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Abstract
This paper presents a innovative approach tailored to the specific characteristics of closed-domain dialogue systems.
Leveraging scenario dialog graphs, our method effectively addresses the challenges posed by highly specialized
fields, where context comprehension is of paramount importance. By modeling dialogues as sequences of transitions
between intents, representing distinct goals or requests, our approach focuses on accurate intent prediction for
generating contextually relevant responses. The study conducts a thorough evaluation, comparing the performance
of state-of-the-art sentence encoders in conjunction with graph-based models across diverse datasets encompassing
both open and closed domains. The results highlight the superiority of our methodology, offering fresh perspectives on
the integration of advanced sentence encoders and graph models for precise and contextually-driven intent prediction
in dialogue systems. Additionally, the use of this approach enhances the transparency of generated output, enabling
a deeper understanding of the reasoning behind system responses. This study significantly advances the field of di-
alogue systems, providing valuable insights into the effectiveness and potential limitations of the proposed approaches.
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1. Introduction

In recent years, dialogue systems have under-
gone a remarkable transformation, revolutioniz-
ing the way humans communicate with comput-
ers and becoming an essential part of our daily
lives (Patlan et al., 2021). These systems, com-
puter programs capable of engaging with humans
in conversational manners and emulating human-
like responses (Burtsev et al., 2018), have gained
widespread adoption (Chen et al., 2017). Their ap-
plications range from virtual assistants to customer
service chatbots, showcasing their versatility.

One of the fundamental tasks in the field of di-
alogue systems is intent prediction (Lang et al.,
2022), which involves the identification of the un-
derlying intention or purpose behind a dialog partici-
pant’s utterance. Precise intent prediction is crucial
as it enables dialogue systems to generate contex-
tually relevant and effective responses during the
ongoing conversation (Goyal et al., 2022).

The surge in popularity of Large Language Mod-
els (LLMs) in dialog systems is noteworthy (Deng
et al., 2023). However, solving the task of intent pre-
diction using them is particularly challenging (He
and Garner, 2023) due to the limitations of LLMs in
grasping context, especially in highly specialized
fields common to closed-domain dialog systems
(Hudeček and Dušek, 2023; Finch et al., 2023).
Their adaptability in such fields is restricted by this
drawback in contextual understanding.

Henceforth, this paper introduces an alternative

approach to constructing dialog systems, employ-
ing scenario dialog graphs to effectively address
these challenges (Nagovitsin and Kuznetsov, 2022).
This approach also resolves another concern re-
lated to LLMs: the transparency of their gener-
ated output (Wu et al., 2023). With scenario dialog
graphs, it becomes possible to understand the rea-
soning behind a specific response generated by
the dialog system.

By leveraging on the structured nature of closed-
domain dialog systems, we represent dialogs as
sequences of transitions between intents (Theodor-
idis, 2015), with each intent signifying a goal or
request from the dialog participants. This makes
accurately predicting the intent of the next state-
ment crucial. Achieving high precision in this task
empowers dialogue systems to consistently pro-
duce contextually pertinent and effective responses
throughout the ongoing conversation (Goyal et al.,
2022).

In light of this, our study contributes significantly
to the advancement of dialog systems. We intro-
duce an innovative methodology, harnessing sen-
tence encoders and dialog structure to achieve
precise and contextually-driven intent prediction.
Our evaluation includes a comprehensive analy-
sis of various state-of-the-art sentence encoders,
assessing their performance in conjunction with
graph-based models across diverse datasets en-
compassing both open and closed domains.

The contributions of our study is as follows: (i)
the introduction of novel methodologies integrating
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advanced sentence encoders and graph models
for accurate prediction in English-language dialog
systems, (ii) an overview of various graph-based
approaches that can be used to address challenges
in dialogue graphs, and (iii) a meticulous analysis
of the results, offering critical insights into the effec-
tiveness and potential limitations of the proposed
approaches.

All code is available here
(https://github.com/LadaNikitina/Dialog-Graph-
Intent-Prediction).

2. Related Work

2.1. Generation of Unsupervised Intents

Precise intent detection is a critical component of
goal-oriented dialogue systems, significantly en-
hancing the accuracy of response selection models
(Larson and Leach, 2022; Cai and Chen, 2020). Its
primary aim is to predict the intent behind the user’s
next utterance based on the user’s current input
(Fernández-Martínez et al., 2021).

One of the main challenges in this field arises
from the absence of intent annotations in many dia-
logue datasets. The manual markup process is not
only labor-intensive but also resource-demanding.
To address this, extensive research has been con-
ducted on the formation of unsupervised clusters
using clustering techniques (Du et al., 2023). These
clusters represent the intents of the dialogue partic-
ipants and serve as foundational elements in con-
structing deep learning models that predict the next
intent and underlie the scenario architecture of the
dialogue system. Among the various methods, the
co-clustering technique (Guigourès, 2013), based
on the MODL approach (Bouraoui and Lemaire,
2017), has emerged as a prominent technique
for utterance clustering. It effectively utilizes a
text/word adjacency matrix to define clusters. Ad-
ditionally, alternative clustering approaches have
been explored, including the application of K-means
(Steinley, 2006) or HDBSCAN (Costa et al., 2023).

However, current clustering algorithms often
struggle to capture contextual nuances, a critical
aspect in understanding dialogue structures. This
limitation prompted the development of a two-stage
clustering algorithm (Nagovitsin and Kuznetsov,
2022), which enables the creation of clusters com-
prising semantically similar dialogue replicas occur-
ring within comparable contexts.

Moreover, the selection of an appropriate sen-
tence encoder for generating vector representa-
tions of dialogue replicas is a crucial task. It plays
a pivotal role in the subsequent clustering process.
The ability to predict the intent of the next utterance
and form high-quality clusters is intricately linked
to the semantic proximity of replicas, the nuanced

capacity to encapsulate context within vector repre-
sentations, and the overall quality of replica embed-
dings (Zhang et al., 2020). Specifically, the choice
of a particular sentence encoder, among the mul-
titude available (Muennighoff et al., 2022), exerts
a substantial impact on the final intent prediction
outcome (see Section 5.3 in the Experiments).

2.2. Graph-Based Intent Prediction

A distinctive characteristic of goal-oriented dia-
logue systems is their inherent regular structure. In
essence, dialogues can be viewed as a sequence
of intents expressed by participants, where each
intent signifies the speaker’s request or objective
(Nagovitsin and Kuznetsov, 2022). Thus, the regu-
lar structure of dialogue systems enables the con-
struction of a scenario dialogue graph based on
a given set of dialogues (Bouraoui et al., 2019).
Within this graph, vertices represent states within
the dialogue system, while edges denote transitions
between these states. Each state corresponds to
specific intents of the dialogue participants. This
representation allows us to frame the challenge of
predicting the next utterance’s intent as a link pre-
diction problem (Wang et al., 2021; Zamini et al.,
2022) within the scenario graph.

The integration of graph models signifies an
emerging trend in the field of dialogue systems,
enabling the potential of graph structures to en-
hance various aspects of dialog system functional-
ity (He et al., 2023). Currently, several studies are
dedicated to addressing the challenge of predict-
ing the next intent in diverse domains, leveraging
knowledge graphs and graph models as founda-
tional tools (Arčan et al., 2023; Yang et al., 2020).
Among these, a prevalent approach involves the
use of Graph Neural Networks (GNNs) (Zhou et al.,
2018), renowned for their ability to capture depen-
dencies between vertices.

Graph methods can be categorized into homo-
geneous and heterogeneous approaches. Homo-
geneous methods, exemplified by Graph Convolu-
tional Networks (GCNs) (Zhang et al., 2019; Zhou
et al., 2023) and Graph Attention Networks (GATs)
(Veličković et al., 2017), are noted for their effec-
tiveness in modeling interdependencies among ver-
tices. Meanwhile, handling heterogeneous graphs
requires specialized techniques such as Hetero-
geneous Graph Attention Networks (HANs) and
Graph Transformer Networks (GTNs) (Yun et al.,
2019, 2022). HANs extend the GAT architecture
to accommodate diverse data types, while GTNs
identify useful links between vertices to generate
new graph structures in an end-to-end manner.
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Figure 1: A two-stage algorithm for clustering dialogue utterances based on their embeddings. The
first stage uses K-means clustering to group similar embeddings together. In the second stage, context
embeddings are generated for each cluster using the cluster2vec method. This algorithm forms vertices
in a multipartite dialogue graph.

3. Methodology

3.1. Dialogue Graph Auto Construction
As mentioned earlier, addressing the challenge of
predicting intent necessitates the development of a
scenario dialogue graph. This graph should display
the distinct roles of the dialogue participants, along
with their corresponding behaviors and interactions.
For instance, closed dialogue systems typically dif-
ferentiate between two roles: user and manager.
Within a scenario dialogue graph, each node signi-
fies a dialogue state or the intent of a participant at
a specific moment in the conversation. It is imper-
ative to avoid using the same vertices for intents
across different participant roles, as they are driven
by distinct objectives. To tackle this issue, we pro-
pose the concept of a multipartite dialogue graph,
where each partite represents a specific role in the
conversation. Nevertheless, open domain dialogue
systems commonly involve only one role — the role
of a dialogue participant. In such cases, employ-
ing a single-partite dialogue graph is considered
acceptable.

To begin, the vertices of the dialogue graph
should be generated based on the vector repre-
sentations of the dialogue utterances within the
dataset being utilized. In this study, we utilize em-
beddings derived from the DistilRoBERTa sentence
encoder (Sanh et al., 2019). The selection of Dis-
tilRoBERTa is justified by a comparative analysis
of state-of-the-art sentence encoder architectures
(refer to Section 5.3 in the Experiments).

The construction of vertices for the multipartite
dialog graph involves a two-stage clustering algo-
rithm (refer to Figure 1). In the initial stage, repli-
cas from the dialog dataset are clustered using an
implementation of the K-means method from the
FAISS (Johnson et al., 2019) library. This specific
implementation of the K-means algorithm (Steinley,
2006) was selected for its efficiency on large dialog
datasets compared to other K-means implemen-
tations. Consequently, clusters comprising dialog

utterances with identical semantics and similar vec-
tor representations are established.

Moving to the second stage of clustering, context
vector representations are generated for each of
the clusters from the first stage, utilizing the Clus-
ter2Vec method. The Cluster2Vec process con-
sists of the following: every dialog is interpreted
as a sequence of cluster numbers to which the re-
spective dialog utterances belong. Subsequently,
Word2Vec (Mikolov et al., 2013) training is con-
ducted based on the obtained sequences, where
the numbers representing cluster identifiers play the
role of "words". This Cluster2Vec approach yields
vector representations of the clusters from the initial
clustering stage, encapsulating information about
the context in which replicas from each cluster oc-
cur in dialogs. These context vector representa-
tions, along with an implementation of the K-means
method from the FAISS library, are then employed
to merge the clusters from the first stage into final
clusters. These final clusters subsequently serve
as the vertices of the multipartite dialog graph. In
this manner, the nodes of the multipartite scenario
dialog graph are ultimately established, encom-
passing dialog utterances with matching semantics
that occur in similar contexts within dialogs.

3.2. Data preprocessing

The data preprocessing stage encompasses the
preparation of a dialog dataset for training models
to predict intents within dialogs. To forecast the next
intent, information from the last m utterances of a
dialog is utilized. To achieve this, the data is readied
employing a sliding window method of length m
over the entire dialog. In instances where the dialog
history is shorter than m at the time of prediction, a
null node is introduced. This node encompasses a
single utterance with a zero vector representation,
signifying the absence of an utterance in the dialog
history.

Each fragment of dialog extracted from this pro-
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Figure 2: Representation of a dialog fragment as a subgraph of a multipartite dialog graph. The vertices
in the subgraph correspond to the vertices of the multipartite graph containing statements of the dialog
fragment.

cess is depicted as a directed subgraph within a
multipartite dialog graph (see Figure 2). The ver-
tices of this subgraph align with those of the multi-
partite dialog graph, housing the statements from
the dialog fragment on which the subgraph is based.
Subsequently, we generate the requisite features
for both the vertices and edges of each subgraph.

4. Proposed approaches

Figure 3: Prediction the intent of the next utterance
in a dialogue by utilizing an intent predictor on the
dialogue subgraph, along with vertex and edge
features.

In this section, we provide a comprehensive
overview of the approaches that have been com-
pared within the context of addressing the next-
intent prediction task. Each approach shares a
common objective: predicting the intent of the next
dialogue utterance based on the dialog subgraph.
This is similar to predicting a vertex in a multipar-
tite dialog graph, where each vertex represents a
distinct intent (see Figure 3).

Mathematically, the problem statement can be
articulated as follows: given a dialog D =
{u1, u2, ..., ut}, where t represents the number of
utterances in the dialog and ui denotes the i-
th utterance within the dialog. For every dialog
utterance ui, the corresponding vertex vi denot-
ing the intent of the utterance is known. Conse-

quently, the dialog is represented as a directed
subgraph of a multipartite dialog graph G = (V,E),
where V = unique({v1, v2, ...., vt}) constitutes the
set of vertices within the subgraph, and E =
{(v1, v2), (v2, v3), ..., (vt−1, vt)} comprises the set
of edges in the subgraph. The goal of each of the
proposed approaches is to predict the speaker’s
intent, which can be expressed mathematically
as Intent(G) = c∗. This prediction is performed
at each step in a goal-oriented dialogue system,
where c∗ belongs to a predefined set of N classes
of intents C = {c1, c2, ..., cN} and G is a directed
subgraph of a multipartite dialog graph. In sce-
narios where we need to predict the top-k most
probable intents of the speaker, Intent(G) = C∗

k =

{c∗1, c∗2, ..., c∗k}, where c∗j ∈ C. Also, C̃ denotes all
vertices in the multipartite graph with the intents of
the speaker to which the next replica in the dialog
belongs. These vertices also serve as the classes
used to train models for the intent classification
task.

4.1. Markov Chain

As a first basic approach, we applied the Markov
chain method. This method calculates transition
probabilities from each vertex in a scenario dialog
graph to vertices in other partitions within a multipar-
tite dialog graph using a dialog dataset. In doing so,
it identifies the most probable vertices to transition
from the current vertex in the graph, considering
them as potential candidates for representing the
intent of the next utterance in the dialog. Formally,
the approach is expressed as:

C∗
k = argmax

c1,c2,...,ck; c∈C̃

P (c|vt) (1)

Here, P (c|vt) signifies the conditional transition
probabilities from vertex vt to vertex c in the mul-
tipartite dialog graph. These probabilities are pre-
computed based on dialogs from the dialog dataset.
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4.2. Encoder
An alternative basic approach involves the utiliza-
tion of pre-trained language models. In this study,
the DistilRoBERTa encoder (Johnson et al., 2019)
was selected for this purpose, as it demonstrated
the most promising outcomes in generating vertices
of a multipartite dialogue graph. The technique in-
volves using a sentence encoder to obtain vector
representations for prior utterances from the dia-
logue history and possible future utterances. These
representations are then used to predict future ut-
terances and their underlying intents.

Formally, this approach can be formulated as
follows. We aim to predict k candidate vertices
in a multipartite graph for the next dialogue utter-
ance ut+1. We have a set of all replicas included
in the training sample U . By computing the cosine
similarity cos(hdr_bert(ut), hdr_bert(s)) between all
utterances s ∈ U and the previous utterance in
the dialogue ut, we arrange the utterances from
U in descending order of cosine similarity. Then,
for each utterance from U , the cluster number as-
sociated with the utterance’s intent is determined.
Candidate vertices are selected from the beginning
of the sorted list of cosine similarity values until the
number of unique candidate vertices reaches k.

4.3. ConveRT
As highlighted earlier, context is pivotal in dialogue
systems. Consequently, we introduced a ConveRT-
based approach (Henderson et al., 2020) as an
alternative baseline method. This is an addition
to the Encoder approach, which considers only a
single utterance from the dialogue history as con-
text. In contrast, ConveRT is a dual-encoder model
crafted to accommodate multiple utterances from a
dialogue history. By incorporating ConveRT along-
side the Encoder approach, we aim to achieve a
more profound comprehension of the impact of ut-
terance context in our study.

This approach is identical to the Encoder ap-
proach, but it calculates the cosine similarity as
cos(hmc({u1, ..., ut}), hr(s)), where hmc retrieves
the full dialog history representation and hr obtains
the response representation.

4.4. ConveRT-MAP
Without the approach based on fine-tuning the lan-
guage model for our task, our comparison of intent
prediction methods would be incomplete. Hence,
we introduced the ConveRT-MAP approach, in
which we fine-tuned the ConveRT model. Fine-
tuning the model is crucial in creating more relevant
vector representations of utterances, thus enhanc-
ing the accuracy of intent prediction (see Section
5.3 in the Experiments).

This method involves using ConveRT as a base
model and extending it with three fully connected
non-linear feed-forward layers, followed by a linear
layer. We trained the resulting model using con-
trastive loss. In this case, consecutive dialogue
replicas from the dialog dataset served as positive
pairs, while negative pairs consisted of replicas ran-
domly selected from other positive pairs within the
batches.

This approach is otherwise identical to the pre-
vious two approaches but it calculates the cosine
similarity as cos(hmc_map({u1, ..., ut}), hr_map(s)),
where hmc_map retrieves the full dialog history rep-
resentation and hr_map obtains the response rep-
resentation.

4.5. CatBoost
Experimental results show that among gradient
boosting libraries, CatBoost (Prokhorenkova et al.,
2017; Dorogush et al., 2018) exhibits the best per-
formance for the intent prediction task. In the imple-
mentation of this approach, a vector is generated
for each subgraph, which is a concatenation of
the features of all the vertices included in that sub-
graph. The resulting vector is then used as input
embedding for the CatBoost algorithm. Formally,
the approach can be represented as follows:

C∗
k = argmax

c1,c2,...,ck; c∈C̃

CatBoost(||vi∈V hf (vi)), (2)

Here, hf (vi) is a function that generates a vec-
tor representation of the vertex’s features from the
dialog subgraph.

4.6. Message Passing
Graph Neural Networks (GNNs) are a class of
neural networks designed to operate on graph-
structured data. They enable the integration of
information from a node’s neighbors, allowing for
the modeling of complex relationships and depen-
dencies within the graph. Of the various GNN mod-
els, Graph Attention Networks (GATs) stand out for
their ability to assign different importance values to
messages from neighboring vertices during the ag-
gregation process using an attention mechanism,
making them the most effective.

Formally, the approach can be represented as
follows:

hl
v =

K∣∣∣∣∣
∣∣∣∣∣

k=1

σ

( ∑
ṽ∈Nv

αvṽW
khl−1

v

)
(3)

P (c | G) = softmax(W ( ||
vi∈V

hL
v ) + b) (4)
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C∗
k = argmax

c1,c2,...,ck; c∈C̃

P (c | G) (5)

Here, K is the number of heads in the GAT and
σ is an activation function.

4.7. FastGTN
Dialog graphs contain vertices of different types
depending on their correspondence to the vertices
in a multipartite dialog graph. Graph Transforma-
tion Networks (GTNs) are employed to address
problems related to such graphs. This paper intro-
duces FastGTN, an enhanced implementation of
GTN that requires significantly fewer resources and
less training time. Formally, the approach can be
represented as follows:

P (c | G) = softmax(W ( ||
vi∈V

hgtn(v)) + b) (6)

C∗
k = argmax

c1,c2,...,ck; c∈C̃

P (c | G) (7)

Here, hgtn represents the output vectors of ver-
tices obtained from GTN.

5. Experiments

For more explanations of the implementation details
of approaches, readers are encouraged to refer to
Section B in the Appendix.

5.1. Utilized Datasets
We evaluated our intent prediction models using a
diverse set of datasets from both open and closed
domains.

5.1.1. Open Domain Datasets

PersonaChat Zhang et al. (2018): Designed for
chitchat-oriented dialogue systems, this dataset
comprises over 160, 000 conversational exchanges
covering a wide range of topics.

DailyDialog Li et al. (2017): With 13, 118 dia-
logues, this dataset encompasses discussions on
various topics like life events and personal interests.

5.1.2. Closed Domain Datasets

MultiWOZ 2.2 Zang et al. (2020): This dataset
includes over 10, 000 dialogues across seven do-
mains, such as hotels, restaurants, hospitals, and
transportation.

FoCus Jang et al. (2022): Encompassing
14, 452 dialogues, this dataset focuses on discus-
sions about geographical landmarks, leveraging
Wikipedia knowledge.

Taskmaster Byrne et al. (2019): This dataset
features 13, 215 dialogues in six domains, including
7, 708 written and 5, 507 spoken dialogues.

5.2. Metric
The model’s performance was evaluated using the
MAR (Mean Average Recall) and Recall@k met-
rics, quantifying the accuracy of predicting the in-
tent of the next utterance. For each subgraph within
the test sample, this metric assigns a score of 1 if
the vertex corresponding to the intent of the next
utterance is among the top-k predicted vertices
based on the transition probabilities. Otherwise,
a score of 0 is assigned. These scores are then
averaged across all utterances and dialogues.

Acknowledging the non-obvious choice of the Re-
call metric, it is imperative to explain our rationale
for choosing Recall over Accuracy. In future exper-
imental design involving dialogue statements with
multiple different intents, it becomes imperative not
only to identify the correct candidate but also to as-
sess how many candidates the model has selected
from the correct ones. This consideration led us to
prefer Recall, and in particular the Recall@k metric,
as it fits seamlessly with our experimental goals.
In addition, we would like to emphasise that our
Recall@k metric is conceptually aligned with the
Accuracy@k metric within the parameters of our
ongoing research.

By employing various values of k in the set
{1, 3, 5, 10}, the Recall@k metric provides an esti-
mation of the Recall metrics distribution and offers
insights into the effectiveness of predicting candi-
date vertices. For enhanced comparability between
the approaches, we utilized the MAR metric, cal-
culated as the arithmetic mean of Recall@k values
where k is drawn from the set {1, 3, 5, 10}. This
approach strikes a balance between computational
feasibility and providing a meaningful approxima-
tion of MAR across the entire spectrum of k values
ranging from 1 to 10.

In order to underscore the distinctions in cluster
formation for each dialogue participant on closed-
domain datasets, we present separate metrics for
predicting user and dialogue system intents.

5.3. Sentence Encoder Selection
The selection of an appropriate sentence encoder
plays a pivotal role in our research, as it directly
impacts the generation of vector representations
for dialogue responses. This choice is critical in
shaping the dialogue graph nodes, subsequently
influencing the model’s capability to predict the in-
tention behind the next utterance. To tackle this
challenge, we conducted a thorough comparative
analysis of various sentence encoder architectures,
meticulously assessing their performance on dia-
logue data.

Our evaluation metrics, outlined in Table 1, offer
a comprehensive examination of how the selec-
tion of a text encoder influences the formation of
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Models MPNet MPNet-one-stage DistilRoBERTa S-BERT MiniLM GloVe GPT T5
# of Parameters 109M 109M 82M 22M 33M 120M 125M 335M

Encoder
Recall@1 23.63 ± 0.531 19.18 ± 0.421 23.92 ± 0.806 21.22 ± 1.417 23.15 ± 1.489 13.35 ± 0.341 21.01 ± 1.233 23.08 ± 0.884
Recall@3 47.87 ± 0.469 41.31 ± 0.435 47.57 ± 0.219 43.55 ± 1.086 47.13 ± 1.508 32.51 ± 0.890 44.36 ± 1.241 48.95 ± 0.719
Recall@5 58.92 ± 0.738 53.99 ± 0.157 58.81 ± 0.405 53.67 ± 1.012 59.50 ± 0.419 44.07 ± 0.840 54.90 ± 1.223 60.01 ± 0.343
Recall@10 74.19 ± 1.109 72.21 ± 0.023 73.75 ± 1.164 68.28 ± 0.914 74.35 ± 0.372 61.97 ± 1.046 71.72 ± 1.541 73.70 ± 0.271

Message Passing
Recall@1 46.94 ± 1.135 37.79 ± 0.818 46.55 ± 1.288 45.82 ± 1.263 46.33 ± 0.766 38.77 ± 1.726 44.78 ± 0.633 48.23 ± 0.614
Recall@3 74.40 ± 0.277 67.12 ± 0.386 74.36 ± 0.533 71.80 ± 0.804 72.82 ± 1.033 64.07 ± 0.797 71.07 ± 0.212 74.29 ± 0.687
Recall@5 83.45 ± 0.136 80.46 ± 0.470 83.63 ± 0.558 81.62 ± 0.756 82.15 ± 0.670 76.47 ± 0.336 81.50 ± 0.211 83.90 ± 0.532
Recall@10 92.74 ± 0.352 92.61 ± 0.703 93.17 ± 0.758 92.27 ± 0.541 92.35 ± 0.486 89.99 ± 0.534 92.37 ± 0.345 93.31 ± 0.752

Markov Chain
Recall@1 37.62 ± 0.503 27.56 ± 1.007 37.99 ± 0.599 36.66 ± 1.207 37.47 ± 0.648 28.66 ± 1.735 36.98 ± 1.105 36.81 ± 0.735
Recall@3 63.86 ± 0.282 55.20 ± 0.993 65.52 ± 0.469 63.43 ± 0.965 64.65 ± 0.513 52.76 ± 1.503 61.29 ± 0.940 65.28 ± 0.588
Recall@5 75.19 ± 0.474 70.81 ± 1.164 76.96 ± 0.269 74.45 ± 0.977 76.20 ± 0.322 64.97 ± 1.106 72.83 ± 0.452 76.38 ± 0.638
Recall@10 88.56 ± 0.728 88.23 ± 0.483 89.62 ± 0.564 87.78 ± 0.730 88.48 ± 0.223 82.92 ± 0.151 86.71 ± 0.294 89.37 ± 0.727

Table 1: Evaluation of text encoders in generating vector representations for dialogue utterances in the
MultiWOZ dataset and their impact on the three primary approaches: Message Passing, Encoder, and
Markov Chain.

dialogue graph nodes and the accuracy of predict-
ing the next intention across different approaches.
These metrics provide valuable insights into the
text encoders’ performance in generating vector
representations for dialogue utterances within the
MultiWOZ dataset. Furthermore, they also high-
light on the performance implications for three pri-
mary approaches: Message Passing, Encoder and
Markov Chain, representing significant methods
in intention prediction, encompassing probabilistic,
encoder-based, and graph-based methods.

Upon analyzing the experimental results, it be-
comes evident that both DistilRoBERTa and T5
exhibit exceptional performance. However, consid-
ering the significantly lower computational require-
ments of DistilRoBERTa – four times less than T5
– we opted for its utilization in our research. This
decision not only aligns with our research goals but
also reflects a balance between performance and
computational efficiency.

5.4. Cluster Number

In our study, we utilized different quantities of clus-
ters in the first and second stages of clustering.
Specifically, we utilized 200, 400, and 800 clusters
in the first stage, and 30, 60, and 120 clusters in the
second stage.

It’s important to recognize that each dataset car-
ries its own unique characteristics. The choice of
the exact number of clusters, in both the initial and
subsequent stages of clustering, is fundamentally
dependent on the specific task at hand. Hence,
we opted for the minimum, average, and maximum
quantities of clusters, taking into consideration the
specific attributes of the datasets used for approach
comparison, such as the number of supervised
clusters in the MultiWOZ dataset.

By carefully examining the metrics obtained from

Approach #
Parameters

Relative
Training

Time

# Clusters PersonaChat DailyDialog
First

Stage
Second
Stage

Markov
Chain

10K 0.13
200 30 52.50 ± 2.27 49.91 ± 0.85
400 60 41.67 ± 2.28 40.53 ± 2.66
800 120 32.72 ± 1.03 31.48 ± 0.91

Message
Passing

82M + 3.7M 0.47
200 30 58.86 ± 1.06 57.13 ± 2.28
400 60 48.79 ± 0.68 47.15 ± 0.71
800 120 42.96 ± 0.68 38.52 ± 0.42

CatBoost 82M + 2.2M 1.00
200 30 59.31 ± 1.24 58.67 ± 0.90
400 60 50.12 ± 0.78 47.55 ± 1.20
800 120 42.56 ± 0.63 39.50 ± 0.60

FastGTN 82M + 1.9M 0.49
200 30 60.21 ± 2.29 55.88 ± 0.54
400 60 49.11 ± 0.45 46.35 ± 0.71
800 120 41.68 ± 1.35 38.92 ± 0.96

Encoder 82M 0.50
200 30 43.45 ± 2.20 48.92 ± 0.58
400 60 30.95 ± 2.02 39.95 ± 1.61
800 120 24.10 ± 4.06 31.16 ± 0.66

ConveRT 46M 0.36
200 30 45.39 ± 1.46 50.24 ± 2.35
400 60 35.01 ± 2.96 40.65 ± 0.92
800 120 27.32 ± 2.33 32.27 ± 0.57

ConveRT
MAP

46M + 2M 0.78
200 30 47.08 ± 2.01 50.51 ± 2.03
400 60 39.97 ± 1.69 38.41 ± 2.15
800 120 20.78 ± 2.01 29.66 ± 1.82

Table 2: Experimental results for Mean Average Re-
call metric: various intent prediction approaches on
the open domain datasets. The training time of the
models was counted from the start of training until
the Early Stopping. To ensure stability of results,
all approaches were trained on 3 different sets of
clusters and the resulting metrics were averaged.

different cluster configurations, valuable insights
can be gained about the relationship between the
number of clusters and the accuracy of predicting
the next intent. This, in turn, allows choosing the
most appropriate number of clusters for the first
and second stages of clustering when replicating
the proposed techniques on other datasets with
identical intent distribution.

6. Results and Discussion

This section provides an overview of the out-
comes obtained through various approaches ap-
plied to both closed-domain and open-domain dia-
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Approach #
Parameters

Relative
Training

Time

Dataset MultiWOZ FoCus Taskmaster
# Clusters User Dialog

System
All User Dialog

System
All User Dialog

System
All

First
Stage

Second
Stage

Markov
Chain

10K 0.13
200 30 59.47 ± 0.77 75.57 ± 0.59 67.52 ± 0.48 52.55 ± 1.30 52.15 ± 2.06 52.35 ± 0.98 57.79 ± 0.45 59.63 ± 0.67 58.77 ± 0.51
400 60 47.05 ± 1.88 66.19 ± 1.50 56.61 ± 1.60 46.67 ± 0.70 44.46 ± 0.71 45.57 ± 0.56 49.84 ± 0.86 49.06 ± 0.29 49.52 ± 0.52
800 120 30.90 ± 1.26 48.33 ± 1.47 39.62 ± 0.43 39.67 ± 1.91 39.86 ± 0.76 39.77 ± 0.81 42.60 ± 0.44 43.57 ± 0.24 43.14 ± 0.18

Message
Passing

82M + 3.7M 0.47
200 30 65.24 ± 1.09 83.62 ± 0.64 74.43 ± 0.78 66.34 ± 2.31 68.80 ± 0.70 67.57 ± 1.46 72.04 ± 0.70 78.69 ± 0.60 75.41 ± 0.45
400 60 52.66 ± 0.44 75.88 ± 0.78 64.27 ± 0.33 59.56 ± 1.67 63.36 ± 0.72 61.46 ± 0.71 64.73 ± 0.53 69.98 ± 0.47 67.40 ± 0.33
800 120 35.93 ± 0.72 58.35 ± 0.92 47.14 ± 0.67 54.64 ± 1.05 56.07 ± 0.90 55.35 ± 0.61 57.56 ± 0.41 64.00 ± 0.37 60.83 ± 0.32

CatBoost 82M + 2.2M 1.00
200 30 65.88 ± 0.54 83.09 ± 0.56 74.48 ± 0.45 65.71 ± 0.37 69.09 ± 0.31 67.41 ± 0.20 71.57 ± 0.30 78.23 ± 0.52 74.94 ± 0.24
400 60 51.07 ± 1.07 73.09 ± 0.81 62.08 ± 0.83 59.61 ± 1.47 60.91 ± 0.46 60.26 ± 0.77 65.03 ± 0.34 68.93 ± 0.33 67.01 ± 0.24
800 120 37.16 ± 0.58 55.45 ± 0.74 46.30 ± 0.59 54.55 ± 0.35 53.94 ± 0.74 54.25 ± 0.49 56.53 ± 0.35 62.60 ± 0.29 59.61 ± 0.30

FastGTN 82M + 1.9M 0.49
200 30 65.55 ± 0.64 83.04 ± 0.48 74.30 ± 0.26 65.12 ± 2.73 68.98 ± 1.16 67.05 ± 1.38 72.53 ± 0.41 78.30 ± 0.51 75.46 ± 0.36
400 60 51.84 ± 0.66 75.94 ± 0.95 63.89 ± 0.55 55.89 ± 1.93 61.76 ± 0.58 58.82 ± 1.04 65.84 ± 0.50 70.11 ± 0.36 68.01 ± 0.29
800 120 36.40 ± 0.90 58.38 ± 1.29 47.39 ± 0.41 54.19 ± 1.50 55.91 ± 0.28 55.05 ± 0.77 57.52 ± 0.51 64.27 ± 0.47 60.93 ± 0.43

Encoder 82M 0.50
200 30 34.69 ± 1.20 67.33 ± 0.90 51.01 ± 0.65 39.01 ± 1.63 59.11 ± 0.80 49.06 ± 0.77 46.08 ± 0.72 49.05 ± 0.42 47.56 ± 0.19
400 60 24.67 ± 0.44 53.40 ± 2.03 39.04 ± 0.90 32.50 ± 0.87 50.39 ± 0.73 41.45 ± 0.56 36.35 ± 0.24 40.88 ± 0.20 38.61 ± 0.19
800 120 15.31 ± 0.33 36.35 ± 0.74 25.83 ± 0.41 28.55 ± 0.41 43.16 ± 0.43 35.86 ± 0.26 27.82 ± 0.14 31.21 ± 0.14 29.52 ± 0.11

ConveRT 46M 0.36
200 30 32.81 ± 0.78 57.94 ± 0.94 45.38 ± 0.81 38.13 ± 0.85 60.62 ± 0.32 49.38 ± 0.50 47.52 ± 0.36 59.80 ± 0.78 53.66 ± 0.34
400 60 21.10 ± 0.23 46.25 ± 1.00 33.67 ± 0.53 33.19 ± 0.63 52.53 ± 0.87 42.86 ± 0.45 37.87 ± 0.57 45.92 ± 0.64 41.90 ± 0.44
800 120 12.71 ± 0.56 29.38 ± 0.69 21.04 ± 0.27 28.59 ± 0.23 45.80 ± 0.85 37.20 ± 0.47 29.54 ± 0.31 38.52 ± 0.18 34.03 ± 0.23

ConveRT
MAP

46M + 2M 0.78
200 30 51.75 ± 1.87 75.97 ± 1.08 63.86 ± 1.38 55.74 ± 1.33 60.11 ± 1.49 57.92 ± 0.86 63.18 ± 0.68 70.82 ± 0.90 67.00 ± 0.68
400 60 39.39 ± 1.33 61.44 ± 1.31 50.41 ± 1.32 44.31 ± 1.38 47.52 ± 1.40 45.92 ± 1.25 54.54 ± 0.61 58.59 ± 0.88 56.56 ± 0.53
800 120 22.20 ± 1.21 39.75 ± 0.36 31.35 ± 0.58 37.62 ± 0.42 36.99 ± 1.43 37.29 ± 0.61 43.61 ± 1.09 49.61 ± 0.90 46.61 ± 0.99

Table 3: Experimental results for Mean Average Recall metric: various intent prediction approaches on
the closed domain datasets. The training time of the models was counted from the start of training until
the Early Stopping. The all metric is the average of the user metric and the dialogue system metric. To
ensure stability of results, all approaches were trained on 3 different sets of clusters and the resulting
metrics were averaged.

log datasets (see Table 2 and Table 3), evaluated
using the MAR (Mean Average Recall) metric.

To visually highlight the distinctions between the
approaches, we provide a comparative results ta-
ble. This table offers a comparison (refer to Table 4)
of the different methods based on the evaluation re-
sults using the Mean Average Recall metric. Each
method is assigned a score of 1 if it outperforms the
others on a particular metric; otherwise, it receives
a score of 0. Then, all the obtained scores for each
method and dataset are summarized.

Closed Domain Datasets Results. The com-
parative table highlights that, in closed-domain
datasets, the Message Passing (MP) approach
demonstrated superior performance. Additionally,
the Graph Transformer Network (GTN) exhibited
commendable results, surpassing both gradient-
based boosting and encoder-based techniques. It’s
noteworthy that both MP and GTN approaches ex-
celled in terms of execution speed and demanded
fewer computational resources compared to alter-
native methods. This underscores their effective-
ness and practicality in utilizing dialog graphs for
intent prediction.

Open Domain Datasets Results. The compar-
ative table indicates that the approach employing
gradient boosting demonstrated the most promis-
ing performance. This suggests that open-domain
dialog systems comprise a much larger number of
states in dialogues and lack a distinct regular struc-
ture, making it challenging to obtain a high-quality
graph representation of such dialog systems.

Graph Models’ Superiority over Text-Based
Approaches. The study confirms the superiority

of graph models over text-based architectures in
addressing the challenge of intent prediction in di-
alog systems. Specifically, graph models outper-
formed both a simple text-based encoder and an
additionally trained ConveRT-MAP text-based en-
coder. This underscores the criticality of accounting
for structural relationships among dialog elements.

Asymmetry in Dialogue Roles. When analyz-
ing the metrics on closed-domain datasets, a sig-
nificant distinction became apparent between user
metrics and dialog system metrics. This disparity
occurs from the asymmetric roles that participants
play in a dialog, emphasizing the importance of
considering role asymmetry in the future research.

7. Conclusion

In conclusion, our research sheds light on the effi-
cacy of graph-based models in intent prediction for
dialog systems. In closed-domain datasets, both
MP and GTN approaches proved to be robust per-
formers, excelling not only in accuracy but also
in computational efficiency. On the other hand,
open-domain datasets present a unique challenge
due to their inherent complexity and lack of regu-
lar structure, which makes them less amenable to
graph-based representation.

Furthermore, our findings emphasize the su-
periority of graph models over text-based ap-
proaches, underscoring the significance of captur-
ing structural relationships among dialog elements.
It’s worth noting that the choice of sentence en-
coder significantly impacts the accuracy of the ap-
proaches.
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Dataset Markov Chain Message Passing CatBoost FastGTN Encoder ConveRT ConveRT-MAP Max Score
MultiWOZ 0 9 4 9 0 0 0 9

FoCus 0 9 6 6 0 0 0 9
Taskmaster 0 8 3 9 0 0 0 9
DailyDialog 0 3 3 2 0 0 0 3

PersonaChat 0 3 3 3 0 0 0 3
Closed Domain Summary 0 26 13 24 0 0 0 27
Open Domain Summary 0 6 6 5 0 0 0 6

Table 4: The table shows how different intent prediction methods performed in research. Each method
gets a score of 1 if it does better than others on a specific metric; otherwise, it gets a score of 0. The table
summarizes all the scores for each method and dataset.

Overall, this study provides valuable insights into
the application of graph-based models in enhancing
the accuracy and efficiency of intent prediction in
dialog systems across various domains.

8. Limitations

While our study provides valuable insights, there
are several considerations:

Language Focus. Our experiments primarily
centered on English dialog datasets. Generalizing
our findings to multilingual settings may require
further exploration.

Participant Pool Size. The datasets involved a
relatively small number of participants, potentially
limiting representation of real-world dialog dynam-
ics. Larger, more diverse datasets would enhance
model evaluation.

Traditional Dialogue Emphasis. We focused
on conventional dialogues, excluding non-standard
formats like social media conversations. Adapting
models for these unique patterns warrants further
investigation.

Clustering Impact. The quality of clustering af-
fects our graph-based approaches. Future work
should refine clustering techniques for more reli-
able results. It is very essential to improve cluster-
ing methods, especially when dealing with large
datasets with multiple topics. Future research
should focus on optimising clustering methods to
provide robust and scalable results, and on con-
ducting experiments with large number of cluster
on large datasets.

Encoder Selection Sensitivity. Our experi-
ments highlighted the critical role of sentence en-
coders. Further research should explore domain-
specific encoder adaptation for optimal perfor-
mance.

In conclusion, while our study offers valuable in-
sights into graph-based dialog modeling, it’s impor-
tant to acknowledge these limitations. Addressing
them in future research will broaden the applicabil-
ity and effectiveness of our models across diverse
settings.
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A. Examples Of Graph Nodes

In this section, we present Table 5 with samples
from the nodes of the graph constructed using the
MultiWOZ 2.2 dataset.

B. Implementation Details

We employed various techniques and strategies to
optimize our graph-based approaches. To ensure
efficient training, we utilized the Adam optimizer
for each approach. The Adam optimizer accurately
updates the model parameters during training, fa-
cilitating faster convergence and enhancing overall
performance.

To capture the information from vertex represen-
tations and create a complete graph representation,
we incorporated a pooling module into all graph-
based approaches. This pooling module aggre-
gated the features of vertices, providing an embed-
ding of the overall graph structure. Additionally, a
linear layer was included to handle graph classifi-
cation task.

To prevent overfitting, we employed two tech-
niques. The first technique was Early Stopping,
which monitored the model’s performance on a val-
idation set and halted training if the performance
did not improve. This helped prevent the model
from memorizing the training data and improved its
generalization ability. The second technique was
the Reduce Learning Rate on Plateau scheduler,
which automatically reduced the learning rate if
the model’s performance plateaued during training.
This fine-tuning of the learning rate ensured better
convergence and avoided overshooting the optimal
solution.

For consistency and effective information pro-
cessing, we set the hidden dimension to 512 for
all graph-based approaches. Regarding hyperpa-
rameters, we adopted default values based on the
specific graph topology. For example, the FastGTN
model consisted of three FastGTN layers and two
FastGT layers, while the GAT model utilized two
GATv2Conv layers. These hyperparameters were
chosen based on their effectiveness in capturing
relevant graph patterns and achieving good perfor-
mance on our specific tasks.

To account for the potential influence of metric
values and cluster sets, we trained all approaches
on three different cluster sets. This approach al-
lowed us to evaluate the models’ performance
across various scenarios and mitigate the impact
of specific clusters set configurations. We then av-
eraged the resulting metric values to obtain a more
robust evaluation of the models’ performance.

C. Detailed results of the study

This section presents detailed results for proposed
approaches assessed on both open-domain (refer
to Table 6) and closed-domain (refer to Table 7)
dialogue datasets. The evaluation employs the
Recall@k metric, k ∈ {1, 3, 5, 10}.

D. Resources

One NVIDIA GeForce GTX 1080 Ti was required for
the graph-based approaches, and four such graph-
ics cards were required for the gradient boosting
approach.
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Samples from the graph nodes, two-stage clustering method
User cluster #1 User cluster #2 Dialogue system cluster #1 Dialogue system cluster #2

Can I please have the
phone number and ad-
dress for that place?

Yes, please book a table
for 4 people at 12:15 on
Tuesday.

Thank you for contacting us and
have a nice day.

I’m sorry. There is still no avail-
ability. Would you like to try a
different hotel then?

Could you tell me the price,
address and phone num-
ber?

Book it for the same num-
ber of people at 14:30 on
the same day.

Thank you for using Cambridge
Town Info centre, have a great
day!

I’m sorry, there were no rooms
available. Perhaps you’d like to
find another hotel?

How about Jesus Green
Outdoor pool. Could I
have their address and
phone number?

I don’t have a preference
for food type. I do need
reservations for 8 at 12:00
on Thursday.

You’re very welcome, enjoy your
time in Cambridge!

I’m sorry, there are no rooms
available for that length of stay.
Could you shorten your stay or
book a different day possibly?

Yes, please. Can I get the
address and phone num-
ber for the one you recom-
mend?

Can you see if there’s any-
thing at 20:00?

Great! I’m happy to help. Good-
bye!

The booking for the Acorn Guest
House was unsuccessful. Would
you like me to look for another
hotel for you?

Do you have there phone
number?

La Mimosa sounds good.
Can your reserve me a ta-
ble for 1 on Saturday at
11:15?

I’m glad I was able to help.
Please call back if you have any
more questions!

I am sorry, but the Leverton
House was not available for your
party on Tuesday. Would you like
me to look for another hotel?

Table 5: Samples from the user and dialogue system MultiWOZ 2.2 graph nodes.

Approach #
Parameters

Relative
Training

Time

Datasets PersonaChat DailyDialog
# Clusters,
First Stage

200 400 800 200 400 800

# Clusters,
Second Stage

30 60 120 30 60 120

Markov
Chain

10K 0.13

Recall@1 29.41 ± 1.866 26.19 ± 0.802 20.70 ± 0.728 27.55 ± 0.821 23.62 ± 0.683 18.21 ± 0.620
Recall@3 46.97 ± 2.250 37.48 ± 2.008 29.74 ± 0.529 44.22 ± 0.991 35.97 ± 2.419 28.01 ± 1.214
Recall@5 57.84 ± 2.841 44.94 ± 3.053 35.10 ± 0.977 54.93 ± 0.849 44.13 ± 3.537 34.39 ± 1.044
Recall@10 75.78 ± 2.111 58.09 ± 3.242 45.35 ± 1.905 72.94 ± 0.747 58.41 ± 3.998 45.32 ± 0.779

Message
Passing

82M + 3.7M 0.47

Recall@1 36.04 ± 0.348 30.27 ± 1.175 25.87 ± 0.559 29.03 ± 1.761 23.59 ± 0.235 19.63 ± 0.315
Recall@3 54.07 ± 1.350 44.95 ± 0.745 40.33 ± 0.598 52.43 ± 2.647 42.67 ± 0.601 34.57 ± 0.428
Recall@5 65.03 ± 1.445 53.75 ± 0.247 47.71 ± 0.843 65.09 ± 2.646 53.28 ± 0.912 43.24 ± 0.236
Recall@10 80.32 ± 1.095 66.20 ± 0.570 57.92 ± 0.738 81.98 ± 2.050 69.04 ± 1.099 56.62 ± 0.681

CatBoost 82M + 2.2M 1.00

Recall@1 36.95 ± 1.848 29.85 ± 1.499 25.20 ± 0.548 31.66 ± 0.873 24.86 ± 0.653 20.94 ± 0.479
Recall@3 54.35 ± 1.114 47.21 ± 0.604 40.01 ± 0.612 53.99 ± 0.664 43.39 ± 1.349 35.88 ± 0.388
Recall@5 64.76 ± 0.868 55.21 ± 0.528 47.06 ± 0.728 66.13 ± 0.998 53.55 ± 1.378 44.27 ± 0.730
Recall@10 81.17 ± 1.130 68.19 ± 0.481 57.99 ± 0.640 82.89 ± 1.061 68.41 ± 1.407 56.91 ± 0.808

FastGTN 82M + 1.9M 0.49

Recall@1 36.12 ± 1.306 29.52 ± 0.330 25.65 ± 1.537 26.76 ± 0.655 23.05 ± 0.222 19.03 ± 0.877
Recall@3 55.77 ± 3.387 46.03 ± 0.623 38.66 ± 1.390 51.21 ± 0.646 42.16 ± 0.231 34.85 ± 0.921
Recall@5 66.78 ± 3.085 54.25 ± 0.463 46.01 ± 1.420 64.08 ± 0.764 52.52 ± 0.710 43.79 ± 1.103
Recall@10 82.17 ± 1.389 66.64 ± 0.372 56.40 ± 1.035 81.47 ± 0.100 67.69 ± 1.669 58.00 ± 0.957

Encoder 82M 0.50

Recall@1 18.29 ± 0.957 13.94 ± 0.518 12.70 ± 3.887 24.01 ± 1.029 18.82 ± 1.152 15.07 ± 0.454
Recall@3 36.50 ± 2.127 26.48 ± 1.166 21.15 ± 4.063 43.84 ± 0.395 35.51 ± 1.567 27.71 ± 0.462
Recall@5 49.74 ± 3.656 33.79 ± 1.508 26.72 ± 4.058 54.70 ± 0.445 45.18 ± 1.918 34.87 ± 0.603
Recall@10 69.26 ± 2.075 49.57 ± 4.880 35.83 ± 4.246 73.12 ± 0.440 60.30 ± 1.816 46.98 ± 1.129

ConveRT 46M 0.36

Recall@1 17.98 ± 0.496 14.10 ± 0.351 10.48 ± 0.439 22.40 ± 1.199 17.58 ± 0.218 13.90 ± 0.163
Recall@3 40.37 ± 2.252 31.21 ± 3.709 22.04 ± 0.611 44.66 ± 2.404 35.70 ± 0.935 28.65 ± 0.560
Recall@5 53.19 ± 1.405 39.52 ± 3.689 31.60 ± 4.283 57.32 ± 2.757 46.37 ± 1.280 36.74 ± 0.662
Recall@10 70.01 ± 1.669 55.19 ± 4.072 45.15 ± 3.978 76.60 ± 3.057 62.95 ± 1.254 49.80 ± 0.877

ConveRT
MAP

46M + 2M 0.78

Recall@1 22.94 ± 2.473 21.57 ± 1.862 7.32 ± 1.140 21.48 ± 1.312 14.63 ± 1.954 10.92 ± 1.544
Recall@3 41.53 ± 2.066 34.71 ± 2.828 17.03 ± 1.489 44.90 ± 1.538 32.93 ± 1.342 25.41 ± 1.079
Recall@5 53.11 ± 2.175 44.16 ± 0.737 23.53 ± 3.343 58.23 ± 2.394 44.22 ± 2.117 34.73 ± 2.358
Recall@10 70.72 ± 1.33 59.42 ± 1.342 35.24 ± 2.083 77.42 ± 2.89 61.85 ± 3.192 47.57 ± 2.302

Table 6: The experimental results of the various intent prediction approaches on the open domain datasets.
The training time of the models was counted from the start of training until the Early Stopping. To ensure
stability of results, all approaches were trained on 3 different sets of clusters and the resulting metrics
were averaged.
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Approach #
Parameters

Relative
Training

Time

Dataset MultiWOZ FoCus Taskmaster
# Clusters Metric User Dialog

System
All Metric User Dialog

System
All Metric User Dialog

System
All Metric

First
Stage

Second
Stage

Markov
Chain

10K 0.13

200 30

Recall@1 29.53 ± 0.571 46.45 ± 0.628 37.99 ± 0.599 30.55 ± 1.579 28.45 ± 0.537 29.50 ± 0.654 31.04 ± 0.196 32.20 ± 0.481 31.73 ± 0.282
Recall@3 54.57 ± 0.452 76.47 ± 1.220 65.52 ± 0.469 46.23 ± 1.272 47.41 ± 2.754 46.82 ± 1.920 52.54 ± 0.907 55.42 ± 0.659 54.06 ± 0.784
Recall@5 68.21 ± 0.959 85.71 ± 0.425 76.96 ± 0.269 58.17 ± 1.173 57.81 ± 2.367 57.99 ± 0.601 64.91 ± 0.528 67.13 ± 0.806 66.06 ± 0.660
Recall@10 85.58 ± 1.086 93.66 ± 0.077 89.62 ± 0.564 75.24 ± 1.178 74.92 ± 2.595 75.08 ± 0.750 82.65 ± 0.166 83.77 ± 0.731 83.24 ± 0.306

400 60

Recall@1 22.31 ± 3.217 36.22 ± 3.511 29.26 ± 3.242 28.52 ± 0.855 25.71 ± 0.820 27.12 ± 0.825 24.39 ± 0.273 25.15 ± 0.353 24.81 ± 0.313
Recall@3 42.28 ± 2.099 63.92 ± 2.011 53.10 ± 2.054 44.19 ± 0.702 40.97 ± 0.398 42.58 ± 0.549 44.83 ± 1.263 45.38 ± 0.068 45.21 ± 0.624
Recall@5 54.14 ± 1.252 77.15 ± 0.218 65.64 ± 0.711 50.77 ± 0.724 49.16 ± 0.671 49.97 ± 0.621 56.77 ± 1.024 55.28 ± 0.058 56.10 ± 0.523
Recall@10 69.45 ± 0.954 87.47 ± 0.254 78.46 ± 0.405 63.19 ± 0.506 62.01 ± 0.950 62.60 ± 0.230 73.39 ± 0.862 70.45 ± 0.672 71.95 ± 0.639

800 120

Recall@1 11.66 ± 0.882 20.33 ± 1.713 15.99 ± 0.709 27.16 ± 1.168 23.66 ± 0.825 25.41 ± 0.172 20.34 ± 0.246 22.32 ± 0.161 21.36 ± 0.165
Recall@3 25.17 ± 1.081 41.83 ± 1.443 33.50 ± 0.310 36.22 ± 1.823 37.49 ± 0.556 36.86 ± 0.921 38.11 ± 0.158 40.75 ± 0.324 39.51 ± 0.089
Recall@5 35.16 ± 1.500 55.53 ± 1.545 45.35 ± 0.086 42.56 ± 3.475 44.49 ± 0.898 43.53 ± 1.704 48.67 ± 0.589 49.33 ± 0.133 49.07 ± 0.230
Recall@10 51.62 ± 1.596 75.63 ± 1.194 63.62 ± 0.596 52.75 ± 1.184 53.80 ± 0.773 53.27 ± 0.457 63.27 ± 0.786 61.89 ± 0.343 62.62 ± 0.253

Message
Passing

82M + 3.7M 0.47

200 30

Recall@1 34.90 ± 0.555 58.19 ± 2.035 46.55 ± 1.288 42.13 ± 0.525 43.62 ± 1.067 42.88 ± 0.721 45.71 ± 0.858 55.25 ± 0.794 50.57 ± 0.634
Recall@3 62.72 ± 1.239 86.00 ± 0.224 74.36 ± 0.533 63.70 ± 2.667 67.02 ± 0.774 65.36 ± 1.719 69.90 ± 1.087 77.78 ± 0.857 73.89 ± 0.632
Recall@5 74.61 ± 1.222 92.65 ± 0.106 83.63 ± 0.558 73.30 ± 3.030 76.49 ± 0.420 74.90 ± 1.689 80.38 ± 0.635 86.67 ± 0.547 83.55 ± 0.354
Recall@10 88.73 ± 1.363 97.62 ± 0.202 93.17 ± 0.758 86.22 ± 3.028 88.08 ± 0.529 87.15 ± 1.709 92.18 ± 0.233 95.06 ± 0.188 93.63 ± 0.184

400 60

Recall@1 26.05 ± 0.392 47.89 ± 1.306 36.97 ± 0.467 38.85 ± 0.161 40.27 ± 0.219 39.56 ± 0.185 38.00 ± 0.843 45.72 ± 0.135 41.90 ± 0.486
Recall@3 49.39 ± 0.467 76.11 ± 0.485 62.75 ± 0.349 56.02 ± 1.663 62.17 ± 1.017 59.10 ± 0.886 62.07 ± 0.694 68.51 ± 0.567 65.36 ± 0.257
Recall@5 60.59 ± 0.322 85.61 ± 0.910 73.10 ± 0.300 65.81 ± 2.381 70.51 ± 0.841 68.16 ± 0.770 72.76 ± 0.389 77.50 ± 0.614 75.17 ± 0.221
Recall@10 74.59 ± 0.581 93.92 ± 0.429 84.25 ± 0.204 77.54 ± 2.479 80.49 ± 0.814 79.01 ± 1.009 86.09 ± 0.202 88.19 ± 0.564 87.15 ± 0.366

800 120

Recall@1 14.11 ± 0.535 28.34 ± 0.763 21.22 ± 0.647 36.57 ± 0.897 34.31 ± 0.725 35.44 ± 0.087 33.34 ± 0.291 40.67 ± 0.552 37.02 ± 0.391
Recall@3 30.81 ± 0.926 53.77 ± 1.903 42.29 ± 1.034 50.56 ± 0.400 54.72 ± 0.834 52.64 ± 0.237 54.73 ± 0.458 62.35 ± 0.399 58.61 ± 0.430
Recall@5 41.20 ± 0.969 66.67 ± 0.826 53.94 ± 0.687 59.18 ± 2.513 62.69 ± 1.076 60.93 ± 1.427 64.69 ± 0.466 71.26 ± 0.193 68.03 ± 0.287
Recall@10 57.60 ± 0.458 84.63 ± 0.174 71.11 ± 0.299 72.27 ± 0.385 72.55 ± 0.971 72.41 ± 0.676 77.49 ± 0.415 81.73 ± 0.318 79.64 ± 0.169

CatBoost 82M + 2.2M 1.00

200 30

Recall@1 35.63 ± 0.854 58.35 ± 0.535 46.99 ± 0.684 40.35 ± 0.644 44.08 ± 0.416 42.22 ± 0.349 45.02 ± 0.118 54.25 ± 1.005 49.73 ± 0.485
Recall@3 62.84 ± 0.791 84.69 ± 0.929 73.76 ± 0.773 63.31 ± 0.348 67.37 ± 0.347 65.34 ± 0.230 69.32 ± 0.431 77.14 ± 0.503 73.27 ± 0.269
Recall@5 75.09 ± 0.474 92.04 ± 0.588 83.56 ± 0.215 72.57 ± 0.207 76.91 ± 0.156 74.74 ± 0.131 80.02 ± 0.486 86.48 ± 0.250 83.27 ± 0.125
Recall@10 89.94 ± 0.042 97.28 ± 0.203 93.61 ± 0.122 86.62 ± 0.263 88.01 ± 0.313 87.32 ± 0.094 91.92 ± 0.165 95.07 ± 0.308 93.50 ± 0.086

400 60

Recall@1 23.27 ± 0.905 42.86 ± 0.877 33.07 ± 0.872 37.82 ± 1.283 38.59 ± 0.588 38.20 ± 0.867 38.57 ± 0.343 44.50 ± 0.307 41.57 ± 0.186
Recall@3 47.45 ± 1.198 73.33 ± 1.297 60.39 ± 1.028 56.14 ± 0.933 58.93 ± 0.397 57.53 ± 0.610 62.37 ± 0.322 67.51 ± 0.317 65.00 ± 0.226
Recall@5 59.42 ± 1.283 83.83 ± 0.808 71.63 ± 0.982 66.23 ± 1.501 67.42 ± 0.430 66.83 ± 0.599 72.99 ± 0.415 76.48 ± 0.428 74.77 ± 0.310
Recall@10 74.13 ± 0.886 92.33 ± 0.256 83.23 ± 0.450 78.27 ± 2.177 78.69 ± 0.419 78.48 ± 1.023 86.21 ± 0.270 87.22 ± 0.274 86.72 ± 0.230

800 120

Recall@1 15.38 ± 0.677 24.74 ± 0.251 20.06 ± 0.266 34.99 ± 0.499 33.45 ± 0.830 34.22 ± 0.526 32.38 ± 0.235 39.45 ± 0.365 35.93 ± 0.298
Recall@3 31.48 ± 0.461 50.00 ± 0.806 40.74 ± 0.577 53.18 ± 0.296 52.33 ± 0.808 52.76 ± 0.543 53.66 ± 0.378 61.28 ± 0.349 57.54 ± 0.329
Recall@5 42.58 ± 0.030 64.44 ± 0.980 53.51 ± 0.492 59.86 ± 0.304 59.97 ± 0.670 59.92 ± 0.484 63.81 ± 0.378 69.78 ± 0.282 66.86 ± 0.325
Recall@10 59.21 ± 1.137 82.62 ± 0.932 70.91 ± 1.021 70.19 ± 0.292 70.00 ± 0.637 70.10 ± 0.423 76.27 ± 0.404 79.91 ± 0.181 78.11 ± 0.265

FastGTN 82M + 1.9M 0.49

200 30

Recall@1 35.16 ± 1.317 57.61 ± 0.944 46.39 ± 0.349 41.07 ± 0.995 43.20 ± 0.560 42.13 ± 0.219 45.33 ± 0.248 55.07 ± 0.304 50.29 ± 0.201
Recall@3 62.87 ± 0.384 85.39 ± 0.176 74.13 ± 0.239 61.78 ± 3.246 67.35 ± 1.161 64.57 ± 1.701 70.53 ± 0.594 77.07 ± 0.523 73.85 ± 0.364
Recall@5 75.17 ± 0.625 92.11 ± 0.453 83.64 ± 0.371 71.38 ± 3.411 76.95 ± 1.666 74.17 ± 2.010 81.41 ± 0.564 86.03 ± 0.839 83.74 ± 0.605
Recall@10 89.01 ± 0.221 97.05 ± 0.338 93.03 ± 0.094 86.25 ± 3.279 88.41 ± 1.255 87.33 ± 1.573 92.84 ± 0.254 95.05 ± 0.380 93.95 ± 0.267

400 60

Recall@1 26.47 ± 0.782 47.25 ± 2.594 36.86 ± 1.103 37.06 ± 1.282 38.65 ± 0.781 37.86 ± 0.989 38.78 ± 0.828 45.61 ± 0.626 42.22 ± 0.335
Recall@3 47.88 ± 0.294 76.48 ± 0.527 62.18 ± 0.350 52.15 ± 1.400 60.21 ± 0.459 56.18 ± 0.792 63.17 ± 0.366 68.59 ± 0.553 65.95 ± 0.341
Recall@5 58.73 ± 0.529 85.86 ± 0.453 72.29 ± 0.308 60.53 ± 1.321 68.95 ± 0.677 64.74 ± 0.548 74.09 ± 0.647 77.78 ± 0.221 75.98 ± 0.387
Recall@10 74.28 ± 1.041 94.17 ± 0.210 84.23 ± 0.435 73.82 ± 3.712 79.23 ± 0.417 76.52 ± 1.844 87.30 ± 0.175 88.44 ± 0.043 87.88 ± 0.103

800 120

Recall@1 14.89 ± 0.514 27.94 ± 1.087 21.41 ± 0.504 35.15 ± 0.487 34.29 ± 0.319 34.72 ± 0.293 32.32 ± 0.590 40.51 ± 0.440 36.43 ± 0.444
Recall@3 30.77 ± 1.093 53.30 ± 1.497 42.04 ± 0.276 52.00 ± 2.358 54.08 ± 0.224 53.04 ± 1.070 54.77 ± 0.494 62.29 ± 0.348 58.59 ± 0.406
Recall@5 41.62 ± 1.024 67.33 ± 1.797 54.47 ± 0.702 58.89 ± 2.474 62.49 ± 0.457 60.69 ± 1.328 65.09 ± 0.692 71.54 ± 0.342 68.37 ± 0.457
Recall@10 58.33 ± 0.976 84.94 ± 0.788 71.63 ± 0.171 70.73 ± 0.667 72.77 ± 0.121 71.75 ± 0.386 77.90 ± 0.264 82.73 ± 0.762 80.34 ± 0.425

Encoder 82M 0.50

200 30

Recall@1 12.81 ± 1.085 35.03 ± 1.449 23.92 ± 0.806 19.09 ± 1.049 34.12 ± 2.074 26.60 ± 0.641 25.34 ± 0.486 27.09 ± 0.058 26.22 ± 0.272
Recall@3 29.16 ± 0.588 65.97 ± 1.024 47.57 ± 0.219 33.09 ± 1.226 56.25 ± 0.604 44.67 ± 0.334 43.10 ± 0.895 46.60 ± 0.260 44.85 ± 0.321
Recall@5 39.52 ± 0.553 78.10 ± 0.808 58.81 ± 0.405 42.40 ± 1.104 65.85 ± 0.147 54.13 ± 0.574 52.59 ± 0.716 56.24 ± 0.552 54.41 ± 0.089
Recall@10 57.26 ± 2.562 90.24 ± 0.331 73.75 ± 1.164 61.47 ± 3.147 80.21 ± 0.358 70.84 ± 1.542 63.28 ± 0.774 66.26 ± 0.811 64.77 ± 0.088

400 60

Recall@1 8.21 ± 0.385 23.84 ± 2.136 16.02 ± 0.900 17.47 ± 0.585 29.48 ± 0.421 23.47 ± 0.499 17.60 ± 0.244 20.78 ± 0.098 19.19 ± 0.077
Recall@3 20.18 ± 0.372 49.38 ± 3.682 34.78 ± 1.666 29.04 ± 0.519 47.93 ± 0.711 38.49 ± 0.176 33.47 ± 0.202 38.09 ± 0.257 35.78 ± 0.227
Recall@5 28.58 ± 0.280 62.78 ± 1.623 45.68 ± 0.674 35.73 ± 0.372 56.03 ± 1.055 45.88 ± 0.390 41.50 ± 0.211 46.98 ± 0.265 44.24 ± 0.231
Recall@10 41.73 ± 0.728 77.61 ± 0.685 59.67 ± 0.370 47.78 ± 1.994 68.13 ± 0.739 57.96 ± 1.186 52.82 ± 0.298 57.66 ± 0.193 55.24 ± 0.233

800 120

Recall@1 4.87 ± 0.198 14.31 ± 0.792 9.59 ± 0.335 15.80 ± 0.587 24.45 ± 0.326 20.12 ± 0.243 12.78 ± 0.051 15.59 ± 0.053 14.18 ± 0.016
Recall@3 11.66 ± 0.106 30.44 ± 0.069 21.05 ± 0.036 26.60 ± 0.422 41.13 ± 0.504 33.86 ± 0.431 25.30 ± 0.077 28.76 ± 0.082 27.03 ± 0.045
Recall@5 17.16 ± 0.304 41.48 ± 0.686 29.32 ± 0.378 31.80 ± 0.400 48.65 ± 0.229 40.22 ± 0.085 31.93 ± 0.220 35.57 ± 0.130 33.75 ± 0.157
Recall@10 27.55 ± 0.699 59.19 ± 1.416 43.37 ± 0.905 40.02 ± 0.235 58.41 ± 0.678 49.22 ± 0.287 41.26 ± 0.223 44.94 ± 0.275 43.10 ± 0.240

ConveRT 46M 0.36

200 30

Recall@1 10.15 ± 0.377 25.14 ± 0.810 17.65 ± 0.591 18.04 ± 0.886 31.92 ± 0.057 24.98 ± 0.464 22.68 ± 0.286 33.84 ± 0.219 28.26 ± 0.034
Recall@3 25.75 ± 0.240 54.44 ± 1.246 40.09 ± 0.716 33.15 ± 0.988 57.11 ± 0.820 45.13 ± 0.846 43.55 ± 0.669 57.85 ± 0.820 50.70 ± 0.352
Recall@5 37.19 ± 1.667 67.88 ± 1.075 52.53 ± 1.370 42.88 ± 0.904 69.67 ± 0.131 56.27 ± 0.511 54.15 ± 0.307 68.25 ± 1.180 61.20 ± 0.507
Recall@10 58.16 ± 0.837 84.31 ± 0.648 71.23 ± 0.565 58.47 ± 0.608 83.79 ± 0.291 71.13 ± 0.172 69.69 ± 0.170 79.26 ± 0.910 74.48 ± 0.450

400 60

Recall@1 5.59 ± 0.126 18.63 ± 0.993 12.11 ± 0.472 17.10 ± 0.520 27.27 ± 0.725 22.19 ± 0.240 16.93 ± 0.426 23.08 ± 0.378 20.01 ± 0.236
Recall@3 15.99 ± 0.087 41.46 ± 1.874 28.73 ± 0.976 29.60 ± 0.472 49.03 ± 0.659 39.31 ± 0.250 33.77 ± 0.510 42.13 ± 0.713 37.95 ± 0.475
Recall@5 24.17 ± 0.461 54.45 ± 0.700 39.31 ± 0.576 36.92 ± 0.579 60.13 ± 1.242 48.52 ± 0.682 43.71 ± 0.512 52.55 ± 0.745 48.13 ± 0.488
Recall@10 38.65 ± 0.254 70.45 ± 0.437 54.55 ± 0.111 49.12 ± 0.946 73.68 ± 0.857 61.40 ± 0.644 57.08 ± 0.839 65.90 ± 0.706 61.49 ± 0.558

800 120

Recall@1 3.18 ± 0.222 10.16 ± 0.294 6.67 ± 0.214 14.97 ± 0.181 23.97 ± 0.777 19.47 ± 0.455 12.74 ± 0.110 18.15 ± 0.225 15.45 ± 0.167
Recall@3 8.82 ± 0.419 23.89 ± 0.701 16.36 ± 0.265 25.90 ± 0.111 42.67 ± 0.800 34.29 ± 0.397 26.28 ± 0.290 35.31 ± 0.204 30.79 ± 0.209
Recall@5 14.26 ± 0.581 33.92 ± 1.125 24.09 ± 0.393 31.85 ± 0.110 52.09 ± 1.034 41.97 ± 0.570 33.85 ± 0.395 44.28 ± 0.149 39.07 ± 0.261
Recall@10 24.57 ± 1.037 49.53 ± 0.641 37.05 ± 0.212 41.63 ± 0.507 64.48 ± 0.776 53.06 ± 0.451 45.28 ± 0.440 56.32 ± 0.143 50.80 ± 0.292

ConveRT
MAP

46M + 2M 0.78

200 30

Recall@1 20.23 ± 1.506 43.35 ± 1.198 31.79 ± 1.251 30.34 ± 0.894 32.60 ± 1.291 31.47 ± 0.741 33.45 ± 0.856 41.42 ± 1.430 37.44 ± 0.887
Recall@3 46.31 ± 1.720 76.19 ± 1.257 61.25 ± 1.496 51.81 ± 1.345 56.00 ± 1.828 53.90 ± 0.674 60.13 ± 1.431 68.85 ± 1.586 64.49 ± 1.485
Recall@5 59.38 ± 1.720 88.06 ± 0.903 73.72 ± 1.129 62.12 ± 1.478 68.79 ± 1.407 65.46 ± 0.747 72.76 ± 0.134 81.92 ± 0.561 77.34 ± 0.215
Recall@10 81.06 ± 2.524 96.29 ± 0.959 88.67 ± 1.636 78.70 ± 1.620 83.05 ± 1.426 80.87 ± 1.297 86.36 ± 0.303 91.08 ± 0.040 88.72 ± 0.13

400 60

Recall@1 15.42 ± 1.109 26.30 ± 1.121 20.86 ± 1.014 15.36 ± 0.950 22.72 ± 1.109 19.04 ± 0.647 26.77 ± 0.368 31.92 ± 0.285 29.35 ± 0.284
Recall@3 34.96 ± 1.127 58.43 ± 1.108 46.69 ± 0.927 40.88 ± 2.110 44.01 ± 1.679 42.45 ± 1.967 51.30 ± 0.903 55.44 ± 0.464 53.37 ± 0.595
Recall@5 45.20 ± 1.406 72.78 ± 1.171 58.99 ± 1.593 52.80 ± 1.309 54.15 ± 1.572 53.47 ± 1.343 62.48 ± 0.664 66.89 ± 1.362 64.68 ± 0.736
Recall@10 61.97 ± 1.676 88.25 ± 1.822 75.11 ± 1.743 68.21 ± 1.150 69.21 ± 1.230 68.71 ± 1.044 77.60 ± 0.517 80.10 ± 1.426 78.85 ± 0.492

800 120

Recall@1 6.36 ± 0.780 12.08 ± 0.227 9.22 ± 0.503 21.40 ± 0.468 15.37 ± 1.025 18.39 ± 0.284 20.61 ± 1.165 23.86 ± 0.101 22.23 ± 0.633
Recall@3 16.80 ± 0.896 31.66 ± 0.391 24.23 ± 0.548 32.94 ± 0.502 33.17 ± 1.216 33.06 ± 0.358 39.19 ± 1.549 46.51 ± 0.430 42.85 ± 0.990
Recall@5 23.36 ± 1.242 44.92 ± 0.197 35.64 ± 0.603 40.03 ± 0.331 42.67 ± 1.422 41.35 ± 0.591 49.93 ± 1.419 56.96 ± 0.856 53.44 ± 1.138
Recall@10 42.29 ± 1.925 70.35 ± 0.609 56.32 ± 0.675 56.13 ± 0.391 56.75 ± 2.076 56.35 ± 1.221 64.73 ± 0.214 71.12 ± 2.216 67.93 ± 1.215

Table 7: The experimental results of the various intent prediction approaches on the closed domain
datasets. The training time of the models was counted from the start of training until the Early Stopping.
The all metric is the average of the user metric and the dialogue system metric. To ensure stability of
results, all approaches were trained on 3 different sets of clusters and the resulting metrics were averaged.
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