zafar, Lubna, 581
Zanzotto, Fabio Massimo, 477
Zargayouna, Haifa, 679
Zarrella, Guido, 1078
Zehe, Albin, 836
Zhang, Alexander, 1022
Zhang, Ce, 689
Zhang, Jingyi, 826
Zhang, Xuejie, 273, 459, 622, 1058, 1109
Zhang, You, 273
Zhang, Zhengxin, 116
Zhang, Zhuosheng, 903
Zhao, Hai, 903
Zhao, Meiqian, 1104
Zhao, Wei, 758

Zhao, Xuemin, 874
Zhao, Yan, 1104
Zheng, Huafei, 707
Zhou, Liyuan, 449
Zhou, Qimin, 116
Zhou, Xiaobing, 205, 1043, 1073, 1120, 1137
Zhou, Yunxiao, 999
Zhunchen, Luo, 1129
Zlatkova, Dimitrina, 497

	Program
	SemEval-2018 Task 1: Affect in Tweets
	SeerNet at SemEval-2018 Task 1: Domain Adaptation for Affect in Tweets
	SemEval 2018 Task 2: Multilingual Emoji Prediction
	Tübingen-Oslo at SemEval-2018 Task 2: SVMs perform better than RNNs in Emoji Prediction
	SemEval-2018 Task 3: Irony Detection in English Tweets
	THU_NGN at SemEval-2018 Task 3: Tweet Irony Detection with Densely connected LSTM and Multi-task Learning
	SemEval 2018 Task 4: Character Identification on Multiparty Dialogues
	AMORE-UPF at SemEval-2018 Task 4: BiLSTM with Entity Library
	SemEval-2018 Task 5: Counting Events and Participants in the Long Tail
	KOI at SemEval-2018 Task 5: Building Knowledge Graph of Incidents
	SemEval 2018 Task 6: Parsing Time Normalizations
	Chrono at SemEval-2018 Task 6: A System for Normalizing Temporal Expressions
	NEUROSENT-PDI at SemEval-2018 Task 1: Leveraging a Multi-Domain Sentiment Model for Inferring Polarity in Micro-blog Text
	FOI DSS at SemEval-2018 Task 1: Combining LSTM States, Embeddings, and Lexical Features for Affect Analysis
	NLPZZX at SemEval-2018 Task 1: Using Ensemble Method for Emotion and Sentiment Intensity Determination
	LT3 at SemEval-2018 Task 1: A classifier chain to detect emotions in tweets
	SINAI at SemEval-2018 Task 1: Emotion Recognition in Tweets
	UWB at SemEval-2018 Task 1: Emotion Intensity Detection in Tweets
	AttnConvnet at SemEval-2018 Task 1: Attention-based Convolutional Neural Networks for Multi-label Emotion Classification
	INGEOTEC at SemEval-2018 Task 1: EvoMSA and µTC for Sentiment Analysis
	Epita at SemEval-2018 Task 1: Sentiment Analysis Using Transfer Learning Approach
	KDE-AFFECT at SemEval-2018 Task 1: Estimation of Affects in Tweet by Using Convolutional Neural Network for n-gram
	RNN for Affects at SemEval-2018 Task 1: Formulating Affect Identification as a Binary Classification Problem
	Tw-StAR at SemEval-2018 Task 1: Preprocessing Impact on Multi-label Emotion Classification
	DL Team at SemEval-2018 Task 1: Tweet Affect Detection using Sentiment Lexicons and Embeddings
	EmoIntens Tracker at SemEval-2018 Task 1: Emotional Intensity Levels in #Tweets
	uOttawa at SemEval-2018 Task 1: Self-Attentive Hybrid GRU-Based Network
	THU_NGN at SemEval-2018 Task 1: Fine-grained Tweet Sentiment Intensity Analysis with Attention CNN-LSTM
	EiTAKA at SemEval-2018 Task 1: An Ensemble of N-Channels ConvNet and XGboost Regressors for Emotion Analysis of Tweets
	CENTEMENT at SemEval-2018 Task 1: Classification of Tweets using Multiple Thresholds with Self-correction and Weighted Conditional Probabilities
	Yuan at SemEval-2018 Task 1: Tweets Emotion Intensity Prediction using Ensemble Recurrent Neural Network
	AffecThor at SemEval-2018 Task 1: A cross-linguistic approach to sentiment intensity quantification in tweets
	Amobee at SemEval-2018 Task 1: GRU Neural Network with a CNN Attention Mechanism for Sentiment Classification
	deepSA2018 at SemEval-2018 Task 1: Multi-task Learning of Different Label for Affect in Tweets
	ECNU at SemEval-2018 Task 1: Emotion Intensity Prediction Using Effective Features and Machine Learning Models
	EMA at SemEval-2018 Task 1: Emotion Mining for Arabic
	NTUA-SLP at SemEval-2018 Task 1: Predicting Affective Content in Tweets with Deep Attentive RNNs and Transfer Learning
	CrystalFeel at SemEval-2018 Task 1: Understanding and Detecting Emotion Intensity using Affective Lexicons
	PlusEmo2Vec at SemEval-2018 Task 1: Exploiting emotion knowledge from emoji and #hashtags
	YNU-HPCC at SemEval-2018 Task 1: BiLSTM with Attention based Sentiment Analysis for Affect in Tweets
	UG18 at SemEval-2018 Task 1: Generating Additional Training Data for Predicting Emotion Intensity in Spanish
	ISCLAB at SemEval-2018 Task 1: UIR-Miner for Affect in Tweets
	TCS Research at SemEval-2018 Task 1: Learning Robust Representations using Multi-Attention Architecture
	DMCB at SemEval-2018 Task 1: Transfer Learning of Sentiment Classification Using Group LSTM for Emotion Intensity prediction
	DeepMiner at SemEval-2018 Task 1: Emotion Intensity Recognition Using Deep Representation Learning
	Zewen at SemEval-2018 Task 1: An Ensemble Model for Affect Prediction in Tweets
	Amrita_student at SemEval-2018 Task 1: Distributed Representation of Social Media Text for Affects in Tweets
	SSN MLRG1 at SemEval-2018 Task 1: Emotion and Sentiment Intensity Detection Using Rule Based Feature Selection
	CENNLP at SemEval-2018 Task 1: Constrained Vector Space Model in Affects in Tweets
	TeamCEN at SemEval-2018 Task 1: Global Vectors Representation in Emotion Detection
	IIT Delhi at SemEval-2018 Task 1 : Emotion Intensity Prediction
	Mutux at SemEval-2018 Task 1: Exploring Impacts of Context Information On Emotion Detection
	TeamUNCC at SemEval-2018 Task 1: Emotion Detection in English and Arabic Tweets using Deep Learning
	RIDDL at SemEval-2018 Task 1: Rage Intensity Detection with Deep Learning
	ARB-SEN at SemEval-2018 Task1: A New Set of Features for Enhancing the Sentiment Intensity Prediction in Arabic Tweets
	psyML at SemEval-2018 Task 1: Transfer Learning for Sentiment and Emotion Analysis
	UIUC at SemEval-2018 Task 1: Recognizing Affect with Ensemble Models
	KU-MTL at SemEval-2018 Task 1: Multi-task Identification of Affect in Tweets
	EmoNLP at SemEval-2018 Task 2: English Emoji Prediction with Gradient Boosting Regression Tree Method and Bidirectional LSTM
	UMDSub at SemEval-2018 Task 2: Multilingual Emoji Prediction Multi-channel Convolutional Neural Network on Subword Embedding
	UMDuluth-CS8761 at SemEval-2018 Task 2: Emojis: Too many Choices?
	The Dabblers at SemEval-2018 Task 2: Multilingual Emoji Prediction
	THU_NGN at SemEval-2018 Task 2: Residual CNN-LSTM Network with Attention for English Emoji Prediction
	#TeamINF at SemEval-2018 Task 2: Emoji Prediction in Tweets
	EICA Team at SemEval-2018 Task 2: Semantic and Metadata-based Features for Multilingual Emoji Prediction
	EmojiIt at SemEval-2018 Task 2: An Effective Attention-Based Recurrent Neural Network Model for Emoji Prediction with Characters Gated Words
	Peperomia at SemEval-2018 Task 2: Vector Similarity Based Approach for Emoji Prediction
	ECNU at SemEval-2018 Task 2: Leverage Traditional NLP Features and Neural Networks Methods to Address Twitter Emoji Prediction Task
	NTUA-SLP at SemEval-2018 Task 2: Predicting Emojis using RNNs with Context-aware Attention
	Hatching Chick at SemEval-2018 Task 2: Multilingual Emoji Prediction
	EPUTION at SemEval-2018 Task 2: Emoji Prediction with User Adaption
	PickleTeam! at SemEval-2018 Task 2: English and Spanish Emoji Prediction from Tweets
	YNU-HPCC at SemEval-2018 Task 2: Multi-ensemble Bi-GRU Model with Attention Mechanism for Multilingual Emoji Prediction
	DUTH at SemEval-2018 Task 2: Emoji Prediction in Tweets
	TAJJEB at SemEval-2018 Task 2: Traditional Approaches Just Do the Job with Emoji Prediction
	SyntNN at SemEval-2018 Task 2: is Syntax Useful for Emoji Prediction? Embedding Syntactic Trees in Multi Layer Perceptrons
	Duluth UROP at SemEval-2018 Task 2: Multilingual Emoji Prediction with Ensemble Learning and Oversampling
	CENNLP at SemEval-2018 Task 2: Enhanced Distributed Representation of Text using Target Classes for Emoji Prediction Representation
	Manchester Metropolitan at SemEval-2018 Task 2: Random Forest with an Ensemble of Features for Predicting Emoji in Tweets
	Tweety at SemEval-2018 Task 2: Predicting Emojis using Hierarchical Attention Neural Networks and Support Vector Machine
	LIS at SemEval-2018 Task 2: Mixing Word Embeddings and Bag of Features for Multilingual Emoji Prediction
	ALANIS at SemEval-2018 Task 3: A Feature Engineering Approach to Irony Detection in English Tweets
	NEUROSENT-PDI at SemEval-2018 Task 3: Understanding Irony in Social Networks Through a Multi-Domain Sentiment Model
	UWB at SemEval-2018 Task 3: Irony detection in English tweets
	NIHRIO at SemEval-2018 Task 3: A Simple and Accurate Neural Network Model for Irony Detection in Twitter
	LDR at SemEval-2018 Task 3: A Low Dimensional Text Representation for Irony Detection
	IIIDYT at SemEval-2018 Task 3: Irony detection in English tweets
	PunFields at SemEval-2018 Task 3: Detecting Irony by Tools of Humor Analysis
	HashCount at SemEval-2018 Task 3: Concatenative Featurization of Tweet and Hashtags for Irony Detection
	WLV at SemEval-2018 Task 3: Dissecting Tweets in Search of Irony
	Random Decision Syntax Trees at SemEval-2018 Task 3: LSTMs and Sentiment Scores for Irony Detection
	ELiRF-UPV at SemEval-2018 Tasks 1 and 3: Affect and Irony Detection in Tweets
	IronyMagnet at SemEval-2018 Task 3: A Siamese network for Irony detection in Social media
	CTSys at SemEval-2018 Task 3: Irony in Tweets
	Irony Detector at SemEval-2018 Task 3: Irony Detection in English Tweets using Word Graph
	Lancaster at SemEval-2018 Task 3: Investigating Ironic Features in English Tweets
	INAOE-UPV at SemEval-2018 Task 3: An Ensemble Approach for Irony Detection in Twitter
	ECNU at SemEval-2018 Task 3: Exploration on Irony Detection from Tweets via Machine Learning and Deep Learning Methods
	KLUEnicorn at SemEval-2018 Task 3: A Naive Approach to Irony Detection
	NTUA-SLP at SemEval-2018 Task 3: Tracking Ironic Tweets using Ensembles of Word and Character Level Attentive RNNs
	YNU-HPCC at SemEval-2018 Task 3: Ensemble Neural Network Models for Irony Detection on Twitter
	Binarizer at SemEval-2018 Task 3: Parsing dependency and deep learning for irony detection
	SSN MLRG1 at SemEval-2018 Task 3: Irony Detection in English Tweets Using MultiLayer Perceptron
	NLPRL-IITBHU at SemEval-2018 Task 3: Combining Linguistic Features and Emoji pre-trained CNN for Irony Detection in Tweets
	ValenTO at SemEval-2018 Task 3: Exploring the Role of Affective Content for Detecting Irony in English Tweets
	#NonDicevoSulSerio at SemEval-2018 Task 3: Exploiting Emojis and Affective Content for Irony Detection in English Tweets
	KNU CI System at SemEval-2018 Task4: Character Identification by Solving Sequence-Labeling Problem
	NewsReader at SemEval-2018 Task 5: Counting events by reasoning over event-centric-knowledge-graphs
	FEUP at SemEval-2018 Task 5: An Experimental Study of a Question Answering System
	NAI-SEA at SemEval-2018 Task 5: An Event Search System
	SemEval-2018 Task 7: Semantic Relation Extraction and Classification in Scientific Papers
	ETH-DS3Lab at SemEval-2018 Task 7: Effectively Combining Recurrent and Convolutional Neural Networks for Relation Classification and Extraction
	SemEval-2018 Task 8: Semantic Extraction from CybersecUrity REports using Natural Language Processing (SecureNLP)
	DM_NLP at SemEval-2018 Task 8: neural sequence labeling with linguistic features
	SemEval-2018 Task 9: Hypernym Discovery
	CRIM at SemEval-2018 Task 9: A Hybrid Approach to Hypernym Discovery
	SemEval-2018 Task 10: Capturing Discriminative Attributes
	SUNNYNLP at SemEval-2018 Task 10: A Support-Vector-Machine-Based Method for Detecting Semantic Difference using Taxonomy and Word Embedding Features
	SemEval-2018 Task 11: Machine Comprehension Using Commonsense Knowledge
	Yuanfudao at SemEval-2018 Task 11: Three-way Attention and Relational Knowledge for Commonsense Machine Comprehension
	SemEval-2018 Task 12: The Argument Reasoning Comprehension Task
	GIST at SemEval-2018 Task 12: A network transferring inference knowledge to Argument Reasoning Comprehension task
	LightRel at SemEval-2018 Task 7: Lightweight and Fast Relation Classification
	OhioState at SemEval-2018 Task 7: Exploiting Data Augmentation for Relation Classification in Scientific Papers Using Piecewise Convolutional Neural Networks
	The UWNLP system at SemEval-2018 Task 7: Neural Relation Extraction Model with Selectively Incorporated Concept Embeddings
	UC3M-NII Team at SemEval-2018 Task 7: Semantic Relation Classification in Scientific Papers via Convolutional Neural Network
	MIT-MEDG at SemEval-2018 Task 7: Semantic Relation Classification via Convolution Neural Network
	SIRIUS-LTG-UiO at SemEval-2018 Task 7: Convolutional Neural Networks with Shortest Dependency Paths for Semantic Relation Extraction and Classification in Scientific Papers
	IRCMS at SemEval-2018 Task 7 : Evaluating a basic CNN Method and Traditional Pipeline Method for Relation Classification
	Bf3R at SemEval-2018 Task 7: Evaluating Two Relation Extraction Tools for Finding Semantic Relations in Biomedical Abstracts
	Texterra at SemEval-2018 Task 7: Exploiting Syntactic Information for Relation Extraction and Classification in Scientific Papers
	UniMa at SemEval-2018 Task 7: Semantic Relation Extraction and Classification from Scientific Publications
	GU IRLAB at SemEval-2018 Task 7: Tree-LSTMs for Scientific Relation Classification
	ClaiRE at SemEval-2018 Task 7: Classification of Relations using Embeddings
	TakeLab at SemEval-2018 Task 7: Combining Sparse and Dense Features for Relation Classification in Scientific Texts
	NEUROSENT-PDI at SemEval-2018 Task 7: Discovering Textual Relations With a Neural Network Model
	SciREL at SemEval-2018 Task 7: A System for Semantic Relation Extraction and Classification
	NTNU at SemEval-2018 Task 7: Classifier Ensembling for Semantic Relation Identification and Classification in Scientific Papers
	Talla at SemEval-2018 Task 7: Hybrid Loss Optimization for Relation Classification using Convolutional Neural Networks
	TeamDL at SemEval-2018 Task 8: Cybersecurity Text Analysis using Convolutional Neural Network and Conditional Random Fields
	HCCL at SemEval-2018 Task 8: An End-to-End System for Sequence Labeling from Cybersecurity Reports
	UMBC at SemEval-2018 Task 8: Understanding Text about Malware
	Villani at SemEval-2018 Task 8: Semantic Extraction from Cybersecurity Reports using Representation Learning
	Flytxt_NTNU at SemEval-2018 Task 8: Identifying and Classifying Malware Text Using Conditional Random Fields and Naïve Bayes Classifiers
	Digital Operatives at SemEval-2018 Task 8: Using dependency features for malware NLP
	Apollo at SemEval-2018 Task 9: Detecting Hypernymy Relations Using Syntactic Dependencies
	SJTU-NLP at SemEval-2018 Task 9: Neural Hypernym Discovery with Term Embeddings
	NLP_HZ at SemEval-2018 Task 9: a Nearest Neighbor Approach
	UMDuluth-CS8761 at SemEval-2018 Task9: Hypernym Discovery using Hearst Patterns, Co-occurrence frequencies and Word Embeddings
	EXPR at SemEval-2018 Task 9: A Combined Approach for Hypernym Discovery
	ADAPT at SemEval-2018 Task 9: Skip-Gram Word Embeddings for Unsupervised Hypernym Discovery in Specialised Corpora
	300-sparsans at SemEval-2018 Task 9: Hypernymy as interaction of sparse attributes
	UWB at SemEval-2018 Task 10: Capturing Discriminative Attributes from Word Distributions
	Meaning_space at SemEval-2018 Task 10: Combining explicitly encoded knowledge with information extracted from word embeddings
	GHH at SemEval-2018 Task 10: Discovering Discriminative Attributes in Distributional Semantics
	CitiusNLP at SemEval-2018 Task 10: The Use of Transparent Distributional Models and Salient Contexts to Discriminate Word Attributes
	THU_NGN at SemEval-2018 Task 10: Capturing Discriminative Attributes with MLP-CNN model
	ALB at SemEval-2018 Task 10: A System for Capturing Discriminative Attributes
	ELiRF-UPV at SemEval-2018 Task 10: Capturing Discriminative Attributes with Knowledge Graphs and Wikipedia
	Wolves at SemEval-2018 Task 10: Semantic Discrimination based on Knowledge and Association
	UNAM at SemEval-2018 Task 10: Unsupervised Semantic Discriminative Attribute Identification in Neural Word Embedding Cones
	Luminoso at SemEval-2018 Task 10: Distinguishing Attributes Using Text Corpora and Relational Knowledge
	BomJi at SemEval-2018 Task 10: Combining Vector-, Pattern- and Graph-based Information to Identify Discriminative Attributes
	Igevorse at SemEval-2018 Task 10: Exploring an Impact of Word Embeddings Concatenation for Capturing Discriminative Attributes
	ECNU at SemEval-2018 Task 10: Evaluating Simple but Effective Features on Machine Learning Methods for Semantic Difference Detection
	AmritaNLP at SemEval-2018 Task 10: Capturing discriminative attributes using convolution neural network over global vector representation.
	Discriminator at SemEval-2018 Task 10: Minimally Supervised Discrimination
	UNBNLP at SemEval-2018 Task 10: Evaluating unsupervised approaches to capturing discriminative attributes
	ABDN at SemEval-2018 Task 10: Recognising Discriminative Attributes using Context Embeddings and WordNet
	UMD at SemEval-2018 Task 10: Can Word Embeddings Capture Discriminative Attributes?
	NTU NLP Lab System at SemEval-2018 Task 10: Verifying Semantic Differences by Integrating Distributional Information and Expert Knowledge
	ELiRF-UPV at SemEval-2018 Task 11: Machine Comprehension using Commonsense Knowledge
	YNU_AI1799 at SemEval-2018 Task 11: Machine Comprehension using Commonsense Knowledge of Different model ensemble
	YNU_Deep at SemEval-2018 Task 11: An Ensemble of Attention-based BiLSTM Models for Machine Comprehension
	ECNU at SemEval-2018 Task 11: Using Deep Learning Method to Address Machine Comprehension Task
	CSReader at SemEval-2018 Task 11: Multiple Choice Question Answering as Textual Entailment
	YNU-HPCC at Semeval-2018 Task 11: Using an Attention-based CNN-LSTM for Machine Comprehension using Commonsense Knowledge
	Jiangnan at SemEval-2018 Task 11: Deep Neural Network with Attention Method for Machine Comprehension Task
	IUCM at SemEval-2018 Task 11: Similar-Topic Texts as a Comprehension Knowledge Source
	Lyb3b at SemEval-2018 Task 11: Machine Comprehension Task using Deep Learning Models
	MITRE at SemEval-2018 Task 11: Commonsense Reasoning without Commonsense Knowledge
	SNU_IDS at SemEval-2018 Task 12: Sentence Encoder with Contextualized Vectors for Argument Reasoning Comprehension
	ITNLP-ARC at SemEval-2018 Task 12: Argument Reasoning Comprehension with Attention
	ECNU at SemEval-2018 Task 12: An End-to-End Attention-based Neural Network for the Argument Reasoning Comprehension Task
	NLITrans at SemEval-2018 Task 12: Transfer of Semantic Knowledge for Argument Comprehension
	BLCU_NLP at SemEval-2018 Task 12: An Ensemble Model for Argument Reasoning Based on Hierarchical Attention
	YNU-HPCC at SemEval-2018 Task 12: The Argument Reasoning Comprehension Task Using a Bi-directional LSTM with Attention Model
	HHU at SemEval-2018 Task 12: Analyzing an Ensemble-based Deep Learning Approach for the Argument Mining Task of Choosing the Correct Warrant
	YNU Deep at SemEval-2018 Task 12: A BiLSTM Model with Neural Attention for Argument Reasoning Comprehension
	UniMelb at SemEval-2018 Task 12: Generative Implication using LSTMs, Siamese Networks and Semantic Representations with Synonym Fuzzing
	Joker at SemEval-2018 Task 12: The Argument Reasoning Comprehension with Neural Attention
	TakeLab at SemEval-2018 Task12: Argument Reasoning Comprehension with Skip-Thought Vectors
	Lyb3b at SemEval-2018 Task 12: Ensemble-based Deep Learning Models for Argument Reasoning Comprehension Task
	TRANSRW at SemEval-2018 Task 12: Transforming Semantic Representations for Argument Reasoning Comprehension

