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General Chair Preface

Welcome everyone!

It is my pleasure to welcome you all to Atlanta, Georgia, for the 2013 NAACL Human Language
Technologies conference. This is a great opportunity to reconnect with old friends and make new
acquaintances, learn the latest in your own field and become curious about new areas, and also to
experience Atlanta’s warm southern hospitality. That hospitality starts with Priscilla Rasmussen!
Priscilla thinks about everything that we all take for granted: the registration that just took place, the
rooms in which we sit, the refreshments that keep us energized, and the social events that make this
conference so fun, and many other details that you would miss if they weren’t there. Please introduce
yourself and say hi. Priscilla is the backbone of the NAACL organization. Thank you!

This conference started a year ago, when Hal Daumé III and Katrin Kirchhoff graciously agreed to be
program co-chairs. It is no exaggeration to say how much their dedication has shaped this conference
and how grateful I am for their initiative and hard work. Thank you Hal and Katrin, especially for all
the fun discussion that made the work light and the year go by fast! This conference could not have
happened with you.

Thanks go to the entire organizing committee. As I am writing this to be included in the proceedings, I
am grateful for the fantastic detailed and proactive work by Colin Cherry and Matt Post, the publications
chairs. The tutorials chairs, Katrin Erk and Jimmy Lin, selected, and solicited, 6 tutorials to present in
depth material on some of the diverse topics represented in our community. Chris Dyer and Derrick
Higgins considered which projects shine best when shown as a demonstration. The workshops chairs
for NAACL, Sujith Ravi and Luke Zettlemoyer, worked jointly with ACL and EMNLP to select the
workshops to be held at NAACL. They also worked with ICML 2013 to co-host workshops that bridge
the two communities, in addition to the Joint NAACL/ICML symposium.

Posters from the student research workshop are part of the poster and demonstrations session on
Monday night. This is a great opportunity for the students to be recognized in the community and
to benefit from lively discussion of their presentations (attendees take note!) Annie Louis and Richard
Socher are the student research workshop chairs, and Julia Hockenmaier and Eric Ringger generously
share their wisdom as the faculty advisors. The student research workshop itself will be held on the
first day of workshops. There are so many people who contribute their time to the behind-the-scenes
organization of the conference, without which the conference cannot take place. Asking for money is
probably not a natural fit for anyone, but Chris Brew worked on local sponsorship, and Dan Bikel and
Patrick Pantel worked to obtain sponsorship across the ACL conferences this year - thank you! Jacob
Eisenstein had the more fun role of distributing money as the student volunteer coordinator, and we
thank all of the student volunteers who will be helping to run a smooth conference. Kristy Boyer kept
the communication “short and tweet” using a variety of social media (and old-fashioned media too). An
important part of the behind-the-scenes efforts that enable a conference like NAACL to come together
are the sponsors. We thank all of the sponsors for the contributions to the conference , both for the
general funding made available as well as the specific programs that are funded through sponsorship.
You can read more about these sponsors in our conference handbook.

This year there are several initiatives, and if successful, we hope they’ll be part of NAACL conferences
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in the future. One is to make the proceedings available prior to the conference; we hope you will benefit
from the extra time to read the papers beforehand. Another is for tutorials and all oral presentations to
be recorded on video and made available post-conference. We are also delighted to host presentations,
in both oral and poster formats, from the new Transactions of the ACL journal, to enhance the impact
these will already have as journal publications. Finally, Matt Post is creating a new digital form of
conference handbook to go with our digital age; thanks also go to Alex Clemmer who has prepared
the paper copy that you may be reading right now. We hope you use the #NAACL2013 tag when you
are tweeting about the conference or papers at the conference; together, we’ll be creating a new social
media corpus to explore.

Once again, we are pleased to be co-located with *SEM conference, and the SemEval workshop. We
are lucky to have ICML 2013 organized so close in time and place. Several researchers who span the
two communities have reconvened the Joint NAACL/ICML symposium on June 15, 2013. In addition,
two workshops that address areas of interest to both NAACL and ICML members have been organized
on June 16th, as part of the ICML conference.

NAACL 2013 has given me a great appreciation for the volunteering that is part of our culture. Besides
the organizing committee itself, we are guided by the NAACL executive board, who think about
questions with a multi-year perspective. I also want to recognize the members who first initiated and
now maintain the ACL Anthology, where all of our published work will be available to all in perpetuity,
a fabulous contribution and one that distinguishes our academic community.

Have a fun conference!

Lucy Vanderwende, Microsoft Research
NAACL HLT 2013 General Chair
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Program Chair Preface

Welcome to NAACL HLT 2013 in Atlanta, Georgia. We have an exciting program consisting of six
tutorials, 24 sessions of talks (both for long and short papers), an insane poster madness session that
includes posters from the newly revamped student research workshop, ten workshops and two additional
cross-pollination workshops held jointly with ICML (occurring immediately after NAACL HLT, just
one block away). There are a few innovations in the conference this year, the most noticeable of which
is the twitter channel #naacl2013 and the fact that we are the first conference to host papers published
in the Transactions of the ACL journal — there are six such papers in our program, marked as [TACL].
We are very excited about our two invited talks, one on Monday morning and one Wednesday morning.
The first is by Gina Kuperberg, who will talk about “Predicting Meaning: What the Brain tells us about
the Architecture of Language Comprehension.” The second presenter is our own Kathleen KcKeown,
who will talk about “Natural Language Applications from Fact to Fiction.”

The morning session on Tuesday includes the presentation of best paper awards to two worthy
recipients. The award for Best Short Paper goes to Marta Recasens, Marie-Catherine de Marneffe
and Christopher Potts for their paper “The Life and Death of Discourse Entities: Identifying Singleton
Mentions” The award for Best Student Paper goes to the long paper “Automatic Generation of English
Respellings” by Bradley Hauer and Greg Kondrak. We gratefully acknowledge IBM’s support for
the Student Best Paper Award. Finally, many thanks to the Best Paper Committee for selecting these
excellent papers!

The complete program includes 95 long papers (of which six represent presentations from the journal
Transactions of the ACL, a first for any ACL conference!) and 51 short papers. We are excited that the
conference is able to present such a dynamic array of papers, and would like to thank the authors for
their great work. We worked hard to keep the conference to three parallel sessions at any one time to
hopefully maximize a participant’s ability to see everything she wants! This represents an acceptance
rate of 30% for long papers and 37% for short papers. More details about the distribution across areas
and other statistics will be made available in the NAACL HLT Program Chair report on the ACL wiki:
http://aclweb.org/adminwiki/index.php?title=Reports

The review process for the conference was double-blind, and included an author response period for
clarifying reviewers’ questions. We were very pleased to have the assistance of 350 reviewers, each
of whom reviewed an average of 3.7 papers, in deciding the program. We are especially thankful
for the reviewers who spent time reading the author responses and engaging other reviewers in the
discussion board. Assigning reviewers would not have been possible without the hard work of Mark
Dredze and his miracle assignment scripts. Furthermore, constructing the program would not have been
possible without 22 excellent area chairs forming the Senior Program Committee: Eugene Agichtein,
Srinivas Bangalore, David Bean, Phil Blunsom, Jordan Boyd-Graber, Marine Carpuat, Joyce Chai,
Vera Demberg, Bill Dolan, Doug Downey, Mark Dredze, Markus Dreyer, Sanda Harabagiu, James
Henderson, Guy Lapalme, Alon Lavie, Percy Liang, Johanna Moore, Ani Nenkova, Joakim Nivre, Bo
Pang, Zak Shafran, David Traum, Peter Turney, and Theresa Wilson. Area chairs were responsible
for managing paper assignments, collating reviewer responses, handling papers for other area chairs
or program chairs who had conflicts of interest, making recommendations for paper acceptance or
rejection, and nominating best papers from their areas. We are very grateful for the time and energy



that they have put into the program.

There are a number of other people that we interacted with who deserve a hearty thanks for the success
of the program. Rich Gerber and the START team at Softconf have been invaluable for helping us with
the mechanics of the reviewing process. Matt Post and Colin Cherry, as publications co-chairs, have
been very helpful in assembling the final program and coordinating the publications of the workshop
proceedings. There are several crucial parts of the overall program that were the responsibility of
various contributors, including Annie Louis, Richard Socher, Julia Hockenmaier and Eric Ringger
(Student Research Workshop chairs, who did an amazing job revamping the SRW); Jimmy Lin and
Katrin Erk (Tutorial Chairs); Luke Zettlemoyer and Sujith Ravi (Workshop Chairs); Chris Dyer and
Derrick Higgins (Demo Chairs); Jacob Eisenstein (Student Volunteer Coordinator); Chris Brew (Local
Sponsorship Chair); Patrick Pantel and Dan Bikel (Sponsorship Chairs); and the new-founded Publicity
chair who handled #naacl2013 tweeting among other things, Kristy Boyer.

We would also like to thank Chris Callison-Burch and the NAACL Executive Board for guidance during
the process. Michael Collins was amazingly helpful in getting the inaugural TACL papers into the
NAACL HLT conference. Priscilla Rasmussen deserves, as always, special mention and warmest thanks
as the local arrangements chair and general business manager. Priscilla is amazing and everyone who
sees her at the conference should thank her.

Finally, we would like to thank our General Chair, Lucy Vanderwende, for both her trust and guidance
during this process. She helped turn the less-than-wonderful parts of this job to roses, and her ability to
organize an incredibly complex event is awe inspiring. None of this would have happened without her.

We hope that you enjoy the conference!

Hal Daumé II1, University of Maryland
Katrin Kirchhoff, University of Washington
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Model With Minimal Translation Units, But Decode With Phrases
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Abstract

N-gram-based models co-exist with their
phrase-based counterparts as an alternative
SMT framework. Both techniques have pros
and cons. While the N-gram-based frame-
work provides a better model that captures
both source and target contexts and avoids
spurious phrasal segmentation, the ability to
memorize and produce larger translation units
gives an edge to the phrase-based systems dur-
ing decoding, in terms of better search per-
formance and superior selection of transla-
tion units. In this paper we combine N-gram-
based modeling with phrase-based decoding,
and obtain the benefits of both approaches.
Our experiments show that using this combi-
nation not only improves the search accuracy
of the N-gram model but that it also improves
the BLEU scores. Our system outperforms
state-of-the-art phrase-based systems (Moses
and Phrasal) and N-gram-based systems by
a significant margin on German, French and
Spanish to English translation tasks.

1 Introduction

Statistical Machine Translation advanced from
word-based models (Brown et al., 1993) towards
more sophisticated models that take contextual in-
formation into account. Phrase-based (Och and
Ney, 2004; Koehn et al., 2003) and N-gram-based
(Marifo et al., 2006) models are two instances of
such frameworks. While the two models have some
common properties, they are substantially different.

Much of the work presented here was carried out while the
first author was at the University of Stuttgart.

Alexander Fraser Helmut Schmid
University of Stuttgart

fraser, schmid@ims.uni-stuttgart.de

Phrase-based systems employ a simple and effec-
tive machinery by learning larger chunks of trans-
lation called phrases!. Memorizing larger units en-
ables the phrase-based model to learn local depen-
dencies such as short reorderings, idioms, insertions
and deletions, etc. The model however, has the fol-
lowing drawbacks: i) it makes independence as-
sumptions over phrases ignoring the contextual in-
formation outside of phrases ii) it has issues han-
dling long-distance reordering iii) it has the spurious
phrasal segmentation problem which allows multi-
ple derivations of a bilingual sentence pair having
different model scores for each segmentation.

Modeling with minimal translation units helps ad-
dress some of these issues. The N-gram-based SMT
framework is based on tuples. Tuples are mini-
mal translation units composed of source and target
cepts?. N-gram-based models are Markov models
over sequences of tuples (Marifio et al., 2006; Crego
and Marifio, 2006) or operations encapsulating tu-
ples (Durrani et al., 2011). This mechanism has sev-
eral useful properties. Firstly, no phrasal indepen-
dence assumption is made. The model has access
to both source and target context outside of phrases.
Secondly the model learns a unique derivation of a
bilingual sentence given its alignment, thus avoiding
the spurious segmentation problem.

Using minimal translation units, however, results
in a higher number of search errors because of i)

'A phrase-pair in PBSMT is a sequence of source and target
words that is translation of each other, and is not necessarily a
linguistic constituent. Phrases are built by combining minimal
translation units and ordering information.

2A cept is a group of words in one language that is translated
as a minimal unit in one specific context (Brown et al., 1993).
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poor translation selection, ii) inaccurate future-cost
estimates and iii) incorrect early pruning of hypothe-
ses that would produce better model scores if al-
lowed to continue. In order to deal with these
problems, search is carried out only on a graph
of pre-calculated orderings, and ad-hoc reordering
limits are imposed to constrain the search space
(Crego et al., 2005; Crego and Marifio, 2006), or
a higher beam size is used in decoding (Durrani
et al., 2011). The ability to memorize and pro-
duce larger translation chunks during decoding, on
the other hand, gives a distinct advantage to the
phrase-based system during search. Phrase-based
systems i) have access to uncommon translations,
ii) do not require higher beam sizes, iii) have more
accurate future-cost estimates because of the avail-
ability of phrase-internal language model context
before search is started. To illustrate this consider
the German-English phrase-pair “schof3 ein Tor —
scored a goal”, composed from the tuples (cept-
pairs) “schof3 — scored”, “ein — a” and “Tor — goal”.
It is likely that the N-gram system does not have
the tuple “schofl — scored” in its n-best translation
options because “scored” is an uncommon transla-
tion for “schof3” outside the sports domain. Even if
“schol} — scored” is hypothesized, it will be ranked
quite low in the stack until “ein” and “Tor” are gen-
erated in the next steps. A higher beam is required
to prevent it from getting pruned. Phrase-based sys-
tems, on the other hand, are likely to have access to
the phrasal unit “schof} ein Tor — scored a goal” and
can generate it in a single step. Moreover, a more ac-
curate future-cost estimate can be computed because
of the available context internal to the phrase.

In this work, we extend the N-gram model, based
on operation sequences (Durrani et al., 2011), to
use phrases during decoding. The main idea is to
study whether a combination of modeling with min-
imal translation units and using phrasal information
during decoding helps to solve the above-mentioned
problems.

The remainder of this paper is organized as fol-
lows. The next two sections review phrase-based
and N-gram-based SMT. Section 2 provides a com-
parison of phrase-based and N-gram-based SMT.
Section 3 summarizes the operation sequence model
(OSM), the main baseline for this work. Section
4 analyzes the search problem when decoding with
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sie wiirden

they would

gegen ihre kampagne abstimmen

vote against your campaign

abstimmen

sie || wiirden

they

gegen ihre kampagne

would

Figure 1: Different Segmentations of a Bilingual Sen-
tence Pair

against your campaign

minimal units. Section 5 discusses how information
available in phrases can be used to improve search
performance. Section 6 presents the results of this
work. We conducted experiments on the German-to-
English and French-to-English translation tasks and
found that using phrases in decoding improves both
search accuracy and BLEU scores. Finally we com-
pare our system with two state-of-the-art phrase-
based systems (Moses and Phrasal) and two state-
of-the-art N-gram-based systems (Ncode and OSM)
on standard translation tasks.

2 Previous Work

Phrase-based and N-gram-based SMT are alter-
native frameworks for string-to-string translation.
Phrase-based SMT segments a bilingual sentence
pair into phrases that are continuous sequences of
words (Och and Ney, 2004; Koehn et al., 2003)
or discontinuous sequences of words (Galley and
Manning, 2010). These phrases are then reordered
through a lexicalized reordering model that takes
into account the orientation of a phrase with respect
to its previous phrase (Tillmann and Zhang, 2005)
or block of phrases (Galley and Manning, 2008).
There are several drawbacks of the phrase-based
model. Firstly it makes an independence assump-
tion over phrases, according to which phrases are
translated independently of each other, thus ignor-
ing the contextual information outside of the phrasal
boundary. This problem is corrected by the monolin-
gual language model that takes context into account.
But often the language model cannot compensate for
the dispreference of the translation model for non-
local dependencies. The second problem is that the
model is unaware of the actual phrasal segmentation
of a sentence during training. It therefore learns all
possible ways of segmenting a bilingual sentence.
Different segmentations of a bilingual sentence re-



sult in different probability scores for the translation
and reordering models, causing spurious ambiguity
in the model. See Figure 1. In the first segmentation,
the model learns the lexical and reordering proba-
bilities of the phrases “sie wiirden — they would”
and “gegen ihre kampagne abstimmen — vote against
your campaign”. In the second segmentation, the
model learns the lexical and reordering probabilities
of the phrases “sie — they” “wiirden — would”, “ab-
stimmen — vote”, “gegen ihre kampagne — against
your campaign”. Both segmentations result in dif-
ferent translation and reordering scores. This kind
of ambiguity in the model subsequently results in
the presence of many different equivalent segmen-
tations in the search space. Also note that the two
segmentations contain different information. From
the first segmentation the model learns the depen-
dency between the verb “abstimmen — vote” and the
phrase “gegen ihre kampagne — against your cam-
paign”. The second segmentation allows the model
to capture the reordering of the complex verb pred-
icate “wiirden — would” and ‘““abstimmen — vote” by
learning that the verb “abstimmen — vote” is discon-
tinuous with respect to the auxiliary. This informa-
tion cannot be captured in the first segmentation be-
cause of the phrasal independence assumption and
stiff phrasal boundaries. The model loses one of the
dependencies depending upon which segmentation
it chooses during decoding.

N-gram-based SMT is an instance of a joint
model that generates source and target strings to-
gether in bilingual translation units called tuples.
Tuples are essentially phrases but they are atomic
units that cannot be decomposed any further. This
condition of atomicity results in a unique segmen-
tation of the bilingual sentence pair given its align-
ments. The model does not make any phrasal inde-
pendence assumption and generates a tuple by look-
ing at a context of n — 1 previous tuples (or opera-
tions). This allows the N-gram model to model all
the dependencies through a single derivation.

The main drawback of N-gram-based SMT is its
poor search mechanism which is inherent from us-
ing minimal translation units during search. Decod-
ing with tuples has problems with a high number
of search errors caused by lower translation cover-
age, inaccurate future-cost estimation and pruning
of correct hypotheses (see Section 4.2 for details).

Crego and Marifio (2006) proposed a way to couple
reordering and search through POS-based rewrite
rules. These rules are learned during training when
units with crossing alignments are unfolded through
source linearization to form minimal tuples. For ex-
ample, in Figure 1, the N-gram-based MT will lin-
earize the word sequence “gegen ihre kampagne ab-
stimmen” to “abstimmen gegen ihre kampagne”, so
that it is in the same order as the English words.
It also learns a POS-rule “IN PRP NN VB — VB
IN PRP NN”. The POS-based rewrite rules serve
to precompute the orderings that are hypothesized
during decoding. Coupling reordering and search
allows the N-gram model to arrange hypotheses in
2™ stacks (for an m word source sentence), each
containing hypotheses that cover exactly the same
foreign words. This removes the need for future-
cost estimation®. Secondly, memorizing POS-based
rules enables phrase-based like reordering, however
without lexical selection. There are three drawbacks
of this approach. Firstly, lexical generation and re-
ordering are decoupled. Search is only performed on
a small number of reorderings, pre-calculated using
the source side and completely ignoring the target-
side. And lastly, the POS-based rules face data spar-
sity problems especially in the case of long distance
reorderings.

Durrani et al. (2011) recently addressed these
problems by proposing an operation sequence N-
gram model which strongly couples translation and
reordering, hypothesizes all possible reorderings
and does not require POS-based rules. Represent-
ing bilingual sentences as a sequence of operations
enables them to memorize phrases and lexical re-
ordering triggers like PBSMT. However, using min-
imal units during decoding and searching over all
possible reorderings means that hypotheses can no
longer be arranged in 2™ stacks. The problem of
inaccurate future-cost estimates resurfaces resulting
in more search errors. A higher beam size of 500 is
therefore used to produce translation units in com-
parison to phrase-based systems. This, however,
still does not eliminate all search errors. This pa-
per shows that using phrases instead of cepts in de-

3Using m stacks with future-cost estimation is a more effi-
cient solution but is not used “due to the complexity of accu-
rately computing these estimations in the N-gram architecture”
(Crego et al., 2011).



coding improves the search accuracy and translation
quality. It also shows that using some phrasal in-
formation in cept-based decoding captures some of
these improvements.

3 Operation Sequence Model

The N-gram model with integrated reordering mod-
els a sequence of operations obtained through the
transformation of a bilingual sentence pair. An op-
eration can either be to i) generate a sequence of
source and target words, ii) to insert a gap as a place-
holder for skipped words, iii) or to jump forward and
backward in a sentence to translate words discon-
tinuously. The translate operation Generate(X,Y)
encapsulates the translation tuple (X,Y). It gener-
ates source and target translations simultaneously*.
This is similar to N-gram-based SMT except that
the tuples in the N-gram-based model are generated
monotonically, whereas in this case lexical genera-
tion and reordering information is strongly coupled
in an operation sequence.

Consider the phrase pair: | wie heiBen Sie

The model memorizes it

through the sequence: What is your name

Generate(Wie, What is) — Gap — Generate (Sie,
your) — Jump Back (1) — Generate (heissen, name)

Let O = o1,...,0j_1 be a sequence of opera-
tions as hypothesized by the translator to generate
the bilingual sentence pair (F, F') with an alignment
function A. The translation model is defined as:

J
p(F,E, A) =p(of) = [[ p(0jl0j-n+1, - 0-1)
j=1

where n indicates the amount of context used. The
translation model is implemented as an N-gram
model of operations using SRILM-Toolkit (Stol-
cke, 2002) with Kneser-Ney smoothing. A 9-gram
model is used. Several count-based features such as
gap and open gap penalties and distance-based fea-
tures such as gap-width and reordering distance are
added to the model, along with the lexical weighting
and length penalty features in a standard log-linear
framework (Durrani et al., 2011).

“The generation is carried out in the order of the target lan-
guage E.

4 Search
4.1 Overview of Decoding Framework

The decoding framework used in the operation se-
quence model is based on Pharaoh (Koehn, 2004a).
The decoder uses beam search to build up the trans-
lation from left to right. The hypotheses are ar-
ranged in m stacks such that stack ¢ maintains hy-
potheses that have already translated ¢ many foreign
words. The ultimate goal is to find the best scor-
ing hypothesis, that has translated all the words in
the foreign sentence. The overall process can be
roughly divided into the following steps: i) extrac-
tion of translation units ii) future-cost estimation, iii)
hypothesis extension iv) recombination and pruning.
During the hypothesis extension each extracted
phrase is translated into a sequence of operations.
The reordering operations (gaps and jumps) are gen-
erated by looking at the position of the translator,
the last foreign word generated etc. (Refer to Algo-
rithm 1 in Durrani et al. (2011)). The probability of
an operation depends on the n — 1 previous opera-
tions. The model backs-off to the smaller n-grams
of operations if the full history is unknown. We use
Kneser-Ney smoothing to handle back-off>.

4.2 Drawbacks of Cept-based Decoding

One of the main drawbacks of the operation se-
quence model is that it has a more difficult search
problem than the phrase-based model. The opera-
tion model, although based on minimal translation
units, can learn larger translation chunks by mem-
orizing a sequence of operations. However, using
cepts during decoding has the following drawbacks:
i) the cept-based decoder does not have access to
all the translation units that a phrase-based decoder
uses as part of a larger phrase. ii) it requires a higher
beam size to prevent early pruning of better hypothe-
ses that lead toward higher model scores when al-
lowed to continue and iii) it uses worse future-cost
estimates than the phrase-based decoder.

Recall the example from the last section. For
the cept-based decoder to generate the same phrasal
translation, it requires three separate tuple transla-
tions “Wie — what is”, “Sie — your” and “heiflen —
name”. Here we are faced with three challenges.

SWe also tried Witten-Bell and Good Turing methods of dis-

counting and found Kneser-Ney smoothing to produce the best
results.



Translation Coverage: The first problem is that
the N-gram model does not have the same cov-
erage of translation options. The English cepts
“what is”, “your” and “name” are not good candi-
date translations for the German cepts “Wie”, “Sie”
and “heiBen”, respectively. When extracting tuple
translations for these cepts from the Europarl data
for our system, the tuple “Wie — what is” is ranked
124", “heiBen — name” is ranked 56", and “Sie —
your” is ranked 9" in the list of n-best translation
candidates. Typically only the 20 best translation
options are used, to reduce the decoding time, and
such phrasal units with less frequent cept transla-
tions are never hypothesized in the N-gram-based
systems. The phrase-based system on the other hand
can extract the phrase “Wie heillen Sie — what is
your name” even if it is observed only once dur-
ing training. A similar problem is also reported in
Costa-jussa et al. (2007). When trying to repro-
duce the sentences in the n-best translation output
of the phrase-based system, the N-gram-based sys-
tem was only able to produce 37.5% of the sen-
tences in the Spanish-to-English and 37.2% in the
English-to-Spanish translation tasks. In compar-
ison the phrase-based system was able to repro-
duce 57.5% and 48.6% of the sentences in the n-
best translation output of the Spanish-to-English and
English-to-Spanish N-gram-based systems.

Larger Beam Size: A related problem is that a
higher beam size is required in cept-based decod-
ing to prevent uncommon translations from getting
pruned. The phrase-based system can generate the
phrase-pair “Wie heilen Sie — what is your name”
in a single step placing it directly into the stack three
words to the right. The cept-based decoder generates
this phrase in three stacks with the tuple translations
“Wie — What is”, “Sie — your” and “hei3en — name”.
A very large stack size is required during decoding
to prevent the pruning of “Wie — What is” which is
ranked quite low in the stack until the tuple “Sie —
your” is hypothesized in the next stack. Costa-jussa
et al. (2007) reports a significant drop in the perfor-
mance of N-gram-based SMT when a beam size of
10 is used instead of 50 in their experiments. For the
(cept-based) operation sequence model, Durrani et
al. (2011) required a stack size of 500. In compari-
son, the translation quality achieved by phrase-based

SMT remains the same when varying the beam size
between 5 and 50.

Future-Cost Estimation: A third problem is
caused by inaccurate future-cost estimation. Using
phrases helps phrase-based SMT to better estimate
the future language model cost because of the larger
context available, and allows the decoder to capture
local (phrase-internal) reorderings in the future cost.
In comparison the future cost for tuples is mostly un-
igram probabilities. The future-cost estimate for the
phrase pair “Wie heilen Sie — What is your name”
is estimated by calculating the cost of each feature.
The language model cost, for example, is estimated
in the phrase-based system as follows:

Pim = P(What) x p(is|What) x p(your|What is)

x p(name|What is your)

The cost of the direct phrase translation probabil-
ity, one of the features used in the phrase translation
model, is estimated as:

pPtm = p(What is your name|Wie heifien Sie)

Phrase-based SMT is aware during the prepro-
cessing step that the words “Wie heillen Sie” may
be translated as a phrase. This is helpful for estimat-
ing a more accurate future cost because the phrase-
internal context is already available. The same is not
true for the operation sequence model, to which only
minimal units are available. The operation model
does not have the information that “Wie hei3en Sie”
may be translated as a phrase during decoding. The
future-cost estimate available to the operation model
for the span covering “Wie heiflen Sie” will have un-
igram probabilities for both the translation and lan-
guage model:

Plm = P(What) x p(is|What) x p(your) x p(name)

Ptm = P(Generate(Wie, What is)) x p(Generate

(heien,name)) x p(Generate(Sie, your))

Thus the future-cost estimate in the operation
model is much worse than that of the phrase-based
model. The poor future-cost estimation leads to
search errors, causing a drop in the translation qual-
ity. A more accurate future-cost estimate for the
translation model cost would be:



Ptm = P(Generate(Wie,What is)) x p(Insert Gap|C)

X p(Generate(Sie,your)|C) x p(Jump Back(1)|C)

p(Generate(heiBen,name)|C)

where C'is the context, i.e., the n—1 previously gen-
erated operations. The future-cost estimates com-
puted in this manner are much more accurate be-
cause they not only consider context, but also take
the reordering operations into account.

5 N-gram Model with Phrase-based
Decoding

In the last section we discussed the disadvantages of
using cepts during search in a left-to-right decoding
framework. We now define a method to empirically
study the mentioned drawbacks and whether using
information available in phrase-pairs during decod-
ing can help improve search accuracy and translation
quality.

5.1 Training

We extended the training steps in Durrani et al.
(2011) to extract a phrase lexicon from the paral-
lel data. We extract all phrase pairs of length 6 and
below, that are consistent (Och et al., 1999) with
the word alignments. Only continuous phrases as
used in a traditional phrase-based system are ex-
tracted thus allowing only inside-out (Wu, 1997)
type of alignments. The future cost of each fea-
ture component used in the log-linear model is cal-
culated. The operation sequence required to hypoth-
esize each phrase is generated and its future cost is
calculated. The future costs of other features such
as language models, lexicalized probability features,
etc. are also estimated. The estimates of the count-
based reordering penalties (gap penalty and open
gap penalty) and the distance-based features (gap-
width and reordering distance) could not be esti-
mated previously with cepts but are available when
using phrases.

5.2 Decoding

We extended the decoder developed by Durrani et al.
(2011) and tried three ideas. In our primary experi-
ments we enabled the decoder to use phrases instead
of cepts. This allows the decoder to i) use phrase-
internal context when computing the future-cost es-
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timates, ii) hypothesize translation options not avail-
able to the cept-based decoder iii) cover multiple
source words in a single step subsequently improv-
ing translation coverage and search. Note that us-
ing phrases instead of cepts during decoding, does
not reintroduce the spurious phrasal segmentation
problem as is present in the phrase-based system,
because the model is built on minimal units which
avoids segmentation ambiguity. Different compo-
sitions of the same phrasal unit lead to exactly the
same model score. We therefore do not create any
alternative compositions of the same phrasal unit
during decoding. This option is not available in
phrase-based decoding, because an alternative com-
position may lead towards a better model score.

In our secondary set of experiments, we used
cept-based decoding but modified the decoder to
use information available from the phrases extracted
for the test sentences. Firstly, we used future-cost
estimates from the extracted phrases (see system
cept.500.fc in Tablel). This however, leads to in-
consistency in the cases where the future cost is es-
timated from some phrasal unit that cannot be gen-
erated through the available cept translations. For
example, say the best cost to cover the sequence
“Wie heillen Sie” is given by the phrase “What is
your name”. The 20-best translation options in cept-
based system, however, do not have tuples “Wie —
What” and “heilen — name”. To remove this dis-
crepancy, we add all such tuples that are used in
the extracted phrases, to the list of extracted cepts
(system cept.500.fc.t). We also studied how much
gain we obtain by only adding tuples from phrases
and using cept-based future-cost estimates (system
cept.500.t).

5.3 Evaluation Method

To evaluate our modifications we apply a simple
strategy. We hold the model constant and change
the search to use the baseline decoder, which uses
minimal translation units, or the modified decoders
that use phrasal information during decoding. The
model parameters are optimized by running MERT
(minimum error rate training) for the baseline de-
coder on the dev set. After we have the optimized
weights, we run the baseline decoder and our mod-
ifications on the test. Note that because all the de-
coding runs use the same feature vector, the model



stays constant, only search changes. This allows us
to compare different decoding runs, obtained using
the same parameters, but different search strategies,
in terms of model scores. We compute a search ac-
curacy and translation quality for each run.

Search accuracy is computed by comparing trans-
lation hypotheses from the different decoding runs.
We form a collection of the best scoring hypotheses
by traversing through all the runs and selecting the
sentences with highest model score. For each input
sentence we select a single best scoring hypothesis.
The best scoring hypothesis can be contributed from
several runs. In this case all these runs will be given
a credit for that particular sentence when computing
the search accuracy. The search accuracy of a decod-
ing run is defined as the percentage of hypotheses
that were contributed from this run, when forming a
list of best scoring hypotheses. For example, for a
test set of 1000 sentences, the accuracy of a decod-
ing run would be 30% if it was able to produce the
best scoring hypothesis for 300 sentences in the test
set. Translation quality is measured through BLEU
(Papineni et al., 2002).

6 Experimental Setup

We initially experimented with two language pairs:
German-to-English (G-E) and French-to-English (F-
E). We trained our system and the baseline sys-
tems on most of the data® made available for the
translation task of the Fourth Workshop on Statis-
tical Machine Translation.” We used 1M bilin-
gual sentences, for the estimation of the transla-
tion model and 2M sentences from the monolingual
corpus (news commentary) which also contains the
English part of the bilingual corpus. Word align-
ments are obtained by running GIZA++ (Och and
Ney, 2003) with the grow-diag-final-and (Koehn et
al., 2005) symmetrization heuristic. We follow the
training steps described in Durrani et al. (2011), con-
sisting of i) post-processing the alignments to re-
move discontinuous and unaligned target cepts, ii)
conversion of bilingual alignments into operation
sequences, iii) estimation of the n-gram language
models.

SWe did not use all the available data due to scalability is-
sues. The scores reported are therefore well below those ob-
tained by the systems submitted to the WMT evaluation series.

Thttp://www.statmt.org/wmt09/translation-task.html

6.1 Search Accuracy Results

We divided our evaluation into two halves. In
the first half we carried out experiments to mea-
sure search accuracy and translation quality of
our decoders against the baseline cept-based OSM
(cept.500) that uses minimal translation units with a
stack size of 500. We used the version of the cept-
based OSM system that does not allow discontinu-
ous® source cepts. To increase the speed of the sys-
tem we used a hard reordering limit of 15°, in the
baseline decoder and our modifications, disallowing
jumps that are beyond 15 words from the first open
gap. For each extracted cept or phrase 10-best trans-
lation options are extracted.

Using phrases in search reduces the decoding
speed. In order to make a fair comparison, both the
phrase-based and the baseline cept-based decoders
should be allowed to run for the same amount of
time. We therefore reduced the stack size in the
phrase-based decoder so that it runs in the same
amount of time as the cept-based decoder. We found
that using a stack size of 200! for the phrase-based
decoder was comparable in speed to using a stack-
size of 500 in the cept-based decoding.

We first tuned the baseline on dev'! to obtain an
optimized weight vector. We then ran the baseline
and our decoders as discussed in Section 5.2 on the
dev-test. Then we repeated this experiment by tun-
ing the weights with our phrase-based decoder (us-
ing a stack size of 100) and ran all the decoders again
using the new weights.

Table 1 shows the average search accuracies and
BLEU scores of the two experiments. Using phrases
during decoding in the G-E experiments resulted
in a statistically significant'> 0.69 BLEU points
gain comparing our best system phrase.200 with the
baseline system cept.500. We mark a result as sig-

$Discontinuous source-side units did not lead to any im-
provements in (Durrani et al., 2011) and increased the decoding
times by multiple folds. We also found these to be less useful.

“Imposing a hard reordering limit significantly reduced the
decoding time and also slightly increased the BLEU scores.

"%Higher stack sizes leads to improvement in model scores
for both German-English and French-English and slight im-
provement of BLEU in the case of the former.

""'We used news-dev2009a as dev and news-dev2009b as dev-
test and tuned the weights with Z-MERT (Zaidan, 2009).

2We use bootstrap resampling (Koehn, 2004b) to test our
results against the baseline result.



System German French

Acc. | BLEU | Acc. | BLEU
Baseline System cept.stack-size
cept.50 25.95% | 19.50 | 42.10% | 21.44
cept.100 30.04% | 19.79 | 47.32% | 21.70
cept.200 35.17% | 1998 | 51.47% | 21.82
cept.500 41.56% | 20.14 | 54.93% | 21.87
Our Cept-based Decoders
cept.500.fc | 48.44% | 20.52* | 54.73% | 21.86
cept.500.t | 52.24% | 20.34 | 67.95% | 22.00
cept.500.fc.t | 61.81% | 20.53* | 67.76% | 21.96
Our Phrase-based Decoders

phrase.50 | 58.88% | 20.58* | 80.83% | 22.04
phrase.100 | 69.85% | 20.73* | 88.34% | 22.13
phrase.200 | 79.71% | 20.83* | 92.93% | 22.17*

Table 1: Search Accuracies (Acc.) and BLEU scores of
the Baseline and Our Decoders with different Stack Sizes
(fc = Future Cost Estimated from Phrases, t = Cept Trans-
lation Options enriched from Phrases)

nificant if the improvement shown by our decoder
over the baseline decoder (cept.500) is significant at
the p < 0.05 level, in both the runs. All the out-
puts that show statistically significant improvements
over the baseline decoder (cept.500) in Table 1 are
marked with an asterisk.

The search accuracy of our best system
(phrase.200), in G-E experiments is roughly
80%, which means that 80% of the times the
phrase-based decoder (using stack size 200) was
able to produce the same model score or a better
model score than the cept-based decoders (using
a stack size of 500). Our F-E experiments also
showed improvements in BLEU and model scores.
The search accuracy of our best system phrase.200
is roughly 93% as compared with 55% in the
baseline decoder (cept.500) giving a BLEU point
gain of +0.30 over the baseline.

Our modifications to the cept-based decoder also
showed improvements. We found that extending
the cept translation table (cept.500.t) using phrases
helps both in G-E and F-E experiments by extend-
ing the list of n-best translation options by 18% and
18.30% respectively. Using future costs estimated
from phrases (cept.500.fc) improved both search ac-
curacy and BLEU scores in G-E experiments, but
does not lead to any improvements in the F-E ex-
periments, as both BLEU and model scores drop
slightly. We looked at a few examples where the

model score dropped and found that in these cases,
the best scoring hypotheses are ranked very low ear-
lier in the decoding and make their way to the top
gradually in subsequent steps. A slight difference in
the future-cost estimate prunes these hypotheses in
one or the other decoder. We found future cost to
be more critical in G-E than F-E experiments. This
can be explained by the fact that more reordering is
required in G-E and it is necessary to account for the
reordering operations and jump-based features (gap-
based penalties, reordering distance and gap-width)
in the future-cost estimation. F-E on the other hand
is largely monotonic except for a few short distance
reorderings such as flipping noun and adjective.

6.2 Comparison with other Baseline Systems

In the second half of our evaluation we compared
our best system phrase.200 with the baseline sys-
tem cept.500, and other state-of-the-art phrase-based
and N-gram-based systems on German-to-English,
French-to-English, and Spanish-to-English tasks'.
We used the official evaluation data (news-test sets)
from the Statistical Machine Translation Workshops
2009-2011 for all three language pairs (German,
Spanish and French). The feature weights for all the
systems are tuned using the dev set news-dev2009a.
We separately tune the baseline system (cept.500)
and the phrase-based system (phrase.200) and do not
hold the lambda vector constant like before.
Baseline Systems: We also compared our system
with i) Moses (Koehn et al., 2007), ii) Phrasal'* (Cer
et al., 2010), and iii) Ncode (Crego et al., 2011).
We used the default stack sizes of 100 for
Moses'?, 200 for Phrasal, 25 for Ncode (with 2™
stacks). A 5-gram English language model is used.
Both phrase-based systems use 20-best phrases for
translation, Ncode uses 25-best tuple translations.
The training and test data for Ncode was tagged us-
ing TreeTagger (Schmid, 1994). All the baseline
systems used lexicalized reordering model. A hard
reordering limit'® of 6 words is used as a default in

BWe did not include the results of Spanish in the previous
section due to space limitations but these are similar to those of
the French-to-English translation task.

“Phrasal provides two extensions to Moses: i) hierarchical
reordering model (Galley and Manning, 2008) and ii) discon-
tinuous phrases (Galley and Manning, 2010).

'3Using stacks sizes from 200— 1000 did not improve results.

1We tried to increase the distortion limit in the baseline sys-



both the baseline phrase-based systems. Amongst
the other defaults we retained the hard source gap
penalty of 15 and a target gap penalty of 7 in Phrasal.
We provide Moses and Ncode with the same post-
edited alignments!” from which we removed target-
side discontinuities. We feed the original alignments
to Phrasal because of its ability to learn discontinu-
ous source and target phrases. All the systems use
MERT for the optimization of the weight vector.

\ M \ Pa \ N, \ Cso0 \ P200
German-to-English

MTO09 | 18.73* | 19.00* | 18.37* | 19.06* | 19.66

MTI10 | 18.58* | 18.96* | 18.64* | 19.12* | 19.70

MTI11 | 17.38*% | 17.58* | 17.49*% | 17.87* | 18.19
French-to-English

MTO09 | 24.61% | 24.73* | 24.28% | 24.94* | 25.27

MTI10 | 23.69* | 23.09* | 23.96 | 23.90* | 24.25

MTI1 | 25.17* | 25.55% | 24.92% | 25.40% | 25.92
Spanish-to-English

MTO09 | 24.38% | 24.63 | 24.72 | 24.48* | 24.72

MTI10 | 25.55% | 25.66* | 25.87 | 25.68* | 26.10

MTI1 | 25.72% | 26.17* | 26.36% | 26.48 | 26.67

Table 2: Comparison on 3-Test Sets — Mg = Moses, Py
= Phrasal (Discontinuous Phrases), N. = Ncode, Csgg =
Cept.500, P5go = Phrase.200

Table 2 compares the performance of our phrase-
based decoder against the baselines. Our system
shows an improvement over all the baseline systems
for the G-E pair, in 11 out of 12 cases in the F-E
pair and in 8 out of 12 cases in the S-E language
pair. We mark a baseline with “*” to indicate that
our decoder shows an improvement over this base-
line result which is significant at the p < 0.05 level.

7 Conclusion and Future Work

We proposed a combination of using a model based
on minimal units and decoding with phrases. Mod-
eling with minimal units enables us to learn local
and non-local dependencies in a unified manner and
avoid spurious segmentation ambiguities. However,
using minimal units also in the search presents a
significant challenge because of the poor transla-
tion coverage, inaccurate future-cost estimates and

tems to 15 (in G-E experiments) as used in our systems but the
results dropped significantly in case of Moses and slightly for
Phrasal so we used the default limits for both decoders.

7Using post-processed alignments gave slightly better re-
sults than the original alignments for these baseline systems.
Details are omitted due to space limitation.

the pruning of the correct hypotheses. Phrase-based
SMT on the other hand overcomes these drawbacks
by using larger translation chunks during search.
However, the drawback of the phrase-based model is
the phrasal independence assumption, spurious am-
biguity in segmentation and a weak mechanism to
handle non-local reorderings. We showed that com-
bining a model based on minimal units with phrase-
based decoding can improve both search accuracy
and translation quality. We also showed that the
phrasal information can be indirectly used in cept-
based decoding with improved results. We tested
our system against the state-of-the-art phrase-based
and N-gram-based systems, for German-to-English,
French-to-English, and Spanish-to-English for three
standard test sets. Our system showed statistically
significant improvements over all the baseline sys-
tems in most of the cases. We have shown the bene-
fits of using phrase-based search with a model based
on minimal units. In future work, we would like to
study whether a phrase-based system like Moses or
Phrasal can profit from an OSM-style or N-gram-
style feature. Feng et al. (2010) previously showed
that adding a linearized source-side language model
in a phrase-based system helped. It would also
be interesting to study whether the insight of us-
ing minimal units for modeling and phrase-based
search would hold for hierarchical SMT. Vaswani et
al. (2011) recently showed that a Markov model over
the derivation history of minimal rules can obtain the
same translation quality as using grammars formed
with composed rules.
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Abstract

Standard phrase-based translation models do
not explicitly model context dependence be-
tween translation units. As a result, they rely
on large phrase pairs and target language mod-
els to recover contextual effects in translation.
In this work, we explore n-gram models over
Minimal Translation Units (MTUs) to explic-
itly capture contextual dependencies across
phrase boundaries in the channel model. As
there is no single best direction in which con-
textual information should flow, we explore
multiple decomposition structures as well as
dynamic bidirectional decomposition. The
resulting models are evaluated in an intrin-
sic task of lexical selection for MT as well
as a full MT system, through n-best rerank-
ing. These experiments demonstrate that ad-
ditional contextual modeling does indeed ben-
efit a phrase-based system and that the direc-
tion of conditioning is important. Integrating
multiple conditioning orders provides consis-
tent benefit, and the most important directions
differ by language pair.

1 Introduction

The translation procedure of a classical phrase-
based translation model (Koehn et al., 2003) first di-
vides the input sentence into a sequence of phrases,
translates each phrase, explores reorderings of these
translations, and then scores the resulting candi-
dates with a linear combination of models. Conven-
tional models include phrase-based channel models
that effectively model each phrase as a large uni-
gram, reordering models, and target language mod-
els. Of these models, only the target language model

This research was conducted during the author’s internship
at Microsoft Research
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(and, to some weak extent, the lexicalized reordering
model) captures some lexical dependencies that span
phrase boundaries, though it is not able to model in-
formation from the source side. Larger phrases cap-
ture more contextual dependencies within a phrase,
but individual phrases are still translated almost in-
dependently.

To address this limitation, several researchers
have proposed bilingual n-gram Markov models
(Marino et al., 2006) to capture contextual depen-
dencies between phrase pairs. Much of their work
is limited by the requirement “that the source and
target side of a tuple of words are synchronized, i.e.
that they occur in the same order in their respective
languages” (Crego and Yvon, 2010).

For language pairs with significant typological di-
vergences, such as Chinese-English, it is quite dif-
ficult to extract a synchronized sequence of units;
in the limit, the smallest synchronized unit may be
the whole sentence. Other approaches explore incor-
poration into syntax-based MT systems or replacing
the phrasal translation system altogether.

We investigate the addition of MTUs to a phrasal
translation system to improve modeling of con-
text and to provide more robust estimation of long
phrases. However, in a phrase-based system there
is no single synchronized traversal order; instead,
we may consider the translation units in many pos-
sible orders: left-to-right or right-to-left according
to either the source or the target are natural choices.
Alternatively we consider translating a particularly
unambiguous unit in the middle of the sentence
and building outwards from there. We investigate
both consistent and dynamic decomposition orders
in several language pairs, looking at distinct orders
in isolation and combination.

Proceedings of NAACL-HLT 2013, pages 12-21,
Atlanta, Georgia, 9-14 June 2013. (©2013 Association for Computational Linguistics



2 Related work

Marino et al. (2006) proposed a translation model
using a Markov model of bilingual n-grams, demon-
strating state-of-the-art performance compared to
conventional phrase-based models. Crego and
Yvon (2010) further explored factorized n-gram ap-
proaches, though both models considered rather
large n-grams; this paper focuses on small units with
asynchronous orders in source and target. Durrani
et al. (2011) developed a joint model that captures
translation of contiguous and gapped units as well as
reordering. Two prior approaches explored similar
models in syntax based systems. MTUs have been
used in dependency translation models (Quirk and
Menezes, 2006) to augment syntax directed trans-
lation systems. Likewise in target language syntax
systems, one can consider Markov models over min-
imal rules, where the translation probability of each
rule is adjusted to include context information from
parent rules (Vaswani et al., 2011).

Most prior work tends to replace the existing
probabilities rather than augmenting them. We be-
lieve that Markov rules provide an additional sig-
nal but are not a replacement. Their distributions
should be more informative than the so-called “lex-
ical weighting” models, and less sparse than rela-
tive frequency estimates, though potentially not as
effective for truly non-compositional units. There-
fore, we explore the inclusion of all such informa-
tion. Also, unlike prior work, we explore combina-
tions of multiple decomposition orders, as well as
dynamic decompositions. The most useful context
for translation differs by language pair, an important
finding when working with many language pairs.

We build upon a standard phrase-based approach
(Koehn et al., 2003). This acts as a proposal dis-
tribution for translations; the MTU Markov models
provide additional signal as to which translations are
correct.

3 MTU n-gram Markov models

We begin by defining Minimal Translation Units
(MTUs) and describing how to identify them in
word-aligned text. Next we define n-gram Markov
models over MTUs, which requires us to define
traversal orders over MTUs.
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M1 M2 M3 M4 M5
T WER 247 2R
Yu_ ZuoTian JuXing null HuiTan
\\\;/::>\\\\/><::/ /////,
held the meeting null yesterday
M1: Yu => null
M2: ZuoTian => yesterday
M3: JuXing => held
M4: null => the
M5: HuiTan => meeting

Figure 1: Word alignment and minimum translation units.

3.1 Definition of an MTU

Informally, the notion of a minimal translation unit
is simple: it is a translation rule that cannot be
broken down any further without violating the con-
straints of the rules. We restrict ourselves to contigu-
ous MTUs. They are similar to small phrase pairs,
though unlike phrase pairs we allow MTUs to have
either an empty source or empty target side, thereby
allowing insertion and deletion phrases. Conven-
tional phrase pairs may be viewed as compositions
of these MTUs up to a given size limit.

Consider a word-aligned sentence pair consisting
of a sequence of source words s = sy...5,, a se-
quence of target words t = ¢, .. . t,, and a word align-
ment relation between the source and target words
~ C {l..m} x {1..n}. A translation unit is a sequence
of source words s;..s; and a sequence of target words
tx..t; (one of which may be empty) such that for all
aligned pairs i’ ~ k’, we have i < i’ < j if and only
if k < k' < 1. This definition, nearly identical to
that of a phrase pair (Koehn et al., 2003), relaxes the
constraint that one aligned word must be present.

A set of translation units is a partition of the sen-
tence pair if each source and target word is covered
exactly once. Minimal translation units is the par-
tition with the smallest average unit size, or, equiv-
alently, the largest number of units. For example,
Figure 1 shows a word-aligned sentence pair and its
corresponding set of MTUs. We extract these min-
imal translation units with an algorithm similar to
that of phrase extraction.

We train n-gram Markov models only over min-



imal rules for two reasons. First, the segmentation
of the sentence pair is not unique under composed
rules, which makes probability estimation compli-
cated. Second, some phrase pairs are very large,
which results in sparse data issues and compromises
the model quality. Therefore, training an n-gram
model over minimal translation units turns out to
be a simple and clean choice: the resulting segmen-
tation is unique, and the distribution is smooth. If
we want to capture more context, we can simply in-
crease the order of the Markov model.

Such Markov models address issues in large
phrase-based translation approaches. Where stan-
dard phrase-based models rely upon large unigrams
to capture contextual information, n-grams of mini-
mal translation units allow a robust contextual model
that is less constrained by segmentation.

3.2 MTU enumeration orders

When defining a joint probability distribution over
MTUs of an aligned sentence pair, it is necessary
to define a decomposition, or generation order for
the sentence pair. For a single sequence in lan-
guage modeling or synchronized sequences in chan-
nel modeling, the default enumeration order has
been left-to-right.

Different decomposition orders have been used
in part-of-speech tagging and named entity recog-
nition (Tsuruoka and Tsujii, 2005). Intuitively, in-
formation from the left or right could be more use-
ful for particular disambiguation choices. Our re-
search on different decomposition orders was moti-
vated by this work. When applying such ideas to
machine translation, there are additional challenges
and opportunities. The task exhibits much more am-
biguity — the number of possible MTUs is in the
millions. An opportunity arises from the reordering
phenomenon in machine translation: while in POS
tagging the natural decomposition orders to study
are only left-to-right and right-to-left, in machine
translation we can further distinguish source and tar-
get sentence orders.

We first define the source left-to-right and the tar-
get left-to-right orders of the aligned sets of MTUs.
The definition is straightforward when there are no
inserted or deleted word. To place the nulls corre-
sponding to such word we use the following defi-
nition: the source position of the null for a target
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inserted word is just after the position of the last
source word aligned to the closest preceding non-
null aligned target word. The target position for a
null corresponding to a source deleted MTU is de-
fined analogously. In Figure 1 we define the posi-
tion of M4 to be right after M3 (because “the” is
after “held” in left-to-right order on the target side).

The complete MTU sequence in source left-to-
right order is M1-M2-M3-M4-M5. The sequence
in target left-to-right order is M3-M4-M5-M1-M2.
This illustrates that decomposition structure may
differ significantly depending on which language is
used to define the enumeration order.

Once a sentence pair is represented as a sequence
of MTUs, we can define the probability of the
sentence pair using a conventional n-gram Markov
model (MM) over MTUs. For example, the 3-gram
MM probability of the sentence pair in Figure 1
under the source left-to-right order is as follows:
P(M1)-P(M2|M1)-P(M3|M1, M2)- P(M4|M2, M3)-
P(MS5|M3, M4).

Different decomposition orders use different con-
text for disambiguation and it is not clear apriori
which would perform best. We compare all four
decomposition orders (source order left-to-right and
right-to-left, and target order left-to-right and right-
to-left). Although the independence assumptions of
left-to-right and right-to-left are the same, the result-
ing models may be different due to smoothing.

In addition to studying these four basic decompo-
sition orders, we report performance of two cyclic
orders: cyclic in source or target sentence order.
These models are inspired by the cyclic depen-
dency network model proposed for POS tagging
(Toutanova et al., 2003) and also used as a baseline
in previous work on dynamic decomposition orders
(Tsuruoka and Tsujii, 2005). !

The probability according to the cyclic orders is
defined by conditioning each MTU on both its left
and right neighbor MTUs. For example, the prob-
ability of the sentence pair in Figure 1 under the
source cyclic order, using a 3-gram model is defined
as: P(M1|M2) - P(M2|M1, M3) - P(M3|M2, M4) -
P(MA4|M3, MS5) - P(M5|M4).

All n-gram Markov models over MTUs are esti-
mapplication of such models requires sampling

to find the highest scoring sequence, but we apply the max prod-
uct approximation as done in previous work.



mated using Kneser-Ney smoothing. Each MTU is
treated as an atomic unit in the vocabulary of the
n-gram model. Counts of all n-grams are obtained
from the parallel MT training data, using different
MTU enumeration orders.

Note that if we use a target-order decomposition,
the model provides a distribution over target sen-
tences and the corresponding source sides of MTUs,
albeit unordered. Likewise source order based mod-
els provide distributions over source sentences and
unordered target sides of MTUs. We attempted to
introduce reordering models to predict an order over
the resulting MTU sequences using approaches sim-
ilar to reordering models for phrases. Although
these models produced gains in some language pairs
when used without translation MTU MMs, there
were no additional gains over a model using mul-
tiple translation MTU MMs.

4 Lexical selection

We perform an empirical evaluation of different
MTU decomposition orders on a simplified machine
translation task: lexical selection. In this task we
assume that the source sentence segmentation into
minimal translation units is given and that the or-
der of the corresponding target sides of the minimal
translation units is also given. The problem is to
predict the target sides of the MTUs, called target
MTUs for brevity (see Figure 2). The lexical selec-
tion task is thus similar to sequence tagging tasks
like part-of-speech tagging, though much more dif-
ficult: the predicted variables are sequences of target
language words with millions of possible outcomes.

F WER 24T =R
Yu ZuoTian JuXing null HuiTan
/\/\/\’ :><: _-
T T ~~-C
T - "<l Tl
? ? 7 2 ?

Figure 2: Lexical selection.

We use this constrained MT setting to evaluate the
performance of models using different MTU decom-
position orders and models using combinations of
decomposition orders. The simplified setting allows
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controlled experimentation while lessening the im-
pact of complicating factors in a full machine trans-
lation setting (search error, reordering limits, phrase
table pruning, interaction with other models).

To perform the tagging task, we use trigram MTU
models. The four basic decomposition orders for
MTU Markov models we use are left-to-right in tar-
get sentence order, right-to-left in target sentence or-
der, left-to-right in source sentence order, and right-
to-left in source sentence order. We also consider
cyclic orders in source and target.

Regardless of the decomposition order used, we
perform decoding using a beam search decoder, sim-
ilar to ones used in phrase-based machine transla-
tion. The decoder builds target hypotheses in left-
to-right target sentence order. At each step, it fills in
the translation of the next source MTU, in the con-
text of the already predicted MTUs to its left. The
top scoring complete hypotheses covering the first m
MTUs are maintained in a beam. When scoring with
a target left-to-right MTU Markov model (L2RT),
we can score each partial hypothesis exactly at each
step. When scoring using a R2LT model or a source
order model, we use lower-order approximations to
the trigram MTU Markov model scores as future
scores, since not all needed context is available for a
hypothesis at the time of construction. As additional
context becomes available, the exact score can be
computed. 2

4.1 Basic decomposition order combinations

We first introduce two methods of combining differ-
ent decomposition orders: product and system com-
bination.

The product method arises naturally in the ma-
chine translation setting, where probabilities from
different models are multiplied together and further
weighted to form the log-linear model for machine
translation (Och and Ney, 2002). We define a similar
scoring function using a set of MTU Markov models
MM, ..., MM, for a hypothesis A as follows:

Score(h) = /lllOgPMMl (h) + ...+ ﬂklOgPMMk(h)

2We apply hypothesis recombination, which can merge hy-
potheses that are indistinguishable with respect to future contin-
vations. This is similar to recombination in a standard-phrase
based decoder with the difference that it is not always the last
two target MTUs that define the context needed by future ex-
tensions.



The weights A of different models are trained on a
development set using MER training to maximize
the BLEU score of the resulting model. Note that
this method of model combination was not consid-
ered in any of the previous works comparing differ-
ent decompositions.

The system combination method is motivated
by prior work in machine translation which com-
bined left-to-right and right-to-left machine trans-
lation systems (Finch and Sumita, 2009). Simi-
larly, we perform sentence-level system combina-
tion between systems using different MTU Markov
models to come up with most likely translations.
If we have k systems guessing hypotheses based
on MMy, ..., MMy respectively, we generate 1000-
best lists from each system, resulting in a pool of
up to 1000k possible distinct translations. Each of
the candidate hypotheses from MM; is scored with
its Markov model log-probability logPyu,(h). We
compute normalized probabilities for each system’s
n-best by exponentiating and normalizing: P;(h) «
Pyry,(h). If a hypothesis £ is not in system i’s n-
best list, we assume its probability is zero according
to that system. The final scoring function for each
hypothesis in the combined list of candidates is:

Score(h) = /11P1(h) + ...+ ﬂkPk(h)

The weights A for the combination are tuned using
MERT as for the product model.

4.2 Dynamic decomposition orders

A more complex combination method chooses the
best possible decomposition order for each transla-
tion dynamically, using a set of constraints to de-
fine the possible decomposition orders, and a set of
features to score the candidate decompositions. We
term this method dynamic combination. The score
of each translation is defined as its score according
to the highest-scoring decomposition order for that
translation.

This method is very similar to the bidirectional
tagging approach of Tsuruoka and Tsujii (2005).
For this approach we only explored combinations of
target language orders (L2RT, CycT, and R2LT). If
source language orders were included, the complex-
ity of decoding would increase substantially.

Figure 3 shows two possible decompositions for
a short MTU sequence. The structures displayed are
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Am)——m

C=2L C=21L
Sik=Prog(n13| 1, 1) Spp=P, 25 (1114| 1113, 113)

m)y——(m)
c=0 C=1L
Sir=Pzr (1) Sir=Py2x (| 1m)

Cc=0 C=LR C=1R Cc=0
Sir=Pp2r () Seye=Pryc (| m, mz)  Spr="Prz, (13| my) S1rR=Py2r (my)

Figure 3: Different decompositions.

directed graphical models. They define the set of
parents (context) used to predict each target MTU.
The decomposition structures we consider are lim-
ited to acyclic graphs where each node can have one
of the following parent configurations: no parents
(C = 0 in the Figure), one left parent (C = 1L),
one right parent (C = 1R), one left and one right
parent (C = LR), two left parents (C = 2L), and
two right parents (C = 2R). If all nodes have two
left parents, we recover the left-to-right decomposi-
tion order, and if all nodes have two right parents,
the right-to-left decomposition order. A mixture of
parent configurations defines a mixed, dynamic de-
composition order. The decomposition order chosen
varies from translation to translation.

A directed graphical model defines the probability
of an assignment of MTUs to the variable nodes as a
product of local probabilities of MTUs given their
parents. Here we extend this definition to scores
of assignments by using a linear model with con-
figuration features and log-probability features. The
configuration features are indicators of which par-
ent configuration is active at a node and the settings
of these features for the decompositions in Figure
3 are shown as assignments to the C variables. The
log-probability feature values are obtained by query-
ing the appropriate n-gram model: L2RT, CycT, or
R2LT. For a node with one or two left parents, the
log-probability is computed according to the L2RT
model. For a node with one or two right parents, the
R2LT model is queried. The CycT model is used for
nodes with one left and one right parent.

To find the best translation of a sentence the
model now searches over hidden decomposition or-



ders in addition to assignments to target MTUs. The
final score of a translation and decomposition is a
linear combination of the two types of feature values
— model log-probabilities and configuration types.
There is one feature weight for each parent con-
figuration (six configuration weights) and one fea-
ture weight for each component model (three model
weights). The final score of the second decomposi-
tion and assignment in Figure 3 is:

Score(h)
=2 x We, + Weir + Weig
+ wiorlogPrr(my) + weyclogPeyc(malmy, m3)

+ wrarlogPrp(m3lmy) + wiorlog P r(my)

There are two main differences between our ap-
proach and that of Tsuruoka and Tsujii (2005): we
perform beam search with hypothesis recombination
instead of exact decoding (due to the larger size of
the hypothesis set), and we use parameters to be
able to globally weight the probabilities from dif-
ferent models and to develop preferences for using
certain types of decompositions. For example, the
model can learn to prefer right-to-left decomposi-
tions for one language pair, and left-to-right decom-
positions for another. An additional difference from
prior work is the definition of the possible decompo-
sition orders that are searched over.

Compared to the structures allowed in (Tsuruoka
and Tsujii, 2005) for a trigram baseline model, our
allowed structures are a subset; in (Tsuruoka and
Tsujii, 2005) there are sixteen possible parent con-
figurations (up to two left and two right parents),
whereas we allow only six. We train and use only
three n-gram Markov models to assign probabilities:
L2RT, R2LT, and CycT, whereas the prior work used
sixteen models. One could potentially see additional
gains from considering a larger space of structures
but the training time and runtime memory require-
ments might become prohibitive for the machine
translation task.

Because of the maximization over decomposition
structures, the score of a translation is not a simple
linear function of the features, but rather a maximum
over linear functions. The score of a translation for
a fixed decomposition is a linear function of the fea-
tures, but the score of a translation is a maximum of
linear functions (over decompositions). Therefore,
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if we define hypotheses as just containing transla-
tions, MERT training does not work directly for op-
timizing the weights of the dynamic combination
method. > We used a combination of approaches;
we did MERT training followed by local simplex-
method search starting from three starting points:
the MERT solution, a weight vector that strongly
prefers left-to-right decompositions, and a weight-
vector that strongly prefers right-to-left decomposi-
tions. In the Experiments section, we report results
for the weights that achieved the best development
set performance.

S N-best reranking

To evaluate the impact of these models in a full MT
system, we investigate n-best reranking. We use a
phrase-based MT system to output 1000-best can-
didate translations. For each candidate translation,
we have access to the phrase pairs it used as well as
the alignments inside each phrase pair. Thus, each
source sentence and its candidate translation form a
word-aligned parallel sentence pair. We can extract
MTU sequences from this sentence pair and com-
pute its probability according to MTU Markov mod-
els. These MTU MM log-probabilities are appended
to the original MT features and used to rerank the
1000-best list. The weight vectors for systems using
the original features along with one or more MTU
Markov model log-probabilities are trained on the
development set using MERT.

6 Experiments

We report experimental results on the lexical selec-
tion task and the reranking task on three language
pairs. The datasets used for the different languages
are described in detail in Section 6.2.

6.1 Lexical selection experiments

The data used for the lexical selection experiments
consists of the training portion of the datasets used
for MT. These training sets are split into three sec-
tions: - , for training MTU Markov models
and extracting possible translations for each source

3If we include the decompositions in the hypotheses we
could use MERT but then the n-best lists used for training might
not contain much variety in terms of translation options. This is
an interesting direction for future research.



Model Chs-En Deu-En En-Bgr Model Chs-En Deu-En En-Bgr
Dev Test Dev Test Dev Test Dev Test Dev Test Dev Test

Baseline | 0645 06.30 | 11.60 10.98 | 15.09 14.40 Ea:gr?g;]ct ;;’5“2)‘7‘ iggz ;8;‘ ggl;‘ ;‘233 :g‘z‘g*
Oracle | 69.79 70.78 | 7228 7539 | 85.15 84.32 Tgtsyscomb 5149 2597 | 3020 3015 | 5046 4631
L2RT | 24.02 25.09 |28.69 2870 | 49.86 46.45 TgtDynamic | 24.07 2510 | 30.60 3041 | 49.99 46.52
R2LT ] 23.79 2491 | 30.14 30.14* | 49.22 46.58 Baseline2 | 2648 27.96 | 30.14 30.14 | 49.86 46.45
CycT 18.59 2033 | 2591 26.83 | 41.30 38.85 AllProduct | 28.68 29.59* | 31.54 31.36* | 51.50 48.10*
L2RS 2581 27.89% | 2552 25.10 | 45.69 43.98 AliSyscomb | 27.02 2830 | 3020 30.17 | 50.90 46.53
R2LS 2648 27.96% | 26.03 2630 |47.36 43.91

CycS 2162 2338 | 2268 23.58 |39.11 3644 Table 2: Lexical selection results for combinations of

MTU Markov models.
Table 1: Lexical selection results for individual MTU

Markov models.

MTU, - for tuning combination weights for
systems using several MTU MMs, and - | for
final evaluation results. The possible translations for
each source MTU are defined as the most frequent
100 translations seen in - .The -  sets
contain 200 sentence pairs each and the - sets
contains 1000 sentence pairs each. These develop-
ment and test sets consist of equally spaced sen-
tences taken from the full MT training sets.

We start by reporting BLEU scores of the six in-
dividual MTU MMs on the three language pairs in
Table 1. The baseline predicts the most frequent tar-
get MTU for each source MTU (unigram MM not
using context). The oracle looks at the correct trans-
lation and always chooses the correct target MTU if
it is in the vocabulary of available MTUs.

We can see that there is a large difference between
the baseline and oracle performance, underscoring
the importance of modeling context for accurate pre-
diction. The best decomposition order varies from
language to language: right-to-left in source order is
best for Chinese-English, right-to-left in target order
is best for German-English and left-to-right or right-
to-left in target order are best in English-Bulgarian.
We computed statistical significance tests, testing
the difference between the L2RT model (the stan-
dard in prior work) and models achieving higher test
set performance. The models that are significantly
better at significance @ < 0.01 are marked with a
star in the table. We used a paired bootstrap test with
10,000 trials (Koehn, 2004).

Next we evaluate the methods for combining de-
composition orders introduced in Sections 4.1 and
4.2. The results are reported in Table 2. The up-
per part of the table focuses on combining different
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target-order decompositions. The lower part of the
table looks at combining all six decomposition or-
ders. The baseline for the target order combinations,
Baseline-1, is the best single target MTU Markov
model from Table 1. Baseline-2 in the lower part
of the table is the best individual model out of all
six. We can see that the product models TgtProduct
(a product of the three target-order MTU MMs) and
AllProduct (a product of all six MTU MMs) are con-
sistently best. The dynamic decomposition models
TgtDynamic achieve slight but not significant gains
over the baseline. The combination models that are
statistically significantly better than corresponding
baselines (@ < 0.01) are marked with a star.

Our takeaway from these experiments is that mul-
tiple decomposition orders are good, and thus taking
a product (which encourages agreement among the
models) is a good choice for this task. The dynamic
decomposition method shows some promise, but it
does not outperform the simpler product approach.
Perhaps a lager space of decompositions would
achieve better results, especially given a larger pa-
rameter set to trade off decompositions and better
tuning for those parameters.

6.2 Datasets and reranking settings

For Chinese-English, the training corpus consists
of 1 million sentence pairs from the FBIS and
HongKong portions of the LDC data for the NIST
MT evaluation. We used the union of the NIST
2002 and 2003 test sets as the development set and
the NIST 2005 test set as our test set. The baseline
phrasal system uses a 5-gram language model with
modified Kneser-Ney smoothing (Kenser and Ney,
1995), trained on the Xinhua portion of the English
Gigaword corpus (238M English words).

For German-English we used the dataset from



Language | Training | Dev Test
Chs-En 1 Mln NIST02+03 | NISTO5
Deu-En 751K WMTO06dev | WMTO6test
En-Bgr 4 Min 1,497 2,498

Table 3: Data sets for different language pairs.

the WMT 2006 shared task on machine translation
(Koehn and Monz, 2006). The parallel training set
contains approximately 751K sentences. We also
used the English monolingual data of around 1 mil-
lion sentences for language model training. The de-
velopment set contains 2000 sentences. The final
test set (the in-domain test set for the shared task)
also contains 2000 sentences. Two Kneser-Ney lan-
guage models were used as separate features: a 4-
gram LM trained on the parallel portion of the data,
and a 5-gram LM trained on the monolingual corpus.

For English-Bulgarian we used a dataset con-
taining sentences from several data sources: JRC-
Acquis (Steinberger et al., 2006), TAUS?, and web-
scraped data. The development set consists of 1,497
sentences, the English side from WMT 2009 news
test data, and the Bulgarian side a human translation
thereof. The test set comes from the same mixture of
sources as the training set. For this system we used
a single four-gram target language model trained on
the target side of the parallel corpus.

All systems used phrase tables with a maximum
length of seven words on either side and lexicalized
reordering models. For the Chinese-English sys-
tem we used GIZA++ alignments, and for the other
two we used alignments by an HMM model aug-
mented with word-based distortion (He, 2007). The
alignments were symmetrized and then combined
with the heuristics ”grow-diag-final-and”. > We tune
parameters using MERT (Och, 2003) with random
restarts (Moore and Quirk, 2008) on the develop-
ment set. Case-insensitive BLEU-4 is our evaluation
metric (Papineni et al., 2002).
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3-gram models | 5-gram models
Model Dev Test Dev Test
Baseline 32.58 | 31.78 32.58 | 31.78
L2RT 33.05 | 32.78* | 33.16 | 32.88*
R2LT 33.05 | 32.96% | 33.16 | 32.81*
L2RS 32.90 | 33.00*% | 32.98 | 32.98*
R2LS 32.94 | 32.98* | 33.09 | 32.96*
4 MMs 33.22 | 33.07* | 33.37 | 33.00*
4 MMs phrs | 32.58 | 31.78 | 32.58 | 31.78

Table 4: Reranking with 3-gram and 5-gram MTU trans-
lation models on Chinese-English. Starred results on the
test set indicate significantly better performance than the
baseline.

6.3 MT reranking experiments

We first report detailed experiments on Chinese-
English, and then verify our main conclusions on the
other language pairs. Table 4 looks at the impact of
individual 3-gram and 5-gram MTU Markov models
and their combination. Amongst the decomposition
orders tested (L2RT, R2LT, L2RS, and R2LS), each
of the individual MTU MMs was able to achieve
significant improvement over the baseline, around 1
BLEU point.® The results achieved by the individ-
ual models differ, and the combination of four direc-
tions is better than the best individual direction, but
the difference is not statistically significant.

We ran an additional experiment to test whether
MTU MMs make effective use of context across
phrase boundaries, or whether they simply pro-
vide better smoothed estimates of phrasal transla-
tion probabilities. The last row of the table reports
the results achieved by a combination of MTU MMs
that do not use context across the phrasal bound-
aries. Since an MTU MM limited to look only inside
phrases can provide improved smoothing compared
to whole phrase relative frequency counts, it is con-
ceivable it could provide a large improvement. How-
ever, there is no improvement in practice for this lan-
guage pair; the additional improvements from MTU

MMs stem from modeling cross-phrase context.

“www.tausdata.org

5The combination heuristic was further refined to disallow
crossing one-to-many alignments, which would result in the ex-
traction of larger minimum translation units. We found that this
further refinement on the combination heuristic consistently im-
proved the BLEU scores by between 0.3 and 0.7.

®Here again we call a difference significant if the paired
bootstrap p-value is less than 0.01.



Table 5 shows the test set results of individ-
ual 3-gram MTU Markov models and the com-
bination of 3-gram and 5-gram models on the
English-Bulgarian and German-English datasets.
For English-Bulgarian all individual 3-gram Markov
models achieve significant improvements of close to
one point; their combination is better than the best
individual model (but not significantly). The indi-
vidual 5-gram models and their combination bring
much larger improvement, for a total increase of
2.82 points over the baseline. We believe the 5-
gram models were more effective in this setting be-
cause the larger training set allowed for successful
training of models of larger capacity. Also the in-
creased context size helps to resolve ambiguity in
the forms of morphologically-rich Bulgarian words.
For German-English we see a similar pattern, with
the combination of models outperforming the in-
dividual ones, and the 5-gram models being better
than the 3-gram. Here the individual 3-gram models
are better than the baseline at significance level 0.02
and their combination is better than the baseline at
our earlier defined threshold of 0.01. The within-
phrase MTU MMs (results shown in the last two
rows) improve upon the baseline slightly, but here
again the improvements mostly stem from the use of
context across phrase boundaries. Our final results
on German-English are better than the best result of
27.30 from the shared task (Koehn and Monz, 2006).

Thanks to the reviewers for referring us to re-
cent work by (Clark et al., 2011) that pointed out
problems with significance tests for machine trans-
lation, where the randomness and local optima in the
MERT weight tuning method lead to a large vari-
ance in development and test set performance across
different runs of optimization (using a different ran-
dom seed or starting point). (Clark et al., 2011) pro-
posed a stratified approximate randomization statis-
tical significance test, which controls for optimizer
instability. Using this test, for the English-Bulgarian
system, we confirmed that the combination of four
3-gram MMs and the combination of 5-gram MMs
is better than the baseline (p = .0001 for both, using
five runs of parameter tuning). We have not run the
test for the other language pairs.
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Model En-Bgr | Deu-En
Baseline 45.75 27.92
L2RT 3-gram | 47.07* | 28.15
R2LT 3-gram | 47.06* | 28.19
L2RS 3-gram | 46.44* | 28.15
R2LS 3-gram | 47.04* | 28.18

4 3-gram 47.17* | 28.37*
4 5-gram 48.57% | 28.47*
4 3-gram phrs | 46.08 27.92

4 5-gram phrs | 46.17* | 27.93

Table 5: English-Bulgarian and German-English test set
results: reranking with MTU translation models.

7 Conclusions

We introduced models of Minimal Translation Units
for phrasal systems, and showed that they make a
substantial and statistically significant improvement
on three distinct language-pairs. Additionally we
studied the importance of decomposition order when
defining the probability of MTU sequences. In a
simplified lexical selection task, we saw that there
were large differences in performance among the
different decompositions, with the best decomposi-
tions differing by language. We investigated multi-
ple methods to combine decompositions and found
that a simple product approach was most effective.
Results in the lexical selection task were consistent
with those obtained in a full MT system, although
the differences among decompositions were smaller.

In future work, perhaps we would see larger gains
by including additional decomposition orders (e.g.,
top-down in a dependency tree), and taking this idea
deeper into the machine translation model, down to
the word-alignment and language-modeling levels.

We were surprised to find n-best reranking so ef-
fective. We are incorporating the models into first
pass decoding, in hopes of even greater gains.
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Abstract

There have been many recent investigations
into methods to tune SMT systems using large
numbers of sparse features. However, there
have not been nearly so many examples of
helpful sparse features, especially for phrase-
based systems. We use sparse features to ad-
dress reordering, which is often considered a
weak point of phrase-based translation. Using
a hierarchical reordering model as our base-
line, we show that simple features coupling
phrase orientation to frequent words or word-
clusters can improve translation quality, with
boosts of up to 1.2 BLEU points in Chinese-
English and 1.8 in Arabic-English. We com-
pare this solution to a more traditional max-
imum entropy approach, where a probability
model with similar features is trained on word-
aligned bitext. We show that sparse decoder
features outperform maximum entropy hand-
ily, indicating that there are major advantages
to optimizing reordering features directly for
BLEU with the decoder in the loop.

1 Introduction

With the growing adoption of tuning algorithms that
can handle thousands of features (Chiang et al.,
2008; Hopkins and May, 2011), SMT system de-
signers now face a choice when incorporating new
ideas into their translation models. Maximum like-
lihood models can be estimated from large word-
aligned bitexts, creating a small number of highly
informative decoder features; or the same ideas can
be incorporated into the decoder’s linear model di-
rectly. There are trade-offs to each approach. Max-
imum likelihood models can be estimated from mil-
lions of sentences of bitext, but optimize a mis-
matched objective, predicting events observed in
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word aligned bitext instead of optimizing translation
quality. Sparse decoder features have the opposite
problem; with the decoder in the loop, we can only
tune on small development sets,' but a translation
error metric directly informs training.

We investigate this trade-off in the context of re-
ordering models for phrase-based decoding. Start-
ing with the intuition that most lexicalized reorder-
ing models do not smooth their orientation distri-
butions intelligently for low-frequency phrase-pairs,
we design features that track the first and last words
(or clusters) of the phrases in a pair. These features
are incorporated into a maximum entropy reorder-
ing model, as well as sparse decoder features, to see
which approach best complements the now-standard
relative-frequency lexicalized reordering model.

We also view our work as an example of strong
sparse features for phrase-based translation. Fea-
tures from hierarchical and syntax-based transla-
tion (Chiang et al., 2009) do not easily transfer
to the phrase-based paradigm, and most work that
has looked at large feature counts in the context of
phrase-based translation has focused on the learn-
ing method, and not the features themselves (Hop-
kins and May, 2011; Cherry and Foster, 2012; Gim-
pel and Smith, 2012). We show that by targeting
reordering, large gains can be made with relatively
simple features.

2 Background

Phrase-based machine translation constructs its tar-
get sentence from left-to-right, with each translation
operation selecting a source phrase and appending
its translation to the growing target sentence, until

!Some systems tune for BLEU on much larger sets (Simi-
aner et al., 2012; He and Deng, 2012), but these require excep-
tional commitments of resources and time.
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all source words have been covered exactly once.
The first phrase-based translation systems applied
only a distortion penalty to model reordering (Koehn
et al., 2003; Och and Ney, 2004). Any devia-
tion from monotone translation is penalized, with
a single linear weight determining how quickly the
penalty grows.

2.1 Lexicalized Reordering

Implemented in a number of phrase-based decoders,
the lexicalized reordering model (RM) uses word-
aligned data to determine how each phrase-pair
tends to be reordered during translation (Tillmann,
2004; Koehn et al., 2005; Koehn et al., 2007).

The core idea in this RM is to divide reordering
events into three orientations that can be easily deter-
mined both during decoding and from word-aligned
data. The orientations can be described in terms of
the previously translated source phrase (prev) and
the next source phrase to be translated (next):

e Monotone (M): next immediately follows prev.
o Swap (S): prev immediately follows next.

e Discontinuous (D): next and prev are not adja-
cent in the source.

Note that prev and next can be defined for construct-
ing a translation from left-to-right or from right-to-
left. Most decoders incorporate RMs for both direc-
tions; our discussion will generally only cover left-
to-right, with the right-to-left case being implicit and
symmetrical.

As the decoder extends its hypothesis by trans-
lating a source phrase, we can assess the implied
orientations to determine if the resulting reordering
makes sense. This is done using the probability of
an orientation given the phrase pair pp = [src, tgt]
extending the hypothesis:?

ent(o, pp)
P ~ "7
(clpp) >0 cnt(o, pp)

where o € {M, S, D}, cnt uses simple heuristics on
word-alignments to count phrase pairs and their ori-
entations, and the ~ symbol allows for smoothing.
The log of this probability is easily folded into the
linear models that guide modern decoders. Better

)]

2pp corresponds to the phrase pair translating next for the
left-to-right model, and prev for right-to-left.
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performance is achieved by giving each orientation
its own log-linear weight (Koehn et al., 2005).

2.2 Hierarchical Reordering

Introduced by Galley and Manning (2008), the hier-
archical reordering model (HRM) also tracks statis-
tics over orientations, but attempts to increase the
consistency of orientation assignments. To do so,
they remove the emphasis on the previously trans-
lated phrase (prev), and instead determine orienta-
tion using a compact representation of the full trans-
lation history, as represented by a shift-reduce stack.
Each source span is shifted onto the stack as it is
translated; if the new top is adjacent to the span be-
low it, then a reduction merges the two.
Orientations are determined in terms of the top
of this stack, rather than the previously translated
phrase prev. The resulting orientations are more
consistent across different phrasal decompositions
of the same translation, and more consistent with the
statistics extracted from word aligned data. This re-
sults in a general improvement in performance. We
assume the HRM as our baseline reordering model.
It is important to note that although our maximum
entropy and sparse reordering solutions build on the
HRM, the features in this paper can still be applied
without a shift-reduce stack, by using the previously
translated phrase where we use the top of the stack.

2.3

One frequent observation regarding both the RM and
the HRM is that the statistics used to grade orien-
tations are very sparse. Each orientation predic-
tion P(o|pp) is conditioned on an entire phrase pair.
Koehn et al. (2005) experiment with alternatives,
such as conditioning on only the source or the tar-
get, but using the entire pair generally performs best.
The vast majority of phrase pairs found in bitext with
standard extraction heuristics are singletons (more
than 92% in our Arabic-English bitext), and the cor-
responding P(o|pp) estimates are based on a single
observation. Because of these heavy tails, there have
been several attempts to use maximum entropy to
create more flexible distributions.

One straight-forward way to do so is to continue
predicting orientations on phrases, but to use maxi-

Maximum Entropy Reordering

3In the case of the right-to-left model, an approximation of
the top of the stack is used instead.



mum entropy to consider features of the phrase pair.
This is the approach taken by Xiong et al. (2006);
their maximum entropy model chooses between M
and S orientations, which are the only two options
available in their chart-based ITG decoder. Nguyen
et al. (2009) build a similar model for a phrase-based
HRM, using syntactic heads and constituent labels
to create a rich feature set. They show gains over an
HRM baseline, albeit on a small training set.

A related approach is to build a reordering model
over words, which is evaluated at phrase bound-
aries at decoding time. Zens and Ney (2006) pro-
pose one such model, with jumps between words
binned very coarsely according to their direction
and distance, testing models that differentiate only
left jumps from right, as well as the cross-product
of {left, right} x {adjacent, discontinuous}. Their
features consider word identity and automatically-
induced clusters. Green et al. (2010) present a sim-
ilar approach, with finer-grained distance bins, us-
ing word-identity and part-of-speech for features.
Yahyaei and Monz (2010) also predict distance bins,
but use much more context, opting to look at both
sides of a reordering jump; they also experiment
with hard constraints based on their model.

Tracking word-level reordering simplifies the ex-
traction of complex models from word alignments;
however, it is not clear if it is possible to enhance
a word reordering model with the stack-based his-
tories used by HRMs. In this work, we construct a
phrase orientation maximum entropy model.

3 Methods

Our primary contribution is a comparison between
the standard HRM and two feature-based alterna-
tives. Since a major motivating concern is smooth-
ing, we begin with a detailed description of our
HRM baseline, followed by our maximum entropy
HRM and our novel sparse reordering features.

3.1 Relative Frequency Model

The standard HRM uses relative frequencies to build
smoothed maximum likelihood estimates of orien-
tation probabilities. Orientation counts for phrase
pairs are collected from bitext, using the method de-
scribed by Galley and Manning (2008). The proba-
bility model P(o|pp = [src, tgt]) is estimated using
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recursive MAP smoothing:

ent(o, pp) + asPs(o|sre) + arPi(ol|tgt)

P(o =
(olpp) Yo, cnt(o,pp) + as + oy
Dtgt €nt (o, sre, tgt) + ag Py (o)
Ps(o|sre) =
2o tgt ent(o, sre, tgt) + ag
t tgt P,
Pt(O‘tgt) _ Zsrc cn (07 STC, 1g )+ ag 9(0)
> o.sre ent(o, sre, tgt) + ag
>, ent(o, pp) + @y /3
Py(o) = Z* > )

S o.pp CNE(0, PP) + 0y

where the various « parameters can be tuned em-
pirically. In practice, the model is not particularly
sensitive to these parameters.*

3.2 Maximum Entropy Model

Next, we describe our implementation of a maxi-
mum entropy HRM. Our goal with this system is
to benefit from modeling features of a phrase pair,
while keeping the system architecture as simple and
replicable as possible. To simplify training, we learn
our model from the same orientation counts that
power the relative-frequency HRM. To simplify de-
coder integration, we limit our feature space to in-
formation from a single phrase pair.

In a maximum entropy model, the probability of
an orientation o given a phrase pair pp is given by a
log-linear model:

exp(w - f(o, pp))
> exp(w - f(o', pp))

P(o|pp) = (3)

where f (o, pp) returns features of a phrase-pair, and
w is the learned weight vector. We build two models,
one for left-to-right translation, and one for right-
to-left. As with the relative frequency model, we
limit our discussion to the left-to-right model, with
the other direction being symmetrical.

We construct a training example for each unique
phrase-pair type (as opposed to token) found in our
bitext. We use the orientation counts observed for
a phrase pair pp; to construct its example weight:
¢ =y, cnt(o,pp;). The same counts are used to
construct a target distribution P(o|pp;), using the

*We use a historically good setting of ov. = 10 throughout.



Base:

bias; src A tgt; src; tgt

sre.first; src.last; tgt.first; tgt.last
clustso(sre.first); clustso(src.last)
clustso(tgt.first); clustso(tgt.last)
x Orientation {M, S, D}

Table 1: Features for the Maximum Entropy HRM.

unsmoothed relative frequency estimate in Equa-
tion 1. We then train our weight vector to minimize:

log 3=, exp (w - f(o, pp;))
— 220 Plolpp;) (w- f(o, pp;))
“)
where C' is a hyper-parameter that controls the
amount of emphasis placed on minimizing loss ver-
sus regularizing w.> Note that this objective is a de-
parture from previous work, which tends to create an
example for each phrase-pair token, effectively as-
signing P(o|pp) = 1 to a single gold-standard ori-
entation. Instead, our model attempts to reproduce
the target distribution P for the entire type, where
the penalty ¢; for missing this target is determined
by the frequency of the phrase pair. The resulting
model will tend to match unsmoothed relative fre-
quency estimates for very frequent phrase pairs, and
will smooth intelligently using features for less fre-
quent phrase pairs.

All of the features returned by f(o|pp) are derived
from the phrase pair pp = [src, tgt], with the goal
of describing the phrase pair at a variety of granu-
larities. Our features are described in Table 1, using
the following notation: the operators first and last
return the first and last words of phrases,® while the
operator clustsy maps a word onto its corresponding
cluster from an automatically-induced, determinis-
tic 50-word clustering provided by mkcls (Och,
1999). Our use of words at the corners of phrases
(as opposed to the syntactic head, or the last aligned
word) follows Xiong et al. (2006), while our use of
word clusters follows Zens and Ney (2006). Each
feature has the orientation o appended onto it.

To help scale and to encourage smoothing, we
only allow features that occur in at least 5 phrase pair

1
SlwlP+C
A

SPreliminary experiments indicated that the model is robust
to the choice of C'; we use C' = 0.1 throughout.
®first = last for a single-word phrase
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Base:

sre.first; src.last; tgt.first; tgt.last
top.src.first; top.src.last; top.tgt.last
between_words
x Representation

{80-words, 50-clusters, 20-clusters }
x Orientation

{M,S,D}

Table 2: Features for the Sparse Feature HRM.

tokens. Furthermore, to deal with the huge number
of extracted phrase pairs (our Arabic system extracts
roughly 88M distinct phrase pair types), we subsam-
ple pairs that have been observed only once, keeping
only 10% of them. This reduces the number of train-
ing examples from 88M to 19M.

3.3 Sparse Reordering Features

The maximum entropy approach uses features to
model the distribution of orientations found in word
alignments. Alternatively, a number of recent tun-
ing methods, such as MIRA (Chiang et al., 2008)
or PRO (Hopkins and May, 2011), can handle thou-
sands of features. These could be used to tune simi-
lar features to maximize BLEU directly.

Given the appropriate tuning architecture, the
sparse feature approach is actually simpler in many
ways than the maximum entropy approach. There
is no need to scale to millions of training exam-
ples, and there is no question of how to integrate the
trained model into the decoder. Instead, one simply
implements the desired features in the decoder’s fea-
ture API and then tunes as normal. The challenge is
to design features so that the model can be learned
from small tuning sets.

The standard approach for sparse feature design
in SMT is to lexicalize only on extremely fre-
quent words, such as the top-80 words from each
language (Chiang et al., 2009; Hopkins and May,
2011). We take that approach here, but we also
use deterministic clusters to represent words from
both languages, as provided by mkc1s. These clus-
ters mirror parts-of-speech quite effectively (Blun-
som and Cohn, 2011), without requiring linguistic
resources. They should provide useful generaliza-
tion for reordering decisions. Inspired by recent suc-
cesses in semi-supervised learning (Koo et al., 2008;



corpus | sentences ‘ words (ar) ‘ words (en) corpus | sentences ‘ words (ch) ‘ words (en)
train 1,490,514 | 46,403,734 | 47,109,486 train 3,505,529 | 65,917,610 | 69,453,695
dev 1,663 45,243 50,550 dev 1,894 48,384 53,584
mt08 1,360 45,002 51,341 mt06 1,664 39,694 47,143
mt09 1,313 40,684 46,813 mt08 1,357 33,701 40,893

Table 3: Arabic-English Corpus. For English dev and test
sets, word counts are averaged across 4 references.

Lin and Wu, 2009), we cluster at two granularities
(20 clusters and 50 clusters), and allow the discrim-
inative tuner to determine how to best employ the
various representations.

We add the sparse features in Table 2 to our
decoder to help assess reordering decisions. As
with the maximum entropy model, orientation is ap-
pended to each feature. Furthermore, each feature
has a different version for each of our three word
representations. Like the maximum entropy model,
we describe the phrase pair being added to the hy-
pothesis in terms of the first and last words of its
phrases. Unlike the maximum entropy model, we
make no attempt to use entire phrases or phrase-
pairs as features, as they would be far too sparse for
our small tuning sets. However, due to the sparse
features’ direct decoder integration, we have access
to a fair amount of extra context. We represent the
current top of the stack (top) using its first and last
source words (accessible from the HRM stack), and
its last target word (accessible using language model
context). Furthermore, for discontinuous (D) orien-
tations, we can include an indicator for each source
word between the current top of the stack and the
phrase being added.

Because the sparse feature HRM has no access
to phrase-pair or monolingual phrase features, and
because it completely ignores our large supply of
word-aligned training data, we view it as compli-
mentary to the relative frequency HRM. We always
include both when tuning and decoding. Further-
more, we only include sparse features in the left-
to-right translation direction, as the features already
consider context (top) as well as the next phrase.

4 Experimental Design

We test our reordering models in Arabic to English
and Chinese to English translation tasks. Both sys-
tems are trained on data from the NIST 2012 MT
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Table 4: Chinese-English Corpus. For English dev and
test sets, word counts are averaged across 4 references.

evaluation; the Arabic system is summarized in Ta-
ble 3 and the Chinese in Table 4. The Arabic sys-
tem’s development set is the NIST mt06 test set, and
its test sets are mtO8 and mt09. The Chinese sys-
tem’s development set is taken from the NIST mt05
evaluation set, augmented with some material re-
served from our NIST training corpora in order to
better cover newsgroup and weblog domains. Its test
sets are mt06 and mt08.

4.1 Baseline System

For both language pairs, word alignment is per-
formed by GIZA++ (Och and Ney, 2003), with
5 iterations of Model 1, HMM, Model 3 and
Model 4. Phrases are extracted with a length limit
of 7 from alignments symmetrized using grow-
diag-final-and (Koehn et al., 2003). Conditional
phrase probabilities in both directions are estimated
from relative frequencies, and from lexical probabil-
ities (Zens and Ney, 2004). 4-gram language mod-
els are estimated from the target side of the bitext
with Kneser-Ney smoothing. Relative frequency
and maximum entropy RMs are represented with six
features, with separate weights for M, S and D in
both directions (Koehn et al., 2007). HRM orien-
tations are determined using an unrestricted shift-
reduce parser (Cherry et al., 2012). We also em-
ploy a standard distortion penalty incorporating the
minimum completion cost described by Moore and
Quirk (2007). Our multi-stack phrase-based decoder
is quite similar to Moses (Koehn et al., 2007).

For all systems, parameters are tuned with a
batch-lattice variant of hope-fear MIRA (Chiang et
al., 2008; Cherry and Foster, 2012). Preliminary ex-
periments suggested that the sparse reordering fea-
tures have a larger impact when tuned with lattices
as opposed to n-best lists.



4.2 Evaluation

We report lower-cased BLEU (Papineni et al., 2002),
evaluated using the same English tokenization used
in training. For our primary results, we perform ran-
dom replications of parameter tuning, as suggested
by Clark et al. (2011). Each replication uses a dif-
ferent random seed to determine the order in which
MIRA visits tuning sentences. We test for signifi-
cance using Clark et al.’s MultEval tool, which uses
a stratified approximate randomization test to ac-
count for multiple replications.

5 Results

We begin with a comparison of the reordering mod-
els described in this paper: the hierarchical reorder-
ing model (HRM), the maximum entropy HRM
(Maxent HRM) and our sparse reordering features
(Sparse HRM). Results are shown in Table 5.

Our three primary points of comparison have been
tested with 5 replications. We report BLEU scores
averaged across replications as well as standard de-
viations, which indicate optimizer stability. We also
provide unreplicated results for two systems, one us-
ing only the distortion penalty (No RM), and one
using a non-hierarchical reordering model (RM).
These demonstrate that our baseline already has
quite mature reordering capabilities.

The Maxent HRM has very little effect on trans-
lation performance. We found this surprising; we
expected large gains from improving the reorder-
ing distributions of low-frequency phrase-pairs. See
§5.1 for further exploration of this result.

The Sparse HRM, on the other hand, performs
very well. It produces significant BLEU score im-
provements on all test sets, with improvements rang-
ing between 1 and 1.8 BLEU points. Even with
millions of training sentences for our HRM, there
is a large benefit in building HRM-like features that
are tuned to optimize the decoder’s BLEU score on
small tuning sets. We examine the impact of subsets
of these features in §5.2.

The test sets’ standard deviations increase from
0.1 under the baseline to 0.3 under the Sparse HRM
for Chinese-English, indicating a decrease in opti-
mizer stability. With so many features trained on
so few sentences, this is not necessarily surprising.
Fortunately, looking at the actual replications (not
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Base:

sre.first; src.last; tgt.first; tgt.last
x Representation

{80-words, 50-clusters}
% Orientation

{M,S,D}

Table 6: Intersection of Maxent & Sparse HRM features.

shown), we confirmed that if a replication produced
low scores in one test, it also produced low scores
in the other. This means that one should be able to
outperform the average case by using a dev-test set
to select among replications.

5.1

The next two sections examine our two solutions
in detail, starting with the Maxent HRM. To avoid
excessive demands on our computing resources, all
experiments report tuning with a single replication
with the same seed. We select Arabic-English for
our analysis, as this pair has high optimizer stability
and fast decoding speeds.

Why does the Maxent HRM help so little? We
begin by investigating some design decisions. One
possibility is that our subsampling of frequency-1
training pairs (see §3.2) harmed performance. To
test the impact of this decision, we train a Max-
ent HRM without subsampling, taking substantially
longer. The resulting BLEU scores (not shown) are
well within the projected standard deviations for op-
timizer instability (0.1 BLEU from Table 5). This
indicates that subsampling is not the problem. To
confirm our choice of hyperparameters, we conduct
a grid search over the Maxent HRM’s regulariza-
tion parameter C' (see Equation 4), covering the set
{1,0.1,0.01,0.001}, where C' = 0.1 is the value
used throughout this paper. Again, the resulting
BLEU scores (not shown) are all within 0.1 of the
means reported in Table 5.

Another possibility is that the Maxent HRM has
an inferior feature set. We selected features for our
Maxent and Sparse HRMs to be similar, but also to
play to the strengths of each method. To level the
playing field, we train and test both systems with the
feature set shown in Table 6, which is the intersec-
tion of the features from Tables 1 and 2. The result-
ing average BLEU scores are shown in Table 7. With

Maximum Entropy Analysis



Chinese-English Arabic-English
Method n | tune std mt06 std mtO8 std | tune std mtO8 std mt09 std
No RM 11243 - 320 - 264 - 417 - 414 - 441 -
RM 11252 - 333 - 274 - | 424 - 426 - 452 -
HRM (baseline) 51256 00 342 0.1 28.0 0.1|429 00 429 0.1 455 0.0
HRM + Maxent HRM 5 | 25,6 00 343 0.1 28.1 0.1 430 00 429 0.0 456 0.1
HRM + Sparse HRM 5 | 28.0 0.1 354 03 29.0 03|470 0.1 446 0.1 473 0.1

Table 5: Comparing reordering methods according to BLEU score. n indicates the number of tuning replications,
while standard deviations (std) indicate optimizer stability. Test scores that are significantly higher (p < 0.01) than

the HRM baseline are highlighted in bold.

Method —HRM +HRM
HRM (baseline) - 442
Original Maxent HRM 44.2 44.2
Sparse HRM 454 46.0
Intersection Maxent HRM 43.8 44.2
Sparse HRM 45.2 46.0

Table 7: Arabic-English BLEU scores with each system’s
original feature set versus the intersection of the two fea-
ture sets, with and without the relative frequency HRM.
BLEU is averaged across mt08 and mt09.

the baseline HRM included, performance does not
change for either system with the intersected feature
set. Sparse features continue to help, while the max-
imum entropy model does not. Without the HRM,
both systems degrade under the intersection, though
the Sparse HRM still improves over the baseline.

Finally, we examine Maxent HRM performance
as a function of the amount of word-aligned train-
ing data. To do so, we hold all aspects of our sys-
tem constant, except for the amount of bitext used to
train either the baseline HRM or the Maxent HRM.
Importantly, the phrase table always uses the com-
plete bitext. For our reordering training set, we hold
out the final two thousand sentences of bitext to cal-
culate perplexity. This measures the model’s sur-
prise at reordering events drawn from previously un-
seen alignments; lower values are better. We pro-
ceed to subsample sentence pairs from the remain-
ing bitext, in order to produce a series of training
bitexts of increasing size. We subsample with the
probability of accepting a sentence pair, F,, set to
{0.001,0.01,0.1,1}. It is important to not confuse
this subsampling of sentence pairs with the sub-
sampling of low-frequency phrase pairs (see §3.2),
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which is still carried out by the Maxent HRM for
each training scenario.

Figure 1 shows how BLEU (averaged across both
test sets) and perplexity vary as training data in-
creases from 1.5K sentences to the full 1.5M. At
P, < 0.1, corresponding to less than 150K sen-
tences, the maximum entropy model actually makes
a substantial difference in terms of BLEU. However,
these deltas narrow to nothing as we reach millions
of training sentences. This is consistent with the re-
sults of Nguyen et al. (2009), who report that maxi-
mum entropy reordering outperforms a similar base-
line, but using only 50K sentence pairs.

A related observation is that held-out perplexity
does not seem to predict BLEU in any useful way.
In particular, perplexity does not predict that the two
systems will become similar as data grows, nor does
it predict that maxent’s performance will level off.
Predicting the orientations of unseen alignments is
not the same task as predicting the orientation for a
phrase during translation. We suspect that perplexity
places too much emphasis on rare or previously un-
seen phrase pairs, due to phrase extraction’s heavy
tails. Preliminary attempts to correct for this us-
ing absolute discounting on the test counts did not
resolve these issues. Unfortunately, in maximizing
(regularized or smoothed) likelihood, both maxent
and relative frequency HRMs are chasing the per-
plexity objective, not the BLEU objective.

5.2 Sparse Feature Analysis

The results in Table 7 from §5.1 already provide
us with a number of insights regarding the Sparse
HRM. First, note that the intersected feature set uses
only information found within a single phrase. The
fact that the Sparse HRM performs so well with
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Figure 1: Learning curves for Relative Frequency and Maximum Entropy reordering models on Arabic-English.

Feature Group Count BLEU
No Sparse HRM 0 442
Between 312 444
Stack 1404 452
Phrase 1872 459
20 Clusters 506 454
50 Clusters 1196 458
80 Words 1886  45.8
Full Sparse HRM | 3588  46.0

Table 8: Versions of the Sparse HRM built using or-
ganized subsets of the complete feature set for Arabic-
English. Count is the number of distinct features, while
BLEU is averaged over mt08 and mt09.

intersected features indicates that modeling context
outside a phrase is not essential for strong perfor-
mance. Furthermore, the —HRM portion of the ta-
ble indicates that the sparse HRM does not require
the baseline HRM to be present in order to outper-
form it. This is remarkable when one considers that
the Sparse HRM uses less than 4k features to model
phrase orientations, compared to the 530M proba-
bilities” maintained by the baseline HRM’s relative
frequency model.

To determine which feature groups are most im-
portant, we tested the Sparse HRM on Arabic-
English with a number of feature subsets. We report
BLEU scores averaged over both test sets in Table 8.
First, we break our features into three groups accord-
ing to what part of the hypothesis is used to assess
orientation. For each of these location groups, all
forms of word representation (clusters or frequent
words) are employed. The groups consist of Be-

788.4M phrase pairs x 3 orientations (M, S and D) x 2
translation directions (left-to-right and right-to-left).
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tween: the words between the top of the stack and
the phrase to be added; Stack: words describing
the current top of the stack; and Phrase: words de-
scribing the phrase pair being added to the hypothe-
sis. Each group was tested alone to measure its use-
fulness. This results in a clear hierarchy, with the
phrase features being the most useful (nearly as use-
ful as the complete system), and the between fea-
tures being the least. Second, we break our features
into three groups according to how words are rep-
resented. For each of these representation groups,
all location groups (Between, Stack and Phrase) are
employed. The groups are quite intuitive: 20 Clus-
ters, 50 Clusters or 80 Words. The differences be-
tween representations are much less dramatic than
the location groups. All representations perform
well on their own, with the finer-grained ones per-
forming better. Including multiple representations
provides a slight boost, but these experiments sug-
gest that a leaner model could certainly drop one or
two representations with little impact.

In its current implementation, the Sparse HRM is
roughly 4 times slower than the baseline decoder.
Our sparse feature infrastructure is designed for flex-
ibility, not speed. To affect reordering, each sparse
feature template is re-applied with each hypothesis
extension. However, the intersected feature set from
§5.1 is only 2 times slower, and could be made faster
still. That feature set uses only within-phrase fea-
tures to asses orientations; therefore, the total weight
for each orientation for each phrase-pair could be
pre-calculated, making its cost comparable to the
baseline.



Chinese-English | tune mt06 mt08
Base 277 399 337
+Sparse HRM 292 41.0 34.1
Arabic-English | tune mt08 mt09
Base 496 49.1 516
+Sparse HRM 5177 499 522

Table 9: The effect of Sparse HRMs on complex systems.

5.3 Impact on Competition-Grade SMT

Thus far, we have employed a baseline that has been
designed for both translation quality and replicabil-
ity. We now investigate the impact of our Sparse
HRM on a far more complex baseline: our internal
system used for MT competitions such as NIST.

The Arabic system uses roughly the same bilin-
gual data as our original baseline, but also includes
a 5-gram language model learned from the English
Gigaword. The Chinese system adds the UN bitext
as well as the English Gigaword. Both systems make
heavy use of linear mixtures to create refined transla-
tion and language models, mixing across sources of
corpora, genre and translation direction (Foster and
Kuhn, 2007; Goutte et al., 2009). They also mix
many different sources of word alignments, with
the system adapting across alignment sources us-
ing either binary indicators or linear mixtures. Im-
portantly, these systems already incorporate thou-
sands of sparse features as described by Hopkins and
May (2011). These provide additional information
for each phrase pair through frequency bins, phrase-
length bins, and indicators for frequent alignment
pairs. Both systems include a standard HRM.

The result of adding the Sparse HRM to these sys-
tems is shown in Table 9. Improvements range from
0.4 to 1.1 BLEU, but importantly, all four test sets
improve. The impact of these reordering features is
reduced slightly in the presence of more carefully
tuned translation and language models, but they re-
main a strong contributor to translation quality.

6 Conclusion

We have shown that sparse reordering features can
improve the quality of phrase-based translations,
even in the presence of lexicalized reordering mod-
els that track the same orientations. We have com-
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pared this solution to a maximum entropy model,
which does not improve our HRM baseline. Our
analysis of the maximum entropy solution indicates
that smoothing the orientation estimates is not a ma-
jor concern in the presence of millions of sentences
of bitext. This implies that our sparse features are
achieving their improvement because they optimize
BLEU with the decoder in the loop, side-stepping
the objective mismatch that can occur when train-
ing on word-aligned data. The fact that this is possi-
ble with such small tuning corpora is both surprising
and encouraging.

In the future, we would like to investigate how
to incorporate useful future cost estimates for our
sparse reordering features. Previous work has shown
future distortion penalty estimates to be important
for both translation speed and quality (Moore and
Quirk, 2007; Green et al., 2010), but we have ig-
nored future costs in this work. We would also like
to investigate features inspired by transition-based
parsing, such as features that look further down the
reordering stack. Finally, as there is evidence that
ideas from lexicalized reordering can help hierarchi-
cal phrase-based SMT (Huck et al., 2012), it would
be interesting to explore the use of sparse RMs in
that setting.
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Abstract

Current word alignment models for statisti-
cal machine translation do not address mor-
phology beyond merely splitting words. We
present a two-level alignment model that dis-
tinguishes between words and morphemes, in
which we embed an IBM Model 1 inside an
HMM based word alignment model. The
model jointly induces word and morpheme
alignments using an EM algorithm. We eval-
uated our model on Turkish-English parallel
data. We obtained significant improvement of
BLEU scores over IBM Model 4. Our results
indicate that utilizing information from mor-
phology improves the quality of word align-
ments.

1 Introduction

All current state-of-the-art approaches to SMT rely
on an automatically word-aligned corpus. However,
current alignment models do not take into account
the morpheme, the smallest unit of syntax, beyond
merely splitting words. Since morphology has not
been addressed explicitly in word alignment models,
researchers have resorted to tweaking SMT systems
by manipulating the content and the form of what
should be the so-called “word”.

Since the word is the smallest unit of translation
from the standpoint of word alignment models, the
central focus of research on translating morphologi-
cally rich languages has been decomposition of mor-
phologically complex words into tokens of the right
granularity and representation for machine transla-
tion. Chung and Gildea (2009) and Naradowsky and
Toutanova (2011) use unsupervised methods to find
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word segmentations that create a one-to-one map-
ping of words in both languages. Al-Onaizan et al.
(1999), Cmejrek et al. (2003), and Goldwater and
McClosky (2005) manipulate morphologically rich
languages by selective lemmatization. Lee (2004)
attempts to learn the probability of deleting or merg-
ing Arabic morphemes for Arabic to English trans-
lation. Niessen and Ney (2000) split German com-
pound nouns, and merge German phrases that cor-
respond to a single English word. Alternatively,
Yeniterzi and Oflazer (2010) manipulate words of
the morphologically poor side of a language pair
to mimic having a morphological structure similar
to the richer side via exploiting syntactic structure,
in order to improve the similarity of words on both
sides of the translation.

We present an alignment model that assumes in-
ternal structure for words, and we can legitimately
talk about words and their morphemes in line with
the linguistic conception of these terms. Our model
avoids the problem of collapsing words and mor-
phemes into one single category. We adopt a two-
level representation of alignment: the first level in-
volves word alignment, the second level involves
morpheme alignment in the scope of a given word
alignment. The model jointly induces word and
morpheme alignments using an EM algorithm.

We develop our model in two stages. Our initial
model is analogous to IBM Model 1: the first level
is a bag of words in a pair of sentences, and the sec-
ond level is a bag of morphemes. In this manner,
we embed one IBM Model 1 in the scope of another
IBM Model 1. At the second stage, by introducing
distortion probabilities at the word level, we develop
an HMM extension of the initial model.

We evaluated the performance of our model on the

Proceedings of NAACL-HLT 2013, pages 32-40,
Atlanta, Georgia, 9-14 June 2013. (©2013 Association for Computational Linguistics



Turkish-English pair both on hand-aligned data and
by running end-to-end machine translation experi-
ments. To evaluate our results, we created gold word
alignments for 75 Turkish-English sentences. We
obtain significant improvement of AER and BLEU
scores over IBM Model 4. Section 2.1 introduces
the concept of morpheme alignment in terms of its
relation to word alignment. Section 2.2 presents
the derivation of the EM algorithm and Section 3
presents the results of our experiments.

2  Two-level Alignment Model (TAM)

2.1 Morpheme Alignment

Following the standard alignment models of Brown
et al. (1993), we assume one-to-many alignment for
both words and morphemes. A word alignment a,,
(or only a) is a function mapping a set of word po-
sitions in a source language sentence to a set of
word positions in a target language sentence. A mor-
pheme alignment a,,, is a function mapping a set of
morpheme positions in a source language sentence
to a set of morpheme positions in a target language
sentence. A morpheme position is a pair of integers
(7, k), which defines a word position j and a relative
morpheme position k in the word at position j. The
alignments below are depicted in Figures 1 and 2.

(1) =1 am(21)=(11) au(2) =1

Figure 1 shows a word alignment between two sen-
tences. Figure 2 shows the morpheme alignment be-
tween same sentences. We assume that all unaligned
morphemes in a sentence map to a special null mor-
pheme.

A morpheme alignment a,,, and a word alignment
a,, are compatible if and only if they satisfy the fol-
lowing conditions: If the morpheme alignment a,,
maps a morpheme of e to a morpheme of f, then the
word alignment a,, maps e to f. If the word align-
ment a,, maps e to f, then the morpheme alignment
a., maps at least one morpheme of e to a morpheme
of f. If the word alignment a,, maps e to null, then
all of its morphemes are mapped to null. In sum, a
morpheme alignment a,, and a word alignment a,,
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are compatible if and only if:

Vi k,m,ne Nt Jste Nt
[am(j, k) = (m,n) = aw(j) =m] A
[aw(i) = m = am(j,s) = (m, )] A
[ay(7) = null = ap, (4, k) =null] (1)

Please note that, according to this definition of com-
patibility, ‘a,,(j, k) = null’ does not necessarily im-
ply ‘ay(j) = null’.

A word alignment induces a set of compati-
ble morpheme alignments. However, a morpheme
alignment induces a unique word alignment. There-
fore, if a morpheme alignment a,,, and a word align-
ment a,, are compatible, then the word alignment is
ay 18 recoverable from the morpheme alignment a,.

The two-level alignment model (TAM), like
IBM Model 1, defines an alignment between words
of a sentence pair. In addition, it defines a mor-
pheme alignment between the morphemes of a sen-
tence pair.

The problem domain of IBM Model 1 is defined
over alignments between words, which is depicted
as the gray box in Figure 1. In Figure 2, the smaller
boxes embedded inside the main box depict the new
problem domain of TAM. Given the word align-
ments in Figure 1, we are presented with a new
alignment problem defined over their morphemes.
The new alignment problem is constrained by the
given word alignment. We, like IBM Model 1, adopt
a bag-of-morphemes approach to this new problem.
We thus embed one IBM Model 1 into the scope of
another IBM Model 1, and formulate a second-order
interpretation of IBM Model 1.

TAM, like IBM Model 1, assumes that words and
morphemes are translated independently of their
context. The units of translation are both words and
morphemes. Both the word alignment a,, and the
morpheme alignment a,, are hidden variables that
need to be learned from the data using the EM algo-
rithm.

In IBM Model 1, p(e|f), the probability of trans-
lating the sentence f into e with any alignment is
computed by summing over all possible word align-
ments:

p(elf) = pla,elf)



fo fi f;

A

€o €1 (2 €;

Figure 1: Word alignment

In TAM, the probability of translating the sentence
f into e with any alignment is computed by sum-
ming over all possible word alignments and all pos-
sible morpheme alignments that are compatible with
a given word alignment a,,:

Zp aw, e|f) Zp am, elaw,f)  (2)

where a,, stands for a morpheme alignment. Since
the morpheme alignment a,, is in the scope of a
given word alignment a,,, a,, is constrained by a.,.

In IBM Model 1, we compute the probability of
translating the sentence f into e by summing over
all possible word alignments between the words of f
and e:

p(e|f) =

le| |f]

R ) []> telf) G

7=11=0

plelf) =

where t(e; | f;) is the word translation probability

Pllo|le)
R(e,f) substitutes il

of e; given f;. for easy

readability.!
In TAM, the probability of translating the sen-
tence f into e is computed as follows:

Word
le| If|
Rle.n [T ( o
j=11=0
les| | f:]
e]7fl HZ k|fz )
k=1n=0
_ Morpheme

where f is the n™ morpheme of the word at po-
sition 7. The right part of this equation, the con-
tribution of morpheme translation probabilities, is

'le = |e| is the number of words in sentence e and I¢ = |f|.
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Figure 2: Morpheme alignment

in the scope of the left part. In the right part, we
compute the probability of translating the word f;
into the word e; by summing over all possible mor-
pheme alignments between the morphemes of e; and
fi. R(ej, fi) is equivalent to R(e, f) except for the
fact that its domain is not the set of sentences but
the set of words. The length of words e; and f; in
R(ej, f;) are the number of morphemes of e; and f;.
The left part, the contribution of word transla-
tion probabilities alone, equals Eqn. 3. Therefore,
canceling the contribution of morpheme translation
probabilities reduces TAM to IBM Model 1. In
our experiments, we call this reduced version of
TAM ‘word-only’ (IBM). TAM with the contribu-
tion of both word and morpheme translation proba-
bilities, as the equation above, is called ‘word-and-
morpheme’. Finally, we also cancel out the con-
tribution of word translation probabilities, which is
called ‘morpheme-only’. In the ‘morpheme-only’
version of TAM, t(e;|f;) equals 1. Bellow is the
equation of p(e|f) in the morpheme-only model.

plelf) =
el Ifl les 1]

Rt TIY. 115 At ar

j=11=0 k=1n=0

(e @

Please note that, although this version of the two-
level alignment model does not use word translation
probabilities, it is also a word-aware model, as mor-
pheme alignments are restricted to correspond to a
valid word alignment according to Eqn. 1. When
presented with words that exhibit no morphology,
the morpheme-only version of TAM is equivalent to
IBM Model 1, as every single-morpheme word is it-
self a morpheme.

Deficiency and Non-Deficiency of TAM We
present two versions of TAM, the word-and-



morpheme and the morpheme-only versions. The
word-and-morpheme version of the model is defi-
cient whereas the morpheme-only model is not.

The word-and-morpheme version is deficient, be-
cause some probability is allocated to cases where
the morphemes generated by the morpheme model
do not match the words generated by the word
model. Moreover, although most languages exhibit
morphology to some extent, they can be input to the
algorithm without morpheme boundaries. This also
causes deficiency in the word-and-morpheme ver-
sion, as single morpheme words are generated twice,
as a word and as a morpheme.

Nevertheless, we observed that the deficient ver-
sion of TAM can perform as good as the non-
deficient version of TAM, and sometimes performs
better. This is not surprising, as deficient word align-
ment models such as IBM Model 3 or discriminative
word alignment models work well in practice.

Goldwater and McClosky (2005) proposed a mor-
pheme aware word alignment model for language
pairs in which the source language words corre-
spond to only one morpheme. Their word alignment
model is:

K

| J RLCild)

k=0

Plelf) =

where €” is the k' morpheme of the word e. The
morpheme-only version of our model is a general-
ization of this model. However, there are major dif-
ferences in their and our implementation and exper-
imentation. Their model assumes a fixed number of
possible morphemes associated with any stem in the
language, and if the morpheme e is not present, it
is assigned a null value.

The null word on the source side is also a null
morpheme, since every single morpheme word is it-
self a morpheme. In TAM, the null word is the null
morpheme that all unaligned morphemes align to.

2.2 Second-Order Counts

In TAM, we collect counts for both word translations
and morpheme translations. Unlike IBM Model 1,

R(e, f) = % does not cancel out in the counts
s

of TAM. To compute the conditional probability

P(lc|l¢), we assume that the length of word e (the

number of morphemes of word e) varies according
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to a Poisson distribution with a mean that is linear
with length of the word f.

P(le’lf) = FPoisson(lear ’ lf)

_exp(=r - Lp)(r-1y)"
I.!

Fpoisson(le, 7 - 1¢) expresses the probability that there
are [ morphemes in e if the expected number of

B[]

morphemes in e is r - [ ¢, where 7 = El;] 18 the rate

parameter. Since [ is undefined for null words, we
omit R(e, f) for null words.

We introduce T'(e|f), the translation probability
of e given f with all possible morpheme alignments,
as it will occur frequently in the counts of TAM:

lel ISl

NI i

k=1n=0

The role of T'(e|f) in TAM is very similar to the
role of t(e| f) in IBM Model 1. In finding the Viterbi
alignments, we do not take max over the values in
the summation in T'(e| f).

2.2.1 Word Counts

Similar to IBM Model 1, we collect counts for
word translations over all possible alignments,
weighted by their probability. In Eqn. 5, the count
function collects evidence from a sentence pair
(e,f) as follows: For all words e; of the sentence e
and for all word alignments a,,(j), we collect counts
for a particular input word f and an output word e
iff € =¢€ and faw(j) = f

T(elf) = tlel/)R (1 ™)

T(elf)

colelfiefian) = Y = %)
12l S (el )
e=e¢; =0
f:faw(j)

2.2.2 Morpheme Counts

As for morpheme translations, we collect counts
over all possible word and morpheme alignments,
weighted by their probability. The morpheme count
function below collects evidence from a word pair
(e, f) in a sentence pair (e, f) as follows: For all
words e; of the sentence e and for all word align-
ments a,,(j), for all morphemes e;? of the word e;
and for all morpheme alignments a,,(J, k), we col-
lect counts for a particular input morpheme g and an



output morpheme h iff e; = e and f,
h= e;? and g =

(j) = f and
Jam (k)

Cm(h|g7 €, f7 Qo am) =

T(l)  1(hlg)
Z Z I£| 1]

1§jt§|e| 1<k<H ZT(e[fi) > t(h|f?)
. —0 i=1

e=e;

h e
I=law) g= famuk)

The left part of the morpheme count function is the
same as the word-counts in Eqn. 5. Since it does not
contain h or g, it needs to be computed only once for
each word. The right part of the equation is familiar
from the IBM Model 1 counts.

2.3 HMM Extension

We implemented TAM with the HMM extension
(Vogel et al., 1996) at the word level. We redefine
p(elf) as follows:

|C faw(] 1))) t(6]|faw(]))

e, 1T (vt

aw j=1

e]afaw

Zlﬁlt 5| fam(ib) )

am k=1

where the distortion probability depends on the rel-
ative jump width s(j) = aw(j — 1) — aw(j),
as opposed to absolute positions. The distortion
probability is conditioned on class of the previous
aligned word C(f,,(j—1)). We used the mkcls
tool in GIZA (Och and Ney, 2003) to learn the word
classes.

We formulated the HMM extension of TAM only
at the word level. Nevertheless, the morpheme-only
version of TAM also has an HMM extension, as it
is also a word-aware model. To obtain the HMM
extension of the morpheme-only version, substitute
t(ej]fa,(;)) With 1 in the equation above.

For the HMM to work correctly, we must han-
dle jumping to and jumping from null positions. We
learn the probabilities of jumping to a null position
from the data. To compute the jump probability from
a null position, we keep track of the nearest previous
source word that does not align to null, and use the
position of the previous non-null word to calculate
the jump width. For this reason, we use a total of
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2l — 1 words for the HMM model, the positions
> [ stand for null positions between the words of f
(Och and Ney, 2003). We do not allow null to null
jumps. In sum, we enforce the following constraints:

P(i+ 1y +1)i') = p(null]i’)
Pl+1lp+1) +1p+1)=0
P(ili' + Iy + 1) = p(i]d')

In the HMM extension of TAM, we perform
forward-backward training using the word counts in
Eqn. 5 as the emission probabilities. We calculate
the posterior word translation probabilities for each
ejand f;suchthat 1 < j <lecand1 < < 2[p —1
as follows:

a(i)7;(1)
21

> aj(m)Bi(m)

m=1

;i) =

where « is the forward and S is the backward prob-
abilities of the HMM. The HMM word counts, in
turn, are the posterior word translation probabilities
obtained from the forward-backward training:

Y vilaw(d)

1<j<]e|
s.t.

Cw(e‘f; e f, aw) =

—e;

€=¢;j
f:faw(j)

Likewise, we use the posterior probabilities in HMM
morpheme counts:

Cm(h|g7 €, f7a/w7a‘m) =

Y Y e
1<i<lel  1<k<]e] :th(hyfi)

e=e;j h:e? ?

f:fllw(j) g:fam(j,k)

The complexity of the HMM extension of TAM is
O(n3m?), where n is the number of words, and m
is the number of morphemes per word.

2.4 Variational Bayes

Moore (2004) showed that the EM algorithm is par-
ticularly susceptible to overfitting in the case of rare
words when training IBM Model 1. In order to pre-
vent overfitting, we use the Variational Bayes ex-
tension of the EM algorithm (Beal, 2003). This



(a) Kasim 1996°da, Tiirk makamlari, Igisleri Bakanlig1 biinyesinde bir kayip kisileri arama birimi olusturdu.

(b) Kasim+Noun 1996+Num-Loc ,+Punc Tiirk+Noun makam+Noun—A3pl-P3sg ,+Punc Icisi+Noun-A3pl-
P3sg Bakanlik+Noun—P3sg biinye+Noun—P3sg—Loc bir+Det kayip+Adj kisi+Noun—-A3pl-Acc ara+Verb—
Inf2 birim+Noun-P3sg olug+Verb—Caus—Past .+Punc

(c) In November 1996 the Turkish authorities set up a missing persons search unit within the Ministry of the

Interior.

(d) in+IN November+NNP 1996+CD the+DT Turkish+JJ author+NN-ity+N|N.-NNS set+VB-VBD up+RP
a+DT miss+VB-VBG+JJ person+NN-NNS search+NN unit+NN within+IN the+DT minister+NN—

y+N|N. of+IN the+DT interior+NN .+.

e In+IN November+NNP 1996+CD the+DT Turkish+JJ authorities+NNS set+VBD up+RP a+DT missing+JJ
p g
persons+NNS search+NN unit+NN within+IN the+DT Ministry+NNP of+IN the+DT Interior+NNP .+.

Figure 3: Turkish-English data examples

amounts to a small change to the M step of the orig-
inal EM algorithm. We introduce Dirichlet priors o
to perform an inexact normalization by applying the
function f(v) = exp(¢(v)) to the expected counts
collected in the E step, where ¢ is the digamma
function (Johnson, 2007).

o _ By + )
R Blelasly)] + a)

We set ato 10729, a very low value, to have the ef-
fect of anti-smoothing, as low values of « cause the
algorithm to favor words which co-occur frequently
and to penalize words that co-occur rarely.

3 Experimental Setup
3.1 Data

We trained our model on a Turkish-English paral-
lel corpus of approximately 50K sentences, which
have a maximum of 80 morphemes. Our parallel
data consists mainly of documents in international
relations and legal documents from sources such as
the Turkish Ministry of Foreign Affairs, EU, etc. We
followed a heavily supervised approach in morpho-
logical analysis. The Turkish data was first morpho-
logically parsed (Oflazer, 1994), then disambiguated
(Sak et al., 2007) to select the contextually salient in-
terpretation of words. In addition, we removed mor-
phological features that are not explicitly marked by
an overt morpheme — thus each feature symbol be-
yond the root part-of-speech corresponds to a mor-
pheme. Line (b) of Figure 3 shows an example of
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a segmented Turkish sentence. The root is followed
by its part-of-speech tag separated by a ‘+’. The
derivational and inflectional morphemes that follow
the root are separated by ‘—’s. In all experiments,
we used the same segmented version of the Turkish
data, because Turkish is an agglutinative language.

For English, we used the CELEX database
(Baayen et al., 1995) to segment English words into
morphemes. We created two versions of the data:
a segmented version that involves both derivational
and inflectional morphology, and an unsegmented
POS tagged version. The CELEX database provides
tags for English derivational morphemes, which in-
dicate their function: the part-of-speech category the
morpheme attaches to and the part-of-speech cate-
gory it returns. For example, in ‘sparse+ity’ = ‘spar-
sity’, the morpheme -ity attaches to an adjective to
the right and returns a noun. This behavior is repre-
sented as ‘N|A.” in CELEX, where ‘.” indicates the
attachment position. We used these tags in addition
to the surface forms of the English morphemes, in
order to disambiguate multiple functions of a single
surface morpheme.

The English sentence in line (d) of Figure 3 ex-
hibits both derivational and inflectional morphology.
For example, ‘author+ity+s’=‘authorities’ has both
an inflectional suffix -s and a derivational suffix -ity,
whereas ‘person+s’ has only an inflectional suffix -s.

For both English and Turkish data, the dashes in
Figure 3 stand for morpheme boundaries, therefore
the strings between the dashes are treated as indi-



Words Morphemes
Tokens Types Tokens Types
English Der+Inf | 1,033,726 | 27,758 | 1,368,188 | 19,448
English POS 1,033,726 | 28,647 | 1,033,726 | 28,647
Turkish Der+Inf | 812,374 | 57,249 | 1,484,673 | 16,713

Table 1: Data statistics

visible units. Table 1 shows the number of words,
the number of morphemes and the respective vocab-
ulary sizes. The average number of morphemes in
segmented Turkish words is 2.69, and the average
length of segmented English words is 1.57.

3.2 Experiments

We initialized our baseline word-only model with 5
iterations of IBM Model 1, and further trained the
HMM extension (Vogel et al., 1996) for 5 iterations.
We call this model ‘baseline HMM’ in the discus-
sions. Similarly, we initialized the two versions of
TAM with 5 iterations of the model explained in
Section 2.2, and then trained the HMM extension of
it as explained in Section 2.3 for 5 iterations.

To obtain BLEU scores for TAM models and
our implementation of the word-only model, i.e.
baseline-HMM, we bypassed GIZA++ in the Moses
toolkit (Och and Ney, 2003). We also ran GIZA++
(IBM Model 1-4) on the data. We translated 1000
sentence test sets.

4 Results and Discussion

We evaluated the performance of our model in two
different ways. First, we evaluated against gold
word alignments for 75 Turkish-English sentences.
Second, we used the word Viterbi alignments of our
algorithm to obtain BLEU scores.

Table 2 shows the AER (Och and Ney, 2003) of
the word alignments of the Turkish-English pair and
the translation performance of the word alignments
learned by our models. We report the grow-diag-
final (Koehn et al., 2003) of the Viterbi alignments.
In Table 2, results obtained with different versions
of the English data are represented as follows: ‘Der’
stands for derivational morphology, ‘Inf’ for inflec-
tional morphology, and ‘POS’ for part-of-speech
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tags. ‘Der+Inf’ corresponds to the example sen-
tence in line (d) in Figure 3, and ‘POS’ to line (e).
‘DIR’ stands for models with Dirichlet priors, and
‘NO DIR’ stands for models without Dirichlet pri-
ors. All reported results are of the HMM extension
of respective models.

Table 2 shows that using Dirichlet priors hurts
the AER performance of the word-and-morpheme
model in all experiment settings, and benefits the
morpheme-only model in the POS tagged experi-
ment settings.

In order to reduce the effect of nondeterminism,
we run Moses three times per experiment setting,
and report the highest BLEU scores obtained. Since
the BLEU scores we obtained are close, we did a sig-
nificance test on the scores (Koehn, 2004). Table 2
visualizes the partition of the BLEU scores into sta-
tistical significance groups. If two scores within the
same column have the same background color, or the
border between their cells is removed, then the dif-
ference between their scores is not statistically sig-
nificant. For example, the best BLEU scores, which
are in bold, have white background. All scores in a
given experiment setting without white background
are significantly worse than the best score in that ex-
periment setting, unless there is no border separating
them from the best score.

In all experiment settings, the TAM Models per-
form better than the baseline-HMM. Our experi-
ments showed that the baseline-HMM benefits from
Dirichlet priors to a larger extent than the TAM mod-
els. Dirichlet priors help reduce the overfitting in
the case of rare words. The size of the word vo-
cabulary is larger than the size of the morpheme
vocabulary. Therefore the number of rare words is
larger for words than it is for morphemes. Conse-
quently, baseline-HMM, using only the word vocab-



BLEU BLEU
AER
ENto TR TRtoEN

Der+Inf POS Der+Inf POS Der+Inf POS
Morph only 22,57 2254 29.30 29.45 0.293 0.276
NO o Word & Morph 21.95 22.37 28.81 29.01 0.286 0.282
IBM 4 21.82 21.82 27.91 27.91 0.357 0.370
DIR WORD Base-HMM 21.78 21.38 28.22 28.02 0.381 0.375
IBM 4 Morph 17.15 17.94 25.70 26.33 N/A N/A
Morph only 22.18 2252 29.32 29.98 0.304 0.256
Y Word & Morph 22.43 21.62 29.21 29.11 0.338 0.317
DIR IBM 4 21.82 21.82 27.91 27.91 0.357 0.370
WORD Base-HMM 21.69 21.95 28.76 29.13 0.381 0.377

IBM 4 Morph 17.15 17.94 25.70 26.33 N/A N/A

Table 2: AER and BLEU Scores

ulary, benefits from the use of Dirichlet priors more
than the TAM models.

In four out of eight experiment settings, the
morpheme-only model performs better than the
word-and-morpheme version of TAM. However,
please note that our extensive experimentation
with TAM models revealed that the superiority
of the morpheme-only model over the word-and-
morpheme model is highly dependent on segmenta-
tion accuracy, degree of segmentation, and morpho-
logical richness of languages.

Finally, we treated morphemes as words and
trained IBM Model 4 on the morpheme segmented
versions of the data. To obtain BLEU scores, we
had to unsegment the translation output: we con-
catenated the prefixes to the morpheme to the right,
and suffixes to the morpheme to the left. Since this
process creates malformed words, the BLEU scores
obtained are much lower than the scores obtained by
IBM Model 4, the baseline and the TAM Models.

5 Conclusion

We presented two versions of a two-level alignment
model for morphologically rich languages. We ob-
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served that information provided by word transla-
tions and morpheme translations interact in a way
that enables the model to be receptive to the par-
tial information in rarely occurring words through
their frequently occurring morphemes. We obtained
significant improvement of BLEU scores over IBM
Model 4. In conclusion, morphologically aware
word alignment models prove to be superior to their
word-only counterparts.
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Multi-faceted Event Recognition with Bootstrapped Dictianaries
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Abstract words “strike” , “rally” , and“riot” refer to com-
mon types of civil unrest, but they frequently refer to
other things as well. A strike can refer to a military

complexity and variety of event descriptions. gvent Qr a sporting event (e.gair strike” , "_bPW"

We propose anulti-faceted event recognition ing strike”), a rally can be a race or a spirited ex-
approach, which identifies documents about ~ change (e.d'car rally” , “tennis rally”), and a riot

an event using event phrases as well as defin-  can refer to something funny (e.gshe’s a riot”).

ing characteristics of the event. Our research  Event keywords also appear in general discussions
focuses on civillunrest events and learns civil that do not mention a specific event (e“§7 states
unrest expressions as well as phrases cor- g oniit teacher strikes’or “The fine for inciting a
responding to potential agents and reasons .o N

for civil unrest. We present a bootstrapping riot is $1,000"). Furthermore, _many relevant docu-
algorithm that automatically acquires event ments are not easy to recognize because events can
phrases, agent terms, and purpose (reason) be described with Complex eXpreSSionS that do not
phrases from unannotated texts. We use the include event keywords. For exampféok to the
bootstrapped dictionaries to identify civil un- streets”, “walked off their jobs” and“stormed par-

rest documents and show that multi-faceted  |iament” often describe civil unrest.

event recognition can yield high accuracy.

Identifying documents that describe a specific
type of event is challenging due to the high

The goal of our research is to recognize event de-
) scriptions in text by identifying event expressions as
1 Introduction well as defining characteristics of the event. We pro-
Many people are interested in following news rePose thatagentsand purposeare characteristics of
ports about events. Government agencies are kee@ event that are essential to distinguish one type of
interested in news about civil unrest, acts of terror€vent from another. The agent responsible for an ac-
ism, and disease outbreaks. Companies want to st#gn often determines how we categorize the action.
on top of news about corporate acquisitions, highEOr example, natural disasters, military operations,
level management changes, and new joint venturedd terrorist attacks can all produce human casual-
The general public is interested in articles abouf€s and physical destruction. But the agent of a nat-
crime, natural disasters, and plane crashes. We wilfal disaster must be a natural force, the agent of
refer to the task of identifying documents that de2 military incident must be military personnel, and
scribe a specific type of event esent recognition ~ the agent of a terrorist attack is never a natural force

It is tempting to assume that event keyword&nd rarely military personnel. There may be other
are sufficient to identify documents that discuss inimportant factors as well, but the agent is often an
stances of an event. But event words are rarely refeSsential part of an event definition.
able on their own. For example, consider the chal- The purpose of an event is also a crucial factor
lenge of finding documents about civil unrest. Then distinguishing between event types. For exam-
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ple, civil unrest events and sporting events both iren event extraction, where the goal is to extract
volve large groups of people amassing at a speciffacts about events from text (e.g., (ACE Evaluations,
site. But the purpose of civil unrest gatherings is t@006; Appelt et al., 1993; Riloff, 1996; Yangar-
protest against socio-political problems, while sportber et al., 2000; Chieu and Ng, 2002; Califf and
ing events are intended as entertainment. As anothiglooney, 2003; Sudo et al., 2003; Stevenson and
example, terrorist events and military incidents careenwood, 2005; Sekine, 2006)). Although our re-
both cause casualties, but the purpose of terrorismsgarch does not involve extracting facts, event ex-
to cause widespread fear, while the purpose of miltraction systems can also be used to identify sto-
tary actions is to protect national security interests.ries about a specific type of event. For example, the
Our research explores the idea miilti-faceted MUC-4 evaluation (MUC-4 Proceedings, 1992) in-
event recognition using event expressions as wellcluded “text filtering” results that measured the per-
as facets of the event (agents and purpose) to ideigrmance of event extraction systems at identifying
tify documents about a specific type of event. Wevent-relevant documents. The best text filtering re-
present a bootstrapping framework to automaticallgults were high (about 90% F score), but relied on
create event phrase, agent, and purpose dictionariég&nd-built event extraction systems. More recently,
The learning process uses unannotated texts, a fé@me research has incorporated event region detec-
event keywords, and seed terms for common ageriy's into event extraction systems to improve extrac-
and purpose phrases associated with the event typgéon performance (Gu and Cercone, 2006; Patward-
Our bootstrapping algorithm exploits the obserhan and Riloff, 2007; Huang and Riloff, 2011).
vation that event expressions, agents, and purposelhere has been recent work on event detection
phrases often appear together in sentences that fi@m social media sources (Becker et al., 2011;
troduce an event. In the first step, we extract eveffopescu et al., 2011). Some research identifies spe-
expressions based on dependency relations with &ffic types of events in tweets, such as earthquakes
agent and purpose phrase. The harvested event é€kakaki et al., 2010) and entertainment events (Ben-
pressions are added to an event phrase dictionary. 3an et al., 2011). There has also been work on event
the second step, new agent terms are extracted fréfgnd detection (Lampos et al., 2010; Mathioudakis
sentences containing an event phrase and a purpéétl Koudas, 2010) and event prediction through so-
phrase, and new purpose phrases are harvested frél@él media, such as predicting elections (Tumasjan
sentences containing an event phrase and an agéital., 2010; Conover et al., 2011) or stock mar-
These harvested terms are added to agent and pl@t indicators (Zhang et al., 2010). (Ritter et al.,
pose dictionaries. The bootstrapping algorithm rico2012) generated a calendar of events mentioned on
chets back and forth, alternately learning new evefivitter. (Metzler et al., 2012) proposed structured
phrases and |earning new agent/purpose phrasesirﬂﬁrievm of historical event information over mi-
an iterative process. croblog archives by distilling high quality event rep-
We explore several ways of using these boot:esentations using a novel temporal query expansion

strapped dictionaries. We conclude that finding d€chnique. o
least two different types of event information pro- Some text classification research has focused on

duces high accuracy (88% precision) with good re€vent categories. (Riloff and Lehnert, 1994) used
call (71%) on documents that contain an event key@" information extraction system to generatée-
word. We also present experiments with documentncy signatureshat were indicative of different
that do not contain event keywords, and obtain 749%Vent types. This work originally relied on man-
accuracy when matching all three types of event ifJally labeled patterns and a hand-crafted semantic

formation. dictionary. Later work (Riloff and Lorenzen, 1999)
eliminated the need for the dictionary and labeled
2 Related Work patterns, but still assumed the availability of rele-

vant/irrelevant training texts.
Event recognition has been studied in several dif- Event recognition is also related to Topic Detec-
ferent contexts. There has been a lot of researdlon and Tracking (TDT) (Allan et al., 1998; Allan,
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2002) which addresses event-based organization ofauses on civil unrest events.
stream of news stories. Event recognition is similar
to New Event Detection, also called First Story De3.1 Stage 1: Event Phrase Learning

tection, which is considered the most difficult TDT , L .
. We first extract potential civil unrest stories from the
task (Allan et al., 2000a). Typical approaches re-"~ . ) .
; English Gigaword corpus (Parker et al., 2011) using
duce documents to a set of features, either as a word

vector (Allan et al., 2000b) or a probability distri- > civil unrest keywords. As explained in Section 1,

bution (Jin et al., 1999), and compare the incominevent keywords are not sufficient to obtain relevant

stories to stories that appeared in the past by corr%iSJ cuments with high precision, so the extracted sto-

. o ; ries are a mix of relevant and irrelevant articles. Our
puting similarities between their feature representa- = . ) .
Igorithm first selects sentences to use for learning,

tions. Recently, event paraphrases (Petrovic et af .
2012) have been explored to deal with the diversitf?‘hd then harvests event expressions from them.

of eyent descrlptlons. However, the New Eyent Deé.l.l Event Sentence |dentification
tection task differs from our event recognition task

because we want to find all stories describing a cer- The input in stage 1 consists of a few agent terms

tain type of event, not just new events. and purpose patterns for seeding. The agent seeds
are single nouns, while the purpose patterns are
3 Bootstrapped Learning of Event verbs in infinitive or present participle forms. Table
Dictionaries 1 shows the agent terms and purpose phrases used in

our experiments. The agent terms were manually se-

Our bootstrapping approach consists of two Stagégcted by inspecting the most frequent nouns in the
of learning as shown in Figure 1. The process belocuments with civil unrest keywords. The purpose
gins with a few agent seeds, purpose phrase patterR@tterns are the most common verbs that describe the
and unannotated articles selected from a broa&eason for a civil unrest event. We identjfyobable
coverage corpus using event keywords. In the fir§vent sentencdsy extracting all sentences that con-
stage, event expressions are harvested from the s&il at least one agent term and one purpose phrase.
tences that have both an agent and a purpose phrase
in specific syntactic positions. In the second stage,
new purpose phrases are harvested from sentenges palestinians, supporters, womer
that contain both an event phrase and an agent, while Purpose demanding, to demand,
new agent terms are harvested from sentences that| pprases protesting, to protest
contain both an event phrase and a purpose phrase.
The new terms are added to growing event dictionar-Table 1: Agent and Purpose Phrases Used for Seeding
ies, and the bootstrapping process repeats. Our work

Agents | protesters, activists, demonstratofs,
students, groups, crowd, workers,
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3.1.2 Harvesting Event Expressions “xcomp” links “took to the streets”with “protest-

To constrain the learning process, we requiréd higher fuel prices”
event expressions and purpose phrases to match cer-
tain syntactic structures. We apply the Stanford de-
pendency parser (Marneffe et al., 2006) to the prob1 NP Head | | Verb Phrase |
able event sentences to identify verb phrase candi-— .
dates and to enforce syntactic constraints between

the different types of event information. Figure 3: Syntactic Dependencies between Agents, Event
Phrases, and Purpose Phrases

subject xcomp

Verb Phrase Complement

Event Phrase Purpose Phrase

Given the syntactic construction shown in Figure
verb | + | (Partice) ¢+ | NP rtead 3, with a known agent and purpose phrase, we ex-
s : tract the head verb phrase of the “xcomp” depen-
o pobj dency relation as an event phrase candidate. The
event phrases that co-occur with at least two unique
agent terms and two unique purposes phrases are
saved in our event phrase dictionary.

Figure 2: Phrasal Structure of Event & Purpose Phrase§ 2 Stage 2: Learning Agent and Purpose
Phrases

verb | T i (Particle) i + | Prep + |NP Head

Figure 2 shows the two types of verb phrases
that we learn. One type consists of a verb paireth the second stage of bootstrapping, we learn new
with the head noun of its direct object. For examagent terms and purpose phrases. Our rationale is
ple, event phrases can bstopped work” or “oc-  that if a sentence contains an event phrase and one
cupied offices! and purpose phrases can‘show other important facet of the event (agent or pur-
support” or “condemn war”. The second type con- pose), then the sentence probably describes a rele-
sists of a verb and an attached prepositional phrasént event. We can then look for additional facets
retaining only the head noun of the embedded nowdf the event in the same sentence. We learn both
phrase. For examplétook to street” and“scuffled agent and purpose phrases simultaneously in paral-
with police” can be event phrases, whileall for  lel learning processes. As before, we first identify
resignation” and“press for wages”can be purpose Probable event sentences and then harvest agent and
phrases. In both types of verb phrases, a particle c@nrpose phrases from these sentences.

optionally follow the verb. 3.2.1 Event Sentence Identification

Event expressions, agents, and purpose phrase : .
must appear in specific dependency relations, as ”_iNe identify probable event sentences by extract-

Ing sentences that contain at least one event phrase

lustrated in Figure 3. An agent must be the syn- 4 on the dicii duced in the first st
tactic subject of the event phrase. A purpose phra %ase on g ctionary produced in the Tirst stage
bootstrapping) and an agent term or a purpose

must be a complement of the event phrase, specﬁ-

ically, we require a particular dependency reIationF,Jhrase' As before, the event information must oc-

“xcomp’L, between the two verb phrases. For excurin the sentential dependency structures shown in

ample, in the sentenc#_eftist activists took to Figure 3.

the streets in the Nepali capital Wednesday protes8.2.2 Harvesting Agent and Purpose Phrases

ing higher fuel prices;’ the dependency relation The sentences that contain an event phrase and
1 the dependency parser, “xcomp” denotes a general rel@ agent are used to harvest more purpose phrases,

tion between a VP or an ADJP and its open clausal complememwhile the sentences that contain an event phrase

For example, in the sententide says that you like to swim” gnd a purpose phrase are used to harvest more

the “xcomp” relation will link “like” (head) and “swim” (de-
pendent). With our constraints on the verb phrase forms, th%gent terms. Purpose phrases are extracted from the

dependent verb phrase in this construction tends to destéy Phrasal structures shown in Figure 2. In the learn-
purpose of the verb phrase. ing process for agents, if a sentence has an event
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phrase as the head of the “xcomp” dependency rexample, police may provide security and reporters
lation and a purpose phrase as the dependent clausay provide media coverage of an event, but they
of the “xcomp” dependency relation, then the headre not the agents of the event. We estimate the
noun of the syntactic subject of the event phrase Bvent-specificityof each agent term as the ratio of
harvested as a candidate agent term. We also recdh# phrase’s prevalence in event sentences compared
the modifiers appearing in all of the noun phraset® all the sentences in the domain-specific corpus.
headed by an agent term. Agent candidates that cé/e define an event sentence as one that contains
occur with at least two unique event phrases and abth a learned event phrase and a purpose phrase,
least two different modifiers of known agent termgased on the dictionaries at that point in time. There-
are selected as new agent terms. fore, the number of event sentences increases as the

The learning process for purpose phrases is anddeotstrapped dictionaries grow. We define the event-
ogous. If the syntactic subject of an event phrasspecificity of phrase as:
is an agent and the event phrase is the head of
the “xcomp” dependency relation, then the depen-
dent clause of the “xcomp” dependency relation is In our experiments we required event and purpose
harvested as a candidate purpose phrase. Purpgbgases to havdomain-specificity> .33 and agent
phrase candidates that co-occur with at least two diferms to havevent-specificity> .013
ferent event phrases are selected as purpose phrases.

The bootstrapping process then repeats, ricochét- Evaluation
ing back and forth between learning event phrasef 1 Data
and learning agent and purpose phrases. '

frequency of p in event sentences
frequency of p in all sentences

event-specificity(p}

We conducted experiments to evaluate the perfor-

3.3 Domain Relevance Criteria mance of our bootstrapped event dictionaries for rec-
To avoid domain drift during bootstrapping, we usedgnizing civil unrest events. Civil unrest is a broad
two additional criteria to discard phrases that are ndéérm typically used by the media or law enforce-
necessarily associated with the domain. ment to describe a form of public disturbance that

For each event phrase and purpose phrase, we #wwlves a group of people, usually to protest or pro-
timate itsdomain-specificityas the ratio of its preva- mote a cause. Civil unrest events include strikes,
lence in domain-specific texts compared to broadsrotests, occupations, rallies, and similar forms of
coverage texts. The goal is to discard phrases thalpstructions or riots. We chose sixent keywordto
are common across many types of documents, aidentify potential civil unrest documents: “protest”,
therefore not specific to the domain. We define théstrike”, “march”, “rally”, “riot” and “occupy”. We
domain-specificity of phraseas: extracted documents from the English Gigaword
frequency of p in domain-specific corpus  COrpus (Parker et al., 2011) that contain at least one
frequency of pin broad-coverage corpus  of thege event keywords, or a morphological variant
We randomly sampled 10% of the Gigaword textgf 5 keyword* This process extracted nearly one

that contain a civil unrest event keyword to creatgyijion documents, which we will refer to as our
the “domain-specific” corpus, and randomly SaMayent-keyword corpus

pled 10% of the remaining Gigaword texts to cre- \ye randomly sampled 400 documénfeom the

ate the “broad-coverage” gorpElsKeywprd-based event-keyword corpus and asked two annotators to
sampllng Is an approximation to domain-relevanceyetermine whether each document mentioned a civil
but gives us a general idea about the prevalance o

phrase in different types of texts. 3This value is so small because we simply want to filter
E tt lis to identi | h(svhrases that virtually never occur in the event sentences$, a
oragentterms, ourgoalistoiden Ify peopie w e can recognize very few event sentences in the early stages

participate as agents of civil unrest events. Othey bootstrapping.
types of people may be commonly mentioned in *We used “marched” and “marching” as keywords but did

civil unrest stories too, as peripheral characters. F@Pt use “march” because it often refers to a month.
5These 400 documents were excluded from the unannotated

2The random sampling was simply for efficiency reasons. data used for dictionary learning.

domain-specificity(p}
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unrest event. We defined annotation guidelines amtl3 Event Recognition with Bootstrapped
conducted an inter-annotator agreement study on  Dictionaries

100 of these documents. The annotators achieved\@yt we used our bootstrapped dictionaries for
r score of .82. We used these 100 documents as Qufent recognition. The bootstrapping process ran
tuning set Then each annotator annotated 150 morg, g iterations and then stopped because no more
documents to create otest sebf 300 documents. phrases could be learmed. The quality of boot-

_ strapped data often degrades as bootstrapping pro-
4.2 Baselines gresses, so we used the tuning set to evaluate the

curacy when only the event keywords are used. Alnancé on the tuning set resulted from the dictionar-

of our documents were obtained by searching for €S produced after four iterations, so we used these
keyword, but only 101 of the 300 documents in ouflictionaries for our experiments. Table 3 shows the
test set were labeled as relevant by the annotators

(i.e., 101 describe a civil unrest event). This means P?:Zg;s ergfrr:s P;;E;;:S
that using only the event keywords to identify civil lter #1 145 67 124
unrest documents yields about 34% precision. In a lter #2 410 106 356
second experimenkKeywordTitle, we required the Iter #3 504 130 402
event keyword to be in the title (headline) of the doc- Ilter #4 623 139 569

ument. The KeywordTitle approach produced better
precision (66%), but only 33% of the relevant docu-
ments had a keyword in the title.

Table 3: Dictionary Sizes after Several Iterations

number of event phrases, agents and purpose phrases
learned after each iteration. All three lexicons were

Method Keyword isgj:LCyPI’GCISIOH F | significantly enriched after each iteration. The final
Keyword - 32 - bootstrapped dictionaries contd@i@3event phrases,
KeywordTitle 33 66 44 569 purpose phrases ardd9 agent terms. Table 4
Supervised Learning shows samples from each event dictionary.
Unigrams 62 66 64 i
Unigrams+Bigrams 55 71 62 Event Phrases:went on strlke, too_k to street, _
Bootstrapped Dictionary Lookup chanted sI.ogans_, gathered in capital, formed chain,
Event Phrases (EV) 60 79 69 clashed WIFh police, staged rally, held protest,
Agent Phrases (AG) 98 42 59 walked of_fjot_), burned flags, set flre,_ hit streets,
Purpose Phrases (PU) 59 67 63 marched in city, blocked roads, carried placards
All Pairs 71 88 79 Agent Terms: employees, miners, muslims, unions,
protestors, journalists, refugees, prisoners, immigrant
Table 2: Experimental Results inmates, pilots, farmers, followers, teachers, drivers
Purpose Phrasesaccusing government, voice anget,
. |_press for wages, oppose plans, urging end, defying pan,
Suls of o supensed ciassers based on 10.folErCrLIdan. mark annversary, alin for g,
cross validation with our test set. Both classifiers push for hike, call attention, celebrating withdrawal

were trained using support vector machines (SVMSs)
(Joachims, 1999) with a linear kernel (Keerthi and Table 4: Examples of Dictionary Entries
DeCoste, 2005). The first classifier used unigrams _ _
as features, while the second classifier used both un-The th_'rd section of Table 2_ s_how; the results
igrams and bigrams. All the features are binary. Th¥N€n using the bootstrapped dictionaries for event

evaluation results show that the unigram classifierlecognition' We used a sim'plc'a dictionary Iopk-up
has an F-score of .64. Using both unigram and pPProach that searched for dictionary entries in each

gram features increased precision to 71% but recagpcument. Our phrases were generated based on

fell by 7%, yielding a slightly lower F-score of .62.  ®Based on the performance for tA# Pairs approach.
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syntactic analysis and only head words were rd--score of 79%. This multi-faceted approach with
tained for generality. But we wanted to match dicsimple dictionary look-up outperformed all of the
tionary entries without requiring syntactic analysidaselines, and each dictionary used by itself. Sta-
of new documents. So we used an approximatistical significance testing shows that the All Pairs
matching scheme that required each word to appeapproach works significantly better than the unigram
within 5 words of the previous word. For exampleclassifier § < 0.001, paired bootstrap). The All
“held protest” would match “held a large protest’Pairs approach is significantly better than the Event
and “held a very large political protest”. In this way,Phrase (EV) lookup approach at thec 0.1 level.

we avoid the need for syntactic analysis when using

the dictionaries for event recognition. Method  Recall Precision F-score
First, we labeled a document as relevant if it con- Ex : Zg Llé' 1&0 ég

tained any Event Phrase (EV) in our dictionary. The AG + PU 50 85 63

event phrases achieved better performance than all [ Ajrpairs 71 88 79

of the baselines, yielding an F-score of 69%. The
best baseline was the unigram classifier, which was Table 5: Analysis of Dictionary Combinations
trained with supervised learning. The bootstrapped )
event phrase dictionary produced much higher pre- 12Ple 5 takes a closer look at how each pair of
cision (79% vs. 66%) with only slightly lower recall dictionaries performed. The first row shows that re-

(60% vs. 62%), and did not require annotated tex{@4IiNg a document to have an event phrase andoa
for training. Statistical significance testing show®U"Pose phrase produces the best precision (100%)

that the Event Phrase lookup approach works signifut With low recall (14%). The second row reveals
icantly better than the unigram classifigr € 0.05, that requiring a document to have an event phrase
paired bootstrap (Berg-Kirkpatrick et al., 2012)). andanagenttermyields better recall (47%) and high
For the sake of completeness, we also evaluat@jecision (94%). The third row shows that requiring
the performance of dictionary look-up using ouf? document to have a purpose phrase and an agent

bootstrapped Agent (AG) and Purpose (PU) dictioterm produces the best recall (50%) but with slightly

naries, individually. The agents terms produced 42¢§Wer Precision (85%). Finally, the last row of Ta-

precision with 98% recall, demonstrating that thé’_le 5 shows that taking the union of these results

learned agent list has extremely high coverage bL(J'te" any combination of dictio(r)lary _pairs_ s suffi_—
(unsurprisingly) does not achieve high precision o€t Yields the best recall (71%) with high preci-

its own. The purpose phrases achieved a better b&°" (88%), demonstrating that we get the best cov-
ance of recall and precision, producing an F-scorarage by recognizing multiple combinations of event

of 63%, which is nearly the same as the supervisdgformation.

unigram classifier. Lexicon Recall Precision F-score
Our original hypothesis was that a single type of Seeds 13 87 22
event information is not sufficient to accurately iden- Iter #1 50 88 63
tify event descriptions. Our goal was high-accuracy lter #2 63 89 74
event recognition by requiring that a document con- lter #3 68 88 44
tain multiple clues pertaining to different facets of an lter #4 £ 88 9

event (nulti-faceted event recognitipnThe last row Taple 6:All Pairs Lookup Results using only Seeds and
of Table 2 @All Pairs) shows the results when requir-the Lexicons Learned after each Iteration, on the Test Set
ing matches from at least two different bootstrapped

dictionaries. Specifically, we labeled a document Table 6 shows the performance of the lexicon
as relevant if it contained at least one phrase frof@okup approach using thall Pairs criteria dur-
each of two different dictionaries and these phrasésg the bootstrapping process. The first row shows
occurred in the same sentence. Table 2 shows théae results using only 10 agent seeds and 4 purpose
multi-faceted event recognition achieves 88% precseeds as shown in Table 1. The following four rows
sion with reasonably good recall of 71%, yielding arin the table show the performanceAlf Pairs using
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the lexicons learned after each bootstrapping iteréionaries. We created five SVM classifiers and per-
tion. We can see that the recall increases steadily afmrmed 10-fold cross validation on the test set.
that precision is maintained at a high level through-

out the bootstrapping process. | Method  Recall Precision F-score]
Event recognition can be formulated as an infor- TermLex 66 85 74

mation retrieval (IR) problem. As another point of PairLex 10 91 18

comparison, we ran an existing IR system, Terrier | TermSets 59 83 69

(Ounis et al., 2007), on our test set. We used Ter- | balrSets 68 84 s

. . AllSets 70 84 76

rier to rank these 300 documents given our set of

event keywords as the quefyand then generated a Table 7: Supervised classifiers using the dictionaries
recall/precision curve (Figure 4) by computing the

precisions at different levels of recall, ranging from

0to 1 in increments ofl0. Terrier was run with the Table 7 shows the results for the five classifiers.

TermLex encodes a binary feature for every phrase
in any of our dictionariesPairLex encodes a binary
feature for each pair of phrases from two different
dictionaries and requires them to occur in the same
sentence. The TermLex classifier achieves good per-
formance (74% F-score), but is not as effective as
our All Pairs dictionary look-up approach (79% F-
score). The PairLex classifier yield higher precision
but very low recall, undoubtedly due to sparsity is-
ol sues in matching specific pairs of phrases.

o1l ] One of the strengths of our bootstrapping method
SR is that it creates dictionaries from large volumes of

0 01 02 03 04 05 06 07 08 09 1 P . .
Recall unannotated documents. A limitation of supervised
learning with lexical features is that the classifier can
Figure 4: Comparison with the Terrier IR system  not benefit from terms in the bootstrapped dictionar-
ies that do not appear in its training documents. To

parameter PL2 which refers to an advanced Divefddress this issue, we also tried encoding the dic-
gence From Randomness weighting model (Amationaries as set-based features. TeemSetsclas-
and Van Rijsbergen, 2002). In addition, Terrier usedifier encodes three binary features, one for each
automatic query expansion. We can see that Terrigfctionary. A feature gets a value of 1 if a docu-
identified the first 60 documents (20% recall) withent contains any word in the corresponding dictio-
100% precision. But precision dropped sharply aftefary. ThePairSetsclassifier also encodes three bi-
that. The circle in Figure 4 shows the performanc8ary features, but each feature represents a different
of our bootstrapped dictionaries using thitPairs ~ Pair of dictionaries (EV+AG, EV+PU, or AG+PU).
approach. At comparable level of precision (88%)A feature gets a value of 1 if a document contains at
Terrier achieved about 45% recall versus 71% recdff@st one term from each of the two dictionaries in
produced with the bootstrapped dictionaries. the same sentence. TAdSets classifier encodes 7
set-based features: the previous six features and one
4.4 Supervised Classifiers with Bootstrapped additional feature that requires a sentence to contain
Dictionaries at least one entry from all three dictionaries.

We also explored the idea of using the bootstrapped_TheA” Setsclassifier yields the best perfor_mance
dictionaries as features for a classifier to see if a siith an F-score of 76%. However, our straightfor-

pervised learner could make better use of the di¢¥ard dictionary look-up approach still performs bet-
ter (79% F-score), and does not require annotated

"We gave Terrier one query with all of the event keywords. documents for training.
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4.5 Finding Articles with no Event Keyword purpose phrases associated with civil unrest events.

The learned event dictionaries have the potential t‘B_W resu_lts SEOVIVed th?;ng_lt"_facet_ed evint regohg' h
recognize event-relevant documents that do not cofition using the learned dictionaries achieved hig

tain any human-selected event keywords. This cfccuracy and performed _better than several other
happen in two ways. Firs78 of the 623 learned methods. The bootstrapping approach can be eas-

event phrases do not contain any of the original eveHY trained for new domains since it requires only

keywords. Second, we expect that some event dg_largi coIIecdtlon of unannotateddtexts and erl]few
scriptions will contain a known agent and purpos?ver: eywor sf,_agent termsh an purpcl)f]e P hra;es
phrase, even if the event phrase is unfamiliar. or the events of interest. Furthermore, although the

We performed an additional set of experimentgammg phase requires syntactic parsing to learn the

with documents in the Gigaword corpus that contai vent dictionarie;,_ the d_ictionaries f:an then be used
no human-selected civil unrest keyword. FollowingOr event recognition without needing to parse the
our multi-faceted approach to event recognition, wi ocuments. . . . .
collected all documents that contain a sentence tha An open gquestion for future work is to investigate

matches phrases in at least two of our bootstrapp ethe_r_ the same multi-faceted approach to event
recognition will work well for other types of events.

event dictionaries. This process retrieved 178,19 S .
ur belief is that many different types of events have

documents. The first column of Table 8 shows th h teristi (1 but additional t ¢
number of documents that had phrases found in graractenstic agent terms, but additional types o

different dictionaries (EV+AG, EV+PU, AG+PU) or fa]icets "‘t’"t' need tTOhbe de{'”et.d o Co‘ier at‘. broad ag‘?’
in all three dictionaries (EV+AG+PU) ol event types. € syntacuc constructions usead to

harvest dictionary items may also vary depending on

Total Samples Accuracy the types of event information that must be learned.
EV+AG 67,796 50 44% In future research, we plan to explore these issues in
EV+PU 2,375 50 54% more depth to design a more general multi-faceted
AG+PU 101,173 50 18% event recognition system, and we plan to investigate
EV+AG+PU 6,853 >0 74% new ways to use these event dictionaries for event

Table 8: Evaluation of articles with no event keyword extraction as well.
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5 Conclusions

We proposed amulti-faceted approach to event
recognition and presented a bootstrapping technique
to learn event phrases as well as agent terms and
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Named Entity Recognition with Bilingual Constraints
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Abstract

Different languages contain complementary
cues about entities, which can be used to im-
prove Named Entity Recognition (NER) sys-
tems. We propose a method that formu-
lates the problem of exploring such signals on
unannotated bilingual text as a simple Inte-
ger Linear Program, which encourages entity
tags to agree via bilingual constraints. Bilin-
gual NER experiments on the large OntoNotes
4.0 Chinese-English corpus show that the pro-
posed method can improve strong baselines
for both Chinese and English. In particular,
Chinese performance improves by over 5%
absolute F; score. We can then annotate a
large amount of bilingual text (80k sentence
pairs) using our method, and add it as up-
training data to the original monolingual NER
training corpus. The Chinese model retrained
on this new combined dataset outperforms the
strong baseline by over 3% F; score.

1 Introduction

Named Entity Recognition (NER) is an important
task for many applications, such as information ex-
traction and machine translation. State-of-the-art su-
pervised NER methods require large amounts of an-
notated data, which are difficult and expensive to
produce manually, especially for resource-poor lan-
guages.

A promising approach for improving NER per-
formance without annotating more data is to exploit
unannotated bilingual text (bitext), which are rela-
tively easy to obtain for many language pairs, bor-
rowing from the resources made available by statis-
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tical machine translation research.! Different lan-
guages contain complementary cues about entities.
For example, in Figure 1, the word “Z% (Ben)” is
common in Chinese but rarely appears as a trans-
lated foreign name. However, its aligned word on
the English side (“Ben”) provides a strong clue that
this is a person name. Judicious use of this type of
bilingual cues can help to recognize errors a mono-
lingual tagger would make, allowing us to produce
more accurately tagged bitext. Each side of the
tagged bitext can then be used to expand the orig-
inal monolingual training dataset, which may lead
to higher accuracy in the monolingual taggers.
Previous work such as Li et al. (2012) and Kim
et al. (2012) demonstrated that bilingual corpus an-
notated with NER labels can be used to improve
monolingual tagger performance. But a major draw-
back of their approaches are the need for manual
annotation efforts to create such corpora. To avoid
this requirement, Burkett et al. (2010) suggested a
“multi-view” learning scheme based on re-ranking.
Noisy output of a “strong” tagger is used as training
data to learn parameters of a log-linear re-ranking
model with additional bilingual features, simulated
by a “weak” tagger. The learned parameters are then
reused with the “strong” tagger to re-rank its own
outputs for unseen inputs. Designing good “weak”
taggers so that they complement the “view” of bilin-
gual features in the log-linear re-ranker is crucial to
the success of this algorithm. Unfortunately there is
no principled way of designing such “weak” taggers.
In this paper, we would like to explore a conceptu-
ally much simpler idea that can also take advantage

lopus.lingfil.uu.se
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Figure 1: Example of NER labels between two word-aligned bilingual parallel sentences.

of the large amount of unannotated bitext, without
complicated machinery. More specifically, we in-
troduce a joint inference method that formulates the
bilingual NER tagging problem as an Integer Linear
Program (ILP) and solves it during decoding. We
propose a set of intuitive and effective bilingual con-
straints that encourage NER results to agree across
the two languages.

Experimental results on the OntoNotes 4.0 named
entity annotated Chinese-English parallel corpus
show that the proposed method can improve the
strong Chinese NER baseline by over 5% F; score
and also give small improvements over the English
baseline. Moreover, by adding the automatically
tagged data to the original NER training corpus
and retraining the monolingual model using an up-
training regimen (Petrov et al., 2010), we can im-
prove the monolingual Chinese NER performance
by over 3% F; score.

2 Constraint-based Monolingual NER

NER is a sequence labeling task where we assign
a named entity tag to each word in an input sen-
tence. One commonly used tagging scheme is the
BIO scheme. The tag B-X (Begin) represents the
first word of a named entity of type X, for example,
PER (Person) or LOC (Location). The tag I-X (In-
side) indicates that a word is part of an entity but not
first word. The tag O (Outside) is used for all non-
entity words.” See Figure 1 for an example tagged
sentence.

Conditional Random Fields (CRF) (Lafferty et al.,
2001) is a state-of-the-art sequence labeling model
widely used in NER. A first-order linear-chain CRF

2While the performance of NER is measured at the entity
level (not the tag level).
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defines the following conditional probability:

1
Porr(y1%) = 77 1M, wialx) 1)

where x and y are the input and output sequences,
respectively, Z(x) is the partition function, and M;
is the clique potential for edge clique i. Decoding
in CRF involves finding the most likely output se-
quence that maximizes this objective, and is com-
monly done by the Viterbi algorithm.

Roth and Yih (2005) proposed an ILP inference
algorithm, which can capture more task-specific and
global constraints than the vanilla Viterbi algorithm.
Our work is inspired by Roth and Yih (2005). But
instead of directly solving the shortest-path problem
in the ILP formulation, we re-define the conditional
probability as:

HP (yilx)

where P(y;|x) is the marginal probability given by
an underlying CRF model computed using forward-
backward inference. Since the early HMM litera-
ture, it has been well known that using the marginal
distributions at each position works well, as opposed
to Viterbi MAP sequence labeling (Mérialdo, 1994).
Our experimental results also supports this claim, as
we will show in Section 6. Our objective is to find
an optimal NER tag sequence:

2

Prar(ylx) =

y = argmax Py ar(y|x)
y

= argmax Z log P(y;|x) 3)
Y i

Then an ILP can be used to solve the inference
problem as classification problem with constraints.



The objective function is:

x|

max Z Z 2! log P/ 4)

i=1 yeYy

where Y is the set of all possible named entity tags.
PY = P(y; = y|x) is the CRF marginal probabil-
ity that the 7*" word is tagged with y, and 2¥ is an
indicator that equals 1 iff the i word is tagged v;
otherwise, 2! is 0.

If no constraints are identified, then Eq. (4)
achieves maximum when all z! are assigned to 1,
which violates the condition that each word should
only be assigned a single entity tag. We can express
this with constraints:

Viiy ozl =1 (5)

yey

After adding the constraints, the probability of the
sequence is maximized when each word is assigned
the tag with highest probability. However, some in-
valid results may still exist. For example a tag O
may be wrongly followed by a tag I-X, although a
named entity cannot start with |-X. Therefore, we
can add the following constraints:

Vi, VX 2BX X X >0 (6)
which specifies that when the ¥ word is tagged with
[-X (z!‘x = 1), then the previous word can only be
tagged with B-X or I-X (28X + 21X > 1).

3 NER with Bilingual Constraints

This section demonstrates how to jointly perform
NER for two languages with bilingual constraints.
We assume sentences have been aligned into pairs,
and the word alignment between each pair of sen-
tences is also given.

3.1 Hard Bilingual Constraints

We first introduce the simplest hard constraints, i.e.,
each word alignment pair should have the same
named entity tag. For example, in Figure 1, the
Chinese word “ZEHXfi#” was aligned with the En-
glish words “the”, “Federal” and “Reserve”. There-
fore, they have the same named entity tags ORG.?

3The prefix B- and I- are ignored.
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Similarly, “Z% and “Ben” as well as “/HEj 5., and
“Bernanke” were all tagged with the tag PER.

The objective function for bilingual NER can be
expressed as follows:

|xc| Ixe|
max Z Z z!log P/ + Z Z Zlog P/ (7)
i=1 yeY j=1yey

where P/ and P}/ are the probabilities of the ith Chi-

nese word and j** English word to be tagged with ,
respectively. x. and x, are respectively the Chinese
and English sentences.

Similar to monolingual constrained NER (Sec-
tion 2), monolingual constraints are added for each
language as shown in Egs. (8) and (9):

Viiy sl =150 2 =1 (8)

yey yey
. . ,BX I-X B-
Vi, VX 27 "+ 2 — 2

Vi, VX : z?'x + ZJI-'X — zfﬂr

=X
v

0 (©))
0

X
v

Bilingual constraints are added in Eq. (10):
V(i,j) € A,¥X: 2BX 4+ 2 = BX X (10

where A = {(i,7)} is the word alignment pair set,
i.e., the i Chinese word and the j** English word
were aligned together. Chinese word i is tagged with
a named entity type X (zf"x + zl'-'x = 1), iff English
word j is tagged with X (z?'x—i—zjlfx = 1). Therefore,
these hard bilingual constraints guarantee that when
two words are aligned, they are tagged with the same
named entity tag.

However, in practice, aligned word pairs do not
always have the same tag because of the difference
in annotation standards across different languages.
For example, in Figure 2(a), the Chinese word “Jf &
[X” is a location. However, it is aligned to the words,
“development” and “zone”, which are not named en-
tities in English. Word alignment error is another se-
rious problem that can cause violation of hard con-
straints. In Figure 2(b), the English word “Agency”
is wrongly aligned with the Chinese word “Fi (re-
port)”. Thus, these two words cannot be assigned
with the same tag.

To address these two problems, we present a prob-
abilistic model for bilingual NER which can lead to
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Figure 2: Errors of hard bilingual constraints method.

an optimization problem with two soft bilingual con-
straints:

1) allow word-aligned pairs to have different
named entity tags; 2) consider word alignment prob-
abilities to reduce the influence of wrong word align-
ments.

3.2 Soft Constraints with Tag Uncertainty
The new probabilistic model for bilingual NER is:

P(Yw Ye, Xcy Xe, A)

P(yca Ye‘xm Xe, A) =

P(x¢,%e, A)
. P(YaXCaxevA) P(Ye7XCaXe7A)
B P(X07X€7A) P(X07X€7A)

. P(YC7y87xcax€7A) (X67X€7 ) (11)
P(wawxeyA)P(yevxmxea )
P(ye,yelA)

P YC|XC)P(y€ Xe) (12)
( %) By )Pyl

where y. and y. respectively denotes Chinese and
English named entity output sequences. A is the set
of word alignment pairs.

If we assume that named entity tag assignments in
Chinese is only dependent on the observed Chinese
sentence, then we can drop the A and x. term in the
first factor of Eq. (11), and arrive at the first factor of
Eq. (12); similarly we can use the same assumption
to derive the second factor in Eq. (12) for English;
alternatively, if we assume the named entity tag as-
signments are only dependent on the cross-lingual
word associations via word alignment, then we can
drop x. and x, terms in the third factor of Eq. (11)
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and arrive at the third factor of Eq. (12). These fac-
tors represent the two major sources of information
in the model: monolingual surface observation, and
cross-lingual word associations.

The first two factors of Eq. (12) can be further
decomposed into the product of probabilities of all
words in each language sentence like Eq. (2).

Assuming that the tags are independent between
different word alignment pairs, then the last factor
of Eq. (12) can be decomposed into:

P(ye yel4) 11 P(YeoYeo)
P(yclA)P(yelA) =5 Pyed) P(ye,)

— H AYeye

a€A

13)

where y., and y,, respectively denotes Chinese and
English named entity tags in a word alignment pair
a. \Ye¥e = % is the pointwise mutual infor-
mation (PMI) score between a Chinese named en-
tity tag y. and an English named entity tag .. If
Yo = Ve, then the score will be high; otherwise the
score will be low. A number of methods for calculat-
ing the scores are provided at the end of this section.

We use ILP to maximize Eq. (12). The new ob-

jective function is expressed as follow:

[xe| xe|

maxZZzlylogPiy —I—Z Zz;?’logpjy

i=1 yeY Jj=1yeYy

+0NT T steve log AUt (14)

acA yc€Y yeGY

where z5°Y¢ is an indicator that equals 1 iff the Chi-

nese and English named entity tags are y. and y.
respectively, given a word alignment pair a; other-
wise, zZ°Y¢ is 0.

Monolingual constraints such as Egs. (8) and (9)
need to be added. In addition, one and only one pos-
sible named entity tag pair exists for a word align-
ment pair. This condition can be expressed as the
following constraints:

VaeA: ) > a¥ve=1

ycey yeEY

15)

When the tag pair of a word alignment pair is de-
termined, the corresponding monolingual named en-



tity tags can also be identified. This rule can be ex-
pressed by the following constraints:

Va = (i,j) € Az 2i¥e < 2, 2heve < 2 (16)

Thus, if 2§ = 1, then z/* and z?e must be both
equal to 1. Here, the i*" Chinese word and the ;"
English word are aligned together.

In contrast to hard bilingual constraints, inconsis-
tent named entity tags for an aligned word pair are
allowed in soft bilingual constraints, but are given
lower \Y<¥¢ scores.

To calculate the A\Y<¥¢ score, an annotated bilin-
gual NER corpus is consulted. We count from all
word alignment pairs the number of times y. and ¥,
occur together (C(y.y.)) and separately (C(y.) and
C(ye)). Afterwards, AY<¥ is calculated with maxi-
mum likelihood estimation as follows:

eve — P Weye) N X Clyeye)

P(ye)P(ye)  C(ye)C(ve)
where N is the total number of word alignment
pairs.

However, in this paper, we assume that no named
entity annotated bilingual corpus is available. Thus,
the above method is only used as Oracle. A real-
istic method for calculating the \Y¢¥%¢ score requires
the use of two initial monolingual NER models, such
as baseline CRF, to predict named entity tags for
each language on an unannotated bitext. We count
from this automatically tagged corpus the statistics
mentioned above. This method is henceforth re-
ferred to as Auto.

A simpler approach is to manually set the value
of AYe¥: if y. = y. then we assign a larger value
to \Ye¥¢; else we assign an ad-hoc smaller value. In
fact, if we set \Y%¥% = 1 jff y. = y.; otherwise,
AYe¥e = (), then the soft constraints backs off to hard
constraints. We refer to this set of soft constraints as
Soft-tag.

a7

3.3 Constraints with Alignment Uncertainty

So far, we assumed that a word alignment set A is
known. In practice, only the word alignment proba-
bility P, for each word pair a is provided. We can
set a threshold 6 for P, to tune the set A: a € A
iff P, > 6. This condition can be regarded as a
kind of hard word alignment. However, the follow-
ing problem exists: the smaller the #, the noisier the
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word alignments are; the larger the 6, the more pos-
sible word alignments are lost. To ameliorate this
problem, we introduce another set of soft bilingual
constraints.

We can re-express Eq. (13) as follows:

H NYele — H (/\che)la

acA acd

(18)

where &7 is the set of all word pairs between two
languages. 1, = 1 iff P, > 0; otherwise, I, = 0.
We can then replace the hard indicator I, with
the word alignment probability F,, Eq. (14) is then
transformed into the following equation:

[We| [We|
max Z 2! log P} + Z Z 2] log P/
i yey J yey
+D D) v Pulog Ay (19)
A€ Yc€Y ye €Y
We name the set of constraints above

Soft—-align, which has the same constraints
as Soft-tag,i.e., Egs. (8), (9), (15) and (16).

4 Experimental Setup

We conduct experiments on the latest OntoNotes
4.0 corpus (LDC2011T03). OntoNotes is a large,
manually annotated corpus that contains various text
genres and annotations, such as part-of-speech tags,
named entity labels, syntactic parse trees, predicate-
argument structures and co-references (Hovy et al.,
2006). Aside from English, this corpus also con-
tains several Chinese and Arabic corpora. Some of
these corpora contain bilingual parallel documents.
We used the Chinese-English parallel corpus with
named entity labels as our development and test
data. This corpus includes about 400 document pairs
(chtb_0001-0325, ectb_1001-1078). We used odd-
numbered documents as development data and even-
numbered documents as test data. We used all other
portions of the named entity annotated corpus as
training data for the monolingual systems. There
were a total of ~660 Chinese documents (~16k sen-
tences) and ~1,400 English documents (~39k sen-
tences). OntoNotes annotates 18 named entity types,
such as person, location, date and money. In this
paper, we selected the four most common named
entity types, i.e., PER (Person), LOC (Location),



Chinese NER Templates

00: 1 (class bias param)

01: wiyg, -1 <k <1

02: wiyg—10wiyg, 0 <k <1
03: shape(w;yx), —4 < k <4
04: prefix(w;, k),
05: prefix(w;_1, k),
06: suffix(w;, k),1 < k
07: suffix(w;—1,k),1 <
08: radical(w;, k),1 < k < len(w;)
Unigram Features

y;0 00 — 08

Bigram Features

Yi—1 © y;0 00— 08

Table 1: Basic features of Chinese NER.

ORG (Organization) and GPE (Geo-Political Enti-
ties), and discarded the others.

Since the bilingual corpus is only aligned at the
document level, we performed sentence alignment
using the Champollion Tool Kit (CTK).* After re-
moving sentences with no aligned sentence, a total
of 8,249 sentence pairs were retained.

We used the BerkeleyAligner,’ to produce
word alignments over the sentence-aligned datasets.
BerkeleyAligner also gives posterior probabilities
P, for each aligned word pair.

We used the CRF-based Stanford NER tagger (us-
ing Viterbi decoding) as our baseline monolingual
NER tool.® English features were taken from Finkel
et al. (2005). Table 1 lists the basic features of
Chinese NER, where o means string concatenation
and y; is the named entity tag of the i*" word w;.
Moreover, shape(w;) is the shape of w;, such as
date and number. prefix/suffix(w;, k) denotes the
k-characters prefix/suffix of w;. radical(w;, k) de-
notes the radical of the k! Chinese character of w;.”
len(w;) is the number of Chinese characters in w;.

To make the baseline CRF taggers stronger, we
added word clustering features to improve gener-
alization over unseen data for both Chinese and
English. Word clustering features have been suc-
cessfully used in several English tasks, including

4champollion.sourceforge.net
5code.google.com/p/berkeleyaligner
ﬁnlp.stanford.edu/software/CRFfNER.shtmL
which has included our English and Chinese NER implementations.
"The radical of a Chinese character can be found at:
unicode.org/charts/unihan.html

WWW .
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NER (Miller et al., 2004) and dependency pars-
ing (Koo et al., 2008). To our knowledge, this work
is the first use of word clustering features for Chi-
nese NER. A C++ implementation of the Brown
word clustering algorithms (Brown et al., 1992) was
used to obtain the word clusters (Liang, 2005).8
Raw text was obtained from the fifth edition of Chi-
nese Gigaword (LDC2011T13). One million para-
graphs from Xinhua news section were randomly
selected, and the Stanford Word Segmenter with
LDC standard was applied to segment Chinese text
into words.” About 46 million words were obtained
which were clustered into 1,000 word classes.

S Threshold Tuning

During development, we tuned the word alignment
probability thresholds to find the best value. Figure 3
shows the performance curves.

When the word alignment probability threshold 8
is set to 0.9, the hard bilingual constraints perform
well for both Chinese and English. But as the thresh-
olds value gets smaller, and more noisy word align-
ments are introduced, we see the hard bilingual con-
straints method starts to perform badly.

In Soft—-tag setting, where inconsistent tag as-
signments within aligned word pairs are allowed but
penalized, different languages have different optimal
threshold values. For example, Chinese has an opti-
mal threshold of 0.7, whereas English has 0.2. Thus,
the optimal thresholds for different languages need
to be selected with care when Soft-tag is applied
in practice.

Soft—-align eliminates the need for careful
tuning of word alignment thresholds, and therefore
can be more easily used in practice. Experimen-
tal results of Soft—align confirms our hypothe-
sis — the performance of both Chinese and English
NER systems improves with decreasing threshold.
However, we can still improve efficiency by set-
ting a low threshold to prune away very unlikely
word alignments. We set the threshold to 0.1 for
Soft—align to increase speed, and we observed
very minimal performance lost when doing so.

We also found that automatically estimated bilin-
gual tag PMI scores (Aut o) gave comparable results

8github.com/percyliang/brown—cluster
gnlp.stanford.edu/software/segmenter.shtml
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Figure 3: Performance curves of different bilingual constraints methods on development set.

to Oracle. Therefore this technique is effective
for computing the PMI scores, avoiding the need of
manually annotating named entity bilingual corpus.

6 Bilingual NER Results

The main results on Chinese and English test sets
with the optimal word alignment threshold for each
method are shown in Table 2.

The CRF-based Chinese NER with and without
word clustering features are compared here. The
word clustering features significantly (p < 0.01) im-
proved the performance of Chinese NER, '° giving
us a strong Chinese NER baseline.!! The effective-
ness of word clustering for English NER has been
proved in previous work.

The performance of ILP with only monolingual
constraints is quite comparable with the CRF re-
sults, especially on English. The greater ILP perfor-
mance on English is probably due to more accurate
marginal probabilities estimated by the English CRF
model.

The ILP model with hard bilingual constraints
gives a slight performance improvement on Chi-
nese, but affects performance negatively on English.
Once we introduced tagging uncertainties into the
Soft-tag bilingual constraints, we see a very sig-

10We use paired bootstrap resampling significance test (Efron
and Tibshirani, 1993).

""To the best of our knowledge, there was no performance
report of state-of-the-art NER results on the latest OntoNotes
dataset.
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nificant (p < 0.01) performance boost on Chinese.
This method also improves the recall on English,
with a smaller decrease in precision. Overall, it im-
proves English F; score by about 0.4%, which is un-
fortunately not statistically significant.

Compared with Soft-tag, the final
Soft—-align method can further improve
performance on both Chinese and English. This is
likely to be because: 1) Soft-align includes
more word alignment pairs, thereby improving
recall; and 2) uses probabilities to cut wrong
word alignments, thereby improving precision. In
particular, compared with the strong CRF baseline,
the gain on Chinese side is almost 5.5% in absolute
F; score.

Decoding/inferenc efficiency of different methods
are shown in the last column of Table 2.1 Com-
pared with Viterbi decoding in CRF, monolingual
ILP decoding is about 2.3 times slower. Bilingual
ILP decoding, with either hard or soft constraints, is
significantly slower than the monolingual methods.
The reason is that the number of monolingual ILP
constraints doubles, and there are additionally many
more bilingual constraints. The difference in speed
between the Soft-tag and Soft-align meth-
ods is attributed to the difference in number of word
alignment pairs.

Since each sentence pair can be decoded indepen-

"2CPU: Intel Xeon E5-2660 2.20GHz. And the speed cal-
culation of ILP inference methods exclude the time needed to
obtain marginal probabilities from the CRF models.



Chinese English Speed

P R F, P R Fq | #sent/s

CRF (No Cluster) 74.74 | 56.17 | 64.13 - - - -
CRF (Word Cluster) 76.90 | 63.32 | 69.45 | 82.95 | 76.67 | 79.68 317.3
Monolingual ILP 76.20 | 63.06 | 69.01 | 82.88 | 76.68 | 79.66 138.0
Hard 74.38 | 65.78 | 69.82 | 82.66 | 75.36 | 78.84 21.1
Soft-tag (Auto) 7737 | 71.14 | 74.13 | 81.36 | 78.74 | 80.03 5.9
Soft-align (Auto) | 77.71 | 72.51 | 75.02 | 81.94 | 78.35 | 80.10 1.5

Table 2: Results on bilingual parallel test set.

dently, parallelization the decoding process can re-
sult in significant speedup.

7 Semi-supervised NER Results

The above results show the usefulness of our method
in a bilingual setting, where we are presented with
sentence aligned data, and are tagging both lan-
guages at the same time. To have a greater impact
on general monolingual NER systems, we employ
a semi-supervised learning setting. First, we tag a
large amount of unannotated bitext with our bilin-
gual constraint-based NER tagger. Then we mix the
automatically tagged results with the original mono-
lingual Chinese training data to train a new model.

Our bitext is derived from the Chinese-English
part of the Foreign Broadcast Information Service
corpus (FBIS, LDC2003E14). The best perform-
ing bilingual model Soft-align with threshold
# = 0.1 was used under the same experimental set-
ting as described in Section 4

Method | #sent P R F,
CRF | ~16k | 76.90 | 63.32 | 69.45
10k | 77.60 | 66.51 | 71.62

Semi 20k | 77.28 | 67.26 | 71.92
40k | 77.40 | 67.81 | 72.29

80k | 77.44 | 68.64 | 72.77

Table 3: Semi-supervised results on Chinese test set.

Table 3 shows that the performance of the semi-
supervised method improves with more additional
data. We simply appended these data to the orig-
inal training data. We also have done the experi-
ments to down weight the additional training data
by duplicating the original training data. There
was some slight improvements, but not very signif-
icant. Finally, when we add 80k sentences, the F;
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score is improved by 3.32%, which is significantly
(p < 0.01) better than the baseline, and most of the
contribution comes from recall improvement.

Before the end of experimental section, let us
summarize the usage of different kinds of data re-
sources used in our experiments, as shown in Ta-
ble 4, where v and x denote whether the corre-
sponding resources are required. In the bilingual
case, during training, only the monolingual named
entity annotated data (NE-mono) is necessary to
train a monolingual NER tagger. During the test,
unannotated bitext (Bitext) is required by the word
aligner and our bilingual NER tagger. Named entity
annotated bitext (NE-bitext) is used to evaluate our
bilingual model. In the semi-supervised case, be-
sides the original NE-mono data, the Bitext is used
as input to our bilingual NER tagger to product ad-
ditional training data. To evaluate the final NER
model, only NE-mono is needed.

NE-mono | Bitext | NE-bitext
- train v X X
Bilingual -~ > v v
Semi train v v X
test v X X

Table 4: Summarization of the data resource usage

8 Related Work

Previous work explored the use of bilingual corpora
to improve existing monolingual analyzers. Huang
et al. (2009) proposed methods to improve parsing
performance using bilingual parallel corpus. Li et
al. (2012) jointly labeled bilingual named entities
with a cyclic CRF model, where approximate in-
ference was done using loopy belief propagation.
These methods require manually annotated bilingual



corpora, which are expensive to construct, and hard
to obtain. Kim et al. (2012) proposed a method of
labeling bilingual corpora with named entity labels
automatically based on Wikipedia. However, this
method is restricted to topics covered by Wikipedia.

Similar to our work, Burkett et al. (2010) also as-
sumed that annotated bilingual corpora are scarce.
Beyond the difference discussed in Section 1, their
re-ranking strategy may lose the correct named en-
tity results if they are not included in the top-N out-
puts. Furthermore, we consider the word alignment
probabilities in our method which can reduce the in-
fluence of word alignment errors. Finally, we test
our method on a large standard publicly available
corpus (8,249 sentences), while they used a much
smaller (200 sentences) manually annotated bilin-
gual NER corpus for results validation.

In addition to bilingual corpora, bilingual dictio-
naries are also useful resources. Huang and Vo-
gel (2002) and Chen et al. (2010) proposed ap-
proaches for extracting bilingual named entity pairs
from unannotated bitext, in which verification is
based on bilingual named entity dictionaries. How-
ever, large-scale bilingual named entity dictionaries
are difficult to obtain for most language pairs.

Yarowsky and Ngai (2001) proposed a projection
method that transforms high-quality analysis results
of one language, such as English, into other lan-
guages on the basis of word alignment. Das and
Petrov (2011) applied the above idea to part-of-
speech tagging with a more complex model. Fu et al.
(2011) projected English named entities onto Chi-
nese by carefully designed heuristic rules. Although
this type of method does not require manually an-
notated bilingual corpora or dictionaries, errors in
source language results, wrong word alignments and
inconsistencies between the languages limit applica-
tion of this method.

Constraint-based monolingual methods by using
ILP have been successfully applied to many natural
language processing tasks, such as Semantic Role
Labeling (Punyakanok et al., 2004), Dependency
Parsing (Martins et al., 2009) and Textual Entail-
ment (Berant et al., 2011). Zhuang and Zong (2010)
proposed a joint inference method for bilingual se-
mantic role labeling with ILP. However, their ap-
proach requires training an alignment model with a
manually annotated corpus.
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9 Conclusions

We proposed a novel ILP based inference algorithm
with bilingual constraints for NER. This method
can jointly infer bilingual named entities without
using any annotated bilingual corpus. We in-
vestigate various bilingual constraints: hard and
soft constraints. Out empirical study on large-
scale OntoNotes Chinese-English parallel NER data
showed that Soft-align method, which allows
inconsistent named entity tags between two aligned
words and considers word alignment probabilities,
can significantly improve over the performance of
a strong Chinese NER baseline. Our work is the
first to evaluate performance on a large-scale stan-
dard dataset. Finally, we can also improve mono-
lingual Chinese NER performance significantly, by
combining the original monolingual training data
with new data obtained from bitext tagged by our
method. The final ILP-based bilingual NER tag-
ger with soft constraints is publicly available at:
github.com/carfly/bi_ilp

Future work could apply the bilingual constraint-
based method to other tasks, such as part-of-speech
tagging and relation extraction.
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Abstract

We propose a minimally supervised method
for multilingual paraphrase extraction from
definition sentences on the Web. Hashimoto
et al. (2011) extracted paraphrases from
Japanese definition sentences on the Web, as-
suming that definition sentences defining the
same concept tend to contain paraphrases.
However, their method requires manually an-
notated data and is language dependent. We
extend their framework and develop a mini-
mally supervised method applicable to multi-
ple languages. Our experiments show that our
method is comparable to Hashimoto et al.’s
for Japanese and outperforms previous unsu-
pervised methods for English, Japanese, and
Chinese, and that our method extracts 10,000
paraphrases with 92% precision for English,
82.5% precision for Japanese, and 82% preci-
sion for Chinese.

1 Introduction

Automatic paraphrasing has been recognized as an
important component for NLP systems, and many
methods have been proposed to acquire paraphrase
knowledge (Lin and Pantel, 2001; Barzilay and
McKeown, 2001; Shinyama et al., 2002; Barzilay
and Lee, 2003; Dolan et al., 2004; Callison-Burch,
2008; Hashimoto et al., 2011; Fujita et al., 2012).
We propose a minimally supervised method for
multilingual paraphrase extraction. Hashimoto et al.
(2011) developed a method to extract paraphrases
from definition sentences on the Web, based on
their observation that definition sentences defining
the same concept tend to contain many paraphrases.
Their method consists of two steps; they extract def-
inition sentences from the Web, and extract phrasal
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(1) a. Paraphrasing is the use of your own words to express the au-
thor’s ideas without changing the meaning.

b. Paraphrasing is defined as a process of transforming an expres-
sion into another while keeping its meaning intact.

() a Bz Y. HE2KRAZLOERNEZEZ FICH D
FBUCEZIR2 22 %" E\VWE 9. (Paraphrasing refers to
the replacement of an expression into another without changing
the semantic content.)

bEwitz 3. FrEEHKREZTE L L
TERCNEER> X — SH O o RKBEICE
{9 2 WL Td> % . (Paraphrasing is a process of trans-
forming an expression into another of the same language while
preserving the meaning and content as much as possible.)

() a BEFREFE EABEECEAWART, T2BER
)] F 455 o (Paraphrasing refers to the transformation
of sentence structure by the translator without changing the
meaning of original text.)

b. BFERIE ARFEESINE, AR ESGE S R#IE 7% -
(Paraphrasing is a translation method of keeping the content of
original text but not keeping the expression.)

Figure 1: Multilingual definition pairs on “paraphrasing.”

paraphrases from the definition sentences. Both
steps require supervised classifiers trained by manu-
ally annotated data, and heavily depend on their tar-
get language. However, the basic idea is actually
language-independent. Figure 1 gives examples of
definition sentences on the Web that define the same
concept in English, Japanese, and Chinese (with En-
glish translation). As indicated by underlines, each
definition pair has a phrasal paraphrase.

We aim at extending Hashimoto et al.’s method
to a minimally supervised method, thereby enabling
acquisition of phrasal paraphrases within one lan-
guage, but in different languages without manually
annotated data. The first contribution of our work
is to develop a minimally supervised method for
multilingual definition extraction that uses a clas-
sifier distinguishing definition from non-definition.
The classifier is learnt from the first sentences in

Proceedings of NAACL-HLT 2013, pages 63-73,
Atlanta, Georgia, 9-14 June 2013. (©2013 Association for Computational Linguistics
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Figure 2: Overall picture of our method.

Wikipedia articles, which can be regarded as the def-
inition of the title of Wikipedia article (Kazama and
Torisawa, 2007) and hence can be used as positive
examples. Our method relies on a POS tagger, a de-
pendency parser, a NER tool, noun phrase chunking
rules, and frequency thresholds for each language,
in addition to Wikipedia articles, which can be seen
as a manually annotated knowledge base. How-
ever, our method needs no additional manual anno-
tation particularly for this task and thus we catego-
rize our method as a minimally supervised method.
On the other hand, Hashimoto et al.’s method heav-
ily depends on the properties of Japanese like the
assumption that characteristic expressions of defini-
tion sentences tend to appear at the end of sentence
in Japanese. We show that our method is applica-
ble to English, Japanese, and Chinese, and that its
performance is comparable to state-of-the-art super-
vised methods (Navigli and Velardi, 2010). Since
the three languages are very different we believe that
our definition extraction method is applicable to any
language as long as Wikipedia articles of the lan-
guage exist.

The second contribution of our work is to de-
velop a minimally supervised method for multi-
lingual paraphrase extraction from definition sen-
tences. Again, Hashimoto et al.’s method utilizes
a supervised classifier trained with annotated data
particularly prepared for this task. We eliminate the
need for annotation and instead introduce a method
that uses a novel similarity measure considering
the occurrence of phrase fragments in global con-
texts. Our paraphrase extraction method is mostly
language-independent and, through experiments for
the three languages, we show that it outperforms
unsupervised methods (Pasca and Dienes, 2005;
Koehn et al., 2007) and is comparable to Hashimoto
et al.’s supervised method for Japanese.

Previous methods for paraphrase (and entailment)
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extraction can be classified into a distributional sim-
ilarity based approach (Lin and Pantel, 2001; Gef-
fet and Dagan, 2005; Bhagat et al., 2007; Szpek-
tor and Dagan, 2008; Hashimoto et al., 2009) and a
parallel corpus based approach (Barzilay and McK-
eown, 2001; Shinyama et al., 2002; Barzilay and
Lee, 2003; Dolan et al., 2004; Callison-Burch,
2008). The former can exploit large scale monolin-
gual corpora, but is known to be unable to distin-
guish paraphrase pairs from antonymous pairs (Lin
et al., 2003). The latter rarely mistakes antonymous
pairs for paraphrases, but preparing parallel corpora
is expensive. As with Hashimoto et al. (2011), our
method is a kind of parallel corpus approach in that it
uses definition pairs as a parallel corpus. However,
our method does not suffer from a high labor cost
of preparing parallel corpora, since it can automati-
cally collect definition pairs from the Web on a large
scale. The difference between ours and Hashimoto
et al.’s is that our method requires no manual label-
ing of data and is mostly language-independent.

2 Proposed Method

Our method first extracts definition sentences from
the Web, and then extracts paraphrases from the def-
inition sentences, as illustrated in Figure 2.

2.1 Definition Extraction
2.1.1 Automatic Construction of Training Data

Our method learns a classifier that classifies sen-
tences into definition and non-definition using auto-
matically constructed training data, TrDat. TrDat’s
positive examples, Pos, are the first sentences of
Wikipedia articles and the negative examples, Neg,
are randomly sampled Web sentences. The former
can be seen as definition, while the chance that the
sentences in the latter are definition is quite small.

Our definition extraction not only distinguishes
definition from non-definition but also identities the
defined term of a definition sentence, and in the
paraphrase extraction step our method couples two
definition sentences if their defined terms are identi-
cal. For example, the defined terms of (1a) and (1b)
in Figure 1 are both “Paraphrasing” and thus the two
definition sentences are coupled. For Pos, we mark
up the title of Wikipedia article as the defined term.
For Neg, we randomly select a noun phrase in a sen-



N-gram definition pattern
(A) ~[term] isthe
[term] is a type of

N-gram non-definition pattern
[term] may be
[term] is not

Subsequence definition pattern
(B) [term] is * which is located
[term] is a * in the

Subsequence non-definition pattern
youmay * [term]
was [term] *, whois

Subtree definition pattern Subtree non-definition pattern

© TN TN
[term] is defined as the NP [term] will not be

Table 1: Examples of English patterns.

tence and mark it up as a (false) defined term. Any
marked term is uniformly replaced with [term].

2.1.2 Feature Extraction and Learning

As features, we use patterns that are characteristic
of definition (definition patterns) and those that are
unlikely to be a part of definition (non-definition pat-
terns). Patterns are either N-grams, subsequences, or
dependency subtrees, and are mined automatically
from TrDat. Table 1 shows examples of patterns
mined by our method. In (A) of Table 1, “~” is
a symbol representing the beginning of a sentence.
In (B), “*” represents a wildcard that matches any
number of arbitrary words. Patterns are represented
by either their words’ surface form, base form, or
POS. (Chinese words do not inflect and thus we do
not use the base form for Chinese.)

We assume that definition patterns are fre-
quent in Pos but are infrequent in Neg, and
non-definition patterns are frequent in Neg but
are infrequent in Pos. To see if a given pat-
tern ¢ is likely to be a definition pattern, we
measure ¢’s probability rate Rate(¢). If the
probability rate of ¢ is large, ¢ tends to be a
definition pattern. The probability rate of ¢ is:

freq(o, Pos)/|Pos|
= reato, Neg)[INeg| 11 TCNeE) 70
Here, freq(¢,Pos) = |{s € Pos: ¢ C s}| and
freq(¢,Neg) = |{s € Neg: ¢ C s}|. We write ¢ C s
if sentence s contains ¢. If freq(¢,Neg) = 0,
Rate(¢) is set to the largest value of all the patterns’
Rate values. Only patterns whose Rate is more
than or equal to a Rate threshold p,,s and whose
freq(¢, Pos) is more than or equal to a frequency
threshold are regarded as definition patterns. Simi-
larly, we check if ¢ is likely to be a non-definition
pattern. Only patterns whose Rate is less or equal

Rate(9)
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English Japanese Chinese

Type Representation | Pos  Neg | Pos Neg | Pos Neg
Surface 120 400 | 30 100 | 20 100

N-gram Base 120 400 | 30 100 | — —
POS 2,000 4,000 | 500 500 | 100 400

Surface 120 400 | 30 100 | 20 40

Subsequence | Base 120 400 | 30 100 | — —
POS 2,000 2,000 | 500 500 | 200 400

Surface 5 10 5 10 5 5

Subtree Base 5 10 5 0| — —
POS 25 50| 25 50| 25 50

Table 2: Values of frequency threshold.

to a Rate threshold py., and whose freq(¢, Neg)
is more than or equal to a frequency threshold are
regarded as non-definition patterns. The probability
rate is based on the growth rate (Dong and Li,
1999).

Ppos and ppeq are set to 2 and 0.5, while the fre-
quency threshold is set differently according to lan-
guages, pattern types (N-gram, subsequence, and
subtree), representation (surface, base, and POS),
and data (Pos and Neg), as in Table 2. The thresholds
in Table 2 were determined manually, but not really
arbitrarily. Basically they were determined accord-
ing to the frequency of each pattern in our data (e.g.
how frequently the surface N-gram of English ap-
pears in English positive training samples (Pos)).

Below, we detail how patterns are acquired. First,
we acquire N-gram patterns. Then, subsequence
patterns are acquired using the N-gram patterns as
input. Finally, subtree patterns are acquired using
the subsequence patterns as input.

N-gram patterns We collect N-gram patterns
from TrDat with N ranging from 2 to 6. We filter
out N-grams using thresholds on the Rate and fre-
quency, and regard those that are kept as definition
or non-definition N-grams.

Subsequence patterns We generate subsequence
patterns as ordered combinations of N-grams with
the wild card “*” inserted between them (we use
two or three N-grams for a subsequence). Then, we
check each of the generated subsequences and keep
it if there exists a sentence in TrDat that contains the
subsequence and whose root node is contained in the
subsequence. For example, subsequence “[term]
is a * in the” is kept if a term-marked sentence like
“[term] is a baseball player in the Dominican Re-
public.” exists in TrDat. Then, patterns are filtered



out using thresholds on the Rate and frequency as
we did for N-grams.

Subtree patterns For each definition and non-
definition subsequence, we retrieve all the term-
marked sentences that contain the subsequence from
TrDat, and extract a minimal dependency subtree
that covers all the words of the subsequence from
each retrieved sentence. For example, assume that
we retrieve a term-marked sentence “[term] is
usually defined as the way of life of a group of peo-
ple.” for subsequence “[term] is * defined as the”.
Then we extract from the sentence the minimal de-
pendency subtree in the left side of (C) of Table 1.
Note that all the words of the subsequence are con-
tained in the subtree, and that in the subtree a node
(“way”) that is not a part of the subsequence is re-
placed with its dependency label (“NP”) assigned by
the dependency parser. The patterns are filtered out
using thresholds on the Rate and frequency.

We train a SVM classifier! with a linear kernel,
using binary features that indicate the occurrence of
the patterns described above in a target sentence.

In theory, we could feed all the features to the
SVM classifier and let the classifier pick informa-
tive features. But we restricted the feature set for
practical reasons: the number of features would be-
come tremendously large. There are two reasons for
this. First, the number of sentences in our automati-
cally acquired training data is huge (2,439,257 posi-
tive sentences plus 5,000,000 negative sentences for
English, 703,208 positive sentences plus 1,400,000
negative sentences for Japanese and 310,072 posi-
tive sentences plus 600,000 negative sentences for
Chinese). Second, since each subsequence pattern
is generated as a combination of two or three N-
gram patterns and one subsequence pattern can gen-
erate one or more subtree patterns, using all possi-
ble features leads to a combinatorial explosion of
features. Moreover, since the feature vector will be
highly sparse with a huge number of infrequent fea-
tures, SVM learning becomes very time consuming.
In preliminary experiments we observed that when
using all possible features the learning process took
more than one week for each language. We there-
fore introduced the current feature selection method,
in which the learning process finished in one day but

'nttp://svmlight.joachims.org.
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Original Web sentence: Albert Pujols is a baseball player.
Term-marked sentence 1: [term] is a baseball player.
Term-marked sentence 2: Albert Pujolsisa [term].

Figure 3: Term-marked sentences from a Web sentence.

still obtains good results.

2.1.3 Definition Extraction from the Web

We extract a large amount of definition sen-
tences by applying this classifier to sentences in our
Web archive. Because our classifier requires term-
marked sentences (sentences in which the term be-
ing defined is marked) as input, we first have to iden-
tify all such defined term candidates for each sen-
tence. For example, Figure 3 shows a case where a
Web sentence has two NPs (two candidates of de-
fined term). Basically we pick up NPs in a sen-
tence by simple heuristic rules. For English, NPs are
identified using TreeTagger (Schmid, 1995) and two
NPs are merged into one when they are connected by
“for” or “of”. After applying this procedure recur-
sively, the longest NPs are regarded as candidates of
defined terms and term-marked sentences are gener-
ated. For Japanese, we first identify nouns that are
optionally modified by adjectives as NPs, and allow
two NPs connected by “D” (of), if any, to form
a larger NP. For Chinese, nouns that are optionally
modified by adjectives are considered as NPs.

Then, each term-marked sentence is given a fea-
ture vector and classified by the classifier. The term-
marked sentence whose SVM score (the distance
from the hyperplane) is the largest among those from
the same original Web sentence is chosen as the final
classification result for the original Web sentence.

2.2 Paraphrase Extraction

We use all the Web sentences classified as defini-
tion and all the sentences in Pos for paraphrase ex-
traction. First, we couple two definition sentences
whose defined term is the same. We filter out defini-
tion sentence pairs whose cosine similarity of con-
tent word vectors is less than or equal to threshold
C, which is set to 0.1. Then, we extract phrases
from each definition sentence, and generate all pos-
sible phrase pairs from the coupled sentences. In
this study, phrases are restricted to predicate phrases
that consist of at least one dependency relation and
in which all the constituents are consecutive in a



The ratio of the number of words shared between two can-
didate phrases to the number of all of the words in the two

h phrases. Words are represented by either their surface form
(f1,1), base form (f1,2) or POS (f1,3).
The identity of the leftmost word (surface form (f3,1), base
fa form (f2,2) or POS (f2,3)) between two candidate phrases.
fs The same as fo except that we use the rightmost word.

There are three corresponding subfunctions (f31 to f33).
The ratio of the number of words that appear in a candidate
phrase segment of a definition sentence s; and in a segment
fa | that is NOT a part of the candidate phrase of another def-
inition sentence so to the number of all the words of s1’s
candidate phrase. Words are in their base form (fy1).

f5 | The reversed (s1 < sg) version of fi1 (f5,1).

The ratio of the number of words (the surface form) of a
fo shorter candidate phrase to that of a longer one (f5.1).
Cosine similarity between two definition sentences from
f7 | which two candidate phrases are extracted. Only content
words in the base form are used (f7,1).

The ratio of the number of parent dependency subtrees that
are shared by two candidate phrases to the number of all the
fs | parent dependency subtrees. The parent dependency sub-
trees are adjacent to the candidate phrases and represented
by their surface form (f3 1), base form (fs2), or POS (fs 3).
The same as fg except that we use child dependency sub-
trees. There are 3 subfunctions (fg 1 to fg 3) of fg type.
The ratio of the number of context N-grams that are shared
by two candidate phrases to the number of all the context N-
grams of both candidate phrases. The context N-grams are
f10 | adjacent to the candidate phrases and represented by either
the surface form, the base form, or POS. The N ranges from
1 to 3, and the context is either left-side or right-side. Thus,
there are 18 subfunctions (3 x 3 x 2).

fo

Table 3: Local similarity subfunctions, f1 1 to fio,1s.

sentence. Accordingly, if two definition sentences
that are coupled have three such predicate phrases
respectively, we get nine phrase pairs, for instance.
A phrase pair extracted from a definition pair is a
paraphrase candidate and is given a score that indi-
cates the likelihood of being a paraphrase, Score. It
consists of two similarity measures, local similarity
and global similarity, which are detailed below.

Local similarity Following Hashimoto et al., we
assume that two candidate phrases (p1,p2) tend to
be a paraphrase if they are similar enough and/or
their surrounding contexts are sufficiently similar.
Then, we calculate the local similarity (localSim) of
(p1,p2) as the weighted sum of 37 similarity sub-
functions that are grouped into 10 types (Table 3.)
For example, the f; type consists of three subfunc-
tions, f1.1, fi,2, and f1 3. The 37 subfunctions are
inspired by Hashimoto et al.’s features. Then, local-
Sim is defined as:
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localSim(py1,p2) = max

Ls(p1, pa, di, dom).
(dy,dm)EDP(p1,p2) (pl P2, a; )

Here, 1s(p1, ps, dj, dp) = 2121 Z‘I;l:l 'U’i,jXfi,j(iivpzdl-,dm).
DP(p1,p2) is the set of all definition sentence pairs
that contain (p1,p2). (d;,d,,) is a definition sen-
tence pair containing (p1,p2). k; is the number
of subfunctions of f; type. wj;; is the weight for
fij.  w;j is uniformly set to 1 except for f41
and f51, whose weight is set to —1 since they
indicate the unlikelihood of (p1,p2)’s being a
paraphrase. As the formula indicates, if there is
more than one definition sentence pair that contains
(p1,p2), localSim is calculated from the definition
sentence pair that gives the maximum value of
Is(p1,p2,d;, dm). localSim is local in the sense that
it is calculated based on only one definition pair
from which (p1, p2) are extracted.

Global similarity The global similarity (global-
Sim) is our novel similarity function. We decompose
a candidate phrase pair (p1, p2) into Comm, the com-
mon part between p; and po, and Diff, the difference
between the two. For example, Comm and Diff of
(“keep the meaning intact”, “preserve the meaning”)
is (“the meaning”) and (“keep, intact”, “preserve”).
globalSim measures the semantic similarity of
the Diff of a phrase pair. It is proposed based on
the following intuition: phrase pair (pi,p2) tend
to be a paraphrase if their surface difference (i.e.
Diff) have the same meaning. For example, if
“keep, intact” and “preserve” mean the same, then
(“keep the meaning intact”, “preserve the meaning”)
is a paraphrase.

globalSim considers the occurrence of Diff in
global contexts (i.e., all the paraphrase candidates
from all the definition pairs). The globalSim of a
given phrase pair (p1,p2) is measured by basically
counting how many times the Diff of (p1,p2) ap-
pears in all the candidate phrase pairs from all the
definition pairs. The assumption is that Diff tends to
share the same meaning if it appears repeatedly in
paraphrase candidates from all definition sentence
pairs, i.e., our parallel corpus. Each occurrence of
Diff is weighted by the localSim of the phrase pair
in which Diff occurs. Precisely, globalSim is defined
as:



Threshold The frequency threshold of Table 2 (Section 2.1.2).
NP rule Rules for identifying NPs in sentences (Section 2.1.3).
POS list The list of content words’ POS (Section 2.2).

Tagger/parser | POS taggers, dependency parsers and NER tools.

Table 4: Language-dependent components.

. localSim(p;, p;
globalSim(p1,p2) = Z #

(pi,p;)EPP(p1,p2)

PP(p1,p2) is the set of candidate phrase pairs
whose Diff is the same as (p1, p2).> M is the num-
ber of similarity subfunction types whose weight is
1, i.e. M = 8 (all the subfunction types except f4
and f5). It is used to normalize the value of each
occurrence of Diff to [0, 1].3 globalSim is global
in the sense that it considers all the definition pairs
that have a phrase pair with the same Diff as a target
candidate phrase pair (p1, p2).

The final score for a candidate phrase pair is:

Score(p1,p2) = localSim(p1, p2) + ln globalSim(p1, p2).

The way of combining the two similarity functions
has been determined empirically after testing several
other ways of combining them. This ranks all the
candidate phrase pairs.

Finally, we summarize language-dependent com-
ponents that we fix manually in Table 4.

3 Experiments

3.1 Experiments of Definition Extraction

We show that our unsupervised definition extrac-
tion method is competitive with state-of-the-art su-
pervised methods for English (Navigli and Velardi,
2010), and that it extracts a large number of defini-
tions reasonably accurately for English (3,216,121
definitions with 70% precision), Japanese (651,293
definitions with 62.5% precision), and Chinese
(682,661 definitions with 67% precision).

?If there are more than one (p;,p;) in a definition pair, we
use only one of them that has the largest localSim value.

3 Although we claim that our idea of using globalSim is ef-
fective, we do not claim that the above formula for calculating
is the optimal way to implement the idea. Currently we are in-
vestigating a more mathematically well-motivated model.
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3.1.1 Preparing Corpora

First we describe Pos, Neg, and the Web corpus
from which definition sentences are extracted. As
the source of Pos, we used the English Wikipedia
of April 2011 (3,620,149 articles), the Japanese
Wikipedia of October 2011 (830,417 articles), and
the Chinese Wikipedia of August 2011 (365,545 ar-
ticles). We removed category articles, template ar-
ticles, list articles and so on from them. Then the
number of sentences of Pos was 2,439,257 for En-
glish, 703,208 for Japanese, and 310,072 for Chi-
nese. We verified our assumption that Wikipedia
first sentences can mostly be seen as definition by
manually checking 200 random samples from Pos.
96.5% of English Pos, 100% of Japanese Pos, and
99.5% of Chinese Pos were definitions.

As the source of Neg, we used 600 million
Japanese Web pages (Akamine et al., 2010) and
the ClueWeb09 corpus for English (about 504 mil-
lion pages) and Chinese (about 177 million pages).*
From each Web corpus, we collected the sentences
satisfying following conditions: 1) they contain 5
to 50 words and at least one verb, 2) less than half
of their words are numbers, and 3) they end with a
period. Then we randomly sampled sentences from
the collected sentences as Neg so that |[Neg| was
about twice as large as |Pos|: 5,000,000 for English,
1,400,000 for Japanese, and 600,000 for Chinese.

In Section 3.1.3, we use 10% of the Web corpus as
the input to the definition classifier. The number of
sentences are 294,844,141 for English, 245,537,860
for Japanese, and 68,653,130 for Chinese.

All the sentences were POS-tagged and parsed.
We used TreeTagger and MSTParser (McDonald
et al., 2006) for English, JUMAN (Kurohashi and
Kawahara, 2009a) and KNP (Kurohashi and Kawa-
hara, 2009b) for Japanese, MMA (Kruengkrai et al.,
2009) and CNP (Chen et al., 2009) for Chinese.

3.1.2 Comparison with Previous Methods

We compared our method with the state-of-the-
art supervised methods proposed by Navigli and Ve-
lardi (2010), using their WCL datasets v1.0 (http:
//lcl.uniromal.it/wcl/), definition and non-
definition datasets for English (Navigli et al., 2010).
Specifically, we used its training data (T'rDat .,
hereafter), which consisted of 1,908 definition and

‘nttp://lemurproject.org/clueweb09.php/



Method Precision | Recall | F1 | Accuracy
Proposed .y 86.79 | 86.97 | 86.88 89.18
WCL-1 99.88 | 42.09 | 59.22 76.06
WCL-3 98.81 | 60.74 | 75.23 83.48

Table 5: Definition classification results on TrDat ;.

2,711 non-definition sentences, and compared the
following three methods. WCL-I and WCL-3 are
methods proposed by Navigli and Velardi (2010).
They were trained and tested with 10 fold cross vali-
dation using T'r Dat,.;. Proposed . is our method,
which used TrDat for acquiring patterns (Section
2.1.2) and training. We tested Proposed 4.y on each
of TrDat,e’s 10 folds and averaged the results.
Note that, for Proposedg.r, we removed sentences
in TrDat,. from TrDat in advance for fairness.
Table 5 shows the results. The numbers for WCL-
1 and WCL-3 are taken from Navigli and Velardi
(2010). Proposed gy outperformed both methods in
terms of recall, F1, and accuracy. Thus, we conclude
that Proposed .y is comparable to WCL-1/WCL-3.

We conducted ablation tests of our method to in-
vestigate the effectiveness of each type of pattern.
When using only N-grams, F1 was 85.41. When
using N-grams and subsequences, F1 was 86.61.
When using N-grams and subtrees, F1 was 86.85.
When using all the features, F1 was 86.88. The re-
sults show that each type of patterns contribute to the
performance, but the contributions of subsequence
patterns and subtree patterns do not seem very sig-
nificant.

3.1.3 Experiments of Definition Extraction

We extracted definitions from 10% of the Web
corpus. ~ We applied Proposedj.; to the cor-
pus of each language, and the state-of-the-art su-
pervised method for Japanese (Hashimoto et al.,
2011) (Hashigey, hereafter) to the Japanese corpus.
Hashigey was trained on their training data that con-
sisted of 2,911 sentences, 61.1% of which were def-
initions. Note that we removed sentences in TrDat
from 10% of the Web corpus in advance, while we
did not remove Hashimoto et al.’s training data from
the corpus. This means that, for Hashig., the train-
ing data is included in the test data.

For each method, we filtered out its positive out-
puts whose defined term appeared more than 1,000
times in 10% of the Web corpus, since those terms
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tend to be too vague to be a defined term or re-
fer to an entity outside the definition sentence. For
example, if “the college” appears more than 1,000
times in 10% of the corpus, we filter out sen-
tences like “The college is one of three colleges
in the Coast Community College District and was
founded in 1947.” For Proposedg.y, the number of
remaining positive outputs is 3,216,121 for English,
651,293 for Japanese, and 682,661 for Chinese. For
Hashi g, ¢, the number of positive outputs is 523,882.

For Proposed .y of each language, we randomly
sampled 200 sentences from the remaining positive
outputs. For Hashig.y, we first sorted its output by
the SVM score in descending order and then ran-
domly sampled 200 from the top 651,293, i.e., the
same number as the remaining positive outputs of
Proposed,.y of Japanese, out of all the remaining
sentences of Hashigef.

For each language, after shuffling all the samples,
two human annotators evaluated each sample. The
annotators for English and Japanese were not the au-
thors, while one of the Chinese annotators was one
of the authors. We regarded a sample as a defini-
tion if it was regarded as a definition by both an-
notators. Cohen’s kappa (Cohen, 1960) was 0.55
for English (moderate agreement (Landis and Koch,
1977)), 0.73 for Japanese (substantial agreement),
and 0.69 for Chinese (substantial agreement).

For English, Proposed 4.y achieved 70% precision
for the 200 samples. For Japanese, Proposed .y
achieved 62.5% precision for the 200 samples, while
Hashig.y achieved 70% precision for the 200 sam-
ples. For Chinese, Proposed,.; achieved 67% pre-
cision for the 200 samples. From these results, we
conclude that Proposed .y can extract a large num-
ber of definition sentences from the Web moderately
well for the three languages.

Although the precision is not very high, our ex-
periments in the next section show that we can still
extract a large number of paraphrases with high pre-
cision from these definition sentences, due mainly to
our similarity measures, localSim and globalSim.

3.2 Experiments of Paraphrase Extraction

We show (1) that our paraphrase extraction method
outperforms unsupervised methods for the three lan-
guages, (2) that globalSim is effective, and (3) that
our method is comparable to the state-of-the-art su-



Proposeds.,r.: Our method. Outputs are ranked by Score.

Proposed,,.,;: This is the same as Proposed gcor. €xcept that it ranks
outputs by localSim. The performance drop from Proposed s core
shows globalSim’s effectiveness.

Hashi,,,: Hashimoto et al.’s supervised method. Training data is the
same as Hashimoto et al. Outputs are ranked by the SVM score
(the distance from the hyperplane). This is for Japanese only.

Hashi,,s: The unsupervised version of Hashigy,p.
ranked by the sum of feature values. Japanese only.

SMT: The phrase table construction method of Moses (Koehn et al.,
2007). We assume that Moses should extract a set of two phrases
that are paraphrases of each other, if we input monolingual par-
allel sentence pairs like our definition pairs. We used default
values for all the parameters. Outputs are ranked by the product
of two phrase translation probabilities of both directions.

P&D: The distributional similarity based method by Pasca and Di-
enes (2005) (their “N-gram-Only” method). Outputs are ranked
by the number of contexts two phrases share. Following Pagca
and Dienes (2005), we used the parameters LC' = 3 and
MaxP = 4, while MinP, which was 1 in Pagca and Dienes
(2005), was set to 2 since our target was phrasal paraphrases.

Outputs are

Table 6: Evaluated paraphrase extraction methods.

pervised method for Japanese.

3.2.1 Experimental Setting

We extracted paraphrases from definition sen-
tences in Pos and those extracted by Proposed .y in
Section 3.1.3. First we coupled two definition sen-
tences whose defined term was the same. The num-
ber of definition pairs was 3,208,086 for English,
742,306 for Japanese, and 457,233 for Chinese.

Then we evaluated six methods in Table 6.5 All
the methods except P&D took the same definition
pairs as input, while P&D’s input was 10% of the
Web corpus. The input can be seen as the same for
all the methods, since the definition pairs were de-
rived from that 10% of the Web corpus. In our ex-
periments Expl and Exp2 below, all evaluation sam-
ples were shuffled so that human annotators could
not know which sample was from which method.
Annotators were the same as those who conducted
the evaluation in Section 3.1.3. Cohen’s kappa (Co-
hen, 1960) was 0.83 for English, 0.88 for Japanese,

SWe filtered out phrase pairs in which one phrase contained a
named entity but the other did not contain the named entity from
the output of Proposedscore, Proposediocar, SMT, and P&D,
since most of them were not paraphrases. We used Stanford
NER (Finkel et al., 2005) for English named entity recognition
(NER), KNP for Japanese NER, and BaseNER (Zhao and Kit,
2008) for Chinese NER. Hashi s, and Hashiyy, s did the named
entity filtering of the same kind (footnote 3 of Hashimoto et al.
(2011)), and thus we did not apply the filter to them any further.
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and 0.85 for Chinese, all of which indicated reason-
ably good (Landis and Koch, 1977). We regarded a
candidate phrase pair as a paraphrase if both annota-
tors regarded it as a paraphrase.

Expl We compared the methods that take def-
inition pairs as input, i.e. Proposedscore, Pro-
posedocal, Hashis,,, Hashiyy,s, and SMT. We ran-
domly sampled 200 phrase pairs from the top 10,000
for each method for evaluation. The evaluation of
each candidate phrase pair (p1,p2) was based on
bidirectional checking of entailment relation, p; —
p2 and po — pp, with p; and py embedded in con-
texts, as Hashimoto et al. (2011) did. Entailment
relation of both directions hold if (p1, p2) is a para-
phrase. We used definition pairs from which candi-
date phrase pairs were extracted as contexts.

Exp2 We compared Proposedgcore and P&D.
Since P&D restricted its output to phrase pairs in
which each phrase consists of two to four words,
we restricted the output of Proposedgcore to 2-to-4-
words phrase pairs, too. We randomly sampled 200
from the top 3,000 phrase pairs from each method
for evaluation, and the annotators checked entail-
ment relation of both directions between two phrases
using Web sentence pairs that contained the two
phrases as contexts.

3.2.2 Results

From Expl, we obtained precision curves in the
upper half of Figure 4. The curves were drawn from
the 200 samples that were sorted in descending order
by their score, and we plotted a dot for every 5 sam-
ples. Proposed g o outperformed Proposed;,.q; for
the three languages, and thus globalSim was effec-
tive. Proposedscore outperformed Hashis,,. How-
ever, we observed that Proposed g.or. acquired many
candidate phrase pairs (p1, p2) for which p; and po
consisted of the same content words like “send a
postcard to the author” and “send the author a post-
card,” while the other methods tended to acquire
more content word variations like “have a chance”
and “have an opportunity.” Then we evaluated all
the methods in terms of how many paraphrases with
content word variations were extracted. We ex-
tracted from the evaluation samples only candidate
phrase pairs whose Diff contained a content word
(content word variation pairs), to see how many
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Figure 5: Precision curves of Exp2: English (A), Chinese (B), and Japanese (C).

of them were paraphrases. The lower half of Fig-
ure 4 shows the results (curves labeled with _cwv).
The number of samples for Proposedg ore reduced
drastically compared to the others for English and
Japanese, though precision was kept at a high level.
It is due mainly to the globalSim; the Diff of the
non-content word variation pairs appears frequently
in paraphrase candidates, and thus their globalSim
scores are high.

From Exp2, precision curves in Figure 5 were
obtained. P&D acquired more content word varia-
tion pairs as the curves labeled by _cwv indicates.
However, Proposedscore’s precision outperformed
P&D’s by a large margin for the three languages.

From all of these results, we conclude (1) that our
paraphrase extraction method outperforms unsuper-
vised methods for the three languages, (2) that glob-
alSim is effective, and (3) that our method is com-
parable to the state-of-the-art supervised method for
Japanese, though our method tends to extract fewer
content word variation pairs than the others.
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Table 7 shows examples of English paraphrases
extracted by Proposeds ore.

is based in Halifax = is headquartered in Halifax
used for treating HIV = used to treat HIV

is a rare form = is an uncommon type

is a set = is an unordered collection

has an important role = plays a key role

Table 7: Examples of extracted English paraphrases.

4 Conclusion

We proposed a minimally supervised method for
multilingual paraphrase extraction. Our experiments
showed that our paraphrase extraction method out-
performs unsupervised methods (Pasca and Dienes,
2005; Koehn et al., 2007; Hashimoto et al., 2011)
for English, Japanese, and Chinese, and is compara-
ble to the state-of-the-art language dependent super-
vised method for Japanese (Hashimoto et al., 2011).
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Abstract

Traditional relation extraction predicts rela-
tions within some fixed and finite target
schema. Machine learning approaches to this
task require either manual annotation or, in
the case of distant supervision, existing struc-
tured sources of the same schema. The need
for existing datasets can be avoided by us-
ing a universal schema: the union of all in-
volved schemas (surface form predicates as in
OpenlE, and relations in the schemas of pre-
existing databases). This schema has an al-
most unlimited set of relations (due to surface
forms), and supports integration with existing
structured data (through the relation types of
existing databases). To populate a database of
such schema we present matrix factorization
models that learn latent feature vectors for en-
tity tuples and relations. We show that such
latent models achieve substantially higher ac-
curacy than a traditional classification ap-
proach. More importantly, by operating simul-
taneously on relations observed in text and in
pre-existing structured DBs such as Freebase,
we are able to reason about unstructured and
structured data in mutually-supporting ways.
By doing so our approach outperforms state-
of-the-art distant supervision.

1 Introduction

Most previous work in relation extraction uses a pre-
defined, finite and fixed schema of relation types
(such as born-in or employed-by). Usually some tex-
tual data is labeled according to this schema, and
this labeling is then used in supervised training of
an automated relation extractor, e.g. Culotta and
Sorensen (2004). However, labeling textual rela-
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tions is time-consuming and difficult, leading to sig-
nificant recent interest in distantly-supervised learn-
ing. Here one aligns existing database records with
the sentences in which these records have been “ren-
dered”—effectively labeling the text—and from this
labeling we can train a machine learning system as
before (Craven and Kumlien, 1999; Mintz et al.,
2009; Bunescu and Mooney, 2007; Riedel et al.,
2010). However, this method relies on the availabil-
ity of a large database that has the desired schema.

The need for pre-existing datasets can be avoided
by using language itself as the source of the schema.
This is the approach taken by OpenlE (Etzioni et al.,
2008). Here surface patterns between mentions of
concepts serve as relations. This approach requires
no supervision and has tremendous flexibility, but
lacks the ability to generalize. For example, Ope-
nlE may find FERGUSON—historian-at—-HARVARD
but does not know FERGUSON-is-a-professor-at—
HARVARD. OpenlE has traditionally relied on a
large diversity of textual expressions to provide good
coverage. But this diversity is not always available,
and, in any case, the lack of generalization greatly
inhibits the ability to support reasoning.

One way to gain generalization is to cluster tex-
tual surface forms that have similar meaning (Lin
and Pantel, 2001; Pantel et al., 2007; Yates and
Etzioni, 2009; Yao et al., 2011). While the clus-
ters discovered by all these methods usually contain
semantically related items, closer inspection invari-
ably shows that they do not provide reliable impli-
cature. For example, a typical representative clus-
ter may include historian-at, professor-at, scientist-
at, worked-at. Although these relation types are in-
deed semantically related, note that scientist-at does
not necessarily imply professor-at, and worked-at
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certainly does not imply scientist-at. In fact, we
contend that any relational schema would inherently
be brittle and ill-defined—having ambiguities, prob-
lematic boundary cases, and incompleteness.! For
example, Freebase, in spite of its extensive effort to-
wards high coverage, has no critized nor scientist-at
relation.

In response to this problem, we present a new ap-
proach: implicature with universal schemas. Here
we embrace the diversity and ambiguity of original
inputs; we avoid forcing textual meaning into pre-
defined boxes. This is accomplished by defining
our schema to be the union of all source schemas:
original input forms, e.g. variants of surface pat-
terns similarly to OpenlE, as well as relations in
the schemas of many available pre-existing struc-
tured databases. But then, unlike OpenlE, our fo-
cus lies on learning asymmetric implicature among
relations. This allows us to probabilistically “fill
in” inferred unobserved entity-entity relations in
this union. For example, after observing FERGU-
SON-historian-at—HARVARD our system infers that
FERGUSON-professor-at—HARVARD, but not vice
versa.

At the heart of our approach is the hypothesis that
we should concentrate on predicting source data—a
relatively well defined task that can be evaluated and
optimized—as opposed to modeling semantic equiv-
alence, which we believe will always be illusive.

Note that by operating simultaneously on rela-
tions observed in text and in pre-existing structured
databases such as Freebase, we are able to reason
about unstructured and structured data in mutually-
supporting ways. For example, we can predict sur-
face pattern relations that effectively serve as addi-
tional features when predicting Freebase relations,
hence improving generalization. Also notice that
users of our system will not have to study and un-
derstand the complexities of a particular schema in
order to issue queries; they can ask in whatever form
naturally occurs to them, and our system will likely
already have that relation in our universal schema.

Our technical approach is based on extensions
to probabilistic models of matrix factorization and

'At NAACL 2012 Lucy Vanderwende asked “Where do the
relation types come from?” There was no satisfying answer. At
the same meeting, and in line with Brachman (1983), Ed Hovy
stated “We don’t even know what is-a means.”
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collaborative filtering (Collins et al., 2001; Koren,
2008; Rendle et al., 2009). We represent the prob-
abilistic knowledge base as a matrix with entity-
entity pairs in the rows and relations in the columns
(see figure 1). The rows come from running cross-
document entity resolution across pre-existing struc-
tured databases and textual corpora. The columns
come from the union of surface forms and DB rela-
tions. We present a series of models that learn lower
dimensional manifolds for tuples, relations and enti-
ties, and a set of weights that capture direct correla-
tions between relations. Weights and lower dimen-
sional representations act, through dot products, as
the natural parameters of a single log-linear model
to derive per-cell probabilities.

In experiments we show that our models can ac-
curately predict surface patterns relationships which
do not appear explicitly in text, and that learning la-
tent representations of entities, tuples and relations
substantially improves results over a traditional clas-
sifier approach. Moreover, we can improve accu-
racy by simultaneously operating on relations ob-
served in the New York Times corpus and in Free-
base. In particular, our model outperforms the cur-
rent state-of-the-art distant supervision method (Sur-
deanu et al., 2012) by 10% points Mean Average
Precision through joint implicature among surface
patterns and Freebase relations.

2 Model

Before we present our approach in more detail, we
briefly introduce some notation. We use R to de-
note the set of relations we seek to predict (such as
works-written in Freebase, or the X—historian-at-Y
pattern), and 7 to denote the set of input tuples. For
simplicity we assume each relation to be binary, al-
though our approach can be easily generalized to the
n-ary case. Given arelationr € R and atuplet € T
the pair (r, t) is a fact, or relation instance. The in-
put to our model is a set of observed facts O, and
the observed facts for a given tuple is denoted by
O :=={(r,t) € O}.

Our goal is a model that can estimate, for a
given relation r (such as X—historian-at-Y) and a
given tuple ¢ (such as <FERGUSON,HARVARD>),
the probability p (y,: = 1) where y,; is a binary
random variable that is true iff ¢ is in relation . We
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Figure 1: Filling up a database of universal schema.
Dark circles are observed facts, shaded circles are in-
ferred facts. Relation Extraction (RE) maps surface pat-
tern relations (and other features) to structured relations.
Surface form clustering models correlations between pat-
terns, and can be fed into RE (Yao et al., 2011). Database
alignment and integration models correlations between
structured relations (not done in this work). Reasoning
with the universal schema incorporates these tasks in a
joint fashion.

introduce a series of exponential family models that
estimate this probability using a natural parameter
0+ and the logistic function:

P (Yre = 10r) =0 (6r1) = H—eX;(—O%,t)'

We will first describe our models through differ-
ent definitions of the natural parameter ¢, ;. In each
case 6, ; will be a function of r, ¢ and a set of weights
and/or latent feature vectors. In section 2.5 we will
then show how these weights and vectors can be es-
timated based on the observed facts O.

Notice that we can interpret p (y,; = 1) as the
probability that a customer ¢ likes product r. This
analogy allows us to draw from a large body of work
in collaborative filtering, such as work in probabilis-
tic matrix factorization and implicit feedback.
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2.1 Latent Feature Model

One way to define 0,.; is through a latent feature
model F. Here we measure compatibility between
relation 7 and tuple ¢ as dot product of two latent
feature representations of size K F. a, for relation r,
and v, for tuple ¢. This gives:

KF

F ._ E

Gnt = Qr kU k-
k

This corresponds to generalized PCA (Collins et al.,
2001), a model were the matrix © = (6, ;) of natural
parameters is defined as the low rank factorization
AV.

Notice that we intentionally omit any per-relation
bias-terms. In section 4 we evaluate ranked answers
to queries on a per-relation basis, and a per-relation
bias term will have no effect on ranking facts of the
same relation. Also consider that such latent feature
models can capture asymmetry by assigning more
peaked vectors to specific relations, and more uni-
form vectors to general relations.

2.2 Neighborhood Model

We can interpolate the confidence for a given tuple
and relation based on the trueness of other similar
relations for the same tuple. In collaborative filter-
ing this is referred to as a neighborhood-based ap-
proach (Koren, 2008). In terms of our natural pa-
rameter, we implement a neighborhood model N via
a set of weights w,.,,, where each corresponds to a
directed association strength between relations r and
r’. For a given tuple ¢ and relation r we then sum
up the weights corresponding to all relations r’ that
have been observed for tuple ¢:

>

(r,)eO\{(r,t)}

N .
Hr,t = Wryr!-

Notice that the neighborhood model amounts to
a collection of local log-linear classifiers, one for
each relation r with feature functions f, ./ (t) =
L[ #r A (1, t) € O] and weights w,.. This means
that in contrast to model F, this model cannot har-
ness any synergies between textual and pre-existing
DB relations.



2.3 Entity Model

Relations have selectional preferences: they allow
only certain types in their argument slots. While
knowledge bases such as Freebase or DBPedia have
extensive ontologies of types of entities, these are of-
ten not sufficiently fine to allow relations to discrim-
inate (Yao et al., 2012b). Hence, instead of using a
predetermined set of entity types, in our entity model
E we learn a latent entity representation from data.
More concretely, for each entity e we introduce a la-
tent feature vector t. of dimension KE. In addition,
for each relation r and argument slot ¢ we introduce
a feature vector d; of the same dimension. For ex-
ample, binary relations have feature representations
d; for argument 1, and ds for argument 2. Mea-
suring compatibility of an entity tuple and relation
amounts to measuring, and summing up, compati-
bility between each argument slot representation and
the corresponding entity representation. This leads

to:
arity(r) KE

Ory = Z Zdz’,ktti,k-
=1k

Note that due to entity resolution, tuples may
share entities, and hence parameters are shared
across rows.

2.4 Combined Model

In practice all the above models can capture impor-
tant aspects of the data. Hence we also use various
combinations, such as:

NFE .__ pN F E
er,t T er,t + er,t + er,t‘

2.5 Parameter Estimation

Our models are parametrized through weights and
latent component vectors. We could estimate these
parameters by maximizing the loglikelihood of the
observed data akin to Collins et al. (2001). How-
ever, as we do not have access to negative facts, the
model would simply learn to predict all facts to be
true. In our initial attempt to overcome this issue
we sampled a set of unobserved facts as designated
negative facts, as is done in related distant supervi-
sion approaches. However, we found that (a) our
results were sensitive to the choice of negative data
and (b) runtime was increased substantially because
of a large number of required negative facts.
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In collaborative filtering positive-only data is also
known as implicit feedback. This type of feedback
arises, for example, when users buy but not rate
items. One successful approach to learning with im-
plicit feedback is based on the observation that the
actual task is not necessarily one of prediction (here:
to predict a number between O and 1) but one of
(generally simpler) ranking: to give true “user-item”
cells higher scores than false ones. Bayesian Person-
alized Ranking (BPR) uses a variant of this ranking:
giving observed true facts higher scores than unob-
served (true or false) facts (Rendle et al., 2009). This
relaxed constraint is to be contrasted with the log-
likelihood setting that essentially requires (randomly
sampled) negative facts to score below a globally de-
fined threshold.

2.5.1 Objective

We first create a dataset of ranked pairs: for each
relation r and each observed fact f* := (r;t1) € O
we choose all tuples ¢~ such that f~ := (r,t7) ¢
O—that is, tuples we have not observed to be in
relation 7. For each pair of facts f* and f~ we
want p (f*) > p(f~) and hence O+ > 6;-. In
BPR this is achieved by maximizing a sum terms of
the form Obj ;4 ;— := log (o (04+ —6-)), one for
each ranked pair:

Obj:= Y > Objy iy (D

(ritT)eO (rit=)¢O

Notice that this objective differs slightly from the
one used by Rendle et al. (2009). Consider tuples
as users and items as relations. We rank different
users with respect to the same item, while BPR ranks
items with respect to the same user. Also notice that
the BPR objective is an approximation to the per-
relation AUC (area under the ROC curve), and hence
directly correlated to what we want to achieve: well-
ranked tuples per relation.

Note that all parameters are regularized with
quadratic penalty which we omit here for brevity.

2.5.2 Optimization

To maximize the objective? in equation 1 we fol-
low Rendle et al. (2009) and employ Stochastic Gra-
dient Descent (SGD). In particular, in each epoch

2This objective is non-convex for all models excluding the
N model.



we sample |O| facts with replacement from O. For
each sampled fact (r,t*) we then sample a tuple
t~ € 7 such that (r,t~) ¢ O is not an observed
fact. This gives us || fact pairs (f, f7), and for
each pair we do an SGD update using the corre-
sponding gradients of Obj;+ ;-. For the F model
the gradients correspond to those presented by Ren-
dle et al. (2009). The remaining gradients are easy
to derive; we omit details for brevity.

3 Related Work

This work extends a previous workshop paper (Yao
et al., 2012a) by introducing the neighborhood and
entity model, by working with the BPR objective,
and by more extensive experiments.

Relational Clustering There is a large body of
work aiming to discover latent relations by clus-
tering surface patterns (Hasegawa et al., 2004;
Shinyama and Sekine, 2006; Kok and Domingos,
2008; Yao et al., 2011; Takamatsu et al., 2011), or
by inducing synonymy relationships between pat-
terns independently of the entities (Yates and Et-
zioni, 2009; Pantel et al., 2007; Lin and Pantel,
2001). Our approach has a fundamentally different
objective: we are not (primarily) interested in clus-
ters of patterns or their semantic representation, but
in predicting patterns where they are not observed.
Moreover, these related methods rely on a symmetric
notion of synonymy in which clustered patterns are
assumed to have the same meaning. Our approach
rejects this assumption in favor of a model which
learns that certain patterns, or combinations thereof,
entail others in one direction, but not necessarily the
other. This is similar in spirit to work on learning
entailment rules (Szpektor et al., 2004; Zanzotto et
al., 2006; Szpektor and Dagan, 2008). However, for
us even entailment rules are just a by-product of our
goal to improve prediction, and it is this goal we di-
rectly optimize for and evaluate.

Matrix Factorization Our approach is also re-
lated to work on factorizing YAGO to predict new
links (Nickel et al., 2012). The primary differences
are that we include surface patterns in our schema,
use a ranking objective, and learn latent vectors for
entities and tuples. Likewise, matrix factorization in
various flavors has received significant attention in
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the lexical semantics community, from LSA to re-
cent work on non-negative sparse embeddings (Mur-
phy et al., 2012). In our problem columns corre-
spond to relations, and rows correspond to entity tu-
ples. By contrast, there columns are words, and rows
are contextual features such as “words in a local win-
dow.” Consequently, our objective is to complete
the matrix, whereas their objective is to learn better
latent embeddings of words (which by themselves
again cannot capture any sense of asymmetry).

OpenlE Open IE (Etzioni et al., 2008) extracts
facts mentioned in text, but does not predict poten-
tial facts not mentioned in text. Finding answers
requires explicit mentions, and hence suffers from
lower recall for not-so-frequently mentioned facts.
Methods that learn rules between textual patterns in
OpenlE aim at a similar goal as our proposed ap-
proach (Schoenmackers et al., 2008; Schoenmack-
ers et al., 2010). However, their approach is sub-
stantially more complex, requires a categorization
of entities into fine grained entity types, and needs
inference in high tree-width Markov Networks. By
contrast, our approach is based on a single unified
model, requires no entity types, and for us inferring
a fact amounts to not more than a few dot products.
In addition, in our Universal Schema approach Ope-
nlE surface patterns are just one kind of relations,
and our aim is populate relations of all kinds. In the
future we may even include relations between enti-
ties and continuous attributes (say, gene expression
measurements).

Distant Supervision In Distant Supervision (DS)
a set of facts from pre-existing structured sources
is aligned with surface patterns mentioned in
text (Bunescu and Mooney, 2007; Mintz et al., 2009;
Riedel et al., 2010; Hoffmann et al., 2011; Surdeanu
et al., 2012), and this alignment is then used to train
a relation extractor. A core difference to our ap-
proach is the number of target relations: In DS it
is the relatively small schema size of the knowledge
base, while we also include surface patterns. This
allows us to answer more expressive queries. More-
over, by learning from surface-pattern correlations,
our latent models induce feature representations for
patterns that do not appear in the DS training set. As
we will see in section 4, this allows us to outperform
state-of-the-art DS models.



Never-Ending Learning and Bootstrapping Our
latent feature models are capable of never-ending
learning (Carlson et al., 2010). That is, we can con-
tinue to train these models with incoming data, even
if no structured annotation is available. In bootstrap-
ping approaches the current model is used to predict
new relations, and these hypothesized relations are
used as new supervision targets (i.e. self-training).
By contrast, our model only strengthens the correla-
tions between incoming co-occurring observations.
This has the advantage that wrong predictions are
less likely be reinforced, hence reducing the risk of
semantic drift.

4 Experiments

How accurately can we fill a database of Universal
Schema, and does reasoning jointly across a uni-
versal schema help to improve over more isolated
approaches? In the following we seek to answer
this question empirically. To this end we train our
models on observed facts in a newswire corpus and
Freebase, and then manually evaluate ranked predic-
tions: first for structured relations and then for sur-
face form relations.

4.1 Data

Following previous work (Riedel et al., 2010),
our documents are taken from the NYTimes cor-
pus (Sandhaus, 2008). Articles after 2000 are used
as training corpus, articles from 1990 to 1999 as
test corpus. We also split Freebase facts 50/50 into
train and test facts, and their corresponding tuples
into train and test tuples. Then we align training tu-
ples with the training corpus, and test tuples with the
test corpus. This alignment relies on a preprocessing
step that links NER mentions in text with entities in
Freebase. In our case we use a simple string-match
heuristic to find this linking. Now we align an entity
tuple (t1,t2) with a pair of mentions (mq,ms) in
the same sentence if m; is linked to ¢; and ms to t5.
Based on this alignment we filter out all relations for
which we find fewer than 10 tuples with mentions in
text.

The above alignment and filtering process reduces
the total number of tuples related according to Free-
base to 16k: approximately 8k tuples with facts
mentioned in the training set, and approximately 8k

79

such tuples for the test set. In addition we have a
set of approximately 200k training tuples for which
both arguments appear in the same sentence and
both can be linked to Freebase entities, but for which
no Freebase fact is recorded. This can either be be-
cause they are not related, or simply because Free-
base does not contain the relationship yet. We also
have about 200k such tuples in the test set. To sim-
plify evaluation, we create a subsampled test set by
randomly choosing 10k of the original test set tuples.

The above alignment allows us to determine, for
each tuple ¢, the observed facts O, as follows. To
find the surface pattern facts OAT for the tuple ¢ =
(t1,t2) we extract, for each mention m = (mj, ma)
of t, the lexicalized dependency path p between mq
and my. Then we add (p,t) to OPAT. For example,
we get “<-subj<-head->obj->" for “M1 heads M2.”
Filtering out patterns with fewer than 10 mentions
in text yields approximately 4k patterns. For train-
ing tuples we add as Freebase facts OfP all facts
(r,t) that appear in Freebase, and for which r has
not been filtered out beforehand. For the test set OF8
remains empty. The total set of observed facts Oy is
OFBUOPAT and their union over all tuples forms the
set of observed facts O.

4.2 Evaluation

For evaluation we use collections of relations: sur-
face patterns in one experiment and Freebase re-
lations in the other. In either case we compare
the competing systems with respect to their ranked
results for each relation in the collection. Given
this ranking task, our evaluation is inspired by the
TREC competitions and work in information re-
trieval (Manning et al., 2008). That is, we treat
each relation as query and receive the top 1000 (run
depth) entity pairs from each system. Then we pool
the top 100 (pool depth) answers from each system
and manually judge their relevance or “truth.” This
gives a set of relevant results that we can use to cal-
culate recall and precision measures. In particular,
we can use these annotations to measure an average
precision across the precision-recall curve, and an
aggregate mean average precision (MAP) across all
relations. This metric has shown to be very robust
and stable (Manning et al., 2008). In addition we
also present a weighted version of MAP (weighted
MAP) in which the average precision for each re-



Relation # MIO9 YAl1l SUI12 N F NF NFE
person/company 103 | 0.67 0.64 070 0.73 0.75 0.76 0.79
location/containedby 74 048 051 054 043 068 0.67 0.69
author/works_written 29 0.50 051 052 045 061 0.63 0.69
person/nationality 28 0.14 040 0.13 0.13 0.19 0.18 0.21
parent/child 19 0.14 025 062 046 0.76 0.78 0.76
person/place_of_death 19 0.79 0.79 0.86 0.89 0.83 0.85 0.86
person/place_of_birth 18 078 075 0.82 050 0.83 0.81 0.8
neighborhood/neighborhood_of 12 0.00 0.00 0.08 043 0.65 0.66 0.72
person/parents 7 024 027 058 056 053 058 0.39
company/founders 4 025 025 053 024 077 080 0.68
film/directed_by 4 0.06 0.15 025 0.09 026 026 0.30
sports_team/league 4 0.00 043 0.18 021 0.59 0.70 0.63
team/arena_stadium 3 0.00 0.06 0.06 0.03 0.08 0.09 0.08
team_owner/teams_owned 2 0.00 050 070 0.55 038 0.61 0.75
roadcast/area_served 2 1.00 0.50 1.00 0.58 058 0.83 1.00
structure/architect 2 0.00 000 .00 027 1.00 1.00 1.00
composer/compositions 2 0.00 000 000 050 0.67 083 0.12
person/religion 1 0.00 100 1.00 050 1.00 1.00 1.00
film/produced_by 1 1.00 1.00 1.00 1.00 0.50 0.50 0.33
MAP 032 042 056 045 061 0.66 0.63
Weighted MAP 048 052 057 052 0.66 0.67 0.69

Table 1: Average and (weighted) Mean Average Precisions for Freebase relations based on pooled results. The #
column shows the number of true facts in the pool. NFE is statistically different to all but NF and F according to the
sign test. Bold faced are winners per relation, italics indicate ties.

lation is weighted by the relation’s number of true
facts.

Notice that we deviate from previous work in dis-
tant supervision that (a) combines the results from
several relations in a single precision recall curve,
and (b) uses held-out evaluation to measure how
well the predictions match existing Freebase facts.
This has several benefits. First, when aggregating
across relations results are often dominated by a few
very frequent relations, such as containedby, provid-
ing little information about how the models perform
across the board. Second, evaluating with Freebase
held-out data is biased. For example, we find that
frequently mentioned entity pairs are more likely to
have relations in Freebase. Systems that rank such
tuples higher receives higher precision than those
that do not have such bias, regardless of how cor-
rect their predictions are. Third, we can aggregate
per-relation comparisons to establish statistical sig-
nificance, for example via the sign test.
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Also note that while we run our models on the
complete training and test set, evaluation is re-
stricted to the subsampled test set.

4.3 Predicting Freebase Relations

Table 1 shows our results for Freebase relations,
omitting those for which none of the systems can
find any relevant facts. Our first baseline is MI09,
a distantly supervised classifier based on the work
of Mintz et al. (2009). This classifier only learns
from observed pattern-relation pairs in the training
set (of which we only have about 8k). By contrast,
our latent feature models can learn pattern-pattern
correlations both on the unlabeled training and test
set (comparable to bootstrapping). We hence also
compare against YA11, a version of MI0O9 that uses
preprocessed cluster features according to Yao et al.
(2011). The third baseline is SU12, the state-of-the-
art Multi-Instance Multi-Label system by Surdeanu
et al. (2012).

The remaining systems are our neighborhood
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Figure 2: Averaged 11-point precision recall curve for
Freebase relations in table 1.

model (N), the factorized model (F), their combi-
nation (NF) and the combined model with a latent
entity representation (NFE). For all our models we
use the same number of components when applica-
ble (KF = KE = 100), 1000 epochs, and 0.01 as
regularizer for component weights and 0.1 for neigh-
borhood weights.

Table 1 shows that adding pattern cluster features
(and hence incorporating more data) helps YAll
to improve over MI0O9. Likewise, we see that the
factorized model F improves over N, again learn-
ing from unlabeled data. This improvement is big-
ger than the corresponding change between MI09
and YA1l, possibly indicating that our latent rep-
resentations are optimized directly towards improv-
ing prediction performance. The combination of N,
F and E outperforms all other models in terms of
weighted MAP, indicating the power of selectional
preferences learned from data. Note that NFE is
significantly different (p < 0.05 in sign test) to all
but the NF and F models. In terms of MAP the NF
model outperforms NFE, indicating that it does not
do as well for frequent relations, but better for infre-
quent ones.

Figure 2 shows an averaged 11-point precision re-
call graph (Manning et al., 2008) for Freebase re-
lations. We notice that our latent models outper-
form all remaining models across all recall levels,
and that combining neighborhood and latent models
is helpful. This finding is consistent with our MAP
results. Figure 3 shows the recall-precision curve for
the works_written relation with respect to our three
baselines and the NFE model. Observe how preci-
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Figure 3: Precision and recall for works_written(X,Y).

Relation # N F NF NFE
visit 80 | 0.19 0.68 049 042
attend 69 | 0.23 0.10 0.07 0.10
base 61 | 046 0.87 0.81 0.68
head 38 | 047 0.67 0.70 0.68
scientist 36 | 025 084 079 0.73
support 18 1 0.16 0.29 0.32 0.38
adviser 11 1 0.19 0.15 0.19 0.28
criticize 9 10.09 060 0.67 0.64
praise 4 1001 0.03 0.05 0.10
vote 3 1018 0.18 034 0.34
MAP 022 044 044 043
Weighted MAP 0.28 0.56 050 0.46

Table 2: Average and (weighted) Mean Average Preci-
sions for surface patterns.?

sion drops for both MIO9 and SU12 at about 50%
recall. At this point the remaining unretrieved facts
have patterns that have not been seen together with
works_written in the training set. By using cluster
features, YA1l can overcome this problem partly,
but not as dramatically as NFE—a pattern we ob-
serve for many relations.

All our models are fast to train. The slowest
model trains in just 45 minutes. By contrast, training
the topic model in YA11 alone takes 4 hours. Train-
ing SU12 takes two hours (on less data). Also notice
that our models not only learn to predict Freebase
relations, but also approximately 4k surface pattern
relations.

4.4 Predicting Surface Patterns

Table 2 presents a comparison of our models with re-
spect to 10 surface pattern relations. These relations
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Figure 4: Averaged 11-point precision recall curve for
surface pattern relations in table 2.

were chosen according to what we believe are inter-
esting questions not currently captured in Freebase.
We again see that learning a latent representation (F,
NF and NFE) from additional data helps quite sub-
stantially over the N model. For in the weighted
MAP metric we note that incorporating entity rep-
resentations (in the NFE model) in fact hurts total
performance.®> One reason may be the fact that Free-
base relations are typed—they require very specific
types of entities as arguments. By contrast, for a
surface pattern like “X visits Y X could be a person
or organization, and Y could be a location, organi-
zation or person. However, in terms of MAP score
this time there is no obvious winner among the la-
tent models. This is also confirmed by the averaged
11-point precision recall curve in figure 4.

Notice that we can accurately predict the X-
scientist-at=Y surface pattern relation in table 2,
as well as the more general person/company (em-
ployedBy) relation in table 1. This indicates that
our models can capture asymmetry—a symmetric
model would either over-predict X—scientist-at—Y
or under-predict person/company.

5 Conclusion

We present relation extraction into universal
schemas. Such schemas contain surface patterns
as relations, as well as relations from structured
sources. By predicting missing tuples for surface
pattern relations we can populate a database with-
out any labelled data, and answer questions not sup-

3Due to the small set of relations only N is significantly dif-
ferent to F, NF and NFE (p < 0.05 in sign test).
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ported by the structured schema alone. By predict-
ing missing tuples in the structured schema we can
expand a knowledge base of fixed schema, and only
require a set of existing facts from this schema. Cru-
cially, by predicting and modeling both surface pat-
terns and structured relations simultaneously we can
improve performance. We show this experimentally
by contrasting a series of the popular weakly super-
vised models to our collaborative filtering models
that learn latent feature representations across sur-
face patterns and structured relations. Moreover, our
models are computationally efficient, requiring less
time than comparable methods, while learning more
relations.

Reasoning with universal schemas is not merely a
tool for information extraction. It can also serve as
a framework for various data integration tasks. For
example, we could integrate facts from one schema
(say, Freebase) into another (say, the TAC KBP
schema) by adding both sets of relations to the set
of surface patterns. Reasoning with this schema
will mean populating each database with facts from
the other, and would leverage information in surface
patterns to improve integration. In future work we
also plan to integrate universal entity types and at-
tributes into the model.

The source code of our system, its output, and
all data annotations are available at http://www.
riedelcastro.org/uschema.
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Extracting the Native Language Signal
for Second Language Acquisition

Ben Swanson
Brown University
Providence, RI
chonger@cs.brown.edu

Abstract

We develop a method for effective extraction
of linguistic patterns that are differentially ex-
pressed based on the native language of the
author. This method uses multiple corpora
to allow for the removal of data set specific
patterns, and addresses both feature relevancy
and redundancy. We evaluate different rel-
evancy ranking metrics and show that com-
mon measures of relevancy can be inappro-
priate for data with many rare features. Our
feature set is a broad class of syntactic pat-
terns, and to better capture the signal we ex-
tend the Bayesian Tree Substitution Grammar
induction algorithm to a supervised mixture of
latent grammars. We show that this extension
can be used to extract a larger set of relevant
features.

1 Introduction

Native Language Identification (NLI) is a classifi-
cation task in which a statistical signal is exploited
to determine an author’s native language (L1) from
their writing in a second language (L2). This aca-
demic exercise is often motivated not only by fraud
detection or authorship attribution for which L1 can
be an informative feature, but also by its potential to
assist in Second Language Acquisition (SLA).

Our work focuses on the latter application and on
the observation that the actual ability to automati-
cally determine L1 from text is of limited utility in
the SLA domain, where the native language of a stu-
dent is either known or easily solicited. Instead, the
likely role of NLP in the context of SLA is to pro-
vide a set of linguistic patterns that students with
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certain L1 backgrounds use with a markedly unusual
frequency. Experiments have shown that such L1
specific information can be incorporated into lesson
plans that improve student performance (Laufer and
Girsai, 2008; Horst et al, 2008).

This is essentially a feature selection task with the
additional caveat that features should be individually
discriminative between native languages in order to
facilitate the construction of focused educational ex-
cersizes. With this goal, we consider metrics for
data set dependence, relevancy, and redundancy. We
show that measures of relevancy based on mutual in-
formation can be inappropriate in problems such as
ours where rare features are important.

While the majority of the methods that we con-
sider generalize to any of the various feature sets
employed in NLI, we focus on the use of Tree Sub-
stitution Grammar rules as features. Obtaining a
compact feature set is possible with the well known
Bayesian grammar induction algorithm (Cohn and
Blunsom, 2010), but its rich get richer dynamics can
make it difficult to find rare features. We extend the
induction model to a supervised mixture of latent
grammars and show how it can be used to incorpo-
rate linguistic knowledge and extract discriminative
features more effectively.

The end result of this technique is a filtered list of
patterns along with their usage statistics. This pro-
vides an enhanced resource for SLA research such
as Jarvis and Crossley (2012) which tackles the man-
ual connection of highly discriminative features with
plausible linguistic transfer explanations. We output
a compact list of language patterns that are empiri-
cally associated with native language labels, avoid-

Proceedings of NAACL-HLT 2013, pages 85-94,
Atlanta, Georgia, 9-14 June 2013. (©2013 Association for Computational Linguistics



ing redundancy and artifacts from the corpus cre-
ation process. We release this list for use by the
linguistics and SLA research communities, and plan
to expand it with upcoming releases of L1 labeled

corpora!.

2 Related Work

Our work is closely related to the recent surge of re-
search in NLI. Beginning with Koppel et al (2005),
several papers have proposed different feature sets
to be used as predictors of L1 (Tsur and Rappa-
port, 2007; Wong and Dras, 2011a; Swanson and
Charniak, 2012). However, due to the ubiquitous
use of random subsamples, different data prepara-
tion methods, and severe topic and annotation biases
of the data set employed, there is little consensus on
which feature sets are ideal or sufficient, or if any
reported accuracies reflect some generalizable truth
of the problem’s difficulty. To combat the bias of
a single data set, a new strain of work has emerged
in which train and test documents come from dif-
ferent corpora (Brooke and Hirst, 2012; Tetreault et
al, 2012; Bykh and Meurers, 2012). We follow this
cross corpus approach, as it is crucial to any claims
of feature relevance.

Feature selection itself is a well studied problem,
and the most thorough systems address both rele-
vancy and redundancy. While some work tackles
these problems by optimizing a metric over both si-
multaneously (Peng et al, 2005), we decouple the
notions of relevancy and redundancy to allow ad-hoc
metrics for either, similar to the method of Yu and
Liu (2004). The measurement of feature relevancy
in NLI has to this point been handled primarily with
Information Gain, and elimination of feature redun-
dancy has not been considered.

Tree Substitution Grammars have recently been
successfully applied in several domains using the
induction algorithm presented by Cohn and Blun-
som (2010). Our hierarchical treatment builds on
this work by incorporating supervised mixtures over
latent grammars into this induction process. Latent
mixture techniques for NLI have been explored with
other feature types (Wong and Dras, 2011b; Wong
and Dras, 2012), but have not previously led to mea-
surable empirical gains.

"bllip.cs.brown.edu/download/nli_corpus.pdf
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3 Corpus Description

We first make explicit our experimental setup in or-
der to provide context for the discussion to follow.
We perform analysis of English text from Chinese,
German, Spanish, and Japanese L1 backgrounds
drawn from four corpora. The first three consist of
responses to essay prompts in educational settings,
while the fourth is submitted by users in an internet
forum.

The first corpus is the International Corpus of
Learner English (ICLE) (Granger et al, 2002), a
mainstay in NLI that has been shown to exhibit a
large topic bias due to correlations between L1 and
the essay prompts used (Brooke and Hirst, 2011).
The second is the International Corpus of Crosslin-
guistic Interlanguage (ICCI) (Tono et al, 2012),
which is annotated with sentence boundaries and has
yet to be used in NLI. The third is the public sample
of the Cambridge International Corpus (FCE), and
consists of short prompted responses. One quirk of
the FCE data is that several responses are written in
the form of letters, leading to skewed distributions
of the specialized syntax involved with use of the
second person. The fourth is the Lang8 data set in-
troduced by Brooke and Hirst (2011). This data set
is free of format, with no prompts or constraints on
writing aids. The samples are often very short and
are qualitatively the most noisy of the four data sets.

One distinctive experimental decision is to treat
each sentence as an individual datum. As document
length can vary dramatically, especially across cor-
pora, this gives increased regularity to the number
of features per data item. More importantly, this
creates a rough correspondence between feature co-
occurrence and the expression of the same under-
lying linguistic phenomenon, which is desirable for
automatic redundancy metrics.

We automatically detect sentence boundaries
when they are not provided, and parse all corpora
with the 6-split Berkeley Parser. As in previous NLI
work, we then replace all word tokens that do not oc-
cur in a list of 614 common words with an unknown
word symbol, UNK.

While these are standard data preprocessing steps,
from our experience with this problem we propose
additional practical considerations. First, we filter
the parsed corpora, retaining only sentences that are



parsed to a Clause Level® tag. This is primarily due
to the fact that automatic sentence boundary detec-
tors must be used on the ICLE, Lang8, and FCE data
sets, and false positives lead to sentence fragments
that are parsed as NP, VP, FRAG, etc. The wild inter-
net text found in the Lang8 data set also yields many
non-Clause Level parses from non-English text or
emotive punctuation. Sentence detection false neg-
atives, on the other hand, lead to run-on sentences,
and so we additionally remove sentences with more
than 40 words.

We also impose a simple preprocessing step for
better treatment of proper nouns. Due to the geo-
graphic distribution of languages, the proper nouns
used in a writer’s text naturally present a strong L1
signal. The obvious remedy is to replace all proper
nouns with UNK, but this is unfortunately insuffi-
cient as the structure of the proper noun itself can
be a covert signal of these geographical trends. To
fix this, we also remove all proper noun left sisters
of proper nouns. We choose to retain the rightmost
sister node in order to preserve the plurality of the
noun phrase, as the rightmost noun is most likely
the lexical head.

From these parsed, UNKed, and filtered corpora
we draw 2500 sentences from each L1 background
at random, for a total of 10000 sentences per corpus.
The exception is the FCE corpus, from which we
draw 1500 sentences per L1 due to its small size.

4 Tree Substitution Grammars

A Tree Substitution Grammar (TSG) is a model
of parse tree derivations that begins with a sin-
gle ROOT nonterminal node and iteratively rewrites
nonterminal leaves until none remain. A TSG
rewrite rule is a tree of any depth, as illustrated in
Figure 1, and can be used as a binary feature of a
parsed sentence that is triggered if the rule appears
in any derivation of that sentence.

Related NLI work compares a plethora of sug-
gested feature sets, ranging from character n-grams
to latent topic activations to labeled dependency
arcs, but TSG rules are best able to represent com-
plex lexical and syntactic behavior in a homoge-
neous feature type. This property is summed up
nicely by the desire for features that capture rather

28, SINV, SQ, SBAR, or SBARQ
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ROOT NP NN NN

/\
S DT NN man woman

NP VP the
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loves

Figure 1: A Tree Substitution Grammar capable of de-
scribing the feelings of people of all sexual orientations.

than cover linguistic phenomena (Johnson, 2012);
while features such as character n-grams, POS tag
sequences, and CFG rules may provide a usable L1
signal, each feature is likely covering some compo-
nent of a pattern instead of capturing it in full. TSG
rules, on the other hand, offer remarkable flexibil-
ity in the patterns that they can represent, potentially
capturing any contiguous parse tree structure.

As it is intractable to rank and filter the entire set
of possible TSG rules given a corpus, we start with
the large subset produced by Bayesian grammar in-
duction. The most widely used algorithm for TSG
induction uses a Dirichlet Process to choose a subset
of frequently reoccurring rules by repeatedly sam-
pling derivations for a corpus of parse trees (Cohn
and Blunsom, 2010). The rich get richer dynamic of
the DP leads to the use of a compact set of rules
that is an effective feature set for NLI (Swanson
and Charniak, 2012). However, this same property
makes rare rules harder to find.

To address this weakness, we define a general
model for TSG induction in labeled documents that
combines a Hierarchical Dirichlet Process (Teh et al,
2005), with supervised labels in a manner similar to
upstream supervised LDA (Mimno and McCallum,
2008). In the context of our work the document label
7 indicates both its authors native language L and
data set D. Each n is associated with an observed
Dirichlet prior v,,, and a hidden multinomial ¢,, over
grammars is drawn from this prior. The traditional
grammatical model of nonterminal expansion is aug-
mented such that to rewrite a symbol we first choose
a grammar from the document’s ¢,, and then choose
a rule from that grammar.

For those unfamiliar with these models, the basic
idea is to jointly estimate a mixture distribution over
grammars for each 7, as well as the parameters of
these grammars. The HDP is necessary as the size



of each of these grammars is essentially infinite. We
can express the generative model formally by defin-
ing the probability of a rule r expanding a symbol s
in a sentence labeled 7 as

0, ~ Dir(vy)

Zin ~ Mult(6),)

Hy ~ DP(v, Py(e|s))
Grs ~ DP(as, Hy)

Tins ~ sz s

This is closely related to the application of the
Hierarchical Pitman Yor Process used in (Blunsom
and Cohn, 2010) and (Shindo et al, 2012), which
interpolates between multiple coarse and fine map-
pings of the data items being clustered to deal with
sparse data. While the underlying Chinese Restau-
rant Process sampling algorithm is quite similar, our
approach differs in that it models several different
distributions with the same support that share a com-
mon prior.

By careful choice of the number of grammars K,
the Dirichlet priors v, and the backoff concentration
parameter -, a variety of interesting models can eas-
ily be defined, as demonstrated in our experiments.

5 Feature Selection

5.1 Dataset Independence

The first step in our L1 signal extraction pipeline
controls for patterns that occur too frequently in cer-
tain combinations of native language and data set.
Such patterns arise primarily from the reuse of es-
say prompts in the creation of certain corpora, and
we construct a hard filter to exclude features of this
type.

A simple first choice would be to rank the rules
in order of dependence on the corpus, as we expect
an irregularly represented topic to be confined to a
single data set. However, this misses the subtle but
important point that corpora have different qualities
such as register and author proficiency. Instead we
treat the set of sentences containing an arbitrary fea-
ture X as a set of observations of a pair of categor-
ical random variables L and D, representing native
language and data set respectively.

To see why this treatment is superior, consider the
outcomes for the two hypothetical features shown
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| L1 Ly | L1 L
D; | 1000 500 D; | 1000 500
Dy | 100 50 Dy | 750 750

Figure 2: Two hypothetical feature profiles that illustrate
the problems with filtering only on data set independence,
which prefers the right profile over the left. Our method
has the opposite preference.

in Figure 2. The left table has a high data set de-
pendence but exhibits a clean twofold preference for
L in both data sets, making it a desirable feature to
retain. Conversely, the right table shows a feature
where the distribution is uniform over data sets, but
has language preference in only one. This is a sign
of either a large variance in usage or some data set
specific tendency, and in either case we can not make
confident claims as to this feature’s association with
any native language.

The L-D dependence can be measured with Pear-
son’s x2 test, although the specifics of its use as
a filter deserve some discussion. As we eliminate
the features for which the null hypothesis of inde-
pendence is rejected, our noisy data will cause us
to overzealously reject. In order to prevent the un-
neccesary removal of interesting patterns, we use a
very small p value as a cutoff point for rejection. In
all of our experiments the x? value corresponding to
p < .001 is in the twenties; we use x? > 100 as our
criteria for rejection.

Another possible source of error is the sparsity of
some features in our data. To avoid making pre-
dictions of rules for which we have not observed
a sufficient number of examples, we automatically
exclude any rule with a count less than five for any
L-D combination 7. This also satisfies the common
requirements for validity of the x? test that require
a minimum number of 5 expected counts for every
outcome.

5.2 Relevancy

We next rank the features in terms of their ability to
discriminate between L1 labels. We consider three
relevancy ranking metrics: Information Gain (IG),
Symmetric Uncertainty (SU), and x? statistic.
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Figure 3: Sample Pearson correlation coefficients be-
tween different ranking functions and feature frequency
over a large set of TSG features.

IG(L, X;) = H(L) — H(L|X;)

. IG(L,X)
SULX) = 2 I T H X))
2 N (nzm - %)2
(X)) =)
m M

We define L as the Multinomial distributed L1 la-
bel taking values in {1, ..., M} and X as a Bernoulli
distributed indicator of the presence or absence of
the ith feature, which we represent with the events
X l+ and X, respectively. We use the Maximum
Likelihood estimates of these distributions from the
training data to compute the necessary entropies for
IG and SU. For the X2 metric we use n;,,, the count
of sentences with L1 label m that contain feature X,
and their sum over classes V;.

While SU is often preferred over IG in feature se-
lection for several reasons, their main difference in
the context of selection of binary features is the addi-
tion of H(X;) in the denominator, leading to higher
values for rare features under SU. This helps to
counteract a subtle preference for common features
that these metrics can exhibit in data such as ours, as
shown in Figure 3. The source of this preference is
the overwhelming contribution of p(X; ) H (L|X;")
in IG(L, X;) for rare features, which will be essen-
tially the maximum value of log(A/). In most clas-
sification problems a frequent feature bias is a desir-
able trait, as a rare feature is naturally less likely to
appear and contribute to decision making.

We note that binary features in sentences are
sparsely observed, as the opportunity for use of the
majority of patterns will not exist in any given sen-
tence. This leads to a large number of rare features
that are nevertheless indicative of their author’s L1.
The x? statistic we employ is better suited to retain
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such features as it only deals with counts of sen-
tences containing X;.

The ranking behavior of these metrics is high-
lighted in Figure 4. We expect that features with
profiles like X, and X; will be more useful than
those like X, and only 2 ranks these features ac-
cordingly. Another view of the difference between
the metrics is taken in Figure 5. As shown in the
left plot, /G and SU are nearly identical for the
most highly ranked features and significantly differ-
ent from 2.

| Ly Ly Lz La 1G SU X2
Xo | 20 5 5 5 | .0008 .0012 19.29
X, | 40 20 20 20 | .0005 .0008 12.0
X. | 2000 500 500 500 | .0178 .0217 385.7
Xg | 1700 1800 1700 1800 | .0010 .0010  5.71

Figure 4: Four hypothetical features in a 4 label clas-
sification problem, with the number of training items
from each class using the feature listed in the first four
columns. The top three features under each ranking are
shown in bold.
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Figure 5: For all pairs of relevancy metrics, we show the
number of features that appear in the top n of both. The
result for low n is highlighted in the left plot, showing a
high similarity between SU and IG.

5.3 Redundancy

The second component of thorough feature selection
is the removal of redundant features. From an ex-
perimental point of view, it is inaccurate to compare
feature selection systems under evaluation of the top
n features or the number of features with ranking
statistic at or beyond some threshold if redundancy
has not been taken into account. Furthermore, as
our stated goal is a list of discriminative patterns,
multiple representations of the same pattern clearly



degrade the quality of our output. This is especially
necessary when using TSG rules as features, as it is
possible to define many slightly different rules that
essentially represent the same linguistic act.

Redundancy detection must be able to both deter-
mine that a set of features are redundant and also
select the feature to retain from such a set. We use
a greedy method that allows us to investigate differ-
ent relevancy metrics for selection of the representa-
tive feature for a redundant set (Yu and Liu, 2004).
The algorithm begins with a list S containing the
full list of features, sorted by an arbitrary metric of
relevancy. While S is not empty, the most relevant
feature X ™ in S is selected for retention, and all fea-
tures X; are removed from S if R(X*, X;) > p for
some redundancy metric R and some threshold p.

We consider two probabilistic metrics for redun-
dancy detection, the first being SU, as defined in
the previous section. We contrast this metric with
Normalized Pointwise Mutual Information (NPMI)
which uses only the events A = X and B = X,
and has a range of [-1,1].

NPMI(X,, X3) = log(Pﬁ(’)?()z)D(;lloggf(A))

Another option that we explore is the structural
redundancy between TSG rules themselves. We de-
fine a 0-1 redundancy metric such that R(X,, X3) is
one if there exists a fragment that contains both X,
and X3 with a total number of CFG rules less than
the sum of the number of CFG rules in X, and Xj.
The latter constraint ensures that X, and X} overlap
in the containing fragment. Note that this is not the
same as a nonempty set intersection of CFG rules,
as can be seen in Figure 6.

S S S
NP VP NP VP NP VP

| | |
NN PRP VBZ

Figure 6: Three similar fragments that highlight the be-
havior of the structural redundancy metric; the first two
fragments are not considered redundant, while the third
is made redundant by either of the others.
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6 Experiments

6.1 Relevancy Metrics

The traditional evaluation criterion for a feature se-
lection system such as ours is classification accuracy
or expected risk. However, as our desired output is
not a set of features that capture a decision bound-
ary as an ensemble, a per feature risk evaluation bet-
ter quantifies the performance of a system for our
purposes. We plot average risk against number of
predicted features to view the rate of quality degra-
dation under a relevancy measure to give a picture
of a each metric’s utility.

The per feature risk for a feature X is an eval-
uation of the ML estimate of Px (L) = P(L|X™)
from the training data on 7'y, the test sentences that
contain the feature X. The decision to evaluate only
sentences in which the feature occurs removes an
implicit bias towards more common features.

We calculate the expected risk R(X) using a 0-1
loss function, averaging over 1T'x.

where L} is the gold standard L1 label of test item
t. This metric has two important properties. First,
given any true distribution over class labels in Ty,
the best possible Py (L) is the one that matches
these proportions exactly, ensuring that preferred
features make generalizable predictions. Second, it
assigns less risk to rules with lower entropy, as long
as their predictions remain generalizable. This cor-
responds to features that find larger differences in
usage frequency across L1 labels.

The alternative metric of per feature classifica-
tion accuracy creates a one to one mapping between
features and native languages. This unnecessarily
penalizes features that are associated with multiple
native languages, as well as features that are selec-
tively dispreferred by certain L1 speakers. Also, we
wish to correctly quantify the distribution of a fea-
ture over all native languages, which goes beyond
correct prediction of the most probable.

Using cross validation with each corpus as a fold,
we plot the average R(X) for the best n features
against n for each relevancy metric in Figure 7. This
clearly shows that for highly ranked features x? is
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Figure 7: Per-feature Average Expected Loss plotted
against top N features using x2, IG, and SU as a rele-
vancy metric

able to best single out the type of features we de-
sire. Another point to be taken from the plot is
that it is that the top ten features under SU are
remarkably inferior. Inspection of these rules re-
veals that they are precisely the type of overly fre-
quent but only slightly discriminative features that
we predicted would corrupt feature selection using
IG based measures.

6.2 Redundancy Metrics

We evaluate the redundancy metrics by using the top
n features retained by redundancy filtering for en-
semble classification. Under this evaluation, if re-
dundancy is not being effectively eliminated perfor-
mance should increase more slowly with n as the
set of test items that can be correctly classified re-
mains relatively constant. Additionally, if the metric
is overzealous in its elimination of redundancy, use-
ful patterns will be eliminated leading to diminished
increase in performance. Figure 8 shows the tradeoff
between Expected Loss on the test set and the num-
ber of features used with SU, NPMI, and the overlap
based structural redundancy metric described above.
We performed a coarse grid search to find the opti-
mal values of p for SU and NPMI.

Both the structural overlap hueristic and SU per-
form similarly, and outperform NPMI. Analysis re-
veals that NPMI seems to overstate the similarity of
large fragments with their small subcomponents. We
choose to proceed with SU, as it is not only faster in
our implementation but also can generalize to fea-
ture types beyond TSG rules.
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Figure 8: The effects of redundancy filtering on classi-
fication performance using different redundancy metrics.
The cutoff values (p) used for SU and NPMI are .2 and .7
respectively.

6.3 TSG Induction

We demonstrate the flexibility and effectiveness of
our general model of mixtures of TSGs for labeled
data by example. The tunable parameters are the
number of grammars K, the Dirichlet priors v, over
grammar distributions for each label 7, and the con-
centration parameter ~y of the smoothing DP.

For a first baseline we set the number of grammars
K = 1, making the Dirichlet priors v irrelevant.
With a large v = 10?°, we essentially recover the
basic block sampling algorithm of Cohn and Blun-
som (2010). We refer to this model as M1. Our
second baseline model, M2, sets K to the number of
native language labels, and sets the v variables such
that each 7 is mapped to a single grammar by its L1
label, creating a naive Bayes model. For M2 and
the subsequent models we use v = 1000 to allow
moderate smoothing.

We also construct a model (M3) in which we set
K = 9 and v, is such that three grammars are likely
for any single 7; one shared by all n with the same
L1 label, one shared by all n with the same corpus
label, and one shared by all . We compare this with
another X = 9 model (M4) where the v are set to
be uniform across all 9 grammars.

We evaluate these systems on the percent of their
resulting grammar that rejects the hypothesis of lan-
guage independence using a x? test. Slight adjust-
ments were made to « for these models to bring
their output grammar size into the range of approxi-
mately 12000 rules. We average our results for each
model over single states drawn from five indepen-



| p<.1 p<.05 p<.01 p<.001
ML | 56.5(3.1) 54.5(3.0) 49.8(2.7) 45.1(2.5)
M2 | 553(3.7) 53.7(3.6) 49.1(33) 44.7(3.0)
M3 | 59.04.1) 57.2(4.1) 52.4(3.6) 48.4(3.3)
M4 | 58.9(3.8) 57.03.7) 51.93.4) 47.2(3.1)

Figure 9: The percentage of rules from each model that
reject L1 independence at varying levels of statistical sig-
nificance. The first number is with respect to the number
rules that pass the L1/corpus independence and redun-
dancy tests, and the second is in proportion to the full list
returned by grammar induction.

dent Markov chains.

Our results in Figure 9 show that using a mixture
of grammars allows the induction algorithm to find
more patterns that fit arbitrary criteria for language
dependence. The intuition supporting this is that in
simpler models a given grammar must represent a
larger amount of data that is better represented with
more vague, general purpose rules. Dividing the re-
sponsibility among several grammars lets rare pat-
terns form clusters more easily. The incorporation of
informed structure in M3 further improves the per-
formance of this latent mixture technique.

7 Discussion

Using these methods, we produce a list of L1 as-
sociated TSG rules that we release for public use.
We perform grammar induction using model M3,
apply our data dependence and redundancy filters,
rank for relevancy using x? and filter at the level of
p < .1 statistical significance for relevancy. Each
entry consists of a TSG rule and its matrix of counts
with each n. We provide the total for each L1 la-
bel, which shows the overall prediction of the pro-
portional use of that item. We also provide the x?
statistics for L1 dependence and the dependence of
L1 and corpus.

It is speculative to assign causes to the discrimi-
native rules we report, and we leave quantification
of such statements to future work. However, the
strength of the signal, as evidenced by actual counts
in data, and the high level interpretation that can be
easily assigned to the TSG rules is promising. As
understanding the features requires basic knowledge
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of Treebank symbols, we provide our interpretations
for some of the more interesting rules and summa-
rize their L1 distributions. Note that by describing a
rule as being preferred by a certain set of L1 labels,
our claim is relative to the other labels only; the true
cause could also be a dispreference in the comple-
ment of this set.

One interesting comparison made easy by our
method is the identification of similar structures that
have complementary L1 usage. An example is the
use of a prepositional phrase just before the first
noun phrase in a sentence, which is preferred in Ger-
man and Spanish, especially in the former. However,
German speakers disprefer a prepositional phrase
followed by a comma at the beginning of the sen-
tence, and Chinese speakers use this pattern more
frequently than the other L1s. Another contrastable
pair is the use of the word “because” with upper or
lower case, signifying sentence initial or medial use.
The former is preferred in Chinese and Japanese
text, while the latter is preferred in German and even
more so in Spanish L1 data.

As these examples suggest, the data shows a
strong division of preference between European
and Asian languages, but many patterns exist that
are uniquely preferred in single languages as well.
Japanese speakers are seen to frequently use a per-
sonal pronoun as the subject of the sentence, while
Spanish speakers use the phrase “the X of Y, the
verb “go”, and the determiner “this” with markedly
higher frequency. Germans tend to begin sentences
with adverbs, and various modal verb constructions
are popular with Chinese speakers. We suspect these
patterns to be evidence of preference in the speci-
fied language, rather than dispreference in the other
three.

Our strategy in regard to the hard filters for L1-
corpus dependence and redundancy has been to pre-
fer recall to precision, as false positives can be easily
ignored through subsequent inspection of the data
we supply. This makes the list suitable for human
qualitative analysis, but further work is required for
its use in downstream automatic systems.

8 Conclusion

This work contributes to the goal of leveraging NLI
data in SLA applications. We provide evidence for



our hypothesis that relevancy metrics based on mu-
tual information are ill-suited for this task, and rec-
ommend the use of the y? statistic for rejecting the
hypothesis of language independence. Explicit con-
trols for dependence between L1 and corpus are
proposed, and redundancy between features are ad-
dressed as well. We argue for the use of TSG rules as
features, and develop an induction algorithm that is
a supervised mixture of hierarchical grammars. This
generalizable formalism is used to capture linguistic
assumptions about the data and increase the amount
of relevant features extracted at several thresholds.

This project motivates continued incorporation of
more data and induction of TSGs over these larger
data sets. This will improve the quality and scope of
the resulting list of discriminative syntax, allowing
broader use in linguistics and SLA research. The
prospect of high precision and recall in the extrac-
tion of such patterns suggests several interesting av-
enues for future work, such as determination of the
actual language transfer phenomena evidenced by an
arbitrary count profile. To achieve the goal of auto-
matic detection of plausible transfer the native lan-
guages themselves must be considered, as well as a
way to distinguish between preference and dispref-
erence based on usage statistics. Another exciting
application of such a refined list of patterns is the
automatic integration of its features in L1 targeted
SLA software.
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An Analysis of Frequency- and Memory-Based Processing Costs
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Abstract

The frequency of words and syntactic con-
structions has been observed to have a sub-
stantial effect on language processing. This
begs the question of what causes certain con-
structions to be more or less frequent. A the-
ory of grounding (Phillips, 2010) would sug-
gest that cognitive limitations might cause lan-
guages to develop frequent constructions in
such a way as to avoid processing costs. This
paper studies how current theories of working
memory fit into theories of language process-
ing and what influence memory limitations
may have over reading times. Measures of
such limitations are evaluated on eye-tracking
data and the results are compared with predic-
tions made by different theories of processing.

1 Introduction

Frequency effects in language have been isolated
and observed in many studies (Trueswell, 1996;
Jurafsky, 1996; Hale, 2001; Demberg and Keller,
2008). These effects are important because they il-
luminate the ontogeny of language (how individual
speakers have acquired language), but they do not
answer questions about the phylogeny of language
(how the language came to its current form).
Phillips (2010) has hypothesized that grammar
rule probabilities may be grounded in memory lim-
itations. Increased delays in processing center-
embedded sentences as the number of embeddings
increases, for example, are often explained in terms
of a complexity cost associated with maintaining in-
complete dependencies in working memory (Gib-
son, 2000; Lewis and Vasishth, 2005). Other stud-
ies have shown a link between processing delays
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and the low frequency of center-embedded construc-
tions like object relatives (Hale, 2001), but they
have not explored the source of this low frequency.
A grounding hypothesis would claim that the low
probability of generating such a structure may arise
from an associated memory load. In this account,
while these complexity costs may involve language-
specific concepts such as referent or argument link-
ing, the underlying explanation would be one of
memory limitations (Gibson, 2000) or neural acti-
vation (Lewis and Vasishth, 2005).

This paper seeks to explore the different predic-
tions made by these theories on a broad-coverage
corpus of eye-tracking data (Kennedy et al., 2003).
In addition, the current experiment seeks to isolate
memory effects from frequency effects in the same
task. The results show that memory load measures
are a significant factor even when frequency mea-
sures are residualized out.

The remainder of this paper is organized as fol-
lows: Sections 2 and 3 describe several frequency
and memory measures. Section 4 describes a proba-
bilistic hierarchic sequence model that allows all of
these measures to be directly computed. Section 5
describes how these measures were used to predict
reading time durations on the Dundee eye-tracking
corpus. Sections 6 and 7 present results and discuss.

2 Frequency Measures

2.1 Surprisal

One of the strongest predictors of processing com-
plexity is surprisal (Hale, 2001). It has been shown
in numerous studies to have a strong correlation
with reading time durations in eye-tracking and self-
paced reading studies when calculated with a variety

Proceedings of NAACL-HLT 2013, pages 95-105,
Atlanta, Georgia, 9-14 June 2013. (©2013 Association for Computational Linguistics



of models (Levy, 2008; Roark et al., 2009; Wu et al.,
2010).

Surprisal predicts the integration difficulty that a
word x; at time step ¢ presents given the preceding
context and is calculated as follows:

ZsES(xl...xt) P(S)
> seS(arai1) P(8)

surprisal(z¢) = — log, (
(1)

where S(z1 ... ;) is the set of syntactic trees whose
leaves have z1 ...z as a preﬁx.1

In essence, surprisal measures how unexpected
constructions are in a given context. What it does
not provide is an explanation for why certain con-
structions would be less common and thus more sur-
prising.

2.2 Entropy Reduction

Processing difficulty can also be measured in terms
of entropy (Shannon, 1948). A larger entropy over a
random variable corresponds to greater uncertainty
over the observed value it will take. The entropy of
a syntactic derivation over the sequence xi ... x; is
calculated as:?

H(z1.4) =Y  —P(s)-logy P(s)  (2)

s€S(x1...xt)

Reduction in entropy has been found to predict
processing complexity (Hale, 2003; Hale, 2006;
Roark et al., 2009; Wu et al., 2010; Hale, 2011):

AH(x1..) = max(0, H(x1. 4—1) —H(x1..4)) (3)

This measures the change in uncertainty about the
discourse as each new word is processed.

3 Memory Measures

3.1 Dependency Locality

In Dependency Locality Theory (DLT) (Gibson,
2000), complexity arises from intervening referents
introduced between a predicate and its argument.
Under the original formulation of DLT, there is a

IThe parser in this study uses a beam. However, given high
parser accuracy, Roark (2001) showed that calculating com-
plexity metrics over a beam should obtain similar results to the
full complexity calculation.

The incremental formulation used here was first proposed
in Wu et al. (2010).
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storage cost for each new referent introduced and an
integration cost for each referent intervening in a de-
pendency projection. This is a simplification made
for ease of computation, and subsequent work has
found DLT to be more accurate cross-linguistically
if the intervening elements are structurally defined
rather than defined in terms of referents (Kwon et
al., 2010). That is, simply having a particular ref-
erent intervene in a dependency projection may not
have as great an effect on processing complexity as
the syntactic construction the referent appears in.
Therefore, this work reinterprets the costs of depen-
dency locality to be related to the events of begin-
ning a center embedding (storage) and completing
a center embedding (integration). Note that anti-
locality effects (where longer dependencies are eas-
ier to process) have also been observed in some lan-
guages, and DLT is unable to account for these phe-
nomena (Vasishth and Lewis, 2006).

3.2 ACT-R

Processing complexity has also been attributed to
confusability (Lewis and Vasishth, 2005) as defined
in domain-general cognitive models like ACT-R
(Anderson et al., 2004).

ACT-R is based on theories of neural activation.
Each new word is encoded and stored in working
memory until it is retrieved at a later point for mod-
ification before being re-encoded into the parse. A
newly observed sign (word) associatively activates
any appropriate arguments from working memory,
so multiple similarly appropriate arguments would
slow processing as the parser must choose between
the highly activated hypotheses. Any intervening
signs (words or phrases) that modify a previously
encoded sign re-activate it and raise its resting acti-
vation potential. This can ease later retrieval of that
sign in what is termed an anti-locality eftect, con-
tra predictions of DLT. In this way, returning out of
an embedded clause can actually speed processing
by having primed the retrieved sign before it was
needed. ACT-R attributes locality phenomena to fre-
quency effects (e.g. unusual constructions) overrid-
ing such priming and to activation decay if embed-
ded signs do not prime the target sign through mod-
ification (as in parentheticals). Finally, ACT-R pre-
dicts something like DLT’s storage cost due to the
need to differentiate each newly encoded sign from
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Figure 1: Two disjoint connected components of a phrase
structure tree for the sentence The studio bought the pub-
lisher’s rights, shown immediately prior to the word pub-
lisher.

those previously encoded (similarity-based encod-
ing interference) (Lewis et al., 2006).

3.3 Hierarchic Sequential Prediction

Current models of working memory in structured
tasks are defined in terms of hierarchies of sequen-
tial processes, in which superordinate sequences can
be interrupted by subordinate sequences and resume
when the subordinate sequences have concluded
(Botvinick, 2007). These models rely on temporal
cueing as well as content-based cueing to explain
how an interrupted sequence may be recalled for
continuation.

Temporal cueing is based on a context of temporal
features for the current state (Howard and Kahana,
2002). The temporal context in which the subor-
dinate sequence concludes must be similar enough
to the temporal context in which it was initiated to
recall where in the superordinate sequence the sub-
ordinate sequence occurred. For example, the act
of making breakfast may be interrupted by a phone
call. Once the call is complete, the temporal context
is sufficiently similar to when the call began that one
is able to continue preparing breakfast. The associ-
ation between the current temporal context and the
temporal context prior to the interruption is strong
enough to cue the next action.

Temporal cueing is complemented by sequential
(content-based) cueing (Botvinick, 2007) in which
the content of an individual element is associated
with, and thus cues, the following element. For ex-
ample, recalling the 20th note of a song is difficult,
but when playing the song, each note cues the fol-
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lowing note, leading one to play the 20th note with-
out difficulty.

Hierarchic sequential prediction may be directly
applicable to processing syntactic center embed-
dings (van Schijndel et al., in press). An ongoing
parse may be viewed graph-theoretically as one or
more connected components of incomplete phrase
structure trees (see Figure 1). Beginning a new sub-
ordinate sequence (a center embedding) introduces
a new connected component, disjoint from that of
the superordinate sequence. As the subordinate se-
quence proceeds, the new component gains asso-
ciated discourse referents, each sequentially cued
from the last, until finally it merges with the super-
ordinate connected component at the end of the em-
bedded clause, forming a single connected compo-
nent representing the parse up to that point. Since
it is not connected to the subordinate connected
component prior to merging, the superordinate con-
nected component must be recalled through tempo-
ral cueing.

McElree (2001; 2006) has found that retrieval
of any non-focused (or in this case, unconnected)
element from memory leads to slower processing.
Therefore, integrating two disjoint connected com-
ponents should be expected to incur a processing
cost due to the need to recall the current state of the
superordinate sequence to continue the parse. Such
a cost would corroborate a DLT-like theory where
integration slows processing.

3.4 Dynamic Recruitment of Additional
Processing Resources

Language processing is typically centered in the left
hemisphere of the brain (for right-handed individ-
uals). Just and Varma (2007) provide fMRI re-
sults suggesting readers dynamically recruit addi-
tional processing resources such as the right-side ho-
mologues of the language processing areas of the
brain when processing center-embedded construc-
tions. Once an embedded construction terminates,
the reader may still have temporary access to these
extra processing resources, which may briefly speed
processing.

This hypothesis would, therefore, predict an en-
coding cost when a center embedding is initiated.
The resulting inhibition would trigger recruitment of
additional processing resources, which would then



allow the rest of the embedded structure to be pro-
cessed at the usual speed. Upon completing an em-
bedding, the difficulty arising from memory retrieval
(McElree, 2001) would be ameliorated by these ex-
tra processing resources, and the reduced process-
ing complexity arising from reduced memory load
would yield a temporary facilitation in processing.
No longer requiring the additional resources to cope
with the increased embedding, the processor would
release them, returning the processor to its usual
speed. Unlike anti-locality, where processing is
facilitated in longer passages due to accumulating
probabilistic evidence, a model of dynamic recruit-
ment of additional processing resources would pre-
dict universal facilitation after a center embedding
of any length, modulo frequency effects.

3.5 Embedding Difference

Wu et al. (2010) propose an explicit measure of
the difficulty associated with processing center-
embedded constructions, which is similar to the pre-
dictions of dynamic recruitment and is defined in
terms of changes in memory load. They calcu-
late a probabilistically-weighted average embedding
depth as follows:

Memb(xl ..

)=y d(s)-P(s) (&)

s€S(x1...x¢)

where d(s) returns the embedding depth of the
derivation s at x; in a variant of a left-corner pars-
ing process.> Embedding difference may then be de-
rived as:

EmbDiff (z1...x) =premp(z1 ... 2)—  (5)

Memb(xl .- -xt—l)

This is hypothesized to correlate positively with
processing load: increasing the embedding depth in-
creases processing load and decreasing it reduces
processing load. Note that embedding difference
makes the opposite prediction from DLT in that in-
tegrating an embedded clause is predicted to speed
processing. In fact, the predictions of embedding

3 As pointed out by Wu et al. (2010), in practice this can be

computed over a beam of potential parses in which case it must
be normalized by the total probability of the beam.
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difference are such that it may be viewed as an im-
plementation of the predictions of a hierarchic se-
quential processing model with dynamic recruitment
of additional resources.

4 Model

This paper uses a hierarchic sequence model imple-
mentation of a left-corner parser variant (van Schijn-
del et al., in press), which represents connected com-
ponents of phrase structure trees in hierarchies of
hidden random variables. This requires, at each time
step t:

e a hierarchically-organized set of /N connected
component states g;', each consisting of an ac-
tive sign of category a,z, and an awaited sign
of category by, separated by a slash */°; and

e an observed word x;.

Each connected component state in this model then
represents a contiguous portion of a phrase structure
tree (see Figure 1 on preceding page).

The operations of this parser can be defined as a
deductive system (Shieber et al., 1995) with an input
sequence consisting of a top-level connected com-
ponent state T /T, corresponding to an existing dis-
course context, followed by a sequence of observed
words 21, T, ...* If an observation z; can attach as
the awaited sign of the most recent (most subordi-
nate) connected component a/b, it is hypothesized
to do so, turning this incomplete sign into a com-
plete sign a (F—, below); or if the observation can
serve as a lower descendant of this awaited sign, it
is hypothesized to form the first complete sign @’ in
a newly initiated connected component (F+):

M()% T (F-)
a
Mbiuz/...; a — xy (F+)

a/b o

Then, if either of these complete signs (a or a’
above, matched to a” below) can attach as an initial

*A deductive system consists of inferences or productions
P . . . .
of the form: — R, meaning premise P entails conclusion () ac-

cording to rule R.



T/T  the

T/T.D ot
T/T.NPIN & studio
T/T.NP
T/T,SVP Y bought
T/T.SIVP.V F+
T/T. SINP the
T/T. SINP,D F+
T/T,S/NB,NP/N = publisher
T/T. S/NP, NP -
T/T.S/NP.D/G =~ 'S
T/T. S/NP,D F-
T/T,S/IN rights
T/T.S -
L+

T/T

Figure 2: Example parse (in the form of a deductive proof) of the sentence The studio bought the publisher’s rights,
using F+, F—, L+, and L— productions. Each pair of deductions combines a context of one or more connected compo-
nent states with a sign (word) observed in that context. By applying the F and L rules to the observed sign and context,
the parser is able to generate a consequent context. Initially, the context corresponds to a connected pre-sentential
dialogue state T/T. When the is observed, the parser applies F+ to begin a new connected component state D. By
applying L—, the parser determines that this new connected component is unfinished and generates an appropriate
incomplete connected component state NP/N, encoding the superordinate state T/T for later retrieval. Further on, the

parser observes ’s and uses F— to avoid generating a new
parser follows this up with L+ to recall the superordinate

connected component, which completes the sign D. The
connected component state S/NP and integrate it into the

most deeply embedded connected component, which results in a less deeply embedded structure.

child of the awaited sign of the immediately superor-
dinate connected component state a/b, it is hypoth-
esized to do so and terminate the subordinate con-
nected component state, with x; as the last observa-
tion of the terminated connected component (L+); or
if the observation can serve as a lower descendant of
this awaited sign, it is hypothesized to remain dis-
joint and form its own connected component (L-):

a/b o’

W b— a” b// (L+)
a/b a
a/b/ 7T b5d . d —ad (L-)

These operations can be made probabilistic. The
probability o of a transition at time step ¢ is defined
in terms of (i) a probability ¢ of initiating a new con-
nected component state with x; as its first observa-
tion, multiplied by (ii) the probability A of terminat-
ing a connected component state with x; as its last
observation, multiplied by (iii) the probabilities «
and ( of generating categories for active and awaited
signs agr and by in the resulting most subordinate
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connected component state g;*. This kind of model
can be defined directly on PCFG probabilities and
trained to produce state-of-the-art accuracy by using
the latent variable annotation of Petrov et al. (2006)
(van Schijndel et al., in press).’

An example parse is shown in Figure 2. Since
two binary structural decisions (F and L) must be
made in order to generate each word, there are four
possible structures that may be generated (see Ta-
ble 1). The F+L- transition initiates a new level
of embedding at word x; and so requires the super-
ordinate state to be encoded for later retrieval (e.g.
on observing the in Figure 2). The F-L+ transi-
tion completes the deepest level of embedding and
therefore requires the recall of the current superor-
dinate connected component state with which the

5The model has been shown to achieve an F-score of 87.8,
within .2 points of the Petrov and Klein (2007) parser, which
obtains an F-score of 88.0 on the same task. Because the se-
quence model is defined over binary-branching phrase structure,
both parsers were evaluated on binary-branching phrase struc-
ture trees to provide a fair comparison.



F-L—- Cue Active Sign
F+L- Initiate/Encode
F-L+ | Terminate/Integrate
F+L+ | Cue Awaited Sign

Table 1: The hierarchical structure decisions and the op-
erations they represent. F+L— initiates a new connected
component, F-L+ integrates two disjoint connected com-
ponents into a single connected component, and F-L—
and F+L+ sequentially cue, respectively, a new active
sign (along with an associated awaited sign) and a new
awaited sign from the most recent connected component.

subordinate connected component state will be in-
tegrated. For example, in Figure 2, upon observ-
ing ’s, the parser must use temporal cueing to re-
call that it is in the middle of processing an NP (to
complete an S), which sequentially cues a prediction
of N. F-L— transitions complete the awaited sign of
the most subordinate state and so sequentially cue
a following connected component state at the same
tier of the hierarchy. For example, in Figure 2, after
observing studio, the parser uses the completed NP
to sequentially cue the prediction that it has finished
the left child of an S. F+L+ transitions locally ex-
pand the awaited sign of the most subordinate state
and so should also not require any recall or encod-
ing. For example, in Figure 2, observing bought
while awaiting a VP sequentially cues a prediction
of NP.

F+L—, then, loosely corresponds to a storage ac-
tion under DLT as more hierarchic levels must now
be maintained at each future step of the parse. As
stated before, it differs from DLT in that it is sensi-
tive to the depth of embedding rather than a partic-
ular subset of syntactic categories. Wu et al. (2010)
found that increasing the embedding depth led to
longer reading times in a self-paced reading experi-
ment. In ACT-R terms, F+L— corresponds to an en-
coding action, potentially causing processing diffi-
culty resulting from the similarity of the current sign
to previously encoded signs.

F-L+, by contrast, is similar to DLT’s integra-
tion action since a subordinate connected compo-
nent is integrated into the rest of the parse structure.
This represents a temporal cueing event in which
the awaited category of the superordinate connected
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Theory F+L— F-L+

DLT positive | positive
ACT-R positive | positive
Hier. Sequential Prediction positive
Dynamic Recruitment positive | negative
Embedding Difference positive | negative

Table 2: Each theory’s prediction of the direction of
the correlation between each hierachical structure predic-
tor and reading times. Hierarchic sequential prediction
is agnostic about the processing speed of F+L— opera-
tions, and none of the theories make any predictions as to
the sign associated with the within-embedding measures
F-L- and F+L+.

component is recalled. In contrast to DLT, embed-
ding difference and dynamic recruitment would pre-
dict a shorter reading time in the F-L+ case be-
cause of the reduction in memory load. In an ACT-R
framework, reading time durations can increase at
the retrieval site because the retrieval causes compe-
tition among similarly encoded signs in the context
set. While it is possible for reading times to decrease
when completing a center embedding in ACT-R (Va-
sishth and Lewis, 2006), this would be expressed
as a frequency effect due to certain argument types
commonly foreshadowing their predicates (Jaeger et
al., 2008). Since frequency effects are factored sep-
arately from memory effects in this study, ACT-R
would predict longer residual (memory-based) read-
ing times when completing an embedding.

Predicted correlations to reading times for the F
and L transitions are summarized in Table 2.

S Eye-tracking

Eye-tracking and reading time data are often used to
test complexity measures (Gibson, 2000; Demberg
and Keller, 2008; Roark et al., 2009) under the as-
sumption that readers slow down when reading more
complex passages. Readers saccade over portions of
text and regress back to preceding text in complex
patterns, but studies have correlated certain mea-
sures with certain processing constraints (see Clifton
et al. 2007 for a review). For example, the initial
length of time fixated on a single word is correlated
with word identification time; whereas regression
durations after a word is fixated (but prior to a fix-
ation in a new region) are hypothesized to correlate



with integration difficulty.

Since this work focuses on incremental process-
ing, all processing that occurs up to a given point in
the sentence is of interest. Therefore, in this study,
predictions will be compared to go-past durations.
Go-past durations are calculated by summing all fix-
ations in a region of text, including regressions, un-
til a new region is fixated, which accounts for addi-
tional processing that may take place after initial lex-
ical access, but before the next region is processed.
For example, if one region ends at word 5 in a sen-
tence, and the next fixation lands on word 8, then the
go-past region consists of words 6-8 and the go-past
duration sums all fixations until a fixation occurs af-
ter word 8.

6 Evaluation

The measures presented in this paper were evaluated
on the Dundee eye-tracking corpus (Kennedy et al.,
2003). The corpus consists of 2388 sentences of nat-
urally occurring news text written in standard British
English. The corpus also includes eye-tracking data
from 10 native English speakers, which provides
a test corpus of 260,124 subject-duration pairs of
reading time data. Of this, any fixated words ap-
pearing fewer than 5 times in the training data were
considered unknown and were filtered out to obtain
accurate predictions. Fixations on the first or last
words of a line were also filtered out to avoid any
‘wrap-up’ effects resulting from preparing to sac-
cade to the beginning of the next line or resulting
from orienting to a new line. Additionally, following
Demberg and Keller (2008), any fixations that skip
more than 4 words were attributed to track loss by
the eyetracker or lack of attention of the reader and
so were excluded from the analysis. This left the fi-
nal evaluation corpus with 151,331 subject-duration
pairs.

The evaluation consisted of fitting a linear mixed-
effects model (Baayen et al., 2008) to reading time
durations using the Imer function of the /me4 R
package (Bates et al., 2011; R Development Core
Team, 2010). This allowed by-subject and by-item
variation to be included in the initial regression as
random intercepts in addition to several baseline pre-
dictors.% Before fitting, the durations extracted from

SEach fixed effect was centered to reduce collinearity.
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the corpus were log-transformed, producing more
normally distributed data to obey the assumptions of
linear mixed effects models.’

Included among the fixed effects were the posi-
tion in the sentence that initiated the go-past region
(SENTPOS) and the number of characters in the ini-
tiating word (NRCHAR). The difficulty of integrat-
ing a word may be seen in whether the immediately
following word was fixated (NEXTISFIX), and sim-
ilarly if the immediately previous word was fixated
(PREVISFIX) the current word probably need not be
fixated for as long. Finally, unigram (LOGPROB)
and bigram probabilities are included. The bigram
probabilities are those of the current word given the
previous word (LOGFWPROB) and the current word
given the following word (LOGBWPROB). Fossum
and Levy (2012) showed that for n-gram probabili-
ties to be effective predictors on the Dundee corpus,
they must be calculated from a wide variety of texts,
so following them, this study used the Brown corpus
(Francis and Kucera, 1979), the WSJ Sections 02-21
(Marcus et al., 1993), the written text portion of the
British National Corpus (BNC Consortium, 2007),
and the Dundee corpus (Kennedy et al., 2003). This
amounted to an n-gram training corpus of roughly
87 million words. These statistics were smoothed
using the SRILM (Stolcke, 2002) implementation of
modified Kneser-Ney smoothing (Chen and Good-
man, 1998). Finally, total surprisal (SURP) was in-
cluded to account for frequency effects in the base-
line.

The preceding measures are commonly used in
baseline models to fit reading time data (Demberg
and Keller, 2008; Frank and Bod, 2011; Fossum and
Levy, 2012) and were calculated from the final word
of each go-past region. The following measures
create a more sophisticated baseline by accumulat-
ing over the entire go-past region to capture what
must be integrated into the discourse to continue the
parse. One factor (CWDELTA) simply counts the
number of words in each go-past region. Cumula-

"In particular, these models assume the noise in the data is
normally distributed. Initial exploratory trials showed that the
residuals of fitting any sensible baseline also become more nor-
mally distributed if the response variable is log-transformed. Fi-
nally, the directions of the effects remain the same whether or
not the reading times are log-transformed, though significance
cannot be ascertained without the transform.



tive total surprisal (CUMUSURP) and cumulative en-
tropy reduction (ENTRED) give the surprisal (Hale,
2001) and entropy reduction (Hale, 2003) summed
over the go-past region. To avoid convergence is-
sues, each of the cumulative measures is residual-
ized from the next simpler model in the following
order: CWDELTA from the standard baseline, CU-
MUSURP from the baseline with CWDELTA, and EN-
TRED from the baseline with all other effects.

Residualization was accomplished by using the
simpler mixed-effects model to fit the measure of in-
terest. The residuals from that model fit were then
used in place of the factor of interest. All joint inter-
actions were included in the baseline model as well.
Finally, to account for spillover effects (Just et al.,
1982) where processing from a previous region con-
tributes to the following duration, the above baseline
predictors from the previous go-past region were in-
cluded as factors for the current region.

Having SURP as a predictor with CUMUSURP may
seem redundant, but initial analyses showed SURP
was a significant predictor over CUMUSURP when
CWDELTA was a separate factor in the baseline (cur-
rent: p = 2.2 - 10716 spillover: p = 2 - 1071%)
and vice versa (current: p = 2.2 - 10716 spillover:
p = 6-107°). One reason for this could be that
go-past durations conflate complexity experienced
when initially fixating on a region with the difficulty
experienced during regressions. By including both
versions of surprisal, the model is able to account
for frequency effects occurring in both conditions.

This study is only interested in how well the pro-
posed memory-based measures fit the data over the
baseline, so to avoid fitting to the test data or weak-
ening the baseline by overfitting to training data, the
full baseline was used in the final evaluation.

Each measure proposed in this paper was summed
over go-past regions to make it cumulative and
was residualized from all non-spillover factors be-
fore being included on top of the full baseline as a
main effect. Likewise, the spillover version of each
proposed measure was residualized from the other
spillover factors before being included as a main ef-
fect. Only a single proposed measure (or its spillover
corrollary) was included in each model. The results
shown in Table 3 reflect the probability of the full
model fit being obtained by the model lacking each
factor of interest. This was found via posterior sam-
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] Factor \ Operation | t-score p-value
F-L- Cue Active 0.60 0.55
F+L- Initiate 7.10 | 2.22-1071
F-L+ Integrate -5.44 | 5231078
F+L+ | Cue Awaited | -1.55 0.12

Table 3: Significance of each of the structure generation
outcomes at predicting log-transformed durations when
added to the baseline as a main effect after being residu-
alized from it. The sign of the t-score indicates the direc-
tion of the correlation between the residualized factor and
go-past durations. Note that these factors are all based
on the current go-past region; the spillover corollaries of
these were not significant predictors of reading times.

pling of each factor using the Markov chain Monte
Carlo implementation of the languageR R package
(Baayen, 2008).

The results indicate that the F+L— and F-L+ mea-
sures were both significant predictors of duration as
expected. Further, F-L— and F+L+, which both sim-
ply reflect sequential cueing, were not significant
predictors of go-past duration, also as expected.

7 Discussion and Conclusion

The fact that F+L— was strongly predictive over the
baseline is encouraging as it suggests that memory
limitations could provide at least a partial explana-
tion of why certain constructions are less frequent in
corpora and thus yield a high surprisal. Moreover,
it indicates that the model corroborates the shared
prediction of most of the memory-based models that
initiating a new connected component slows pro-
cessing.

The fact that F-L+ is predictive but has a neg-
ative coefficient could be evidence of anti-locality,
or it could be an indication of some sort of pro-
cessing momentum due to dynamic recruitment of
additional processing resources (Just and Varma,
2007). Since anti-locality is an expectation-based
frequency effect, and since this study controlled for
frequency effects with n-grams, surprisal, and en-
tropy reduction, an anti-locality explanation would
rely on either (i) more precise variants of the met-
rics used in this study or (ii) other frequency metrics
altogether. Future work could investigate the possi-
bility of anti-locality by looking at the distance be-
tween an encoding operation and its corresponding



integration action to see if the integration facilita-
tion observed in this study is driven by longer em-
beddings or if there is simply a general facilitation
effect when completing embeddings.

The finding of a negative integration cost was pre-
viously observed by Wu et al. (2010) as well as
Demberg and Keller (2008), although Demberg and
Keller calculated it using the original referent-based
definitions of Gibson (1998; 2000) and varied which
parts of speech counted for calculating integration
cost. Ultimately, Demberg and Keller (2008) con-
cluded that the negative coefficient was evidence
that integration cost was not a good broad-coverage
predictor of reading times; however, this study has
replicated the effect and showed it to be a very strong
predictor of reading times, albeit one that is corre-
lated with facilitation rather than inhibition.

It is interesting that many studies have found
negative integration cost using naturalistic stimuli
while others have consistently found positive inte-
gration cost when using constructed stimuli with
multiple center embeddings presented without con-
text (Gibson, 2000; Chen et al., 2005; Kwon et al.,
2010). It may be the case that any dynamic re-
cruitment is overwhelmed by the memory demands
of multiply center-embedded stimuli. Alternatively,
it may be that the difficulty of processing multiply
center-embedded sentences containing ambiguities
produces anxiety in subjects, which slows process-
ing at implicit prosodic boundaries (Fodor, 2002;
Mitchell et al., 2008). In any case, the source of this
discrepancy presents an attractive target for future
research.

In general, sequential prediction does not seem
to present people with any special ease or difficulty
as evidenced by the lack of significance of F-L—
and F+L+ predictions when frequency effects are
factored out. This supports a theory of sequential,
content-based cueing (Botvinick, 2007) that predicts
that certain states would directly cue other states and
thus avoid recall difficulty. An example of this may
be seen in the case of a transitive verb triggering
the prediction of a direct object. This kind of cue-
ing would show up as a frequency effect predicted
by surprisal rather than as a memory-based cost,
due to frequent occurrences becoming ingrained as
a learned skill. Future work could use these sequen-
tial cueing operations to investigate further claims
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of the dynamic recruitment hypothesis. One of the
implications of the hypothesis is that recruitment of
resources alleviates the initial encoding cost, which
allows the parser to continue on as before the em-
bedding. DLT, on the other hand, predicts that there
is a storage cost for maintaining unresolved depen-
dencies during a parse (Gibson, 2000). By weight-
ing each of the sequential cueing operations with the
embedding depth at which it occurs, an experiment
may be able to test these two predictions.

This study has shown that measures based on
working memory operations have strong predictivity
over other previously proposed measures including
those associated with frequency effects. This sug-
gests that memory limitations may provide a partial
explanation of what gives rise to frequency effects.
Lastly, this paper provides evidence that there is a
robust facilitation effect in English that arises from
completing center embeddings.

The hierarchic sequence model, all evaluation
scripts, and regression results for all baseline pre-
dictors used in this paper are freely available at
http://sourceforge.net/projects/modelblocks/.
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Abstract

We propose a new approach to identifying
semantically similar words across languages.
The approach is based on an idea that two
words in different languages are similar if they
are likely to generate similar words (which in-
cludes both source and target language words)
as their top semantic word responses. Se-
mantic word responding is a concept from
cognitive science which addresses detecting
most likely words that humans output as free
word associations given some cue word. The
method consists of two main steps: (1) it uti-
lizes a probabilistic multilingual topic model
trained on comparable data to learn and quan-
tify the semantic word responses, (2) it pro-
vides ranked lists of similar words accord-
ing to the similarity of their semantic word
response vectors. We evaluate our approach
in the task of bilingual lexicon extraction
(BLE) for a variety of language pairs. We
show that in the cross-lingual settings without
any language pair dependent knowledge the
response-based method of similarity is more
robust and outperforms current state-of-the art
methods that directly operate in the semantic
space of latent cross-lingual concepts/topics.

1 Introduction

Cross-lingual semantic word similarity addresses
the task of detecting words that refer to similar se-
mantic concepts and convey similar meanings across
languages. It ultimately boils down to the automatic
identification of translation pairs, that is, bilingual
lexicon extraction (BLE). Such lexicons and seman-
tically similar words serve as important resources
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in cross-lingual knowledge induction (e.g., Zhao et
al. (2009)), statistical machine translation (Och and
Ney, 2003) and cross-lingual information retrieval
(Ballesteros and Croft, 1997; Levow et al., 2005).

From parallel corpora, semantically similar words
and bilingual lexicons are induced on the basis of
word alignment models (Brown et al., 1993; Och
and Ney, 2003). However, due to a relative scarce-
ness of parallel texts for many language pairs and
domains, there has been a recent growing interest in
mining semantically similar words across languages
on the basis of comparable data readily available on
the Web (e.g., Wikipedia, news stories) (Haghighi et
al., 2008; Hassan and Mihalcea, 2009; Vulié et al.,
2011; Prochasson and Fung, 2011).

Approaches to detecting semantic word similarity
from comparable corpora are most commonly based
on an idea known as the distributional hypothesis
(Harris, 1954), which states that words with sim-
ilar meanings are likely to appear in similar con-
texts. Each word is typically represented by a high-
dimensional vector in a feature vector space or a so-
called semantic space, where the dimensions of the
vector are its context features. The semantic similar-
ity of two words, wf given in the source language
Lg with vocabulary V*° and wl in the target lan-
guage L7 with vocabulary V7 is then:

Sim(w?, wy) = SF(cv(wy), cv(wy))

)]

cv(wy) = [sct(c1), . . ., s¢f (cn)] denotes a context
vector for wy{ with N context features c;, where
scy (ci,) denotes the score for wy associated with
context feature c¢; (similar for w2T ). SF' is a sim-

ilarity function (e.g., cosine, the Kullback-Leibler
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divergence, the Jaccard index) operating on the con-
text vectors (Lee, 1999; Cha, 2007).

In order to compute cross-lingual semantic word
similarity, one needs to design the context features
of words given in two different languages that span
a shared cross-lingual semantic space. Such cross-
lingual semantic spaces are typically spanned by:
(1) bilingual lexicon entries (Rapp, 1999; Gaussier
et al., 2004; Laroche and Langlais, 2010; Tamura
et al., 2012), or (2) latent language-independent se-
mantic concepts/axes (e.g., latent cross-lingual top-
ics) induced by an algebraic model (Dumais et al.,
1996), or more recently by a generative probabilis-
tic model (Haghighi et al., 2008; Daumé III and Ja-
garlamudi, 2011; Vuli¢ et al., 2011). Context vec-
tors cv(wy) and cv(wd) for both source and target
words are then compared in the semantic space in-
dependently of their respective languages.

In this work, we propose a new approach to con-
structing the shared cross-lingual semantic space
that relies on a paradigm of semantic word respond-
ing or free word association. We borrow that con-
cept from the psychology/cognitive science litera-
ture. Semantic word responding addresses a task
that requires participants to produce first words that
come to their mind that are related to a presented cue
word (Nelson et al., 2000; Steyvers et al., 2004).

The new cross-lingual semantic space is spanned
by all vocabulary words in the source and the target
language. Each axis in the space denotes a semantic
word response. The similarity between two words is
then computed as the similarity between the vectors
comprising their semantic word responses using any
of existing S F'-s. Two words are considered seman-
tically similar if they are likely to generate similar
semantic word responses and assign similar impor-
tance to them.

We utilize a shared semantic space of latent cross-
lingual topics learned by a multilingual probabilistic
topic model to obtain semantic word responses and
quantify the strength of association between any cue
word and its responses monolingually and across
languages, and, consequently, to build semantic re-
sponse vectors. That effectively translates the task
of word similarity from the semantic space spanned
by latent cross-lingual topics to the semantic space
spanned by all vocabulary words in both languages.

The main contributions of this article are:
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e We propose a new approach to modeling cross-
lingual semantic similarity of words based on
the similarity of their semantic word responses.

e We present how to estimate and quantify se-
mantic word responses by means of a multilin-
gual probabilistic topic model.

e We demonstrate how to employ our novel
paradigm that relies on semantic word respond-
ing in the task of bilingual lexicon extraction
(BLE) from comparable data.

e We show that the response-based model of sim-
ilarity is more robust and obtains better results
for BLE than the models that operate in the se-
mantic space spanned by latent semantic con-
cepts, i.e., cross-lingual topics directly.

The following sections first review relevant prior
work and provide a very short introduction to multi-
lingual probabilistic topic modeling, then describe
our response-based approach to modeling cross-
lingual semantic word similarity, and finally present
our evaluation and results on the BLE task for a va-
riety of language pairs.

2 Related Work

When dealing with the cross-lingual semantic word
similarity, the focus of the researchers is typically
on BLE, since usually the most similar words across
languages are direct translations of each other. Nu-
merous approaches emerged over the years that try
to induce bilingual word lexicons on the basis of
distributional information. Especially challenging
is the task of mining semantically similar words
from comparable data without any external knowl-
edge source such as machine-readable seed bilin-
gual lexicons used in (Fung and Yee, 1998; Rapp,
1999; Fung and Cheung, 2004; Gaussier et al., 2004;
Morin et al., 2007; Andrade et al., 2010; Tamura
et al., 2012), predefined explicit ontology or cate-
gory knowledge used in (Déjean et al., 2002; Hassan
and Mihalcea, 2009; Agirre et al., 2009), or ortho-
graphic clues as used in (Koehn and Knight, 2002;
Haghighi et al., 2008; Daumé III and Jagarlamudi,
2011). This work addresses that particularly difficult
setting which does not assume any language pair de-
pendent background knowledge. It makes methods



developed in such a setting applicable even on dis-
tant language pairs with scarce resources.

Recently, Griffiths et al. (2007), and Steyvers and
Griffiths (2007) proposed models of free word asso-
ciation and semantic word similarity in the monolin-
gual settings based on per-topic word distributions
from probabilistic topic models such as pLSA (Hof-
mann, 1999) and LDA (Blei et al., 2003). Addition-
ally, Vuli¢ et al. (2011) constructed several models
that utilize a shared cross-lingual topical space ob-
tained by a multilingual topic model (Mimno et al.,
2009; De Smet and Moens, 2009; Boyd-Graber and
Blei, 2009; Ni et al., 2009; Jagarlamudi and Daumé
III, 2010; Zhang et al., 2010) to identify potential
translation candidates in the cross-lingual settings
without any background knowledge. In this paper,
we show that a transition from their semantic space
spanned by cross-lingual topics to a semantic space
spanned by all vocabulary words yields more robust
models of cross-lingual semantic word similarity.

3 Modeling Word Similarity as the
Similarity of Semantic Word Responses

This section contains a detailed description of our
semantic word similarity method that relies on se-
mantic word responses. Since the method utilizes
the concept of multilingual probabilistic topic mod-
eling, we first provide a very short overview of that
concept, then present the intuition behind the ap-
proach, and finally describe our method in detail.

3.1 Multilingual Probabilistic Topic Modeling

Assume that we are given a multilingual corpus
C of [ languages, and C is a set of text collec-
tions {C1,...,C;} in those languages. A multi-
lingual probabilistic topic model (Mimno et al.,
2009; De Smet and Moens, 2009; Boyd-Graber
and Blei, 2009; Ni et al., 2009; Jagarlamudi and
Daumé III, 2010; Zhang et al., 2010) of a mul-
tilingual corpus C is defined as a set of semanti-
cally coherent multinomial distributions of words

with values Pj(wg\zk), j = 1,...,1, for each vo-
cabulary | Z2 N 72 S .,Vl associated with text
collections Ci,...,Cj,...,C; € C given in lan-
guages L1, ..., Lj,..., L. Pj(wg|zk) is calculated

for each w! € V7. The probability scores P; (wf |21)
build per-topic word distributions, and they consti-
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tute a language-specific representation (e.g., a prob-
ability value is assigned only for words from V7)
of a language-independent cross-lingual latent con-
cept, that is, latent cross-lingual topic 2z, € Z.
Z = {z1,...,zK} represents the set of all K la-
tent cross-lingual topics present in the multilingual
corpus. Each document in the multilingual corpus
is thus considered a mixture of K cross-lingual top-
ics from the set Z. That mixture for some docu-
ment d] € C; is modeled by the probability scores
Pj(zk|dg ) that altogether build per-document topic
distributions.

Each cross-lingual topic from the set Z can be
observed as a latent language-independent concept
present in the multilingual corpus, but each lan-
guage in the corpus uses only words from its own
vocabulary to describe the content of that concept.
For instance, having a multilingual collection in En-
glish, Spanish and Dutch and discovering a topic
on Soccer, that cross-lingual topic would be repre-
sented by words (actually probabilities over words)
{player, goal, coach, ...} in English, {balon (ball),
futbolista (soccer player), goleador (scorer), ...}
in Spanish, and {wedstrijd (match), elftal (soccer
team), doelpunt (goal), ...} in Dutch. We have
> wicvs Pi(w]|zk) = 1, for each vocabulary V7
représenting language L;, and for each topic z;, €
Z. Therefore, the latent cross-lingual topics also
span a shared cross-lingual semantic space.

3.2 The Intuition Behind the Approach

Imagine the following thought experiment. A group
of human subjects who have been raised bilingually
and thus are native speakers of two languages Lg
and L, is playing a game of word associations.
The game consists of possibly an infinite number of
iterations, and each iteration consists of 4 rounds.
In the first round (the S-S round), given a word in
the language Lg, the subject has to generate a list
of words in the same language Lg that first occur
to her/him as semantic word responses to the given
word. The list is in descending order, with more
prominent word responses occurring higher in the
list. In the second round (the S-T round), the sub-
ject repeats the procedure, and generates the list of
word responses to the same word from Lg, but now
in the other language L. The third (the 7-T round)



and the fourth round (the 7-S round) are similar to
the first and the second round, but now a list of word
responses in both Lg and L has to be generated for
some cue word from Lp. The process of generating
the lists of semantic responses then continues with
other cue words and other human subjects.

As the final result, for each word in the source
language Lg, and each word in the target language
L7, we obtain a single list of semantic word re-
sponses comprising words in both languages. All
lists are sorted in descending order, based on some
association score that takes into account both the
number of times a word has occurred as an asso-
ciative response, as well as the position in the list
in each round. We can now measure the similarity
of any two words, regardless of their corresponding
languages, according to the similarity of their cor-
responding lists that contain their word responses.
Words that are equally likely to trigger the same as-
sociative responses in the human brain, and more-
over assign equal importance to those responses, as
provided in the lists of associative responses, are
very likely to be closely semantically similar. Addi-
tionally, for a given word w7 in the source language
Lg, some word w2T in L7 that has the highest simi-
larity score among all words in L7 should be a direct
word-to-word translation of w?.

3.3 Modeling Semantic Word Responses via
Cross-Lingual Topics

Cross-lingual topics provide a sound framework to
construct a probabilistic model of the aforemen-
tioned experiment. To model semantic word re-
sponses via the shared space of cross-lingual top-
ics, we have to set a probabilistic mass that quan-
tifies the degree of association. Given two words
wi,wp € VU VT, anatural way of expressing the
asymmetric semantic association is by modeling the
probability P(ws|w;) (Griffiths et al., 2007), that is,
the probability to generate word wy as a response
given word w;. After the training of a multilin-
gual topic model on a multilingual corpus, we obtain
per-topic word distributions with scores Pg(w{|zy)
and Pr(w!|z;) (see Sect. 3.1).! The probability

'A remark on notation throughout the paper: Since the
shared space of cross-lingual topics allows us to construct a
uniform representation for all words regardless of a vocabulary
they belong to, due to simplicity and to stress the uniformity,
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P(ws|wy) is then decomposed as follows:

K
Resp(wi,w2) = P(w2|w1) ZP wa|zk) P(zklwi) (2)
k=1

The probability scores P(ws|z;) select words that
are highly descriptive for each particular topic. The
probability scores P(z|w;) ensure that topics zj
that are semantically relevant to the given word
w; dominate the sum, so the overall high score
Resp(wi,ws) of the semantic word response is as-
signed only to highly descriptive words of the se-
mantically related topics. Using the shared space
of cross-lingual topics, semantic response scores can
be derived for any two words w1, wo € vSuvTl

The generative model closely resembles the ac-
tual process in the human brain - when we gener-
ate semantic word responses, we first tend to as-
sociate that word with a related semantic/cognitive
concept, in this case a cross-lingual topic (the factor
P(z|wy)), and then, after establishing the concept,
we output a list of words that we consider the most
prominent/descriptive for that concept (words with
high scores in the factor P(ws|zx)) (Nelson et al.,
2000; Steyvers et al., 2004). Due to such modeling
properties, this model of semantic word responding
tends to assign higher association scores for high
frequency words. 1t eventually leads to asymmet-
ric associations/responses. We have detected that
phenomenon both monolingually and across lan-
guages. For instance, the first response to Span-
ish word mutacion (mutation) is English word gene.
Other examples include caldera (boiler)-steam, de-
portista (sportsman)-sport, horario (schedule)-hour
or pescador (fisherman)-fish. In the other associa-
tion direction, we have detected top responses such
as merchant-comercio (trade) or neologism-palabra
(word). In the monolingual setting, we acquire
English pairs such as songwriter-music, discipline-
sport, or Spanish pairs gripe (flu)-enfermedad (dis-
ease), cuenca (basin)-rio (river), etc.

3.4 Response-Based Model of Similarity

Eq. (2) provides a way to measure the strength of
semantic word responses. In order to establish the

we sometimes use notation P(w;|zy) and P(zy|w;) instead of
Ps(w;|zr) or Ps(zk|w;) (similar for subscript T'). However,
the reader must be aware that, for instance, P(wj;|zx) actually
means Ps(w;|zx) if w; € V5, and Pr(w;|zx) if w; € VT,



Semantic responses Response-based similarity

dramaturgo (playwright) play playwright dramaturgo
obra (play) 101 play 142 play 122 playwright
escritor (writer) .083 obra (play) 111 escritor (writer) .087 dramatist
play .066 player .033 obra (play) .073 tragedy
writer .050  escena(scene)  .031 writer .060 play
poet .047  jugador (player) .026 poeta (poet) .055 essayist
autor (author) .041 adaptation .025 poet .053 novelist
poeta (poet) .039 stage .024 autor (author) .046 drama
teatro (theatre) .030 game .022  teatro (theatre) .043 tragedian
drama .026 juego (game) .021 tragedy .031 satirist
contribution .025 teatro (theatre) .019 drama .026 writer

Table 1: An example of top 10 semantic word responses and the final response-based similarity for some Spanish and
English words. The responses are estimated from Spanish-English Wikipedia data by bilingual LDA. We can observe
several interesting phenomena: (1) High-frequency words tend to appear higher in the lists of semantic responses
(e.g., play and obra for all 3 words), (2) Due to the modeling properties that give preference to high-frequency words
(Sect. 3.3), a word might not generate itself as the top semantic response (e.g., playwright-play), (3) Both source
and target language words occur as the top responses in the lists, (4) Although play is the top semantic response in
English for both dramaturgo and playwright, its list of top semantic responses is less similar to the lists of those two
words, (5) Although the English word playwright does not appear in the top 10 semantic responses to dramaturgo,
and dramaturgo does not appear in the top 10 responses to playwright, the more robust response-based similarity
method detects that the two words are actually very similar based on their lists of responses, (6) dramaturgo and
playwright have very similar lists of semantic responses which ultimately leads to detecting that playwright is the
most semantically similar word to dramaturgo across the two languages (the last column), i.e., they are direct one-to-
one translations of each other, (7) Another English word dramatist very similar to Spanish dramaturgo is also pushed
higher in the final list, although it is not found in the list of top semantic responses to dramaturgo.

final similarity between two words, we have to com-
pare their semantic response vectors, that is, their
semantic response scores over all words in both
vocabularies. The final model of word similarity
closely mimics our thought experiment. First, for
each word wis € V°, we generate probability scores
P(wf]wzs) for all words wf € V9 (the S-S rounds).
Note that P(wf|w;9) is also defined by Eq. (2).
Following that, for each word w? € V*, we gen-

i
erate probability scores P(wﬂwf ), for all words
T

w; € VT (the S-T rounds). Similarly, we calcu-
late probability scores P(wﬂw?) and P(wf lwl),
for each wiT, ij € VT, and for each wf € VS (the
T-T and T-S rounds).

Now, each word w; € V¥ U VT may be repre-
sented by a (|V°| + |V7|)-dimensional context vec-
tor cv(w;) as follows:?

[P(wf|w;), . .. ,P(wﬁ/s||wi), e ,P(wﬁ/T”wi)].

We have created a language-independent cross-
2We assume that the two sets V¥ and V7 are disjunct. It

means that, for instance, Spanish word pie (foot) from V' and

English word pie from V7 are treated as two different word
types. In that case, it holds [V U VT | = |V5| + |VT].
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lingual semantic space spanned by all vocabulary
words in both languages. Each feature corresponds
to one word from vocabularies V° and V7T, while
the exact score for each feature in the context
vector cu(w;) is precisely the probability that this
word/feature will be generated as a word response
given word w;. The degree of similarity between
two words is then computed on the basis of similar-
ity between their feature vectors using some of the
standard similarity functions (Cha, 2007).

The novel response-based approach of similarity
removes the effect of high-frequency words that tend
to appear higher in the lists of semantic word re-
sponses. Therefore, the real synonyms and trans-
lations should occur as top candidates in the lists
of similar words obtained by the response-based
method. That property may be exploited to identify
one-to-one translations across languages and build a
bilingual lexicon (see Table 1).

4 Experimental Setup

4.1 Data Collections

We work with the following corpora:



e IT-EN-W: A collection of 18,898 Italian-
English Wikipedia article pairs previously used
by Vuli¢ et al. (2011).

e ES-EN-W: A collection of 13,696 Spanish-
English Wikipedia article pairs.

e NL-EN-W: A collection of 7,612 Dutch-
English Wikipedia article pairs.

e NL-EN-W+EP: The NL-EN-W corpus aug-
mented with 6,206 Dutch-English document
pairs from Europarl (Koehn, 2005). Although
Europarl is a parallel corpus, no explicit use is
made of sentence-level alignments.

All corpora are theme-aligned, that is, the aligned
document pairs discuss similar subjects, but are
in general not direct translations (except the Eu-
roparl document pairs). NL-EN-W+EP serves to test
whether better semantic responses could be learned
from data of higher quality, and to measure how it
affects the response-based similarity method and the
quality of induced lexicons. Following (Koehn and
Knight, 2002; Haghighi et al., 2008; Prochasson and
Fung, 2011), we consider only noun word types. We
retain only nouns that occur at least 5 times in the
corpus. We record the lemmatized form when avail-
able, and the original form otherwise. Again follow-
ing their setup, we use TreeTagger (Schmid, 1994)
for POS tagging and lemmatization.

4.2 Multilingual Topic Model

The multilingual probabilistic topic model we use
is a straightforward multilingual extension of the
standard Blei et al.’s LDA model (Blei et al., 2003)
called bilingual LDA (Mimno et al., 2009; Ni et
al., 2009; De Smet and Moens, 2009). For the de-
tails regarding the modeling assumptions, generative
story, training and inference procedure of the bilin-
gual LDA model, we refer the interested reader to
the aforementioned relevant literature. The poten-
tial of the model in the task of bilingual lexicon ex-
traction was investigated before (Mimno et al., 2009;
Vuli¢ et al., 2011), and it was also utilized in other
cross-lingual tasks (e.g., Platt et al. (2010); Ni et
al. (2011)). We use Gibbs sampling for training.
In a typical setting for mining semantically similar
words using latent topic models in both monolingual
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(Griffiths et al., 2007; Dinu and Lapata, 2010) and
cross-lingual setting (Vuli¢ et al., 2011), the best re-
sults are obtained with the number of topics set to
a few thousands (= 2000). Therefore, our bilingual
LDA model on all corpora is trained with the number
of topics K' = 2000. Other parameters of the model
are set to the standard values according to Steyvers
and Griffiths (2007): a = 50/K and 5 = 0.01.
We are aware that different hyper-parameter settings
(Asuncion et al., 2009; Lu et al., 2011), might have
influence on the quality of learned cross-lingual top-
ics, but that analysis is out of the scope of this paper.

4.3 Compared Methods

We evaluate and compare the following word simi-
larity approaches in all our experiments:

1) The method that regards the lists of semantic
word responses across languages obtained by Eq.
(2) directly as the lists of semantically similar words
(Direct-SWR).

2) The state-of-the-art method that employs a simi-
larity function (SF) on the K -dimensional word vec-
tors cv(w;) in the semantic space of latent cross-
lingual topics. The dimensions of the vectors are
conditional topic distribution scores P(zj|w;) that
are obtained by the multilingual topic model directly
(Steyvers and Griffiths, 2007; Vuli¢ et al., 2011). We
have tested different SF-s (e.g., the Kullback-Leibler
and the Jensen-Shannon divergence, the cosine mea-
sure), and have detected that in general the best
scores are obtained when using the Bhattacharyya
coefficient (BC) (Bhattacharyya, 1943; Kazama et
al., 2010) (Topic-BC).

3) The best scoring similarity method from Vuli¢
et al. (2011) named TI+Cue. This state-of-the-art
method also operates in the semantic space of latent
cross-lingual concepts/topics.

4) The response-based similarity described in Sect.
3. As for Topic-BC, we again use BC as the simi-
larity function, but now on |V U V7|-dimensional
context vectors in the semantic space spanned by
all words in both vocabularies that represent seman-
tic word responses (Response-BC). Given two N-
dimensional word vectors cv(wf) and cv(wd), the
BC or the fidelity measure (Cha, 2007) is defined as:

BC(cv(w?), co(wy)) = Z sci(en) - sck(cn)  (3)

n=1



Corpus: IT-EN-W ES-EN-W NL-EN-W NL-EN-W+EP
Method Acci MRR Accio Acen MRR  Accig Acen MRR  Accigo Accn MRR  Accio
Direct-SWR 501 576 740 332 437 .675 .186 254 423 344 450 .652
Topic-BC  .578 667 834 433 576 .843 237 314 489 534 .630 .836
TI+Cue 597 702 .897 429 569 .828 225 .296 459 446 .569 .808
Response-BC  .622 729 .882 517 .635 .891 236 320 S11 574 .653 864

Table 2: BLE performance of all the methods for Italian-English, Spanish-English and Dutch-English (with 2 different
corpora utilized for the training of bilingual LDA and the estimation of semantic word responses for Dutch-English).

For the Topic-BC method N = K, while N =
|VS U VT| for Response-BC. Additionally, since
P(z|w;) > 0 and P(wg|w;) > 0 for each z;, € Z
and each wy, € VS U VT, a lot of probability mass
is assigned to topics and semantic responses that
are completely irrelevant to the given word. Re-
ducing the dimensionality of the semantic repre-
sentation a posteriori to only a smaller number of
most important semantic axes in the semantic spaces
should decrease the effects of that statistical noise,
and even more firmly emphasize the latent corre-
lation among words. The utility of such semantic
space truncating or feature pruning in monolingual
settings (Reisinger and Mooney, 2010) was also de-
tected previously for LSA and LDA-based models
(Landauer and Dumais, 1997; Griffiths et al., 2007).
Therefore, unless noted otherwise, we perform all
our calculations over the best scoring 200 cross-
lingual topics and the best scoring 2000 semantic
word responses.>

4.4 Evaluation

Ground truth translation pairs.* Since our task

is bilingual lexicon extraction, we designed a set
of ground truth one-to-one translation pairs for all
3 language pairs as follows. For Dutch-English
and Spanish-English, we randomly sampled a set
of Dutch (Spanish) nouns from our Wikipedia cor-
pora. Following that, we used the Google Trans-
late tool plus an additional annotator to translate
those words to English. The annotator manually
revised the lists and retained only words that have

3The values are set empirically. Calculating similarity
Sim(wf , wg) may be interpreted as: “Given word wy detect
how similar word w4 is to the word w{” Therefore, when
calculating Sim(wf, w3 ), even when dealing with symmetric
similarity functions such as BC, we always consider only the
scores P(-|w?) for truncating.

4 Available online: http://people.cs.kuleuven.be
/~ivan.vulic/software/
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their corresponding translation in the English vo-
cabulary. Additionally, only one possible translation
was annotated as correct. When more than 1 trans-
lation is possible, the annotator marked as correct
the translation that occurs more frequently in the En-
glish Wikipedia data. Finally, we built a set of 1000
one-to-one translation pairs for Dutch-English and
Spanish-English. The same procedure was followed
for Italian-English, but there we obtained the ground
truth one-to-one translation pairs for 1000 most fre-
quent Italian nouns in order to test the effect of word
frequency on the quality of semantic word responses
and the overall lexicon quality.

Evaluation metrics. All the methods under con-
sideration actually retrieve ranked lists of semanti-
cally similar words that could be observed as poten-
tial translation candidates. We measure the perfor-
mance on BLE as Top M accuracy (Accyy). Tt de-
notes the number of source words from ground truth
translation pairs whose top M semantically simi-
lar words contain the correct translation according
to our ground truth over the total number of ground
truth translation pairs (=7000) (Tamura et al., 2012).
Additionally, we compute the mean reciprocal rank
(MRR) scores (Voorhees, 1999).

5 Results and Discussion

Table 2 displays the performance of each compared
method on the BLE task. It shows the difference in
results for different language pairs and different cor-
pora used to extract latent cross-lingual topics and
estimate the lists of semantic word responses. Ex-
ample lists of semantically similar words over all 3
language pairs are shown in Table 3. Based on these
results, we are able to derive several conclusions:

(1) Response-BC performs consistently better than
the other 3 methods over all corpora and all language
pairs. It is more robust and is able to find some
cross-lingual similarities omitted by the other meth-



Italian-English (IT-EN)

Spanish-English (ES-EN)

Dutch-English (NL-EN)

(1) affresco (2) spigolo (3) coppa (1) caza (2) discurso (3) comprador (1) behoud (2) schroef  (3) spar
(fresco) (edge) (cup) (hunting) (speech) (buyer) (conservation) (screw) (fir)
fresco polyhedron club hunting rhetoric purchase conservation socket conifer

mural polygon competition hunt oration seller preservation wire pine
nave vertices final hunter speech tariff heritage wrap firewood
wall diagonal champion hound discourse market diversity wrench seedling
testimonial edge football safari dialectic bidding emphasis screw weevil
apse vertex trophy huntsman rhetorician auction consequence pin chestnut
rediscovery binomial team wildlife oratory bid danger fastener acorn
draughtsman solid relegation animal wisdom microeconomics contribution torque girth
ceiling graph tournament ungulate oration trade decline pipe lumber
palace modifier soccer chase persuasion listing framework routing bark

Table 3: Example lists of top 10 semantically similar words across all 3 language pairs according to our Response-BC
similarity method, where the correct translation word is: (col. 1) found as the most similar word, (2) contained lower

in the list, and (3) not found in the top 10 words.

IT-EN ES-EN NL-EN

flauta-flute
eficacia-efficacy
empleo-employment
descubierta-discovery
desalojo-eviction
miedo-fear

direttore-director
radice-root
sintomo-symptom
perdita-loss
danno-damage
battaglione-battalion

kustlijn-coastline
begrafenis-funeral
mengsel-mixture
lijm-glue
kijker-viewer
oppervlak-surface

Table 4: Example translations found by the Response-BC
method, but missed by the other 3 methods.

ods (see Table 4). The overall quality of the cross-
lingual word similarities and lexicons extracted by
the method is dependent on the quality of estimated
semantic response vectors. The quality of these
vectors is of course further dependent on the qual-
ity of multilingual training data. For instance, for
Dutch-English, we may observe a rather spectacular
increase in overall scores (the tests are performed
over the same set of 1000 words) when we aug-
ment Wikipedia data with Europarl data (compare
the scores for NL-EN-W and NL-EN-W+EP).

(i1) A transition from a semantic space spanned by
cross-lingual topics (Topic-BC) to a semantic space
spanned by vocabulary words (Response-BC) leads
to better results over all corpora and language pairs.
The difference is less visible when using training
data of lesser quality (the scores for NL-EN-W).
Moreover, since the shared space of cross-lingual
topics is used to obtain and quantify semantic word
responses, the quality of learned cross-lingual topics
influences the quality of semantic word responses.
If the semantic coherence of the cross-lingual top-
ical space is unsatisfying, the method is unable to
generate good semantic response vectors, and ul-
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timately unable to correctly identify semantically
similar words across languages.

(iii) Due to its modeling properties that assign more
importance to high-frequency words, Direct-SWR
produces reasonable results in the BLE task only for
high-frequency words (see results for [T-EN-W). Al-
though Eq. (2) models the concept of semantic word
responding in a sound way (Griffiths et al., 2007),
using the semantic word responses directly is not
suitable for the actual BLE task.

(iv) The effect of word frequency is clearly visi-
ble when comparing the results obtained on IT-EN-
W with the results obtained on the other Wikipedia
corpora. High-frequency words produce more re-
dundancies in training data that are captured by sta-
tistical models such as latent topic models. High-
frequency words then obtain better estimates of their
semantic response vectors which consequently leads
to better overall scores. The effect of word fre-
quency on statistical methods in the BLE task was
investigated before (Pekar et al., 2006; Prochasson
and Fung, 2011; Tamura et al., 2012), and we also
confirm their findings.

(v) Unlike (Koehn and Knight, 2002; Haghighi et
al., 2008), our response-based method does not rely
on any orthographic features such as cognates or
words shared across languages. It is a pure statis-
tical method that only relies on word distributions
over a multilingual corpus. Based on these distribu-
tions, it performs the initial shallow semantic analy-
sis of the corpus by means of a multilingual prob-
abilistic model. The method then builds, via the
concept of semantic word responding, a language-



independent semantic space spanned by all vocabu-
lary words/responses in both languages. That makes
the method portable to distant language pairs. How-
ever, for similar languages, including more evidence
such as orthographic clues might lead to further in-
crease in scores, but we leave that for future work.

6 Conclusion

We have proposed a new statistical approach to iden-
tifying semantically similar words across languages
that relies on the paradigm of semantic word re-
sponding previously defined in cognitive science.
The proposed approach is robust and does not make
any additional language-pair dependent assumptions
(e.g., it does not rely on a seed lexicon, orthographic
clues or predefined concept categories). That effec-
tively makes it applicable to any language pair. Our
experiments on the task of bilingual lexicon extrac-
tion for a variety of language pairs have proved that
the response-based approach is more robust and out-
performs the methods that operate in the semantic
space of latent concepts (e.g., cross-lingual topics)
directly.
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Abstract

Humans identify word boundaries in continu-
ous speech by combining multiple cues; exist-
ing state-of-the-art models, though, look at a
single cue. We extend the generative model of
Goldwater et al (2006) to segment using sylla-
ble stress as well as phonemic form. Our new
model treats identification of word boundaries
and prevalent stress patterns in the language as
ajoint inference task. We show that this model
improves segmentation accuracy over purely
segmental input representations, and recov-
ers the dominant stress pattern of the data.
Additionally, our model retains high perfor-
mance even without single-word utterances.
We also demonstrate a discrepancy in the per-
formance of our model and human infants on
an artificial-language task in which stress cues
and transition-probability information are pit-
ted against one another. We argue that this dis-
crepancy indicates a bound on rationality in
the mechanisms of human segmentation.

1 Introduction

For an adult speaker of a language, word segmen-
tation from fluid speech may seem so easy that
it barely needed to be learned. However, pauses
in speech and word boundaries are not well cor-
related (Cole & Jakimik, 1980), word boundaries
are marked by a conspiracy of partially-informative
cues (Johnson & Jusczyk, 2001), and different lan-
guages mark their boundaries differently (Cutler &
Carter, 1987). This makes the problem of unsuper-
vised word segmentation acquisition, whether by a
computational model or an infant, a daunting task.
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Effective segmentation relies on the flexible in-
tegration of multiple types of segmentation cues,
among them statistical regularities in phonemes and
prosody, coarticulation, and allophonic variation. In-
fants begin using multiple segmentation cues within
their first year of life (Johnson & Jusczyk, 2001).
Despite this, many state-of-the-art models look at
only one type of information: phonemes.

In this study, we expand an existing model to
incorporate multiple cues, leading to an improve-
ment in segmentation performance and opening new
ways of investigating human segmentation acquisi-
tion. On the latter point, we show that rational learn-
ers can learn to segment without encountering words
in isolation, and that human learners deviate from ra-
tionality in certain segmentation tasks.

2 Previous work

The prevailing unsupervised word segmentation sys-
tems (e.g., Brent, 1999; Goldwater, Griffiths, &
Johnson, 2006; Blanchard & Heinz, 2008) use only
phonemic information to segment speech. However,
human segmenters use additional information types,
notably stress information, in their segmentation.
We present an overview of these phonemic mod-
els here before discussing the prosodic model ex-
pansion. A more complete review is available in
Goldwater (2007).

2.1 Goldwater et al (2006)

The Goldwater et al model is related to Brent
(1999)’s model, both of which use strictly phone-
mic information to segment. The model assumes that
the corpus is generated by a Dirichlet process over

Proceedings of NAACL-HLT 2013, pages 117-126,
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word bigrams.! We present a basic overview here,
based on Sect. 5.5 of Goldwater, 2007. To generate
the word w; given the preceding word w;_1:

1. Decide if bigram b; = (w;_1, w;) is novel
2. If b; non-novel, draw b; from bigram lexicon

3. If b; novel, decide whether w; is novel
a. If w; non-novel, draw w; from word lexicon
b. If w; novel, draw w; from word-generating
distribution F.

The Dirichlet process first decides whether to
draw a non-novel (“nn”) bigram, with probability
proportional to the number of times the previous
word has appeared in the corpus:

T w;_1,)
n<wi717.> + (65} ’

p((wi—1,w;) nnfw; 1) = (1)
where 7, is the token count for bigram (z,y).
If the bigram is non-novel, word w; is drawn in
proportion to the number of times it has appeared
after w;_; in the corpus:

w1 ,z)

M w1,

p(w; = z[{w;—1,w;) nn) = (2)
If the bigram is novel, this could either be due to
w; being a novel word or due to w; being an existing
word that had not appeared with w;_; before. The
probability of w; being a non-novel word x is

b wy)
(b(.’.> + Oé()) ’
3)
where b ) is the count of word bigram types.
Finally, if w; is a new word, its phonemic form is
generated from a distribution Fy. In the Goldwater
et al model, this distribution is simply the product of
the unigram probabilities of the phonemes, P(o;),
times the probability of a word boundary, p, to end
the word:

<w171, wi>
novel

) =

p(w; = x, w; nn|

) =pe(1 = pp) ML P(oy)
@)

"We will only discuss the bigram model here because it is
more appropriate from both a cognitive perspective (it posits la-
tent hierarchical structure) and engineering perspective (it seg-
ments more accurately) than the unigram model.

p(wz‘ = 01-"0’M|
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To segment an observed corpus, the model Gibbs
samples over the possible word boundaries (utter-
ance boundaries are assumed to be word bound-
aries). The exchangability of draws from a Dirichlet
process allows for Gibbs sampling of each possible
boundary given all the others.

2.2 A cognitively-plausible variant

Phillips and Pearl (2012) make these Bayesian seg-
mentation models more cognitively plausible in two
ways. The first is to move from phonemes to syl-
lables as the base representational unit from which
words are constructed, as infants learn to categorize
syllables before phonemes (Eimas, 1999). The sec-
ond is to add memory and processing constraints on
the learner. They find that syllable-based segmen-
tation is better than phoneme-based segmentation
in the bigram model (though worse in the unigram
model), and that, counter-intuitively, the constrained
learner outperforms the unconstrained learner. This
improvement appears to be driven by better perfor-
mance in segmenting more common words. In this
work, we adopt the syllabified representation but re-
tain the unconstrained rational learner assumption.

2.3 Other multiple-cue models

Some previous models have incorporated multiple
cues, specifically the phonemic and stress infor-
mation that our model will use. Two prominent
examples are Christiansen, Allen, and Seidenberg
(1998)’s connectionist model and Gambell and Yang
(2006)’s algebraic model. The connectionist model
places word boundaries where the combination of
phonemic and stress information predict likely ut-
terance boundaries, but does not include an explicit
sense of “word”, and performs only modestly on
the segmentation task (boundary F-scores of .40-
45). The algebraic model also underperforms the
Bayesian model (Phillips & Pearl, 2012) unless it
includes the heuristic that there is a word bound-
ary between any two stressed syllables. Our model
presents a more general and completely unsuper-
vised approach to segmentation with multiple cue-

types.
The model assumes that utterance boundaries are generated

just like other words, and includes an adjustable parameter pg
to account for their frequency.



In general, joint inference is becoming more com-
mon in language acquisition problems and has been
shown to improve performance over single-feature
inference. Examples include joint inference of a
lexicon and phonetic categories (Feldman, Grif-
fiths, & Morgan, 2009), joint inference of syntactic
word order and word reference (Maurits, Perfors, &
Navarro, 2009), and joint inference of word mean-
ings and speaker intentions in child-directed speech
(Frank, Goodman, & Tenenbaum, 2009).

3 Model design

Our model changes P, from a single-cue distribu-
tion, generating only phonemes, to a multiple-cue
distribution that generates a stress form as well. This
can improve segmentation performance and allows
the investigation of rational segmentation behavior
in a multiple-cue world.

In the original model, Py(w; = o1 -0op)
[1; P(oj), where P(c;) is the frequency of the
phoneme o;. In the multiple-cue model, we first
generate a phonemic form wj;, then assign a stress
pattern s; to it.

Po(w;, 5) = Py (w;)Ps(s;| M)

M
= pu(1—pg)" ] Ploj) Ps(si|M) (5)
J

The phonemic form w; has the same product-of-
segments probability as the Goldwater et al model,
but o; are now syllables instead of phonemes. We
discuss the rationale behind this change in the next
section.

The phonemic form is generated first, and the
stress form is then drawn as a multinomial over all
possible stress patterns with the same number of syl-
lables as w;. The stress distribution Pg is a multino-
mial distribution over word-length stress templates.
Pg can be learned by the model based on a Dirich-
let prior, but for simplicity in the present implemen-
tation, we estimate Pg as the plus-one-smoothed
frequency of the stress patterns in the current seg-
mentation. There are two stress levels (stressed or
unstressed), and 2™ possible stress templates for a
word of length M 3

3We do not assume that each word has one and only one

119

Unlike phonemic forms, stress patterns are drawn
as a whole word. This allows the model to capture
a wide range of stress biases, although it prevents
the model from generalizing biases across different
word lengths. A potential future change to Pgs that
would allow for better generalization is discussed in
Section 6.

3.1 On syllabification and stress

We change from segmenting on phonemes to seg-
menting on syllables in order to more easily imple-
ment stress information, which is a supersegmental
feature most appropriately located on syllables. Syl-
labified data has been used in some previous mod-
els of segmentation, especially those using stress
information or syllable-level transition probabilities
(Christiansen et al., 1998; Swingley, 2005; Gambell
& Yang, 2006; Phillips & Pearl, 2012).

For studying human word segmentation, Phillips
and Pearl argue syllabified speech may be a
more cognitively plausible testing ground. 3-month-
old infants appear to have categorical representa-
tions of syllables (Eimas, 1999), three months be-
fore word segmentation appears (Borfeld, Morgan,
Golinkoff, & Rathbun, 2005), and seven months
before phoneme categorization (Werker & Tees,
1984). In addition, syllabification is assumed in
much work on human word segmentation, especially
in artificial-language studies (e.g., Thiessen & Saf-
fran, 2003), which calculate statistical cues at the
syllable level.

The assumption that syllable boundaries are
known affects the baseline performance of the
model, as it reduces the number of possible word
boundary locations (since a word boundary is nec-
essarily a syllable boundary). As such performance
over syllabified data cannot be directly compared to
performance on non-syllabified data.

It may seem that syllabification is so closely tied
to word segmentation that including the former in a
model of the latter leaves little to the model. How-
ever, the determinants of syllable boundaries are not
the same as those for word boundaries. The prob-

stressed syllable, which would reduce the number of possible
stress templates to M, for two reasons. First, in the current cor-
pus, some words have citation forms with multiple stressed syl-
lables. Second, in actual speech this assumption will not hold
(e.g., many function words go unstressed).



lem of assigning syllable boundaries is a question of
deciding where a boundary goes between two syl-
lable nuclei, with the assumption that there must be
a boundary there. The problem of assigning word
boundaries is a question of deciding whether there
is a boundary between two syllable nuclei, and if so,
where it is. Knowing the syllable boundaries reduces
the set of possible word boundaries, but does not di-
rectly address the question of how likely a boundary
is. The difference in these tasks is supported by the
three-month gap between syllable and word identifi-
cation in infants.

4 Data

We use the Korman (1984) training corpus, as com-
piled by Christiansen et al. (1998), in this study. This
is a 24493-word corpus of English spoken by adults
to infants aged 6-16 weeks.* Phonemes, stresses,
and syllable boundaries are the same as those used
by Christiansen et al, which were based on citation
forms in the MRC Psycholinguistic Database. All
monosyllabic words were coded as stressed. Only
utterances for which all words had citation forms
were included.

This corpus is largely monosyllabic (87.3% of all
word tokens), and heavily biased toward initial stress
(89.2% of all multisyllable word tokens). No word
is longer than three syllables, and most words have
only one stressed syllable. A breakdown of the cor-
pus by stress pattern is given in Table 1. This mono-
syllabic bias is an inherent property of English, not
idiosyncratic to this corpus. The Bernstein-Ratner
child-directed corpus is also over 80% monosyl-
labic. We expect that the results of segmentation on
child-directed data will extend to adult speech, as
the adult-directed corpus used by Gambell and Yang
(2006) has an average word length of 1.17 syllables.

S Experiments

We test the model on three problems. First, we show
that the addition of stress information improves seg-
mentation performance compared to a stress-less
model. Next, we apply the model to a question in
human segmentation acquisition. Finally, we look at

* Approximately 150 word tokens from the original corpus

were omitted in our version of the corpus due to a disparity
between recorded number of syllables and number of stresses.
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Types Tokens
Stress pattern | Count || Stress pattern | Count
S | 21402 S |523
SW | 2231 SW | 208
SS | 389 WS | 40
WS | 284 SWW | 24
SWW | 182 SS |7
WSW | 33 WSW | 7
Other | 5 Other | 2

Table 1: Corpus stress patterns by types and tokens,
showing an initial-stress bias in all lengths.

a task where the rational model deviates from human
performance.

5.1 Parameter setting

The model has four free parameters: ag and o,
which affect the likelihood of new words and bi-
grams, respectively, and py and pg, which affect the
expected likelihood of word and utterance bound-
aries. Following Goldwater, Griffiths, and Johnson
(2009), we set ag = 20, a; = 100, p» = 0.8 and
pg = 0.5 in all experiments.’

In all cases, the model performed five indepen-
dent runs of 20000 iterations of Gibbs sampling the
boundaries for the full corpus. Simulated annealing
was performed during the burn-in period to improve
convergence. All performance measures are reported
as the mean of these five runs.

Performance is measured as word, boundary, and
lexicon precision, recall, and F-scores. A word is
matched iff both of its true boundaries are marked
as boundaries and no internal boundaries are marked
as word boundaries. Boundary counts omit utterance
boundaries, which are assumed to be word bound-
aries. Lexical counts are based on word type counts.

5.2 Stress improves performance

We begin by showing that including a second
cue type improves segmentation performance. We
compare segmentation on a corpus with the at-
tested stress patterns to that of a corpus with-
out stress. With stress information included in
the model, word/boundary/lexicon F-scores are

SPerformance was similar for a range of settings between 1
and 100 for ap and between 10 and 200 for ;.



With stress Without stress
Word | Bnd | Lex || Word | Bnd | Lex
Prec | .76 99 | 75 .76 99 | .72
Rec | .61 70 | .87 .60 .69 | .84
F| .68 .82 | .80 .67 82 | .77

Table 2: Precision, recall, and F-score over corpora with
and without stress information available. Stress informa-
tion especially improves lexical performance.

.68/.82/.80. Without stress, performance drops to
.67/.82/.77.% Full results are given in Table 2.

Stress information primarily improves lexicon
performance, along with a small improvement in
token segmentation. Accounting for stress reduces
both false positives and negatives in the lexicon; the
fact that the lexical improvement is greater than that
for words or boundaries suggests that much of the
improvement rests is on rare words.

These effects are small but significant. For word
token performance, we performed a paired #-test
on utterance token F-scores between the with- and
without-stress models. This difference was signif-
icant (t = 11.28,df = 8125,p < .001). We
performed a similar utterance-by-utterance test on
boundaries; again a small singificant improvement
was found (f = 8.92,df = 6084,p < .001). To
assess lexicon performance, we calculated for each
word type in the gold-standard lexicon the propor-
tion of the five trials in which that word appeared
in the learned lexicon for the two models. We then
examined the words where the proportions differed
between the models. 89 true words appeared more
often in the with-stress lexicons; 40 appeared more
often in the without-stress lexicons. (683 appeared
equally often in both.) By a sign test, this is signif-
icant at p < .001. We also tested lexicon perfor-
mance with a binomial test on the two models’ lexi-
con accuracy; this result was marginal (p = .06).

The explicit tracking of stress information also
improves the model’s acquisition of the stress bias of
the language. Acquisition of the stress bias is poten-
tially useful for generalization; stress patterns can be
used for an initial segmentation if few or none of the
words are familiar. In practice, we see children use

SRecall that due to the syllabified data, these results are not
directly comparable to unsyllabified results in previous work.

121

their stress biases to segment new words from En-
glish speech (Jusczyk, Houston, & Newsome, 1999)
as well as artificial languages (Thiessen & Saffran,
2003).

We assess the learned stress bias by dividing up
the corpus as the model has segmented it, and count
the number of tokens with SW versus WS stress pat-
terns.” With stress representation, the learned stress
bias is 6.77:1, and without stress representation, the
stress bias is lower, at 6.33:1. Although these are
both underestimates of the corpus’s true stress bias
(7.86:1), the stressed model is stronger and a better
estimate of the true value.

The model’s performance can be compared to
various baselines, but perhaps the strongest is one
with every syllable boundary being a word bound-
ary. This baseline represents a shift from boundary
precision being at ceiling (as in the model) to bound-
ary recall being at ceiling. In fact, due to the pre-
ponderance of monosyllabic words in English child-
directed speech, this baseline outperforms the model
on word and boundary F-scores (.68 and .82 in the
model, .82 and .91 in the baseline). However, the
baseline’s lexicon is much worse than the model’s
(F=.80 in the with-stress model, F=.64 in the base-
line), and the baseline fails to learn anything about
the language’s stress biases. In addition, the base-
line oversegments, whereas both the model and in-
fant segmenters undersegment (Peters, 1983). This
raises an important question about what the model
should seek to optimize: though the baseline is more
accurate by token, no structure is learned; type per-
formance is more important if we want to learn the
underlying structure.

5.3 Areisolated words necessary?

We next use this model to test the necessity of iso-
lated words in rational word segmentation. It is not
immediately obvious how human learners begin to
segment words from fluid speech. Stress biases and
other phonological cues are dominant in all but the
earliest of infant word segmentation (Johnson &
Jusczyk, 2001). This raises a chicken-and-egg prob-
lem; if the cues infants favor to segment words, such
as stress biases, are dependent on the words of the

"Note this defines a stress bias for the stressless model as
well.



language, how do they learn enough words to deter-
mine the cues’ biases?

One existing proposal is that human learners de-
velop their stress biases based on words frequently
heard in isolation (Jusczyk et al., 1999). In En-
glish, these include names and common diminutives
(e.g., mommy, kitty) that generally have initial stress.
These single-word utterances could offer the seg-
menter an initial guess of the stress bias, by suppos-
ing that short utterances are single words and record-
ing their stress patterns. The most common stress
patterns in short utterances could then be used as
an initial guess at the stress bias to bootstrap other
words and thereby improve the learned stress bias.

We test the rational learner’s need for such ex-
plicit bootstrapping by learning to segment a corpus
with all single-word utterances removed. The corpus
is produced by excising all single-word utterances
from the Korman corpus. This results in a 22081-
word corpus, 10% fewer tokens than in the original.
However, it does not substantially change the lexi-
con; the number of distinct word types only drops
from 811 to 806.

We compare performance only on ambiguous
boundaries and lexicon, as these are comparable
between the corpora, and find that the model per-
forms almost equally well. Without single-word ut-
terances, boundary and lexical F-scores are .81 and
.80, compared to .82 and .80 with single-word utter-
ances. This shows that rational learners are able to
segment even without the possibility of bootstrap-
ping stress patterns from single-word utterances.

5.4 Bounded rationality in human
segmentation

Lastly, we use this model to examine rational per-
formance in a multiple-cue segmentation task. We
show that humans’ segmentation does not adhere to
these predictions, suggesting a bound on human ra-
tionality in word segmentation.

We consider an artificial language study by
Thiessen and Saffran (2003). In this study, infants
are exposed to an artificial language consisting of
four bisyllabic word types uttered repeatedly with-
out pauses. Each syllable appears in only one word
type, so within-word transition probabilities are al-
ways 1, while across-word transition probabilities
are less than 0.5. Segmentation strategies that hy-
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Against bias, with TP
AB | CD | CD | AB
WS | WS | WS | WS
With bias, against TP
BC | DC | DA | B
SW | SW | SW | S

A
"

Table 3: Examples of segmenting an artificial language
according to transition probabilities (top) or stress bias
(bottom), when the true words have weak-strong stress.
Vertical lines represent word boundaries. The top seg-
mentation produces a smaller lexicon, but the bottom seg-
mentation produces primarily words with the preferred
stress pattern.

pothesize word boundaries at low transition proba-
bilities or that seek to minimize the lexicon size will
segment out the four word types as expected.

Segmentation in the experiment is complicated by
the presence of stress in the artificial language. De-
pending on the condition, the words are either all
strong-weak or all weak-strong. In the first condi-
tion, segmenting according to transition probabili-
ties, lexicon size, or English stress bias favors the
same segmentation. In the second condition, though,
segmenting by the English stress bias to yield a lex-
icon of strong-weak words requires boundaries in
the middle of the words. The segmenter must decide
whether transition probabilities or preferred stress
patterns are more important in segmentation. This
situation is illustrated in Table 3, with a corpus con-
sisting of two word types, AB and C'D, each with
weak-strong stress.

Thiessen and Saffran found that seven-month-
old English-learning infants consistently segmented
according to the transition probabilities, regardless
of stress. However, nine-month-olds segmented ac-
cording to the English stress bias, even if this meant
going against the transition probabilities.

Intuitively, this could be rational behavior accord-
ing to our model. A child’s increasing age means
more exposure to data, potentially leading the child
to develop more confidence in the stress bias. As
confidence in the stress bias increases, the cost of
segmenting against it increases as well. A suffi-
ciently strong stress preference could lead the seg-
menter to accept a large lexicon, all of whose words
have the preferred stress pattern, over a small lexi-



con, all of whose words have the dispreferred stress
pattern.

To judge by the Korman corpus, English has a
stress bias of approximately 7:1 in favor of SW bi-
syllabic stress over WS.® If human segmentation be-
havior follows the rational model, the model should
predict segmentation to favor strong-weak words
over the transition probabilities when the stress bias
is approximately this strong.

We test this rationality hypothesis with a smaller
version of the Thiessen and Saffran artificial lan-
guage, consisting of 48 tokens.” In one version,
all tokens have the preferred SW pattern, and in
the other all tokens have the dispreferred WS pat-
tern. We then adjust the Pg distribution such that
Pg(SW|M = 2) = b Ps(WS|M = 2), where
b is the bias ratio. We run the model otherwise the
same as in the previous experiments, except with 10
runs instead of 5.

Contrary to this hypothesis, the model’s segmen-
tation with b = 7 was the same whether the true
words were strong-weak or weak-strong. In all ten
runs, transition probabilities dictated the segmenta-
tion. To switch to stress-based segmentation, the bias
must be orders of magnitude greater than the English
bias. Figure 1 shows the proportions of runs in the
weak-strong condition that show segmentation ac-
cording to the stress bias, as the bias increases by
factors of 10. When b = 10000, three of the ten runs
segmented according to the stress bias; below that,
the stress bias did not affect the rational model’s seg-
mentation.

Why is this? In the Bayesian model, the stress bias
of a language affects only the Ps(s;|M ) term in the
Py distribution, so non-novel words are not penal-
ized for their stress pattern. The model pays only
once to create a word; once the word is generated,
no matter how a priori implausible the word was,
it may be cheaply drawn again as a non-novel word.
This effect can be illustrated with a brief calculation.

Consider a corpus built from four bisyllabic word
types (AB, CD, EF, GH), each appearing N times. If

8The specific bias varies from corpus to corpus, but this ap-
pears to be a representative value.

The 48 tokens come from four word types, with two types
appearing 16 times and the other two appearing 8 times, mim-
icking the relative frequencies of Thiessen and Saffran’s lan-
guages. Their test language had 270 tokens.

123

100 -
c
il
p= 80
£
E 60 -
@
40 -
=
P20 -
€
8
_ 0 -
gf | | | | | | |
10° 100 10>  10® 10* 10°  10°
bias

Figure 1: Percentage of runs segmented with the stress
bias, against transition probabilities, as bias varies. At
English-level biases, the rational model still overrules the
stress bias when segmenting.

the corpus is segmented against the transition proba-
bilities, the resulting lexicon will have 16 bisyllabic
word types (BA, BC, BE, BG, DA, etc.), each occur-
ring approximately % times.

The probability of the against-bias corpus (Cyyg)
is proportional to the probability of generating the
four word types, and then drawing them non-novelly
from the lexicon.'® (To simplify the calculations,
we use the unigram version of the Goldwater et al

model.) 1
p(Cys) o PéVPS(WS)“(N!)4m

The first two terms are the probability of gen-
erating the four word types (Eqn. 5);'! the second
two terms are the Dirichlet process draws from
the existing lexicon N times each (Eqn. 2). By
comparison, the probability of the with-bias corpus
Csw depends on generating the 16 word types, and
drawing each non-novelly % times.

N

16
p(Csw) ox PLePg(SW)1E (4!)

(6)

1

D

Given an SW bias b and a uniform distribution
over syllables (so Py = é), we find:

(b+ 1)1 (N1
pl6 (%!)16

p(Cws)
p(Csw)

= 6412 (8)

17t is also possible to generate this corpus by re-drawing the
words novelly, but this is much less likely than non-novel draws.

"Because all syllables have equal unigram probabilities, the
probability of all words” phonemic forms are equal, and will be
written as Py .



This equation shows that the rational model is
heavily biased toward the segmentation that fits the
transition probabilities. Increasing the stress bias b
or decreasing the number of observed word tokens
makes the rational model more likely to segment
with the stress bias (against transition probabilities),
but as we see in the experimental results, the stress
bias must be very strong to overcome the efficient
lexicon that the transition probability segmentation
provides.

Since humans do not show this same inherent
bias (or quickly lose it as they acquire the stress
bias), we can ask how humans deviate from ratio-
nality. One possibility is that humans simply do not
segment in this Bayesian manner. However, previ-
ous work (Frank, Goldwater, Griffiths, & Tenen-
baum, 2010) has shown that human word segmen-
tation shows similar behavior to a resource-limited
Bayesian model. Equation 8 suggests that human
segmentation could deviate from rationality by hav-
ing an effectively stronger bias than English would
suggest (reducing the first fraction)!? or, as with
Phillips and Pearl’s constrained learners, by having
effectively less input than the model assumes (reduc-
ing the second fraction).

6 Future work

Introducing stress into the Bayesian segmentation
model suggests a few additional expansions. One
possibility is to add other cues into the genera-
tive model via Fy. Any cue that is based on the
word itself can be added in this way, with little
change to the general model structure. Phonotactics
can be added using an n-gram distribution for Py
(Blanchard & Heinz, 2008). Coarticulation between
adjacent phonemes is also used in human segmen-
tation (Johnson & Jusczyk, 2001), so the Py distri-
bution could predict higher within-word coarticula-
tion. Integrating additional cues used by human seg-
menters extends the investigation of the bounds on
rationality in human segmentation and in balancing
multiple conflicting cues.

12 A potential source of an inflated bias is infants’ preference
for strong-weak patterns. Jusczyk, Cutler, and Redanz (1993)
found English-hearing infants listened longer to strong-weak
patterns than weak-strong. This could lead to overestimation of
the stress bias by making possible strong-weak segmentations
more prominent in the segmenter’s mind.
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A more complex view of the stress system of a
language may also be useful. One possibility is to
place a Dirichlet prior over the stress templates and
allow Pg to be learned as a latent variable in the
model. Another possibility is to treat the stress tem-
plates more generally; in the present implementa-
tion, knowledge of the preferred stress patterns for
word of one length tells the segmenter nothing about
preferred stress patterns in another length. Cross-
linguistically common stress rules (e.g., those that
place stress a certain number of syllables from the
left or right edge of a word) can be coded into Ps to
improve generalization. Each rule dictates a specific
stress pattern for each word length. When a word
is generated in the Dirichlet process, the generative
model would decide whether to assign stress accord-
ing to one of these rules or to assign lexical stress
from a default multinomial distribution. (This “de-
fault” distribution would handle idiosyncratic stress
assignments, as one might see with names or mor-
phologically complex words, like Spanish reflexive
verbs.) A sparse prior over these rules, asymmetri-
cally weighted against the default category, will en-
courage the model to explain as much of the ob-
served stress patterns as possible with a few domi-
nant rules, improving the phonological structure that
the segmenter learns.

Improving the realism of the data is also impor-
tant. The corpora used in much of segmentation re-
search are idealized representations of the true data,
and the dictionary-based phoneme and stress pat-
terns used in this study are no exception. This ideal
setting may paint a skewed picture of the segmen-
tation problem, by providing a more consistent and
learnable data source than humans actually receive.
Elsner, Goldwater, and Eisenstein (2012)’s model
unifying lexical and phonetic acquisition takes a sig-
nificant step in showing that a rational segmenter
can handle noisy input by recognizing phonetic vari-
ants of a base form. In terms of stress representa-
tions, dictionary-based stress has been standard in
previous work (Christiansen et al., 1998; Gambell &
Yang, 2006; Rytting, Brew, & Fosler-Lussier, 2010),
but it is important to confirm such results against a
(currently nonexistent) corpus with stresses based on
the actual utterances. Effective use of stress in a less
idealized setting may require a more complex repre-
sentation of stress in the model.



7 Conclusion

Effective word segmentation combines multiple fac-
tors to make predictions about word boundaries. We
extended an existing Bayesian segmentation model
to account for two factors, phonemes and stress,
when segmenting. This improves segmentation per-
formance and opens up new possibilities for compar-
ing rational segmentation and human segmentation.
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Abstract

We consider the problem of training a sta-
tistical parser in the situation when there are
multiple treebanks available, and these tree-
banks are annotated according to different lin-
guistic conventions. To address this problem,
we present two simple adaptation methods:
the first method is based on the idea of using
a shared feature representation when parsing
multiple treebanks, and the second method on
guided parsing where the output of one parser
provides features for a second one.

To evaluate and analyze the adaptation meth-
ods, we train parsers on treebank pairs in four
languages: German, Swedish, Italian, and En-
glish. We see significant improvements for
all eight treebanks when training on the full
training sets. However, the clearest benefits
are seen when we consider smaller training
sets. Our experiments were carried out with
unlabeled dependency parsers, but the meth-
ods can easily be generalized to other feature-
based parsers.

1 Introduction

When developing a data-driven syntactic parser, we
need to fit the parameters of its statistical model on
a collection of syntactically annotated sentences — a
treebank. Generally speaking, a larger collection of
examples in the training treebank will give a higher
quality of the resulting parser, but the cost in time
and effort of annotating training sentences is fairly
high. Most existing treebanks are in the range of a
few thousand sentences.

However, there is an abundance of theoretical
models of syntax and there is no consensus on how
treebanks should be annotated. For some languages,
there exist multiple treebanks annotated according
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to different syntactic theories. Apart from German,
Swedish, and Italian, which will be considered in
this paper, there are important examples among the
world’s major languages, such as Arabic and Chi-
nese.

To exemplify how syntactic annotation conven-
tions may differ in even such a simple case as un-
labeled dependency annotation, consider the Italian
sentence fragment la sospensione o [’interruzione
(’the suspension or the interruption’) in Figure 1. As
we will see in detail in §3.1.3, there are two Ital-
ian treebanks: the ISST and TUT. If annotating as
in the ISST treebank (drawn above the sentence)
determiners (la, [’) are annotated as dependents of
the following nouns (sospensione, interruzione); in
TUT (drawn below the sentence), we have the re-
verse situation. There are also differences in how
coordinate structures are represented: in ISST, the
two conjuncts are directly conjoined and the con-
junction attached to the first of them, while in TUT
the conjunction acts as a link between the conjuncts.

ﬁ(ﬁml

la sospenswne interruzione

Figure 1: Differences in dependency annotation styles.

Given the high cost of treebank annotation and the
importance of a proper amount of data for parser de-
velopment, this situation is frustrating. How could
we then make use of multiple treebanks when train-
ing a parser? A naive way would be simply to con-
catenate them, but as we will see this results in a
parser that performs badly on all the treebanks.

In this paper, we investigate two simple adapta-
tion methods to bridge the gap between differing

Proceedings of NAACL-HLT 2013, pages 127-137,
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syntactic annotation styles, allowing us to use more
data for parser training. The first approach treats
the problem of parsing with multiple syntactic an-
notation styles as a multiview learning problem and
addresses it by using feature representation that is
partly shared between the views. In the second one
we use a parser trained on one treebank to guide a
new parser trained on another treebank. We evaluate
these methods as well as their combination on four
languages: German, Swedish, Italian, and English.
In all four languages, we see a similar picture: the
shared features approach is generally better when
one of the treebanks is very small, while the guided
parsing approach is better when the treebanks are
more similar in size. However, for most training
set sizes the combination of the the two methods
achieves a higher performance than either of them
individually.

2 Methods for Training Parsers on
Multiple Treebanks

We now describe the two adaptation methods to
leverage multiple treebanks for parser training. For
clarity of presentation, we assume that there are
two treebanks, although we can easily generalize to
more. We use a common graph-based parsing tech-
nique (Carreras, 2007); the approaches described
here could be used in transition-based parsing as
well.

In a graph-based parser, for a given sentence x
the task of finding the top-scoring parse g is stated
as an optimization problem of maximizing a linear
objective function:

g = argmaxw - f(x,y).
y

Here w is a weight vector produced by some learn-
ing algorithm and f(x,y) a feature representation
that maps the sentence x with a parse tree y to
a high-dimensional vector; the adaptation methods
presented in this work is implemented as modifica-
tions of the feature representation function f. Since
the search space is too large to be enumerated, the
maximization must be handled carefully, and how
this is done determines the expressivity of the fea-
ture representation f. In the parser by Carreras
(2007) the maximization is carried out by a dynamic
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programming procedure relying on crucial indepen-
dence assumptions to break down the search space
into tractable parts. The factorization used in this
approach allows f to express features extracted not
only from single edges, as McDonald et al. (2005),
but also from sibling and grandchild edges.

To understand the machine learning problem of
training parsers on incompatible treebanks, we com-
pare it to the related problem of domain adapta-
tion: training a system for a target domain, using
a large collection of training data from a source do-
main combined with a small labeled or large unla-
beled set from the target domain. Some algorithms
for domain adaptation rely on the assumption that
the differences between source and target distribu-
tions P; and P; can be explained in terms of a co-
variate shift: Ps(y|z) = Pi(y|z) for all x,y, but
Py(z) # Py(x) for some x. In our case, we have the
reverse situation: the input distribution is at least in
theory unchanged between the two treebanks, while
the input—output relation (i.e. the treebank annota-
tion style) is different. However, domain adaptation
and cross-treebank training can be seen as instances
of the more general problem of multitask learning
(Caruana, 1997). Indeed, one of the simplest and
most well-known approaches to domain adaptation
(Daumé 111, 2007), which will also be considered in
this paper, should more correctly be seen as a trick
to handle multitask learning with any machine learn-
ing algorithm. On the other hand, there is no point
in trying to use domain adaptation methods assum-
ing a covariate shift, e.g. instance weighting, or any
method in which the target data is unlabeled (Blitzer
et al., 2007; Ben-David et al., 2010).

2.1 Sharing Feature Representations

Our first adaptation method relies on the intuition
that some properties of two treebanks are shared,
while others are unique to each of them. For in-
stance, as we have seen in Figure 1 the two Ital-
ian treebanks annotate coordination differently; on
the other hand, these treebanks also annotate sev-
eral other linguistic phenomena in the same way.
This observation can then be used to devise a model
where we train two parsers at the same time and use
a feature representation that is partly shared between
the two models, allowing the machine learning algo-
rithm to automatically determine which properties



of the two datasets are common and which are dif-
ferent. The idea of using features that are shared be-
tween the source and target training sets is a slight
generalization of a well-known method for super-
vised domain adaptation (Daumé III, 2007).

In practice, this is implemented as follows. As-
sume that originally a sentence x with a parse tree y
was represented as f1(z,y) if it came from the first
treebank, and fy(z,y) if from the second treebank.
We then add a shared feature representation fsto fi
and fo, and embed them into a single feature space.
The resulting feature vectors then become

fl(‘ray)@OZ@fs(m?y) (1)
for a sentence from the first treebank, and
01@f2(x7y)@f5(x7y) (2)

for the second treebank. Here, 0; means an all-zero
vector with the dimensionality of the feature space
of f1, and @ is vector concatenation. Using this new
representation, the two datasets are combined and a
single model trained. The hope is then that the learn-
ing algorithm will store the information about the re-
spective particularities in the weights for f; and fo,
and about the commonalities in the weights for f.
The result of this process is a symmetric parser that
can handle both treebank formats: when we parse
a sentence at test time, we just use the representa-
tion (1) if we want an output according to the first
treebank and (2) for the second treebank.

In this work, f1, f2, and f; are identical: all of
them correspond to the feature set described by Car-
reras (2007). However, it is certainly imaginable
that fs could consist of specially tailored features
that make generalization easier. In particular, using
a generalized f; would allow us to use this approach
in more complex cases than considered here, for in-
stance if the dependencies would be labeled with
two different sets of grammatical function labels, or
if one of the treebanks would use constituents rather
than dependencies.

2.2 Using One Parser to Guide Another

The second method is inspired by work in parser
combination, an idea that has been applied success-
fully several times and relies on the fact that dif-
ferent parsing methods have different strengths and
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weaknesses (McDonald and Nivre, 2007), so that
combining them may result in a better overall pars-
ing accuracy. There are several ways to combine
parsers; one of the simplest and most successful
methods of parsing combination uses one parser as
a guide for a second parser. This is normally im-
plemented as a pipeline where the second parser ex-
tracts features based on the output of the first parser.
Nivre and McDonald (2008) used this approach
for combining a graph-based and a transition-based
parser and achieved excellent results on test sets for
several languages, and similar ideas were proposed
by Martins et al. (2008).

We added guide features to the parser feature rep-
resentation. However, the features by Nivre and
McDonald (2008) are slightly too simple since they
only describe whether two words are directly con-
nected or not. That makes sense if the two parsers
are trying to predict the same type of representation,
but will not help us if there are systematic annota-
tion differences between the two treebanks, for in-
stance in whether to annotate a function word or a
lexical word as the head. Instead, following work
in semantic role labeling and similar areas, we use a
generalized notion of syntactic relationship that we
encode by determining a path between two nodes
in a syntactic tree. We defined the function Path(z,
y) as a representation describing the steps required
to traverse the parse tree from x to y, first the steps
up from z to the common ancestor a and then down
from a to y. Since we are working with unlabeled
trees, the path can be represented as just two inte-
gers; to generalize to labeled dependency parsing,
we could have used a full path representation as
commonly used in dependency-based semantic role
labeling (Johansson and Nugues, 2008).

We added the following path-based feature tem-
plates, assuming we have a potential head h with
dependent d, a sibling dependent s and grandchild
(dependent-of-dependent) g:

POS(h)+POS(d)+Path(h, d)
POS(h)+POS(s)+Path(h, s)
POS(h)+POS(d)+POS(s)+Path(h, s)
POS(h)+POS(g)+Path(h, g)
POS(h)+POS(d)+POS(g)+Path(h, g)

To exemplify, consider again the example la
sospensione o l’interruzione shown in Figure 1. As-



sume that we are parsing according to the ISST rep-
resentation (drawn above the sentence) and we con-
sider adding an edge with sospensione as head and
la as dependent, and another parser following the
TUT representation (below the sentence) has cre-
ated an edge in the opposite direction. The first
feature template above would then result in a fea-
ture NOUN+DET+(1,0), where (1,0) represents the
path relationship between the two words in the TUT
tree (one step up, no step down). Similarly, when
the ISST parser adds the coordination edge between
sospensione and interruzione, it can make use of
the information that these two nouns are indirectly
connected in the output by the TUT parser; this is
represented as a path (1,3). This is an example of
a situation where we have a systematic correspon-
dence where a single edge in one representation cor-
responds to several edges in the other.

Like the multiview approach described above, this
method is trivially adaptable to more complex situ-
ations such as labeled dependency parsers with dif-
fering label sets, or dependency/constituent parsing.

2.3 Combining Methods

The two adaptation methods are orthogonal and can
easily be combined. When trying to improve the per-
formance of a parser trained on the primary treebank
T1 by leveraging a supporting treebank 75, we then
use 75 in two different ways: first by training a guide
parser, and secondly by concatenating it to 7} using
a shared feature representation.

3 Experiments

We carried out experiments to evaluate the cross-
framework adaptation methods. The evaluations
were carried out using the official CoONLL-X eval-
uation script using the default parameters. Since our
parsers do not predict edge labels, we report unla-
beled attachment scores in all tables and plots.

3.1 Treebanks Used in the Experiments

In our experiments, we used four languages: Ger-
man, Swedish, Italian, and English. For each lan-
guage, we had two treebanks. Our approaches cur-
rently require that the treebanks use the same tok-
enization conventions, so for Italian and Swedish we
automatically retokenized the treebanks. We also
made sure that the two treebanks for one language
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used the same part-of-speech tag sets, by applying
an automatic tagger when necessary.

3.1.1 German: Tiger and TiiBa-D/Z

For German, there are two treebanks available:
Tiger (Brants et al., 2002) and TiiBa-D/Z (Telljo-
hann et al., 2004). These treebanks are constituent
treebanks, but dependency versions are available:
TiiBa-D/Z (version 7.0) includes the dependency
version in the distribution, while for Tiger we used
the version from CoNLL-X (Buchholz and Marsi,
2006). The constituent annotation styles in the two
treebanks are radically different: Tiger uses a very
flat structure with a minimal amount of intermediate
nodes, while TiiBa-D/Z uses a more elaborate struc-
ture including topological field information. How-
ever, the dependency versions are actually quite sim-
ilar, at least with respect to attachment. The most
common systematic difference we observed is in the
annotation of coordination.

Both treebanks are large: for Tiger, the training
set was 31,243 sentences and the test set 7,973 sen-
tences, and for TiiBa-D/Z 40,000 and 11,428 sen-
tences respectively. We did not use the Tiger test set
from the CoNLL-X shared task since it is very small.
We applied the TreeTagger POS tagger (Schmid,
1994) to both treebanks, using the pre-trained Ger-
man model.

3.1.2 Swedish: Talbanken05 and Syntag

As previously noted by Nivre (2002) inter alia,
Swedish has a venerable tradition in treebanking:
there are not only one but two treebanks which must
be counted among the earliest efforts of that kind.
The oldest one is the Talbanken or MAMBA tree-
bank (Einarsson, 1976), which has later been repro-
cessed for modern use (Nilsson et al., 2005). The
original annotation is a function-tagged constituent
syntax without phrase labels, but the reprocessed re-
lease includes a version converted to dependency
syntax. The dependency treebank was used in the
CoNLL-X Shared Task (Buchholz and Marsi, 2006),
and we used that version version in this work.

The second treebank is called Syntag (Jarborg,
1986). Similar to Talbanken, its representation uses
function-tagged constituents but no phrase labels.
We developed a conversion to dependency trees,
which was straightforward since many constituents



have explicitly defined heads (Johansson, 2013).

The two treebank annotation styles have signifi-
cant differences. Most prominently, the Syntag an-
notation is fairly semantically oriented in its treat-
ment of function words such as prepositions and
subordinating conjunctions: in Talbanken, a prepo-
sition is the head of a prepositional phrase, while
in Syntag the head is the prepositional complement.
There are also some domain differences: Talbanken
consists of student essays and public information,
while Syntag consists of news text.

To make the two treebanks compatible on the to-
ken level, we retokenized Syntag — which handles
punctuation in an idiosyncratic way — and applied a
POS tagger trained on the Stockholm—Umeéd Corpus
(Gustafson-Capkovéd and Hartmann, 2006) to both
treebanks. For Talbanken, we used 7,362 sentences
for training and set aside a new test set of 3,680 sen-
tences since the CoNLL-X test set is too small for
serious experimental purposes — only 389 sentences.
For Syntag, we split the treebank into 3,524 sen-
tences for training and 1,763 sentences for testing.

3.1.3 Italian: ISST and TUT

There are two Italian treebanks. The first is the
Italian Syntactic—Semantic Treebank or ISST (Mon-
temagni et al., 2003). Here, we used the version that
was prepared (Montemagni and Simi, 2007) for the
CoNLL-2007 Shared Task (Nivre et al., 2007).

The TUT treebank! is a more recent effort. This
treebank is available in multiple constituent and de-
pendency formats, and we have used the CoNLL-
formatted dependency version in this work. The
representation used in TUT is inspired by the Word
Grammar theory (Hudson, 1984) and tends to be
more surface-oriented than that of ISST. For in-
stance, as pointed out above in the discussion of
Figure 1, TUT differs from ISST in its treatment of
determiner—noun constructions and coordination. It
has been noted (Bosco and Lavelli, 2010; Bosco et
al., 2010) that the TUT representation is easier to
parse than the ISST representation.

We simplified the tokenization of both treebanks.
In ISST, we split multiwords into separate tokens
and reattached clitics to nonfinite verb forms. For in-
stance, a single token a_causa_di was converted into

"http://www.di.unito.it/~tutreeb/
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three tokens a, causa, di, and the three tokens trovar-
se-lo into a single token frovarselo. In TUT, we
applied the same conversions and also recomposed
preposition—article and multiple-clitic contractions
that had been split by the annotators, e.g. della,
glielo etc.> After changing the tokenization, we ap-
plied the TreeTagger POS tagger (Schmid, 1994) to
both treebanks, using the pre-trained Italian model
with the Baroni tagset?.

After preprocessing the data, we created training
and test sets. For ISST, the training set was 2,239
and the test set 1,120 sentences, while for TUT the
training set was 1,906 and the test set 954 sentences.

3.1.4 English: Two Different Conversions of
the Penn Treebank

For English, there is no significant dependency
treebank so we followed most previous work in us-
ing dependency trees automatically derived from
constituent trees in the large Penn Treebank WSJ
corpus (Marcus et al., 1993). Due to the fact
that there is a highly parametrizable constituent-
to-dependency conversion tool available (Johansson
and Nugues, 2007), we could create two dependency
treebanks with very different annotation styles.

The first training set was created from sections
02-12 of the WSJ corpus. By default, the conversion
tool outputs a treebank using the annotation style
of the CoNLL-2008 Shared Task (Surdeanu et al.,
2008); however we wanted to create a more surface-
oriented style for this treebank, so we turned on op-
tions to make wh-words heads of relative clauses,
and possessive markers heads of noun phrases. This
corpus had 20,706 sentences, and will be referred to
as WSJ Part 1 in the experimental section.

The second training treebank was built from sec-
tions 13-22. For this treebank, we inverted the
value of most options in order to get a more seman-
tically oriented treebank where content words are
connected directly. In this treebank, we also used
“Prague-style” annotation of coordination: the con-
juncts are annotated as dependents of the conjunc-
tion. This set contained 20,826 sentences, and will

?It should be noted that these conversions also make sense
from a practical NLP point of view, since a number of contrac-
tions are homonymic with other words.

*http://sslmit.unibo.it/~baroni/
collocazioni/itwac.tagset.txt



be called WSJ Part 2.

We finally applied both conversion methods to
sections 24 and 23 to create development and test
sets. The development set contained 1,346 and the
test set 2,416 sentences. We did not change the tok-
enization or part-of-speech tags of the WSJ corpora.
Here, we should note that we have a slightly more
synthetic and controlled experimental setting than
for Swedish and German: the parsers are evaluated
on the same test set, so we know that there is no
difference in test set difficulty. We also know a pri-
ori that performance differences are not due to any
significant differences in genre, since all texts come
from the same source (the Wall Street Journal) and
tend to focus on business-oriented news.

3.2 Baseline Parsing Performance

As a starting point, we trained parsers on all tree-
banks. In addition, we created a parser using a naive
adaptation method by combining the training sets for
each language, and training parsers on those three
sets. We then applied all three parsers for every lan-
guage on both test sets for that language. The re-
sults for German, Swedish, Italian, and English are
presented in Table 1.

Every parser performed well on the test set anno-
tated in the same annotation style as its training set.
As has been observed previously, surface-oriented
styles are easier to parse than semantically oriented
styles: The Talbanken and WSJ Part 1 parsers all
achieve much higher performance on their respec-
tive test sets than the Syntag and WSJ Part 2 parsers.
The better performance of the Talbanken parser is
also partly explainable by the fact that its training
set is more than twice as large as the Syntag training
set. Similarly for German, we see slightly higher
performance for TiiBa-D/Z than for Tiger.

However, as can be expected every parser per-
formed very poorly when applied to the test set us-
ing the annotation style it was not trained on. For
Swedish and English, the accuracy figures are in the
range of 50-60, while the figure are a bit less poor
for German since the two treebanks are more simi-
lar. We also see, again unsurprisingly, that the naive
combination baseline performs poorly in all situa-
tions: we just get a “worst-of-both-worlds” parser
that performs badly on both test sets.
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GERMAN Acc. on Tiger  Acc. on TBDZ
Tiger 87.8 72.0
TiiBa-D/Z 71.8 89.4
Tiger+TBDZ 77.7 87.7
SWEDISH Acc. on ST Acc. on TB
Syntag 81.4 52.6
Talbanken 50.3 88.2
Syntag+Talbanken 61.8 82.7
ITALIAN Acc. on ISST Acc. on TUT
ISST 81.1 57.4
TUT 55.9 84.0
ISST+TUT 73.9 71.6
ENGLISH Acc.on WSJ1 Acc. on WSJ 2
WSIJ part 1 92.6 57.4
WSIJ part 2 57.4 89.5
WSIJ parts 1+2 75.3 72.1

Table 1: Baseline performance figures.

3.3 Evaluation on the Full Training Sets

We trained new parsers using the shared features and
guided parsing adaptation methods described in §2.
Additionally, we trained parsers using both methods
at the same time; we refer to these parsers as com-
bined. Including the baseline parsers, this gave us
24 parsers to evaluate on their respective test sets.

The results for German are given in Table 2. Here,
we see that all three adaptation methods give statis-
tically significant* improvements over the baseline
when parsing the Tiger treebank. In particular, the
combined method gives a strong 0.7-point improve-
ment, a 6% error reduction. For TiiBa-D/Z, the im-
provements are smaller, although still significant ex-
cept for the guided parsing method.

Method Acc. onTiger Acc. on TiiBa-D/Z
Baseline 87.8 89.4
Shared 88.1 89.6
Guided 88.4 89.5
Combined 88.5 89.6

Table 2: Performance figures for the German adapted
parsers. Results that are significantly different from the
baseline performances are written in boldface.

At the 95% level. The significance levels of differences
were computed using permutation tests.



Method Acc.on ST Acc.onTB

Baseline 81.4 88.2
Shared 81.3 88.3
Guided 82.5 88.4
Combined 82.5 88.5

Table 3: Performance of the Swedish adapted parsers.

For Swedish, we have a similar story: we see
stronger improvements in the weak parser. Since
the Talbanken treebank is twice as large as the Syn-
tag treebank and has a surface-oriented representa-
tion that is easier to parse, this parser is useful as
a guide for the Syntag parser: the improvements of
the guided and combined Syntag parsers are statis-
tically significant. However, it is harder to improve
the Talbanken parser, for which the baseline is much
stronger. 3 shows the results for the Swedish parsers.

Method Acc. onISST Acc. on TUT
Baseline 81.1 84.0
Shared 81.5 84.4
Guided 81.7 84.3
Combined 81.8 84.7

Table 4: Performance of the Italian adapted parsers.

When we turn to the English corpora, the adapta-
tion methods again gave us a number of very large
improvements. The results are shown in Table 5.
The shared features and combined methods gave sta-
tistically significant improvements for the WSJ Part
1 parser, and the guided parsing method an improve-
ment that is nearly significant. However the most
dramatic change is the 1.2-point improvement of the
WSJ Part 2 parser, given by the guided parsing and
combined methods. It is possible that this result
partly can be explained by the fact that this exper-
iment is a bit cleaner: in particular, as outlined in
§3.1.4, there are no domain differences.

Method Acc.on WSJ 1 Acc. on WSJ2
Baseline 92.6 89.5
Shared 92.8 89.5
Guided 92.8 90.7
Combined 92.9 90.7

Table 5: Performance of the English adapted parsers.

For WSJ Part 2, we analyzed the differences
between the baseline and the best adapted parser.
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While there were improvements for all POS tags, the
most notable one was in the attachment of conjunc-
tions, where we got an increase from 69% to 75%
in attachment accuracy, an 18% relative error reduc-
tion. Here we saw a very clear benefit of guided
parsing: since this treebank uses “Prague-style” co-
ordination annotation (i.e. the conjunction governs
the conjuncts), it is hard for the parser to handle va-
lencies and selectional preferences when there is a
conjunction involved. It has been noted (Nilsson et
al., 2007) that this style of annotating coordination
is hard to parse. Since the WSJ Part 1 parser uses
a coordination style that is easier to parse, the WSJ
Part 2 parser can rely on its judgment.

Although conclusions must be very tentative since
we are testing on just four languages, we can make
a few general observations.

e The largest improvements (absolute and rela-
tive) all happen in treebanks that are harder to
parse. In particular, Syntag and WSJ Part 2 are
harder to parse due to their representation, and
to some extent this may be true for Tiger as well
— its learning curve rises more slowly than for
TiiBa-D/Z. Of course, in some cases (in partic-
ular Syntag, but also Tiger) this may partly be
explained by the training set being smaller, but
not for WSJ Part 2. In these cases, the guided
parsing method seems to be more effective.

e The languages where the shared features
method gives significant improvement for both
treebanks are German and Italian, where we do
not have the situation that one treebank is much
larger or much easier to parse.

e The combination of the two methods gave sig-
nificant improvements in all eight cases, and
had the highest performance in six cases.

3.4 The Effect of the Training Set Size

In order to better understand the differences between
the adaptation methods, we analyzed the impact of
training set size on the improvement given by the
respective methods. Let us refer to the training tree-
bank annotated according to the same style as the
test set as the primary treebank, and the other one
as the supporting treebank. We carried out the ex-
periments in this section by varying the number of
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Figure 2: Error reduction by training set size, German.

training sentences in the primary treebank and keep-

ing the size of the supporting treebank constant.

In order to highlight the differences between the
three adaptation methods, we show error reduction
plots in Figures 2, 3, 4, and 5 for German, Swedish,
Italian, and English respectively. For each training
set size on the x axis, the plot shows the reduction
in relative error with respect to the baseline.

We note that every single one of the 24 adapted
parsers learns faster than the corresponding baseline
parser. While we saw a number of significant im-
provements in §3.3 when using the full training sets,
the relative improvements are much stronger when

the training sets are small- and medium-sized.

These plots illustrate the different properties of
the two methods. Using a shared feature represen-
tation tends to be very effective when the primary
treebank is small: the error reductions are over 40
percent for German and over 25 percent for English.
Guided parsing works best for mid-sized sets, and
the relative effectiveness of both methods decreases
as the size of the primary treebank increases. Again,
we see that guided parsing is less effective if the
guide uses an annotation style that is hard to parse.
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Figure 3: Error reduction by training set size, Swedish.
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In particular, for Swedish the Syntag parser never
gives a very large improvement when guiding the
Talbanken parser, and this is also true of both Italian
parsers. To a smaller extent, this also holds for En-
glish and German: the WSJ Part 2 and Tiger parsers
are less useful as guides than their counterparts.

The combination method generally performs very
well: in all eight experiments, it outperforms the
other two for almost every training set size. Its per-
formance is very close to that of the guided parsing
method for larger training sets, when the effect of
the shared features method is less pronounced.
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4 Conclusion

We have considered the problem of training a de-
pendency parser on incompatible treebanks, and we
studied two very simple methods for addressing this
problem, the shared features and guided parsing
methods. These methods allow us to use more than
one treebank when training dependency parsers. We
evaluated the methods on eight treebanks in four
languages, and had statistically significant improve-
ments in all eight cases. In particular, for English
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we saw a strong 1.2-point absolute improvement (an
11% relative error reduction) in the performance of a
semantically oriented parser when trained on the full
training set. For German, we also had very strong
results for the Tiger treebank: a 6% error reduction.
For Swedish, the parser trained on the small Syntag
treebank got a boost from a guide parser trained on
the larger Talbanken. In general, it seems to be eas-
ier to improve parsers that use representations that
are harder to parse.

For all eight treebanks, both methods achieved
large improvements for small training set sizes,
while the effect gradually diminished as the training
set size increased. The shared features method was
the most effective for very small training sets, while
guided parsing surpassed it when training sets got
larger. The combination of the two methods was also
effective, in most cases outperforming both methods
on their own. In particular, when using the full train-
ing sets, this was the only method that had statisti-
cally significant improvements for all treebanks.

While this work used an unlabeled graph-based
dependency parser, our methods generalize naturally
to other parsing approaches, including transition-
based dependency parsing. Labeled parsing with
incompatible label sets is easy to implement in the
shared features framework by removing the label in-
formation from the shared feature representation f,
and similar modifications of fs could be carried out
to handle more complex situations such as combined
constituent and dependency parsing. Furthermore,
the paths used by the feature extractor in the guided
parser can be extended without much effort as well.
The models presented here are very simple, and in
future work we would like to explore more com-
plex approaches such as quasi-synchronous gram-
mars (Smith and Eisner, 2009; Li et al., 2012) or au-
tomatic treebank transformation (Niu et al., 2009).
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Abstract

Most work on weakly-supervised learning for
part-of-speech taggers has been based on un-
realistic assumptions about the amount and
quality of training data. For this paper, we
attempt to create true low-resource scenarios
by allowing a linguist just two hours to anno-
tate data and evaluating on the languages Kin-
yarwanda and Malagasy. Given these severely
limited amounts of either type supervision
(tag dictionaries) or token supervision (labeled
sentences), we are able to dramatically im-
prove the learning of a hidden Markov model
through our method of automatically general-
izing the annotations, reducing noise, and in-
ducing word-tag frequency information.

1 Introduction

The high performance achieved by part-of-speech
(POS) taggers trained on plentiful amounts of la-
beled word tokens is a success story of computa-
tional linguistics (Manning, 2011). However, re-
search on learning taggers using type supervision
(e.g. tag dictionaries or morphological transducers)
has had a more checkered history. The setting is
a seductive one: by labeling the possible parts-of-
speech for high frequency words, one might learn
accurate taggers by incorporating the type informa-
tion as constraints to a semi-supervised generative
learning model like a hidden Markov model (HMM).
Early work showed much promise for this strategy
(Kupiec, 1992; Merialdo, 1994), but successive ef-
forts in recent years have continued to peel away and
address layers of unrealistic assumptions about the
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size, coverage, and quality of the tag dictionaries
that had been used (Toutanova and Johnson, 2008;
Ravi and Knight, 2009; Hasan and Ng, 2009; Gar-
rette and Baldridge, 2012). This paper attempts to
strip away further layers so we can build better intu-
itions about the effectiveness of type-supervised and
token-supervised strategies in a realistic setting of
POS-tagging for low-resource languages.

In most previous work, tag dictionaries are ex-
tracted from a corpus of annotated tokens. To ex-
plore the type-supervised scenario, these have been
used as a proxy for dictionaries produced by lin-
guists. However, this overstates their effectiveness.
Researchers have often manually pruned tag dictio-
naries by removing low-frequency word/tag pairs;
this violates the assumption that frequency informa-
tion is not available. Others have also created tag
dictionaries by extracting every word/tag pair in a
large, labeled corpus, including the test data—even
though actual applications would never have such
complete lexical knowledge. Dictionaries extracted
from corpora are also biased towards including only
the most likely tag for each word type, resulting in
a cleaner dictionary than one would find in real sce-
nario. Finally, tag dictionaries extracted from anno-
tated tokens benefit from the annotation process of
labeling and review and refinement over an extended
collaboration period. Such high quality annotations
are simply not available for most low-resource lan-
guages.

This paper describes an approach to learning
a POS-tagger that can be applied in a truly low-
resource scenario. Specifically, we discuss tech-
niques that allow us to learn a tagger given only

Proceedings of NAACL-HLT 2013, pages 138-147,
Atlanta, Georgia, 9-14 June 2013. (©2013 Association for Computational Linguistics



the amount of labeled data that a human annotator
could provide in two hours. Here, we evaluate on
the languages Malagasy and Kinyarwanda, as well
as English as a control language. Furthermore, we
are interested in whether type-supervision or token-
supervision is more effective, given the strict time
constraint; accordingly, we had annotators produce
both a tag dictionary and a set of labeled sentences.

The data produced under our conditions differs in
several ways from the labeled data used in previous
work. Most obviously, there is less of it. Instead
of using hundreds of thousands of labeled tokens
to construct a tag dictionary (and hundreds of thou-
sands more as unlabeled (raw) data for training), we
only use the 1k-2k labeled tokens or types provided
by our annotators within the timeframe. Our train-
ing data is also much noisier than the data from a
typical corpus: the annotations were produced by
a single non-native-speaker working alone for two
hours. Therefore, dealing with the size and quality
of training data were core challenges to our task.

To learn a POS-tagger from so little labeled data,
we developed an approach that starts by generalizing
the initial annotations to the entire raw corpus. Our
approach uses label propagation (LP) (Talukdar and
Crammer, 2009) to infer tag distributions on unla-
beled tokens. We then apply a novel weighted vari-
ant of the model minimization procedure originally
developed by Ravi and Knight (2009) to estimate se-
quence and word-tag frequency information from an
unlabeled corpus by approximating the minimal set
of tag bigrams needed to explain the data. This com-
bination of techniques turns a tiny, unweighted, ini-
tial tag dictionary into a weighted tag dictionary that
covers the entire corpus’s vocabulary. This weighted
information limits the potential damage of tag dic-
tionary noise and bootstraps frequency information
to approximate a good starting point for the learning
of an HMM using expectation-maximization (EM),
and far outperforms just using EM on the raw an-
notations themselves.

2 Data

Our experiments use Kinyarwanda (KIN), Malagasy
(MLG), and English (ENG). KIN is a Niger-Congo
language spoken in Rwanda. MLG is an Austrone-
sian language spoken in Madagascar. Both KIN and
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MLG are low-resource and KIN is morphologically-
rich. For each language, the word tokens are divided
into four sets: training data to be labeled by anno-
tators, raw training data, development data, and test
data. For consistency, we use 100k raw tokens for
each language.

Data sources For ENG, we used the Penn Tree-
bank (PTB) (Marcus et al., 1993). Sections 00-04
were used as raw data, 05-14 as a dev set, and 15-24
(473K tokens) as a test set. The PTB uses 45 dis-
tinct POS tags. The KIN texts are transcripts of testi-
monies by survivors of the Rwandan genocide pro-
vided by the Kigali Genocide Memorial Center. The
MLG texts are articles from the websites! Lakroa and
La Gazette and Malagasy Global Voices,” a citizen
journalism site.> Texts in both KIN and MLG were
tokenized and labeled with POS tags by two linguis-
tics graduate students, each of which was studying
one of the languages. The KIN and MLG data have
14 and 24 distinct POS tags, respectively, and were
developed by the annotators.

Time-bounded annotation One of our main goals
is to evaluate POS-tagging for low-resource lan-
guages in experiments that correspond better to a
real-world scenario than previous work. As such, we
collected two forms of annotation, each constrained
by a two-hour time limit. The annotations were done
by the same linguists who had annotated the KIN
and MLG data mentioned above. Our experiments
are thus relevant to the reasonable context in which
one has access to a linguist who is familiar with the
target language and a given set of POS tags.

The first annotation task was to directly produce a
dictionary of words to their possible POS tags—i.e.,
collecting an actual tag dictionary of the form that is
typically simulated in POS-tagging experiments. For
each language, we compiled a list of word types, or-
dered starting with most frequent, and presented it
to the annotator with a list of admissible POS tags.
The annotator had two hours to specify POS tags for
as many words as possible. The word types and fre-
quencies used for this task were taken from the raw
training data and did not include the test sets. This

"www.lakroa.mg and www.lagazette-dgi.com

2mg.globalvoicesonline.orq/
3The public-domain data is available at github.com/
dhgarrette/low-resource-pos—-tagging—2013



data is used for what will call type-supervised train-
ing. The second task was annotating full sentences
with POS tags, again for two hours. We refer to this
as token-supervised training.

Having both sets of annotations allows us to in-
vestigate the relative value of each with respect to
training taggers. Token-supervision provides valu-
able frequency and tag context information, but
type-supervision produces larger dictionaries. This
can be seen in Table 1, where the dictionary size
column in the table gives the number of unique
word/tag pairs derived from the data.

We also wanted to directly compare the two an-
notators to see how the differences in their relative
annotation speeds and quality would affect the over-
all ability to learn an accurate tagger. We thus had
them complete the same two tasks for English. As
can be seen in Table 1, there are clear differences
between the two annotators. Most notably, annota-
tor B was faster at annotating full sentences while
annotator A was faster at annotating word types.

3 Approach

Our approach to learning POS-taggers is based on
Garrette and Baldridge (2012), which properly sep-
arated test data from learning data, unlike much pre-
vious work. The input to our system is a raw cor-
pus and either a human-generated tag dictionary or
human-tagged sentences. The majority of the sys-
tem is the same for both kinds of labeled training
data, but the following description will point out dif-
ferences. The system has four main parts, in order:

1. Tag dictionary expansion

2. Weighted model minimization

3. Expectation maximization (EM) HMM training
4. MaxEnt Markov Model (MEMM) training

3.1 Tag dictionary expansion

In a low-resource setting, most word types will not
be found in the initial tag dictionary. EM-HMM train-
ing uses the tag dictionary to limit ambiguity, so a
sparse tag dictionary is problematic because it does
not sufficiently confine the parameter space.* Small

“This is of course not the case for purely unsupervised tag-

gers, though we also note that it is not at all clear they are actu-
ally learning taggers for part-of-speech.
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sent.  tok. dict.
KIN human sentences A 90 1537 750
KIN human TD A 1798
MLG human sentences B 92 1805 666
MLG human TD B 1067
ENG human sentences A 86 1897 903
ENG human TD A 1644
ENG human sentences B 107 2650 959
ENG human TD B 1090

Table 1: Statistics for Kinyarwanda, Malagasy, and
English data annotated by annotators A and B.

dictionaries also interact poorly with the model min-
imization of Ravi et al. (2010): if there are too many
unknown words, and every tag must be considered
for them, then the minimal model will simply be the
one that assumes that they all have the same tag.
For these reasons, we automatically expand an
initial small dictionary into one that has coverage for
most of the vocabulary. We use label propagation
(LP)—specifically, the Modified Adsorption (MAD)
algorithm (Talukdar and Crammer, 2009)°—which
is a graph-based technique for spreading labels be-
tween related items. Our graphs connect token
nodes to each other via feature nodes and are seeded
with POS-tag labels from the human-annotated data.

Defining the LP graph Our LP graph has several
types of nodes, as shown in Figure 1. The graph
contains a TOKEN node for each token of the la-
beled corpus (when available) and raw corpus. Each
word type has one TYPE node that is connected to
its TOKEN nodes. Both kinds of nodes are con-
nected with feature nodes. The PREVWORD_z and
NEXTWORD_z nodes represent the features of a to-
ken being preceded by or followed by word type x in
the corpus. These bigram features capture extremely
simple syntactic information. To capture shallow
morphological relatedness, we use prefix and suffix
nodes that connect word types that share prefix or
suffix character sequences up to length 5. For each
node-feature pair, the connecting edge is weighted
as 1/N where N is the number of nodes connected
to the particular feature.

3The open-source MAD implementation is provided through
Junto: github.com/parthatalukdar/junto



Figure 1: Subsets of the LP graph showing regions of connected nodes. Graph represents the sentences “A

dog barks .”, “The dog walks .”, and “The man walks .

We also explored the effectiveness of using an ex-
ternal dictionary in the graph since this is one of the
few available sources of information for many low-
resource languages. Though a standard dictionary
probably will not use the same POS tag set that we
are targeting, it nevertheless provides information
about the relatedness of various word types. Thus,
we use nodes DICTPOS _p that indicate that a particu-
lar word type is listed as having POS p in the dictio-
nary. Crucially, these tags bear no particular con-
nection to the tags we are predicting: we still tar-
get the tags defined by the linguist who annotated
the types or tokens used, which may be more or
less granular than those provided in the dictionary.
As external dictionaries, we use English Wiktionary
(614k entries), malagasyworld. org (78k entries),
and kinyarwanda.net (3.7k entries).®

Seeding the graph is straightforward. With token-
supervision, labels for tokens are injected into the
corresponding TOKEN nodes with a weight of 1.0.
In the type-supervised case, any TYPE node that ap-
pears in the tag dictionary is injected with a uniform
distribution over the tags in its tag dictionary entry.

Toutanova and Johnson (2008) (also, Ravi and
Knight (2009)) use a simple method for predict-
ing possible tags for unknown words: a set of 100
most common suffixes are extracted and then mod-
els of P(tag|suffix) are built and applied to unknown
words. However, these models suffer with an ex-
tremely small set of labeled data. Our method uses
character affix feature nodes along with sequence
feature nodes in the LP graph to get distributions
over unknown words. Our technique thus subsumes

SWiktionary (wiktionary.org) has only 3,365 en-
tries for Malagasy and 9 for Kinyarwanda.
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theirs as it can infer tag dictionary entries for words
whose suffixes do not show up in the labeled data (or
with enough frequency to be reliable predictors).

Extracting a result from LP LP assigns a label
distribution to every node. Importantly, each indi-
vidual TOKEN gets its own distribution instead of
sharing an aggregation over the entire word type.
From this graph, we extract a new version of the
raw corpus that contains tags for each token. This
provides the input for model minimization.

We seek a small set of likely tags for each token,
but LP gives each token a distribution over the entire
set of tags. Most of the tags are simply noise, some
of which we remove by normalizing the weights and
excluding tags with probability less than 0.1. Af-
ter applying this cutoff, the weights of the remain-
ing tags are re-normalized. We stress that this tag
dictionary cutoff is not like those used in past re-
search, which were done with respect to frequen-
cies obtained from labeled tokens: we use either no
word-tag frequency information (type-supervision)
or very small amounts of word-tag frequency infor-
mation indirectly through LP (token-supervision).”

Some tokens might not have any associated tag
labels after LP. This occurs when there is no
path from a TOKEN node to any seeded nodes or
when all tags for the TOKEN node have weights less
than the threshold. Since we require a distribution
for every token, we use a default distribution for
such cases. Specifically, we use the unsupervised
emission probability initialization of Garrette and
Baldridge (2012), which captures both the estimated
frequency of a tag and its openness using only a

7See Banko and Moore (2004) for further discussion of these
issues.
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Figure 2: Weighted, greedy model minimization
graph showing a potential state between the stages
of the tag bigram choosing algorithm. Solid edges:
selected bigrams. Dotted edges: holes in the path.

man saw the saw (b)

small tag dictionary and unlabeled text.

Finally, we ensure that tokens of words in the
original tag dictionary are only assigned tags from
its entry. With this filter, LP of course does not add
new tags to known words (without it, we found per-
formance drops). If the intersection of the small tag
dictionary entry and the token’s resulting distribu-
tion from LP (after thresholding) is empty, we fall
back to the filtered and renormalized default distri-
bution for that token’s type.

The result of this process is a sequence of (ini-
tially raw) tokens, each associated with a distribu-
tion over a subset of tags. From this we can extract
an expanded tag dictionary for use in subsequent
stages that, crucially, provides tag information for
words not covered by the human-supplied tag dic-
tionary. This expansion is simple: an unknown word
type’s set of tags is the union of all tags assigned to
its tokens. Additionally, we add the full entries of
word types given in the original tag dictionary.

3.2 Weighted model minimization

EM-HMM training depends crucially on having a
clean tag dictionary and a good starting point for the
emission distributions. Given only raw text and a
tag dictionary, these distributions are difficult to es-
timate, especially in the presence of a very sparse
or noisy tag dictionary. Ravi and Knight (2009) use
model minimization to remove tag dictionary noise
and induce tag frequency information from raw text.
Their method works by finding a minimal set of tag
bigrams needed to explain a raw corpus.

Model minimization is a natural fit for our system
since we start with little or no frequency informa-
tion and automatic dictionary expansion introduces
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noise. We extend the greedy model minimization
procedure of Ravi et al. (2010), and its enhance-
ments by Garrette and Baldridge (2012), to develop
a novel weighted minimization procedure that uses
the tag weights from LP to find a minimal model
that is biased toward keeping tag bigrams that have
consistently high weights across the entire corpus.
The new weighted minimization procedure fits well
in our pipeline by allowing us to carry the tag dis-
tributions forward from LP instead of simply throw-
ing that information away and using a traditional tag
dictionary.

In brief, the procedure works by creating a graph
such that each possible tag of each raw-corpus token
is a vertex (see Figure 2). Any edge that would con-
nect two tags of adjacent tokens is a potential tag bi-
gram choice. The algorithm first selects tag bigrams
until every token is covered by at least one bigram,
then selects tag bigrams that fill gaps between exist-
ing edges until there is a complete bigram path for
every sentence in the raw corpus.®

Ravi et al. (2010) select tag bigrams that cover
the most new words (stage 1) or fill the most holes
in the tag paths (stage 2). Garrette and Baldridge
(2012) introduced the tie-breaking criterion that bi-
gram choices should seek to introduce the small-
est number of new word/tag pairs possible into the
paths. Our criteria adds to this by using the tag
weights on each token: a tag bigram b is chosen by
summing up the node weights of any not-yet cov-
ered words touched by the tag bigram b, dividing
this sum by one plus the number of new word/tag
pairs that would be added by b, and choosing the b
that maximizes this value.”

Summing node weights captures the intuition of
Ravi et al. (2010) that good bigrams are those which
have high coverage of new words: each newly cov-
ered node contributes additional (partial) counts.
However, by using the weights instead of full counts,
we also account for the confidence assigned by LP.
Dividing by the number of new word/tag pairs added
focuses on bigrams that reuse existing tags for words

8Ravi et al. (2010) include a third phase of iterative model
fitting; however, we found this stage to be not only expensive,
but also unhelpful because it frequently yields negative results.

°In the case of token-supervision, we pre-select all tag bi-
grams appearing in the labeled corpus since these are assumed
to be known high-quality tag bigrams and word/tag pairs.



and thereby limits the addition of new tags for each
word type.

At the start of model minimization, there are no
selected tag bigrams, and thus no valid path through
any sentence in the corpus. As bigrams are selected,
we can begin to cover subsequences and eventually
full sentences. There may be multiple valid taggings
for a sentence, so after each new bigram is selected,
we run the Viterbi algorithm over the raw corpus us-
ing the set of selected tag bigrams as a hard con-
straint on the allowable transitions. This efficiently
identifies the highest-weight path through each sen-
tence, if one exists. If such a path is found, we re-
move the sentence from the corpus and store the tags
from the Viterbi tagging. The algorithm terminates
when a path is found for every raw corpus sentence.
The result of weighted model minimization is this
set of tag paths. Since each path represents a valid
tagging of the sentence, we use this output as a nois-
ily labeled corpus for initializing EM in stage three.

3.3 Tagger training

Stage one provides an expansion of the initial la-
beled data and stage two turns that into a corpus of
noisily labeled sentences. Stage three uses the EM
algorithm initialized by the noisy labeling and con-
strained by the expanded tag dictionary to produce
an HMM.'® The initial distributions are smoothed
with one-count smoothing (Chen and Goodman,
1996). If human-tagged sentences are available as
training data, then we use their counts to supplement
the noisy labeled text for initialization and we add
their counts into every iteration’s result.

The HMM produced by stage three is not used
directly for tagging since it will contain zero-
probabilities for test-corpus words that were unseen
during training. Instead, we use it to provide a
Viterbi labeling of the raw corpus, following the
“auto-supervision” step of Garrette and Baldridge
(2012). This material is then concatenated with the
token-supervised corpus (when available), and used
to train a Maximum Entropy Markov Model tag-
ger.'! The MEMM exploits subword features and

1An added benefit of this strategy is that the EM algorithm
with the expanded dictionary runs much more quickly than
without it since it does not have to consider every possible tag
for unknown words, averaging 20x faster on PTB experiments.
""We use OpenNLP: opennlp.apache.org.
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generally produces 1-2% better results than an HMM
trained on the same material.

4 Experiments'”

Experimental results are shown in Table 2. Each ex-
periment starts with an initial data set provided by
annotator A or B. Experiment (1) simply uses EM
with the initial small tag dictionary to learn a tag-
ger from the raw corpus. (2) uses LP to infer an ex-
panded tag dictionary and tag distributions over raw
corpus tokens, but then takes the highest-weighted
tag from each token for use as noisily-labeled train-
ing data to initialize EM. (3) performs greedy model-
minimization on the LP output to derive that noisily-
labeled corpus. Finally, (4) is the same as (3), but
additionally uses external dictionary nodes in the LP
graph. In the case of token-supervision, we also in-
clude (0), in which we simply used the tagged sen-
tences as supervised data for an HMM without EM
(followed by MEMM training).

The results show that performance improves with
our LP and minimization techniques compared to
basic EM-HMM training. LP gives large across-the-
board improvements over EM training with only the
original tag dictionary (compare columns 1 & 2).
Weighted model minimization further improves re-
sults for type-supervision settings, but not for token
supervision (compare 2 & 3).

Using an external dictionary in the LP graph has
little effect for KIN, probably due to the available
dictionary’s very small size. However, MLG with
its larger dictionary obtains an improvement in both
scenarios. Results on ENG are mixed; this may be
because the PTB tagset has 45 tags (far more than
the dictionary) so the external dictionary nodes in
the LP graph may consequently serve to collapse dis-
tinctions (e.g. singular and plural) in the larger set.

Our results show differences between token- and
type-supervised annotations. Tag dictionary expan-
sion is helpful no matter what the annotations look
like: in both cases, the initial dictionary is too
small for effective EM learning, so expansion is nec-
essary. However, model minimization only ben-
efits the type-supervised scenarios, leaving token-
supervised performance unchanged. This suggests

20ur code is available at github.com/dhgarrette/
low-resource-pos—-tagging-2013



Human Annotations 0. No EM 1. EM only 2. With LP 3. LP+min | 4. LP(ed)+min

Initial data T K U|T K U|T K U|T K U|T K U
KIN tokens A 72 90 58 |55 82 32|71 8 58|71 8 58 |71 86 58
KIN types A 63 77 32|78 83 69|79 83 70|79 83 70
MLG tokens B 74 89 49|68 87 39|74 89 49|74 89 49|76 90 53
MLG types B 71 87 46|72 81 57|74 8 56|76 86 60
ENG tokens A 63 83 38|62 83 37|72 85 55|72 8 55|72 85 56
ENG types A 66 76 37|75 81 56|76 83 56|74 81 55
ENG tokens B 70 87 44|70 87 43|78 90 60|78 90 60|78 89 61
ENG types B 69 83 38|75 82 61|78 85 61|78 86 61

Table 2: Experimental results. Three languages are shown: Kinyarwanda (KIN), Malagasy (MLG), and
English (ENG). The letters A and B refer to the annotator. LP(ed) refers to label propagation including nodes
from an external dictionary. Each result given as percentages for Total (T), Known (K), and Unknown (U).

that minimization is working as intended: it induces
frequency information when none is provided. With
token-supervision, the annotator provides some in-
formation about which tag transitions are best and
which emissions are most likely. This is miss-
ing with type-supervision, so model minimization is
needed to bootstrap word/tag frequency guesses.

This leads to perhaps our most interesting result:
in a time-critical annotation scenario, it seems better
to collect a simple tag dictionary than tagged sen-
tences. While the tagged sentences certainly contain
useful information regarding tag frequencies, our
techniques can learn this missing information auto-
matically. Thus, having wider coverage of word type
information, and having that information be focused
on the most frequent words, is more important. This
can be seen as a validation of the last two decades
of work on (simulated) type-supervision learning for
POS-tagging—with the caveat that the additional ef-
fort we do is needed to realize the benefit.

Our experiments also allow us to compare how the
data from different annotators affects the quality of
taggers learned. Looking at the direct comparison
on English data, annotator B was able to tag more
sentences than A, but A produced more tag dictio-
nary entries in the type-supervision scenario. How-
ever, it appears, based on the EM-only training, that
the annotations provided by B were of higher quality
and produced more accurate taggers in both scenar-
ios. Regardless, our full training procedure is able
to substantially improve results in all scenarios.

Table 3 gives the recall and precision of the tag
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Tag Dictionary Source R P
(1) human-annotated TD  18.42 29.33
(2) LP output 35.55 2.62
(3) model min output 30.49 4.63

Table 3: Recall (R) and precision (P) for tag dictio-
naries versus the test data in a “MLG types B” run.

dictionaries for MLG for settings 1, 2 and 3. The ini-
tial, human-provided tag dictionary unsurprisingly
has the highest precision and lowest recall. LP ex-
pands that data to greatly improve recall with a large
drop in precision. Minimization culls many entries
and improves precision with a small relative loss in
recall. Of course, this is only a rough indicator of
the quality of the tag dictionaries since the word/tag
pairs of the test set only partially overlap with the
raw training data and annotations.

Because gold-standard annotations are available
for the English sentences, we also ran oracle ex-
periments using labels from the PTB corpus (es-
sentially, the kind of data used in previous work).
We selected the same amount of labeled tokens or
word/tag pairs as were obtained by the annotators.
We found similar patterns of improved performance
by using LP expansion and model minimization,
and all accuracies are improved compared to their
human-annotator equivalents (about 2-6%). Overall
accuracy for both type and token supervision comes
to 78-80%.



#Errors 11k 6k Sk 4k 3k
Gold TO NNP NN JJ  NNP
Model IN NN JJ NN JJ

Table 4: Top errors from an “ENG types B” run.

Error Analysis One potential source of errors
comes directly from the annotators themselves.
Though our approach is designed to be robust to an-
notation errors, it cannot correct all mistakes. For
example, for the “ENG types B” experiment, the an-
notator listed IN (preposition) as the only tag for
word type “to”. However, the test set only ever as-
signs tag TO for this type. This single error accounts
for a2.3% loss in overall tagging accuracy (Table 4).

In many situations, however, we are able to auto-
matically remove improbable tag dictionary entries,
as shown in Table 5. Consider the word type “for”.
The annotator has listed RP (particle) as a potential
tag, but only five out of 4k tokens have this tag. With
RP included, EM becomes confused and labels a ma-
jority of the tokens as RP when nearly all should be
labeled IN. We are able to eliminate RP as a possi-
bility, giving excellent overall accuracy for the type.
Likewise for the comma type, the annotator has in-
correctly given “:” as a valid tag, and LP, which
uses the tag dictionary, pushes this label to many to-
kens with high confidence. However, minimization
is able to correct the problem.

Finally, the word type “opposition” provides an
example of the expected behavior for unknown
words. The type is not in the tag dictionary, so
EM assumes all tags are valid and uses many labels.
LP expands the starting dictionary to cover the type,
limiting it to only two tags. Minimization then de-
termines that NN is the best tag for each token.

5 Related work

Goldberg et al. (2008) trained a tagger for Hebrew
using a manually-created lexicon which was not de-
rived from an annotated corpus. However, their lexi-
con was constructed by trained lexicographers over a
long period of time and achieves very high coverage
of the language with very good quality. In contrast,
our annotated data was created by untrained linguis-
tics students working alone for just two hours.
Cucerzan and Yarowsky (2002) learn a POS-
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for *IN *RP JJ] NN CD
(1) EM 1,221 2764 9 5
2)Lp 4,003

(3)min 4,004 1

gold 3,999 5

, (comma) * * JIS PTD VBP
() EM 24,708 4 3

@)Lp 15,505 9226 1
(3) min 24,730

gold 24,732

opposition NN JJ DT NNS VBP
(1) EM 24 4 1 4 4
2)Lp 41 4

(3) min 45

gold 45

Table 5: Tag assignments in different scenarios. A
star indicates an entry in the human-provided TD.

tagger from existing linguistic resources, namely a
dictionary and a reference grammar, but these re-
sources are not available, much less digitized, for
most under-studied languages.

Subramanya et al. (2010) apply LP to the prob-
lem of tagging for domain adaptation. They con-
struct an LP graph that connects tokens in low- and
high-resource domains, and propagate labels from
high to low. This approach addresses the prob-
lem of learning appropriate tags for unknown words
within a language, but it requires that the language
have at least one high-resource domain as a source
of high quality information. For low-resource lan-
guages that have no significant annotated resources
available in any domain, this technique cannot be
applied.

Das and Petrov (2011) and Téackstrom et al.
(2013) learn taggers for languages in which there
are no POS-annotated resources, but for which par-
allel texts are available between that language and a
high-resource language. They project tag informa-
tion from the high-resource language to the lower-
resource language via alignments in the parallel text.
However, large parallel corpora are not available for
most low-resource languages. These are also ex-
pensive resources to create and would take consid-
erably more effort to produce than the monolingual
resources that our annotators were able to generate



in a two-hour timeframe. Of course, if they are avail-
able, such parallel text links could be incorporated
into our approach.

Furthermore, their approaches require the use of
a universal tag set shared between both languages.
As such, their approach is only able to induce POS
tags for the low-resource language if the same tag
set is used to tag the high-resource language. Our
approach does not rely on any such universal tag
set; we learn whichever tags the human annotator
chooses to use when they provide their annotations.
In fact, in our experiments we learn much more de-
tailed tag sets than the fairly coarse universal tag set
used by Das and Petrov (2011) or Tackstrom et al.
(2013): we learn a tagger for the full Penn Treebank
tag set of 45 tags versus the 12 tags in the universal
set.

Ding (2011) constructed an LP graph for learning
POS tags on Chinese text by propagating labels from
an initial tag dictionary to a larger set of data. This
LP graph contained Wiktionary word/POS relation-
ships as features as well as Chinese-English word
alignment information and used it to directly esti-
mate emission probabilities to initialize an EM train-
ing of an HMM.

Li et al. (2012) train an HMM using EM and an
initial tag dictionary derived from Wiktionary. Like
Das and Petrov (2011), they use a universal POS tag
set, so Wiktionary can be directly applied as a wide-
coverage tag dictionary in their case. Additionally,
they evaluate their approach on languages for which
Wiktionary has high coverage—which would cer-
tainly not get far with Kinyarwanda (9 entries). Our
approach does not rely on a high-coverage tag dic-
tionary nor is it restricted to use with a small tag set.

6 Conclusions and future work

With just two hours of annotation, we obtain 71-78%
accuracy for POS-tagging across three languages us-
ing both type and token supervision. Without tag
dictionary expansion and model minimization, per-
formance is much worse, from 63-74%. We dramat-
ically improve performance on unknown words: the
range of 37-58% improves to 53-70%.

We also have a provisional answer to whether an-
notation should be on types or tokens: use type-
supervision if you also expand and minimize. These
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methods can identify missing word/tag entries and
estimate frequency information, and they produce as
good or better results compared to starting with to-
ken supervision. The case of Kinyarwanda was most
dramatic: 71% accuracy for token-supervision com-
pared to 79% for type-supervision. Studies using
more annotators and across more languages would
be necessary to make any stronger claim about the
relative efficacy of the two strategies.
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Abstract

Latent-variable PCFGs (L-PCFGs) are a
highly successful model for natural language
parsing. Recent work (Cohen et al., 2012)
has introduced a spectral algorithm for param-
eter estimation of L-PCFGs, which—unlike
the EM algorithm—is guaranteed to give con-
sistent parameter estimates (it has PAC-style
guarantees of sample complexity). This paper
describes experiments using the spectral algo-
rithm. We show that the algorithm provides
models with the same accuracy as EM, but is
an order of magnitude more efficient. We de-
scribe a number of key steps used to obtain
this level of performance; these should be rel-
evant to other work on the application of spec-
tral learning algorithms. We view our results
as strong empirical evidence for the viability
of spectral methods as an alternative to EM.

1 Introduction

Latent-variable PCFGS (L-PCFGs) are a highly suc-
cessful model for natural language parsing (Mat-
suzaki et al., 2005; Petrov et al.,, 2006). Recent
work (Cohen et al., 2012) has introduced a spectral
learning algorithm for L-PCFGs. A crucial prop-
erty of the algorithm is that it is guaranteed to pro-
vide consistent parameter estimates—in fact it has
PAC-style guarantees of sample complexity.! This
is in contrast to the EM algorithm, the usual method
for parameter estimation in L-PCFGs, which has the
weaker guarantee of reaching a local maximum of
the likelihood function. The spectral algorithm is
relatively simple and efficient, relying on a singular
value decomposition of the training examples, fol-
lowed by a single pass over the data where parame-
ter values are calculated.

Cohen et al. (2012) describe the algorithm, and
the theory behind it, but as yet no experimental re-
sults have been reported for the method. This paper

"under assumptions on certain singular values in the model;
see section 2.3.1.
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describes experiments on natural language parsing
using the spectral algorithm for parameter estima-
tion. The algorithm provides models with slightly
higher accuracy than EM (88.05% F-measure on test
data for the spectral algorithm, vs 87.76% for EM),
but is an order of magnitude more efficient (9h52m
for training, compared to 187h12m, a speed-up of
19 times).

We describe a number of key steps in obtain-
ing this level of performance. A simple backed-off
smoothing method is used to estimate the large num-
ber of parameters in the model. The spectral algo-
rithm requires functions mapping inside and outside
trees to feature vectors—we make use of features
corresponding to single level rules, and larger tree
fragments composed of two or three levels of rules.
We show that it is important to scale features by their
inverse variance, in a manner that is closely related
to methods used in canonical correlation analysis.
Negative values can cause issues in spectral algo-
rithms, but we describe a solution to these problems.

In recent work there has been a series of results in
spectral learning algorithms for latent-variable mod-
els (Vempala and Wang, 2004; Hsu et al., 2009;
Bailly et al., 2010; Siddiqi et al., 2010; Parikh et
al., 2011; Balle et al., 2011; Arora et al., 2012;
Dhillon et al., 2012; Anandkumar et al., 2012). Most
of these results are theoretical (although see Luque
et al. (2012) for empirical results of spectral learn-
ing for dependency parsing). While the focus of
our experiments is on parsing, our findings should
be relevant to the application of spectral methods to
other latent-variable models. We view our results as
strong empirical evidence for the viability of spec-
tral methods as an alternative to EM.

2 Background

In this section we first give basic definitions for L-
PCFGs, and then describe the spectral learning algo-
rithm of Cohen et al. (2012).

Proceedings of NAACL-HLT 2013, pages 148-157,
Atlanta, Georgia, 9-14 June 2013. (©2013 Association for Computational Linguistics



2.1 L-PCFGs: Basic Definitions

We follow the definition in Cohen et al. (2012)
of L-PCFGs. An L-PCFG is an 8-tuple
(N, Z,P,m,n,n,t,q) where:

e N is the set of non-terminal symbols in the
grammar. Z C N is a finite set of in-terminals.
P C N is a finite set of pre-terminals. We as-
sume that ' = ZUP, and ZNP = (). Hence we
have partitioned the set of non-terminals into
two subsets.

e [m] is the set of possible hidden states.?
e [n] is the set of possible words.

eForall a € Z, bjc € N, hi,ha,hg €
[m], we have a context-free rule a(hy) —
b(h2) c¢(hg). The rule has an associated pa-
rameter t(a — b ¢, ha, hs|a, hy).

e Foralla € P, h € [m], z € [n], we have a
context-free rule a(h) — x. The rule has an
associated parameter ¢(a — z|a, h).

e Forall a € Z, h € [m], w(a, h) is a parameter
specifying the probability of a(h) being at the
root of a tree.

A skeletal tree (s-tree) is a sequence of rules
71 ...7Nn Where each r; is either of the forma — b ¢
or a — x. The rule sequence forms a top-down, left-
most derivation under a CFG with skeletal rules.

A full tree consists of an s-tree 71 . .. ry, together
with values hy...hy. Each h; is the value for
the hidden variable for the left-hand-side of rule r;.

Each h; can take any value in [m)].

For a given skeletal tree r; .. .7y, define a; to be
the non-terminal on the left-hand-side of rule r;. For
any i € [N] such that r; is of the form a — b ¢, de-

fine hl(-2) and hz@) as the hidden state value of the left
and right child respectively. The model then defines
a probability mass function (PMF) as

p(?"l...’l"N,hl...hN):

n(ar,ha) [ 0o h® 0P laihe) T atrilas, he)
i:a; €L i:a; EP

The PMF over skeletal trees is p(ri...ry) =
Zhl...h]\] p(Tl ---TN, hl .o hN)

%For any integer n, we use [n] to denote the set {1,2,...n}.
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The parsing problem is to take a sentence as in-
put, and produce a skeletal tree as output. A stan-
dard method for parsing with L-PCFGs is as follows.
First, for a given input sentence z ...x,, for any
triple (a,i,7) such thata € N and 1 < i < j < n,
the marginal u(a, i, 7) is defined as

pla, i, j) = Z p(t)

t:(a,i,j)€t

(1

where the sum is over all skeletal trees ¢ for
Z1...T, that include non-terminal a spanning
words x;...x;. A variant of the inside-outside
algorithm can be used to calculate marginals.
Once marginals have been computed, Good-
man’s algorithm (Goodman, 1996) is used to find

arg maxy Z(a7i,j)€t wla,i, j).>
2.2 The Spectral Learning Algorithm

We now give a sketch of the spectral learning algo-
rithm. The training data for the algorithm is a set
of skeletal trees. The output from the algorithm is a
set of parameter estimates for ¢, ¢ and m (more pre-
cisely, the estimates are estimates of linearly trans-
formed parameters; see Cohen et al. (2012) and sec-
tion 2.3.1 for more details).

The algorithm takes two inputs in addition to the
set of skeletal trees. The first is an integer m, speci-
fying the number of latent state values in the model.
Typically m is a relatively small number; in our ex-
periments we test values such as m = 8,16 or 32.
The second is a pair of functions ¢ and ), that re-
spectively map inside and outside trees to feature
vectors in R% and R?, where d and d’ are integers.
Each non-terminal in a skeletal tree has an associ-
ated inside and outside tree. The inside tree for a
node contains the entire subtree below that node; the
outside tree contains everything in the tree excluding
the inside tree. We will refer to the node above the
inside tree that has been removed as the “foot” of the
outside tree. See figure 1 for an example.

Section 3.1 gives definitions of ¢(¢) and (o)
used in our experiments. The definitions of ¢(¢) and

In fact, in our implementation we calculate marginals
ula — beyik, j) for a,b,c € Nand1 <4 < k < j, and
w(a,i,i) fora € N, 1 < i < n, then apply the CKY algorithm
to find the parse tree that maximizes the sum of the marginals.
For simplicity of presentation we will refer to marginals of the
form y(a, 7, j) in the remainder of this paper.



N P
\'% NP NP VP
\ PN N
saw D N D N
| | | |
the dog the cat
Figure 1: The inside tree (shown left) and out-
side tree (shown right) for the non-terminal VP
in the parse tree [S [NP [D the ] [N cat]]
[VP [V saw] [NP [D the] [N dogl]l]]

(o) are typically high-dimensional, sparse feature
vectors, similar to those in log-linear models. For
example ¢ might track the rule immediately below
the root of the inside tree, or larger tree fragments;
1 might include similar features tracking rules or
larger rule fragments above the relevant node.

The spectral learning algorithm proceeds in two
steps. In step 1, we learn an m-dimensional rep-
resentation of inside and outside trees, using the
functions ¢ and 1) in combination with a projection
step defined through singular value decomposition
(SVD). In step 2, we derive parameter estimates di-
rectly from training examples.

2.2.1 Step 1: An SVD-Based Projection

For a given non-terminal a € N, each instance of
a in the training data has an associated outside tree,
and an associated inside tree. We define O® to be
the set of pairs of inside/outside trees seen with a in
the training data: each member of O is a pair (o, t)
where o is an outside tree, and ¢ is an inside tree.
Step 1 of the algorithm is then as follows:

1. For each a € N calculate )¢ € RI%d" a5

s =G X 0s00)
(o,t)€O“

2. Perform an SVD on (%, Define U% € R4*™
(Ve € RY*M) to be a matrix containing the
m left (right) singular vectors corresponding
to the m largest singular values; define X €
R™*™ to be the diagonal matrix with the m
largest singular values on its diagonal.

3. For each inside tree in the corpus with root la-
bel a, define

Y(t) = (U o(t)
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For each outside tree with a foot node labeled
a, define

Z(0) = (£°) (V) T4(0)

Note that Y (¢) and Z(o) are both m-dimensional
vectors; thus we have used SVD to project inside
and outside trees to m-dimensional vectors.

2.3 Step 2: Parameter Estimation

We now describe how the functions Y'(¢) and Z (o)
are used in estimating parameters of the model.
First, consider the t(a — b ¢, ho, hsla, hy) parame-
ters. Each instance of a given rule a — b ¢ in the
training corpus has an outside tree o associated with
the parent labeled a, and inside trees ¢ and t3 as-
sociated with the children labeled b and c. For any
rule a — b ¢ we define Q% ° € to be the set of triples
(0,t),t3)) occurring with that rule in the corpus.
The parameter estimate is then

count(a — b c)

A - . _ a—b c
éla—bej klai) = count(a) x Bl
2
where
Do 43, Zi(0) X Y;(t@) x V3. (t3))
a—b ¢ o eQ(Lﬂb c
.5,k

Q=T

Here we use count(a — b ¢) and count(a) to refer
to the count of the rule @ — b c and the non-terminal
a in the corpus. Note that once the SVD step has
been used to compute representations Y () and Z (o)
for each inside and outside tree in the corpus, calcu-
lating the parameter value ¢(a — b ¢, j, kla,i) is a
very simple operation.

Similarly, for any rule a — =z, define Q%" to
be the set of outside trees seen with that rule in the
training corpus. The parameter estimate is then

count(a — x)
count(a)

¢la — zla,i) = x BA7T(3)
where B0 = 3" nae Zi(0)/|QT7.

A similar method is used for estimating parame-
ters ¢(a, 7) that play the role of the 7 parameters (de-

tails omitted for brevity; see Cohen et al. (2012)).

2.3.1 Guarantees for the Algorithm
Once the é¢(a — b ¢, j, kl|a, i), ¢(a — x|a,i) and
¢(a,i) parameters have been estimated from the



training corpus, they can be used in place of the ¢,
q and 7 parameters in the inside-outside algorithm
for computing marginals (see Eq. 1). Call the re-
sulting marginals /i(a,4,j). The guarantees for the
parameter estimation method are as follows:

e Define Q% = E[¢(T)((0))T|A = a] where
A, O, T are random variables corresponding to
the non-terminal label at a node, the outside
tree, and the inside tree (see Cohen et al. (2012)
for a precise definition). Note that 0%, as de-
fined above, is an estimate of 2*. Then if Q%
has rank m, the marginals i will converge to
the true values p as the number of training ex-
amples goes to infinity, assuming that the train-
ing samples are i.i.d. samples from an L-PCFG.

e Define o to be the m’th largest singular value
of Q%. Then the number of samples required
for i to be e-close to p with probability at least
1 — § is polynomial in 1 /¢, 1/6, and 1 /0.

Under the first assumption, (Cohen et al.,
2012) show that the ¢ parameters converge to
values that are linear transforms of the orig-
inal parameters in the L-PCFG. For example,
define c(a — be,j, kla,i) to be the value that
é(a — b e, g, kla, i) converges to in the limit of infi-
nite data. Then there exist invertible matrices G* €
R™*™ for all a € N such that for any a — b c, for
any hi, ho, hg € R™,

t(a’ —b C, h27 h3|a’7 h’l) =
D G ((G) 5 l(G) i pscla — bee, j, kla, i)

0,5,k

The transforms defined by the G® matrices are be-
nign, in that they cancel in the inside-outside algo-
rithm when marginals /.(a, 7, j) are calculated. Sim-
ilar relationships hold for the 7 and ¢ parameters.

3 Implementation of the Algorithm

Cohen et al. (2012) introduced the spectral learning
algorithm, but did not perform experiments, leaving
several choices open in how the algorithm is imple-
mented in practice. This section describes a number
of key choices made in our implementation of the
algorithm. In brief, they are as follows:
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The choice of functions ¢ and ). We will de-
scribe basic features used in ¢ and v (single-level
rules, larger tree fragments, etc.). We will also de-
scribe a method for scaling different features in ¢
and 1 by their variance, which turns out to be im-
portant for empirical results.

Estimation of Eﬁf,kb “and E}%.  There are a very
large number of parameters in the model, lead-
ing to challenges in estimation. The estimates in
Egs. 2 and 3 are unsmoothed. We describe a simple
backed-off smoothing method that leads to signifi-

cant improvements in performance of the method.

Handling positive and negative values. As de-
fined, the ¢ parameters may be positive or negative;
as a result, the /i values may also be positive or neg-
ative. We find that negative values can be a signif-
icant problem if not handled correctly; but with a
very simple fix to the algorithm, it performs well.

We now turn to these three issues in more detail.
Section 4 will describe experiments measuring the
impact of the different choices.

3.1 The Choice of Functions ¢ and )

Cohen et al. (2012) show that the choice of feature
definitions ¢ and 1 is crucial in two respects. First,
for all non-terminals ¢ € A, the matrix Q% must
be of rank m: otherwise the parameter-estimation
algorithm will not be consistent. Second, the num-
ber of samples required for learning is polynomial
in 1/0, where 0 = mingen 0,,(2%), and 0,,(2%)
is the m’th smallest singular value of Q2. (Note that
the second condition is stronger than the first; o > 0
implies that 2 is of rank m for all a.) The choice
of ¢ and ¢ has a direct impact on the value for o:
roughly speaking, the value for o can be thought of
as a measure of how informative the functions ¢ and
1) are about the hidden state values.

With this in mind, our goal is to define a rel-
atively simple set of features, which nevertheless
provide significant information about hidden-state
values, and hence provide high accuracy under the
model. The inside-tree feature function ¢(¢) makes
use of the following indicator features (throughout
these definitions assume that a — b c is at the root
of the inside tree t):

e The pair of nonterminals (a, b). E.g., for the in-
side tree in figure 1 this would be the pair (VP, V).



e The pair (a,c). E.g., (VP, NP).

e Therulea — bc. E.g.,VP — V NP.

e The rule a — b ¢ paired with the rule at the
root of t(»2), E.g., for the inside tree in fig-
ure 1 this would correspond to the tree fragment

(VP (V saw) NP).

e The rule a — bc paired with the rule at
the root of t(13), E.g., the tree fragment
(VP V (NP D N)).

e The head part-of-speech of ¢(#"1) paired with a.*
E.g., the pair (VP, V).

e The number of words dominated by () paired
with a (this is an integer valued feature).

In the case of an inside tree consisting of a single
rule a — x the feature vector simply indicates the
identity of that rule.

To illustrate the function ), it will be useful to
make use of the following example outside tree:

S

v NP

dog
Note that in this example the foot node of the out-

side tree is labeled D. The features are as follows:

e The rule above the foot node. We take care
to mark which non-terminal is the foot, using a
x symbol. In the above example this feature is
NP — D* N.

e The two-level and three-level rule fragments
above the foot node. In the above example these fea-
tures would be

VP S
/\ /\
v NP NP VP
%
D N v NP

e The label of the foot node, together with the
label of its parent. In the above example this is
(D, NP).

e The label of the foot node, together with the la-
bel of its parent and grandparent. In the above ex-
ample thisis (D, NP, VP).

e The part of speech of the first head word along
the path from the foot of the outside tree to the root
of the tree which is different from the head node of

“We use the English head rules from the Stanford parser
(Klein and Manning, 2003).
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the foot node. In the above example this is N.

o The width of the span to the left of the foot node,
paired with the label of the foot node.

e The width of the span to the right of the foot
node, paired with the label of the foot node.

Scaling of features. The features defined above
are almost all binary valued features. We scale the
features in the following way. For each feature ¢;(¢),
define count() to be the number of times the feature
is equal to 1, and M to be the number of training
examples. The feature is then redefined to be

M
count(i) + K

¢i (t) X

where k is a smoothing term (the method is rela-
tively insensitive to the choice of x; we set Kk = 5 in
our experiments). A similar process is applied to the
1) features. The method has the effect of decreasing
the importance of more frequent features in the SVD
step of the algorithm.

The SVD-based step of the algorithm is very
closely related to previous work on CCA (Hotelling,
1936; Hardoon et al., 2004; Kakade and Foster,
2009); and the scaling step is derived from previ-
ous work on CCA (Dhillon et al., 2011). In CCA
the ¢ and 1) vectors are “whitened” in a preprocess-
ing step, before an SVD is applied. This whiten-
ing process involves calculating covariance matrices
C, = E[¢¢'] and C, = E[¢p "], and replacing ¢
by (C*)~/2¢ and ¢ by (CY)~1/2¢). The exact cal-
culation of (C*)~1/2 and (C¥)~1/2 is challenging in
high dimensions, however, as these matrices will not
be sparse; the transformation described above can
be considered an approximation where off-diagonal
members of C, and C,, are set to zero. We will see
that empirically this scaling gives much improved
accuracy.

3.2 Estimation of E{;7*“ and E{ "

The number of Effkbc parameters is very large,
and the estimation method described in Eqs. 2-3 is
unsmoothed. We have found significant improve-
ments in performance using a relatively simple back-
off smoothing method. The intuition behind this
method is as follows: given two random variables X
and Y, under the assumption that the random vari-
ables are independent, E[XY] = E[X] x E[Y]. It



makes sense to define “backed off” estimates which
make increasingly strong independence assumptions
of this form.

Smoothing of binary rules For any rule a — b ¢
and indices 7, j € [m] we can define a second-order
moment as follows:

Z(o,t(Q)’t(S)) Zi(o) X Yj(t(2))

a—bc __ EQ“Hb €

g T |Qa—>b c|

The definitions of Ea_”’ ¢and E“_’b ¢ are analogous.
We can define a ﬁrst order estlmate as follows:

> ot 1)) Ye(t®)
EQa*}b c
|Qa—>b c|

a—bc __

'?'71{:

Again, we have analogous definitions of EZ“_’(’ ¢ and

E‘Hb ¢, Different levels of smoothed estimate can

be derlved from these different terms. The first is

2,a—bc __
Ez;k -

—b —b b b bc —bec
BEpb e x B e + Bl x BU0e 4 Bl x BE e
3

Note that we give an equal weight of 1/3 to each of
the three backed-off estimates seen in the numerator.
A second smoothed estimate is

3,a—bc

_ pa—bc

a—bc a—b c
X E'7j7' X E"'7'I€

Using the definition of O® given in section 2.2.1, we
also define

pa _ 2loneo Vi) 2ioneor Zi(0)
(2 |Oa| 7 |Oa|

and our next smoothed estimate as El4 ja,: be _ = Hx
b c

Fj X Ff.
Our final estimate is

)\Eaﬂb C + (1 _ )\) (AE,?Ja;b C ( A)Kzaﬁb C)

_>b o 3,a—b ¢ 4,a—b ¢
where K707 ¢ = AES 7"+ (1= A E; 7"
Here /\ 6 [0, 1] is a smoothing parameter, set to

V]Q4t¢|/(C 4 /|Q*t¢]) in our experiments,

where C' is a parameter that is chosen by optimiza-
tion of accuracy on a held-out set of data.
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Smoothing lexical rules We define a similar
method for the E;'—* parameters. Define

o = o Tocgre Zi0)
' 2 Q0]

hence E ignores the identity of  in making its es-
timate. The smoothed estimate is then defined as
vE!7*+(1—v)E?. Here, visavaluein [0, 1] which
is tuned on a development set. We only smooth lex-
ical rules which appear in the data less than a fixed
number of times. Unlike binary rules, for which the
estimation depends on a high order moment (third
moment), the lexical rules use first-order moments,
and therefore it is not required to smooth rules with
a relatively high count. The maximal count for this
kind of smoothing is set using a development set.

3.3 Handling Positive and Negative Values

As described before, the parameter estimates may
be positive or negative, and as a result the
marginals computed by the algorithm may in some
cases themselves be negative. In early exper-
iments we found this to be a signficant prob-
lem, with some parses having a very large num-
ber of negatives, and being extremely poor in qual-
ity. Our fix is to define the output of the parser
to be argmax; ), ; nel(a, i, j)| rather than
argmax Y, ; ey M@, 4, j) as defined in Good-
man’s algorithm. Thus if a marginal value p(a, i, j)
is negative, we simply replace it with its absolute
value. This step was derived after inspection of the
parsing charts for bad parses, where we saw evi-
dence that in these cases the entire set of marginal
values had been negated (and hence decoding under
Eq. 1 actually leads to the lowest probability parse
being output under the model). We suspect that this
is because in some cases a dominant parameter has
had its sign flipped due to sampling error; more the-
oretical and empirical work is required in fully un-
derstanding this issue.

4 Experiments

In this section we describe parsing experiments us-
ing the L-PCFG estimation method. We give com-
parisons to the EM algorithm, considering both
speed of training, and accuracy of the resulting
model; we also give experiments investigating the
various choices described in the previous section.



We use the Penn WSJ treebank (Marcus et al.,
1993) for our experiments. Sections 2-21 were
used as training data, and sections 0 and 22 were
used as development data. Section 23 is used as
the final test set. We binarize the trees in train-
ing data using the same method as that described in
Petrov et al. (2006). For example, the non-binary
rule VP — V NP PP SBAR would be converted
to the structure [VP [QVP [QVP V NP] PP]
SBAR] where @VP is a new symbol in the grammar.
Unary rules are removed by collapsing non-terminal
chains: for example the unary rule S — VP would
be replaced by a single non-terminal S|VP.

For the EM algorithm we use the initialization
method described in Matsuzaki et al. (2005). For ef-
ficiency, we use a coarse-to-fine algorithm for pars-
ing with either the EM or spectral derived gram-
mar: a PCFG without latent states is used to calcu-
late marginals, and dynamic programming items are
removed if their marginal probability is lower than
some threshold (0.00005 in our experiments).

For simplicity the parser takes part-of-speech
tagged sentences as input. We use automatically
tagged data from Turbo Tagger (Martins et al.,
2010). The tagger is used to tag both the devel-
opment data and the test data. The tagger was re-
trained on sections 2-21. We use the I} measure
according to the Parseval metric (Black et al., 1991).
For the spectral algorithm, we tuned the smoothing
parameters using section O of the treebank.

4.1 Comparison to EM: Accuracy

We compare models trained using EM and the spec-
tral algorithm using values for m in {8, 16, 24, 32}.

For EM, we found that it was important to use de-
velopment data to choose the number of iterations
of training. We train the models for 100 iterations,
then test accuracy of the model on section 22 (devel-
opment data) at different iteration numbers. Table 1
shows that a peak level of accuracy is reached for all
values of m, other than m = &, at iteration 20-30,
with sometimes substantial overtraining beyond that
point.

The performance of a regular PCFG model, esti-
mated using maximum likelihood and with no latent

SLower values of m, such as 2 or 4, lead to substantially
lower performance for both models.
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section 22 section 23
EM  spectral EM  spectral
m =38 86.87  85.60 — —
m =16 || 88.32  87.77 — —
m =24 || 88.35  88.53 — —
m =32 || 88.56 88.82 87.76  88.05

Table 2: Results on the development data (section 22,
with machine-generated POS tags) and test data (section
23, with machine-generated POS tags).

states, is 68.62%.

Table 2 gives results for the EM-trained models
and spectral-trained models. The spectral models
give very similar accuracy to the EM-trained model
on the test set. Results on the development set with
varying m show that the EM-based models perform
better for m = §, but that the spectral algorithm
quickly catches up as m increases.

4.2 Comparison to EM: Training Speed

Table 3 gives training times for the EM algorithm
and the spectral algorithm for m € {8, 16,24, 32}.
All timing experiments were done on a single Intel
Xeon 2.67GHz CPU. The implementations for the
EM algorithm and the spectral algorithm were writ-
ten in Java. The spectral algorithm also made use
of Matlab for several matrix calculations such as the
SVD calculation.

For EM we show the time to train a single iter-
ation, and also the time to train the optimal model
(time for 30 iterations of training for m = 8§, 16, 24,
and time for 20 iterations for m = 32). Note that
this latter time is optimistic, as it assumes an oracle
specifying exactly when it is possible to terminate
EM training with no loss in performance. The spec-
tral method is considerably faster than EM: for ex-
ample, for m = 32 the time for training the spectral
model is just under 10 hours, compared to 187 hours
for EM, a factor of almost 19 times faster.®

The reason for these speed ups is as follows.
Step 1 of the spectral algorithm (feature calculation,
transfer + scaling, and SVD) is not required by EM,
but takes a relatively small amount of time (about
1.2 hours for all values of m). Once step 1 has been
completed, step 2 of the spectral algorithm takes a

®In practice, in order to overcome the speed issue with EM
training, we parallelized the E-step on multiple cores. The spec-
tral algorithm can be similarly parallelized, computing statistics
and parameters for each nonterminal separately.



10 20 30 40 50 60 70 80 90 100
m =8 83.51 86.45 86.68 86.69 86.63 86.67 86.70 86.82 86.87 86.83
m =16 || 85.18 &87.94 8832 8821 88.10 87.86 87.70 8746 8734 87.24
m =24 || 83.62 88.19 8835 8825 87.73 8741 8735 8726 87.02 86.80
m =32 || 83.23 88.56 88.52 87.82 87.06 8647 86.38 8585 8575 8557

Table 1: Results on section 22 for the EM algorithm, varying the number of iterations used. Best results in each row

are in boldface.

single EM spectral algorithm
EM iter. | best model | total feature transfer + scaling SVD a—bc a—=x
m =38 6m 3h 3h32m ‘ ‘ 36m 1h34m  10m
m = 16 52m 26h6m 5h19m 34m  3h13m 19m
22m 49m
m =241 3h7m 93h36m | 7h15m 36m 4h54m  28m
m =321 9h2Ilm | 187h12m | 9h52m ‘ ‘ 35m 7hl6ém  41m

Table 3: Running time for the EM algorithm and the various stages in the spectral algorithm. For EM we show the
time for a single iteration, and the time to train the optimal model (time for 30 iterations of training for m = 8, 16, 24,
time for 20 iterations of training for m = 32). For the spectral method we show the following: “total” is the total
training time; “feature” is the time to compute the ¢ and i vectors for all data points; “transfer + scaling” is time
to transfer the data from Java to Matlab, combined with the time for scaling of the features; “SVD” is the time for
the SVD computation; a — b ¢ is the time to compute the ¢(a — b ¢, ha, hs|a, h1) parameters; a — x is the time to
compute the é(a — x, h|a, h) parameters. Note that “feature” and “transfer + scaling” are the same step for all values

of m, so we quote a single runtime for these steps.

single pass over the data: in contrast, EM requires
a few tens of passes (certainly more than 10 passes,
from the results in table 1). The computations per-
formed by the spectral algorithm in its single pass
are relatively cheap. In contrast to EM, the inside-
outside algorithm is not required; however various
operations such as calculating smoothing terms in
the spectral method add some overhead. The net re-
sult is that for m = 32 the time for training the spec-
tral method takes a very similar amount of time to a
single pass of the EM algorithm.

4.3 Smoothing, Features, and Negatives

We now describe experiments demonstrating the im-
pact of various components described in section 3.

The effect of smoothing (section 3.2) Without
smoothing, results on section 22 are 85.05% (m =
8, —1.82), 86.84% (m = 16, —1.48), 86.47%
(m = 24, —1.88), 86.47% (m = 32, —2.09) (in
each case we show the decrease in performance from
the results in table 2). Smoothing is clearly impor-
tant.

Scaling of features (section 3.1) Without scaling
of features, the accuracy on section 22 with m = 32
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is 84.40%, a very significant drop from the 88.82%
accuracy achieved with scaling.

Handling negative values (section 3.3) Replac-
ing marginal values u(a,i,j) with their absolute
values is also important: without this step, accu-
racy on section 22 decreases to 80.61% (m = 32).
319 sentences out of 1700 examples have different
parses when this step is implemented, implying that
the problem with negative values described in sec-
tion 3.3 occurs on around 18% of all sentences.

The effect of feature functions To test the effect
of features on accuracy, we experimented with a
simpler set of features than those described in sec-
tion 3.1. This simple set just includes an indicator
for the rule below a nonterminal (for inside trees)
and the rule above a nonterminal (for outside trees).
Even this simpler set of features achieves relatively
high accuracy (m = 8: 86.44 , m = 16: 86.86,
m = 24: 87.24 ,m = 32: 88.07 ).

This set of features is reminiscent of a PCFG
model where the nonterminals are augmented their
parents (vertical Markovization of order 2) and bina-
rization is done while retaining sibling information
(horizontal Markovization of order 1). See Klein
and Manning (2003) for more information. The per-



formance of this Markovized PCFG model lags be-
hind the spectral model: it is 82.59%. This is prob-
ably due to the complexity of the grammar which
causes ovefitting. Condensing the sibling and parent
information using latent states as done in the spectral
model leads to better generalization.

It is important to note that the results for both
EM and the spectral algorithm are comparable to
state of the art, but there are other results previ-
ously reported in the literature which are higher.
For example, Hiroyuki et al. (2012) report an ac-
curacy of 92.4 F on section 23 of the Penn WSJ
treebank using a Bayesian tree substitution gram-
mar; Charniak and Johnson (2005) report accuracy
of 91.4 using a discriminative reranking model; Car-
reras et al. (2008) report 91.1 F accuracy for a dis-
criminative, perceptron-trained model; Petrov and
Klein (2007) report an accuracy of 90.1 F1, using
L-PCFGs, but with a split-merge training procedure.
Collins (2003) reports an accuracy of 88.2 F}, which
is comparable to the results in this paper.

5 Conclusion

The spectral learning algorithm gives the same level
of accuracy as EM in our experiments, but has sig-
nificantly faster training times. There are several ar-
eas for future work. There are a large number of pa-
rameters in the model, and we suspect that more so-
phisticated regularization methods than the smooth-
ing method we have described may improve perfor-
mance. Future work should also investigate other
choices for the functions ¢ and . There are natu-
ral ways to extend the approach to semi-supervised
learning; for example the SVD step, where repre-
sentations of outside and inside trees are learned,
could be applied to unlabeled data parsed by a first-
pass parser. Finally, the methods we have described
should be applicable to spectral learning for other
latent variable models.
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Abstract

Topics generated automatically, e.g. using
LDA, are now widely used in Computational
Linguistics. Topics are normally represented
as a set of keywords, often the n terms in a
topic with the highest marginal probabilities.
We introduce an alternative approach in which
topics are represented using images. Candi-
date images for each topic are retrieved from
the web by querying a search engine using the
top n terms. The most suitable image is se-
lected from this set using a graph-based al-
gorithm which makes use of textual informa-
tion from the metadata associated with each
image and features extracted from the images
themselves. We show that the proposed ap-
proach significantly outperforms several base-
lines and can provide images that are useful to
represent a topic.

1 Introduction

Topic models are statistical methods for summaris-
ing the content of a document collection using latent
variables known as topics (Hofmann, 1999; Blei et
al., 2003). Within a model, each topic is a multino-
mial distribution over words in the collection while
documents are represented as distributions over top-
ics. Topic modelling is now widely used in Natural
Language Processing (NLP) and has been applied to
a range of tasks including word sense disambigua-
tion (Boyd-Graber et al., 2007), multi-document
summarisation (Haghighi and Vanderwende, 2009),
information retrieval (Wei and Croft, 2006), image
labelling (Feng and Lapata, 2010a) and visualisation
of document collections (Chaney and Blei, 2012).
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Topics are often represented by using the n terms
with the highest marginal probabilities in the topic to
generate a set of keywords. For example, wine, bot-
tle, grape, flavour, dry. Interpreting such lists may
not be straightforward, particularly since there may
be no access to the source collection used to train the
model. Therefore, researchers have recently begun
developing automatic methods to generate meaning-
ful and representative labels for topics. These tech-
niques have focussed on the creation of textual la-
bels (Mei et al., 2007; Lau et al., 2010; Lau et al.,
2011).

An alternative approach is to represent a topic us-
ing an illustrative image (or set of images). Im-
ages have the advantage that they can be under-
stood quickly and are language independent. This is
particularly important for applications in which the
topics are used to provide an overview of a collec-
tion with many topics being shown simultaneously
(Chaney and Blei, 2012; Gretarsson et al., 2012;
Hinneburg et al., 2012).

This paper explores the problem of selecting im-
ages to illustrate automatically generated topics.
Our approach generates a set of candidate images for
each topic by querying an image search engine with
the top n topic terms. The most suitable image is
selected using a graph-based method that makes use
of both textual and visual information. Textual in-
formation is obtained from the metadata associated
with each image while visual features are extracted
from the images themselves. Our approach is evalu-
ated using a data set created for this study that was
annotated by crowdsourcing. Results of the evalu-
ation show that the proposed method significantly

Proceedings of NAACL-HLT 2013, pages 158-167,
Atlanta, Georgia, 9-14 June 2013. (©2013 Association for Computational Linguistics



outperforms three baselines.

The contributions of this paper are as follows: (1)
introduces the problem of labelling topics using im-
ages; (2) describes an approach to this problem that
makes use of multimodal information to select im-
ages from a set of candidates; (3) introduces a data
set to evaluate image labelling; and (4) evaluates the
proposed approach using this data set.

2 Related work

In early research on topic modelling, labels were
manually assigned to topics for convenient presen-
tation of research results (Mei and Zhai, 2005; Teh
et al., 2006).

The first attempt at automatically assigning la-
bels to topics is described by Mei et al. (2007).
In their approach, a set of candidate labels are ex-
tracted from a reference collection using chunking
and statistically important bigrams. Then, a rele-
vance scoring function is defined which minimises
the Kullback-Leibler divergence between word dis-
tribution in a topic and word distribution in candi-
date labels. Candidate labels are ranked according
to their relevance and the top ranked label chosen to
represent the topic.

Magatti et al. (2009) introduced an approach
for labelling topics that relied on two hierarchi-
cal knowledge resources labelled by humans, the
Google Directory and the OpenOffice English The-
saurus. A topics tree is a pre-existing hierarchi-
cal structure of labelled topics. The Automatic La-
belling Of Topics algorithm computes the similarity
between LDA inferred topics and topics in a topics
tree by computing scores using six standard similar-
ity measures. The label for the most similar topic in
the fopic tree is assigned to the LDA topic.

Lau et al. (2010) proposed selecting the most rep-
resentative word from a topic as its label. A la-
bel is selected by computing the similarity between
each word and all the others in the topic. Sev-
eral sources of information are used to identify the
best label including Pointwise Mutual Information
scores, WordNet hypernymy relations and distribu-
tional similarity. These features are combined in a
reranking model to achieve results above a baseline
(the most probable word in the topic).

In more recent work, Lau et al. (2011) proposed
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a method for automatically labelling topics by mak-
ing use of Wikipedia article titles as candidate la-
bels. The candidate labels are ranked using infor-
mation from word association measures, lexical fea-
tures and an Information Retrieval technique. Re-
sults showed that this ranking method achieves bet-
ter performance than a previous approach (Mei et al.,
2007).

Mao et al. (2012) introduced a method for la-
belling hierarchical topics which makes use of sib-
ling and parent-child relations of topics. Candidate
labels are generated using a similar approach to the
one used by Mei et al. (2007). Each candidate la-
bel is then assigned a score by creating a distribu-
tion based on the words it contains and measuring
the Jensen-Shannon divergence between this and a
reference corpus.

Hulpus et al. (2013) make use of the structured
data in DBpedia' to label topics. Their approach
maps topic words to DBpedia concepts. The best
concepts are identified by applying graph central-
ity measures which assume that words that co-
occurring in text are likely to refer to concepts that
are close in the DBpedia graph.

Our own work differs from the approaches de-
scribed above since, to our knowledge, it is the first
to propose labelling topics with images rather than
text.

Recent advances in computer vision has lead to
the development of reliable techniques for exploit-
ing information available in images (Datta et al.,
2008; Szeliski, 2010) and these have been combined
with NLP (Feng and Lapata, 2010a; Feng and Lap-
ata, 2010b; Agrawal et al., 2011; Bruni et al., 2011).
The closest work to our own is the text illustration
techniques which have been proposed for story pic-
turing (Joshi et al., 2006) and news articles illustra-
tion (Feng and Lapata, 2010b). The input to text il-
lustration models is a textual document and a set of
image candidates. The goal of the models is to as-
sociate the document with the correct image. More-
over, the problem of ranking images returned from
a text query is related to, but different from, the
one explored in our paper. Those approaches used
queries that were much smaller (e.g. between one
and three words) and more focussed than the ones

Thttp://dbpedia.org



we use (Jing and Baluja, 2008). In our work, the in-
put is a topic and the aim is to associate it with an
image, or images, denoting the main thematic sub-
ject.

3 Labelling Topics

In this section we propose an approach to identify-
ing images to illustrate automatically generated top-
ics. It is assumed that there are no candidate images
available so the first step (Section 3.1) is to generate
a set of candidate images. However, when a candi-
date set is available the first step can be skipped.

3.1 Selecting Candidate Images

For the experiments presented here we restrict our-
selves to using images from Wikipedia available un-
der the Creative Commons licence, since this allows
us to make the data available. The top-5 terms from
a topic are used to query Google using its Custom
Search API?. The search is restricted to the English
Wikipedia® with image search enabled. The top-20
images retrieved for each search are used as candi-
dates for the topic.

3.2 Feature Extraction

Candidate images are represented by two modalities
(textual and visual) and features extracted for each.

3.2.1 Textual Information

Each image’s textual information consists of the
metadata retrieved by the search. The assumption
here is that image’s metadata is indicative of the im-
age’s content and (at least to some extent) related to
the topic. The textual information is formed by con-
catenating the fitle and the link fields of the search
result. These represent, respectively, the web page
title containing the image and the image file name.
The textual information is preprocessed by tokeniz-
ing and removing stop words.

3.2.2 Visual Information
Visual information is extracted using low-level

image keypoint descriptors, i.e. SIFT features

2https://developers.google.com/
apis—explorer/#s/customsearch/vl
*http://en.wikipedia.org
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(Lowe, 1999; Lowe, 2004) sensitive to colour in-
formation. SIFT features denote “interesting” ar-
eas in an image. Image features are extracted us-
ing dense sampling and described using Opponent
colour SIFT descriptors provided by the colorde-
scriptor® software. Opponent colour SIFT descrip-
tors have been found to give the best performance
in object scene and face recognition (Sande et al.,
2008). The SIFT features are clustered to form a vi-
sual codebook of 1,000 visual words using K-Means
such that each feature is mapped to a visual word.
Each image is represented as a bag-of-visual words
(BOVW).

3.3 Ranking Candidate Images

We rank images in the candidates set using graph-
based algorithms. The graph is created by treating
images as nodes and using similarity scores (textual
or visual) between images to weight the edges.

3.3.1 PageRank

PageRank (Page et al., 1999) is a graph-based al-
gorithm for identifying important nodes in a graph
that was originally developed for assigning impor-
tance to web pages. It has been used for a range
of NLP tasks including word sense disambiguation
(Agirre and Soroa, 2009) and keyword extraction
(Mihalcea and Tarau, 2004).

Let G = (V,FE) be a graph with a set of ver-
tices, V, denoting image candidates and a set of
edges, F, denoting similarity scores between two
images. For example, sim(V;, V;) indicates the sim-
ilarity between images V; and V;. The PageRank
score (Pr) over G for an image (V;) can be com-
puted by the following equation:

Pr(Vi)=d-

i ’ivV'
> Z“m(v, (8 V)Pr(vj)+(1—d)v
sim(V;, Vi,
VieCVi) v, €8(v;) J

@

where C'(V;) denotes the set of vertices which are

connected to the vertex V;. d is the damping factor
which is set to the default value of d = 0.85 (Page et
al., 1999). In standard PageRank all elements of the
vector v are the same, % where N is the number of
nodes in the graph.

*nttp://koen.me/research/
colordescriptors



3.3.2 Personalised PageRank

Personalised PageRank (PPR) (Haveliwala et al.,
2003) is a variant of the PageRank algorithm in
which extra importance is assigned to certain ver-
tices in the graph. This is achieved by adjusting the
values of the vector v in equation 1 to prefer certain
nodes. Nodes that are assigned high values in v are
more likely to also be assigned a high PPR score.
We make use of PPR to prefer images with textual
information that is similar to the terms in the topic.

3.3.3 Weighting Graph Edges

Three approaches were compared for computing
the values of sim(V;, V) in equation 1 used to
weight the edges of the graph. Two of these make
use of the textual information associated with each
image while the final one relies on visual features.

The first approach is Pointwise Mutual Infor-
mation (PMI). The similarity between a pair of
images (vertices in the graph) is computed as the
average PMI between the terms in their metadata.
PMI is computed using word co-occurrence counts
over Wikipedia identified using a sliding window of
length 20. We also experimented with other word
association measures but these did not perform as
well. The PageRank over the graph weighted using
PMI is denoted as PRppmy.

The second approach, Explicit Semantic Anal-
ysis (ESA) (Gabrilovich and Markovitch, 2007), is
a knowledge-based similarity measure. ESA trans-
forms the text from the image metadata into vectors
that consist of Wikipedia article titles weighted by
their relevance. The similarity score between these
vectors is computed as the cosine of the angle be-
tween them. This similarity measure is used to cre-
ate the graph and its PageRank is denoted as PRgga .

The final approach uses the visual features ex-
tracted from the images themselves. The visual
words extracted from the images are used to form
feature vectors and the similarity between a pair of
images computed as the cosine of the angle between
them. The PageRank of the graph created using this
approach is PRy;s and it is similar to the approach
proposed by Jing and Baluja (2008) for associating
images to text queries.
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3.3.4 Initialising the Personalisation Vector

The personalisation vector (see above) is
weighted using the similarity scores computed be-
tween the topic and its image candidates. Similarity
is computed using PMI and ESA (see above). When
PMI and ESA are used to weight the personalisation
vector they compute the similarity between the
top 10 terms for a topic and the textual metadata
associated with each image in the set of candidates.
We refer to the personalisation vectors created
using PMI and ESA as Per(PMI) and Per(ESA)
respectively.

Using PPR allows information about the simi-
larity between the images’ metadata and the topics
themselves to be considered when identifying a suit-
able image label. The situation is different when
PageRank is used since this only considers the sim-
ilarity between the images in the candidate set.

The personalisation vector used by PPR is em-
ployed in combination with a graph created us-
ing one of the approaches described above. For
example, the graph may be weighted using vi-
sual features and the personalisation vector created
using PMI scores. This approach is denoted as
PRyis+Per(PMI).

4 Evaluation

This section discusses the experimental design for
evaluating the proposed approaches to labelling top-
ics with images. To our knowledge no data set for
evaluating these approaches is currently available
and consequently we developed one for this study”.
Human judgements about the suitability of images
are obtained through crowdsourcing.

4.1 Data

We created a data set of topics from two collections
which cover a broad thematic range:

o NYT 47,229 New York Times news articles
(included in the GigaWord corpus) that were
published between May and December 2010.

o WIKI A set of Wikipedia categories randomly
selected by browsing its hierarchy in a breadth-
first-search manner starting from a few seed

Data set can be downloaded from http://staffwww.

dcs.shef.ac.uk/people/N.Aletras/resources.
html.
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Figure 1: A sample of topics and their top-3 image candidates (i.e. with the highest average human annota-

tions).

categories (e.g. SPORTS, POLITICS, COMPUT-
ING). Categories that have more that 80 articles
associated with them are considered. These
articles are collected to produce a corpus of
approximately 60,000 articles generated from
1,461 categories.

Documents in the two collections are tokenised
and stop words removed. LDA was applied to learn
200 topics from NYT and 400 topics from WIKI.
The gensim package® was used to implement and
compute LDA. The hyperparameters («, 5) were set
to m. Incoherent topics are filtered out
by applying the method proposed by Aletras and
Stevenson (2013).

We randomly selected 100 topics from NYT and
200 topics from WIKI resulting in a data set of 300
topics. Candidate images for these topics were gen-
erated using the approach described in Section 3.1,
producing a total of 6,000 candidate images (20 for

Snttp://pypi.python.org/pypi/gensim
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each topic).

4.2 Human Judgements of Image Relevance

Human judgements of the suitability of each im-
age were obtained using an online crowdsourcing
platform, Crowdflower’. Annotators were provided
with a topic (represented as a set of 10 keywords)
and a candidate image. They were asked to judge
how appropriate the image was as a representation
of the main subject of the topic and provide a rating
on a scale of 0 (completely unsuitable) to 3 (very
suitable).

Quality control is important in crowdscourcing
experiments to ensure reliability (Kazai, 2011). To
avoid random answers, control questions with obvi-
ous answer were included in the survey. Annotations
by participants that failed to answer these questions
correctly or participants that gave the same rating for
all pairs were removed.

"http://crowdflower.com



The total number of filtered responses obtained
was 62,221 from 273 participants. Each topic-
image pair was rated at least by 10 subjects. The
average response for each pair was calculated in or-
der to create the final similarity judgement for use as
a gold-standard. The average variance across judges
(excluding control questions) is 0.88.

Inter-Annotator agreement (IAA) is computed as
the average Spearman’s p between the ratings given
by an annotator and the average ratings given by all
other annotators. The average IAA across all topics
was 0.50 which indicates the difficulty of the task,
even for humans.

Figure 1 shows three example topics from the data
set together with the images that received the highest
average score from the annotators.

4.3 Evaluation Metrics

Evaluation of the topic labelling methods is carried
out using a similar approach to the framework pro-
posed by Lau et al. (2011) for labelling topics using
textual labels.

Top-1 average rating is the average human rating
assigned to the top-ranked label proposed by the sys-
tem. This provides an indication of the overall qual-
ity of the image the system judges as the best one.
The highest possible score averaged across all top-
ics is 2.68, since for many topics the average score
obtained from the human judgements is lower than
3.

The second evaluation measure is the normalized
discounted cumulative gain (nDCG) (Jarvelin and
Kekdldinen, 2002; Croft et al., 2009) which com-
pares the label ranking proposed by the system to
the optimal ranking provided by humans. The dis-
counted cumulative gain at position p (DCG,) is
computed using the following equation:

rel;
loga (1)

p
DCGp=rely + ) )
=2

where rel; is the relevance of the label to the topic
in position 7. Then nDCG is computed as:
DCaG,
1DCG,
where I DCG), is the optimal ranking of the image

labels, in our experiments this is the ranking pro-
vided by the scores in the human annotated data set.

nDCG, =

3)
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We follow Lau et al. (2011) in computing nDCG-1,
nDCG-3 and nDCG-S5 for the top 1, 3 and 5 ranked
system image labels respectively.

4.4 Baselines

Since there are no previous methods for labelling
topics using images, we compare our proposed mod-
els against three baselines.

The Random baseline randomly selects a label
for the topic from the 20 image candidates. The pro-
cess is repeated 10,000 times and the average score
of the selected labels is computed for each topic.

The more informed Word Overlap baseline se-
lects the image that is most similar to the topic terms
by applying a Lesk-style algorithm (Lesk, 1986) to
compare metadata for each image against the topic
terms. It is defined as the number of common terms
between a topic and image candidate normalised by
the total number of terms in the topic and image’s
metadata.

We also compared our approach with the ranking
returned by the Google Image Search for the top-20
images for a specific topic.

4.5 User Study

A user study was conducted to estimate human per-
formance on the image selection task. Three annota-
tors were recruited and asked to select the best image
for each of the 300 topics in the data set. The anno-
tators were provided with the topic (in the form of a
set of keywords) and shown all candidate images for
that topic before being asked to select exactly one.
The Average Top-1 Rating was computed for each
annotator and the mean of these values was 2.24.

5 Results

Table 1 presents the results obtained for each of the
methods on the collection of 300 topics. Results are
shown for both Top-1 Average rating and nDCG.
We begin by discussing the results obtained us-
ing the standard PageRank algorithm applied to
graphs weighted using PMI, ESA and visual features
(PRpm1, PRgsa and PRyig respectively). Results us-
ing PMI consistently outperform all baselines and
those obtained using ESA. This suggests that distri-
butional word association measures are more suit-
able for identifying useful images than knowledge-
based similarity measures. The best results using



Model Top-1 Av. Rating \ nDCG-1 \ nDCG-3 \ nDCG-5
Baselines
Random 1.79 - - -
Word Overlap 1.85 0.69 0.72 0.74
Google Image Search 1.89 0.73 0.75 0.77
PageRank
PRpM1 1.87 0.70 0.73 0.75
PREsa 1.81 0.67 0.68 0.70
PRyig 1.96 0.73 0.75 0.76
Personalised PageRank
PRpyy+Per(PMI) 1.98 0.74 0.76 0.77
PRpyy+Per(ESA) 1.92 0.70 0.72 0.74
PREgsa+Per(PMI) 1.91 0.70 0.72 0.73
PRpsa+Per(ESA) 1.88 0.69 0.72 0.74
PRyis+Per(PMI) 2.00 0.74 0.75 0.76
PR,ijs+Per(ESA) 1.94 0.72 0.75 0.76
User Study 2.24 - - -

Table 1: Results for various approaches to topic labelling.

standard PageRank are obtained when the visual
similarity measures are used to weight the graph,
with performance that significantly outperforms the
word overlap baseline (paired t-test, p < 0.05). This
demonstrates that visual features are a useful source
of information for deciding which images are suit-
able topic labels.

The Personalised version of PageRank produces
consistently higher results compared to standard
PageRank, demonstrating that the additional infor-
mation provided by comparing the image metadata
with the topics is useful for this task. The best
results are obtained when the personalisation vec-
tor is weighted using PMI (i.e. Per(PMI)). The
best overall result for the top-1 average rating (2.00)
is obtained when the graph is weighted using vi-
sual features and the personalisation vector using the
PMI scores (PR,;s+Per(PMI)) while the best results
for the various DCG metrics are produced when
both the graph and the personalisation vector are
weighted using PMI scores (PRpy+Per(PMI)). In
addition, these two methods, PR;s+Per(PMI) and
PRpymi+Per(PMI), perform significantly better than
the word overlap and the Google Image Search base-
lines (p < 0.01 and p < 0.05 respectively). Weight-
ing the personalisation vector using ESA consis-
tently produces lower performance compared to
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PMI. These results indicate that graph-based meth-
ods for ranking images are useful for illustrating top-
ics.

6 Discussion

Figure 2 shows a sample of three topics together
with the top-3 candidates (left-to-right) selected by
applying the PR,;s+Per(PMI) approach. Reasonable
labels have been selected for the first two topics. On
the other hand, the images selected for the third topic
do not seem to be as appropriate.

We observed that inappropriate labels can be gen-
erated for two reasons. Firstly, the topic may be ab-
stract and difficult to illustrate. For example, one of
the topics in our data set refers to the subject AL-
GEBRAIC NUMBER THEORY and contains the terms
number, ideal, group, field, theory, algebraic, class,
ring, prime, theorem. It is difficult to find a represen-
tative image for topics such as this one. Secondly,
there are topics for which none of the candidate im-
ages returned by the search engine is relevant. An
example of a topic like this in our data set is one
that refers to PLANTS and contains the terms family,
sources, plants, familia, order, plant, species, taxon-
omy, classification, genera. The images returned by
the search engine include pictures of the Sagrada Fa-
milia cathedral in Barcelona, a car called “Familia”
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Figure 2: A sample of topics and their top-3 images selected by applying the the PR;s+Per(PMI) approach
(left side) and the ones with the highest average human annotations (right side). The number under each
image represents its average human annotations score.

and pictures of families but no pictures of plants.

7 Conclusions

This paper explores the use of images to represent
automatically generated topics. An approach to se-
lecting appropriate images was described. This be-
gins by identifying a set of candidate images us-
ing a search engine and then attempts to select the
most suitable. Images are ranked using a graph-
based method that makes use of both textual and
visual information. Evaluation is carried out on a
data set created for this study. The results show that
the visual features are a useful source of information
for this task while the proposed graph-based method
significantly outperforms several baselines.

This paper demonstrates that it is possible to iden-
tify images to illustrate topics. A possible applica-
tion for this technique is to represent the contents
of large document collections in a way that supports
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rapid interpretation and can be used to enable nav-
igation (Chaney and Blei, 2012; Gretarsson et al.,
2012; Hinneburg et al., 2012). We plan to explore
this possibility in future work. Other possible exten-
sions to this work include exploring alternative ap-
proaches to generating candidate images and devel-
oping techniques to automatically identify abstract
topics for which suitable images are unlikely to be
found, thereby avoiding the problem cases described
in Section 6.
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Abstract

Multi-dimensional latent text models, such as
factorial LDA (f-LDA), capture multiple fac-
tors of corpora, creating structured output for
researchers to better understand the contents
of a corpus. We consider such models for
clinical research of new recreational drugs and
trends, an important application for mining
current information for healthcare workers.
We use a “three-dimensional” f-LDA variant
to jointly model combinations of drug (mari-
juana, salvia, etc.), aspect (effects, chemistry,
etc.) and route of administration (smoking,
oral, etc.) Since a purely unsupervised topic
model is unlikely to discover these specific
factors of interest, we develop a novel method
of incorporating prior knowledge by leverag-
ing user generated tags as priors in our model.
We demonstrate that this model can be used
as an exploratory tool for learning about these
drugs from the Web by applying it to the task
of extractive summarization. In addition to
providing useful output for this important pub-
lic health task, our prior-enriched model pro-
vides a framework for the application of f-
LDA to other tasks.

1 Introduction

Topic models aid exploration of the main thematic
elements of large text corpora by revealing latent
structure and producing a high level semantic view
(Blei et al., 2003). Topic models have been used for
understanding the contents of a corpus and identify-
ing interesting aspects of a collection for more in-
depth analysis (Talley et al., 2011; Mimno, 2011).
While standard topic models assume a flat seman-
tic structure, there are potentially many dimen-
sions of a corpus that contribute to word choice,
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such as sentiment, perspective and ideology (Mei et
al., 2007; Paul and Girju, 2010; Eisenstein et al.,
2011). Rather than studying these factors in isola-
tion, multi-dimensional topic models can consider
multiple factors jointly.

Paul and Dredze (2012b) introduced factorial
LDA (f-LDA), a general framework for multi-
dimensional text models that capture an arbitrary
number of factors (explained in §3). While a stan-
dard topic model learns distributions over “topics”
in documents, f-LDA learns distributions over com-
binations of multiple factors (e.g. topic, perspec-
tive) called tuples (e.g. (HEALTHCARE,LIBERAL)).
While f-LDA can model factors without supervision,
it has not been used in situations where the user has
prior information about the factors.

In this paper we consider a setting where the user
has prior knowledge about the end application: min-
ing recreational drug trends from user forums, an
important clinical research problem (§2). We show
how to incorporate available information from these
forums into f-LDA as a novel hierarchical prior over
the model parameters, guiding the model toward the
desired output (§3.1).

We then demonstrate the model’s utility in ex-
ploring a corpus in a targeted manner by using it
to automatically extract interesting sentences from
the text, a simple form of extractive multi-document
summarization (Goldstein et al., 2000). In the
same way that topic models can be used for aspect-
specific summarization (Titov and McDonald, 2008;
Haghighi and Vanderwende, 2009), we use f-LDA
to extract snippets corresponding to fine-grained in-
formation patterns. Our results demonstrate that our
multi-dimensional modeling approach targets more
informative text than a simpler model (§4).

Proceedings of NAACL-HLT 2013, pages 168-178,
Atlanta, Georgia, 9-14 June 2013. (©2013 Association for Computational Linguistics



2 Analyzing Drug Trends on the Web

Recreational drug use imposes a significant burden
on the health infrastructure of the United States and
other countries. Accurate information on drugs, us-
age profiles and side effects are necessary for sup-
porting a range of healthcare activities, such as ad-
diction treatment programs, toxin diagnosis, preven-
tion and awareness campaigns, and public policy.
These activities rely on up-to-date information on
drug trends, but it is increasingly difficult to keep
up with current drug information, as distribution and
information-sharing of novel drugs is easier than
ever via the web (Wax, 2002). For the third con-
secutive year, a record number of new drugs (49)
were detected in Europe in 2011 (EMCDDA, 2012).
About two-thirds of these new drugs were synthetic
cannabinoids (used as legal marijuana substitutes),
which led to 11,000 hospitalizations in the U.S. in
2010 (SAMHSA, 2012). Treatment is complicated
by the fact that novel substances like these may have
unknown side effects and other properties.

Accurate information on drug trends can be ob-
tained by speaking directly with users, e.g. focus
groups and interviews (Reyes et al., 2012; Hout
and Bingham, 2012), but such studies are slow and
costly, and can fail to identify the emergence of
new drug classes, such as mephedrone (Dunn et
al., 2011). More recently, researchers have begun
to recognize clinical value in information obtained
from the web (Corazza et al., 2011). By (manu-
ally) analyzing YouTube videos, Drugs-Forum (dis-
cussed below), and other social media websites and
online communities, researchers have uncovered de-
tails about the use, effects, and popularity of a va-
riety of new and emerging drugs (Morgan et al.,
2010; Corazza et al., 2012; Gallagher et al., 2012),
and comprehensive drug reviews now include non-
standard sources such as web forums in addition to
standard sources (Hill and Thomas, 2011).

Organizing and understanding forums requires
significant effort. We propose automated tools to aid
in the exploration and analysis of these data. While
topic models are a natural fit for corpus exploration
(Eisenstein et al., 2012; Chaney and Blei, 2012), and
have been used for similar public health applications
(Paul and Dredze, 2011), online forums can be orga-
nized in many ways beyond topic. Guided by do-
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Factor
Drug

Components

ALCOHOL AMPHETAMINES BETA-KETONES
CANNABINOIDS CANNABIS COCAINE DMT DOWN-
ERS DXM ECSTASY GHB HERBAL ECSTASY KE-
TAMINE KRATOM LSA LSD NOOTROPICS OPIATES
PEYOTE PHENETHYLAMINES SALVIA TOBACCO
INJECTION ORAL SMOKING SNORTING
CHEMISTRY (Pharmacology, TEK)

CULTURE (Culture, Setting, Social, Spiritual)
EFFECTS (Effects)

HEALTH (Health, Overdose, Side effects)

USAGE (Dose, Storing, Weight)

Route
Aspect

Table 1: The three factors of our model (details in §3.1).
The forum tags shown in parentheses are grouped to-
gether to form aspects.

main experts, we seek to model forums as a combi-
nation of drug type, route of intake (oral, injection,
etc.) and aspect (cultural settings, drug chemistry,
etc.) A multi-dimensional topic model can jointly
capture these factors, providing a more informative
understanding of the data, and can be used to pro-
duce fine-grained information such as the effects of
taking a particular drug orally. Our hope is that mod-
els such as f-LDA can lead to exploratory tools that
aide researchers in learning about new drugs.

2.1 Corpus: Drugs-Forum

Our data set is taken from drugs—forum. com, a
site active for more than 10 years with over 100,000
members and more than 1 million monthly readers.
The site is an information hub where people can
freely discuss recreational drugs with psychoactive
effects, ranging from coffee to heroin, hosting in-
formation and discussions on specific drugs, as well
as drug-related politics, law, news, recovery and ad-
diction. With current information on a variety of
drugs and an extensive archive, Drugs-Forum pro-
vides an ideal information source for public health
researchers (Corazza et al., 2012).

Discussion threads are organized into numerous
forums, including drugs, the law, addiction, etc.
Since we are modeling drug use, we focus on the
drug forums. Each thread is assigned to a specific
forum or subforum (drug) and each thread has a user
specified tag, which can indicate categories like “Ef-
fects” as well as routes of administration like “Oral.”
We organized the tags and subforum categorizations
into factors and components, as shown in Table 1.
We make use of these tags in §3.1.



3 Multi-Dimensional Text Models

Clinical researchers are interested in specific infor-
mation about drug usage, including drug type, route
of administration, and other aspects of drug use
(e.g. dosage, side effects). Rather than considering
these factors independently, we would like to model
these in a way that can capture interesting interac-
tions between all three factors, because the effects
and other aspects of drugs can vary by route of ad-
ministration. Oral consumption of drugs often pro-
duces longer lasting but milder effects than injec-
tion or smoking, for example. Many mephedrone
users report nose bleeds and nasal pain as a health
effect of snorting the drug: this could be modeled
as the triple (MEPHEDRONE,SNORTING,HEALTH), a
particular combination of all three factors.

To this end, we utilize the multi-dimensional text
model factorial LDA (f-LDA) (Paul and Dredze,
2012b), which jointly models multiple semantic fac-
tors or dimensions. In this section we summarize f-
LDA, then we describe an extension which incorpo-
rates user-generated metadata into the model (§3.1).

In a standard topic model such as LDA (Blei et
al., 2003), each word token is associated with a la-
tent “topic” variable. f-LDA is conceptually similar
to LDA except that rather than a single topic vari-
able, each token is associated with a K -dimensional
vector of latent variables. In a three-dimensional f-
LDA model, each token has three latent variables—
drug, route, and aspect in this case.

In f-LDA, each document has a distribution
over all possible K-tuples (rather than topics),
and each K-tuple is associated with its own word
distribution. Under this model, words are gen-
erated by first sampling a tuple from the docu-
ment’s tuple distribution, then sampling a word
from that tuple’s word distribution. In our three-
dimensional model, we will consider triples such as
(CANNABIS,SMOKING,EFFECTS).

Formally, each document has a distribution 6()
over triples, and each token is associated with a la-
tent vector 2 of size K=3. (We’ll describe the model
in terms of the three factors we are modeling in this
paper, but f-LDA generalizes to K dimensions.) The
Cartesian product of the three factors forms a set
of triples and the vector Z references three discrete
components to form a triple ¢ = (t1,t2,t3). The car-
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Figure 1: The graphical model for f-LDA augmented
with priors 7 learned from labeled data (§3.1). In this
work, K = 3.

dinality of each dimension (denoted Z}) is the num-
ber of drugs, routes, and aspects, as shown in Table
1. Each triple has a corresponding word distribution
¢;- The graphical model is shown in Figure 1.

One would expect that triples that have com-
ponents in common should have similar word
distributions: (CANNABIS,SMOKING,EFFECTS)
is expected to have some commonalities with
(CANNABIS,ORAL,EFFECTS). f-LDA models this
intuition by sharing parameters across priors for
triples which share components: all triples with
CANNABIS as the drug include cannabis-specific
parameters in the prior, and all triples with SMOK-
ING as the route have smoking-specific parameters.
Formally, ¢; (the word distribution for tuple t) has a
Dirichlet(d)@) prior, where for each word w in the

~(6)

vector, Wy’ is a log-linear function:

(drug)
tiw

(route)

(aspect)
+ wtz w

+wt3w )
(1)

is a corpus-wide precision scalar (the

o(f) 2 exp(w(B)—wa,?)—i-w

where w(B)

(0)

bias), wqy
wéfq)ﬂ is a bias parameter for word w for component
ti of the kth factor. That is, each drug, route, and
aspect has a weight vector over the vocabulary, and
the prior for a particular triple is influenced by the
weight vectors of each of the three factors. The
w parameters are all independent and normally dis-
tributed around O (effectively L2 regularization).
The prior over each document’s distribution over
triples has a similar log-linear prior, where weights
for each factor are combined to influence the dis-
tribution. Under our model, 09 is drawn from
Dirichlet(B - &(9)), where - denotes an element-wise
product between B (described below) and a @ with

is a corpus-specific bias for word w, and



)

déd for each triple ¢ defined as:

CAyéd) 2 oxp < B +ag?,drug) +a£il,drug)

D,route d,route
T o{Pioue) | o droue)

_I_aglaspect) _’_agg,aspect)) 2)
Similar to the w formulation, o(#) is a global
bias parameter, while the a” vectors are corpus-
wide weight vectors and a? are document-specific
weight vectors over the components of each fac-
tor. Structuring the prior in this way models the
intuition that if a triple with a particular compo-
nent has high probability, other triples containing
that component are likely to also have high proba-
bility. For example, if a message discusses triples
of the form (CANNABIS,* ,EFFECTS), it is more
likely to discuss (CANNABIS,*,HEALTH) than (CO-
CAINE,* HEALTH), because the message is about
cannabis.

Finally, B is a 3-dimensional array that encodes
a sparsity pattern over the space of possible triples.
This is used to accommodate triples that can be gen-
erated by the model but are not supported by the
data. For example, not all routes of administration
may be applicable to certain drugs, or certain aspects
of a drug may happen to not be discussed in the fo-
rum. Each element by of the array is a real-valued
scalar in (0, 1) which is multiplied with o}éd) to ad-
just the prior for that triple. If the b value is near
0 for a particular triple, then it will have very low
prior probability. The b values have Beta(vg,71) pri-
ors (v < 1) which encourage them to be near O or 1,
so that they function as binary variables.

Posterior inference and parameter estimation con-
sist of a Monte Carlo EM algorithm that alternates
between an iteration of collapsed Gibbs sampler on
the 2" variables (E-step), and an iteration of gradi-
ent ascent on the o and w hyperparameters (M-step).
See Paul and Dredze (2012b) for more details.

3.1 Tags and Word Priors

In an unsupervised setting, there is no reason f-LDA
would actually infer parameters corresponding to
the three factors we have been describing. However,
the forums include metadata that can help guide the
model: the messages are organized into forums cor-
responding to drug type (factor 1), and some threads
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COCAINE | SNORTING |  HEALTH
7 (Prior over w)
coke snort kidney
cocaine snorting hev
crack snorted pains
cola nose symptoms COCAINE
blow nasal guidelines SNORTING
lines drip diet HEALTH
w (Prior over ¢) ¢ (Posterior)
coke snort symptoms nose
cocaine snorting long-term cocaine
crack snorted depression coke
cola passages disorder blood
rocks nostril schizophrenia water
coca insufflating severe pain

Figure 2: Example of parameters learned by f-LDA. The
highest weight words in the w and 7 vectors for three
components are shown on the left. These are combined
to form the prior for the word distribution ¢. The tripling
of (COCAINE,SNORTING,HEALTH) results in high proba-
bility words about nose bleeds and nasal damage.

are tagged with labels corresponding to routes of ad-
ministration and other aspects (factors 2 and 3). Tags
for aspects are manually grouped into components:
e.g. USAGE (tags: Dose, Storing, Weight). Table 1
shows the factors and components in our model.

One could simply use these tags as labels in a sim-
ple supervised model—this will be our experimental
baseline (§4.1). However, this approach has limita-
tions in that most documents are missing labels (less
than a third of our corpus contains one of the labels
in Table 1) and many messages discuss several com-
ponents, not just the one implied by the tag. For
example, a message tagged “Side effects” may talk
about both side effects and dosage. While a super-
vised classifier may attribute all words to a single
tag, f-LDA learns per-token assignments.

We will instead use the tags to inform the priors
over our f-LDA word distribution parameters. We
do this with a two-stage approach. First, we use the
tags to train parameters of a related but simplified
model. We then use the learned parameters as priors
over the corresponding f-LDA parameters.

In particular, we will place priors on the w vectors,
the Dirichlet hyperparameters which influence the
word distributions. Suppose that we are given a vec-
tor () which is believed to contain desirable values
for w0, the weight vector over words in the corpus,
and similarly we are given vectors ngf ) over the vo-

cabulary for the ith component of factor f, which
)

are believed to be good values for w;”’. One option



is to fix w as n, forcing the component weights to
match the provided weights. However, in our case 1
will only be an approximation of the optimal com-
ponent parameters since it is estimated from incom-
plete data (only some messages have tags) and the n
vectors are learned using an approximate model (see
below). Instead, these weight vectors will merely
guide learning as prior knowledge over model pa-
rameters w. While f-LDA assumes each w is drawn
from a 0-mean Gaussian, we alter the means of the
appropriate w parameters to use 7).

W) ~ N )il ~ N 0% ()

Recall that wl(l? ) are corpus-wide bias parameters for
each word and wﬂ? are component-specific param-
eters for each word. This yields a hierarchical prior
in which n parameterizes the prior over w, while w
parameterizes the prior over ¢ (the word distribu-
tions). The resulting w parameters can vary from the
provided priors to adapt to the data. An example of
learned parameters is shown in Figure 2, illustrating

the hierarchical process behind this model.

Learning the Priors In various applications, pri-
ors can come from many different sources, such as
labeled data (Jagarlamudi et al., 2012). We learn
the prior means 7 from tagged messages. However,
these parameters imply a latent division of responsi-
bility for observed words: some are present because
of the tag while others are general words in the cor-
pus. As a result, they must be estimated.

We learn these parameters from the tagged mes-
sages using SAGE, which model words in a docu-
ment as combinations of background and topic word
distributions. Eisenstein et al. (2011) present SAGE
models for Naive Bayes (one class per document),
admixture models (one class per token), and admix-
ture models where tokens come from multiple fac-
tors. We combine the first and third models, such
that a document has multiple factors which are given
as labels across the entire document—the drug type
and the tag, which could correspond to a component
of either the route or aspect factors. We posit the
following model of text generation per document:

P(word w|drug = i, factorf = j) 4)

exp(ns’ + iy + %)

© , @) , (N
Yo €XP(1,) F M+ 1500)

w Jw

172

This log-linear model has a similar form as Eq.
1, but with two factors instead of three, and it is
a distribution rather than a Dirichlet vector. As in
SAGE, we fix 77(0) to be the observed vector of cor-
pus log-frequencies over the vocabulary, which acts
as an “overall” weight vector, while parameter esti-
mation yields nZ(f ), the logit parameters for the ith
component of factor f.! These parameters are then
used as the mean of the Gaussian priors over w.

Standard optimization methods can be used to es-

timate these parameters. The partial derivative of the

likelihood with respect to the parameter nz(furug) is:

0 o o .
W:ZZC(l,j,W)—W(Z,j,UJ)C(’L,],*)
Miw fogef
©)

where ¢(i, j, w) is the number of times word w ap-
pears in documents labeled with ¢ (drug) and j (tag),
and (7, j, w) denotes the probability given by (4).
The partial derivative of each nj(.f ) is similar.

4 Experiments with Topic Modeling for
Extractive Summarization

Our corpus consists of messages from
drugs—-forum.com (§2.1). The site catego-
rizes threads into many forums and subforums,
including some on specific drugs, which are cat-
egorized hierarchically. We treated higher-level
categories with pharmacologically similar drugs as
a single drug type (e.g. OPIOIDS, AMPHETAMINES);
for others we took the finest-granularity subforum
as the drug type. We selected 22 popular drugs and
from these forums we crawled 410K messages. We
selected a subset of tags to form components for
the route and aspect factors. (Some tags were too
general or infrequent to be useful.) A list of the
tags and drugs used appears in Table 1. We also
included a GENERAL component in the latter two
factors to model word usage which does not pertain
to a particular route or aspect; the prior parameters
7 for these components were simply set to 0.

We wish to demonstrate that our modified f-LDA
model can be used to discover useful information in
the text. One way to demonstrate this is by using the
model to extract relevant snippets of text from the

'SAGE models sparsity on the weights via a Laplacian prior.
Such sparsity is not modeled in f-LDA, so we ignore this here.



forums, which will form the basis of our evaluation
experiments. Our goal is not to build a complete
summarization system, but rather to use the model
to direct researchers to interesting messages.

While we model all 22 drugs, our summa-
rization experiments will focus on five drugs
which have been studied only relatively recently:
mephedrone and MDPV (3-ketones), Bromo-
Dragonfly (synthetic phenethylamines), Spice/K2
(synthetic cannabinoids), and salvia divinorum. We
will consider these drugs in particular because these
are the five drugs for which technical reports were
created by the EU Psychonaut Project (Schifano et
al., 2006), an online database of novel and emerg-
ing drugs, whose information is collected by reading
drug websites, including Drugs-Forum. Extensive
technical reports were written about these five pop-
ular drugs, and we can use these reports to produce
reference summaries for our experiments (§4.2).

Of these five drugs, only salvia has its own sub-
forum; the others belong to subforums representing
the broader categories shown in parentheses. We
simply model the drug type as a proxy for the spe-
cific drug, as most of the drugs in each category have
similar effects and properties. The first two drugs are
both in the same subforum, so for the purpose of our
model we treat mephedrone and MDPYV as the single
drug type, -ketones. These two drugs are grouped
together during summarization (§4.2), but the corre-
sponding reference summaries incorporate excepts
from the technical reports on both drugs.

4.1 Model Setup

Of the four drug types being considered for summa-
rization, our data set contains 12K messages with
one of the tags in Table 1 and 30K without. Of
those without tags, we set aside 5K as development
data. There are also over 300K messages (140K
tagged) from the remaining 18 drug types: some
of these messages are utilized when training f-LDA.
Even though we only consider four drug types in our
experiments, our intuition is that it can be benefi-
cial to model other drugs as well, because this will
help to learn parameters for the various aspects and
routes of administration. Our model of the effects of
mephedrone can be informed by also modeling the
effects of other stimulants such as cocaine.

Each message was treated as a document, and we
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only used documents with at least five word tokens
after stop words, low-frequency words, and punc-
tuation were removed. The preprocessed data sets
contained an average of 45 tokens per document.

Below, we describe two f-LDA variants as well as
the baseline used in our experiments.

Baseline Our baseline model is a unigram lan-
guage model trained on the subset of messages
which are tagged. We treat the drug subforum as
a label for the drug factor, and each message’s tag
is used as a label for either the route or aspect fac-
tor. For example, the word distribution for the pair
(SALVIA,EFFECTS) is estimated as the empirical dis-
tribution from messages posted in the salvia forum
and tagged with “Effects.” We use add-\ smooth-
ing where A is chosen to optimize likelihood on the
held-out development set.

This is a two-dimensional model, since we explic-
itly model pairs such as (MEPHEDRONE,SNORTING)
or (SALVIA,EFFECTS). However, we also cre-
ated word distributions for triples such as
(SALVIA,ORAL,EFFECTS) by taking a mixture
of the corresponding pairs: in this example, we
estimate the unigram distribution from salvia
documents tagged with either “Oral” or “Effects.”

Factorial LDA Because f-LDA does not rely on
tagged data (the tags are only used to create priors),
we can run inference on larger sets of data. The
drawback is that despite these priors, it is still mostly
unsupervised and we want to be careful to ensure
the model will learn the patterns we care about. We
thus add some reasonable constraints to the parame-
ter space to guide the model further.

First, we treat the drug type as an observed vari-
able based on the subforum the message comes
from, just as with the baseline. For example, only
tuples of the form (SALVIA,*,*) can be assigned to
tokens in the salvia forum. Second, we restrict the
set of possible routes of administration that can be
assigned to tokens in particular drug forums, since
most drugs can be taken through only a subset of
routes. For example, marijuana is typically smoked
or eaten orally, but rarely injected. We therefore
restrict each drug’s allowable set of administration
routes to those which are tagged (e.g. with “Oral” or
“Snorting”) in at least 1% of that drug’s data. Sim-
ilar ideas are used in Labeled LDA (Ramage et al.,



Reference Text

| System Snippet

Mephedrone (3-ketones/Bath salts)

It is recommended by users that Mephedrone
be taken on an empty stomach. Doses usually
vary between 100mg-1g.

If it is SWIYs first time using Mephedrone SWIM recommends
a 100mg oral dose on an empty stomach.

Reported negative side effects include:

e Loss of appetite.

e Dehydration and dry mouth

e Tense jaw, mild muscle clenching, stiff neck,
and bruxia (teeth grinding)

e Anxiety and paranoia

e Increase in mean body temperature (sweat-
ing/Mephedrone sweat and hot flushes)

e Elevated heart rate (tachycardia) and blood
pressure, and chest pains

e Dermatitis like symptoms (Itch and rash)

Neutral side effects: Lack of appetite, occasional loss of visual
focus, [...] weight loss, possible diuretic. Negative side effects:
Grinding teeth, “Cotton mouth”, unable to acheive orgasm
Aside from his last session he has never experienced any neg-
ative symptoms at all, no raised heart beat, vasoconstriction ,
sweating, headaches, paranoia e.t.c nothing at all except some-
times cold hands the next day.

lot of people report that anxiety and paranoia are some of the
side effects of taking mephedrone [...] is it also possible that
alot of the chest pains people are experiencing is due to anxiety?
moisturize the affected areas of skin twice daily with E45 or a
similar unperfumed dermatalogical lotion.

Salvia divinorum

Sublingual ingestion of the leaf (quid): reduces
intensity of effects and can taste disgusting.
When Salvia is consumed as a smokeable for-
mulation the duration of the trip lasts 30 min-
utes or less, whereas if Salvia is consumed sub-
lingually the effects lasts for 1 hour or more.

The taste of sublingual salvia is foul and it is easy to have a dud
trip unless large amounts of it are used.

SWIM has heard from many other users that chewing the fresh
leaves of the Salvia plant allow for a much longer and mellower
trip. [...] SWIM has read that a trip this way can last anywhere
from a half on hour or longer.

Dried leaves and/or salvia extract are smoked
(using a butane lighter) either by pipe (consid-
ered to be the most effective but is considered
to be quite painful) or water bong.

2. Use a water pipe. Its harsh and needs to be smoked hot so
this should be self explanatory. 3. Use a torch style lighter
[...] Salvinorin A has a VERY high boiling point (around 700
degrees F I believe) so a regular bic just wont do it

Salvia is appealing to recreational users be-
cause of intense, unique, hallucinatory effects.
Brief hallucinations occur rapidly after admin-
istration and are typically very vivid. Users re-
port weird thoughts, feelings of unreality, feel-
ings of immersion in bizarre non-Euclidian di-
mensions/geometries, feelings of floating.

He noticed very clear [closed eye visuals], which looked similar
to patterns on a persian rug, or ethnic oriental design. SWIM
felt as if he was moving around, that he had got up and run and
fallen, and that falling had shattered the space around his body
as if I’d fallen through many glass framed pictures [...]

I was aware of my body and my friends and my life below, but
I was [...] standing outside of time and outside of space.

Figure 3: Example snippets generated by f-LDA along with the corresponding reference text. For space, the references
and snippets shown have been shortened in some cases. “SWIM” and “SWIY” stand for “someone who isn’t me/you”

and are used to avoid self-incrimination on the web forum.

2009), in which tags are used to restrict the space of
allowed topics in a document.

We use f-LDA as a three-dimensional model
which explicitly models triples, but we also obtain
distributions for pairs such as (SALVIA,EFFECTS) by
marginalizing across all distributions of the form
(SALVIA,*,EFFECTS). We trained f-LDA on two dif-
ferent data sets, yielding the following models:

o f-LDA-1: We use the 12K messages with tags
and fill the set out with 13K messages with tags
uniformly sampled from the 18 other drugs, for
a total of 25K messages.
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o f-LDA-2: We use all 37K messages (many
without tags) and fill the set out with 63K mes-
sages with tags uniformly sampled from the 18
other drugs, for a total of 100K messages.

All f-LDA instances are run with 5000 iterations
alternating between a sweep of Gibbs sampling fol-
lowed by a step of gradient ascent on the hyperpa-
rameters. While we do not use the tags as strict la-
bels during sampling, we initialize the Gibbs sam-
pler so that each token in a document is assigned
to its label given by the tag, when available. In the
absence of tags (in f-LDA-2), we initialize tokens



to the GENERAL components. We initialized w to
its prior mean (Eq. 3), while the variance o2 and
the initialization of bias w(Z) are chosen to optimize
likelihood on the held-out development set.

We optimized the hyperparameters and sparsity
array using gradient descent after each Gibbs sweep.
We use a decreasing step size of a/(t+1000), where
t is the current iteration and a=10 for o and 1 for
w and the sparsity values. To learn priors 7, we
ran our version of SAGE for 100 iterations of gra-
dient ascent (fixed step size of 0.1). See Paul and
Dredze (2012a) for examples of parameters (the top
words associated with various triples) learned by
this model on this corpus.

4.2 Summary Generation

We created twelve reference summaries by edit-
ing together excerpts from the five Psychonaut
Project reports ((Psychonaut), 2009). Each refer-
ence is matched to drug-specific pairs and triples.
For example, a paragraph describing the dif-
ferences in effects of salvia between smoking
and oral routes was matched to distributions for
(SALVIA,EFFECTS), (SALVIA,SMOKING,EFFECTS),
(SALVIA,ORAL,EFFECTS). Descriptions of creat-
ing tinctures and blotters for oral consumption were
matched to (SALVIA,ORAL,CHEMISTRY). We con-
sider pairs in addition to triples because not all sum-
maries correspond to particular routes or aspects.

For each tuple-specific word distribution (a pair or
a triple), we create a “summary” by extracting a set
of five text snippets which minimize KL-divergence
to the target word distribution. We consider all over-
lapping text windows of widths {10,15,20} in the
corpus as candidate snippets. Following Haghighi
and Vanderwende (2009), we greedily add snippets
one by one with the lowest KL-divergence at each
step until we have added five.

We only considered candidate snippets within the
subforum for the particular drug, and snippets are
based on the preprocessed topic model input with no
stop words. Before presenting snippets to users, we
then map the snippets back to the raw text by taking
all sentences which are at least partly spanned by the
window of tokens. Because each reference may be
matched to more than one tuple, there may be more
than five snippets which correspond to a reference.
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Histogram of Annotator Scores

I Random
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=3 f-LDA-1 ||
I f-LDA-2
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Figure 4: The distribution of annotator scores (§4.3.1).
The “Random” counts have been scaled to fit the same
range as the other systems, since fewer random snippets
were shown to annotators.

4.3 Experimental Results

Recall that the reports used as reference summaries
were themselves created by reading web forums.
Our hypothesis is that f-LDA could be used as an
exploratory tool to expedite the creation of these re-
ports. Thus in our evaluation we want to measure
how useful the extracted snippets would be in in-
forming the writing of such reports. We performed
both human and automatic evaluation on the sum-
maries generated by f-LDA (variants 1 and 2) as well
as our baseline. We also included randomly selected
snippets as a control (five per reference).

Example output is shown in Figure 3.

4.3.1 Human Judgments of Quality

Three annotators were presented snippets pooled
from all four systems we are evaluating alongside
the corresponding reference text. Within each set
corresponding to a reference summary, the snippets
were shown in a random order. Annotators were
asked to judge each snippet independently on a 5-
point Likert scale as to how useful each snippet
would be in writing the reference text.

The distribution of scores is shown in Figure 4 and
summarized in Table 2. Annotators generally agreed
on the relative quality of snippets: the average cor-
relation of scores between each pair of annotators
was 0.49. Snippets produced by f-LDA were given
more high scores and fewer low scores than the base-
line, while the two f-LDA variants were rated com-
parably. The breakdown is more interesting when
we compare scores for snippets that were matched



Rand. | Base. | f-LDA-1 | f-LDA-2
Annotator Scores
Mean 1.67 255 | 279 2.81
Pairs only n/a 258 | 2.79 2.72
Triples only | n/a 2.50 | 2.80 2.95
ROUGE
1-gram 112 326 | 355 327
2-gram .023 072 | .085 .084

Table 2: Summary quality evaluation across four systems.

to word distributions for pairs versus word distri-
butions for triples. The gap in scores between f-
LDA and the baseline increases when we look at the
scores for only triples: f-LDA beats the baseline by
a margin of 0.45 for snippets matched to triples and
0.21 for pairs. This suggests that we produce better
triples by modeling them jointly. For triples, f-LDA-
2 (which uses more data) beats f-LDA-1 (which uses
only tagged data), while the reverse is true for pairs.

While some of the randomly selected control
snippets happened to be useful, the scores for these
snippets were much lower than those extracted
through model-based systems. This suggests that
exploring the forums in a targeted way (e.g. through
our topic model approach) would be more efficient
than exploring the data in a non-targeted way (akin
to the random approach).

Finally, we asked two expert annotators (faculty
members in psychiatry and behavioral pharmacol-
ogy, who have used drug forums in the past to study
emerging drugs) to rate the snippets corresponding
to mephedrone/MDPV. The best f-LDA system had
an average score of 2.57 compared to a baseline
score of 2.45 and random score of 1.63.

4.3.2 Automatic Evaluation of Recall

The human judgments effectively measured a
form of precision, as the quality of snippets were
judged by their correspondence to the reference text,
without regard to how much of the reference text
was covered by all snippets. We also used the au-
tomatic evaluation metric ROUGE (Lin, 2004) as a
rough estimate of summary recall: this metric com-
putes the percentage of n-grams in the reference text
that appeared in the generated summaries.

We computed ROUGE for both 1-grams and 2-
grams. When computing n-gram counts, we applied
Porter’s stemmer to all tokens. We excluded stop
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words from 1-gram counts but included them in 2-
gram counts where we care about longer phrases.”

Results are shown in Table 2. We find that f-LDA-
1 has the highest score for both 1- and 2-grams, sug-
gesting that it is extracting a more diverse set of
relevant snippets. When performing a paired t-test
across the 12 reference summaries, we find that f-
LDA is better than the baseline with p-values 0.14
and 0.10 for 1-gram and 2-gram recall, respectively.
f-LDA’s recall advantage may come from the fact
that it learns from a larger amount of data and it
may learn more diverse word distributions by di-
rectly modeling triples. f-LDA-1 had slightly better
recall (under ROUGE), while f-LDA-2 was slightly
better according to the human annotators.

5 Conclusion

We have proposed exploratory tools for the analy-
sis of online drug communities. Such communi-
ties are an emerging source of drug research, but
manually browsing through large corpora is imprac-
tical and important information could be missed.
We have demonstrated that topic models are capa-
ble of modeling informative portions of text, and in
particular multi-dimensional topic models can tar-
get desired structures such as the combination of as-
pect and route of administration for each drug. We
have presented an extension to factorial LDA tai-
lored to a particular application and data set which
was demonstrated to induce desired properties. As
a technical contribution, this study lays out practical
guidelines for customizing and incorporating prior
knowledge into multi-dimensional text models.
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Abstract

We propose a novel framework for topic la-
beling that assigns the most representative
phrases for a given set of sentences cover-
ing the same topic. We build an entailment
graph over phrases that are extracted from the
sentences, and use the entailment relations to
identify and select the most relevant phrases.
We then aggregate those selected phrases by
means of phrase generalization and merging.
We motivate our approach by applying over
conversational data, and show that our frame-
work improves performance significantly over
baseline algorithms.

1 Introduction

Given text segments about the same topic written in
different ways (i.e., language variability), topic la-
beling deals with the problem of automatically gen-
erating semantically meaningful labels for those text
segments. The potential of integrating topic label-
ing as a prerequisite for higher-level analysis has
been reported in several areas, such as summariza-
tion (Harabagiu and Lacatusu, 2010; Kleinbauer et
al., 2007; Dias et al., 2007), information extraction
(Allan, 2002) and conversation visualization (Liu
et al.,, 2012). Moreover, the huge amount of tex-
tual data generated everyday specifically in conver-
sations (e.g., emails and blogs) calls for automated
methods to analyze and re-organize them into mean-
ingful coherent clusters.

Table 1 shows an example of two human written
topic labels for a topic cluster collected from a blog!,

"http://slashdot.org
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Text: a: Where do you think the term “Horse laugh” comes
from?

b: And that rats also giggled when tickled.

c: My hypothesis- if an animal can play, it can “laugh” or at
least it is familiar with the concept of “laughing”.

Many animals play. There are various sorts of humour though.
Some involve you laughing because your brain suddenly made
a lots of unexpected connections.

Possible extracted phrases: animals play, rats have, laugh,
Horse laugh, rats also giggle, rats

Human-authored topic labels: animals which laugh, animal
laughter

Table 1: Topic labeling example.

and possible phrases that can be extracted from the
topic cluster using different approaches. This ex-
ample demonstrates that although most approaches
(Mei et al., 2007; Lau et al., 2011; Branavan et al.,
2007) advocate extracting phrase-level topic labels
from the text segments, topically related text seg-
ments do not always contain one keyword or key
phrase that can capture the meaning of the topic. As
shown in this example, such labels do not exist in the
original text and cannot be extracted using the exist-
ing probabilistic models (e.g., (Mei et al., 2007)).
The same problem can be observed with many other
examples. This suggests the idea of aggregating and
generating topic labels, instead of simply extracting
them, as a challenging scenario for this field of re-
search.

Moreover, to generate a label for a topic we have
to be able to capture the overall meaning of a topic.
However, most current methods disregard semantic
relations, in favor of statistical models of word dis-
tributions and frequencies. This calls for the integra-

Proceedings of NAACL-HLT 2013, pages 179-189,
Atlanta, Georgia, 9-14 June 2013. (©2013 Association for Computational Linguistics



tion of semantic models for topic labeling.

Towards the solution of the mentioned problems,

in this paper we focus on two novel contributions:
1. Phrase aggregation. We propose to generate
topic labels using the extracted information by pro-
ducing the most representative phrases for each text
segment. We perform this task in two steps. First,
we generalize some lexically diverse concepts in
the extracted phrases. Second, we aggregate and
generate new phrases that can semantically imply
more than one original extracted phrase. For ex-
ample, the phrase “rats also giggle” and “horse
laugh” should be merged into a new phrase “animals
laugh”. Although our method is still relying on ex-
tracting phrases, we move beyond current extractive
approaches, by generating new phrases through gen-
eralization and aggregation of the extracted ones.
2. Building a multidirectional entailment graph
over the extracted phrases to identify and select the
relevant information. We set such problem as an
application-oriented variant of the Textual Entail-
ment (TE) recognition task (Dagan and Glickman,
2004), to identify the information that are seman-
tically equivalent, novel, or more informative with
respect to the content of the others. In this way, we
prune the redundant and less informative text por-
tions (e.g., phrases), and produce semantically in-
formed phrases for the generation phase. In the case
of the example in Table 1, we eliminate phrases such
as “rats have”, “rats” and “laugh” while keeping
“animal play”, “Horse laugh” and “rats also gig-
gle”.

The experimental results over conversational data
sets show that, in all cases, our approach outper-
forms other models significantly. Although conver-
sational data are known to be challenging (Carenini
et al., 2011), we choose to test our method on con-
versations because this is a genre in which topic
modeling is critically needed, as conversations lack
the structure and organization of, for instance, edited
monologues. The results indicate that our frame-
work is sufficiently robust to deal with topic labeling
in less structured, informal genres (when compared
with edited monologues). As an additional result of
our experiments, we show that the identification and
selection phase using semantic relations (entailment
graph) is a necessary step to perform the final step
(i.e., the phrase aggregation).
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2 Topic Labeling Framework

Each topic cluster contains the sentences that can
semantically represent a topic. The task of cluster-
ing the sentences into a set of coherent topic clus-
ters is called topic segmentation (Joty et al., 2011),
which is out of the scope of this paper. Our goal is to
generate an understandable label (i.e., a sequence of
words) that could capture the semantic of the topic,
and distinguish a topic from other topics (based on
definition of a good topic label by (Mei et al., 2007)),
given a set of topic clusters. Among possible choices
of word sequences as topic labels, in order to balance
the granularity, we set phrases as valid topic labels.

Extract all Generalize

. Phrase
Phrase extraction aggregation

i

Entailment

Entailment Graph
Identify

Figure 1: Topic labeling framework.

Filter/select Merge

I

As shown in Figure 1, our framework consists of
three main components that we describe in more de-
tails in the following sections.

2.1 Phrase extraction

We tokenize and preprocess each cluster in the col-
lection of topic clusters with lemmas, stems, part-of-
speech tags, sense tags and chunks. We also extract
n-grams up to length 5 which do not start or end with
a stop word. In this phase, we do not include any
frequency count feature in our candidate extraction
pipeline. Once we have built the candidates pool,
the next step is to identify a subset containing the
most significant of those candidates. Since most top
systems in key phrase extraction use supervised ap-
proaches, we follow the same method (Kim et al.,
2010b; Medelyan et al., 2008; Frank et al., 1999).
Initially, we consider a set of features used in the
other systems to determine whether a phrase is likely
to be a key phrase. However, since our dataset is
conversational (more details in Section 3), and the
text segments are not long, we aim for a classifier
with high recall. Thus, we only use TFXIDF (Salton
and McGill, 1986), position of the first occurrence
(Frank et al., 1999) and phrase length as our fea-
tures. We merge the training and test data released



for SemEval-2010 Task #5 (Kim et al., 2010b),
which consists of 244 scientific articles and 3705
key phrases, to train a Naive Bayes classifier in or-
der to learn a supervised model. We then apply our
model to extract the candidate phrases from the col-
lected candidates pool.

As a further step, to increase the coverage (re-
call) of our extracted phrases and to reduce the num-
ber of very short phrases (frequent keywords), we
choose the chunks containing any of the extracted
keywords. We add those chunks to our extracted
phrases and eliminate the associated keywords.

2.2 Entailment graph

So far, we have extracted a pool of key phrases from
each topic cluster. Many such phrases include re-
dundant information which are semantically equiv-
alent but vary in lexical choices. By identifying the
semantic relations between the phrases we can dis-
cover the information in one phrase that is seman-
tically equivalent, novel, or more/less informative
with respect to the content of the other phrase.

We set this problem as a variant of the Textual
Entailment (TE) recognition task (Mehdad et al.,
2010b; Adler et al., 2012; Berant et al., 2011). We
build an entailment graph for each topic cluster,
where nodes are the extracted phrases and edges are
the entailment relations between nodes. Given two
phrases (ph; and phs), we aim at identifying and
handling the following cases:

i) phy and pho express the same meaning (bidirec-
tional entailment). In such cases one of the phrases
should be eliminated;

ii) ph1 is more informative than pho (unidirectional
entailment). In such cases, the entailing phrase
should replace or complement the entailed one;

iii) ph; contains facts that are not present in pho,
and vice-versa (the “unknown” cases in TE par-
lance). In such cases, both phrases should remain.

Figure 2 shows how entailment relations can help
in selecting the phrases by removing the redun-
dant and less informative ones. For example, the
phrase “animals laugh” entails “rats giggle”, “Horse
laugh” and “Mice chuckle” > but not “Animals play”.

2Assuming that “animals laugh” is interpreted as “all ani-
mals laugh”.
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rats
giggle

Animals
play

animals

laugh X

Horse
laugh

Figure 2: Building an entailment graph over phrases. Ar-

rows and “x” represent the entailment direction and un-

known cases respectively.

So we can keep “animals laugh” and “Animals play”
and eliminate others. In this way, TE-based phrase
identification method can be designed to distinguish
meaning-preserving variations from true divergence,
regardless of lexical choices and structures.

Similar to previous approaches in TE (e.g., (Be-
rant et al., 2011; Mehdad et al., 2010b; Mehdad et
al., 2010a)), we use supervised method. To train and
build the entailment graph, we perform the follow-
ing three steps.

2.2.1 Training set collection

In the last few years, TE corpora have been cre-
ated and distributed in the framework of several
evaluation campaigns, including the Recognizing
Textual Entailment (RTE) Challenge3 and Cross-
lingual textual entailment for content synchroniza-
tion* (Negri et al., 2012). However, such datasets
cannot directly support our application. Specifi-
cally, our entailment graph is built over the extracted
phrases (with max. length of 5 tokens per phrase),
while the RTE datasets are composed of longer sen-
tences and paragraphs (Bentivogli et al., 2009; Negri
etal., 2011).

In order to collect a dataset which is more similar
to the goal of our entailment framework, we decide
to select a subset of the sixth and seventh RTE chal-
lenge main task (i.e., RTE within a Corpus). Our

3http://pascallin.ecs.soton.ac.uk/Challenges/RTE/
“http://www.cs.york.ac.uk/semeval-2013/task8/



dataset choice is based on the following reasons: i)
the length of sentence pairs in RTE6 and RTE7 is
shorter than the others, and ii) RTE6 and RTE7 main
task datasets are originally created for summariza-
tion purpose which is closer to our work. We sort
the RTE6 and RTE7 dataset pairs based on the sen-
tence length and choose the first 2000 samples with
a equal number of positive and negative examples.
The average length of words in our training data is
6.7 words. There are certainly some differences be-
tween our training set and our phrases. However, the
collected training samples was the closest available
dataset to our purpose.

2.2.2 Feature representation and training

Working at the phrase level imposes another con-
straint. Phrases are short and in terms of syntactic
structure, they are not as rich as sentences. This lim-
its our features to the lexical level. Lexical mod-
els, on the other hand, are less computationally ex-
pensive and easier to implement and often deliver a
strong performance for RTE (Sammons et al., 2011).

Our entailment decision criterion is based on
similarity scores calculated with a phrase-to-phrase
matching process. Each example pair of phrases
(ph1 and phsy) is represented by a feature vector,
where each feature is a specific similarity score esti-
mating whether ph; entails phs.

We compute 18 similarity scores for each pair of
phrases. In order to adapt the similarity scores to the
entailment score, we normalize the similarity scores
by the length of pha (in terms of lexical items), when
checking the entailment direction from ph;j to pheo.
In this way, we can check the portion of informa-
tion/facts in phoe which is covered by ph;.

The first 5 scores are computed based on the exact
lexical overlap between the phrases: word overlap,
edit distance, ngram-overlap, longest common sub-
sequence and Lesk (Lesk, 1986). The other scores
were computed using lexical resources: Word-
Net (Fellbaum, 1998), VerbOcean (Chklovski and
Pantel, 2004), paraphrases (Denkowski and Lavie,
2010) and phrase matching (Mehdad et al., 2011).
We used WordNet to compute the word similarity
as the least common subsumer between two words
considering the synonymy-antonymy, hypernymy-
hyponymy, and meronymy relations. Then, we cal-
culated the sentence similarity as the sum of the sim-
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ilarity scores of the word pairs in Text and Hypothe-
sis, normalized by the number of words in Hypothe-
sis. We also use phrase matching features described
in (Mehdad et al., 2011) which consists of phrasal
matching at the level on ngrams (1 to 5 grams). The
rationale behind using different entailment features
is that combining various scores will yield a better
model (Berant et al., 2011).

To combine the entailment scores and optimize
their relative weights, we train a Support Vector Ma-
chine binary classifier, SVMIlight (Joachims, 1999),
over an equal number of positive and negative exam-
ples. This results in an entailment model with 95%
accuracy over 2-fold and 5-fold cross-validation,
which further proves the effectiveness of our fea-
ture set for this lexical entailment model. The reason
that we gained a very high accuracy is because our
selected sentences are a subset of RTE6 and RTE7
with a shorter length (less number of words) which
makes the entailment recognition task much easier
than recognizing entailment between paragraphs or
complex long sentences.

2.2.3 Graph edge labeling

We set the edge labeling problem as a two-way
classification task. Two-way classification casts
multidirectional entailment as a unidirectional prob-
lem, where each pair is analyzed checking for en-
tailment in both directions (Mehdad et al., 2012). In
this condition, each original test example is correctly
classified if both pairs originated from it are cor-
rectly judged (“YES-YES” for bidirectional,“YES-
NO” and “NO-YES” for unidirectional entailment
and “NO-NO” for unknown cases). Two-way clas-
sification represents an intuitive solution to capture
multidimensional entailment relations. Moreover,
since our training examples are labeled with binary
judgments, we are not able to train a three-way clas-
sifier.

2.2.4 Identification and selection

Assigning all entailment relations between the ex-
tracted phrase pairs, we are aiming at identifying
relevant phrases and eliminating the redundant (in
terms of meaning) and less informative ones. In or-
der to perform this task we follow a set of rules based
on the graph edge labels. Note that since entailment



Merging patterns

1 merge ( cwly Lwly, , cw2y w2 ) =wly.wly, and w29.. w2y,
(Cpos=[N|V|J]) (Cpos=[N|V|J])

E.g. | merge ( challenging situation , challenging problem ) = challenging situation and problem

2 merge ( wll"cwln(cpos:[mvu]) s w21"cw2”<cpos:[mv|,]]) )=wly..wl,—1 and w27 .. w2y,

E.g. merge ( wet Mars , warm Mars ) = wet and warm Mars

3 merge ( wll..cwln(CPOS:[Mvu]) s CU)21(CPOS:[N\V|J]) w2y ) =wliowl, w20, w2y,

E.g. merge ( interesting story , story continues) =interesting story continues

4 merge ( cwh(cpos:[mvu]) Lawly w21..cw2n(cPOS:[N‘V|J]) )=w21.. w2y wla..wly

E.g. merge ( LHC shutting down , details about LHC') =details about LHC' shutting down

5 merge ( wllcpoS

and wls

cwl wl w2
s 2(CPOS:[N|V|J]) ’ 3(;-}70S ’ 1Cpo

merge ( technology grow fast , media grow exponentially ) = technology and media grow exponentially and fast

o CwZQ(CPOS:[N\VU]) ,111230170S )= wly and w21 w22 w23

Table 2: Phrase merging patterns.

is a transitive relation, our entailment graph is transi-
tive i.e., if entail(phi,pho) and entail(pho,phs) then
entail(phy,phs) (Berant et al., 2011).
Rule 1) If there is a chain of entailing nodes, we
keep the one which is in the root of the chain and
eliminate others (e.g. “animals laugh” in Figure 2);
Rule 2) Among the nodes that are connected
with bidirectional entailment (semantically equiva-
lent nodes) we keep only the one with more outgoing
bidirectional and unidirectional entailment relations,
respectively;
Rule 3) Among the nodes that are connected with
unknown entailment (novel information with respect
to others) we keep the ones with no incoming entail-
ment relation (e.g., “Animals play” in Figure 2).
Although deleting might be harsh, in our current
framework, we only rely on the performance of an
entailment model which gives us a yes/no entailment
decision. In future, we are planning to improve our
entailment graph by weighting the edges. In this
way, we can take advantage of the weights to make
a more conservative decision in pruning the entail-
ment chains.

2.3 Phrase aggregation

Once we have identified and selected the informa-
tive phrases, the generation of topic labels can be
done in two steps. First, we generalize the phrases
containing the concepts that are lexically connected.
Second, we merge the phrases with a set of hand
written linguistically motivated patterns.

2.3.1 Phrase generalization

In this step, we generalize phrases that contain
concepts which are lexically connected. For this
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purpose, we search in phrases for different words
with the same part-of-speech and sense tag. Then,
we find the link between those words in WordNet. If
they are connected and the shortest path connecting
them is less than 3 (estimated over the development
set), we replace both by their common parent in the
WordNet. In the case that they belong to the same
synset, we can replace one by another. Note that we
limit our search to nouns and verbs. For example,
“rat” and “horse” can be replaced by “animal”’, or
“giggle” and “chuckle” can be replaced by “laugh’.
The motivation behind the generalization step is to
enrich the common terms between the phrases in fa-
vor of increasing the chance that they could merge
to a single phrase. This also helps to move beyond
the limitation of original lexical choices.

2.3.2 Phrase merging

The goal is to merge the phrases that are con-
nected, and to generate a human readable phrase that
contains more information than a single extracted
phrase. Several approaches have been proposed to
aggregate and merge sentences in Natural Language
Generation (NLG) (e.g. (Barzilay and Lapata, 2006;
Cheng and Mellish, 2000)), however most of them
use syntactic structure of the sentences. To merge
phrases at the lexical level, we set few common lin-
guistically motivated aggregation patterns such as:
simple conjunction, and conjunction via shared par-
ticipants (Reiter and Dale, 2000).

Table 2 demonstrates the merging patterns, where
wi; is the jth word (or segment) in phrase i, cw
is the common word (or segment) in both phrases
and Cppg is the common part-of-speech tag of
the corresponding word. To illustrate, pattern 1



looks for the first segment of each phrase (wiy).
If they are same (cwii) and share the same POS
tag (Cpos), then we aggregate the first phrase
(wly..wl,) and the second phrase removing the first
element (w2;..w2,) by using the connective “and”.
For instance, the aggregation of “animals laugh” and
“animals play” results in “animals laugh and play”.
The rest of the patterns follow the same logic and for
the sake of brevity we avoid illustrating each pattern.
These patterns are among the most common domain
and application independent methods by which two
phrases/sentences can be aggregated, as described in
the NLG literature (Reiter and Dale, 2000).

In our aggregation pipeline, we group the phrases
based on their lexical overlap (number of common
words). The merging process is conducted over each
group in descending order (larger number of words
in common), in order to increase the chance of merg-
ing rules application. Then, we perform the merg-
ing over the resulting generated phrases from each
group. If our phrases cannot be merged (i.e., do not
match merging patterns), we select them as labels
for the topic cluster.

3 Datasets and Evaluation Metrics

3.1 Datasets

To verify the effectiveness of our approach, we ex-
periment with two different conversational datasets.
Our interest in dealing with conversational texts de-
rives from two reasons. First, the huge amount of
textual data generated everyday in these conversa-
tions validates the need of text analysis frameworks
to process such conversational texts effectively. Sec-
ond, conversational texts pose challenges to the tra-
ditional techniques, including redundancies, disflu-
encies, higher language variabilities and ill-formed
sentence structure (Liu et al., 2011).

Our conversational datasets are from two differ-
ent asynchronous media: email and blog. For email,
we use the dataset presented in (Joty et al., 2010),
where three individuals annotated the publicly avail-
able BC3 email corpus (Ulrich et al., 2008) with top-
ics. The corpus contains 40 email threads (or conver-
sations) at an average of 5 emails per thread. On av-
erage it has 26.3 sentences and 2.5 topics per thread.
A topic has an average length of 12.6 sentences. In
total, the three annotators found 269 topics in a cor-
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pus of 1,024 sentences.

There are no publicly available blog corpora an-
notated with topics. For this study, we build our
own blog corpus containing 20 blog conversations of
various lengths from Slashdot, each annotated with
topics by three human annotators.> The number of
comments per conversation varies from 30 to 101
with an average of 60.3 and the number of sentences
per conversation varies from 105 to 430 with an av-
erage of 220.6. The annotators first read a conversa-
tion and list the topics discussed in the conversation
by a short description (e.g., Game contents or size,
Bugs or faults) which provides a high-level overview
of the topic. Then, they assign the most appropriate
topic to each sentence in the conversation. The short
high-level descriptions of the topics serve as refer-
ence (or gold) topic labels in our experiments. The
target number of topics was not given in advance and
the annotators were instructed to find as many topics
as needed to convey the overall content structure of
the conversation. The annotators found 5 to 23 top-
ics per conversation with an average of 10.77. The
number of sentences per topic varies from 11.7 to
61.2 with an average of 27.16. In total, the three
annotators found 512 topics in our blog corpus con-
taining 4,411 sentences overall.

Note that our annotators performed topic segmen-
tation and labeling independently. In the email cor-
pus, the three annotators found 100, 77 and 92 top-
ics respectively (269 in total), and in the blog corpus,
they found 251, 119 and 192 topics respectively (562
in total). For the evaluation, there is a single gold
standard per topic written by each annotator. Table
1 shows a case in which two annotators selected the
same topical cluster and so we have two labels for
the same cluster.

3.2 Evaluation metrics

Traditionally, key phrase extraction is evaluated us-
ing precision, recall and f-measure based on exact
matches on all the extracted key phrases with gold
standards for a given text. However, as claimed
by (Kim et al., 2010a), this approach is not flexible
enough as it ignores the near-misses. Moreover, in
the case of topic labeling, most of the human written

>The new blog corpus annotated with topics will be made
publicly available for research purposes.



topic labels cannot be found in the text. Recently,
(Kim et al., 2010a) evaluated the utility of differ-
ent n-gram-based metrics for key phrase extraction
and showed that the metric R-precision correlates
most with human judgments. R-precision normal-
izes the approximate matching score by the maxi-
mum number of words in the reference and candi-
date phrases. Since this penalize our aggregation
phase, where the phrases tend to be longer than orig-
inal extracted phrase, we decide to use R-fI as our
evaluation metric which considers length of both ref-
erence and candidate phrases.

overlap(cand;, ref)
#Hwords(cand,)

k
. 1
R—precision = z Zl
1=

Hwords(ref)

_ 2x R—precision * R—recall

R—f1=

k
1 overlap(cand;, ref)
R—recall = z z;
1=

(R—precision + R—recall)

The metric described above only considers word
overlap and ignores other semantic relations (e.g.,
synonymy, hypernymy) between words. However,
annotators write labels of their own and may use
words that are not directly from the conversation but
are semantically related. Therefore, we propose to
also use another variant of R-fI that incorporates se-
mantic relation between words. To calculate the Se-
mantic R-fl, we count the number of overlaps not
only when they have the same form, but also when
they are connected in WordNet with a synonymy,
hypernymy, hyponymy and entailment relation.

Its worth noting that the generalizations phase and
the evaluation method are completely independent.
In the generalization step, we try to generalize the
phrases which are automatically extracted from the
text segments. While, in the evaluation, we compare
the human written gold standards with the system
output. Therefore, using WordNet in the generaliza-
tion step does not bias the results in the evaluation.

4 Experiments and Results

4.1 Experimental settings

We conduct our experiments over the blog and email
datasets described in Section 3.1, after eliminating
the development set from the test datasets. In our ex-
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periments, the development set was used for the pat-
tern extraction and the shortest path threshold con-
necting the words in Wordnet in the generalization
phase. Our test dataset consists of 461 topics (i.e.,
clusters and their associated topic labels) from 20
blog conversations and 242 topics from 40 email
conversations.

For preprocessing our dataset we use OpenNLP®
for tokenization, part-of-speech tagging and chunck-
ing. For sense disambiguation, we use the extended
gloss overlap measure with the window size of 5,
developed by (Pedersen et al., 2005). We also apply
Snowball algorithm (Porter, 2001) for stemming.

We compare our approach with two strong base-
lines. The first baseline Freq-BL ranks the words
according to their frequencies and select the top 5
candidates applying Maximum Marginal Relevance
algorithm (Carbonell and Goldstein, 1998) using
the same pre- and post-processing as the work by
(Mihalcea and Tarau, 2004). The second baseline
Lead-BL, ranks the words based on their relevance
to the leading sentences.” The ranking criteria is
log(tfuwr, +1) x log(tfy++ 1), where tfy, 1, and
t fuw, are the number of times word w appears in a
set of leading sentences L; and topic cluster ¢, re-
spectively (Allan, 2002). The log expressions, as the
ranking criterion, assign more weights to the words
in the topic segment, that also appear in the leading
sentences. This is because topics tend to be intro-
duced in the first few sentences of a topical cluster.
We also measure the performance of our framework
at each step in order to compare the effectiveness of
each phase independently or in combination.

4.2 Results

We evaluate the performance of different models us-
ing the metrics R-fl and Semantic R-fl (Sem-R-fl),
described in Section 3.2. Table 4 shows the results
in percentage for different models. The results show
that our framework outperforms the baselines signif-

Shttp://opennlp.sourceforge.net/

"The key intuitions for this baseline is the leading sentences
of a topic cluster carry the most informative clues for the topic
labels. Based on our development set, when we consider the
first three sentences, the coverage of content words that appear
in human labeled topics are 39% and 49% for blog and email,
respectively.



Blog

Email

Human-authored system generated

Human-authored system generated

Shutting down the LHC

story about the LHC shutting down (#3)

How it affects coding it screws miy coding

typical shutdown and upgrade times typical and scheduled shutdown (#2)

Opinions and preferences of tools opinion about what tools

MARS was warm and wet 3B years ago

Mars was warm and wet early history (#3)

white on black for disabled users white text on black background (#3)

Moon Treaty and outer space treaty Moon and Outer Space Treaty (#2)

Contact with Steven email to Steven Pemberton (#3)

Table 3: Successful examples of human-authored and system generated labels for blog and email datasets. The number
near some examples refers to the aggregation patterns in Table 2.

R-f1 Sem-R-f1

Models blog | email | blog | email
Lead-BL 13.5 140 | 345 | 30.1
Freq-BL 15.3 13.1 34.7 29.1
Extraction-BL 13.9 16.0 31.6 332
Entailment 12.2 15.6 30.8 333
Extraction+Aggregation | 15.1 185 | 35.5 37.6
Extraction+Entailment+

Aggregation 17.9 204 | 38.7 41.6

Table 4: Results for candidate topic labels on blog and
email corpora.

icantly® in both datasets.

On the blog corpus, our key phrase extraction
method (Extraction-BL) fails to beat the other base-
lines (Lead-BL and Freq-BL) in majority of cases
(except R-f1 for Lead-BL). However, in the email
dataset, it improves the performance over both base-
lines in both evaluation metrics. This might be due
to the shorter topic clusters (in terms of number of
sentences) in email corpus which causes a smaller
number of phrases to be extracted.

We also observe the effectiveness of the aggre-
gation phase. In all cases, there is a significant
improvement (p < 0.05) after applying the ag-
gregation phase over the extracted phrases (Extrac-
tion+Aggregation).

Note that there is no improvement over the ex-
traction phase after the entailment (Entailment row).
This is mainly due to the fact that the entailment
phase filters the equivalent phrases. This affects the
results negatively when such filtered phrases share
many common words with our human-authored
phrases. However, the results improve more sig-
nificantly (p < 0.01) when the aggregation is con-
ducted after the entailment. This demonstrates that,
the combination of these two steps are beneficial for
topic labeling over conversational datasets.

In addition, the differences between the results us-

$The statistical significance tests was calculated by approx-
imate randomization described in (Yeh, 2000).
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ing R-f1 and Sem-R-fI metrics suggests the need for
more flexible automatic evaluation methods for this
task. Moreover, although the same trend of improve-
ment is observed in blog and email corpora, the dif-
ferences between their performance suggest the in-
vestigation of specialized methods for various con-
versational modalities.

1r Ext H
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0.8 F Ext+Agg |
—— Ext+Ent+Agg
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~

E 04 S
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|
0 100 200 300 400 500 60
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Figure 3: Sem-R-fI results distribution after each phase
of our pipeline for blog corpus. The x-axis represents the
examples sorted based on their Sem-R-fI score.

To further analyze the performance, in Figure 3,
we show the Sem-R-fI results distribution for our
blog dataset.” We can observe that the aggrega-
tion after the entailment phase (bold curve) clearly
increase the number of correct labels, while such
improvement can be only achieved when the en-
tailment relations is used to identify the relevant
phrases. This further highlights the need of seman-
tics in this task. Comparing both datasets, this ef-
fect is more dominant in blogs. We believe that this
is due to the length of topic clusters. Presumably,
building an entailment graph over a greater pool of

°For brevity’s sake we do not show the email dataset graph.



original phrases is more effective to filter the redun-
dant information and identify the relevant phrases.

5 Discussion

After analyzing the results and through manual veri-
fication of some cases, we observe that our approach
led to some interestingly successful examples. Table
3 shows few generated labels and the human written
topics for such cases.

In general, given that the results are expressed in
percentage, it appears that the performance is still
far from satisfactory level. This leaves an interesting
challenge for the research community to tackle.
However, this is not always due to the weakness
of our proposed model. We have identified three
different system independent sources of error:'”
Type 1: Abstractive human-authored labels: the
nature of our method is based on extraction (with
the exception of our simple generalization phase)
and in many cases the human-written labels cannot
be extracted from the text and require more complex
generalizations. In fact, only 9.81% of the labels
in blog and 12.74% of the labels in email appear
verbatim in their respective conversations. For
example:

Human-authored label: meeting schedule and location

Generated phrases: meeting, Boston area, mid October

Type 2: Evaluation methods: in this work, we
proposed a semantic method to evaluate our system.
However, the current evaluation methods fail to
capture the meaning. For example:

Human-authored label: Food choices

Generated phrase: I would ask what people want to eat

Type 3: Subjective topic labels: often is not easy
for human to agree on one label for a topic cluster.!!
For example:

Human-authored label 1: Member introduction

Human-authored label 2: Bio of Len

Generated phrases: own intro, Len Kasday, chair

In light of this analysis, we conclude that a more
comprehensive evaluation method (e.g., human eval-
uation) could better reveal the potential of our sys-

There are many examples of such cases, however for
brevity we just mention one example for each type.

""The mean R-precision agreements computed based on one-
to-one mappings of the topic clusters are 20.22 and 36.84 on
blog and email data sets, respectively.
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tem in dealing with topic labeling, specially on con-
versational data.

6 Conclusion

In this paper, we study the problem of automatic
topic labeling, and propose a novel framework to la-
bel topic clusters with meaningful readable phrases.
Within such framework, this paper makes two main
contributions. First, in contrast with most current
methods based on fully extractive models, we pro-
pose to aggregate topic labels by means of gener-
alizing and merging techniques. Second, beyond
current approaches which disregard semantic infor-
mation, we integrate semantics by means of build-
ing textual entailment graphs over the topic clusters.
To achieve our objectives, we successfully applied
our framework over two challenging conversational
datasets. Coherent results on both datasets demon-
strate the potential of our approach in dealing with
topic labeling task.

Future work will address both the improvement of
our aggregation phase and ranking the output candi-
date phrases for each topic cluster. On one hand,
we plan to accommodate more sophisticated NLG
techniques for the aggregation and generation phase.
Incorporating a better source of prior knowledge in
the generalization phase (e.g., YAGO or DBpedia) is
also an interesting research direction towards a bet-
ter phrase aggregation step. On the other hand, we
plan to apply a ranking strategy to select the top can-
didate phrases generated by our framework.
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Abstract

We present a new hierarchical Bayesian model
for unsupervised topic segmentation. This new
model integrates a point-wise boundary sam-
pling algorithm used in Bayesian segmenta-
tion into a structured topic model that can cap-
ture a simple hierarchical topic structure latent
in documents. We develop an MCMC infer-
ence algorithm to split/merge segment(s). Ex-
perimental results show that our model out-
performs previous unsupervised segmentation
methods using only lexical information on
Choi’s datasets and two meeting transcripts
and has performance comparable to those pre-
vious methods on two written datasets.

1 Introduction

Documents are usually comprised of topically co-
herent text segments, each of which contains some
number of text passages (e.g., sentences or para-
graphs) (Salton et al., 1996). Within each topically
coherent segment, one would expect that the word
usage demonstrates more consistent lexical distri-
butions (known as lexical cohesion (Eisenstein and
Barzilay, 2008)) than that across segments. A linear
partition of texts into topic segments may reveal in-
formation about, for example, themes of segments
and the overall thematic structure of the text, and
can subsequently be useful for text analysis tasks,
such as information retrieval (e.g., passage retrieval
(Salton et al., 1996)), document summarisation and
discourse analysis (Galley et al., 2003).

In this paper we consider how to automatically
find a topic segmentation. It involves identifying
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the most prominent topic changes in a sequence
of text passages, and splits those passages into a
sequence of topically coherent segments (Hearst,
1997; Beeferman et al., 1999). This task can be cast
as an unsupervised machine learning problem: plac-
ing topic boundaries in unannotated text.

Although a variety of cues in text can be used for
topic segmentation, such as cue phases (Beeferman
et al., 1999; Reynar, 1999; Eisenstein and Barzi-
lay, 2008)) and discourse information (Galley et al.,
2003), in this paper, we focus on lexical cohesion
and use it as the primary cue in developing an un-
supervised segmentation model. The effectiveness
of lexical cohesion has been demonstrated by Text-
Tiling (Hearst, 1997), c99 (Choi, 2000), MinCut
(Malioutov and Barzilay, 2006), PLDA (Purver et
al., 2006), Bayesseg (Eisenstein and Barzilay, 2008),
TopicTiling (Riedl and Biemann, 2012), efc.

Our work uses recent progress in hierarchi-
cal topic modelling with non-parametric Bayesian
methods (Du et al., 2010; Chen et al., 2011; Du et
al., 2012a), and is based on Bayesian segmentation
methods (Goldwater et al., 2009; Purver et al., 2006;
Eisenstein and Barzilay, 2008) using topic mod-
els. This can also be viewed as a multi-topic exten-
sion of hierarchical Bayesian segmentation (Eisen-
stein, 2009), although our use of hierarchies is used
to improve the performance of linear segmentation,
rather than develop hierarchical segmentation.

Recently, topic models are increasingly used in
various text analysis tasks including topic segmen-
tation. Previous work (Purver et al., 2006; Misra
et al., 2008; Sun et al., 2008; Misra et al., 2009;
Riedl and Biemann, 2012) has shown that using
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topic assignments or topic distributions instead of
word frequency can significantly improve segmen-
tation performance. Here we consider more ad-
vanced topic models that model dependencies be-
tween (sub-)sections in a document, such as struc-
tured topic models (STMs) presented in (Du et al.,
2010; Du et al., 2012b). STMs treat each text as
a sequence of segments, each of which is a set of
text passages (e.g., a paragraph or sentence). Text
passages in a segment share the same prior distribu-
tion on their topics. The topic distributions of seg-
ments in a single document are then encouraged to
be similar via a hierarchical prior. This gives a sub-
stantial improvement in modelling accuracy. How-
ever, instead of explicitly learning the segmentation,
STMs just leverage the existing structure of docu-
ments from the given segmentation.

Given a sequence of text passages, how can we
automatically learn the segmentation? The word
boundary sampling algorithm introduced in (Gold-
water et al., 2009) uses point-wise sampling of word
boundaries after phonemes in an utterance. Simi-
larly, the segmentation method of PLDA (Purver
et al., 2006) samples segment boundaries, but also
jointly samples a topic model. This is different to
other topic modelling approaches that run LDA as
a precursor to a separate segmentation step (Misra
et al., 2009; Riedl and Biemann, 2012). While con-
ceptually similar to PLDA, our non-parametric ap-
proach built on STM required new methods to im-
plement, but the resulting improvement by the stan-
dard segmentation scores is substantial.

This paper presents a new hierarchical Bayesian
unsupervised topic segmentation model, integrating
a point-wise boundary sampling algorithm with a
structured topic model. This new model takes ad-
vantage of the high modelling accuracy of structured
topic models (Du et al., 2010) to produce a topic
segmentation based on the distribution of latent top-
ics. We show that this model provides high quality
segmentation performance on Choi’s dataset, as well
as two sets of meeting transcripts and written texts.

In the following sections we describe our topic
segmentation model and an MCMC inference al-
gorithm for the non-parametric split/merge pro-
cess. The rest of the paper is organised as follows. In
Section 2 we review recent related work in the topic
segmentation literature. Section 3 presents the new
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topic segmentation model, followed by the deriva-
tion of a sampling algorithm in Section 4. We report
the experimental results by comparing several re-
lated topic segmentation methods in Section 5. Sec-
tion 6 concludes the paper.

2 Related Work

We are interested in unsupervised topic segmenta-
tion in either written or spoken language. There is a
large body of work on unsupervised topic segmen-
tation of text based on lexical cohesion. It can be
characterised by how lexical cohesion is modelled.

One branch of this work represents the lexical co-
hesion in a vector space by exploring the word co-
occurrence patterns, e.g., TF or TF-IDF. Work fol-
lowing this line includes TextTiling (Hearst, 1997),
which calculates the cosine similarity between two
adjacent blocks of words purely based on the word
frequency; C99 (Choi, 2000), an algorithm based
on divisive clustering with a matrix-ranking scheme;
LSeg (Galley et al., 2003), which uses a lexical
chain to identify and weight word repetitions; U00
(Utiyama and Isahara, 2001), a probalistic approach
using dynamic programming to find a segmenta-
tion with a minimum cost; MinCut (Malioutov and
Barzilay, 2006), which casts segmentation as a graph
cut problem, and APS (Kazantseva and Szpakowicz,
2011), which uses affinity propagation to learn clus-
tering for segmentation.

The other branch of this work characterises the
lexical cohesion using topic models, to which the
model introduced in Section 3 belongs. Lexical co-
hesion in this line of research is modelled by a
probabilistic generative process. PLDA presented by
Purver et al. (2006) is an unsupervised topic mod-
elling approach for segmentation. It chains a set of
LDAs (Blei et al., 2003) by assuming a Markov
structure on topic distributions. A binary topic shift
variable is attached to each text passage (i.e., an ut-
terance in (Purver et al., 2006)). It is sampled to in-
dicate whether the j** text passage shares the topic
distribution with the (j — 1)*" passage.

Using a similar Markov structure, SITS (Nguyen
et al., 2012) chains a set of HDP-LDAs (Teh et al.,
2006). Unlike PLDA, SITS assumes each text pas-
sage is associated with a speaker identity that is at-
tached to the topic shift variable as supervising in-



formation. SITS further assumes speakers have dif-
ferent topic change probabilities that work as pri-
ors on topic shift variables. Instead of assuming
documents in a dataset share the same set of top-
ics, Bayesseg (Eisenstein and Barzilay, 2008) treats
words in a segment generated from a segment spe-
cific multinomial language model, i.e., it assumes
each segment is generated from one topic, and a
later hierarchical extension (Eisenstein, 2009) as-
sumes each segment is generated from one topic or
its parents. Other methods using as input the output
of topic models include (Sun et al., 2008), (Misra et
al., 2009), and (Riedl and Biemann, 2012).

In this paper we take a generative approach ly-
ing between PLDA and SITS. In contrast to PLDA,
which uses a flat topic model (i.e., LDA), we assume
each text has a latent topic structure that can reflect
the topic coherence pattern, and the model adapts its
parameters to the segments to further improve per-
formance. Unlike SITS that targets analysing multi-
party meeting transcripts, where speaker identities
are available, we are interested in more general texts
and assume each text has a specific topic change
probability, since (1) the identity information is not
always available for all kinds of texts (e.g., continu-
ous broadcast news transcripts (Allan et al., 1998)),
(2) even for the same author, topic change probabil-
ities for his/her different articles might be different.

3 Segmentation with Topic Models

In documents, topically coherent segments usually
encapsulate a set of consecutive passages that are
semantically related (Wang et al., 2011). Howeyver,
the topic boundaries between segments are often un-
available a priori. Thus we treat all passage bound-
aries (e.g., sentence boundaries, paragraph bound-
aries or pauses between utterances) as possible topic
boundaries. To recover the topic boundaries we de-
velop a structured topic segmentation model by inte-
grating ideas from the segmented topic model (Du et
al., 2010, STM) and Bayesian segmentation models.

The basic idea of our model is that each docu-
ment consists of a set of segments where text pas-
sages in the same segment are generated from the
same topic distribution, called segment level topic
distribution. The segment level topic distribution is
drawn from a topic distribution associated with the
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whole document, called document level topic distri-
bution. The relationships between the levels is man-
aged using Bayesian non-parametric methods and a
significant change in segment level topic distribution
indicates a segment change.

Our unsupervised topic segmentation model is
based on the premise that using a hierarchical topic
model like the STM with a point-wise segment
sampling algorithm should allow better detection
of topic boundaries. We believe that (1) segment
change should be associated with significant change
in the topic distribution, (2) topic cohesion can be
reflected in document topic structure, (3) the log-
likelihood of a topically coherent segment is typi-
cally higher than an incoherent segment (Misra et
al., 2008).

Assume we have a corpus of D documents, each
document d consists of a sequence of Uy text pas-
sages, and each passage u contains a set of Ng,,
words denoted by wg ,, that are from a vocabulary
W. Our model consists of:

Modelling topic boundary: We assume each
document has its own topic shift probability
w4, a Beta distributed random variable, i.e.,
ma~Beta(Ao, A\1). Then, we associate a bound-
ary indicator variable pg, with u, like the
topic shift variable in PLDA and SITS. pq,,
is Bernoulli distributed with parameter m,, i.e.,
pd.u~Bernoulli(my). It indicates whether there is a
topic boundary after text passage u or not. To sample
Pd,u» WE use a point-wise sampling algorithm. Con-
sequently, a sequence of p’s defines a set of seg-
ments, i.e., a topic segmentation of d. For example,
let a p vector p = (0,0, 1,0, 1,0, 0, 1)', it gives
us three segments, which are {1,2,3}, {4,5} and
{6,7,8}.

Modelling topic structure: Following the idea of
the STM, we assume each document d is associated
with a document level topic distribution g, which
is drawn from a Dirichlet distribution with param-
eter av; and text passages in topic segment s in d
are generated from vy, a segment level topic dis-
tribution. The number of segments S, can be com-
puted as Sy=1 + Zgi]l pd,u- Then, a Pitman-Yor

"The last 1 in p is the document boundary that is know a
priori. This means one does not need to sample it.
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Figure 1: The topic segmentation model

process with a discount parameter a and a concen-
tration parameter b is used to link p,; and v4 ¢ by
vqs~PYP(a, b, pg), which forms a simple topic
hierarchy. The idea here is that topics discussed in
segments can be variants of topics of the whole
document. Du et al. (2010) have shown that this
topic structure can significantly improve the mod-
elling accuracy, which should contribute to more ac-
curate segmentation. This generative process is dif-
ferent from PLDA. PLDA does not assume the docu-
ment level topic distribution and each time generates
the segment level topic distribution directly from a
Dirichlet distribution.

The complete probabilistic generative process,
shown as a graph in Figure 1 is as follows:

1. Foreachtopick € {1, ..., K}, draw a word distribution
¢, ~ Dirichlety (7).

2. For each document d € {1, ..., D},

(a) Draw topic shift probability w4 ~ Beta(Ao, A1).

(b) Draw p,; ~ Dirichletx (o).

(c) For each text passage (except last) u €
{1,...,Uq — 1}, draw pq, ~ Bernoulli(mg).

(d) Compute Sy the number of segments as 1 +

SV pd,u.
(e) For each segment s € {17 ey Sd}, draw vgqs ~
PYP(a, b, ).
(f) For each text passage u € {1,...,Ua},
i. Setsegment sq.u = 1+ V") pa,o-
ii. For each word indexn € {1, ..., Ng.},

A. Draw topic zq,u,n ~ Discretex (Vd,sd u)-

B. Draw word wq,u,n ~ Discreter (¢, ).

where s4,, indicates which segment text passage u
belongs to. We assume the dimensionality of the
Dirichlet distribution (i.e., the number of topics) is
known and fixed, and word probabilities are param-
eterized with a K x Wmatrix ® = (¢y, ..., ¢x)-
In future work we plan to investigate replace the
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Table 1: List of statistics

My, .,  total number of words with topic k.
M, avector of My, 4.
N4,k total number of words with topic k in segment
s in document d.
Ngs  total number of words in segment s.
ta,s,k  table count of topic % in the CRP for segment
s in document d.
tas a vector of ¢4, , for segment s in d.
T;s  total table count in segment s.
cqg1  total number of topic boundaries in d.
c4,0  total number of non-topic boundaries in d.

Dirichlet prior ¢ on p with a Pitman-Yor prior (Pit-
man and Yor, 1997) to make the model fully non-
parametric, like SITS.

4 Posterior Inference

In this section we develop a collapsed Gibbs sam-
pling algorithm to do an approximate inference
by integrating out some latent variables (i.e., u’s,
v’s and 7g’s). The hierarchy in our model can be
well explained with the Chinese restaurant franchise
metaphor introduced in (Teh et al., 2006). For easier
understanding, terminologies of the Chinese Restau-
rant Process (CRP) will be used throughout this sec-
tion, i.e., customers, dishes and restaurants, corre-
spond to words, topics, and segments respectively.
Statistics used are listed in Table 1.

To integrate out the v, ’s generated from the
PYP, we use the technique presented in (Chen et
al., 2011), which computes the joint posterior for
the PYP by summing out all the possible seating
arrangements for a sequence of customers (Teh,
2006). In this technique an auxiliary binary variable,
called table indicator (04,y,,), is introduced to fa-
cilitate computing table count ¢4 5 . for topic k. This
method has two effects: (1) faster mixing of the sam-
pler, and (2) elimination of the need for dynamic
memory to store the populations/counts of each ta-
ble in the CRP. In the CRP each word wg ,, 5, in topic
k (i.e., where zq , ,,=k) contributes a count to ng s
for u € s; and, if wg,, 5, as a customer, also opens
a new table to the CRP, it leads to increasing t4 s
by one. In this case, d4,,,,=1 indicates wgq ,, , is the
first customer on the table, called table head. Thus,

Ng v
td,s,k = Z Z 5d,u,nlzd7u_’n:k . (1)
ues n=1
Note the two constraints on these two counts, i.e.,
Ng s k>td,s k>0 and tg s =0 iff ng s 1x,=0  (2)



can be replaced be a simpler constraint in the table
indicator representation.

The sampler we develop is an MCMC sampler
on the space 8 = {z,d, p} where z defines the
topic assignments of words, § maintains the needed
CRP configuration (from which ¢ is derived) and p
defines the segmentation. Moreover, it is not a tra-
ditional Gibbs sampler changing one variable at a
time, but is a block Gibbs sampler where two dif-
ferent kinds of blocks are used. The first block is
(Zd,un> Odun) (for each word wg,, ), which can
be sampled with a table indicator variant of a hier-
archical topic sampler (Du et al., 2010), described
in Section 4.1. This corresponds to Equation (6) in
(Purver et al., 2006). The second kind of block is
a boundary indicator pq,, together with a particular
constrained set of table counts designed to handle
splitting and merging, which corresponds to Equa-
tion (7) in (Purver et al., 2006). Sampling this sec-
ond kind of block is harder in our non-parametric
model requiring a potentially exponential summa-
tion, a problem we overcome using symmetric poly-
nomials, shown in Section 4.2.

4.1 Sampling Topics

One step in our model is to sample the assignments
of topics to words conditioned on all p’s. As dis-
cussed in Section 3, given the sequence of pg,,’s,
P> one can figure out which segment s text passage
u belongs to. Thus, conditioned on a set of segments
s given by p, the joint posterior distribution of w, z
and 9 is computed as p(z,w, d | p, ®, a, b, ¥)

_ H Betag (a + ZS td75)

H Betayy (")’ + Mk)
Betax («)

Betayy (7)

b -1
HH((,SLJ)VT?SHSZ?;f;";a(nd’s”“) .o

d s€s k td’s’k

where Betag () is a K-dimension Beta function,
(2|y)n the Pochhammer symbol?, and S}, the gen-
eralised Stirling number of the second kind (Hsu
and Shiue, 1998)* precomputed in a table so cost-

>The Pochhammer symbol (z|y), denotes the rising facto-
rial with a specified increment, i.e., y. It is defined as (z|y)» =
z(z+y)...(x + (n — 1)y).

A Stirling number of the second kind is used to study
the number of ways of partitioning a set of n objects into
k nonempty subsets. The generalised version given by Hsu
and Shiue (1998) has a linear recursion which in our case is
S:;ﬁ,’al = 7771171,0, + (TL - ma)s’rrrlz,a‘
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ing O(1) to use (Buntine and Hutter, 2012).Eq (3)
is an indicator variant of Eq (1) in (Du et al., 2010)
with applying Theorem 1 in (Chen et al., 2011).
Given the current segmentation and topic assign-
ments for all other words, using Bayes rule, we can
derive the following two conditionals from Eq (3):

1. The joint probability of assigning topic k to word
Wa,u,n and wq ., being a table head, p(z4un =
ky 0gun=116"

Ywi jn + Mkv'wi,j,n ay + Zs ld,s,k

> (Vo + Miw) D g ok + Zs,k td,sk

nd,s,k+1
b+ aTys Sia . rria tasy+ 1

b+ Ng,s SZf;S;f,a N,k + 1

“)

2. The joint probability of assigning & to wgqun
and wgq,, , not being a table head, p(z4yn =

k, 64.un=206"
0 Ywiga + Mk?ywi,j,l
Zu) ’YUI + Mk,w
s,k 1
1 St?:fs,:,a Na,sk +1—task 5)
b+ Ny s Sfddk’“a Ng,s,k + 1
where 0’ = {z7%dun ), §%un p oo a, b, v}

From the two conditionals, we develop a blocked
Gibbs sampling algorithm for (2q,y.n, dd,u.n)-

4.2 Sampling Segmentation Boundaries

In our model, each segment corresponds to a
Chinese restaurant in the CRP. Sampling topic
boundaries corresponds to splitting/merging restau-
rant(s). This is different from the split-merge process
proposed by Jian and Neal (2004), where one actu-
ally splits/merges table(s). To our knowledge, there
has been no method developed to split/merge restau-
rant(s). We tried different approximations, such
as the minimum-path-assumption (Wallach, 2008),
which in our case assumes one table for each topic
k, and all words in k are placed in the same ta-
ble. Although this simplifies the split-merge pro-
cess, it yielded poor results. We instead developed a
novel approximate block Gibbs sampling algorithm
using symmetric polynomials. Its segmentation per-
formance worked well in our development dataset.
For simplicity, we consider a passage w in doc-
ument d, and assume: (1) If pg,=1, there are two
segments, s; and s,; s; ends at text passage u, and s,
starts at text passage u~+1. (2) If pg,,=0, there is one



segment, s,,, where w is is somewhere in the middle
of s,,. The split-merge choice we sample is one to
many, for a given split pair (s, s,) we consider a set
of merged states s,, (represented by different possi-
ble table counts). Then, to compute the Gibbs prob-
ability for splitting/merging restaurant(s), we con-
sider the probability of the single split, the probabil-
ity of the corresponding set of merges, and then if a
merge is selected, we have to sample from the set of
merges. These are as follows:

Splitting: split s,, into s, and s; by placing a
boundary after u. Since passages have a fixed order
in each document, all the words are put into s, and
s; based on which passages they belong to. Then,
given all the topic assignments, we first sample all
table indicators dq.,/ ., for n € {1,...,Ng,/} and
u' € s, using Bernoulli sampling without replace-
ment. It runs as follows: 1) sample 64, ,, according
to probability t4 s, k/Ndsn kK 2) decrease tq g, i if
dqu',n = 1, otherwise, just decrease ngg,, k. Us-
ing the sampled d4 ./ »,’s we compute the inferred ta-
ble counts t4 s, (from Eq (1)) and customer counts
ngs k respectively for segments s=s; and s, and
topics k. The computation may result in the follow-
ing cases: for a given topic k,

(I) Both s; and s, have ng s x>0 and ¢4, 1 >1, which
means both segments have words assigned to k£ and
words being labelled with table head. According
to constraints (2), after splitting, restaurants corre-
sponding to s; and s, are valid. We do not make any
change on table counts.

(D) Either s; or s, has ng s =0 and ¢4 s ;,=0. In this
case, for example, all the words assigned to & in s,,
are in s; after splitting, and all those labelled with
table head should also be in s;. s, has no words as-
signed to k. Thus, there is no need to change table

counts.

(III) Either s; or s, has ng s x>0 and ¢4, ,=0. Both seg-
ments have words assigned to k, but those labelled
with table head only exist in one segment. For in-
stance, if they only exist in s; then s, has no table
head, which means the restaurant of s,. has customers
eating a dish, but no tables serving that dish. Thus,

we set tq s, =1 to make the constraints (2) satisfied.
The Gibbs probability for splitting a segment is
A+
Ao+ A +ego+can

Sa
b
BetaK(a—thd’s) H mnsndk
s=1 s€{si,sr} de g

p(pd,u =1 | 0//) X (6)

td,s k,a
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where 8" = {z,w, 8, p P44 o, a,b, Ao, \1}.

Merging: remove the boundary after u, and merge
sy and s; to one segment s,,. For this case, both
sy and s; satisfy constraints (2) for all k’s, and set
N, sy k=Nd,s, k + Nd,s; k- The following cases are
considered: for a topic k

(I) Both s; and s, have ng s ;>0 and g, >1. We
compute t4 . 1 using Eq (7). Thus table counts
before and after merging are equal.

(II) Either s; or s, has ng, s =0 and ¢4, s 1r=0. Similar
to the above case, we use Eq (7).

(IIl) Both s; and s, have ng, s >0, and either of them
has ¢4 s,,,=1 or both. We have to choose between
Eq (7) and Eq (8), i.e., to decide whether a table
should be removed or not.

@)
®)

Note that choosing Eq (8) means we need to de-
crease the table count ¢4 ,, 1. by one. The idea here
is that we sample to decide whether the remove table
was added due to splitting case (III) or not. Clearly,
we have a one-to-many split-merge choice. To com-
pute the probability of a set of possible merges,
we use elementary symmetric polynomials as fol-
lows: let KS be a set of topic-segment combinations
that satisfy the condition in merging case (III), for
(k,s) € KS, we sample either Eq (7) or Eq (8).
Let 7 = {tgsx : (k,s) € KS} be the set of table
counts affected by the changes of Eq (7) or Eq (8).
The Gibbs probability for merging two segments is

td, sk td,s 6+ tds, k

tdspm = ldsk+lds,k—1

p(pd,u =0 ‘ 0/”) = Zp(pd,u = 07 T | 0/”) (9)
T
Ao +¢ Sa
0 d,0
x : Betag (o + tas
;<A0+)\1+0d,0+0d,1 K( ; d)
(bla)r, .,

I

Nd, sy, k
where 8" = {z,w,t — T, p Piv _a,a,b, Ao, \1 }.
This is converted to a sum on |7 | booleans with
independent terms and evaluated recursively in
O(|T|?) by symmetric polynomials. If a merge is
chosen, one then samples according to the terms in
the sum using a similar recursion.

5 Experiments

To demonstrate the effectiveness of our model (de-
noted by TSM) in topic segmentation tasks, we



evaluate it on three different kinds of corpora*: a
set of synthetic documents, two meeting transcripts
and two sets of text books (see Tables 2 and 3);
and compare TSM with the following methods: two
baselines (the Random algorithm that places topic
boundaries uniformly at random, and the Even al-
gorithm that places a boundary after every m" text
passage, where m is the average gold-standard seg-
ment length (Beeferman et al., 1999)), C99, MinCut,
Bayesseg, APS (Kazantseva and Szpakowicz, 2011),
and PLDA.

Metrics: We evaluated the segmentation perfor-
mance with PK (Beeferman et al., 1999) and Win-
dowDiff (WD") (Pevzner and Hearst, 2002), which
are two common metrics used in topic segmenta-
tion. Both move a sliding window of fixed size k
over the document, and compare the inferred seg-
mentation with the gold-standard segmentation for
each window. The window size is usually set to
the half of the average gold-standard segment size
(Pevzner and Hearst, 2002). In addition, we also
used an extended WindowDiff proposed by Lam-
prier et al. (2007), denoted by WD¢®. One problem
of WD is that errors near the two ends of a text are
penalised less than those in the middle. To solve the
problem WD*€ adds £ fictive text passages at the be-
ginning and the end of the text when computing the
score. We evaluated all the methods with the same
Java code for the three metrics.

Parameter Settings: In order to make all the
methods comparable, we chose for each method
the parameter settings that give the gold-standard
number of segments>. Specifically, we used a
11 x 11 rank mask for C99, as suggested by
Choi (2000), the configurations included in the code
(http://groups.csail.mit.edu/rbg/code)
for Bayesseg and manually tuned parameters for
MinCut. For APS, a greedy approach was used to
search parameter settings that can approximately
give the gold-standard number of segments. For
PLDA, two randomly initialised Gibbs chains were
used. Each chain ran for 75,000 burn-in iterations,
then 1000 samples were drawn at a lag of 25 from
each chain. For TSM, 10 randomly initialised

“For preprocessing, we only removed stop words.
5The segments learnt by those methods will differ, but just
the segment count will be the same as the gold-standard count.
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Table 2: The Choi’s dataset

Range of n 3-11 3-5 6-8 9-11
#docs 400 100 100 100
DocLen mean 69.7 39.3 69.6 98.6

std 8.2 2.6 2.9 3.5

SeglLen mean 7 4 7 10
std 2.57 0.84 0.87 1.03

Table 3: Real dataset statistics
ICSI Election Fiction Clinical

# doc 25 4 84 227
DocLen |_mean 994.5 144.3 325.0 139.5
std 354.5 16.4 230.1 110.4

SeglLen mean 188 7 22 35
std 219.1 8.9 23.8 41.7

Gibbs chains were used. Each chain ran for 30,000
iterations with 25,000 for burn-in, then 200 samples
were drawn. The concentration parameter b in TSM
was sampled using the Adaptive-Reject sampling
scheme introduced in (Du et al., 2012b), the dis-
count parameter a = 0.2, and \yp = A\; = 0.1. To
derive the final segmentation for PLDA and TSM,
we first estimated the marginal probabilities of
placing boundaries after text passages from the total
of 2000 samples. These probabilities were then
thresholded to give the gold-standard number of
segments. Precisely, we apply a small amount of
Gaussian smoothing to the marginal probabilities
(except for Choi’s dataset), like Puerver et al. (2006)
does. Finally, we used a symmetric Dirichlet prior
in PLDA and STM, the one on topic distributions is
a = 0.1, the other on word distributions v = 0.01.

5.1 Evaluation on Choi’s Dataset

Choi’s dataset (Choi, 2000) is commonly used in
evaluating topic segmentation methods. It consists
of 700 documents, each being a concatenation of 10
segments. Each segment is the first n sentences of
a randomly selected document from the Brown cor-
pus, s.t. 3 < n < 11. Those documents are divided
into 4 subsets with different range of n, as shown in
Table 2. We ran PLDA and STM with 50 topics. Re-
sults in Table 4 show that our model significantly
outperforms all the other methods on the four sub-
sets over all the metrics. Furthermore, comparing to
other published results, this also outperforms (Misra
et al., 2009) (see their table 2), and (Riedl and Bie-
mann, 2012) (they report an average of 1.04 and 1.06
in Tables 1 and 2, whereas TSM averages 0.93). This
gives TSM the best reported results to date.



Table 4: Comparison on Choi’s datasets with WD and PK (%)

3-11 3-5 6-8 9-11

WD" | WD® | PK | WD" | WD® | PK | WD" | WD® | PK | WD" | WD® | PK

Random 51.7 | 49.1 | 48.7 | 514 | 50.0 | 484 | 525 | 499 | 49.2 | 524 | 48.9 | 49.2

Even 49.1 | 4677 | 49.0 | 463 | 458 | 46.3 | 38.8 | 37.3 | 38.8 | 30.0 | 28.6 | 30.0

MinCut 304 | 29.8 | 26.7 | 41.6 | 41.5 | 373 | 282 | 27.4 | 255 | 23.6 | 22.7 | 21.6

APS 40.7 | 38.8 | 384 | 320 | 30.6 | 31.8 | 344 | 32.6 | 32.7 | 345 | 322 | 332

C99 135 | 123 | 123 | 11.3 | 10.2 | 10.8 | 10.2 9.3 9.8 8.9 8.1 8.6

Bayesseg | 11.6 | 109 | 109 | 11.8 | 11.5 | 11.1 7.7 7.2 7.3 6.1 5.7 5.7

PLDA 24 | 22 | 18| 40 | 39 | 33 | 36 | 35 | 27 | 30 | 28 | 20

TSM 0.8 08 | 0.6 | 13 1.3 | 1.0 | 14 14 | 09 | 19 1.8 | 1.2

Table 5: Comparison on the meeting transcripts and written texts with WD and PK (%)
ICSI Election Fiction Clinical

WD” | WD¢ | PK | WD" | WD® | PK || WD" | WD¢ | PK | WD" | WD¢ | PK

Random 463 | 41.7 | 44.1 | 51.0 | 49.7 | 45.1 | 51.0 | 48.7 | 475 | 459 | 385 | 44.1

Even 483 | 43.0 | 464 | 56.0 | 55.1 | 51.2 || 48.1 | 459 | 463 | 49.2 | 42.0 | 48.8

C99 429 | 374 | 399 | 43.1 | 415 | 37.0 || 48.1 | 45.1 | 42.1 | 39.7 | 319 | 38.7

MinCut 40.6 | 369 | 369 | 43.6 | 43.3 | 39.0 || 40.5 | 39.7 | 37.1 | 382 | 36.2 | 36.8

APS 582 | 49.7 | 54.6 | 47.7 | 36.8 | 40.6 | 48.0 | 458 | 45.1 | 399 | 32.8 | 39.6

Bayesseg | 32.4 | 29.7 | 26.7 | 41.1 | 41.3 | 34.1 || 33.7 | 32.8 | 27.8 | 350 | 28.8 | 34.0

PLDA 32.6 | 28.8 | 29.4 | 40.6 | 41.1 | 32.0 || 43.0 | 413 | 36.1 | 373 | 32.1 | 324

TSM 30.2 | 268 | 25.8 | 38.1 | 389 | 31.3 | 40.8 | 38.7 | 325 | 34.5 | 29.1 | 30.6
Note the lexical transitions in these concatenated 508 i [ \ | T oM 1
documents are very sharp (Malioutov and Barzi- =2 | ‘ J ‘ 1 ‘ ‘ ]
lay, 2006). The sharp transitions lead to significant - 0,, M [ ] ‘ T PLDA
change in segment level topic distributions, which b3l ul “} H A Ly | | A\ " "\:
0 AN A P el i |l I

further implies the variance of these distributions is
large. In TSM, a large variance causes a small con-
centration parameter b. We observed that the sam-
pled b’s (about 0.1) are indeed small for the four sub-
sets, which shows there is no topic sharing among
segments. Therefore, TSM is able to recognise the
segments are unrelated text.

5.2 Evaluation on Meeting Transcripts

We applied our model to segmenting the two meet-
ing transcripts, which are the ICSI meeting tran-
scripts (Janin et al., 2003) and the 2008 presidential
election debates (Boydstun et al., 2011). The ICSI
meeting has 75 transcripts, we used the 25 annotated
transcripts provided by Galley et al. (2003) for eval-
uation. For the election debates, we used the four
annotated debates used in (Nguyen et al., 2012). The
statistics are shown in Table 3. PLDA and TSM were
trained with 10 topics on the ICSI and 50 on the
Election. In this set of experiments, we show that
our model is robust to meeting transcripts.
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Figure 2: Probability of a topic boundary, compared with
gold-standard segmentation (shown in red and at the top
of each diagram) on one ICSI transcript.

As shown in Table 5, topic modelling based meth-
ods (i.e., Bayesseg, PLDA and TSM) outperform
those using either TF or TF-IDF, which is consistent
with previously reported results (Misra et al., 2009;
Riedl and Biemann, 2012). Among the topic model
based methods, TSM achieves the best results on all
the three metrics. On the ICSI transcripts, TSM per-
forms 6.8%, 9.7% and 3.4% better than Bayesseg
on the WD", WD¢ and PK metrics respectively. Fig-
ure 2 shows an example of how the inferred topic
boundary probabilities at utterances compare with
the gold-standard boundaries on one ICSI meeting
transcript. The gold-standard segmentation is {77,
95, 189, 365, 508, 609, 860}, TSM and PLDA in-
fer {85, 96, 188, 363, 499, 508, 860} and {96, 136,



Table 6: Sampled concentration parameters

Choi | ICSI
b| 0.1 52

Clinical
4.8

Fiction
18.4

Election
5.4

203, 226, 361, 508, 860} respectively. Both models
miss the boundary after the 609" utterance, but put a
boundary after the 508" utterance. Note the bound-
aries placed by TSM are always within 10 utterances
with respect to the gold standard.

Although TSM still performs the best on the de-
bates, all the methods have relatively worse perfor-
mance than on the ICSI meeting transcripts. Nguyen
et al. (2012) pointed out that the ICSI meetings are
characterised by pragmatic topic changes, in con-
trast, the debates are characterised by strategic topic
changes with strong rewards for setting the agenda,
dodging a question, efc. Thus, considering the prop-
erties of debates might further improve the segmen-
tation performance.

5.3 Evaluation on Written Texts

We further tested TSM on two written text datasets,
Clinical (Eisenstein and Barzilay, 2008) and Fiction
(Kazantseva and Szpakowicz, 2011). The statistics
are shown in Table 3. Each document in the Clinical
dataset is a chapter of a medical textbook. Section
breaks are selected to be the true topic boundaries.
For the Fiction dataset, each document is a fiction
downloaded from Project Gutenberg, the true topic
boundaries are chapter breaks. We trained PLDA
and TSM with 25 topics on the Fiction and 50 on the
Clinical. Results are shown in Table 5. TSM com-
pares favourably with Bayesseg and outperforms the
other methods on the Clinical dataset, but it does not
perform as well as Bayesseg on the Fiction dataset.
In fiction books, the topic boundaries between
sections are usually blurred by the authors for rea-
sons of continuity (Reynar, 1999). We observed that
the sampled concentration (or inverse variance) pa-
rameter b in TSM is about 18.4 on Fiction, but 4.8 on
Clinical, as shown in Table 6. This means the vari-
ance of segment level topic distributions v learnt by
TSM is not large for the fiction, so chapter breaks
may not necessarily indicate topic changes. For ex-
ample, there is a document in the Fiction dataset
where gold-standard topic boundaries are placed af-
ter each block of text. In contrast, Bayesseg assumes
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each segment has its own distribution over words,
i.e., one topic per segment, which means topics are
not shared among segments. We hypothesize that
for certain kinds of documents where the change in
topic distribution is subtle, such as fiction, assuming
one topic per segment can capture subtle changes in
word usage. This is an area for future investigation.

6 Conclusion

In this paper, we have presented a hierarchical
Bayesian model for unsupervised topic segmen-
tation. This new model takes advances of both
Bayesian segmentation and structured topic mod-
elling. It uses a point-wise boundary sampling al-
gorithm to sample a topic segmentation, while con-
currently building a structured topic model. We
have developed a novel approximation to com-
pute the Gibbs probabilities of spliting/merging seg-
ment(s). Our model shows prominent segmentation
performance on both written or spoken texts.

In future work, we would like to make the model
fully nonparametric and investigate the effects of
adding different cues in texts, such as cue phrases,
pronoun usage, prosody, efc. Currently, our model
uses marginal boundary probabilities to generate
the final segmentation. Instead, we could develop a
Metropolis-Hasting sampling algorithm to move one
boundary at a time, given the gold-standard number
of segments. To further study the effectiveness of
our model, we would like to compare it with other
methods, like SITS (Nguyen et al., 2012) and to run
on more datasets, like email (Joty et al., 2010). For
example, in order to compare with SITS, one can
make an assumption that each document just has one
speaker.
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Abstract

The primary way of providing real-time cap-
tioning for deaf and hard of hearing people
is to employ expensive professional stenogra-
phers who can type as fast as natural speak-
ing rates. Recent work has shown that a
feasible alternative is to combine the partial
captions of ordinary typists, each of whom
types part of what they hear. In this paper,
we describe an improved method for combin-
ing partial captions into a final output based
on weighted A search and multiple sequence
alignment (MSA). In contrast to prior work,
our method allows the tradeoff between accu-
racy and speed to be tuned, and provides for-
mal error bounds. Our method outperforms
the current state-of-the-art on Word Error Rate

Merging Incomplete Captions

brown fox jumped _ Combiner

1]

lazy dog

. the
@ quick fox

. fox jumped over the lazy

Final Caption l

the quick brown fo_x Jjumped over the lazy dog

Figure 1: General layout of crowd captioning systems.
Captionists (C1, C2, C3) submit partial captions that are
automatically combined into a high-quality output.

problem by converting speech to text completely au-

(WER) (29.6%), BLEU Score (41.4%), and
F-measure (36.9%). The end goal is for
these captions to be used by people, and so
we also compare how these metrics correlate
with the judgments of 50 study participants,
which may assist others looking to make fur-
ther progress on this problem.

tomatically. However, the accuracy of ASR quickly
plummets to below 30% when used on an untrained
speaker’s voice, in a new environment, or in the ab-
sence of a high quality microphone (Wald, 2006b).

An alternative approach is to combine the efforts
of multiple non-expert captionists (anyone who can
type) (Lasecki et al., 2012; Lasecki and Bigham,
2012; Lasecki et al., 2013). In this approach, mul-
tiple non-expert human workers transcribe an audio
Real-time captioning provides deaf or hard of hearstream containing speech in real-time, and their par-
ing people access to speech in mainstream clad&l input is combined to produce a final transcript
rooms, at public events, and on live television. Tdsee Figure 1). This approach has been shown to
maintain consistency between the captions beirdramatically outperform ASR in terms of both accu-
read and other visual cues, the latency between whesicy and Word Error Rate (WER), even when us-
a word was said and when it is displayed must biag captionists drawn from Amazon’'s Mechanical
under five seconds. The most common approach Tark. Furthermore, recall approached and even ex-
real-time captioning is to recruit a trained stenograceeded that of a trained expert stenographer with
pher with a special purpose phonetic keyboard, wheeven workers contributing, suggesting that the in-
transcribes the speech to text within approximately formation is present to meet the performance of a
seconds. Unfortunately, professional captionists asgenographer. However, combining these captions
quite expensive ($150 per hour), must be recruited iimvolves real-time alignment of partial captions that
blocks of an hour or more, and are difficult to schedmay be incomplete and that often have spelling er-
ule on short notice. Automatic speech recognitiomors and inconsistent timestamps. In this paper,
(ASR) (Saraclar et al., 2002) attempts to solve thige present a more accurate combiner that leverages

1 Introduction
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Multiple Sequence Alignment (MSA) and Naturalbuilds a chain graph, where each node represents a
Language Processing to improve performance.  set of equivalent words entered by the workers and
Gauging the quality of captions is not easy. Althe link between nodes are adjusted according to the
though word error rate (WER) is commonly used irorder of the input words. A greedy search is per-
speech recognition, it considers accuracy and corfermed to identify the path with the highest confi-
pleteness, not readability. As a result, a lower WERence, based on worker input and an n-gram lan-
does not always result in better understanding (Warguage model. The algorithm is designed to be used
etal., 2003). We compare WER with two other comenline, and hence has high speed and low latency.
monly used metrics: BLEU (Papineni et al., 2002However, due to the incremental nature of the algo-
and F-measure (Melamed et al., 2003), and repaiithm and due to the lack of a principled objective
their correlation with that of 50 human evaluators. function, it is not guaranteed to find the globally op-
The key contributions of this paper are as followstimal alignment for the captions.

¢ We have implemented an‘Asearch based Mul- 2.2 Multiple Sequence Alignment

tlpIdeRSQquenggogllgEment algzrlthr;; (Lerrcr;en.l.he problem of aligning and combining multiple
and Reinert, ) that can trade-off speed a qanscripts can be mapped to the well-studied Mul-

aﬁcu:(ac_y by varying thev\i;eurr:snc %Ne'.ght an iple Sequence Alignment (MSA) problem (Edgar
enun -sae_parameters. €s ow thatit outpe%-md Batzoglou, 2006). MSA is an important prob-
forms previous approaches in terms of WER

BLEU qF fem in computational biology (Durbin et al., 1998).
SCOre, and F-measure. The goal is to find an optimal alignment from a

e We propose a beam-search based technique @ven set of biological sequences. The pairwise
ing the timing information of the captions thatalignment problem can be solved efficiently using
helps to restrict the search space and scales é¥namic programming irO(N?) time and space,
fectively to align longer sequences efficiently. WhereN is the sequence length. The complexity of

the MSA problem grows exponentially as the num-

e We evaluate the correlation of WER, BLEU, per of sequences grows, and has been shown to be
and F-measure with 50 human ratings of capyP-complete (Wang and Jiang, 1994). Therefore,
tion readability, and found that WER was moréit js important to apply some heuristic to perform
highly correlated than BLEU score (PapineniNSA in a reasonable amount of time.
etal., 2002), implying it may be a more useful Most MSA algorithms for biological sequences
metric overall when evaluating captions. follow a progressive alignment strategy that first per-

forms pairwise alignment among the sequences, and
2 Related Work then builds a guide tree based on the pairwise simi-
Most of the previous research on real-time captiorlarity between these sequences (Edgar, 2004, Do et
ing has focused on Automated Speech Recognitig., 2005; Thompson et al., 1994). Finally, the input
(ASR) (Saraclar et al., 2002; Cooke et al., 2001sequences are aligned according to the order spec-
Prazak et al., 2012). However, experiments showified by the guide tree. While not commonly used
that ASR systems are not robust enough to be afsr biological sequences, MSA with*Astyle search
plied for arbitrary speakers and in noisy environhas been applied to these problems by Horton (1997)
ments (Wald, 2006b; Wald, 2006a; Bain et al., 2005and Lermen and Reinert (2000).

Bain et al., 2012; Cooke et al., 2001). Lasecki et al. explored MSA in the context of
o merging partial captions by using the off-the-shelf
2.1 Crowd Captioning MSA tool MUSCLE(Edgar, 2004), replacing the nu-

To address these limitations of ASR-based tecltleotide characters by English characters (Lasecki
niques, the Scribe system collects partial captioret al., 2012). The substitution cost for nucleotides
from the crowd and then uses a graph-based imvas replaced by the ‘keyboard distance’ between
cremental algorithm to combine them on the flyEnglish characters, learned from the physical lay-
(Lasecki et al., 2012). The system incrementallput of a keyboard and based on common spelling
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errors. However, MUSCLE relies on a progressivélgorithm 1 MSA-A* Algorithm

alignment strategy and may result in suboptimal sdRequire: K input sequencess = {Si,...,Sk} having
lutions. Moreover, it uses characters as atomic sym-  engthVu, ..., N, heuristic weighto, beam size
bols instead of words. Our approach operates on a: start — 0%, goal — [Ny, ..., Nx]

per-word basis and is able to arrive at a solution that2: g(start) < 0, f(start) < w x h(start).

is within a selectable error-bound of optimal. 3. Q « {start}
4: while@ # 0 do

5:  n « EXTRACT-MIN(Q)

3 Multiple Sequence Alignment

6: forallse {0,1}* — {0%} do
. 7: n; «<—n-+s
We start with an overview of the MSA problem us- g: if n; = goal then
ing standard notations as described by Lermen an®: Return the alignment matrix for the reconstructed
Reinert (2000). LefS;,..., Sk, K > 2, be theK path fromstart to n;
10: elseif n; ¢ Beam(b) then

sequences over an alphalet and having length 7 continue:
Ny, ..., Ng. The special gap symbol is denoted by . dse ’

‘—"and does not belong t&l. Let A = (a;;) bea 13 g(n:) — g(n) + c(n,n;)
K x Ny matrix, wherea;; € ¥ U {—}, and thei’* 14 fni)  g(ni) +w x h(ni)
15: INSERT-ITEM@, 74, f (n:))

row has exactly Ny — N;) gaps and is identical to 16 end if
S; if we ignore the gaps. Every column éf must  17.  engfor

have at least one non-gap symbol. Thereforejthe 18: end while
column of A indicates an alignment state for t}f&
position, where the state can have one ofzfie- 1
possible combinations. Our goal is to find the 0pi) x --- x (Ng + 1), each corresponding to a dis-

timum alignment matrixdopr that minimizes the tinct position ink sequences. The source node is

sum of pairs (SOP) cost function: [0,...,0] and the sink node i§Vy,..., Nx]. The
dynamic programming algorithm for estimating the
c(A) = Z c(Agj) (1) shortest path from source to sink treats each node
I<i<<K position[ni,...,nk| as a state and calculates a ma-

trix that has one entry for each node. Assuming the

wherec(A;;) is the cost of the pairwise alignmentsequences have roughly same lendththe size of
betweenS; and S; according toA. Formally, the dynamic programming matrix i©(N%). At
c(4i5) = Zf\ifl sub(a;;, a;;), wheresub(a;,a;;) each vertex, we need to minimize the cost over all
denotes the cost of substituting; for a;. If a; its 2K _ 1 predecessor nodes, and, for each such
and aj;; are identical, the substitution cost is usuitransition, we need to estimate the SOP objective
ally zero. For the caption alignment task, we treafunction that require®(K?2) operations. Therefore,
each individual word as a symbol in our alphabethe dynamic programming algorithm has time com-
3. The substitution cost for two words is estimategblexity of O(K?2X NX) and space complexity of
based on the edit distance between two words. Th@(N %), which is infeasible for most practical prob-
exact solution to the SOP optimization problem idem instances. However, we can efficiently solve it
NP-Complete, but many methods solve it approxivia heuristic A search (Lermen and Reinert, 2000).
mately. In this paper, we adapt weighted gearch e yse A search based MSA (shown in Algo-
for approximately solving the MSA problem. rithm 1, illustrated in Figure 2) that uses a prior-
. ity queue( to store dynamic programming states
31 A” Searchfor MSA corresponding to node positions in tié dimen-

The problem of minimizing the SOP cost func-sional lattice. Letn = [ny,...,nk] be any node
tion for K sequences is equivalent to estimating tha the lattice,s be the source, andbe the sink. The
shortest path between a single source and single siAk search can find the shortest path using a greedy
node in aK-dimensional lattice. The total num- Best First Search according to an evaluation func-
ber of nodes in the lattice iN; + 1) x (N2 +  tion f(n), which is the summation of the cost func-
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) jumped ; _, jumped
1241 e fox .
s _e2—"n

Captionl |the brownfox jumped the brown fox |jumped the brown fox jumped the brown fox jumped _ _
Caption2 | quick| fox lazy dog __ quick fox |lazy dog __ quick fox lazy | dog __ quick fox ___ __ lazy [dog
Caption3 | fox |jumped over the lazy =~ __ fox |jumped | over the lazy

fox jumped |over|the lazy | __ fox jumped over the lazy |__

Figure 2: A* MSA search algorithm. Each branch is one28f — 1 possible alignments for the current input. The
branch with minimum sum of the current alignment cost ancettpected heuristic value,,;, (precomputed).

tions g(n) and the heuristic functioh(n) for node function f(n) = g(n)+hpar(n) to a weighted eval-

n. The cost functiory(n) denotes the cost of the uation functionf’(n) = g(n) + whper(n), where
shortest path from the soureelo the current node w > 1 is a weight parameter. By setting the value
n. The heuristic functiorh(n) is the approximate of w to be greater than 1, we increase the relative
estimated cost of the shortest path frarto the des- weight of the estimated cost to reach the destina-
tinationt¢. At each step of the Asearch algorithm, tion. Therefore, the search prefers the nodes that are
we extract the node with the smallesfrn) value closer to the destination, and thus reaches the goal
from the priority queu&) and expand it by one edge. faster. Weighted A search can significantly reduce
The heuristic functiork(n) is admissible if it never the number of nodes to be examined, but it also loses
overestimates the cost of the cheapest solution frothe optimality guarantee of the admissible heuristic
n to the destination. An admissible heuristic funcfunction. We can trade-off between accuracy and
tion guarantees that*Awill explore the minimum speed by tuning the weight parameter

number of nodes and will always find the optimal

solution. One commonly used admissible heuristid-2 Beam Search using Time-stamps

function ishqir (n): The computational cost of the*Asearch algorithm
grows exponentially with increase in the number of
hpair(n) = L(n — t) = Z c(As(of,0T)) sequences. However, in order to keep the crowd-
1<i<j<K sourced captioning system cost-effective, only a

(2) small number of workers are generally recruited at
where L(n — t) denotes the lower bound on thea time (typicallyK < 10). We, therefore, are more
cost of the shortest path fromto destinatiort, A}  concerned about the growth in computational cost as
is the optimal pairwise alignment, andl is the suf- the sequence length increases.
fix of noden in thei-th sequence. Asearch using In practice, we break down the sequences into
the pairwise heuristic functioh,,;, significantly re- smaller chunks by maintaining a window of a given
duces the search space and also guarantees findiinge interval, and we apply MSA only to the smaller
the optimal solution. We must be able to estimatehunks of captions entered by the workers during
hpair(n) efficiently. It may appear that we need tothat time window. As the window size increases,
estimate the optimal pairwise alignment for all thehe accuracy of our MSA based combining system
pairs of suffix sequences at every node. Howeveificreases, but so does the computational cost and la-
we can precompute the dynamic programming maency. Therefore, it is important to apply MSA with
trix over all the pair of sequencgs;, S;) once from  a relatively small window size for real-time caption-
the backward direction, and then reuse these valuggy applications. Another interesting application can
at each node. This simple trick significantly speedse the offline captioning, for example, captioning an
up the computation off .- (n). entire lecture and uploading the captions later.

Despite the significant reduction in the search For the offline captioning problem, we can fo-
space, the A search may still need to explore acus less on latency and more on accuracy by align-
large number of nodes, and may become too sloimg longer sequences. To restrict the search space
for real-time captioning. However, we can furtherfrom exploding with sequence lengtiV{, we apply
improve the speed by following the ideawéighted a beam constraint on our search space using the time
A* search (Pohl, 1970). We modify the evaluatiorstamps of each captioned words. For example, if we
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1. so now what i want to do is introduce some of the

2. what i wanna do is introduce some of the aspects of the class
3. so now what i want to do is is introduce some of the aspects of the class
4. so now what i want to do is introduce

5. so now what i want to do is introduce some of the operational of the class
6. so i want to introduce some of the operational aspects of the clas
C. so now what i want to do is introduce some of the operational aspects of the class

Figure 3: An example of applying MSA-A(thresholdt,, = 2) to combine 6 partial captions (first 6 lines) by human
workers to obtain the final output caption (C).

set the beam size to be 20 seconds, then we ignd@& | ncorporating an N-gram Language M odel

any state in our search space that aligns two Worqge 554 experimented with a version of our system
having more than 20 seconds time lag. Given af'xe&esigned to incorporate the score from jagram

beam sizéh, we can restrict the'number of priority language model into the search. For this purpose,
queue re_movals_, by the *Aa!go_rlthm tOO(Nb?' we modified the alignment algorithm to produce a
The maximum 5_'26 of th_e p'I’IOI’Ity queusig Nb™). hypothesized output string as it moves through the
For each node in the priority queue, for each of thﬁmut strings, as opposed to using voting to produce

K . . .
O(2%) successor states, the oszectlve function anle fina string as a post-processing step. The states
heuristic estimation require8(K=) operations and ¢, o dynamic programming are extended to in-

each priority queue insertion requit@$log(Nb")) ¢/ j4e not only the current position in each input

.e. O(log N + Klogb) operations. Therefore, guing pt also the last two words of the hypothesis
the overall worst case computational complexity '§tring (i.e[n1,. .., nx, wi_1,wi_s]) for use in com-

O (Nb¥25 (K*? 4 log N + K log b)). Note that for puting the next trigram language model probability.
fixed beam sizé and number of sequencés, the  \ye replace our sum-of-all-pairs objective function

computational cost grows a(N log V) with the  iup the sum of the alignment cost of each input with
increase inV. However, in practice, weighted™A o pnothesis string, to which we add the log of the
search exp'lores much smaller number of states CO'ITé'nguage model probability and a feature for the to-
pared to this beam-restricted space. tal number of words in the hypothesis. Mathemati-
cally, we consider the hypothesis string to be the Oth
row of the alignment matrix, making our objective

3.3 Majority Voting after Alignment
a4 y g g function:

After aligning the captions by multiple workers in a i
given chgunk,gwe neerzi to corT)llbine tﬁem to obtain the <(4) = Z c(Ao,i) + Wien Z I{aoy # =)
final caption. We do that via majority voting at each 1sisK =1

position of the alignment matrix containing a non- Ny

gap symbol. In case of tie, we apply the language T Wim Zlogp(aovlmol—?’ ao,1-1)
model to choose the most likely word. =1

Often workers type in nonstandard symbols, abaherew,, andw, are negative constants indicat-
breviations, or misspelled words that do not matckng the relative weights of the language model prob-
with any other workers’ input and end up as a sinability and the length penalty.
gle word aligned to gaps in all the other sequences. Extending states with two previous words results
To filter out such spurious words, we apply a votin a larger computational complexity. Givet se-
ing threshold ;) during majority voting and filter quences of lengtfV each, we can hawe (N K) dis-
out words having less thaty votes. Typically we tinct words. Therefore, the number distinct states
sett, = 2 (see the example in Figure 3). While apis O(Nb* (NK)?) i.e. O(N3K?pX). Each state
plying the voting threshold improves the word errocan haveO(K2%) successors, giving an overall
rate and readability, it runs the risk of loosing correctomputational complexity af (N3 K35 25 (K2 +
words if they are covered by only a single worker. log N + log K + K logb)). Alternatively, if the vo-
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cabulary sizeV'| is smaller thanV K, the number of ] Metric \ Spearman CorrL Pearson Corr{

distinct states is bounded 6y Nb™ |V |?). 1-WER 0.5258 0.6282
. . BLEU 0.3137 0.6181
3.5 Evaluation Metric for Speech to Text F-measure 04389 06240

Captioning

Automated evaluation of speech to text captioning iable 1: The correlation of average human judgment with
known to be a challenging task (Wang et al. 2003)t_hree automated metrics: 1-WER, BLEU, and F-measure.
Word Error Rate (WER) is the most commonly used

metric that finds the best pairwise alignment bedomly extracted one-minute long audio clips from
tween the candidate caption and the ground trufiyyr MIT OpenCourseWare lectures. Each clip was
reference sentence. WER is estimated®a%™”, transcribed by 7 human workers, and then aligned
whereS, I, andD is the number of incorrect word ang combined using four different systems: the

substitutions, insertions, and deletions required ‘Qraph-based system, and three different versions of
match the candidate sentence with reference,/éand g, weighted A algorithm with different values of
is the total number of words in the reference. WERuning parameters. Fifty people participated in the
has several nice properties such as: 1) it is eagyydy and were splitin two equal sized groups. Each
to estimate, and 2) it tries to preserve word ordergmup was assigned two of the four audio clips,
ing. However, WER does not account for the overalyng each person evaluated all four captions for both
‘readability’ of text and thus does not always Corfeglips. Each participant assigned a score between 1
late well with human evaluation (Wang et al., 2003tg 10 to these captions, based on two criteria: 1) the
He etal., 2011). overall estimated agreement of the captions with the
The widely-used BLEU metric has been shownyround truth text, and 2) the readability and under-
to agree well with human judgment for evaluatin%tandab”ity of the captions.
translation quality (Papineni et al., 2002). However, Einajly, we estimated the correlation coefficients
unlike WER, BLEU imposes no explicit constraints o, spearman and Pearson) for the three metrics
on the word ordering. BLEU has been criticized agjiscyssed above with respect to the average score
an ‘under-constrained’ measure (Callison-Burch eéssigned by the human participants. The results
al., 2006) for allowing too much variation in word 5. presented in Table 1. Among the three metrics,
ordering. Moreover, BLEU does not dire_ctly estiqWER had the highest agreement with the human par-
mate recall, and instead relies on the brevity penaltyiinants. This indicates that reconstructing the cor-
Melamed et al. (2003) suggest that a better approachit word order is in fact important to the users, and

is to explicitly measure both precision and recall anghat, in this aspect, our task has more of the flavor of

combine them via F-measure. _ speech recognition than of machine translation.
Our application is similar to automatic speech

recognition in that there is a single correct outputg Experimental Results
as opposed to machine translation where many out-
puts can be equally correct. On the other hand, uiwe experiment with the MSA-Aalgorithm for cap-
like with ASR, out-of-order output is frequently pro- tioning different audio clips, and compare the results
duced by our alignment system when there is natith two existing techniques. Our experimental set
enough overlap between the partial captions to dewp is similar to the experiments by Lasecki et al.
rive the correct ordering for all words. It may be(2012). Our dataset consists of four 5-minute long
the case that even such out-of-order output can laeidio clips extracted from lectures available on MIT
of value to the user, and should receive some sort @fpenCourseWare. The audio clips contain speech
partial credit that is not possible using WER. Foifrom electrical engineering and chemistry lectures.
this reason, we wished to systematically compargach audio clip is transcribed by ten non-expert hu-
BLEU, F-measure, and WER as metrics for our tasknan workers in real-time. We then combine these
We performed a study to evaluate the agreemeirtputs using our MSA-A algorithm, and also com-
of the three metrics with human judgment. We ranpare with the existing graph-based system and mul-
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(1.0-WER) BLEU Score F-Measure Out of the five systems in Figure 4, the first three

071062 064

are different versions of ourAsearch based MSA
algorithm with different parameter settings: 1j-A
10-t system¢ = 10 seconds,, = 2), 2) A*-15-t (¢ =
15 seconds;, = 2), and 3) A-15 (c = 15 seconds,,
= 1 i.e. no pruning while voting). For all three sys-
®7[0s3 0s3 tems, the heuristic weight parameteiis set to 2.5
: and beam sizé = 20 seconds. The other two sys-
tems are the existing graph-based system and mul-
tiple sequence alignment using MUSCLE. Among
the three A based algorithms, both*A15-t and A-
10-t produce better quality transcripts and outper-
form the existing algorithms. Both systems apply
the voting threshold that improves precision. The
system A-15 applies no threshold and ends up pro-
ducing many spurious words having poor agreement
among the workers, and hence it scores worse in all
the three metrics. The*Al5-t achieves 57.4% aver-
age accuracy in terms of (1-WER), providing 29.6%
improvement with respect to the graph-based sys-
tem (average accuracy 42.6%), and 35.4% improve-
ment with respect to the MUSCLE-based MSA sys-
WAIOE e BN WA D3P WIMUSCEL tem (average accuracy 41.9%). On the same set of
audio clips, Lasecki et al. (2012) reported 36.6% ac-
Figure 4: Evaluation of different systems on using threeuracy using ASR (Dragon Naturally Speaking, ver-
different automated metrics for measuring transcriptiogjon 11.5 for Windows), which is worse than all the
quality: 1- Word Error Rate (WER), BLEU, and F- crowd-based based systems used in this experiment.
measure on the four audio clips. To measure the statistical significance of this im-
provement, we performediatest at both the dataset
_ _ _ level (n = 4 clips) and the word level( = 2862
tiple sequence alignment using MUSCLE. words). The improvement over the graph-based
As explained earlier, we vary the four key pa-inodel was statistically significant with dataset level
rameters of the algorithm: the chunk sizg, (the p-value 0.001 and word level-value smaller than
heuristic weight {v), the voting thresholdt(), and 0.0001. The average time to align each 15 second
the beam sizebj. The heuristic weight and chunk chunk with 10 input captions is400 milliseconds.
size parameters help us to trade-off between speedWe have also experimented with a trigram lan-
versus accuracy; the voting threshaeldhelps im- guage model, trained on the British National Cor-
prove precision by pruning words having less thapus (Burnard, 1995) having-122 million words.
t, votes, and beam size reduces the search spaceThe language-model-integrated Aearch provided
restricting states to be inside a time window/beana negligible 0.21% improvement in WER over the
We use affine gap penalty (Edgar, 2004) with difA*-15-t system on average. The task of combin-
ferent gap opening and gap extension penalty. Wag captions does not require recognizing words; it
set gap opening penalty to 0.125 and gap extensiamly requires aligning them in the correct order. This
penalty to 0.05. We evaluate the performance usingpuld explain why language model did not improve
the three standard metrics: Word Error Rate (WERRBccuracy, as it does for speech recognition. Since
BLEU, and F-measure. The performance in terms dhe standard MSA-A algorithm (without language
these metrics using different systems is presentedimodel) produced comparable accuracy and faster
Figure 4. running time, we used that version in the rest of the
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Figure 5: The trade-off between speed and accuracy forrdiftheuristic weights and chunk size parameters.

experiments. Finally, we investigate how the accuracy of our

Next, we look at the critical speed versus accurac§Igorithm varies with the number of inputs/workers.
trade-off for different values of the heuristic weightVe start with a pool of 10 input captions for one of
(w) and the chunk size) parameters. Since WER the audio clips. We vary the number of input cap-
has been shown to correlate most with human judglons (<) to the MSA-A" algorithm from 2 up to 10.
ment, we show the next results only with respect tdhe quality of input captions differs greatly among
WER. First, we fix the chunk size at different val-the workers. Therefore, for each valuesf we re-
ues, and then vary the heuristic weight parameteP@at the experimentin (20, (i) times; each time
w = 1.8, 2, 25, 3, 4. 6, and 8. The results ar&ve randomly seleck’ input captions out of the total
shown in Figure 5(a), where each curve represenp§0l of 10. Figure 6 shows that accuracy steeply
how time and accuracy changed over the range gicreases as the number of inputs increases to 7,
values ofw and a fixed value of. We observe that and after that adding more workers does not pro-
for smaller values ofy, the algorithm is more accu- Vide much improvement in accuracy, but increases
rate, but comparatively slower. As increases, the running time.
search reaches the goal faster, but the quality of t
solution degrades as well. Next, we fixand vary

chunk size: =5, 10, 15, 20, 40, 60 second. We reqn this paper, we show that the*Asearch based
peat this experiment for a range of valuesuond  \sA algorithm performs better than existing algo-
the results are shown in Figure 5(b). We can see thathms for combining multiple captions. The exist-
the accuracy improves steeply upcte- 20 seconds, jng graph-based model has low latency, but it usually
and does not improve much beyone- 40 seconds. can not find a near optimal alignment because of its
For all these benchmarks, we set the beam diye (ncremental alignment. Weighted*Aearch on the
to 20 seconds and voting threshoid)(to 2. other hand performs joint multiple sequence align-
In our tests, the beam size parametgrdid not ment, and is guaranteed to produce a solution hav-
play a significant role in performance, and setting iing cost no more thafil + ¢) times the cost of the
to any reasonably large value (usualyl5 seconds) optimal solution, given a heuristic weight of 4 ¢).
resulted in similar accuracy and running time. ThidMoreover, A" search allows for straightforward in-
is because the Asearch withh,,q;, heuristic already tegration of an n-gram language model during the
reduces the the search space significantly, and ussearch.
ally reaches the goal in a number of steps smaller Another key advantage of the proposed algorithm
than the state space size after the beam restrictionis the ease with which we can trade-off between

'L‘e Discussion and Future Wor k
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each alignment usually takes less than 300 millisec-

06 onds, allowing us to repeatedly align the stream of
words, even before the window is filled. This pro-
=05 vides less accurate but immediate response to users.
UEJ Finally, when we have all the words entered in a
I 04 chunk, we perform the final alignment and show the
03 caption to users for the entire chunk.
? After aligning the input sequences, we obtain the
:% 0.2 final transcript by majority voting at each alignment
o1 position, which treats each worker equally and does
' not take individual quality into account. Recently,
ot ; ; : . - some work has been done for automatically estimat-

Average Running Time (in sec) ing individual worker’s quality for crowd-based data
labeling tasks (Karger et al., 2011; Liu et al., 2012).
Figure 6: Experiments showing how the accuracy of thExtending these methods for crowd-based text cap-

final caption by MSA-A algorithm varies with the num- tioning could be an interesting future direction.
ber of inputs from 2 to 10.

6 Conclusion

speed and accuracy. The algorithm can be tailordd this paper, we have introduced a new gearch

to real-time by using a larger heuristic weight. OrPased MSA algorithm for aligning partial captions
the other hand, we can produce better transcripts f6HO a final output stream in real-time. This method
offline tasks by choosing a smaller weight. has advantages over prior approaches both in for-

It is interesting to compare our results with thosd"@l guarantees of optimality and the fability to trade
achieved using the MUSCLE MSA tool of EdgarOﬁ s_pged and accuracy. Qur experiments on real
(2004). One difference is that our system takes a hﬁ:_aptlonlng data show that it outperforms prior ap-

erarchical approach in that it aligns at the word Ievef,)roaches based on a dependency graph model and a

but also uses string edit distance at the letter Ievéfar_]dard M_SA implen_qgntation (MUSCLE). An ex-
as a substitution cost for words. Thus, it is able ggerment with 50 participants explored whether ex-

take advantage of the fact that individual transcrip'—tIng automatic metrics of quality matched human

tions do not generally contain arbitrary fragments 0?valuat|ons of readability, showing WER did best.

words. More fundamentally, it is interesting to notea cknowledgments Funded by NSF awards 11S-
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Abstract

Automatically assessing the fidelity of a
retelling to the original narrative — a task of
growing clinical importance — is challenging,
given extensive paraphrasing during retelling
along with cascading automatic speech recog-
nition (ASR) errors. We present a word tag-
ging approach using conditional random fields
(CRFs) that allows a diversity of features
to be considered during inference, including
some capturing acoustic confusions encoded
in word confusion networks. We evaluate the
approach under several scenarios, including
both supervised and unsupervised training, the
latter achieved by training on the output of
a baseline automatic word-alignment model.
We also adapt the ASR models to the domain,
and evaluate the impact of error rate on per-
formance. We find strong robustness to ASR
errors, even using just the 1-best system out-
put. A hybrid approach making use of both au-
tomatic alignment and CRFs trained tagging
models achieves the best performance, yield-
ing strong improvements over using either ap-
proach alone.

1 Introduction

Narrative production tasks are an essential compo-
nent of many standard neuropsychological test bat-
teries. For example, narration of a wordless pic-
ture book is part of the Autism Diagnostic Obser-
vation Schedule (ADOS) (Lord et al., 2002) and
retelling of previously narrated stories is part of both
the Developmental Neuropsychological Assessment
(NEPSY) (Korkman et al., 1998) and the Wech-
sler Logical Memory (WLM) test (Wechsler, 1997).
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Such tests also arise in reading comprehension, sec-
ond language learning and other computer-based tu-
toring systems (Xie et al., 2012; Zhang et al., 2008).

The accuracy of automated scoring of a narrative
retelling depends on correctly identifying which of
the source narrative’s propositions or events (what
we will call ‘story elements’) have been included
in the retelling. Speakers may choose to relate
these elements using diverse words or phrases, and
an automated method of identifying these elements
needs to model the permissible variants and para-
phrasings. In previous work (Lehr et al., 2012;
Prud’hommeaux and Roark, 2012; Prud’hommeaux
and Roark, 2011), we developed models based on
automatic word-alignment methods, as described
briefly in Section 3. Such alignments are learned
in an unsupervised manner from a parallel corpus of
manual or ASR transcripts of retellings and the orig-
inal source narrative, much as in machine translation
training.

Relying on manual transcripts to train the align-
ment models limits the ability of these methods to
handle ASR errors. By instead training on ASR
transcripts, these methods can automatically capture
some regularities of lexical variants and their com-
mon realizations by the recognizer. Additionally, ev-
idence of acoustic confusability is available in word
lattice output from the recognizer, which can be ex-
ploited to yield more robust automatic scoring, par-
ticularly in high error-rate scenarios.

In this paper, we present and evaluate the use of
word tagging models for this task, in contrast to
just using automatic (unsupervised) word-alignment
methods. The approach is general enough to al-
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low tagging of word confusion networks derived
from lattices, thus allowing us to explore the utility
of such representations to achieve robustness. We
present results under a range of experimental condi-
tions, including: variously adapting the ASR mod-
els to the domain; using maximum entropy models
rather than CRFs; differing tagsets (BIO versus 10);
and with varying degrees of supervision. Finally,
we demonstrate improved utility in terms of using
the automatic scores to classify elderly individuals
as having Mild Cognitive Impairment. Ultimately
we find that hybrid approaches, making use of both
word-alignment and tagging models, yield strong
improvements over either used independently.

2 Wechsler Logical Memory (WLM) task

The Wechsler Logical Memory (WLM) task (Wech-
sler, 1997), a widely used subtest of a battery of neu-
ropsychological tests used to assess memory func-
tion in adults, has been shown to be a good indicator
of Mild Cognitive Impairment (MCI) (Storandt and
Hill, 1989; Petersen et al., 1999; Wang and Zhou,
2002; Nordlund et al., 2005), the stage of cogni-
tive decline that is often a precursor to dementia of
the Alzheimer’s type. In the WLM, the subject lis-
tens to the examiner read a brief narrative and then
retells the narrative twice: immediately upon hear-
ing it and after about 20 minutes. The examiner
grades the subject’s response by counting how many
of the story elements the subject recalled.

An excerpt of the text read by the clinician while
administering the WLM task is shown in Figure 1.
The story elements in the text are delineated using
slashes, 25 elements in all. An example retelling
is shown in Figure 2 to illustrate how the retellings
are scored. The clinical evaluation guidelines spec-
ify what lexical substitutions, if any, are allowed
for each element. Some elements, such as cafeteria
and Thompson, must be recalled verbatim. In other
cases, subjects are given credit for variants, such as
Annie for Anna, or paraphrasing of concepts such as
sympathetic for touched by the woman’s story. The
example retelling received a score of 12, with one
point for each of the recalled story elements: Anna,
Boston, employed, as a cook, and robbed of, she had
four, small children, reported, station, touched by
the woman’s story, took up a collection and for her.

212

Anna / Thompson / of South / Boston / em-
ployed / as a cook / in a school / cafeteria /
reported / at the police / station / that she had
been held up / on State Street / the night be-
fore / and robbed / .../ police / touched by the
woman’s story / took up a collection / for her.

Figure 1: Reference text and the set of story elements.

Ann Taylor worked in Boston as a cook. And
she was robbed of sixty-seven dollars. Is
that right? And she had four children and
reported at the some kind of station. The fel-
low sympathetic and made a collection for her
so that she can feed the children.

Figure 2: An example retelling with 12 recalled story elements.

3 Unsupervised generative automated
scoring with word alignment

In previous work (Lehr et al., 2012; Prud’hommeaux
and Roark, 2012; Prud’hommeaux and Roark,
2011), we developed a pipeline for automatically
scoring narrative retellings for the WLM task. The
utterances corresponding to a retelling were rec-
ognized using an ASR system. The story ele-
ments were identified from the 1-best ASR transcript
using word alignments produced by the Berkeley
aligner (Liang et al., 2006), an EM-based word
alignment package developed to align parallel texts
for machine translation. The word alignment model
was estimated in an unsupervised manner from a
parallel corpus consisting of source narrative and
manual transcripts of retellings from a small set of
training subjects, and from a pairwise parallel cor-
pus of manual retelling transcripts.

During inference or test, the ASR transcripts of
the retellings were aligned using the estimated align-
ment model to the source narrative text. If a word
in the retelling was mapped by the alignment model
to a content word in the source narrative, the ele-
ment associated with that content word was counted
as correctly recalled in that retelling. Recall that
the models were trained on unsupervised data so the
aligned words may not always be permissible vari-
ants of the target elements. To alleviate such extra-
neous as well as unaligned words, the alignments
below a threshold of posterior probability are dis-
carded while decoding.



4 Supervised discriminative automated
scoring with log-linear models

In this work, we frame the task of detecting story
elements as a tagging task. Thus, our problem re-
duces to assigning a tag to each word position in the
retelling, the tag indicating the story element that the
word is associated with. In its simplest form, we
have 26 tags: one for each of the 25 story elements
indicating the word is ‘in’ that element (e.g., I15);
and one for ‘outside’ of any story element (‘O’). By
tagging word positions, we are framing the problem
in a general enough way to allow tagging of word
confusion networks (Mangu et al., 2000), which en-
code word confusions that may provide additional
robustness, particularly in high word-error rate sce-
narios. We make use of log-linear models, which
have been used for tagging confusion networks (Ku-
rata et al., 2012), and which allow very flexible fea-
ture vector definition and discriminative optimiza-
tion.

The model allows us to experiment with three
types of inputs as illustrated in the Figure 3 — the
manual transcript, the 1-best ASR transcript, and the
word confusion network. To create supervised train-
ing data, we force-align ASR transcripts to manual
transcripts and transfer manually annotated story el-
ement tags from the reference transcripts to word po-
sitions in the confusion network or 1-best ASR out-
put using the word-level time marks. Our unsuper-
vised training scenario instead derives story element
tags from a baseline word-alignment based model.

Figure 3: Feature vectors at each word position includes lexi-
cal variants and acoustic confusions.

Tags(story elements) 0 1 2 0

Manual transcript OK ANNA THOMPSON THAT’S HER NAME

ASR 1-best HEY ANNATHOMPSON THAT'S AN ANGLER
HEY ANNA OUR NAME
ASR WCN THOMPSON _ THAT'S
HAY AND HER ANGLER
A=0 || A=0 A=0 A=0 A=0 A=0
Vector representation of an=ol| an=o0 AN=0 AN=0 AN=1

the bin (V-dim) AN=0
ANGLER=1
AND=1 [THOMPSON<JTHAT’S=

ANNA=

HAY=
HEY=

NAME=1
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Markov order O | Markov order 1
(MaxEnt) (CRF)
Context Yi Yi-1Yi
independent (CI) YiTi Yi—1YiTs
Context YiTi—1 Yi—1YiTi—1
dependent (CD) YiTit1 Yi—1YiTit1

Table 1: Feature templates either using or not using neighbor-
ing tag y;—1 (MaxEnt vs. CRF); and for using or not using
neighboring words x;—1, ;41 (CI vs. CD).

4.1 Features

Given a sequence of word positions = x7 ... %y,
the tagger assigns a sequence of labels y = y1 ... yn
from a tag lexicon. For each word z; in the se-
quence, we can define features in the log-linear
model based on word and tag identities. Table 1
presents several sets of features, defined over words
and tags at various positions relative to the current
word x; and tag y; and compound features are de-
noted as concatenated symbols.

Features that rely only on the current tag y; are
used in a Markov order O model, i.e., one for which
each tag is labeled independently. A maximum en-
tropy classifier (see Section 4.2) is used with these
feature sets. Features that include prior tags en-
code dependencies between adjacent tags, and are
used within conditional random fields models (see
Section 4.3). To examine the utility of surrounding
words z;_1 and z;11, we distinguish between mod-
els trained with context independent features (just
x;) and context dependent features. Note that mod-
els including context dependent feature sets also in-
clude the context independent features, and Markov
order 1 models also include Markov order 0 features.

Two other details about our use of the feature tem-
plates are worth noting. First, when tagging confu-
sion networks, each word in the network at position
¢ results in a feature instance. Thus, if there are five
confusable words at position ¢, then there will be
five different x; values being used to instantiate the
features in Table 1. Second, following Kurata et al.
(2012), we multiply the feature counts for the con-
text dependent features by a weight to control their
influence on the model. In this paper, the scaling
weight of the context-dependent features was 0.3.

We investigate two different tagsets for this task,
as presented in Table 2. The simpler tagset (I0) sim-
ply identifies words that are in a story element; the



Tagging anna rent was due
10-tags Il 119119 119
BIO-tags B1  B19119119

Table 2: Two possible tagsets for labeling.

larger tagset (BIO) differentiates among positions in
a story element chunk. The latter tagset is only of
utility for models with Markov order greater than
zero, and hence are only used with CRF models.

4.2 MaxEnt-based multiclass classifier

Our baseline model is a Maximum Entropy (Max-
Ent) classifier where each position ¢ from the
retelling = gets assigned one of the IO output tags
y; corresponding to the set of 25 story elements and
a null (‘O’) symbol. The output tag is modeled as
the conditional probability p(y; | z;) given the word
x; at position i in the retelling.

d
exp <Z >\k¢k($iyyz‘)>

k=1
Z(z;)

p(yi | zi) =

where Z(z;) is a normalization factor. The feature
functions ¢(z;, y;) are the Markov order 0 features
as defined as in the previous section. The parame-
ters A € N are estimated by optimizing the above
conditional probability, with L2 regularization. We
use the MALLET Toolkit (McCallum, 2002) with
default regularization parameters.

4.3 CRF-based sequence labeling model

The MaxEnt models assign a tag to each position
from the input retelling independently. However,
there are a few reasons why reframing the task as
a sequence modeling problem may improve tagging
performance. First, some of the story elements are
multiword sequences, such as she had been held up
or on State Street. Second, even if a retelling orders
recalled elements differently than the original narra-
tive, there is a tendency for story elements to occur
in certain orders.

The parameters of the CRF model, A € R? are
estimated by optimizing the following conditional
probability:

d
exp <Z )\kcbk(fﬁay))

k=1
Z(x)

Ply|z) =
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where ®(x,y) aggregates features across the entire
sequence, and Z(x) is a global normalization con-
stant over the sequence, rather than local for a partic-
ular position as with MaxEnt. Features for the CRF
model are Markov order 1 features, and as with the
MaxEnt training, we use default (L2) regularization
parameters within the MALLET toolkit.

S Combining tagging and alignment

This paper contrasts a discriminatively trained tag-
ging approach with an unsupervised alignment-
based approach, but there are several ways in which
the two approaches can be combined. First, the
alignment model is unsupervised and can provide
its output as training data to the tagging approach,
resulting in an unsupervised discriminative model.
Second, the alignment model can provide features to
the log-linear tagging model in the supervised condi-
tion. We explore both methods of combination here.

5.1 Unsupervised discriminative tagger

The tagging task based on log-linear models pro-
vides an appropriate framework to easily incorpo-
rate diverse features and discriminatively estimate
the parameters of the model. However, this ap-
proach requires supervised tagged training data, in
this case manual labels indicating the correspon-
dence of phrases in the retellings with story elements
in the original narrative. These manual annotations
are used to derive sequences of story element tags
labeling the words of the retelling. Manually la-
beling the retellings is costly, and the scoring (thus
labeling) scheme is very specific to the test being
analyzed. To avoid manual labeling and provide a
general framework that can easily be adopted in any
retelling based assessment task, we experiment here
with an unsupervised discriminative approach.

In this unsupervised approach, the labeled train-
ing data required by the log-linear model is provided
by the automatic word alignments trained without
supervision. The resulting tag sequences replace the
manual tag sequences used in the standard super-
vised approach.

5.2 Word-alignment derived features

When training discriminative models it is a common
practice to incorporate into the feature space the out-
put from a generative model, since it is a good esti-



mator. Here we augment the feature space of the
log-linear models with the tags generated by the au-
tomatic word alignments. In addition to the features
defined in Section 4.1, we include new features that
match predicted labels z; from the word-alignment
model with possible labels in the tagger y;. Our fea-
tures include the current tagger label with (1) the
current predicted word-alignment label; (2) the pre-
vious predicted label; and (3) the next predicted la-
bel. Thus, the new features were y;2;, y;z;—1 and

YiZi+1-
6 Experimental evaluations

Corpus: Our models were trained on immediate and
delayed retellings from 144 subjects with a mean
age of 85.4, of whom 36 were clinically diagnosed
with MCI (training set). We evaluated our models
on a set of retellings from 70 non-overlapping sub-
jects with a mean age of 88.5, half of whom had
received a diagnosis of MCI (test set). In contrast
to the unsupervised word-alignment based method,
the method outlined here required manual story el-
ement labels of the retellings. The training and
test sets from this paper are therefore different from
the sets used in previous work (Lehr et al., 2012;
Prud’hommeaux and Roark, 2012; Prud’hommeaux
and Roark, 2011), and the results are not directly
comparable.

The recordings were sometimes made in an infor-
mal setting, such as the subject’s home or a senior
center. For this reason, there are often extraneous
noises in the recordings such as music, footsteps,
and clocks striking the hour. Although this presents
a challenge for ASR, part of the goal of our work
is to demonstrate the robustness of our methods to
noisy audio.

6.1 Automatic transcription

The baseline ASR system used in the current work
is a Broadcast News system which is modeled af-
ter Kingsbury et al. (2011). Briefly, the acoustics
of speech are modeled by 4000 clustered allophone
states defined over a pentaphone context, where
states are represented by Gaussian mixture models
with a total of 150K mixture components. The ob-
servation vectors consist of PLP features, stacked
from 10 neighboring frames and projected to a 50-
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1-best oracle oracle
System (%) WCN(%) lat(%)
Baseline 47.2 39.7 27.7
AM adaptation 38.2 35.5 21.2
LM adaptation 28.3 30.7 19.9
AM+LM adaptation  25.6 26.5 16.5

Table 3: Improvement in ASR word error-rate by adapting the
Broadcast News models to the domain of narrative retelling.

dimension space using linear discriminant analysis
(LDA). The acoustic models were trained on 430
hours of transcribed speech from Broadcast News
corpus (LDC97S44, LDC98S71). The language
model is defined over an 84K vocabulary and con-
sists of about 1.8M, 1M and and 331K bigrams, tri-
grams and 4-grams, estimated from standard Broad-
cast news corpus. The decoding is performed in sev-
eral stages using successively refined acoustic mod-
els — a context-dependent model, a vocal-tract nor-
malized model, a speaker-adapted maximum likeli-
hood linear regression (MLLR) model, and finally
a discriminatively trained model with the boosted
MMI criteria (Povey et al., 2008). The system gives
a word error rate of 13.1% on the 2004 Rich Tran-
scription benchmark by NIST (Fiscus et al., 2007),
which is comparable to state-of-the-art for equiva-
lent amounts of acoustic training data. On the WLM
corpus, the recognition word error rate was signifi-
cantly higher at 47.2% due to a mismatch in domain
and the skewed demographics (age) of the speakers.

We improved the performance of the above
Broadcast News models by adapting to the domain
of the WLM retellings. The acoustic models were
adapted using standard MLLR, where linear trans-
forms were estimated in an unsupervised manner
to maximize the likelihood over the transcripts of
the retellings. The transcripts were generated from
the baseline system after the final stage of decod-
ing with the discriminative model. The language
models were adapted by interpolating the in-domain
model (weight=0.7) with the out-of-domain model.
The gains from these adaptations are reported in
the Table 3. As expected, we find substantial gains
from both acoustic model (AM) and language model
(LM) adaptation. Furthermore, we find benefit in
employing them simultaneously. We also include
the oracle word error rate (WER) of the WCNs and
lattices for each ASR configuration.



One thing to note is that the oracle WER of the
WCNs is worse than the 1-best WER when adapting
the language models. We speculate that this is due
to bias introduced by the language model adapted
to the story retellings, resulting in word candidates
in the bins that are not truly acoustically confusable
candidates. This is one potential reason for the lack
of utility of WCNs in low WER conditions.

6.2 Evaluating retelling scoring

We analyzed the performance of the retelling scor-
ing methods under five different input conditions for
producing transcripts: (1) the out-of-domain Broad-
cast News recognizer with no adaptation; (2) do-
main adapted acoustic model; (3) domain adapted
language model; (4) domain adapted acoustic and
language models; and (5) manual (reference) tran-
scripts. Each story element is automatically labeled
by the systems as either having been recalled or not,
and this is compared with manual scores to derive an
F-score accuracy, by calculating precision and recall
of recalled story elements. Derived word alignments
or tag sequences are converted to binary story ele-
ment indicators by simply setting the element to 1
if any open-class word is tagged for (or aligned to)
that story element.

6.2.1 Word alignment based scoring

We evaluate the word alignment approach only on
1-best ASR transcripts and manual transcripts, not
WCNs. The first row of Table 4 reports the story ele-
ment F-scores for a range of ASR adaptation scenar-
i0s. The performance of the model improves signifi-
cantly as the WER reduces with adaptation. With the
fully adapted ASR the F-score improves more than
13%, and it is only 3.4% worse than with the man-

ual transcripts. The alignments produced in each of
these scenarios are used as training data in the unsu-
pervised condition evaluated below.

6.2.2 Log-linear based automated scoring

Context-independent features Table 4 summa-
rizes the performance of the log-linear models us-
ing context independent features (CI) in supervised
(section 4), unsupervised (section 5.1) and hybrid
(section 5.2) training scenarios for different inputs
(reference transcript, ASR 1-best, and word confu-
sion network ASR output) and four different ASR
configurations.

The results show a few clear trends. Both in
the supervised and unsupervised training scenarios
the CRF model provides substantial improvements
over the MaxEnt classifier. The F-scores obtained
in the unsupervised training scenario are slightly
worse than with supervision, though they are compa-
rable to supervised results and an improvement over
just using the word alignment approach, particularly
in high WER scenarios. The hybrid training sce-
nario — supervised learning with word alignment de-
rived features — leads to reduced differences between
MaxEnt and CREF training compared to the other two
training scenarios. In fact, in high WER scenarios,
the MaxEnt slightly outperforms the CRF.

As expected the best performance is obtained with
manual transcripts and the worst with 1-best tran-
scripts generated by the out-of-domain ASR with
relatively high word error rate. For this ASR con-
figuration, using WCNs provide some gain, though
the gain is insignificant for the hybrid approach. In
the hybrid approach, the output labels of the word
alignment are already good indicators of the output
tag and incorporating the confusable words from the

Table 4: Story element F-score achieved by baseline word-alignment model and log-linear models (MaxEnt and CRF) using
context independent features (CI) under 3 different scenarios, with 3 different inputs (1-best ASR, word confusion network, and
manual transcripts) and different ASR models (baseline out-of-domain, AM adapted, LM adapted and AM+LM adapted).

Training Transcripts: 1-best WCN manual
Scenario ASR: | baseline AM LM AM+LM | baseline AM LM AM+LM N/A
Baseline word-alignment: 71.9 773 843 854 N/A 88.8
Supervised MaxEnt-CI 76.0 81.7 84.6 85.6 78.9 834 84.0 84.7 86.4
CRF-CI 80.3 87.3 89.7 91.4 83.7 88.8 88.2 90.8 94.4
Unsupervised | MaxEnt-CI 72.1 793 827 84.2 77.5 81.2 834 83.2 84.8
CRF-CI 79.4 854 86.8 88.0 81.2 85.8 86.2 87.2 90.5
Hybrid MaxEnt-CI 88.1 89.4 89.2 89.6 87.6 89.2 88.8 89.5 91.8
CRF-CI 87.0 909 915 92.1 87.4 91.5 90.1 92.4 94.6
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Training Transcripts: 1-best WCN manual
Scenario ASR: | baseline AM LM AM+LM | baseline AM LM AM+LM N/A
Supervised | MaxEnt-CD 80.1 87.3  90.0 91.1 83.5 88.6 88.2 90.3 93.3
CRF-CD-IO 80.6 88.0 89.9 91.2 84.2 89.6 88.8 90.5 94.7
CRF-CD-BIO 81.1 87.9 90.6 91.7 84.5 89.5 88.8 90.8 94.7
Un- MaxEnt-CD 77.1 83.1 86.5 89.0 80.2 850 86.2 87.6 90.7
supervised | CRF-CD-10 79.1 853 87.1 88.3 81.0 859 864 87.5 90.3
CRF-CD-BIO 79.1 856 872 88.4 81.3 859 86.2 87.3 90.6
Hybrid MaxEnt-CD 88.4 90.2 90.7 91.6 88.6 90.5 90.4 91.4 93.5
CRF-CD-IO 87.9 91.3 91.6 92.5 88.3 91.7 90.7 92.1 94.8
CRF-BIO 87.8 919 91.8 93.0 88.7 92.0 90.7 92.3 94.7

Table 5: Story element F-score achieved by log-linear models (MaxEnt and CRF) when adding context dependent features (CD)
and BIO tags for the CRF models, under 3 different scenarios, with 3 different inputs (1-best ASR, word confusion network, and
manual transcripts) and different ASR models (baseline out-of-domain, AM adapted, LM adapted and AM+LM adapted).

WCN into the feature vector apparently mainly adds
noise.

When the transcripts are generated with the
adapted models, the word confidence score of the 1-
best is higher and the WCN bins have fewer acous-
tically confusable words. Still, the WCN input is
helpful in the AM-adapted ASR system. When
the transcripts are generated with LM adapted mod-
els, the performance is better with 1-best than with
WCNs. As mentioned earlier, adapting the lan-
guage models may introduce a bias due to the rel-
atively low LM perplexity for this domain. In the
lowest WER scenarios, the best performing systems
achieve over 90% F-score, within two percent of the
performance achieved with manual transcripts.

Context-dependent features Exercising the flex-
ibility of log-linear models, we investigated the im-
pact of using context-dependent (CD) features in-
stead of the CI features used in the previous exper-
iments. Our CD features take into account the two
immediately neighboring word positions. As men-
tioned earlier, following Kurata et al. (2012), the
counts from the neighboring word positions were
weighted (o = 0.3) to avoid data sparsity. This re-
duces the sensitivity of the model to time alignment
errors between the tag and feature vector sequences
without increasing the dimensions. In Table 5, we
report the F-scores for the different ASR configu-
rations, inputs, and log-linear models with context
dependent features, using the standard 10 tagset as
in Table 4.

Although there are some exceptions, adding con-
text information from the input features improves
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the performance of the models. In particular, the
MaxEnt models benefit from incorporating this ex-
tra information. The MaxEnt models improve their
performance substantially for all three training sce-
narios, while the gains for the CRF models are more
modest, especially for the unsupervised approach
where the performance degrades or does not change
much, since some context information is already
captured by the Markov order 1 features.

BIO tagset As detailed in Section 4.1, story el-
ements sometimes span multiple words, so for the
CRF models we investigated two different schemes
for tagging, following typical practice in named en-
tity extraction (Ratinov and Roth, 2009) and syn-
tactic chunking (Sha and Pereira, 2003). The BIO
tagging scheme makes the distinction between the
tokens from the story elements that are in the be-
ginning from the ones that are not. The O tag is
assigned to the tokens that do not belong to any of
the story elements. The IO tagging uses a single tag
for the tokens that fall in the same story element,
which is the approach we have followed so far. In
addition to presenting results using context depen-
dent features, Table 5 presents results with the BIO
tagset.

For the supervised and hybrid approaches, the
BIO tagging provides insignificant but consistent
gains for most of the scenarios. The unsupervised
approach provides mixed results. This may be due to
the way in which the word alignment model scores
the retellings. It tags only those words from the
retelling that are aligned with a content word in the
source narrative, which may result in the loss of the




Training Transcripts: 1-best WCN manual
Scenario ASR: | baseline AM LM AM+LM | baseline AM LM AM+LM N/A
Baseline word-alignment: 0.65 0.67 0.74 0.76 N/A 0.79
Supervised | MaxEnt-CD 0.65 0.73 0.76 0.77 0.70 0.73 0.77 0.77 0.81
CRF-CD-BIO 0.69 0.76  0.77 0.76 0.73 0.76  0.77 0.78 0.82
Un- MaxEnt-CD 0.65 0.72 0.75 0.76 0.70 0.75 0.75 0.76 0.80
supervised | CRF-CD-BIO 0.74 0.75 0.78 0.78 0.71 0.74 0.77 0.76 0.81
Hybrid MaxEnt-CD 0.72 0.76 0.77 0.78 0.74 0.76 0.77 0.77 0.82
CRF-CD-BIO 0.72 0.76 0.78 0.78 0.76 0.77 0.78 0.79 0.81

Table 6: Classification performance (AUC) for the baseline word-alignment model and the best performing log-linear models of
both types (MaxEnt and CRF) under 3 different scenarios with 3 types of input and 4 types of ASR models.

structure of some multiwords story elements that we
are trying to capture with the BIO scheme.

6.3 Evaluating MCI classification

Each of the individuals producing retellings in our
corpus underwent a battery of neuropsychological
tests, and were assigned a Clinical Dementia Rating
(CDR) (Morris, 1993), which is a composite score
derived from measures of cognitive function in six
domains, including memory. Importantly, it is as-
signed independently of the Wechsler Logical Mem-
ory test we are analyzing in this paper, which allows
us to evaluate the utility of our WLM analyses in
an unbiased manner. MCI is defined as a CDR of
0.5 (Ritchie and Touchon, 2000), and subjects in this
study have either a CDR of 0 (no impairment) or 0.5
MCD).

In previous work, we found that the features
extracted from the retellings are useful in dis-
tinguishing subjects with MCI from neurotyp-
ical age-matched controls (Lehr et al., 2012;
Prud’hommeaux and Roark, 2012; Prud’hommeaux
and Roark, 2011). From each retellings, we extract
Boolean features for each story element, for a total
of 50 features for classification. Each feature indi-
cates whether the retelling contained that story ele-
ment.

In this paper, we carry out similar classification
experiments to investigate the impact of using log-
linear models on the extraction of features for classi-
fication. We build a support vector machine (SVM)
using the LibSVM (Chang and Lin, 2011) exten-
sion to the WEKA data mining Java API (Hall et al.,
2009). This allows recollection of different elements
to be weighted differently. This is unlike the manual
scoring of WLM based on clinical guidelines where
all elements are weighted equally irrespective of the
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difficulty. The SVM was trained on manually ex-
tracted story element feature vectors. We compared
the performance of the MCI classification for three
types of input and four ASR configurations under
the supervised, unsupervised, and hybrid scenarios.
For each scenario we chose the best scoring system
from among the automated systems reported in Ta-
bles 4 and 5. Classification results, evaluated as area
under the curve (AUC), are reported in Table 6, both
for the log-linear trained tagging models and for the
baseline word-alignment based method. For refer-
ence (not shown in the table), the SVM classifier
performed at 0.83 when features values are manu-
ally populated.

The results show that the AUC improves steadily
as the quality of the transcription is improved, go-
ing from the baseline system to the adapted mod-
els. This is consistent with the improvements seen in
the F-score for detecting story elements. The differ-
ent approaches for detecting the story elements from
the transcriptions did not ultimately show significant
differences in MCI classification results. Overall,
the best classification values are given by the hy-
brid approach, which performs slightly better than
the other two approaches. The best AUC in the
hybrid scenario (0.79, very close to the AUC=0.81
achieved with manual transcripts) is obtained with
a CRF trained with WCNs from the fully adapted
ASR model and with context dependent features and
BIO tags.

Comparing WCN versus 1-best as inputs, using
WCN as input improves classification performance
when the 1-best transcripts are poor, as in the case
of out-of-domain ASR. The adapted recognizer im-
proves the performance of the 1-best significantly
making it unnecessary to resort to WCN as inputs.

Comparing the MaxEnt model with CRF model




for extracting story elements, we see that the average
F-scores for the MaxEnt models trained on CD fea-
tures are nearly as good as and sometimes slightly
better than those produced using the CRF models.
The CRF extracted story elements, however, tend to
yield classifiers that perform slightly better, espe-
cially in the unsupervised approach with 1-best in-
puts.

7 Summary and discussion

This paper examines the task of automatically scor-
ing narrative retellings in terms of their fidelity to
the original narrative content, using discriminatively
trained log-linear tagging models. Fully automatic
scoring must account for both lexical variation and
acoustic confusion from ASR errors. Lexical vari-
ation — due to extensive paraphrasing on the part
of the individuals retelling the narrative — can be
modeled effectively using word-alignment models
such as those employed in machine translation sys-
tems (Lehr et al., 2012; Prud’hommeaux and Roark,
2011). This paper focuses on an alternative ap-
proach, where both lexical variation and ASR con-
fusions are modeled using log-linear models. In ad-
dition to very flexible feature definitions, the log-
linear models bring the advantage of a discrimina-
tive model to the task. We see improvements in
story element F-score using these models over unsu-
pervised word-alignment models. Further, the fea-
ture definition flexibility allows us to incorporate the
unsupervised word-alignment labels into these mod-
els, resulting either in fully unsupervised approaches
that perform competitively with the supervised mod-
els or in hybrid (supervised) approaches that provide
the best performing systems in this study.

Our tagging models are able to process word con-
fusion networks as inputs and thus improve perfor-
mance over using 1-best ASR transcripts in scenar-
ios where the speech recognition error rate is high.
These improvements carry through to the MCI clas-
sification task, making use of features computed
from the automatic scoring of narrative retelling.

One advantage of the word-alignment model is
that such approaches do not require manual anno-
tation of the story elements, which is more labor in-
tensive than typical manual transcription of speech.
Thus, the word-alignment model can exploit large
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numbers of retellings in an unsupervised manner
when trained on ASR transcripts of the retellings.
Controlled experiments here with relatively limited
training sets demonstrate that semi-supervised ap-
proaches on larger untranscribed sets are likely to
be successful.

Finally, experiments with different amounts of
ASR adaptation show that both acoustic and lan-
guage model adaptations in this domain are effec-
tive, yielding scenarios that are competitive with
manual transcription both for detecting story ele-
ments as well as for subsequent classification. With
full model adaptation to the domain, the 1-best
transcripts improved significantly, and their perfor-
mance was found to be at par with WCNSs.

In future work, we would like to investigate two
questions left open by these results. First, word-
alignment models can be extended to process ASR
lattices or word confusion networks as part of the
unsupervised alignment learning algorithm, and in-
corporated into our approach. Second, the con-
textual features can be refined (e.g., concatenated
features instead of smoothed features) when large
amounts of training data is available.

It is noteworthy to mention that the lexical vari-
ants and paraphrasing learned from the data using
automated method may be useful in refining the clin-
ical guidelines for scoring (e.g., allowing additional
lexical variants and paraphrasings, or assigning un-
equal credits for different story elements to reflect
the difficulty of recollecting them) or to create the
guidelines for new languages or stories.
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Abstract

Addressee detection (AD) is an important
problem for dialog systems in human-human-
computer scenarios (contexts involving mul-
tiple people and a system) because system-
directed speech must be distinguished from
human-directed speech. Recent work on AD
(Shriberg et al., 2012) showed good results
using prosodic and lexical features trained on
in-domain data. In-domain data, however, is
expensive to collect for each new domain. In
this study we focus on lexical models and in-
vestigate how well out-of-domain data (either
outside the domain, or from single-user sce-
narios) can fill in for matched in-domain data.
We find that human-addressed speech can be
modeled using out-of-domain conversational
speech transcripts, and that human-computer
utterances can be modeled using single-user
data: the resulting AD system outperforms
a system trained only on matched in-domain
data. Further gains (up to a 4% reduction in
equal error rate) are obtained when in-domain
and out-of-domain models are interpolated.
Finally, we examine which parts of an utter-
ance are most useful. We find that the first
1.5 seconds of an utterance contain most of
the lexical information for AD, and analyze
which lexical items convey this. Overall, we
conclude that the H-H-C scenario can be ap-
proximated by combining data from H-C and
H-H scenarios only.

*Work done while first author was an intern with Microsoft.
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1 Introduction

Before a spoken dialog system can recognize and in-
terpret a user’s speech, it should ideally determine
if speech was even meant to be interpreted by the
system. We refer to this task as addressee detec-
tion (AD). AD is often overlooked, especially in tra-
ditional single-user scenarios, because with the ex-
ception of self-talk, side-talk or background speech,
the majority of speech is usually system-directed.
As dialog systems expand to more natural contexts
and multiperson environments, however, AD can be-
come a crucial part of the system’s operational re-
quirements. This is particularly true for systems in
which explicit system addressing (e.g., push-to-talk
or required keyword addressing) is undesirable.

Past research on addressee detection has focused
on human-human (H-H) settings, such as meetings,
sometimes with multimodal cues (op den Akker and
Traum, 2009). Early systems relied primarily on re-
jection of H-H utterances either because they could
not be interpreted (Paek et al., 2000), or because they
yielded low speech recognition confidence (Dowd-
ing et al., 2006). Some systems combine gaze
with lexical and syntactic cues to detect H-H speech
(Katzenmaier et al., 2004). Others use relatively
simple prosodic features based on pitch and energy
in addition to those derived from automatic speech
recognition (ASR) (Reich et al., 2011).

With some exceptions (Bohus and Horvitz, 2011;
Shriberg et al., 2012), relatively little work has
looked at the human-human-computer (H-H-C) sce-
nario, i.e. at contexts involving two or more people
who interact both with a system and with each other.

Proceedings of NAACL-HLT 2013, pages 221-229,
Atlanta, Georgia, 9-14 June 2013. (©2013 Association for Computational Linguistics



Shriberg et al. (2012) found that novel prosodic
features were more accurate than lexical or seman-
tic features based on speech recognition for the ad-
dressee task. The corpus, also used herein, is com-
prised of H-H-C dialog in which roughly half of the
computer-addressed speech consisted of a small set
of fixed commands. While the word-based features
map directly to the commands, they had trouble
distinguishing all other (noncommand) computer-
directed speech from human-directed speech. This
is because addressee detection in the H-H-C sce-
nario becomes even more challenging when the sys-
tem is designed for natural speech, i.e., utterances
that are conversational in form and not limited to
command phrases with restricted syntax. Further-
more, H-H utterances can be about the domain of
the system (e.g., discussing the dialog task), mak-
ing AD based on language content more difficult.
The prosodic features were good at both types of
distinctions—even improving performance signifi-
cantly when combined with true-word (cheating)
lexical features that have 100% accuracy on the
commands. Nevertheless, the prior work showed
that lexical n-grams are useful for addressee detec-
tion in the H-H-C scenario.

A problem with lexical features is that they are
highly task- and domain-dependent. As with other
language modeling tasks, one usually has to collect
matched training data in significant quantities. Data
collection is made more cumbersome and expensive
by the multi-user aspect of the scenario. Thus, for
practical reasons alone, it would be much better if
the language models for AD could be trained on
out-of-domain data, and if whatever in-domain data
is needed could be limited to single-user interac-
tion. We show in this paper that precisely this train-
ing scenario is feasible and achieves results that are
comparable or better than using completely matched
H-H-C training data.

In addition to studying the role of out-of-domain
data for lexical AD models, we also examine which
words are useful, and how soon in elapsed time they
are available. Whereas most prior work in AD has
looked at processing of entire utterances, we con-
sider an online processing version where AD deci-
sions are to be made as soon as possible after an
utterance was initiated. We find that most of the
addressee-relevant lexical information can be found

222

Show me
Italian

Are you restaurants.

vegetarian?

3

Figure 1: Conversational Browser dialog system en-
vironment with multi-human scenario

in the first 1.5 seconds, and analyze which words
convey this information.

2 Data

We use in-domain and out-of-domain data from var-
ious sources. The corpora used in this work differ in
size, domain, and scenario.

2.1 In-domain data

In-domain data is collected from interactions be-
tween two users and a “Conversational Browser”
(CB) spoken dialog system. We used the same
methodology as Shriberg et al. (2012), but using ad-
ditional data. As depicted in Figure 1, the system
shows a browser on a large TV screen and users
are asked to use natural language for a variety of
information-seeking tasks. For more details about
the dialog system and language understanding ap-
proach, see Hakkani-Tiir et al. (2011a; 2011b).

We split the in-domain data into training, devel-
opment, and test sets, preserving sessions. Each ses-
sion is about 5 to 40 minutes long. Even though
the whole conversation is recorded, only the seg-
ments captured by the speech recognition system
are used in our experiments. Each utterance seg-
ment belongs to one of four types: computer-
command (C-command), comprising navigational
commands to the system, computer-noncommand
(C-noncommand), which are computer-directed ut-
terances other than commands, human-directed (H),
and mixed (M) utterances, which contain a combina-



Table 1: In-domain corpus

(a) Sizes, distribution, and ASR word error rates of in-
domain utterance types

Data set Train Dev Test | WER
Transcribed words | 6,490 | 11,298 | 9,486
ASR words 4,649 | 6,360 | 5,514 | 59.3%
H (%) 19.1 48.6 | 37.0 | 87.6%
C-noncomm. (%) 38.3 27.8 322 | 32.6%
C-command (%) 39.9 18.7 272 | 19.7%
M (%) 2.7 4.9 3.6 | 69.6%
(b) Example utterances by type
Type Example
H Do you want to watch a
movie?

C-noncommand
C-command
M

How is the weather today?
Scroll down, Go back.

Show me sandwich shops.
Oh, are you vegetarian?

tion of human- and computer-directed speech. The
sizes and distribution of all utterance types, as well
as sample utterances are shown in Table 1.

The ASR system used in the system was based on
off-the-shelf acoustic models and had only the lan-
guage model adapted to the domain, using very lim-
ited data. Consequently, as shown in the right-most
column of Table 1(a), the word error rates (WERS)
are quite high, especially for human-directed utter-
ances. While these could be improved with tar-
geted effort, we consider this a realistic application
scenario, where in-domain training data is typically
scarce, at least early in the development process.
Therefore, any lexically based AD methods need to
be robust to poor ASR accuracy.

2.2 Out-of-domain data

To replace the hard-to-obtain in-domain H-H-C data
for training, we use the four out-of-domain corpora
(two H-C and two H-H) shown in Table 2.
Single-user CB data comes from the same Con-
versational Browser system as the in-domain data,
but with only one user present. This data can there-
fore be used for modeling H-C speech. Bing anchor
text (Huang et al., 2010) is a large n-gram corpus of
anchor text associated with links on web pages en-
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Table 2: Out-of-domain corpora. “Single-user CB”
is a corpus collected in same environment as the H-
H-C in-domain data, except that only a single user
was present.

Corpus Addressee Size
Single-user CB H-C 21.9k words
Bing anchor text H-C 1.3B bigrams
Fisher H-H 21M words
ICSI meetings H-H 0.7M words

in-domain
(HH) Language model for
human directed

utterances (H)

Fisher, ICSI
meeting —
out-of-domain

P(w|H) \
1

Pw|C)
Twl °9 P(wiH)

in-domain
(HC)

Language model for
computer directed
utterances (C)

P(w|C)
Single user CB,
Bing -
out-of-domain

Figure 2: Language model-based score computation
for addressee detection

countered by the Bing search engine. When users
want to follow a link displayed on screen, they usu-
ally speak a variant of the anchor text for the link.
We hypothesized that this corpus might aid the mod-
eling of computer-noncommand type utterances in
which such “verbal clicks” are frequent. Fisher tele-
phone conversations and ICSI meetings are both cor-
pora of human-directed speech. The Fisher corpus
(Cieri et al., 2004) comprises two-person telephone
conversations between strangers on prescribed top-
ics. The ICSI meeting corpus (Janin et al., 2003)
contains multiparty face-to-face technical discus-
sions among colleagues.

3 Method

3.1 Language modeling for addressee detection

We use a lexical AD system that is based on mod-
eling word n-grams in the two addressee-based ut-
terance classes, H (for H-H) and C' (for H-C utter-
ances). This approach is similar to language model-
based approaches to speaker and language recogni-
tion, and was shown to be quite effective for this
task (Shriberg et al., 2012). Instead of making
hard decisions, the system outputs a score that is



the length-normalized likelihood ratio of the two
classes:
1 P(w|C)

wl * Plu]H)’
where |w| is the number of words in the recognition
output w for an utterance. P(w|C') and P(w|H) are
obtained from class-specific language models. Fig-
ure 2 gives a flow-chart of the score computation.
Class likelihoods are obtained from standard tri-
gram backoff language models, using Witten-Bell
discounting for smoothing (Witten and Bell, 1991).
For combining various training data sources, we use
language model adaptation by interpolation (Bel-
legarda, 2004). First, a separate model is trained
from each source. The probability estimates from
in-domain and out-of-domain models are then aver-
aged in a weighted fashion:

D

P(wk]hk) = )\Pm(wk’hk) + (1 — )\)Pout(wk‘hk>

2
where wy, is the k-th word, Ay, is the (n — 1)-gram
history for the word wyg. A is the interpolation weight
and is obtained by tuning a task-related metric on the
development set. We investigated optimizing A for
either model perplexity or classification accuracy, as
discussed below.

3.2 Part-of-speech-based modeling

So far we have only been modeling the lexical forms
of words in utterances. If we encounter a word never
before seen, it would appear as an out-of-vocabulary
item in all class-specific language models, and not
contribute much to the decision. More generally, if
a word is rare, its n-gram statistics will be unreliable
and poorly modeled by the system. (The sparseness
issue is exacerbated by small amounts of training
data as in our scenario.)

One common approach to deal with data sparse-
ness in language modeling is to model n-grams over
word classes rather than raw words (Brown et al.,
1992). For example, if we have an utterance How
is the weather in Paris?, the addressee probabilities
are likely to be similar had we seen London instead
of Paris. Therefore, replacing words with properly
chosen word class labels can give better generaliza-
tion from the observed training data. Among the
many methods proposed to class words for language
modeling purposes we chose part-of-speech (POS)
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tagging over other, purely data-derived classing al-
gorithms (Brown et al., 1992), for two reasons. First,
our goal here is not to minimize the perplexity of the
data, but to enhance discrimination among utterance
classes. Second, a data-driven class inference algo-
rithm would suffer from the same sparseness issues
when it comes to unseen and rare words (as no ro-
bust statistics are available to infer an unseen word’s
best class in the class induction step). A POS tag-
ger, on the other hand, can do quite well on unseen
words, using context and morphological cues.

A hidden Markov model tagger using POS-
trigram statistics and context-independent class
membership probabilities was used for tagging all
LM training data. The tagger itself had been
trained on the Switchboard (conversational tele-
phone speech) transcripts of the Penn Treebank-
3 corpus (Marcus et al., 1999), and used the 39
Treebank POS labels. To strike a compromise be-
tween generalization and discriminative power in
the language model, we retained the top N most fre-
quent word types from the in-domain training data
as distinct tokens, and varied N as a metaparam-
eter. Barzilay and Lee (2003) used a similar idea
to generalize patterns by substituting words with
slots. This strategy will tend to preserve words that
are either generally frequent function and domain-
independent words, capturing stylistic and syntac-
tic patterns, or which are frequent domain-specific
words, and can thus help characterize computer-
directed utterances.

Here is a sample sentence and its transformed ver-
sion:

Original: Let’s find an Italian restaurant
around this area.

POS-tagged: Let’s find an JJ NN around this
area.

The words except [talian and restaurant are un-
changed because they are in the list of /N most fre-
quent words. We transformed all training and test
data in this fashion and then modeled n-gram statis-
tics as before. The one exception was the Bing
anchor-text data, which was only available in the
form of word n-grams (the sentence context required
for accurate POS tagging was missing).



Table 3: Addressee detection performance (EER) with different training sets

ASR | Transcript
Baseline (in-domain only) 31.1 17.3
Fisher+ICSI, Single-user CB+Bing (out-of-domain only) | 27.8 14.2
Baseline + Fisher+ICSI, Single CB + Bing (both-all) 26.9 14.0
Baseline + ICSI, Single-user CB (both-small) 26.6 13.0

3.3 Evaluation metrics

Typically, an application-dependent threshold would
be applied to the decision score to convert it into a
binary decision. The optimal threshold is a func-
tion of prior class probabilities and error costs. As
in Shriberg et al. (2012), we used equal error rate
(EER) to compare systems, since we are interested
in the discriminative power of the decision score in-
dependent of priors and costs. EER is the probability
of false detections and misses at the operating point
at which the two types of errors are equally proba-
ble. A prior-free metric such as EER is more mean-
ingful than classification accuracy because the utter-
ance type distribution is heavily skewed (Table 1),
and because the rate of human- versus computer-
directed speech can vary widely depending on the
particular people, domain, and context. We also use
classification accuracy (based on data priors) in one
analysis below, because EERs are not comparable
for different test data subdivisions.

3.4 Online model

The actual dialog system used in this work pro-
cesses utterances after receiving an entire segment
of speech from the recognition subsystem. How-
ever, we envision that a future version of the sys-
tem would perform addressee detection in an online
manner, making a decision as soon as enough evi-
dence is gathered. This raises the question how soon
the addressee can be detected once the user starts
speaking. We simulate this processing mode using a
windowed AD model.

As shown in Figure 3, we define windows start-
ing at the beginning of the utterance and investigate
how AD performance changes as a function of win-
dow size. We use only the words and n-grams falling
completely within a given window. For example, the
word find would be excluded from Window 1 in Fig-
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Figure 3: The window model

ure 3.

The benefit of early detection in this case is that
once speech is classified as human-directed, it does
not need to be sent to the speech recognizer and sub-
sequent semantic processing. This saves processing
time, especially if processing happens on a server.
Based on the window model performance, we can
assess the feasibility of an online AD model, which
can be approached by shifting the detection window
through time and finding addressee changes.

4 Results and Discussion

Table 3 compares the performance of our system us-
ing various training data sources. For diagnostic pur-
poses we also compare performance based on recog-
nized words (the realistic scenario) to that based on
human transcripts (idealized, best-case word recog-
nition).

Somewhat surprisingly, the system trained on out-
of-domain data alone performs better by 3.3 EER
points on ASR output and 3.1 points on transcripts
compared to the in-domain baseline. Combining
in-domain and out-of-domain data (both-all, both-
small) gives about 1 point additional EER gain. Note
that training on in-domain data plus the smaller-size
out-of-domain corpora (both-small) is better than
using all available data (both-all).

Figure 4 shows the detection error trade-off
(DET) between false alarm and miss errors for the
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Figure 4: Detection error trade-off (DET) curves for
the systems in Table 3. Thin lines at the top right
corner use ASR output (1-4); thick lines at the bot-
tom left corner use reference transcripts (5-8). Each
line number represents one of the systems in Table 3:
1,5 = in-domain only, 2,6 = out-of-domain only, 4,7
= both-all, 3,8 = both-small.

systems in Table 3. The DET plot depicts perfor-
mance not only at the EER operating point (which
lies on the diagonal), but over the range of possible
trade-offs between false alarm and miss error rates.
As can be seen, replacing or combining in-domain
data with out-of-domain data gives clear perfor-
mance gains, regardless of operating point (score
threshold), and for both reference and recognized
words.

Figure 5 shows H-H vs. H-C classification accu-
racies on each of the four utterance subtypes listed
in Table 1. It is clear that computer-command ut-
terances are the easiest to classify; the accuracy is
more than 90% using transcripts, and more than 85%
using ASR output. This is not surprising, since
commands are from a fixed small set of phrases.
The biggest gain from use of out-of-domain data
is found for computer-directed noncommand utter-
ances. This is helpful, since in general it is the
noncommand computer-directed utterances (rather
than the commands) that are highly confusable with
human-directed utterances: both use unconstrained
natural language. We note that H-H utterance are
very poorly recognized in the ASR condition when
only out-of-domain data is used. This may be be-
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Figure 5: AD accuracies by utterance type

Table 4: Perplexities (computed on dev set ASR
words) by utterance type, for different training cor-
pora. Interpolation refers to the combination of the
three models listed in each case.

Test class
Training set H-C | H-H
In-domain H-C (ASR) | 257 | 1856
Single-user CB 104 | 1237
Bing anchor text 356 | 789
Interpolation 58 | 370
In-domain H-H (ASR) | 887 | 1483
Fisher 995 | 795
ICSI meeting 2007 | 1583
Interpolation 355 | 442

cause the human-human corpora used in training
consist of transcripts, whereas the ASR output for
human-directed utterances is very errorful, creating
a severe train-test mismatch.

As for the optimization of the mixing weight )\,
we found that minimizing perplexity on the devel-
opment set of each class is effective. This is a
standard optimization approach for interpolated lan-
guage models, and can be carried out efficiently us-
ing an expectation maximization algorithm. We also
tried search-based optimization using the classifica-
tion metric (EER) as the criterion. While this ap-
proach could theoretically give better results (since
perplexity is not a discriminative criterion) we found
no significant improvement in our experiments.



Table 4 shows the perplexities by class of lan-
guage models trained on different corpora. We can
take these as an indication of training/test mismatch
(lower perplexity indicating better match). We also
find substantial perplexity reductions from interpo-
lating models. In order to make perplexities compa-
rable, we trained all models using the union of the
vocabularies from the different sources.

In spite of perplexity being a good way to opti-
mize the weighting of sources, it is not clear that it
is a good criterion for selecting data sources. For
example, we see that the Fisher model has a much
lower perplexity on H-H utterances than the ICSI
meeting model. However, as reflected in Table 3,
the H language model that leaves out the Fisher data
actually performed better. The most likely expla-
nation is that the Fisher corpus is an order of mag-
nitude larger than the ICSI corpus, and that sheer
data size, not stylistic similarity, may account for the
lower perplexity of the Fisher model. Further inves-
tigation is needed regarding good criteria for corpus
selection for classification tasks such as AD.

Table 5 shows the EER performance of the POS-
based model, for various sizes N of the most-
frequent word list. We observe that the partial re-
placement of words with POS tags indeed improves
over the baseline model performance, by 1.5 points
on ASR output and by 1.1 points on transcripts.
We also see that the gain over the corresponding
word-only model is largest for the in-domain base-
line model, and less or non-existent for the out-of-
domain model. This is consistent with the notion
that the in-domain model suffers the most from data
sparseness, and therefore has the most to gain from
better generalization.

Interpolating with out-of-domain data still helps
here. The optimal NV differs for ASR output versus
transcripts. The POS-based model with N = 300
improves the EER by 0.5 points on ASR output,
and N = 1000 improves the EER by 0.8 points on
transcripts. Here we use relatively large amounts of
training data, thus the performance gain is smaller,
though still meaningful.

Figure 6 shows the performance of the system
using time windows anchored at the beginnings of
utterances. We incrementally increase the window
width from 0.5 seconds to 3 seconds and compare
results to using full utterances. The leveling off of
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Figure 6: Simulated online performance on incre-
mental windows

Table 6: The top 15 first words in utterances

ASR H-C | Transcript H-C | ASR H-H | Transcript H-H
go g0 play I
scroll scroll go ohh
start start is SO
show stop it yeah
stop show what it’s
bing find this you

search Bing show uh
find search how okay
play pause bing what
pause play select it
look look okay and
what uh does that’s
select what start is
how how SO no
the ohh I we

the error plots indicates that most addressee infor-
mation is contained in the first 1 to 1.5 seconds,
although some additional information is found in
the later part of utterances (the plots never level off
completely). This pattern holds for both in-domain
and out-of-domain training, as well as for combined
models.

To give an intuitive understanding of where this
early addressee-relevant information comes from,
we tabulated the top 15 word unigrams in each ut-
terance class, are shown in Table 6. Note that
the substantial differences between the third and
fourth columns in the table reflect the high ASR
error rate for human-directed utterances, whereas



Table 5: Performance of POS-based model with various top-N word lists (EER)

Training data top100 | top200 | top300 | top400 | top500 | top1000 | top2000 | Original
ASR | baseline 31.6 31.0 29.6 30.1 30.2 314 31.5 31.1
out-of-domain only | 36.5 37.0 37.2 36.9 36.8 36.6 37.3 27.8
both-all 28.2 26.6 26.1 26.7 274 26.9 27.6 26.9
both-small 28.0 26.5 26.2 26.6 26.4 26.3 26.5 26.6
REF | baseline 17.1 16.2 16.6 17.1 16.7 17.0 17.2 17.3
out-of-domain only | 17.6 17.6 17.5 17.2 17.1 17.2 18.1 14.2
both-all 12.5 12.5 12.5 12.7 12.8 13.2 13.5 14.0
both-small 13.0 13.2 12.8 13.2 12.8 12.2 12.7 13.0

for computer-directed utterances, the frequent first
words are mostly recognized correctly.

In computer-directed utterances we see mostly
command verbs, which, due to the imperative syn-
tax of these commands occur in utterance-initial po-
sition. Human-directed utterances are characterized
by subject pronouns such as / and it, or answer parti-
cles such as yeah and okay, which likewise occur in
initial position. Based on word frequency and syn-
tax alone it is thus clear why the beginnings of utter-
ances contain strong lexical cues.

5 Conclusion

We explored the use of outside data for training
lexical addressee detection systems for the human-
human-computer scenario. Advantages include sav-
ing the time and expense of an in-domain data col-
lection, as well as performance gains even when
some in-domain data is available. We show that H-
C training data can be obtained from a single-user
H-C collection, and that H-H speech can be mod-
eled using general conversational speech. Using the
outside training data, we obtain results that are even
better than results using matched (but smaller) H-
H-C training data. Results can be improved consid-
erably by adapting H-C and H-H language models
with small amounts of matched H-H-C data, via in-
terpolation. The main reason for the improvement is
better detection of computer-directed noncommand
utterances, which tend to be confusable with human-
directed utterances. Another effective way to over-
come scarce training data is to replace the less fre-
quent words with part-of-speech labels. In both
baseline and interpolated model, we found that POS-
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based models that keep an appropriate number of the
top N most frequent word types can further improve
the system’s performance.

In a second study we found that the most salient
phrases for lexical addressee detection occur within
the first 1 to 1.5 seconds of speech in each utter-
ance. Itreflects a syntactic tendency of class-specific
words to occur utterance-initially, which shows the
feasibility of the online AD system.
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Abstract

The study presented in this work is a first ef-
fort at real-time speech translation of TED
talks, a compendium of public talks with dif-
ferent speakers addressing a variety of top-
ics. We address the goal of achieving a sys-
tem that balances translation accuracy and la-
tency. In order to improve ASR performance
for our diverse data set, adaptation techniques
such as constrained model adaptation and vo-
cal tract length normalization are found to be
useful. In order to improve machine transla-
tion (MT) performance, techniques that could
be employed in real-time such as monotonic
and partial translation retention are found to
be of use. We also experiment with inserting
text segmenters of various types between ASR
and MT in a series of real-time translation ex-
periments. Among other results, our experi-
ments demonstrate that a good segmentation
is useful, and a novel conjunction-based seg-
mentation strategy improves translation qual-
ity nearly as much as other strategies such
as comma-based segmentation. It was also
found to be important to synchronize various
pipeline components in order to minimize la-
tency.

1 Introduction

The quality of automatic speech-to-text and speech-
to-speech (S2S) translation has improved so signifi-
cantly over the last several decades that such systems
are now widely deployed and used by an increasing
number of consumers. Under the hood, the individ-
ual components such as automatic speech recogni-
tion (ASR), machine translation (MT) and text-to-
speech synthesis (TTS) that constitute a S2S sys-
tem are still loosely coupled and typically trained
on disparate data and domains. Nevertheless, the
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models as well as the pipeline have been optimized
in several ways to achieve tasks such as high qual-
ity offline speech translation (Cohen, 2007; Kings-
bury et al., 2011; Federico et al., 2011), on-demand
web based speech and text translation, low-latency
real-time translation (Wabhlster, 2000; Hamon et al.,
2009; Bangalore et al., 2012), etc. The design of a
S2S translation system is highly dependent on the
nature of the audio stimuli. For example, talks, lec-
tures and audio broadcasts are typically long and re-
quire appropriate segmentation strategies to chunk
the input signal to ensure high quality translation.
In contrast, single utterance translation in several
consumer applications (apps) are typically short and
can be processed without the need for additional
chunking. Another key parameter in designing a
S2S translation system for any task is latency. In
offline scenarios where high latencies are permit-
ted, several adaptation strategies (speaker, language
model, translation model), denser data structures (N-
best lists, word sausages, lattices) and rescoring pro-
cedures can be utilized to improve the quality of
end-to-end translation. On the other hand, real-
time speech-to-text or speech-to-speech translation
demand the best possible accuracy at low latencies
such that communication is not hindered due to po-
tential delay in processing.

In this work, we focus on the speech translation
of talks. We investigate the tradeoff between accu-
racy and latency for both offline and real-time trans-
lation of talks. In both these scenarios, appropriate
segmentation of the audio signal as well as the ASR
hypothesis that is fed into machine translation is crit-
ical for maximizing the overall translation quality of
the talk. Ideally, one would like to train the models
on entire talks. However, such corpora are not avail-
able in large amounts. Hence, it is necessary to con-
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form to appropriately sized segments that are similar
to the sentence units used in training the language
and translation models. We propose several non-
linguistic and linguistic segmentation strategies for
the segmentation of text (reference or ASR hypothe-
ses) for machine translation. We address the prob-
lem of latency in real-time translation as a function
of the segmentation strategy; i.e., we ask the ques-
tion “what is the segmentation strategy that maxi-
mizes the number of segments while still maximiz-
ing translation accuracy?”.

2 Related Work

Speech translation of European Parliamentary
speeches has been addressed as part of the TC-
STAR project (Vilar et al., 2005; Fiigen et al., 2006).
The project focused primarily on offline translation
of speeches. Simultaneous translation of lectures
and speeches has been addressed in (Hamon et al.,
2009; Fiigen et al., 2007). However, the work fo-
cused on a single speaker in a limited domain. Of-
fline speech translation of TED! talks has been ad-
dressed through the IWSLT 2011 and 2012 evalua-
tion tracks. The talks are from a variety of speakers
with varying dialects and cover a range of topics.
The study presented in this work is the first effort on
real-time speech translation of TED talks. In com-
parison with previous work, we also present a sys-
tematic study of the accuracy versus latency tradeoff
for both offline and real-time translation on the same
dataset.

Various utterance segmentation strategies for of-
fline machine translation of text and ASR output
have been presented in (Cettolo and Federico, 2006;
Rao et al., 2007; Matusov et al., 2007). The work
in (Fiigen et al., 2007; Fiigen and Kolss, 2007)
also examines the impact of segmentation on of-
fline speech translation of talks. However, the real-
time analysis in that work is presented only for
speech recognition. In contrast with previous work,
we tackle the latency issue in simultaneous transla-
tion of talks as a function of segmentation strategy
and present some new linguistic and non-linguistic
methodologies. We investigate the accuracy versus
latency tradeoff across translation of reference text,
utterance segmented speech recognition output and

"http://www.ted.com
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partial speech recognition hypotheses.

3 Problem Formulation

The basic problem of text translation can be formu-
lated as follows. Given a source (French) sentence

f = f/ = fi,---, fs, we aim to translate it into
target (English) sentence &€ = é{ =é1,---,€5.

é(f) = arg max Pr(e|f) (1)

If, as in talks, the source text (reference or ASR hy-
pothesis) is very long, i.e., J is large, we attempt
to break down the source string into shorter se-
quences, S = s1 - - - 5 - - - SQ,, where each sequence
Sk = [fjkfjk+1 : "fj(k+1)—1]’ J1 17jQ5+1 =
J + 1. Let the translation of each foreign sequence
si be denoted by t;, = [eikeik_ﬂ cee ei(k+1)—1]’ =
Ligu =1 "+ 12. The segmented sequences can
be translated using a variety of techniques such as
independent chunk-wise translation or chunk-wise
translation conditioned on history as shown in Egs. 2
and 3, respectively. In Eq. 3, ¢; denotes the best
translation for source sequence s;.

é(f) = argmax Pr(ty]s1) - - - arg max Pr(tg|sx)

t1 ty
2
é(f) = arg max Pr(t1]s1) arg max Pr(ts|so, s1, t])
t1 to
argmax Pr(tg|si, -, sk, t1, - ,th_1)
Ly
3)

Typically, the hypothesis ¢ will be more accurate
than é for long texts as the models approximating
Pr(e|f) are conventionally trained on short text seg-
ments. In Eqs. 2 and 3, the number of sequences Q)5
is inversely proportional to the time it takes to gen-
erate partial target hypotheses. Our main focus in
this work is to obtain a segmentation S such that the
quality of translation is maximized with minimal la-
tency. The above formulation for automatic speech
recognition is very similar except that the foreign
stringvf = flj = fl, e ,fj is obtained by decoding
the input speech signal.

The segmented and unsegmented talk may not be equal in
length, i.e., [ # I



Model Language | Vocabulary #words #sents | Corpora
Acoustic Model en 46899 2611144 148460 | 1119 TED talks
ASR | Language Model en 378915 | 3398460155 | 151923101 | Europarl, WMT11 Gigaword, WMT11 News crawl
WMT11 News-commentary, WMT11 UN, IWSLT11 TED training
Parallel text en 503765 76886659 7464857 | IWSLT11 TED training talks, Europarl, JRC-ACQUIS
Opensubtitles, Web data
MT es 519354 83717810 7464857
Language Model es 519354 83717810 7464857 | Spanish side of parallel text
Table 1: Statistics of the data used for training the speech translation models.
4 Data 5 Speech Translation Models

In this work, we focus on the speech translation
of TED talks, a compendium of public talks from
several speakers covering a variety of topics. Over
the past couple of years, the International Work-
shop on Spoken Language Translation (IWSLT) has
been conducting the evaluation of speech translation
on TED talks for English-French. We leverage the
IWSLT TED campaign by using identical develop-
ment (dev2010) and test data (tst2010). However,
English-Spanish is our target language pair as our
internal projects are cater mostly to this pair. As a
result, we created parallel text for English-Spanish
based on the reference English segments released as
part of the evaluation (Cettolo et al., 2012).

We also harvested the audio data from the TED
website for building an acoustic model. A total
of 1308 talks in English were downloaded, out of
which we used 1119 talks recorded prior to Decem-
ber 2011. We split the stereo audio file and dupli-
cated the data to account for any variations in the
channels. The data for the language models was also
restricted to that permitted in the IWSLT 2011 eval-
uation. The parallel text for building the English-
Spanish translation model was obtained from sev-
eral corpora: Europarl (Koehn, 2005), JRC-Acquis
corpus (Steinberger et al., 2006), Opensubtitle cor-
pus (Tiedemann and Lars Nygaard, 2004), Web
crawling (Rangarajan Sridhar et al., 2011) as well as
human translation of proprietary data. Table 1 sum-
marizes the data used in building the models. It is
important to note that the IWSLT evaluation on TED
talks is completely offline. In this work, we perform
the first investigation into the real-time translation of
these talks.
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In this section, we describe the acoustic, language
and translation models used in our experiments.

5.1 Acoustic and Language Model

We use the AT&T WATSONSM speech recog-
nizer (Goffin et al., 2004). The speech recogni-
tion component consisted of a three-pass decoding
approach utilizing two acoustic models. The mod-
els used three-state left-to-right HMMs representing
just over 100 phonemes. The phonemes represented
general English, spelled letters and head-body-tail
representation for the eleven digits (with “zero” and
”oh”). The pronunciation dictionary used the appro-
priate phoneme subset, depending on the type of the
word. The models had 10.5k states and 27k HMMs,
trained on just over 300k utterances, using both of
the stereo channels. The baseline model training was
initialized with several iterations of ML training, in-
cluding two builds of context dependency trees, fol-
lowed by three iterations of Minimum Phone Error
(MPE) training.

The Vocal Tract Length Normalization (VTLN)
was applied in two different ways. One was esti-
mated on an utterance level, and the other at the talk
level. No speaker clustering was attempted in train-
ing. The performance at test time was comparable
for both approaches on the development set. Once
the warps were estimated, after five iterations, the
ML trained model was updated using MPE training.
Constrained model adaptation (CMA) was applied
to the warped features and the adapted features were
recognized in the final pass with the VTLN model.
All the passes used the same LM. For offline recog-
nition the warps, and the CMA adaptation, are per-
formed at the talk level. For the real-time speech
translation experiments, we used the VTLN model.




The English language model was built using the
permissible data in the IWSLT 2011 evaluation. The
texts were normalized using a variety of cleanup,
number and spelling normalization techniques and
filtered by restricting the vocabulary to the top
375000 types; i.e., any sentence containing a to-
ken outside the vocabulary was discarded. First, we
removed extraneous characters beyond the ASCII
range followed by removal of punctuations. Sub-
sequently, we normalized hyphenated words and re-
moved words with more than 25 characters. The re-
sultant text was normalized using a variety of num-
ber conversion routines and each corpus was fil-
tered by restricting the vocabulary to the top 150000
types; i.e., any sentence containing a token outside
the vocabulary was discarded. The vocabulary from
all the corpora was then consolidated and another
round of filtering to the top 375000 most frequent
types was performed. The OOV rate on the TED
dev2010 set is 1.1%. We used the AT&T FSM
toolkit (Mohri et al., 1997) to train a trigram lan-
guage model (LM) for each component (corpus). Fi-
nally, the component language models were interpo-
lated by minimizing the perplexity on the dev2010
set. The results are shown in Table 2.

Accuracy (%)
Model dev2010 | test2010
Baseline MPE 75.5 73.8
VTLN 78.8 77.4
CMA 80.5 80.0

Table 2:
sets.?

ASR word accuracies on the IWSLT data

5.2 Translation Model

We used the Moses toolkit (Koehn et al., 2007) for
performing statistical machine translation. Mini-
mum error rate training (MERT) was performed on
the development set (dev2010) to optimize the fea-
ture weights of the log-linear model used in trans-
lation. During decoding, the unknown words were
preserved in the hypotheses. The data used to train
the model is summarized in Table 1.

3We used the standard NIST scoring package as we did not

have access to the IWSLT evaluation server that may normalize
and score differently
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We also used a finite-state implementation of
translation without reordering. Reordering can pose
a challenge in real-time S2S translation as the text-
to-speech synthesis is monotonic and cannot retract
already synthesized speech. While we do not ad-
dress the text-to-speech synthesis of target text in
this work, we perform this analysis as a precursor
to future work. We represent the phrase transla-
tion table as a weighted finite state transducer (FST)
and the language model as a finite state acceptor
(FSA). The weight on the arcs of the FST is the
dot product of the MERT weights with the transla-
tion scores. In addition, a word insertion penalty
was also applied to each word to penalize short hy-
potheses. The decoding process consists of compos-
ing all possible segmentations of an input sentence
with the phrase table FST and language model, fol-
lowed by searching for the best path. Our FST-based
translation is the equivalent of phrase-based transla-
tion in Moses without reordering. We present re-
sults using the independent chunk-wise strategy and
chunk-wise translation conditioned on history in Ta-
ble 3. The chunk-wise translation conditioned on
history was performed using the continue-partial-
translation option in Moses.

6 Segmentation Strategies

The output of ASR for talks is a long string of
words with no punctuation, capitalization or seg-
mentation markers. In most offline ASR systems,
the talk is first segmented into short utterance-like
audio segments before passing them to the decoder.
Prior work has shown that additional segmentation
of ASR hypotheses of these segments may be nec-
essary to improve translation quality (Rao et al.,
2007; Matusov et al., 2007). In a simultaneous
speech translation system, one can neither find the
optimal segmentation of the entire talk nor tolerate
high latencies associated with long segments. Con-
sequently, it is necessary to decode the incoming au-
dio incrementally as well as segment the ASR hy-
potheses appropriately to maximize MT quality. We
present a variety of linguistic and non-linguistic seg-
mentation strategies for segmenting the source text
input into MT. In our experiments, they are applied
to different inputs including reference text, ASR 1-
best hypothesis for manually segmented audio and



incremental ASR hypotheses from entire talks.

6.1 Non-linguistic segmentation

The simplest method is to segment the incoming text
according to length in number of words. Such a pro-
cedure can destroy semantic context but has little to
no overhead in additional processing. We experi-
ment with segmenting the text according to word
window sizes of length 4, 8, 11, and 15 (denoted
as data sets win4, win8, winll, winl5, respectively
in Table 3). We also experiment with concatenating
all of the text from one TED talk into a single chunk
(complete talk).

A novel hold-output model was also developed in
order to segment the input text. Given a pair of par-
allel sentences, the model segments the source sen-
tence into minimally sized chunks such that crossing
links and links of one target word to many source
words in an optimal GIZA++ alignment (Och and
Ney, 2003) occur only within individual chunks.
The motivation behind this model is that if a segment
So 1is input at time ¢( to an incremental MT system,
it can be translated right away without waiting for a
segment s; that is input at a later time ¢;,¢; > 0. The
hold-output model detects these kinds of segments
given a sequence of English words that are input
from left to right. A kernel-based SVM was used to
develop this model. It tags a token ¢ in the input with
either the label HOLD, meaning to chunk it with the
next token, or the label OUTPUT, meaning to output
the chunk constructed from the maximal consecutive
sequence of tokens preceding ¢ that were all tagged
as HOLD. The model considers a five word and POS
window around the target token ¢. Unigram, bigram,
and trigram word and POS features based upon this
window are used for classification. Training and de-
velopment data for the model was derived from the
English-Spanish TED data (see Table 1) after run-
ning it through GIZA++. Accuracy of the model on
the development set was 66.62% F-measure for the
HOLD label and 82.75% for the OUTPUT label.

6.2 Linguistic segmentation

Since MT models are trained on parallel text sen-
tences, we investigate segmenting the source text
into sentences. We also investigate segmenting the
text further by predicting comma separated chunks
within sentences. These tasks are performed by
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training a kernel-based SVM (Haffner et al., 2003)
on a subset of English TED data. This dataset con-
tained 1029 human-transcribed talks consisting of
about 103,000 sentences containing about 1.6 mil-
lion words. Punctuation in this dataset was normal-
ized as follows. Different kinds of sentence ending
punctuations were transformed into a uniform end of
sentence marker. Double-hyphens were transformed
into commas. Commas already existing in the input
were kept while all other kinds of punctuation sym-
bols were deleted. A part of speech (POS) tagger
was applied to this input. For speed, a unigram POS
tagger was implemented which was trained on the
Penn Treebank (Marcus et al., 1993) and used or-
thographic features to predict the POS of unknown
words. The SVM-based punctuation classifier relies
on a five word and POS window in order to classify
the target word. Specifically, token ¢y is classified
given as input the window t_ot_1t,t1t2. Unigram,
bigram, and trigram word and POS features based on
this window were used for classification. Accuracy
of the classifier on the development set was 60.51%
F-measure for sentence end detection and 43.43%
F-measure for comma detection. Subsequently, data
sets pred-sent (sentences) and pred-punct (comma-
separated chunks) were obtained. Corresponding to
these, two other data sets ref-sent and ref-punct were
obtained based upon gold-standard punctuations in
the reference.

Besides investigating the use of comma-separated
segments, we investigated other linguistically moti-
vated segments. These included conjunction-word
based segments. These segments are separated at
either conjunction (e.g. “and,” “or”) or sentence-
ending word boundaries. Conjunctions were iden-
tified using the unigram POS tagger. F-measure
performance for detecting conjunctions by the tag-
ger on the development set was quite high, 99.35%.
As an alternative, text chunking was performed
within each sentence, with each chunk correspond-
ing to one segment. Text chunks are non-recursive
syntactic phrases in the input text. We investi-
gated segmenting the source into text chunks us-
ing TreeTagger, a decision-tree based text chun-
ker (Schmid, 1994). [Initial sets of text chunks
were created by using either gold-standard sentence
boundaries or boundaries detected using the punc-
tuation classifier, yielding the data sets chunk-ref-



Reference text ASR 1-best
BLEU Mean BLEU Mean
Segmentation | Segmentation Independent chunk-wise | chunk-wise #words Independent chunk-wise | chunk-wise #words
type strategy FST Moses with history | per segment | FST Moses with history | per segment
win4 22.6 21.0 255 3.9+40.1 | 17.7 17.1 20.0 3.940.1
win8 26.6 26.2 28.2 7.9+0.3 | 20.6 20.9 22.3 7.9+0.2
Non-linguistic | winll 27.2 27.4 29.2 10.94+0.3 | 21.5 21.8 23.1 10.94+0.4
winl5 28.5 28.5 29.4 14.9+0.6 | 22.3 22.8 23.3 14.91+0.7
ref-hold 13.3 14.0 17.1 1.6£1.9 | 12.7 13.1 17.5 1.5£1.0
pred-hold 159 15.7 16.3 22+19 | 12.6 12.9 17.4 1.5+1.0
complete talk 23.8 239 - 2504 | 18.8 19.2 - 2515
ref-sent 30.6 31.5 30.5 16.7£11.8 | 24.3 25.1 24.4 17.0£11.6
ref-punct 30.4 31.5 30.3 7.1£53 | 242 25.1 24.1 8.7+6.1
pred-punct 30.6 315 30.4 8.7+8.8 | 24.1 25.0 24.0 8.84+6.8
conj-ref-eos 30.5 31.5 30.2 11.247.5 | 24.1 24.9 24.0 11.5+7.7
conj-pred-eos 30.3 31.2 30.3 10.94+7.9 | 24.0 24.8 24.0 11.448.5
chunk-ref-punct 17.9 18.9 21.4 1.3+0.7 | 14.5 15.2 16.9 1.44+0.7
Linguistic lIgchunk1-ref-punct | 21.0 21.8 25.1 1.7£1.0 | 169 17.4 19.6 1.8£1.0
lgchunk2-ref-punct | 22.4 23.1 26.0 2.1+1.1 | 179 18.4 20.4 2.1£1.1
Igchunk3-ref-punct | 24.3 25.1 274 25+1.7 | 19.2 19.9 21.3 25+1.7
chunk-pred-punct 17.9 18.9 214 1.34+0.7 | 14.5 15.1 16.9 1.4+0.7
Igchunk1-pred-punct | 21.2 21.9 252 1.8+1.0 | 16.7 17.2 19.7 1.8£1.0
lgchunk2-pred-punct | 22.6 23.1 26.0 2.14£1.2 | 17.7 18.3 20.5 2.1£1.2
Igchunk3-pred-punct | 24.5 25.3 274 2.6+1.8 | 19.1 20.0 21.3 2.5+1.7

Table 3: BLEU scores at the talk level for reference text and ASR 1-best for various segmentation strategies.
The ASR 1-best was performed on manually segmented audio chunks provided in #st2010 set.

punct and chunk-pred-punct. Chunk types included
NC (noun chunk), VC (verb chunk), PRT (particle),
and ADVC (adverbial chunk).

Because these chunks may not provide sufficient
context for translation, we also experimented with
concatenating neighboring chunks of certain types
to form larger chunks. Data sets [gchunkl concate-
nate together neighboring chunk sequences of the
form NC, VC or NC, ADVC, VC, intended to cap-
ture as single chunks instances of subject and verb.
In addition to this, data sets [gchunk2 capture chunks
such as PC (prepositional phrase) and VC followed
by VC (control and raising verbs). Finally, data sets
lgchunk3 capture as single chunks VC followed by
NC and optionally followed by PRT (verb and its di-
rect object).

Applying the conjunction segmenter after the
aforementioned punctuation classifier in order to de-
tect the ends of sentences yields the data set conj-
pred-eos. Applying it on sentences derived from the
gold-standard punctuations yields the data set conj-
ref-eos. Finally, applying the hold-output model to
sentences derived using the punctuation classifier
produces the data set pred-hold. Obtaining English
sentences tagged with HOLD and OUTPUT directly
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from the output of GIZA++ on English-Spanish sen-
tences in the reference produces the data set ref-hold.
The strategies containing the keyword ref for ASR
simply means that the ASR hypotheses are used in
place of the gold reference text.

18 T T T T T
X
X P

16 151 ’115.1‘ |
o 14t X ; XX g
L Koo 151 15.1 l><" e X 15.1 15.1
g 15.1 151~ 15.1
v 12¢F 15.1 15.1 1
8
o 1t 1
o ASR+MT (BLEU) —+—
e ASR+Punct Seg+MT (BLEU) -
E 08¢} 1
=
g
@ 06 . 4
0
o
o 04r P
. 147148

L _ 146 ~™ ]
0.2 T 141143
—y 13.3 137 14.0 +*
0 10.0 11.7 126 L ! ! !
0 1000 2000 3000 4000 5000 6000

ASR timeout (ms)
Figure 1: Latencies and BLEU scores for tst2010 set
using incremental ASR decoding and translation

We also performed real-time speech translation by
using incremental speech recognition, i.e., the de-
coder returns partial hypotheses that, independent of



the pruning during search, will not change in the
future. Figure 1 shows the plot for two scenarios:
one in which the partial hypotheses are sent directly
to machine translation and another where the best
segmentation strategy pred-punct is used to segment
the partial output before sending it to MT. The plot
shows the BLEU scores as a function of ASR time-
outs used to generate the partial hypotheses. Fig-
ure 1 also shows the average latency involved in in-
cremental speech translation.

7 Discussion

The BLEU scores for the segmentation strategies
over ASR hypotheses was computed at the talk level.
Since the ASR hypotheses do not align with the
reference source text, it is not feasible to evalu-
ate the translation performance using the gold refer-
ence. While other studies have used an approximate
edit distance algorithm for resegmentation of the hy-
potheses (Matusov et al., 2005), we simply concate-
nate all the segments and perform the evaluation at
the talk level.

The hold segmentation strategy yields the poor-
est translation performance. The significant drop in
BLEU score can be attributed to relatively short seg-
ments (2-4 words) that was generated by the model.
The scheme oversegments the text and since the
translation and language models are trained on sen-
tence like chunks, the performance is poor. For ex-
ample, the input text the sea should be translated
as el mar, but instead the hold segmenter chunks it
as the-sea which MT’s chunk translation renders as
el-el mar. It will be interesting to increase the span
of the hold strategy to subsume more contiguous se-
quences and we plan to investigate this as part of
future work.

The chunk segmentation strategy yields quite poor
translation performance. In general, it does not
make the same kinds of errors that the hold strat-
egy makes; for example, the input text the sea will
be treated as one NC chunk by the chunk seg-
mentation strategy, leading MT to translate it cor-
rectly as el mar. The short chunk sizes of chunk
lead to other kinds of errors. For example, the in-
put text we use will be chunked into the NC we
and the VC use, which will be translated incor-
rectly as nosotros-usar; the infinitive usar is se-
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lected rather than the properly conjugated form us-
amos. However, there is a marked improvement in
translation accuracy with increasingly larger chunk
sizes (lgchunkl, lgchunk2, and Igchunk3). Notably,
lgchunk3 yields performance that approaches that of
win8 with a chunk size that is one third of win8’s.

The conj-pred-eos and pred-punct strategies work
the best, and it can be seen that the average seg-
ment length (8-12 words) generated in both these
schemes is very similar to that used for training the
models. It is also about the average latency (4-5
seconds) that can be tolerated in cross-lingual com-
munication, also known as ear-voice span (Lederer,
1978). The non-linguistic segmentation using fixed
word length windows also performs well, especially
for the longer length windows. However, longer
windows (winl5) increase the latency and any fixed
length window typically destroys the semantic con-
text. It can also be seen from Table 3 that translat-
ing the complete talk is suboptimal in comparison
with segmenting the text. This is primarily due to
bias on sentence length distributions in the training
data. Training models on complete talks is likely to
resolve this issue. Contrasting the use of reference
segments as input to MT (ref-sent, ref-punct, conj-
ref-eos) versus the use of predicted segments (pred-
sent, pred-punct, conj-pred-eos, respectively), it is
interesting to note that the MT accuracies never dif-
fered greatly between the two, despite the noise in
the set of predicted segments.

The performance of the real-time speech transla-
tion of TED talks is much lower than the offline sce-
nario. First, we use only a VTLN model as perform-
ing CMA adaptation in a real-time scenario typically
increases latency. Second, the ASR language model
is trained on sentence-like units and decoding the en-
tire talk with this LM is not optimal. A language
model trained on complete talks will be more appro-
priate for such a framework and we are investigating
this as part of current work.

Comparing the accuracies of different speech
translation strategies, Table 3 shows that pred-punct
performs the best. When embedded in an incremen-
tal MT speech recognition system, Figure 1 shows
that it is more accurate than the system that sends
partial ASR hypotheses directly to MT. This advan-
tage decreases, however, when the ASR timeout pa-
rameter is increased to more than five or six sec-



onds. In terms of latency, Figure 1 shows that the
addition of the pred-punct segmenter into the incre-
mental system introduces a significant delay. About
one third of the increase in delay can be attributed
to merely maintaining the two word lookahead win-
dow that the segmenter’s classifier needs to make
decisions. This is significant because this kind of
window has been used quite frequently in previous
work on simultaneous translation (cf. (Fiigen et al.,
2007)), and yet to our knowledge this penalty asso-
ciated with this configuration was never mentioned.
The remaining delay can be attributed to the long
chunk sizes that the segmenter produces. An inter-
esting aspect of the latency curve associated with the
segmenter in Figure 1 is that there are two peaks at
ASR timeouts of 2,500 and 4,500 ms, and that the
lowest latency is achieved at 3,000 ms rather than at
a smaller value. This may be attributed to the fact
that the system is a pipeline consisting of ASR, seg-
menter, and MT, and that 3,000 ms is roughly the
length of time to recite comma-separated chunks.
Consequently, the two latency peaks appear to cor-
respond with ASR producing segments that are most
divergent with segments that the segmenter pro-
duces, leading to the most pipeline “stalls.” Con-
versely, the lowest latency occurs when the timeout
is set so that ASR’s segments most resemble the seg-
menter’s output to MT.

8 Conclusion

We investigated various approaches for incremen-
tal speech translation of TED talks, with the aim
of producing a system with high MT accuracy and
low latency. For acoustic modeling, we found that
VTLN and CMA adaptation were useful for increas-
ing the accuracy of ASR, leading to a word accuracy
of 80% on TED talks used in the IWSLT evalua-
tion track. In our offline MT experiments retention
of partial translations was found useful for increas-
ing MT accuracy, with the latter being slightly more
helpful. We experimented with several linguistic
and non-linguistic strategies for text segmentation
before translation. Our experiments indicate that a
novel segmentation into conjunction-separated sen-
tence chunks resulted in accuracies almost as high
and latencies almost as short as comma-separated
sentence chunks. They also indicated that signifi-
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cant noise in the detection of sentences and punc-
tuation did not seriously impact the resulting MT
accuracy. Experiments on real-time simultaneous
speech translation using partial recognition hypothe-
ses demonstrate that introduction of a segmenter in-
creases MT accuracy. They also showed that in or-
der to reduce latency it is important for buffers in dif-
ferent pipeline components to be synchronized so as
to minimize pipeline stalls. As part of future work,
we plan to extend the framework presented in this
work for performing speech-to-speech translation.
We also plan to address the challenges involved in
S2S translation across languages with very different
word order.
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Abstract

Treebanks are not large enough to adequately
model subcategorization frames of predica-
tive lexemes, which is an important source of
lexico-syntactic constraints for parsing. As
a consequence, parsers trained on such tree-
banks usually make mistakes when selecting
the arguments of predicative lexemes. In this
paper, we propose an original way to correct
subcategorization errors by combining sub-
parses of a sentence .S that appear in the list
of the n-best parses of S. The subcatego-
rization information comes from three differ-
ent resources, the first one is extracted from
a treebank, the second one is computed on a
large corpora and the third one is an existing
syntactic lexicon. Experiments on the French
Treebank showed a 15.24% reduction of er-
roneous subcategorization frames (SF) selec-
tions for verbs as well as a relative decrease of
the error rate of 4% Labeled Accuracy Score
on the state of the art parser on this treebank.

1 Introduction

Automatic syntactic parsing of natural languages
has witnessed many important changes in the last
fifteen years. Among these changes, two have mod-
ified the nature of the task itself. The first one is
the availability of treebanks such as the Penn Tree-
bank (Marcus et al., 1993) or the French Treebank
(Abeillé et al., 2003), which have been used in the
parsing community to train stochastic parsers, such
as (Collins, 1997; Petrov and Klein, 2008). Such
work remained rooted in the classical language the-
oretic tradition of parsing, generally based on vari-
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ants of generative context free grammars. The sec-
ond change occurred with the use of discriminative
machine learning techniques, first to rerank the out-
put of a stochastic parser (Collins, 2000; Charniak
and Johnson, 2005) and then in the parser itself (Rat-
naparkhi, 1999; Nivre et al., 2007; McDonald et al.,
2005a). Such parsers clearly depart from classical
parsers in the sense that they do not rely anymore on
a generative grammar: given a sentence S, all pos-
sible parses for S! are considered as possible parses
of S. A parse tree is seen as a set of lexico-syntactic
features which are associated to weights. The score
of a parse is computed as the sum of the weights of
its features.

This new generation of parsers allows to reach
high accuracy but possess their own limitations. We
will focus in this paper on one kind of weakness
of such parser which is their inability to properly
take into account subcategorization frames (SF) of
predicative lexemesZ, an important source of lexico-
syntactic constraints. The proper treatment of SF is
actually confronted to two kinds of problems: (1)
the acquisition of correct SF for verbs and (2) the
integration of such constraints in the parser.

The first problem is a consequence of the use of
treebanks for training parsers. Such treebanks are
composed of a few thousands sentences and only a
small subpart of acceptable SF for a verb actually

! Another important aspect of the new parsing paradigm is
the use of dependency trees as a means to represent syntactic
structure. In dependency syntax, the number of possible syn-
tactic trees associated to a sentence is bounded, and only de-
pends on the length of the sentence, which is not the case with
syntagmatic derivation trees.

2We will concentrate in this paper on verbal SF.
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occur in the treebank.

The second problem is a consequence of the pars-
ing models. For algorithmic complexity as well as
data sparseness reasons, the parser only considers
lexico-syntactic configurations of limited domain of
locality (in the parser used in the current work, this
domain of locality is limited to configurations made
of one or two dependencies). As described in more
details in section 2, SF often exceed in scope such
domains of locality and are therefore not easy to in-
tegrate in the parser. A popular method for intro-
ducing higher order constraints in a parser consist in
reranking the n best output of a parser as in (Collins,
2000; Charniak and Johnson, 2005). The reranker
search space is restricted by the output of the parser
and high order features can be used. One draw-
back of the reranking approach is that correct SF for
the predicates of a sentence can actually appear in
different parse trees. Selecting complete trees can
therefore lead to sub-optimal solutions. The method
proposed in this paper merges parts of different trees
that appear in an n best list in order to build a new
parse.

Taking into account SF in a parser has been a ma-
jor issue in the design of syntactic formalisms in the
eighties and nineties. Unification grammars, such
as Lexical Functional Grammars (Bresnan, 1982),
Generalized Phrase Structure Grammars (Gazdar et
al., 1985) and Head-driven Phrase Structure Gram-
mars (Pollard and Sag, 1994), made SF part of the
grammar. Tree Adjoining Grammars (Joshi et al.,
1975) proposed to extend the domain of locality of
Context Free Grammars partly in order to be able
to represent SF in a generative grammar. More
recently, (Collins, 1997) proposed a way to intro-
duce SF in a probabilistic context free grammar and
(Arun and Keller, 2005) used the same technique
for French. (Carroll et al., 1998), used subcate-
gorization probabilities for ranking trees generated
by unification-based phrasal grammar and (Zeman,
2002) showed that using frame frequency in a de-
pendency parser can lead to a significant improve-
ment of the performance of the parser.

The main novelties of the work presented here is
(1) the way a new parse is built by combining sub-
parses that appear in the n best parse list and (2)
the use of three very different resources that list the
possible SF for verbs.
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The organization of the paper is the following: in
section 2, we will briefly describe the parsing model
that we will be using for this work and give accuracy
results on a French corpus. Section 3 will describe
three different resources that we have been using to
correct SF errors made by the parser and give cov-
erage results for these resources on a development
corpus. Section 4 will propose three different ways
to take into account, in the parser, the resources de-
scribed in section 3 and give accuracy results. Sec-
tion 5 concludes the paper.

2 The Parser

The parser used in this work is the second order
graph based parser (McDonald et al., 2005b) imple-
mentation of (Bohnet, 2010). The parser was trained
on the French Treebank (Abeillé et al., 2003) which
was transformed into dependency trees by (Candito
et al., 2009). The size of the treebank and its de-
composition into train, development and test sets are
represented in table 1.

nb of sentences | nb of tokens
TRAIN 9 881 278 083
DEV 1239 36 508
TEST 1235 36 340

Table 1: Size and decomposition of the French Treebank

The parser gave state of the art results for parsing
of French, reported in table 2. Table 2 reports the
standard Labeled Accuracy Score (LAS) and Unla-
beled Accuracy Score (UAS) which is the ratio of
correct labeled (for LAS) or unlabeled (for UAS) de-
pendencies in a sentence. We also defined a more
specific measure: the SF Accuracy Score (SAS)
which is the ratio of verb occurrences that have been
paired with the correct SF by the parser. We have
introduced this quantity in order to measure more
accurately the impact of the methods described in
this paper on the selection of a SF for the verbs of a
sentence.

TEST | DEV
SAS | 80.84 | 79.88
LAS | 88.88 | 88.53
UAS | 90.71 | 90.37

Table 2: Subcategorization Frame Accuracy, Labeled and
Unlabeled Accuracy Score on TEST and DEV.



We have chosen a second order graph parser in
this work for two reasons. The first is that it is the
parsing model that obtained the best results on the
French Treebank. The second is that it allows us
to impose structural constraints in the solution of
the parser, as described in (Mirroshandel and Nasr,
2011), a feature that will reveal itself precious when
enforcing SF in the parser output.

3 The Resources

Three resources have been used in this work in order
to correct SF errors. The first one has been extracted
from a treebank, the second has been extracted from
an automatically parsed corpus that is several order
of magnitude bigger than the treebank. The third one
has been extracted from an existing lexico-syntactic
resource. The three resources are respectively de-
scribed in sections 3.2, 3.3 and 3.4. Before describ-
ing the resources, we describe in details, in section
3.1 our definition of SF. In section 3.5, we evalu-
ate the coverage of these resources on the DEV cor-
pus. Coverage is an important characteristic of a re-
source: in case of an SF error made by the parser, if
the correct SF that should be associated to a verb, in
a sentence, does not appear in the resource, it will be
impossible to correct the error.

3.1 Subcat Frames Description

In this work, a SF is defined as a couple (G, L)
where G is the part of speech tag of the element that
licenses the SF. This part of speech tag can either
be a verb in infinitive form (VINF), a past participle
(VPP), a finite tense verb (V) or a present participle
(VPR). L is a set of couples (f, c) where f is a syn-
tactic function tag chosen among a set F and c is
a part of speech tag chosen among the set C. Cou-
ple (f, ¢) indicates that function f can be realized as
part of speech tag c. Sets F and C are respectively
displayed in top and bottom tables of figure 1. An
anchored SF (ASF) is a couple (v, .S) where v is a
verb lemma and S is a SF, as described above.

A resource is defined as a collection of ASF
(v, S), each associated to a count c, to represent the
fact that verb v has been seen with SF S ¢ times. In
the case of the resource extracted form an existing
lexicon (section 3.4), the notion of count is not ap-
plicable and we will consider that it is always equal
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SuJ subject
OBJ object
A_OBJ indirect object introduced by the preposition a
DE_OBJ | indirect object introduced by the preposition de
P_OBJ indirect object introduced by another preposition
ATS attribute of the subject
ATO attribute of the direct object

ADJ adjective

CS subordinating conjunction

N noun

\'% verb finite tense

VINF | verb infinitive form

VPP verb past participle

VPR | verb present participle

Figure 1: Syntactic functions of the arguments of the SF
(top table). Part of speech tags of the arguments of the SF
(bottom table)

to one.

Below is an example of three ASF for the french
verb donner (to give). The first one is a transitive SF
where both the subject and the object are realized as
nouns as in Jean donne un livre (Jean gives a book.).
The second one is ditransitive, it has both a direct
object and an indirect one introduced by the prepo-
sition a as in Jean donne un livre a Marie. (Jean
gives a book to Marie). The third one corresponds
to a passive form as in le livre est donné a Marie par
Jean (The book is given to Marie by Jean).
(donner, (V, (suj,N), (obj,N)))

(donner, (V, (suj,N), (obj,N), (a_obj,N)))

(donner, (VPP, (suj,N), (aux_pass,V),
(a_obj,N), (p_obj,N)))

One can note that when an argument corresponds
to an indirect dependent of the verb (introduced ei-
ther by a preposition or a subordinating conjunc-
tion), we do not represent in the SF, the category
of the element that introduces the argument, but the
category of the argument itself, a noun or a verb.

Two important choices have to be made when
defining SF. The first one concerns the dependents
of the predicative element that are in the SF (argu-
ment/adjunct distinction) and the second is the level
of abstraction at which SF are defined.

In our case, the first choice is constrained by the
treebank annotation guidelines. The FTB distin-
guishes seven syntactic functions which can be con-
sidered as arguments of a verb. They are listed in
the top table of figure 1. Most of them are straight-



forward and do not deserve an explanation. Some-
thing has to be said though on the syntactic function
P_OBJ which is used to model arguments of the verb
introduced by a preposition that is neither a nor de,
such as the agent in passive form, which is intro-
duced by the preposition par.

We have added in the SF two elements that do not
correspond to arguments of the verb: the reflexive
pronoun, and the passive auxiliary. The reason for
adding these elements to the SF is that their pres-
ence influences the presence or absence of some ar-
guments of the verb, and therefore the SF.

The second important choice that must be made
when defining SF is the level of abstraction, or, in
other words, how much the SF abstracts away from
its realization in the sentence. In our case, we have
used two ways to abstract away from the surface re-
alization of the SF. The first one is factoring sev-
eral part of speech tags. We have factored pronouns,
common nouns and proper nouns into a single cat-
egory N. We have not gathered verbs in different
modes into one category since the mode of the verb
influences its syntactic behavior and hence its SF.
The second means of abstraction we have used is
the absence of linear order between the arguments.
Taking into account argument order increases the
number of SF and, hence, data sparseness, without
adding much information for selecting the correct
SF, this is why we have decided to to ignore it. In
our second example above, each of the three argu-
ments can be realized as one out of eight parts of
speech that correspond to the part of speech tag NV
and the 24 possible orderings are represented as one
canonical ordering. This SF therefore corresponds
to 12 288 possible realizations.

3.2 Treebank Extracted Subcat Frames

This resource has been extracted from the TRAIN
corpus. At a first glance, it may seen strange to ex-
tract data from the corpus that have been used for
training our parser. The reason is that, as seen in
section 1, SF are not directly modeled by the parser,
which only takes into account subtrees made of, at
most, two dependencies.

The extraction procedure of SF from the treebank
is straightforward : the tree of every sentence is vis-
ited and, for every verb of the sentence, its daughters
are visited, and, depending whether they are consid-
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ered as arguments of the verb (with respect to the
conventions or section 3.1), they are added to the SF.
The number of different verbs extracted, as well as
the number of different SF and the average number
of SF per verb are displayed in table 3. Column T
(for Train) is the one that we are interested in here.

T L Ao As Ao
nb of verbs 2058 | 7824 | 23915 | 4871 3923
nb of diff SF 666 1469 | 12122 | 2064 | 1355
avg. nbof SF | 4.83 | 52.09 | 14.26 | 16.16 | 13.45

Table 3: Resources statistics

The extracted resource can directly be compared
with the TREELEX resource (Kupsc and Abeillé,
2008), which has been extracted from the same tree-
bank. The result that we obtain is different, due to
the fact that (Kupsc and Abeillé, 2008) have a more
abstract definition of SF. As a consequence, they de-
fine a smaller number of SF: 58 instead of 666 in
our case. The smaller number of SF yields a smaller
average number of SF per verb: 1.72 instead of 4.83
in our case.

3.3 Automatically computed Subcat Frames

The extraction procedure described above has been
used to extract ASF from an automatically parsed
corpus. The corpus is actually a collection of three
corpora of slightly different genres. The first one
is a collection of news reports of the French press
agency Agence France Presse, the second is a col-
lection of newspaper articles from a local French
newspaper : [’Est Républicain. The third one is
a collection of articles from the French Wikipedia.
The size of the different corpora are detailed in ta-
ble 4.

The corpus was first POS tagged with the MELT
tagger (Denis and Sagot, 2010), lemmatized with the
MACAON tool suite (Nasr et al., 2011) and parsed
in order to get the best parse for every sentence.
Then the ASF have been extracted.

The number of verbs, number of SF and average
number of SF per verb are represented in table 3,
in column Ag (A stands for Automatic). As one
can see, the number of verbs and SF are unrealis-
tic. This is due to the fact that the data that we ex-
tract SF from is noisy: it consists of automatically
produced syntactic trees which contain errors (recall



CORPUS Sent. nb. Tokens nb.
AFP 2 041 146 59914 238
ESTREP | 2998 261 53913 288
WIKI 1592 035 33 821 460
TOTAL 5198 642 | 147 648 986

Table 4: sizes of the corpora used to collect SF

that the LAS on the DEV corpus is 88,02%). There
are two main sources of errors in the parsed data: the
pre-processing chain (tokenization, part of speech
tagging and lemmatization) which can consider as
a verb a word that is not, and, of course, parsing
errors, which tend to create crazy SF. In order to
fight against noise, we have used a simple thresh-
olding: we only collect ASF that occur more than a
threshold . The result of the thresholding appears
in columns As and Ajg , where the subscript is the
value of the threshold. As expected both the number
of verbs and SF decrease sharply when increasing
the value of the threshold.

Extracting SF for verbs from raw data has been
an active direction of research for a long time, dat-
ing back at least to the work of (Brent, 1991) and
(Manning, 1993). More recently (Messiant et al.,
2008) proposed such a system for French verbs. The
method we use for extracting SF is not novel with
respect to such work. Our aim was not to devise
new extraction techniques but merely to evaluate the
resource produced by such techniques for statistical
parsing.

3.4 Using an existing resource

The third resource that we have used is the Lefff
(Lexique des formes fléchies du frangais — Lexicon
of French inflected form), a large-coverage syntac-
tic lexicon for French (Sagot, 2010). The Lefff was
developed in a semi-automatic way: automatic tools
were used together with manual work. The latest
version of the Lefff contains 10,618 verbal entries
for 7,835 distinct verbal lemmas (the Lefff covers all
categories, but only verbal entries are used in this
work).

A sub-categorization frame consists in a list of
syntactic functions, using an inventory slightly more
fine-grained than in the French Treebank, and for
each of them a list of possible realizations (e.g.,
noun phrase, infinitive clause, or null-realization if
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the syntactic function is optional).

For each verbal lemma, we extracted all sub-
categorization frames for each of the four verbal
part-of-speech tags (V, VINF, VPR, VPP), thus cre-
ating an inventory of SFs in the same sense and for-
mat as described in Section 3.1. Note that such SFs
do not contain alternatives concerning the way each
syntactic argument is realized or not: this extraction
process includes a de-factorization step. Its output,
hereafter L, contains 801,246 distinct (lemma, SF)
pairs.

3.5 Coverage

In order to be able to correct SF errors, the three
resources described above must possess two impor-
tant characteristics: high coverage and high accu-
racy. Coverage measures the presence, in the re-
source, of the correct SF of a verb, in a given sen-
tence. Accuracy measures the ability of a resource
to select the correct SF for a verb in a given context
when several ones are possible.

We will give in this section coverage result, com-
puted on the DEV corpus. Accuracy will be de-
scribed and computed in section 4. The reason why
the two measures are not described together is due
to the fact that coverage can be computed on a ref-
erence corpus while accuracy must be computed on
the output of a parser, since it is the parser that will
propose different SF for a verb in a given context.

Given a reference corpus C and a resource R,
two coverage measures have been computed, lexi-
cal coverage, which measures the ratio of verbs of C'
that appear in R and syntactic coverage, which mea-
sures the ratio of ASF of C' that appear in R. Two
variants of each measures are computed: on types
and on occurrences. The values of these measures
computed on the DEV corpus are summarized in ta-
ble 5.

T L Ao As Ao

Lex. | types | 89.56 | 99.52 | 99.52 | 98.56 | 98.08

cov. oce 96.98 | 99.85 | 99.85 | 99.62 | 99.50

Synt. | types | 62.24 | 78.15 | 95.78 | 91.08 | 88.84

cov. oce 73.54 | 80.35 | 97.13 | 93.96 | 92.39
Table 5: Lexical and syntactic coverage of the three re-

sources on DEV

The figures of table 5 show that lexical cover-
age of the three resources is quite high, ranging



from 89.56 to 99.52 when computed on types and
from 96.98 to 99.85 when computed on occurrences.
The lowest coverage is obtained by the 7' resource,
which does not come as a surprise since it is com-
puted on a rather small number of sentences. It
is also interesting to note that lexical coverage of
A does not decrease much when augmenting the
threshold, while the size of the resource decreases
dramatically (as shown in table 3). This validates
the hypothesis that the resource is very noisy and
that a simple threshold on the occurrences of ASF is
a reasonable means to fight against noise.

Syntactic coverage is, as expected, lower than lex-
ical coverage. The best results are obtained by Ay:
95.78 on types and 97.13 on occurrences. Thresh-
olding on the occurrences of anchored SF has a big-
ger impact on syntactic coverage than it had on lexi-
cal coverage. A threshold of 10 yields a coverage of
88.84 on types and 92.39 on occurrences.

4 Integrating Subcat Frames in the Parser

As already mentioned in section 1, SF usually ex-
ceed the domain of locality of the structures that are
directly modeled by the parser. It is therefore dif-
ficult to integrate directly SF in the model of the
parser. In order to circumvent the problem, we have
decided to work on the n-best output of the parser:
we consider that a verb v, in a given sentence S,
can be associated to any of the SF that v licenses in
one of the n-best trees. The main weakness of this
method is that an SF error can be corrected only if
the right SF appears at least in one of the n-best parse
trees.

In order to estimate an upper bound of the SAS
that such methods can reach (how many SF errors
can actually be corrected), we have computed the
oracle SAS on the 100 best trees of the DEV corpus
DEV (for how many verbs the correct SF appears
in at least one of the n-best parse trees). The oracle
score is equal to 95.16, which means that for 95.16%
of the verb occurrences of the DEV, the correct SF
appears somewhere in the 100-best trees. 95.16 is
therefore the best SAS that we can reach. Recall
that the baseline SAS is equal to 79.88% the room
for progress is therefore equal to 15.28% absolute.

Three experiments are described below. In the
first one, section 4.1, a simple technique, called Post
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Processing is used. Section 4.2 describes a second
technique, called Double Parsing, which is a is a
refinement of Post Processing. Both sections 4.1
and 4.2 are based on single resources. Section 4.3
proposes a simple way to combine the different re-
sources.

4.1 Post Processing

The post processing method (PP) is the simplest one
that we have tested. It takes as input the different
ASF that occur in the n-best output of the parser as
well as a resource R. Given a sentence, let’s note
17 ...T, the trees that appear in the n-best output
of the parser, in decreasing order of their score. For
every verb v of the sentence, we note S(v) the set
of all the SF associated to v that appear in the trees
Ty ...T,.

Given a verb v and a SF s, we define the following
functions:

C(v, s) is the number of occurrences of the ASF
(v,s) inthe trees T} ... T),.

F(v) is the SF associated to v in T}

Cr(v, s) the number of occurrences of the ASF
(v, s) in the resource R.

We define a selection function as a function that
selects a SF for a given verb in a given sentence.
A selection function has to take into account the in-
formation given by the resource (whether an SF is
acceptable/frequent for a given verb) as well as the
information given by the parser (whether the parser
has a strong preference to associate a given SF to a
given verb).

In our experiments, we have tested two simple
selection functions. g which selects the first SF
s € S(v), such that Cr(v,s) > 0 when traversing
the trees 77 ... T, in the decreasing order of score
(best tree first).

The second function, ¥g(v) compares the most
frequent SF for v in the resource R with the SF of the
first parse. If the ratio of the number of occurrences
in the n-best of the former and the latter is above a
threshold «, the former is selected. More formally:

§ = argmaXcs(v) Cr(v, 8)

. C(v,8)
if T, 7 (0) > o
F(v)

otherwise

Yr(v) =



The coefficient a has been optimized on DEV cor-
pus. Its value is equal to 2.5 for the Automatic re-
source, 2 for the Train resource and 1.5 for the Lefff.

The construction of the new solution proceeds as
follows: for every verb v of the sentence, a SF is se-
lected with the selection function. It is important to
note, at this point, that the SF selected for different
verbs of the sentence can pertain to different parse
trees. The new solution is built based on tree 7. For
every verb v, its arguments are potentially modified
in agreement with the SF selected by the selection
function. There is no guarantee at this point that the
solution is well formed. We will return to this prob-
lem in section 4.2.

We have evaluated the PP method with different
selection functions on the TEST corpus. The results
of applying function v were more successful. As
a result we just report the results of this function in
table 6. Different levels of thresholding for resource
A gave almost the same results, we therefore used
A1o which is the smallest one.

B T L A
SAS | 80.84 | 83.11 | 82.14 | 82.17
LAS | 88.88 | 89.14 | 89.03 | 89.03
UAS | 90.71 | 90.91 | 90.81 | 90.82

Table 6: LAS and UAS on TEST using PP

The results of table 6 show two interesting facts.
First, the SAS is improved, it jumps from 80.84 to
83.11. PP therefore corrects some SF errors made
by the parser. It must be noted however that this im-
provement is much lower than the oracle score. The
second interesting fact is the very moderate increase
of both LAS and UAS. This is due to the fact that
the number of dependencies modified is small with
respect to the total number of dependencies. The
impact on LAS and UAS is therefore weak.

The best results are obtained with resource 7'. Al-
though the coverage of 7' is low, the resource is very
close to the train data, this fact probably explains the
good results obtained with this resource.

It is interesting, at this point, to compare our
method with a reranking approach. In order to do so,
we have compared the upper bound of the number of
SF errors that can be corrected when using rerank-
ing and our approach. The results of the comparison
computed on a list of 100 best trees is reported in
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table 7 which shows the ratio of subcat frame errors
that could be corrected with a reranking approach
and the ratio of errors sub-parse recombining could
reach.

DEV TEST
reranking 53.9% | 58.5%
sub-parse recombining | 75.5% 76%

Table 7: Correction rate for subcat frames errors with dif-
ferent methods

Table 7 shows that combining sub-parses can, in
theory, correct a much larger number of wrong SF
assignments than reranking.

4.2 Double Parsing

The post processing method shows some improve-
ment over the baseline. But it has an important draw-
back: it can create inconsistent parses. Recall that
the parser we are using is based on a second order
model. In other words, the score of a dependency
depends on some neighboring dependencies. When
building a new solution, the post processing method
modifies some dependencies independently of their
context, which may give birth to very unlikely con-
figurations.

In order to compute a new optimal parse tree
that preserves the modified dependencies, we have
used a technique proposed in (Mirroshandel and
Nasr, 2011) that modifies the scoring function of the
parser in such a way that the dependencies that we
want to keep in the parser output get better scores
than all competing dependencies. The new solution
is therefore the optimal solution that preserves the
dependencies modified by the PP method.

The double parsing (DP) method is therefore a
three stage method. First, sentence .S is parsed, pro-
ducing the n-best parses. Then, the post processing
method is used, modifying the first best parse. Let’s
note D the set of dependencies that were changed in
this process. In the last stage, a new parse is pro-
duced, that preserves D.

B T L A
SAS | 80.84 | 83.11 | 82.14 | 82.17
LAS | 88.88 | 89.30 | 89.25 | 89.31
UAS | 90.71 | 91.07 | 91.05 | 91.08

Table 8: LAS and UAS on TEST using DP



The results of DP on TEST are reported in table
8. SAS did not change with respect to PP, because
DP keeps the SF selected by PP. As expected DP
does increase LAS and UAS. Recomputing an op-
timal solution therefore increases the quality of the
parses. Table 8 also shows that the three resources
get almost the same LAS and UAS although SAS is
better for resource T.

4.3 Combining Resources

Due to the different generation techniques of our
three resources, another direction of research is
combining them. We did different experiments con-
cerning all possible combination of resources: A and
L (AL), T and L (TL), T and A (TA), and all tree
(TAL) resources. The results of these combinations
for PP and DP methods are shown in tables 9 and
10, respectively.

The resource are combined in a back-off schema:
we search for a candidate ASF in a first resource. If
it is found, the search stops. Otherwise, the next re-
source(s) are probed. One question that arises is:
which sequence is the optimal one for combining
the resources. To answer this question, we did sev-
eral experiments on DEV set. Our experiments have
shown that it is better to search T resource, then
A, and, eventually, L. The results of this combining
method, using PP are reported in table 9. The best
results are obtained for the TL combination. The
SAS jumps from 83.11 to 83.76. As it was the case
with single resources, the LAS and UAS increase is
moderate.

B AL TL TA TAL
SAS | 80.84 | 82.12 | 83.76 | 83.50 | 83.50
LAS | 88.88 | 89.03 | 89.22 | 89.19 | 89.19
UAS | 90.71 | 90.79 | 90.98 | 90.95 | 90.95

Table 9: LAS and UAS on TEST using PP with resource
combination

With DP (table 9), the order of resource combina-
tion is exactly the same as with PP. As was the case
with single resources, DP has a positive, but moder-
ate, impact on LAS and UAS.

The results of tables 9 and 10 do not show con-
siderable improvement over single resources. This
might be due to the large intersection between our
resources. In other words, they do not have comple-
mentary information, and their combination will not
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B AL TL TA TAL
SAS | 80.84 | 82.12 | 83.76 | 83.50 | 83.50
LAS | 88.88 | 89.22 | 89.31 | 89.34 | 89.34
UAS | 90.71 | 91.02 | 91.05 | 91.08 | 91.09

Table 10: LAS and UAS on TEST using DP with resource
combination

introduce much information. Another possible rea-
son for this result is the combination technique used.
More sophisticated techniques might yield better re-
sults.

5 Conclusions

Subcategorization frames for verbs constitute a rich
source of lexico-syntactic information which is hard
to integrate in graph based parsers. In this paper, we
have used three different resources for subcatego-
rization frames. These resources are from different
origins with various characteristics. We have pro-
posed two different methods to introduce the useful
information from these resources in a second order
model parser. We have conducted different exper-
iments on French Treebank that showed a 15.24%
reduction of erroneous SF selections for verbs. Al-
though encouraging, there is still plenty of room
for better results since the oracle score for 100 best
parses is equal to 95.16% SAS and we reached
83.76%. Future work will concentrate on more elab-
orate selection functions as well as more sophisti-
cated ways to combine the different resources.
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Abstract

We introduce a new large-scale discrimina-
tive learning algorithm for machine translation
that is capable of learning parameters in mod-
els with extremely sparse features. To ensure
their reliable estimation and to prevent over-
fitting, we use a two-phase learning algorithm.
First, the contribution of individual sparse fea-
tures is estimated using large amounts of par-
allel data. Second, a small development cor-
pus is used to determine the relative contri-
butions of the sparse features and standard
dense features. Not only does this two-phase
learning approach prevent overfitting, the sec-
ond pass optimizes corpus-level BLEU of the
Viterbi translation of the decoder. We demon-
strate significant improvements using sparse
rule indicator features in three different trans-
lation tasks. To our knowledge, this is the
first large-scale discriminative training algo-
rithm capable of showing improvements over
the MERT baseline with only rule indicator
features in addition to the standard MERT fea-
tures.

1 Introduction

This paper is about large scale discriminative
training of machine translation systems. Like
MERT (Och, 2003), our procedure directly optimizes
the cost of the Viterbi output on corpus-level met-
rics, but does so while scaling to millions of features.
The training procedure, which we call the Held-Out
Line Search algorithm (HOLS), is a two-phase iter-
ative batch optimization procedure consisting of (1)
a gradient calculation on a differentiable approxima-
tion to the loss on a large amount of parallel training
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data and (2) a line search (using the standard MERT
algorithm) to search in a subspace defined by the
gradient for the weights that minimize the true cost.

While sparse features are successfully used in
many NLP systems, such parameterizations pose a
number of learning challenges. First, since any one
feature is likely to occur infrequently, a large amount
of training data is necessary to reliably estimate their
weights. Therefore, we use the full parallel train-
ing data (rather than a small development set) to
estimate the contribution of the sparse features in
phase 1. Second, sparse features can lead to overfit-
ting. To prevent this from hurting our model’s ability
to generalize to new data, we do two things. First,
we use “grammar and language model folds” (trans-
lation grammars and language models built from
other portions of the training data than are being
used for discriminative training), and second, we
run the phase 2 line search on a held-out develop-
ment set. Finally, since our algorithm requires de-
coding the entire training corpus, it is desirable (on
computational grounds) to only require one or two
passes through the training data. To get the most out
of these passes, we rescale features by their inverse
frequency which improves the scaling of the opti-
mization problem. In addition to learning with few
passes through the training data, the HOLS algorithm
has the advantage that it is easily parallelizable.

After reviewing related work in the next section,
we analyze two obstacles to effective discriminative
learning for machine translation: overfitting (since
both rules and their weights must be learned, if they
are learned together degenerate solutions that fail to
generalize are possible) and poor scaling (since MT
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decoding is so expensive, it is not feasible to make
many passes through large amounts of training data,
so optimization must be efficient). We then present
the details of our algorithm that addresses these is-
sues, give results on three language pairs, and con-
clude.

2 Related Work

Discriminative training of machine translation sys-
tems has been a widely studied problem for the
last ten years. The pattern of using small, high-
quality development sets to tune a relatively small
number of weights was established early (Och and
Ney, 2002; Och, 2003). More recently, standard
structured prediction algorithms that target linearly
decomposable approximations of translation qual-
ity metrics have been thoroughly explored (Liang et
al., 2006; Smith and Eisner, 2006; Watanabe et al.,
2007; Rosti et al., 2010; Hopkins and May, 2011;
Chiang, 2012; Gimpel and Smith, 2012; Cherry and
Foster, 2012; Saluja et al., 2012). These have with-
out exception used sentence-level approximations of
BLEU to determine oracles and update weights using
a variety of criteria and with a variety of different
theoretical justifications.

Despite advancements in discriminative training
for machine translation, large-scale discriminative
training with rule indicator features has remained
notoriously difficult. Rule indicator features are an
extremely sparse and expressive parameterization of
the translation model: every rule has a feature, each
of which has its own separately tuned weight, which
count how often a specific rule is used in a trans-
lation. Early experiments (Liang et al., 2006) used
the structured perceptron to tune a phrase-based sys-
tem on a large subset of the training data, show-
ing improvements when using rule indicator fea-
tures, word alignment features, and POS tag fea-
tures. Another early attempt (Tillmann and Zhang,
2006) used phrase pair and word features in a block
SMT system trained using stochastic gradient de-
scent for a convex loss function, but did not compare
to MERT. Problems of overfitting and degenerate
derivations were tackled with a probabilistic latent
variable model (Blunsom et al., 2008) which used
rule indicator features yet failed to improve upon
the MERT baseline for the standard Hiero features.
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Techniques for distributed learning and feature se-
lection for the perceptron loss using rule indicator,
rule shape, and source side-bigram features have re-
cently been proposed (Simianer et al., 2012), but no
comparison to MERT was made.

3 Difficulties in Large-Scale Training

Discriminative training for machine translation is
complicated by several factors. First, both transla-
tion rules and feature weights are learned from par-
allel data. If the same data is used for both tasks,
overfitting of the weights is very possible.! Second,
the standard MT cost function, BLEU (Papineni et
al., 2002), does not decompose additively over train-
ing instances (because of the “brevity penalty””) and
so approximations are used—these often have prob-
lems with the length (Nakov et al., 2012). Finally,
state-of-the-art MT systems make extensive good
use of “dense” features, such as the log probabil-
ity of translation decisions under a simpler gener-
ative translation model. Our goal is to begin to
use much sparser features without abandoning the
proven dense features; however, extremely sparse
features leads to problems of scaling in the optimiza-
tion problem as we will show.

3.1 Training Data and Overfitting

One of the big questions in discriminative train-
ing of machine translation systems is why standard
machine learning techniques can perform so poorly
when applied to large-scale learning on the train-
ing data. Figure 1 shows a good example of this.
The structured SVM (Tsochantaridis et al., 2004;
Cherry and Foster, 2012) was used to learn the
weights for a Chinese-English Hiero system (Chi-
ang, 2005) with just eight features, using stochastic
gradient descent (SGD) for online learning (Bottou,
1998; Bottou, 2010). The weights were initialized
from MERT values tuned on a 2k-sentence dev set
(MTO06), and the figure shows the progress of the on-
line method during a single pass through the 300k-
sentence Chinese-English FBIS training set.

As the training progresses in Figure 1, BLEU
scores on the training data go up, but scores on the

"Previous work has attempted to mitigate the risk of overfit-
ting through careful regularization (Blunsom et al., 2008; Simi-
aner et al., 2012).
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Figure 1: Progress of the online SVM training

method after each training instance on FBIS dataset.
The solid line is BLEU on the test set, training set is
the dashed line, and the dev set is dotted.

dev and test sets go down. If we hope to apply dis-
criminative training techniques for not eight but mil-
lions of features on the training data, we must find a
way to prevent this overfitting.

We suggest that an important reason why overfit-
ting occurs is that the training data is used not only to
tune the system but also to extract the grammar, and
the target side is included in the data used to build
the language model. To test this hypothesis, we
compare tuning using three different dev sets: 1000
sentences from the standard 4-reference MT06 dev
set (Dev1000), a random selection of 1000 sentences
that overlap with the corpus used to extract transla-
tion rules (In1000), and 1000 sentences that came
from the training data but were then excluded from
rule extraction (Out1000). We run MERT on each of
these and evaluate. For evaluation we compare three
different sets: a random 1000 sentences from the
training corpus that was used to create the grammars
but which do not overlap with In1000 (Train1000),
the 1000 sentence dev set (Dev1000), and the stan-
dard 4-reference MT02-03 test set (Test). The en-
tire experiment (including selection of the 1000 sen-
tences) was replicated 5 times.

Table 1 shows the results, averaging over repli-
cations. Out1000 gives much higher scores on the
testing data, validating our hypothesis that tuning on
data used to build the LM and grammar can lead to
overfitting. However, the results also show that tun-
ing on the training data, even when it is held-out, can
still lead to a small reduction in translation quality.
One possible reason is that, unlike the training data
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which may come from various domains, the dev data
is in the same domain as the test data and is typically
of higher quality (e.g., it has multiple references).

Table 1: MERT on Zh-En FBIS

Tuning Set | Train1000 | Dev1000 | Test

Dev1000 32.241.1 30.2+1 | 34.1+3
In1000 37.0412 | 25.7+7 | 30.1+6
Out1000 34.9+8 29.04+.4 | 33.6+.5

3.2 Poor Scaling

When features occur with different frequencies,
changing the weights of more frequent features has
a larger effect than changing the weights of less fre-
quent features.”> An example of frequent features
that have a large impact on the translation quality are
the language model and translation model features.
These features are non-zero for every sentence, and
changing their weights slightly has a large impact on
translation output. In contrast, changing the weight
drastically for a feature that is non-zero for only one
out of a million sentences has very little effect on
translation metrics. The sensitivity of the translation
output to some feature weights over others was also
pointed out in a recent paper (Chiang, 2012).

When the objective function is more sensitive
in some dimensions than others, the optimization
problem is said to be poorly scaled (Nocedal and
Wright, 2000), and can slow down the convergence
rate for some optimizers. A typical fix is to rescale
the dimensions, as we will do in Section 5.2.

To verify that BLEU is poorly scaled with respect
to weights of rule indicator features, we look at the
effect of changing the weights for individual rules.
We vary the feature weights for four randomly cho-
sen frequent rules and four randomly chosen infre-
quent rules on our FBIS dev set (Figure 2). One
can think of this plot as a “cross-section” of the
BLEU score in the direction of the feature weight.
The dense features are set to MERT-tuned values
which are normalized to one. All other rule indi-
cator features are set to zero, except the rule fea-
ture weight that is varied. The frequent features

By the “frequency of a feature” we mean this: given a set of
input instances, how many input instances the feature is nonzero
in the space of possible outputs for that input.



were selected randomly from the 20 most common
rule indictor features in the n-best lists on the dev
set, and the infrequent features were selected from
the features that only occurred once in these n-best
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Figure 2: The effect of varying weights for rule indicator

features on the BLEU score. Note the difference of scale
on the y axis.
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poorly scaled for rule feature weights. Changing the
weights for one of the common features changes the
BLEU score by almost 2.5 BLEU points, while for
the infrequent features the BLEU score changes by
at most .02 BLEU points. We take this as a sign that
gradient descent based optimizers for machine trans-
lation with rule features could be slow to converge
due to poor scaling, and that rescaling will improve
convergence.

3.3 Sentence Level Approximations to BLEU

Finally, we note that discriminative training methods
often use a sentence level approximation to BLEU. It
has been shown that optimizing corpus level BLEU
versus sentence level BLEU can lead to improve-
ments of up to nearly .4 BLEU points on the test
set (Nakov et al., 2012). Possible fixes to this prob-
lem include using a proper sentence level metric
such a METEOR (Denkowski and Lavie, 2011) or a
pseudo-corpus from the last few updates (Chiang et
al., 2008). However, in light of the result from sec-
tion 3.1 that tuning on the dev set is still better than
tuning on a held-out portion of the training data, we
observe that tuning a corpus level metric on a high-
quality dev set from the same domain as the test set
probably leads to the best translation quality. At-
tempts to improve upon this strong baseline lead us
to the development of the HOLS algorithm which we
describe next.

4 Held-Out Line Search Algorithm

In this section we give the details of the learning al-
gorithm that we developed for use in large-scale dis-
criminative training for machine translation, which
we call the Held-Out Line Search algorithm (abbre-
viated HOLS). It optimizes millions of features using
evidence from the full set of parallel training data
to obtain optimal predictive performance on a sec-
ondary development set.

The learning algorithm is a batch optimizer where
each iteration has two phases: a gradient calcula-
tion phase and a line search phase. In the gradient
calculation phase, a surrogate loss function is used
to compute a gradient for the feature weights. The
gradient is computed over a subset of the training
data. In the line search phase, a separate optimizer
(MERT) is used to search along this gradient to opti-



mize the evaluation score of the one-best prediction
of a translation system on a secondary development
set.> The secondary dev set is a crucial aspect of
the algorithm that helps reduce overfitting (we will
demonstrate this in the experiments section).

During the line search phase we allow some of
the feature weights to be adjusted independently of
the line search. We will call the features we opti-
mize independently the dense features, and the fea-
tures we include in the line search the sparse fea-
tures.* The feature vector space V is the direct sum
V = V; & Vs, where V; is the vector space of
the dense features and Vj is the vector space of the
sparse features. The feature and weight vectors de-
compose as f: f:i + f; and W = Wy + Ws. f:i and
Wy are in the dense vector space, and the f; and W,
are in the sparse vector space.

In the gradient phase, we calculate a gradient of
the surrogate loss function and project it onto the
subspace of the sparse features. Let P be the pro-
jection operator onto V. Then the gradient projected
onto the sparse feature space is

g = Psviﬁi(u_ja Dg)

where D, is the subset of the training data used to
calculate this gradient, and L is the surrogate loss
function. This just sets the dense components of the
gradient of L to zero.

In the line search phase, we use a separate opti-
mizer to optimize the weights for the dense features
and the stepsize o. Let L be the loss function we
wish to minimize, then

(0, o) = arg min L(Wy + Ws + g, D;)
Wq,&
Note ;s is held fixed from the previous iteration. Dy
is the portion of the training data which is used in
the line search phase, and must not overlap with D,
used in the gradient calculation phase.’

After the line search, the dense weights are up-
dated to )}, and the sparse weights are updated with
Ws «— wWs + a*g. The process repeats for another
iteration as desired (or until convergence).

*While we use BLEU any loss function whose sufficient
statistics decompose over training instances could be used.

*The split over the features does not have to be done this
way in practice.

3 L(@, o*, D;) can be thought of as unbiased or more accu-
rately less biased estimator of expected loss when D;ND, = .
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5 Procedure for Large-Scale Training

Now that we have described the HOLS algorithm in
general, we next describe how to apply it to large-
scale training of machine translation systems with
millions of features. We find that it is necessary to
use disjoint sets of training instances for grammar
extraction and gradient estimation (§5.1) and to deal
with the poor scaling of the optimization problem

(§5.2).

5.1 Grammar and Language Model Folds

To address the problem of overfitting on the train-
ing data, we split the training data into n-folds, and
extract grammars for each fold using the data from
the other n — 1 folds. Similarly, we build a language
model for each fold using a target language mono-
lingual corpus and the target side of the training data
from the other n — 1 folds. Whenever we decode a
sentence from the training data, we use the gram-
mar and language model for the appropriate fold.
This ensures that a sentence is never decoded using a
grammar or language model it helped build, thereby
reducing the overfitting effect demonstrated in §3.1.

To perform the training, the HOLS algorithm is
used on the training data. In our experiments, only
1-2 passes over the training data are necessary for
significant gains. Data from one of the grammar
folds is used for the line search, and the rest of the
training data is used to calculate the gradient.

The procedure is iterative, first decoding training
data to obtain a gradient, and then performing a line
search with data from a held-out grammar fold. In-
stead of decoding the whole set of sentences used for
the gradient updates at once, one can also decode a
portion of the data, do a gradient update, and then
continue the next iteration of HOLS on the remain-
ing data before repeating.

The last line search of the HOLS algorithm is done
using dev data, rather than training data. This is be-
cause the dev data is higher quality, and from Table
1 we can see that tuning on dev data produces bet-
ter results than tuning on training data (even if the
training data has been held out from the grammar
process). The initial weights are obtained by run-
ning MERT on a subset of the one of the grammar
folds.

If one has an existing implementation of an op-



timizer for the loss function used during the line
search (in our case MERT), it can be used to perform
the line search. This is done simply by calling MERT
with two extra features in addition to the dense fea-
tures and omitting the sparse features.

To see how, notice that the feature weights
during the line search are decomposed as W =
Wdense + Wsparse + g where ¢ is in the sparse
feature subspace, so the model score degomposes
as sco_?"e(:c,y) = Wq - fd(xay) + Wy - fs(x7y) +
ag - fs(z,y) where x is the input translation, y is
the output translation and derivation. If we cre-
ate two new features f1(z,y) = W - fs(m,y) and
folz,y) =g f;(:z:, y) then the score can be written

score(x,y) = Wy - f;l(xa Y)
+fi(z,y) +%f2(9€ay)
= (wda 1,05) ' (fdaf17f2>

Thus we can do the line search simply by calling
MERT with the features ( f:l, fi, f2). ¢

In summary our training algorithm is as follows:
1) split the training data into n-folds (we use n = 5),
2) initialize the dense weights to MERT values, 3)
decode some or all the data in 4 of the 5 folds to get
a gradient, 4) condition as in §5.2 (see below), 5) run
MERT on a 10k subset of the remaining fold to do the
line search, 6) repeat steps 3-4 until convergence or
stop as desired, and 7) run MERT on the normal dev
set as a final step. We only run MERT on a 10k subset
of one of the folds so it does not require running
MERT on an entire fold.

In the special case where just one iteration of
HOLS is performed, the procedure is very simple:
decode the training data to get a gradient, include
the components of the gradient as an extra feature
fo in addition to the dense features, and tune on a
dev set using MERT.

5.2 Conditioning

To address the problem of poor scaling, we use a
simple strategy of rescaling each component of the
gradient based on how frequent the feature is. We
call this process “conditioning.” For each feature,
we simply divide the corresponding dimension of

®We could constrain the weight for f; to be 1, but this is not
necessary since since MERT is invariant to the overall scale of
the weights.
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the gradient by the number of n-best lists in which
the feature was non-zero in.

The necessity for conditioning is evident when we
run the HOLS algorithm as detailed so far on the
training data without conditioning. On subsequent
iterations, we observe that the features with the high-
est component of the gradient oscillate between iter-
ations, but the rest of the feature gradients stay the
same.

Based on our knowledge that the optimization
problem was poorly scaled, we divided by the fre-
quency of the feature. We can give the following
heuristic justification for our method of condition-
ing. For the ith feature weight, we will take a step
Aw;. Assume that we want to take the step Aw; pro-
portional to the average gradient g; calculated from
n-best lists in which the feature is non-zero. In other
words, we want Aw; = «g;. Let g; be the total
gradient calculated by adding the gradients over all
n-best lists (i.e. summing over training examples
in the corpus). For a feature that is nonzero in ex-
actly n; n-best lists, the gradient from each example
will have been added up n; times, so the total gra-
dient g; = n;g;. Therefore we should take the step
Aw; = ag;/n;. In other words, we rescale each
component g; of the gradient by 1/n; before taking
the gradient step.

We can relate this argument back to the oscillation
we observed of the rule feature weights. For rules
that are used a thousand times more often than the
average rule, the corresponding component of the
gradient is roughly a thousand times larger. But that
does not indicate that the adjustment Aw; to the rule
weight should be a thousand times larger in each it-
eration.

6 Experiments

We evaluate and analyze the performance of our
training method with three sets of experiments. The
first set of experiments compares HOLS to other
tuning algorithms used in machine translation in a
medium-scale discriminative setting. The second set
looks in detail at HOLS for large scale discriminative
training for a Chinese-English task. The third set
looks at two other languages.

All the experiments use a Hiero MT system with
rule indicator features for the sparse features and the



Table 2: Corpora

Language Corpus Sentences Tokens
Source | Target
En Gigaword 24M 594M
Ar-En Train M ™ 31M
Dev (MTO06) 1797 13K 236K
MTO05 1,056 7K 144K
MTO08nw 813 5K 116K
MTO5wb 547 5K 89K
Mg-En Train 89K 2.1M 1.7M
Dev 1,359 34K 28K
Test 1,133 29K 24K
Zh-En Train (FBIS) 302K IM 9.3M
Dev (MTO06) 1,664 4K 192K
Test (MT02-03) 1,797 5K 223K
MTO8 1,357 4K 167K

following 8 dense features: LM, phrasal and lexi-
cal p(e|f) and p(fl|e), phrase and word penalties,
and glue rule. The total number of features is 2.2M
(Mg-En), 28.8M (Ar-En), and 10.8M (Zh-En). The
same features are used for all tuning methods, ex-
cept MERT baseline which uses only dense features.
Although we extract different grammars from vari-
ous subsets of the training corpus, word alignments
were done using the entire training corpus. We use
GIZA++ for word alignments (Och and Ney, 2003),
Thrax (Weese et al., 2011) to extract the grammars,
our decoder is cdec (Dyer et al., 2010) which uses
KenLM (Heafield, 2011), and we used a 4-gram LM
built using SRILM (Stolcke, 2002). Our optimizer
uses code implemented in the pycdec python inter-
face to cdec (Chahuneau et al., 2012). To speed up
decoding, for each source RHS we filtered the gram-
mars to the top 15 rules ranked by p(e | f). Statistics
about the datasets we used are listed in Table 2.

We use the “soft ramp 3” loss function (Gimpel,
2012; Gimpel and Smith, 2012) as the surrogate loss
function for calculating the gradient in HOLS. It is
defined as

i:i {—log
i=1

+log Z W f(@iy)+eost(yi,y)
yeGen(x;)

—

E oW f(@isy)—cost(yi,y)

yeGen(z;)

where the sum over ¢ ranges over training exam-
ples, Gen(x) is the space of possible outputs and
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derivations for the input z, and cost(y;, y) is add one
smoothing sentence level BLEU.’

Except where noted, all experiments are repeated
5 times and results are averaged, initial weights for
the dense features are drawn from a standard nor-
mal, and initial weights for the sparse features are
set to zero. We evaluate using MultEval (Clark et
al., 2011) and report standard deviations across opti-
mizer runs and significance at p = .05 using MultE-
val’s built-in permutation test. In the large-scale ex-
periments for HOLS, we only run the full optimizer
once, and report standard deviations using multiple
runs of the last MERT run (i.e. the last line search on
the dev data).

6.1 Comparison Experiments for ZH-EN

Our first set of experiments compares the perfor-
mance of the proposed HOLS algorithm to learn-
ing algorithms popularly used in machine transla-
tion on a Chinese-English task. We also compare to
a close relative of the HOLS algorithm: optimizing
the soft ramp 3 loss directly with online stochastic
gradient descent and with conditioning. As we will
see, SGD SOFTRAMP3 performs significantly worse
than HOLS, despite both algorithms optimizing sim-
ilar loss functions.

In the experiments in this section, we do not use
the full version of the training setup described in
85 since we wish to compare to algorithms that do
not necessarily scale to large amounts of training
data. We therefore use only one fifth of the train-
ing data for learning the we