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Abstract
Optimizing discrete prompts for small and
medium-sized language models (1–8 billion
parameters) poses unique challenges due to
their relatively weaker instruction-following
capabilities compared to larger counterparts.
We present PRompt OPtimization with Ex-
pert priors for LLMs (PROPEL), a novel
knowledge-augmented iterative optimization
framework leveraging the collaborative capa-
bilities of three distinct roles assigned to large
language models (LLMs): Responder, Judge,
and Optimizer. Unlike prior works that focus
on larger LLMs for prompt optimization with
natural language feedback, our approach em-
phasizes improving prompt effectiveness for
resource-efficient smaller and medium-sized
models through structured iteration and the in-
tegration of prompt design principles as ex-
pert priors. Our experiments across diverse
tasks such as long-text summarization and en-
tity extraction demonstrate significant improve-
ments. PROPEL improves response quality
by 10–24% for Query-Based Summarization
and 5–16% for Query-Based Entity Extrac-
tion over initial prompts, outperforming base-
line approaches by at least 12% and 9%, re-
spectively. Ablation studies further show that
incorporating prompt design principles as pri-
ors enhances response quality by 21% for
Llama-3.2 1B and 9% for Llama-3.2 3B.

1 Introduction and Related Works

Large Language Models (LLMs) have excelled in
various NLP tasks, including summarization, ques-
tion answering, and classification (OpenAI et al.,
2024b; Grattafiori et al., 2024; Abdin et al., 2024).
This success stems from extensive pretraining on di-
verse datasets and advancements in prompting tech-
niques (Brown et al., 2020). Prompt engineering-
designing task-specific instructions or queries to
elicit optimal responses—has proven critical for
achieving high performance across tasks and do-
mains (Reynolds and McDonell, 2021).

However, creating effective prompts requires
substantial manual effort (Jiang et al., 2022), often
relying on domain expertise (Reynolds and Mc-
Donell, 2021; Zamfirescu-Pereira et al., 2023), in-
tuition, and trial-and-error. This resource-intensive
process poses challenges for non-expert users.
Moreover, LLM performance is highly sensitive
to prompt quality (Gao et al., 2021), emphasizing
the importance of robust prompt engineering.

Techniques such as Chain-of-Thought (Wei et al.,
2023), Few-Shot Prompting (Brown et al., 2020),
and Role Prompting (Wang et al., 2024) introduce
prompting strategies to improve response quality.
Survey Works (Schulhoff et al., 2024; Sahoo et al.,
2024; Chen et al., 2024) have systematically com-
piled and organized these approaches into Prompt
Design Principles or Prompt Principles. Bsharat
et al. 2024 identified 26 principles, showing that
their effectiveness varies across LLMs, indicating
model-specific applicability.

To mitigate the challenges of manual prompt
engineering, various automated methods have
been proposed, categorized by their underlying
techniques:
Soft Prompt-Tuning Methods: Soft prompt-
tuning represents prompts as continuous task-
specific vectors optimized using gradient-based
techniques (Lester et al., 2021; Li and Liang,
2021; Liu et al., 2023; Qin and Eisner, 2021).
This method fine-tunes a small subset of trainable
parameters while keeping the LLM frozen,
achieving strong task performance. However,
it requires access to the LLM’s internal state
variables, making it unsuitable for black-box APIs
or closed-source models (Shin et al., 2020; Lester
et al., 2021).
Iterative Scoring-Based Optimization: These
approaches iteratively refine a discrete base prompt.
GrIPS (Prasad et al., 2023) uses phrasal edits,
while APE (Zhou et al., 2023) and OPRO (Yang
et al., 2024) generate semantically similar prompts
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via LLMs, scoring responses with an evaluation
function—often another LLM—to select the next
best prompt. OPRO (Yang et al., 2024) also
incorporates the history of previous best prompts
but doesn’t explicitly generate natural language
feedback. Numerical scores offer limited insights,
failing to pinpoint specific response strengths
or weaknesses. Our ablation study on PROPEL
(Table 5) highlights the value of descriptive
feedback. Moreover, these methods narrowly
explore the initial prompt space, neglecting diverse
strategies that could yield more robust solutions.
Iterative Feedback-Driven Optimization: These
techniques use iterative feedback loops for prompt
refinement. Methods like SelfRefine (Madaan
et al., 2023), APO (Pryzant et al., 2023), and
Self-Debugging (Chen et al., 2023) leverage
LLM feedback to enhance prompts, with APO
(Pryzant et al., 2023) introducing textual gradients
to target weaknesses. However, APO (Pryzant
et al., 2023) does not utilize the history of prompts,
scores, and feedback, which we demonstrate
as crucial in PROPEL (Table 4). SelfRefine
(Madaan et al., 2023) and Self-Debugging (Chen
et al., 2023) rely on the Responder LLM for both
response and feedback. However, these methods
are demonstrated on larger models, which we
hypothesize are better equipped to process detailed
feedback. In contrast, small- and medium-scale
LLMs struggle with capability to fully utilize such
feedback for self-improvement (Saunders et al.,
2022; Huang et al., 2023), rendering this approach
for prompt optimization ineffective when applied
to these smaller models.
LLM-Based Evolutionary Techniques: Evolu-
tionary algorithms, like the Genetic Algorithm
(Holland, 1992) and Differential Algorithm (Storn
and Price, 1997), have been adapted for discrete
prompt optimization. Methods such as Prompt-
Breeder (Fernando et al., 2023), PromptWizard
(Agarwal et al., 2024), and EvoPrompt (Guo
et al., 2024) refine prompts through iterative
techniques, applying thinking styles, and lever-
aging LLM-driven operations like crossover and
mutation. While promising, these approaches
are predominantly evaluated on larger LLMs.
However, as noted by (Bsharat et al., 2024),
effectiveness of mutation can vary for small and
medium-scale models, raising concerns about
generalizability to smaller LLMs.

In this work, we tackle the critical yet underex-

plored challenge of optimizing discrete prompts
for small and medium-sized LLMs (1–8 billion
parameters), which exhibit weaker instruction-
following capabilities compared to larger models
(Qin et al., 2024). To address this, we propose PRO-
PEL (PRompt OPtimization with Expert Priors
for LLMs), a novel knowledge-augmented frame-
work that leverages expert-informed prompt prin-
ciples as priors and orchestrates a structured itera-
tion among three distinct LLM roles: Responder
LLM, responsible for response generation; Judge
LLM, tasked with response evaluation; and Op-
timizer LLM, which refines prompts using ex-
pert priors and historical state information com-
prising prompts, feedback, and scores. This ap-
proach strategically incorporates structured knowl-
edge into the prompt optimization process, en-
abling more effective knowledge utilization and
enhancing the performance of small and medium-
sized LLMs.

Unlike existing approaches that overlook the in-
tegration of prompt design principles into the op-
timization process, PROPEL systematically iden-
tifies task- and model-specific easy or hard to fol-
low prompt principles. These principles are incor-
porated as priors over the optimal prompt space,
enabling the discovery of prompts that are both ef-
fective and tailored to the specific LLM and task.
Extensive experiments on summarization, entity ex-
traction, and multi-turn QnA show improvements
of at least 12%, 9% and 3% over state-of-the-art
baselines, respectively, highlighting the effective-
ness of the PROPEL framework.

2 Methodology

2.1 Problem Formulation

Given an initial prompt p0 for a Responder LLM
M, our goal is to iteratively transform p0 into
p̂, an approximation of the optimized prompt p∗

which maximizes the quality of the generated re-
sponses. We assume access to an i.i.d training
dataset consisting of pairs of input context and ref-
erence output: Dtrain = {(x1, y1), . . . , (xn, yn)}
where x1, . . . , xn represents the input context and
y1, . . . , yn represents the reference outputs. Note
that all prompts p are drawn from the space of
coherent natural language L. The quality of the
generated responses ŷ = M(y|p, x) is evaluated
using a metric function m(y, ŷ).
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Figure 1: Visual representation of construction of Expert Prior knowledge store, which guides the prompt optimiza-
tion workflow described in the next subsection.

The optimization task can be expressed as:

p̂ = argmax
p∈L

E[m(y,M(y|p, x))] ∀x, y ∈ Dtrain

The optimization process proceeds iteratively:

pk+1 = A(pk,State,Priors),

where A is the algorithm explained in A.1, State
stores the history of prompts, scores, and feedback
from previous iterations, and Priors encode the
principles to design prompts which is provided to
the Optimizer LLM to guide prompt optimization.

2.2 Expert Priors

Inspired by the work of Bsharat et al. (2024), which
examines the influence of LLM size on prompt de-
sign, we hypothesize that explicitly encoding the
structured knowledge of the strengths and weak-
nesses of the Responder LLM’s ability to follow
specific prompt styles into the prompt optimiza-
tion process will significantly enhance the qual-
ity of the prompts, as measured by the response
quality. To achieve this, we define Expert Priors,
a knowledge-augmented approach that systemati-
cally encodes the capabilities and challenges of the
Responder LLM in adhering to various prompt prin-
ciples. These priors guide optimization by defining
emphasis rules, which correspond to design prin-
ciples classified as Easy for the Responder LLM
to follow, and avoidance rules, which correspond
to design principles classified as Hard for the Re-
sponder LLM to follow.

As depicted in Figure 1, the Expert Priors are
constructed as knowledge corpora1 that capture

1Expert priors are available in Section A.11.

the Responder LLM’s proficiency in following dif-
ferent prompt styles. This is achieved by system-
atically transforming task-specific initial prompts
with GPT-4 (OpenAI et al., 2024b) for each of the
50 prompt principles (see Tables 6 & 7) and then
evaluating the Responder LLM’s performance on
the transformed prompts. These principles are in-
formed by previous work, including Bsharat et al.
2024 and Chen et al. 2024, and are evaluated on
a minimal dataset of 10 task-specific samples to
identify Easy or Hard principles. Easy principles
represent design strategies of the prompts that the
Responder LLM can reliably respond with minimal
errors, and these are encoded into the optimization
process as emphasis rules, directing the optimizer
to create the prompt by reinforcing these princi-
ples. Conversely, Hard principles represent design
strategies of prompts where the Responder LLM is
more likely to struggle, and these are encoded as
avoidance rules, signaling the optimizer to create
prompt that does not adhere to the characteristics
defined by these principles to minimize errors and
maintain high-quality responses.

Our approach leverages Expert Priors as struc-
tured knowledge in a plug-and-play manner, en-
hancing prompt optimization without requiring
fine-tuning of the Responder LLM. By strategically
utilizing knowledge, the Optimizer LLM gener-
ates high-quality prompts tailored to the Responder
LLM’s strengths and weaknesses. The 50 princi-
ples are automatically classified as Easy or Hard
once per Responder LLM per task, enabling scal-
able and efficient knowledge elicitation. The de-
tailed implementation of this automated classifica-
tion process is described in Section 7i.
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Figure 2: Proposed workflow: The Responder generates responses, the Judge evaluates them with feedback and
score, and the Optimizer optimizes prompt using expert priors and state. This process is repeated iteratively.

2.3 Framework Design and Workflow

As shown in Figure 2, PROPEL operates as an iter-
ative framework involving the coordinated interac-
tion of three key components: the Responder LLM,
Judge LLM, and Optimizer LLM. Each component
is driven by role-specific meta-prompts, ensuring
alignment with their designated functions:

1. Response Generation by Responder LLM:
The Responder LLM generates a response (ŷ)
based on the input, which consists of the current
prompt pk and the training dataset Dtrain. At
the beginning of the process, the current prompt
pk is initialized to the initial prompt p0.

2. Evaluation by Judge LLM: The Judge LLM
evaluates the generated response (ŷ) using the
current prompt pk, the input context x, and
the reference response y. This evaluation fol-
lows predefined criteria outlined in Section
A.6. The Judge provides detailed feedback
and assigns a score between 1 and 5 for each
training data point (x, y). The feedback and
scores are then summarized using the Feed-
back Summary meta-prompt (refer to Section
A.8). The summarized insights, represent-
ing knowledge extracted from the evaluation
process, are stored in the State as a triplet
⟨pk,Feedbackk,Scorek⟩. This approach effec-
tively curates and utilizes evaluation knowledge,
aligning with knowledge-augmented method-
ologies.

3. Prompt Optimization by Optimizer LLM:
The Optimizer LLM generates a refined prompt
pk+1 based on the analysis of the State and ad-
herence to Expert Priors. The metaprompt (Re-
fer "Optimizer LLM" in section A.8) ensures
that the optimizations preserve the intent of the

original task while enhancing the response qual-
ity.

4. Repeat: Steps 1–3 are repeated iteratively for
a specified number of iterations or until a stop-
ping criteria defined by a threshold on the score
of quality of responses.

For further implementation details, refer to Key
Implementation Details for PROPEL in Section
A.7.

3 Experimentation Details

3.1 Dataset and Tasks
This work utilizes the public QMSum (Zhong et al.,
2021) dataset for the task of query-based sum-
marization and the public benchmark MT Bench
(Zheng et al., 2023) for evaluating QnA perfor-
mance in multi-turn chat scenarios. Additionally,
an in-house dataset2 is employed for tasks includ-
ing query-based summarization and entity extrac-
tion. Comprehensive details about these datasets,
associated tasks, and rationale for their selection
are provided in Section A.2.

3.2 Models used as Responder LLM
We select a diverse range of open-source models,
including small models (1–3 billion parameters)
and medium-sized models (7-8 billion parameters).
Further details on the specific characteristics and
rationale for choosing these models can be found
in Section A.4.

3.3 Baselines
The study uses Self-Refine (Madaan et al., 2023),
GrIPS (Prasad et al., 2023), Prompt Wizard (Agar-
wal et al., 2024), APO (Pryzant et al., 2023), and

2Due to proprietary restrictions, this dataset cannot be
released.
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OPRO (Yang et al., 2024) as baseline methods. In
the PROPEL (Self) variant, the same LLM em-
ployed as the Responder LLM also serves as the
Judge LLM and Optimizer LLM. Further details
and the rationale for selecting these baselines are
provided in Section A.5.

3.4 Metrics

Response quality for evaluating summarization,
QnA in multi-turn chat and entity extraction tasks
is obtained using LLM Score, a rating on a scale of
1–5 provided by GPT-4o (OpenAI et al., 2024a);
Rouge-1 (Lin, 2004) is applied to entity extraction
tasks. Table 1 presents the standardized metric
differences between responses generated using op-
timized prompts and initial prompts. Details of
the metrics, their computation, and standardization
procedures are provided in Section A.6.

3.5 Implementation Details

Evaluation was conducted on the final optimized
prompt, defined as either the last iteration’s prompt
or an intermediate one when early stopping oc-
curred. Further details on the implementation can
be found in Section A.7.

4 Experimental Results

4.1 Overall Results

We evaluate PROPEL against several baselines
across two categories of Responder LLMs: Small
Models (1–3 Billion parameters) and Medium-
Sized Models (7–8 Billion parameters). The results
are summarized in Tables 1 and key observations
are detailed below:

Small Models (1–3 Billion Parameters)

1. Superior Performance of PROPEL: PRO-
PEL outperforms all baselines across datasets
and tasks, highlighting the crucial role of
knowledge-informed Expert Priors in boost-
ing performance for smaller models. Specif-
ically, PROPEL achieves substantial margins
over baselines, with improvements of 20%, 6%
and 4% for Llama 3.2 1B, Llama 3.2 3B and
Flan-T5 3B in summarization, and 14%, 10%
and 13.7% for entity extraction. The more pro-
nounced improvements in the smaller 1B model
underscore the value of knowledge-augmented
priors in guiding prompt optimization and maxi-
mizing the potential of resource-efficient LLMs.

2. PROPEL (Self) vs. PROPEL: PROPEL (Self)
performs substantially worse than PROPEL
across datasets and tasks, highlighting that
smaller LLMs are less effective at evaluating
responses and generating optimized prompts.
This emphasizes the necessity of leveraging
more powerful external LLMs (e.g., GPT-4) to
provide feedback and guide the prompt opti-
mization process effectively.

Medium-Sized Models (7–8 Billion Parameters)

1. Superior Performance of PROPEL: Similar
to the small models, PROPEL consistently out-
performs the baselines across datasets and tasks.
This highlights the effectiveness of integrating
knowledge-informed Expert Priors in optimiz-
ing prompt design, thereby enhancing the capa-
bilities of medium-sized models.

2. PROPEL (Self) vs. PROPEL: Unlike smaller
models, PROPEL (Self) demonstrates signif-
icantly improved performance relative to the
baselines when using medium-sized models,
although it still lags behind PROPEL. This
indicates that medium-sized models are better
equipped to serve as both evaluators and opti-
mizers. However, achieving enhanced response
quality still requires the coordination of a more
powerful LLM for Judge and Optimizer LLM
roles.

The key takeaways are as follows:

1. Significance of Knowledge-Informed Expert
Priors: Expert Priors are particularly criti-
cal for smaller and medium-sized models (1–8
Billion parameters), significantly boosting per-
formance across all of the tasks and datasets
by leveraging knowledge-informed guidance in
prompt optimization.

2. Role of powerful LLM in Evaluation and
Optimization: Using a powerful external LLM
like GPT-4 for evaluation and optimization is
more effective than relying on the smaller Re-
sponder LLM. A more capable LLM offers
detailed, accurate assessments by better un-
derstanding the prompt-response-reference re-
sponse alignment. During optimization, it iden-
tifies prompt issues and generates improved ver-
sions that better align with task objectives and
the characteristics of smaller Responder LLMs.
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Responder
LLM

Methods Summarization Entity Extraction Chat

Inhouse QMSum Inhouse MT-Bench

∆LLM Score ∆LLM Score ∆LLM Score ∆ROUGE-1 ∆LLM Score

Llama 3.2
1B

Self-Refine -29.00 -12.74 -46.82 -33.64 -10.04
GrIPS 3.28 4.53 2.94 2.19 1.25
Prompt-Wizard -5.20 -2.64 -2.95 -3.70 -1.52
APO -3.20 -3.96 -9.20 -11.50 2.86
OPRO -2.00 -1.28 -1.75 -3.27 1.67

PROPEL (Self) -14.00 -10.27 -48.00 -25.04 -9.82
PROPEL 22.67 7.91 11.00 16.43 8.46

Llama 3.2
3B

Self-Refine -13.54 -8.37 -30.16 -18.48 -5.39
GrIPS 2.79 2.92 3.16 2.65 1.69
Prompt-Wizard -7.44 -6.34 -1.65 -1.80 1.18
APO 2.67 3.42 -6.40 -8.89 3.27
OPRO 8.00 4.58 1.50 1.68 2.50

PROPEL (Self) -12.34 -5.90 -29.00 -13.57 -2.26
PROPEL 14.17 6.29 8.00 12.58 6.79

Flan-T5
3B

Self-Refine -3.80 -9.75 -6.30 -1.57 -1.13
GrIPS 5.60 4.51 1.90 4.00 2.60
Prompt-Wizard -1.27 -4.98 -2.60 -2.38 -1.20
APO 1.58 3.91 -7.56 -6.73 -1.48
OPRO 6.56 -7.42 -6.02 -6.25 -7.83

PROPEL (Self) -8.38 -4.38 -2.02 -1.86 -2.16
PROPEL 10.29 7.03 15.61 13.7 6.63

Mistral
7B

Self-Refine 3.71 2.85 1.48 0.95 -0.74
GrIPS 5.96 3.13 -1.64 0.73 -0.58
Prompt-Wizard 3.02 3.58 -0.84 -1.18 -1.92
APO -13.00 -2.68 -9.63 -8.79 -0.84
OPRO 10.05 3.76 -0.80 -3.14 0.37

PROPEL (Self) 17.39 3.62 2.40 1.83 1.09
PROPEL 21.50 8.73 3.90 8.96 3.73

Llama 3
8B

Self-Refine -2.00 -1.08 -3.00 -1.54 2.17
GrIPS -2.32 1.40 -3.80 -0.20 1.84
Prompt-Wizard -1.96 2.73 -1.20 -1.83 1.37
APO -7.46 -3.40 -3.20 -2.84 1.25
OPRO 5.00 -1.26 -3.59 -3.42 1.89

PROPEL (Self) 21.35 5.70 6.40 2.67 2.04
PROPEL 23.68 12.20 8.20 4.64 2.45

Table 1: The table compares PROPEL with baselines across tasks and models, using GPT-4 as Judge and Optimizer.
It shows the difference in standardized LLM scores (‘∆’) between responses generated with optimized prompts and
initial prompts for Summarization and Chat tasks. Raw LLM scores are standardized from the GPT-4o ratings (1–5
scale) to percentages. ∆ROUGE-1 is used for Entity Extraction task. Higher scores indicate better performance,
with the best results for each model in bold and color. Negative scores indicate worse performance with optimized
prompts.

3. Consistent Task Performance: PROPEL con-
sistently delivers strong performance across
tasks, demonstrating exceptional effectiveness
in knowledge-intensive scenarios, including

query-based summarization, entity extraction,
and QnA over multi-turn chat, underscoring its
versatility and robust design.
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4.2 Ablation Studies
We focus on the Query-Based Summarization task
in the in-house dataset containing five prompts and
the Llama-3.2 1B and 3B models as the basis for
all the ablation studies.
Impact of Initial Prompt: Certain prompts pose
varying levels of difficulty for different models,
making harder prompts more challenging to op-
timize. These harder prompts often require addi-
tional training data or more iterations in the opti-
mization algorithm to converge effectively. The
objective of this study is to check if PROPEL can
work as effectively with "hard" prompts as they do
with "easy" prompts.

For each of the considered prompts, the Op-
timizer LLM generates an “easy” and a “hard”
version by following specific rules derived from
a one-time evaluation of the Responder LLM on
50 prompt principles (Refer table 6). The “easy”
prompts emphasize aspects the Responder LLM
excels at, while the “hard” prompts intentionally
include elements the Responder LLM struggles
with. This process is conducted for two models:
Llama-3.2-1B and Llama-3.2-3B.

We measure the effect of prompt difficulty on
the effectiveness of PROPEL by calculating the
average LLM Scores for responses generated with
initial prompts (LLM Scoreinit) and the average
improvement in scores after optimization (∆LLM
Score). The sum of these metrics gives the final
LLM Scores for the optimized prompts.

The results in Table 2 show that while the LLM
Scores for the final optimized prompts are higher
for "easy" prompts compared to "hard" prompts,
the improvements in ∆LLM Scores are signifi-
cantly greater for "hard" prompts. In other words,
the gap in LLM Scores between the initial "easy"
and "hard" prompts is much larger than the gap
between the optimized "easy" and "hard" prompts.
This indicates that PROPEL is highly effective even
for "hard" prompts, despite their greater optimiza-
tion challenge.

Initial
Prompt

Llama-3.2 1B Llama-3.2 3B
LLM Scoreinit ∆LLM Score LLM Scoreinit ∆LLM Score

Easy 67.60 13.47 70.04 7.83
Hard 40.06 33.47 43.86 25.47

Table 2: Impact of initial prompt on ∆LLM Score for
Llama-3.2 1B and 3B models.

Impact of Expert Priors on Knowledge-Guided
Prompt Optimization: The goal of this study is to

evaluate how the quality of expert priors influences
the effectiveness of the knowledge-augmented
prompt optimization algorithm. We test the fol-
lowing scenarios:

1. Good Priors: Rules derived directly from
the one-time evaluation of the Responder
LLM using 50 prompt principles (Refer table
6). These “emphasis” and “avoidance” rules,
which serve as structured knowledge priors,
are incorporated into the Optimizer LLM’s
prompts during optimization.

2. No Priors: The Optimizer LLM operates
without any knowledge-augmented rules, re-
lying solely on iterative feedback for prompt
optimization.

3. Random Priors: Seven prompt principles are
randomly selected from the curated list for
each rule type (“emphasis” and “avoidance”),
and the resulting rules are included in the Op-
timizer LLM’s prompts. This tests the impact
of unstructured knowledge injection on opti-
mization performance.

4. Bad Priors: The “emphasis” and “avoidance”
rules are reversed, such that principles the Re-
sponder LLM excels at are treated as “avoid-
ance” rules and vice versa. This setup eval-
uates the negative influence of inaccurately
encoded knowledge on prompt optimization.

The effectiveness of each scenario is measured
by the average change in LLM scores after opti-
mization (∆LLM Score). Results in Table 3 show
that “Good Priors” lead to the highest improvement
of 10-15%, followed by “Random Priors,” “No Pri-
ors”, and “Bad Priors.” The decline in performance
with “Bad Priors” stems from the propagation of
incorrect information into the optimization process.

Priors Applied ∆LLM Score
Llama 3.2 1B Llama 3.2 3B

Bad Priors -6.74 -7.84
Random Priors 7.62 4.86

No Priors 1.67 5.14
Good Priors 22.67 14.17

Table 3: Impact of priors on ∆LLM Score for Llama-
3.2 1B and 3B models.

Effect of State History as Knowledge Context:
This study investigates the role of state history
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(prompts, feedback, and scores) as Knowledge
Context in guiding the prompt optimization pro-
cess. Two settings are compared: (1) Without His-
tory — Only the latest state (prompt, feedback, and
score) is provided to the Optimizer LLM for refin-
ing prompts, without any historical context.; and (2)
With History — The Optimizer LLM is supplied
with a sequence of the last 10 states (Refer Section
A.7), effectively leveraging historical knowledge
comprising prompts, feedback, and scores. Results
in Table 4 show that using state history improves
∆LLM Score by 8.9% for Llama-3.2 1B and 4%
for Llama-3.2 3B. This highlights the importance of
historical knowledge patterns in improving prompt
optimization, demonstrating the value of knowl-
edge persistence and contextual learning in iterative
LLM interactions.

History Applied ∆LLM Score
Llama-3.2 1B Llama-3.2 3B

Without History 13.80 10.13
With History 22.67 14.17

Table 4: Impact of State History on ∆LLM Score for
Llama-3.2 1B and 3B models.

Impact of Using Feedback and Scores as Knowl-
edge Signals in State: This study examines the
impact of incorporating feedback and scores as
knowledge signals in the State on prompt opti-
mization effectiveness. Three settings are evalu-
ated: (1) Feedback Only: State includes a history
of size 10 with prompts and their corresponding
feedback from the Judge LLM. (2) Scores Only:
State includes a history of size 10 with prompts and
their corresponding scores. (3) Feedback & Scores:
State includes prompts, feedback, and scores (de-
fault setting).

The effectiveness is measured by the average
change in LLM scores after optimization (∆LLM
Score). Results in Table 5 show that using only
scores slightly outperforms using only feedback,
while combining feedback and scores significantly
improves performance, with gains of 14.5% and
8% for Llama-3.2 1B and 3B models, respectively.
This suggests that feedback and scores provide
complementary insights—feedback highlights ar-
eas for improvement, while scores offer a perfor-
mance baseline. Together, they give the Optimizer
LLM a richer context, enabling more effective
prompt refinements.

Evaluator Output ∆LLM Score
Llama-3.2 1B Llama-3.2 3B

With Feedback Only 7.30 5.83
With Scores Only 8.20 6.21

With Feedback & Scores 22.67 14.17

Table 5: Impact of Evaluator and State on ∆LLM Score
for Llama-3.2 1B and 3B models.

5 Conclusion

We introduce PROPEL, a novel prompt optimiza-
tion framework that leverages expert priors and iter-
ative feedback from a Judge LLM to improve LLM
performance across various tasks. By integrating
knowledge-informed priors, PROPEL effectively
guides the optimization process, particularly ben-
efiting small and medium-sized models. Experi-
mental results demonstrate that PROPEL outper-
forms existing baselines, showing substantial gains
in query-based summarization, entity extraction,
and QnA over multi-turn interactions. Ablation
studies reveal that the inclusion of expert priors
enhances LLM scores by 10–15%, highlighting
their pivotal role in aligning prompt design with
model-specific strengths and limitations.

6 Limitations

We recognize certain limitations in the scope of the
presented work. First, while the reliance on expert
priors requires a one-time evaluation, this process
may not be readily applicable to all scenarios, par-
ticularly those with highly dynamic requirements.
Second, PROPEL relies on reference responses
for evaluation, which, while effective, may pose
challenges for fully automated scalability in tasks
without readily available references. Third, the
current evaluation focuses on tasks such as query-
based summarization, entity extraction, and multi-
turn QnA. While these tasks demonstrate the ver-
satility of PROPEL, additional testing on more
complex and diverse modeling challenges would
further validate its generalizability. Additionally,
the present study is confined to small and medium-
sized models up to 8B parameters. Extending the
analysis to larger models would better demonstrate
PROPEL’s adaptability and effectiveness across
a broader range of model architectures. Finally,
the testing was conducted exclusively on English-
language tasks, leaving multilingual capabilities
an area for future exploration to ensure broader
applicability across diverse linguistic settings.
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A Appendix

A.1 Algorithm
The optimization algorithm is provided below:

Algorithm 1 Prompt Refinement with Iterative De-
scriptive Evaluation (PROPEL)

1: Input: Initial prompt p0, dataset Dtrain =
{(x1, y1), . . . , (xn, yn)}, and expert priors.

2: Output: An optimized prompt p̂
3: Require: K: number of iterations, st: score

threshold for early stopping, hs: size of history
maintained in State

4: Initialize State as [].
5: for k = 1 to K do
6: Generate responses {ŷi =

M(yi|pk, xi)}xi∈Dtrain using Respon-
der LLM.

7: Evaluate responses ŷi with Judge LLM to
obtain sample-specific feedbacks and scores,
aggregated into a single score Scorek and
summarized feedback Feedbackk.

8: if Scorek ≥ st then
9: Break the loop.

10: end if
11: Update State with ⟨pk,Feedbackk,Scorek⟩.

12: if len(State) > hs then
13: Pop the leftmost element from State.
14: end if
15: Refine pk to obtain pk+1 using Optimizer

LLM, incorporating State and expert priors.
16: end for
17: Return: p̂ = pk

A.2 Dataset used for Experiments
1. QMSum - Query based Summarization:

The QMSum dataset (Zhong et al., 2021) pro-
vides query-based multi-domain meeting sum-
maries, consisting of transcripts from aca-
demic, industrial, and product review meet-
ings. We chose this dataset owing to its sim-
ilarities with our in-house dataset and for its
scale.

2. MT Bench: MT-Bench (Zheng et al., 2023)
is a curated benchmark featuring high-quality,
multi-turn questions designed to evaluate con-
versation flow and instruction-following capa-
bilities in multi-turn dialogues. GPT-4 (Ope-
nAI et al., 2024b) evaluates MT Bench out-
puts, and average scores across questions and
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turns are reported for all experiments. We
chose this dataset due to it being widely rec-
ognized and its widespread use in evaluating
models for tasks that require sustained, coher-
ent interactions over multiple exchanges.

3. We leverage an in-house dataset3 of conver-
sational interactions happening in a contact
center between agents and customers and per-
form the following tasks:

(a) Query based Summarization (QBS):
Involves generating an abstractive re-
sponse to the given query based on the
conversation as input context.

(b) Query based Entity Extraction (QBE):
Involves identifying and extracting enti-
ties from the conversation that are perti-
nent to the given query.

The dataset was carefully curated to ensure
high-quality annotations and relevance to con-
tact center tasks. Below, we outline the pro-
cess followed to create this dataset:

(a) Conversation Sampling and Transcrip-
tion: A total of 120 English dyadic
conversations between agents and cus-
tomers were sampled from a contact
center. These conversations were tran-
scribed using a third-party Automatic
Speech Recognition (ASR) engine, with
a Word Error Rate (WER) of approxi-
mately 10% as reported by Ali and Re-
nals 2018. The ASR transcripts served
as the input context in the prompt opti-
mization algorithm.

(b) Data Partitioning: The data is split into
non-overlapping datasets.

i. Training Set: A randomly selected
subset of 10 conversations.

ii. Evaluation Set: A randomly se-
lected subset of 100 conversations.

iii. Prior Identification Set: A ran-
domly selected subset of 10 conver-
sations.

(c) Task and Prompt Sampling: We sam-
pled 15 prompts from a proprietary
contact-center dataset 4, evenly dis-
tributed across the following two tasks:

3We cannot release the dataset due to proprietary reasons.
4We cannot release the dataset due to proprietary reasons.

Query-Based Summarization and Query-
Based Entity Extraction. The contact-
center dataset from which prompts were
sampled was designed to evaluate the
value of Query Based Summarization
use case for one of our clients.

(d) Annotation Process:

i. Annotator Selection: Seven anno-
tators with experience in analyzing
contact center data were employed.

ii. Guidelines for Annotation: Annota-
tors followed a comprehensive guide-
line emphasizing logical reasoning to
identify relevant evidence from con-
versations, synthesize information
and provide task-specific responses
to each of the 15 prompts. The an-
notations were designed to ensure
grounding in conversation details and
emulate the reasoning process of a
domain expert.

(e) Quality Assurance:

i. Entity Extraction Task: Responses
for this structured task were validated
through a majority voting mecha-
nism requiring agreement among
at least four annotators. Inter-
Annotator agreement was calculated
using Fleiss’ Kappa (Fleiss et al.,
1971), and was measured at 0.64, in-
dicating substantial agreement.

ii. Query-Based Summarization Task:
Responses, being unstructured, were
evaluated using Sentence-BERT
(Reimers and Gurevych, 2019),
fine-tuned for the Semantic Textual
Similarity (STS) (Cer et al., 2017)
task. Samples with an average
pairwise semantic similarity score <
0.8 were flagged and re-annotated.
For samples meeting the ≥ 0.8
similarity threshold, one response
was randomly selected to ensure
consistency in evaluation.

This robust annotation and curation process
ensures that the dataset reflects the nuances
of contact center data and provides reliable
input for evaluating prompt optimization in
downstream tasks.
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A.3 Dataset Statistics

Table 8 shows the number of runs and the # of
data points per run in the evaluation and training
datasets. Here, ‘# of Runs’ denotes the number of
unique instructions (prompts) for which separate
prompt tuning is required. The number of evalu-
ation data points per run is calculated as the total
number of data points divided by the number of
runs.

Dataset # of Runs
# Samples per Run

Evaluation
# Samples per Run

Training
# Samples

Prior Identification

Inhouse - QBS 5 100 10 10
Inhouse - QBE 5 100 10 10
QMSum 2 100 10 10
MT Bench 1 60 10 10

Table 8: Dataset Statistics

A.4 Models used as Responder LLM

1. Selection Criteria: The selection of Respon-
der LLMs was guided by two factors:

(a) Adoption in the industry and research
community.

(b) Model size, to emphasize the challenges
faced by small and medium-sized mod-
els in effective prompt optimization and
demonstrate the importance of expert pri-
ors for these models.

2. Model Descriptions:

(a) Small Models (1–3B):
i. Llama-3.2-1B (Grattafiori et al.,

2024): A lightweight 1-billion-
parameter model used to assess
prompt optimization challenges for
minimal-scale models.

ii. Llama-3.2-3B (Grattafiori et al.,
2024): A 3-billion-parameter model,
widely used in research for its acces-
sible size and performance.

iii. Flan-T5-3B: A proprietary model
fine-tuned from the open-source
Flan-T5-3B model (Chung et al.,
2022) on a dataset of contact cen-
ter interactions curated in-house 5

for tasks like summarization, and en-
tity extraction. It uses Supervised
Fine-Tuning (Brown et al., 2020)
and Direct Preference Optimization
(Rafailov et al., 2023), making it an

5We cannot release the dataset due to proprietary reasons.

ideal candidate for task-specific eval-
uation.

(b) Medium-Sized Models (7–8B):
i. Mistral-7B (Jiang et al., 2023): A

7-billion-parameter model known for
its widespread use in various NLP
applications.

ii. Llama-3-8B (Grattafiori et al.,
2024): Balances size and perfor-
mance, making it a representative
mid-sized model for our experi-
ments.

This diversity allows us to investigate the spe-
cific challenges smaller models face and the role of
expert priors in addressing these challenges.

A.5 Baselines used for Experiments
1. Self-Refine: Madaan et al. 2023 introduced

an approach that iteratively improves initial
LLM outputs through self-feedback and re-
finement. The process involves the LLM gen-
erating an initial output, providing feedback
on its own output, and refining it iteratively.

2. GrIPS: Prasad et al. 2023 is an iterative ap-
proach that refines prompts by performing
edit operations such as Deletion, Swap, Ad-
dition and Paraphrasing on the phrases of the
prompts.

3. Prompt Wizard: The framework (Agarwal
et al., 2024) iteratively refines prompts by
mutating instructions and incorporating nega-
tive examples to deepen understanding and
ensure diversity. It further enhances both
instructions and examples with the aid of a
critic, synthesizing new instructions and ex-
amples enriched with detailed reasoning steps
for optimal performance. PromptWizard has
shown superior performance over other Evo-
lutionary Prompt Optimization Algorithms
such as PromptBreeder (Fernando et al., 2023)
and EvoPrompt (Guo et al., 2024). Thus,
PromptWizard is chosen as the candidate base-
line belonging to the line of Prompt Optimiza-
tion Algorithms.

4. APO: Pryzant et al. 2023 is an iterative ap-
proach that leverages minibatches of data to
form natural language gradients that dissect
the limitations of the current prompt and edit
the same in the opposite semantic direction
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of the gradient. These gradient descent steps
are guided by a beam search and bandit selec-
tion procedure in order to improve algorith-
mic efficiency. The beam search is an iterative
optimization process involving an expansion
step which leverages paraphrasing to explore
the local monte carlo search space around the
new prompt candidates and a selection step to
choose the top most promising candidates for
the next iteration.

5. OPRO: Yang et al. 2024 is an iterative ap-
proach that leverages LLMs for the optimiza-
tion task described in natural language. In
each optimization step, the LLM generates
new solutions from the prompt that contains
previously generated solutions with their val-
ues, then the new solutions are evaluated and
added to the prompt for the next optimization
step.

We carefully selected the baselines for comparison
with our proposed approach (PROPEL) based on
their algorithmic similarities and the traction they
have received due to their widespread adoption and
recognition within the research community.

A.6 Evaluation Metrics used for Experiments

1. LLM Score: Evaluates quality of the gen-
erated responses for tasks including Query
Based Summarization (QBS) in the in-house
and QMSum (Zhong et al., 2021) datasets,
Query Based Entity Extraction (QBE) in
the in-house dataset and conversation flow
and instruction-following capabilities in MT
Bench (Zheng et al., 2023) dataset. GPT-4o
(OpenAI et al., 2024a) is employed to provide
a score on a scale of 1-5 basis the following
criteria:

(a) Alignment with Prompt: Measures the
degree of alignment of the generated re-
sponse with respect to the prompt.

(b) Completeness: Measures the degree to
which the generated response is complete
with respect to the reference response.

(c) Presence of irrelevant information:
Measures the degree of irrelevant infor-
mation in the generated response with
respect to the reference response.

(d) Adherence to the format: Checks if the
generated response adheres to the desired

response format, if any, as defined in the
prompt.

Higher the score, better is the quality of the
generated response. You may refer the prompt
we used for the Evaluation at Section A.10.
The difference in LLM scores reported in 1
are post standardization to percentages which
is done using the formula:

LLM Score =
LLM Scorex

5
× 100 (1)

Please note that the standardization of LLM
scores is applied solely to calculate and report
the score difference between the responses
generated from the initial prompt and the final
optimized prompt, and is not used during the
optimization process.

2. Rouge-1 F1 Score (Lin, 2004): Measures the
overlap of unigrams (single words) between
the generated response and the reference re-
sponse. Employed as one of the metrics for
the Query Based Entity Extraction (QBE) task
in the in-house dataset, it provides a straight-
forward measure of comparing entity value
similarity based on word matching.

A.7 Implementation Details for Experiments
1. Experimental Setup: We conducted experi-

ments using three datasets:

(a) In-house Dataset: As described in Sec-
tion A.2, we utilized a curated dataset of
human annotations for contact-center in-
teractions. A random sample of 10 data
points was used for training, while evalu-
ation was performed on 100 data points
per prompt.

(b) QMSum Dataset: A similar experimen-
tal setup was followed, with 10 data
points for training and 100 data points
for evaluation per prompt.

(c) MT Bench Dataset: This dataset lacks
input context. For models supporting
system prompts, we tuned the system
prompt, while for models like Flan-T5-
3B that lack explicit system prompt sup-
port, we optimized a prefix prompt ap-
pended to the user prompt.

Evaluation was conducted on the final opti-
mized prompt, defined as either the last iter-
ation’s prompt or an intermediate one when
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early stopping occurred. Scores reported in
Table 1 are averages across multiple prompts.

2. Hyperparameters for PROPEL:

(a) Judge and Optimizer LLM: GPT-4
(b) PROPEL (Self): Responder LLM

served as Judge and Optimizer
(c) Number of Iterations: Up to 10
(d) Temperature for Judge and Optimizer

LLM: 1.00
(e) Temperature for Responder LLM:

0.01
(f) Score Threshold for Early Stopping:

4.5
(g) State History Size: 10
(h) Training Dataset Size: 10 samples

3. Key Implementation Details for PROPEL:

• Meta-Prompts: Carefully crafted
prompts guide each LLM role to ensure
consistency and focus.

• Stopping Criteria: The process runs for
a set number of maximum iterations or
till the score exceeds a set score thresh-
old.

• History Size: We define a fixed size
of history to be maintained in the State
which is used by the Optimizer LLM for
prompt refinement.

• Task-Specific Adaptation: Prompts are
fine-tuned based on the task and model
specific nuances captured via Expert
Priors.

4. Baseline Results and Hyperparameters:
For baseline comparisons, we’ve adapted the
codebases provided by the respective authors
to generate results. The hyperparameter set-
tings for the baselines are adopted directly
from the corresponding papers or their pub-
licly available codebases, where applicable,
and are as follows:

(a) OPRO:
i. Optimizer LLM: GPT-4

ii. Objective Function Evaluator:
GPT-4

iii. Number of Iterations: 10
iv. Temperature for Evaluator and

Optimizer LLM: 1.00
v. Training Dataset Size: 10 samples

vi. Number of prompts generated per
iteration: 1.00

(b) APO:
i. Optimizer LLM: GPT-4

ii. Text Loss Function Calculator and
Gradient Generator: GPT-4

iii. Number of Iterations: 10
iv. Temperature for Gradient Genera-

tor and Optimizer LLM: 1.00
v. Training Dataset Size: 10 samples

vi. Number of prompts generated per
iteration: 1.00

(c) Prompt-Wizard:
i. Evaluator, Mutator and Optimizer

LLM: GPT-4
ii. Number of Iterations: 10

iii. Temperature for Evaluator, Muta-
tor and Optimizer LLM: 1.00

iv. Training Dataset Size: 10 samples
v. Number of mutations per iteration:

1.00
(d) GrIPS:

i. Evaluator LLM: GPT-4
ii. Number of Iterations: 10

iii. Temperature for Evaluator LLM:
1.00

iv. Training Dataset Size: 10 samples
v. Number of Edits per iteration:

3.00
(e) Self-Refine:

i. Evaluator and Optimizer LLM:
Same as Responder LLM

ii. Number of Iterations: 10
iii. Temperature for Evaluator and

Optimizer LLM: 1.00
iv. Training Dataset Size: 10 samples

5. Model Inference:

(a) APIs and Deployment:
i. Llama-3.2-1B/3B, Llama-3-8B,

and Mistral-7B: Amazon Bedrock
APIs

ii. GPT-4: OpenAI API
iii. Flan-T5-3B: Internally deployed on

an AWS EC2 instance with an
NVIDIA A10G GPU (24 GB GPU
memory).

(b) Inference Strategy: For all models
except Flan-T5-3B, inference was con-
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ducted in one pass. For Flan-T5-3B, hi-
erarchical processing was employed for
input contexts exceeding 1200 tokens. In-
put contexts were segmented into 1200-
token chunks, processed independently
and in parallel, with segment-level re-
sponses summarized to produce the final
output.

6. Infrastructure: Experiments were conducted
on an AWS p4de.24xlarge instance equipped
with eight GPUs, each with 80 GB of memory.

7. Expert Priors: We incorporated expert priors
into the prompt optimization process to guide
the Optimizer LLM. The steps involved are as
follows:

(a) Mechanism for deriving prompt prin-
ciples as priors: Prompt principles
compile best practices for crafting high-
quality prompts for LLMs, adapted from
works such as (Bsharat et al., 2024) and
(Chen et al., 2024), as well as from model
documentation specifying LLM prompt-
ing best practices. You may refer to Ta-
bles 6 and 7 for the compiled principles.

(b) Dataset for model evaluation across
prompt principles: We utilized the prior
identification dataset containing 10 data
points.

(c) Tasks for evaluation: Summarization,
Entity Extraction and Multi-turn Chat.

(d) Transformation of initial prompts for
each principle: We provide the initial
prompt along with a principle to GPT-4
(Optimizer LLM), requesting it to trans-
form the prompt based on the principle.

(e) Evaluation of transformed prompts:
The transformed prompts are used to
prompt the Responder LLM to generate
responses for the 10 data points per task.
We then evaluate these responses by feed-
ing the input context, initial prompt, and
responses into the Judge LLM to obtain
scores (1–5) for each data point.

(f) Aggregation of evaluation scores:
Scores are standardized to percentages,
and the standardized scores for the 10
data points are averaged to obtain the ag-
gregated score for each prompt principle
and task.

(g) Definition of easy and hard principles:
Principles with aggregated scores above
70% are considered easy, while those
with scores below 50% are considered
hard.

(h) Handling Cases Where All or No Prin-
ciples Score Above 70%: If no principle
achieves a score above 70%, or all do, we
calculate the z-score for each principle’s
aggregated score, where z = x−µ

σ , with
x as the principle’s score, µ as the mean
of all aggregated scores, and σ as the
standard deviation. Easy principles are
those with z > 1, and hard principles
have z < −1.

(i) Use of evaluation scores to convert
principles into rules for the Optimizer
LLM: Easy and hard principles are
encoded as ‘Avoidance’ and ‘Empha-
sis’ rules in the Optimizer LLM’s meta-
prompt. We instruct the Optimizer LLM
to apply principles from the ‘Emphasis’
rules and avoid transformations based on
the ‘Avoidance’ rules.
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# Principle Principle

1
Direct Instruction: A straightforward prompt that directly asks for information or a
specific type of response.

2
Chain-of-Thought (CoT): Use phrases like ‘think step by step’ to encourage the model
to break down the reasoning or solution process into step-by-step explanations.

3
Few-Shot Prompting: Provide a few examples of response within the prompt to guide
the model on how to respond to align with format specified in the initial prompt.

4
Instruction-Based Prompting: Specify detailed instructions on how to answer for
clarity.

5
Evidence-Backed Responses: Require the model to support its answers with citations,
references, or factual evidence to enhance credibility and accuracy.

6
Meta-Prompting: Ask the model to describe or discuss its thought process before
answering, to encourage a higher level of analysis.

7
Self-Consistency Prompting: Request multiple outputs for the same prompt and chooses
the most consistent or common answer, useful for increasing reliability.

8
Role-Play Prompting: Set the model in a specific role or persona (e.g., “Imagine you
are a doctor”) to align the response style with the desired expertise or perspective.

9
Contextual Priming: Provide background information or setting details before asking
the question, helping the model generate contextually aware responses.

10
Few-Shot Chain-of-Thought (Few-Shot CoT): Combine few-shot and CoT by providing
multiple examples with step-by-step reasoning to improve performance on complex tasks.

11
Task-Decomposition Prompting: Break a large problem into smaller, manageable sub-
tasks and asks the model to tackle each individually.

12
Interactive Prompting: Use a conversational, back-and-forth approach where each
prompt builds on previous responses to refine the answer incrementally.

13 One-Line Rewrite: Rewrite the prompt in a single sentence.
14 Concise Rewrite: Rewrite the prompt in under three sentences.
15 Question Format: Rewrite the prompt as a question.
16 Sub-Question Format: Rewrite the prompt as multiple sub-questions.
17 Simplified Language: Rewrite the prompt using plain and easy-to-understand words.
18 High-Level Rewrite: Rewrite the prompt at a high level, removing specific task details.

19
Detailed Rewrite: Expand the prompt with detailed instructions, adding relevant clarifi-
cations if needed.

20
Beginner-Friendly Rewrite: Rewrite the prompt so that it is easy for a beginner to
understand.

21
Expert-Level Rewrite: Rewrite the prompt for an expert audience, using technical
terminology and assumptions based on prior knowledge.

22
Penalty Enforcement: Explicitly state that the LLM will be penalized if it fails to follow
the instructions.

23
Affirmative Directives: Use positive instructions such as "Do this," while avoiding
negative phrasing like "Don’t do this."

24
Explicit Task Definition: Clearly specify the task using direct phrasing like "Your task
is to...".

25
Incentive Statement: Add an incentive message such as "I’m going to tip $XXX for a
better solution!"

Table 6: Overview of 50 prompt principles used to define expert priors.
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# Principle Principle

26
Clarity-Seeking Prompts: Use prompts like "Explain [topic] in simple terms," "Explain
to me like I’m 11 years old," or "Explain to me as if I’m a beginner in [field]" to enhance
understanding.

27
Polite Wording: Add phrases like "please," "if you don’t mind," "thank you," or "I would
like to" to make the prompt more courteous.

28
Emphasis Through Repetition: Repeat a specific word or phrase multiple times within
a prompt to highlight its importance.

29
Context Reinforcement: Explicitly mention the task’s context if it is missing in the
prompt.

30 XML Tagging: Wrap the instruction inside XML tags.

31
Least-to-Most Prompting: Start with simpler questions and progressively move to more
complex ones to help the model build up to a solution.

32
Step-by-Step Prompting: Request responses in a structured format, using numbered
steps to improve clarity for multi-part answers.

33
Refinement Prompting: After an initial response, ask the model to revise or improve its
answer for better quality.

34
Scaffolded Prompting: Guide the model through problem-solving by providing struc-
tured questions or "scaffolds" to address each part of a complex task.

35
Reflective Prompting: Prompt the model to review and reflect on its initial answer,
considering alternative perspectives or implications.

36
Counterfactual Prompting: Encourage the model to explore "what if" scenarios or
hypothetical situations for creative or predictive tasks.

37
Correction Prompting: After an initial response, instruct the model to identify and
correct any mistakes for self-assessment.

38
Multi-Turn Prompting: Build answers iteratively over multiple interactions, refining
each aspect progressively.

39
Summarization Prompting: Request a summary of information to condense large text
blocks or extract key points.

40
Verification Prompting: Ask the model to verify or double-check its response for
accuracy and reliability.

41 Paragraph Rewrite: Rewrite the prompt in paragraph format.
42 Bullet Point Rewrite: Rewrite the prompt as a list of bullet points.
43 Bias Introduction: Guide the model toward a specific viewpoint in its response.
44 Past Tense Rewrite: Rewrite the prompt using past tense.
45 Present Tense Rewrite: Rewrite the prompt using present tense.

46
Explicit Constraint Definition: Clearly specify all constraints in the prompt, such as
word limits, required exclusions, formatting rules, or response structure, to ensure the
model adheres to strict guidelines.

47 Positive Tone Rewrite: Rewrite the prompt in an optimistic and constructive manner.

48
Key Entity Extraction: Ensure that important entities like names, numbers, dates, and
locations are accurately captured and embedded in the response.

49
Empathetic Tone Rewrite: Rewrite the prompt in a compassionate and understanding
tone.

50
Open-Ended Prompting: Reword the prompt to encourage the model to generate a
response that extends naturally.

Table 7: (Continuation) Overview of 50 prompt principles used to define expert priors.
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A.8 Meta Prompts
This section presents the prompts used to guide each LLM role.

Judge LLM Prompt
You are provided with an input context, initial prompt, current prompt, a response
generated based on the context and current prompt, a reference response and a
scoring rubric. Your task is to evaluate the quality of the response according
to the initial prompt.
Assign an integer score between 1 and 5 (higher the score, better the response

quality) and identify the reasons why the prompt could have gotten these responses
wrong.

Evaluate the response using the following criteria: 1. Alignment with the
prompt: Does the response address the instruction appropriately? 2. Completeness:
Is all necessary information included? 3. Presence of irrelevant information:
Does the response stay focused on the task? 4. Adherence to the format: Does the
response follow the structure specified in the prompt?
Output Format: Score: [1-5] Reason: [Feedback on prompt]

Feedback Summary Prompt
You are provided with feedback responses for multiple data points. Your task is
to summarize the key points of the feedback and calculate the total score by
averaging the scores across all data points.
Ensure the summary highlights any recurring themes of weaknesses identified in

the feedback.
Output Format: Average Score: [Average of all scores] Feedback Summary:

[Summarised Feedback]

Optimizer LLM Prompt
You are provided with a prompt, along with the history of prompt, feedback and
scores, as well as a set of rules for constructing prompt.
Generate an optimized version of the given prompt by applying the principles

from the Emphasis Rules and avoiding those from the Avoidance Rules. The Emphasis
Rules are listed in descending order of their aggregated score (higher-priority
rules first), while the Avoidance Rules are listed in ascending order of their
aggregated score (lower-priority rules first). Ensure that the revised prompt
improves response quality while staying true to the original intent.
Instructions: 1. Analyze the feedback and scores to identify areas for

improvement in prompt. 2. Analyze the prompt and scores to find the patterns
in the best scoring prompt. 3. Using the analysis, find the suitable rules for
prompt generation, incorporating the emphasis rules and avoiding the avoidance
rules. 4. Maintain alignment with the original prompt’s intent. 5. Generate only
the optimized prompt. Do not include any additional text, such as openings like
“The optimized prompt is” or endings.

History of Prompt, Feedback and Scores: {state}
Rules: {rules}

Responder LLM Prompt
You are provided with an input context and a prompt. Your task is to generate
response based on the input context and the prompt.
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A.9 Final Prompts
This section presents the final prompts generated by each baseline approach and our proposed method
from the given initial prompt for the Responder LLM - Llama 3.2 1B.

Initial Prompt
Summarize the agent’s performance, focusing on positive attributes or skills that were shown through-
out their engagement. The summary should include examination on professionalism and adaptability
in communication, problem-solving techniques, emotional intelligence and active listening skills,
strict adherence to guidelines, and ability to communicate clearly. The summary should follow these
formatting rules: 1. Begin each point with a verb, limited to one or two sentences for each point. 2.
Maximum of five key points that holistically cover the agent’s engagement. 3. Each point must be
distinct and offer unique, context-related observations.

Self-Refine
Critique the agent’s performance, focusing on professionalism and adaptability in communication,
problem-solving techniques, emotional intelligence and active listening skills, strict adherence to
guidelines, and ability to communicate clearly. Key observations include strict adherence to guide-
lines and clear guidelines were missing in initial feedback responses. The lack of clear guidelines has
led to inaccurate responses due to a lack of professionalism, adaptability, and communication style.

GrIPS
Provide a summary of the agent’s performance, emphasising any strong abilities displayed during the
interaction. Examining professionalism and flexibility in communication, problem-solving, emotional
intelligence and active listening abilities, rigorous adherence to rules, and clear communication
skills should all be included in the summary. These formatting guidelines should be adhered to by
the summary: 1. Use a verb to introduce each point. 2. A maximum of five essential items that
comprehensively address the agent’s involvement. 3. Every point needs to be distinctive and provide
observations that are relevant to the context.

Prompt-Wizard
How might you devise a positive-oriented assessment on the agent’s performance, concentrating
on skills or virtues demonstrated during their engagement? Contemplate dimensions such as their
professional adaptability in communication, problem-solving strategies, emotional intelligence,
meticulous observance of guidelines, and clarity of communication. Please adhere to the following
formatting rules: 1. Each critique should start with an action verb, and must be condensed to one or
two sentences. 2. Restrict your assessment to precisely five key themes that comprehensively review
the agent’s engagement. 3. Every theme should be unique, presenting context-specific insights.
Assure that your critique is backed by tangible evidence, refraining from suppositions or guesswork.
Where can you fetch such evidence from the agent’s performance?

APO
<START> Craft a succinct compliment for an agent focusing on their performance in terms of:
professionalism, flexibility in communication style, problem-solving strategy, empathy, and clarity.
Use one sentence for each quality, each starting with a verb. <END>
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OPRO
<INS>Evaluate the agent’s interactions, pinpointing positive qualities or abilities showcased. Your
evaluation should touch on professional communication and adaptability, efficiency in problem-
solving, emotional intelligence, active listening, adherence to protocols, and clear articulation. When
crafting the review: 1. Begin each remark with an active verb, sustaining one or two sentences for
each point. 2. Integrate a maximum of five pertinent points that broadly assess the agent’s interaction.
3. Verify each point is unique and imparts distinct, scenario-specific insights. </INS>

PROPEL (Self)
Based on the provided feedback and rules, here is an optimized version of the given prompt:

1. **Critique the agent’s performance, focusing on positive attributes or skills that were shown
throughout their engagement. The critique should include examination on professionalism, adapt-
ability in communication, problem-solving techniques, emotional intelligence and active listening
skills, strict adherence to guidelines, and ability to communicate clearly. The critique should follow
these formatting rules: 1. Begin each critique with a verb, limited to one or two sentences for each
point. 2. Maximum of five key points that holistically cover the agent’s engagement. 3. Each point
must be distinct and offer unique, context-related observations.**

2. **Develop a comprehensive customer service strategy that prioritizes personalization, technical
expertise, and effective communication, while focusing on emotional intelligence and active listening
skills in agent interactions, adhering to strict guidelines and protocols, and providing clear and
concise instructions to resolve issues efficiently and effectively.**

3. **Ensure the comprehensive customer service strategy aligns with the intent and context of the
task, while avoiding unnecessary phrases or language that may not be relevant to the task.**

PROPEL
Identify and describe up to five positive actions displayed by a customer service agent in a hypothetical
interaction. These actions should encompass the following key performance areas:

1. Professional language and tone: Evaluate the agent’s selection of words, and how the tone was
adapted to fit the situation.

2. Effective problem-solving: Inspect the agent’s logical reasoning, prioritization ability, and used
proactive strategies.

3. Active listening and empathy: Identify instances where the agent showed understanding,
validated emotions, or gave personalized responses.

4. Procedure compliance: Assess if the agent adhered to protocols yet exhibited flexibility when
needed.

5. Clear communication: Judge how clearly the agent communicated, and check if the explanations
provided were suitable for the customer.
Required output format:

1. Commence each point with an action verb, framing the agent’s action in one to two precise
sentences.

2. Your points should collectively provide a thorough coverage of the interaction.
3. Keep your insights tailored to the specific scenario, making sure to avoid repeating information.

Penalties will be imposed in cases of deviation from prescribed instructions. Utilize simplistic
language and strictly observe the outlined format. For instance, a point could be: "Providing
reassurance, the agent skillfully varied his tone, effectively solved the problem by prioritizing steps,
expressed genuine empathy by acknowledging the customer’s frustration, adhered to protocols with
room for flexibility, and conveyed clear, easy-to-understand explanations."
Strive to provide a detailed critique of the agent’s performance. Remember to highlight unique
instances that demonstrate the agent’s proficiency across different areas.
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A.10 Example Run
This section presents an example run of PROPEL, detailing the inputs, meta-prompts, and corresponding
responses for each component in the in-house dataset for query-based summarization using Llama 3.2 1B.

Input Context - In-house Dataseta

agent: hello thank you for calling xyz airlines how can i assist you today
customer: hi i need to change my flight booking
agent: sure i can help with that can you please provide me with your booking
reference number
customer: yes its xyz12345
agent: thank you let me pull up your booking details one moment please
customer: sure
agent: i see that you are booked on flight 456 from new york to los angeles on
november 15th what changes would you like to make

(. . . truncated . . .)
aExample transcript generated using GPT-4o.

Initial Prompt
Summarize the agent’s performance, focusing on positive attributes or skills
that were shown throughout their engagement. The summary should include
examination on professionalism and adaptability in communication, problem-solving
techniques, emotional intelligence and active listening skills, strict adherence
to guidelines, and ability to communicate clearly. The summary should follow
these formatting rules: 1. Begin each point with a verb, limited to one or
two sentences for each point. 2. Maximum of five key points that holistically
cover the agent’s engagement. 3. Each point must be distinct and offer unique,
context-related observations.

Responder LLM [Response]
1. **Professionalism**: The agent demonstrated professionalism throughout the

conversation, addressing the customer by their name, using formal language, and
maintaining a calm demeanor.
2. **Adaptability**: The agent adapted to the customer’s questions and concerns,

providing clear and concise explanations, and addressing potential issues.
3. **Emotional intelligence**: The agent demonstrated emotional intelligence

by acknowledging the customer’s concerns, empathizing with their situation, and
providing reassurance.

(. . . truncated . . .)

Reference Response
1. Demonstrated adaptability and professionalism in communication: The agent

demonstrated adaptability and professionalism in communication by using phrases
such as "I’m sorry, I didn’t get the city" and "I’m not an expert, but I can try
to find out more about your situation." This shows that the agent is willing to
listen and learn from the customer.
2. Employed effective problem-solving techniques: The agent employed effective

problem-solving techniques by asking the customer to explain the issue and then
providing a solution. For example, when the customer mentioned that they were
trying to pay off their plan, the agent suggested that they could use the plan
resolution program.
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Judge LLM [Meta-Prompt]
You are provided with an input context, initial prompt, current prompt, a response
generated based on the context and current prompt, a reference response and a
scoring rubric. Your task is to evaluate the quality of the response according
to the initial prompt.
Assign an integer score between 1 and 5 (higher the score, better the response

quality) and identify the reasons why the prompt could have gotten these responses
wrong.

Evaluate the response using the following criteria: 1. Alignment with the
prompt: Does the response address the instruction appropriately? 2. Completeness:
Is all necessary information included? 3. Presence of irrelevant information:
Does the response stay focused on the task? 4. Adherence to the format: Does the
response follow the structure specified in the prompt?
Output Format: Score: [1-5] Reason: [Feedback on prompt]
Initial Prompt: Summarize the agent’s performance, focusing on positive

attributes or skills that were shown throughout their engagement. (...)
Response: 1. **Professionalism**: The agent demonstrated professionalism

throughout the conversation, addressing the customer by their name, using formal
language, and maintaining a calm (...)
Context: agent: hello thank you for calling xyz airlines how can i assist you

today. customer: hi i need to change my(...)

Judge LLM [Response]
Score: 2
Reason: The response does not adhere to the format specified in the prompt.

The critique was supposed to be limited to five key points, but the response
includes ten points. Additionally, the response includes points that are not
directly related to the transcript provided, such as "Technical skills" and
"Time management".

(. . . truncated . . .)

Feedback Summary [Meta-Prompt]
You are provided with feedback responses for multiple data points. Your task is
to summarize the key points of the feedback and calculate the total score by
averaging the scores across all data points.
Ensure the summary highlights any recurring themes of weaknesses identified in
the feedback.
Output Format: Average Score: [Average of all scores] Feedback Summary:

[Summarised Feedback]
Feedback for Context 1: Score: 2 Reason: The response does align with the

prompt (...)
Feedback for Context 2: Score: 1 Reason: The response does not adhere to the

prompt (...)
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Feedback Summary [Response]
Average Score: 2.3
Feedback Summary: The strengths include a generally good summary of the agent’s

performance, covering relevant aspects such as professionalism, adaptability
and, clear communication. However, the recurring theme of weakness throughout
the feedback is the failure to adhere strictly to the prompts’ instructions,
particularly exceeding the specified limit of five key points, which appears in
all the feedback but one.

(. . . truncated . . .)

Expert Priors
Emphasis Rules: P1. Direct Instruction: A straightforward prompt that directly

asks for information or a specific type of response. P23. Affirmative Directives:
Use positive instructions such as "Do this," while avoiding negative phrasing
like "Don’t do this."

(. . . truncated . . .)
Avoidance Rules: P18. High-Level Rewrite: Rewrite the prompt at a high level,

removing specific task details. P11. Task-Decomposition Prompting: Break a
large problem into smaller, manageable sub-tasks and asks the model to tackle
each individually. P21. Expert-Level Rewrite: Rewrite the prompt for an expert
audience, using technical terminology and assumptions based on prior knowledge.

(. . . truncated . . .)

Optimizer LLM [Meta-Prompt]
You are provided with a prompt, along with the history of prompt, feedback and

scores, as well as a set of rules for constructing prompt.
Generate an optimized version of the given prompt by applying the principles

from the Emphasis Rules and avoiding those from the Avoidance Rules. The Emphasis
Rules are listed in descending order of their aggregated score (higher-priority
rules first), while the Avoidance Rules are listed in ascending order of their
aggregated score (lower-priority rules first). Ensure that the revised prompt
improves response quality while staying true to the original intent.
Instructions: 1. Analyze the feedback and scores to identify areas for

improvement in prompt. 2. Analyze the prompt and scores to find the patterns
in the best scoring prompt. 3. Using the analysis, find the suitable rules for
prompt generation, incorporating the emphasis rules and avoiding the avoidance
rules. 4. Maintain alignment with the original prompt’s intent. 5. Generate only
the optimized prompt. Do not include any additional text, such as openings like
“The optimized prompt is” or endings.

Initial Prompt: Summarize the agent’s performance, focusing on positive
attributes or skills that were shown throughout their engagement. (...)
History of Prompt, Feedback and Scores: Iteration 0: Prompt: Summarize the

agent’s performance, focusing on positive attributes or skills that were shown
throughout their engagement. (...) Score: 2.3 Feedback: The strengths include a
generally good summary of the agent’s performance, (...)
Emphasis Rules: P1. Direct Instruction: A straightforward prompt that directly

asks for information or a specific type of response. (...)
Avoidance Rules: P18. High-Level Rewrite: Rewrite the prompt at a high level,

removing specific task details. (...)
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Optimized Prompt
Identify and describe up to five positive actions displayed by a customer

service agent in the interaction. These actions should encompass the following
key performance areas:
1. Professional language and tone: Evaluate the agent’s selection of words,

and how the tone was adapted to fit the situation. 2. Effective problem-solving:
Inspect the agent’s logical reasoning, prioritization ability, and used proactive
strategies. (...)
Required output format: 1. Commence each point with an action verb, framing

the agent’s action in one to two precise sentences. 2. Your points should
collectively provide a thorough coverage of the interaction. (...)

Responder LLM [Optimized Response]
1. *Adapting tone and language to fit the situation*: The agent adjusted their

tone and language to meet the customer’s needs. When the customer had trouble
uploading documents, the agent remained calm and offered alternative solutions,
such as signing the documents electronically.
2. *Proactive problem-solving*: The agent anticipated potential issues, like

the customer’s difficulty with uploading documents, and proactively offered
solutions, such as signing the documents electronically, to ensure a smooth
process.
3. *Empathetic and understanding responses*: The agent showed empathy and

understanding towards the customer’s frustration. When the customer mentioned
trouble with the upload process, the agent acknowledged the issue and offered
assistance, saying "I understand this can be frustrating. Let’s try signing the
documents electronically."

(. . . truncated . . .)

Evaluation [Meta-Prompt]
You are provided with an input context, initial prompt, current prompt, a

response generated based on the context and current prompt, a reference response
and a scoring rubric. Your task is to evaluate the quality of the response
according to the initial prompt.
Assign an integer score between 1 and 5 (higher the score, better the response

quality) and explain the reason for assigning the score.
Evaluate the response using the following criteria: 1. Alignment with the

prompt: Does the response address the instruction appropriately? 2. Completeness:
Is all necessary information included? 3. Presence of irrelevant information:
Does the response stay focused on the task? 4. Adherence to the format: Does the
response follow the structure specified in the prompt?
Output Format: Score: [1-5] Reason: [Explanation]
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A.11 Example - Expert Priors
This section presents example expert priors identified for Responder LLMs in the context of query-based
summarization. These priors represent structured knowledge that guide the prompt optimization, while,
ensuring alignment with task-specific expectations. Emphasis rules are listed in descending order of their
aggregated score, while avoidance rules are listed in ascending order of their aggregated score.

Llama 3.2 1B
Emphasis Rules:

P1. Direct Instruction: A straightforward prompt that directly asks for information or a specific
type of response.

P23. Affirmative Directives: Use positive instructions such as "Do this," while avoiding negative
phrasing like "Don’t do this."

P27. Polite Wording: Add phrases like "please," "if you don’t mind," "thank you," or "I would like
to" to make the prompt more courteous.

P17. Simplified Language: Rewrite the prompt using plain and easy-to-understand words.
P29. Context Reinforcement: Explicitly mention the task’s context if it is missing in the prompt.
P3. Few-Shot Prompting: Provide a few examples of response within the prompt to guide the

model on how to respond to align with format specified in the initial prompt.
Avoidance Rules:

P18. High-Level Rewrite: Rewrite the prompt at a high level, removing specific task details.
P11. Task-Decomposition Prompting: Break a large problem into smaller, manageable sub-tasks

and asks the model to tackle each individually.
P13. One-Line Rewrite: Rewrite the prompt in a single sentence.
P21. Expert-Level Rewrite: Rewrite the prompt for an expert audience, using technical terminology

and assumptions based on prior knowledge.
P22. Penalty Enforcement: Explicitly state that the LLM will be penalized if it fails to follow the

instructions.
P25. Incentive Statement: Add an incentive message such as "I’m going to tip $XXX for a better

solution!"
P26. Clarity-Seeking Prompts: Use prompts like "Explain [topic] in simple terms," "Explain to me

like I’m 11 years old," or "Explain to me as if I’m a beginner in [field]" to enhance understanding.

Llama 3.2 3B
Emphasis Rules:

P1. Direct Instruction: A straightforward prompt that directly asks for information or a specific
type of response.

P3. Few-Shot Prompting: Provide a few examples of response within the prompt to guide the
model on how to respond to align with format specified in the initial prompt.

P17. Simplified Language: Rewrite the prompt using plain and easy-to-understand words.
P19. Detailed Rewrite: Expand the prompt with detailed instructions, adding relevant clarifications

if needed.
P22. Penalty Enforcement: Explicitly state that the LLM will be penalized if it fails to follow the

instructions.
P23. Affirmative Directives: Use positive instructions such as "Do this," while avoiding negative

phrasing like "Don’t do this."
P28. Emphasis Through Repetition: Repeat a specific word or phrase multiple times within a

prompt to highlight its importance.
P29. Context Reinforcement: Explicitly mention the task’s context if it is missing in the prompt.

Avoidance Rules:
P18. High-Level Rewrite: Rewrite the prompt at a high level, removing specific task details.
P11. Task-Decomposition Prompting: Break a large problem into smaller, manageable sub-tasks
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and asks the model to tackle each individually.
P21. Expert-Level Rewrite: Rewrite the prompt for an expert audience, using technical terminology

and assumptions based on prior knowledge.
P13. One-Line Rewrite: Rewrite the prompt in a single sentence.
P25. Incentive Statement: Add an incentive message such as "I’m going to tip $XXX for a better

solution!"
P27. Polite Wording: Add phrases like "please," "if you don’t mind," "thank you," or "I would like

to" to make the prompt more courteous.

Flan-T5
Emphasis Rules:

P15 Question Format: Rewrite the prompt as a question.
P14 Concise Rewrite: Rewrite the prompt in under three sentences.
P20. Beginner-Friendly Rewrite: Rewrite the prompt so that it is easy for a beginner to understand.
P11. Task-Decomposition Prompting: Break a large problem into smaller, manageable sub- tasks

and asks the model to tackle each individually.
P16 Sub-Question Format: Rewrite the prompt as multiple sub-questions.
P17 Simplified Language: Rewrite the prompt using plain and easy-to-understand words.
P18 High-Level Rewrite: Rewrite the prompt at a high level, removing specific task details.
P23. Affirmative Directives: Use positive instructions such as "Do this," while avoiding negative

phrasing like "Don’t do this."
P28. Emphasis Through Repetition: Repeat a specific word or phrase multiple times within a

prompt to highlight its importance.
P13. One-Line Rewrite: Rewrite the prompt in a single sentence.

Avoidance Rules:
P8. Role-Play Prompting: Set the model in a specific role or persona (e.g., “Imagine you are a

doctor”) to align the response style with the desired expertise or perspective.
P19. Detailed Rewrite: Expand the prompt with detailed instructions, adding relevant clarifications

if needed.
P26. Clarity-Seeking Prompts: Use prompts like "Explain [topic] in simple terms," "Explain to me

like I’m 11 years old," or "Explain to me as if I’m a beginner in [field]" to enhance understanding.
P3. Few-Shot Prompting: Provide a few examples of response within the prompt to guide the

model on how to respond to align with format specified in the initial prompt.
P10. Few-Shot Chain-of-Thought (Few-Shot CoT): Combine few-shot and CoT by providing

multiple examples with step-by-step reasoning to improve performance on complex tasks.
P36. Counterfactual Prompting: Encourage the model to explore "what if" scenarios or hypothetical

situations for creative or predictive tasks.
P35. Reflective Prompting: Prompt the model to review and reflect on its initial answer, considering

alternative perspectives or implications.

Mistral 7B
Emphasis Rules:

P30. XML Tagging: Wrap the instruction inside XML tags.
P23. Affirmative Directives: Use positive instructions such as "Do this," while avoiding negative

phrasing like "Don’t do this."
P32. Step-by-Step Prompting: Request responses in a structured format, using numbered steps to

improve clarity for multi-part answers.
P24. Explicit Task Definition: Clearly specify the task using direct phrasing like "Your task is

to...".
P31. Least-to-Most Prompting: Start with simpler questions and progressively move to more

complex ones to help the model build up to a solution.
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P34. Scaffolded Prompting: Guide the model through problem-solving by providing struc- tured
questions or "scaffolds" to address each part of a complex task.

P20. Beginner-Friendly Rewrite: Rewrite the prompt so that it is easy for a beginner to understand.
P42. Bullet Point Rewrite: Rewrite the prompt as a list of bullet point.

Avoidance Rules:
P10. Few-Shot Chain-of-Thought (Few-Shot CoT): Combine few-shot and CoT by providing

multiple examples with step-by-step reasoning to improve performance on complex tasks.
P18. High-Level Rewrite: Rewrite the prompt at a high level, removing specific task details.
P6. Meta-Prompting: Ask the model to describe or discuss its thought process before answering,

to encourage a higher level of analysis.
P8. Role-Play Prompting: Set the model in a specific role or persona (e.g., “Imagine you are a

doctor”) to align the response style with the desired expertise or perspective.
P36. Counterfactual Prompting: Encourage the model to explore "what if" scenarios or hypothetical

situations for creative or predictive tasks.
P38. Multi-Turn Prompting: Build answers iteratively over multiple interactions, refining each

aspect progressively.

Llama 3 8B
Emphasis Rules:

P4. Instruction-Based Prompting: Specify detailed instructions on how to answer for clarity.
P30. XML Tagging: Wrap the instruction inside XML tags.
P44. Past Tense Rewrite: Rewrite the prompt using past tense.
P6. Meta-Prompting: Ask the model to describe or discuss its thought process before answering,

to encourage a higher level of analysis.
P12. Interactive Prompting: Use a conversational, back-and-forth approach where each prompt

builds on previous responses to refine the answer incrementally.
P16. Sub-Question Format: Rewrite the prompt as multiple sub-questions.
P42. Bullet Point Rewrite: Rewrite the prompt as a list of bullet points.
P46. Explicit Constraint Definition: Clearly specify all constraints in the prompt, such as word

limits, required exclusions, formatting rules, or response structure, to ensure the model adheres to
strict guidelines.

P47. Positive Tone Rewrite: Rewrite the prompt in an optimistic and constructive manner.
P3. Few-Shot Prompting: Provide a few examples of response within the prompt to guide the

model on how to respond to align with format specified in the initial prompt.
Avoidance Rules:

P8. Role-Play Prompting: Set the model in a specific role or persona (e.g., “Imagine you are a
doctor”) to align the response style with the desired expertise or perspective.

P13. One-Line Rewrite: Rewrite the prompt in a single sentence.
P18. High-Level Rewrite: Rewrite the prompt at a high level, removing specific task details.
P15. Question Format: Rewrite the prompt as a question.
P19. Detailed Rewrite: Expand the prompt with detailed instructions, adding relevant clarifications

if needed.
P26. Clarity-Seeking Prompts: Use prompts like "Explain [topic] in simple terms," "Explain to me

like I’m 11 years old," or "Explain to me as if I’m a beginner in [field]" to enhance understanding.
P32. Step-by-Step Prompting: Request responses in a structured format, using numbered steps to

improve clarity for multi-part answers.
P35. Reflective Prompting: Prompt the model to review and reflect on its initial answer, considering

alternative perspectives or implications.
P36. Counterfactual Prompting: Encourage the model to explore "what if" scenarios or hypothetical

situations for creative or predictive tasks.
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