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Message from the General Chair

I am delighted to welcome you to the Joint Conference of the 59th Annual Meeting of the Association for
Computational Linguistics and the 11th International Joint Conference on Natural Language Processing
(ACL-IJCNLP 2021)!

We are very grateful for many people. Fei Xia, Wenjie Li (Maggie) and Roberto Navigli, as the
Program Chairs, have admirably guided the work of main conference organization and management.
The calm and experienced Priscilla Rasmussen has done a lot of work for the signing of contracts
with virtual platform company, Underline.io, calculation of registration fees and managing the entire
registration process, and communication with sponsors and exhibitors. The amazing 68-person
organizing committee, who all contributed so much to make the conference successful: Local Chairs
(Priscilla Rasmussen, Thepchai Supnithi, Thanaruk Theeramunkong), Tutorial Chairs (David Chiang,
Min Zhang), Workshop Chairs (Kentaro Inui, Michael Strube), Student Research Workshop Chairs
(Jad Kabbara, Haitao Lin, Amandalynne Paullada, Jannis Vamvas), Faculty Advisors to the Student
Workshop (Jing Jiang, Rico Sennrich, Derek F. Wong, Nianwen Xue), Audio-Video Chairs (Suchathit
Boonnag, Rachasak Somyanonthanakul), Conference Handbook Chair (Krit Kosawat), Demonstration
Chairs (Heng Ji, Jong C. Park, Rui Xia), Diversity and Inclusion Committee Chairs (Academic Inclusion
Chairs: Avirup Sil, Kayathi Chandu, Lifu Huang, Sara Rosenthal; Accessibility Chairs: Minlie Huang,
Vivian Chen, Yang Feng; Financial Access Chairs: Martha Yifiru Tachbelie, Alexis Palmer, Ignatius
Eziani, Manuel Mager, Nafise Moosavi; Socio-cultural Inclusion Chairs: Alvin Grissom, Xanda
Schofield, Pedro Rodriguez), Local Sponsorship Chairs (Rachada Kongkrachantra, Jing Li, Kobkrit
Viriyayudhakorn, Zhongyu Wei), Publications Chairs (Yuki Arase, Jing-Shin Chang, Yvette Graham),
Publicity Chair (Kai-Fam Wong), Remote Presentation Chairs (Zhongjun He, Nattapol Kritsuthikul,
Yadollah Yaghoobzadeh), Sustainability Chairs (Angeliki Lazaridou, Qi Zhang), Reviewer Mentoring
Committe Chairs (Jing Huang, Antoine Bosselut, Christophe Gravier), Website and Conference App
Chairs (Chutima Beokhaimook, Witchaworn Mankhong), Student Volunteer Coordinator (Dongyan
Zhao), Ethic Advisory Committee Chairs (Malvina Nissim, Min-Yen Kan, Xanda Schofield), Social
Media Committee Chairs (Luciana Benotti, Lidong Bing, Zhumin Chen, Rachele Sprugnoli, Mark
Seligman), Virtual Infrastructure Committee Advisor (Hao Fang), Virtual Infrastructure Committee
Chairs (Wei Lu, Krich Nasingkun, Alessandro Raganato, Shaonan Wang, Liang-Chih Yu, Jianfei Yu).

The success of the conference is inseparable from the guidance and advice of ACL Officers. Special
thanks to Hinrich Schiitze, Rada Mihalcea, David Yarowsky, Shiqi Zhao and Yusuke Miyao. The general
chair of NAACL 2021, Dr. Kristina Toutanova provided me much advice based on her experience with
NAACL’2021 organization. The friendly cooperation with NAACL'2021 and EACL’2021 workshop
chairs and tutorial chairs is very important and is of mutual benefit to each other.

Sponsors and exhibitors are always very important. We are extremely grateful to all sponsors for their
continuing support to help our conferences be very successful.

And finally, I would like to thank every one of you for making ACL-IJCNLP’2021 such a success by
submitting papers and demos, serving as area chairs and reviewers, session chairs, invited speakers and
volunteers, and by joining us in virtual environment.

Welcome and hope you all enjoy the conference!

Chengqing Zong

ACL-IJCNLP’2021 General Chair
June 28, 2021
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Message from the Program Chairs

Welcome to the Joint Conference of the 59th Annual Meeting of the Association for Computational
Linguistics and the 11th International Joint Conference on Natural Language Processing (ACL-IJCNLP
2021)! ACL-IJCNLP 2021 has a special historical significance as this is a particularly exciting period:
our field has grown dramatically, NLP research is now ubiquitous in products, and the barrier to entry to
the field has lowered considerably. Like ACL 2020, ACL-IJCNLP 2021 is held as a virtual conference
again due to the worldwide COVID-19 pandemic which has lasted for more than one year. We are very
grateful for all of your support and contributions during this difficult time, which make this conference
special and memorable.

Abstract and Full-paper Submissions: To synchronize with NAACL 2021, our conference’s review
cycle was about three weeks shorter than that of ACL 2020. To make the short review cycle work, we
introduced an abstract submission step, which required authors to submit an abstract by Jan 25, 2021,
one week before the full-paper submission deadline on Feb 1, 2021. This extra step gave NAACL 2021
authors an opportunity to withdraw their papers from NAACL 2021 and submit them to ACL-IJCNLP
2021 based on feedback from NAACL 2021’s rebuttal period. In total, we received 4,266 abstract
submissions and 3, 350 full paper submissions.

Tracks: The submissions were assigned to one of 24 topic tracks. The tracks were similar to those used
in previous conferences but with a few changes:

1. Based on the number of submissions in previous conferences, we followed NAACL 2021 and
combined two tracks (“Semantics: Sentence Level” and “Semantics: Textual Inference and Other
Areas of Semantics”) into a single track “Semantics: Sentence-level Semantics, Textual Inference
and Other areas”.

2. To accommodate a wider and more diverse area, we changed the name of the “Computational
Social Science and Social Media” track to “Computational Social Science and Cultural Analytics”.

3. Following NAACL 2021, we combined the “Theory and Formalism” with the “Cognitive
Modeling and Psycholinguistics” areas into “Linguistic theories, Cognitive Modeling and
Psycholinguistics”. This track is designed to encourage submissions targeted to theoretical
underpinning of NLP models which had little/small presence in the past ACL conferences.

4. We introduced a new theme: “NLP for Social Good (NLP4SG)”. The application of Al to provide
positive social impact has been an important topic in recent years. However, to date, this has not
been a topic highlighted at the ACL main conference. This track is designed to invite submissions
that can provide insights for the ACL-IJCNLP community on the topic of NLP for Social Good as
well as how NLP could potentially cause or be used for social harm.

Program Committee: To meet the reviewer demands of a growing conference without compromising
review quality, we started recruiting Senior Area Chairs (SACs) and Area Chairs in early fall 2020. Then
we initiated a large-scale reviewer recruiting effort in Nov 2020. We compiled a big list of reviewers from
previous conferences, and sent out invitations to more than 9, 000 candidates, asking the ones who were
willing to serve to fill out a Microsoft reviewer form. About 4, 400 of the invitees filled out the form. We
then worked with SACs and ACs in selecting reviewers and assigning them to appropriate tracks. The
whole process of forming the program committee was very complex and took several months to complete
and, at the end, we have the largest ever program committee in the history of ACL with 60 SACs, 323
ACs, and 3, 685 primary reviewers.



Reviewer Mentoring Program: Review quality is crucial for the success of a large conference like
ACL. Thus, it is of central importance for our community to mentor and train new reviewers in order to
keep up with the community’s rapid growth, both in terms of submissions and in terms of new members
of the community. Therefore, this year we continued the reviewer mentoring program launched with
ACL 2020. Ultimately, the goal of this program is to provide long-needed mentoring to new reviewers.
We formed a reviewer mentoring committee. Collaborating with them and SACs, we paired Area Chairs
(mentors) with first-time ACL reviewers (mentees, often Ph.D. students or junior researchers) during
the paper assignment process. The mentees would submit reviews early for the mentors to provide
feedback, and the mentees would then revise their reviews based on the feedback. In addition, to help
all the reviewers, the reviewer mentoring committee created several videos including the presentation
of the mentoring program, a general reviewing tutorial, information about the review form used for this
conference, and guidelines on how to consider ethical issues reproducibility in submissions.

Ethical review: The ethical impact and potential applications of our research should be an important
consideration for research design, and as artificial intelligence is becoming more mainstream, these issues
are increasingly pertinent. To address the potential ethical concerns, we allowed authors to include
a broader impact statement or other discussion of ethics in the paper, which does not count towards
the page limit. We formed an Ethics Advisory Committee (EAC) with three co-chairs and 57 EAC
reviewers. During the review process, reviewers were asked to flag submissions with ethical concerns.
The EAC then reviewed all the flagged papers to determine whether the papers should be (a) accepted
as is, (b) conditional accepted (with specification of what must be addressed in the camera-ready version
in order for the condition to be removed), or (c) rejected on ethical grounds (with explanation of the
reject decision). Based on their decisions and the SAC recommendations, we made the accept/reject
decisions and sent out acceptance notifications on May 6, 2021. The whole process was explained in a
blog posted to the conference website on May 10, 2021. The camera-ready version of the conditionally
accepted papers were checked by the EAC again. The EAC informed us that all these papers had made
satisfactory revisions and thus we removed the condition on the papers. The whole process was very
complex, and we were grateful for the hard work of the EAC and the authors.

Acceptance to Main Conference: After the review process, out of the 3,350 full submissions, 710
papers (139 short, 571 long) were accepted into the main conference. With an acceptance rate of 21.2%,
ACL-IJCNLP 2021 continues to be a highly competitive conference. Based on the nominations from
Senior Area Chairs, we selected 28 papers as candidates for the Best Paper awards. We formed a Best
Paper Award Committee, who went over all the candidates and selected one best paper, one best theme
paper and six outstanding papers.

Findings: To continue the success of Findings at EMNLP 2020, we decided to introduce Findings
papers, which are papers that are not accepted for publication in the main conference, but nonetheless
have been assessed by the Program Committee as solid work with sufficient substance, quality and
novelty. Out of the 3,350 full submissions, 493 papers were invited to be included in the Findings.
Thirty-six papers declined the offer, leading to 457 papers (118 short and 339 long) to be published in the
Findings of ACL: ACL-IJCNLP 2021. To increase the visibility of the Finding papers, the authors of such
papers can choose to make a 3-minute video to be included in the virtual conference site. Our workshop
chairs also helped to pair Findings papers with ACL-IJCNLP 2021 workshops for the possibility of
Finding papers to be presented at those workshops.

TACL and CL papers: Continuing the tradition, ACL-IJCNLP 2021 will also feature 27 papers that
were published at Transactions of the Association for Computational Linguistics (TACL) and 5 papers
from the journal of Computational Linguistics (CL).

Keynote speakers: Another highlight of our program is three exciting keynote talks, given by Prof.
Christopher Potts (Stanford University), Prof. Helen Meng (Chinese University of Hong Kong), and Dr.
Alejandrina Cristia (Ecole Normale Supérieure).
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ACL-IJCNLP 2021 would not be possible without the support from the community. There are many
people we would like to thank for their significant contributions! First, we would like to thank our
Program Committee, whose names are included in the Program Committee pages in the proceedings:

* Our awesome 60 Senior Area Chairs who were instrumental in every aspect of the review process
(e.g., AC/reviewer selection, paper assignment, recommendation for paper acceptance, nomination
of best papers and outstanding reviewers). For many of them, the scope of their responsibilities was
equivalent to chairing a small conference. The 323 Area Chairs who led paper review discussions,
wrote meta-reviews, and mentored junior reviewers. In addition, they have helped SACs with
reviewer selection, paper assignment, and many other tasks.

* Our 3,685 primary reviewers and 262 secondary reviewers who provided valuable feedback
to the authors. Special thanks to those who stepped in at the last minute to serve as emergency
reviewers.

Second, we would like to thank many ACL-IJCNLP 2021 committees that we have worked with,
including:

* Our Best Paper Selection Committee, Bonnie Webber, Tim Baldwin and Ellen Riloff for selecting
best papers and outstanding papers under a very tight schedule.

* Our Ethics Advisory Committee, chaired by Min-Yen Kan, Malvina Nissim, and Xanda
Schofield, for their hard work to ensure that all the accepted papers have addressed the ethical
issues appropriately.

* Our Reviewer Mentoring Committee, Jing Huang, Antoine Bosselut and Christophe Gravier, for
preparing mentoring materials and providing review support to first-time reviewers.

* Our Publication Co-Chairs, Jing-Shin Chang, Yuki Arase, and Yvette Graham, for their
tremendous effort in making the proceedings.

* Our Social Media Committee, chaired by Luciana Benotti, Lidong Bing, Zhumin Chen, Mark
Seligman, and Rachele Sprugnoli, for effectively communicating conference updates and other
urgent information on social media platforms.

* The Workshop Chairs, Kentaro Inui and Michael Strube, for connecting Findings paper authors
with individual workshops for possible presentations.

* The Website & Conference App Chairs, Chutima Beokhaimook and Witchaworn Mankhong, for
making numerous updates to the conference website.
Third, we would like to thank many people who help us with various software used for the conference:
* Rich Gerber at SoftConf, who is always quick to respond to our emails and resolve difficulties we
encountered with the START system.

* C. M. Downey at the University of Washington, who helped us to extend and run the external paper
assignment system developed by Graham Neubig.

» Caterina Lacerra and Rocco Tripodi at the Sapienza University of Rome, who helped us in the
creation of internal spreadsheets and processing scripts.

* The whole Underline team (Sol Rosenberg, Fun Lee, Jordan Young, Daniel Luise) who created a
virtual site for the conference.
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As Program chairs, we were in charge of several dozen tasks and many of them were new to us. We
would not be able to complete the tasks without the advice from our colleagues, including:

* Our General Chair Chengqing Zong, who has been very supportive throughout the whole process,
giving us the flexibility to innovate while providing an invaluable sounding board.

* The Program Co-Chairs of ACL 2020, Joyce Chai, Natalie Schluter and Joel Tetreault; the
Program Co-Chairs of EMNLP 2020, Trevor Cohn, Yulan He and Yang Liu; the Program
Co-Chairs of NAACL 2021, Anna Rumshisky, Luke Zettlemoyer and Dilek Hakkani-Tur, for
generously sharing their experience, documentation, and advice in organizing ACL conferences
and for answering our questions, often on short notice.

* ACL Executive Committee, especially Rada Mihalcea (the ACL President) and Hinrich Schiitze
(the ACL Past President), Shiqi Zhao (Secretary), Priscilla Rasmussen (Business Manager),
Nitin Madnani (Member-at-large), to help us sort through various issues.

* TACL Editors-in-Chief Ani Nenkova and Brian Roark, TACL Editorial Assistant Cindy
Robinson, and CL Editor-in-Chief Hwee Tou Ng for coordinating TACL and CL presentations at
the conference.

We would also like to thank all the authors (8, 757 in total) who submitted their work to the conference.
Although we were only able to accept a small percentage of the submissions, your hard work makes this
conference exciting and our community strong.

Last, but not least, we thank our students, interns, postdocs, colleagues, and families for being so
understanding and supportive when we were swamped by countless conference deadlines and meetings.

Our deepest gratitude is to all of you. We hope you will enjoy the conference.

Fei Xia, University of Washington
Wenjie Li, The Hong Kong Polytechnic University
Roberto Navigli, Sapienza University of Rome

ACL-IJCNLP 2021 Program Committee Co-Chairs
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Keynote Talk: Advancing Technological Equity in Speech and
Language Processing

Helen Meng
The Chinese University of Hong Kong (CUHK)

Abstract: Accelerating advances in Al and deep neural networks have powered the proliferation of
speech and language technologies in applications such as virtual assistants, smart speakers, reading
machines, etc. The technologies have performed impressively well, achieving human parity in speech
recognition accuracies and speech synthesis naturalness. As these technologies continue to permeate
our daily lives, they need to support diverse users and usage contexts with inputs that deviate from the
mainstream. Examples include non-native speakers, code-switching, speech carrying myriad emotions
and styles, and speakers with impairments and disorders. Under such contexts, existing technologies
often suffer performance degradations and fail to fulfill the needs of the users. The crux of the problem
lies in data scarcity and data sparsity, which are exacerbated by high data variability.

This talk presents an overview of some of the approaches we have used to address the challenges of data
shortage, positioned at various stages along the processing pipeline. They include: data augmentation
based on speech signal perturbations, use of pre-trained representations, learning speech representation
disentanglement, knowledge distillation architectures, meta-learned model re-initialization, as well as
adversarially trained models. The effectiveness of these approaches are demonstrated through a variety
of applications, including accented speech recognition, dysarthric speech recognition, code-switched
speech synthesis, disordered speech reconstruction, one-shot voice conversion and exemplar-based
emotive speech synthesis. These efforts strive to develop speech and language technologies that can
gracefully adapt and accommodate a diversity of user needs and usage contexts, in order to achieve
technological equity in our society.

Bio: Helen Meng is Patrick Huen Wing Ming Professor of Systems Engineering and Engineering
Management at The Chinese University of Hong Kong (CUHK). Her research interests include
speech and language technologies to support multilingual and multimodal human-computer interactions,
elLearning and assistive technologies, as well as big data decision analytics using Al. She leads the
interdisciplinary research team that received the first Theme-based Research Scheme Project in Artificial
Intelligence in 2019 from the Hong Kong SAR Government’s Research Grants Council. She is Chair of
the Curriculum Development in the CUHK-JC Al4Future Project, which has developed the courseware
for pre-tertiary Al education being taught in a growing number of participating secondary schools across
Hong Kong.

Helen received all her degrees from MIT. She is the Founding Director of the CUHK Ministry of
Education (MoE)-Microsoft Key Laboratory for Human-Centric Computing and Interface Technologies
(since 2005), Tsinghua-CUHK Joint Research Center for Media Sciences, Technologies and Systems
(since 2006), and Stanley Ho Big Data Decision Analytics Research Center (since 2013). Previously, she
has served as CUHK Faculty of Engineering’s Associate Dean (Research), Chairman of the Department
of Systems Engineering and Engineering Management, Editor-in-Chief of the IEEE Transactions on
Audio, Speech and Language Processing, Member of the IEEE Signal Processing Society Board of
Governors, ISCA Board Member and presently member of the IEEE SPS Awards Board and ISCA
International Advisory Council. She was elected APSIPA’s inaugural Distinguished Lecturer 2012-
2013 and ISCA Distinguished Lecturer 2015-2016. Her awards include the Ministry of Education
Higher Education Outstanding Scientific Research Output Award 2009, Microsoft Research Outstanding
Collaborator Award 2016 (1 in 32 worldwide), IBM Faculty Award 2016, HKPWE Outstanding Women
Professionals and Entrepreneurs Award 2017 (1 in 20 since 1999), Hong Kong ICT Silver Award 2018
in Smart Inclusion, 2019 IEEE SPS Leo L. Beranek Meritorious Service Award and various best paper
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awards. Helen has served in a number of government appointments, which include memberships in the
Steering Committee of Hong Kong’s Electronic Health Record Sharing, Social Welfare Department’s
Joint Committee on Information Technology for the Social Welfare Sector and Advisory Committee on
financing social welfare services. She is also a member of the AI4SDGs Al for Children Working Group.
Helen is a Fellow of IEEE, ISCA, HKIE and HKCS.

XXXIV



Keynote Talk: Learning and Processing Language from Wearables:
Opportunities and Challenges

Alejandrina Cristia
Laboratoire de Sciences Cognitives et de Psycholinguistique,
Département d’études cognitives, ENS, EHESS, CNRS, PSL University

Abstract: Recent years have seen tremendous improvement in the ease with which we can collect
naturalistic language samples via devices worn over long periods of time. These allow unprecedented
access to ego-centered experiences in language perceived and produced, including by young children.
For example, in a newly-formed consortium, we pulled together over 40k hours of audio, collected from
1,001 children growing up in industrialized or hunter-horticulturalist populations, located in one of 12
countries. Such data are interesting for many purposes, including as 1. fodder for unsupervised language
learning models aimed at mimicking what the child does; 2. indices of early language development
that can be used to assess the impact of behavioral and pharmacological interventions; and 3. samples
of the natural use of language(s) in low-resource and multilingual settings. The technology allowing to
carve out interesting information from these large datasets, however, is lagging behind — but this may
not be such a bad thing after all, since the ethical, technical, and legal handling of such data also need
some work to increase the chances that the net impact of research based on this technique is positive.
In this talk, I draw from cutting-edge research building on long-form recordings from wearables and a
framework for doing the most good we can (effective altruism) to highlight surprising findings in early
language acquisition, and delineate key priorities for future work.

Bio: Alejandrina Cristia is a senior researcher at the Centre National de la Recherche Scientifique
(CNRS), leader of the Language Acquisition Across Cultures team, and director of the Laboratoire
de Sciences Cognitives et Psycholinguistique (LSCP) cohosted by the Ecole Normale Supérieure,
EHESS, and PSL. In 2021, she is an invited researcher in the Foundations of Learning Program
of the Abdul Latif Jameel Poverty Action Lab (J-PAL), and a guest researcher at the Max Planck
Institute for Evolutionary Anthropology. Her long-term aim is to answer the following questions:
What are the linguistic representations that infants and adults have? Why and how are they formed?
How may learnability biases shape the world’s languages? To answer these questions, she combines
multiple methodologies including spoken corpora analyses, behavioral studies, neuroimaging (NIRS),
and computational modeling. This interdisciplinary approach has resulted in over 100 publications in
pscyhology, linguistics, and development journals as well as IEEE and similar conferences. With an
interest in cumulative, collaborative, and transparent science, she contributed to the creation of the
first meta-meta-analysis platform (metalab.stanford.edu) and several international networks, including
saliently the LangVIEW consortium that is leading /L+/, the First truly global summer/winter school
on language acquisition.! She received the 2017 John S. McDonnell Scholar Award in Understanding
Human Cognition, the 2020 Médaille de Bronze CNRS Section Linguistique, and an ERC Consolidator
Award (2021-2026) for the ExELang? project.

"https://www.dpss.unipd.it/summer—school-2021/home
2exelanq. fr
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Keynote Talk: Reliable Characterizations of NLP Systems
as a Social Responsibility

Christopher Potts
Stanford University

Abstract: This is an incredible moment for NLP. We all routinely work with models whose capabilities
would have seemed like science fiction just two decades ago, powerful organizations eagerly await our
latest results, and NLP technologies are playing an increasingly large role in shaping our society. As
a result, all of us in the NLP community are likely to participate in research that will contribute (to
varying degrees and perhaps only indirectly) to technologies that will impact many people’s lives, with
both positive and negative consequences — for example, technologies that broaden accessibility, enhance
creative self-expression, heighten surveillance, and create propaganda. What can we do to fulfill the
social responsibility that this brings? As a (very) partial answer to this question, I will review a number
of important recent developments, spanning many research groups, concerning dataset creation, model
introspection, and system assessment. Taken together, these ideas can help us more reliably characterize
how NLP systems will behave, and more reliably communicate this information to a wider range of
potential users. In this way, they can help us meet our obligations to the people whose lives are impacted
by the results of our research.

Bio: Christopher Potts is Professor and Chair of Linguistics and Professor (by courtesy) of Computer
Science at Stanford, and a faculty member in the Stanford NLP Group and the Stanford AI Lab. His
group uses computational methods to explore how emotion is expressed in language and how linguistic
production and interpretation are influenced by the context of utterance. This research combines methods
from linguistics, cognitive psychology, and computer science, in the service of both scientific discovery
and technology development. He was previously Chief Scientist at Roam Analytics, a start-up focused
on applying NLP in healthcare and the life sciences (now Parexel Al Labs). He is a long-time Action
Editor at TACL, a frequent Area Chair at ACL conferences, and currently an Ethics Committee co-chair
for EMNLP 2021.
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A Span-based Dynamic Local Attention Model for Sequential Sentence Classifica-
tion
Xichen Shang, Qianli Ma, Zhenxi Lin, Jiangyue Yan and Zipeng Chen

Poster 1K: Resources and Evaluation

How effective is BERT without word ordering? Implications for language under-
standing and data privacy
Jack Hessel and Alexandra Schofield

Can vectors read minds better than experts? Comparing data augmentation strate-
gies for the automated scoring of children’s mindreading ability
Venelin Kovatchev, Phillip Smith, Mark Lee and Rory Devine

A Dataset and Baselines for Multilingual Reply Suggestion
Mozhi Zhang, Wei Wang, Budhaditya Deb, Guoging Zheng, Milad Shokouhi and
Ahmed Hassan Awadallah

WikiSum: Coherent Summarization Dataset for Efficient Human-Evaluation
Nachshon Cohen, Oren Kalinsky, Yftah Ziser and Alessandro Moschitti

What Ingredients Make for an Effective Crowdsourcing Protocol for Difficult NLU
Data Collection Tasks?

Nikita Nangia, Saku Sugawara, Harsh Trivedi, Alex Warstadt, Clara Vania and
Samuel R. Bowman

UMIC: An Unreferenced Metric for Image Captioning via Contrastive Learning
Hwanhee Lee, Seunghyun Yoon, Franck Dernoncourt, Trung Bui and Kyomin Jung

Neural OCR Post-Hoc Correction of Historical Corpora
Lijun Lyu, Maria Koutraki, Martin Krikl and Besnik Fetahu
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15:00-17:00

15:00-17:00

15:00-17:00

15:00-17:00

15:00-17:00

15:00-17:00

15:00-17:00

15:00-17:00

15:00-17:00

Poster 1L: Computational Social Science and Cultural Analytics

Align Voting Behavior with Public Statements for Legislator Representation Learn-
ing

Xinyi Mou, Zhongyu Wei, Lei Chen, Shangyi Ning, Yancheng He, Changjian Jiang
and Xuanjing Huang

Measure and Evaluation of Semantic Divergence across Two Languages
Syrielle Montariol and Alexandre Allauzen

Poster 1M: Machine Translation and Multilinguality

Improving Zero-Shot Translation by Disentangling Positional Information
Danni Liu, Jan Niehues, James Cross, Francisco Guzman and Xian Li

Common Sense Beyond English: Evaluating and Improving Multilingual Language
Models for Commonsense Reasoning
Bill Yuchen Lin, Seyeon Lee, Xiaoyang Qiao and Xiang Ren

Attention Calibration for Transformer in Neural Machine Translation
Yu Lu, Jiali Zeng, Jiajun Zhang, Shuangzhi Wu and Mu Li

Anchor-based Bilingual Word Embeddings for Low-Resource Languages
Tobias Eder, Viktor Hangya and Alexander Fraser

Diverse Pretrained Context Encodings Improve Document Translation
Domenic Donato, Lei Yu and Chris Dyer

Multilingual Agreement for Multilingual Neural Machine Translation
Jian Yang, Yuwei Yin, Shuming Ma, Haoyang Huang, Dongdong Zhang, Zhoujun
Li and Furu Wei

Exploiting Language Relatedness for Low Web-Resource Language Model Adapta-
tion: An Indic Languages Study

Yash Khemchandani, Sarvesh Mehtani, Vaidehi Patil, Abhijeet Awasthi, Partha
Talukdar and Sunita Sarawagi
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15:00-17:00

15:00-17:00

15:00-17:00

15:00-17:00

15:00-17:00

15:00-17:00

15:00-17:00

Poster 1N: Syntax: Tagging, Chunking, and Parsing

On Finding the K-best Non-projective Dependency Trees
Ran Zmigrod, Tim Vieira and Ryan Cotterell

Higher-order Derivatives of Weighted Finite-state Machines
Ran Zmigrod, Tim Vieira and Ryan Cotterell
Poster 10: Theme

Towards Argument Mining for Social Good: A Survey
Eva Maria Vecchi, Neele Falk, Iman Jundi and Gabriella Lapesa

Automated Generation of Storytelling Vocabulary from Photographs for use in AAC
Mauricio Fontana de Vargas and Karyn Moffatt

Poster 1P: NLP Applications

CLIP: A Dataset for Extracting Action Items for Physicians from Hospital Dis-
charge Notes

James Mullenbach, Yada Pruksachatkun, Sean Adler, Jennifer Seale, Jordan Swartz,
Greg McKelvey, Hui Dai, Yi Yang and David Sontag

Assessing Emoji Use in Modern Text Processing Tools
Abu Awal Md Shoeb and Gerard de Melo

Select, Extract and Generate: Neural Keyphrase Generation with Layer-wise Cov-
erage Attention
Wasi Ahmad, Xiao Bai, Soomin Lee and Kai-Wei Chang
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15:00-17:00

15:00-17:00

15:00-17:00

15:00-17:00

15:00-17:00

15:00-17:00

15:00-17:00

15:00-17:00

Poster 1Q: Language Generation

Factorising Meaning and Form for Intent-Preserving Paraphrasing
Tom Hosking and Mirella Lapata

AggGen: Ordering and Aggregating while Generating
Xinnuo Xu, Ondfej Dusek, Verena Rieser and loannis Konstas

Reflective Decoding: Beyond Unidirectional Generation with Off-the-Shelf Lan-
guage Models

Peter West, Ximing Lu, Ari Holtzman, Chandra Bhagavatula, Jena D. Hwang and
Yejin Choi

Towards Table-to-Text Generation with Numerical Reasoning
Lya Hulliyyatus Suadaa, Hidetaka Kamigaito, Kotaro Funakoshi, Manabu Okumura
and Hiroya Takamura

Data-to-text Generation with Macro Planning
Ratish Puduppully and Mirella Lapata

Poster 1R: Summarization

BACO: A Background Knowledge- and Content-Based Framework for Citing Sen-
tence Generation

Yubin Ge, Ly Dinh, Xiaofeng Liu, Jinsong Su, Ziyao Lu, Ante Wang and Jana
Diesner

Language Model as an Annotator: Exploring DialoGPT for Dialogue Summariza-
tion
Xiachong Feng, Xiaocheng Feng, Libo Qin, Bing Qin and Ting Liu

Reinforcement Learning for Abstractive Question Summarization with Question-

aware Semantic Rewards
Shweta Yadav, Deepak Gupta, Asma Ben Abacha and Dina Demner-Fushman
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15:00-17:00

15:00-17:00

15:00-17:00

15:00-17:00

15:00-17:00

15:00-17:00

15:00-17:00

15:00-17:00

15:00-17:00

Poster 1S: Question Answering

Challenges in Information-Seeking QA: Unanswerable Questions and Paragraph
Retrieval
Akari Asai and Eunsol Choi

A Semantics-aware Transformer Model of Relation Linking for Knowledge Base
Question Answering

Tahira Naseem, Srinivas Ravishankar, Nandana Mihindukulasooriya, Ibrahim Ab-
delaziz, Young-Suk Lee, Pavan Kapanipathi, Salim Roukos, Alfio Gliozzo and
Alexander Gray

A Gradually Soft Multi-Task and Data-Augmented Approach to Medical Question
Understanding

Khalil Mrini, Franck Dernoncourt, Seunghyun Yoon, Trung Bui, Walter Chang,
Emilia Farcas and Ndapa Nakashole

Neural Retrieval for Question Answering with Cross-Attention Supervised Data
Augmentation
Yinfei Yang, Ning Jin, Kuo Lin, Mandy Guo and Daniel Cer

Poster 1T: Language Grounding to Vision, Robotics and Beyond

Enhancing Descriptive Image Captioning with Natural Language Inference

Zhan Shi, Hui Liu and Xiaodan Zhu

Poster 1U: Information Extraction

Leveraging Type Descriptions for Zero-shot Named Entity Recognition and Classi-
fication

Rami Aly, Andreas Vlachos and Ryan McDonald

MECT: Multi-Metadata Embedding based Cross-Transformer for Chinese Named
Entity Recognition

Shuang Wu, Xiaoning Song and Zhenhua Feng

MOLEMAN: Mention-Only Linking of Entities with a Mention Annotation Network
Nicholas FitzGerald, Dan Bikel, Jan Botha, Daniel Gillick, Tom Kwiatkowski and

Andrew McCallum

Factuality Assessment as Modal Dependency Parsing
Jiarui Yao, Haoling Qiu, Jin Zhao, Bonan Min and Nianwen Xue
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15:00-17:00

15:00-17:00

15:00-17:00

15:00-17:00

15:00-17:00

15:00-17:00

15:00-17:00

17:00—18:00

Poster 1V: Sentiment Analysis, Stylistic Analysis, and Argument Mining

Directed Acyclic Graph Network for Conversational Emotion Recognition
Weizhou Shen, Siyue Wu, Yunyi Yang and Xiaojun Quan

Improving Formality Style Transfer with Context-Aware Rule Injection
Zonghai Yao and hong yu

Topic-Driven and Knowledge-Aware Transformer for Dialogue Emotion Detection
Lixing Zhu, Gabriele Pergola, Lin Gui, Deyu Zhou and Yulan He

Syntopical Graphs for Computational Argumentation Tasks
Joe Barrow, Rajiv Jain, Nedim Lipka, Franck Dernoncourt, Vlad Morariu, Varun
Manjunatha, Douglas Oard, Philip Resnik and Henning Wachsmuth

Stance Detection in COVID-19 Tweets
Kyle Glandt, Sarthak Khanal, Yingjie Li, Doina Caragea and Cornelia Caragea

eMLM: A New Pre-training Objective for Emotion Related Tasks
Tiberiu Sosea and Cornelia Caragea

Topic-Aware Evidence Reasoning and Stance-Aware Aggregation for Fact Verifica-

tion
Jiasheng Si, Deyu Zhou, Tongzhe Li, Xingyu Shi and Yulan He

Keynote 2. Alejandrina Cristia: Learning and Processing Language from Wear-
ables: Opportunities and Challenges
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23:00-23:10

23:10-23:20

23:20-23:30

23:30-23:40

23:40-23:50

23:50-23:57

23:00-23:10

23:10-23:20

23:20-23:30

23:30-23:40

Session 4A: Computational Social Science and Cultural Analytics 3

Changes in European Solidarity Before and During COVID-19: Evidence from a
Large Crowd- and Expert-Annotated Twitter Dataset
Alexandra Ils, Dan Liu, Daniela Grunow and Steffen Eger

Measuring Conversational Uptake: A Case Study on Student-Teacher Interactions
Dorottya Demszky, Jing Liu, Zid Mancenido, Julie Cohen, Heather Hill, Dan Juraf-
sky and Tatsunori Hashimoto

A Survey of Code-switching: Linguistic and Social Perspectives for Language Tech-
nologies

A. Seza Dogruoz, Sunayana Sitaram, Barbara E. Bullock and Almedia Jacqueline
Toribio

Learning from the Worst: Dynamically Generated Datasets to Improve Online Hate
Detection
Bertie Vidgen, Tristan Thrush, Zeerak Waseem and Douwe Kiela

InfoSurgeon: Cross-Media Fine-grained Information Consistency Checking for
Fake News Detection

Yi Fung, Christopher Thomas, Revanth Gangi Reddy, Sandeep Polisetty, Heng Ji,
Shih-Fu Chang, Kathleen McKeown, Mohit Bansal and Avi Sil

On Positivity Bias in Negative Reviews
Madhusudhan Aithal and Chenhao Tan
Session 4B: Dialog and Interactive Systems 3

1 like fish, especially dolphins: Addressing Contradictions in Dialogue Modeling
Yixin Nie, Mary Williamson, Mohit Bansal, Douwe Kiela and Jason Weston

A Sequence-to-Sequence Approach to Dialogue State Tracking
Yue Feng, Yang Wang and Hang Li

Discovering Dialog Structure Graph for Coherent Dialog Generation
Jun Xu, Zeyang Lei, Haifeng Wang, Zheng-Yu Niu, Hua Wu and Wanxiang Che

Dialogue Response Selection with Hierarchical Curriculum Learning

Yixuan Su, Deng Cai, Qingyu Zhou, Zibo Lin, Simon Baker, Yunbo Cao, Shuming
Shi, Nigel Collier and Yan Wang
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23:40-23:50

23:50-23:57

23:00-23:10

23:10-23:20

23:20-23:30

23:30-23:40

23:40-23:47

23:47-23:54

A Joint Model for Dropped Pronoun Recovery and Conversational Discourse Pars-
ing in Chinese Conversational Speech

Jingxuan Yang, Kerui Xu, Jun Xu, Si Li, Sheng Gao, Jun Guo, Nianwen Xue and
Ji-Rong Wen

PRAL: A Tailored Pre-Training Model for Task-Oriented Dialog Generation
Jing Gu, Qingyang Wu, Chongruo Wu, Weiyan Shi and Zhou Yu

Session 4C: Information Extraction 3

A Systematic Investigation of KB-Text Embedding Alignment at Scale
Vardaan Pahuja, Yu Gu, Wenhu Chen, Mehdi Bahrami, Lei Liu, Wei-Peng Chen
and Yu Su

Named Entity Recognition with Small Strongly Labeled and Large Weakly Labeled
Data
Haoming Jiang, Danqing Zhang, Tianyu Cao, Bing Yin and Tuo Zhao

Ultra-Fine Entity Typing with Weak Supervision from a Masked Language Model
Hongliang Dai, Yangqiu Song and Haixun Wang

Improving Named Entity Recognition by External Context Retrieving and Coopera-
tive Learning
Xinyu Wang, Yong Jiang, Nguyen Bach, Tao Wang, Zhongqiang Huang, Fei Huang
and Kewei Tu

ROPE: Reading Order Equivariant Positional Encoding for Graph-based Docu-
ment Information Extraction

Chen-Yu Lee, Chun-Liang Li, Chu Wang, Renshen Wang, Yasuhisa Fujii, Siyang
Qin, Ashok Popat and Tomas Pfister

Zero-shot Event Extraction via Transfer Learning: Challenges and Insights
Qing Lyu, Hongming Zhang, Elior Sulem and Dan Roth
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23:00-23:10

23:10-23:20

23:20-23:30

23:30-23:40

23:40-23:50

23:50-23:57

23:00-23:10

23:10-23:20

23:20-23:30

23:30-23:40

Session 4D: Interpretability and Analysis of Models for NLP 3

Implicit Representations of Meaning in Neural Language Models
Belinda Z. Li, Maxwell Nye and Jacob Andreas

Causal Analysis of Syntactic Agreement Mechanisms in Neural Language Models
Matthew Finlayson, Aaron Mueller, Sebastian Gehrmann, Stuart Shieber, Tal
Linzen and Yonatan Belinkov

Bird’s Eye: Probing for Linguistic Graph Structures with a Simple Information-
Theoretic Approach
Yifan Hou and Mrinmaya Sachan

Knowledgeable or Educated Guess? Revisiting Language Models as Knowledge
Bases

Boxi Cao, Hongyu Lin, Xianpei Han, Le Sun, Lingyong Yan, Meng Liao, Tong Xue
and Jin Xu

Poisoning Knowledge Graph Embeddings via Relation Inference Patterns
Peru Bhardwaj, John Kelleher, Luca Costabello and Declan O’Sullivan

Using Adversarial Attacks to Reveal the Statistical Bias in Machine Reading Com-
prehension Models
Jieyu Lin, Jiajie Zou and Nai Ding

Session 4E: Ethics in NLP 1

Bad Seeds: Evaluating Lexical Methods for Bias Measurement
Maria Antoniak and David Mimno

A Survey of Race, Racism, and Anti-Racism in NLP
Anjalie Field, Su Lin Blodgett, Zeerak Waseem and Yulia Tsvetkov

Intrinsic Bias Metrics Do Not Correlate with Application Bias
Seraphina Goldfarb-Tarrant, Rebecca Marchant, Ricardo Muiioz Sdnchez, Mugdha
Pandya and Adam Lopez

RedditBias: A Real-World Resource for Bias Evaluation and Debiasing of Conver-

sational Language Models
Soumya Barikeri, Anne Lauscher, Ivan Vuli¢ and Goran Glavas
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23:40-23:47

23:47-23:54

Quantifying and Avoiding Unfair Qualification Labour in Crowdsourcing
Jonathan K. Kummerfeld

Men Are Elected, Women Are Married: Events Gender Bias on Wikipedia
Jiao Sun and Nanyun Peng

Tuesday, August 3, 2021 (all times UTC+0)

00:00-00:10

00:10-00:20

00:20-00:30

00:30-00:40

00:40-00:47

00:47-00:54

Session SA: Machine Translation and Multilinguality 3

Contributions of Transformer Attention Heads in Multi- and Cross-lingual Tasks
Weicheng Ma, Kai Zhang, Renze Lou, Lili Wang and Soroush Vosoughi

Crafting Adversarial Examples for Neural Machine Translation
Xinze Zhang, Junzhe Zhang, Zhenhua Chen and Kun He

UXLA: A Robust Unsupervised Data Augmentation Framework for Zero-Resource
Cross-Lingual NLP
M Saiful Bari, Tasnim Mohiuddin and Shafiq Joty

Glancing Transformer for Non-Autoregressive Neural Machine Translation
Lihua Qian, Hao Zhou, Yu Bao, Mingxuan Wang, Lin Qiu, Weinan Zhang, Yong
Yu and Lei Li

Modeling Task-Aware MIMO Cardinality for Efficient Multilingual Neural Machine
Translation
Hongfei Xu, Qiuhui Liu, Josef van Genabith and Deyi Xiong

Adaptive Nearest Neighbor Machine Translation

Xin Zheng, Zhirui Zhang, Junliang Guo, Shujian Huang, Boxing Chen, Weihua Luo
and Jiajun CHEN
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00:00-00:10

00:10-00:20

00:20-00:30

00:30-00:40

00:40-00:50

00:00-00:10

00:10-00:20

00:20-00:30

00:30-00:40

00:40-00:50

Session 5B: Language Grounding to Vision, Robotics and Beyond 2

Hierarchical Context-aware Network for Dense Video Event Captioning
Lei Ji, Xianglin Guo, Haoyang Huang and Xilin Chen

Control Image Captioning Spatially and Temporally
Kun Yan, Lei Ji, Huaishao Luo, Ming Zhou, Nan Duan and Shuai Ma

Edited Media Understanding Frames: Reasoning About the Intent and Implications
of Visual Misinformation
Jeff Da, Maxwell Forbes, Rowan Zellers, Anthony Zheng, Jena D. Hwang, Antoine
Bosselut and Yejin Choi

PIGLeT: Language Grounding Through Neuro-Symbolic Interaction in a 3D World
Rowan Zellers, Ari Holtzman, Matthew Peters, Roozbeh Mottaghi, Aniruddha
Kembhavi, Ali Farhadi and Yejin Choi

Neural Event Semantics for Grounded Language Understanding
Shyamal Buch, Li Fei-Fei and Noah Goodman

Session 5C: Machine Learning for NLP 2

Modeling Fine-Grained Entity Types with Box Embeddings
Yasumasa Onoe, Michael Boratko, Andrew McCallum and Greg Durrett

ChineseBERT: Chinese Pretraining Enhanced by Glyph and Pinyin Information
zijun sun, Xiaoya Li, Xiaofei Sun, Yuxian Meng, Xiang Ao, Qing He, Fei Wu and
Jiwei Li

Weight Distillation: Transferring the Knowledge in Neural Network Parameters

Ye Lin, Yanyang Li, Ziyang Wang, Bei Li, Quan Du, Tong Xiao and Jingbo Zhu

Optimizing Deeper Transformers on Small Datasets
Peng Xu, Dhruv Kumar, Wei Yang, Wenjie Zi, Keyi Tang, Chenyang Huang, Jackie
Chi Kit Cheung, Simon J.D. Prince and Yanshuai Cao

BERTAC: Enhancing Transformer-based Language Models with Adversarially Pre-

trained Convolutional Neural Networks
Jong-Hoon Oh, Ryu Iida, Julien Kloetzer and Kentaro Torisawa

Ixxi
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00:50-00:57

00:00-00:10

00:10-00:20

00:20-00:30

00:30-00:40

00:40-00:50

00:50-01:00

On Orthogonality Constraints for Transformers
Aston Zhang, Alvin Chan, Yi Tay, Jie Fu, Shuohang Wang, Shuai Zhang, Huajie
Shao, Shuochao Yao and Roy Ka-Wei Lee

Session SD: NLP Applications 1 and Ethics

COVID-Fact: Fact Extraction and Verification of Real-World Claims on COVID-19
Pandemic
Arkadiy Saakyan, Tuhin Chakrabarty and Smaranda Muresan

Explaining Relationships Between Scientific Documents
Kelvin Luu, Xinyi Wu, Rik Koncel-Kedziorski, Kyle Lo, Isabel Cachola and Noah
A. Smith

IrEne: Interpretable Energy Prediction for Transformers
Qingqing Cao, Yash Kumar Lal, Harsh Trivedi, Aruna Balasubramanian and Niran-
jan Balasubramanian

Mitigating Bias in Session-based Cyberbullying Detection: A Non-Compromising
Approach
Lu Cheng, Ahmadreza Mosallanezhad, Yasin Silva, Deborah Hall and Huan Liu

PlotCoder: Hierarchical Decoding for Synthesizing Visualization Code in Program-
matic Context

Xinyun Chen, Linyuan Gong, Alvin Cheung and Dawn Song

Changing the World by Changing the Data
Anna Rogers
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01:00-01:10

01:10-01:20

01:20-01:30

01:30-01:40

01:40-01:50

01:50-01:57

01:00-01:10

01:10-01:20

01:20-01:30

01:30-01:40

Session 6A: Machine Learning for NLP 3

EarlyBERT: Efficient BERT Training via Early-bird Lottery Tickets
Xiaohan Chen, Yu Cheng, Shuohang Wang, Zhe Gan, Zhangyang Wang and
Jingjing Liu

On the Effectiveness of Adapter-based Tuning for Pretrained Language Model
Adaptation

Ruidan He, Linlin Liu, Hai Ye, Qingyu Tan, BOSHENG DING, Liying Cheng,
Jiawei Low, Lidong Bing and Luo Si

Data Augmentation for Text Generation Without Any Augmented Data
Wei Bi, Huayang Li and Jiacheng Huang

KEPLER: A Unified Model for Knowledge Embedding and Pre-trained Language
Representation

Xiaozhi Wang, Tianyu Gao, Zhaocheng Zhu, Zhengyan Zhang, Zhiyuan Liu, Juanzi
Li and Jian Tang

Integrating Semantics and Neighborhood Information with Graph-Driven Genera-
tive Models for Document Retrieval
Zijing Ou, Qinliang Su, Jianxing Yu, Bang Liu, Jingwen Wang, Ruihui Zhao,
Changyou Chen and Yefeng Zheng

Measuring and Improving BERT’s Mathematical Abilities by Predicting the Order
of Reasoning.
Piotr Pigkos, Mateusz Malinowski and Henryk Michalewski

Session 6B: Resources and Evaluation 1

SMURF: SeMantic and linguistic UndeRstanding Fusion for Caption Evaluation
via Typicality Analysis
Joshua Feinglass and Yezhou Yang

KaggleDBQA: Realistic Evaluation of Text-to-SQL Parsers
Chia-Hsuan Lee, Oleksandr Polozov and Matthew Richardson

QASR: QCRI Aljazeera Speech Resource A Large Scale Annotated Arabic Speech
Corpus
Hamdy Mubarak, Amir Hussein, Shammur Absar Chowdhury and Ahmed Ali

An Empirical Study on Hyperparameter Optimization for Fine-Tuning Pre-trained

Language Models
Xueqing Liu and Chi Wang
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01:40-01:50

01:50-01:57

01:00-01:10

01:10-01:20

01:20-01:30

01:30-01:40

01:40-01:50

01:50-01:57

Better than Average: Paired Evaluation of NLP systems
Maxime Peyrard, Wei Zhao, Steffen Eger and Robert West

Happy Dance, Slow Clap: Using Reaction GIFs to Predict Induced Affect on Twitter
Boaz Shmueli, Soumya Ray and Lun-Wei Ku

Session 6C: Semantics: Sentence-level Semantics, Textual Inference and Other
areas 1

Chase: A Large-Scale and Pragmatic Chinese Dataset for Cross-Database Context-
Dependent Text-to-SQL

Jiaqi Guo, Ziliang Si, Yu Wang, Qian Liu, Ming Fan, Jian-Guang LOU, Zijiang
Yang and Ting Liu

CLINE: Contrastive Learning with Semantic Negative Examples for Natural Lan-
guage Understanding
Dong Wang, Ning Ding, Piji Li and Haitao Zheng

Tree-Structured Topic Modeling with Nonparametric Neural Variational Inference
Ziye Chen, Cheng Ding, Zusheng Zhang, Yanghui Rao and Haoran Xie

ExCAR: Event Graph Knowledge Enhanced Explainable Causal Reasoning
Li Du, Xiao Ding, Kai Xiong, Ting Liu and Bing Qin

Infusing Finetuning with Semantic Dependencies
Zhaofeng Wu, Hao Peng and Noah Smith

Exploring Listwise Evidence Reasoning with T5 for Fact Verification
Kelvin Jiang, Ronak Pradeep and Jimmy Lin

Ixxiv
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01:00-01:10

01:10-01:20

01:20-01:30

01:30-01:40

01:40-01:50

01:50-02:00

08:00-08:10

08:10-08:20

08:20-08:30

08:30-08:40

Session 6D: Sentiment Analysis, Stylistic Analysis, and Argument Mining 2

Distributed Representations of Emotion Categories in Emotion Space
Xiangyu Wang and Chengqing Zong

Style is NOT a single variable: Case Studies for Cross-Stylistic Language Under-
standing
Dongyeop Kang and Eduard Hovy

DynaSent: A Dynamic Benchmark for Sentiment Analysis
Christopher Potts, Zhengxuan Wu, Atticus Geiger and Douwe Kiela

A Hierarchical VAE for Calibrating Attributes while Generating Text using Normal-
izing Flow
Bidisha Samanta, Mohit Agrawal and Nlloy Ganguly

A Unified Generative Framework for Aspect-based Sentiment Analysis
Hang Yan, Junqi Dai, Tuo Ji, Xipeng Qiu and Zheng Zhang

Classifying Argumentative Relations Using Logical Mechanisms and Argumenta-
tion Schemes
Yohan Jo, Seojin Bang, Chris Reed and Eduard Hovy

Session 7A: Dialog and Interactive Systems 4

Discovering Dialogue Slots with Weak Supervision
Vojtéch Hudecek, Ondiej Dusek and Zhou Yu

Enhancing the generalization for Intent Classification and Out-of-Domain Detec-
tion in SLU
Yilin Shen, Yen-Chang Hsu, Avik Ray and Hongxia Jin

ProtAugment: Intent Detection Meta-Learning through Unsupervised Diverse Para-
phrasing
Thomas Dopierre, Christophe Gravier and Wilfried Logerais

Robustness Testing of Language Understanding in Task-Oriented Dialog

Jiexi Liu, Ryuichi Takanobu, Jiaxin Wen, Dazhen Wan, hongguang li, weiran nie,
Cheng LI, Wei Peng and Minlie Huang
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08:40-08:50

08:50-09:00

08:00-08:10

08:10-08:20

08:20-08:30

08:30-08:40

08:40-08:47

08:47-08:54

Comprehensive Study: How the Context Information of Different Granularity Af-
fects Dialogue State Tracking ?
Puhai Yang, Heyan Huang and Xian-Ling Mao

OTTers: One-turn Topic Transitions for Open-Domain Dialogue
Karin Sevegnani, David M. Howcroft, Ioannis Konstas and Verena Rieser

Session 7B: Semantics: Sentence-level Semantics, Textual Inference and Other
areas 2

Towards Robustness of Text-to-SQL Models against Synonym Substitution
Yujian Gan, Xinyun Chen, Qiuping Huang, Matthew Purver, John R. Woodward,
Jinxia Xie and Pengsheng Huang

KACE: Generating Knowledge Aware Contrastive Explanations for Natural Lan-
guage Inference

Qianglong Chen, Feng Ji, Xiangji Zeng, Feng-Lin Li, Ji Zhang, Haiqing Chen and
Yin Zhang

Self-Guided Contrastive Learning for BERT Sentence Representations
Taeuk Kim, Kang Min Yoo and Sang-goo Lee

LGESQL: Line Graph Enhanced Text-to-SQL Model with Mixed Local and Non-
Local Relations

Ruisheng Cao, Lu Chen, Zhi Chen, Yanbin Zhao, Su Zhu and Kai Yu

DefSent: Sentence Embeddings using Definition Sentences
Hayato Tsukagoshi, Ryohei Sasano and Koichi Takeda

Discrete Cosine Transform as Universal Sentence Encoder
Nada Almarwani and Mona Diab
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08:00-08:10

08:10-08:20

08:20-08:30

08:30-08:40

08:40-08:50

08:50-09:00

08:00-08:10

08:10-08:20

08:20-08:30

08:30-08:40

Session 7C: Speech and Multimodality 1

Multi-stage Pre-training over Simplified Multimodal Pre-training Models
Tongtong Liu, Fangxiang Feng and Xiaojie WANG

Beyond Sentence-Level End-to-End Speech Translation: Context Helps
Biao Zhang, Ivan Titov, Barry Haddow and Rico Sennrich

LayoutLMv2: Multi-modal Pre-training for Visually-rich Document Understanding
Yang Xu, Yiheng Xu, Tengchao Lv, Lei Cui, Furu Wei, Guoxin Wang, Yijuan Lu,
Dinei Florencio, Cha Zhang, Wanxiang Che, Min Zhang and Lidong Zhou

UNIMO: Towards Unified-Modal Understanding and Generation via Cross-Modal
Contrastive Learning

Wei Li, Can Gao, Guocheng Niu, Xinyan Xiao, Hao Liu, Jiachen Liu, Hua Wu and
Haifeng Wang

Missing Modality Imagination Network for Emotion Recognition with Uncertain
Missing Modalities
Jinming Zhao, Ruichen Li and Qin Jin

Stacked Acoustic-and-Textual Encoding: Integrating the Pre-trained Models into
Speech Translation Encoders

Chen Xu, Bojie Hu, Yanyang Li, Yuhao Zhang, shen huang, Qi Ju, Tong Xiao and
Jingbo Zhu

Session 7D: Syntax: Tagging, Chunking, and Parsing 1

N-ary Constituent Tree Parsing with Recursive Semi-Markov Model
Xin Xin, Jinlong Li and Zeqi Tan

Automated Concatenation of Embeddings for Structured Prediction
Xinyu Wang, Yong Jiang, Nguyen Bach, Tao Wang, Zhongqiang Huang, Fei Huang
and Kewei Tu

Multi-View Cross-Lingual Structured Prediction with Minimum Supervision
Zechuan Hu, Yong Jiang, Nguyen Bach, Tao Wang, Zhongqiang Huang, Fei Huang

and Kewei Tu

The Limitations of Limited Context for Constituency Parsing
Yuchen Li and Andrej Risteski
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08:40-08:50

08:00-08:10

08:10-08:20

08:20-08:30

08:30-08:40

08:40-08:50

08:50-08:57

Neural Bi-Lexicalized PCFG Induction
Songlin Yang, Yanpeng Zhao and Kewei Tu

Session 7E: Resources and Evaluation 2

Ruddit: Norms of Offensiveness for English Reddit Comments
Rishav Hada, Sohi Sudhir, Pushkar Mishra, Helen Yannakoudakis, Saif M. Moham-
mad and Ekaterina Shutova

Towards Quantifiable Dialogue Coherence Evaluation
Zheng Ye, Liucun Lu, Lishan Huang, Liang Lin and Xiaodan Liang

Assessing the Representations of Idiomaticity in Vector Models with a Noun Com-
pound Dataset Labeled at Type and Token Levels

Marcos Garcia, Tiago Kramer Vieira, Carolina Scarton, Marco Idiart and Aline
Villavicencio

Factoring Statutory Reasoning as Language Understanding Challenges
Nils Holzenberger and Benjamin Van Durme

Evaluating Evaluation Measures for Ordinal Classification and Ordinal Quantifi-
cation

Tetsuya Sakai

AligNarr: Aligning Narratives on Movies
Paramita Mirza, Mostafa Abouhamra and Gerhard Weikum
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09:00-09:10

09:10-09:20

09:20-09:30

09:30-09:40

09:40-09:50

09:50-10:00

09:00-09:10

09:10-09:20

09:20-09:30

09:30-09:40

Session 8A: Information Extraction 4

Interpretable and Low-Resource Entity Matching via Decoupling Feature Learning
from Decision Making

Zijun Yao, Chengjiang Li, Tiansi Dong, Xin Lv, Jifan Yu, Lei Hou, Juanzi Li,
YICHI ZHANG and zelin Dai

Locate and Label: A Two-stage Identifier for Nested Named Entity Recognition
Yongliang Shen, Xinyin Ma, Zeqi Tan, Shuai Zhang, Wen Wang and Weiming Lu

Text2Event: Controllable Sequence-to-Structure Generation for End-to-end Event
Extraction

Yaojie Lu, Hongyu Lin, Jin Xu, Xianpei Han, Jialong Tang, Annan Li, Le Sun,
Meng Liao and Shaoyi Chen

A Large-Scale Chinese Multimodal NER Dataset with Speech Clues
Dianbo Sui, Zhengkun Tian, Yubo Chen, Kang Liu and Jun Zhao

A Neural Transition-based Joint Model for Disease Named Entity Recognition and
Normalization
Zongcheng Ji, Tian Xia, Mei Han and Jing Xiao

OntoED: Low-resource Event Detection with Ontology Embedding
Shumin Deng, Ningyu Zhang, Luoqiu Li, Chen Hui, tou huaixiao, Mosha Chen, Fei
Huang and Huajun Chen

Session 8B: Machine Translation and Multilinguality 4

Self-Training Sampling with Monolingual Data Uncertainty for Neural Machine
Translation

Wenxiang Jiao, Xing Wang, Zhaopeng Tu, Shuming Shi, Michael Lyu and Irwin
King

Breaking the Corpus Bottleneck for Context-Aware Neural Machine Translation
with Cross-Task Pre-training

Linqging Chen, Junhui Li, Zhengxian Gong, Boxing Chen, Weihua Luo, Min Zhang
and Guodong Zhou

Guiding Teacher Forcing with Seer Forcing for Neural Machine Translation
Yang Feng, Shuhao Gu, Dengji Guo, Zhengxin Yang and Chenze Shao

Cascade versus Direct Speech Translation: Do the Differences Still Make a Differ-
ence?

Luisa Bentivogli, Mauro Cettolo, Marco Gaido, Alina Karakanta, Alberto Mar-
tinelli, Matteo Negri and Marco Turchi
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09:40-09:50

09:50-09:57

09:00-09:10

09:10-09:20

09:20-09:30

09:30-09:40

09:40-09:50

09:50-10:00

Unsupervised Neural Machine Translation for Low-Resource Domains via Meta-
Learning

Cheonbok Park, Yunwon Tae, TaecHee Kim, Soyoung Yang, Mohammad Azam
Khan, Lucy Park and Jaegul Choo

An Exploratory Analysis of Multilingual Word-Level Quality Estimation with Cross-
Lingual Transformers
Tharindu Ranasinghe, Constantin Orasan and Ruslan Mitkov

Session 8C: Machine Learning for NLP 4

Lightweight Cross-Lingual Sentence Representation Learning
Zhuoyuan Mao, Prakhar Gupta, Chenhui Chu, Martin Jaggi and Sadao Kurohashi

ERNIE-Doc: A Retrospective Long-Document Modeling Transformer
SiYu Ding, Junyuan Shang, Shuohuan Wang, Yu Sun, Hao Tian, Hua Wu and
Haifeng Wang

Marginal Utility Diminishes: Exploring the Minimum Knowledge for BERT Knowl-
edge Distillation
Yuanxin LIU, Fandong Meng, Zheng Lin, Weiping Wang and Jie Zhou

Rational LAMOL: A Rationale-based Lifelong Learning Framework
Kasidis Kanwatchara, Thanapapas Horsuwan, Piyawat Lertvittayakumjorn, Boon-
serm Kijsirikul and Peerapon Vateekul

EnsLM: Ensemble Language Model for Data Diversity by Semantic Clustering
Zhibin Duan, Hao Zhang, Chaojie Wang, Zhengjue Wang, Bo Chen and Mingyuan
Zhou

LeeBERT: Learned Early Exit for BERT with cross-level optimization
Wei Zhu
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09:00-09:10

09:10-09:20

09:20-09:30

09:30-09:40

09:40-09:50

09:50-09:57

09:00-09:10

09:10-09:20

09:20-09:30

09:30-09:40

Session 8D: NLP Applications 2

Unsupervised Extractive Summarization-Based Representations for Accurate and
Explainable Collaborative Filtering
Reinald Adrian Pugoy and Hung-Yu Kao

PLOME: Pre-training with Misspelled Knowledge for Chinese Spelling Correction
Shulin Liu, Tao Yang, Tianchi Yue, Feng Zhang and Di Wang

Competence-based Multimodal Curriculum Learning for Medical Report Genera-
tion
Fenglin Liu, Shen Ge and Xian Wu

Learning Syntactic Dense Embedding with Correlation Graph for Automatic Read-
ability Assessment
Xinying Qiu, Yuan Chen, Hanwu Chen, Jian-Yun Nie, Yuming Shen and Dawei Lu

Meta-KD: A Meta Knowledge Distillation Framework for Language Model Com-
pression across Domains

Haojie Pan, Chengyu Wang, Minghui Qiu, Yichang Zhang, Yaliang Li and jun
huang

Exploration and Exploitation: Two Ways to Improve Chinese Spelling Correction
Models
Chong Li, Cenyuan Zhang, Xiaoqing Zheng and Xuanjing Huang

Session 8E: Question Answering 1

A Semantic-based Method for Unsupervised Commonsense Question Answering
Yilin Niu, Fei Huang, Jiaming Liang, Wenkai Chen, Xiaoyan Zhu and Minlie Huang

Explanations for CommonsenseQA: New Dataset and Models
Shourya Aggarwal, Divyanshu Mandowara, Vishwajeet Agrawal, Dinesh Khandel-
wal, Parag Singla and Dinesh Garg

Few-Shot Question Answering by Pretraining Span Selection
Ori Ram, Yuval Kirstain, Jonathan Berant, Amir Globerson and Omer Levy

UnitedQA: A Hybrid Approach for Open Domain Question Answering

Hao Cheng, Yelong Shen, Xiaodong Liu, Pengcheng He, Weizhu Chen and Jianfeng
Gao
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09:40-09:50

09:50-09:57

10:00-10:10

10:10-10:20

10:20-10:30

10:30-10:40

10:40-10:50

10:50-10:57

Database reasoning over text
James Thorne, Majid Yazdani, Marzieh Saeidi, Fabrizio Silvestri, Sebastian Riedel
and Alon Halevy

Training Adaptive Computation for Open-Domain Question Answering with Com-
putational Constraints
Yuxiang Wu, Pasquale Minervini, Pontus Stenetorp and Sebastian Riedel

Session 9A: Machine Translation and Multilinguality 5

Online Learning Meets Machine Translation Evaluation: Finding the Best Systems
with the Least Human Effort

Viania Mendonga, Ricardo Rei, Luisa Coheur, Alberto Sardinha and Ana Licia San-
tos

How Good is Your Tokenizer? On the Monolingual Performance of Multilingual
Language Models
Phillip Rust, Jonas Pfeiffer, Ivan Vuli¢, Sebastian Ruder and Iryna Gurevych

Evaluating morphological typology in zero-shot cross-lingual transfer
Antonio Martinez-Garcia, Toni Badia and Jeremy Barnes

From Machine Translation to Code-Switching: Generating High-Quality Code-
Switched Text

Ishan Tarunesh, Syamantak Kumar and Preethi Jyothi

Fast and Accurate Neural Machine Translation with Translation Memory
Qiuxiang He, Guoping Huang, Qu Cui, Li Li and Lemao Liu

An Empirical Study on Adversarial Attack on NMT: Languages and Positions Matter
Zhiyuan Zeng and Deyi Xiong
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10:00-10:10

10:10-10:20

10:20-10:30

10:30-10:40

10:40-10:47

10:00-10:10

10:10-10:20

10:20-10:30

10:30-10:40

10:40-10:50

Session 9B: Resources and Evaluation 3

Annotating Online Misogyny
Philine Zeinert, Nanna Inie and Leon Derczynski

Few-NERD: A Few-shot Named Entity Recognition Dataset
Ning Ding, Guangwei Xu, Yulin Chen, Xiaobin Wang, Xu Han, Pengjun Xie,
Haitao Zheng and Zhiyuan Liu

MultiMET: A Multimodal Dataset for Metaphor Understanding
Dongyu Zhang, Minghao Zhang, Heting Zhang, Liang Yang and Hongfei LIN

Human-in-the-Loop for Data Collection: a Multi-Target Counter Narrative Dataset
to Fight Online Hate Speech
Margherita Fanton, Helena Bonaldi, Serra Sinem Tekiroglu and Marco Guerini

OntoGUM: Evaluating Contextualized SOTA Coreference Resolution on 12 More
Genres
Yilun Zhu, Sameer Pradhan and Amir Zeldes

Session 9C: Question Answering 2

Can Generative Pre-trained Language Models Serve As Knowledge Bases for
Closed-book QA?
Cunxiang Wang, Pai Liu and Yue Zhang

Joint Models for Answer Verification in Question Answering Systems
Zeyu Zhang, Thuy Vu and Alessandro Moschitti

Answering Ambiguous Questions through Generative Evidence Fusion and Round-
Trip Prediction

Yifan Gao, Henghui Zhu, Patrick Ng, Cicero Nogueira dos Santos, Zhiguo Wang,
Feng Nan, Dejiao Zhang, Ramesh Nallapati, Andrew O. Arnold and Bing Xiang

TAT-QA: A Question Answering Benchmark on a Hybrid of Tabular and Textual
Content in Finance

Fengbin Zhu, Wenqiang Lei, Youcheng Huang, Chao Wang, Shuo Zhang, Jiancheng
Lv, Fuli Feng and Tat-Seng Chua

Modeling Transitions of Focal Entities for Conversational Knowledge Base Ques-

tion Answering
Yunshi Lan and Jing Jiang
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10:50-10:57

10:00-10:10

10:10-10:20

10:20-10:30

10:30-10:40

10:40-10:50

10:50-10:57

In Factuality: Efficient Integration of Relevant Facts for Visual Question Answering
Peter Vickers, Nikolaos Aletras, Emilio Monti and Loic Barrault

Session 9D: Semantics: Sentence-level Semantics, Textual Inference and Other
areas 3

Evidence-based Factual Error Correction
James Thorne and Andreas Vlachos

Probabilistic, Structure-Aware Algorithms for Improved Variety, Accuracy, and
Coverage of AMR Alignments
Austin Blodgett and Nathan Schneider

Meta-Learning to Compositionally Generalize
Henry Conklin, Bailin Wang, Kenny Smith and Ivan Titov

Taming Pre-trained Language Models with N-gram Representations for Low-
Resource Domain Adaptation
Shizhe Diao, Ruijia Xu, Hongjin Su, Yilei Jiang, Yan Song and Tong Zhang

ERICA: Improving Entity and Relation Understanding for Pre-trained Language
Models via Contrastive Learning

Yujia Qin, Yankai Lin, Ryuichi Takanobu, Zhiyuan Liu, Peng Li, Heng Ji, Minlie
Huang, Maosong Sun and Jie Zhou

Zero-shot Fact Verification by Claim Generation

Liangming Pan, Wenhu Chen, Wenhan Xiong, Min-Yen Kan and William Yang
Wang
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10:00-10:10

10:10-10:20

10:20-10:30

10:30-10:37

10:37-10:44

10:44-10:51

11:00-11:10

11:10-11:20

11:20-11:30

11:30-11:40

Session 9E: Sentiment Analysis, Stylistic Analysis, and Argument Mining 3

Position Bias Mitigation: A Knowledge-Aware Graph Model for Emotion Cause
Extraction
Hangi Yan, Lin Gui, Gabriele Pergola and Yulan He

Every Bite Is an Experience: Key Point Analysis of Business Reviews
Roy Bar-Haim, Lilach Eden, Yoav Kantor, Roni Friedman and Noam Slonim

Structured Sentiment Analysis as Dependency Graph Parsing
Jeremy Barnes, Robin Kurtz, Stephan Oepen, Lilja @vrelid and Erik Velldal

Thank you BART! Rewarding Pre-Trained Models Improves Formality Style Trans-
fer

Huiyuan Lai, Antonio Toral and Malvina Nissim

Deep Context- and Relation-Aware Learning for Aspect-based Sentiment Analysis
Shinhyeok Oh, Dongyub Lee, Taesun Whang, IINam Park, Seo Gaeun, EungGyun
Kim and Harksoo Kim

Towards Generative Aspect-Based Sentiment Analysis
Wenxuan Zhang, Xin Li, Yang Deng, Lidong Bing and Wai Lam

Session 10A: Machine Translation and Multilinguality 6

Consistency Regularization for Cross-Lingual Fine-Tuning
Bo Zheng, Li Dong, Shaohan Huang, Wenhui Wang, Zewen Chi, Saksham Singhal,
Wanxiang Che, Ting Liu, Xia Song and Furu Wei

Improving Pretrained Cross-Lingual Language Models via Self-Labeled Word
Alignment

Zewen Chi, Li Dong, Bo Zheng, Shaohan Huang, Xian-Ling Mao, Heyan Huang
and Furu Wei

Rejuvenating Low-Frequency Words: Making the Most of Parallel Data in Non-
Autoregressive Translation

Liang Ding, Longyue Wang, Xuebo Liu, Derek F. Wong, Dacheng Tao and
Zhaopeng Tu

G-Transformer for Document-Level Machine Translation
Guangsheng Bao, Yue Zhang, Zhiyang Teng, Boxing Chen and Weihua Luo
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11:40-11:50

11:50-11:57

11:00-11:10

11:10-11:20

11:20-11:30

11:30-11:40

11:40-11:50

11:50-11:57

Prevent the Language Model from being Overconfident in Neural Machine Transla-
tion
Mengqi Miao, Fandong Meng, Yijin Liu, Xiao-Hua Zhou and Jie Zhou

Bilingual Mutual Information Based Adaptive Training for Neural Machine Trans-
lation
Yangyifan Xu, Yijin Liu, Fandong Meng, Jiajun Zhang, Jinan Xu and Jie Zhou

Session 10B: Dialog and Interactive Systems 5

Towards Emotional Support Dialog Systems
Siyang Liu, Chujie Zheng, Orianna Demasi, Sahand Sabour, Yu Li, Zhou Yu, Yong
Jiang and Minlie Huang

Novel Slot Detection: A Benchmark for Discovering Unknown Slot Types in the
Task-Oriented Dialogue System

Yanan Wu, Zhiyuan Zeng, Keqing He, Hong Xu, Yuanmeng Yan, Huixing Jiang
and Weiran Xu

GTM: A Generative Triple-wise Model for Conversational Question Generation
Lei Shen, Fandong Meng, Jinchao Zhang, Yang Feng and Jie Zhou

Diversifying Dialog Generation via Adaptive Label Smoothing
Yida Wang, Yinhe Zheng, Yong Jiang and Minlie Huang

Out-of-Scope Intent Detection with Self-Supervision and Discriminative Training
Li-Ming Zhan, Haowen Liang, Bo LIU, Lu Fan, Xiao-Ming Wu and Albert Y.S.
Lam

Continual Learning for Task-oriented Dialogue System with Iterative Network

Pruning, Expanding and Masking
Binzong Geng, Fajie Yuan, Qiancheng Xu, Ying Shen, Ruifeng Xu and Min Yang
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11:00-11:10

11:10-11:20

11:20-11:30

11:30-11:40

11:40-11:50

11:50-11:57

11:00-11:10

11:10-11:20

11:20-11:30

11:30-11:37

Session 10C: Information Extraction 5

Document-level Event Extraction via Heterogeneous Graph-based Interaction
Model with a Tracker
Runxin Xu, Tianyu Liu, Lei Li and Baobao Chang

Nested Named Entity Recognition via Explicitly Excluding the Influence of the Best
Path
Yiran Wang, Hiroyuki Shindo, Yuji Matsumoto and Taro Watanabe

LearnDA: Learnable Knowledge-Guided Data Augmentation for Event Causality
Identification

Xinyu Zuo, Pengfei Cao, Yubo Chen, Kang Liu, Jun Zhao, Weihua Peng and
Yuguang Chen

Revisiting the Negative Data of Distantly Supervised Relation Extraction
Chenhao Xie, Jiaqing Liang, Jingping Liu, Chengsong Huang, Wenhao Huang and
Yanghua Xiao

Knowing the No-match: Entity Alignment with Dangling Cases
Zequn Sun, Muhao Chen and Wei Hu

TIMERS: Document-level Temporal Relation Extraction
Puneet Mathur, Rajiv Jain, Franck Dernoncourt, Vlad Morariu, Quan Hung Tran
and Dinesh Manocha

Session 10D: Phonology, Morphology and Word Segmentation 1

Superbizarre Is Not Superb: Derivational Morphology Improves BERT’s Interpre-
tation of Complex Words
Valentin Hofmann, Janet Pierrehumbert and Hinrich Schiitze

Optimizing over Subsequences Generates Context-Sensitive Languages
Andrew Lamont

Morphology Matters: A Multilingual Language Modeling Analysis
Hyunji Hayley Park, Katherine J. Zhang, Coleman Haley, Kenneth Steimel, Han
Liu and Lane Schwartz

Improving Arabic Diacritization with Regularized Decoding and Adversarial Train-

ing
Han Qin, Guimin Chen, Yuanhe Tian and Yan Song
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11:37-11:44

11:44-11:51

11:00-11:10

11:10-11:20

11:20-11:30

11:30-11:37

11:37-11:44

11:44-11:51

14:00-15:30

15:30-16:30

When is Char Better Than Subword: A Systematic Study of Segmentation Algo-
rithms for Neural Machine Translation
Jiahuan Li, Yutong Shen, Shujian Huang, Xinyu Dai and Jiajun CHEN

More than Text: Multi-modal Chinese Word Segmentation
Dong Zhang, Zheng Hu, Shoushan Li, Hangian Wu, Qiaoming Zhu and Guodong
Zhou

Session 10E: Semantics: Lexical Semantics 1

BERT is to NLP what AlexNet is to CV: Can Pre-Trained Language Models Identify
Analogies?
Asahi Ushio, Luis Espinosa Anke, Steven Schockaert and Jose Camacho-Collados

Exploring the Representation of Word Meanings in Context: A Case Study on
Homonymy and Synonymy
Marcos Garcia

Measuring Fine-Grained Domain Relevance of Terms: A Hierarchical Core-Fringe
Approach

Jie Huang, Kevin Chang, JinJun Xiong and Wen-mei Hwu

A Mixture-of-Experts Model for Antonym-Synonym Discrimination
Zhipeng Xie and Nan Zeng

Learning Domain-Specialised Representations for Cross-Lingual Biomedical Entity
Linking

Fangyu Liu, Ivan Vuli¢, Anna Korhonen and Nigel Collier

A Cluster-based Approach for Improving Isotropy in Contextual Embedding Space
Sara Rajaee and Mohammad Taher Pilehvar

Business meeting and Green NLP panel

Keynote 3. Christopher Potts: Reliable Characterizations of NLP Systems as a
Social Responsibility
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16:30-16:40

16:40-16:50

16:50-17:00

17:00-17:10

17:10-17:20

17:20-17:27

16:30-16:40

16:40-16:50

16:50-17:00

17:00-17:10

Session 11A: Dialog and Interactive Systems 6

HERALD: An Annotation Efficient Method to Detect User Disengagement in Social
Conversations
Weixin Liang, Kai-Hui Liang and Zhou Yu

Value-Agnostic Conversational Semantic Parsing

Emmanouil Antonios Platanios, Adam Pauls, Subhro Roy, Yuchen Zhang, Alexan-
der Kyte, Alan Guo, Sam Thomson, Jayant Krishnamurthy, Jason Wolfe, Jacob
Andreas and Dan Klein

MPC-BERT: A Pre-Trained Language Model for Multi-Party Conversation Under-
standing
Jia-Chen Gu, Chongyang Tao, Zhenhua Ling, Can Xu, Xiubo Geng and Daxin Jiang

Best of Both Worlds: Making High Accuracy Non-incremental Transformer-based
Disfluency Detection Incremental
Morteza Rohanian and Julian Hough

NeuralWOZ: Learning to Collect Task-Oriented Dialogue via Model-Based Simu-
lation
Sungdong Kim, Minsuk Chang and Sang-Woo Lee

Unsupervised Enrichment of Persona-grounded Dialog with Background Stories
Bodhisattwa Prasad Majumder, Taylor Berg-Kirkpatrick, Julian McAuley and
Harsh Jhamtani

Session 11B: Linguistic Theories, Cognitive Modeling and Psycholinguistics 1

CDRNN: Discovering Complex Dynamics in Human Language Processing
Cory Shain

Structural Guidance for Transformer Language Models
Peng Qian, Tahira Naseem, Roger Levy and Ramé6n Fernandez Astudillo

Surprisal Estimators for Human Reading Times Need Character Models
Byung-Doh Oh, Christian Clark and William Schuler

CogAlign: Learning to Align Textual Neural Representations to Cognitive Lan-

guage Processing Signals
Yugqi Ren and Deyi Xiong
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17:10-17:20

17:20-17:27

16:30-16:40

16:40-16:50

16:50-17:00

17:00-17:10

17:10-17:20

17:20-17:27

Formal Basis of a Language Universal
Milos Stanojevic and Mark Steedman

Beyond Laurel/Yanny: An Autoencoder-Enabled Search for Polyperceivable Audio
Kartik Chandra, Chuma Kabaghe and Gregory Valiant

Session 11C: Machine Learning for NLP 5

Self-Attention Networks Can Process Bounded Hierarchical Languages
Shunyu Yao, Binghui Peng, Christos Papadimitriou and Karthik Narasimhan

TextSETTR: Few-Shot Text Style Extraction and Tunable Targeted Restyling
Parker Riley, Noah Constant, Mandy Guo, Girish Kumar, David Uthus and Zarana
Parekh

H-Transformer-1D: Fast One-Dimensional Hierarchical Attention for Sequences
Zhenhai Zhu and Radu Soricut

Making Pre-trained Language Models Better Few-shot Learners
Tianyu Gao, Adam Fisch and Dangi Chen

A Sweet Rabbit Hole by DARCY: Using Honeypots to Detect Universal Trigger’s
Adversarial Attacks
Thai Le, Noseong Park and Dongwon Lee

Don’t Let Discourse Confine Your Model: Sequence Perturbations for Improved
Event Language Models

Mahnaz Koupaee, Greg Durrett, Nathanael Chambers and Niranjan Balasubrama-
nian
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16:30-16:40

16:40-16:50

16:50-17:00

17:00-17:10

17:10-17:20

17:20-17:27

16:30-16:40

16:40-16:50

16:50-17:00

17:00-17:10

Session 11D: Information Retrieval and Text Mining 1

Towards Propagation Uncertainty: Edge-enhanced Bayesian Graph Convolutional
Networks for Rumor Detection
Lingwei Wei, Dou Hu, Wei Zhou, Zhaojuan Yue and Songlin Hu

Label-Specific Dual Graph Neural Network for Multi-Label Text Classification
Qianwen Ma, Chunyuan Yuan, Wei Zhou and Songlin Hu

TAN-NTM: Topic Attention Networks for Neural Topic Modeling
Madhur Panwar, Shashank Shailabh, Milan Aggarwal and Balaji Krishnamurthy

Cross-language Sentence Selection via Data Augmentation and Rationale Training
Yanda Chen, Chris Kedzie, Suraj Nair, Petra Galuscakova, Rui Zhang, Douglas
Oard and Kathleen McKeown

A Neural Model for Joint Document and Snippet Ranking in Question Answering
for Large Document Collections
Dimitris Pappas and Ion Androutsopoulos

The Curse of Dense Low-Dimensional Information Retrieval for Large Index Sizes
Nils Reimers and Iryna Gurevych

Session 11E: Discourse and Pragmatics 1

W-RST: Towards a Weighted RST-style Discourse Framework
Patrick Huber, Wen Xiao and Giuseppe Carenini

ABCD: A Graph Framework to Convert Complex Sentences to a Covering Set of
Simple Sentences
Yanjun Gao, Ting-Hao Huang and Rebecca J. Passonneau

Which Linguist Invented the Lightbulb? Presupposition Verification for Question-
Answering

Najoung Kim, Ellie Pavlick, Burcu Karagol Ayan and Deepak Ramachandran

Adversarial Learning for Discourse Rhetorical Structure Parsing
Longyin Zhang, Fang Kong and Guodong Zhou
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17:10-17:20  Exploring Discourse Structures for Argument Impact Classification
Xin Liu, Jiefu Ou, Yangqiu Song and Xin Jiang

Session 12A: Machine Translation and Multilinguality 7

23:00-23:10  Point, Disambiguate and Copy: Incorporating Bilingual Dictionaries for Neural
Machine Translation
Tong Zhang, Long Zhang, Wei Ye, Bo Li, Jinan Sun, Xiaoyu Zhu, Wen Zhao and
Shikun Zhang

23:10-23:20 VECO: Variable and Flexible Cross-lingual Pre-training for Language Understand-
ing and Generation
Fuli Luo, Wei Wang, Jiahao Liu, Yijia Liu, Bin Bi, Songfang Huang, Fei Huang and
Luo Si

23:20-23:30 A unified approach to sentence segmentation of punctuated text in many languages
Rachel Wicks and Matt Post

23:30-23:40  Towards User-Driven Neural Machine Translation
Huan Lin, Liang Yao, Baosong Yang, Dayiheng Liu, Haibo Zhang, Weihua Luo,
Degen Huang and Jinsong Su

23:40-23:50  End-to-End Lexically Constrained Machine Translation for Morphologically Rich
Languages

Josef Jon, Jodo Paulo Aires, Dusan Varis and Ondfej Bojar

23:50-23:57  Cross-lingual Text Classification with Heterogeneous Graph Neural Network
Ziyun Wang, Xuan Liu, Peiji Yang, Shixing Liu and zhisheng wang

Xcil
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23:00-23:10

23:10-23:20

23:20-23:30

23:30-23:40

23:40-23:50

23:50-24:00

23:00-23:10

23:10-23:20

23:20-23:30

23:30-23:40

Session 12B: Resources and Evaluation 4

Handling Extreme Class Imbalance in Technical Logbook Datasets
Farhad Akhbardeh, Cecilia Ovesdotter Alm, Marcos Zampieri and Travis Desell

ILDC for CJPE: Indian Legal Documents Corpus for Court Judgment Prediction
and Explanation

Vijit Malik, Rishabh Sanjay, Shubham Kumar Nigam, Kripabandhu Ghosh, Shou-
vik Kumar Guha, Arnab Bhattacharya and Ashutosh Modi

Supporting Cognitive and Emotional Empathic Writing of Students
Thiemo Wambsganss, Christina Niklaus, Matthias Sollner, Siegfried Handschuh
and Jan Marco Leimeister

Context-aware Adversarial Training for Name Regularity Bias in Named Entity
Recognition
Abbas Ghaddar, Philippe Langlais, Ahmad Rashid and Mehdi Rezagholizadeh

SummkEval: Re-evaluating Summarization Evaluation
Alex Fabbri, Wojciech Kryscinski, Bryan McCann, Caiming Xiong and Richard
Socher

Towards Question-Answering as an Automatic Metric for Evaluating the Content
Quality of a Summary
Daniel Deutsch, Tania Bedrax-Weiss and Dan Roth

Session 12C: Question Answering 3

Dual Reader-Parser on Hybrid Textual and Tabular Evidence for Open Domain
Question Answering

Alexander Hanbo Li, Patrick Ng, Peng Xu, Henghui Zhu, Zhiguo Wang and Bing
Xiang

Generation-Augmented Retrieval for Open-Domain Question Answering
Yuning Mao, Pengcheng He, Xiaodong Liu, Yelong Shen, Jianfeng Gao, Jiawei Han
and Weizhu Chen

Check It Again:Progressive Visual Question Answering via Visual Entailment
Qingyi Si, Zheng Lin, Ming yu Zheng, Peng Fu and Weiping Wang

A Mutual Information Maximization Approach for the Spurious Solution Problem

in Weakly Supervised Question Answering
Zhihong Shao, Lifeng Shang, Qun Liu and Minlie Huang

xclil
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23:40-23:50

23:50-23:57

23:00-23:10

23:10-23:20

23:20-23:30

23:30-23:40

23:40-23:50

Relevance-guided Supervision for OpenQA with ColBERT
Omar Khattab, Christopher Potts and Matei Zaharia

Towards more equitable question answering systems: How much more data do you
need?

Arnab Debnath, Navid Rajabi, Fardina Fathmiul Alam and Antonios Anastasopou-
los

Session 12D: Theme 1

Breaking Down Walls of Text: How Can NLP Benefit Consumer Privacy?
Abhilasha Ravichander, Alan W Black, Thomas Norton, Shomir Wilson and Nor-
man Sadeh

Supporting Land Reuse of Former Open Pit Mining Sites using Text Classification
and Active Learning

Christopher Schroder, Kim Biirgl, Yves Annanias, Andreas Niekler, Lydia Miiller,
Daniel Wiegreffe, Christian Bender, Christoph Mengs, Gerik Scheuermann and
Gerhard Heyer

Reliability Testing for Natural Language Processing Systems
Samson Tan, Shafiq Joty, Kathy Baxter, Araz Taeihagh, Gregory A. Bennett and
Min-Yen Kan

Learning Language and Multimodal Privacy-Preserving Markers of Mood from
Mobile Data

Paul Pu Liang, Terrance Liu, Anna Cai, Michal Muszynski, Ryo Ishii, Nick Allen,
Randy Auerbach, David Brent, Ruslan Salakhutdinov and Louis-Philippe Morency

Anonymisation Models for Text Data: State of the art, Challenges and Future Di-

rections
Pierre Lison, T1diké Pildn, David Sanchez, Montserrat Batet and Lilja @vrelid

Xciv
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0:00-2:00

0:00-2:00

0:00-2:00

0:00-2:00

0:00-2:00

Poster 2A: Semantics: Sentence-level Semantics, Textual Inference and Other
areas

End-to-End AMR Corefencence Resolution
Qiankun Fu, Linfeng Song, Wenyu Du and Yue Zhang
Poster 2B: Linguistic Theories, Cognitive Modeling and Psycholinguistics

How is BERT surprised? Layerwise detection of linguistic anomalies
Bai Li, Zining Zhu, Guillaume Thomas, Yang Xu and Frank Rudzicz

Psycholinguistic Tripartite Graph Network for Personality Detection

Tao Yang, Feifan Yang, Haolan Ouyang and Xiaojun Quan

Poster 2C: Semantics: Lexical Semantics

Verb Metaphor Detection via Contextual Relation Learning

Wei Song, Shuhui Zhou, Ruiji Fu, Ting Liu and Lizhen Liu

Poster 2D: Speech and Multimodality

Improving Speech Translation by Understanding and Learning from the Auxiliary

Text Translation Task
Yun Tang, Juan Pino, Xian Li, Changhan Wang and Dmitriy Genzel

XCv
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0:00-2:00

0:00-2:00

0:00-2:00

0:00-2:00

0:00-2:00

0:00-2:00

0:00-2:00

0:00-2:00

0:00-2:00

Poster 2E: Ethics in NLP

Probing Toxic Content in Large Pre-Trained Language Models
Nedjma Ousidhoum, Xinran Zhao, Tianqing Fang, Yangqiu Song and Dit-Yan Ye-
ung

Societal Biases in Language Generation: Progress and Challenges
Emily Sheng, Kai-Wei Chang, Prem Natarajan and Nanyun Peng

Poster 2F: Interpretability and Analysis of Models for NLP

Reservoir Transformers
Sheng Shen, Alexei Baevski, Ari Morcos, Kurt Keutzer, Michael Auli and Douwe
Kiela

Poster 2G: Machine Learning for NLP

Subsequence Based Deep Active Learning for Named Entity Recognition
Puria Radmard, Yassir Fathullah and Aldo Lipani

Convolutions and Self-Attention: Re-interpreting Relative Positions in Pre-trained
Language Models
Tyler Chang, Yifan Xu, Weijian Xu and Zhuowen Tu

BinaryBERT: Pushing the Limit of BERT Quantization
Haoli Bai, Wei Zhang, Lu Hou, Lifeng Shang, Jin JIN, Xin Jiang, Qun Liu, Michael
Lyu and Irwin King

Embedding Time Differences in Context-sensitive Neural Networks for Learning
Time to Event
Nazanin Dehghani, Hassan Hajipoor and Hadi Amiri

Are Pretrained Convolutions Better than Pretrained Transformers?
Yi Tay, Mostafa Dehghani, Jai Prakash Gupta, Vamsi Aribandi, Dara Bahri, Zhen
Qin and Donald Metzler

PairRE: Knowledge Graph Embeddings via Paired Relation Vectors
Linlin Chao, Jianshan He, Taifeng Wang and Wei Chu

Xcvi
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0:00-2:00

0:00-2:00

0:00-2:00

0:00-2:00

0:00-2:00

0:00-2:00

0:00-2:00

0:00-2:00

0:00-2:00

0:00-2:00

0:00-2:00

Improving Compositional Generalization in Classification Tasks via Structure An-
notations
Juyong Kim, Pradeep Ravikumar, Joshua Ainslie and Santiago Ontanon

Learning to Generate Task-Specific Adapters from Task Description
Qinyuan Ye and Xiang Ren

Hierarchy-aware Label Semantics Matching Network for Hierarchical Text Classi-
fication
Haibin Chen, Qianli Ma, Zhenxi Lin and Jiangyue Yan

HiddenCut: Simple Data Augmentation for Natural Language Understanding with
Better Generalizability
Jiaao Chen, Dinghan Shen, Weizhu Chen and Diyi Yang

Efficient Content-Based Sparse Attention with Routing Transformers
Aurko Roy, Mohammad Saffar, Ashish Vaswani and David Grangier
Poster 2H: Dialog and Interactive Systems

Neural Stylistic Response Generation with Disentangled Latent Variables
Qingfu Zhu, Wei-Nan Zhang, Ting Liu and William Yang Wang

Intent Classification and Slot Filling for Privacy Policies
Wasi Ahmad, Jianfeng Chi, Tu Le, Thomas Norton, Yuan Tian and Kai-Wei Chang

RADDLE: An Evaluation Benchmark and Analysis Platform for Robust Task-
oriented Dialog Systems

Baolin Peng, Chunyuan Li, Zhu Zhang, Chenguang Zhu, Jinchao Li and Jianfeng
Gao

QA-Driven Zero-shot Slot Filling with Weak Supervision Pretraining
Xinya Du, Luheng He, Qi Li, Dian Yu, Panupong Pasupat and Yuan Zhang

Domain-Adaptive Pretraining Methods for Dialogue Understanding
Han Wu, Kun Xu, Linfeng Song, Lifeng Jin, Haisong Zhang and Linqgi Song

Semantic Representation for Dialogue Modeling
Xuefeng Bai, Yulong Chen, Linfeng Song and Yue Zhang

Xcvii
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0:00-2:00

0:00-2:00

0:00-2:00

0:00-2:00

0:00-2:00

0:00-2:00

A Pre-training Strategy for Zero-Resource Response Selection in Knowledge-
Grounded Conversations
Chongyang Tao, Changyu Chen, Jiazhan Feng, Ji-Rong Wen and Rui Yan

SOLOIST: Building Task Bots at Scale with Transfer Learning and Machine Teach-
ing

Baolin Peng, Chunyuan Li, Jinchao Li, Shahin Shayandeh, Lars Liden and Jianfeng
Gao

Poster 2I: Information Retrieval and Text Mining

Dependency-driven Relation Extraction with Attentive Graph Convolutional Net-
works
Yuanhe Tian, Guimin Chen, Yan Song and Xiang Wan

Evaluating Entity Disambiguation and the Role of Popularity in Retrieval-Based
NLP
Anthony Chen, Pallavi Gudipati, Shayne Longpre, Xiao Ling and Sameer Singh

Poster 2J: Resources and Evaluation

Targeting the Benchmark: On Methodology in Current Natural Language Process-
ing Research
David Schlangen

Evaluation Examples are not Equally Informative: How should that change NLP
Leaderboards?

Pedro Rodriguez, Joe Barrow, Alexander Miserlis Hoyle, John P. Lalor, Robin Jia
and Jordan Boyd-Graber

Xcviil
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0:00-2:00

0:00-2:00

0:00-2:00

0:00-2:00

0:00-2:00

0:00-2:00

0:00-2:00

0:00-2:00

Poster 2K: Computational Social Science and Cultural Analytics

Claim Matching Beyond English to Scale Global Fact-Checking
Ashkan Kazemi, Kiran Garimella, Devin Gaffney and Scott Hale

X-Fact: A New Benchmark Dataset for Multilingual Fact Checking
Ashim Gupta and Vivek Srikumar

Poster 2L.: Machine Translation and Multilinguality

SemFace: Pre-training Encoder and Decoder with a Semantic Interface for Neural
Machine Translation
Shuo Ren, Long Zhou, Shujie Liu, Furu Wei, Ming Zhou and Shuai Ma

Energy-Based Reranking: Improving Neural Machine Translation Using Energy-
Based Models

Sumanta Bhattacharyya, Amirmohammad Rooshenas, Subhajit Naskar, Simeng
Sun, Mohit Iyyer and Andrew McCallum

nmT5 - Is parallel data still relevant for pre-training massively multilingual lan-
guage models?

Mihir Kale, Aditya Siddhant, Rami Al-Rfou, Linting Xue, Noah Constant and
Melvin Johnson

Syntax-augmented Multilingual BERT for Cross-lingual Transfer
Wasi Ahmad, Haoran Li, Kai-Wei Chang and Yashar Mehdad

How to Adapt Your Pretrained Multilingual Model to 1600 Languages
Abteen Ebrahimi and Katharina Kann

Synthesizing Parallel Data of User-Generated Texts with Zero-Shot Neural Machine

Translation
Benjamin Marie and Atsushi Fujita

XCiX
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0:00-2:00

0:00-2:00

0:00-2:00

0:00-2:00

0:00-2:00

0:00-2:00

0:00-2:00

Poster 2M: Syntax: Tagging, Chunking, and Parsing

Weakly Supervised Named Entity Tagging with Learnable Logical Rules
Jiacheng Li, Haibo Ding, Jingbo Shang, Julian McAuley and Zhe Feng
Poster 2N: NLP Applications

Question Generation for Adaptive Education
Megha Srivastava and Noah Goodman

Poster 20: Language Generation

Prefix-Tuning: Optimizing Continuous Prompts for Generation
Xiang Lisa Li and Percy Liang

One2Set: Generating Diverse Keyphrases as a Set
Jiacheng Ye, Tao Gui, Yichao Luo, Yige Xu and Qi Zhang

A Simple Recipe for Multilingual Grammatical Error Correction
Sascha Rothe, Jonathan Mallinson, Eric Malmi, Sebastian Krause and Aliaksei Sev-
eryn

Continuous Language Generative Flow
Zineng Tang, Shiyue Zhang, Hyounghun Kim and Mohit Bansal

RYANSQL: Recursively Applying Sketch-based Slot Fillings for Complex Text-to-
SQOL in Cross-Domain Databases
DongHyun Choi, Myeong Cheol Shin, EungGyun Kim and Dong Ryeol Shin
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0:00-2:00

0:00-2:00

0:00-2:00

0:00-2:00

0:00-2:00

0:00-2:00

Poster 2P: Summarization

TWAG: A Topic-Guided Wikipedia Abstract Generator
Fangwei Zhu, Shangqing Tu, Jiaxin Shi, Juanzi Li, Lei Hou and Tong Cui

Poster 2Q: Question Answering

Towards Visual Question Answering on Pathology Images
Xuehai He, Zhuo Cai, Wenlan Wei, Yichen Zhang, Luntian Mou, Eric Xing and
Pengtao Xie

ForecastQA: A Question Answering Challenge for Event Forecasting with Temporal
Text Data

Woojeong Jin, Rahul Khanna, Suji Kim, Dong-Ho Lee, Fred Morstatter, Aram Gal-
styan and Xiang Ren

Recursive Tree-Structured Self-Attention for Answer Sentence Selection

Khalil Mrini, Emilia Farcas and Ndapa Nakashole

Poster 2R: Language Grounding to Vision, Robotics and Beyond

Efficient Text-based Reinforcement Learning by Jointly Leveraging State and Com-
monsense Graph Representations

Keerthiram Murugesan, Mattia Atzeni, Pavan Kapanipathi, Kartik Talamadupula,

Mrinmaya Sachan and Murray Campbell

mTVR: Multilingual Moment Retrieval in Videos
Jie Lei, Tamara Berg and Mohit Bansal

ci
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0:00-2:00

0:00-2:00

0:00-2:00

0:00-2:00

0:00-2:00

0:00-2:00

0:00-2:00

0:00-2:00

Poster 2S: Information Extraction

How Knowledge Graph and Attention Help? A Qualitative Analysis into Bag-level
Relation Extraction
Zikun Hu, Yixin Cao, Lifu Huang and Tat-Seng Chua

Trigger is Not Sufficient: Exploiting Frame-aware Knowledge for Implicit Event
Argument Extraction

Kaiwen Wei, Xian Sun, Zequn Zhang, Jingyuan Zhang, Guo Zhi and li jin

Element Intervention for Open Relation Extraction
Fangchao Liu, Lingyong Yan, Hongyu Lin, Xianpei Han and Le Sun

Explicitly Capturing Relations between Entity Mentions via Graph Neural Networks

Jor Domain-specific Named Entity Recognition

Pei Chen, Haibo Ding, Jun Araki and Ruihong Huang

AdaTag: Multi-Attribute Value Extraction from Product Profiles with Adaptive De-
coding

Jun Yan, Nasser Zalmout, Yan Liang, Christan Grant, Xiang Ren and Xin Luna
Dong

CoRI: Collective Relation Integration with Data Augmentation for Open Informa-
tion Extraction
Zhengbao Jiang, Jialong Han, BUNYAMIN SISMAN and Xin Luna Dong

Benchmarking Scalable Methods for Streaming Cross Document Entity Coreference
Robert L Logan IV, Andrew McCallum, Sameer Singh and Dan Bikel

Search from History and Reason for Future: Two-stage Reasoning on Temporal
Knowledge Graphs

Zixuan Li, Xiaolong Jin, Saiping Guan, Wei Li, Jiafeng Guo, Yuanzhuo Wang and
Xueqi Cheng

cii
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0:00-2:00

0:00-2:00

08:00-08:10

08:10-08:20

08:20-08:30

08:30-08:37

Poster 2T: Sentiment Analysis, Stylistic Analysis, and Argument Mining

Employing Argumentation Knowledge Graphs for Neural Argument Generation
Khalid Al Khatib, Lukas Trautner, Henning Wachsmuth, Yufang Hou and Benno
Stein

Learning Span-Level Interactions for Aspect Sentiment Triplet Extraction
Lu Xu, Yew Ken Chia and Lidong Bing
Session 13A: Machine Translation and Multilinguality 8

On Compositional Generalization of Neural Machine Translation
Yafu Li, Yongjing Yin, Yulong Chen and Yue Zhang

Mask-Align: Self-Supervised Neural Word Alignment
Chi Chen, Maosong Sun and Yang Liu

GWLAN: General Word-Level AutocompletioN for Computer-Aided Translation
Huayang Li, Lemao Liu, Guoping Huang and Shuming Shi

Improving Lexically Constrained Neural Machine Translation with Source-

Conditioned Masked Span Prediction
Gyubok Lee, Seongjun Yang and Edward Choi

ciii
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08:00-08:10

08:10-08:20

08:20-08:30

08:30-08:40

08:40-08:50

08:50-09:00

08:00-08:10

08:10-08:20

08:20-08:30

08:30-08:40

Session 13B: Information Extraction 6

De-biasing Distantly Supervised Named Entity Recognition via Causal Intervention
Wenkai Zhang, Hongyu Lin, Xianpei Han and Le Sun

A Span-Based Model for Joint Overlapped and Discontinuous Named Entity Recog-
nition
Fei Li, ZhiChao Lin, Meishan Zhang and Donghong Ji

MLBiNet: A Cross-Sentence Collective Event Detection Network
Dongfang Lou, Zhilin Liao, Shumin Deng, Ningyu Zhang and Huajun Chen

Exploiting Document Structures and Cluster Consistencies for Event Coreference
Resolution
Hieu Minh Tran, Duy Phung and Thien Huu Nguyen

StereoRel: Relational Triple Extraction from a Stereoscopic Perspective
Xuetao Tian, Liping Jing, Lu He and Feng Liu

Knowledge-Enriched Event Causality ldentification via Latent Structure Induction
Networks

Pengfei Cao, Xinyu Zuo, Yubo Chen, Kang Liu, Jun Zhao, Yuguang Chen and
Weihua Peng

Session 13C: Machine Learning for NLP 6

Turn the Combination Lock: Learnable Textual Backdoor Attacks via Word Substi-
tution
Fanchao Qi, Yuan Yao, Sophia Xu, Zhiyuan Liu and Maosong Sun

Parameter-Efficient Transfer Learning with Diff Pruning
Demi Guo, Alexander Rush and Yoon Kim

R2D2: Recursive Transformer based on Differentiable Tree for Interpretable Hier-
archical Language Modeling

Xiang Hu, Haitao Mi, Zujie Wen, Yafang Wang, Yi Su, Jing Zheng and Gerard de
Melo

Risk Minimization for Zero-shot Sequence Labeling

Zechuan Hu, Yong Jiang, Nguyen Bach, Tao Wang, Zhongqgiang Huang, Fei Huang
and Kewei Tu

civ
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08:40-08:50

08:50-09:00

08:00-08:10

08:10-08:20

08:20-08:30

08:30-08:40

08:40-08:50

08:50-08:57

WARP: Word-level Adversarial ReProgramming
Karen Hambardzumyan, Hrant Khachatrian and Jonathan May

Lexicon Learning for Few Shot Sequence Modeling
Ekin Akyurek and Jacob Andreas

Session 13D: NLP Applications 3

Personalized Transformer for Explainable Recommendation
Lei Li, Yongfeng Zhang and Li Chen

Generating SOAP Notes from Doctor-Patient Conversations Using Modular Sum-
marization Techniques
Kundan Krishna, Sopan Khosla, Jeffrey Bigham and Zachary C. Lipton

Tail-to-Tail Non-Autoregressive Sequence Prediction for Chinese Grammatical Er-
ror Correction
Piji Li and Shuming Shi

Early Detection of Sexual Predators in Chats
Matthias Vogt, UIf Leser and Alan Akbik

Writing by Memorizing: Hierarchical Retrieval-based Medical Report Generation
Xingyi Yang, Muchao Ye, Quanzeng You and Fenglong Ma

Quotation Recommendation and Interpretation Based on Transformation from

Queries to Quotations
Lingzhi Wang, Xingshan Zeng and Kam-Fai Wong
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08:00-08:10

08:10-08:20

08:20-08:30

08:30-08:40

08:40-08:50

08:50-08:57

9:00-11:00

9:00-11:00

9:00-11:00

9:00-11:00

Session 13E: Information Retrieval and Text Mining 2

Concept-Based Label Embedding via Dynamic Routing for Hierarchical Text Clas-
sification
Xuepeng Wang, Li Zhao, Bing Liu, Tao Chen, Feng Zhang and Di Wang

VisualSparta: An Embarrassingly Simple Approach to Large-scale Text-to-Image
Search with Weighted Bag-of-words
Xiaopeng Lu, Tiancheng Zhao and Kyusong Lee

Few-Shot Text Ranking with Meta Adapted Synthetic Weak Supervision
Si Sun, Yingzhuo Qian, Zhenghao Liu, Chenyan Xiong, Kaitao Zhang, Jie Bao,
Zhiyuan Liu and Paul Bennett

Semi-Supervised Text Classification with Balanced Deep Representation Distribu-
tions
Changchun Li, Ximing Li and Jihong Ouyang

Improving Document Representations by Generating Pseudo Query Embeddings for
Dense Retrieval

Hongyin Tang, Xingwu Sun, Beihong Jin, Jingang Wang, Fuzheng Zhang and Wei
Wu

Pre-training is a Hot Topic: Contextualized Document Embeddings Improve Topic
Coherence
Federico Bianchi, Silvia Terragni and Dirk Hovy

Poster 3A: Semantics: Sentence-level Semantics, Textual Inference and Other
areas

ConSERT: A Contrastive Framework for Self-Supervised Sentence Representation
Transfer
Yuanmeng Yan, Rumei Li, Sirui Wang, Fuzheng Zhang, Wei Wu and Weiran Xu

Exploring Dynamic Selection of Branch Expansion Orders for Code Generation
Hui Jiang, Chulun Zhou, Fandong Meng, Biao Zhang, Jie Zhou, Degen Huang,
Qinggiang Wu and Jinsong Su

COINS: Dynamically Generating COntextualized Inference Rules for Narrative
Story Completion
Debjit Paul and Anette Frank

Reasoning over Entity-Action-Location Graph for Procedural Text Understanding
Hao Huang, Xiubo Geng, Jian Pei, Guodong Long and Daxin Jiang

cvi
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9:00-11:00

9:00-11:00

9:00-11:00

9:00-11:00

9:00-11:00

9:00-11:00

9:00-11:00

9:00-11:00

9:00-11:00

9:00-11:00

9:00-11:00

From Paraphrasing to Semantic Parsing: Unsupervised Semantic Parsing via Syn-
chronous Semantic Decoding

Shan Wu, Bo Chen, Chunlei Xin, Xianpei Han, Le Sun, Weipeng Zhang, Jiansong
Chen, Fan Yang and Xunliang Cai

Pre-training Universal Language Representation
Yian Li and Hai Zhao

Structural Pre-training for Dialogue Comprehension
Zhuosheng Zhang and Hai Zhao

AutoTinyBERT: Automatic Hyper-parameter Optimization for Efficient Pre-trained
Language Models
Yichun Yin, Cheng Chen, Lifeng Shang, Xin Jiang, Xiao Chen and Qun Liu

Data Augmentation with Adversarial Training for Cross-Lingual NLI
Xin Dong, Yaxin Zhu, Zuohui Fu, Dongkuan Xu and Gerard de Melo

Input Representations for Parsing Discourse Representation Structures: Comparing
English with Chinese
Chunliu Wang, Rik van Noord, Arianna Bisazza and Johan Bos

Code Generation from Natural Language with Less Prior Knowledge and More
Monolingual Data
Sajad Norouzi, Keyi Tang and Yanshuai Cao

Bootstrapped Unsupervised Sentence Representation Learning
Yan Zhang, Ruidan He, ZUOZHU LIU, Lidong Bing and Haizhou Li

Learning Event Graph Knowledge for Abductive Reasoning
Li Du, Xiao Ding, Ting Liu and Bing Qin

Issues with Entailment-based Zero-shot Text Classification
Tingting Ma, Jin-Ge Yao, Chin-Yew Lin and Tiejun Zhao

Neural-Symbolic Commonsense Reasoner with Relation Predictors

Farhad Moghimifar, Lizhen Qu, Terry Yue Zhuo, Gholamreza Haffari and Mahsa
Baktashmotlagh
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9:00-11:00

9:00-11:00

9:00-11:00

9:00-11:00

9:00-11:00

9:00-11:00

9:00-11:00

9:00-11:00

9:00-11:00

9:00-11:00

Poster 3B: Linguistic Theories, Cognitive Modeling and Psycholinguistics

A Cognitive Regularizer for Language Modeling
Jason Wei, Clara Meister and Ryan Cotterell

What Motivates You? Benchmarking Automatic Detection of Basic Needs from
Short Posts
Sanja Stajner, Seren Yenikent, Bilal Ghanem and Marc Franco-Salvador

Lower Perplexity is Not Always Human-Like
Tatsuki Kuribayashi, Yohei Oseki, Takumi Ito, Ryo Yoshida, Masayuki Asahara and
Kentaro Inui

Poster 3C: Semantics: Lexical Semantics

Word Sense Disambiguation: Towards Interactive Context Exploitation from Both
Word and Sense Perspectives
Ming Wang and Yinglin Wang

A Knowledge-Guided Framework for Frame Identification
Xuefeng Su, Ru Li, Xiaoli Li, Jeff Z. Pan, Hu Zhang, Qinghua Chai and Xiaoqi Han

Obtaining Better Static Word Embeddings Using Contextual Embedding Models
Prakhar Gupta and Martin Jaggi

Meta-Learning with Variational Semantic Memory for Word Sense Disambiguation
Yingjun Du, Nithin Holla, Xiantong Zhen, Cees Snoek and Ekaterina Shutova

LexFit: Lexical Fine-Tuning of Pretrained Language Models
Ivan Vuli¢, Edoardo Maria Ponti, Anna Korhonen and Goran Glavas

Semantic Frame Induction using Masked Word Embeddings and Two-Step Cluster-

ing
Kosuke Yamada, Ryohei Sasano and Koichi Takeda

Multi-SimLex: A Large-Scale Evaluation of Multilingual and Cross-Lingual Lexical
Semantic Similarity

Ivan Vulic, Simon Baker, Edoardo Maria Ponti, Ulla Petti, Ira Leviant, Kelly Wing,
Olga Majewska, Eden Bar, Matt Malone, Thierry Poibeau, Roi Reichart and Anna
Korhonen
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Poster 3D: Speech and Multimodality

Text-Free Image-to-Speech Synthesis Using Learned Segmental Units
Wei-Ning Hsu, David Harwath, Tyler Miller, Christopher Song and James Glass

CTFN: Hierarchical Learning for Multimodal Sentiment Analysis Using Coupled-
Translation Fusion Network

Jiajia Tang, Kang Li, Xuanyu Jin, Andrzej Cichocki, Qibin Zhao and Wanzeng
Kong

Lightweight Adapter Tuning for Multilingual Speech Translation
Hang Le, Juan Pino, Changhan Wang, Jiatao Gu, Didier Schwab and Laurent Be-
sacier

Poster 3E: Interpretability and Analysis of Models for NLP

Parameter Selection: Why We Should Pay More Attention to It
Jie-Jyun Liu, Tsung-Han Yang, Si-An Chen and Chih-Jen Lin

Positional Artefacts Propagate Through Masked Language Model Embeddings
Ziyang Luo, Artur Kulmizev and Xiaoxi Mao

Language Model Evaluation Beyond Perplexity
Clara Meister and Ryan Cotterell

Learning to Explain: Generating Stable Explanations Fast
Xuelin Situ, Ingrid Zukerman, Cecile Paris, Sameen Maruf and Gholamreza Haffari

StereoSet: Measuring stereotypical bias in pretrained language models
Moin Nadeem, Anna Bethke and Siva Reddy

Alignment Rationale for Natural Language Inference
Zhongtao Jiang, Yuanzhe Zhang, Zhao Yang, Jun Zhao and Kang Liu

Enabling Lightweight Fine-tuning for Pre-trained Language Model Compression
based on Matrix Product Operators

Peiyu Liu, Ze-Feng Gao, Wayne Xin Zhao, Zhi-Yuan Xie, Zhong-Yi Lu and Ji-Rong
Wen
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On Sample Based Explanation Methods for NLP: Faithfulness, Efficiency and Se-
mantic Evaluation
Wei Zhang, Ziming Huang, Yada Zhu, Guangnan Ye, Xiaodong Cui and Fan Zhang

CausalM: Causal Model Explanation Through Counterfactual Language Models
Amir Feder, Nadav Oved, Uri Shalit and Roi Reichart

Amnesic Probing: Behavioral Explanation With Amnesic Counterfactuals
Yanai Elazar, Shauli Ravfogel, Alon Jacovi and Yoav Goldberg

Poster 3F: Information Retrieval and Text Mining

Syntax-Enhanced Pre-trained Model
Zenan Xu, Daya Guo, Duyu Tang, Qinliang Su, Linjun Shou, Ming Gong, Wanjun
Zhong, Xiaojun Quan, Daxin Jiang and Nan Duan

Matching Distributions between Model and Data: Cross-domain Knowledge Distil-
lation for Unsupervised Domain Adaptation
Bo Zhang, Xiaoming Zhang, Yun Liu, Lei Cheng and Zhoujun Li

Counterfactual Inference for Text Classification Debiasing
Chen Qian, Fuli Feng, Lijie Wen, Chunping Ma and Pengjun Xie

HieRec: Hierarchical User Interest Modeling for Personalized News Recommenda-
tion

Tao Qi, Fangzhao Wu, Chuhan Wu, Peiru Yang, Yang Yu, Xing Xie and Yongfeng
Huang

Distinct Label Representations for Few-Shot Text Classification
Sora Ohashi, Junya Takayama, Tomoyuki Kajiwara and Yuki Arase

PP-Rec: News Recommendation with Personalized User Interest and Time-aware
News Popularity
Tao Qi, Fangzhao Wu, Chuhan Wu and Yongfeng Huang

Article Reranking by Memory-Enhanced Key Sentence Matching for Detecting Pre-
viously Fact-Checked Claims
Qiang Sheng, Juan Cao, Xueyao Zhang, Xirong Li and Lei Zhong

Learning to Solve NLP Tasks in an Incremental Number of Languages
Giuseppe Castellucci, Simone Filice, Danilo Croce and Roberto Basili
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Poster 3G: Machine Learning for NLP

Defense against Synonym Substitution-based Adversarial Attacks via Dirichlet
Neighborhood Ensemble
Yi Zhou, Xiaoqing Zheng, Cho-Jui Hsieh, Kai-Wei Chang and Xuanjing Huang

Shortformer: Better Language Modeling using Shorter Inputs
Ofir Press, Noah A. Smith and Mike Lewis

BanditMTL: Bandit-based Multi-task Learning for Text Classification
Yuren Mao, Zekai Wang, Weiwei Liu, Xuemin Lin and Wenbin Hu

Unified Interpretation of Softmax Cross-Entropy and Negative Sampling: With Case
Study for Knowledge Graph Embedding
Hidetaka Kamigaito and Katsuhiko Hayashi

Hi-Transformer: Hierarchical Interactive Transformer for Efficient and Effective
Long Document Modeling
Chuhan Wu, Fangzhao Wu, Tao Qi and Yongfeng Huang

De-Confounded Variational Encoder-Decoder for Logical Table-to-Text Generation
Wengqing Chen, Jidong Tian, Yitian Li, Hao He and Yaohui Jin

Rethinking Stealthiness of Backdoor Attack against NLP Models
Wenkai Yang, Yankai Lin, Peng Li, Jie Zhou and Xu Sun

Crowdsourcing Learning as Domain Adaptation: A Case Study on Named Entity
Recognition

Xin Zhang, Guangwei Xu, Yueheng Sun, Meishan Zhang and Pengjun Xie

Robust Transfer Learning with Pretrained Language Models through Adapters
Wenjuan Han, Bo Pang and Ying Nian Wu

Embracing Ambiguity: Shifting the Training Target of NLI Models
Johannes Mario Meissner, Napat Thumwanit, Saku Sugawara and Akiko Aizawa

Exploring Distantly-Labeled Rationales in Neural Network Models
Quzhe Huang, Shengqi Zhu, Yansong Feng and Dongyan Zhao
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Learning to Perturb Word Embeddings for Out-of-distribution QA
Seanie Lee, Minki Kang, Juho Lee and Sung Ju Hwang

Poster 3H: Dialog and Interactive Systems

Maria: A Visual Experience Powered Conversational Agent
Zujie Liang, Huang Hu, Can Xu, Chongyang Tao, Xiubo Geng, yining Chen, Fan
Liang and Daxin Jiang

A Human-machine Collaborative Framework for Evaluating Malevolence in Dia-
logues
Yangjun Zhang, Pengjie Ren and Maarten de Rijke

Generating Relevant and Coherent Dialogue Responses using Self-Separated Con-
ditional Variational AutoEncoders
Bin Sun, Shaoxiong Feng, Yiwei Li, Jiamou Liu and Kan Li

Modeling Discriminative Representations for Out-of-Domain Detection with Super-
vised Contrastive Learning

Zhiyuan Zeng, Keqing He, Yuanmeng Yan, Zijun Liu, Yanan Wu, Hong Xu, Huix-
ing Jiang and Weiran Xu

Learning to Ask Conversational Questions by Optimizing Levenshtein Distance
Zhongkun Liu, Pengjie Ren, Zhumin CHEN, Zhaochun Ren, Maarten de Rijke and
Ming Zhou

DVD: A Diagnostic Dataset for Multi-step Reasoning in Video Grounded Dialogue
Hung Le, Chinnadhurai Sankar, Seungwhan Moon, Ahmad Beirami, Alborz
Geramifard and Satwik Kottur

Preview, Attend and Review: Schema-Aware Curriculum Learning for Multi-
Domain Dialogue State Tracking
Yinpei Dai, Hangyu Li, Yongbin Li, Jian Sun, Fei Huang, Luo Si and Xiaodan Zhu

On the Generation of Medical Dialogs for COVID-19

Meng Zhou, Zechen Li, Bowen Tan, Guangtao Zeng, Wenmian Yang, Xuehai He,
Zeqian Ju, Subrato Chakravorty, Shu Chen, Xingyi Yang, Yichen Zhang, Qingyang
Wu, Zhou Yu, Kun Xu, Eric Xing and Pengtao Xie

Constructing Multi-Modal Dialogue Dataset by Replacing Text with Semantically
Relevant Images
Nyoungwoo Lee, Suwon Shin, Jaegul Choo, Ho-Jin Choi and Sung-Hyon Myaeng

MMGCN: Multimodal Fusion via Deep Graph Convolution Network for Emotion

Recognition in Conversation
Jingwen Hu, Yuchen Liu, Jinming Zhao and Qin Jin
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DynaEval: Unifying Turn and Dialogue Level Evaluation
Chen Zhang, Yiming Chen, Luis Fernando D’Haro, Yan Zhang, Thomas Friedrichs,
Grandee Lee and Haizhou Li

Unsupervised Learning of KB Queries in Task-Oriented Dialogs

Dinesh Raghu, Nikhil Gupta and Mausam

Poster 3I: Ethics in NLP

Exposing the limits of Zero-shot Cross-lingual Hate Speech Detection

Debora Nozza

Poster 3J: Resources and Evaluation

CoSQA: 20,000+ Web Queries for Code Search and Question Answering

Junjie Huang, Duyu Tang, Linjun Shou, Ming Gong, Ke Xu, Daxin Jiang, Ming
Zhou and Nan Duan

QED: A Framework and Dataset for Explanations in Question Answering
Matthew Lamm, Jennimaria Palomaki, Chris Alberti, Daniel Andor, Eunsol Choi,
Livio Baldini Soares and Michael Collins

Poster 3K: Machine Translation and Multilinguality

Rewriter-Evaluator Architecture for Neural Machine Translation
Yangming Li and Kaisheng Yao

BERTTune: Fine-Tuning Neural Machine Translation with BERTScore
Inigo Jauregi Unanue, Jacob Parnell and Massimo Piccardi

Modeling Bilingual Conversational Characteristics for Neural Chat Translation
Yunlong Liang, Fandong Meng, Yufeng Chen, Jinan Xu and Jie Zhou

Importance-based Neuron Allocation for Multilingual Neural Machine Translation
Wanying Xie, Yang Feng, Shuhao Gu and Dong Yu
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Transfer Learning for Sequence Generation: from Single-source to Multi-source
Xuancheng Huang, jingfang xu, Maosong Sun and Yang Liu

A Closer Look at Few-Shot Crosslingual Transfer: The Choice of Shots Matters
Mengjie Zhao, Yi Zhu, Ehsan Shareghi, Ivan Vuli¢, Roi Reichart, Anna Korhonen
and Hinrich Schiitze

Poster 3L: Discourse and Pragmatics

Coreference Reasoning in Machine Reading Comprehension
Mingzhu Wu, Nafise Sadat Moosavi, Dan Roth and Iryna Gurevych

Entity Enhancement for Implicit Discourse Relation Classification in the Biomedi-
cal Domain
Wei Shi and Vera Demberg

Adapting Unsupervised Syntactic Parsing Methodology for Discourse Dependency
Parsing
Liwen Zhang, Ge Wang, Wenjuan Han and Kewei Tu

Unsupervised Pronoun Resolution via Masked Noun-Phrase Prediction
Ming Shen, Pratyay Banerjee and Chitta Baral

Poster 3M: Syntax: Tagging, Chunking, and Parsing

A Conditional Splitting Framework for Efficient Constituency Parsing
Thanh-Tung Nguyen, Xuan-Phi Nguyen, Shafiq Joty and Xiaoli Li

A Unified Generative Framework for Various NER Subtasks
Hang Yan, Tao Gui, Junqi Dai, Qipeng Guo, Zheng Zhang and Xipeng Qiu

An In-depth Study on Internal Structure of Chinese Words
Chen Gong, Saihao Huang, Houquan Zhou, Zhenghua Li, Min Zhang, Zhefeng
Wang, baoxing Huai and Nicholas Jing Yuan

MulDA: A Multilingual Data Augmentation Framework for Low-Resource Cross-

Lingual NER
Linlin Liu, BOSHENG DING, Lidong Bing, Shafiq Joty, Luo Si and Chunyan Miao
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Lexicon Enhanced Chinese Sequence Labeling Using BERT Adapter
Wei Liu, Xiyan Fu, Yue Zhang and Wenming Xiao

Poster 3N: NLP Applications

Math Word Problem Solving with Explicit Numerical Values
Qinzhuo Wu, Qi Zhang, Zhongyu Wei and Xuanjing Huang

Neural-Symbolic Solver for Math Word Problems with Auxiliary Tasks
Jinghui Qin, Xiaodan Liang, Yining Hong, Jianheng Tang and Liang Lin

SMedBERT: A Knowledge-Enhanced Pre-trained Language Model with Structured
Semantics for Medical Text Mining

Taolin Zhang, Zerui Cai, Chengyu Wang, Minghui Qiu, Bite Yang and XIAOFENG
HE

What is Your Article Based On? Inferring Fine-grained Provenance
Yi Zhang, Zachary Ives and Dan Roth

Cross-modal Memory Networks for Radiology Report Generation
Zhihong Chen, Yaling Shen, Yan Song and Xiang Wan

Controversy and Conformity: from Generalized to Personalized Aggressiveness De-
tection

Kamil Kanclerz, Alicja Figas, Marcin Gruza, Tomasz Kajdanowicz, Jan Kocon,
Daria Puchalska and Przemyslaw Kazienko

Multi-perspective Coherent Reasoning for Helpfulness Prediction of Multimodal
Reviews
Junhao Liu, Zhen Hai, Min Yang and Lidong Bing

Instantaneous Grammatical Error Correction with Shallow Aggressive Decoding
Xin Sun, Tao Ge, Furu Wei and Houfeng Wang

Automatic ICD Coding via Interactive Shared Representation Networks with Self-
distillation Mechanism

Tong Zhou, Pengfei Cao, Yubo Chen, Kang Liu, Jun Zhao, Kun Niu, Weifeng
Chong and Shengping Liu

PHMOSpell:  Phonological and Morphological Knowledge Guided Chinese
Spelling Check

Li Huang, Junjie Li, Weiwei Jiang, Zhiyu Zhang, Minchuan Chen, Shaojun Wang
and Jing Xiao

CXV



Wednesday, August 4, 2021 (all times UTC+0) (continued)

9:00-11:00

9:00-11:00

9:00-11:00

9:00-11:00

9:00-11:00

9:00-11:00

9:00-11:00

9:00-11:00

9:00-11:00

9:00-11:00

Poster 30: Language Generation

Guiding the Growth: Difficulty-Controllable Question Generation through Step-by-
Step Rewriting

Yi Cheng, Siyao Li, Bang Liu, Ruihui Zhao, Sujian Li, Chenghua Lin and Yefeng
Zheng

Improving Encoder by Auxiliary Supervision Tasks for Table-to-Text Generation
Liang Li, Can Ma, Yinliang Yue and Dayong Hu

POS-Constrained Parallel Decoding for Non-autoregressive Generation
Kexin Yang, Wengiang Lei, Dayiheng Liu, Weizhen Qi and Jiancheng Lv

Bridging Subword Gaps in Pretrain-Finetune Paradigm for Natural Language Gen-
eration

Xin Liu, Baosong Yang, Dayiheng Liu, Haibo Zhang, Weihua Luo, Min Zhang,
Haiying Zhang and Jinsong Su

TGEA: An Error-Annotated Dataset and Benchmark Tasks for TextGeneration from
Pretrained Language Models
Jie He, Bo Peng, Yi Liao, Qun Liu and Deyi Xiong

Addressing Semantic Drift in Generative Question Answering with Auxiliary Ex-
traction
Chenliang Li, Bin Bi, Ming Yan, Wei Wang and Songfang Huang

Poster 3P: Summarization

Long-Span Summarization via Local Attention and Content Selection
Potsawee Manakul and Mark Gales

RepSum: Unsupervised Dialogue Summarization based on Replacement Strategy
Xiyan Fu, Yating Zhang, Tianyi Wang, Xiaozhong Liu, Changlong Sun and Zhenglu
Yang

BASS: Boosting Abstractive Summarization with Unified Semantic Graph
Wenhao Wu, Wei Li, Xinyan Xiao, Jiachen Liu, Zigiang Cao, Sujian Li, Hua Wu
and Haifeng Wang

Capturing Relations between Scientific Papers: An Abstractive Model for Related
Work Section Generation

Xiuying Chen, Hind Alamro, Mingzhe Li, Shen Gao, Xiangliang Zhang, Dongyan
Zhao and Rui Yan
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Focus Attention: Promoting Faithfulness and Diversity in Summarization
Rahul Aralikatte, Shashi Narayan, Joshua Maynez, Sascha Rothe and Ryan Mc-
Donald

Generating Query Focused Summaries from Query-Free Resources
Yumo Xu and Mirella Lapata

Demoting the Lead Bias in News Summarization via Alternating Adversarial Learn-
ing
Linzi Xing, Wen Xiao and Giuseppe Carenini

Poster 3Q: Question Answering

DuReader_robust: A Chinese Dataset Towards Evaluating Robustness and Gener-
alization of Machine Reading Comprehension in Real-World Applications
Hongxuan Tang, Hongyu Li, Jing Liu, Yu Hong, Hua Wu and Haifeng Wang

Sequence to General Tree: Knowledge-Guided Geometry Word Problem Solving
Shih-hung Tsai, Chao-Chun Liang, Hsin-Min Wang and Keh-Yih Su

Robustifying Multi-hop QA through Pseudo-Evidentiality Training
Kyungjae Lee, Seung-won Hwang, Sang-eun Han and Dohyeon Lee

Multi-Scale Progressive Attention Network for Video Question Answering
Zhicheng Guo, Jiaxuan Zhao, Licheng Jiao, Xu Liu and Lingling Li

Efficient Passage Retrieval with Hashing for Open-domain Question Answering
Ikuya Yamada, Akari Asai and Hannaneh Hajishirzi

xMoCo: Cross Momentum Contrastive Learning for Open-Domain Question An-
swering
Nan Yang, Furu Wei, Binxing Jiao, Daxing Jiang and Linjun Yang

Learn to Resolve Conversational Dependency: A Consistency Training Framework

for Conversational Question Answering
Gangwoo Kim, Hyunjae Kim, Jungsoo Park and Jaewoo Kang
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Poster 3R: Language Grounding to Vision, Robotics and Beyond

PhotoChat: A Human-Human Dialogue Dataset With Photo Sharing Behavior For
Joint Image-Text Modeling
Xiaoxue Zang, Lijuan Liu, Maria Wang, Yang Song, Hao Zhang and Jindong Chen

Good for Misconceived Reasons: An Empirical Revisiting on the Need for Visual
Context in Multimodal Machine Translation
Zhiyong Wu, Lingpeng Kong, Wei Bi, Xiang Li and Ben Kao

Attend What You Need: Motion-Appearance Synergistic Networks for Video Ques-
tion Answering
Ahjeong Seo, Gi-Cheon Kang, Joonhan Park and Byoung-Tak Zhang

Decoupling the Role of Data, Attention, and Losses in Multimodal Transformers
Lisa Anne Hendricks, John Mellor, Rosalia Schneider, Jean-Baptiste Alayrac and
Aida Nematzadeh

Poster 3S: Information Extraction

BERTifying the Hidden Markov Model for Multi-Source Weakly Supervised Named
Entity Recognition
Yinghao Li, Pranav Shetty, Lucas Liu, Chao Zhang and Le Song

CIL: Contrastive Instance Learning Framework for Distantly Supervised Relation
Extraction
Tao Chen, Haizhou Shi, Siliang Tang, Zhigang Chen, Fei Wu and Yueting Zhuang

SENT: Sentence-level Distant Relation Extraction via Negative Training
Ruotian Ma, Tao Gui, Linyang Li, Qi Zhang, Xuanjing Huang and Yaqian Zhou

An End-to-End Progressive Multi-Task Learning Framework for Medical Named
Entity Recognition and Normalization
Baohang Zhou, Xiangrui Cai, Ying Zhang and Xiaojie Yuan

PRGC: Potential Relation and Global Correspondence Based Joint Relational
Triple Extraction

Hengyi Zheng, rui wen, Xi Chen, Yifan Yang, Yunyan Zhang, Ziheng Zhang,
Ningyu Zhang, Bin Qin, Xu Ming and Yefeng Zheng

Learning from Miscellaneous Other-Class Words for Few-shot Named Entity Recog-
nition

Meihan Tong, Shuai Wang, Bin Xu, Yixin Cao, Minghui Liu, Lei Hou and Juanzi
Li
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Joint Biomedical Entity and Relation Extraction with Knowledge-Enhanced Collec-
tive Inference
Tuan Lai, Heng Ji, ChengXiang Zhai and Quan Hung Tran

Entity Concept-enhanced Few-shot Relation Extraction
Shan Yang, Yongfei Zhang, Guanglin Niu, Qinghua Zhao and Shiliang Pu

Fine-grained Information Extraction from Biomedical Literature based on
Knowledge-enriched Abstract Meaning Representation

Zixuan Zhang, Nikolaus Parulian, Heng Ji, Ahmed Elsayed, Skatje Myers and
Martha Palmer

Unleash GPT-2 Power for Event Detection
Amir Pouran Ben Veyseh, Viet Lai, Franck Dernoncourt and Thien Huu Nguyen

Improving Model Generalization: A Chinese Named Entity Recognition Case Study
Guanging Liang and Cane Wing-Ki Leung

CLEVE: Contrastive Pre-training for Event Extraction
Ziqi Wang, Xiaozhi Wang, Xu Han, Yankai Lin, Lei Hou, Zhiyuan Liu, Peng Li,
Juanzi Li and Jie Zhou

Three Sentences Are All You Need: Local Path Enhanced Document Relation Ex-
traction

Quzhe Huang, Shengqi Zhu, Yansong Feng, Yuan Ye, Yuxuan Lai and Dongyan
Zhao

Document-level Event Extraction via Parallel Prediction Networks
Hang Yang, Dianbo Sui, Yubo Chen, Kang Liu, Jun Zhao and Taifeng Wang

StructuralLM: Structural Pre-training for Form Understanding

Chenliang Li, Bin Bi, Ming Yan, Wei Wang, Songfang Huang, Fei Huang and Luo
Si
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11:00-12:00

14:00-14:10
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14:20-14:30

14:30-14:40

14:40-14:50

Poster 3T: Sentiment Analysis, Stylistic Analysis, and Argument Mining

Dual Graph Convolutional Networks for Aspect-based Sentiment Analysis
Ruifan Li, Hao Chen, Fangxiang Feng, Zhanyu Ma, Xiaojie WANG and Eduard
Hovy

Multi-Label Few-Shot Learning for Aspect Category Detection
Mengting Hu, Shiwan Zhao, Honglei Guo, Chao Xue, Hang Gao, Tiegang Gao,
renhong cheng and Zhong Su

Argument Pair Extraction via Attention-guided Multi-Layer Multi-Cross Encoding
Liying Cheng, Tianyu Wu, Lidong Bing and Luo Si

A Neural Transition-based Model for Argumentation Mining
Jianzhu Bao, Chuang Fan, Jipeng Wu, Yixue Dang, Jiachen Du and Ruifeng Xu

Lifetime Award

Session 14A: Language Generation 2

Keep It Simple: Unsupervised Simplification of Multi-Paragraph Text
Philippe Laban, Tobias Schnabel, Paul Bennett and Marti A. Hearst

Long Text Generation by Modeling Sentence-Level and Discourse-Level Coherence
Jian Guan, Xiaoxi Mao, changjie fan, Zitao Liu, Wenbiao Ding and Minlie Huang

OpenMEVA: A Benchmark for Evaluating Open-ended Story Generation Metrics
Jian Guan, Zhexin Zhang, Zhuoer Feng, Zitao Liu, Wenbiao Ding, Xiaoxi Mao,
changjie fan and Minlie Huang

DYPLOC: Dynamic Planning of Content Using Mixed Language Models for Text
Generation

Xinyu Hua, Ashwin Sreevatsa and Lu Wang

Controllable Open-ended Question Generation with A New Question Type Ontology
Shuyang Cao and Lu Wang
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14:50-15:00

BERTGen: Multi-task Generation through BERT
Faidon Mitzalis, Ozan Caglayan, Pranava Madhyastha and Lucia Specia

Session 14B: Machine Translation and Multilinguality 9

Selective Knowledge Distillation for Neural Machine Translation
Fusheng Wang, Jianhao Yan, Fandong Meng and Jie Zhou

Measuring and Increasing Context Usage in Context-Aware Machine Translation
Patrick Fernandes, Kayo Yin, Graham Neubig and André F. T. Martins

Beyond Offline Mapping: Learning Cross-lingual Word Embeddings through Con-
text Anchoring
Aitor Ormazabal, Mikel Artetxe, Aitor Soroa, Gorka Labaka and Eneko Agirre

CCMatrix: Mining Billions of High-Quality Parallel Sentences on the Web
Holger Schwenk, Guillaume Wenzek, Sergey Edunov, Edouard Grave, Armand
Joulin and Angela Fan

EDITOR: an Edit-Based Transformer with Repositioning for Neural Machine
Translation with Soft Lexical Constraints

Weijia Xu and Marine Carpuat

Gender Bias in Machine Translation
Beatrice Savoldi, Marco Gaido, Luisa Bentivogli, Matteo Negri and Marco Turchi
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14:30-14:37

Session 14C: Machine Learning for NLP 7

Length-Adaptive Transformer: Train Once with Length Drop, Use Anytime with
Search
Gyuwan Kim and Kyunghyun Cho

GhostBERT: Generate More Features with Cheap Operations for BERT
Zhiqi Huang, Lu Hou, Lifeng Shang, Xin Jiang, Xiao Chen and Qun Liu

Super Tickets in Pre-Trained Language Models: From Model Compression to Im-
proving Generalization

Chen Liang, Simiao Zuo, Minshuo Chen, Haoming Jiang, Xiaodong Liu,
Pengcheng He, Tuo Zhao and Weizhu Chen

A Novel Estimator of Mutual Information for Learning to Disentangle Textual Rep-
resentations
Pierre Colombo, Pablo Piantanida and Chloé Clavel

Determinantal Beam Search
Clara Meister, Martina Forster and Ryan Cotterell

Multi-hop Graph Convolutional Network with High-order Chebyshev Approxima-
tion for Text Reasoning
Shuoran Jiang, Qingcai Chen, Xin Liu, Baotian Hu and Lisai Zhang

Session 14D: NLP Applications 4

Accelerating Text Communication via Abbreviated Sentence Input
Jiban Adhikary, Jamie Berger and Keith Vertanen
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Catchphrase: Automatic Detection of Cultural References
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Abstract

A snowclone is a customizable phrasal tem-
plate that can be realized in multiple, instantly
recognized variants. For example, “* is the
new *” (Orange is the new black, 40 is the new
30). Snowclones are extensively used in so-
cial media. In this paper, we study snowclones
originating from pop-culture quotes; our goal
is to automatically detect cultural references in
text. We introduce a new, publicly available
data set of pop-culture quotes and their corre-
sponding snowclone usages and train models
on them. We publish code for CATCHPHRASE,
an internet browser plugin to automatically de-
tect and mark references in real-time, and ex-
amine its performance via a user study. Aside
from assisting people to better comprehend
cultural references, we hope that detecting
snowclones can complement work on para-
phrasing and help to tackle long-standing ques-
tions in social science about the dynamics of
information propagation.

1 Introduction

First coined by Richard Dawkins (Dawkins, 1976),
a meme is a unit of cultural transmission: any idea
or behavior that can be transferred by imitation. In-
ternet memes have become an integral part of mod-
ern digital culture (Shifman, 2014). Pullum (Pul-
Ium, 2004) coined the term snowclones to describe
a specific type of meme — phrasal templates that are
easily reusable in many different contexts. Pullum
described a snowclone as “a multi-use, customiz-
able, instantly recognizable, time-worn, quoted or
misquoted phrase or sentence that can be used in an
entirely open array of different jokey variants”. For
example, the quote “One does not simply walk into
Mordor” from the “Lord of the Rings” films be-
came a well-known pattern — “One does not simply
*” — used extensively online (see Figure 1).

In this paper, our goal is to develop algorithms
to detect snowclones in text. We envision an “En-

Dafna Shahaf
The Hebrew University of Jerusalem
dshahaf@cs.huji.ac.il

glishman in New York™ — a foreigner, perhaps, or
someone who does not easily understand contem-
porary cultural references and could use the help
of an automated system to communicate better. In
particular, we focus on pop-culture references over
the internet.

From a linguistic point of view, snowclones com-
plement the paraphrasing task (Barzilay and McK-
eown, 2001; Fernando and Stevenson, 2008; Dolan
et al., 2004). Paraphrase detection identifies alter-
native ways to convey the same meaning, while
snowclones keep (some of) the original sentence
structure but completely change the meaning.

Detection and tracking of digital memes have
been the focus of multiple computational studies.
The closest to our work are MEMETRACKER
and NIFTY (Leskovec et al., 2009; Suen et al.,
2013), that tracked quotations attributed to indi-
viduals. These works focused on short, distinctive
phrases that travel relatively intact through on-line
text. Other related tasks are multi-word expres-
sion/idiom identification (Haagsma et al., 2020;
Zarrief and Kuhn, 2009; Muzny and Zettlemoyer,
2013) and cliché detection (Cook and Hirst, 2013;
van Cranenburgh, 2018). Again, idioms and multi-
word expressions are chiefly fixed expressions (“cat
got your tongue?”, “jumped the shark™) that rarely
change their meaning across mutations. Therefore,

ONE DOES NOT'SIMELY*
R VP

INSERT USB CORRECTLY ON FIRST TRY

Figure 1: Snowclone example, based on “One does not
simply walk into Mordor” from “Lord of the Rings”.

Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics
and the 11th International Joint Conference on Natural Language Processing (Short Papers), pages 1-7
August 1-6, 2021. ©2021 Association for Computational Linguistics



these settings are much more restrictive than ours.
Our contributions are the following: we propose
anovel task of snowclone detection, identifying cul-
tural references. We first formulate it as a tagging
task, treating snowclones as regular expressions;
we conduct a user study to show humans have an
intuitive notion of the “correct” pattern(s), and de-
velop a sequence-to-sequence tagger to reveal such
patterns. We then extend the formulation to softer
notions of similarity. We experiment with feature-
based and neural approaches, achieving high accu-
racies. To further show the utility of our methods,
we develop CATCHPHRASE, a browser extension to
detect pop-culture references, conduct a user study
and show it indeed helps users identify cultural ref-
erences. We publish data and code'. We believe
tracking snowclones will find interesting applica-
tions in social science, exploring the diffusion and
evolution of highly dynamic content online.

2 Snowclones as Regular Expressions

The common view of snowclones treats them as
regular expressions (The-Snowclones-Database,
2007). Thus, in this section, we formulate
the snowclone detection problem as a tagging
task. Intuitively, we want to predict for each
word in the original sentence whether it is
replaced by a wildcard. We use the resulting
pattern to match new sentences to the original
sentence. For example, given a sentence s =
(One, does, not, simply, walk, into, M ordor)
we would like to find a mapping:

T(s) = (One, does, not, simply, , *, ).
(Adjacent wildcards can be merged)

2.1 Can People do This?

Before we set out to find an algorithm to uncover
the underlying snowclone form of an input sen-
tence, we try to evaluate the feasibility of this task.
It is not clear that such patterns exist, or are agreed
upon by human annotators. To that end, we con-
duct a user study to test if people have an intuitive
notion of snowclone patterns.

We recruited 22 volunteers through social media.
The participants were 80% males. 85% of them
were 25-35 years old, the rest being 40-55. All par-
ticipants were Israeli and identified as non-native
English speakers. Participants were given a short
explanation of snowclones and instructed to find

"https://github.com/sweedyl2/
CATCHPHRASE
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Figure 2: Histogram of the exact-match similarity mea-
sure (top) and relaxed-match measure (bottom), aver-
aged over all sentences, for all pairs of participants.

the snowclone form of a set of (the same) 20 sen-
tences, chosen from the memorable movie quote
database (Danescu-Niculescu-Mizil et al., 2012).
We chose sentences at random, filtering out quotes
that became known internet memes. Participants
marked words that should become wildcards, gen-
erating up to 3 patterns per sentence, as they saw
fit. We asked participants to report whether they
were familiar with any sentence, and discarded the
entire questionnaire of two who did.

Evaluation and Results. To compute similarity
between pairs of people, we propose two measures.
In exact-match, the score is the percentage of sen-
tences (out of 20) on which the two people had at
least one exact-match pattern. In relaxed-match,
we compute for each sentence the closest match
between the patterns of both people (in terms of
simple % agreement). The score is the percentage
of agreement over all 20 closest matches.

Figure 2 shows histograms over all pairs of par-
ticipants. For exact-match, most pairs of partici-
pants agree on roughly half the patterns. A careful
examination of the results indicates that partici-
pants are divided into those that prefer a single,
general pattern (annotating “The pavement was his
enemy” as “The * was his *”), and those preferring



Snowclone Form Tagging - Results
Model Accuracy | Recall
Naive 0.74 0
Bi-LSTM-CRF 0.92 0.82
BERT 0.9 0.88

Table 1: Accuracy and recall for each of the proposed
models for the snowclone form tagging task.

several narrower patterns (marking both “The * was
his enemy” and “The pavement was his *”). An-
other contributing factor is that many mismatched
pairs of patterns differ only in stopwords. The
relaxed-match measure is less sensitive to this is-
sue and indeed demonstrates high agreement. We
hypothesize that this indicates the feasibility of
training machine learning models for this task.

3 Snowclone Pattern Tagger

We create and publish our own data set for this task,
and use it to train two different ML models for it.

Data. To train ML models to solve the task of
snowclone tagging, we needed examples for sen-
tences and their underlying snowclone form. To
this end, we use the snowclone patterns along with
the original quotes from The Snowclone Database
(The-Snowclones-Database, 2007). As this is not
enough data to train on, we use the patterns to
lookup more instances online, collecting 7700
(snowclone pattern, instance) pairs. When split-
ting to train-dev-test sets (60%/20%/20%), we
make sure all variants of the same pattern are put
in the same set. We release our dataset'.

Bi-LSTM-CRF. We adapt the model of (Huang
et al., 2015), tested on part of speech tagging,
chunking and named entity recognition tasks. Its
CREF layer performs a structured prediction over
the sentence tags, using sentence-level informa-
tion rather than predicting a label for each word
separately, rendering it useful for our task. For
optimization, we use negative log-likelihood.

BERT S2S. We use BERT (Devlin et al., 2019),
as it has shown to produce good results when fine-
tuned to specific sequence-to-sequence tasks. We
fine-tune BERT for a token classification task us-
ing the snowclone form dataset. Since this model
outputs a probability measure for each token, we
use binary cross-entropy as the objective function.

See Appendix A for implementation details and
hyper-parameter tuning.

Evaluation and results. Since most words in an
input sentence are not replaceable, wildcards are
infrequent. Thus, we prioritize models with higher
recall than precision. Table 1 shows recall and ac-
curacy of the models. The naive majority baseline
(no words are wildcards) yields 74% accuracy (and,
naturally, 0% recall). The Bi-LSTM-CRF model
reaches an accuracy of 92%, and 82% recall. BERT
achieves an accuracy of 90%, and recall 88%.

4 Going Beyond Regular Expressions

When we tried to apply our models to find snow-
clones in online community text (looking for regex
matches), we realized that the regex formulation
might be too simplistic, as some cultural references
do not follow the snowclone pattern exactly, and
some sentences that do follow it are not really ref-
erences. Take Apocalypse Now’s famous “I love
the smell of napalm in the morning”. A natural cor-
responding pattern is “I love the smell of * in the
morning”, and indeed, “I love the smell of bureau-
cracy in the morning” is most likely a reference to
the movie. However, the case of “I love the smell
of pancakes in the morning” is a lot less clear. On
the other hand, “30 is the old 40” does not per-
fectly match the “* is the new *” pattern, but still
might be considered a reference. In this section
we reformulate the problem, using the output of
the sequence-to-sequence tagger as one input to a
machine learning model.

We reformulate the problem as a binary classi-
fication task over pairs of sentences. Given a seed
sentence s representing an original pop-culture
quote, and a candidate sentence c, decide whether ¢
is a reference to s. We note this is not an easy task,
as it is hard to put our finger on why “One does not
simply forget to social distance” is likely a refer-
ence to “One does not simply walk into Mordor”,
but “One cannot just walk right into jail” is not.

5 Snowclone Reference Detector

Data. We searched the web and found 20 famous
movie quotes that turned into snowclone internet
memes. We removed three quotes appearing in
the data of Section 3, not to contaminate our eval-
vation. Next, we defined overly general regular
expressions for each seed (attempting to catch both
snowclones and not) and crawled Reddit conversa-
tions to find matches. We choose Reddit due to its
popularity and comprehensive use of memes. We
collected 3850 pairs of seed and sentence and had



Snowclone Detection - Results
Model )Accuracy [Precision [Recall
Naive 0.64 1 0
SVM 0.85+0.08 | 0.84+0.13 |0.78+0.12
RoBERTa |0.814+0.94 |0.74+ 0.15 [0.74+0.18

Table 2: Snowclone detection task. We performed 20
splits for the SVM model and 5 for ROBERTa, and re-
port standard deviation.

an expert manually annotate them (after calibra-
tion). The dataset is imbalanced, with 64% of pairs
tagged as non-reference. When splitting to train-
dev-test (60%/20%/20%), we ensure all examples
from the same seed are put in the same set. We
take a supervised approach and train two models.

Feature-based SVM model. We calculate three
sets of features, focusing on sentence structure. (1)
Similarity between s and c: edit distance, longest
common sequence, and longest substring between
s,c. (2) We use the snowclone tagger of Section
3 to predict §, the snowclone form of s and use
the same features of group (1) between s,c. (3)
To characterize the shared and replaced words we
calculate the idf statistic for words shared between
s, c and words in s but not in ¢ (idf over movie
quotes (Danescu-Niculescu-Mizil and Lee, 2011)).
We tried decision trees, random forests, and SVM,
and chose SVM due to its performance.

RoBERTa-based model. We chose RoBERTa as
our second model, as it showed impressive results
on a related 2-sentence classification task. We use
a model pre-trained on SNLI (Nie et al., 2020),
which achieved state-of-the-art result on a natural
language inference task. We replace its classifi-
cation head with a binary classification head, and
fine-tune the model on the dataset of Section 4.
Unlike SVM, we expect this model to capture se-
mantic similarity (e.g., between “old” and “new”).

See Appendix B for implementation details and
hyper-parameter tuning.

Evaluation and results. The accuracy, precision
and recall measures for all models are presented
in Table 2. The naive majority baseline achieves
64% accuracy on the full data set (as the data is
not balanced). For our feature-based SVM model,
we randomly select 20 different splits, reaching an
average of 85% accuracy, 84% precision and 78%
recall, with a corresponding std of 8.7%, 13.8% and
12%. The RoBERTa-based model achieved average
results of 81% accuracy, 70% precision and 74%

recall, with std 9.4%, 15.7% and 18.7%. Thus, we
chose the SVM model. This perhaps indicates the
importance of structure in the snowclone problem;
alternatively, perhaps the amount of data was not
sufficient to fine-tune ROBERTa.

Observations. As a (qualitative) reality check,
we choose 10 seeds unseen during training. We
crawl all Reddit posts from March 2016 (month
and year chosen at random). We choose Reddit as
a diverse and popular online community, where in-
ternet memes are used regularly. We use the SVM
model to collect new candidate references for the
seeds. We analyze the candidate references and ob-
serve that (not surprisingly) their quality is heavily
influenced by the snowclone tagger feature. When
the regex is too general (e.g., “I am your *” for
“I am your father”), the number of false positives
is high. Importantly, over all seeds our method
is capable of detecting true references that do not
exactly match the predicted snowclone-form.

6 Evaluation: Web Extension

Our main motivation in this study was to help the
proverbial “Englishman in New York” identify cul-
tural references. In this section, we ask whether our
algorithms can help users detect pop-culture ref-
erences online. We create CATCHPHRASE, a web
browser extension able to detect and mark pop-
culture references in web pages (see Figure 3). The
extension inspects the web page source and identi-
fies candidate sentences. We use locality-sensitive
hashing (Gionis et al., 1999) with similarity thresh-
old = 0.2 for filtering, allowing us to reduce com-
putation time and maintain a small number of false
negatives. Next, the extension runs the reference-
detector on each (seed, candidate sentence) pair
and highlights the predicted references.

Experimental design. We choose a set of 20 pop-
culture quotes (seeds) unseen by our reference-
detector during training time, and whose snow-
clone form is the basis to many variations. All
sentences chosen are ones that became popular in-
ternet memes. For each seed quote, we manually
crawled Reddit and found threads containing refer-
ences to it. After filtering out threads that were over
10 messages long, we were left with 106 threads.
We recruited 10 volunteers through social me-
dia, all Israeli, non-native English speakers, who
self-identified as having low familiarity with pop-
culture. 80% of the volunteers were 20-35 years
old, and the remaining 20% were 40-60 years old.
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Figure 3: Screenshot of our web extension, suggesting “Nobody puts TV in a corner” is a reference to Dirty
Dancing’s “Nobody puts baby in a corner”. The suggested reference is underlined in blue. Hovering over the
underlined sentence prompts a message containing original quote information.

70% of the participants were females. We ran-
domly selected 16 seeds for each participant and
randomly split them into two groups, one per condi-
tion (with and without our extension). The threads
were shown in random order. The participants were
asked to go over each thread and point out any
pop-culture references they detect, specifying their
origin if they knew it.

Evaluation and results. Under the no-extension
condition, participants correctly identified a pop-
culture reference 38.7% of the time. The reference
origin was correctly identified in 61.2% of these.
This is interesting, as it shows people can identify
that a sentence looks like a cultural reference, even
when they do not recognize the source.

When using the extension, participants correctly
identified a reference 68.7% of the times, recog-
nizing the origin in 98.1% of these. In 26.3% of
the threads, the algorithm did not recognize the
reference. 5% of the times, we believe the algo-
rithm was right but people thought it was not (e.g.,
“I solemnly swear I’'m up for good tea” as a ref-
erence to “I solemnly swear I'm up to no good”).
The reason source recognition is not perfect is one
user finding a sentence the algorithm missed (but
not attributing it). To check our hypothesis that
web-extension users recognize more pop-culture
references, we run t-test with a = 0.95 and reject
the null hypothesis with pval = 0.00005.

7 Conclusions and Future Work

In this work we proposed the novel task of de-
tecting snowclones in text. Motivated by the high
agreement achieved by humans on a snowclone

annotation task, we first developed algorithms for
finding snowclones which are regular expressions,
then extended the formulation to a softer notion
of similarity. We introduce a new data set of pop-
culture quotes and their corresponding snowclone
variants and train models on them. We publish code
for CATCHPHRASE, an internet browser plugin to
automatically detect and mark references in real-
time. Our results demonstrate our algorithms can
indeed help users detect pop-culture references.

In the future, our work might be used in conver-
sational Al context, supporting agents’ ability to un-
derstand and even generate pop-culture references.
Another direction worth pursuing is applying our
methods to domains outside pop-culture (or at the
very least, to pop-culture of different cultures).

We believe snowclones, complementing the no-
tion of paraphrases, are worth exploring and can
give us new insights into how ideas spread and
evolve. Our approach opens an opportunity to bet-
ter answer long-standing questions in social science
about the dynamics of information.
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Below we provide implementation details for the
sake of reproducibility.

A Snowclone Pattern Tagger:
Hyper-parameter tuning

For the BI-LSTM-CRF model, we perform a
small grid search to determine the values for
the learning rate, weight decay, and the number
of layers and hidden dimension of the the BI-
LSTM. As the search space, we used learning —
rate € {0.01,0.001,0.0001}, weight-decay €
{0,0.01,0.001}, num-layers € {1,2,3} and
hidden-dim € {32,64,128}.  Finally, we
choose learning-rate = 0.01,weight-decay = 0,
num-layers = 2,hidden-dim = 32. For the BERT
model, we use a smaller grid search over the
learning rate (€ {0.001,0.0001}) and the weight
decay ({0,0.01,0.001}) hyper-parameters, and
train it for a single epoch using learning-rate =
0.0001,weight-decay = 0.01.

B Snowclone Reference Detector:
Hyper-parameter tuning

For the RoOBERTa model, we perform the same
hyper-parameter search as described in Section A,
and use the same values. For the SVM model,
we search over kernels (RBF, linear and polyno-
mial), degree (when applicable, over [2, 3, 4]) and
C-values ({0.1-4}12,). Our search dictates using
a polynomial kernel of degree 3, with C' = 0.5.
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Abstract

Large-scale pretrained language models have
led to dramatic improvements in text genera-
tion. Impressive performance can be achieved
by finetuning only on a small number of in-
stances (few-shot setting). Nonetheless, al-
most all previous work simply applies random
sampling to select the few-shot training in-
stances. Little to no attention has been paid
to the selection strategies and how they would
affect model performance. In this work, we
present a study on training instance selection
in few-shot neural text generation. The selec-
tion decision is made based only on the un-
labeled data so as to identify the most worth-
while data points that should be annotated un-
der some budget of labeling cost. Based on the
intuition that the few-shot training instances
should be diverse and representative of the en-
tire data distribution, we propose a simple se-
lection strategy with K-means clustering. We
show that even with the naive clustering-based
approach, the generation models consistently
outperform random sampling on three text gen-
eration tasks: data-to-text generation, docu-
ment summarization and question generation.
The code and training data are made avail-
able at https://gitlab.com/erniecyc/
few-selector. We hope that this work will
call for more attention on this largely unex-
plored area.

1 Introduction

Few-shot text generation is an important research
topic since obtaining large-scale training data for
each individual downstream task is prohibitively
expensive. Recently, pretraining large neural net-
works with a language modeling objective has led
to significant improvement across different few-
shot text generation tasks (Radford et al., 2019;
Lewis et al., 2020) and many techniques are pro-
posed based on them (Chen et al., 2020; Schick and

*Equal contribution. X.shen is now at Amazon Alexa Al
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Figure 1: Training scenario: U represents unlabeled data
and L indicates labeled instances. The annotation budget only
allows selecting K data for annotating the reference text.

Schiitze, 2020a; Zhang et al., 2020; Kale, 2020;
Chang et al., 2020, 2021b; Li and Liang, 2021;
Chang et al., 2021a). However, all the previous
works simulate the few-shot scenario by randomly
sampling a subset from the full training data. Lit-
tle to no attention has been paid to the selection
strategies.

In this work, we present a preliminary study at
searching for an optimal strategy to select the few-
shot training instances. Studying the selection strat-
egy is motivated by two rationales. First, random
sampling leads to a large variance of model per-
formance (Zhang et al., 2020; Schick and Schiitze,
2020a,b). Yet current works sample their own train-
ing data which makes it difficult to compare across
different models. One can then not be sure whether
an improved performance can be really ascribed to
the model or the randomness of sampling. Using a
stable selection strategy to find the most informa-
tive few-shot instances can provide a fair platform
and better benchmark different few-shot generative
models. Second, in practical applications, e.g. doc-
ument summarization, the training data is usually
obtained by manually annotating the summaries
for some selected documents. In Figure 1, we illus-
trate the typical training scenario for text generation
where the annotation budget only allows annotat-
ing a limited amount of data. Studying the optimal
selection strategy can help make the most use of
our annotation budget. Specifically, we focus on

Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics
and the 11th International Joint Conference on Natural Language Processing (Short Papers), pages 8—13
August 1-6, 2021. ©2021 Association for Computational Linguistics



the label-free setting where the selection can only
condition on the unannotated data. Although lever-
aging the reference text may benefit the selection
strategy, it conflicts with the realistic setting where
we need to first select the data then get its annotated
reference text.

The selection task resembles the theme of active
learning (Balcan et al., 2007), where the model
keeps identifying the most informative instances
to get labeled. Existing active learning approaches
can be roughly divided to uncertainty-based sam-
pling and representative sampling (Settles, 2009).
Uncertainty-based sampling select samples that
maximally reduce the uncertainty of the model (Tur
et al., 2005). This, however, requires a well-trained
model with decent confidence score estimations
in order to perform well. Therefore, in this paper,
we opt for the representative-sampling where the
selected training instances are expected to be dis-
similar to each other and representative enough to
cover all important patterns in the whole data distri-
bution (Agarwal et al., 2005; Wei et al., 2015). This
naturally matches the objectives of k-means cluster-
ing which minimizes the within-cluster variances
while maximizing the between-cluster variances to
encourage the diversity and representativeness of
each cluster (Krishna and Murty, 1999; Kanungo
et al., 2002). As has been shown in image clas-
sification tasks, data points closer to the cluster
centroids are usually most important, while other
faraway points can even be safely removed without
hurting model performance (Kaushal et al., 2018;
Birodkar et al., 2019). Inspired by this, we propose
a simple selection strategy which first clusters the
whole unlabeled dataset with the K-means algo-
rithm, and then from each cluster, selects the data
point that is closest to the cluster centroid.

We conduct experiments on three popular text
generation tasks: data-to-text, document summa-
rization and question generation. The proposed
selection strategy consistently outperforms random
sampling and exhibits much smaller variance.

Contribution. We present a preliminary study
on training instance selection for few-shot text gen-
eration and propose a selection strategy based on
K-means clustering. The proposed method shows
consistent superior performance over random sam-
pling, which can be used to make most use of the
annotation budget in practical applications. Mean-
while, the selected training instances can serve as
a better benchmark for few-shot text generation

since they are not biased towards specific gener-
ative methods and do not have the large variance
issue as found in random sampling. We further per-
form a set of ablation studies to analyze what con-
tributes to a good selection. Our findings can also
benefit research in active learning (Konyushkova
et al., 2017) since identifying the most informative
training instances is a critical step before collecting
more annotations through active learning.

2 Problem Formulation

Following the training scenario shown in Figure 1,
we denote the unlabeled data as Uy, Us, ..., U,
where n is the data size. Depending on the down-
stream task, “data” can mean unlabeled structured
data, documents and paragraphs respectively in
the context of data-to-text, document summariza-
tion and question generation. We will select K
instances from the whole unlabeled dataset, anno-
tate them with reference text, and then train a neural
generative model based on the annotated data. K
is defined based on the annotation budget. In this
work, since we focus on the few-shot scenario, K
is set to be small (< 100). The goal is to find the
most representative K instances that can lead to
the optimal performance when trained on them.

3 Selection by K-means Clustering

The general idea of our proposed method is to first
split the whole unlabeled data into K clusters, then
select one data point from each cluster. Specifically,
we first map each data point into a vector, then
cluster the vectors with the K-means algorithm.
The objective is sum of the squared errors (SSE),
which is also called cluster inertia:

n K
SSE =YY willa" =43 (D)

i=1 j=1

where 17 is the centroid of the jth cluster. z is the
embedding vector of U;. w;; = 1 if ' belongs
to the cluster 5 and 0 otherwise. We optimize the
objective function with the EM algorithm (Demp-
ster et al., 1977) which iteratively assigns each data
point into its closest cluster centroid. The initial
centroid points are chosen based on the K-means++
algorithm (Arthur and Vassilvitskii, 2007). The
first cluster center is chosen uniformly at random
from the data points, after which each subsequent
cluster center is chosen from the remaining data
points with probability proportional to its squared
distance from the point’s closest existing cluster
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Figure 2: Ablation studies on the SQUAD corpus. Perfor-
mance in BLEU-4 with increasing K between different vari-
ants of K-means where selection is based on the closest point,
Random point, or Farthest point from the centroid.

center. By this means, we maximize the chance of
spreading out the K initial cluster centers. We use
10 random seeds for selecting initial centers and
the clustering with the minimum SSE is chosen.

After splitting them into K clusters, we pick
from each cluster the data point that is closest to
the center. We use the Euclidean distance to select,
the same as the metric used for K-means clustering.
The intuition is that the test performance usually
depends on the nearest neighbor in the training
set (Khandelwal et al., 2020; Rajani et al., 2020).
Ideally data points closest to the cluster centers are
most representative samples, selecting them will
maximize the chance that a similar sample will be
found in the training dataset.

4 Experiments

We perform our experiments on the following three
representative datasets which cover three different
text generation tasks:

1. Data-to-text: We use the dataset for the E2E
challenge (Novikova et al., 2017) which con-
tain 50,602 data-text pairs with 8 unique slots
in the restaurant domain.

Document Summarization: We use the
CNN/Dailymail dataset (non-anonymized ver-
sion) (Hermann et al., 2015) which contains
312,084 document-summary pairs.

. Question generation: We use the SQuAD
dataset (Rajpurkar et al., 2016) with over 100k
questions. Following Du et al. (2017), we fo-
cus on the answer-independent scenario to
directly generate questions from passages.
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For all experiments, we finetune the open-
sourced Bart model (Lewis et al., 2020) as our
generative model. Bart is pretrained with a denois-
ing autoencoder objective on large amount of text
data and has been the state-of-the-arts for many
text generation tasks. To extract vectors used for
clustering, we finetune the Bart model with its orig-
inal self-supervised objective on the unlabeled data,
then apply mean pooling over the last hidden states
of the encoder.

In the later sections, we will first compare the
model performance based on our proposed selec-
tion strategy and random sampling, then analyze
the variance of them. Finally, we perform an abla-
tion study to see the effects of in-cluster selection
and embedding choices.

Comparison of Selection Strategies. In Table 1,
we compare the model performance based on dif-
ferent selection strategies. Apart from random sam-
pling and our proposed method, we also compare
with a lower bound where all instances are ran-
domly sampled from one cluster (within-cluster
random). Adding this for comparison aims to illus-
trate that it is important to select diverse samples
across different clusters. The performance scores
are averaged over 10 different trials for each selec-
tion strategy. As can be seen, K-means based selec-
tions consistently outperforms the others. Within-
cluster random sampling performs the worst, prov-
ing the importance of having diverse samples in
the training instance. However, it is worth not-
ing that although random sampling underperforms
K-means selection on average, its upper bound is
much higher, suggesting the proposed K-means se-
lection is by no means optimal. There is still much
room for improvement.

Variance of Model Performance. Table 1 also
shows the variance of model performance with dif-
ferent selection strategies. The variance is com-
puted based on 10 different runs. For within-cluster
random sampling, the variance comes from both
the choice of the cluster and the in-cluster sam-
pling. For K-means selection, the variance comes
from the choice of initial center points. We can
see random sampling and within-cluster random
sampling have a very large variance of up to 7.12
for K = 100. This further suggests that comparing
few-shot models based on random sampling can
be be prone to variability and prevent drawing re-
liable conclusions. K-means-based selection, on



E2E CNNDM SQUAD
10 50 100 | 10 50 100 | 10 50 100
Random 4.38+7.12  11.574£429 26.2242.58 | 13.51+£6.47 24.81+3.77 3524+2.89 | 1.23+£6.22 3.33+£5.89 7.65+3.61
IC-Random  2.15£4.58  9.80+2.62  24.71£2.71 | 12.30+3.89 24.71£2.45 33.29+£1.92 | 1.34£3.23 1.79£3.77 6.97£2.55
K-means 6.22+2.33  11.89+1.39 27.13+£2.22 | 14.284+2.35 25.194+3.28 36.31+1.08 | 1.56+2.34 4.77+3.61 9.33+2.15

Table 1: Comparisons of random sampling, within-cluster random sampling (IC-Random) and K-means selection on the E2E,

CNNDM, and SQUAD corpus (BLEU-4 reported).

. E2E CNNDM SQUAD
Embedding Mean | Sum | Mean | Sum | Mean | Sum
BART 26.28 | 25.59 | 3430 | 3446 | 8.89 | 8.56
BART-FT | 26.46 | 26.32 | 36.31 | 34.18 | 9.55 | 8.12
GloVe 25.18 | 23.36 | 33.59 | 3145 | 7.99 | 7.56
FastText 27.13 | 24.85 | 33.23 | 3430 | 9.33 | 9.42

Table 2: Finetuned BART generation performance compari-
son on E2E, CNNDM, and SQUAD for various embedding
options for the k-means selection with k=100.

the contrary, is rather robust with random seeds.
Therefore, for future work on few-shot text genera-
tion, we suggest that models be tested on instances
selected from our proposed strategy for a fair com-
parison.

Effects of In-cluster Selection. In Figure 2, we
show the effects of the in-cluster selection method.
In our proposed method, within each cluster, we
select one data point that is closest to the cluster
center. To see whether it is important to select the
closest data point, we compare with two selection
variants that within each cluster, we select (1) one
data point randomly sampled from the cluster, and
(2) one data point that is farthest to the cluster cen-
ter. We can observe that the choice of selection
does have a big impact on the model performance.
Choosing data points farthest to the cluster centers
leads to the worst performance. This is consis-
tent with previous findings (Kaushal et al., 2018;
Birodkar et al., 2019) that data points farthest from
cluster centers are usually outliers and less repre-
sentative. Selecting them might mislead the model
to capture non-generic patterns and thereby gen-
eralize poorly. In contrast, choosing data points
closest to cluster centers performs slightly better
than random selection. However, random selection
has a much larger variance compared with clos-
est/farthest point selection (shown as shadow).

Effects of Embedding Methods. As the K-
means clustering is performed on top of the em-
bedding vectors of unlabeled data, the choice of
embedding methods could affect the performance
on selected points. In Table 2, we show the effects
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of the different embedding methods. Apart from
the finetuned Bart, we compare with embeddings
extracted from (1) Bart without being finetuned
on the task-specific data, (2) Glove (Pennington
et al., 2014) and (3) FastText (Bojanowski et al.,
2017), both finetuned on the task-specific data. For
each embedding method, we compare using mean
pooling and sum pooling to extract the final vec-
tor representation. The results show that finetuned
Bart generally outperforms the other embedding
choices. We attribute this to the similarity in the
embedding space between selection with BART
embeddings and and the BART generation model.
Moreover, Fastlext offers a strong baseline as it
does relatively well on two scenarios in E2E and
SQUAD respectively. Further, we observe that
mean pooling is generally better than the sum of
word vectors, which is also observed in Chen et al.
(2018).

Human Evaluation. To obtain further insights
with respect to the generation outputs, five anno-
tators were instructed to evaluate 100 samples for
each of the three tasks to judge (1) whether the
text is fluent (score 0-5 with 5 being fully fluent),
and (2) whether it contains relevant information
about its input source (adequacy). These scores are
averaged and presented in Table 3. For Random
selection, we sampled 10 outputs from each of the
10 trials to make it 100 samples, and the same goes
for IC-random. We observe that the K-means al-
gorithm select better subsets of the training samples
that allow for better generalizability to unseen in-
put sources. In particular, the outputs are generally
more adequate. However, we see that the fluency
of outputs remain relatively similar.

5 Conclusion

In this work, we target at the unexplored problem
of training instance selection for few-shot text gen-
eration. We show that random sampling can lead
to large variance and suboptimal performance. To
address this problem, we propose a selection strat-
egy based on K-mean clustering and demonstrate



E2E CNNDM | SQUAD

Random | 4.08/4.15 | 4.55/3.27 | 4.62/3.84
IC-Random | 4.32/3.54 | 3.62/3.01 | 4.23/2.74
K-means | 4.12/4.24 | 4.32/3.66 | 4.51/3.98

Table 3: Human evaluation on 100 samples of the finetuned
BART generation performance comparison on E2E, CNNDM,
and SQUAD. Scores are presented as (fluency / adequacy).

that it consistently outperforms random sampling,
and has much lower variance. We further perform
a set of ablation studies to analyze the effects of
data size, embedding and selection methods, show-
ing that this is still much room for improvement.
Future work can consider other clustering methods.
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Abstract

The introduction of pretrained language mod-
els has reduced many complex task-specific
NLP models to simple lightweight layers. An
exception to this trend is coreference resolu-
tion, where a sophisticated task-specific model
is appended to a pretrained transformer en-
coder. While highly effective, the model has
a very large memory footprint — primarily due
to dynamically-constructed span and span-pair
representations — which hinders the process-
ing of complete documents and the ability to
train on multiple instances in a single batch.
We introduce a lightweight end-to-end coref-
erence model that removes the dependency
on span representations, handcrafted features,
and heuristics. Our model performs competi-
tively with the current standard model, while
being simpler and more efficient.

1 Introduction

Until recently, the standard methodology in NLP
was to design task-specific models, such as BiDAF
for question answering (Seo et al., 2017) and ESIM
for natural language inference (Chen et al., 2017).
With the introduction of pretraining, many of these
models were replaced with simple output layers,
effectively fine-tuning the transformer layers below
to perform the traditional model’s function (Rad-
ford et al., 2018). A notable exception to this trend
is coreference resolution, where a multi-layer task-
specific model (Lee et al., 2017, 2018) is appended
to a pretrained model (Joshi et al., 2019, 2020).
This model uses intricate span and span-pair repre-
sentations, a representation refinement mechanism,
handcrafted features, pruning heuristics, and more.
While the model is highly effective, it comes at
a great cost in memory consumption, limiting the
amount of examples that can be loaded on a large
GPU to a single document, which often needs to

*Equal contribution.
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be truncated or processed in sliding windows. Can
this coreference model be simplified?

We present start-to-end (s2e) coreference reso-
lution: a simple coreference model that does not
construct span representations. Instead, our model
propagates information to the span boundaries (i.e.,
its start and end tokens) and computes mention and
antecedent scores through a series of bilinear func-
tions over their contextualized representations. Our
model has a significantly lighter memory footprint,
allowing us to process multiple documents in a sin-
gle batch, with no truncation or sliding windows.
We do not use any handcrafted features, priors, or
pruning heuristics.

Experiments show that our minimalist approach
performs on par with the standard model, despite
removing a significant amount of complexity, pa-
rameters, and heuristics. Without any hyperparam-
eter tuning, our model achieves 80.3 F1 on the
English OntoNotes dataset (Pradhan et al., 2012),
with the best comparable baseline reaching 80.2
F1 (Joshi et al., 2020), while consuming less than
a third of the memory. These results suggest that
transformers can learn even difficult structured pre-
diction tasks such as coreference resolution without
investing in complex task-specific architectures.'

2 Background: Coreference Resolution

Coreference resolution is the task of clustering mul-
tiple mentions of the same entity within a given
text. It is typically modeled by identifying entity
mentions (contiguous spans of text), and predicting
an antecedent mention a for each span g (query)
that refers to a previously-mentioned entity, or a
null-span € otherwise.

Lee et al. (2017, 2018) introduce coarse-to-fine
(c2f), an end-to-end model for coreference resolu-

'Our code and model are publicly available: https: //
github.com/yuvalkirstain/s2e-coref
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August 1-6, 2021. ©2021 Association for Computational Linguistics



tion that predicts, for each span ¢, an antecedent
probability distribution over the candidate spans c:

exp(f(c, q))
Yoo exp(f(e,q))

Here, f(c, ¢) is a function that scores how likely ¢
is to be an antecedent of ¢. This function is com-
prised of mention scores f,,,(¢), fi(q) (i.e. is the
given span a mention?) and a separate antecedent

score fq(c, q):

{fm(c) + f(@) + falcrq)
0

P(a=clq) =

c#e

cC=¢&

fle,q) =

Our model (Section 3) follows the scoring function
above, but differs in how the different elements
fm(+) and fo(-) are computed. We now describe
how f,, and f, are implemented in the c2f model.

Scoring Mentions In the c2f model, the mention
score fy,(q) is derived from a vector representation
v, of the span ¢ (analogously, f,,(c) is computed
from v.). Let x; be the contextualized representa-
tion of the ¢-th token produced by the underlying
encoder. Every span representation is a concate-
nation of four elements: the representations of the
span’s start and end tokens x,,,X,,, a weighted
average of the span’s tokens X, computed via self-
attentive pooling, and a feature vector ¢(q) that
represents the span’s length:

Vg = [Xq5§ Xges )A(q; d’(Q)]

The mention score f,(q) is then computed from
the span representation v :

fm(q) = Vi - ReLU(W,,,v¢)

where W,,, and v,,, are learned parameters. Then,
span representations are enhanced with more global
information through a refinement process that inter-
polates each span representation with a weighted
average of its candidate antecedents. More recently,
Xu and Choi (2020) demonstrated that this span
refinement technique, as well as other modifica-
tions to it (e.g. entity equalization (Kantor and
Globerson, 2019)) do not improve performance.

Scoring Antecedents The antecedent score
falc, q) is derived from a vector representation of
the span pair v(. 4. This, in turn, is a function
of the individual span representations v. and v,
as well as a vector of handcrafted features ¢(c, q)
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such as the distance between the spans ¢ and ¢,
the document’s genre, and whether c and ¢ were
said/written by the same speaker:

Viea) = [Ves Vi Ve o vy d(c, q)]

The antecedent score f,(c, q) is parameterized with
W, and v, as follows:

fa(c,q) = va - ReLU(Wyv (. q))

Pruning Holding the vector representation of ev-
ery possible span in memory has a space complex-
ity of O(n2d) (where n is the number of input to-
kens, and d is the model’s hidden dimension). This
problem becomes even more acute when consider-
ing the space of span pairs (O(n*d)). Since this is
not feasible, candidate mentions and antecedents
are pruned through a variety of model-based and
heuristic methods.

Specifically, mention spans are limited to a cer-
tain maximum length ¢. The remaining mentions
are then ranked according to their scores f,(-),
and only the top An are retained, while avoiding
overlapping spans. Antecedents (span pairs) are fur-
ther pruned using a lightweight antecedent scoring
function (which is added to the overall antecedent
score), retaining only a constant number of an-
tecedent candidates c for each target mention q.

Training For each remaining span g, the training
objective optimizes the marginal log-likelihood of
all of its unpruned gold antecedents c, as there may
be multiple mentions referring to the same entity:

log»  P(a=clg)

Processing Long Documents Due to the c2f
model’s high memory consumption and the limited
sequence length of most pretrained transformers,
documents are often split into segments of a few
hundred tokens each (Joshi et al., 2019). Recent
work on efficient transformers (Beltagy et al., 2020)
has been able to shift towards processing complete
documents, albeit with a smaller model (base) and
only one training example per batch.

3 Model

We present start-to-end (s2e) coreference resolu-
tion, a simpler and more efficient model with re-
spect to c2f (Section 2). Our model utilizes the
endpoints of a span (rather than all span tokens) to
compute the mention and antecedent scores f,(-)



says the alert in Kuwait and Saudi Arabia affects US military personnel in these two countries.

Figure 1: The antecedent score f,(c,q) of a query mention ¢ = (g¢s, g.) and a candidate antecedent ¢ = (c;, ¢.)
is defined via bilinear functions over the representations of their endpoints ¢, ¢, ¢s, g.. Solid lines reflect factors
participating in positive examples (coreferring mentions), and dashed lines correspond to negative examples.

and f,(-, -) without constructing span or span-pair
representations; instead, we rely on a combination
of lightweight bilinear functions between pairs of
endpoint token representations. Furthermore, our
model does not use any handcrafted features, does
not prune antecedents, and prunes mention candi-
dates solely based on their mention score f,,(q).
Our computation begins by extracting a start and
end token representation from the contextualized
representation x of each token in the sequence:

m® = GeLU(W} x) m° = GeLU(W?, x)

We then compute each mention score as a biaffine
product over the start and end tokens’ representa-
tions, similar to Dozat and Manning (2017):

S € S

fm(q) =vs-m) +ve-m{ +m -B,  -m

ge
The first two factors measure how likely the span’s
start/end token gs/q. is a beginning/ending of an
entity mention. The third measures whether those
tokens are the boundary points of the same entity
mention. The vectors v, v, and the matrix B,
are the trainable parameters of our mention scor-
ing function f,,,. We efficiently compute mention
scores for all possible spans while masking spans
that exceed a certain length £.> We then retain only
the top-scoring An mention candidates to avoid
O(n*) complexity when computing antecedents.
Similarly, we extract start and end token repre-
sentations for the antecedent scoring function f,:

a’® = GeLU(W;x) a® = GeLU(W¢x)

Then, we sum over four bilinear functions:

fa(cv Q) =

S SS S S se €

e "Bg ra, ta, B -a

€
+a.,

q. qe

es S € €ee €
B, a, +ag, B, a,,

Each component measures the compatibility of the
spans c and ¢ by an interaction between different

2While pruning by length is not necessary for efficiency,
we found it to be a good inductive bias.
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boundary tokens of each span. The first compo-
nent compares the start representations of ¢ and
q, while the fourth component compares the end
representations. The second and third facilitate a
cross-comparison of the start token of span c with
the end token of span ¢, and vice versa. Figure 1
(bottom) illustrates these interactions.

This calculation is equivalent to computing a
bilinear transformation between the concatenation
of each span’s boundary tokens’ representations:

fale,q) = [a35ag ] - Ba - [ag ;8]

However, computing the factors directly bypasses
the need to create n? explicit span representations.
Thus, we avoid a theoretical space complexity of
O(n?d), while keeping it equivalent to that of a
transformer layer, namely O(n? 4 nd).

4 Experiments

Dataset We train and evaluate on two datasets:
the document-level English OntoNotes 5.0 dataset
(Pradhan et al., 2012), and the GAP coreference
dataset (Webster et al., 2018). The OntoNotes
dataset contains speaker metadata, which the base-
lines use through a hand-crafted feature that indi-
cates whether two spans were uttered by the same
speaker. Instead, we insert the speaker’s name to
the text every time the speaker changes, making
the metadata available to any model.

Pretrained Model We use Longformer-Large
(Beltagy et al., 2020) as our underlying pretrained
model, since it is able to process long documents
without resorting to sliding windows or truncation.

Baseline We consider Joshi et al.’s (2019) expan-
sion to the c2f model as our baseline. Specifically,
we use the implementation of Xu and Choi (2020)
with minor adaptations for supporting Longformer.
We do not use higher-order inference, as Xu and
Choi (2020) demonstrate that it does not result in
significant improvements. We train the baseline



Model MUC B’ CEAF,,
P R Fl1 P R Fl1 P R F1 Avg. F1
c2f + SpanBERT-Large 857 853 855 795 787 179.1 76.8 75.0 759 80.2
c2f + Longformer-Base 85.0 850 850 718 718 7118 756 742 749 79.2
c2f + Longformer-Large 86.0 832 84.6 789 755 7712 76.7 687 725 78.1
s2e + Longformer-Large 86.5 85.1 85.8 80.3 779 79.1 768 754 76.1 80.3

Table 1: Performance on the test set of the English OntoNotes 5.0 dataset. c2f refers to the course-to-fine approach
of Lee et al. (2017, 2018), as ported to pretrained transformers by Joshi et al. (2019).

Masc Fem Bias Overall
c2f + SpanBERT-Large 90.5 863 0.95 88.4
c2f + Longformer-Base 87.6 823 0.94 84.9
c2f + Longformer-Large ~ 90.1 854  0.95 87.8
s2e + Longformer-Large  90.6 858  0.95 88.3

Table 2: Performance on the test set of the GAP coref-
erence dataset. The reported metrics are F1 scores.

model over three pretrained models: Longformer-
Base, Longformer-Large, and SpanBERT-Large
(Beltagy et al., 2020; Joshi et al., 2020).

Hyperparameters All models use the same hy-
perparameters as the baseline. The only hyperpa-
rameters we change are the maximum sequence
length and batch size, which we enlarge to fit as
many tokens as possible into a 32GB GPU.? For
our model, we use dynamic batching with 5,000
max tokens, which allows us to fit an average of
5-6 documents in every training batch. The base-
line, however, has a much higher memory foot-
print, and is barely able to fit a single example
with Longformer-Base (max 4,096 tokens). When
combining the baseline with SpanBERT-Large or
Longformer-Large, the baseline must resort to slid-
ing windows to process the full document (512 and
2,048 tokens, respectively).

Performance Table 1 and Table 2 show that, de-
spite our model’s simplicity, it performs as well
as the best performing baseline. Our model with
Longformer-Large achieves 80.3 F1 on OntoNotes,
while the best performing baseline achieves 80.2
F1. When the baseline model is combined with
either version of Longformer, it is not able to reach
the same performance level as our model. We see
similar trends for GAP. Our findings indicate that
there is little to lose from simplifying the corefer-

3We made one exception, and tried to tune the Longformer-
Large baseline’s hyperparameters. Despite our efforts, it still
performs worse than Longformer-Base.
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Model Memory (GB)
c2f + SpanBERT-Large 16.2
c2f + Longformer-Base 12.0
c2f + Longformer-Large 15.7
s2e + Longformer-Large 4.3

Table 3: Peak GPU memory usage during inference on
OntoNotes, when processing one document at a time.

ence resolution architecture, while there are poten-
tial gains to be had from optimizing with larger
batches.

Efficiency We also compare our model’s mem-
ory usage using the OntoNotes development set.
Table 3 shows that our implementation is at least
three times more memory efficient than the base-
line. This improvement results from a combination
of three factors: (1) the fact that our model is lighter
on memory and does not need to construct span or
span-pair representations, (2) our simplified frame-
work, which does not use sliding windows, and
(3) our implementation, which was written “from
scratch”, and might thus be more (or less) efficient
than the original.

5 Related Work

Recent work on memory-efficient coreference res-
olution sacrifices speed and parallelism for guar-
antees on memory consumption. Xia et al. (2020)
and Toshniwal et al. (2020) present variants of the
c2f model (Lee et al., 2017, 2018) that use an iter-
ative process to maintain a fixed number of span
representations at all times. Specifically, spans
are processed sequentially, either joining existing
clusters or forming new ones, and an eviction mech-
anism ensures the use of a constant number of clus-
ters. While these approach constrains the space
complexity, their sequential nature slows down the
computation, and slightly deteriorates the perfor-
mance. Our approach is able to alleviate the large



memory footprint of c2f while maintaining fast
parallel processing and high performance.

CorefQA (Wu et al., 2020) propose an alterna-
tive solution by casting the task of coreference
resolution as one of extractive question answer-
ing. It first detects potential mentions, and then
creates dedicated queries for each one, creating a
pseudo-question-answering instance for each candi-
date mention. This method significantly improves
performance, but at the cost of processing hundreds
of individual context-question-answer instances for
a single document, substantially increasing execu-
tion time. Our work provides a simple alternative,
which can scale well in terms of both speed and
memory.

6 Conclusion

We introduce a new model for coreference reso-
lution, suggesting a lightweight alternative to the
sophisticated model that has dominated the task
over the past few years. Our model is competitive
with the baseline, while being simpler and more
efficient. This finding once again demonstrates the
spectacular ability of deep pretrained transformers
to model complex natural language phenomena.
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Abstract

In comparison with English, due to the lack
of explicit word boundary and tenses informa-
tion, Chinese Named Entity Recognition (NER)
is much more challenging. In this paper, we
propose a boundary enhanced approach for bet-
ter Chinese NER. In particular, our approach
enhances the boundary information from two
perspectives. On one hand, we enhance the
representation of the internal dependency of
phrases by an additional Graph Attention Net-
work(GAT) layer. On the other hand, taking the
entity head-tail prediction (i.e., boundaries) as
an auxiliary task, we propose an unified frame-
work to learn the boundary information and
recognize the NE jointly. Experiments on both
the OntoNotes and the Weibo corpora show the
effectiveness of our approach.

1 Introduction

Given a sentence, the NER task aims to identify the
noun phrases having special meanings that prede-
fined. Due to its importance on many downstream
tasks, such as relation extraction(Ji et al., 2017),
coreference resolution(Clark and Manning, 2016)
and knowledge graphs(Zhang et al., 2019), NER
has attracted much attention for long time.

In comparison with English, due to the lack of ex-
plicit word boundary and tenses information, Chi-
nese NER is much more challenging. In fact, the
performance of the current SOTAs in Chinese is far
inferior to that in English, the gap is about 10% in
F1-measure. In this paper, we propose a boundary
enhancing approach for better Chinese NER.

Firstly, using Star-Transformer(Guo et al., 2019),
we construct a lightweight baseline system. Bene-
fit from the unique star topological structure, Star-
Transformer is more dominant in representing long
distance sequence, and thus, our baseline achieves
comparable performance to the SOTAs. Consid-
ering the deficiency in the representation of local

*Corresponding author.
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sequence information, we then try to enhance the
local boundary information. In particular, our ap-
proach enhances the boundary information from
two perspectives. On one hand, we add an addi-
tional GAT(Velickovic et al., 2017) layer to capture
the internal dependency of phrases. In this way,
boundaries can be distinguished implicitly, while
the semantic information within the phrase is en-
hanced. On the other hand, we add an auxiliary
task to predict the head and tail of entities. In this
way, using the framework of multi-tasking learning,
we can learn the boundary information explicitly
and help the NER task. Experiments show the ef-
fectiveness of our approach. It should be noted
that, our approach obtains the new state-of-the-art
results on both the OntoNotes and the Weibo cor-
pora. That means our approach can perform well
for both written and non-written texts.

2 Related Work

As is well known, most researches cast the NER
task as a traditional sequence labelling problem,
and many models extending the Bi-LSTM+CRF
architecture are proposed (Huang et al., 2015; Chiu
and Nichols, 2016; Dong et al., 2016; Lample
et al., 2016; Ma and Hovy, 2016). Although the
attention-based model, i.e., Transformer(Vaswani
etal., 2017), has gradually surpassed the traditional
RNN model(Zaremba et al., 2014) in various fields,
Yan et al. (2019) has verified that the fully con-
nected Transformer mechanism does not work well
on NER. Until recently, some researches show that
Star-Transformer can work well on NER owing
to its lightweight topological structure(Guo et al.,
2019; Chen et al., 2020). Moreover, lexical and
dependent information has been widely used in
this task (Zhang and Yang, 2018; Ma et al., 2020;
Li et al., 2020; Gui et al., 2019; Sui et al., 2019;
Tang et al., 2020) to better capture local semantic
information.

In this paper, using Star-transformer as our base-
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Figure 1: The general architecture for the boundary
enhanced model.

line, we mainly focus on enhancing the boundary
information to improve Chinese NER.

3 Model

We also treat NER as a sequence labeling task, de-
coding with a classical CRF(Lafferty et al., 2001).
Figure 1 shows the complete model. We can find
that the encoder of our model consists of three parts,
i.e., GRU-based head and tail representation layer,
Star-transformer based contextual embedding layer,
and GAT-based dependency embedding layer.

3.1 Token embedding layer

Considering the lack of explit word boundary, we
combine word-level represention with character,
avoiding the error propagation caused by word seg-
mentation.

For a given sentence, we represent each word
and character by looking up the pre-trained word
embeddings' (Li et al., 2018). The sequence of
character embeddings contained in a word will be
fed to a bi-direction GRU layer. The hidden state
of bi-direction GRU can be expressed as folowing:

Wt = GRU(L L) 1)
— —

nt = GRUG, %)) 2)
W= (KR 3)

— —
where ! is the token representation, h!and h'!
denote the ¢-th forward and backward hidden state
of GRU layer.

The final token representation is obtained as

'https://github.com/Embedding/Chinese-Word- Vectors
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equation(4) ~ (6):

zy = e(word;) )
x; = GRU(e(char;)) 3
v = [z xf;posi (6)

where [;] denotes concatenation, and pos; is the
Part-of-Speech tagging of word;.

3.2 Star-transformer based contextual
embedding layer

Star-Transformer abandons redundant connections
and has an approximate ability to model the long-
range dependencies. For NER task, entities are
sparse, so it is unnecessary to pay attention on all
nodes in the sentence all the time. We utilize this
structured model to encode the words in a sentence,
which shows comparable performance with the tra-
ditional RNN models, but with the capability of
capturing long-range dependencies.

3.2.1 Multi-Head Attention

Transformer employs & attention heads to imple-
ment self-attention on an input sequence separately.
The result of each attention head will be integrated
together, called Multi-Head Attention.

Given a sequence of vectors X, we use a query
vector () to soft select the relevant information with
attention:

T
Att(Q, K, V) = softmam(Cf/lc%C Y-V (D
K=XWEKv=xwV (8)

where WX and WV are learnable parameters.
Then Multi-Head Attention can be defined as equa-
tion(9) ~ (10):

MulAtt = (21 ® 20D - D zp) - W  (9)
= At QWE, KWK, vwY) (0
where @  denotes concatenation, and

we, WiQ7 WiK , WiV are learnable parameters.

3.2.2 Star-Transformer Encoder

The topological structure of Star-Transformer is
made up of one relay node and n satellite nodes.
The state of ¢-th satellite node represents the feature
of the ¢-th token in a text sequence. The relay
node acts as a virtual hub to gather and scatter
information from and to all the satellite nodes(Guo
etal., 2019).



Star-Transformer proposes a time-step cyclic up-
dating method, in which each satellite node is ini-
tialized by the input vector, and the relay node is
initialized as the average value of all tokens. The
status of each satellite node is updated according
to its adjacent nodes, including the previous node
in the previous round hﬁ:l, the current node in the
previous round hgfl, the next node in the previous
round hf ﬁ, the current node e’ and the relay node
in the previous round s'~!. The update process is
shown in the equation(11) ~ (12):

Cl = [WZLR SRl eh s A
ht = MulAtt(hi™t CE, CY) (12)

where C’f denotes contextual information of i-th.

The update of relay node is determined by the
information of all the satellite nodes and the status
of the previous round :

st = MulAtt(s'1 s 1 HY s 1 HY)) (13)

3.2.3 Highway Networks

Highway Networks(Srivastava et al., 2015) can al-
leviate the blocked gradient backflow when the
network deepens. Such gating mechanisms can
be of vital significance to Transformer(Chai et al.,
2020). We use Highway Networks to mitigate the
depth and complexity of Star-Transformer.

After calculating the Multi-Head Attention, a
new branch dominated by Highway Networks joins
in, indicating the self-updating and dynamic adjust-
ment of satellite node.

g = U(’wlhi + bl) (14)
f(hi) = wahi+ by (15)
HW (h;) (1—g)-hi+g- f(hi) (16)

where w1, ws, by, be are learnable parameters, and
o is the activation function.
Finally, the updated satellite node is denoted as:

Highway Networks not only enhances the inher-
ent characteristics of the satellite nodes, but also
avoids gradient blocking.

3.3 GAT-based dependency embedding layer

In this work, we propose the use of dependencies
between words to construct graph neural networks.
The dependency is directional, and the current word
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is only related to the word with shared edge. This
kind of directed linkage further obtains the internal
structural information of the entity, enriching the
sequential representation.

Graph Attention Networks(GAT)(Velickovié
et al., 2017), leveraging masked self-attention lay-
ers to assign different importance to neighbouring
nodes, works well with our work.

The attention coefficient e;; and «;; represents
the importance of node j to node ¢:

eij = att(Wh s, WH ;) (18)
a;j = softmax;(e;j) (19)
exp(e;j) 20)

B ZkeNi exp(ei)
exp(LeakyReLU (AT [Wh; ® Why]))

- Ypen,exp(LeakyReLU (@ T[Wh; © Why)))
(2D

A GAT operation with K independent attention
heads can be expressed as:

Zj:kww

k 1 jeN;

(22)

where @ denotes concatenation, W and @ are
learnable parameters, /V; is the neighborhood of
node 1, o is the activation function.

In addition to the strong focus on the associated
nodes of GAT layer, it can well make up for the
deficiency of Star-Transformer in capturing the in-
ternal dependency of the phrases.

3.4 GRU-based head and tail representation
layer

While GAT is effective in capturing internal depen-
dency within an entity, the boundary of the entity
need to be strengthened. We then regard the entity
boundary detection as binary classification task,
which trains with NER at the same time, giving
NER clear entity boundary information.

During training phase, two separate GRU layers
are used to make head and tail prediction of the
entities, whose hidden features are added with the
output of GAT layer:

Hy, = GRUpeqd(z4) (23)
Hy = GRUtail(xi) (24)
H=W,-H,+ Wy -H+Ws-Hgar (25)

W1, Wy, W3 are learnable parameters, and H is the
final input for CRF.



OntoNotes Weibo
OntoNotes V4.0 OntoNotes V5.0 Named Entity Nominal Mention Overall
Models P(%) R(%) Fl1(%) | P(%) R(%) Fl1(%) | P(%) R(%) F1(%) | P(%) R(%) Fl1(%) | Fl(%)
Zhang and Yang (2018) | 76.35 71.56 73.88 - - - - - 53.04 - - 62.25 | 58.79
Ma et al. (2020) 7731 73.85 75.54 - - - - - 56.99 - - 6141 | 61.24
Li et al. (2020) - - 76.45 - - - - - - - - - 63.42
Jie and Lu (2019) - - - 7740 77.41 77.40 - - - - - - -
Gui et al. (2019) 76.13 73.68 74.89 - - - - - 55.34 - - 64.98 | 60.21
Sui et al. (2019) 75.06 74.52 74.79 - - - 67.31 48.61 5645 | 75.15 62.63 6832 | 63.09
Tang et al. (2020) 76.59 75.17 75.87 - - - - - 59.08 - - 68.61 63.63
Star(baseline) 73.40 76.50 7492 | 7541 75.66 7553 | 78.67 5592 65.37 | 88.16 69.07 77.46 | 68.15
Star + GAT 77.33 76.03 76.67 | 77.03 7990 78.44 | 7730 59.72 6738 | 90.85 6649 76.79 | 68.34
Star + MultiTask 78.64 80.78 79.69 | 77.60 80.01 78.79 | 80.39 5829 67.58 | 89.86 68.56 77.78 | 68.61
Star + GAT + MultiTask | 79.25 80.66 79.95 | 78.22 80.88 79.53 | 78.92 62.09 69.50 | 88.67 68.56 77.33 | 70.14

Table 1: Performance on OntoNotes V4.0, OntoNotes V5.0 and Weibo. Named Entity is the same to the entity of
OntoNotes, while Nominal Mention is the reference words which have the property of nouns.

3.5 Model Learning

Entities boundaries are not only the task we deal
with, but the perfect natural assistance by NER,
which transform from outside to inside of the men-
tion and vice versa.

The multi-task loss function is composed of the
categorical cross-entroy loss for boundary detec-
tion and entity categorical label prediction:

Lmulti = Lhead + Ltail + Llabel (26)

4 Experiments

4.1 Datasets

The label in our work is marked by BIESO, and we
use Precision(P), Recall(R) and F'1 score(F'1) as
evaluation metrics.

OntoNotes V4.0>(Pradhan, 2011) is a Chinese
dataset and consists of texts from news domain. We
use the same split as Zhang and Yang (2018).

OntoNotes V5.0°(Pradhan et al., 2013) is also a
Chinese dataset from news domain, but with larger
scale and more entity types. We use the same split
as Jie and Lu (2019).

Weibo NER*(Peng and Dredze, 2015) contains
annotated NER messages drawn from the social
meida Sina Weibo. We use the same split as Peng
and Dredze (2015).

Additionally, the tool used to parse syntactic
dependency in this paper is DDParser>.

4.2 Results and Analysis

We conduct experiments on the OntoNotes and
Weibo corpora and compare the results with the

Zhttps://catalog.ldc.upenn.edu/LDC2011T13
3https://catalog.ldc.upenn.edu/LDC2013T19
*https://github.com/cchen-nlp/weiboNER
>https://github.com/baidu/DDParser

OntoNotes V4.0 OntoNotes V5.0
error types TE UE BE TE UE BE
Star 2236 1912 151 1921 1896 139
Star + GAT 1787 1916 140 1877 1596 169
Star + MultiTask 1772 1563 114 1814 1590 127
Star + GAT + MultiTask 1701 1564 108 1762 1505 121

Table 2: Entity recognition errors of our models, includ-
ing Type Error(TE), Unidentification Error(UE) and
Boundary Error(BE).

existing models, as shown in table 1°.

We begin by establishing a Star-Transformer
baseline, which is more effective on the smaller
social media Weibo corpus than OntoNotes. Star-
Transformer could be superior to all existing mod-
els in Weibo, at least 6.29%(F1) and 8.85%(F1) for
Named Entity(NE) and Nominal Entity(NM).

Considering the structural peculiarity of
OntoNotes, where entities have similar composi-
tion, we utilize GAT to simulate the feature inside
the entity. The precision on the OntoNotes are
both improved by 3.93% and 1.62%. Futhermore,
boundary prediction used as multi-task has been
trained with label classification, supplying local
sequence information for NER. Tabel 2 shows the
number of different entity recognition errors of
our models, including Type Error(TE), Unidenti-
fication Error(UE) and Boundary Error(BE).The
addition of entity head-tail prediction reduces the
number of boundary errors on OntoNotes V4.0 by
37. There is no doubt that the boundary enhanced
model are quite profitable to the recognition of
both entity boundary and entity type.

For Weibo, NE and NM illustrate different per-
formance. The more standard NE has a similar
performance to OntoNotes, while NM shows less

®0ur code is available at:
reese/Boundary-Enhanced-NER.

https://github.com/cchen-
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impact from GAT, due to its short length and non-
structue.

Combining the respective advantages of the three
layers above, an unified and lightweight model can
be applied to Chinese NER, getting the new state-
of-the-art results on both the OntoNotes and Weibo
corpora.

5 Conclusion

In this paper, we mainly focus on the impact of
boundary information on Chinese NER. We firstly
propose a Star-transformer based NER system.
Then both explicit head and tail boundary informa-
tion and Dependency GAT-based implicit bound-
ary information are combined to improve Chinese
NER. Experiments on both the OntoNotes and the
Weibo corpora show the effectiveness of our ap-
proach.

Acknowledgement

This work was supported by the National
Key R&D Program of China under Grant No.
2020AAA0108600, Project 61876118 under the
National Natural Science Foundation of China and
the Priority Academic Program Development of
Jiangsu Higher Education Institutions.

References

Yekun Chai, Jin Shuo, and Xinwen Hou. 2020. High-
way transformer: Self-gating enhanced self-attentive
networks. arXiv preprint arXiv:2004.08178.

Chun Chen, Mingyang Li, and Fang Kong. 2020.
Lightweight named entity recognition for weibo
based on word and character. In Proceedings of the
19th Chinese National Conference on Computational
Linguistics, pages 402—413.

Jason PC Chiu and Eric Nichols. 2016. Named entity
recognition with bidirectional Istm-cnns. Transac-
tions of the Association for Computational Linguis-
tics, 4:357-370.

Kevin Clark and Christopher D Manning. 2016. Im-
proving coreference resolution by learning entity-
level distributed representations. arXiv preprint
arXiv:1606.01323.

Chuanhai Dong, Jiajun Zhang, Chengqing Zong,
Masanori Hattori, and Hui Di. 2016. Character-
based Istm-crf with radical-level features for chinese
named entity recognition. In Natural Language Un-
derstanding and Intelligent Applications, pages 239—
250. Springer.

24

Tao Gui, Yicheng Zou, Qi Zhang, Minlong Peng, Jinlan
Fu, Zhongyu Wei, and Xuan-Jing Huang. 2019. A
lexicon-based graph neural network for chinese ner.
In Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the 9th
International Joint Conference on Natural Language
Processing (EMNLP-IJCNLP), pages 1039—-1049.

Qipeng Guo, Xipeng Qiu, Pengfei Liu, Yunfan Shao,
Xiangyang Xue, and Zheng Zhang. 2019. Star-
transformer. arXiv preprint arXiv:1902.09113.

Zhiheng Huang, Wei Xu, and Kai Yu. 2015. Bidirec-
tional Istm-crf models for sequence tagging. arXiv
preprint arXiv:1508.01991.

Guoliang Ji, Kang Liu, Shizhu He, Jun Zhao, et al.
2017. Distant supervision for relation extraction with
sentence-level attention and entity descriptions. In
AAAI, volume 3060.

Zhanming Jie and Wei Lu. 2019. Dependency-guided
Istm-crf for named entity recognition. arXiv preprint
arXiv:1909.10148.

John Lafferty, Andrew McCallum, and Fernando CN
Pereira. 2001. Conditional random fields: Proba-
bilistic models for segmenting and labeling sequence
data.

Guillaume Lample, Miguel Ballesteros, Sandeep Sub-
ramanian, Kazuya Kawakami, and Chris Dyer. 2016.
Neural architectures for named entity recognition.
arXiv preprint arXiv:1603.01360.

Shen Li, Zhe Zhao, Renfen Hu, Wensi Li, Tao Liu,
and Xiaoyong Du. 2018. Analogical reasoning on
chinese morphological and semantic relations. arXiv
preprint arXiv:1805.06504.

Xiaonan Li, Hang Yan, Xipeng Qiu, and Xuanjing
Huang. 2020. Flat: Chinese ner using flat-lattice
transformer. arXiv preprint arXiv:2004.11795.

Ruotian Ma, Minlong Peng, Qi Zhang, Zhongyu Wei,
and Xuan-Jing Huang. 2020. Simplify the usage of
lexicon in chinese ner. In Proceedings of the 58th
Annual Meeting of the Association for Computational
Linguistics, pages 5951-5960.

Xuezhe Ma and Eduard Hovy. 2016. End-to-end
sequence labeling via bi-directional Istm-cnns-crf.
arXiv preprint arXiv:1603.01354.

Nanyun Peng and Mark Dredze. 2015. Named en-
tity recognition for chinese social media with jointly
trained embeddings. In Proceedings of the 2015 Con-
ference on Empirical Methods in Natural Language
Processing, pages 548-554.

Sameer Pradhan. 2011. Proceedings of the fifteenth con-
ference on computational natural language learning:
Shared task. In Proceedings of the Fifteenth Confer-
ence on Computational Natural Language Learning:
Shared Task.



Sameer Pradhan, Alessandro Moschitti, Nianwen Xue,
Hwee Tou Ng, Anders Bjorkelund, Olga Uryupina,
Yuchen Zhang, and Zhi Zhong. 2013. Towards robust
linguistic analysis using ontonotes. In Proceedings
of the Seventeenth Conference on Computational Nat-
ural Language Learning, pages 143—-152.

Rupesh Kumar Srivastava, Klaus Greff, and Jiirgen
Schmidhuber. 2015. Highway networks. arXiv
preprint arXiv:1505.00387.

Dianbo Sui, Yubo Chen, Kang Liu, Jun Zhao, and
Shengping Liu. 2019. Leverage lexical knowledge
for chinese named entity recognition via collaborative
graph network. In Proceedings of the 2019 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing and the 9th International Joint Conference
on Natural Language Processing (EMNLP-1JCNLP),
pages 3821-3831.

Zhuo Tang, Boyan Wan, and Li Yang. 2020. Word-
character graph convolution network for chinese
named entity recognition. IEEE/ACM Transactions
on Audio, Speech, and Language Processing.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in neural information pro-
cessing systems, pages 5998—-6008.

Petar Velickovi¢, Guillem Cucurull, Arantxa Casanova,
Adriana Romero, Pietro Lio, and Yoshua Bengio.
2017. Graph attention networks. arXiv preprint
arXiv:1710.10903.

Hang Yan, Bocao Deng, Xiaonan Li, and Xipeng Qiu.
2019. Tener: Adapting transformer encoder for name
entity recognition. arXiv preprint arXiv:1911.04474.

Wojciech Zaremba, Ilya Sutskever, and Oriol Vinyals.
2014. Recurrent neural network regularization.
arXiv preprint arXiv:1409.2329.

Wen Zhang, Bibek Paudel, Wei Zhang, Abraham Bern-
stein, and Huajun Chen. 2019. Interaction embed-
dings for prediction and explanation in knowledge
graphs. In Proceedings of the Twelfth ACM Interna-
tional Conference on Web Search and Data Mining,
pages 96-104.

Yue Zhang and Jie Yang. 2018. Chinese ner using lattice
Istm. arXiv preprint arXiv:1805.02023.

25



Difficulty-Aware Machine Translation Evaluation

Runzhe Zhan* Xuebo Liu* Derek F. Wong' Lidia S. Chao
NLP2CT Lab, Department of Computer and Information Science, University of Macau
nlp2ct.{runzhe, xuebo}@gmail.com, {derekfw,lidiasc}@um.edu.mo

Abstract

The high-quality translation results produced
by machine translation (MT) systems still
pose a huge challenge for automatic evalua-
tion. Current MT evaluation pays the same
attention to each sentence component, while
the questions of real-world examinations
(e.g., university examinations) have different
difficulties and weightings. In this paper,
we propose a novel difficulty-aware MT
evaluation metric, expanding the evaluation
dimension by taking translation difficulty
into consideration. A translation that fails
to be predicted by most MT systems will
be treated as a difficult one and assigned
a large weight in the final score function,
and conversely. Experimental results on the
WMT19 English<+German Metrics shared
tasks show that our proposed method outper-
forms commonly-used MT metrics in terms of
human correlation. In particular, our proposed
method performs well even when all the
MT systems are very competitive, which is
when most existing metrics fail to distinguish
between them. The source code is freely availa-
ble at https://github.com/NLP2CT
/Difficulty-Aware-MT-Evaluation.

1 Introduction

The human labor needed to evaluate machine trans-
lation (MT) evaluation is expensive. To alleviate
this, various automatic evaluation metrics are conti-
nuously being introduced to correlate with human
judgements. Unfortunately, cutting-edge MT sy-
stems are too close in performance and generation
style for such metrics to rank systems. Even for a
metric whose correlation is reliable in most cases,
empirical research has shown that it poorly correla-
tes with human ratings when evaluating competiti-
ve systems (Ma et al., 2019; Mathur et al., 2020),

*Equal contribution
t Corresponding author
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limiting the development of MT systems.

Current MT evaluation still faces the challen-
ge of how to better evaluate the overlap between
the reference and the model hypothesis taking into
consideration adequacy and fluency, where all the
evaluation units are treated the same, i.e., all the
matching scores have an equal weighting. However,
in real-world examinations, the questions vary in
their difficulty. Those questions which are easily
answered by most subjects tend to have low weigh-
tings, while those which are hard to answer have
high weightings. A subject who is able to solve
the more difficult questions can receive a high final
score and gain a better ranking. MT evaluation is
also a kind of examination. For bridging the gap
between human examination and MT evaluation, it
is advisable to incorporate a difficulty dimension
into the MT evaluation metric.

In this paper, we take translation difficulty in-
to account in MT evaluation and test the effec-
tiveness on a representative MT metric BERTS-
core (Zhang et al., 2020) to verify the feasibility.
More specifically, the difficulty is first determined
across the systems with the help of pairwise simi-
larity, and then exploited as the weight in the final
score function for distinguishing the contribution
of different sub-units. Experimental results on the
WMT19 English<>German evaluation task show
that difficulty-aware BERTScore has a better cor-
relation than do the existing metrics. Moreover, it
agrees very well with the human rankings when
evaluating competitive systems.

2 Related Work

The existing MT evaluation metrics can be ca-
tegorized into the following types according to
their underlying matching sub-units: n-gram ba-
sed (Papineni et al., 2002; Doddington, 2002; Lin
and Och, 2004; Han et al., 2012; Popovi¢, 2015),
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Figure 1: Illustration of combining difficulty weight with BERTScore. Rgrrr denotes the vanilla recall-based
BERTScore while DA-Rpgrt denotes the score augmented with translation difficulty.

edit-distance based (Snover et al., 2006; Leusch
et al., 2006), alignment-based (Banerjee and La-
vie, 2005), embedding-based (Zhang et al., 2020;
Chow et al., 2019; Lo, 2019) and end-to-end based
(Sellam et al., 2020). BLEU (Papineni et al., 2002)
is widely used as a vital criterion in the compari-
son of MT system performance but its reliability
has been doubted on entering neural machine trans-
lation age (Shterionov et al., 2018; Mathur et al.,
2020). Due to the fact that BLEU and its variants
only assess surface linguistic features, some me-
trics leveraging contextual embedding and end-to-
end training bring semantic information into the
evaluation, which further improves the correlation
with human judgement. Among them, BERTSco-
re (Zhang et al., 2020) has achieved a remarkable
performance across MT evaluation benchmarks ba-
lancing speed and correlation. In this paper, we
choose BERTScore as our testbed.

3  Our Proposed Method
3.1 Motivation

In real-world examinations, the questions are em-
pirically divided into various levels of difficulty.
Since the difficulty varies from question to que-
stion, the corresponding role a question plays in
the evaluation does also. Simple question, which
can be answered by most of the subjects, usually
receive of a low weighting. But a difficult question,
which has more discriminative power, can only be
answered by a small number of good subjects, and
thus receives a higher weighting.

Motivated by this evaluation mechanism, we
measure difficulty of a translation by viewing the
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MT systems and sub-units of the sentence as the
subjects and questions, respectively. From this per-
spective, the impact of the sentence-level sub-units
on the evaluation results supported a differentiation.
Those sub-units that may be incorrectly translated
by most systems (e.g., polysemy) should have a
higher weight in the assessment, while easier-to-
translate sub-units (e.g., the definite article) should
receive less weight.

3.2 Difficulty-Aware BERTScore

In this part, we aim to answer two questions: 1)
how to automatically collect the translation diffi-
culty from BERTScore; and 2) how to integrate the
difficulty into the score function. Figure 1 presents
an overall illustration.

Pairwise Similarity Traditional n-gram overlap
cannot extract semantic similarity, word embed-
ding provides a means of quantifying the degree
of overlap, which allows obtaining more accura-
te difficulty information. Since BERT is a strong
language model, it can be utilized as a contextual
embedding O .. (i.e., the output of BERT) for
obtaining the representations of the reference t and
the hypothesis h. Given a specific hypothesis to-
ken h and reference token ¢, the similarity score
sim(t, h) is computed as follows:

_ OBERT (t)TOBERT (h)
||OBERT (t)H : HOBERT (h)H

Subsequently, a similarity matrix is constructed by
pairwise calculating the token similarity. Then the
token-level matching score is obtained by greedily

(1

sim(t, h)



Metric En—De (All) En—De (Top 30%) De—En (All) De—En (Top 30%)
|| 7] ol | I7| Ipl || I7| Ipl i I7| Ipl
BLEU 0.952 0.703 0.873 0.460 0.200 0.143 0.888 0.622 0.781 0.808 0.548 0.632
TER 0.982 0.711 0.873 0.598 0.333 0.486 0.797 0.504 0.675 0.883 0.548 0.632
METEOR 0.985 0.746 0.904 0.065 0.067 0.143 0.886 0.605 0.792 0.632 0.548 0.632
CBERTScore 0990 0772 0920 0204 0067 0.143 0949 0756 089 0271 0.183 0316
DA-BERTScore 0.991 0.798 0.930 0.974 0.733 0.886 0.951 0.807 0.932 0.693 0.548 0.632

Table 1: Absolute correlations with system-level human judgments on WMT19 metrics shared task. For each
metric, higher values are better. Difficulty-aware BERTScore consistently outperforms vanilla BERTScore across
different evaluation metrics and translation directions, especially when the evaluated systems are very competitive

(i.e., evaluating on the top 30% systems).

searching for the maximal similarity in the matrix,
which will be further taken into account in sentence-
level score aggregation.

Difficulty Calculation The calculation of diffi-
culty can be tailored for different metrics based on
the overlap matching score. In this case, BERTS-
core evaluates the token-level overlap status by the
pairwise semantic similarity, thus the token-level si-
milarity is viewed as the bedrock of difficulty calcu-
lation. For instance, if one token (like “cat’) in the
reference may only find identical or synonymous
substitutions in a few MT system outputs, then the
corresponding translation difficulty weight ought
to be larger than for other reference tokens, which
further indicates that it is more valuable for eva-
luating the translation capability. Combined with
BERTScore mechanism, it is implemented by ave-
raging the token similarities across systems. Given
K systems and their corresponding generated hy-
potheses hy, ho, ..., hg, the difficulty of a specific
token ¢ in the reference t is formulated as

Eszl maxhehk sim(t, h)

d(t) =1— =

2)

An example is shown in Figure 1: the entity “cat”
is improperly translated to “monkey” and “puppy”’,
resulting in a lower pairwise similarity of the token
“cat”, which indicates higher translation difficulty.
Therefore, by incorporating the translation difficul-
ty into the evaluation process, the token “cat” is
more contributive while the other words like “cute”
are less important in the overall score.

Score Function Due to the fact that the transla-
tion generated by a current NMT model is fluent
enough but not adequate yet, F'-score which takes
into account the Precision and Recall, is more ap-
propriate to aggregate the matching scores, instead
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of only considering precision. We thus follow va-
nilla BERTScore in using F-score as the final score.
The proposed method directly assigns difficulty
weights to the counterpart of the similarity score
without any hyperparameter:

DA-RBERT = Zd maﬁ<81m(t h) (3)

DA-Pggrr = “4)

1
|— Z max sim(¢, h)

heh

DA-Rggrt - DA-PRERT

DA-Rggrt + DA-PRgRrT

DA-FBgRT 5)

For any h ¢ t, we simply let d(h) = 1, i.e., re-
taining the original calculation. The motivation is
that the human assessor keeps their initial matching
judgement if the test taker produces a unique but re-
asonable alternative answer. We regard DA-FgrT
as the DA-BERTScore in the following part.
There are many variants of our proposed method:
1) designing more elaborate difficulty function (Liu
et al., 2020; Zhan et al., 2021); 2) applying a smoo-
thing function to the difficulty distribution; and 3)
using other kinds of F'-score, e.g., Fjy 5-score. The
aim of this paper is not to explore this whole space
but simply to show that a straightforward imple-
mentation works well for MT evaluation.

4 Experiments

Data The WMT19 English<»German (En<>De)
evaluation tasks are challenging due to the lar-
ge discrepancy between human and automated as-
sessments in terms of reporting the best system (Bo-
jar et al., 2018; Barrault et al., 2019; Freitag et al.,
2020). To sufficiently validate the effectiveness of



SYSTEM BLEU 1 TER | METEOR 1t BERTScore I DA-BERTScore t HUMAN 1
Facebook.6862 0.4364 (II5) 0.4692 (y5) 0.6077 (I3) 0.7219 (J4) 0.1555 (v 0) 0.347
Microsoft.sd.6974 0.4477 (1) 0.4583 (1) 0.6056 (3)  0.7263 (v'0) 0.1539 (I1) 0.311
Microsoft.dl.6808  0.4483 (1) 0.4591 (1) 0.6132(f#1)  0.7260 (v'0) 0.1544 (1) 0.296
MSRA.6926 0.4603 (113)  0.4504 (13)  0.6187 (13)  0.7267 (}3) 0.1525 (v'0) 0.214
UCAM.6731 0.4413 (v0) 0.4636 (v'0) 0.6047 (1) 0.7190 (Y1) 0.1519 (1) 0.213
NEU.6763 0.4460 (f2)  0.4563 (14)  0.6083 (13)  0.7229 (112) 0.1521 (1) 0.208

sum (| Arank|) 12 14 14 10 4 0

Table 2: Agreement of system ranking with human judgement on the top 30% systems (k=6) of WMT19 En—De
Metrics task. f}/{ denotes that the rank given by the evaluation metric is higher/lower than human judgement, and
v" denotes that the given rank is equal to human ranking. DA-BERTScore successfully ranks the best system that
the other metrics failed. Besides, it also shows the lowest rank difference.

<o
o

BLEU
TER
METEOR
BERTScore
DA-BERTScore

0.0

Correlation 7

—0.5

-1.0

18 16 14 12

Top-K System

22 20 10 8 6 4

Figure 2: Effect of top-K systems in the En—De eva-
luation. DA-BERTScore is highly correlated with hu-
man judgment for different values of K, especially
when all the systems are competitive (i.e., K <10).

our approach, we choose these tasks as our eva-
luation subjects. There are 22 systems for En—De
and 16 for De—En. Each system has its correspon-
ding human assessment results. The experiments
were centered on the correlation with system-level
human ratings.

Comparing Metrics In order to compare with
the metrics that have different underlying evaluati-
on mechanism, four representative metrics: BLEU
(Papineni et al., 2002), TER (Snover et al., 2006),
METEOR (Banerjee and Lavie, 2005; Denkowski
and Lavie, 2014), BERTScore (Zhang et al., 2020),
which are correspondingly driven by n-gram, edit
distance, word alignment and embedding similarity,
are involved in the comparison experiments without
losing popularity. For ensuring reproducibility, the
original'? and widely used implementation® was
used in the experiments.

Main Results Following the correlation criterion

adopted by the WMT official organization, Pear-

son’s correlation r is used for validating the system-
"https://www.cs.cmu.edu/ alavie/METEOR/index.htm]

2https://github.com/Tiiiger/bert_score
3https://github.com/mjpost/sacrebleu
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level correlation with human ratings. In addition,
two rank-correlations Spearman’s p and original
Kendall’s 7 are also used to examine the agree-
ment with human ranking, as has been done in
recent research (Freitag et al., 2020). Table 1 lists
the results. DA-BERTScore achieves competitive
correlation results and further improves the cor-
relation of BERTScore. In addition to the results
on all systems, we also present the results on the
top 30% systems where the calculated difficulty
is more reliable and our approach should be more
effective. The result confirms our intuition that DA-
BERTScore can significantly improve the correlati-
ons under the competitive scenario, e.g., improving
the |r| score from 0.204 to 0.974 on En—De and
0.271 to 0.693 on De—En.

Effect of Top- K Systems Figure 2 compares the
Kendall’s correlation variation of the top-K sy-
stems. Echoing previous research, the vast majority
of metrics fail to correlate with human ranking and
even perform negative correlation when K is lower
than 6, meaning that the current metrics are inef-
fective when facing competitive systems. With the
help of difficulty weights, the degradation in the
correlation is alleviated, e.g., improving 7 score
from 0.07 to 0.73 for BERTScore (K = 6). These
results indicate the effectiveness of our approach,
establishing the necessity for adding difficulty.

Case Study of Ranking Table 2 presents a case
study on the En—De task. Existing metrics consi-
stently select MSRA’s system as the best system,
which shows a large divergence from human judge-
ment. DA-BERTScore ranks it the same as human
(4th) because most of its translations have low dif-
ficulty, thus lower weights are applied in the scores.
Encouragingly, DA-BERTScore ranks Facebook’s
system as the best one, which implies that it overco-



BERTS. +DA Sentence

Src - - “I’'m standing right here in front of you,” one woman said.

Ref - - ,JIch stehe ‘genau hier vor Thnen “, sagte eine Frau.
"MSRA 09656  0.0924 Ichstehe hier vor Thnen “, sagte eine Frau.

Facebook 0.9591 0.1092 |, Ich stehe hier direkt vor Thnen “, sagte eine Frau.

Src - - France has more than 1,000 troops on the ground in the war-wracked country.

Ref - - Frankreich hat tiber 1.000 Bodensoldaten in dem kriegszerstorten Land im Einsatz.
"MSRA  0.6885  0.2123 Frankreich hat mehr als 1.000 Soldaten vor Ort in dem kriegsgeplagten Land.

Facebook 0.6772 0.2414 Frankreich hat mehr als 1000 Soldaten am Boden in dem kriegsgeplagten Land stationiert.

Table 3: Examples from the En—De evaluation. BERTS. denotes BERTScore. Words indicate the difficult trans-
lations given by our approach on the top 30% systems. DA-BERTScores are more in line with human judgements.

4000 :
Top 30%

3000F All

2000

Tokens

1000 1

0 0.4 0.6 0.8

Difficulty Weight

0.2 12

Figure 3: Distribution of token-level difficulty weights
extracted from the En—De evaluation.

mes more challenging translation difficulties. This
testifies to the importance and effectiveness of con-
sidering translation difficulty in MT evaluation.

Case Study of Token-Level Difficulty Table 3
presents two cases, illustrating that our proposed
difficulty-aware method successfully identifies the
omission errors ignored by BERTScore. In the first
case, the Facebook’s system correctly translates
the token “right”, and in the second case, uses the
substitute “Soldaten am Boden” which is lexical-
ly similar to the ground-truth token “Bodensolda-
ten”. Although the MSRA’s system suffers word
omissions in the two cases, its hypotheses receive
the higher ranking given by BERTScore, which
is inconsistent with human judgements. The rea-
son might be that the semantic of the hypothesis is
highly close to the reference, thus the slight lexical
difference is hard to be found when calculating the
similarity score. By distinguishing the difficulty of
the reference tokens, DA-BERTScore successfully
makes the evaluation focus on the difficult parts,
and eventually correct the score of the Facebook’s
system, thus giving the right rankings.

Distribution of Difficulty Weights The difficul-
ty weights can reflect the translation ability of a
group of MT systems. If the systems in a group
are of higher translation ability, the calculated dif-
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ficulty weights will be smaller. Starting from this
intuition, we visualize the distribution of difficulty
weights as shown in Figure 3. Clearly, we can see
that the difficulty weights are centrally distributed
at lower values, indicating that most of the tokens
can be correctly translated by all the MT systems.
For the difficulty weights calculated on the top 30%
systems, the whole distribution skews to zero since
these competitive systems have better translation
ability and thus most of the translations are easy
for them. This confirms that the difficulty weight
produced by our approach is reasonable.

5 Conclusion and Future Work

This paper introduces the conception of difficul-
ty into machine translation evaluation, and veri-
fies our assumption with a representative metric
BERTScore. Experimental results on the WMT19
English<+German metric tasks show that our ap-
proach achieves a remarkable correlation with hu-
man assessment, especially for evaluating competi-
tive systems, revealing the importance of incorpora-
ting difficulty into machine translation evaluation.
Further analyses show that our proposed difficulty-
aware BERTScore can strengthen the evaluation of
word omission problems and generate reasonable
distributions of difficulty weights.

Future works include: 1) optimizing the difficul-
ty calculation; 2) applying to other MT metrics; and
3) testing on other generation tasks, e.g., speech
recognition and text summarization.
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Abstract

Humor recognition has been widely studied as
a text classification problem using data-driven
approaches. However, most existing work
does not examine the actual joke mechanism
to understand humor. We break down any joke
into two distinct components: the set-up and
the punchline, and further explore the special
relationship between them. Inspired by the in-
congruity theory of humor, we model the set-
up as the part developing semantic uncertainty,
and the punchline disrupting audience expec-
tations. With increasingly powerful language
models, we were able to feed the set-up along
with the punchline into the GPT-2 language
model, and calculate the uncertainty and sur-
prisal values of the jokes. By conducting ex-
periments on the SemEval 2021 Task 7 dataset,
we found that these two features have better ca-
pabilities of telling jokes from non-jokes, com-
pared with existing baselines.

1 Introduction

One of the important aspects of computational hu-
mor is to develop computer programs capable of
recognizing humor in text. Early work on hu-
mor recognition (Mihalcea and Strapparava, 2005)
proposed heuristic-based humor-specific stylistic
features, for example alliteration, antonymy, and
adult slang. More recent work (Yang et al., 2015;
Chen and Soo, 2018; Weller and Seppi, 2019) re-
garded the problem as a text classification task, and
adopted statistical machine learning methods and
neural networks to train models on humor datasets.
However, only few of the deep learning methods
have tried to establish a connection between humor
recognition and humor theories. Thus, one research
direction in humor recognition is to bridge the dis-
ciplines of linguistics and artificial intelligence.

In this paper, we restrict the subject of investiga-
tion to jokes, one of the most common humor types
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Set-up: Today my neighbor knocked at my
door at 3am. Can you believe that?

T
i Expected follow-up
S

I was so pissed off.

_____________________ -

N
I
I
I
1

4 Lo
1 Expectation violated

A

Punchline: Lucky for him that I was awake
playing the drums!

Figure 1: A joke example consisting of a set-up and
a punchline. A violation can be observed between the
punchline and the expectation.

in text form. As shown in Figure 1, these jokes
usually consist of a set-up and a punchline. The
set-up creates a situation that introduces the hearer
into the story framework, and the punchline con-
cludes the joke in a succinct way, intended to make
the hearer laugh. Perhaps the most suitable humor
theory for explaining such humor phenomenon is
the incongruity theory, which states that the cause
of laughter is the perception of something incon-
gruous (the punchline) that violates the hearer’s
expectation (the set-up).

Based on the incongruity theory, we propose two
features for humor recognition, by calculating the
degree of incongruity between the set-up and the
punchline. Recently popular pre-trained language
models enable us to study such relationship based
on large-scale corpora. Specifically, we fed the
set-up along with the punchline into the GPT-2 lan-
guage model (Radford et al., 2019), and obtained
the surprisal and uncertainty values of the joke, in-
dicating how surprising it is for the model to gener-
ate the punchline, and the uncertainty while gener-
ating it. We conducted experiments on a manually
labeled humor dataset, and the results showed that

Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics
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these two features could better distinguish jokes
from non-jokes, compared with existing baselines.
Our work made an attempt to bridge humor theo-
ries and humor recognition by applying large-scale
pre-trained language models, and we hope it could
inspire future research in computational humor.

2 Related Work

Humor Data Mihalcea and Strapparava (2005)
created a one-liner dataset with humorous exam-
ples extracted from webpages with humor theme
and non-humorous examples from Reuters titles,
British National Corpus (BNC) sentences, and En-
glish Proverbs. Yang et al. (2015) scraped puns
from the Pun of the Day website! and negative
examples from various news websites. There is
also work on the curation of non-English humor
datasets (Zhang et al., 2019; Blinov et al., 2019).
Hasan et al. (2019) developed UR-FUNNY, a mul-
timodal humor dataset that involves text, audio and
video information extracted from TED talks.

Humor Recognition Most of the existing work
on humor recognition in text focuses on one-liners,
one type of jokes that delivers the laughter in a sin-
gle line. The methodologies typically fall into two
categories: feature engineering and deep learning.
Mihalcea and Strapparava (2005) designed three
human-centric features (alliteration, antonymy and
synonym) for recognizing humor in the curated one-
liner dataset. Mihalcea et al. (2010) approached the
problem by calculating the semantic relatedness be-
tween the set-up and the punchline (they evaluated
150 one-liners by manually splitting them into “set-
up” and “punchline”). Shahaf et al. (2015) inves-
tigated funny captions for cartoons and proposed
several features including perplexity to distinguish
between funny and less funny captions. Morales
and Zhai (2017) proposed a probabilistic model
and leveraged background text sources (such as
Wikipedia) to identify humorous Yelp reviews. Liu
et al. (2018) proposed to model sentiment associ-
ation between elementary discourse units and de-
signed features based on discourse relations. Cattle
and Ma (2018) explored the usage of word associa-
tions as a semantic relatedness feature in a binary
humor classification task. With neural networks
being popular in recent years, some deep learn-
ing structures have been developed for the recog-
nition of humor in text. Chen and Lee (2017) and

"http://www.punoftheday.com/
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Chen and Soo (2018) adopted convolutional neural
networks, while Weller and Seppi (2019) used a
Transformer architecture to do the classification
task. Fan et al. (2020) incorporated extra phonetic
and semantic (ambiguity) information into the deep
learning framework. In addition to these method-
ological papers, there are also some tasks dedicated
to computational humor in recent years. SemEval
2020 Task 7 (Hossain et al., 2020) aims at assess-
ing humor in edited news headlines. SemEval 2021
Task 7 (Meaney et al., 2021) involves predicting
the humor rating of the given text, and if the rating
is controversial or not. In this task, Xie et al. (2021)
adopted the DeBERTa architecture (He et al., 2020)
with disentangled attention mechanism to predict
the humor labels.

Although the work of Mihalcea et al. (2010) is
the closest to ours, we are the first to bridge the
incongruity theory of humor and large-scale pre-
trained language models. Other work (Bertero and
Fung, 2016) has attempted to predict punchlines in
conversations extracted from TV series, but their
subject of investigation should be inherently differ-
ent from ours—punchlines in conversations largely
depend on the preceding utterances, while jokes
are much more succinct and self-contained.

3 Humor Theories

The attempts to explain humor date back to the age
of ancient Greece, where philosophers like Plato
and Aristotle regarded the enjoyment of comedy
as a form of scorn, and held critical opinions to-
wards laughter. These philosophical comments on
humor were summarized as the superiority the-
ory, which states that laughter expresses a feeling
of superiority over other people’s misfortunes or
shortcomings. Starting from the 18" century, two
other humor theories began to challenge the dom-
inance of the superiority theory: the relief theory
and the incongruity theory. The relief theory ar-
gues that laughter serves to facilitate the relief of
pressure for the nervous system (Morreall, 2020).
This explains why laughter is caused when people
recognize taboo subjects—one typical example is
the wide usage of sexual terms in jokes. The incon-
gruity theory, supported by Kant (1790), Schopen-
hauer (1883), and many later philosophers and psy-
chologists, states that laughter comes from the per-
ception of something incongruous that violates the
expectations. This view of humor fits well the types
of jokes commonly found in stand-up comedies,



where the set-up establishes an expectation, and
then the punchline violates it. As an expansion of
the incongruity theory, Raskin (1979) proposed the
Semantic Script-based Theory of Humor (SSTH)
by applying the semantic script theory. It posits
that, in order to produce verbal humor, two require-
ments should be fulfilled: (1) The text is compatible
with two different scripts; (2) The two scripts with
which the text is compatible are opposite.

4 Methodology

The incongruity theory attributes humor to the vi-
olation of expectation. This means the punchline
delivers the incongruity that turns over the expecta-
tion established by the set-up, making it possible to
interpret the set-up in a completely different way.
With neural networks blooming in recent years, pre-
trained language models make it possible to study
such relationship between the set-up and the punch-
line based on large-scale corpora. Given the set-up,
language models are capable of writing expected
continuations, enabling us to measure the degree
of incongruity, by comparing the actual punchline
with what the language model is likely to generate.

In this paper, we leverage the GPT-2 language
model (Radford et al., 2019), a Transformer-based
architecture trained on the WebText dataset. We
chose GPT-2 because: (1) GPT-2 is already pre-
trained on massive data and publicly available on-
line, which spares us the training process; (2) it
is domain independent, thus suitable for modeling
various styles of English text. Our goal is to model
the set-up and the punchline as a whole piece of
text using GPT-2, and analyze the probability of
generating the punchline given the set-up. In the
following text, we denote the set-up as x, and the
punchline as y. Basically, we are interested in
two quantities regarding the probability distribu-
tion p(y|x): uncertainty and surprisal, which are
elaborated in the next two sections.

4.1 Uncertainty

The first question we are interested in is: given the
set-up, how uncertain it is for the language model to
continue? This question is related to SSTH, which
states that, for a piece of text to be humorous, it
should be compatible with two different scripts. To
put it under the framework of set-up and punchline,
this means the set-up could have multiple ways of
interpretation, according to the following punch-
line. Thus, one would expect a higher uncertainty
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Figure 2: The set-up x and the punchline y are concate-
nated and fed into GPT-2 for predicting the next token.
v;’s are probability distributions on the vocabulary.

value when the language model tries to continue
the set-up and generate the punchline.

We propose to calculate the averaged entropy
of the probability distributions at all token posi-
tions of the punchline, to represent the degree of
uncertainty. As shown in Figure 2, the set-up =
and the punchline y are concatenated and then fed
into GPT-2 to predict the next token. While predict-
ing the tokens of y, GPT-2 produces a probability
distribution v; over the vocabulary. The averaged
entropy is then defined as

i Z v’ logv”, (1)

i=1 weV

1

U($, y) = _m

where V is the vocabulary.

4.2 Surprisal

The second question we would like to address is:
how surprising it is when the language model ac-
tually generates the punchline? As the incongruity
theory states, laughter is caused when something in-
congruous is observed and it violates the previously
established expectation. Therefore, we expect the
probability of the language model generating the
actual punchline to be relatively low, which indi-
cates the surprisal value should be high. Formally,
the surprisal is defined as

1
——log p(y|x)
|y

1 O _
Z log v¥".
i=1

ly| =

S($7 y) -
2

5 Experiments

We evaluated and compared the proposed features
with several baselines by conducting experiments



in two settings: predicting using individual features,
and combining the features with a content-based
text classifier.

5.1 Baselines

Similar to our approach of analyzing the relation-
ship between the set-up and the punchline, Mihal-
cea et al. (2010) proposed to calculate the semantic
relatedness between the set-up and the punchline.
The intuition is that the punchline (which deliv-
ers the surprise) will have a minimum relatedness
to the set-up. For our experiments, we chose two
relatedness metrics that perform the best in their pa-
per as our baselines, plus another similarity metric
based on shortest paths in WordNet (Miller, 1995):

* Leacock & Chodorow similarity (Leacock
and Chodorow, 1998), defined as

length
2% D’

Simy;, = —log (3)
where length is the length of the shortest path
between two concepts using node-counting,
and D is the maximum depth of WordNet.

Wu & Palmer similarity (Wu and Palmer,
1994) calculates similarity by considering the
depths of the two synsets in WordNet, along
with the depth of their LCS (Least Common
Subsumer), which is defined as

2 % depth(LCS)
depth(Cl) + depth(Cg) ’

Simy,, = 4)
where ' and C; denote synset 1 and synset
2 respectively.

Path similarity (Rada et al., 1989) is also
based on the length of the shortest path be-
tween two concepts in WordNet, which is de-
fined as

1

—_— 5
1+ length ®)

Simpath =

In addition to the metrics mentioned above, we also
consider the following two baselines related to the
phonetic and semantic styles of the input text:

* Alliteration. The alliteration value is com-
puted as the total number of alliteration chains
and rhyme chains found in the input text (Mi-
halcea and Strapparava, 2005).
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* Ambiguity. Semantic ambiguity is found
to be a crucial part of humor (Miller and
Gurevych, 2015). We follow the work of Liu
et al. (2018) to compute the ambiguity value:

log H num_of_senses(w), (6)

wEeESs
where w is a word in the input text s.

5.2 Dataset

We took the dataset from SemEval 2021 Task 7.2
The released training set contains 8,000 manually
labeled examples in total, with 4,932 being posi-
tive, and 3,068 negative. To adapt the dataset for
our purpose, we only considered positive examples
with exactly two sentences, and negative examples
with at least two sentences. For positive exam-
ples (jokes), the first sentence was treated as the
set-up and the second the punchline. For negative
examples (non-jokes), consecutive two sentences
were treated as the set-up and the punchline, respec-
tively.®> After splitting, we cleaned the data with
the following rules: (1) We restricted the length of
set-ups and punchlines to be under 20 (by counting
the number of tokens); (2) We only kept punchlines
whose percentage of alphabetical letters is greater
than or equal to 75%; (3) We discarded punchlines
that do not begin with an alphabetical letter. As a
result, we obtained 3,341 examples in total, consist-
ing of 1,815 jokes and 1,526 non-jokes. To further
balance the data, we randomly selected 1,526 jokes,
and thus the final dataset contains 3,052 labeled ex-
amples in total. For the following experiments,
we used 10-fold cross validation, and the averaged
scores are reported.

5.3 Predicting Using Individual Features

To test the effectiveness of our features in distin-
guishing jokes from non-jokes, we built an SVM
classifier (parameters can be found in Appendix A)
for each individual feature (uncertainty and sur-
prisal, plus the baselines). The resulted scores
are reported in Table 1. Compared with the base-
lines, both of our features (uncertainty and sur-
prisal) achieved higher scores for all the four met-
rics. In addition, we also tested the performance
of uncertainty combined with surprisal (last row

ttps://semeval.github.io/
SemEval2021/

3We refer to them as set-up and punchline for the sake of
convenience, but since they are not jokes, the two sentences
are not real set-up and punchline.



P R F1 Acc
Random 0.4973  0.4973 0.4958 0.4959
Simye, 0.5291 0.5179 0.4680 0.5177
Simy, 0.5289 0.5217 0.4919 0.5190
Simpam 0.5435 0.5298 0.4903 0.5291
Alliteration  0.5353  0.5349 0.5343 0.5354
Ambiguity 0.5461 0.5365 0.5127 0.5337
Uncertainty 0.5840 0.5738  0.5593 0.5741
Surprisal 0.5617 0.5565 0.5455 0.5570
U+S 0.5953 0.5834 0.5695 0.5832

Table 1: Performance of individual features. Last row
(U+S) is the combination of uncertainty and surprisal.
P: Precision, R: Recall, F1: Fl-score, Acc: Accuracy.
P, R, and F1 are macro-averaged, and the scores are
reported on 10-fold cross validation.

P R F1 Acc
GloVe 0.8233 0.8232 0.8229 0.8234
GloVe+Simye, 0.8255 0.8251 0.8247 0.8250
GloVe+Sim,,,,  0.8264 0.8260 0.8254  0.8257
GloVe+Sim,q;,  0.8252  0.8244  0.8239  0.8244
GloVe+Alliter.  0.8299  0.8292 0.8291 0.8297
GloVe+Amb. 0.8211 0.8203 0.8198 0.8201
GloVe+U 0.8355 0.8359 0.8353 0.8359
GloVe+S 0.8331 0.8326 0.8321 0.8326
GloVe+U+S 0.8368 0.8368 0.8363 0.8365

Table 2: Performance of the features when combined
with a content-based classifier. U denotes uncertainty
and S denotes surprisal. P: Precision, R: Recall, F1: F1-
score, Acc: Accuracy. P, R, and F1 are macro-averaged,
and the scores are reported on 10-fold cross validation.

of the table), and the resulting classifier shows a
further increase in the performance. This suggests
that, by jointly considering uncertainty and sur-
prisal of the set-up and the punchline, we are better
at recognizing jokes.

5.4 Boosting a Content-Based Classifier

Now that we have shown the advantage of our
features when used individually in prediction, we
would like to validate their effectiveness when com-
bined with the commonly used word embeddings.
Thus, we evaluated our features as well as the base-
lines under the framework of a content-based clas-
sifier. The idea is to see if the features could further
boost the performance of existing text classifiers.
To create a starting point, we encoded each set-up
and punchline into vector representations by aggre-
gating the GloVe (Pennington et al., 2014) embed-
dings of the tokens (sum up and then normalize
by the length). We used the GloVe embeddings
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Figure 3: Histograms of uncertainty (left) and surprisal
(right), plotted separately for jokes and non-jokes. Mdn
stands for Median.

with dimension 50, and then concatenated the set-
up vector and the punchline vector, to represent
the whole piece of text as a vector of dimension
100. For each of the features (uncertainty and sur-
prisal, plus the baselines), we appended it to the
GloVe vector, and built an SVM classifier to do
the prediction. Scores are reported in Table 2. As
we can see, compared with the baselines, our fea-
tures produce larger increases in the performance
of the content-based classifier, and similar to what
we have observed in Table 1, jointly considering
uncertainty and surprisal gives further increase in
the performance.

6 Visualizing Uncertainty and Surprisal

To get a straightforward vision of the uncertainty
and surprisal values for jokes versus non-jokes,
we plot their histograms in Figure 3 (for all 3,052
labeled examples). It can be observed that, for both
uncertainty and surprisal, jokes tend to have higher
values than non-jokes, which is consistent with our
expectations in Section 4.

7 Conclusion

This paper makes an attempt in establishing a con-
nection between the humor theories and the nowa-
days popular pre-trained language models. We
proposed two features according to the incongruity
theory of humor: uncertainty and surprisal. We
conducted experiments on a humor dataset, and
the results suggest that our approach has an advan-
tage in humor recognition over the baselines. The
proposed features can also provide insight for the
task of two-line joke generation—when designing
the text generation algorithm, one could exert ex-
tra constraints so that the set-up is chosen to be
compatible with multiple possible interpretations,
and the punchline should be surprising in a way
that violates the most obvious interpretation. We
hope our work could inspire future research in the
community of computational humor.
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Running Time

Simy., 1.76 sec
Simy,,,, 1.71 sec
Simy, g 1.71 sec
Alliteration 1.70 sec
Ambiguity 2.94 sec
Uncertainty 2.12 sec
Surprisal 2.49 sec
Uncertainty + Surprisal 2.26 sec

Table 3: Running time of the SVM classifiers trained
on individual features.

Running Time

GloVe 7.54 sec
GloVe + Simy, 14.85 sec
GloVe + Sim,,,,, 15.90 sec
GloVe + Simy,, 13.76 sec
GloVe + Alliteration 15.41 sec
GloVe + Ambiguity 14.28 sec
GloVe + Uncertainty 14.70 sec
GloVe + Surprisal 13.84 sec
GloVe+ U + S 19.27 sec

Table 4: Running time of the content-based SVM clas-
sifiers combined with individual features. U denotes
uncertainty and S denotes surprisal.
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A Model Parameters

For the SVM classifier, we set the regularization
parameter C' = 1.0, and used the RBF kernel with
the kernel coefficient v = 1/nfequres.- All models
were trained and evaluated on a machine with Intel
Core 17-6700K CPU, Nvidia GeForce GTX 1080
GPU, and 16GB RAM. The running time of each
method is listed in Table 3 and Table 4.
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Abstract

Disentanglement of latent representations into
content and style spaces has been a commonly
employed method for unsupervised text style
transfer. These techniques aim to learn the dis-
entangled representations and tweak them to
modify the style of a sentence. In this paper,
we propose a counterfactual-based method to
modify the latent representation, by posing
a ‘what-if” scenario. This simple and disci-
plined approach also enables a fine-grained
control on the transfer strength. We conduct
experiments with the proposed methodology
on multiple attribute transfer tasks like Senti-
ment, Formality and Excitement to support our
hypothesis.

1 Introduction

Counterfactual Reasoning (Bottou et al., 2013) is
leveraged in structured data analysis and econo-
metrics towards generation of alternatives and es-
timation of alternate scenarios. Counterfactuals
describe a causal situation of the form ‘If X would
have (not) occurred, Y would have (not) occurred’
(Molnar, 2019). In interpretable machine learning,
counterfactuals have been used to explain predic-
tions of individual instances across various types
of datasets and tasks (Neal et al., 2018; Martens
and Provost, 2014; Wachter et al., 2017). Laugel
et al.(2018) and Neal et al.(2018) use counterfac-
tuals towards generating training data. Counter-
factual reasoning also provides us with a unique
ability to generate explanations and make causal
analysis on the latent space. However, this tech-
nique has never been explored in natural language
generation tasks. Here, we plug-in the concept of
counterfactuals to the text-style transfer task, to
enable the manipulation of latent spaces towards
controlled transfer of style.

*Work done while authors were at Adobe Research.
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Existing works in text style transfer focus on
transferring a specific target attribute. Unsuper-
vised methods based on adversarial attacks (Fu
et al., 2018; she), back translation (Prabhumoye
et al.,, 2018), learning disentangled representa-
tions(John et al., 2019) have been popular in this
domain. Other techniques include deletion of style-
specific words and conditionally generate sentences
in the target style (Li et al., 2018; Sudhakar et al.,
2019). However, all of them fail to provide a con-
trol over the target style strength i.e. a clever ma-
nipulation of the latent space is non-trivial.

Recent works on controlled text generation in-
clude (Wang et al., 2019), which brings in a
transformer-based model that modifies the gradient
functions leading to controlled generation in the
output space. Jin et al.(2019) is an unsupervised ap-
proach integrated during end-to-end model training.
The drawback in all these efforts is the lack of a
prefixed logic towards controlling the latent space.
Our proposed method of counterfactuals fills in this
gap and provides a logical method to control the
latent spaces for enabling a smooth style transfer.

Our approach is based on the premise of disen-
tangled representation spaces inspired from John
et al.(2019). Separating out the style and content
representations introduce an opportunity to fine-
tune, resulting in the ability to control the output
sentences specific to style. We introduce a coun-
terfactual reasoning module for controlling la-
tent disentangled spaces for style transfer. Fig-
ure 1 shows an illustrative example for the variants
generated through our approach. To the best of
our knowledge, this is the first work leveraging
such a concept towards controlled text generation.
Through extensive quantitative and qualitative ex-
periments, across attributes and datasets, we con-
clude that the proposed approach is effective in
providing control over the style strength and also
shows that the best transfer performance is on par

Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics
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Output Sentence Transfer Confidence
! t Sent this hotel was not the worst hotel i 03
Tiput Sentance have ever stayed in
this hotel was the this hotel was the worst hotel i have 04
worst i have ever . lever stayed ':J ] 5
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Siayed inand felt was clean and stayed in a hotel
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this hotel was great and the hotel 1.0
itself was great
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Figure 1: Example Counterfactuals showing the grad-
ual ‘control’ introduced in the text style transfer.

with the existing baseline style-transfer techniques.

2 Approach

Figure 2 illustrates our proposed approach, that
incorporates counterfactual reasoning to latent dis-
entangled representations for manipulating style
in text. It consists of (1) A Variational Autoen-
coder (VAE) model to learn the disentangled style
and content representations for different stylistic
attributes, (2) A Counterfactual Reasoning Module
to control the latent representations for generating
style variants.
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Figure 2: Proposed approach with Counterfactual Rea-
soning Module for Style Transfer

2.1 Learning Disentangled Representations

We adopt the model described in (John et al., 2019)
for learning the disentangled content and style rep-
resentations. Here, a VAE with an encoder-decoder
is used to encode a sentence x into a latent distri-
bution H = qg(h|x), guided by the loss function:

Jvap(0g,0p) = Jrec + MuKL[ge(h|z) || p(h)]

where, 0 and 0p are the encoder and decoder pa-
rameters respectively. The first term encourages re-
construction, while the second term regularizes the
latent space to a prior distribution p(h) (N(0, 1)).
We experiment with some variations of this archi-
tecture, which are detailed in section 3.
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Additionally, Multi-Task (J;,,1(s), Jmui(c)) and
Adversarial losses (Jydy(s)s Jadv(c)) are imposed on
the latent space h to disentangle the embeddings
into representing content ¢ and style s, i.e., h =
[s; c], where [; ] denotes concatenation. These four
losses ensure that the style and content information
are present in, and only in their respective style(s)
and content(c) embeddings.

Once we have the disentangled representations,
our basic idea is to feed the generative model with
the same content and a different style embedding
to produce sentences of altering style. In (John
et al., 2019), the average style embeddings of the
target style is fed to the decoder. Intuitively, chang-
ing these style embeddings will produce different
variants of target style sentences, but a disciplined
approach to generate smooth style variants of the
sentence is missing. We propose the counterfactual
reasoning for this purpose.

2.2 Counterfactual Reasoning Module

Counterfactuals (CF) are used for gradually chang-
ing the style representation along the target-style
axis. A counterfactual explanation of an outcome
Y takes the form ‘if X had not occurred, Y would
not have occurred’. We leverage this notion here. A
Multi-layer Perceptron (MLP) classifier is trained
on the disentangled style latent representations
learnt by the VAE, such that every instance of style
embedding s, predicts a target style (1') of a sen-
tence. Now, the aim is to find s’ such that it is close
to s in the latent space but leads to a different pre-
diction 7", i.e. the target class. The CF generation
loss is given by,

chactual:L(slys)zk(ft(sl)_pt>2+lfl(S,a3>7

where t is the desired target style class for s, p; is
the probability with which we want to predict this
target class (perfect transfer would mean p;, = 1),
ft 1s the model prediction on class ¢ and L is the
distance between s’ and s. The first term in the loss
guides towards finding an s’ that changes the model
prediction to the target class and use of the L; dis-
tance ensures that minimum number of features are
changed in order to change the prediction. A is the
weighting term. The resulting set of CFs are ob-
tained by optimizing (Wachter et al., 2017) the fol-
lowing equation:arg ming maxy L(s'|s), subject
to | ft(s' — pt)| < € (tolerance parameter).

The CF generator is generalizable across differ-
ent stylistic attributes. To generate multiple vari-
ants for a target style, CFs are generated varying
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Figure 3: Performance of the counterfactual model on multiple datasets. Style transfer accuracy (ACC) increases
and the content preservation (BLEU-S, CP) decreases with increasing transfer strength.

the probability of target specific generation (or con-
fidence), p;. This results in different sentence vari-
ants with a similar target style but varied degrees
for transfer strength. Finally, the disentangled rep-
resentations enable finer control over the style di-
mensions with no risk of content loss during the
counterfactual reasoning stage (as the content rep-
resentations are retained).

3 Experiments

3.1 Proposed models

The VAE model adapted from (John et al., 2019),
with RNN encoder-decoder blocks is R-VAE. We
experiment with a variation by replacing RNNs
with the transformer blocks (T-VAE). T-VAE-
CF uses counterfactuals for generating variants,
while models with -AVG use average style embed-
ding of the target style to enable transfer. For T-
VAE, we experimented with different loss combina-
tions.-1,-2,-3,-4 refers to the inclusion of Jp,,(s),
Jmul(s) + Jadv(s)’ Jmul(s) + Jadv(s) + Jmul(c’
Jmul(s) + Jadv(s) + Jmul(c) + Jadv(c)’ respectively
along with Jy 4 in the overall loss function.

3.2 Baselines

We compare our best transfer models (with p; = 1)
against standard unsupervised style-transfer ap-
proaches. CrossAligned (CA)(Fu et al., 2018)
aligns the hidden representations of original and
style transferred sentences. T-D and T-DRG (Sud-
hakar et al., 2019) models delete attribute related
words and conditionally generate words with the
target style through transformer architecture.

3.3 Implementation

The counterfactual module has a linear classifier
with a sigmoid activation, taking input dim. of
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16 (s) and a output dim. 2 (style label). It is
trained with Adam optimizer and 0.001 learning
rate is used to minimize CCE loss. The trans-
fer strength in CF-module, p;, is varied from
0 to 1. Experiments with the following values
(0.2,0.3,0.5,0.5,0.8,0.9,0.95, 1.0) are reported.”

3.4 Datasets

We experiment with varied style attributes using 5
datasets. YELP is used for sentiment. Human gold
standard references of these datasets from (Sud-
hakar et al., 2019) are used for evaluation. GYAFC
dataset (Rao and Tetreault, 2018) is used for For-
mality and a new dataset GYAFC-excite with cus-
tom annotations for excitement is created”. POLIT-
ICAL (Voigt et al., 2018) and GENDER (Reddy and
Knight, 2016)(similar to (Prabhumoye et al., 2018))
are used for the respective styles. The train-dev-test
split as defined by original authors are used for all
experiments.

3.5 Evaluation criteria

Style transfer accuracy (ACC) is measured by
a dataset-specific Fasttext style classifier (Joulin
et al., 2017). The classifiers report a % accu-
racy of 93.6, 87.6, 82.5, 78.3, 93.5 on the Yelp,
GYAFC, GYAFC-Excite, Gender and Political
datasets. Content preservation is measured through
BLEU(Papineni et al., 2002) scores calculated
against the source sentences(BLEU-S) and human
references (BLEU-H), if available. We compute the
cosine similarity (CP) to measure the vector-space
similarity*. Language fluency (PPL) is reported by

*Other implementation details, hyper-parameters, com-
pute setup, and training times are provided in the appendix

"We cannot share the GYAFC-excitement dataset due to
its license

Sentence embeddings for CP are calculated by concate-
nating the min, max, and mean of its word embeddings, ex-



Attribute — Formality Sentiment Excitement
Direction— Formal — Informal Informal — Formal Positive — Negative Negative — Positive Less — More More — Less
Source it is another way to hell yeah for the first i always have a great the wine was very average itis a small enjoy- wonderful venue
say that they don’t answer that girl an- dish here to eat and the food was even less able club for tiff
like you swered for me
0.3 it is way to say it yeah girl answer that i always have a great the wine was very average it ’s a good club wonderful venue
= question dish here to eat and the food was even good
Eﬂ 0.5 you don’t like it but it yeah you should answer ialways have a bad dish the wine was very average it ’s a great club great venue for
2 is way your question here to eat . and the food was even better tiff
2 0.8 you can say it to you oh girl answer that ques- i always have n’t been a the wine had very unique and it ’s a great club good venue for
S tion though to go to order the food was excellent too tiff
5 0.9 you don’t like it but it oh my answer is yes i always do n’t have the wine was very reasonable it’s a great club in nice venue
§ is way a reviews here to eat and the food was even perfect vegas
& something .
f 0.95 u can say it to u oh my answer is to an- ialways have a bad dish the wine had very authentic it’s a great club in good venue
5‘ swer that question to eat here . and the food was also good vegas
1.0 ucan say uraway oh my answer is to an- i do n’t always be hav- the wine had very unique and absolutely loved good venue
swer that question ing a review to go here the food was excellent this club
Bas: Avg just say that way you answer the book for i always do n’t get the wine was top notch and it is a small club venue for wonder-
don’t know him , because i love that home from a reviewer the food was even more and a fantastic ful for the after
is what here museum ballet

Table 1: Examples for Formality, Sentiment and Excitement with varying CF Strength using our framework.

MODEL SENTIMENT(YELP) FORMALITY EXCITEMENT

Acct Bleu-ST Bleu-HT CP{ PPLT | Acct Bleu-ST CPfT  PPLtT | Acct Bleu-St CPT  PPL?T
CA 76.6 47.95 37.15 0.92 -19.97 | 5527 2483 090 -19.08 | 7825 3343 0.87 -10.68
T-D 85.7 71.03 5408 096 -20.12 | 46.55 7096 095 -2495|83.85 69.04 094 -13.52
T-DRG 77.4 70.60 5400 096 -21.08 | 41.23 68.12 095 -2691 | 74.15 6365 094 -15.68
R-VAE-AVG | 88.4 34.00 31.10 091 -15.08 | 69.02 32,78 090 -15.18 | 71.3 4122 090 -9.63
R-VAE-CF 77.5 34.74 31.35 091 -15.04 | 62.17 3247 091 -1698 | 53.75 4227 090 -9.83
T-VAE-AVG | 76.9 34.39 29.19 0.88 -21.25 | 61.79 3541 0.88 -23.05|52.55 4236 0.89 -15.33
T-VAE-CF 89.8 34.61 2949  0.88 -22.58 | 74.64 2172 0.85 -23.74 | 68.6 17.57 0.83 -14.60

Table 2: Style Transfer Accuracy. Values for best performing models are reported in -CF variants.[For YELP p; =:
(T-VAE-4-CF,0.9); For FORMALITY(T-VAE-1-CF,1.0); For EXCITEMENT(T-VAE-1-CF,1.0)]*#

MODEL GENDER POLITICAL

Acc  Bleu-S CP PPL Acc  Bleu-S CP PPL
T-D 50.6 8250 097 -39.05| 740 7940 094 -46.74
R-VAE-AVG | 52.65 5042 0.92 -12.57 | 100.0 10.56 0.86 -26.65
T-VAE-AVG | 58.75 3748 087 -1822| 924 3325 088 -3091
T-VAE-CF 62.55 39.99 0.88 -18.53 | 7320 4390 0.90 -30.17

Table 3: Gender & Political [For GENDER, p;: (T-VAE-
2-CF,0.9) .For POLITICAL:(T-VAE-2-CF,1.0)]

the perplexity of trigram KL-smoothed language
model(Kneser and Ney, 1995), trained on the same
corpus.

4 Results and Analysis

Transfer Control. Figure 3 shows the perfor-
mance of CF variants across metrics for different
styles. The CF generated variants from T-VAE-CF
(solid lines) are compared against the reference val-
ues which take avg. embeddings (T-VAE-AVG) for
target style (dotted lines). To recollect, the higher
the CF transfer confidence (strength), the closer is
the generated variant to the target attribute. Thus,
the ideal performance is to have the highest accu-
racies for the highest CF confidence values (see
figure 3(a)). Note that CF strength = 1 alludes to
perfect transfer. This is difficult to achieve as CF
in the representation space may not be generated

cluding stopwords(Fu et al., 2018)
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for such a strict target. Hence, the variants gener-
ated with near perfect transfer target (CF strength
= 0.8,0.9,0.95) show the best performance across
metrics. The low transfer accuracies for models
with low CF confidence establishes the ability of
the model to stay near the source when the tar-
get strength is low. All models implemented with
transfer control report improved performance w.r.t
BLEU scores establishing the utility of the alterna-
tives generator.

Table 2, 3 compares baselines with the proposed
models. Note that the evaluation metrics for text
style-transfer cannot be compared in isolation.
There is always a trade-off between content
preservation and transfer accuracy. Amongst
the baselines, we observe that T-D and T-DRG
report high content preservation with some loss in
accuracy, but these models only cater to generating
a single output sentence and there is no provision
to generate the variants. Note that in most style
dimensions, T-VAE based models show highest
performance in transfer accuracy with good
content preservation (CP), but, lower BLEU-S
score. The lower BLEU-S scores indicates the
ability of our model to generate variants that are
not mere repetition of the input samples. R-VAE
models show impressive perplexity values. For the



political dataset, R-VAE baseline shows very high
transfer accuracy but takes a tremendous hit in
content preservation (BLEU), which is improved
with the use of counterfactuals. Examples in Table
1 illustrate the gradual changes introduced by
T-VAE-CEF across different styles.

Human Evaluation: We conducted a crowd-
sourcing based experiment (through Amazon Me-
chanical Turk) to understand both - (A) How base-
lines compare to the generated text and (B) The
interpretation of control as seen by human annota-
tors. For the first experiment, the annotators were
presented with sentences generated by our model,
baselines and ground truth to evaluate and rank.
Specifically, they were asked to score each of the
output sentences on a Likert scale of range 1-5
across three aspects - transfer strength, content
preservation and fluency. The key takeaways high-
light that the sentences generated by our model are
at par in terms of grammar and fluency and are
better in terms of transfer control. As against text
generated by baselines, the text generated by our
proposed models is preferred by humans 70% of
times (inter-annotator agreement 0.42).

For the second experiment to evaluate the con-
trol, we presented the sentence variants generated
through different CFs (by varying p;) and asked the
annotators to rank them from best to worst based
on their transfer strength. On an average, 60% indi-
viduals could grade the gradual control as intended
by the model. If we bucket the sentences into low
(with p; < 0.4) and high groups (with p; > 0.7),
the annotators’ preference for bucketing the out-
put into the right confidence goes up to 73% on
average (68% for low, and 81% for high), hence,
confirming our hypothesis towards using CF for
controlled generation.

5 Conclusion

We introduce the use of counterfactual reasoning
towards controlling the latent disentangled repre-
sentations for text style transfer. Experiments not
only establish the superiority of the proposed mod-
els across standard metrics for a multitude of styles
but also illustrate the utility of the gradual con-
trol variable in this model. We further validate
the use for CF via a human evaluation establishing
improved text attribute transfer.
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A VAE Models - Further Details

RNN-based (R-VAE). We adopt the model de-
scribed in John et al.(2019) to disentangle the con-
tent and style representations with a recurrent neu-
ral network (RNN)-based VAE. The RNN encoder
with Bi-GRUs (Cho et al., 2014) learns the hid-
den representation qg(h|z) by reading the input
x = (x1,x2,...,oy,) sequentially. The RNN de-
coder, then decodes sequentially over time, pre-
dicting the probabilities of each token conditioned
on the previous tokens and the latent representa-
tion. The reconstruction loss, which is the key loss
for the generation objective, is the negative-log-
likelihood loss as follows:

JrEC = Bhogu(niz)|— Y _log P,
t=1

where P = p(xy|h,z1,...,x1-1)

The hidden space, h, is separated into 2 spaces
while disentangling the style (s) and content (c)
representations. Disentanglement is achieved using
well-defined auxilliary losses.

Transformer-based (T-VAE). Transformers
(Vaswani et al., 2017) have gained popularity for
text generation due to their robust architectures.
We introduce a transformer-based VAE inspired
from Wang et al.(2019). The transformer en-
coder has a multi-headed self-attention block fol-
lowed by a feed forward network (FFN). The de-
coder is similar to the encoder with an additional
encoder-decoder attention block. Given an input
sentence x = (x1, 2, ..., Tn ), the transformer en-
coder, Eipqns learns a hidden word representation
(21, 22, ..., 2n). They are pooled to get a sentence
representation z, which is further encoded into a
probabilistic latent space ¢ (h|z). A sample from
this latent representation is given as an input to
the encoder-decoder attention block in the decoder.
The decoder reconstructs the input sentence x with
condition on h. We adopt the label smoothing reg-
ularization (Li et al., 2020) while training, for per-
formance improvement. The reconstruction loss
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where, v is the vocabulary size, € is the label
smoothing parameter, p; and p; are the predicted
and the ground truth probabilities over the vocabu-
lary at every time step for word-wise decoding.
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Figure 4: Transformer-based: T-VAE

KL Annealing. We also use an Adam optimiser
and KL cost annealing technique (Bowman et al.,
2016) to train our model. KL cost annealing refers
to slow increase in the weight of the KL term (\g;)
in the loss function from 0 to 1. This aids the
training process as the model is warm-started to
minimize the reconstruction loss in the initial itera-
tions, followed by a gradual inclusion of KL loss
term in the subsequent iterations.

A.1 Loss Functions

Auxiliary loss functions are used to achieve the text
rewriting objectives. Note that the reconstruction
loss is the primary loss generation but this does not
take into consideration the style or the controlled
generation.

We use Multi-task and Adversarial losses on the
latent space h to disentangle the embeddings into
representing content ¢ and style s (i.e., h = [s; ],
where [; ] denotes concatenation) separately.
Style-oriented losses. Multitask .oss ensures that
the style space s is discriminative for the style. We
train a style classifier on s jointly with the autoen-
coder loss.

Jmul(s) (9E7 emul(s)) == Z ts(l) log(ys(l))
l€labels



Dataset Style #train  #dev  #test Source

Positive 270K 2000 500 . . . .
Yelp Negative 180K 2000 500 https://github.com/lijuncen/Sentiment-and-Style-Transfer/tree/master/data/yelp

Formal 48K 2000 950 .

GYAFC Informal 48K 2000 1250 https://github.com/raosudha89/G YAFC-corpus

. Exciting 36K 1990 1000
GYAFC-excitement |\ Exciting | 36K 1990 1000 NA
. Democrat 270K 2000 28K ..

Political Republican 270K 2000 28K http://tts.speech.cs.cmu.edu/style_models/political_data/

Gender Male 1.34M 2250 267K http://tts.speech.cs.cmu.edu/style_models/gender_data/
Female 1.34M 2250 267K

Table 4: Datasets

where 0,,,,(,) are the parameters for style multitask
classifier, ys is the style probability distribution
predicted by the classifier and ¢ is the ground truth
style distribution.

Adversarial loss for style is introduced to ensure
that the content space c is not-discriminative of
the style. An adversarial classifier is trained, that
deliberately discriminates the true style label using
the content vector ¢, with the following loss.

Jdis(s)(edis(s)> - = Z tS(l)log(y;(l))

[Elabels

where 04;,(,) are the parameters for style adversary,
y; is the style probability distribution predicted by
the classifier on the content space.The encoder is
then trained to learn a content vector space ¢, from
which its adversary cannot predict style informa-
tion. The objective is to maximize the cross entropy

H(p) == Zielabels pilag(pi) with:

Jado(s)(08) = H(y,|c; Ouiss))

Content-oriented losses. Multi-task loss aims to
ensure that all content information is in the con-
tent space c. We define the content information
using a bag-of-words (BoW) concept. Here, part-
of-speech tags , i.e. nouns are used. (Liu et al.,
2020; DBL) argue nouns in the text are considered
as attribute-independent content. This definition
allows a generic content loss for all style dimen-
sions as against the previous work where content
is defined as bag-of-words in a sentence, exclud-
ing stopwords and specific style (sentiment) related
lexicon. The content multitask loss is analogical to
style multitask loss as follows:

Jmul(c) (eEa emul(c)) == Z tc(w) log(yc(w))

weEcontent

Adversarial loss for content ensures that the style
space does not contain content information. A clas-
sifier (content adversary), is trained on the style
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space to predict the content (BoW) features. Then
similar to style, encoder is trained to learn s, from
which this adversary cannot predict content infor-
mation.

Jdis(c) (Gdis(c)):_ Z tC(w)log(yC/(w))

wecontent
Jadv(c) (GE) :H(ycl | S;edis(c) ) )

Training with these losses along with reconstruc-
tion loss ensures that the latent space is disentan-
gled, resulting in the final loss given by,

Jiotal = JvAE + )\mul(s) Jmul(s) - )‘adv(s)

Jadv(s) + )‘mul(c) Jmul(c) - )‘adv(c) Jadv(c)

B Dataset details

The brief descriptions for datsets are as follows:
YELP: Reviews from Yelp. Each review is labeled
with a sentiment class - positive or negative. The
task is to change the label while rewriting.
GYAFC: Corpus created from a subset of Yahoo
Answers. Each sample is tagged either formal or
informal. The task is to switch the label.
GYAFC-Excitment: The task here is to convert
the sentences from ‘exciting’ to ‘non-exciting’. We
create a subset of the GYAFC data where annota-
tors (using Amazon Mechanical Turk), were asked
to tag the sentence to be either showing excitement
or not. Excitement follows the definition as given
by (Aaker, 1997). We follow annotation scheme
provided by Rao(2017).
POLITICAL: Comments from Facebook posts
from United States Senate and House members.
Each comment is labelled is with either Republican
or Democrat tag. Task is to interchange between
the two.
GENDER: Reviews from Yelp for food businesses.
Each review is labeled with either male or female
based on the author of the review. Task is to switch
between the two.

Table 4 refers to the number of sentences in train-
dev-test split available for each dataset. The URL



link to the data files are also provided for each of
them.

C Implementation details

The dimensions of ¢ and s are set to 128 and 16
respectively. The posterior probability distributions
(u, o) learnt for the respective content and style
also have the same dimensions. The learnt hidden
state representation is converted to 128 (c) and 16
(s) with a linear layer.

For R-VAE, hidden state dimension is set to 256.
For the T-VAE, the embedding size, latent layer
and the self-attention layers all are set to 256. The
inner dimension of FFN in the transformer is set to
1024. Each of the encoder and decoder is stacked
with two layers of transformer blocks. We used
the Adam optimizer for the VAE and the RMSProp
optimizer for the discriminators, following stability
tricks in adversarial training (Arjovsky and Bottou,
2017). Each optimizer has an initial learning rate
of 1073, Models are trained for 50 epochs. Figure
4 illustrates the architecture of T-VAE.

Word embeddings initiated with word2vec
(Mikolov et al., 2013) are trained on respective
training sets. Both, the autoencoder and the dis-
criminators are trained once per mini batch with
Amul(s)’ )‘mul(c)’ )‘adv(s)’ and )‘adv(c) = 1. The la-
bel smoothing parameter in the transformer loss € is
set to 0.1. The KL-Divergence penalty is weighted
by Axi(s) and Mg (c) on style and content, respec-
tively. During training, we also used the sigmoid
KL annealing schedule

The hyper-parameter weights in the loss function
)‘mul(s)’ )‘mul(c)’ )‘adv(s)’ and )‘adv(c) are chosen to
be 1, as the values were Observed to be converging
over iterations.

We implement our model based on Pytorch
0.4. We trained our models on a machine with
4 NVIDIA Tesla V100-SXM2-16GB GPUs. On
a single GPU, our transformer model with all the
losses (T-VAE-4) took approximately 0.4 s to train
for one step with a batch of size 128. It takes
around 10 hours to train our model on 1 GPU. Ta-
ble 5 depicts the runtime details for all the model
variations.

For our counterfactual generator model, we use
the counterfactual model from Alibi library in
Python®. On an average it takes 3 seconds to gener-
ate a counterfactual for a given input representation
and transfer strength (p;).

% Alibi Counterfactual Module

48

Dataset Model | Batch Size | #batches in 1 epoch | Runtime for 1 epoch
T-VAE-1 128 2375 247.32s
Yelp T-VAE-2 128 2375 373.75s
T-VAE-4 128 2375 1108.34s
Formality T-VAE-1 32 3157 667.85s
T-VAE-2 32 3157 944.97s
Excitement T-VAE-1 64 1200 580.61s
T-VAE-2 64 1200 602.99s
Gender T-VAE-1 32 3156 333.58s
T-VAE-2 32 3156 492.12s
Political T-VAE-1 128 4233 751.92s
T-VAE-2 128 4233 1050.30s

Table 5: Runtime details of model variations across dif-
ferent datasets

Counterfactual Module
Dataset Model MLP Classifier
CCE Loss Accuracy
(Validation) | (Validation)
T-VAE-1 0.05 99.25
Yelp T-VAE-2 0.04 99.31
T-VAE-4 0.04 99.37
Formality T-VAE-1 0.36 94.09
T-VAE-2 0.33 97.43
Excitement T-VAE-1 0.34 96.73
T-VAE-2 0.22 96.87
Gender T-VAE-1 0.11 96.17
T-VAE-2 0.12 96.56
Political T-VAE-1 0.005 99.992
T-VAE-2 0.003 99.998

Table 6: Validation loss and accuracy for MLP classi-
fier in counterfactual

Further details of our model summary
and generated sentences are present here
https://bit.ly/34DYHP5



Attention Flows are Shapley Value Explanations

Kawin Ethayarajh
Stanford University
kawin@stanford.edu

Abstract

Shapley Values, a solution to the credit as-
sighment problem in cooperative game the-
ory, are a popular type of explanation in ma-
chine learning, having been used to explain
the importance of features, embeddings, and
even neurons. In NLP, however, leave-one-
out and attention-based explanations still pre-
dominate. Can we draw a connection between
these different methods? We formally prove
that — save for the degenerate case — at-
tention weights and leave-one-out values can-
not be Shapley Values. Attention flow is a
post-processed variant of attention weights ob-
tained by running the max-flow algorithm on
the attention graph. Perhaps surprisingly, we
prove that attention flows are indeed Shap-
ley Values, at least at the layerwise level.
Given the many desirable theoretical qualities
of Shapley Values — which has driven their
adoption among the ML community — we ar-
gue that NLP practitioners should, when pos-
sible, adopt attention flow explanations along-
side more traditional ones.

1 Introduction

The approaches to model interpretability taken by
the ML and NLP communities overlap in some ar-
eas and diverge in others. Notably, in machine
learning, model prediction has sometimes been
framed as a cooperative effort between the poten-
tial subjects of an explanation (e.g., input tokens)
(Lundberg and Lee, 2017). But how should we
allocate the credit for a prediction, given that some
subjects contribute more than others (e.g., the sen-
timent words in sentiment classification)? The
Shapley Value is a solution to this problem that
uniquely satisfies several criteria for equitable al-
location (Shapley, 1953). However, while Shapley
Value explanations have been widely adopted by
the ML community — to analyze the importance of
features, neurons, and even training data (Ghorbani

49

Dan Jurafsky
Stanford University
jurafsky@stanford.edu

and Zou, 2019, 2020) — they have had far less
traction in NLP, where leave-one-out and attention-
based explanations still predominate.

What is the connection between these different
paradigms? When, if ever, are attention weights
and leave-one-out values effectively Shapley Val-
ues? The adoption of Shapley Values — which
have their origins in game theory (Shapley, 1953)
— by the ML community can be ascribed to their
many desirable theoretical qualities. For example,
consider a token whose masking out does not im-
pact the model prediction in any way, regardless
of how many other tokens in the sentence are also
masked out. In game theory, such a token would be
called a null player, whose Shapley Value is guar-
anteed to be zero (Myerson, 1977; Young, 1985).
If we could provably identify the conditions under
which attention weights and leave-one-out values
are Shapley Values, we could extend such theoreti-
cal guarantees to them as well.

In this work, we first prove that — save for the
degenerate case — attention weights and leave-
one-out values cannot be Shapley Values. More
formally, there is no set of players (i.e., possible
subjects of an explanation, such as tokens) and pay-
off (i.e., function defining prediction quality) such
that the values induced by attention or leave-one-
out also satisfy the definition of a Shapley Value.
We then turn to attention flow, a post-processed
variant of attention weights obtained by running
the max-flow algorithm on the attention graph (Ab-
nar and Zuidema, 2020). We prove that when the
players all come from the same layer (e.g., tokens
in the input layer), there exists a payoff function
such that attention flows are Shapley Values.

This means that under certain conditions, we
can extend the theoretical guarantees associated
with the Shapley Value to attention flow as well.
As we show, these guarantees are axioms of faith-
ful interpretation, and having them can increase
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confidence in interpretations of black-box NLP
models. For this reason, we argue that whenever
possible, NLP practitioners should use attention
flow-based explanations alongside more traditional
ones, such as gradients (Feng et al., 2018; Smilkov
et al., 2017). We conclude by discussing some
of the limitations in calculating Shapley Values for
any arbitrary player set and payoff function in NLP.

2 Model Interpretation as a Game

The Shapley Value (Shapley, 1953) was proposed
as a solution to a classic problem in game theory:
When a group of players work together to achieve
a payoff, how can we fairly allocate the payoff
to each player, given that some contribute more
than others? The players here are the potential
subjects of the explanation (e.g., input tokens); the
payoft is some quality of the model prediction (e.g.,
correctness). We contextualize the game theoretic
terms with respect to model interpretability below.

Definition 2.1. A player is a possible subject of
the explanation (e.g., character, token, embedding,
neuron). N = {1, ...,n} is the set of all players.

Definition 2.2. A coalition is a subset of players
S C N that work together. There are 2" possible
coalitions. The other players N \ S are left out
by being replaced with a non-subject that cannot
affect the outcome (e.g., a zeroed-out embedding
or a dropped-out neuron).

Definition 2.3. The payoff reflects some quality
of the model prediction — e.g., correctness, confi-
dence, entropy — made using a given coalition. It
is defined by a payoff function v : 2V — R, where
v(0) = 0. The value ¢;(v) of a player i is the share
of the payoftf allocated to it. In other words, it is the
importance accorded to subject ¢ of an explanation.

Definition 2.4. A game is defined by (NV,v), a
player set NV and payoff function v. It is a trans-
ferable utility game (TU-game), where the payoff
can be distributed among the players as desired.
In the game of model interpretation, the subjects
of the explanation are framed as players working
cooperatively to make the best possible prediction.

2.1 Equitable Allocation

How can we allocate the payoff equitably, in a way
that reflects the actual contribution made by each
player? In other words, how can we faithfully in-
terpret a prediction? The game theory literature
proposes that any equitable payoff allocation satis-
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fies these three conditions (Myerson, 1977; Young,
1985; Ghorbani and Zou, 2019):

Condition 1. (Null Player): A player that induces
no change in the payoff from joining any coalition
has zero value. Formally, V S C N \ {i},v(S U
{i}) =v(9) = ¢i =0.

Condition 2. (Symmetry): Two players who in-
duce the same change in payoff upon joining ev-
ery coalition (that excludes them) have the same
value. Formally, V.S C N\ {i,j},v(SU{i}) =
v(SU{j}) = i=¢;

Condition 3. (Additivity): The value of a player
across two different games with payoff v, w should
be the sum of its value in each game. Formally,

Vi€ N, ¢i(v+w)=¢i(v) + ¢i(w).
2.2 The Shapley Value

The Shapley Value is a well-known solution to the
problem of payoff allocation in a cooperative set-
ting, as it uniquely satisfies the three criteria for
equitable allocation in 2.1 (Shapley, 1953; Myer-
son, 1977; Young, 1985). It sets the value of a
player to be its expected incremental contribution
to a coalition, over all possible coalitions.

Definition 2.5. Where R is one of n! possible per-
mutations of the player set N, let Pg; be the
subset of players that precede player ¢ in the per-
mutation. Then, for a given payoff function v, the
Shapley Value of player i is

6i(0) = = S [o(Pagg U {iD) — o(Pag)] (1)
R

There are other equivalent ways of expressing the
Shapley Value, including as a sum over the 2" pos-
sible coalitions.

In addition to satisfying our three criteria of equi-
table allocation (2.1), a Shapley Value distribution
always exists and is unique for a TU-game (IV, v).
Unlike with attention weights, which have been
criticized for allowing counterfactual explanations
(Jain and Wallace, 2019; Serrano and Smith, 2019),
there can thus be no counterfactual Shapley Value
distribution for a given input and payoff function
v. The distribution is also said to be efficient, since
it allocates all of the payoff: v(N) = >, x ¢i(v)
(Myerson, 1977; Young, 1985). The Shapley Value
can, in theory, be computed for any player set and
payoff function. However, in practice, there are
typically too many players to calculate this com-
binatorial expression exactly. Generally, estimates



are taken by uniformly sampling m random permu-
tations R (Ghorbani and Zou, 2019):

,,2 > [o(Prpg U{i}) = v(Prp)] )

ReR

In the rest of this paper, we ask: Is there some TU-
game (NN, v) for which attention weights / attention
flows / leave-one-out values are Shapley Values? If
so, for which games?

3 Attention Weights

Many have argued that attention weights are not
a faithful explanation, on the basis of consistency
(i.e., poor correlation with other importance mea-
sures) and non-exclusivity (i.e., multiple explana-
tions leading to the same outcome) (Jain and Wal-
lace, 2019). Others have countered that they have
some utility (Wiegreffe and Pinter, 2019). Without
making assumptions about their inherent utility, we
prove in this section that they cannot be Shapley
Value explanations, outside of the degenerate case.

Proposition 1. If some player is attended to more
than another, there is no TU-game (N, v) for which
attention weights are Shapley Values.

Proof. Assume that attention weights are Shapley
Values for some TU-game. Shapley Values are
necessarily efficient (i.e., v(N) = . ¢;(v)) My-
erson, 1977; Young, 1985), so for attention weights
to be efficient, the only applicable payoff function
would be the sum of attention weights. Since each
player only has one Shapley Value for a given v,
if it is attended to multiple times, its value must
be the fotal attention paid to it: where a;; denotes
the attention j pays to 7, ¢;(v) = EJEN a;,;. Note
that the payoff for a coalition S is within some
constant of its cardinality, since for a player j, the
weights a; . of the players that it attends to sum to
1 (Bahdanau et al., 2015). We consider two cases.

Case 1 For a player j that attends to some other
player, its contribution to the payoff of every S €
N\ {j}is 3 aj. = 1, implying ¢;(v) = 1 by
the Shapley Value definition (1). If some player
(that pays attention) is more or less attended to than
another — which is the point of using attention —
this results in a contradiction. Thus ¢; cannot be
the total attention paid to j.

Case 2 For a player ¢ that doesn’t attend to any
other player, its contribution to the payoff of every
S € N\ {i} is 0, since the attention paid to ¢ is
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redistributed among other players when it is absent.
This implies ¢;(v) = 0 by (1). However, all input
embeddings fall under this case, and we know at
least one will be attended to; its attention weights
will be non-zero, making this a contradiction. Thus
¢; cannot be the total attention paid to <. O

4 Attention Flows

What if we restricted the players to those from the
same layer of a model? The remaining players still
affect the prediction but can’t have any of the pay-
off allocated to them. In this case, attention weights
still cannot be Shapley Values. However, attention
weights can be post-processed. Abnar and Zuidema
(2020) proposed treating the self-attention graph as
a flow network — where the attention weights are
capacities — and then applying a max-flow algo-
rithm (Ford and Fulkerson, 1956) to this network
to calculate the maximum flow on each edge. We
prove (by construction) that these attention flows
are Shapley Values when the players are restricted
to those from the same layer and the payoff is the
total flow, as visualized in Figure 1.

Proposition 2. Consider a TU-game (NN, v), where
N = {1, ...,n} players are all from the same layer.
Let f denote the flow obtained by running a max-
flow algorithm on the graph defined by the self-
attention matrix, where the capacities are the atten-
tion weights. Let v(S) = |f(.9)|, the value of the
flow when only permitting flow through players in
the coalition S C N. Then for each player ¢, its
total outflow | f,(7)| is its Shapley Value.

Proof. Blocking the flow through a player ¢ € .S
decreases v(.S) by that player’s outflow |f,(7)],
since the attention flow is only calculated once
— with the entire graph — and not for each possi-
ble subgraph. Since the players are all disjoint and
have no connections, blocking the flow through one
player does not affect the outflow of any of the other
players. This would not be the case, for example, if
the players were in different layers, in which case
changes in flow upstream would cause changes in
flow downstream. Then for any coalition S C N
and playeri & S, v(SU{i}) = v(S)+|fo(i)]. We
can rewrite the total outflow for player ¢ as

|fo(@)| =v(SU{i}) —v(S),VSCN

%U(S U{i}) —v(S),YySCN

= 3 [o(Pag U 433 — 0Py
R

n
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Figure 1: The attention flow network for three tokens across three layers, with player nodes (red) and non-player
nodes (blue). The payoff v(N) is the total flow through the network. ¢;(v) is the total outgoing flow of player 1.
Note that if we remove player ¢, then the total flow will decrease by ¢;(v), but the outgoing flow of the other two
players (red) will stay the same. In other words, the contribution of player i to the total flow v(V) is always ¢;(v);
therefore, ¢;(v) is its Shapley Value. This construction is possible because the players are all in the same layer and
therefore parallel; if one depended on another, then its outgoing flow could not be its Shapley Value.

which is just the Shapley Value definition (1). Note
that the players cannot be from different layers
— at least for the definition of v as the total flow
value — because the Shapley Value distribution
would not be efficient (i.e., v(N) # >_,cn ¢i(v))
and efficiency necessarily holds for Shapley Values.
This in turn implies that the theoretical properties
that hold for Shapley Values extend to attention
flows under these conditions. O

Attention Rollout Abnar and Zuidema (2020)
also proposed another post-processed variant of at-
tention called attention rollout, in which the atten-
tion weight matrices from each layer are multiplied
with those before it to get aggregated attention val-
ues. Attention roll-out values cannot be Shapley
Values, however; this can be shown with a trivial
extension of the proof to Proposition 1.

5 Leave-One-Out

Erasure describes a class of interpretability meth-
ods that aim to understand the importance of a
representation, token, or neuron by erasing it and
recording the resulting effect on model prediction
(Lietal., 2016; Arras et al., 2017; Feng et al., 2018;
Serrano and Smith, 2019). Although the Shap-
ley Value technically falls under this class, most
erasure-based methods only remove one entity —
the one whose importance they want to estimate —
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and this only takes two forward passes, compared
to O(2") passes for the Shapley Value. Since only
one entity is erased, this simpler group of erasure-
based methods is called leave-one-out (Jain and
Wallace, 2019; Abnar and Zuidema, 2020). We
show in this section that leave-one-out values are
not Shapley Values, except in the degenerate case.

Proposition 3. If 3¢ € N such that player i is
not a null player even when excluding the coalition
N\{i}, then there is no TU-game (N, v) for which
leave-one-out values are Shapley Values.

Proof. Let the leave-one-out value of player 7 be
denoted by LOO;(v). Let R’ denote any permuta-
tion of N where Pri(;;) # N \ {i}. By definition,

8i(0) = = 3 [o(Prgy U i) — v(Prga)]
R

gijij [v(Prrig U{i}) — o(Prra)]
=

(o) -

+ v(VA L))

By our assumption, the first term is non-zero, so
there is no equivalence with LOO;(v). In practice,
this assumption is almost always satisfied. O

Note that leave-one-out tells us very little about
player importance for discrete payoff functions.



For example, if the payoff were the correctness
(i.e., 1 if correct and O otherwise), then the impor-
tance of a player would be binary: it would either
be critically important to prediction or totally irrele-
vant. This provides an incomplete picture — while
there is enough redundancy in BERT-based mod-
els to tolerate some missing embeddings, this does
not mean those embeddings are of no importance
(Kovaleva et al., 2019; Ethayarajh, 2019; Michel
et al., 2019). For example, if two representations
played a critical and identical role in a prediction —
but only one was necessary — then leave-one-out
would assign each a value of zero, despite both
being important. In contrast, the Shapley Value of
both players would be non-zero and identical.

6 Applications

Because Shapley Values have many useful applica-
tions, attentions flows — and any other score that
meets the criteria for a Shapley Value — have many
useful applications as well:

* For one, using the various properties of the
Shapley Value, we can provide more specific
interpretations of model behavior than is cur-
rently the case, backed by theoretical guaran-
tees. For example, if a token has zero attention
flow in layer k but non-zero flow in layer k—1,
then we can conclude that all the information
it contains about the label (e.g., sentiment)
was extracted by the model prior to the kth
layer; this derives from the “null player” prop-
erty of the Shapley Value. The same could not
be said if the token only had a leave-one-out
value of zero, since leave-one-out values are
not Shapley Values.

Interpretability in NLP often takes a single
token or embedding to be the unit of analy-
sis (i.e., a “player” in game theoretic terms).
However, what if we wanted to understand the
role of entire groups of tokens rather than in-
dividual ones? For most interpretability meth-
ods, there is no canonical way to aggregate
scores across multiple units — we cannot nec-
essarily add the raw attention scores of two
tokens, since the usefulness of one may de-
pend on the other. If we used a method that
provided Shapley Values, we could easily re-
define a “player” to be a group of tokens, such
that all tokens in the same player group would
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simultaneously be included or excluded from
a coalition.

Recent work has used the Data Shapley —
an extension of the Shapley Value — to es-
timate the contribution of each example in
the training data to a model’s decision bound-
ary (Ghorbani and Zou, 2019). If we’re fine-
tuning BERT for sentiment classification, for
example, we might want to know which sen-
tence is more helpful: “This movie was great!”
or “This was better than I expected.” We can
answer such questions by using the Data Shap-
ley. To our knowledge, this has been done in
computer vision but not in NLP.

7 Limitations and Future Work

Because Shapley Values — and by extension, atten-
tion flows — have many theoretical guarantees that
are axioms of faithful interpretation, we encourage
NLP practitioners to provide attention flow-based
explanations alongside more traditional ones. This
is not without limitations, however. As proven in
Proposition 2, this equivalence only holds for a
specific payoff function — the total flow through
a layer — which is reflective of model confidence
but not of the prediction correctness.

But why do we need attention flows at all if, in
theory, Shapley Values can be calculated for any ar-
bitrary player set and payoff function? While this is
true in theory, because of the combinatorial calcu-
lation (1), it is computationally intractable in most
cases. While it is possible to take a Monte Carlo
estimate (2), in practice the bounds can be quite
loose (Maleki et al., 2013). Finding TU-games for
which the Shapley Value can be calculated exactly
in polynomial time — as with attention flow -—is an
important line of future work. These explanations
may come with trade-offs: for example, SHAP is a
kind of Shapley Value that assumes contributions
are linear (i.e., a coalition can’t be greater than
the sum of its parts), which makes it much faster
to calculate but restricts the set of possible payoff
functions (Lundberg and Lee, 2017). Still, such
methods will be critical to providing explanations
that are both fast and faithful.
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Abstract

Video paragraph captioning aims to generate a
set of coherent sentences to describe a video
that contains several events. Most previous
methods simplify this task by using ground-
truth event segments. In this work, we pro-
pose a novel framework by taking this task as
a text summarization task. We first generate
lots of sentence-level captions focusing on dif-
ferent video clips and then summarize these
captions to obtain the final paragraph caption.
Our method does not depend on ground-truth
event segments. Experiments on two popular
datasets ActivityNet Captions and YouCookII
demonstrate the advantages of our new frame-
work. On the ActivityNet dataset, our method
even outperforms some previous methods us-
ing ground-truth event segment labels.

1 Introduction

Video captioning, the task of describing the con-
tent of a video in natural language, is a popular
task both in computer vision and natural language
processing. In the beginning, researchers try to gen-
erate sentence-level captions for short video clips
(Venugopalan et al., 2015). Krishna et al. (2017)
propose the task of dense video captioning. The
system needs to detect event segments first and
then generate captions. Park et al. (2019) propose
the task of video paragraph captioning: they use
ground-truth event segments and focus on gener-
ating coherent paragraphs. Lei et al. (2020) fol-
low the task setting and propose a recurrent trans-
former model that can generate more coherent and
less repetitive paragraphs. Considering the ground-
truth event segments are often unavailable in prac-
tice, our goal is to generate paragraph captions
without ground-truth segments.

The conventional framework of video paragraph
captioning is shown in Figure la. Given an
untrimmed video, an Event Detection module out-
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Figure 1: Comparison between conventional frame-
work and ours.

puts a set of non-redundant event segments. The
Event Captioning module generates captions for
these segments. The works of (Park et al., 2019;
Zhou et al., 2019; Lei et al., 2020) use ground-truth
event segments and focus on the Event Caption-
ing module. Zhou et al. (2019) use extra human-
annotated bounding boxes as supervision. (Sah
et al., 2017; Zhou et al., 2018; Mun et al., 2019)
use predicted event segments and generate captions
based on them. Sah et al. (2017) also summarizes
these captions to generate a paragraph. The above
methods heavily depend on accurate event seg-
ments. According to previous works (Zhou et al.,
2018; Mun et al., 2019), the performance of the
Event Detection module is not so good, making it
a performance bottleneck. To tackle this problem,
we propose a novel framework VPCSum as shown
in Figure 1b. For a given video, we first extract
dense event segment candidates (we call propos-
als), and a Proposal Captioning module is used to
generate proposal captions. Then we treat video
paragraph captioning as a text summarization task
to obtain the final summary (paragraph caption).

In this work, we only consider extractive summa-
rization, where the paragraph caption is composed
by selecting from proposal captions. We conduct
experiments on two popular datasets ActivityNet
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Captions and YouCooklI. The results demonstrate
the advantages of our framework. On the Activ-
ityNet Captions dataset, our method even outper-
forms some previous methods using ground-truth
event segment labels.

2  Our VPCSum Method

As illustrated in Figure 1b, our framework has three
modules. Proposal Extraction: it extracts dense
proposals for a video; Proposal Captioning: it
generates captions for extracted proposals; Cap-
tion Summarization: it summarizes the generated
proposal captions to obtain the video paragraph
caption. We will introduce each module next.

2.1 Proposal Extraction

For proposal extraction, we use the BMN model
(Lin et al., 2019), a popular model for temporal
action proposal generation. It can extract complete
and accurate proposals. We extract the top 100
proposals for each video.

2.2 Proposal Captioning

For proposal captioning, we choose the TSRM-
RNN model (Wang et al., 2020) for ActivityNet
Captions and VTransformer model (Lei et al.,
2020) for YouCooklI according to proposal cap-
tioning performance. We believe that if we choose
a better sentence-level captioning model, the per-
formance can be further improved.

2.3 Caption Summarization

1 1 1
{ Transformer Layers 1
T
[ BERT Layers ]
1
+ + + +
+ + + +
[CLS] Wi Wia [SEP] oo [CLS]  Wig1 Wiz  [SEP]

prop caption 1

prop caption 100

Figure 2: Architecture of the caption summarization
model.

The caption summarization module summarizes
proposal captions to generate the final video para-
graph caption. In this work, we focus on extractive

summarization. The architecture of our summa-
rization model is illustrated in Figure 2. We first
sort the proposal captions according to the proposal
start time and add special [CLS] and [SEP] tokens
to the beginning and end of each caption. We use
the summation of token embeddings, segment em-
beddings, and position embeddings to represent
each word. The input representations are fed into a
pre-trained BERT model (Devlin et al., 2018), after
which we obtain the contextual token representa-
tions. We use the contextual vectors of [CLS]s to
represent each caption and feed them into stacked
transformer layers (Vaswani et al., 2017). We use a
sigmoid layer to compute the score of each caption:

z; = o(Wh¥ +b) (1)

where W and b are trainable parameters, hiL is the
vector for caption ¢ from the top transformer layer.

For extractive summarization, we need to an-
notate each sentence according to the gold sum-
mary as our training target. Many researchers use
a greedy algorithm (Nallapati et al., 2016), sen-
tences are selected one by one to maximize the
ROUGE score against the gold summary. The se-
lected sentences are labeled 1 while others are la-
beled O (hard-label). In our task, we find a more
effective soft-label annotation method. We label
caption ¢; with the max ROUGE score against gold
captions and use binary cross-entropy as our loss
function:

nggOld

L==Y (yilogmi+ (1 —y;)log(l —z:)) (3)

)

where g; is the j-th gold caption.

2.4 Leverage Visual Information

The above caption summarization module assigns
each proposal caption a predicted score, indicating
how likely it appears in the final paragraph caption.
The predicted score only depends on text informa-
tion. To leverage visual information, we need a
“visual summarization” module, which gives a visu-
ally weighting score to each proposal. The ESGN
model (Mun et al., 2019) seems a good choice for
us. It uses a pointer network to select events from
proposals and assigns a visually weighting score
for each proposal. We use this model to compute
the visually weighting score.

Now we can extract the final paragraph cap-
tion. The final score of each proposal caption is a



weighted sum of the textually weighting score s;.¢
and the visually weighting score s,;s:

4)

where ) is a hyper-parameter tuned on validation
set. We select captions according to score(i) and
use Trigram Blocking to reduce redundancy, as in
Liu and Lapata (2019).

score(i) = Sizti + ASvis,i

3 Experiments

3.1 Datasets

We conduct experiments on ActivityNet Captions
(Krishna et al., 2017) and YouCooKII (Zhou et al.,
2017). ActivityNet Captions contains 10,009
videos in train set, 4,917 videos in val set. Each
video has 3.65 event segments on average. Follow-
ing (Lei et al., 2020), the original val set is split
into ae-val with 2,460 videos for validation and
ae-test with 2,457 videos for test. YouCooklII con-
tains 1,333 videos in train set, 457 videos in val set.
Each video has 7.70 event segments on average.

3.2 Evaluation Metrics

Following (Lei et al., 2020; Park et al., 2019), we
evaluate the captioning performance at paragraph
level. We report standard caption metrics, includ-
ing BLEU@4 (Papineni et al., 2002), METEOR
(Denkowski and Lavie, 2014), CIDEr (Vedantam
et al., 2015). We also evaluate repetition using
R@4 (Xiong et al., 2018). We use the scripts pro-
vided by (Lei et al., 2020) for evaluation'.

3.3 Implementation Details

For video preprocessing, we use appearance and
optical flow features provided by Zhou et al. (2018).
For BMN model and captioning models, we use
the same hyperparameters suggested by the authors.
For ESGN model, we use a transformer encoder
instead of an RNN encoder, with hidden size set
to 512, number of heads set to 8, number of layers
set to 3. For our caption summarization model, we
use the base BERT model, 2 stacked transformer
layers with hidden size set to 768, number of heads
set to 8. We set max input length to 1,700, batch
size to 10, A to 1 for ActivityNet Captions and max
input length to 1,000, batch size to 1, A to 1 for
YouCookIl. Warmup steps are set to step num of
1 epoch. We use Adam optimizer with an initial
learning rate of 6e — 4.

'https://github.com/jayleicn/
recurrent-transformer
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3.4 Baselines and Results

We compare our VPCSum model with the follow-
ing baselines. Soft-NMS: it uses Soft-NMS (Bodla
et al., 2017) to select event segments from BMN
proposals, and uses the proposal captioning model
to generate captions; ESGN: similar to Soft-NMS,
but it uses ESGN model (Mun et al., 2019) to select
event segments from BMN proposals; V-Trans: a
Vanilla Transformer model, proposed by (Zhou
et al., 2018); Trans-XL: a Transformer-XL model,
proposed by (Lei et al., 2020); MART: a recur-
rent transformer model (Lei et al., 2020); COOT:
it uses pretrained features to train MART model
(Ging et al., 2020). Originally, the last four models
deal with ground-truth event segments. For fair
comparison, we also test them with predicted event
segments generated by ESGN model 2.

Models B@4 M C R@4|
Soft-NMS 10.33 14.93 2258 10.17
ESGN 10.38 15.74 21.85 6.51
V-Trans 9.89 15.11 2095 7.04
Trans-XL 1036 14.89 20.73 745
MART 10.13 1494 20.16 6.09
COOT 9.85 14.67 21.83 7.15
VPCSum 10.89 15.84 2433 1.54
V-trans* 9.31 1554 2133 7.45
Trans-XL* 10.25 1491 21.71 8.79
MART* 9.78 1557 22.16 5.44
CcooT*  10.85 1599 28.19 6.64

Table 1: Comparison with baselines on ActivityNet
Captions ae-test split. * means the model uses ground-
truth event segments. We report BLEU @4 (B @4), ME-
TEOR (M), CIDEr (C), Repetition (R@4).

Tables 1 and 2 show the results on ActivityNet
Captions and YouCooklII. We can observe that on
the ActivityNet Captions, our model VPCSum
within the new framework can generate better para-
graph captions with higher Bleu@4, METEOR,
and CIDEr and lower repetition score R@4, even
outperforming V-trans*, Trans-XL*, MART* mod-
els using ground-truth event segments on every met-
ric. On the YouCooklI dataset, our model outper-
forms the models in the same setting but is inferior
to the models using ground-truth segments. This
may be because YouCookIl has more segments

2We use the codes and pretrained models provided by the
authors and only replace ground-truth event segments with
ESGN predicted event segments.



Models B@4 M C R@4]
Soft-NMS 5.58 13.67 18.18 494
ESGN 536 1337 17.01 2.82
V-Trans 535 1337 16.88 2.85
Trans-XL  4.78 12.67 1424 3.20
MART 561 1344 16.56 4.63
COoOT 596 1421 19.67 599
VPCSum 6.14 15.11 23.92 0.65
V-trans*  7.62 15.65 3226 7.83
Trans-XL* 6.56 14.76 26.35 6.30
MART* 8.00 1590 3574 4.39
COOT* 944 18.17 46.06 6.30

Table 2: Comparison with baselines on YouCookII val
split.

(7.70 vs 3.65) than ActivityNet Captions.

3.5 Ablation Study

Table 3 shows the ablation study on ActivityNet
Captions. Compared to our full model (Full),
the traditional extractive summarization annotation
method (Hard-label) is not suitable for our task. If
we set A in Eq.(4) to O (w/o vis), the model loses
useful visual information and performs not well. If
we remove Trigram Blocking (w/o tri-blk), the per-
formance also degrades and repetition becomes a
problem (R@4 increases to 7.91). To verify the
role of pretrained BERT model, we retrain our
VPCSum without BERT pretrained weights (w/o
pretrain). We can see that BERT pretrained weights
are not the major factor to the final performance.
We also replace our summarization model with un-
supervised methods LexRank (Erkan and Radev,
2004) and LSA(Steinberger and Jezek, 2004). The
results show that simple unsupervised summariza-
tion methods cannot handle our data well and su-
pervised training is necessary.

Models B@4 M C R@4]
Full 10.89 15.84 2433 154
Hard-label 10.29 1499 21.71 1.19
w/o vis 10.68 15.78 2334 1.36
w/o tri-blk 1046 1561 2140 7091
w/o pretrain  10.84 15.81 24.00 1.55
LexRank 7.78 13.65 14.19 26.51
LSA 724 1448 1243 28.14

Table 3: Model ablation study on ActivityNet Captions
ae-test split.
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3.6 Qualitative Results

Ground Truth: A girl jumps onto a balance beam. She does
a gymnastics routine on the balance beam. She does a flip off
the balance beam and lands on a mat.

MART: A gymnast is seen standing ready with her arms up
and leads into her performing a gymnastics routine. She con-
tinues performing several flips and tricks and tricks and ends
with her jumping down and walking away. She continues her
routine and ends with her jumping down and jumping down
and walking away.

MART*: A gymnast is seen standing before a beam and be-
gins performing a gymnastics routine. The girl then performs
a routine on the beam and ends with her jumping down and
jumping down and jumping. The girl jumps off the beam and
lands on the mat and jumps off the beam.

VPCSum: A gymnast is seen standing ready with her arms
up and begins to do a routine. She does a gymnastics routine
on the beam. She dismounts and lands on the mat.

Figure 3: An example from ActivityNet Captions.

We show an example in Figure 3 with paragraph
captions generated by MART, MART* and our
VPCSum model. Compared to other models, our
model can generate more clear and correct sen-
tences with less redundancy. The generated para-
graph of our model can better describe the process
of the whole event.

3.7 Human Evaluation

| Ours MART | Ours MART*
rel. | 56.0%" 44.0%% | 52.7%  47.3%
div. | 56.7%" 433%" | 56.7%"  43.3%"

Table 4: Human evaluation results. Statistically signifi-
cant differences (p < 0.05) are marked with 7.

We also conduct a human evaluation on ran-
domly sampled 50 videos from the ActivityNet
Captions val set. The annotators are asked to
choose the better caption from two models in two
aspects: relevance (how related is the caption to
the video content) and diversity (how diverse is the
generated text). We compare our VPCSum model
with MART and MART#* respectively. We have
17 college students as our annotators. Each video
is judged by 3 annotators. We show the results of
the pairwise experiments in Table 4. Our VPCSum
model performs better in relevance and diversity,



and more people choose the caption of our model
as the better one.

4 Conclusion

In this work, we view the task of video paragraph
captioning as a text summarization task and pro-
pose a novel framework VPCSum. It allows us to
use text summarization techniques to handle this
challenging task. Experimental results on two pop-
ular datasets show the advantages of our model.
In the future, we will explore using abstractive
summarization methods to generate better video
paragraph captions.
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Abstract

Deep learning algorithms have shown promis-
ing results in visual question answering (VQA)
tasks, but a more careful look reveals that
they often do not understand the rich signal
they are being fed with. To understand and
better measure the generalization capabilities
of VQA systems, we look at their robustness
to counterfactually augmented data. Our pro-
posed augmentations are designed to make a
focused intervention on a specific property of
the question such that the answer changes. Us-
ing these augmentations, we propose a new ro-
bustness measure, Robustness to Augmented
Data (RAD), which measures the consistency
of model predictions between original and aug-
mented examples. Through extensive experi-
mentation, we show that RAD, unlike classical
accuracy measures, can quantify when state-
of-the-art systems are not robust to counterfac-
tuals. We find substantial failure cases which
reveal that current VQA systems are still brit-
tle. Finally, we connect between robustness
and generalization, demonstrating the predic-
tive power of RAD for performance on unseen
augmentations.'

1

In the task of Visual Question Answering (VQA),
given an image and a natural language question
about the image, a system is required to answer the
question accurately (Antol et al., 2015). While the
accuracy of these systems appears to be constantly
improving (Fukui et al., 2016; Yang et al., 2016;
Lu et al., 2016), they are sensitive to small pertur-
bations in their input and seem overfitted to their
training data (Kafle et al., 2019).

To address the problem of overfitting, the VQA-
CP dataset was proposed (Agrawal et al., 2018). It
is a reshuffling of the original VQA dataset, such

Introduction

'Our code and data are available at: https://danros
enberg.github.io/rad-measure/
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Q: What color is the blender?
GT: white Pred: white v

Q: Is the color of the blender yellow?

GT: no Pred: green x +

Figure 1: Predictions and attention maps of a state-of-
the-art VQA-CP model over a VQA example (left) and
its augmentation (right). A robust model should use the
information it utilizes in the original example to cor-
rectly answer the augmented one.

that the distribution of answers per question type
(e.g., “what color”, “how many”) differs between
the train and test sets. Using VQA-CP, Kafle et al.
(2019) demonstrated the poor out-of-distribution
generalization of many VQA systems. While many
models were subsequently designed to deal with
the VQA-CP dataset (Cadene et al., 2019; Clark
etal., 2019; Chen et al., 2020; Gat et al., 2020), aim-
ing to solve the out-of-distribution generalization
problem in VQA, they were later demonstrated to
overfit the unique properties of this dataset (Teney
et al., 2020). Moreover, no measures for robustness
to distribution shifts have been proposed.

In this work we propose a consistency-based
measure that can indicate on the robustness of VQA
models to distribution shifts. Our robustness mea-
sure is based on counterfactual data augmentations
(CADs), which were shown useful for both training
(Kaushik et al., 2019) and evaluation (Garg et al.,
2019; Agarwal et al., 2020). CADs are aimed at
manipulating a specific property while preserving
all other information, allowing us to evaluate the
robustness of the model to changes to this property.

For example, consider transforming a “what
color” question to a “yes/no” question, as depicted
in Figure 1. The counterfactual reasoning for such
a transformation is: “what would be the question
if it had a yes/no answer?”. While VQA models
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have seen many of both question types, their com-
bination (yes/no questions about color) has been
scarcely seen. If a model errs on such a combi-
nation, this suggests that to answer the original
question correctly, the model uses a spurious signal
such as the correlation between the appearance of
the word “color” in the question and a particular
color in the answer (e.g. here, color = white). Fur-
ther, this example shows that some models cannot
even identify that they are being asked a “yes/no”
question, distracted by the word “color” in the aug-
mented question and answering “green”.

Our robustness measure is named RAD: Robust-
ness to (counterfactually) Augmented Data (Sec-
tion 2.1). RAD receives (image, question, answer)
triplets, each augmented with a triplet where the
question and answer were manipulated. It mea-
sures the consistency of model predictions when
changing a triplet to its augmentation, i.e., the ro-
bustness of the model to (counterfactual) augmen-
tations. We show that using RAD with focused in-
terventions may uncover substantial weaknesses to
specific phenomenon (Section 3.2), namely, users
are encouraged to precisely define their interven-
tions such that they create counterfactual augmen-
tations. As a result, pairing RAD values with accu-
racy gives a better description of model behavior.

In general, to effectively choose a model in com-
plex tasks, complementary measures are required
(D’Amour et al., 2020). Thus, it is important to
have interpretable measures that are widely appli-
cable. Note that in this work we manipulate only
textual inputs - questions and answers, but RAD
can be applied to any dataset for which augmenta-
tions are available. In particular, exploring visual
augmentations would be beneficial for the analy-
sis of VQA systems. Further, representation-level
counterfactual augmentations are also valid, which
is useful when generating meaningful counterfac-
tual text is difficult (Feder et al., 2020).

Our augmentations (CADs) are generated semi-
automatically (Section 2.2), allowing us to directly
intervene on a property of choice through sim-
ple templates. As in the above example, our aug-
mentations are based on compositions of two fre-
quent properties in the data (e.g., “what color”
and “yes/no” questions), while their combination
is scarce. Intuitively, we would expect a model
with good generalization capacities to properly han-
dle such augmentations. While this approach can
promise coverage of only a subset of the examples
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in the VQA and VQA-CP datasets, it allows us to
control the sources of the model’s prediction errors.

We conduct extensive experiments and report
three key findings. First, for three datasets, VQA,
VQA-CP, and VisDial (Das et al., 2017), models
with seemingly similar accuracy are very different
in terms of robustness, when considering RAD with
our CADs (Section 3). Second, we show that RAD
with alternative augmentation methods, which pri-
oritize coverage over focused intervention, cannot
reveal the robustness differences. Finally, we show
that measuring robustness using RAD with our
CADs predicts the accuracy of VQA models on
unseen augmentations, establishing the connection
between robustness to our controlled augmenta-
tions and generalization (Section 4).

2 Robustness to Counterfactuals

In this section, we first present RAD (Section 2.1),
which measures model consistency on question-
answer pairs and their augmented modifications.
Then, we describe our template-based CAD gener-
ation approach (Section 2.2), designed to provide
control over the augmentation process.

2.1 Model Robustness

We denote a VQA dataset with U
{(xy,zq,y) €V x Q x Y}, where z, is an
image, x, is a question and y is an answer.
We consider a subset D C U for which we
can generate augmentations. For an example
(v, 4,y) € D, we denote an augmented example
as (wy,7g,y’) € D'. In this paper we generate
a single augmentation for each example in D,
resulting in a one-to-one correspondence between
D and the dataset of modified examples D’. We
further define J(D; f) as the set of example
indices for which a model f correctly predicts y
given x, and z,.

RAD assesses the proportion of correctly an-
swered modified questions, among correctly an-
swered original questions, and is defined as,

_ J(D; f)n (D f)]
/(D f)]

Note that RAD is in [0, 1] and the higher the RAD
of f is, the more robust f is.

As original examples and their augmentations
may differ in terms of their difficulty to the model,
it is important to maintain symmetry between D
and D’. We hence also consider the backward view

RAD(D, D'; f) (1



of RAD, defined as RAD(D’, D; f). For exam-
ple, “yes/no” VQA questions are easier to answer
compared to “what color” questions, as the former
have two possible answers while the latter have as
many as eight. Indeed, state-of-the-art VQA mod-
els are much more accurate on yes/no questions
compared to other question types (Yu et al., 2019).
Hence, if “what color” questions are augmented
with “yes/no” counterfactuals, we would not expect
RAD(D/, D; f) = 1 as generalizing from “yes/no”
questions (D) to “what color” questions (D) re-
quires additional reasoning capabilities.

RAD is not dependant on the accuracy of the
model on the test set. A model may perform poorly
overall but be very consistent on questions that it
has answered correctly. Conversely, a model that
demonstrates seemingly high performance may be
achieving this by exploiting many dataset biases
and be very inconsistent on similar questions.

2.2 Counterfactual Augmentations

In the VQA dataset there are three answer types:
“yes/no”, “number” (e.g., ‘2’, ‘0’) and “other” (e.g.,
‘red’, ‘tennis’), and 65 question types (e.g., “what
color”, “how many”, “what sport”). In our aug-
mentations, we generate “yes/no” questions from
“number” and “other” questions.

For example, consider the question-answer pair
“What color is the vehicle? Red”, this question-
answer pair can be easily transformed into “Is the
color of the vehicle red? Yes”. In general, “what
color” questions can be represented by the tem-
plate: “What color is the <Subj>? <Color>". To
generate a new question, we first identify the sub-
ject (<Subj>) for every “what color” question, and
then integrate it into the template “Is the color of
the <Subj> <Color>? Yes”. As the model was ex-
posed to both “what color” and “yes/no* questions,
we expect it to correctly answer the augmented
question given that it correctly answers the original.
Yet, this augmentation requires some generaliza-
tion capacity because the VQA dataset contains
very few yes/no questions about color.

Our templates are presented in Table 1 (see Ta-
ble 6 in the appendix for some realizations). The
augmentations are counterfactual since we inter-
vene on the question type, a prior that many VQA
systems exploit (Goyal et al., 2017), keeping every-
thing else equal. The generation process is semi-
automatic, as we had to first manually specify tem-
plates that would yield augmented questions that
we can expect the model to answer correctly given
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Original Augmented

Y/N «~ C What color is the s the color of the <S>
<§>? <CI> <C2>7? Yes/No

Y/N+~HM How many <S>? Are there <N2> <S§>?
<NI> Yes/No

Y/N « WK  Whatkind of <§> Is this <§> <02>?
is this? <OI1> Yes/No

Table 1: Our proposed template-based augmentations.

that it succeeds on the original question.

To achieve this goal, we apply two criteria: (a)
The template should generate a grammatical En-
glish question; and (b) The generated question type
should be included in the dataset, but not in ques-
tions that address the same semantic property as the
original question. Indeed, yes/no questions are fre-
quent in the VQA datasets, but few of them address
color (first template), number of objects (second
template), and object types (third template). When
both criteria are fulfilled, it is reasonable to expect
the model to generalize from its training set to the
new question type.

Criterion (a) led us to focus on yes/no questions
since other transformations required manual verifi-
cation for output grammaticality. While we could
have employed augmentation templates from addi-
tional question types into yes/no questions, we be-
lieve that our three templates are sufficient for eval-
uating model robustness. Overall, our templates
cover 11% of the VQA examples (Section 3.1).

3 Robustness with RAD and CADs

In the following, we perform experiments to test
the robustness of VQA models to augmentations.
We describe the experimental setup, and evaluate
VQAv2, VQA-CPv2, VisDial models, each on our
augmentations and on other alternatives.’

3.1 Experimental Setup

Baseline Augmentations We compare our aug-
mentations to three alternatives: VQA-Rephrasings
(Reph, Shah et al., 2019), ConVQA (Ray et al.,
2019), and back-translation (BT, Sennrich et al.,
2016). VQA-Rephrasings is a manual generation
method, where annotators augment each valida-
tion question with three re-phrasings. ConVQA
is divided into the L-ConVQA and CS-ConVQA
subsets. In both subsets, original validation exam-
ples are augmented to create new question-answer
pairs. L-ConVQA is automatically generated based

>The URLs of the software and datasets, and the imple-
mentation details are all provided in Appendices C and D.



RAD(D, D') (%)

Dataset ~ Model\D’ Acc.
YN«<C YN«<HM Y/N«+«WK BT Reph L-ConVQA CS-ConVQA
RUBI 64.92 57.15 62.59 85.57 T77.73 78.02 65.93 46.66
VQA-CP LMH 1.01 22.82 50.10 83.68 175.04 64.54 50.65 53.72
CSS 0.94 11.73 39.95 77.54 68.89 10.67 38.64 58.47
BUTD 67.15 58.68 78.59 87.43 79.28 75.78 70.19 63.09
VQA BAN 74.40 62.45 82.51 88.17 81.14 79.37 70.18 65.92
Pythia 65.00 60.61 81.60 88.42 82.86 77.02 69.45 64.56
VisualBERT 79.99 68.29 85.98 88.52 84.09 82.09 71.75 65.62
VisDial FGA 31.36 57.69 - 91.42 - - - 53.07
VisDialBERT 62.08 56.06 - 94.04 - - - 55.78

Table 2: RAD over our proposed augmentations (Y/N « C, Y/N « HM, Y/N « WK) and alternatives (BT, Reph,
ConVQA). The rows correspond to state-of-the-art models on VQA-CP (top), VQA (middle) and Visual Dialog
(bottom). Reph and ConVQA were not created for VisDial, and it does not have “what kind” questions. The last

column corresponds to validation accuracy.

Accuracy (D) (%)

Dataset ~ Model\D’
YN«C YN«<HM Y/N+<WK BT Reph L-ConVQA CS-ConVQA
RUBI 65.85 17.35 44.14 45.80 46.51 72.14 66.67
VQA-CP LMH 68.87 44.24 50.58 52.35 53.78 65.07 61.76
CSS 72.87 63.16 51.83 56.37 58.81 49.84 56.12
BUTD 79.44 54.43 63.49 60.37 62.23 75.05 62.42
VOA BAN 80.72 62.37 66.48 63.02 64.81 74.94 65.01
Pythia 81.62 57.49 64.42 61.69 63.88 74.55 63.79
VisualBERT 80.85 58.89 64.46 62.71 64.96 76.50 66.01
VisDial FGA 55.62 40.00 61.53 - - -
VisDialBERT  68.99 50.77 63.47 - - -

Table 3: Original accuracy over our proposed augmentations (Y/N « C, Y/N « HM, Y/N « WK) and alternatives
(BT, Reph, ConVQA). The rows correspond to state-of-the-art models on VQA-CP (top), VQA (middle) and Visual
Dialog (bottom). Reph and ConVQA were not created for VisDial, and it does not have “what kind” questions.

on scene graphs attached to each image, and CS-
ConVQA is manually generated by annotators. Fi-
nally, back-translation, translating to another lan-
guage and back, is a high-coverage although low-
quality approach to text augmentation. It was used
during training and shown to improve NLP models
(Sennrich et al., 2016), but was not considered in
VQA. We use English-German translations.

Models The VQA-CP models we consider are
RUBI (Cadene et al., 2019), LMH (Clark et al.,
2019) and CSS (Chen et al., 2020). The VQA mod-
els we consider are BUTD (Anderson et al., 2018),
BAN (Kim et al., 2018), Pythia (Jiang et al., 2018)
and VisualBERT (Li et al., 2019). For VisDial
we use FGA (Schwartz et al., 2019) and VisDial-
BERT (Murahari et al., 2020). We trained all the
models using their official implementations.

3.2 Results

Table 2 presents our main results. RAD values for
all of our augmentations are substantially lower
than those of the alternatives, supporting the value

64

of our focused intervention approach for measur-
ing robustness. The high RAD values for BT and
Reph might indicate that VQA models are indeed
robust to linguistic variation, as long as the answer
does not change. Interestingly, our augmentations
also reveal that VQA-CP models are less robust
than VQA models. This suggests that despite the
attempt to design more robust models, VQA-CP
models still overfit their training data.

In VQA-CP, RUBI has the lowest accuracy per-
formance in terms of its validation accuracy, even
though it is more robust to augmentations com-
pared with LMH and CSS. For VQA models, in
contrast, BUTD has the lowest RAD scores on our
augmentations and the lowest accuracy. Visual-
BERT, the only model that utilizes contextual word
embeddings, demonstrates the highest robustness
among the VQA models.

Finally, while both VisDial models have simi-
lar accuracy, they have significantly different RAD
scores on our augmentations. Specifically, VisDi-
alBERT performs better than FGA on Y/N « C



augmentations. This is another indication of the
value of our approach as it can help distinguish
between two seemingly very similar models.

Complementary to the RAD values in Table 2
we also provide accuracies on original questions in
Table 3. Note that across all the original questions,
except ConVQA questions, RUBI has the lowest
accuracy while CSS has the highest accuracy. This
trend is reversed when looking at RAD scores -
CSS has the lowest score while RUBI has the high-
est score. This emphasizes the importance of RAD
as a complementary metric, since considering only
accuracy in this case would be misleading. Namely,
RAD provides additional critical information for
model selection.

4 Measuring Generalization with RAD

To establish the connection between RAD and gen-
eralization, we design experiments to demonstrate
RAD’s added value in predicting model accuracy
on unseen modified examples. Concretely, we gen-
erate 45 BUTD (VQA) and LMH (VQA-CP) in-
stances, differing by the distribution of question
types observed during training (for each model in-
stance we drop between 10% and 99% of each of
the question types “what color”, “how many” and
“what kind” from its training data; see Appendix E
for exact implementation details). For each of the
above models we calculate RAD values and accu-
racies in the following manner.

We split the validation set into two parts: D
(features) and T (target). Consider a pool of four
original question sets that are taken from their cor-
responding modifications: Y/N « C, Y/N « HM,
Y/N « WK, Reph. Then we have four possible
configurations in which D is three sets from the
pool and 7 is the remaining set. For each model
and for each configuration, we compute model ac-
curacy on D (Accuracy(D)) and on the modifi-
cations of questions in 7 (the predicted variable
y(T) = Accuracy (7)) which are modified with
the target augmentation of the experiment. We
also compute the RAD values of the model on the
modified questions in D which are generated us-
ing the other three augmentations (RAD(D, D’),
and RAD(D’, D)). Then, we train a linear regres-
sion model using Accuracy(D), RAD(D, D),
and RAD(D’, D), trying to predict (7). We per-
form this experiment four times, each using a differ-
ent configuration (different augmentation type as
our target), and average across the configurations.
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R2

Features\Model =~

LMH
Accuracy (D),
RAD(D,D'),  0.917 +0.117
RAD(D', D)
Accuracy(D)  0.829 + 0.237
RAD(D,D') 0.899 £0.133
RAD(D',D)  0.849 +0.213

Table 4: Linear regression experiments, predicting ac-
curacy performance on unseen augmentation types.

Results Table 4 presents the average R? values
and standard deviations over the four experiments.
RAD improves the R? when used alongside the
validation accuracy. Interestingly, a model’s accu-
racy on one set of augmentations does not always
generalize to other, unseen augmentations. Only
when adding RAD to the regression model are we
able to identify a robust model. Notably, for LMH
the usefulness of RAD is significant, as it improves
the R? by 11%. It also predicts performance bet-
ter than validation accuracy when used without it
in the regression. The standard deviations further
confirm that the above claims hold over all configu-
rations. These observations hold when running the
same experiment with respect to the BUTD model,
however, the improvements are smaller since the
regression task is much easier with respect to this
model (R? of 0.995 with all features).

5 Conclusion

We proposed RAD, a new measure that penalizes
models for inconsistent predictions over data aug-
mentations. We used it to show that state-of-the-
art VQA models fail on CADs that we would ex-
pect them to properly address. Moreover, we have
demonstrated the value of our CADs by showing
that alternative augmentation methods cannot iden-
tify robustness differences as effectively. Finally,
we have shown that RAD is predictive of general-
ization to unseen augmentation types.

We believe that the RAD measure brings substan-
tial value to model evaluation and consequently to
model selection. It encourages the good practice
of testing on augmented data, which was shown to
uncover considerable model weaknesses in NLP
(Ribeiro et al., 2020). Further, given visual augmen-
tations, which we plan to explore in future work,
or linguistic augmentations, RAD is applicable to
any classification task, providing researchers with
meaningful indications of robustness.



References

Vedika Agarwal, Rakshith Shetty, and Mario Fritz.
2020. Towards causal vqa: Revealing and reducing
spurious correlations by invariant and covariant se-
mantic editing. In CVPR.

Aishwarya Agrawal, Dhruv Batra, Devi Parikh, and
Aniruddha Kembhavi. 2018. Don’t just assume;
look and answer: Overcoming priors for visual ques-
tion answering. In CVPR.

Peter Anderson, Xiaodong He, Chris Buehler, Damien
Teney, Mark Johnson, Stephen Gould, and Lei
Zhang. 2018. Bottom-up and top-down attention for
image captioning and visual question answering. In
CVPR.

Stanislaw Antol, Aishwarya Agrawal, Jiasen Lu, Mar-
garet Mitchell, Dhruv Batra, C Lawrence Zitnick,
and Devi Parikh. 2015. Vqa: Visual question an-
swering. In ICCV.

Remi Cadene, Corentin Dancette, Matthieu Cord, Devi
Parikh, et al. 2019. Rubi: Reducing unimodal biases
for visual question answering. In NeurIPS.

Long Chen, Xin Yan, Jun Xiao, Hanwang Zhang, Shil-
iang Pu, and Yueting Zhuang. 2020. Counterfactual
samples synthesizing for robust visual question an-
swering. In CVPR.

Christopher Clark, Mark Yatskar, and Luke Zettle-
moyer. 2019. Don’t take the easy way out: En-
semble based methods for avoiding known dataset
biases. In EMNLP.

Alexander D’ Amour, Katherine Heller, Dan Moldovan,
Ben Adlam, Babak Alipanahi, Alex Beutel,
Christina Chen, Jonathan Deaton, Jacob Eisen-
stein, Matthew D. Hoffman, Farhad Hormozdiari,
Neil Houlsby, Shaobo Hou, Ghassen Jerfel, Alan
Karthikesalingam, Mario Lucic, Yian Ma, Cory
McLean, Diana Mincu, Akinori Mitani, Andrea
Montanari, Zachary Nado, Vivek Natarajan, Christo-
pher Nielson, Thomas F. Osborne, Rajiv Raman,
Kim Ramasamy, Rory Sayres, Jessica Schrouff, Mar-
tin Seneviratne, Shannon Sequeira, Harini Suresh,
Victor Veitch, Max Vladymyrov, Xuezhi Wang, Kel-
lie Webster, Steve Yadlowsky, Taedong Yun, Xiao-
hua Zhai, and D. Sculley. 2020. Underspecification
presents challenges for credibility in modern ma-
chine learning. arXiv preprint arXiv:2011.03395.

Abhishek Das, Satwik Kottur, Khushi Gupta, Avi
Singh, Deshraj Yadav, Jos¢ MF Moura, Devi Parikh,
and Dhruv Batra. 2017. Visual dialog. In CVPR.

Amir Feder, Nadav Oved, Uri Shalit, and Roi Reichart.
2020. Causalm: Causal model explanation through
counterfactual language models. arXiv preprint
arXiv:2005.13407.

Akira Fukui, Dong Huk Park, Daylen Yang, Anna
Rohrbach, Trevor Darrell, and Marcus Rohrbach.

66

2016. Multimodal compact bilinear pooling for vi-
sual question answering and visual grounding. In
EMNLP.

Sahaj Garg, Vincent Perot, Nicole Limtiaco, Ankur
Taly, Ed H Chi, and Alex Beutel. 2019. Counterfac-
tual fairness in text classification through robustness.
In AAAL

Itai Gat, Idan Schwartz, Alexander Schwing, and Tamir
Hazan. 2020. Removing bias in multi-modal classi-
fiers: Regularization by maximizing functional en-
tropies. In NeurlIPS.

Yash Goyal, Tejas Khot, Douglas Summers-Stay,
Dhruv Batra, and Devi Parikh. 2017. Making the
v in vqa matter: Elevating the role of image under-
standing in visual question answering. In CVPR.

Matthew Honnibal, Ines Montani, Sofie Van Lan-
deghem, and Adriane Boyd. 2020. spaCy:
Industrial-strength Natural Language Processing in
Python.

Yu Jiang, Vivek Natarajan, Xinlei Chen, Marcus
Rohrbach, Dhruv Batra, and Devi Parikh. 2018.
Pythia v0. 1: the winning entry to the vqa challenge
2018. arXiv preprint arXiv:1807.09956.

Kushal Kafle, Robik Shrestha, and Christopher Kanan.
2019. Challenges and prospects in vision and lan-
guage research. Frontiers in Artificial Intelligence.

Divyansh Kaushik, Eduard Hovy, and Zachary Lipton.
2019. Learning the difference that makes a dif-
ference with counterfactually-augmented data. In
ICLR.

Jin-Hwa Kim, Jaehyun Jun, and Byoung-Tak Zhang.
2018. Bilinear attention networks. In NeurIPS.

Liunian Harold Li, Mark Yatskar, Da Yin, Cho-Jui
Hsieh, and Kai-Wei Chang. 2019. Visualbert: A
simple and performant baseline for vision and lan-
guage. arXiv preprint arXiv:1908.03557.

Jiasen Lu, Jianwei Yang, Dhruv Batra, and Devi Parikh.
2016. Hierarchical question-image co-attention for
visual question answering. In NeurIPS.

Vishvak Murahari, Dhruv Batra, Devi Parikh, and Ab-
hishek Das. 2020. Large-scale pretraining for visual
dialog: A simple state-of-the-art baseline. In ECCV.

Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca
Antiga, Alban Desmaison, Andreas Kopf, Edward
Yang, Zachary DeVito, Martin Raison, Alykhan Te-
jani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang,
Junjie Bai, and Soumith Chintala. 2019. Pytorch:
An imperative style, high-performance deep learn-
ing library. In NuerIPS.



Arijit Ray, Karan Sikka, Ajay Divakaran, Stefan Lee,
and Giedrius Burachas. 2019. Sunny and dark out-
side?! improving answer consistency in vqa through
entailed question generation. In EMNLP.

Marco Tulio Ribeiro, Tongshuang Wu, Carlos Guestrin,
and Sameer Singh. 2020. Beyond accuracy: Behav-
ioral testing of nlp models with checklist. In ACL.

Idan Schwartz, Seunghak Yu, Tamir Hazan, and
Alexander G Schwing. 2019. Factor graph attention.
In CVPR.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Improving neural machine translation models
with monolingual data. In ACL.

Meet Shah, Xinlei Chen, Marcus Rohrbach, and Devi
Parikh. 2019. Cycle-consistency for robust visual
question answering. In CVPR.

Amanpreet Singh, Vedanuj Goswami, Vivek Natara-
jan, Yu Jiang, Xinlei Chen, Meet Shah, Marcus
Rohrbach, Dhruv Batra, and Devi Parikh. 2020.
Mmf: A multimodal framework for vision and lan-
guage research. https://github.com/faceboo
kresearch/mmf.

Damien Teney, Kushal Kafle, Robik Shrestha, Ehsan
Abbasnejad, Christopher Kanan, and Anton van den
Hengel. 2020. On the value of out-of-distribution
testing: An example of goodhart’s law. NeurIPS.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtow-
icz, Joe Davison, Sam Shleifer, Patrick von Platen,
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame,
Quentin Lhoest, and Alexander M. Rush. 2020.
Transformers: State-of-the-art natural language pro-
cessing. In EMNLP.

Zichao Yang, Xiaodong He, Jianfeng Gao, Li Deng,
and Alex Smola. 2016. Stacked attention networks
for image question answering. In CVPR.

Zhou Yu, Jun Yu, Yuhao Cui, Dacheng Tao, and
Qi Tian. 2019. Deep modular co-attention networks
for visual question answering. In CVPR.

67



A Dataset Statistics

Please see Table 5 for the number of examples
in each dataset that we use (VQA, VQA-CP and
VisDial). We also report the number of augmenta-
tions we produce for each of our three augmenta-
tion types (Y/N « C, Y/N « HM and Y/N « WK),
alongside previous augmentation approaches used
in our experiments (BT, Reph, L-ConVQA and
CS-ConVQA).

B Our Augmentations

We describe the manual steps required to meet the
desired standard for each augmentation type. For
Y/N « C, we filter out questions that start with
“What color is the”. For Y/N « HM, we use ques-
tions that starts with “How many”. For Y/N « WK,
we consider questions that match the pattern “What
kind of <S> is this? <OI>". Table 6 presents sev-
eral realizations of the templates we define (see
Section 2.2 for a discussion of these templates).

In Y/N « HM, we ensure that when the answer
is ‘1’, we use “Is there ...” instead of “Are there ...”.
We also ensure that the subsequent word to “How
many” is a noun. We verify it is a noun using the
part-of-speech tagger available through the spaCy
library (Honnibal et al., 2020).

We allow the generation of both ‘yes’ and ‘no’
answers. Creating a modified question that is an-
swered with a ‘yes’ requires a simple permutation
of words in the original question-answer pair, e.g.,
for Y/N « C, take “<CI>" = “<(C2>" (see Table 1).
Similarly, to generate a question that should be an-
swered with a ‘no’, we repeat the above process and
change “<C2>”. In this case, we randomly pick an
answer and replace it with the original answer with
probability weighted with respect to the frequency
in the data, among the pool of possible answers for
the given augmentation type. When generating a
new question, we first randomly decide whether to
generate a ‘yes’ or ‘no’ question (with a probability
of 0.5 for each). Then, for example, if we choose
to generate a ‘no’, and “<CI>" = “red”, we have a
63% chance of having “<C2>" = “blue”.

C URLs of Data and Code
Data We consider three VQA datasets:

e The VQAV2 dataset (Goyal et al., 2017): nt
tps://visualga.org/.

e The VQA-CPv2 dataset (Agrawal et al.,
2018): https://www.cc.gatech.edu/gr
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ads/a/aagrawal307/vga-cp/.

e The VisDial dataset (Das et al., 2017): https:
//visualdialog.org/

We also consider three previous augmentation
methods:

o VQA-Rephrasings (Shah et al., 2019): https:
//facebookresearch.github.io/VQA-Rep

hrasings/.

ConVQA (Ray et al., 2019): https://arij
itrayl993.github.io/ConVQA/.

Back-translations (Sennrich et al., 2016). We
have generated these utilizing the transformers
library (Wolf et al., 2020), https://github
.com/huggingface/transformers.SpeCﬂP
cally, we used two pre-trained translation mod-
els, English to German, and German to En-
gﬁsh:https://huggingface.co/Helsink
1-NLP/opus—-mt—en-de, https://huggingf

ace.co/Helsinki-NLP/opus-mt—-de—en

Models We consider nine models, where each
model’s code was taken from the official imple-
mentation. All implementations are via PyTorch
(Paszke et al., 2019).

The three VQA-CPv2 models:

RUBI (Cadene et al., 2019): nttps://gith
ub.com/cdancette/rubi.bootstrap.pyto

rch.

LMH (Clark et al., 2019): https://github
.com/chrisc36/bottom-up-attention-vq

a.

CSS (Chen et al., 2020): https://github.c
om/yanxinzju/CSS-VQA.

The four VQAv2 models:

BUTD (Anderson et al., 2018): nttps://gi
thub.com/hengyuan-hu/bottom-up-atten
tion-vga.

BAN (Kim et al., 2018): nttps://github.c
om/jnhwkim/ban-vga.

Pythia (Jiang et al., 2018): Using the imple-
mentation in the MMF library (Singh et al.,
2020), nttps://github.com/facebookres

earch/mmf.

Visual BERT (Li et al., 2019): Using the im-
plementation in the MMF library.

And the two VisDial models:



Augmentation Count

Dataset Validation
YN«C Y/N«HM Y/N«WK BT Reph L-ConVQA CS-ConVQA Count
VQA-CP 12,910 13,437 1,346 149,329 39,936 127,924 423 219,928
VQA 12,835 10,233 1,654 138,043 121,512 127,924 1,365 214,354
VisDial 516 130 - 1,136 - - 20,640

Table 5: Number of examples in each of the datasets we use.

Yes/No <« Colors Yes/No <— How Many

Yes/No < What Kind

What color is the cat? White
Is the color of the cat white? Yes

How many athletes are on the field? 5
Are there five athletes on the field? Yes

‘What kind of food is this? Breakfast
Is this food breakfast? Yes

What color is the court? Green
Is the color of the court green? Yes

How many dogs are in the picture? 3
Are there two dogs in the picture? No

What kind of event is this? Skiing
Is this a skiing event? Yes

What color is the vase? Blue
Is the color of the vase red? No

How many giraffes are walking around? 2
Are there four giraffes walking around? No

What kind of animal is this? Cow

Is this animal an elephant? No

What color is the man’s hat? Red
Is the color of the man’s hat red? Yes

How many cakes are on the table? 0
Is there one cake on the table? No

What kind of building is this? Church
Is this building a church? Yes

What color is the sky? Blue
Is the color of the sky blue? Yes

How many dogs? 1
Are there zero dogs? No

What kind of floor is this? Wood
Is this a wood floor? Yes

Table 6: Some realizations of our templates (defined in Table 1). The black text (top) is the original question-answer
pair and the blue text (bottom) is the corresponding augmented question-answer pair.

e FGA (Schwartz et al., 2019): https://gith

ub.com/idansc/fga.

e VisDialBERT (Murahari et al., 2020): https:

//github.com/vmurahari3/visdial-bert.

D Model Settings

We have trained the VQAvV2 and the VQA-CPv2
models that we use, as pre-trained weights were
not available for our requirements. For our eval-
uations, we require a model that is trained solely
on the VQAV?2 train set, such that we match the
VQA-CPv2 settings, where there are only two sets,
train and validation. In contrast, pre-trained models
that are built for VQAV2 are trained on the VQAv2
training set and on the VQAv2 validation set to-
gether, as the dataset contains a third development
set that is commonly used for validation.

We have trained six VQA models using the de-
fault hyper-parameters from their official imple-
mentations (URLs in Appendix C): RUBi, LMH,
CSS, BUTD, BAN and Pythia. We trained the
above models on a single Nvidia GeForce RTX
2080 Ti GPU, when the training time for each of
the models was less than 12 hours. In addition,
inference in this setting took less than an hour for
all models.

The VisualBERT model is more computationally
intensive, and we had to reduce the default batch
size from 480 to 54 to fit it on our resources. Us-
ing three Nvidia GeForce RTX 2080 Ti GPUs for
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Visual BERT, training took 36 hours and inference
took 4 hours.

For the VisDial models, FGA, and VisDialBERT,
we have downloaded the pre-trained weights and
used them solely for inference. On a single Nvidia
GeForce RTX 2080 Ti GPU, inference took 15
minutes for FGA, and 8 hours for VisDialBERT.

All the models we consider have less than 200M
parameters.

When accuracies are reported on VQAv2 and
on VQA-CP (Tables 2 and 3) we use the VQA-
accuracy metric (Antol et al., 2015). For VisDial
we use the standard accuracy metric (denoted orig-
inally as R@1).

E Regression Experiments

We generate 45 BUTD (VQA) instances and 45
LMH (VQA-CP) instances. To generate different
model instances, we create 45 new training sets
by removing examples from the original train set.
For each of the three question types, “what color”,
“how many” and “what kind”, we remove the fol-
lowing 15 percentage values of examples from the
original train set: [10%, 20%, 30%, 40%, 50%,
60%, 70%, 80%, 90%, 92%, 95%, 96%, 97%, 98%,
99%], resulting in 45 new training sets. Then, each
model instance is created by training on one of the
45 training sets.

We split the validation set into two parts: D and
T. D is used to calculate the features in our linear



regression model. We denote with D} the ques-
tions in D that can be modified using the Y/N « C
augmentation, after these questions were modified.
Similarly, we define D5, D5, and D) for Y/N «
HM, Y/N « WK, and Reph, respectively.

We average the R? of four linear regression
experiments, when in each experiment we set a
different i (i € {1,2,3,4}) for which T = D;
and use the remaining three templates to calculate
our features. We denote the regression features
with 1 = Accuracy(D), z2 = RAD(D,D’),
and x3 = RAD(D’, D), where RAD(D, D’) and
RAD(D’/, D) are computed with respect to the
three other templates (j € {1,2,3,4},j # ). The
predicted label is y(7") = Accuracy (7).

Thus the equation for our regression is:

y(T) = bizy + baxg + baxz + €.

We also perform three regression experiment for
each feature alone:

y(T):b$k+67 k:17273>

and compare the results of these experiments in
Table 4.
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Abstract

Existing approaches for the Table-to-Text task
suffer from issues such as missing information,
hallucination and repetition. Many approaches
to this problem use Reinforcement Learning
(RL), which maximizes a single manually de-
fined reward, such as BLEU. In this work, we
instead pose the Table-to-Text task as Inverse
Reinforcement Learning (IRL) problem. We
explore using multiple interpretable unsuper-
vised reward components that are combined
linearly to form a composite reward function.
The composite reward function and the de-
scription generator are learned jointly. We
find that IRL outperforms strong RL baselines
marginally. We further study the generaliza-
tion of learned IRL rewards in scenarios in-
volving domain adaptation. Our experiments
reveal significant challenges in using IRL for
this task.

1 Introduction

Table-to-Text generation focuses on explaining tab-
ular data in natural language. This is increasingly
relevant due to the vast amounts of tabular data cre-
ated in domains including e-commerce, healthcare
and industry (for example, infoboxes in Wikipedia,
tabular product descriptions in online shopping
sites, etc.). Table-to-Text can make data easily
accessible to non-experts and can automate certain
pipelines like auto-generation of product descrip-
tions. Traditional methods approached the general
problem of converting structured data to text using
slot-filling techniques (Kukich, 1983; Reiter and
Dale, 2000; McKeown, 1992; Cawsey et al., 1997,
Konstas and Lapata, 2013; Flanigan et al., 2016).
While recent advances in data-to-text generation
using neural networks (Sutskever et al., 2011; Mei
et al., 2015; Gardent et al., 2017; Wiseman et al.,
2017; Song et al., 2018; Zhao et al., 2020) have

* Authors contributed equally.

71

led to improved fluency, current systems still suf-
fer from issues such as lack of coverage (where
the generated text misses information present in
the source), repetition (where the generated text
repeats information) and hallucination (where the
generated text asserts information not present in
the source)(Lee et al., 2019). A significant reason
for these issues is that models often lack explicit
inductive biases to avoid these problems. Most
extant approaches utilize Reinforcement Learning-
based (RL) training, using a single reward (such
as BLEU or task-specific rewards) that optimizes
for a specific aspect. For example, Liu et al. (2019)
and Nishino et al. (2020) use domain-specific re-
wards to improve the accuracy of medical report
generation.

However, defining a single reward that addresses
all of the above-described issues is difficult. To
use multiple reward components with RL, one
has to manually find an optimal set of weights of
each component either through a trial-and-error
approach or expensive grid search which gets infea-
sible as the number of such reward components in-
creases. Inverse Reinforcement Learning (Abbeel
and Ng, 2004; Ratliff et al., 2006; Ziebart et al.,
2008) can be a natural approach for this task since
it can learn an underlying composite reward func-
tion from labeled examples incorporating multiple
rewards. Motivated by existing applications of IRL
in other domains and tasks (Finn et al., 2016; Fu
etal., 2017; Shi et al., 2018), we explore its utility
for Table-to-Text generation. We diverge from pre-
vious work on IRL in designing a set of intuitive
and interpretable reward components that are lin-
early combined to get the reward function. Figure
1 illustrates the overall idea of this work. We learn
a “Description Generator” (also referred as policy
later) to generate descriptions given a table. The
IRL framework includes “Reward Approximator”
that leverages the “expert” or the ground-truth de-
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Update

Expert Description: Approximator

Asgar ( born 27 March 1960 ) is a
retired footballer ...

Table: Reward Approximator

Slot Type | Row | Slot Value Reconstruction

Name 1
DOB 2

Asgar
27 March 1960
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Figure 1: We frame the Table-to-Text task under In-
verse Reinforcement Learning framework using multi-
ple reward components

scriptions corresponding to tables to jointly learn

the underlying composite reward function combin-

ing multiple reward components such as “Recall”,

“Fluency”, etc. This composite reward function

quantifies the quality of the generated descriptions.

We see IRL performs at par with RL baselines. For

investigating when IRL helps and when it does

not, we conduct experiments to evaluate general-
ization capabilities of IRL in limited data setting
and identify challenges involved in IRL training.

Our contributions are:

* We formulate a set of interpretable reward com-
ponents and learn the composite linear reward
function in a data-driven manner for Table-to-
Text generation'.

* We study the utility of IRL for Table-to-Text
generation.

2 Method

The training data for this task consists of pairs of
tables and corresponding natural language descrip-
tions, as shown in Figure 1. A table 7' is a sequence
of tuples of slot types (e.g. “Name”) and slot val-
ues (e.g. “Asgar”) and let D denote the expert
description. We formulate the “Table-to-Text” task
as generating D from source table 7'. In the rest
of this section, we first explain how to formulate
Table-to-Text under the IRL framework, followed
by the formulation of the reward components and
a brief description of the text generation network

'Code and dataset splits for the paper are pro-
vided in https://github.com/issacgzh/IRL_
Table2Text
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that is at the core of our method.

2.1 Table-to-Text as IRL

We pose Table-to-Text under the IRL framework
where we aim to jointly learn a policy for generat-
ing description from the table and the underlying
composite reward function. At the core of our ap-
proach, we have a neural description generator that
we adapt from Wang et al. (2018). The description
generator is first trained using maximum likelihood
estimation (MLE) followed by fine-tuning it using
Maximum Entropy Inverse Reinforcement Learn-
ing (MaxEnt IRL) (Ziebart et al., 2008). Under
the MaxEnt IRL framework, we iteratively perform
two steps: (1) approximate the underlying com-
posite reward function by leveraging the expert
descriptions and the current policy for description
generation; (2) Using the updated reward function,
we update the current policy for description gener-
ation using RL. In this work, we model the com-
posite reward R, (D) as a linear combination of
multiple reward components.

Ry(D) =Y ¢C" (1
t=1

where ¢ is a weight vector, C? is the vector of
reward component values at step ¢ in a generated
description and 7 denotes total steps.

Following the MaxEnt IRL paradigm, we as-
sume the expert descriptions come from a log-
linear distribution (pg (D)) on reward values. The
objective of the reward approximator (J,(¢)) is
to maximize the likelihood of the expert descrip-
tions. The partition function for this distribution
(py(D)) is approximated by using importance sam-
pling from the learned description generation pol-
icy. For sake of brevity, we skip the mathematical
derivation here. Please refer to Appendix A.1 for
detailed derivation. We draw N expert descriptions
and M descriptions from the learned policy. The
gradient of the objective (J,(¢)) w.r.t. reward func-
tion parameters ¢ is then the difference between
the expected expert reward and expected reward
obtained by the policy (Ziebart et al., 2008):

M

1 /
)fm ;,@MRAD]-)
(2)

where D; and D; are drawn from the training data
and the learned policy respectively and (5’s are im-
portance sampling weights.

N
1
Voldr(9) = & > VeRs(D:
=1



The linear functional form of the reward simpli-
fies individual weight updates as a simple differ-
ence of the expected expert and the expected roll
out reward component from policy. Weight update
for component c is:

M

1 1 ,
V(j)J'r(d))c = N ;Ci — m - BJCJ (3)

where c; is total value of reward component over
all steps for i*" expert description and c; is total
value of reward component over all steps for ;"
generated description. To stabilize training when
learning the policy for description generation we
mix in weighted MLE loss with the policy gradi-
ent loss before backpropagation. Please refer to
supplementary material (Appendix A.5) for model
training details.

2.2 Reward Components

We aim to find a reward function that can combine
multiple characteristics present in a good descrip-
tion such as faithfulness to the table and fluency.
To encourage faithfulness, we use recall and recon-
struction as reward components, while to charac-
terize grammatical correctness and fluency we use
repetition and perplexity. We also consider BLEU
score as a reward component. BLEU is a super-
vised reward component as it requires ground-truth
descriptions for its computation. However, all other
reward components are unsupervised.

* Recall: Fraction of slot values in the table men-
tioned in the description.

Reconstruction: We use QA models to extract
answers from the description against a few “ex-
tractor” slot types (for example, “What is the
name of the person in the description?” is used
as a question for the slot type “Name_ID”). De-
tails about other extractor slot types are provided
in Appendix A.3. Reconstruction score is the
average of lexical overlap scores between pre-
dicted and true slot values, corresponding to the
extractor slot types present in the table.
Repetition: Fraction of unique trigrams in the
description.

Perplexity: This is the normalized perplexity of
the description calculated using GPT-2 model
(Radford et al., 2019).

BLEU: This is the BLEU score (Papineni et al.,
2002) of the description.

Additional details on implementation of reward
components are in Appendix A.3.
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3 Experiments and Results

In this section we describe our experiments and
their results in detail.

3.1 Data and Metrics

Wang et al. (2018) proposed a dataset of tables and
their corresponding descriptions related to people
and animals from Wikipedia. However, the original
released dataset is noisy (many descriptions have
low precision/recall, most examples have very few
distinct slot types, etc.). For our experiments, we
filtered this dataset to get a smaller high-quality
dataset of 4623 examples using the following cri-
teria : (1) Recall (defined in §2.2) of 1.0 (2) High
precision (fraction of entities in the description
mentioned in the table) greater than 0.7 (3) number
of distinct slot types greater than 6. We split the
entire dataset as 80%, 10% and 10% for training,
validation and testing respectively. Details of the
dataset are provided in Appendix A.2. To aid re-
producibility we make the data splits used by us
publicly available?.

For evaluation, we report BLEU (Papineni et al.,
2002) and ROUGE (Lin, 2004) along with their
harmonic mean (called F1 hereon). Additionally,
we report the mean reward value for Recall and
Perplexity as proxies for faithfulness and fluency
of generated descriptions respectively.

MODEL B R F1 REC. PPL
MLE 23.78 4211 3040 0.82 -73.38
RL with
B 28.03 4375 34.17 087 -42.17
Rec., B 28.02 4377 34.16 088 -39.43
Rec., B, PPL 28.22 43.12 3411 0.89 -4391
All 2821 4323 34.14 0.89 -40.77
IRL with
Rec., B 2796 4352 3404 0.88 -40.27
Rec.,B,PPL 28.25 4381 3435 089 -40.19
All 28.42 43.19 3428 0.89 -40.11
IRL (using multipliers) with
Rec.,B 28.41 4353 3438 0.89 -38.53
Rec.,B,PPL  28.16 4335 34.14 0.90 -40.86

Table 1: Test set performance for various models mea-
sured using BLEU (B), ROUGE(R), F1, Recall(Rec.)
and Perplexity (PPL). Using IRL instead of RL gives
marginal improvement in performance

3.2 Automatic Evaluation

Table 1 shows the performance of models trained
using maximum likelihood estimation (MLE), RL

Data splits are provided in https://github.com/
issacgzh/IRL_Table2Text



and IRL. For RL and IRL we report results with
various sets of reward components. When using
multiple reward components with RL we consider
the total reward as the uniformly weighted sum of
each component. We note that while IRL variants
achieve higher performance than RL methods for
all metrics, the gain in performance is marginal.

In Table 1 we choose the best model for each
setting based on the performance on the validation
split. For the best IRL (All) model, we find the
learned weights for repetition, recall, BLEU, re-
construction and perplexity are 0.02, 0.12, 0.65,
0.05 and 0.15 respectively. However, we noticed
that the weights of the IRL reward components
failed to converge in our training runs. This is a
consequence of the fact that reward components
such as BLEU achieve their maximum value for
the ground-truth description, and the value quickly
drops as descriptions diverge from the ground truth
description. Thus the gap between the expert value
and the value achieved by the model for BLEU is
always large, hindering the convergence of weights
in IRL (Eqn 3). This results in a peaked distribu-
tion of weights where the model tends to favor the
BLEU reward component excessively. We attempt
scaling down the expert BLEU reward values by
using multiplier. We dynamically update the multi-
plier using an adaptive binary search method (refer
to Appendix A.4 for details) to induce convergence
in weights. We observe that the multiplier acts as a
“regularizer” in learning a more balanced weight for
the reward components considered. For example,
when we train IRL with BLEU, recall and perplex-
ity without using multiplier, the learned weights
of the components are 0.72, 0.15 and 0.13 respec-
tively. On using multipliers for IRL training, the
learned weights for BLEU, recall and perplexity
are 0.45, 0.31 and 0.24 respectively. The model
variants using multipliers get the best F1 score as
seen in the second last row of Table 1.

We also find that having more reward compo-
nents does not help IRL improve significantly. We
note that IRL using all reward components gets the
best BLEU but suffers a marginal drop in ROUGE.

3.3 Domain adaptation

To evaluate if rewards learned using IRL generalize
better to unseen data distributions, we evaluate it
for scenarios involving domain adaptation. For this,
we divide the dataset into disjoint subsets of cate-
gories involving people in sports, academia, art, etc.
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(category details in Appendix A.2). Each category
has different table schemas. We train RL and IRL
models on one category and test them on a different
category. Since training on a single category limits
the amount of labelled data, we consider training
with unsupervised rewards that do not rely on the
ground truth. Table 2 shows the F1 results when
using IRL and RL with recall, perplexity and re-
construction. For each training category, we show
results of the test category with the highest absolute
value of relative change in F1. We notice mixed
results. For instance, when training on the “Sports”
domain, IRL’s performance is much worse than RL.
This may be because slot types with high frequency
in the “Sports” category are significantly different
from all other categories. Thus, IRL may be sus-
ceptible to learning a reward function that overfits
the domain and actually generalizes worse than a
fixed reward function. However, in several cases
IRL leads to big improvements in performance (e.g.
when training on Politics, Law, and Military) indi-
cating the promise of this method in limited data
settings.

TRAIN CAT. TEST CAT. RL IRL
Politics Sports 18.59 21.04
Law Academia  28.54 31.17
Military Politics 30.07 32.01
Art Academia  32.78 31.37
Academia Sports 21.25  20.67
Sports Academia 2443 22.25

Table 2: F1 scores on using IRL and RL for domain
adaptation. IRL leads to higher F1 scores in a few set-
tings indicating its usefulness for domain adaptation.
However, IRL performs worse than RL when trained on
domains which have significantly different slot types
with high frequency (e.g. “Sports”).

4 Discussion

We highlight some challenges with IRL training
that potentially hinder IRL to get significantly bet-
ter than RL baselines. Further, we discuss qualita-
tive differences between RL and IRL models.

4.1 Challenges in IRL training

Importance of reward components: During
training, for most reward components, their val-
ues for expert and generated descriptions are close.
However, the values of BLEU for generated de-
scriptions are quite smaller than the BLEU value
for expert descriptions. This shadows the contri-
bution of other reward components irrespective of



the weights assigned to them. Since BLEU opti-
mizes for n-gram overlap with the expert text, it is
undesirable to drop this component as it leads to
text degeneration. As described in Section 3.2, we
use adaptive multipliers to alleviate its dominance.
However, its effect is limited and the method does
not correspond to optimizing a fixed objective.
Unstable training: To stabilize training, we mix
the weighted MLE loss (cross-entropy loss) and the
policy gradient objective. However, these losses
can differ largely in scale. Having a larger weight
to MLE loss diminishes the contribution of reward
components, while larger weight to policy gradient
leads to degeneration.

These observations indicate the need for future
research on training paradigms and better-designed
reward components to address these challenges.

4.2 Qualitative analysis

Using only BLEU as a reward leads to gener-
ated descriptions that fit a general template resem-
bling descriptions from the most common cate-
gory (“Sports”). Including other reward compo-
nents helps the model avoid this behavior. We
still observe hallucination from both IRL and RL
fine-tuned models. However, hallucinated informa-
tion generated from IRL fine-tuned models often
matches the overall theme (for example, it gener-
ates incorrect football league names but gets the
name of the club mentioned in the table correct).
Appendix A.7 shows an example of description
generated by IRL (All) model.

5 Conclusion

We present an approach using IRL for Table-to-
Text generation using a set of interpretable reward
components. While the approach outperforms RL,
improvements are marginal, and we identify sev-
eral challenges. In particular, using metrics like
BLEU as reward components is problematic, since
they affect weight convergence for IRL. Based on
our study, the application of IRL for Table-to-Text
generation would broadly benefit from designing
better-calibrated reward components and improve-
ments in training paradigms. We hope our explo-
ration encourages the community to engage in in-
teresting directions of future work.
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A Appendices
A.1 Derivation of gradient for MaxEnt IRL

We show the detailed mathematical steps to approx-
imate the gradient calculation under the MaxEnt
IRL framework for Table-to-Text generation.

We assume that expert descriptions are drawn
from a distribution py (D).

po(D) = Lexp(Ry(D)) and Z = /D exp(Rs(D)) (4)

Z

where the reward function, R4 (D) has parameters
¢, and Z is the partition function. The total reward



of a description is sum of rewards at each step. Let
qo(D) be the policy for description generation. We
maximise the log-likelihood of the samples in the
training set (Equation 5).

—logZ

&)
The gradient w.r.t. reward parameters is given by

¢) = % Z:l log(py(Dn Z:

V() = % > VeRy(Dy)

~ 5 || can(Ro(D))VoRo(D)iD

= EDrpgara Vo Ro(D) = Epmp, ) Vo Ro(D)
(6)

The partition function requires enumerating all
possible descriptions which makes this intractable.
This is tackled by approximating the partition func-
tion by sampling descriptions from the policy using
importance sampling. The importance weight 3;
for a generated description D; is given by

exp(Ry(D;
The gradient is now approximated as:
a 1
V(¢ Z:: Ve R (D By ﬂ]ZﬁJWJ% 7)
®

where D; and D; are drawn from training data and
qo(D) respectively.

A.2 Dataset statistics

We split the entire dataset as 80%, 10% and 10% for
training, validation and testing respectively. Table
3 shows the statistics for our dataset.

Table 4 shows the various disjoint category splits
of our data.

A.3 Detailed description of some reward
components

¢ Reconstruction: We use Question Answer-
ing models to extract answers from the de-
scription corresponding to few slot types. For
example, to extract the name from the descrip-
tion we ask a question “What is the name of
the person?”. The questions corresponding to
each slot type is pre-determined. We extract
values for four most common slot types occur-
ring in the dataset — “name”, “place of birth”
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“place of death” and “country”. We will re-
fer to these slots as “extraction slot types”.
The questions for these extractor slot types
are “What is the name of the person in the
description?”, “What is the place of birth of
the person in the description?”, “What is the
place of death of the person in the descrip-
tion?” and “Which country does the person in
the description belong to?” respectively. All
extraction slot types are not present in every
table of the dataset (example, “place of death”
is not present for a living sportsperson). Fol-
lowing SQUAD-like (Rajpurkar et al., 2018)
formalisation, for each slot-type we train a
BERT-based (Devlin et al., 2019) model to
get the answer from the description given the
question. We calculate overlap score of pre-
dicted answer with the correct answer (slot
value from table). The final reconstruction
score is the arithmetic mean of answer over-
lap scores corresponding to the extractor slot
types present in the table.

Perplexity: This is the negative perplexity of
the description. We further normalize it by

using
Perplexity — Perplexity,,,,
. . €))
Perplexity;,; ,, — Perplexity;,,,
where Perplexityy,,, and Perplexity,,,, are

the maximum and minimum perplexity of ex-
pert texts and texts generated by pretrained
MLE model respectively.

A.4 Learning Multiplier for BLEU

Let us assume that after the ! iteration of IRL,
we have the multiplier value as m,;. Let b be the
average BLEU score obtained by the model. For
(i 4+ 1) iteration we update the multiplier value

as

2

In case the change in weight is less than 0.00001,
we instead increase multiplier value by 0.1. The
maximum of multiplier value is 1. We start with
initial multiplier value (my) as 1.

(10)

mMi+1 =

A.5 Training details

Model parameters We follow the same training
scheme and model parameters from Wang et al.
(2018). Our model roughly has around 7.8M pa-
rameters. We perform MLE for 20 epochs. For
RL finetuning we perform 100 epochs. For the IRL



TYPE | SIZE | REC. | PREC. | # SENT./TAB. | # SLOTS/SENT. | # SLOTS/TAB. | # W/SENT. | # W/TAB.
Train | 3700 1.0 0.82 4.61 1.86 8.58 14.85 68.52
Val 461 1.0 0.82 4.67 1.86 8.70 15.10 70.54
Test 462 1.0 0.82 4.60 1.86 8.57 14.54 66.87
Total | 4623 1.0 0.82 4.62 1.86 8.59 14.85 68.56
Table 3: Dataset statistics
Slot Type Row [ Slot Value Reference:
William Duval (ice hockey) ( August 3 1877 — June 7 1905 ) was a
Name ID 1 William Duval Canadian professional Ice hockey Defenceman who played for the
(ice hockey) Ottawa Hockey Club and the Pittsburgh Victorias in the late 1890s
and early 1900s born in Ottawa Canada Duval played
Qquntry 9f 2 Canada intermediate hockey for the Ottawa Aberdeens and Ottawa
citizenship Atlantic Railway teams before joining the Ottawa Hockey Club in
Date of birth 3 August 3, 1877 the 1899 — 1900 season . he played two further seasons for
Ottawa and was named captain prior to the 1902 season . duval
Date of death 4 June 7, 1905 died due to alcoholism on June 7 1905 . duval had previously
worked for the Canada Atlantic Railway in Ottawa .
Sport 5 Ice hockey IRL All
Position played on | 6 Defenceman William Duval (ice hockey) ( August 3 1877 - June 7 1905 ) was a
team / Specialty Canada professional Ice hockey Defenceman who played eleven
seasons in the National Hockey League of six . he was born in
Place of birth 7 Ottawa Ottawa Ontario Canada .

Figure 2: Example of generated description using IRL (All) model

CATEGORY # SAMPLES

Academia 2152
Art 4736
Politics 2974
Sports 17434
Law 586

Military 4170
Unknown 14096
All 46148

Table 4: Data statistics for categories

model, we perform two weight updates followed by
five RL epochs and this is repeated 20 times. For
training we use Adam optimizer (Kingma and Ba,
2014). We choose the hyperparameters and best
epoch for each model by obtaining results on the
validation set using beam search with beam size of
3.

Hyper-parameter tuning We adapt the model
and optimizer hyper-parameters from Wang et al.
(2018). For choosing the weights for cross-entropy
loss and policy gradient loss we tried combinations
in the set 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9
keeping sum of weights as 1. For IRL reward com-
ponent weight updates we sample 500 descriptions
from ground-truth and from the descriptions gen-
erated from the policy. We chose the size as 500
based on validation set performance. Based on the
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performance on the validation set we chose 0.9
as policy gradient loss weight and 0.1 for cross-
entropy loss. This also helps to bring both the loss
terms in same scale.

Software and hardware specifications All the
models are coded using Pytorch 1.4.0° (Paszke
et al.,, 2019) and related libraries like numpy
(Oliphant, 2006), scipy (Virtanen et al., 2020) etc.
We run all experiments on GeForce RTX 2080 GPU
of size 12 GB. The system has 256 GB RAM and
40 CPU cores.

Time for training and inference It takes around
16 seconds for one epoch of MLE training while it
takes close to 150 seconds for an epoch when using
RL fine-tuning with all the reward components.
The reward component weight approximation stage
of IRL is very fast and takes less than a second
generally.

A.6 Validation set results

Table 5 shows the results on validation set for the
models in Table 1 of main paper.

A7

Table 2 shows an example of the output generated
by the IRL (All) model along with the reference

Qualitative example

*https://pytorch.org/



MODEL B R F1 REC. PPL

MLE 23.64 41.17 3003 083 -74.75
RL with

B 26.61 4212 3261 086 -39.89

Rec., B 26.88 42.05 3279 087 -34.06

Rec.,B,PPL  27.10 41.72 3286 0.88 -43.47

All 26.87 41.87 3273 088 -39.14
IRL with

Rec., B 26.85 41.79 3269 087 -37.40

Rec.,B,PPL  27.09 42.10 3297 0.88 -40.13

All 27.23 4170 3294 088  -39.87

IRL (using multipliers) with
Rec., B 27.02 42.00 3288 0.86 -34.83
Rec.,B,PPL  27.02 41.67 3278 0.89 -40.87

Table 5: Performance on the validation set for various
models measured using BLEU (B), ROUGE(R), Fl1,
Recall(Rec.) and Perplexity(PPL)

description.



Automatic Fake News Detection: Are Models Learning to Reason?
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Abstract

Most fact checking models for automatic fake
news detection are based on reasoning: given
a claim with associated evidence, the models
aim to estimate the claim veracity based on the
supporting or refuting content within the evi-
dence. When these models perform well, it is
generally assumed to be due to the models hav-
ing learned to reason over the evidence with re-
gards to the claim. In this paper, we investigate
this assumption of reasoning, by exploring the
relationship and importance of both claim and
evidence. Surprisingly, we find on political
fact checking datasets that most often the high-
est effectiveness is obtained by utilizing only
the evidence, as the impact of including the
claim is either negligible or harmful to the ef-
fectiveness. This highlights an important prob-
lem in what constitutes evidence in existing ap-
proaches for automatic fake news detection.

1 Introduction

Misinformation is spreading at increasing rates
(Vosoughi et al., 2018), particularly online, and
is considered a highly pressing issue by the World
Economic Forum (Howell et al, 2013). To com-
bat this problem, automatic fact checking, espe-
cially for estimating the veracity of potential fake
news, have been extensively researched (Hassan
et al., 2017; Hansen et al., 2019; Thorne and Vla-
chos, 2018; Elsayed et al., 2019; Allein et al., 2020;
Popat et al., 2018; Augenstein et al., 2019). Given
a claim, most fact checking systems are evidence-
based, meaning they utilize external knowledge to
determine the claim veracity. Such external knowl-
edge may consist of previously fact checked claims
(Shaar et al., 2020), but it typically consists of us-
ing the claim to query the web through a search
API to retrieve relevant hits. While including the
evidence in the model increases the effectiveness

*Equal contribution.

Christian Hansen*
University of Copenhagen
chrh@di.ku.dk
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over using only the claim, existing work has not fo-
cused on the predictive power of isolated evidence,
and hence whether it assists the model in enabling
better reasoning.

In this work we investigate if fact checking mod-
els learn reasoning, i.e., provided a claim and asso-
ciated evidence, whether the model determines the
claim veracity by reasoning over the evidence. If
the model learns reasoning, we would expect the
following proposition to hold: A model using both
the claim and evidence should perform better on
the task of fact checking compared to a model using
only the claim or evidence. If a model is only given
the claim as input, it does not necessarily have
the information needed to determine the veracity.
Similarly, if the model is only given the evidence,
the predictive signal must come from dataset bias
or the differences in the evidence obtained from
claims with varying veracity, as it otherwise cor-
responds to being able to provide an answer to an
unknown question. In our experimental evaluation
on two political fact checking datasets, across mul-
tiple types of claim and evidence representations,
we find the evidence provides a very strong pre-
dictive signal independent of the claim, and that
the best performance is most often obtained while
entirely ignoring the claim. This highlights that
fact checking models may not be learning to rea-
son, but instead exploit an inherent signal in the
evidence itself, which can be used to determine
factuality independent of using the claim as part
of the model input. This highlights an important
problem in what constitutes evidence in existing
approaches for automatic fake news detection. We
make our code publicly available!.

"https://github.com/casperhansen/
fake—-news—-reasoning

Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics
and the 11th International Joint Conference on Natural Language Processing (Short Papers), pages 80-86
August 1-6, 2021. ©2021 Association for Computational Linguistics



2 Related Work

Automatic fact checking models include deep learn-
ing approaches, based on contextual and non-
contextual embeddings, which encode the claim
and evidence using RNNs or Transformers (Shaar
et al., 2020; Elsayed et al., 2019; Allein et al., 2020;
Popat et al., 2018; Augenstein et al., 2019; Hassan
et al., 2017), and non-deep learning approaches
(Wang, 2017; Pérez-Rosas et al., 2018), which uses
hand-crafted features or bag-of-word representa-
tions as input to traditional machine learning classi-
fiers such as random forests, SVM, and MLP (Mi-
halcea and Strapparava, 2009; Pérez-Rosas et al.,
2018; Baly et al., 2018; Reddy et al., 2018).

Generally, models may learn to memorize arti-
fact and biases rather than truly learning (Guru-
rangan et al., 2018; Moosavi and Strube, 2017;
Agrawal et al., 2016), e.g., from political individ-
uals often leaning towards one side of the truth
spectrum. Additionally, language models have
been shown to implicitly store world knowledge
(Roberts et al., 2020), which in principle could en-
hance the aforementioned biases. To this end, we
design our experimental setup to include represen-
tative fact checking models of varying complex-
ity (from simple term-frequency based represen-
tations to contextual embeddings), while always
evaluating each trained model on multiple different
datasets to determine generalizability.

3 Methods

Problem definition. In automatic fact checking
of fake news we are provided with a dataset of
D = {(c1,e1,y1), -, (cns €n, yn)}, where ¢; cor-
responds to a textual claim, e; is evidence used to
support or refute the claim, and y; is the associated
truth label to be predicted based on the claim and
evidence. Following current work on fact checking
of fake news (Hassan et al., 2017; Thorne and Vla-
chos, 2018; Elsayed et al., 2019; Allein et al., 2020;
Popat et al., 2018; Augenstein et al., 2019), we
consider the evidence to be a list of top-10 search
snippets as returned by Google search API when
using the claim as the query. Note that while addi-
tional metadata may be available—such as speaker,
checker, and tags—this work focuses specifically
on whether models learn to reason based on the
combination of claim and evidence, hence we keep
the input representation to consist only of the latter.

Overview. In the following we describe the dif-
ferent models used for the experimental compari-

81

son (Section 4), which consists of models based on
term frequency (term-frequency weighted bag-of-
words (Salton and Buckley, 1988)), word embed-
dings (GloVe word embeddings (Pennington et al.,
2014)), and contextual word embeddings (BERT
(Devlin et al., 2019)). These representations are
chosen as to include the typical representations
most broadly used among past and current NLP
models.

Term-frequency based Random Forest. We
construct a term-frequency weighted bag-of-words
representation per sample based on concatenat-
ing the text content of the claim and associ-
ated evidence snippets. We train a Random For-
est (Breiman, 2001) as the classifier using the Gini
impurity measure. In the setting of only using ei-
ther the claim or evidence snippets as the input,
only the relevant part is used for constructing the
bag-of-words representation.

GloVe-based LSTM model. We adapt the
model by Augenstein et al. (2019), which originally
was proposed for multi-domain veracity prediction.
Using a pretrained GloVe embedding (Pennington
et al., 2014)?, claim and snippet tokens are embed-
ded into a joint space. We encode the claim and
snippets using an attention-weighted bidirectional
LSTM (Hochreiter and Schmidhuber, 1997):

he, = attn (BiLSTM(c;))
= attn (BiLSTM(e; ;)

(D

h 2

67;’]‘
where attn(-) is a function that learns an attention
score per element, which is normalized using a
softmax, and returns a weighted sum. We combine
the claim and snippet encodings using using the
matching model by Mou et al. (2016) as:

Si,j = [hcl ) hei,j ) hci - hei,j 5 hci : h’ei,jj| (3)

where ”’;” denotes concatenation. The joint claim-
evidence encodings are attention weighted and
summed, projected through a fully connected layer
into R”, where L is the number of possible labels:

“4)
&)

0; = attn([s;1; .- ; Si10])

p; = softmax (FC(o;))

Lastly, the model is trained using cross entropy
as the loss function. In the setting of using only
the claim as the input (i.e., without the evidence),
then h., is used in Eq. 5 instead of o;. If only the

http://nlp.stanford.edu/data/glove.
840B.300d.zip



Train: Snopes Train: PolitiFact

Within dataset Out-of dataset Within dataset Out-of dataset

Eval: Snopes Eval: PolitiFact Eval: PolitiFact Eval: Snopes
RF (~13 seconds) | Flmicro Flmacro | Flmicro Flmacro || Flmicro Flmacro | Flmicro  Flmacro
Claim 0.473 0.231 0.273 0.223 0.254 0.255 0.546 0.243
Evidence 0.504 0.280 0.244 0.195 0.301 0.299 0.597 0.232
Claim+Evidence 0.550 0.271 0.245 0.190 0.310 0.304 0.579 0.207
LSTM (~12 minutes, 888K parameters)
Claim 0.408 0.243 0.260 0.228 0.237 0.237 0.565 0.221
Evidence 0.495 0.253 0.262 0.208 0.290 0.295 0.550 0.273
Claim+Evidence 0.529 0.253 0.258 0.189 0.288 0.294 0.509 0.256
BERT (~264 minutes, 109M parameters)
Claim 0.533 0.312 0.249 0.209 0.275 0.282 0.550 0.273
Evidence 0.531 0.321 0.249 0.224 0.351 0.359 0.577 0.286
Claim+Evidence 0.556 0.313 0.231 0.191 0.285 0.292 0.564 0.259

Table 1: Evaluation using micro and macro F1. Per column, the best score per method is underlined and the best
score across all methods is highlighted in bold. We report the training time and number of model parameters, for
Claim+Evidence on PolitiFact, in the parentheses. RF is trained on 5 cores and neural models on a Titan RTX.

evidence is used, then an attention weighted sum
of the evidence snippet encodings is used in Eq. 5
instead of o;.

BERT-based model. In a similar fashion to
the LSTM model, we construct a model based on
BERT (Devlin et al., 2019)3, where the [CLS]
token encoding is used for claim and evidence rep-
resentations. Specifically, the claim and evidence
snippets are encoded as:

he; = BERT(c;), he,; = BERT(c;, e;5)  (6)
he, = at‘[n([h%1 P hei,mD 7

where the claim acts as the question when encod-
ing the evidence snippets. Similarly to Eq. 5, the
prediction is obtained by concatenating the claim
and evidence representations and project it through
a fully connected layer into R”:

pi = softmax(FC([he, ; he,])) (8)

where cross entropy is used as the loss function
for training the model. In the setting that only the
claim is used as input, then only A, is used in Eq. 8.
If only the evidence is used, then hem. is computed
without including ¢;, and only h,, is used in Eq. 8.

*We use bert-base-uncased from https://
huggingface.co/bert-base-uncased.
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‘ #Claims ‘ Labels

PolitiFact | 13,581 | pants on fire! (10.6%), false (19.2%), mostly false
(17.0%), half-true (19.8%), mostly true (18.8%),
true (14.8%)
false (64.3%), mostly false (7.5%), mixture

Snopes 5,069
(12.3%), mostly true (2.8%), true (13.0%)

Table 2: Dataset statistics.

4 Experimental Evaluation

4.1 Datasets

We focus on the domain of political fact checking,
where we use claims and associated evidence from
PolitiFact and Snopes, which we extract from the
MultiFC dataset (Augenstein et al., 2019). Using
the claim as a query, the evidence is crawled from
Google search API as the search snippets of the
top-10 results, and is filtered such that the web-
site origin of a given claim does not appear as evi-
dence. To facilitate better comparison between the
datasets, we filter claims with non-veracity related
labels*. The dataset statistics are shown in Table 2.

4.2 Experimental setup

Both datasets are split into train/val/test sets using
label-stratified sampling (70/10/20% splits). We
tune all models on the validation split, and use
early stopping with a patience of 10 for neural

*For PolitiFact we exclude [full flop, half flip, no flip]
and for Snopes we exclude [unproven, miscaptioned, legend,
outdated, misattributed, scam, correct attribution].
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Figure 1: Macro F1 scores when removing evidence from either the top or bottom of the evidence snippet ranking.

models. Following Augenstein et al. (2019), we use
micro and macro F1 for evaluation. The models are
evaluated on both the within dataset test sets, but
also out-of dataset test sets (e.g., a model trained on
Snopes is evaluated on both Snopes and PolitiFact).
In the out-of dataset evaluation we need the labels
to be comparable, hence in that setting we merge
”pants on fire!” and false” for PolitiFact.

5 Tuning details

In the following, the best overall parameter con-
figurations are underlined. The best configuration
is chosen based on the average of the micro and
macro F1°. For RF, we tune the number of trees
from [100,500,1000], the minimum number of sam-
ples in a leaf from [1,3,5,10], and the minimum
number of samples per split from [2,5,10]. For the
LSTM model, we tune the learning rate from [1le-
4,5e-4,1e-5], batch size [16,32], number of LSTM
layers from [1,2], dropout from [0, 0.1], and fix
the number of hidden dimensions to 128. For the
BERT model, we tune the learning rate from [3e-5,
3e-6, 3e-7] and fix the batch size to 8.

5.1 Results

The results can be seen in Table 1. Overall, we
see that the BERT model trained only on Evidence
obtains the best results in 4/8 columns, and, no-
tably, in 3/4 cases the BERT model with Evidence
obtains the best macro F1 score on within and out-

‘https://scikit-learn.org/stable/
modules/generated/sklearn.metrics.fl_
score.html
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of dataset prediction. Random forest using term-
frequency as input obtains the best out-of dataset
micro F1 for both datasets (using either only Claim
or only Evidence). Across all methods, the combi-
nation of Claim+Evidence only marginally obtains
the best results a single time (for Snopes micro
F1). For further details, in Table 3 we compute the
accuracy scores for all the false labels, mixture or
half-true label, and true labels.

Surprisingly, a BERT model using only the Ev-
idence is capable of predicting the veracity of the
claim used for obtaining the evidence. This shows
that a strong signal must exist in the evidence it-
self, and the evidence found by the search engine
appears to be implicitly affected by the veracity of
the claim used as the query in some way®. The im-
provements reported in the literature by combining
claim and evidence, are therefore not evident of the
model learning to reason over the evidence with
regards to the claim, but instead exploiting a sig-
nal inherent in the evidence itself. This highlights
that the current approach for evidence gathering
is problematic, as the strong signal makes it pos-
sible (and most often beneficial) for the model to
entirely ignore the claim. This makes the model
entirely reliant on the process behind how the evi-
dence is generated, which is outside the scope of
the model, and thereby undesirable, as any change
in the search system may change the model per-
formance significantly. It may also be problematic
on a more fundamental level, e.g., to predict the

®Note that the claim origin website is always removed
from the evidence.



Train: Snopes Train: PolitiFact

Within dataset Out-of dataset Within dataset Out-of dataset

Eval: Snopes Eval: PolitiFact Eval: PolitiFact Eval: Snopes
RF aACCfalse  ACCmix  ACCtrue | ACCfalse  ACCmix  ACCtrue aACCfalse  ACCmix  ACCtrue | ACCfalse  ACCmix  ACCtrue
Claim 0.710 0.144 0.255 | 0.853 0.016 0.209 0.623 0.216 0.513 | 0.790 0.092 0.255
Evidence 0.705 0.152 0.441 | 0.829 0.006 0.117 0.654 0.248 0.510 | 0.891 0.039 0.192
Claim+Evidence | 0.760 0.136 0.453 | 0.829 0.000 0.117 0.634 0292 0.512 | 0.871 0.039 0.199
LSTM
Claim 0.674 0.232 0.280 | 0.875 0.047 0.137 0.566 0.212 0.504 | 0.833 0.026 0.234
Evidence 0.721 0272 0.267 | 0.890 0.020 0.115 0.643 0.253 0.485 | 0.768 0.184 0.322
Claim+Evidence | 0.757 0.248 0.168 | 0.879 0.008 0.107 0.671 0210 0.460 | 0.704 0.171 0.378
BERT
Claim 0.746 0256 0.379 | 0.854 0.094 0.045 0.604 0292 0475 | 0765 0.171 0.287
Evidence 0.648 0376 0.559 | 0.702 0.049 0.337 0.649 0.326 0.496 | 0.804 0.197 0.339
Claim+Evidence | 0.747 0.264 0.379 | 0.882 0.067 0.042 0.667 0.175 0.558 | 0.790 0.092 0.367

Table 3: Accuracy scores computed on the false labels, mixture or half-true label, and true labels. All labels within
a group (e.g., any false label such as false or mostly false) are considered to be the same and as such this reduces

the problem to a three class classification problem.

veracity of the following two claims: the earth is
round” and ’the earth is flat”, the evidence could
be the same, but a model entirely dependent on the
evidence, and not the claim, would be incapable of
predicting both claims correctly.

5.2 Removal of evidence

We observed a strong predictive signal in the ev-
idence alone and now consider the performance
impact when gradually removing evidence snip-
pets. The evidence is removed consecutively either
from the top down or bottom up (i.e., removing the
most relevant snippets first and vice versa), until
no evidence is used. Figure 1 shows the macro F1
as a function of removed evidence when using the
Evidence or Claim+Evidence models. We observe
a distinct difference between the random forest
and LSTM model compared to BERT: for random
forest and LSTM, the Claim+Evidence models on
both datasets drop rapidly in performance when
the evidence is removed, while the BERT model
only experiences a very small drop. This shows
that when the Claim+Evidence is used in the BERT
model, the influence of the evidence is minimal,
while the evidence is vital for the Claim+Evidence
RF and LSTM models. For all models, we observe
that when evidence is removed from the top down,
the performance drop is larger than when evidence
is removed from the bottom up. Thus, the ranking
of the evidence as provided by the search engine is
related to its usefulness as evidence for fact check-
ing.
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6 Conclusion

We investigate if fact checking models for fake
news detection are learning to process claim and
evidence jointly in a way resembling reasoning.
Across models of varying complexity and evalu-
ated on multiple datasets, we find that the best
performance can most often be obtained using only
the evidence. This highlights that models using
both claim and evidence are inherently not learn-
ing to reason, and points to a potential problem
in how evidence is currently obtained in existing
approaches for automatic fake news detection.
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Abstract

Despite end-to-end neural systems making sig-
nificant progress in the last decade for task-
oriented as well as chit-chat based dialogue
systems, most dialogue systems rely on hybrid
approaches which use a combination of rule-
based, retrieval and generative approaches for
generating a set of ranked responses. Such dia-
logue systems need to rely on a fallback mech-
anism to respond to out-of-domain or novel
user queries which are not answerable within
the scope of the dialogue system. While, dia-
logue systems today rely on static and unnat-
ural responses like “I don’t know the answer
to that question” or “I’m not sure about that",
we design a neural approach which generates
responses which are contextually aware with
the user query as well as say no to the user.
Such customized responses provide paraphras-
ing ability and contextualization as well as im-
prove the interaction with the user and reduce
dialogue monotonicity. Our simple approach
makes use of rules over dependency parses and
a text-to-text transformer fine-tuned on syn-
thetic data of question-response pairs gener-
ating highly relevant, grammatical as well as
diverse questions. We perform automatic and
manual evaluations to demonstrate the efficacy
of the system.

1 Introduction

In order to cater to the diversity of questions span-
ning across various domains, dialogue systems gen-
erally follow a hybrid architecture wherein an en-
semble of individual response subsystems (Kuratov
et al.; Harrison et al., 2020) are employed from
which an appropriate response is presented to the
user (Serban et al., 2017; Finch et al., 2020; Paran-
jape et al., 2020). However, it is common for dia-
logue systems to encounter queries which are not
within their scope of knowledge. While increasing
the number of such subsystems would be a good
strategy to increase coverage, it can be a never end-
ing process and a default fallback strategy would al-
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User: Can I talk to PM Modi ?
System: I can help you book a flight, please specify the source and the
destination.

User: Can I talk to PM Modi ?
System: I'm not sure about that. But I can help you book a flight,
please specify the source and the destination.

User: Can I talk to PM Modi ?

System: Hmm...I’'m not sure how you can talk to Prime Minis-
ter Narendra Modi. But I can help you book a flight, please specify
the source and the destination.

Figure 1: Comparison of responses of three flight book-
ing dialogue systems: The first one does not handle
unknown responses. The second one has a default fall-
back response. The third one has a fall-back response
which is contextualized with the user query.

ways be needed. Besides, domain specific dialogue
systems, especially those deployed in professional
settings generally prefer restricting themselves to
a fixed set of domains, and purposely refrain from
responding to out-of-domain and random or toxic
user queries.

One approach to acknowledge such queries is to
have a fallback mechanism with responses like “I
don’t know the answer to this question" or “I’m not
sure how to answer that." However, such responses
are static and unengaging and give an impression
that the user’s query has gone unacknowledged
or is not understood by the system as shown in
Figure 1 above.

Yu et al. (2016) have shown that static and pre-
defined responses lead to lower levels of user en-
gagement and decrease users’ interest in interacting
with the system. Yu et al. (2016) shows that a sys-
tem which reacts to system breakdowns and to low
user engagement leads to a better user engagement.

Our fallback approach attempts to address these
limitations by generating “don’t-know” responses
which are engaging and contextually closer with
the user query. 1) Since there are no publicly avail-
able datasets to generate such contextualised re-
sponses, we synthetically generate (query, fallback

Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics
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response) pairs using a set of highly accurate hand-
crafted dependency patterns. 2) We then train a
sequence-to-sequence model over synthetic and
natural paraphrases of these queries. 3) Finally,
we measure the grammaticality and relevance of
our models using a crowd-sourced setting to assess
the generation capability. We have released the
code and training dataset used in our experiments
publicly. !

2 Related Work

Improving the coverage to address out-of-domain
queries is not a new problem in designing dialogue
systems. The most popular approach has been
via presenting the user with chit-chat responses.
Other systems such as Blender (Roller et al., 2020)
and Meena (Adiwardana et al., 2020) promise
to be successful for open-domain settings. Paran-
jape et al. (2020) finetune a GPT-2 model (Rad-
ford et al., 2019) on the EmpatheticDialogues
dataset (Rashkin et al., 2019) to generate social
talk responses. While this might seem fitting for
chit-chat and social talk dialogue systems, domain-
specific scenarios often dealing with professional
settings would refrain from performing friendly
or social talk especially avoiding the possibility
of the randomness of generative models. Also,
multiple subsystem architectures always have the
possibility of cascading errors and profane or toxic
queries. Hence systems should always have a fool-
proof mechanism in the form of static templates to
reply from. Liang et al. (2020) uses an interesting
approach for error handling by mapping dialogue
acts and intents to templates. Besides, like Finch
et al. (2020) it is always safer to generate fallback
responses on encountering queries which might be
toxic, biased or profane. 2

Another line of work attempts to handle user
queries which are ambiguous by asking back clarifi-
cation questions (Dhole, 2020; Zamani et al., 2020;
Yu et al., 2020). While this increases user interac-
tion and coverage to an appreciable extent, it does
not eliminate the requirement of a failsafe fallback
responder. This paper’s contribution is to address
this requirement with an enhanced version of a
fallback response generator.

! github.com/kaustubhdhole/natural-dont-know
*Handling programming exceptions and code failures also
necessitates a simple fallback approach.
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3 Methods

We describe two approaches to generate such con-
textual don’t-know responses.

3.1 The Dependency Based Approach (DBA)

Inspired by previous approaches which use parse
structures to generate questions (Heilman and
Smith, 2009; Mazidi and Tarau, 2016; Dhole and
Manning, 2020), we create a rule-based generator
by handcrafting dependency templates to cater to
a wide variety of question patterns as shown in
Table 1. We perform extensive manual testing to
improve the generations from these rules and in-
crease overall coverage. The purpose of these rules
is two-fold: 1) To create a high-precision fall-back
response generator as a baseline and ii) to help cre-
ate (query, don’t-know-response) pairs which could
be paired with natural paraphrases to serve as seed
training data for other deep learning architectures.

To build this baseline generator, we uti-
lize few dependency templates in the style of
SynQG (Dhole and Manning, 2020). We utilize
the dependency parser from Andor et al. (2016) to
get the Universal Dependencies (Nivre et al., 2016,
2017, 2020) of the user query. We then convert it to
a don’t-know-response by re-arranging nodes to a
matched template. We further change pronouns, in-
corporate named entity information, and add rules
to handle modals and auxiliaries. Finally, we also
add rules for flipping pronouns to convert an agent
targeted question to a user targeted response by
interchanging pronouns and their supporting verbs.
E.g. You to I and vice-versa.

We incorporate a bit of paraphrasing by random-
izing various prefixes like “I’m not sure whether”,
“I don’t know if”, etc. and randomly using named
entities. We describe the high-level algorithm be-
low and in Algorithm 1.

prefixz = pickRandom(prefixzPool)
response = DBR(Question)

suf fix = pick Random(suf fix Pool)

fallback Response = Concat(prefiz,

response, suf fix)

3.2 Sequence-to-Sequence Approach

Owing to the expected low coverage and scalability
of the rule-based approach, we resort to take advan-
tage of pre-trained neural architectures to attempt



Dependency Rules Sample Question Natural Don’t Know Response
WhatBeRule() What is the Pandora box ? I am not really sure what the Pandora box is.
DidVerbRule() Did Daniel cook today’s meal ? I don’t know if Daniel cooked today’s meal.

QuestionCanIRule() Could you tell me the location of the tower ? hmm..I don’t know if I could tell you...

BeRule() Are you predictive about conversation ? I’'m not sure if I am predictive about...
WhoBeRule() Who is the Duke of Scotland ? I can’t be sure who the Duke of Scotland is.

WhoBeVerbRule() Who is playing baseball and cricket both ? I am not actually sure who is playing...
WhereBeRule() Where did Bates translate this document ? I don’t know where Bates did translate...
HowBeRule() How are the people of the Italy ? I’m not sure how the people of that place are.
WhenBeRule() When is the deadline of ACL ? I can’t be sure when the deadline of ACL is.

WhereBeVerbRule() Where is Mr. Potter going ? I’m not sure where Mr. Potter is going.

‘WhenBeVerbRule() When will you submit your thesis ? I’'m not really sure when I will submit my thesis.

Table 1: Few Dependency Rules with the class of questions they cater too and their corresponding responses. In
the 8" sentence, the named entity "Ttaly" is randomly replaced by "that place".

Algorithm 1 Dependency Based Response (DBR)

nodes < dependencyParse(Question)
for each template in templatePool do
if (template condition matched) then
Populate template using nodes
Handle modals & auxilliaries
Flip pronoun
Randomly substitute Named Entity

if no template condition matched then
return pickRandom(defaultResponse pool)

return filled template response

to create a sequence-to-sequence fallback respon-
der. To incorporate noise and avoid the model to
over-fit on the handcrafted transformations, we do
not train the model directly on (query, don’t-know-
response) pairs generated from the previous section.
From all possible questions of the Quora Ques-
tions Pairs dataset (QQP) 3, we first filter all the
questions which generate a reply from the depen-
dency based rules. Then we pair these dont-know-
responses with the paraphrases of the input ques-
tions rather than the input questions themselves. 4
Primarily attempting to avoid over-fitting on the
dependency patterns, this also helps generate dont-
know-responses which are paraphrastic in nature.
After incorporating paraphrases from QQP, we
are able to build a dataset of 100k pairs, which
we call the "I Dont Know Dataset" (IDKD). After
witnessing the success of text-to-text transformers,
we use the pre-trained TS transformer (Raffel et al.,
2020a,b) as our sequence-to-sequence model. We

*Quora Question Pairs Dataset
“Those question pairs which have the label "1" or are
similar are used as paraphrases.

&9

Metrics DBA Seq-To-Seq

%GC 81.6 87.2

ARS 3.97 3.66
Table 2: Human evaluation between the two ap-
proaches. %GC= % of Grammatically correct re-

sponses, ARS=Average Relevance Score.

divide IDKD into a train and validation split of
80:20. We use the Transformers code from Hug-
gingFace (Wolf et al., 2020) to fine-tune a TS5-base
model over IDKD for 2 epochs. >

4 Results

Most prior generated systems are evaluated on
a range of automatic metrics like BLEU and
ROGUE (Papineni et al., 2002) used in the ma-
chine translation literature. However, owing to the
drawbacks of these metrics, we perform human
evaluation of the generated responses using two
metrics - namely "relevance" and "grammatical-
ity" as defined in Dhole and Manning (2020). We
evaluate the performance of both the approaches
in a crowd-sourced setting by requesting English-
schooled individuals to rate. © Raters were asked to
evaluate grammaticality in a binary setting (gram-
matical/ungrammatical) and relevance on a Likert
scale (1 to 5).

Our human evaluations are shown in Table-2. T5
responses tend to be more grammatical than their
dependency counterparts by a large margin of 6%.
Relevance scores drop slightly from 3.97 to 3.66.

>Increasing the epochs to 3 and 4 tended to overfit and not
generate paraphrases.

0ur pool of English-schooled raters consisted of engi-
neering graduates having attained high school and engineering
education with English as a medium of instruction.



Metrics Question Depi;l:;:(gcﬁased Seq2Seq Approach
Coverage - 54.56% 100%
Average Sentence Length 941 11.83 11.78
Sentence Length Variance 11.74 11.60 10.66
Average #Novel Words - 0.91 2.57

Table 3: System evaluation between Dependency Based Approach and Sequence to Sequence Approach.

Question: How can I join MIT?
DBA: I am not sure how you can join MIT.

Question: Are you excited about natural language processing research ?
DBA: I'm not sure if I am excited about natural language processing research.
Seq2Seq: I'm not actually sure what the benefits of natural language processing are.

Question: What is the quickest way to increase Instagram followers?
DBA: I am not sure what the quickest way to increase Instagram followers is.
Seq2Seq: I cannot be sure how a user can increase Instagram followers.

Seq2Seq: I am not sure what the eligibility criteria for MIT are.

Question: How can I drive more traffic to my website?
DBA: I'm not really sure how you can drive more traffic.
Seq2Seq: I am not sure what the best way to get free traffic to your website is.

Question: Where can I find a collection of poetry by William Shakespeare?
DBA: I'm not really sure where you can find a collection of poetry by William Shakespeare.
Seq2Seq: I'm not actually sure where you can get a collection of his poems.

Question: What is the effect of demonetization of 500 and 1000 rupees notes?
DBA: I cannot be sure what the effect of demonetization of 500 and 1000 rupees notes is.
Seq2Seq: I'm not really sure what my views on PM Modi’s decision on discontinuing 500 & 1000 rs notes are.

Table 4: Natural don’t know responses generated by both the approaches. Highlights in blue depict words, phrases

or events not mentioned by the user.

This can be largely attributed to the model’s para-
phrastic ability of describing words and connected
events outside the knowledge of the user’s query.
Eg. in the second query in Table 4, if the string
"MIT" were something other than an institution,
the dependency based approach would seem safer
than the seq2seq approach.

In addition, T5 responses on an average generate
at least double the number of novel words than their
dependency counterparts as shown in Table 3. Sen-
tence length mostly remains unaffected across the
two models. Undoubtedly, the rule-based model
despite being highly relevant is only able to reply
to 54.5% of random QQP queries.

The TS5 model helped to not only add paraphras-
tic variations but also scale to user queries outside
of the scope of the dependency templates. More
importantly, without losing the original ability of
saying no, the model was able to generate more
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natural sounding dont-know-reponses by utilizing
it’s inherent world-knowledge acquired during pre-
training. Table 4 shows some interesting examples.
The highlighted phrases in blue show the benefits
of the model’s pre-training ability.

5 Conclusion and Future work

We describe two simple approaches which enhance
user interaction to cater to the necessities of real-
life dialogue systems which are generally a tapestry
of multiple solitary subsystems. In order to avoid
cascading errors from such systems, as well as
refrain from answering out-of-domain and toxic
queries it is but natural to have a fallback approach
to say no. We argue that such a fallback approach
could be contextualised to generate engaging re-
sponses by having multiple ways of saying no
rather than a one common string for all approach.
The appeal of our approach is the ease with which



it can rightly fit within any larger dialogue design
framework.

Of course, this is not to deny that as we give
more paraphrasing power to the fallback system, it
would tend to retract from succinctly replying with
ano - as is evident from the drop in the relevance
scores. Nevertheless, we still believe that both our
fallback approaches could serve as effective base-
lines for future work.
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Abstract

Spoken Language Understanding (SLU) sys-
tems parse speech into semantic structures like
dialog acts and slots. This involves the use
of an Automatic Speech Recognizer (ASR)
to transcribe speech into multiple text alterna-
tives (hypotheses). Transcription errors, com-
mon in ASRs, impact downstream SLU per-
formance negatively. Approaches to mitigate
such errors involve using richer information
from the ASR, either in form of N-best hy-
potheses or word-lattices. We hypothesize that
transformer models learn better with a sim-
pler utterance representation using the concate-
nation of the N-best ASR alternatives, where
each alternative is separated by a special delim-
iter [SEP]. In our work, we test our hypothe-
sis by using concatenated N-best ASR alterna-
tives as the input to transformer encoder mod-
els, namely BERT and XLM-RoBERTa, and
achieve performance equivalent to the prior
state-of-the-art model on DSTC2 dataset. We
also show that our approach significantly out-
performs the prior state-of-the-art when sub-
jected to the low data regime. Additionally,
this methodology is accessible to users of
third-party ASR APIs which do not provide
word-lattice information.

1 Introduction

Spoken Language Understanding (SLU) systems
are an integral part of Spoken Dialog Systems.
They parse spoken utterances into corresponding
semantic structures e.g. dialog acts. For this, a
spoken utterance is usually first transcribed into
text via an Automated Speech Recognition (ASR)
module. Often these ASR transcriptions are noisy
and erroneous. This can heavily impact the perfor-
mance of downstream tasks performed by the SLU
systems.

* The first three authors have equal contribution.
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To counter the effects of ASR errors, SLU sys-
tems can utilise additional feature inputs from ASR.
A common approach is to use N-best hypotheses
where multiple ranked ASR hypotheses are used,
instead of only 1 ASR hypothesis. A few ASR sys-
tems also provide additional information like word-
lattices and word confusion networks. Word-lattice
information represents alternative word-sequences
that are likely for a particular utterance, while word
confusion networks are an alternative topology for
representing a lattice where the lattice has been
transformed into a linear graph. Additionally, di-
alog context can help in resolving ambiguities in
parses and reducing impact of ASR noise.

N-best hypotheses: Li et al. (2019) work with
1-best ASR hypothesis and exploits unsupervised
ASR error adaption method to map ASR hypothe-
ses and transcripts to a similar feature space. On the
other hand, Khan et al. (2015) uses multiple ASR
hypotheses to predict multiple semantic frames per
ASR choice and determine the true spoken dialog
system’s output using additional context. Word-
lattices: Ladhak et al. (2016) propose using recur-
rent neural networks (RNNs) to process weighted
lattices as input to SLU. Svec et al. (2015) presents
a method for converting word-based ASR lattices
into word-semantic (W-SE) which reduces the spar-
sity of the training data. Huang and Chen (2019)
provides an approach for adapting lattices with pre-
trained transformers. Word confusion networks
(WCN): Jagfeld and Vu (2017) proposes a tech-
nique to exploit word confusion networks (WCNs)
as training or testing units for slot filling. Ma-
sumura et al. (2018) models WCN as sequence
of bag-of-weighted-arcs and introduce a mecha-
nism that converts the bag-of-weighted-arcs into
a continuous representation to build a neural net-
work based spoken utterance classification. Liu
et al. (2020) proposes a BERT based SLU model
to encode WCNSs and the dialog context jointly to
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reduce ambiguity from ASR errors and improve
SLU performance with pre-trained models.

The motivation of this paper is to improve per-
formance on downstream SLU tasks by exploit-
ing transfer learning capabilities of the pre-trained
transformer models. Richer information repre-
sentations like word-lattices (Huang and Chen
(2019)) and word confusion networks (Liu et al.
(2020)) have been used with GPT and BERT re-
spectively. These representations are non-native to
Transformer models, that are pre-trained on plain
text sequences. We hypothesize that transformer
models will learn better with a simpler utterance
representation using concatenation of the N-best
ASR hypotheses, where each hypothesis is sepa-
rated by a special delimiter [SEP]. We test the effec-
tiveness of our approach on a dialog state tracking
dataset - DSTC2 (Henderson et al., 2014), which
is a standard benchmark for SLU.

Contributions: (i) Our proposed approach,
trained with a simple input representation, exceeds
the competitive baselines in terms of accuracy and
shows equivalent performance on the F1-score to
the prior state-of-the-art model. (ii) We signifi-
cantly outperform the prior state-of-the-art model
in the low data regime. We attribute this to the ef-
fective transfer learning from the pre-trained Trans-
former model. (iii) This approach is accessible to
users of third party ASR APIs unlike the methods
that use word-lattices and word confusion networks
which need deeper access to the ASR system.

2 N-Best ASR Transformer

N-Best ASR Transformer' works with a simple in-
put representation achieved by concatenating the
N-Best ASR hypotheses together with the dialog
context (system utterance). Pre-trained transformer
models, specifically BERT and XLMRoBERTa, are
used to encode the input representation. For out-
put layer, we use a semantic tuple classifier (STC)
to predict act-slot-value triplets. The following
sub-sections describe our approach in detail.

2.1 Input Representation

For representing the input we concatenate the last
system utterance .S (dialog context), and the user
utterance U. U is represented as concatenation of
the N-best?> ASR hypotheses, separated by a special

'The code is available at https://github.com/Vernacular-
ai/N-Best-ASR-Transformer

2We use ASR transcriptions (N < 10) provided by DSTC2
dataset to perform our experiments. Our input structure can
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delimiter, [SEP]. The final representation is shown
in equation 1 below:

N
x; = [CLS] & TOK(S;) & @5 (TOK(UY) & [SEP))
j=1
| (1
Here, U refers to the 5 ASR hypothesis for the
ith sample, @ denotes the concatenation operator,
TOK(.) is the tokenizer, [CLS] and [SEP] are the

special tokens.

l[CLS]l Do you know your booking ID ? l[SEP]II knowI[SEP]l no l [SEP] l no l[SEP] lnowl [SEP] l

Figure 1: Input representation: The green boxes repre-
sents the last system utterances followed by ASR hy-
potheses of user utterances concatenated together with
a [SEP] token.

As represented in figure 2, we also pass segment
IDs along with the input to differentiate between
segment a (last system utterance) and segment b
(user utterance).

2.2 Transformer Encoder

The above mentioned input representation can be
easily used with any pre-trained transformer model.
For our experiments, we select BERT (Devlin et al.,
2019) and XLM-RoBERTa? (Conneau et al., 2020)
for their recent popularity in NLP research commu-
nity.

2.3 Output Representation

The final hidden state of the transformer encoder
corresponding to the special classification token
[CLS] is used as an aggregated input representa-
tion for the downstream classification task by a
semantic tuple classifier (STC) (Mairesse et al.,
2009). STC uses two classifiers to predict the act-
slot-value for a user utterance. A binary classi-
fier is used to predict the presence of each act-slot
pair, and a multi-class classifier is used to predict
the value corresponding to the predicted act-slot
pairs. We omit the latter classifier for the act-slot
pairs with no value (like goodbye, thankyou, re-
quest_food etc.).

support variable N during training and inference.
>The model name XLM-RoBERTa and XLM-R will be
used interchangeably throughout the paper.
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Figure 2: N-Best ASR Transformer: The input representation is encoded by a transformer model which forms an
input for a Semantic Tuple Classifier (STC). STC uses binary classifiers to predict the presence of act-slot pairs,
followed by a multi-class classifier that predicts the value for each act-slot pair.

3 Experimental Setup
3.1 Dataset

We perform our experiments on data released by the
Dialog State Tracking Challenge (DSTC2) (Hen-
derson et al., 2014). It includes pairs of utterances
and the corresponding set of act-slot-value triplets
for training (11,677 samples), development (3,934
samples), and testing (9,890 samples). The task in
the dataset is to parse the user utterances like “/
want a moderately priced restaurant.” into a cor-
responding semantic representation in the form of
“inform(pricerange=moderate)” triplet. For each
utterance, both the manual transcription and a max-
imum of 10-best ASR hypotheses are provided.
The utterances are annotated with multiple act-
slot-value triplets. For transcribing the utterances
DSTC?2 uses two ASRs - one with an artificially
degraded statistical acoustic model, and one which
is fully optimized for the domain. Training and
development sets include transcriptions from both
the ASRs. To utilise this dataset we first transform
it into the input format as discussed in section 2.1.

3.2 Baselines

We compare our approach with the following base-
lines:

* SLU2 (Williams, 2014): Two binary classi-
fiers (decision trees) are used with word n-
grams from the ASR N-best list and the word
confusion network. One predicts the presence
of that slot-value pair in the utterance and the
other estimate for each user dialog act.
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* CNN+LSTMw4 (Rojas-Barahona et al.,
2016): A convolution neural network (CNN)
is trained with the N-best ASR hypotheses to
output the utterance representation. A long-
short term memory network (LSTM) with a
context window size of 4 outputs a context
representation. The models are jointly trained
to predict for the act-slot pair. Another model
with the same architecture is trained to predict
for the value corresponding to the predicted
act-slot pair.

* CNN (Zhao and Feng, 2018): Proposes CNN
based models for dialog act and slot-type pre-
diction using 1-best ASR hypothesis.

* Hierarchical Decoding (Zhao et al., 2019):
A neural-network based binary classifier is
used to predict the act and slot type. A hy-
brid of sequence-to-sequence model with at-
tention and pointer network is used to predict
the value corresponding to the detected act-
slot pair.1-Best ASR hypothesis was used for
both training and evaluation tasks.

* WCN-BERT + STC (Liu et al., 2020): Input
utterance is encoded using the Word Confu-
sion Network (WCN) using BERT by having
the same position ids for all words in the bin
of a lattice and modifying self-attention to
work with word probabilities. A semantic tu-
ple classifier uses a binary classifier to predict
the act-slot value, followed by a multi-class
classifier that predicts the value corresponding



to the act-slot tuple.
3.3 Experimental Settings

We perform hyper-parameter tuning on the vali-
dation set to get optimal values for dropout rate
0, learning rate [r, and the batch size b. Based
on the best Fl-score, the final selected parame-
ters were 6 = 0.3, [r = 3e-5 and b = 16. We set
the warm-up rate wr = 0.1, and L2 weight decay
L2 =0.01. We make use of Huggingface’s Trans-
formers library (Wolf et al., 2020) to fine-tune the
bert-base-uncased and xIm-roberta-base, which is
optimized over Huggingface’s BertAdam optimizer.
We trained the model on Nvidia T4 single GPU on
AWS EC2 g4dn.2xlarge instance for 50 epochs. We
apply early stopping and save the best-performing
model based on its performance on the validation
set.

4 Results

In this section, we compare the performance of our
approach with the baselines on the DSTC2 dataset.
To compare the transfer learning effectiveness of
pre-trained transformers with N-Best ASR BERT
(our approach) and the previous state-of-the-art
model WCN-BERT STC, we perform comparative
analysis in the low data regime. Additionally, we
perform an ablation study on N-Best ASR BERT
to see the impact of modeling dialog context (last
system utterance) with the user utterances.

4.1 Performance Evaluation

Model Fl-score Accuracy
SLU2 82.1 -
CNN+LSTM w4 83.6 -
CNN 85.3 -
Hierarchical Decoding 86.9 -
WCN-BERT + STC 87.9 81.1
N-Best ASR XLM-R (Ours) 87.4 81.9
N-Best ASR BERT (Ours) 87.8 81.8

Table 1: Fl-scores (%) and utterance-level accuracy
(%) of baseline models and our proposed model on the
test set.

Since the task is a multi-label classification of act-
slot-value triplets, we report utterance level accu-
racy and F1-score. A prediction is correct if the set
of labels predicted for a sample exactly matches the
corresponding set of labels in the ground truth. As
shown in Table 1, we compare our models, N-Best
ASR BERT and N-Best ASR XLM-R, with base-
lines mentioned in section . Both of our proposed
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models, trained with concatenated N-Best ASR
hypotheses, outperform the competitive baselines
in terms of accuracy and show comparable perfor-
mance on Fl-score with WCN-BERT STC.

4.2 Performance in Low Data Regime

Train Data (% age) WOCN-BERT STC N-Best ASR BERT

5 78.5 83.9
10 80.3 85.5
20 84.4 86.7
50 85.9 87.7

Table 2: Fl-scores (%) for our proposed model N-Best
ASR BERT (ours) and WCN-BERT STC (previous state-
of-the-art.

To study the performance of model in the low data
regime, we randomly select p percentage of sam-
ples from the training set in a stratified fashion,
where p € {5, 10, 20, 50}. We pick our model
N-Best ASR BERT and WCN-BERT STC for this
study because both use BERT as the encoder model.
For both models, we perform experiments using
the same training, development, and testing splits.
From Table 2, we find that N-Best ASR BERT out-
performs WCN-BERT STC model significantly for
low data regime, especially when trained on 5%
and 10% of the training data. It shows that our ap-
proach effectively transfer learns from pre-trained
transformer’s knowledge. We believe this is due
to the structural similarity between our input rep-
resentation and the input BERT was pre-trained
on.

4.3 Significance of Dialog Context

Model Variation Fl-score Accuracy
without system utterance 86.5 80.2
N-Best ASR BERT with system utterance 87.8 81.8

Table 3: Fl-scores (%) and utterance-level accuracy
(%) of our model N-Best ASR BERT on the test set
when trained with and without system utterances.

Through this ablation study, we try to understand
the impact of dialog context on model’s perfor-
mance. For this, we train N-Best ASR BERT in the
following two settings:

* When input representation consists of only the
user utterance.

* When input representation consists of both the
last system utterance (dialog context) and the
user utterance as shown in figure 3.



As presented in Table 3, we observe that mod-
eling the last system utterance helps in achieving
better F1 and utterance-level accuracy by the dif-
ference of 1.3% and 1.6% respectively.

Prediction

|

Input Sequence

‘[CLS] ‘ Hello welcome to ACL conference ‘[SEP] ‘ Hello ‘[SEF]‘ no ‘ [SEP]‘ Hello ‘ [SEP] ‘ Hello ‘ [SEP] ‘

negate

‘[CLS]‘ Are you interested in confirming the booking ? ‘[ssp]‘ Hello ‘[ssp]‘ no ‘ [SEP]‘ Hello ‘ [SEP] ‘

Figure 3: Significance of Dialog Context: The green
box depicts the dialog context that helps disambiguate
the very similar ASR hypotheses shown in purple
boxes.

It proves that dialog context helps in improving
the performance of downstream SLU tasks. Fig-
ure 3 represents one such example where having
dialog context in form of the last system utterance
helps disambiguate between the two similar user
utterances.

5 Conclusion

In this work, building on a simple input repre-
sentation, we propose N-Best ASR Transformer,
which outperforms all the competitive baselines
on utterance-level accuracy for the DSTC2 dataset.
However, the highlight of our work is in achieving
significantly higher performance in an extremely
low data regime. This approach is accessible to
users of third-party ASR APIs, unlike the methods
that use word-lattices and word confusion networks.
As future extensions to this work, we plan to :

Enable our proposed model to generalize to
out-of-vocabulary (OOV) slot values.

Evaluate our approach in a multi-lingual set-
ting.
Evaluate on different values N in N-best ASR.

Compare the performance of our approach
on ASRs with different Word Error Rates
(WERs).
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Abstract

Is bias amplified when neural machine trans-
lation (NMT) models are optimized for speed
and evaluated on generic test sets using
BLEU? We investigate architectures and tech-
niques commonly used to speed up decoding
in Transformer-based models, such as greedy
search, quantization, average attention net-
works (AANSs) and shallow decoder models
and show their effect on gendered noun trans-
lation. We construct a new gender bias test set,
SimpleGEN, based on gendered noun phrases
in which there is a single, unambiguous, cor-
rect answer. While we find minimal over-
all BLEU degradation as we apply speed op-
timizations, we observe that gendered noun
translation performance degrades at a much
faster rate.

Introduction

Optimizing machine translation models for pro-
duction, where it has the most impact on society
at large, will invariably include speed-accuracy
trade-offs, where accuracy is typically approxi-
mated by BLEU scores (Papineni et al., 2002) on
generic test sets. However, BLEU is notably not
sensitive to specific biases such as gender. Even
when speed optimizations are evaluated in shared
tasks, they typically use BLEU (Papineni et al.,
2002; Heafield et al., 2020) to approximate quality,
thereby missing gender bias. Furthermore, these
biases probably evade detection in shared tasks that
focus on quality without a speed incentive (Guillou
et al., 2016) because participants would not typi-
cally optimize their systems for speed. Hence, it
is not clear if Neural Machine Translation (NMT)
speed-accuracy optimizations amplify biases. This
work attempts to shed light on the algorithmic
choices made during speed-accuracy optimizations

*This work conducted while author was working at Face-
book Al
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source That physician is a funny lady!

reference  jEsa médica/doctora es una mujer graciosa!
system A jEse médico es una dama graciosa!

system B jEse médico es una dama divertida!

system C  Ese médico es una mujer divertida!
system D jEse médico es una dama divertida!

Table 1: Translation of a simple source sentence by 4
different commercial English to Spanish MT systems.
All of these systems fail to consider the token “lady”
when translating the occupation-noun, rendering it in
with the masculine gender “doctor/médico”.

and their impact on gender biases in an NMT sys-
tem, complementing existing work on data bias.

We explore optimizations choices such as
(1) search (changing the beam size in beam search);
(ii) architecture configurations (changing the num-
ber of encoder and decoder layers); (iii) model
based speedups (using Averaged attention net-
works (Zhang et al., 2018)); and (iv) 8-bit quanti-
zation of a trained model..

Prominent prior work on gender bias evaluation
forces the system to “guess” the gender (Stanovsky
et al., 2019a) of certain occupation nouns in the
source sentence. Consider, the English source sen-
tence “That physician is funny.”, containing no in-
formation regarding the physician’s gender. When
translating this sentence into Spanish (where the oc-
cupation nouns are explicitly specified for gender),
an NMT model is forced to guess the gender of the
physician and choose between masculine forms,
doctor/médico or feminine forms doctora/médica.
While investigating bias in these settings is valu-
able, in this paper, we hope to highlight that the
problem is much worse — despite an explicit gen-
der reference in the sentence, NMT systems still
generate the wrong gender in translation (see Ta-
ble 1), resulting in egregious errors where not only
is the gender specification incorrect but the gener-
ated sentence also fails in morphological gender
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That £ /m-occ-sg is a funny f/m-n-sg!

Templates My f/m-relisa f/m-occ-sg.
f-occ-sg = {nurse, nanny...}
m-occ-sg = {physician, mechanic...}

Keywords f-rel = {sister, mother..}

m-rel = {brother, father...}
f-n-sg = {woman, gal, lady...}
m-n-sg = {man, guy...}

That engineer is a funny guy!
pro. MoMe My father is a mechanic.

That nanny is a funny lady!

FoFe My mother is a nurse.

Generated

That mechanic is my funny woman!
. MoFc . . .7,
anti. My sister is a physician.

That nurse is funny man!

FoMe My brother is a nanny.

Table 2: Example Templates, Keywords and a sample
of the resulting generated source sentences.

agreement. To focus on these egregious errors, we
construct a new data set, SimpleGEN. In Simple-
GEN, all source sentences include an occupation
noun (such as “mechanic”, “nurse” etc.) and an
unambiguous “signal” specifying the gender of the
person being referred to by the occupation noun.
For example, we modify the previous example to
“That physician is a funny lady”. We call our dataset
“Simple” because it contains all the information
needed by a model to produce correctly gendered
occupation nouns. Furthermore, our sentences are
short (up to 12 tokens) and do not contain com-
plicated syntactic structures. Ideally, SimpleGEN
should obviate the need for an NMT model to in-
correctly guess the gender of occupation nouns, but
using this dataset we show that gender translation
accuracy, particularly in female context sentences
(see Section 2), is negatively impacted by various
speed optimizations at a greater rate than a drop in
BLEU scores. A small drop in BLEU can hide a
large increase in biased behavior in an NMT sys-
tem. Further illustrating how insensitive BLEU is
as a metric to such biases.

2 SimpleGEN: A gender bias test set

Similar to Stanovsky et al. (2019b), our goal is
to provide English input to an NMT model and
evaluate if it correctly genders occupation-nouns.
We focus on English to Spanish (En-Es) and En-
glish to German (En-De) translation directions as
occupation-nouns are explicitly specified for gen-
der in these target languages while English is un-
derspecified for such a morphological phenomenon
which forces the model to attend to contextual clues.
Furthermore, these language directions are consid-
ered “high-resource” and often cited as exemplars
for advancement in NMT.

A key differentiating characterization of our test
set is that there is no ambiguity about the gender
of the occupation-noun. We achieve this by us-
ing carefully constructed templates such that there
is enough contextual evidence to unambiguously
specify the gender of the occupation-noun. Our
templates specify a “scaffolding” for sentences
with keywords acting as placeholders for values
(see Table 2). For the occupation keywords such
as f-occ—-sg and m—occ-sg, we select the oc-
cupations for our test set using the U.S Department
of Labor statistics of high-demand occupations.! A
full list of templates, keywords and values is in ta-
ble A6. Using our templates, we generate English
source sentences which fall into two categories:
(i) pro-stereotypical (pro) sentences contain either
stereotypical male occupations situated in male
contexts (MOMC) or female occupations in female
contexts (FOFC), and (i1) anti-stereotypical (anti)
sentences in which the context gender and occupa-
tion gender are mismatched, i.e. male occupations
in female context (MOFC) and female occupations
in male contexts (FOMC). Note that we use the
terms “male context” or “female context” to cate-
gorize sentences in which there is an unambiguous
signal that the occupation noun refers to a male or
female person, respectively. We generated 1332
pro-stereotypical and anti-stereotypical sentences,
814 in the MOMC and MOFC subgroups and 518
in the FOMC and FOFC subgroups (we collect
more male stereotypical occupations compared to
female, which causes this disparity).

To evaluate the translations of NMT models on
SimpleGEN, we also create an occupation-noun
bilingual dictionary, that considers the number and
gender as well as synonyms for the occupations.
For example for the En-Es direction, the English
occupation term ‘physician”, has corresponding
entries for its feminine forms in Spanish as “doc-
tora” and “médica” and for its masculine forms
“doctor” and “médico” (See table A8 for our full
dictionary). By design, non-occupation keywords
such as f-rel and £f-n-sg specify the expected
gender of the occupation-noun on the target side,
enabling dictionary based correctness verification.

3 Speeding up NMT

There are several “knobs” that can be tweaked
to speed up inference for NMT models. Setting the
beam-size (bs) to 1 during beam search is likely the

"https://www.dol.gov/agencies/wb/data/high-demand-
occupations
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Source That physician is a funny lady! Label
iEsa doctora es una mujer graciosa! Correct
. jEsa médica es una mujer feliz! Correct
Translations ! 1 A e
iEse médico es una mujer graciosa! Incorrect
iEse medicacién es una mujer graciosa! NA

Table 3: Our evaluation protocol with an example
source sentence and four example translations.

simplest approach to obtain quick speedups. Low-
bit quantization (INT®8) is another recent approach
which improves decoding speed and reduces the
memory footprint of models (Zafrir et al., 2019;
Quinn and Ballesteros, 2018).

For model and architecture based speedups, we
focus our attention on Transformer based NMT
models which are now the work-horses in NLP
and MT (Vaswani et al., 2017). While transform-
ers are faster to train compared to their predeces-
sors, Recurrent Neural Network (RNN) encoder-
decoders (Bahdanau et al., 2014; Luong et al.,
2015), transformers suffer from slower decoding
speed. Subsequently, there has been interest in
improving the decoding speed of transformers.

Shallow Decoders (SD): Shallow decoder mod-
els simply reduce the decoder depth and increase
the encoder depth in response to the observation
that decoding latency is proportional to the number
of decoder layers (Kim et al., 2019; Miceli Barone
et al., 2017; Wang et al., 2019; Kasai et al., 2020).
Alternatively, one can employ SD models without
increasing the encoder layers resulting in smaller
(and faster) models.

Average Attention Networks (AAN): Average
Attention Networks reduce the quadratic complex-
ity of the decoder attention mechanism to linear
time by replacing the decoder-side self-attention
with an average-attention operation using a fixed
weight for all time-steps (Zhang et al., 2018). This
results in a = 3-4x decoding speedup over the stan-
dard transformer.

4 Experimental Setup

Our objective is not to compare the various op-
timization methods against each other, but rather
surface the impact of these algorithmic choices
on gender biases. We treat all the optimization
choices described in section 3 as data points avail-
able to conduct our analysis. To this end, we train
models with all combinations of optimizations de-
scribed in section 3 using the Fairseq toolkit (Ott
et al.,, 2019). Our baseline is a standard large
transformer with a (6,6) encoder-decoder layer

101

configuration. For our SD models we use the
following encoder-decoder layer configurations
{(8,4),(10,2),(11,1)}. We also train smaller
shallow decoder (SSD) models without increas-
ing the encoder depth {(6,4), (6,2),(6,1)}. For
each of these 7 configurations, we train AAN ver-
sions. Next, we save quantized and non-quantized
versions for the 14 models, and decode with beam
sizes of 1 and 5. We repeat our analysis for English
to Spanish and English to German directions, us-
ing WMT13 En-Es and WMT14 En-De data sets,
respectively. For the En-Es we limited the train-
ing data to 4M sentence pairs (picked at random
without replacement) to ensure that the training for
the two language directions have comparable data
sizes. We apply Byte-Pair Encoding (BPE) with
32k merge operations to the data (Sennrich et al.,
2016).

We measure decoding times and BLEU scores
for the model’s translations using the WMT test
sets. Next, we evaluate each model’s performance
on SimpleGEN, specifically calculating the per-
cent of correctly gendered nouns, incorrectly gen-
dered nouns as well as inconclusive results. Ta-
ble 3 shows an example of our evaluation protocol
for an example source sentences and four possible
translations. We deem the first two as correct even
though the second translation incorrectly translates
“funny” as “feliz” since we focus on the translation
of “physician” only. The third translation is deemed
incorrect because the masculine form “médico” is
used and the last translation is deemed inconclu-
sive since it is in the plural form. We average these
metrics over 3 trials, each initialized with different
random seeds. We obtained 56 data points for each
language direction.

5 Analysis

Table 4a shows the performance of 6 selected
models including a baseline transformer model
with 6 encoder and decoder layers. The first two
columns (time and BLEU) were computed using
the WMT test sets. The remaining columns re-
port metrics using SimpleGEN. The algorithmic
choices resulting in the highest speed-up, result in
a 1.5% and 4% relative drop in BLEU for En-Es
and En-De, respectively (compared to the baseline
model). The pro-stereotypical (pro) column shows
the percentage correct gendered translation for sen-
tences where the occupation gender matches the
context gender. As expected the accuracies are rel-
atively high (80.9 to 77.7) for all the models. The



direction  model time(s) BLEU  pro anti A  FOFC MOFC AFC MOMC FOMC AMC
baseline (bl) 3,662.8 332 809 442 36.7 69.4 41.7 27.7 88.2 48.1 40.0
bl w/ bs=1 2,653.1 327 795 449 346 68.4 42.8 25.6 86.6 48.2 38.4
bl w/ AAN 3,009.4 329 786 378 40.8 67.4 33.6 338 85.6 443 413
En-Es bl w/ SD(10, 2) 2,241.7 329 779 381 398 67.3 359 314 84.6 41.7 429
bl w/ SSD(6, 2) 1,993.5 327 777 387 390 66.0 33.8 322 85.1 46.3 38.8
bl w/ quantization  2,116.1 327 798 414 384 67.0 372 298 88.0 48.1 39.8

max rel. % drop 45.6 1.5 39 151 4.9 21.4 4.0 135
baseline (bl) 3,653.0 272 677 397 280 575 316 259 742 52.3 21.8
bl w/ bs=1 2,504.5 267 650 392 258 51.5 29.7 21.8 735 54.0 19.5
bl w/ AAN 2,600.0 27.1 685 33.0 355 58.0 239 341 753 474 27.8
En-De bl w/ SD(10, 2) 1,960.8 27.1 675 326 350 57.7 26.5 31.2 73.8 46.7 27.1
bl w/ SSD(6, 2) 2,091.0 270 669 359 310 56.6 30.3 26.2 735 44.6 289
bl w/ quantization  2,205.1 26.1 632 332 30.0 50.5 246 259 71.3 46.8 24.6

max rel. % drop 46.3 4.0 65 179 13.0 22.1 53 9.5

(a) Each speed-up optimization individually.

direction  model time(s) BLEU pro  anti A FOFC MOFC AFC MOMC FOMC AMC
baseline 3,662.8 332 809 442 367 69.4 41.7 277 88.2 48.1 40.0
+bs=1 2,653.1 327 795 449 346 68.4 428 256 86.6 48.2 38.4
+AAN 1,971.8 325 774 385 389 67.4 349 325 83.7 44.0 39.7
En-Es +SD(10, 2) 1,164.2 321 753 362 39.1 57.1 317 253 86.8 432 43.6
+SSD(6, 2) 1,165.7 319 78.6 404 382 66.9 36.3 30.5 86.0 46.8 39.2
+quantization 679.6 31,1 731 349 382 58.7 29.5 29.2 82.3 434 38.8

max rel. % drop 81.4 6.3 9.6 223 17.7 31.0 6.7 10.4
baseline 3,653.0 272 677 397 280 575 316 259 74.2 523 21.8
+bs=1 2,504.5 267 650 392 258 515 29.7 218 735 54.0 19.5
+AAN 2,176.6 263 66.7 322 345 54.6 22.1 325 744 48.1 26.3
En-De +SD(10, 2) 1,332.3 258 642 29.1 351 50.3 222 28.1 73.0 44.7 28.3
+SSD(6, 2) 1,153.2 257 647 289 359 539 199 341 71.6 43.0 28.6
+quantization 732.6 247 610 233 376 46.3 148 315 70.3 36.7 33.6

max rel. % drop 79.9 9.2 9.9 413 19.5 532 55 29.8

(b) “Stacked” speed-up optimizations.

Table 4: Results showing the effect of speed-up optimizations applied individually (in Table 4a) and stacked in
Table 4b). We selected 6 models in both sections to highlight their effect on decoding time, BLEU and the %
correctness on gender-bias metrics. The last row for each section (and each direction), shows the relative % drops
in all the metrics between the fastest optimization method and the baseline. For example, for En-Es the relative %
drop of decoding time for Table 4a is calculated as 100 x (3662.8 — 1993.5)/3662.8.

last row in each section shows the maximum rela-
tive drop in each metric. We find that for the pro-
stereotypical column the maximum relative drop is
1.5 and 6.5 for Spanish and German, respectively,
which is similar to the relative change in BLEU
scores. However, we find that the models are able
to perform better on MOMC compared to FOFC
suggesting biases even within the pro-stereotypical
setting. In the anti-stereotypical (anti) column, we
observe below-chance accuracies of only 44.2%
and 39.7% for the two language directions, even
from our best model. Columns FOFC and MOFC,
show the difference in performance for sentences
in the female context (FC) category in the pres-
ence of a stereotypical female occupation versus
a stereotypical male occupation. We see a large
imbalance in performance in these two columns
summarized in AFC. Similarly, AMC summarizes
the drop in performance when the model is con-
fronted with stereotypical female occupations in
a male context when compared to a male occu-
pation in a male context. This suggests that the
transformer’s handling of grammatical agreement

especially in cases where an occupation and con-
textual gender mismatch could be improved. The
speedups disproportionately affect female context
(FC) sentences across all categories.

In terms of model choices, we find that AANs
deliver moderate speed-ups and minimal BLEU re-
duction compared to the baseline. However, AANs
suffer the most degradation in terms of gender-bias.
A, AFC and AMC are the highest for the ANN
model in both language directions. On the other
hand, greedy decoding with the baseline model has
the smallest degradation in terms of gender-bias.

While Table 4a reveals the effect of select indi-
vidual model choices, NMT practitioners, typically
“stack” the optimization techniques together for
large-scale deployment of NMT systems. Table 4b
shows that stacking can provide ~ 80 — 81% rela-
tive drop in decoding time. However, we again see
a disturbing trend where large speedups and small
BLEU drops are accompanied with large drops in
gender test performance. Again, FC sentences dis-
proportionately suffer large drops in accuracy, par-
ticularly in MOFC in the En-De direction, where
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® bleu ® pro @ anti

50
(a) English-Spanish

30

® bleu ® pro @ anti

30 70 90

(b) English-German

Figure 1: Plots showing relative percentage drop of BLEU and gender-test metrics on the y-axis and relative
percentage drop in decoding time in the x-axis FOr the two language directions analyzed. A breakdown of pro and
anti into their constituent groups MOMC, FOFC, MOFc and FOMC is shown in Appendix A.3.

we see a 53.2% relative drop between the baseline
and the fastest optimization stack.

While tables 4a and 4b show select models, we
illustrate and further confirm our findings using all
the data points (56 models trained) using scatter
plots shown in fig. 1. We see that relative % drop
in BLEU aligns closely with the relative % drop
in gendered translation in the pro-stereotypical set-
ting. In the case of German, the two trendlines
are virtually overlapping. However, we see a steep
drop for the anti-stereotypical settings, suggesting
that BLEU scores computed using a typical test
set only captures the stereotypical cases and even
small reduction in BLEU could result in more in-
stances of biased translations, especially in female
context sentences.

6 Related Work

Previous research investigating gender bias in
NMT has focused on data bias, ranging from as-
sessment to mitigation. For example, Stanovsky
et al. (2019b) adapted an evaluation data set for
co-reference resolution to measure gender biases in
machine translation. The sentences in this test set
were created with ambiguous syntax, thus forcing
the NMT model to “guess” the gender of the occu-
pations. In contrast, there is always an unambigu-
ous signal specifying the occupation-noun’s gender
in SimpleGEN. Similar work in speech-translation
also studies contextual hints, but their work uses
real-world sentences with complicated syntactic
structures and sometimes the contextual hints are
across sentence boundaries resulting in gender-
ambiguous sentences (Bentivogli et al., 2020).

Zmigrod et al. (2019) create a counterfactual
data-augmentation scheme by converting between
masculine and feminine inflected sentences. Thus,
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with the additional modified sentences, the aug-
mented data set equally represents both genders.
Vanmassenhove et al. (2018), Stafanovics et al.
(2020) and Saunders et al. (2020) propose a data-
annotation scheme in which the NMT model
is trained to obey gender-specific tags provided
with the source sentence. While Escudé Font
and Costa-jussa (2019) employ pre-trained word-
embeddings which have undergone a “debiasing”
process (Bolukbasi et al., 2016; Zhao et al., 2018).
Saunders and Byrne (2020) and Costa-jussa and
de Jorge (2020) propose domain-adaptation on
a carefully curated data set that “corrects” the
model’s misgendering problems. Costa-jussa et al.
(2020) consider variations involving the amount
of parameter-sharing between different language
directions in multilingual NMT models.

7 Conclusion

With the current mainstreaming of machine
translation, and its impact on people’s everyday
lives, bias mitigation in NMT should extend be-
yond data modifications and counter bias ampli-
fication due to algorithmic choices as well. We
focus on algorithmic choices typically considered
in speed-accuracy trade offs during productioniza-
tion of NMT models. Our work illustrates that such
trade offs, given current algorithmic choice prac-
tices, result in significant impact on gender trans-
lation, namely amplifying biases. In the process
of this investigation, we construct a new gender
translation evaluation set, SimpleGEN, and use it
to show that modern NMT architectures struggle
to overcome gender biases even when translating
source sentences that are syntactically unambigu-
ous and clearly marked for gender.
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A Appendices
A.1 Impact Statement

This work identifies a weakness of NMT models
where they appear to ignore contextual evidence
regarding the gender of an occupation noun and
apply an incorrect gender marker. It is difficult to
measure the adverse effects of biases in NMT, but
errors like the ones we highlight reduce trust in the
NMT system.

Intended use: We hope that this type of error
is further studied by NMT researchers leading to
a solution. Furthermore, we expect the speed-
optimization aspect of our work provides NMT en-
gineers with an extra point of consideration, as we
show gender-bias (errors in our dataset) increases
rapidly compared to metrics like BLEU on stan-
dard datasets. In this work, we limit ourselves to
viewing gender in the linguistic sense. SimpleGEN
is not meant to be a replacement for traditional MT
evaluation.

Risks: We recognize that socially, gendered lan-
guage evolves (e.g. in English, “actress” is rarely
used anymore). To the best of our knowledge, we
selected occupations that are typically gendered (in
Spanish and German) at present. Furthermore, we
only regard the gender binary as a linguistic con-
struct. It would be incorrect to use this work in the
context of gender identity or gender expression etc.

Dataset: The dataset is “synthetic” in that it has
been constructed using templates. We did not use
crowd-sourcing or private data.

A.2 Full Template and Terms

Keywords Values

f-n female, women

m-n male, men

f-n-pl women, ladies, females, gals
m-n-pl men, guys, males, fellows
f-n-sg gal, woman, lady

m-n-sg man, guy, fellow
f-obj-prn her

m-obj-prn him

f-pos-prn her

m-pos—-prn his

f-obj-pos—prn her

m-obj-pos-prn his

f-sbj-prn she

m-sbj-prn he

f-rel wife, mother, sister, girlfriend
m-rel husband, father, brother, boyfriend

Table A5: Keywords and the values they can take.
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Occupation Keywords Values

clerk, designer, hairdresser, house-
keeper, nanny, nurse, secretary
director, engineer, truck driver, farmer,
laborer, mechanic, physician, president,
plumber, carpenter, groundskeeper
clerks, designers, hairdressers, house-
keepers, nannies, nurses, secretaries
directors, engineers, truck drivers,
farmers, laborers, mechanics, physi-
cians, presidents, plumbers, carpenters,
groundskeepers

clerk, designer, hairdresser, house-
keeper, nanny, nurse, secretary
director, truck driver, farmer, la-
borer, mechanic, physician, president,
plumber, carpenter, groundskeeper
clerks, designers, hairdressers, house-
keepers, nannies, nurses, secretaries
directors, truck drivers, farmers, labor-
ers, mechanics, physicians, presidents,
plumbers, carpenters, groundskeepers

f-occ-sg

m-occ-sg

f-occ-pl

m-occ-pl

f-occ-sg-C

m-occ—-sg-C

f-occ-pl-C

m-occ-pl-C

f-occ-sg-Vv

m-occ-sg-V engineer,
f-occ-pl-v
m-occ-pl-V engineers,

Table A6: Occupation keywords and the values they
can take. The prefix “m—" and “f-"" indicate that ac-
cording to the U.S Department of Labor these occu-
pations have a higher percentage of male and female
works, respectively.

Table A7 shows the template we use to generate
our source sentences in SimpleGEN. We can gen-
erate sentences in one of the four sub-categories
(MOMC, MOFC, FOFC, FOMC) by setting occu-
pation keywords with the prefix m- or £— from our
terminology set Table A6). For example, to gener-
ate MOFC sentences, we set occupation-keywords
with prefix m— and non-occupation keywords with
prefix £-.

A.3 Breakdown of scatter plots

Figures A2a and A2b further divides pro-
stereotypical into male-occupations in male con-
texts (MoMc) and female-occupations in female
context (FoFc), and anti-stereotypical into male-
occupations in female contexts (MoFc) and female-
occupations in male contexts (FoMc).

A.4 Evaluation Dictionary

Table A8 shows the dictionary we use for evalua-
tion.



My {f/m}-relisa{f/m}-occ-sg-C.

My {f/m}-relisan {f/m}-occ-sg-V.

His {f/m}-relisa{f/m}-occ-sg-C.

His {f/m}-relisan {f/m}-occ-sg-V.

Alex’s {£/m}-rel became a {f/m}-occ-sg-C.

Alex’s {f/m}-rel became an {f/m}-occ-sg-V.

My {£/m}-rel enjoys {£/m}-pos-prn work a {£/m}-occ-sg-C.

My {f/m}-rel enjoys {f/m}-pos—-prn work an {£/m}-occ-sg-V.
Those {f/m}-n—-pl are {f/m}-occ-pl.

These {£/m}-n-pl work hard {£/m}-occ-pl.

Italked to {£/m}-obj—prn, {f/m}-sbj-prnisa{f/m}-occ-sg-C.
Italked to {f/m}-obj-prn, {f/m}-sbj-prnisan {f/m}-occ-sg-V.
{f/m}-sbj-prn works a {f/m}-occ-sg-C.

{f/m}-sbj-prn works an {f/m}-occ-sg-V.

I worked with {£/m}-obj-prn, {£/m}-sbj-prn is a very qualified {f/m}-occ-sg.
{f/m}-n {f/m}-occ-pl are rare .

{f/m}-n {f/m}-occ-pl are not predisposed for self-promotion .

{f/m}-n {£/m}-occ-pl performed well .

{f/m}-n {£/m}-occ-pl earn less than their counterparts .
{f/m}-sbj-prn enjoys {£/m}-pos—prn work a {£/m}-occ-sg-C.
{f/m}-sbj-prn enjoys {£/m}-pos—prn work an {f/m}-occ-sg-V.
Though {f/m}-sbj-prn argued with { £ /m}-pos—prn colleagues, the { £ /m}-occ—sg was always respectful .
People laughed at the {£ /m}-occ-sg behind {£/m}-obj-pos-prn back .
The {£/m}-occ—-sg screamed when {f/m}-sbj-prn saw the mouse .
That {£/m}-occ-sg chooses {£/m}-obj-prn words very carefully .

That {£/m}-occ-sgisafunny {£/m}-n-sg !

Those {£/m}-occ-pl are talented {£ /m}-n-pl !

Their {£/m}-occ-sgis asmart {£/m}-n-sg!

The {£/m}-occ-sg is a very dynamic {f/m}-n-sg !

The {f/m}-occ-sgis a {f/m}-n-sg with a lot of experience.

This {£/m}-occ—-sg happens to be my {f/m}-rel.

The {£/m}-occ—sg works hard and {£/m}-sbj-prn excels !

The {£/m}-occ—-sg drove fast and {£/m}-sbj-prn was on time .
Asa{f/m}-occ-sg-C, {f/m}-sbj—prn is very competent .

Asan {f/m}-occ-sg-V, {£/m}-sbj-prn is very competent .

When the {£/m}-occ—-sg arrived, everyone applauded {£/m}-obj-prn .
The {£/m}-occ—pl with the highest success rate per the polls, were {f/m}-n .
That {£/m}-occ-sgisalsomy {f/m}-rel.

The {£/m}-occ-sg moved here from Ethiopia where { £ /m}-sbj-prn is from .
The {£/m}-occ—sg arrives early for {f/m}-pos-prn shift .

That {£/m}-occ—sg is hella strict, watch out for {£/m}-obj-prn .

That { £ /m}-occ-sg retired early, good for {£/m}-obj-prn.

Table A7: Our template set used to generate English source sentences.
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English Spanish-Masc Spanish-Fem German-Masc German-Fem
clerk funcionario|empleado administrativo ~ funcionarialempleada administrativa Mitarbeiter Mitarbeiterin
designer disefiador disefiadora Designer Designerin
hairdresser peluquero peluquera Friseur Friseurin
housekeeper amo de llaves|amo de casa ama de llaves|ama de casa Haushélter Haushilterin
nanny ninero nifera Kinderbetreuer Kindermidchen
nurse enfermero enfermera Krankenpfleger Krankenschwester
secretary secretario secretaria Sekretdr Sekretdrin
director director directora Direktor Direktorin
engineer ingeniero ingeniera Ingenieur Ingenieurin

truck driver camionero camionera Lastwagenfahrer Lastwagenfahrerin
farmer granjero|campesino granjera|campesina Bauer Béuerin

laborer obrerotrabajador obrera|trabajadora Arbeiter Arbeiterin
mechanic mecanico mecanica Mechaniker Mechanikerin
physician médico médica Arzt Arztin

president presidente presidenta Prisident Présidentin
plumber plomero|fontanero plomera|fontanera Klempner Klempnerin
carpenter carpintero carpintera Tischler|Zimmermann  Tischlerin
groundskeeper  jardinero|guardidn jardinera|guardiana Girtner Girtnerin

clerks funcionarios funcionarias Mltarbeiter Mitarbeiterinnen
designers disefiadores disefiadoras Designer Designerinnen
hairdressers peluqueros peluqueras Friseure Friseurinnen
housekeepers amos de llaves|amos de casa amas de llaves|amas de casa Haushélter Haushiélterinnen
nannies nifieros nifieras Kinderbetreuer Kindermidchen
nurses enfermeros enfermeras Krankenpfleger Krankenschwestern
secretaries secretarios secretarias Sekretire Sekretdrinnen
directors directores directoras Direktoren Direktorinnen
engineers ingenieros ingenieras Ingenieuren Ingenieurinnin
truck drivers camioneros camioneras Lastwagenfahrerin Lastwagenfahrerinnen
farmers granjeros granjeras Bauern Béuerinnen
laborers obreros obreras Arbeiter Arbeiterinnen
mechanics mecdanicas mecanicos Mechaniker Mechanikerinnen
physicians médico médicas Arzte Arztinnen
presidents presidentes presidentas Prisidenten Présidentinnen
plumbers plomeros plomeras Klempner Klempnerinnen
carpenters carpinteros carpinteras Tischler Tischlerinnen
groundskeepers  jardineros|guardianes jardineras|guardianas Girtner Girtnerinnen

Table A8: Our dictionary of occupations. Entries with the “

as correct.
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”” symbol indicate that we accept either of the references



® bleu ® MoFc © FoFc ® FoMc ® MoMc

50 + ©

(a) English-Spanish

® bleu ® MoFc © FoFc ® FoMc ® MoMc

(b) English-German

Figure A2: Plots showing relative percentage drop of
BLEU and gender-test metrics on the y-axis and rela-
tive percentage drop in decoding time in the x-axis.

109



Machine Translation into Low-resource Language Varieties

Sachin Kumar®* Antonios Anastasopoulos®

Shuly Wintner”  Yulia Tsvetkov®

*Language Technologies Institute, Carnegie Mellon University, Pittsburgh, PA, USA
<>Department of Computer Science, George Mason University, Fairfax, VA, USA
“Department of Computer Science, University of Haifa, Haifa, Israel
#Paul G. Allen School of Computer Science & Engineering, University of Washington

sachink@cs.cmu.edu, antonis@gmu.edu,

Abstract

State-of-the-art machine translation (MT) sys-
tems are typically trained to generate ‘“stan-
dard” target language; however, many lan-
guages have multiple varieties (regional va-
rieties, dialects, sociolects, non-native vari-
eties) that are different from the standard lan-
guage. Such varieties are often low-resource,
and hence do not benefit from contemporary
NLP solutions, MT included. We propose
a general framework to rapidly adapt MT
systems to generate language varieties that
are close to, but different from, the standard
target language, using no parallel (source—
variety) data. This also includes adaptation
of MT systems to low-resource typologically-
related target languages.! We experiment
with adapting an English-Russian MT sys-
tem to generate Ukrainian and Belarusian, an
English—-Norwegian Bokmal system to gener-
ate Nynorsk, and an English—Arabic system to
generate four Arabic dialects, obtaining signifi-
cant improvements over competitive baselines.

1 Introduction

Despite tremendous progress in machine transla-
tion (Bahdanau et al., 2015; Vaswani et al., 2017)
and language generation in general, current state-
of-the-art systems often work under the assumption
that a language is homogeneously spoken and un-
derstood by its speakers: they generate a “standard”
form of the target language, typically based on
the availability of parallel data. But language use
varies with regions, socio-economic backgrounds,
ethnicity, and fluency, and many widely spoken
languages consist of dozens of varieties or dialects,
with differing lexical, morphological, and syntactic
patterns for which no translation data are typically
available. As a result, models trained to translate

!Code, data and trained models are available here: https:
//github.com/Sachinl9/seg2seg-con

shuly@cs.haifa.ac.il,

yuliats@cs.washington.edu

from a source language (SRC) to a standard lan-
guage variety (STD) lead to a sub-par experience
for speakers of other varieties.

Motivated by these issues, we focus on the task
of adapting a trained SRC—STD translation model
to generate text in a different target variety (TGT),
having access only to limited monolingual cor-
pora in TGT and no SRC—TGT parallel data. TGT
may be a dialect of, a language variety of, or a
typologically-related language to STD.

We present an effective transfer-learning frame-
work for translation into low resource language
varieties. Our method reuses SRC—STD MT mod-
els and finetunes them on synthesized (pseudo-
parallel) SRC—TGT texts. This allows for rapid
adaptation of MT models to new varieties with-
out having to train everything from scratch. Using
word-embedding adaptation techniques, we show
that MT models which predict continuous word
vectors (Kumar and Tsvetkov, 2019) rather than
softmax probabilities lead to superior performance
since they allow additional knowledge to be in-
jected into the models through transfer between
word embeddings of high-resource (STD) and low-
resource (TGT) monolingual corpora.

We evaluate our framework on three trans-
lation tasks: English to Ukrainian and Belaru-
sian, assuming parallel data are only available
for English—Russian; English to Nynorsk, with
only English to Norwegian Bokmal parallel data;
and English to four Arabic dialects, with only
English—Modern Standard Arabic (MSA) paral-
lel data. Our approach outperforms competitive
baselines based on unsupervised MT, and methods
based on finetuning softmax-based models.

2 A Transfer-learning Architecture

We first formalize the task setup. We are given
a parallel SRC—STD corpus, which allows us to
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Figure 1: An overview of our approach. (a) Using the available STD monolingual corpora, we first train word vectors
using fasttext; (b) we then train a SRC—STD translation model using the parallel corpora to predict the pretrained word
vectors; () next, we train STD—SRC model and use it to translate TGT monolingual corpora to SRC; (d) now, we finetune STD
subword embeddings to learn TGT word embeddings; and finally (e) we finetune a SRC—STD model to generate TGT pretrained

embeddings using the back-translated SRC—TGT data.

train a translation model f(-; ) that takes an input
sentence x in SRC and generates its translation in
the standard veriety STD, ystp = f(z;6). Here,
0 are the learnable parameters of the model. We
are also given monolingual corpora in both the
standard STD and target variety TGT. Our goal now
is to modify f to generate translations yrgr in the
target variety TGT. At training time, we assume no
SRC-TGT or STD-TGT parallel data are available.

Our solution (Figure 1) is based on a transformer-
based encoder-decoder architecture (Vaswani et al.,
2017) which we modify to predict word vectors.
Following Kumar and Tsvetkov (2019), instead
of treating each token in the vocabulary as a dis-
crete unit, we represent it using a unit-normalized
d-dimensional pre-trained vector. These vectors
are learned from a STD monolingual corpus using
fasttext (Bojanowski et al., 2017). A word’s
representation is computed as the average of the
vectors of its character n-grams, allowing surface-
level linguistic information to be shared among
words. At each step in the decoder, we feed this
pretrained vector at the input and instead of predict-
ing a probability distribution over the vocabulary
using a softmax layer, we predict a d-dimensional
continuous-valued vector. We train this model by
minimizing the von Mises-Fisher (vMF) loss—a
probabilistic variant of cosine distance—between
the predicted vector and the pre-trained vector. The
pre-trained vectors (at both input and output of the
decoder) are not trained with the model. To decode
from this model, at each step, the output word is
generated by finding the closest neighbor (in terms
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of cosine similarity) of the predicted output vector
in the pre-trained embedding table.

We train f in this fashion using SRC—STD paral-
lel data. As shown below, training a softmax-based
SRC—STD model to later finetune with TGT suffers
from vocabulary mismatch between STD and TGT
and thus is detrimental to downstream performance.
By replacing the decoder input and output with pre-
trained vectors, we separate the vocabulary from
the MT model, making adaptation easier.

Now, to finetune this model to generate TGT,
we need TGT embeddings. Since the TGT mono-
lingual corpus is small, training fasttext vec-
tors on this corpus from scratch will lead (as we
show) to low-quality embeddings. Leveraging the
relatedness of STD and TGT and their vocabulary
overlap, we use STD embeddings to transfer knowl-
edge to TGT embeddings: for each character n-
gram in the TGT corpus, we initialize its embed-
ding with the corresponding STD embedding, if
available. We then continue training fasttext
on the TGT monolingual corpus (Chaudhary et al.,
2018). Last, we use a supervised embedding align-
ment method (Lample et al., 2018a) to project the
learned TGT embeddings in the same space as STD.
STD and TGT are expected to have a large lexical
overlap, so we use identical tokens in both varieties
as supervision for this alignment. The obtained em-
beddings, due to transfer learning from STD, inject
additional knowledge in the model.

Finally, to obtain a SRC—TGT model, we fine-
tune f on psuedo-parallel SRC—TGT data. Using
a STD—SRC MT model (a back-translation model



trained using large STD—SRC parallel data with stan-
dard settings) we (back)-translate TGT data to SRC.
Naturally, these synthetic parallel data will be noisy
despite the similarity between STD and TGT, but
we show that they improve the overall performance.
We discuss the implications of this noise in §4.

3 Experimental Setup

Datasets We experiment with two setups. In the
first (synthetic) setup, we use English (EN) as SRC,
Russian (RU) as STD, and Ukrainian (UK) and Be-
larusian (BE) as TGTs. We sample 10M EN-RU
sentences from the WMT’ 19 shared task (Ma et al.,
2019), and 80M RU sentences from the CoNLL’17
shared task to train embeddings. To simulate low-
resource scenarios, we sample 10K, 100K and
1M UK sentences from the CoNLL’ 17 shared task
and BE sentences from the OSCAR corpus (Or-
tiz Suéarez et al., 2020). We use TED dev/test sets
for both languages pairs (Cettolo et al., 2012).
The second (real world) setup has two language
sets: the first one defines English as SRC, with
Modern Standard Arabic (MSA) as STD and four
Arabic varieties spoken in Doha, Beirut, Rabat and
Tunis as TGTs. We sample 10M EN-MSA sentences
from the UNPC corpus (Ziemski et al., 2016), and
80M MSA sentences from the CoNLL’ 17 shared
task. For Arabic varieties, we use the MADAR cor-
pus (Bouamor et al., 2018) which consists of 12K 6-
way parallel sentences between English, MSA and
the 4 considered varieties. We ignore the English
sentences, sample dev/test sets of 1K sentences
each, and consider 10K monolingual sentences for
each TGT variety. The second set also has English
as SRC with Norwegian Bokmal (NO) as STD and its
written variety Nynorsk (NN) as TGT. We use 630K
EN-NO sentences from WikiMatrix (Schwenk et al.,
2021), and 26M NoO sentences from ParaCrawl (Es-
pla et al., 2019) combined with the WikiMatrix NO
sentences to train embeddings. We use 310K NN
sentences from WikiMatrix, and TED dev/test sets
for both varieties (Reimers and Gurevych, 2020).

Preprocessing We preprocess raw text using
Byte Pair Encoding (BPE, Sennrich et al., 2016)
with 24K merge operations on each SRC—STD cor-
pus trained separately on SRC and STD. We use the
same BPE model to tokenize the monolingual STD
data and learn fasttext embeddings (we con-
sider character n-grams of length 3 to 6).> Splitting

2We slightly modify fasttext to not consider BPE to-
ken markers “@ @” in the character n-grams.
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the TGT words with the same STD BPE model will
result in heavy segmentation, especially when TGT
contains characters not present in STD.> To counter
this, we train a joint BPE model with 24K opera-
tions on the concatenation of STD and TGT corpora
to tokenize TGT corpus following Chronopoulou
et al. (2020). This technique increases the num-
ber of shared tokens between STD and TGT, thus
enabling better cross-variety transfer while learn-
ing embeddings and while finetuning. We fol-
low Chaudhary et al. (2018) to train embeddings on
the generated TGT vocabulary where we initialize
the character n-gram representations for TGT words
with STD’s fasttext model wherever available
and finetune them on the TGT corpus.

Implementation and Evaluation We modify
the standard OpenNMT-py seq2seq models of Py-
Torch (Klein et al., 2017) to train our model with
VMF loss (Kumar and Tsvetkov, 2019). Additional
hyperparameter details are outlined in Appendix B.
We evaluate our methods using BLEU score (Pap-
ineni et al., 2002) based on the SacreBLEU imple-
mentation (Post, 2018).* For the Arabic varieties,
we also report a macro-average. In addition, to
measure the expected impact on actual systems’
users, we follow Faisal et al. (2021) in comput-
ing a population-weighted macro-average (avg,p)
based on language community populations pro-
vided by Ethnologue (Eberhard et al., 2019).

3.1 Experiments

Our proposed framework, LANGVARMT, con-
sists of three main components: (1) A supervised
SRC—STD model is trained to predict continuous
STD word embeddings rather than discrete soft-
max probabilities. (2) Output STD embeddings are
replaced with TGT embeddings. The TGT embed-
dings are trained by finetuning STD embeddings on
monolingual TGT data and aligning the two embed-
ding spaces. (3) The resulting model is finetuned
with pseudo-parallel SRC—TGT data.

We compare LANGVARMT with the following
competitive baselines. SUP(SRC—STD): train a
standard (softmax-based) supervised SRC—STD
model, and consider the output of this model as

3For example, both RU and UK alphabets consist of 33
letters; RU has the letters F&, b, b1 and s, which are not
used in UK. Instead, UK has I't, €e, Ii and Ti.

“While we recognize the limitations of BLEU (Mathur
et al., 2020), more sophisticated embedding-based metrics for
MT evaluation (Zhang et al., 2020; Sellam et al., 2020) are un-
fortunately not available for low-resource language varieties.



UK BE NN Arabic Varieties (10K)
Size of TGT corpus 10K 100K IM 10K 100K IM | 300K | Doha Beirut Rabat Tunis
SUP(SRC—STD) 1.7 1.7 1.7 1.5 1.5 1.5 | 11.3 3.7 1.8 2.0 1.3
UNSUP(SRC—TGT) 0.3 0.6 0.9 0.4 0.6 1.4 2.7 0.2 0.1 0.1 0.1
Pivor 1.5 8.6 14.9 1.15 3.9 8.0 | 11.9 1.8 2.1 1.7 1.1
SOFTMAX 1.9 127 15.4 1.5 4.5 7.9 | 144 14.5 7.4 4.9 3.9
LANGVARMT 6.1 13.5 15.3 2.3 8.8 9.8 | 16.6 20.1 8.1 74 4.6

Table 1: BLEU scores on translation from English to Ukrainian, Belarusian, Nynorsk, and Arabic dialects with varying amounts
of monolingual target data (TGT sentences) available for finetuning. Our approach (LANGVARMT) outperforms all baselines.

TGT under the assumption that STD and TGT may
be very similar. UNSUP(SRC—TGT): train an
unsupervised MT model (Lample et al., 2018a)
in which the encoder and decoder are initialized
with cross-lingual masked language models (MLM,
Conneau and Lample, 2019). These MLMs are
pre-trained on SRC monolingual data, and then
finetuned on TGT monolingual data with an ex-
panded vocabulary as described above. This base-
line is taken from Chronopoulou et al. (2020),
where it showed state-of-the-art performance for
low-monolingual-resource scenarios. Pivot: train
a UNSUP(STD—TGT) model as described above
using STD and TGT monolingual corpora. Dur-
ing inference, translate the SRC sentence to STD
with the SUP(SRC—STD) model and then to TGT
with the UNSUP(STD—TGT) model. We also per-
form several ablation experiments, showing that
every component of LANGVARMT is necessary
for good downstream performance. Specifically,
we report results with LANGVARMT but using a
standard softmax layer (SOFTMAX) to predict to-
kens instead of continuous vectors.’

4 Results and Analysis

Table 1 compares the performance of LANG-
VARMT with the baselines for Ukrainian, Be-
larusian, Nynorsk, and the four Arabic varieties.
For reference, note that the EN—RU, EN—MSA,
and EN—NO models are relatively strong, yielding
BLEU scores of 24.3, 21.2, and 24.9, respectively.

Synthetic Setup Considering STD and TGT as
the same language is sub-optimal, as is evident
from the poor performance of the non-adapted
SUP(SRC—STD) model. Clearly, special attention
ought to be paid to language varieties. Direct un-
supervised translation from SRC to TGT performs
poorly as well, confirming previously reported re-
sults of the ineffectiveness of such methods on
unrelated languages (Guzman et al., 2019).

> Additional ablation results are listed in Appendix C.
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Translating SRC to TGT by pivoting through STD
achieves much better performance owing to strong
UNSUP(STD—TGT) models that leverage the sim-
ilarities between STD and TGT. However, when
resources are scarse (e.g., with 10K monolingual
sentences as opposed to 1M), this performance
gain considerably diminishes. We attribute this
drop to overfitting during the pre-training phase on
the small TGT monolingual data. Ablation results
(Appendix C) also show that in such low-resource
settings the learned embeddings are of low quality.

Finally, LANGVARMT consistently outperforms
all baselines. Using 1M UK sentences, it achieves
similar performance (for EN—UK) to the softmax
ablation of our method, SOFTMAX, and small gains
over unsupervised methods. However, in lower
resource settings our approach is clearly better than
the strongest baselines by over 4 BLEU points for
UK (10K) and 3.9 points for BE (100K).

To identify potential sources of error in our pro-
posed method, we lemmatize the generated trans-
lations and test sets and evaluate BLEU (Qi et al.,
2020). Across all data sizes, both UK and BE
achieve a substantial increase in BLEU (up to +6
BLEU; see Appendix D for details) compared to
that obtained on raw text, indicating morphological
errors in the translations. In future work, we will
investigate whether we can alleviate this issue by
considering TGT embeddings based on morpholog-
ical features of tokens (Chaudhary et al., 2018).

Real-world Setup The effectiveness of LANG-
VARMT is pronounced in this setup with a dramatic
improvement of more than 18 BLEU points over
unsupervised baselines when translating into Doha
Arabic. We hypothesize that during the pretrain-
ing phase of unsupervised methods, the extreme
difference between the size of the MSA monolin-
gual corpus (10M) and the varieties’ corpora (10K)
leads to overfitting. Additionally, compared to the
synthetic setup, the Arabic varieties we consider
are quite close to MSA, allowing for easy and ef-
fective adaptation of both word embeddings and



EN—MSA models. LANGVARMT also improves in
all other Arabic varieties, although naturally some
varieties remain challenging. For example, the Ra-
bat and particularly the Tunis varieties are more
likely to include French loanwords (Bouamor et al.,
2018) which are not adequately handled as they are
not part of our vocabulary. In future work, we will
investigate whether we can alleviate this issue by
potentially including French corpora (transliterated
into Arabic) to our TGT language corpora. On av-
erage, our approach improves by 2.3 BLEU points
over the softmax-based baseline (cf. 7.7 and 10.0 in
Table 2 under avg ) across the four Arabic dialects.
For a population-weighted average (avg,,,), we
associate the Doha variety with Gulf Arabic (ISO
code: afb), the Beirut one with North Levantine
Arabic (apc), Rabat with Moroccan (ary), and
the Tunis variety with Tunisian Arabic (aeb). As
before, LANGVARMT outperforms the baselines.
The absolute BLEU scores in this highly challeng-
ing setup are admittedly low, but as we discuss in
Appendix D, the translations generated by LANG-
VARMT are often fluent and input preserving, es-
pecially compared to the baselines.

Finally, due to high similarity between NO and
NN, the SUP(EN—NO) model also performs well
on NN with 11.3 BLEU, but our method yields
further gains of over 4 points over the baselines.

5 Discussion

Fairness The goal of this work is to develop more
equitable technologies, usable by speakers of di-
verse language varieties. Here, we evaluate the
systems along the principles of fairness. We evalu-
ate the fairness of our Arabic multi-dialect system’s
utility proportionally to the populations speaking
those dialects. In particular, we seek to measure
how much average benefit will the people of dif-
ferent dialects receive if their respective translation
performance is improved. A simple proxy for fair-
ness is the standard deviation (or, even simpler,
a max — min performance) of the BLEU scores
across dialects (A higher value implies more un-
fairness across the dialects) Beyond that, we mea-
sure a system’s unfairness with respect to the dif-
ferent dialect subgroups, using the adaptation of
generalized entropy index (Speicher et al., 2018),
which considers equities within and between sub-
groups in evaluating the overall unfairness of an
algorithm on a population Faisal et al. (2021) (See
Appendix F for details and additional discussion).
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Table 2 shows that our proposed method is fairer
across all dialects, compared to baselines where
only MSA translation produces comprehensible out-
puts.

Model | avg T  avg,,T | max—min] unfair|
SUP(SRC—STD) 22 1.8 19.9 0.037
UNSUP(SRC—TGT) 0.1 0.1 21.1 0.046
Pivor 1.7 1.8 20.1 0.037
SOFTMAX 7.7 5.7 17.3 0.020
LANGVARMT 10.0 7.3 16.6 0.016

Table 2: Average performance and fairness metrics across
the four Arabic varieties. This evaluation includes MSA (with
a BLEU score of 21.2 on the SUP(EN—MSA) model).
Negative Results Our proposed method relies on
two components: (1) quality of TGT word embed-
dings which is dependent on STD and TGT shared
(subword) vocabulary, and (2) the psuedo-parallel
SRC—TGT obtained by back-translating TGT data
through a STD—SRC model. If STD and TGT are
not sufficiently closely related, the quality of both
of these components can degrade, leading to a drop
in the performance of our proposed method. We
present results of two additional experiments to
elucidate this phenomenon in Appendix E.
Related Work We provide an extensive discussion
of related work in Appendix A.

6 Conclusion

We presented a transfer-learning framework for
rapid and effective adaptation of MT models to
different varieties of the target language without
access to any source-to-variety parallel data. We
demonstrated significant gains in BLEU scores
across several language pairs, especially in highly
resource-scarce scenarios. The improvements are
mainly due to the benefits of continuous-output
models over softmax-based generation. Our anal-
ysis highlights the importance of addressing mor-
phological differences between language varieties,
which will be in the focus of our future work.
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A Related Work

Early work addressing translation involving lan-
guage varieties includes rule-based transforma-
tions (Altintas and Cicekli, 2002; Marujo et al.,
2011; Tan et al., 2012) which rely on language spe-
cific information and expert knowledge which can
be expensive and difficult to scale. Recent work
to address this issue only focuses on cases where
parallel data do exist. They include a combina-
tion of word-level and character-level MT (Vilar
et al., 2007; Tiedemann, 2009; Nakov and Tiede-
mann, 2012) between related languages or training
multilingual models to translate to/from English to
different varieties of a language (e.g., Lakew et al.
(2018) work on Brazilian—European Portuguese
and European—Canadian French). Such parallel
data, however, are typically unavailable for most
language varieties.

Unsupervised translation models, which require
only monolingual data, can address this limita-
tion (Artetxe et al., 2018; Lample et al., 2018a;
Garcia et al., 2020, 2021). However, when even
monolingual corpora are limited, unsupervised
models are challenging to train and are quite in-
effective for translating between unrelated lan-
guages (Marchisio et al., 2020). Considering vari-
eties of a language as writing styles, unsupervised
style transfer (Yang et al., 2018; He et al., 2020) or
deciphering methods (Pourdamghani and Knight,
2017) to translate between different varieties have
also been been explored but have not been shown to
perform well, often only reporting BLEU-1 scores
since they obtain BLEU-4 scores which are closer
to 0. Additionally, all of these approaches require
simultaneous access to data in all varieties during
training and must be trained from scratch when a
new variety is added. In contrast, our presented
method allows for easy adaptation of SRC—STD
models to any new variety as it arrives.

Considering a new target variety as a new do-
main of STD, unsupervised domain adaptation
methods can be employed, such as finetuning
SRC—STD models using pseudo-parallel corpora
generated from monolingual corpora in target vari-
eties (Hu et al., 2019; Currey et al., 2017). Our pro-
posed method is most related to this approach; but
while these methods have the potential to adapt the
decoder language model, for effective transfer, STD
and TGT must have a shared vocabulary which is
not true for most language varieties due to lexical,
morphological, and at times orthographic differ-

ences. In contrast, our proposed method makes use
of cross-variety word embeddings. While our ex-
amples only involve same-script varieties, augment-
ing our approach to work across scripts through a
transliteration component is straightforward.

B Implementation Details

We modify the standard OpenNMT-py seq2seq
models of PyTorch (Klein et al., 2017) to train our
model with vMF loss (Kumar and Tsvetkov, 2019).
We use the transformer-BASE model (Vaswani et al.,
2017), with 6 layers in both encoder and decoder
and with 8 attention heads, as our underlying archi-
tecture. We modify this model to predict pretrained
fasttext vectors. We also initialize the decoder
input embedding table with the pretrained vectors
and do not update them during model training. All
models are optimized using Rectified Adam (Liu
et al., 2020) with a batch size of 4K tokens and
dropout of 0.1. We train SRC—STD models for
350K steps with an initial learning rate of 0.0007
with linear decay. For finetuning, we reduce the
learning rate to 0.0001 and train for up to 100K
steps. We use early stopping in all models based
on validation loss computed every 2K steps. We
decode all the softmax-based models with a beam
size of 5 and all the vMF-based models greedily.

We evaluate our methods using BLEU score (Pa-
pineni et al., 2002) based on the SacreBLEU im-
plementation (Post, 2018). While we recognize the
limitations of BLEU (Mathur et al., 2020), more so-
phisticated embedding-based metrics for MT eval-
uation (Zhang et al., 2020; Sellam et al., 2020) are
simply not available for language varieties.

C Additional English-Ukrainian
Experiments

On our resource-richest setup of EN—UK transla-
tion using 1M UK sentences and RU as STD, we
compare our method with the following additional
baselines. Table 3 presents these results.
LAMPLE-UNSUP(SRC—TGT): This is another
unsupervised model, based on Lample et al.
(2018a) which initializes the input and output em-
bedding tables of both encoder and decoder using
cross-lingual word embeddings trained on SRC and
TGT monolingual corpora. The model is trained
in a similar manner to Chronopoulou et al. (2020)
(UNSUP(SRC—TGT)) with iterative backtransla-
tion and autoencoding.
PIvOT:LAMPLE(STD—TGT): This baseline is
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Method BLEU (uk)
SUP(SRC-STD) 1.7
UNSUP(SRC—TGT) 0.9
P1voT: 14.9
LAMPLE-UNSUP(SRC—TGT) 0.4
P1vOT:LAMPLE-UNSUP(STD—TGT) 9.0
P1vOT:DICTREPLACE(STD—TGT) 2.9
LANGVARMT 15.3
LANGVARMT w/ poor embeddings 4.6
LANGVARMT-RANDOM 13.1
SOFTMAX 15.4
LANGVARMT-RANDOM-SOFTMAX 14.1

Table 3: BLEU scores on EN-UK test corpus with
1M UK monolingual corpus.

similar to the PIVOT baseline, where we replace
the unsupervised model with that of Lample et al.
(2018a).

P1vOoT:DICTREPLACE(STD—TGT): Here we
first translate SRC to STD using SUP(SRC—STD),
and then modify the STD output to get a TGT sen-
tence as follows: We create a STD—TGT dictionary
using the embedding map suggested by Lample
et al. (2018b). This dictionary is created on words
tokenized with Moses tokenizer (Hoang and Koehn,
2008) rather than BPE tokens. We replace each to-
ken in the generated STD sentence which is not in
the TGT vocabulary using the dictionary (if avail-
able). We consider this baseline to measure lexical
vs. syntactic/phrase level differences between Rus-
sian and Ukrainian.

In addition to baseline comparison, we report
the following ablation experiments.

(1) To measure transfer from STD to TGT em-
beddings, we finetune the SUP(SRC—STD) model
using TGT embeddings trained from scratch (as
opposed to initialized with STD embeddings).

(2) To measure the impact of initialization during
model finetuning, we compare with a randomly
initialized model trained in a supervised fashion on
the psuedo-parallel SRC—TGT data.

Baselines On the unsupervised models based on
Lample et al. (2018a), we observe a similar trend
as that of Chronopoulou et al. (2020), where the
LAMPLE-UNSUP(SRC—TGT) model performing
poorly (0.4) with substantial gains when pivoting
through Russian (9.0 BLEU).
PIvOT:DICTREPLACE(STD—TGT) gains some
improvement over considering the output of
SUP(SRC—STD) as TGT, probably due to syntac-
tic similarities between Russian and Ukrainian.

119

This result can potentially be further improved
with a human-curated RU-UK dictionary, but such
resources are typically not available for the low-
resource settings we consider in this paper.

Ablations As shown in Table 3, training the
SRC—TGT model on a randomly initialized
model (LANGVAR-RANDOM) results in a per-
formance drop, confirming that transfer learning
from a SRC—STD model is beneficial. Simi-
larly, using TGT embeddings trained from scratch
(LANGVARMT w/ poor embeddings) results in a
drastic performance drop, providing evidence for
essential transfer from STD embeddings.

D Analysis

To better understand the performance of our mod-
els, we perform additional analyses.

Lemmatized BLEU For UK and BE, we lemma-
tize each word in the test sets and the translations
and evaluate BLEU scores. The results, depicted
in Table 4, very likely indicate that our framework
often generates correct lemmas, but may fail on
the correct inflectional form of the target words.
This highlights the importance of considering mor-
phological differences between language varieties.
The high BLEU scores also demonstrate that the re-
sulting translations are quite likely understandable,
albeit not always grammatical.

EN—UK EN—BE

‘ 10K

10K 100K IM 100K IM
raw 6.1 13.5 15.3 2.3 8.8 9.8
lemma  12.8 19.5 21.3 3.5 13.7 15.8

Table 4: BLEU scores on raw vs lemmatized text with
LANGVARMT.

Translation of Rare Words On the outputs of
the EN— UK model, trained with 100K UK sen-
tences, we compute the translation accuracy of
words based on their frequency in the TGT mono-
lingual corpus for LANGVARMT, our best base-
line SUP(SRC—STD)+UNSUP(SRC—TGT) and the
best performing ablation SOFTMAX. These results,
shown in Table 5, reveal that LANGVARMT is
more accurate at translating rare words (with fre-
quency less than 10) compared to the baselines.

Examples We provide some examples of EN-UK
and EN-Beirut Arabic translations generated by the
three models in Tables 6 and 7. As evaluated by
native speakers of the Beirut Arabic, we find that



frequency | PIVOT ~SOFTMAX LANGVARMT
1 0.0429 0.1516 0.1812
2 0.0448 0.2292 0.2556
3 0.0597 0.2246 0.2076
4 0.0692 0.2601 0.2962
[5,10) 0.0582 0.2457 0.2722
[10,100) 0.1194 0.2881 0.2827
[100,1000) | 0.2712 0.4537 0.4449

Table 5: Translation accuracies of words based on their
frequencies on EN—UK with 100K UK sentences.

despite a BLEU score of only 8, in a majority of
cases our baseline model is able to generate fluent
translations of the input, preserving most of the
content, whereas the baseline model ignores many
of the content words. We also observe that in some
cases, despite predicting in the right semantic space
of the pretrained embeddings, it fails to predict
the right token, resulting in surface form errors
(e.g., predicting adjectival forms of verbs). This
phenomenon is known and studied in more detail
in Kumar and Tsvetkov (2019).

E Negative Results

We present results for the following experiments:
(a) adapting an English to Thai (EN—TH) model
to Lao (LO). We use a parallel corpus of around
10M sentences for training the supervised EN—TH
model from the CCAligned corpus (EI-Kishky
et al., 2020), around 140K LO monolingual sen-
tences from the OSCAR corpus (Ortiz Sudrez et al.,
2020) and TED2020 dev/tests for both TH and
L0% (Reimers and Gurevych, 2020). (b) adapt-
ing an English to Amharic Model (EN—AM) to
Tigrinya (TI). We use training, development and
test sets from the JW300 corpus (Agi¢ and Vulié,
2019) containing S00K EN—AM parallel corpus and
100K Tigrinya monolingual sentences.

As summarized in Table 8, our method fails to
perform well on these sets of languages. Although
Thai and Lao are very closely related languages, we
attribute this result to little subword overlap in their
respective vocabularies which degrade the quality
of the embeddings. This is because Lao’s writ-
ing system is developed phonetically whereas Thai
writing contains many silent characters. Consider-
ing shared phonetic information while learning the
embeddings can alleviate this issue and is an av-

% Although Thai and Lao scripts look very similar, they use
different Unicode symbols which are one-to-one mappable
to each other: https://en.wikipedia.org/wiki/
Lao_ (Unicode_block)

Source | And we never think about the hidden
connection
Reference | Ta mm HiKOIM HE JyMaeMoO IPO
NIPUXOBaHi 3B’A3KHU
PrvoT | I mu mikosm HE gyemMo mpo
IIPUXOBAHY 3B’SI3KY.
(And we never think about a hidden
connection.)
SOFTMAX | { mikonu He mymaB Ipo
IPUXOBAHUI 3B’SI30K.
(I never thought of a hidden connection.)
LANGVARMT | I mu HiKOIM HE JIyMAEMO IIPO
MIPUXOBAHUHN 3B SI30K.
(And we never think about a hidden
connection.)
Source | And yet, looking at them, you would see
a machine and a molecule.
Reference | luBsstunch Ha HUX, BU 11OOAYINTE
MAIIIIHY 1 MOJIEKYJLY.
PivoT | I 6aunTu, quBISAINCH HA HUX, BU
6avunTe MAIUHY 1 MOJIEKYITY
MOJIEKYJIN.
(And to see, looking at them, you see
a machine and a molecule of a
molecule.)
SOFTMAX I rak, quByIsTIUCHL HA HUX, BU
GauuTe MAIIUHY 1 MOJIEKYJTLY.
(And so, looking at them, you see a
machine and a molecule.)
LANGVARMT I nuBisitounch HA HUX, B 1MOOGAYUTE
MAaIIIMHY 1 MOJIEKYJLY.
(And looking at them, you will see a
machine and a molecule)
Source | They have exactly the same amount of
carbon.
Reference | Bonu marorh ogHAKOBY
KiJIbKICTB BYTJIEITIO.
PivoT | Takum umHOM, TX 9acTKa BYTJIEIIO.
(Thus, their share of carbon.)
SOFTMAX | Bonu maiorh 0JHAKOBY KiJbKiCTb
BYTJIELIO.
(They have the same amount of carbon.)
LANGVARMT | BoHzm MaloTe TOYHO TaKy >K
KIJIBKICTBH BYTJIEITIO.
(they have exactly the same amount of
carbon)

Table 6: Examples of EN-UK translations generated by
LANGVARMT and the best performing baselines.

enue for future work. On the other hand, Amharic
and Tigrinya, while sharing a decent amount of
vocabulary, use different constructs and function
words (Kidane et al., 2021) leading to a very noisy
psuedo-parallel corpus.

F Measuring Unfairness

When evaluating multilingual and multi-dialect sys-
tems, it is crucial that the evaluation takes into
account principles of fairness, as outlined in eco-
nomics and social choice theory (Choudhury and
Deshpande, 2021). We follow the least difference
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Source | I’ve never heard of this address near here.
Reference | .l 3da weaci aglaisl 3, ol
Joidadd gy Bud )
Pivor Bid f.u-\.q&
(He will hand over.)
SOFTMAX | oY w0 ;8 weadi oy a2l gl 2ic
(Not once did I hear this title here)
Al wneacc Tadl oy Bai gl By w0y 2 90,
(I’ve never heard from this address near
here.)
Source | What’s the exchange rate today?
Reference | &g iduus y 13ugp8
Pivor - y U._f.j‘as
(What'’s the rate?)
SOFTMAX Lid g iy 1Jua p B |J.ﬁ.3?9
(What'’s the exchange rate today?)
i g yp M ua p B 131 gp8
(What'’s the exchange rate today?)
Source | How do I get to that place?
Reference | Sz god Iglola 78
Pivor Soua siuant
(How do you recommend?)
SOFTMAX | Suca 3, i god ele=]s
(How can I get to the shop?)
Sl A, g
(How can I get there?)
Source | Tell me when we get to the museum.
Reference | 84 303 g0l clalionea.
Pivor Bld :’ch .cU:AL"g
(we will go to the other.)
SOFTMAX | I8, laais 3 g eUalina
(Talk when we get to the museum)
5.1‘:, oy guadil Tlolomia
(Tell me when we got to the museum)
Source | Please take me to the morning market.
Reference | c.gJ 22,92 20, ol w 9@ Haaip
PIVOT |,z 3k )
(We’ll wait)
SOFTMAX PR ETE YL Y |J.ta.¢c.
(You take us to the market this morning.)
Loaua 3\:1..\."‘:, el @ Nuaup.
(We prefer you take us to the market at the
morning.)

Table 7: Examples of English to Beirut Arabic translations
generated by LANGVARMT and the best performing base-
lines.

EN—LO | EN—TI

SRC—STD 0.7 1.8
SOFTMAX 14 2.9
LANGVARMT 4.5 3.8

Table 8: BLEU scores for English to Lao and English to
Tigrinya translation

principle proposed by Rawls (1999), whose egal-
itarian approach proposes to narrow the gap be-
tween unequal accuracies.

A simple proxy for unfairness is the standard
deviation (or, even simpler, a max — min perfor-
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mance) of the scores across languages. Beyond
that, we measure a system’s unfairness with respect
to the different subgroups using the adaptation of
generalized entropy index described by Speicher
et al. (2018), which considers equities within and
between subgroups in evaluating the overall unfair-
ness of an algorithm on a population. The general-
ized entropy index for a population of n individuals
receiving benefits by, ba, . . . , b, with mean benefit

G) )

Using o = 2 following Speicher et al. (2018), the
generalized entropy index corresponds to half the
squared coefficient of variation.’

If the underlying population can be split into |G|
disjoint subgroups across some attribute (e.g. gen-
der, age, or language variety) we can decompose
the total unfairness into individual and group-level
unfairness. Each subgroup g € GG will correspond
to ng individuals with corresponding benefit vector
b9 = (b{,b3,...,bj,) and mean benefit 14 Then,
total generalized entropy can be re-written as:

n

2.

=1

1

na(a —1)

b;

,u

E%(by, ..., bn)

¢ o
o _ Ng ( Hg o
o (brsen) = (1) (o)
g=1
c
1y

S ()

—£%(b) + £5(b).

The first term £“(b) corresponds to the weighted
unfairness score that is observed within each sub-
group, while the second term Eg‘ (b) corresponds
to the unfairness score across different subgroups.

In this measure of unfairness, we define the ben-
efit as being directly proportional to the system’s
accuracy. For a Machine Translation system, each
user receives an average benefit equal to the BLEU
score the MT system achieves on the user’s di-
alect. Conceptually, if the system produces a per-
fect translation (BLEU=1) then the user will re-
ceive the highest benefit of 1. If the system fails
to produce a meaningful translation (BLEU— 0)
then the user receives no benefit (b = 0) from the
interaction with the system.

"The coefficient of variation is simply the ratio of the
standard deviation o to the mean p of a distribution.
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Abstract

Sparse attention has been claimed to increase
model interpretability under the assumption
that it highlights influential inputs.  Yet
the attention distribution is typically over
representations internal to the model rather
than the inputs themselves, suggesting this
assumption may not have merit. We build on
the recent work exploring the interpretability
of attention; we design a set of experiments
to help us understand how sparsity affects our
ability to use attention as an explainability tool.
On three text classification tasks, we verify
that only a weak relationship between inputs
and co-indexed intermediate representations
exists—under sparse attention and other-
wise. Further, we do not find any plausible
mappings from sparse attention distributions
to a sparse set of influential inputs through
other avenues. Rather, we observe in this
setting that inducing sparsity may make it less
plausible that attention can be used as a tool
for understanding model behavior.

1 Introduction

Interpretability research in natural language pro-
cessing (NLP) is becoming increasingly important
as complex models are applied to more and more
downstream decision making tasks. In light of
this, many researchers have turned to the attention
mechanism, which has not only led to impressive
performance improvements in neural models, but
has also been claimed to offer insights into how
models make decisions. Specifically, a number of
works imply or directly state that one may inspect
the attention distribution to determine the amount
of influence each input token has in a model’s
decision-making process (Xie et al., 2017; Mullen-
bach et al., 2018; Niculae et al., 2018, inter alia).
Many lines of work have gone on to exploit this
assumption when building their own “interpretable”
models or analysis tools (Yang et al., 2016; Tu et al.,

st
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2016; De-Arteaga et al., 2019); one subset has even
tried to make models with attention more inter-
pretable by inducing sparsity—a common attribute
of interpretable models (Lipton, 2018; Rudin,
2019)—in attention weights, with the motivation
that this allows model decisions to be mapped to
a limited number of items (Martins and Astudillo,
2016; Malaviya et al., 2018; Zhang et al., 2019).
Yet, there lacks concrete reasoning or evidence that
sparse attention weights leads to more interpretable
models: customarily, attention is not directly over
the model’s inputs, but rather over some represen-
tation internal to the model, e.g. the hidden states
of a recurrent network or contextual embeddings
of a Transformer (see Fig. 1). Importantly, these
internal representations do not solely encode infor-
mation from the input token they are co-indexed
with (Salehinejad et al., 2017; Brunner et al., 2020),
but rather from a range of inputs. This presents
the question: if internal representations themselves
may not be interpretable, can we actually deduce
anything from “interpretable” attention weights?
We build on the recent line of work challenging
the validity of attention-as-explanation methods
(Jain and Wallace, 2019; Serrano and Smith, 2019;
Grimsley et al., 2020, inter alia) and specifically
examine how sparsity affects their observations. To
this end, we introduce a novel entropy-based metric
to measure the dispersion of inputs’ influence,
rather than just their magnitudes. Through exper-
iments on three text classification tasks, utilizing
both LSTM and Transformer-based models, we
observe how sparse attention affects the results of
Jain and Wallace (2019) and Wiegreffe and Pinter
(2019), additionally exploring whether it allows
us to identify a core set of inputs that are important
to models’ decisions. We find we are unable to
identify such a set when using sparse attention;
rather, it appears that encouraging sparsity may
simultaneously encourage a higher degree of
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contextualization in intermediate representations.
We further observe a decrease in the correlation
between the attention distribution and input feature
importance measures, which exacerbates issues
found by prior works. The primary conclusion of
our work is that we should not believe sparse atten-
tion enhances model interpretability until we have
concrete reasons to believe so; in this preliminary
analysis, we do not find any such evidence.

2 Attention-based Neural Networks

We consider inputs x = z1 - - -, € V" of length
n where the tokens from taken from an alpha-
bet V. We denote the embedding of x, e.g., its
one hot encoding or (more commonly) a linear
transformation of its one-hot encoding with an em-
bedding matrix E € RVl as x(©) ¢ Réxn,
Our embedded input X (¢ is then fed to an en-
coder, which produces n intermediate representa-
tions I = [hy;...;h,] € R™*", where h; € R™
and m is a hyperparameter of the encoder. This
transformation is quite architecture dependent.

An alignment function A(-,-) maps a query q
and a key K to weights a(®) for a decoding time
step t; we subsequently drop ¢ for simplicity. In col-
loquial terms, A chooses which values of K should
receive the most attention based on q, which is then
represented in the vector a(®) € R™. For the NLP
tasks we consider, we have K = I = [hy;...;hy,)],
the encoder outputs. A query q may be, e.g., a rep-
resentation of the question in question answering.

The weights a are projected to sum to 1, which
results in the attention distribution «c. Mathe-
matically, this is done via a projection onto the
probability simplex using a projection function ¢,
e.g., softmax or sparsemax. We then compute the
context vector as ¢ = » ., «; h;. This context
vector is fed to a decoder, whose structure is again
architecture dependent, which generates a (possi-
bly unnormalized) probability distribution over the
set of labels ), where ) is defined by the task.

Attention. We experiment with two methods of
constructing an attention distribution: (1) addi-
tive attention, proposed by Bahdanau et al. (2015):
A(K,q); = v tanh(W1 K; + Waq) and (2) the
scaled dot product alignment function,Tas in the
N
v € R and Wy, Wy € RP™ are weight matrices.
Note that the original (without attention) neural

encoder—decoder architecture, as in Sutskever et al.

Transformer network: A(K,q) where
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(2014), can be recovered with alignment function
A(-,+) =10,...,0,1], i.e., only the last of the n in-
termediate representations is given to the decoder.

Projection Functions. A projection function ¢
takes the output of the alignment function and maps
it to a valid probability distribution: ¢ : R™" —
A"~ The standard projection function is softmax:

exp(z)

Qbsoft(z) = Zle[n] eXp(zi)

(D

= argmin Z pilogp; — p'z
peAn—t 1€[n]

However, softmax leads to non-sparse solutions as
an entry ¢sof(2); can only be 0 if z; = —oo. Al-
ternatively, Martins and Astudillo (2016) introduce
sparsemax, which can output sparse distributions:

2

Psparse(z) = argmin [|[p — ZH%
peAn—1

In words, sparsemax directly maps z onto the
probability simplex, which often leads to solutions
on the boundary, i.e. where at least one entry of
p is 0. One shortcoming of sparsemax is the lack
of control over the degree of sparsity. Sparsegen
(Laha et al., 2018) fills this gap:

. 2
(bsparseg(z) = argmin Hp - g<Z)H§ —A HpHQ 3)
peAn—!
where the degree of sparsity can be tuned via the hy-
perparameter \ € (—o0, 1); a larger A encourages
more sparsity in the minimizing solution.

3 Model Interpretability

Model interpretability and explainability have been
framed in different ways (Gehrmann et al., 2019)—
as model understanding tasks, where (spurious)
features learned by a model are identified, or as
decision understanding tasks, where explanations
for particular instances are produced. We consider
the latter in this paper. Such tasks can be framed as
generative, where models generate free text expla-
nations (Camburu et al., 2018; Kotonya and Toni,
2020; Atanasova et al., 2020b), or as post-hoc in-
terpretability methods, where salient portions of
the input are highlighted (Lipton, 2018; DeYoung
et al., 2020; Atanasova et al., 2020a).

As there does not exist a clearly superior choice
for framing decision understanding for NLP tasks
(Miller, 2019; Carton et al., 2020; Jacovi and



Goldberg, 2021), we follow a substantial body of
prior work in considering the post-hoc definition of
interpretability based on local methods proposed
by Lipton (2018). This definition is naturally oper-
ationalized through feature importance metrics and
meta models (Jacovi and Goldberg, 2020). Further,
we acknowledge the specific requirement that an
interpretable model obeys some set of structural
constraints of the domain in which it is used, such
as monotonicity or physical constraints (Rudin,
2019). For NLP tasks such as sentiment analysis or
topic classification, such constraints may logically
include the utilization of only a few key words
in the input when making a decision, in which
case, knowing the magnitude of the influence each
input token has on a model’s prediction through,
e.g., feature importance metrics, may suffice to
verify the model obeys such constraints. While
this collective definition is limited (Doshi-Velez
and Kim, 2017; Guidotti et al., 2018; Rudin, 2019),
we posit that if attention cannot provide model
interpretability at this level, then it would likewise
not be able to under more rigorous constraints.

3.1 Measures of Feature Importance

Gradient-Based Methods. Gradient-based mea-
sures of feature importance (F1; Baehrens et al.,
2010; Simonyan et al., 2014; Poerner et al., 2018)
use the gradient of a function’s output w.r.t. a fea-
ture to measure the importance of that feature. In
the case of an attentional neural network for binary
classification f(-), we can take the gradient of f
w.r.t. the variable x and evaluate at a point x = x’
to gain a sense of how much influence each z, had
on the outcome § = f(x’). These measures are not
restricted to the relationship between inputs x; and
the outcome f(x); they can also be adapted to mea-
sure for effects from and to intermediate represen-
tations h,,. Formally, our measures are as follows:

of
axe
i |lo
gi(z;) = “4)
Zn af
k=1 e
2x.” ||,
Ol[hp|l2
ax\? ||,
gh, (7;) = )
Si ||

where g;(z;) € [0,1] and g, (hy,) € [0, 1] rep-
resents the gradient-based FI of token x; on ¢
and intermediate representation h,, respectively.

Gradient-based methods are often used in explain-
ability techniques, as they have exhibited higher
correlation with human judgement than others
(Atanasova et al., 2020a). Note that we take gradi-
ents w.r.t. the embedding of token x; and that in the
latter metric, we measure the influence of x; on the
magnitude of h,—a decision we discuss in App. A.

Leave-One-Out (LOO)-based Methods. As a
secondary FI metric, we observe how model pre-
dictions change when a specific input token is re-
moved. For token z;, this can be calculated as:

N ()
> k=9 = G-kl
where ¢_; is the prediction of a model with input

x; removed. The formula can also be used for inter-
mediate representations; we denote this as Dy (h;).

Dy (i) (6)

4 Experiments

Setup. We run experiments across several model
architectures, attention mechanisms, and datasets
in order to understand the effects of induced
attentional sparsity on model interpretability. We
use three binary classification datasets: ImDB and
SST (sentiment analysis) and 20News (topic clas-
sification). We use the dataset versions provided
by Jain and Wallace (2019), exactly following
their pre-processing steps. We show a subset
of representative results here, with additional
results in App. C. Further details, including model
architecture descriptions, dataset statistics and
baselines accuracies may be found in App. B.

Inputs and Intermediate Representations are
not Interchangeable. We first explore how
strongly-related inputs are to their co-indexed inter-
mediate representations. A strong relationship on
its own may validate the use of sparse attention, as
the ability to identify a subset of influential interme-
diate representations would then directly translate
to a set of influential inputs. Previous works show
that the “contribution” of a token x; to its intermedi-
ate representation h; is often quite low for various
model architectures (Salehinejad et al., 2017; Ming
etal., 2017; Brunner et al., 2020; Tutek and Snajder,
2020). In the context of attention, we find this prop-
erty to be evinced by the adversarial experiments
of Wiegreffe and Pinter (2019) (§4) and Jain and
Wallace (2019) (§4), which we verify in App. C.
They construct adversarial attention distributions
by optimizing for divergence from a baseline
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Figure 1: Correlation between the attention distribu-
tion and gradient-based FI measures. We see a notably
stronger correlation between attention and FI of inter-
mediate representation than of inputs across all models.

IMDb 20-News SST
H(gn, (x)) H(gn,(x)) H(gn,(x))
BiLSTM (Softmax) 0.71 £0.09 0.75 +0.12 0.93 +0.05
BiLSTM (Sparsemax) 0.72 £0.10 0.68 +0.12 091 +0.07
Transformer (Softmax) 0.76 +0.08 0.48 +0.06 0.73 +0.09
Transformer (Sparsemax) 0.72 +0.09 0.46 +0.06 0.63 +0.08

Table 1: Mean entropy of gradient-based FI of input to
intermediate representations. Green numbers are std.
deviations. Projection functions are parenthesized.

model’s attention distribution by: (1) adopting all
of the baseline model’s parameters and directly op-
timizing for divergence and (2) training an entirely
new model and optimizing for divergence as part of
the training process. The former method leads to a
large drop in performance (accuracy) while the lat-
ter does not. If we believe the model must encode
the same information to achieve similar accuracy,
this discrepancy implies that in the latter method,
the model likely “redistributes” information across
encoder outputs (i.e., intermediate representations
h,), which would suggest token-level information
is not tied to a particular hy,.

As further verification of high degrees of
contextualization in attentional models, we report a
novel quantification, offering insights into whether
individual intermediate representations can be
linked primarily to any single input—i.e., perhaps
not the co-indexed input; we measure the normal-
ized entropy! of the gradient-based FI of inputs to
intermediate representations I:I(ghp (x)) € [0,1] to
gain a sense of how dispersed influence for inter-
mediate representation is across inputs. A value of
1 would indicate all inputs are equally influential;
a value of 0 would indicate solely a single input

'We use Shannon entropy H(p) := — >, p(x)logp(x)
albeit normalized (i.e. divided) by maximum possible entropy
of the distribution to control for dimension.

Entropy of Input Feature Importance Measure Distributions
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Figure 2: Entropy of gradient-based g;(x) and LOO
Dy(x) FI distributions. Results are from models with
full spectrum of projection functions.

IMDb 20-News SST
BiLSTM (tanh) -0.935 -0.675 -0.866
Transformer (dot) -0.830 -0.409 -0.810

Table 2: Correlation between sparsegen parameter® )
and entropy of gradient-based input FI H(gj(x)).

has influence on an intermediate representation.
Results in Table 1 show consistently high entropy
in the distribution of the influence of inputs z;
on an intermediate representation h,, across all
datasets, model architectures, and projection
functions, which suggests the relationship between
intermediate representations and inputs is far from
one-to-one in these tasks.

Sparse Attention # Sparse Input Feature
Importance. Our prior results demonstrated
that—even when using sparse attention—we can-
not identify a subset of influential inputs directly
through intermediate representations; we explore
whether a subset can still be identified through
FI metrics. In the case where the normalized FI
distribution highlights only a few key items, the
distribution will, by definition, have low entropy.
Thus, we explore whether sparse attention leads to
lower entropy input FI distributions in comparison
to standard attention. We find no such trend;
Fig. 2 shows that across all models and settings,
the entropy of the FI distribution is quite high.
Further, we see a consistent negative correlation
between this entropy and the sparsity parameter
of the sparsegen projection (Table 2), implying
that entropy of feature importance increases as we
raise the degree of sparsity in a.

Correlation between Attention and Feature Im-
portance. Finally, we follow the experimental
setup of Jain and Wallace (2019), who postulate
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Correlation between Attention and Feature Importance Measures
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Figure 3: Correlation between the attention distribu-
tion and input FI measures as a function of the spar-
sity penalty X used in the projection function @sparseg-
x-axis is log-scaled for A < 0 since A € (—o0,1). Re-
sults are from the IMDb dataset.

that if the attention distribution indicates which
inputs influence model behavior, then one may
reasonably expect attention to correlate’ with FI
measures of the input. While they find only a weak
correlation, we explore how inducing sparsity
in the attention distribution affects this result.
Surprisingly, Fig. 3 shows a downward trend in
this correlation as the sparsity parameter A of the
sparsegen projection function is increased. As
argued by Wiegreffe and Pinter (2019), a lack of
this correlation does not indicate attention cannot
be used as explanation; FI measures are not ground-
truth indicators of critical inputs. However, the
inverse relationship between input FI and attention
is rather surprising. If anything, we may surmise
sparsity in « leads to less faithful explanations
from o. From these results, we posit that promot-
ing sparsity in attention distribution may simply
lead to the dispersion of information to different
intermediate representations, a behavior similar
to that seen when constraining attention for diver-
gence from another distribution, i.e., in the adver-
sarial experiments of Wiegreffe and Pinter (2019)
compared to those of Jain and Wallace (2019).

5 Related Work

The use of attention as an indication of inputs’ influ-
ence on model decisions may at first seem natural;
yet a large body of work has recently challenged
this practice. Perhaps the first to do so was Jain
and Wallace (2019), which revealed both a lack of
correlation between the attention distribution and
well established feature importance metrics and of

2We use Kendall’s 7-b correlation (Knight, 1966).
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unique optimal attention weights.> Subsequently,
other studies arrived at similar results: Grimsley
et al. (2020) found evidence that causal explana-
tions are not attainable from attention layers over
text data; Jacovi and Goldberg (2020) explored
the faithfulness of attention heatmaps; Pruthi et al.
(2020) showed that attention masks can be trained
to give deceptive explanations. We view this work
as another such study, exploring attention’s innate
interpretability on a different axis.

Further, this work fits into the context of a larger
body of interpretability research in NLP, which
has challenged the informal use of terms such as
faithfulness, plausibility, and explainability (Lip-
ton, 2018; Arrieta et al., 2020; Jacovi and Gold-
berg, 2021, inter alia) and tried to quantify the
reliability of current definitions (Atanasova et al.,
2020a). While we consider their findings in our
experimental design—e.g., in our choice of feature
importance metrics—we recognize that further ex-
periments would be needed to address all of their
concerns; for example, this work could be extended
by using the benchmark created by DeYoung et al.
(2020) as an additional metric of interpretability.

6 Conclusion

Prior work has cited interpretability as a driving
factor for promoting sparsity in attention distribu-
tions. We explore how induced sparsity affects
the ability to use attention as a tool for explaining
model decisions. In our experiments on text clas-
sification tasks, we see that while sparse attention
distributions may allow us to pinpoint influential
intermediate representations, we are unable to find
any plausible mapping from sparse attention to a
small, critical set of influential inputs. Rather, we
find evidence that inducing sparsity may make it
even less plausible to use the attention distribution
to interpret model behavior. We conclude that we
need further reason to believe sparse attention in-
creases model interpretability as our results do not
support such claims.
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Ethical Considerations

Machine learning models are being deployed in an
increasing number of sensitive situations. In these
settings, it is critical that models are interpretable,
so that we can avoid e.g., inadvertent racial or gen-
der bias. Giving a false sense of interpretability can
allow models with undesirable (i.e., unethical or un-
stable) behavior to fly under the radar. We view this
work as another critique of interpretability claims
and hope our results will encourage the more care-
ful consideration of interpretability assumptions
when using machine learning models in practice.
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Abstract

Mechanisms for encoding positional informa-
tion are central for transformer-based language
models. In this paper, we analyze the po-
sition embeddings of existing language mod-
els, finding strong evidence of translation in-
variance, both for the embeddings themselves
and for their effect on self-attention. The de-
gree of translation invariance increases dur-
ing training and correlates positively with
model performance. Our findings lead us
to propose translation-invariant self-attention
(TISA), which accounts for the relative posi-
tion between tokens in an interpretable fashion
without needing conventional position embed-
dings. Our proposal has several theoretical ad-
vantages over existing position-representation
approaches. Experiments show that it im-
proves on regular ALBERT on GLUE tasks,
while only adding orders of magnitude less po-
sitional parameters.

1 Introduction

The recent introduction of transformer-based lan-
guage models by Vaswani et al. (2017) has set
new benchmarks in language processing tasks such
as machine translation (Lample et al., 2018; Gu
et al., 2018; Edunov et al., 2018), question answer-
ing (Yamada et al., 2020), and information extrac-
tion (Wadden et al., 2019; Lin et al., 2020). How-
ever, because of the non-sequential and position-
independent nature of the internal components of
transformers, additional mechanisms are needed to
enable models to take word order into account.
Liu et al. (2020) identified three important crite-
ria for ideal position encoding: Approaches should
be inductive, meaning that they can handle se-
quences and linguistic dependencies of arbitrary
length, data-driven, meaning that positional depen-
dencies are learned from data, and efficient in terms
of the number of trainable parameters. Separately,
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Shaw et al. (2018) argued for translation-invariant
positional dependencies that depend on the relative
distances between words rather than their absolute
positions in the current text fragment. It is also im-
portant that approaches be parallelizable, and ide-
ally also interpretable. Unfortunately, none of the
existing approaches for modeling positional depen-
dencies satisfy all these criteria, as shown in Table
1 and in Sec. 2. This is true even for recent years’
state-of-the-art models such as BERT (Devlin et al.,
2019), RoBERTa (Liu et al., 2019), ALBERT (Lan
et al., 2020), and ELECTRA (Clark et al., 2020),
which require many positional parameters but still
cannot handle arbitrary-length sequences.

This paper makes two main contributions: First,
in Sec. 3, we analyze the learned position embed-
dings in major transformer-based language models.
Second, in Sec. 4, we leverage our findings to pro-
pose a new positional-dependence mechanism that
satisfies all desiderata enumerated above. Experi-
ments verify that this mechanism can be used along-
side conventional position embeddings to improve
downstream performance. Our code is available.

2 Background

Transformer-based language models (Vaswani
et al., 2017) have significantly improved model-
ing accuracy over previous state-of-the-art models
like ELMo (Peters et al., 2018). Howeyver, the non-
sequential nature of transformers created a need for
other mechanisms to inject positional information
into the architecture. This is now an area of active
research, which the rest of this section will review.

The original paper by Vaswani et al. (2017) pro-
posed summing each token embedding with a posi-
tion embedding, and then used the resulting embed-
ding as the input into the first layer of the model.
BERT (Devlin et al., 2019) reached improved per-
formance training data-driven d-dimensional em-
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Induct- Data- Parameter Translation Parallel Interpret-
Method ive?  driven? efficient? invariant? -izable?  able?
Sinusoidal position embedding (Vaswani et al., 2017) v X 4 X v X
Absolute position embedding (Devlin et al., 2019) X v X X v X
Relative position embedding (Shaw et al., 2018) X v 4 v X X
T5 (Raffel et al., 2020) X v v v v v
Flow-based (Liu et al., 2020) v v v X X X
Synthesizer (Tay et al., 2020) X v v X v X
Untied positional scoring (Ke et al., 2021) X v X X v X
Rotary position embedding (Su et al., 2021) v X v v v X
Translation-invariant self-attention (proposed) ‘ v 4 4 v v v

Table 1: Characteristics of position-representation approaches for different language-modeling architectures.

beddings for each position in text snippets of at
most n tokens. A family of models have tweaked
the BERT recipe to improve performance, includ-
ing RoBERTa (Liu et al., 2019) and ALBERT (Lan
et al., 2020), where the latter has layers share the
same parameters to achieve a more compact model.

All these recent data-driven approaches are re-
stricted to fixed max sequence lengths of n tokens
or less (typically n = 512). Longformer (Beltagy
et al., 2020) showed modeling improvements by
increasing n to 4096, suggesting that the cap on
sequence length limits performance. However, the
Longformer approach also increased the number
of positional parameters 8-fold, as the number of
parameters scales linearly with n; cf. Table 2.

Clark et al. (2019) and Htut et al. (2019) ana-
lyzed BERT attention, finding some attention heads
to be strongly biased to local context, such as the
previous or the next token. Wang and Chen (2020)
found that even simple concepts such as word-order
and relative distance can be hard to extract from
absolute position embeddings. Shaw et al. (2018)
independently proposed using relative position em-
beddings that depend on the signed distance be-
tween words instead of their absolute position, mak-
ing local attention easier to learn. They reached
improved BLEU scores in machine translation, but
their approach (and refinements by Huang et al.
(2019)) are hard to parallelize, which is unattrac-
tive in a world driven by parallel computing. Zeng
et al. (2020) used relative attention in speech syn-
thesis, letting each query interact with separate
matrix transformations for each key vector, depend-
ing on their relative-distance offset. Raffel et al.
(2020) directly model position-to-position interac-
tions, by splitting relative-distance offsets into ¢
bins. These relative-attention approaches all facili-
tate processing sequences of arbitrary length, but
can only resolve linguistic dependencies up to a
fixed predefined maximum distance.
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Tay et al. (2020) directly predicted both word
and position contributions to the attention matrix
without depending on token-to-token interactions.
However, the approach is not inductive, as the size
of the attention matrix is a fixed hyperparameter.

Liu et al. (2020) used sinusoidal functions with
learnable parameters as position embeddings. They
obtain compact yet flexible models, but use a neural
ODE, which is computationally unappealing.

Ke et al. (2021) showed that self-attention works
better if word and position embeddings are untied
to reside in separate vector spaces, but their pro-
posal is neither inductive nor parameter-efficient.

Su et al. (2021) propose rotating each embed-
ding in the self-attention mechanism based on its
absolute position, thereby inducing translational
invariance, as the inner product of two vectors is
conserved under rotations of the coordinate system.
These rotations are, however, not learned.

The different position-representation approaches
are summarized in Table 1. None of them satisfy
all design criteria. In this article, we analyze the po-
sition embeddings in transformer models, leading
us to propose a new positional-scoring mechanism
that combines all desirable properties (final row).

3 Analysis of Existing Language Models

In this section, we introspect selected high-profile
language models to gain insight into how they have
learned to account for the effect of position.

3.1 Analysis of Learned Position Embeddings

First, we stack the position embeddings in the ma-
trix Ep € R™ 9, and inspect the symmetric matrix
P=F pE}Q € R™", where P; ; represents the
inner product between the ith and jth embedding
vectors. If inner products are translation invariant,
P; ; will only depend on the difference between the
indices, j — 1, giving a Toeplitz matrix, a matrix
where each diagonal is constant.
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Figure 1: Heatmaps visualizing the matrix P = Ep E'L of position-embedding inner products for different models.
The greater the inner product between the embeddings, the brighter the color. See appendix Figs. 4, 5 for more.

Fig. 1 visualizes the P-matrices for the position
embeddings in a number of prominent transformer
models, listed from oldest to newest, which also
is in order of increasing performance. We note
that a clear Toeplitz structure emerges from left
to right. Translation invariance is also seen when
plotting position-embedding cosine similarities, as
done by Wang and Chen (2020) for transformer-
based language models and by Dosovitskiy et al.
(2020) for 2D transformers modeling image data.

In Fig. 2 we further study how the degree of
Toeplitzness (quantified by R2, the amount of the
variance among matrix elements P; ; explained by
the best-fitting Toeplitz matrix) changes for differ-
ent ALBERT models. With longer training time
(i.e., going from ALBERT v1 to v2), Toeplitzness
increases, as the arrows show. This is associated
with improved mean dev-set score. Such evolution
is also observed in Wang and Chen (2020, Fig. 8).

3.2 Translation Invariance in Self-Attention

Next, we analyze how this translation invariance is
reflected in self-attention. Recall that Vaswani et al.
(2017) self-attention can be written as

_ QKT )
att(Q, K, V) = softmax < N vV, ()
and define position embeddings Ep, word em-
beddings Eyy, and query and key transformation
weight matrices W and Wi . By taking

QK" = (Ew + Ep)WoWik (Ew + Ep)T (2)

and replacing each row of Eyy by the average word
embedding across the entire vocabulary, we obtain
a matrix we call ﬁp that quantifies the average ef-
fect of E'p on the softmax in Eq. (1). Plots of the re-
sulting ﬁp for all 12 ALBERT-base attention heads
in the first layer are in appendix Fig. 8. Importantly,
these matrices also exhibit Toeplitz structure. Fig.
3 graphs sections through the main diagonal for
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selected heads, showing peaks at short relative dis-
tances, echoing Clark et al. (2019) and Htut et al.
(2019). In summary, we conclude that position en-
codings, and their effect on softmax attention, have
an approximately translation-invariant structure in
successful transformer-based language models.

4 Proposed Self-Attention Mechanism

We now introduce our proposal for parameterizing
the positional contribution to self-attention in an ef-
ficient and translation-invariant manner, optionally
removing the position embeddings entirely.

4.1 Leveraging Translation Invariance for
Improved Inductive Bias

Our starting point is the derivation of Ke et al.
(2021). They expand QK™ while ignoring cross
terms, yielding

QKT ~ EwWoWLEL + EpWoWLE}, (3)

an approximation they support by theory and em-
pirical evidence. They then “untie” the effects of
words and positions by using different W -matrices
for the two terms in Eq. (3). We agree with sepa-

X-Px
90 ALBERT xxlarge
El
§ 88 ALBERT xlarge /i<
@ e
w -
86 A v
g X //'X
g 84 4 //’
g //’ ALBERT large
gl X ALBERTbase - X
80 1 x
0.3 0.4 0.5 0.6 0.7

Degree of Toeplitzness (R?)

Figure 2: Scatterplot of the degree of Toeplitzness of
P for different ALBERT models (v1—v2) against av-
erage performance numbers (from Lan et al.’s GitHub)
over SST-2, MNLI, RACE, and SQuAD 1.1 and 2.0.



Figure 3: Positional responses of select attention heads.
Left: Sections (F'p); ; through F'p of ALBERT base
v2, varying j for 5 different i, keeping j = ¢ centered.
The sections are similar regardless of 7 since F'p is
close to Toeplitz. Colors distinguish different heads.
Right: TISA scoring functions, attending to similar po-
sitions as heads on the left. Larger plots in Figs. 6, 7.

rating these effects, but also see a chance to reduce
the number of parameters.

Concretely, we propose to add a second term
Fp € R™ ™ a Toeplitz matrix, inside the parenthe-
ses of Eq. (1). Fp can either a) supplement or b)
replace the effect of position embeddings on atten-
tion in our proposed model. For case a), we simply
add Fp to the existing expression inside the soft-
max, while for case b) a term \/dj, F'p is inserted in
place of the term EpWoWELEL in Eq. (3). This
produces two new self-attention equations:

softmax (%+FP)V a)

softmax (QV;%VTV +Fp> Vir b)

att = 4)

where the inputs Qvw, Ky, and Vi (defined by
Qw = Ew Wy, and similarly for Ky and Vi) do
not depend on the position embeddings Fp. Case
a) is not as interpretable as TISA alone (case b),
since the resulting models have two terms, E'p and
F'p, that share the task of modeling positional infor-
mation. Our two proposals apply to any sequence
model with a self-attention that follows Eq. (1),
where the criteria in Table 1 are desirable.

4.2 Positional Scoring Function

Next, we propose to parameterize the Toeplitz ma-
trix Fp using a positional scoring function fy(-)
on the integers Z, such that (Fp); ;= fo(j — 7). fo
defines Fp-matrices of any size n. The value of
fo(7—1) directly models the positional contribution
for how the token at position ¢ attends to position
7. We call this translation-invariant self-attention,
or TISA. TISA is inductive and can be simplified
down to arbitrarily few trainable parameters.

Let K = j — <. Based on our findings for ﬁp
in Sec. 3, we seek a parametric family {fy} that
allows both localized and global attention, without
diverging as |k| — oo. We here study one family
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| Standard Keetal. (2021) | TISA

General formula \ nd nd + 2d? \ 3SHL
Longformer 3,145,728 4,325,376 | 2,160
BERT/RoBERTa 393,216 1,572,864 | 2,160
ALBERT 65,536 98,304 | 2,160

Table 2: Number of positional parameters for base mod-
els of different language-model architectures and dif-
ferent positional information processing methods, with
max sequence length n € (512,4096), position em-
beddings of dimension d € (128,768), S = 5 kernels,
H =12 attention heads, and L =12 layers with distinct
TISA positional scoring functions. Parameter sharing
gives ALBERT lower numbers. TISA can be used
alone or added to the counts in other columns.

that satisfies the criteria: the radial-basis functions

folk)=3"" ajexp (sl (k=) . ®
Their trainable parameters are 6 = {as, bs, cs}5_;,
i.e., 3 trainable parameters per kernel s. Since these
kernels are continuous functions (in contrast to the
discrete bins of Raffel et al. (2020)), predictions
change smoothly with distance, which seems intu-
itively meaningful for good generalization.

Lin et al. (2019) found that word-order informa-
tion in BERTSs position embeddings gets increas-
ingly washed out from layer 4 onward. As sug-
gested by Dehghani et al. (2019) and Lan et al.
(2020), we inject positional information into each
of the H heads at all L layers, resulting in one
learned function fy, for each head and layer.
The total number of positional parameters of TISA
is then 3SH L. As seen in Table 2, this is several
orders of magnitude less than the embeddings in
prominent language models.

The inductivity and localized nature of TISA
suggests the possibility to rapidly pre-train models
on shorter text excerpts (small n), scaling up to
longer n later in training and/or at application time,
similar to the two-stage training scheme used by
Devlin et al. (2019), but without risking the under-
training artifacts visible for BERT at n > 128 in
Figs. 1 and 4. However, we have not conducted any
experiments on the performance of this option.

5 Experiments

The main goal of our experiments is to illustrate
that TISA can be added to models to improve their
performance (Table 3a), while adding a minuscule
amount of extra parameters. We also investigate
the performance of models without position em-



Task | Baseline | S=1 3 50 A A%
SST-2 929 93.3 93.1 93.1|04| 6.5%
MNLI 83.8| 84.1 844 848 |1.0| 59%
QQP 88.2 | 88.0 88.3 88.3|0.1 1.2%
STS-B 90.3 | 904 90.0 904 | 0.1 1.5%
CoLA 572 570 565 585 |13 | 2.9%
MRPC 89.6| 90.1 89.0 90.1|0.5| 53%
QNLI 91.6 | 91.7 914 91.6|0.1 | 0.4%
RTE 729 71.1 73.6 73.6 |0.7| 2.7%

(a) ALBERT base v2 models with position embeddings

Task | Baseline | S=1 3 51| A A%
SST-2 85.1| 859 858 86.0|09| 62%
MNLI 78.8 | 809 814 81.6 |28 | 13.4%
QQP 863 | 86.2 865 86.8|05| 3.4%
STS-B 89.0| 89.0 89.1 89.1|0.1| 0.3%
MRPC 82.8 | 83.1 833 83.1|05| 3.3%
QNLI 86.6 | 872 874 87.7|1.1| 7.8%
RTE 62.1| 61.7 625 62.8|0.7 1.9%

(b) ALBERT base v2 models without position embeddings

Table 3: GLUE task dev-set performance (median over
5 runs) with TISA (S kernels) and without (baseline).
A is the maximum performance increase in a row and
A% is the corresponding relative error reduction rate.

beddings (Table 3b), comparing TISA to a bag-
of-words baseline (S = 0). All experiments use
pretrained ALBERT base v2 implemented in Hug-
gingface (Wolf et al., 2020). Kernel parameters
9" for the functions in Eq. (5) were initialized
by regression to the ﬁp profiles of the pretrained
model, (see Appendix C for details); example plots
of resulting scoring functions are provided in Fig.
3. We then benchmark each configuration with and
without TISA for 5 runs on GLUE tasks (Wang
et al., 2018), using jiant (Phang et al., 2020) and
standard dataset splits to evaluate performance.

Our results in Table 3a show relative error reduc-
tions between 0.4 and 6.5% when combining TISA
and conventional position embeddings. These
gains are relatively stable regardless of S. We also
note that Lan et al. (2020) report 92.9 on SST-2 and
84.6 on MNLI, meaning that our contribution leads
to between 1.3 and 2.8% relative error reductions
over their scores. The best performing architecture
(S =5), gives improvements over the baseline on 7
of the 8 tasks considered and on average increases
the median F1 score by 0.4 points. All these gains
have been realized using a very small number of
added parameters, and without pre-training on any
data after adding TISA to the architecture. The
only joint training happens on the training data of
each particular GLUE task.

Results for TISA alone, in Table 3b, are not as
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strong. This could be because these models are
derived from an ALBERT model pretrained using
conventional position embeddings, since we did
not have the computational resources to tune from-
scratch pretraining of TISA-only language models.
Figs. 3 and 6 plot scoring functions of different
attention heads from the initialization described
in Appendix C. Similar patterns arose consistently
and rapidly in preliminary experiments on pretrain-
ing TISA-only models from scratch. The plots
show heads specializing in different linguistic as-
pects, such as the previous or next token, or multi-
ple tokens to either side, with other heads showing
little or no positional dependence. This mirrors the
visualizations of ALBERT base attention heads in
Figs. 3, 6, 7, 8 and the findings of Htut et al. (2019)
and Clark et al. (2019) on BERT, but TISA makes
this directly visible in an interpretable model, with-
out having to probe correlations in a black box.
Interestingly, the ALBERT baseline on STS-B
in Table 3a is only 1.3 points ahead of the bag-
of-words baseline in Table 3b. This agrees with
experiments shuffling the order of words (Pham
et al., 2020; Sinha et al., 2021) finding that modern
language models tend to focus mainly on higher-
order word co-occurrences, rather than word order,
and suggests that word-order information is under-
utilized in state-of-the-art language models.

6 Conclusion

We have analyzed state-of-the-art transformer-
based language models, finding that translation-
invariant behavior emerges during training. Based
on this we proposed TISA, the first positional infor-
mation processing method to simultaneously sat-
isfy the six key design criteria in Table 1. Exper-
iments demonstrate competitive downstream per-
formance. The method is applicable also to trans-
former models outside language modeling, such as
modeling time series in speech or motion synthe-
sis, or to describe dependencies between pixels in
computer vision.
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A Visualizing EpE} for Additional
Language Models

Fig. 1 shows the inner product between different
position embeddings for the models BERT base
uncased, RoBERTa base, ALBERT base v1 as well
as ALBERT xxlarge v2. Leveraging our analysis
findings of translation invariance in the matrix of
E pE}; in these pretrained networks, we investigate
the generality of this phenomenon by visualizing
the same matrix for additional existing large lan-
guage models. We find that similar Toeplitz pat-
terns emerge for all investigated networks.

B Coefficient of Determination <>

The coefficient of determination, R2, is a widely
used concept in statistics that measures what frac-
tion of the variance in a dependent variable that can
be explained by an independent variable. Denoting
the Residual Sum of Squares, R.S'S, and Total Sum
of Squares, T'S .S, we have that

R2 -1 RSS (6)

— B35,
where R? = 0 means that the dependent variable
is not at all explained, and R? = 1 means that
the variance is fully explained by the independent
variable.

Applied to a matrix, A € R"*"™, to determine its
degree of Toeplitzness, we get RS.S by finding the
Toeplitz matrix, Ap € R™*", that minimizes the
following expression:

RSS =mina, » > (A—Ap)f;, (D

i=1 j=1
Furthermore, we can compute 7SS as:

2

1 n n
32> A

i=1 j=1

i=1 j=1

(8)
C Extracting ALBERT positional scores

In order to extract out the positional contributions
to the attention scores from ALBERT, we disentan-
gle the positional and word-content contributions
from equation (3), and remove any dependencies
on the text sequence through Ey,. We exchange
Ew =~ Eyp, with the average word embedding
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over the entire vocabulary, which we call Fyp.

1
Fpr~ ——(EwWoWEEL+ ©)
ﬁdk( QYWKLP
+ EpWWEEL, + EpWoWEEE) (10
1
~ ——(EWoWEEL+ (11
ﬁdk( wWeWktp
+ EpWoWiEL + EpWoWikEp)  (12)

This way, we can disentangle and extract the posi-
tional contributions from the ALBERT model.

Initialization of Position-Aware Self-Attention
Using this trick, we initialize F'p with formula (12).
Since F'p is only generating the positional scores,
which are independent of context, it allows for train-
ing a separate positional scorer neural network to
predict the positional contributions in the ALBERT
model. Updating only 2,160 parameters (see Ta-
ble 2) significantly reduces the computational load.
This pretraining initialization scheme converges in
less than 20 seconds on a CPU.

Removing Position Embeddings When remov-
ing the effect of position embeddings, we calculate
the average position embedding and exchange all
position embeddings for it. This reduces the varia-
tion between position embeddings, while conserv-
ing the average value of the original input vectors
Ew+Ep.

Extracted Attention Score Contributions
Leveraging our analysis findings of translation
invariance in large language models, we visualize
the scoring functions as a function of relative
distance offset between tokens. Fig. 3 shows the
implied scoring functions for 4 attention heads for
5 different absolute positions. Figs. 6, 7 show all
12 attention heads of ALBERT base v2 with TISA.

D Number of Positional Parameters of
Language Models

In the paper, define positional parameters as those
modeling only positional dependencies. In most
BERT-like models, these are the position embed-
dings only (typically n x d parameters). Ke et al.
(2021) propose to separate position and content
embeddings, yielding more expressive models with
separate parts of the network for processing sepa-
rate information sources. In doing so, they intro-
duce two weight matrices specific to positional in-
formation processing, Ug € R¥? and Uy € R4*4,
totaling nd-+2d? positional parameters.
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Figure 4: Visualizations of the inner-product matrix P = EpEIT; € R™*"™ for different BERT, ELECTRA, and
RoBERTa models. We see that ELECTRA and RoBERTa models show much stronger signs of translational invari-
ance than their BERT counterparts. Most BERT models follow the pattern noted by Wang and Chen (2020), where
the Toeplitz structure is much more pronounced for the first 128 x 128 submatrix, reflecting how these models
mostly were trained on 128-token sequences, and only scaled up to n = 512 for the last 10% of training (Devlin
et al., 2019). Position embeddings 385 through 512 of the BERT cased models show a uniform color, suggesting
that these embeddings are almost completely untrained.
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Figure 5: Visualizations of the inner-product matrix P = EPE;"; € R™ " for different ALBERT models (Lan
et al., 2020). We plot both v1 and v2 to show the progression towards increased Toeplitzness during training.

Hyperparameter Selection We performed a  portinhttps://github.com/google-research/
manual hyperparameter search starting from the ~ albert/blob/master/run_glue.sh. Our hyper-
hyperparameters that the Lan et al. (2020) re- parameter config files can be found with our code.
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Figure 7: Rows from the positional attention matrices ﬁp for all ALBERT base v2 attention heads, centered on
the main diagonal. Note that the vertical scale generally differs between plots. The plots are essentially aligned
sections through the matrices in Fig. 8, but zoomed in to show details over short relative distances since this is
where the main peak(s) are located, and the highest values are by far the most influential on softmax attention.

E Reproducibility

Experiments were run on a GeForce RTX

2080 machine with 8 GPU-cores.

Each down-

stream experiment took about 2 hours to run.

Datasets and code can be downloaded from
https://github.com/nyu-mll/jiant/blob/
master/guides/tasks/supported_tasks.md
and https://github.com/ulmewennberg/tisa.
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Figure 8: Values extracted from the positional attention matrices for all ALBERT base v2 first-layer attention heads.
Some heads are seen to be sensitive to position, while others are not. Note that these visualizations deliberately use
a different color scheme from other (red) matrices, to emphasize the fact that the matrices visualized here represent
a different phenomenon and are not inner products.
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Abstract

Determining the relative importance of the el-
ements in a sentence is a key factor for effort-
less natural language understanding. For hu-
man language processing, we can approximate
patterns of relative importance by measuring
reading fixations using eye-tracking technol-
ogy. In neural language models, gradient-
based saliency methods indicate the relative
importance of a token for the target objective.
In this work, we compare patterns of relative
importance in English language processing by
humans and models and analyze the underly-
ing linguistic patterns. We find that human pro-
cessing patterns in English correlate strongly
with saliency-based importance in language
models and not with attention-based impor-
tance. Our results indicate that saliency could
be a cognitively more plausible metric for in-
terpreting neural language models. The code is
available on github: https://github.com/
beinborn/relative_importance.

1 Introduction

When children learn to read, they first focus on each
word individually and gradually learn to anticipate
frequent patterns (Blythe and Joseph, 2011). More
experienced readers are able to completely skip
words that are predictable from the context and to
focus on the more relevant words of a sentence
(Schroeder et al., 2015). Psycholinguistic studies
aim at unraveling the characteristics that determine
the relevance of a word and find that lexical factors
such as word class, word frequency, and word com-
plexity play an important role, but that the effects
vary depending on the sentential context (Rayner
and Dufty, 1986).

In natural language processing, the relative im-
portance of words is usually interpreted with re-
spect to a specific task. Emotional adjectives are
most relevant in sentiment detection (Socher et al.,
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2013), relative frequency of a term is an indicator
for information extraction (Wu et al., 2008), the
relative position of a token can be used to approx-
imate novelty for summarisation (Chopra et al.,
2016), and function words play an important role
in stylistic analyses such as plagiarism detection
(Stamatatos, 2011). Neural language models are
trained to be a good basis for any of these tasks
and are thus expected to represent a more general
notion of relative importance (Devlin et al., 2019).

Relative importance of the input in neural net-
works can be modulated by the so-called “attention”
mechanism (Bahdanau et al., 2014). Analyses of
image processing models indicate that attention
weights reflect cognitively plausible patterns of vi-
sual saliency (Xu et al., 2015; Coco and Keller,
2012). Recent research in language processing
finds that attention weights are not a good proxy
for relative importance because different attention
distributions can lead to the same predictions (Jain
and Wallace, 2019). Gradient-based methods such
as saliency scores seem to better approximate the
relative importance of input words for neural pro-
cessing models (Bastings and Filippova, 2020).

In this work, we compare patterns of relative im-
portance in human and computational English lan-
guage processing. We approximate relative impor-
tance for humans as the relative fixation duration in
eye-tracking data collected in naturalistic language
understanding scenarios. In related work, Sood
et al. (2020a) measure the correlation between at-
tention in neural networks trained for a document-
level question-answering task and find that the at-
tention in a transformer language model deviates
strongly from human fixation patterns. In this work,
we instead approximate relative importance in com-
putational models using gradient-based saliency
and find that it correlates much better with human
patterns.

Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics
and the 11th International Joint Conference on Natural Language Processing (Short Papers), pages 141-150
August 1-6, 2021. ©2021 Association for Computational Linguistics
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Figure 1: Example fixations for two subjects in the
ZuCo dataset for the sentence “The soundtrack alone
is worth the price of admission”. The numbers indicate
the fixation duration and the circles represent the ap-
proximate horizontal position of the fixation (positions
are simplified for better visualization). The plot at the
bottom indicates the relative importance of each token
averaged over all subjects.

2 Determining Relative Importance

The concept of relative importance of a token for
sentence processing encompasses several related
psycholinguistic phenomena such as relevance for
understanding the sentence, difficulty and novelty
of a token within the context, semantic and syntac-
tic surprisal, or domain-specificity of a token. We
take a data-driven perspective and approximate the
relative importance of a token by the processing
effort that can be attributed to it compared to the
other tokens in the sentence.

2.1 In Human Language Processing

The sentence processing effort can be approxi-
mated indirectly using a range of metrics such as
response times in reading comprehension experi-
ments (Su and Davison, 2019), processing duration
in self-paced reading (Linzen and Jaeger, 2016),
and voltage changes in electroencephalography
recordings (Frank et al., 2015). In this work, we ap-
proximate relative importance using eye movement
recordings during reading because they provide on-
line measurements in a comfortable experimental
setup which is more similar to a normal, uncon-
trolled reading experience. Eye-tracking technol-
ogy can measure with high accuracy how long a
reader fixates each word. The fixation duration and
the relative importance of a token for the reader are
strongly correlated with reading comprehension
(Rayner, 1977; Malmaud et al., 2020).

Language models that look ahead and take both
the left and right context into account are often
considered cognitively less plausible because hu-
mans process language incrementally from left to
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right (Merkx and Frank, 2020). However, in human
reading, we frequently find regressions: humans
fixate relevant parts of the left context again while
already knowing what comes next (Rayner, 1998).
In Figure 1, subject 1 first reads the entire sentences
and then jumps back to the token “alone”. Subject
2 performs several regressions to better understand
the second half of the sentence. The fixation dura-
tion is a cumulative measure that sums over these
repeated fixations. Absolute fixation duration can
vary strongly between subjects due to differences
in reading speed but the relative fixation duration
provides a good approximation for the relative im-
portance of a token as it abstracts from individual
differences. We average the relative fixation dura-
tion over all subjects to obtain a more robust signal
(visualized in the plot at the bottom of Figure 1).

2.2 In Computational Language Processing

In computational language models, the interpreta-
tion of a token depends on the tokens in its context
but not all tokens are equally important. To account
for varying importance, so-called attention weights
regulate the information flow in neural networks
(Bahdanau et al., 2014). These weights are opti-
mized with respect to a target objective and higher
attention for an input token has been interpreted
as higher importance with respect to the output
(Vig, 2019). Recent research indicates that com-
plementary attention distributions can lead to the
same model prediction (Jain and Wallace, 2019;
Wiegreffe and Pinter, 2019) and that the removal
of input tokens with large attention weights often
does not lead to a change in the model’s prediction
(Serrano and Smith, 2019). In transformer models,
the attention weights often approximate an almost
uniform distribution in higher model layers (Abnar
and Zuidema, 2020). Bastings and Filippova (2020)
argue that saliency methods are more suitable for
assigning importance weights to input tokens.

Saliency methods calculate the gradient of the
output corresponding to the correct prediction with
respect to an input element to identify those parts
of the input that have the biggest influence on the
prediction (Lipton, 2018). Saliency maps were first
developed for image processing models to high-
light the areas of the image that are discriminative
with respect to the tested output class (Simonyan
et al., 2014). Li et al. (2016) adapt this method to
calculate the relative change of the output proba-
bilities with respect to individual input tokens in



text classification tasks and Ding et al. (2019) cal-
culate saliency maps for interpreting the alignment
process in machine translation models.

In general-purpose language models such as
BERT (Devlin et al., 2019), the objective func-
tion tries to predict a token based on its context. A
saliency vector for a masked token thus indicates
the importance of each of the tokens in the context
of correctly predicting the masked token (Madsen,
2019).

We iterate over each token vector x; in our input
sequence x1, X2, ... Tp. Let X; be the input matrix
with x; being masked. The saliency s;; for input
token x; for the prediction of the correct token
t; is then calculated as the Euclidean norm of the
gradient of the logit for x;.

sij = ||V, fr,(Xi) |2 (1)

The saliency vector s; indicates the relevance of
each token for the correct prediction of the masked
token #;.! The saliency scores are normalized by
dividing by the maximum. We determine the rel-
ative importance of a token by summing over the
saliency scores for each token. For comparison,
we also approximate importance using attention
values from the last layer of each model as Sood
et al. (2020a).

2.3 Patterns of Relative Importance

Relative importance in human processing and in
computational models is sensitive to linguistic prop-
erties. Rayner (1998) provides a detailed overview
of token-level features that have been found to
correlate with fixation duration such as length,
frequency, and word class. On the contextual
level, lexical and syntactic disambiguation pro-
cesses cause regressions and thus lead to longer fix-
ation duration (Just and Carpenter, 1980; Lowder
et al., 2018). Computational models are also highly
susceptible to frequency effects and surprisal met-
rics calculated using language models can predict
the human processing effort (Frank et al., 2013).
The inductive bias of language processing mod-
els can be improved using the eye-tracking signal
(Barrett et al., 2018; Klerke and Plank, 2019) and
the modification leads to more “human-like” out-
put in generative tasks (Takmaz et al., 2020; Sood
et al., 2020b). This indicates that patterns of rela-
tive importance in computational representations
'Our implementation adapts code from https://

pypi.org/project/textualheatmap/. An alterna-
tive would be to multiply saliency and input (Alammar, 2020).
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Dataset BERT Distili ALBERT Rand
Salieney GECO 54 s 48 00
Y ZuCo 68 64 62 .00
. GECO .18 .06 26 00
Attention 103 37 .00

Table 1: Spearman correlation between relative fixation
duration by humans and attention and saliency in the
language models. Correlation values are averaged over
all sentences. Rand is a permutation baseline.

differ from human processing patterns. Previous
work focused on identifying links between the eye-
tracking signal and attention (Sood et al., 2020a).
To our knowledge, this is the first attempt to corre-
late fixation duration with saliency metrics.

The eye-tracking signal represents human read-
ing processes aimed at language understanding. In
previous work, we have shown that contextualized
language models can predict eye patterns associ-
ated with human reading (Hollenstein et al., 2021),
which indicates that computational models and hu-
mans encode similar linguistic patterns. It remains
an open debate to which extent language models
are able to approximate language understanding
(Bender and Koller, 2020). We are convinced that
language needs to be cooperatively grounded in
the real world (Beinborn et al., 2018). Purely text-
based language models clearly miss important as-
pects of language understanding but they can ap-
proximate human performance in an impressive
range of processing tasks. We aim to gain a deeper
understanding of the similarities and differences be-
tween human and computational language process-
ing to better evaluate the capabilities of language
models.

3 Methodology

We extract relative importance values for tokens
from eye-tracking corpora and language models as
described in section 2 and calculate the Spearman
correlation for each sentence.> We first average the
correlation over all sentences to analyze whether
the importance patterns of humans and models are
comparable and then conduct token-level analyses.

3.1 Eye-tracking Corpora

We extract the relative fixation duration from two
eye-tracking corpora and average it over all read-
ers for each sentence. Both corpora record natural
reading and the text passages were followed by

2Kendall’s 7 and KL divergence yield similar results.



multiple-choice questions to test the readers’ com-
prehension.

GECO contains eye-tracking data from 14 na-
tive English speakers reading the entire novel The
Mysterious Affair at Styles by Agatha Christie (Cop
et al., 2017). The text was presented on the screen
in paragraphs.

ZuCo contains eye-tracking data of 30 native En-
glish speakers reading full sentences from movie
reviews and Wikipedia articles (Hollenstein et al.,
2018, 2020).3

3.2 Language Models

We compare three state-of-the-art language mod-
els trained for English: BERT, ALBERT, and Dis-
tiIBERT.* BERT was the first widely successful
transformer-based language model and remains
highly influential (Devlin et al., 2019). ALBERT
and DistilBERT are variants of BERT that require
less training time due to a considerable reduction
of the training parameters while maintaining simi-
lar performance on benchmark datasets (Lan et al.,
2019; Sanh et al., 2019).> We analyze if the lighter
architectures have an influence on the patterns of
relative importance that the models learn.

4 Results

The results in Table 1 show that relative fixation
duration by humans strongly correlates with the
saliency values of the models. In contrast, attention-
based importance does not seem to be able to cap-
ture the human importance pattern. A random per-
mutation baseline that shuffles the importance as-
signed by the language model yields no correlation
(0.0) in all conditions.® As the standard deviations
of the correlation across sentences are quite high
(ZuCo: ~0.22, GECO: ~0.39), the small differ-
ences between models can be neglected (although
they are consistent across corpora). For the subse-
quent analyses, we focus only on the BERT model

*We combine ZuCo 1.0 (T1, T2) and ZuCo 2.0. (T1).

*We use the Huggingface transformers imple-
mentation (Wolf et al., 2020) and the models
bert-based-uncased, albert-base-v2, and
distilbert-base-uncased.

SReduction is achieved by parameter sharing across layers
(ALBERT) and by distillation which approximates the out-
put distribution of the original BERT model using a smaller
network (DistilBERT). See model references for details.

SWe repeat the permutation 100 times and average the
correlation over all iterations.
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Length Frequency

Sent Tok Sent Tok

Human .69 31 -36 -25
GECO  BERT 65 27 -48 -28
Human 75 47 52 -36

Z0CO  BERT 72 36 -65 -40

Table 2: Spearman correlation between relative impor-
tance and word length and frequency. For the Sent con-
dition, correlation is calculated per sentence and aver-
aged. For Tok, importance is normalized by sentence
length and correlation is calculated over all tokens.

which yields the best results. The differences be-
tween the corpora might be related to the number of
sentences and the differences in average sentence
length (ZuCo: 924, 19.5, GECO: 4,926, 12.7).

Length and Frequency In eye-tracking data,
word length correlates with fixation duration be-
cause it takes longer to read all characters. The
correlation for frequency is inverse because high-
frequency words (e.g. “the”, “has”) are often
skipped in processing as they carry (almost) no
meaning (Rayner, 1998). For English, word fre-
quency and word length are both closely related to
word complexity (Beinborn et al., 2014). Language
models do not directly encode word length but they
are sensitive to word frequency.

Our results in Table 2 show that both token
length and frequency are strongly correlated with
relative importance on the sentence level. Inter-
estingly, the correlation decreases when it is cal-
culated directly over all tokens indicating that the
token-level relation between length and importance
is more complex than the correlation might suggest.

Word Class Figure 2 shows the average relative
importance of all tokens belonging to the same
word class (normalized by sentence length). We see
that both humans and BERT clearly assign higher
importance to content words (left) than to function
words (right). Interjections such as “Oh” in figure 3
receive the highest relevance which is understand-
able because they interrupt the reading flow. When
we look at individual sentences, we note that the
differences in importance are more pronounced in
the model saliency while human fixation duration
yields a smoother distribution over the tokens.

Novelty We extract the language model represen-
tations for each sentence separately whereas the
readers processed the sentences consecutively. If
tokens are mentioned repeatedly such as “Sherlock
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Figure 2: Relative importance of tokens with respect to word class. Relative importance is measured as relative
fixation duration for humans in GECO (left) and as relative gradient-based saliency in the BERT model (right).
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Figure 3: Relative importance values for an example
sentence from the GECO corpus for the BERT model
and the human values.

Holmes” which also occurred in the sentence pre-
ceding the example in Figure 3), processing ease
increases for the reader, and not for the model.
Some language models are able to process multiple
sentences, but establishing semantic links across
sentences remains a challenge.

5 Conclusion

We find that human sentence processing patterns in
English correlate strongly with saliency-based im-
portance in language models and not with attention-
based importance. Our results indicate that saliency
could be a cognitively more plausible metric for in-
terpreting neural language models. In future work,
it would be interesting to test the robustness of
the approach with different variants for calculat-
ing saliency (Bastings and Filippova, 2020; Ding
and Koehn, 2021). As we conducted our analyses
only for English data, it is not yet clear whether
our results generalize across languages. We will
address this in future work using eye-tracking data
from non-English readers (Makowski et al., 2018;
Laurinavichyute et al., 2019) and comparing mono-
and multilingual models (Beinborn and Choenni,
2020). We want to extend the token-level analyses
to syntactic phenomena and cross-sentence effects.
For example, it would be interesting to see how
a language model encodes relative importance for
sentences that are syntactically correct but not se-
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mantically meaningful (Gulordava et al., 2018).

Previous work has shown that the inductive bias
of recurrent neural networks can be modified to
obtain cognitively more plausible model decisions
(Bhatt et al., 2020; Shen et al., 2019). In principle,
our approach can also be applied to left-to-right
models such as GPT-2 (Radford et al., 2019). In
this case, the tokens at the beginning of the sen-
tence would be assigned disproportionately high
importance as the following tokens cannot con-
tribute to the prediction of preceding tokens in in-
cremental processing. It might thus be more useful
to only use the first fixation duration of the gaze sig-
nal for analyzing importance in left-to-right models.
However, we think that the regressions by the read-
ers provide valuable information about sentence
processing.

6 Ethical Considerations

Data from human participants were leveraged from
freely available datasets (Hollenstein et al., 2018,
2020; Cop et al., 2017). The datasets provide
anonymized records in compliance with ethical
board approvals and do not contain any information
that can be linked to the participants.
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A Additional Results
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Figure 4: Relative importance of tokens with respect to word class in the GECO dataset. Relative importance is
measured as relative fixation duration for humans (top) and as relative gradient-based saliency in the BERT model
(bottom). This is the same figure as Figure 2 in the paper but it includes the number of instances per word class on
top of the respective bar.
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Abstract

Pretrained language models (PLM) achieve
surprising performance on the Choice of
Plausible Alternatives (COPA) task.
However, whether PLMs have truly
acquired the ability of causal reasoning
remains a question. In this paper, we
investigate the problem of semantic
similarity bias and reveal the vulnerability
of current COPA models by certain attacks.
Previous solutions that tackle the
superficial cues of wunbalanced token
distribution  still encounter the same
problem of semantic bias, even more
seriously due to the utilization of more
training data. We mitigate this problem by
simply adding a regularization loss and
experimental results show that this solution
not only improves the model’s
generalization ability, but also assists the
models to perform more robustly on a
challenging dataset, BCOPA-CE, which
has unbiased token distribution and is more
difficult for models to distinguish cause and

effect.
1 Introduction
Supervised learning algorithms recklessly

absorbing all the correlations found in training
data is statistically correct but might have missed
the point (Ahuja et al., 2020). Hence, recent work
has focused more on spurious correlations in
datasets in computer vision and NLP (Jia and
Liang, 2017; McCoy et al., 2019). In inference
tasks over natural language, spurious correlation
has been identified a lot, such as lexical and

*Corresponding Author

mingyue.han@l63.sufe.edu.cn,

151

wang.yinglin@shufe.edu.cn

A Sample from development dataset
\Premise: The woman banished the children from her|
property.
ask-for: “cause”

\Alt1: The children hit a ball into her yard. x (effect)
41¢2: The children trampled through her garden. \ (cause)

Table 1: A challenging case where BERT predicts
wrongly

grammatical constructs, word overlap, sentence
length (Gururangan et al., 2018), and unbalanced
token distribution (Poliak et al., 2018; Kavumba et
al., 2019). COPA (Roemmele et al., 2011) is a
natural language understanding task, which
requires a system to choose either a cause or effect
of a given story event. It is one of the natural
language understanding tasks in SuperGlue
benchmark (Wang et al., 2019). Pretrained
language models gain a great improvement on
COPA, such as BERT (Devlin et al.,, 2019),
RoBERTa (Liu et al., 2019), and ALBERT (Lan et
al., 2020). The recent state-of-the-art model on
COPA, DeBERTa (He et al., 2020), reached a
surprising accuracy of 98.4%. However, the
complexity of causal reasoning and the
requirements of world knowledge imply that the
ability of causal reasoning in PLMs might be
overestimated. It is worth exploring whether the
models have acquired the ability of causal
reasoning,.

We observe that 66.8% accuracy can be reached
by a text semantic similarity model (Mulyar, 2020)
based on BERT which is close to the performance
(69.5%) of fine—tuning BERT on COPA training
set. It indicates BERT is over-dependent on
semantic similarity. Since the cause and effect of

Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics
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Figure 1: The general architecture of the PLMs on
COPA task.

the same event often share the similar context, can

PLMs really discriminate what we are asking for?

A special case where BERT made mistakes on

COPA development set in Table 1 seems to confirm

our conjecture. BERT is more likely to fail in these

challenging samples where the wrong alternative is

the answer of its reverse question type. These

investigations imply the models with satisfactory

performance might have focused excessively on

the topic semantic similarity instead of
understanding cause and effect more finely. For

this purpose, we design several probing

experiments (Section 2) to verify our conjecture: (1)
perturbation with distractors, (2) masking question

type.

The main work on exploring bias in COPA is
from Kavumba et al. (2019). They investigate
unbalanced token distributions in correct answers
in COPA training set and show that the good
performance brought by BERT can be explained by
its ability to exploit token distribution in
alternatives. They augment the training set with a
mirrored-COPA set to prevent the models from
predicting with token distribution imprudently.
However, we observed this improved model relies
on semantic bias more seriously than the original
PLMs. We further test the models on a new dataset,
BCOPA-CE, which evaluates the ability of a
system to distinguish the cause and effect and to
reason without the clues of token distribution. For
alleviating the semantic bias problem, we propose
to add a regularization loss to the original objective
(Section 3). Experimental results show that this
solution is not only effective in our challenging test
set, but improves the generalization ability of the
model on the original test set. It also performs more
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robustly than the original PLMs in COPA-test hard
set proposed by Kavumba et al. (2019).

In sum, our contributions are as follows:

(1) We explore the vulnerability of different
COPA models by perturbing them with distractive
alternatives. (2) We mitigate the weakness of
COPA models by adding a regularization loss
while maintaining their generalization ability. Our
improved models also perform more robustly on
the COPA-test hard set. (3) We introduce the
BCOPA-CE dataset, which can evaluate the ability
of a system to distinguish the cause and effect and
to choose cause or effect under unbiased token
distribution.

2  Probing Experiments

Unlike bias about token distribution or sentence
length, indirect semantic cues cannot be analyzed
statistically. We explore whether PLMs rely
excessively on semantic similarity with special
probing experiments. Firstly, we observe whether
the model has dropped to a great extent if they see
a distractive alternative, like a premise. This
distractor cannot be the correct answer, but it has a
higher similarity score than the correct alternative.
Moreover, inspired by Table 1, we investigate
whether the model is aware of the question type
during prediction. This is achieved by evaluating
the model’s performance while removing/masking
the question type. We observe whether they still
keep good performance without seeing the
question type. We describe the model
implementation details in Appendix A.

2.1 Expl: Perturbation with Distractors

Model architecture: General PLMs assume that
the first sentence and the second sentence describe
a cause and an effect, respectively. For example,
BERT take as input {cause, [SEP], effect}, which
entails the question type in its formation. The
general architecture in our experiment is shown in
Figure 1. The shared parameters 6, w, b are learned
to classify each choice independently with the
premise, where (c;, e;) is the i-th cause-effect pair,
taking the first hidden vector in the final PLM layer:

h = 6(c; e) (1)
yielding the logits for each cause-effect pair:
z;= w"h) +b )

For training, we pass the logits [z,; z, | through a
softmax function to determine a probability



distribution and minimize the cross-entropy loss
with the labels. For prediction, we choose the
answer with the highest score by i*=
argmaxie,13Z; - If we evaluate the trained
models on ternary-choice test set, the prediction is
theni* = argmaxie(o 1,2)%i-

Perturbation: We perturb models by adding a
third choice, which does not affect human
judgment. The “premise” is a good candidate since
it is highly semantically related to itself while it
cannot be the cause or effect of itself due to the
non-reflexive trait of causality. We anticipate that
the model will change its prediction when it meets
the added choice. Meanwhile, we need to make
sure that the performance drop is not from the
increased difficulty of the problem since it
becomes a ternary choice from a binary choice,
hence we compare the results with a control
experiment, where we add a choice randomly
sampled from the COPA-test set.

COPA-random: We control the difficulty of
perturbation test by taking a wrong choice
randomly sampled from the COPA-test set as
the third alternative for each sample. We refer
to COPA-random as “Rand” in Table 2.

COPA-premise: we take the premise as the
third alternative. We refer to COPA-premise
as “Prem” in Table 2.

2.2  Exp2: Masking Question Type

As mentioned above, models are likely to ignore
the question information (cause or effect, often
share the same context) if they rely excessively on
the semantic similarity. We mask the “ask-for” for
each sample in COPA-test set by inputting the
models with an arbitrary question type. The order
of the alternative and the premise is determined by
the question type. In masking setting, we randomly
input [alternative; premise] or [premise; alternative]
for each instance in spite of the question. In this
way, half of the samples will keep the original
question type, and the other samples get the wrong
question type, which do not have the real correct
answer. We observe whether these models still
keep good performance without seeing the
question type. If they do, the question type is
ignored for the prediction of the models. We refer
to this experimental setting as “Mask” in Table 2.

! The PLMs could be found at
https://github.com/huggingface/transformers
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The lower accuracy on ‘“Mask”™ setting, the more
robust the models are.

2.3 Baseline models

We conduct the aforementioned experiments with
both traditional and SOTA COPA models.

e (S: Sasaki et al. (2017) handled the COPA
task by statistically estimating causality
scores using causal knowledge extracted from
a corpus with causal templates.

PLMs: We take BERT-large, RoBERTa-large,
ALBERT=xxlarge-v1, and DeBERTa-large as
baseline models (referred to as b-1, rb-1, alb,
and db-l, respectively), and fine-tune them on
the COPA-dev set, using the implementation
from hugging face'.

PLMs-aug (b-l-aug, rb-l-aug, alb-aug and db-
l-aug): PLMs are fine-tuned on BCOPA, a
dataset with unbiased token distribution
between the correct alternatives and the
wrong alternatives proposed by Kavumba et
al. (2019). The BCOPA dataset was
constructed by mirroring the original training
set with a modified premise.

2.4 Results and analysis

As is shown in Table 2, The CS method based on
causal knowledge is the most robust system, barely
affected by the added alternative. PLMs show
different degrees of weakness when they are
disturbed by the added alternative. The defensive

Expl: Exp2:
Model Perturbation Masking
Rand | Prem A Test | Mask

) ) J 1) 2
CS 70.1 | 70.5 | -0.4 | 70.8 | 61.1
b-1 593 | 11.6 | 47.6 | 69.5 | 69.0
b-l-aug 633 | 13.0 |50.3 | 70.0 | 69.6
rb-1 833 | 66.7 | 16.6 | 86.3 | 82.8
rb-l-aug 85.6 | 65.7 | 19.9| 873 | 83.5
alb 86.7 | 71.9 | 14.7 | 88.0 | 80.2
alb-aug 86.4 | 612 | 252 | 879 | 84.1
db-1 90.8 | 77.9 | 129 | 91.6 | 87.8
db-l-aug | 911 | 789 | 122 | 91.8 | 888

Table 2. The accuracy of models in probing
experiments. “4” denotes a negative indicator (the
lower, the better) and “T* denotes a positive indicator
(the higher, the better).



A Sample in COPA-test set

New Samples in BCOPA-CE test set

Premise: The accident was my fault.
ask-for:

Altl: v

Alt2: 1 pressed charges. x

Premise: The accident was my fault.
ask-for:

Altl: v

Alt2:1 was absent-minded. X

Premise: The accident was my fault.
ask-for: “cause”
Altl:

Alt2: 1 was absent-minded. V

X

Table 3 The samples in COPA-test set and BCOPA-CE test set.

ability of BERT is the weakest, which is almost
completely fooled by distractor and remains the
original accuracy without seeing the questions.
RoBERTa, ALBERT, and DeBERTa also drop
16.6%, 14.7%, 12.9% respectively compared with
the performance of “Rand” setting. The fact that
the systems perform worse on “Prem” (premise as
a distractor) supports our hypothesis that PLMs
have semantic similarity bias. This is because the
premise is 100% similar to itself, being much more
similar than a random distractor. For masking
experiments, the theoretical accuracy of a perfectly
robust model should be half of the chance-level
(i.e., 50%) plus half of the original accuracy. The
CS method achieves an accuracy of 61.1% and
pays attention to the question type. On the contrary,
PLMSs seem not to be aware of the question type
and perform similarly without this information as
original model setting. However, PLMs do not
completely ignore the question type since they do
not keep the same performance as the original test
set.

We also investigate the robustness of the
debiased methods of augmenting training data
which focus on the unbalanced token distributions
proposed by Kavumba et al. (2019). They suffer
from the same issue even more seriously than the
original PLMs except DeBERTa. This might be
due to the fact that the models are more likely to
capture the semantic similarity since each
alternative pair in BCOPA appears twice.

3 Model-improving Method

3.1 BCOPA-CE Test

As is shown in Table 3, we introduce a balanced
COPA test set, BCOPA-CE, by taking cause event
and effect event as two alternatives for each
premise. Specifically, for each premise of the 500
samples in COPA-test set, we generate one event
manually which is a plausible answer to the
opposite question type of the original sample, In
the sample in Table 3, for the premise: “The
accident was my fault.”, we generate the cause of
it: “I was absent-minded.”, since the original
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question is asking for “effect”. After this process,
we obtain 500 triplets of <premise, cause, effect>.
Then, we construct 1000 samples by giving two
different questions (cause or effect) to each triplet.
This guarantees the balanced token distribution
between the correct and the wrong alternatives.
The dataset generation details are described in
Appendix B. Human evaluation has been
conducted to ensure the quality of the new dataset
in Appendix C.

3.2 Regularization Loss

We expect the model to make good choices while
paying attention to the question type. For a sample
in the COPA training set, the proposed loss
includes two parts: The CrossEntropy loss and a
regularization loss. The first part prompts the
model to answer correctly given the question type.
The extra regularization loss requires that a model
should be neutral when it sees the opposite
question type for the same premise and same
alternatives, since neither alternative is the correct
answer.

General PLMs take the first input sentence as
the cause, and the second sentence as the effect.
Mathematically, the logits of two input sentences
in reverse cause-effect order should be as close as
possible, even if one of two alternatives is
semantically similar to the premise (the correct
answer of the original question).

“)
z] is the logit of input [e;;c;] computed by
equation (1), which reverses the order of cause and

effect of choice i . We set A =0.01 in all
experiments corresponding to regularization loss.

Lpeg = llz5 — 2] 113

3.3 Result and Analysis

Table 4 demonstrates the performance of our
improved models on the COPA-test set, the
BCOPA-CE set and the COPA-hard set. It’s noted
that the models with a regularization loss not only
have improved performance on BCOPA-CE set,



Model Test BCOPA- A Test-
T CET ! | hard®
b-1 69.5 51.5 18.0 61.6
b-l-reg 71.1 64.1 7.0 63.6
b-l-aug 70.0 51.1 18.9 69.7
rb-1 86.3 73.0 13.3 83.1
rb-l-reg 87.7 83.9 3.8 84.5
rb-l-aug 87.3 69.2 18.2 87.0
alb 88.0 80.5 7.6 86.9
alb-reg 89.4 86.7 2.7 88.6
alb-aug 87.9 71.4 16.5 88.0
db-1 91.6 723 19.3 88.6
db-l-reg 92.2 86.3 5.9 89.7
db-l-aug 91.8 69.8 21.9 90.5

Table 4 The performance of PLMs and their
variants on challenging set. Bold represents the
best model setting in the same PLM.

but also perform better than the original PLMs on
COPA-test set. Previous debiased models on token
distribution perform worse than the original model,
which is consistent with our conjecture that they
amplify the semantic bias. Our solution also
performs better on COPA-test-hard than the
original PLMs, which has balanced token
distribution as Kavumba et al. (2019) introduced.
Regularization in our method considers debiasing
token distribution as well, because we tend to stop
the models from capturing any cues when it
reverses the input order.

3.4 Error Analysis

We conduct an error analysis for the SOTA model,
DeBERTa, using the run that is closest to the
average of 20 runs. We give an example (the
second row) from the BCOPA-CE dataset in Table
5 where DeBERTa predicts wrongly but the
regularized ~ DeBERTa  model  succeeds.
Interestingly, both models make a correct
prediction on the original sample (the first row)
from COPA-test set, which indicates that the new
alternative we generate perturbs the choice of the
original DeBERTA model.

We calculate the word importance of all tokens
in correct answer through erasure (Li et al., 2017).
The importance score is computed by the relative
difference in log likelihood on gold-standard labels
while replacing the token with [MASK]. We
observe two models predict correctly in this
original sample but with different attention on
tokens. As is shown in Figure 2, DeBERTa chooses
Alt2 by focusing on “He” and “spoke”, but
DeBERTa-reg pays the most attention to
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Figure 2: Heatmap of importance of each token in
correct answer for the db-l model and db-l-reg
model.

Premise: The man's voice projected
clearly throughout the auditorium.
Ask-for: cause

Altl: He greeted the audience. x

Alt2: He spoke into the microphone. Vv

Original
sample

Premise: The man's voice projected
clearly throughout the auditorium.
Ask-for: cause

Altl: Everyone heard him. x

Al2: He spoke into the microphone. v

Table 5 The case where DeBERTa is perturbed but
regularized DeBERTa not.

New
sample

“microphone”, which is more in line with human
causal intuition. When people make such inference,
the causal relation between "microphone" and "
projected clearly throughout the auditorium"
should be more important than the co-reference
relationship.

4 Conclusion

In this paper, we explore whether COPA models
rely excessively on semantic similarity for
prediction. We add the regularization loss to the
training objective to alleviate this weakness.
Results show that our solution is effective in our
adversarial test, and improve the generalization
ability and the robustness of models on previous
COPA-hard dataset. Moreover, previous debiased
models on token distribution rely on semantic bias
more seriously than the original models, which
reminds us if debiasing bring more other bias.
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Appendix

A Implementation Details

PLMs: We randomly split the training set
(COPA-dev, or BCOPA) into training set and
development set with a ratio of 9:1, and finetune
our model up to 20 epochs by implementing an
early-stopping strategy with a patience of 5 epochs
and using AdamW optimizer. We run 20 different
random seeds for each supervised model and report
the mean of the non-degenerate runs for each
model, which have higher than 80% of accuracy in
the training set as in previous work (Niven and Kao,
2019).

CS: We reproduce the preprocessing of their
work and achieve 70.8% accuracy, which is
slightly lower than the reported accuracy of 71.4%.

All parameters are learned from the
development set by manual tuning. The best-
performing parameter is determined by the
accuracy of the model in the development set. The
final parameters in our experiments are shown in
Table 6.

Model LR BS | WD | WP A
b-1

b-l-aug led 35 [ 001 | 01 -
b-l-reg 8e-5 0.01
rb-1

rb-l-aug 86 | 35 | 001 | 006 | -
rb-l-reg 1.2e-5 0.01
alb

albaug | %Y 4| 0 | o -
alb-reg 6e-5 0.01
db-1

dolang | >%® | 32001 | 006 | -
db-l-reg le-5 0.01

Table 6. The best Batch Size (BS), Learning Rate
(LR), Warm up rate (WP), and Weight Decay value
(WD) we used in our experiments.

B Construction Details of BCOPA-CE

We asked five fluent English speakers who have
background knowledge of NLP to create the new
alternative with the specific guidelines. We
instructed creators with requirements of sentence
length, overlap rules, and expressions similar to
Kavumba et al. (2019).

C Human Evaluation on BCOPA-CE

We have 1000 samples in BCOPA-CE set, which
consist of. 500 samples whose answers are same
with original COPA-test set (the left sample in the
second column in Table 3, referred to as COPA-
CE-ori) and 500 samples whose answers are the
choices that we generate (the right sample in the
second column in Table 3, referred to as COPA-
CE-opp). To ensure the quality of generated dataset,
we conduct a quality evaluation with two questions:

e QI Are the instances in BCOPA-CE dataset
comparable in difficulty to the COPA-test
instances?

e 2:Isthe new alternative we collect plausible
for the opposite question type?

COPA- | COPA- |COPA-CE-
test CE-ori opp
Accuracy 0.980 0.990 1.000
Fleiss’ Kappa| 0.919 0.893 0.890

Table 7: Human evaluation result of generated
dataset.

We evaluate the accuracy of human on both
COPA-CE-ori dataset and COPA-CE-opp dataset
to answer the Ql and evaluate the human
performance on COPA-CE-opp set for Q2. The
COPA-CE-opp set changes the question type and
takes the generated event as gold answers, hence it
can be evaluated for the plausibility of generated
alternatives. We asked 9 people to make choices,
each group of 3 people for one dataset. We
determine the final choice by majority voting. The
inter-annotator agreement is calculated by Fleiss’
Kappa. As is shown in Table 7, the BCOPA-CE set
has comparable difficulty with COPA-test. The
performance on COPA-CE-opp shows that the new
alternatives we create are plausible.
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Abstract

A current open question in natural language
processing is to what extent language models,
which are trained with access only to the form
of language, are able to capture the meaning of
language. In many cases, meaning constrains
form in consistent ways. This raises the pos-
sibility that some kinds of information about
form might reflect meaning more transparently
than others. The goal of this study is to in-
vestigate under what conditions we can expect
meaning and form to covary sufficiently, such
that a language model with access only to form
might nonetheless succeed in emulating mean-
ing. Focusing on propositional logic, we gen-
erate training corpora using a variety of moti-
vated constraints, and measure a distributional
language model’s ability to differentiate logi-
cal symbols (—, A, V). Our findings are largely
negative: none of our simulated training cor-
pora result in models which definitively differ-
entiate meaningfully different symbols (e.g., A
vs. V), suggesting a limitation to the types of
semantic signals that current models are able
to exploit.

1 Introduction

A current open question in natural language pro-
cessing is to what extent language models (LMs;
neural networks trained to predict the likelihood of
word forms given textual context) are capable of
truly understanding language. Bender and Koller
(2020) argue that, since such models are trained ex-
clusively on the form of language, they cannot pos-
sibly learn the meaning of language. We argue that
the question of whether language models can learn
meaning cannot be settled a priori. While language
models only have direct access to form, linguistic
form often correlates with meaning. The strength
of the correlation varies across both different as-
pects of language and different tests of linguistic
competence. While several intuitive tests of un-
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derstanding (e.g., demonstrating knowledge of the
word dog by identifying pictures of dogs) are out
of scope for LMs, many tasks which NLP aspires
to solve (e.g., question answering, machine transla-
tion) operate entirely on natural language input and
output. Thus, a relevant question is whether models
which operate only on the forms of language can
nonetheless learn to differentiate meanings.

Our goal is to focus on a tractable subproblem
in order to improve our intuitions about the types
of distributional signals that LMs can use to extract
information relevant to meaning. We simulate a
language modeling setup using propositional logic,
in which we can naturally operationalize form to
be strings of symbols in the language and mean-
ing to be truth conditions. We define the semantic
transparency of a text-only training corpus to be
the degree to which an LM trained on that cor-
pus learns to differentiate between aspects of form
that affect truth conditions and aspects of form that
do not. We have two primary research questions.
First, what constraints on corpus generation pro-
duce greater semantic transparency? And second,
are any such constraints sufficient for an LM to
adequately differentiate meanings?

2 Experimental Design

2.1 Dataset Generation

We consider the form of a sentence to be simply the
observed, syntactically-valid strings of characters
and the meaning to be the truth conditions. Propo-
sitional logic is a simple language in which we can
characterize both form and meaning. We use the
grammar in Table 1, with standard semantics.

We focus our analysis on whether the represen-
tations of logical operators (A, V, —) are influenced
by distributional patterns that go beyond their su-
perficial syntactic similarity evident in the grammar.
That is, if a trained LM identifies that the meanings

Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics
and the 11th International Joint Conference on Natural Language Processing (Short Papers), pages 158-167
August 1-6, 2021. ©2021 Association for Computational Linguistics



S—= (NS (SVSE)[(=9)] (sym)
N — /\1’/\2"'|/\K

VvV — \/1’\/2"’|\/L

- — —\1’—|2---|—|M

sym— symy | symg---|symy

Table 1: Propositional logic grammar.

of A1 - -+ Ak are identical to one another, and differ-
ent from the meanings of Vi - - -V, we expect the
embeddings for the A; to be more similar to one
another than they are to any of the V; or the —;. We
consider a corpus to be semantically transparent if
an LM trained on the corpus learns semantically-
clustered representations of the logical operators.

We generate four different training corpora, mo-
tivated by different assumptions one might make
about how natural language corpora arise. These
constraints are as follows, ordered roughly from
weakest to strongest:

1. Syntactic Constraint. Speakers only generate
sentences which are syntactically well-formed (that
can be parsed by a syntactic parser). Here, this
amounts to sampling from the grammar without
additional constraints.

2. Truthfulness Constraint. Speakers of the
language are constrained to generate sentences
that are true in some context, i.e., that evaluate
to True in at least one possible world. To im-
plement this, we again sample from the grammar
but additionally check with a satisfiability checker
and omit sentences which are not satisfiable. E.g.,
(sym; A (—(symy))) would not appear.

3. Informativity Constraint. Speakers generate
sentences not just to state true facts, but to provide
listeners with information about a particular state
of affairs. To simulate such a constraint, we ran-
domly sample a set of “target worlds” T" and a set
of “alternative worlds” A such that TN A = (). We
then generate the shortest sentence s such that s
is true in every world in 7" and s is false in every
world in A. We experiment with several sizes of
T and A, but report only on |T'| = |A| = 2 as this
provides the right balance of contextual diversity.
See Appendix for additional discussion.

4. Explicit Grounding. We consider a setting
in which speakers explicitly dictate the full state
of affairs, without ambiguity. This is not intended
as a realistic model of how corpora are generated,
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but rather to provide an upper bound on semantic
transparency by giving models a corpus in which
form is perfectly correlated with meaning. We
generate this corpus in the same way as the Truth-
fulness corpus, but append an explicit marker of the
truth values'of the variables in the sentence, e.g.:
(symy A (—(symg))) <sep> sym; T symy F.

Sampling Parameters. Each dataset consists of
100K training and 1K validation sentences. We
set the number of non-reserved symbols (N in the
above grammar) to 5,000, and the number of “syn-
onyms” of each logical symbol (K,L,M) to be 5.
Thus, a sentence in one of our datasets might look
like (sym; Az (—4(symgs))), and would be true if
and only if sym; is true and symgs is false 2.

We generate sentences using a probabilistic
context-free grammar with the rules shown above.
The tree depth d of a generated sentence is con-
trolled by a parameter + such that P(d|d—1) = .
The number of unique variables in a sentence? is
sampled from a non-zero Poisson distribution pa-
rameterized by A\. We set A = 2 and v = .85 in
the reported experiments, but don’t find parameter
choice affects our conclusions. Note that the In-
formativity dataset is generated deterministically,
and thus sampling parameters do not apply and sen-
tences in that dataset are shorter. Dataset statistics
and data generation parameter sensitivity are in the
Appendix.

2.2 Models and Training

We consider LSTM and Transformer LMs of differ-
ing sizes, shown in Table 2. Each model is trained
on one of the above four datasets until convergence
on the associated validation set using early stop-
ping with a patience of 15 epochs. The LMs were
implemented in PyTorch (Paszke et al., 2019) and
took roughly 5 hours to converge on TitanV, Ti-
tanRTX, and QuadroRTX GPUs #. We randomly
initialize the embedding layer. Hyperparameter
details can be found in the Appendix. We train 5
random restarts of each setting. Due to the regular
nature of our synthetic data, we found larger mod-

!'Sampled from the set of satisfying variable assignments.

2We began by experimenting with many different dataset
sizes and vocab counts. However, we did not find that models
behaved differently on larger datasets and so focused on the
smaller ones for convenience. See Appendix for results with
different model sizes.

3We set a maximum number of variables per sentence in
order to bound the number of possible variable assignments.

*Code publicly available at https://github.com/
attraylor/semantic-transparency-code.



Model Syntactic Truthfulness Informativity Grounded

Small LSTM (192K) 21.2/87.7/877 17.6/88.7/88.6 21.5/99.6/99.5 21.2/87.5/87.5
Medium LSTM (545K) 17.6/90.2/90.1 17.5/89.6/89.5 20.9/99.9/99.8 83/89.3/86.8
Small Trans. (311K) 11.8/86.9/84.6 12.4/87.2/854 21.7/98.4/98.2 10.3/86.2/83.1

Medium Trans. (377K) 11.4/91.3/90.6

9.9/92.0/91.3

18.1/99.5/99.5 9.1/91.7/89.8

Table 2: Summary of language modeling performance. For each model, on each training dataset, we report PPL /
90 Syn / % Sem where PPL is the perplexity on heldout data (drawn from the same distribution as the training cor-
pus), %Syn is the percentage of generated sentences that are syntactically well formed (i.e., parseable), estimated
on a set of 1,000 generations sampled from the trained model, and % Sem is the percentage of generated sentences
that are semantically well formed (i.e., satisfiable), estimated on the same set of 1,000.

els overfit the training data quickly, and thus focus
on smaller models.

3 Results and Discussion

Language Modeling Performance. We first
sanity check that the trained models indeed func-
tion as LMs before evaluating the lexical represen-
tations. We compute the models’ perplexity on
heldout data. However, since perplexity is not com-
parable across conditions (since each constraint
leads to differently distributed corpora) we also
sample 1,000 generated sentences from each model
and compare by measuring whether the sentences
are 1) syntactically well-formed (i.e., parseable)
and 2) semantically well-formed (i.e., satisfiable).
Even in the case of models trained with the Syntac-
tic constraint, as seen in Table 2, most of the sen-
tences produced are nonetheless satisfiable. We see
no difference between the Syntactic, Truthfulness,
and Explicit Grounding conditions on these met-
rics. (The Informativity numbers are likely higher
due to the shorter sentences that result from that
generative process.) The fact that models trained
only on satisfiable sentences nonetheless generate
sentences which do not abide by such constraints
suggests the models fail to encode less overt distri-
butional patterns, which depend, for example, on
recognizing abstract relations such as “sameness”
of symbols in order to recognize violations (e.g.,
(A A(— A)). The failure to capture such properties
of the data even in this simplified setting might
have negative implications for the models’ ability
to infer abstract semantic relationships from more
complex natural language corpora.

Representations of Logical Symbols. Again,
our first question is: What constraints on corpus
generation yield the greatest amounts of semantic
transparency? We quantify this by measuring how

well the embeddings learned by the trained LMs
correspond to our truth-theoretic notions of seman-
tic equivalence: e.g., are A and A2 more similar
to one another than Ay and VV1? We use a nearest
neighbors probing classifier to evaluate whether
models distinguish the operators at the lexical level.
We run k-fold cross validation, in each iteration
choosing one symbol per class (i.e., one A, one V,
one —) as the class exemplars, and then classifying
the remaining points using cosine similarity. We set
k to 125, so that we observe every symbol combi-
nation as exemplars. We report accuracy averaged
across folds and random restarts.

Probing classifier results are shown in Figure 1.
Figure 2 shows an embedding visualization for one
model (Medium Transformer). We find that train-
ing on the Syntactic and on the Explicit Grounding
dataset leads to the least and the most distinguish-
able operators respectively for all models, and the
other conditions end up between these values.

These results address our first question: there is
some difference in semantic transparency between
differently constrained datasets. Interestingly, the
Transformer models perform better in the Truth-
fulness condition than in the Syntactic condition,
which the LSTMs fail to differentiate. This sug-
gests that, even if it does not necessarily manifest in
the models’ generations (Table 2), the Transformer
architecture may nonetheless be capable of picking
up on some of the more abstract distributional pat-
terns via which syntax and semantics are correlated.
Further work on larger models would be required
to explore this in depth.

In addition, we observe little difference between
the quality of the representations learned in the
Informativity condition and those learned in the
Truthfulness condition; one exception might be
in the Medium LSTM, though we cannot confirm
that this difference is robustly reproducible. Thus,

160



Small LSTM Medium LSTM

Small Transformer Medium Transformer

o

0.44

1.0
0.8

i M

0.4

e

0.29

0.2

0.0

0.0
Syn. Truth. Inf. Ground. Syn. Truth.

0.0
Inf.  Ground.

Syn. Truth. Inf. Ground. Syn. Truth. Inf. Ground.

Figure 1: Each value in this graph represents average classification score across 125 iterations of a simple nearest
neighbor probing classifier averaged across 5 random seeds of the model (625 accuracy numbers per box and
whiskers plot). The dotted line is random chance / maximum class accuracy (33%).
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Figure 2: PCA of the representations created by the
Medium Transformer model.

based on our experiments, there is no evidence that
Informativity alone yields greater semantic trans-
parency. However, we note that the experimental
setup for Informativity is not directly comparable
to the others (e.g., sentences are shorter and less
diverse than in Truthfulness) and thus further study
would be needed to make strong claims, positive or
negative.

Finally, we note that in nearly all cases, models
are able to differentiate — from the other opera-
tors, likely because it is a unary operator and thus
syntactically different from the binary operators.
Thus the difference in accuracy is almost entirely
due to whether the representations of A and V are
differentiated (as shown in Figure 2). This gives a
negative answer to our second question concerning
whether any constraints are sufficient for an LM
to adequately differentiate meaning. Apart from
the Small Transformer on the Explicit Grounding
condition, none of the models can completely dis-
tinguish between symbols that are similar in form
but different in meaning.

4 Related Work

It is an open question whether neural models can
learn abstract functions (Marcus, 2001). Our work
builds upon a large body of research intended to
probe which aspects of language and meaning are
being captured by large LMs. Most closely re-
lated is work that assesses whether models can per-
form symbolic reasoning about language (Kassner
et al., 2020) e.g., quantifiers or negation (Talmor
et al., 2020; Ettinger, 2020; Kassner and Schiitze,
2020; Wang et al., 2018) or by measuring the sys-
tematicity of models’ inferences (Goodwin et al.,
2020; Kim and Linzen, 2020; Yanaka et al., 2020;
Warstadt et al., 2019). Such work has tended to
find that LMs reason primarily contextually as op-
posed to abstractly. Our evaluation method— which
asks whether word embeddings cluster according to
their truth-conditional meaning— is related to recent
work which defines text-only models as “grounded”
if the learned embedding space is isomorphic to
the similarity function defined over a ground-truth
meaning representation (Merrill et al., 2021). More
distantly related is work on LMs’ ability to reason
about numbers (Wallace et al., 2019) or perform
multi-hop reasoning (Yang et al., 2018). Prior work
that examines neural networks’ ability to perform
logical reasoning is superficially related (Evans
et al., 2018). In this way, our work builds on past
work that uses synthetic rather than natural lan-
guage datasets in order to probe model behavior
in the absence of confounds. Notable examples
are SCAN for measuring compositionality and gen-
eralization (Lake and Baroni, 2018) and Kassner
et al. (2020) which investigates LM knowledge ac-
quisition and fact memorization using a synthetic
dataset of entity-relation tuples.
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5 Conclusion

Using propositional logic corpora to simulate a con-
trolled language modeling setting, we ask: 1) Do
properties of the training corpus affect LMs’ abili-
ties to differentiate the meanings of logical opera-
tors? and 2) Do any training corpora lead to models
that differentiate these meanings to a satisfactory
degree? Our results imply a positive answer to (1):
Models trained on corpora generated with differ-
ent constraints appear to perform differently at the
task of separating A from V. However, these differ-
ences are a function of both data and model. For
example, the Transformer architecture seems better
able to learn from weaker signal (corpora generated
only with a Truthfulness constraint), while LSTMs
require more explicit signal (direct access to truth
values). On question (2), our results are largely neg-
ative for the syntactically similar operators. Even
the most semantically transparent training data did
not enable models to separate the representations
of symbols with similar form but different meaning.
Only the Small Transformer trained on the Explicit
Grounding condition can perfectly differentiate A
from V at the lexical level, despite the task’s con-
trolled nature. However, every model did separate
— from both A and V, illustrating how syntactic
differences can support differentiation of meaning.

Overall, we contribute a novel framework, based
on syntax and semantics of propositional logic, via
which we can explore questions of the linguistic
capabilities and weaknesses of neural LMs. Our
experiments represent a first step in this line of
work, but further work is needed to fully appre-
ciate the implications of these results in natural
language settings, in particular, how closely the
constraints explored here mirror real corpora, and
how such learning is influenced by noise and am-
biguity found in human language. One specific
limitation of our experiments is that we constrain
our analysis to the lexical representations—i.e., we
assume that differences between the meanings of A
and V should be encoded in the lexicon, via context-
invariant type embeddings. While this assumption
is commonplace in formal semantics, neural LMs
open the possibility of alternative representations
of lexical and compositional semantics. Our results
do not rule out the possibility that the relevant se-
mantic distinctions are encoded elsewhere in the
model, above the lexical layer. However, we take
the combination of the lexical probing results and
LM generation results as suggestive but not con-

firmational evidence of a more general negative
finding.
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7 Appendix

7.1 Dataset generation parameters

There are several parameters involved in the cre-
ation of our synthetic propositional logic datasets:

* Number of sentences in the training set

* Number of unique non-reserved variables (N)
* Number of each operator (K, L, M)

* Sentence depth parameter (vy)

* Poisson distribution parameter for unique non-
reserved variables in sentence ()

In comparison to dataset sizes for large language
models in modern natural language processing,
the dataset size (100k training examples) and vo-
cabulary size (5k symbols + 5 of each operator)
of our main experimental results (Figure 1) are
rather small. We sought to determine whether our
choice for dataset size and non-restricted variable
count greatly changed the final results— do our con-
clusions change based on these parameters? We
trained models on different variations of our initial
parameters.

First, we swept across training set sizes (20k,
100k, and 500k examples) and number of symbols
(500, 5k, 50k) while holding all other parameters
constant (v =.85, A =2, K, L, M =5). We used
the Medium Transformer model, which performed
the best across our four models, and observed the
results of the probing classifier on the embeddings
after training separately on each model.

The results of the above sweep are shown in
Figure 3. We do not find that the models perform
dramatically differently on any of the datasets when
dataset size and number of non-reserved symbols
are varied.

We also experimented with changing the num-
ber of operator synonyms (e.g. A1, Az, ...Ax) We
experimented with three different sizes— (K, L, M)
=35, 25, 100- for each of our 4 datasets. Those re-
sults are shown in Figure 5, and average frequency
is shown in Table 3. We found that adding addi-
tional synonyms of each operator hurt performance—
likely because adding additional synonyms of A
and V made generalization more challenging, caus-
ing the models’ performance to drop.

In a set of earlier experiments, to choose the
sentence depth (vy) and Poisson distribution () pa-
rameters, we hyperparameter searched on the Ex-
plicit Grounding condition across three values of

K,L,M | Syn. Tru. Inf. Grd.
5 49.7k | 49.2k | 16.3k | 49k
25 9.94k | 9.84k | 3.25k | 9.81k
100 249k | 2.46k | 0.81k | 2.45k

Table 3: Average count of each operator across each of
the datasets.

each (nine datasets in total). Specifically, we tested
A=235and v = .7,.8,.85. We then trained
the transformer model once on each of the nine
datasets, and the results are shown in Figure 6. We
chose A = 2 and v = .85.

7.2 Informativity dataset information

We tested different settings of |7'| (number of tar-
get worlds) and | A| (number of alternative worlds).
For |T| = 1,|A| = 1, the best choice of s will
always be a single sym or its negation. For ex-
ample, with variables sym;, symy, we might sam-
ple max variables = 2 and thus 7" = (sym; =
T,symp = F),;A = (symy = F,symy = F).
The shortest sentence would then be sym;, as
it sufficiently distinguishes 7" from A. How-
ever, with |T'| = 1,|A| = 2, we might generate
T = (sym; = T,symy = F),A = ((symy =
F,symy = F),(sym; = T,symy = T)). Now
the shortest sentence that can be generated is
(sym; A1 —1(symg)).

|T| = 1,|A| = 2 and |T| = 2,|A| = 1 result
in sentences that are both short and structurally
nearly identical, although inverted. This is due
to the truth conditions allowed by each operator.
We generate the datasets for each combination and
report the results in Table 4. We excluded these
datasets because of the simplicity and similarity
of the sentences. We found that |T'| = 2,|A| = 2
allows for sentences that are much more varied.
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Figure 3: Average probing classifier score across example count / number of unique non-variable symbols for the
Medium Transformer model.

Small LSTM Medium LSTM Small Transformer Medium Transformer
1.01 - 1.01 1.01 - 1.01
—_ —_ +

0.81 0.81 0.81 0.81

+ +

wn
0.4 . 0.4 0.4
—4 — )

0.2 . 0.2 0.2

* * * -1
0.01—+ .

T T T 0.0 T T 0.0 T T T T 0.0 T T T
Syn. Truth. Inf. Ground. Syn. Truth. Inf. Ground. Syn. Truth. Inf. Ground. Syn. Truth. Inf. Ground.

Figure 4: This graph contains the same experiments as Figure 1, but is only the accuracy on A and V, excluding
the results of the negation operator.
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Inform. 1T/1A Inform. 1T/2A Inform. 2T/1A
Sent. | Count Sent. Count Sent. Count
a 4523 (a A'D) 27047 (aVvb) 27236
—(a) | 4460 | (aA—(b)) | 21474 | =((a A'D)) | 21392
=((a Vb)) | 21338 | (aV (b)) | 21260
(=(a) Ab) | 21061 | (—(a) VD) | 21045
—(a) 4544 a 4559
a 4536 —(a) 4508

Table 4: All sentences generated for the first three Informativity datasets fell into one of these templates. Arbitrary
symbols are replaced with a and b. This distinction happens because of the truth conditions that are allowed by the
A and V operators.

Dataset Sent. Len. | Average sym count | Average op count | Average Unique syms
Syntactic 28.51 6.19 7.44 2.27
Truthfulness 28.25 6.14 7.37 2.33
Inform. (2T/2A) 10.92 2.83 2.70 2.20
Expl. Ground 34.06 8.51 7.40 2.33

Table 5: Averaged statistics per sentence for the different datasets (training sets). All datasets are 100K training
examples and 1k heldout examples.

Model LR | symb dim | hidden dim | # heads | # layers | dropout
Small LSTM .0001 4 32 1 0.0
Medium LSTM .0001 32 64 2 0.2
Small Transformer | .0001 4 32 2 4 0.0
Medium Transformer | 5e-05 32 128 4 4 0.2

Table 6: Hyperparameters for each model.
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Figure 5: Sweep across number of operators using the
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Enforcing Consistency in Weakly Supervised Semantic Parsing
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nitishg@seas.upenn.edu

Abstract

The predominant challenge in weakly super-
vised semantic parsing is that of spurious pro-
grams that evaluate to correct answers for the
wrong reasons. Prior work uses elaborate
search strategies to mitigate the prevalence of
spurious programs; however, they typically
consider only one input at a time. In this work
we explore the use of consistency between the
output programs for related inputs to reduce
the impact of spurious programs. We bias the
program search (and thus the model’s training
signal) towards programs that map the same
phrase in related inputs to the same sub-parts
in their respective programs. Additionally, we
study the importance of designing logical for-
malisms that facilitate this kind of consistency-
based training. We find that a more consis-
tent formalism leads to improved model perfor-
mance even without consistency-based train-
ing. When combined together, these two in-
sights lead to a 10% absolute improvement
over the best prior result on the Natural Lan-
guage Visual Reasoning dataset.

1 Introduction

Semantic parsers map a natural language utterance
into an executable meaning representation, called a
logical form or program (Zelle and Mooney, 1996;
Zettlemoyer and Collins, 2005). These programs
can be executed against a context (e.g., database,
image, etc.) to produce a denotation (e.g., answer)
for the input utterance. Methods for training seman-
tic parsers from only (utterance, denotation) super-
vision have been developed (Clarke et al., 2010;
Liang et al., 2011; Berant et al., 2013); however,
training from such weak supervision is challeng-
ing. The parser needs to search for the correct
program from an exponentially large space, and the
presence of spurious programs—incorrect repre-

*Work done while interning with Allen Institute for AL
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Matt Gardner
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x : There is a yellow object above a black object
21 : objExists(black(bottom(allObjs)))

29 : objExists(yellow(above(black(allObjs))))

23 : objExists(yellow(top(allObjs)))

24 : objExists(black(top(allObjs)))

: There are 2 boxes with a yellow object above a black objectl
12" : boxCountEq(2, boxFilter(allBoxes,yellow(above(black))) !

Figure 1: Utterance = and its program candidates
z1-%4, all of which evaluate to the correct denotation
(True). 29 is the correct interpretation; other programs
are spurious. Related utterance z’ shares the phrase
yellow object above a black object with z. Our consis-
tency reward would score 29 the highest since it maps
the shared phrase most similarly compared to z’.

sentations that evaluate to the correct denotation—
greatly hampers learning. Several strategies have
been proposed to mitigate this issue (Guu et al.,
2017; Liang et al., 2018; Dasigi et al., 2019). Typi-
cally these approaches consider a single input utter-
ance at a time and explore ways to score programs.
In this work we encourage consistency between
the output programs of related natural language ut-
terances to mitigate the issue of spurious programs.
Consider related utterances, There are two boxes
with three yellow squares and There are three yel-
low squares, both containing the phrase three yel-
low squares. 1deally, the correct programs for the
utterances should contain similar sub-parts that cor-
responds to the shared phrase. To incorporate this
intuition during search, we propose a consistency-
based reward to encourage programs for related
utterances that share sub-parts corresponding to
the shared phrases (§3). By doing so, the model is
provided with an additional training signal to distin-
guish between programs based on their consistency
with programs predicted for related utterances.
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We also show the importance of designing the
logical language in a manner such that the ground-
truth programs for related utterances are consistent
with each other. Such consistency in the logical
language would facilitate the consistency-based
training proposed above, and encourage the seman-
tic parser to learn generalizable correspondence
between natural language and program tokens. In
the previously proposed language for the Natural
Language Visual Reasoning dataset (NLVR; Suhr
et al., 2017), we notice that the use of macros leads
to inconsistent interpretations of a phrase depend-
ing on its context. We propose changes to this
language such that a phrase in different contexts
can be interpreted by the same program parts (§4).

We evaluate our proposed approaches on NLVR
using the semantic parser of Dasigi et al. (2019)
as our base parser. On just replacing the old log-
ical language for our proposed language we see
an 8% absolute improvement in consistency, the
evaluation metric used for NLVR (§5). Combin-
ing with our consistency-based training leads to
further improvements; overall 10% over the best
prior model, reporting a new state-of-the-art on the
NLVR dataset.

2 Background

In this section we provide a background on the
NLVR dataset (Suhr et al., 2017) and the semantic
parser of Dasigi et al. (2019).

Natural Language Visual Reasoning (NLVR)
dataset contains human-written natural language
utterances, where each utterance is paired with 4
synthetically-generated images. Each (utterance,
image) pair is annotated with a binary truth-value
denotation denoting whether the utterance is true
for the image or not. Each image is divided into
three boxes, where each box contains 1-8 objects.
Each object has four properties: position (x/y coor-
dinates), color (black, blue, yellow), shape (trian-
gle, square, circle), and size (small, medium, large).
The dataset also provides a structured represen-
tation of each image which we use in this paper.
Figure 1 shows an example from the dataset.

Weakly supervised iterative search parser We
use the semantic parser of Dasigi et al. (2019)
which is a grammar-constrained encoder-decoder
with attention model from Krishnamurthy et al.
(2017). It learns to map a natural language utter-
ance x into a program z such that it evaluates to the
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correct denotation y = [[z]" when executed against
the structured image representation r. Dasigi et al.
(2019) use a manually-designed, typed, variable-
free, functional query language for NLVR, inspired
by the GeoQuery language (Zelle and Mooney,
1996).

Given a dataset of triples (z;, ¢;, y;), where x; is
an utterance, c; is the set of images associated to it,
and y; is the set of corresponding denotations, their
approach iteratively alternates between two phases
to train the parser: Maximum marginal likelihood
(MML) and a Reward-based method (RBM). In
MML, for an utterance x;, the model maximizes
the marginal likelihood of programs in a given set
of logical forms Z;, all of which evaluate to the
correct denotation. The set Z; is constructed either
by performing a heuristic search, or generated from
a trained semantic parser.

The reward-based method maximizes the (ap-
proximate) expected value of a reward function R.

mQaX;Eﬁ(Zixﬁ@)R(xi?Ziuciuyi) (1)
7

Here, p is the re-normalization of the probabili-
ties assigned to the programs on the beam, and the
reward function R = 1 if z; evaluates to the cor-
rect denotation for all images in c;, or 0 otherwise.
Please refer Dasigi et al. (2019) for details.

3 Consistency reward for programs

Consider the utterance x = There is a yellow object
above a black object in Figure 1. There are many
program candidates decoded in search that eval-
uate to the correct denotation. Most of them are
spurious, i.e., they do not represent the meaning
of the utterance and only coincidentally evaluate
to the correct output. The semantic parser is ex-
pected to distinguish between the correct program
and spurious ones by identifying correspondence
between parts of the utterance and the program can-
didates. Consider a related utterance x’ = There are
2 boxes with a yellow object above a black object.
The parser should prefer programs for x and 2’/
which contain similar sub-parts corresponding to
the shared phrase p = yellow object above a black
object. That is, the parser should be consistent in
its interpretation of a phrase in different contexts.
To incorporate this intuition during program search,
we propose an additional reward to programs for
an utterance that are consistent with programs for
a related utterance.



Specifically, consider two related utterances x
and z’ that share a phrase p. We compute a reward
for a program candidate z of = based on how simi-
larly it maps the phrase p as compared to a program
candidate 2’ of 2’. To compute this reward we need
(a) relevant program parts in z and 2’ that corre-
spond to the phrase p, and (b) a consistency reward
that measures consistency between those parts.

(a) Relevant program parts Let us first see how
to identify relevant parts of a program z that corre-
spond to a phrase p in the utterance.

Our semantic parser (from Krishnamurthy et al.
(2017)) outputs a linearized version of the pro-
gram z = [z',...,27], decoding one action at
a time from the logical language. At each time
step, the parser predicts a normalized attention vec-
tor over the tokens of the utterance, denoted by
[a}, ..., aly] for the 2 action. Here, >V  af =1
and a} > 0 for i € [1, N]. We use these attention
values as a relevance score between a program ac-
tion and the utterance tokens. Given the phrase
p with token span [m, n], we identify the relevant
actions in z as the ones whose total attention score
over the tokens in p exceeds a heuristically-chosen
threshold 7 = 0.6.

A(z,p) = {Zt |t€[1,T] and ia§ 27’} (2)

This set of program actions A(z,p) is consid-
ered to be generated due to the phrase p. For
example, for utterance There is a yellow ob-
Jject above a black object, with program objEx-
ists(yellow(above(black(allObjs))), this approach
could identify that for the phrase yellow object
above a black object the actions corresponding to
the functions yellow, above, and black are relevant.

(b) Consistency reward Now, we will define a
reward for the program z based on how consis-
tent its mapping of the phrase p is w.r.t. the pro-
gram 2’ of a related utterance. Given a related
program 2z’ and its relevant action set A(z, p), we
define the consistency reward S(z, 2/, p) as the F1
score for the action set A(z, p) when compared to
A(Z',p). If there are multiple shared phrases p;
between x and z’, we can compute a weighted av-
erage of different S(z, 2/, p;) to compute a singular
consistency reward S(z, z’) between the programs
z and 2’. In this work, we only consider a sin-
gle shared phrase p between the related utterances,
hence S(z, 2’,p) = S(z, 2/, p) in our paper.

170

As we do not know the gold program for a2/,
we decode top-K program candidates using beam-
search and discard the ones that do not evaluate
to the correct denotation. We denote this set of
programs by Z/. Now, to compute a consistency
reward C(z, z, ') for the program z of z,we take a
weighted average of S(z, 2’) for different 2’ € Z
where the weights correspond to the probability of
the program 2’ as predicted by the parser.

C(z,z,2') = Z p(2'2'50)S(z, 2")

Zez!

3)

Consistency reward based parser Given x and
a related utterance 2/, we use C(z, z, 2’) as an ad-
ditional reward in Eq. 1 to upweight programs for
x that are consistent with programs for z’.

max %: B (ailas:0) [ R (T, 2, iy yi)+C (w4, 20, )|
(]

This consistency-based reward pushes the parser’s
probability mass towards programs that have con-
sistent interpretations across related utterances,
thus providing an additional training signal over
simple denotation accuracy. The formulation pre-
sented in this paper assumes that there is a single
related utterance 2’ for the utterance x. If multiple
related utterances are considered, the consistency
reward C(z, z, z;) for different related utterances
:1:; can be summed/averaged to compute a single
consistency reward C(z, z) the program z of utter-
ance x based on all the related utterances.

4 Consistency in Language

The consistency reward (§3) makes a key assump-
tion about the logical language in which the ut-
terances are parsed: that the gold programs for
utterances sharing a natural language phrase actu-
ally correspond to each other. For example, that the
phrase yellow object above a black object would
always get mapped to yellow(above(black)) irre-
spective of the utterance it occurs in.

On analyzing the logical language of Dasigi et al.
(2019), we find that this assumption does not hold
true. Let us look at the following examples:
x1: There are items of at least two different colors
z1: objColorCountGrtEq(2, allObjs)
x9: There is a box with items of at least two differ-
ent colors
zo: boxExists(

memberColorCountGrtEq(2, allBoxes))
Here the phrase items of at least two different colors



Dev Test-P Test-H
Model
ode Acc. Cons. Acc. Cons. Acc. Cons.
ABS. SUP. (Goldman et al., 2018) 843 663 817 60.1 - -
ABS. SUP. + RERANK (Goldman et al., 2018) 857 674 84.0 650 825 639
ITERATIVE SEARCH (Dasigi et al., 2019) 854 648 824 613 829 643
+ Logical Language Design (ours) 882 73.6 86.0 69.6 - -
+ Consistency Reward (ours) 89.6 759 863 71.0 895 740

Table 1: Performance on NLVR: Design changes in the logical language and consistency-based training, both
significantly improve performance. Larger improvements in consistency indicate that our approach efficiently

tackles spurious programs.

is interpreted differently in the two utterances. In
Z2, a macro function memberColorCountGrtEq is
used, which internally calls objColorCountGrtEq
for each box in the image. Now consider,

x3: There is a tower with exactly one block

z3: boxExists(memberObjCountEq(1,allBoxes))
x4: There is a tower with a black item on the top
z4: objExists(black(top(allObjs)))

Here the phrase There is a tower is interpreted dif-
ferently: z3 uses a macro for filtering boxes based
on their object count and interprets the phrase using
boxExists. In the absence of a complex macro for
checking black item on the top, z, resorts to using
objExists making the interpretation of the phrase
inconsistent. These examples highlight that these
macros, while they shorten the search for programs,
make the language inconsistent.

We make the following changes in the logical
language to make it more consistent. Recall from
§2 that each NLVR image contains 3 boxes each
of which contains 1-8 objects. We remove macro
functions like memberColorCountGrtEq, and in-
troduce a generic boxFilter function. This function
takes two arguments, a set of boxes and a filtering
function f: Set[Obj] — bool, and prunes the input
set of boxes to the ones whose objects satisfies the
filter f. By doing so, our language is able to reuse
the same object filtering functions across different
utterances. In this new language, the gold program
for the utterance x5 would be
z9: boxCountEq(1, boxFilter(allBoxes,

objColorCountGrtEq(2)))
By doing so, our logical language can now con-
sistently interpret the phrase items of at least two
different colors using the object filtering function
f: objColorCountGrtEq(2) across both x1 and xs.
Similarly, the gold program for x4 in the new logi-
cal language would be
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z4: boxExists(boxFilter(allBoxes, black(top)))
making the interpretation of There is a box consis-
tent with z3. Please refer appendix §A for details.

5 Experiments

Dataset We report results on the standard de-
velopment, public-test, and hidden-test splits of
NLVR. The training data contains 12.4k (utterance,
image) pairs where each of 3163 utterances are
paired with 4 images. Each evaluation set roughly
contains 270 unique utterances.

Evaluation Metrics (1) Accuracy measures the
proportion of examples for which the correct de-
notation is predicted. (2) Since each utterance
in NLVR is paired with 4 images, a consistency
metric is used, which measures the proportion of
utterances for which the correct denotation is pre-
dicted for all associated images. Improvement in
this metric is indicative of correct program pre-
diction as it is unlikely for a spurious program to
correctly make predictions on multiple images.

Experimental details We use the same parser,
training methodology, and hyper-parameters as
Dasigi et al. (2019). For discovering related ut-
terances, we manually identify ~10 sets of equiv-
alent phrases that are common in NLVR. For ex-
ample, there are NUM boxes, COLOR1 block on a
COLOR?2 block, etc. For each utterance that con-
tains a particular phrase, we pair it with one other
randomly chosen utterance that shares the phrase.
We make 1579 utterance pairs in total. Refer ap-
pendix §B for details about data creation.'

Baselines We compare against the state-of-the-
art models; ABS. SUP. (Goldman et al., 2018) that
'We release the data and code at https://www.

github.com/nitishgupta/allennlp-semparse/tree/nlvr-v2/
scripts/nlvr_v2



uses abstract examples, ABS. SUP. + RERANK
that uses additional data and reranking, and the
iterative search parser of Dasigi et al. (2019).

Results Table 1 compares the performance of our
two proposed methods to enforce consistency in the
decoded programs with the previous approaches.
We see that changing the logical language to a more
consistent one (§4) significantly improves perfor-
mance: the accuracy improves by 2-4% and con-
sistency by 4-8% on the dev. and public-test sets.
Additionally, training the parser using our proposed
consistency reward (§3) further improves perfor-
mance: accuracy improves by 0.3-0.4% but the
consistency significantly improves by 1.4-2.3%.2
On the hidden-test set of NLVR, our final model
improves accuracy by 7% and consistency by 10%
compared to previous approaches. Larger improve-
ments in consistency across evaluation sets indi-
cates that our approach to enforce consistency be-
tween programs of related utterances greatly re-
duces the impact of spurious programs.

6 Conclusion

We proposed two approaches to mitigate the issue
of spurious programs in weakly supervised seman-
tic parsing by enforcing consistency between out-
put programs. First, a consistency based reward
that biases the program search towards programs
that map the same phrase in related utterances to
similar sub-parts. Such a reward provides an ad-
ditional training signal to the model by leveraging
related utterances. Second, we demonstrate the
importance of logical language design such that
it facilitates such consistency-based training. The
two approaches combined together lead to signifi-
cant improvements in the resulting semantic parser.
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A Logical language details

In Figure 2, we show an example utterance with
its gold program according to our proposed logi-
cal language. We use function composition and
function currying to maintain the variable-free na-
ture of our language. For example, action z7
uses function composition to create a function
from Set[Object| — bool by composing two func-
tions, from Set[Object] — bool and Set[Object]
— Set[Object]. Similarly, action z'! creates a
function from Set[Object] — Set[Object] by com-
posing two functions with the same signature.

Actions 28 - 210 use function currying to curry
the 2-argument function objectCountGtEq by giv-
ing it one int=2 argument. This results in a
l-argument function objectCountGtEq(2) from
Set[Object] — bool.

B Dataset details

To discover related utterance pairs within the
NLVR dataset, we manually identify 11 sets of
phrases that commonly occur in NLVR and can be
interpreted in the same manner:

1. { COLOR block at the base, the base is
COLOR }

. { COLOR block at the top, the top is COLOR

}
. { COLORI object above a COLOR?2 object }

{ COLORI block on a COLOR2 block,
COLORI1 block over a COLOR2 block }

. { aCOLOR tower }

{ there is one tower, there is only one tower,
there is one box, there is only one box }

{ there are exactly NUMBER towers, there
are exactly NUMBER boxes }

. { NUMBER different colors }

. { with NUMBER COLOR items, with
NUMBER COLOR blocks, with NUMBER
COLOR objects }

10. { at least NUMBER COLOR items, at least
NUMBER COLOR blocks, at least NUMBER

COLOR objects }
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11. { with NUMBER COLOR SHAPE, are NUM-
BER COLOR SHAPE, with only NUM-
BER COLOR SHAPE, are only NUMBER
COLOR SHAPE }

In each phrase, we replace the abstract COLOR,
NUMBER, SHAPE token with all possible options
from the NLVR dataset to create grounded phrases.
For example, black block at the top, yellow object
above a blue object. For each set of equivalent
grounded phrases, we identify the set of utterances
that contains any of the phrase. For each utterance
in that set, we pair it with 1 randomly chosen ut-
terance from that set. Overall, we identify related
utterances for 1420 utterances (out of 3163) and
make 1579 pairings in total; if an utterance con-
tains two phrases of interest, it can be paired with
more than 1 utterance.



x: There is one box with at least 2 yellow squares
z: boxCountEq(1, boxFilter(allBoxes, objectCountGtEq(2)(yellow(square))))

Program actions for z:

z1: bool — [<int,[Set[Box]:bool>, int, Set[Box]]

: <int,[Set[Box]:bool> — boxCountEq

vint — 1

: Set[Box] — [<Set[Box],<Set[Object]:bool>:Set[Box]>, Set[Box], <Set[Object]:bool>]
: <Set[Box],<Set[Object]:bool>:Set[Box]> — boxFilter

: Set[Box] — allBoxes

: <Set[Object]:bool> — [*, <Set[Object]:bool>, <Set[Object]:Set[Object]>]

: <Set[Object]:bool> — [<int,Set[Object]:bool>, int]

<int,Set[Object]:bool> — objectCountGtEq

zint = 2

: <Set[Object]:Set[Object]> — [*, <Set[Object]:Set[Object]>, <Set[Object]:Set[Object]>]
: <Set[Object]:Set[Object]> — yellow

: <Set[Object]:Set[Object]> — square
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Figure 2: Gold program actions for the utterance There is one box with at least 2 yellow squares according to
our proposed logical language. The grammar-constrained decoder outputs a linearized abstract-syntax tree of the
program in an in-order traversal.
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Abstract

In this paper, we present an improved model
for voicing silent speech, where audio is syn-
thesized from facial electromyography (EMG)
signals. To give our model greater flexibility
to learn its own input features, we directly use
EMG signals as input in the place of hand-
designed features used by prior work. Our
model uses convolutional layers to extract fea-
tures from the signals and Transformer lay-
ers to propagate information across longer dis-
tances. To provide better signal for learning,
we also introduce an auxiliary task of predict-
ing phoneme labels in addition to predicting
speech audio features. On an open vocabulary
intelligibility evaluation, our model improves
the state of the art for this task by an absolute
25.8%.

1 Introduction

EMG-based voicing of silent speech is a task that
aims to synthesize vocal audio from muscular sig-
nals captured by electrodes on the face while words
are silently mouthed (Gaddy and Klein, 2020; Toth
et al., 2009). While recent work has demonstrated
a high intelligibility of generated audio when re-
stricted to a narrow vocabulary (Gaddy and Klein,
2020), in a more challenging open vocabulary set-
ting the intelligibility remained low (68% WER). In
this work, we introduce an new model for voicing
silent speech that greatly improves intelligibility.
We achieve our improvements by modifying sev-
eral different components of the model. First, we
improve the input representation. While prior work
on EMG speech processing uses hand-designed fea-
tures (Jou et al., 2006; Diener et al., 2015; Meltzner
et al., 2018; Gaddy and Klein, 2020) which may
throw away some information from the raw signals,
our model learns directly from the complete sig-
nals with minimal pre-processing by using a set of
convolutional neural network layers as feature ex-
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tractors. This modification follows recent work in
speech processing from raw waveforms (Collobert
et al., 2016; Schneider et al., 2019) and gives our
model the ability to learn its own features for EMG.

Second, we improve the neural architecture of
the model. While other silent speech models have
been based around recurrent layers such as LSTMs
(Janke and Diener, 2017; Gaddy and Klein, 2020),
we use the self-attention-based Transformer archi-
tecture (Vaswani et al., 2017), which has been
shown to be a more powerful replacement across a
range of tasks.

Finally, we improve the signal used for learn-
ing. Since the relatively small data sizes for this
task creates a challenging learning problem, we
introduce an auxiliary task of predicting phoneme
labels to provide additional guidance. This auxil-
iary loss is inspired by prior work on the related
problem of generating speech from ECoG sensors
on the brain, which greatly benefited from inter-
mediate prediction of phonemic information (Anu-
manchipalli et al., 2019).

We evaluate intelligibility of audio synthesized
by our model on the single-speaker data from
Gaddy and Klein (2020) in the most challenging
open-vocabulary setting. Our results reflect an ab-
solute improvement in error rate of 25.8% over the
state of the art, from 68.0% to 42.2%, as measured
by automatic transcription. Evaluation by human
transcription gives an even lower error rate of 32%.

2 Model

At a high level, our system works by predicting
a sequence of speech features from EMG signals
and using a WaveNet vocoder (van den Oord et al.,
2016) to synthesize audio from those predicted fea-
tures, as was done in Gaddy and Klein (2020). The
first component, dubbed the transduction model,
takes in EMG signals from eight electrodes around
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Figure 1: Model overview

the face and outputs a sequence of speech features
represented as Mel-frequency cepstral coefficients
(MFCCs). The final step of vocoding audio from
MFCCs is unchanged in our work, so we defer
to Gaddy and Klein (2020) for the details of the
WaveNet model.

The neural architecture for our transduction
model is made up of a set of residual convolu-
tion blocks followed by a transformer with rela-
tive position embeddings, as shown in Figure 1.
We describe these two components in Sections 2.1
and 2.2 below. Next, in Section 2.3 we describe
our training procedure, which aligns each silent
utterance to a corresponding vocalized utterance as
in Gaddy and Klein (2020) but with some minor
modifications. Finally, in Section 2.4 we describe
the auxiliary phoneme-prediction loss that provides
additional signal to our model during training.'

2.1 Convolutional EMG Feature Extraction

The convolutional layers of our model are designed
to directly take in EMG signals with minimal pre-
processing. Prior to use of the input EMG signals,
AC electrical noise is removed using band stop fil-
ters at harmonics of 60 Hz, and DC offset and drift
are removed with a 2 Hz high-pass filter. The sig-
nals are then resampled from 1000 Hz to 800 Hz,
and the magnitudes are scaled down by a factor of
10.

Our convolutional architecture uses a stack of
3 residual convolution blocks inspired by ResNet
(He et al., 2016), but modified to use 1-dimensional

!Code for our model is available at https://github.
com/dgaddy/silent_speech.
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Figure 2: Convolution block architecture

convolutions. The architecture used for each con-
volution block is shown in Figure 2, and has two
convolution-over-time layers along the main path
as well as a shortcut path that does not do any ag-
gregation over the time dimension. Each block
downsamples the signal by a factor of 2, so that the
input signals at 800 Hz are eventually transformed
into features at 100Hz to match the target speech
feature frame rate. All convolutions have channel
dimension 768.

Before passing the convolution layer outputs to
the rest of the model, we include an embedding of
the session index, which helps the model account
for differences in electrode placement after elec-
trodes are reattached for each session. Each session
is represented with a 32 dimensional embedding,
which is projected up to 768 dimensions with a
linear layer before adding to the convolution layer
outputs at each timestep.

2.2 Transformer with Relative Position
Embeddings

To allow information to flow across longer time
horizons, we use a set of bidirectional Transformer
encoder layers (Vaswani et al., 2017) on top of the
convolution layers in our model. To capture the
time-invariant nature of the task, we use relative
position embeddings as described by Shaw et al.
(2018) rather than absolute position embeddings.
In this variant, a learned vector p that depends on
the relative distance between the query and key po-
sitions is added to the key vectors when computing
attention weights. Thus, the attention logits are
computed with

(Wij + pij) T (Woui)
Vid

67;]' =



where p;; is an embedding lookup with index 7 — j,
up to a maximum distance k in each direction (x
are inputs to the attention module, W¢ and Wi are
query and key transformations, and d is the dimen-
sion of the projected vectors Wgx;). For our model,
we use k = 100 (giving each layer a 1 second view
in each direction) and set all attention weights with
distance greater than k to zero. We use six of these
Transformer layers, with 8 heads, model dimension
768, feedforward dimension 3072, and dropout 0.1.

The output of the last Transformer layer is
passed through a final linear projection down to
26 dimensions to give the MFCC audio feature
predictions output by the model.

2.3 Alignment and Training

Since silent EMG signals and vocalized audio fea-
tures must be recorded separately and so are not
time-aligned, we must form an alignment between
the two recordings to calculate a loss on predic-
tions from silent EMG. Our alignment procedure is
similar to the predicted-audio loss used in Gaddy
and Klein (2020), but with some minor aspects
improved.

Our loss calculation takes in a sequence of
MFCC features Ag predicted from silent EMG
and another sequence of target features Ay from a
recording of vocalized audio for the same utterance.
We compute a pairwise distance between all pairs
of features

oli. 4] = |[4v i - ALl
and run dynamic time warping (Rabiner and Juang,
1993) to find a minimum-cost monotonic alignment
path through the § matrix. We represent the align-
ment as afi] — j with a single position j in Ag for
every index ¢ in Ay, and take the first such position
when multiple are given by dynamic time warp-
ing. The loss is then the mean of aligned pairwise
distances:

1 &
L= ;5[@', ali]]

In addition to the silent-EMG training, we also
make use of EMG recordings during vocalized
speech which are included in the data from Gaddy
and Klein (2020). Since the EMG and audio targets
are recorded simultaneously for these vocalized ex-
amples, we can calculate the pairwise distance loss
directly without any dynamic time warping. We
train on the two speaking modes simultaneously.

To perform batching across sequences of differ-
ent lengths during training, we concatenate a batch
of EMG signals across time then reshape to a batch
of fixed-length sequences before feeding into the
network. Thus if the fixed batch-sequence-length is
[, the sum of sample lengths across the batch is Ng,
and the signal has ¢ channels, we reshape the inputs
to size ([Ng/l],1,c) after zero-padding the con-
catenated signal to a multiple of [. After running
the network to get predicted audio features, we do
the reverse of this process to get a set of variable-
length sequences to feed into the alignment and
loss described above. This batching strategy allows
us to make efficient use of compute resources and
also acts as a form of dropout regularization where
slicing removes parts of the nearby input sequence.
We use a sequence length [ = 1600 (2 seconds)
and select batches dynamically up to a total length
of Ngmaz = 204800 samples (256 seconds).

We train our model for 80 epochs using the
AdamW optimizer (Loshchilov and Hutter, 2017).
The peak learning rate is 10~3 with a linear warm-
up of 500 batches, and the learning rate is decayed
by half after 5 consecutive epochs of no improve-
ment in validation loss. Weight decay 10~ is used
for regularization.

2.4 Auxiliary Phoneme Loss

To provide our model with additional training sig-
nal and regularize our learned representations, we
introduce an auxiliary loss of predicting phoneme
labels at each output frame.

To get phoneme labels for each feature frame of
the vocalized audio, we use the Montreal Forced
Aligner (McAuliffe et al., 2017). The aligner
uses an acoustic model trained on the LibriSpeech
dataset in conjunction with a phonemic dictionary
to get time-aligned phoneme labels from audio and
a transcription.

We add an additional linear prediction layer and
softmax on top of the Transformer encoder to pre-
dict a distribution over phonemes. For training, we
modify the alignment and loss cost ) by appending
a term for phoneme negative log likelihood:

o'li,] = || Av[il = As[j]]|, = APv[i] " 1og Pslj]

where Py is the predicted distribution from the
model softmax and Py is a one-hot vector for the
target phoneme label. We use A\ = .1 for the
phoneme loss weight. After training, the phoneme
prediction layer is discarded.
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Model WER
Gaddy and Klein (2020) 68.0
This work 42.2
Ablation: Replace convolution features with hand-designed features  45.2
Ablation: Replace Transformer with LSTM 46.0
Ablation: Remove phoneme loss 51.7

Table 1: Open vocabulary word error rate results from an automatic intelligibility evaluation.

3 Results

We train our model on the open-vocabulary data
from Gaddy and Klein (2020). This data contains
19 hours of facial EMG data recordings from a
single English speaker during silent and vocalized
speech. Our primary evaluation uses the automatic
metric from that work, which transcribes outputs
with an automatic speech recognizer’> and com-
pares to a reference with a word error rate (WER)
metric. We also evaluate human intelligibility in
Section 3.1 below.?

The results of the automatic evaluation are
shown in Table 1. Overall, we see that our model
improves intelligibility over prior work by an abso-
lute 25.8%, or 38% relative error reduction. Also
shown in the table are ablations of our three primary
contributions. We ablate the convolutional feature
extraction by replacing those layers with the hand-
designed features used in Gaddy and Klein (2020),
and we ablate the Transformer layers by replacing
with LSTM layers in the same configuration as that
work (3 bidirectional layers, 1024 dimensions). To
ablate the phoneme loss, we simply set its weight in
the overall loss to zero. All three of these ablations
show an impact on our model’s results.

3.1 Human Evaluation

In addition to the automatic evaluation, we per-
formed a human intelligibility evaluation using a
similar transcription test. Two human evaluators
without prior knowledge of the text were asked to
listen to 40 synthesized samples and write down
the words they heard (see Appendix A for full in-
structions given to evaluators). We then compared
these transcriptions to the ground-truth reference
with a WER metric.

2An implementation of DeepSpeech (Hannun et al.,
2014) from Mozilla (https://github.com/mozilla/
DeepSpeech)

3Output audio samples available at ht tps: //dgaddy .
github.io/silent_speech_samples/ACL2021/.
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The resulting word error rates from the two
human evaluators’ transcriptions are 36.1% and
28.5% (average: 32.3%), compared to 42.2% from
automatic transcriptions. These results validate the
improvement shown in the automatic metric, and
indicate that the automatic metric may be under-
estimating intelligibility to humans. However, the
large variance across evaluators shows that the au-
tomatic metric may still be more appropriate for
establishing consistent evaluations across different
work on this task.

4 Phoneme Error Analysis

One additional advantage to using an auxiliary
phoneme prediction task is that it provides a more
easily interpretable view of model predictions. Al-
though the phoneme predictions are not directly
part of the audio synthesis process, we have ob-
served that mistakes in audio and phoneme pre-
diction are often correlated. Therefore, to better
understand the errors that our model makes, we
analyze the errors of our model’s phoneme pre-
dictions. To analyze the phoneme predictions, we
align predictions on a silent utterance to phoneme
labels of a vocalized utterance using the procedure
described above in Sections 2.3 and 2.4, then eval-
uate the phonemes using the measures described in
Sections 4.1 and 4.2 below.

4.1 Confusion

First, we measure the confusion between each pair
of phonemes. We use a frequency-normalized met-
ric for confusion: (ep1p2 + €p2.p1)/(fp1 + fp2)s
where ep1 ;2 1s the number of times p2 was pre-
dicted when the label was p1, and f; is the num-
ber of times phoneme pl appears as a target label.
Figure 3 illustrates this measure of confusion us-
ing darkness of lines between the phonemes, and
Appendix B lists the values of the most confused
pairs.

We observe that many of the confusions are be-
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Figure 3: Phoneme confusability (darker lines indicate
more confusion - maximum darkness is 13% confu-
sion)

tween pairs of consonants that differ only in voic-
ing, which is consistent with the observation in
Gaddy and Klein (2020) that voicing signals ap-
pear to be subdued in silent speech. Another find-
ing is a confusion between nasals and stops, which
is challenging due to the role of the velum and
its relatively large distance from the surface elec-
trodes, as has been noted in prior work (Freitas
et al., 2014). We also see some confusion between
vowel pairs and between vowels and consonants,
though these patterns tend to be less interpretable.

4.2 Articulatory Feature Accuracy

To better understand our model’s accuracy across
different consonant articulatory features, we per-
form an additional analysis of phoneme selection
across specific feature dimensions. For this anal-
ysis, we define a confusion set for an articulatory
feature as a set of English phonemes that are iden-
tical across all other features. For example, one of
the confusion sets for the place feature is {p, ¢, k},
since these phonemes differ in place of articula-
tion but are the same along other axes like manner
and voicing (a full listing of confusion sets can be
found in Appendix C). For each feature of interest,
we calculate a forced-choice accuracy within the
confusion sets for that feature. More specifically,
we find all time steps in the target sequence with
labels belonging in a confusion set and restrict our
model output to be within the corresponding set
for those positions. We then compute an accuracy
across all those positions that have a confusion set.

To evaluate how much of the articulatory feature
accuracies can be attributed to contextual infer-
ences rather than information extracted from EMG,
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Figure 4: Accuracy of selecting phonemes along artic-
ulatory feature dimensions. We compare our full EMG
model (full context) with a majority class baseline and
a model given only phoneme context as input.

we compare our results to a baseline model that is
trained to make decisions for a feature based on
nearby phonemes. In the place of EMG feature
inputs, this baseline model is given the sequence
of phonemes predicted by the full model, but with
information about the specific feature being tested
removed by collapsing phonemes in each of its con-
fusion sets to a single symbol. Additional details
on this baseline model can be found in Appendix C.
The results of this analysis are shown in Figure 4.
By comparing the gap in accuracy between the
full model and the phoneme context baseline, we
again observe trends that correspond to our prior
expectations. While place and oral manner features
can be predicted much better by our EMG model
than from phonemic context alone, nasality and
voicing are more challenging and have a smaller
improvement over the contextual baseline.

5 Conclusion

By improving several model components for voic-
ing silent speech, our work has achieved a 38%
relative error reduction on this task. Although the
problem is still far from solved, we believe the
large rate of improvement is a promising sign for
continued progress.
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A Instructions to Human Evaluators

The following instructions were given to human
evaluators for the transcription test described in
Section 3.1:

Please listen to each of the attached sound files
and write down what you hear. There are 40 files,
each of which will contain a sentence in English.
Write your transcriptions into a spreadsheet such
as Excel or Google sheets so that the row numbers
match the numbers in the file names. Many of the
clips may be difficult to hear. If this is the case,
write whatever words you are able to make out,
even if it does not form a complete expression. If
you are not entirely sure about a word but can
make a strong guess, you may include it in your
transcription, but only do so if you beleive it is more
likely than not to be the correct word. If you cannot
make out any words, leave the corresponding row

blank.
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B Phoneme Confusability

This section provides numerical results for
phoneme confusions to complement the illustration
given in Section 4.1 of the main paper. We com-
pare the frequency of errors between two phonemes
to the frequency of correct predictions on those
phonemes. We define the following two quantities:

Confusion: (ep1,p2 + €p2.p1)/(fp1 + fp2)

Accuracy: (ep1 p1 + €p2,p2)/(fp1 + fp2)

where e, ;2 is the number of times p2 was pre-
dicted when the label was p1, and fp is the num-
ber of times phoneme pl appears as a target label.
Results for the most confused pairs are shown in
the table below.

Phonemes Confusion (%) Accuracy (%)
& t 13.2 494
\ f 10.4 72.0
P b 10.3 64.3
m b 9.3 74.3
k g 8.9 77.2
| t 8.3 59.8
p m 8.1 73.0
t d 7.2 64.0
z S 6.6 80.0
I e 6.5 60.6
t n 6.3 67.1
n d 6.0 66.8
I A 6.0 65.8
I X 5.7 78.2
t S 5.5 72.8
€ x 4.7 70.9
u ou 4.3 77.4
(S 0 4.1 76.9
A x 3.2 72.1
I ® 3.1 64.9

C Articulatory Feature Analysis Details

The following table lists all confusion sets used in
our articulatory feature analysis in Section 4.2.

Confusion Sets

{p.tk} {b.d,g} {m,n.n}
{£,0,s,[;h} {v,0,2,5}
{ts}{d.zLr} {[.4} {3.65}
{b,m} {d.n} {g.n}
{p.b} {t.d} {kg} {f.v}
{0.0} {s.z} {J.3} {U.5}

Feature

Place

Oral manner
Nasality
Voicing
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The phoneme context baseline model uses a
Transformer architecture with dimensions identi-
cal to our primary EMG-based model, but is fed
phoneme embeddings of dimension 768 in the
place of the convolutional EMG features. The
phonemes input to this model are the maximum-
probability predictions output by our primary
model at each frame, but with all phonemes from
a confusion set replaced with the same symbol.
We train a separate baseline model for each of the
four articulatory feature types to account for dif-
ferent collapsed sets in the input. During training,
a phoneme likelihood loss is applied to all posi-
tions and no restrictions are enforced on the output.
Other training hyperparameters are the same be-
tween this baseline and the main model.

D Additional Reproducability
Information

All experiments were run on a single Quadro RTX
6000 GPU, and each took approximately 12 hours.
Hyperparameters were tuned manually based on
automatic transcription WER on the validation set.
The phoneme loss weight hyperparameter A\ was
chosen from {1,.5,.1,.05,.01,.005}. We report
numbers on the same test split as Gaddy and Klein
(2020), but increase the size of the validation set to
200 examples to decrease variance during model
exploration and tuning. Our model contains ap-
proximately 40 million parameters.
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Abstract

Whereas much of the success of the current
generation of neural language models has been
driven by increasingly large training corpora,
relatively little research has been dedicated
to analyzing these massive sources of textual
data. In this exploratory analysis, we delve
deeper into the Common Crawl, a colossal
web corpus that is extensively used for train-
ing language models. We find that it contains
a significant amount of undesirable content, in-
cluding hate speech and sexually explicit con-
tent, even after filtering procedures. We dis-
cuss the potential impacts of this content on
language models and conclude with future re-
search directions and a more mindful approach
to corpus collection and analysis.

1 Introduction

In recent years, much of the progress in Natu-
ral Language Processing (NLP) research has been
largely driven by Transformer-based language mod-
els, which have pushed forward the state-of-the-
art in tasks such as question answering (Rajpurkar
et al., 2018) and natural language inference (Bow-
man et al., 2015). However, these increasingly
complex models also require increasingly large
amounts of data to train them, which is often a
combination of curated, high-quality datasets such
as encyclopedic articles and books and non-curated
content from the Web (Radford et al., 2018, 2019).
This second category of large, non-curated dataset
is becoming increasingly popular as they are re-
quired to train large language models.

The current largest dataset used for training neu-
ral language models, the Common Crawl, is a
non-curated corpus consisting of multilingual snap-
shots of the web. New versions of the Common
Crawl] are released monthly, with each version con-
taining 200 to 300 TB of textual content scraped
via automatic web crawling. This dwarfs other
commonly used corpora such as English-language

Joseph D. Viviano
Mila Québec Al Institute
joseph@viviano.ca

Wikipedia, which adds up to roughly 5.6 TB of
data, and the BookCorpus, which only represents
around 6 GB (Zhu et al., 2015). The Common
Crawl has been used to train many of the recent
neural language models in recent years, including
the GPT model series (Radford et al., 2018; Brown
et al., 2020), BERT (Devlin et al., 2018) and Fast-
Text (Grave et al., 2018) and, given its size, often
represents the majority of data used to train these
architectures.

In the current article, we present an initial anal-
ysis of the Common Crawl, highlighting the pres-
ence of several types of explicit and abusive content
even after filtering. We discuss our findings and,
given the potential downstream impact of this con-
tent on language models, we discuss the importance
of ensuring that the corpora we use for training lan-
guage models are extracted more mindfully and
with more emphasis on their quality and propose
avenues of research to achieve this goal.

2 Related Work

In recent years, a growing body of research in NLP
has unearthed biases in common language mod-
els (Bolukbasi et al., 2016; Sheng et al., 2019; Zhao
et al., 2019; Bordia and Bowman, 2019; Hutchin-
son et al., 2020). This work has raised important
questions regarding the impact of these embedded
biases on downstream decision-making, given the
increasing usage of these models in various applica-
tions. Consequently, much work has also been ded-
icated to creating standardized diagnostic tests to
detect these biases (Caliskan et al., 2017; May et al.,
2019; Nadeem et al., 2020; Sweeney and Najafian,
2019) and to remove them (Bolukbasi et al., 2016;
Zhao et al., 2018; Manzini et al., 2019), although
the extent to which this is possible is still under de-
bate (Gonen and Goldberg, 2019). In fact, research
has found that “The biases found in Internet-scale
language models like GPT-2 are representative of
the data on which the model was trained” (So-
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laiman et al., 2019), which can be directly linked to
the presence of hate speech on the Internet (Abid
etal., 2021).

However, given the importance of this research,
comparatively little attention has been dedicated to
analyzing the corpora used to train language mod-
els. This is understandable because frequently used
datasets such as the Common Crawl contain truly
massive amounts of data, making it challenging
to mine it for meaningful insights. In fact, a re-
cent survey on automatic web page classification
has deemed the task difficult not only due to the
complexity and heterogeneity of web content, but
also due its the high computational cost, suggest-
ing that machine learning (ML) approaches have
much to contribute to it (Hashemi, 2020). While
certain notable endeavors have indeed analyzed
specific aspects of corpora such as the Common
Crawl (Kolias et al., 2014; Caswell et al., 2021) and
Wikipedia (Hube, 2017), they have only scratched
the surface of what these bodies of text contain. For
instance, recent work has found that the Common
Crawl contained over 300,000 documents from un-
reliable news sites and banned subReddit pages
containing hate speech and racism (Gehman et al.,
2020), while complementary research has shown
that individual training examples can be extracted
by querying language models (Carlini et al., 2020),
together illustrating that the presence of question-
able content is a significant issue for statistical lan-
guage models. In the current work, we endeavor
to understand the content and quality of the Com-
mon Crawl as a first step towards establishing more
consistent approaches to filtering and refining it.

3 Analyzing the Common Crawl

Given its size, both downloading and analyzing
the Common Crawl are time-consuming and costly
endeavors. The most recent version of the Common
Crawl, dating from November/December 2020, has
2.6 billion web pages in raw text format, saved in
‘shards’ each containing of tens of thousands of
pages. Given our hardware constraints, we chose to
focus on a subset of the corpus, randomly sampling
1% of the files it contains, which after filtering by
language amounts to roughly 115 GB of textual
content or 5,835,339 web pages in total, which we
analyzed in terms of hate speech, adult content, and
efficacy of perplexity-based filtering !. In this work,

'All code used in these analysis are publicly available:
https://github.com/josephdviviano/whatsinthebox
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we focus on detecting sexually-explicit and hate
speech, since they represent common examples of
“undesirable” content that can be generally seen
as inappropriate for a language model to generate
in most situations. We acknowledge that desirable
model behaviour is application specific, and believe
our findings can extend to any other “undesirable”
topic that might be present in available language
corpora. We present our results in the sections
below.

3.1 Detecting Hate Speech

The existence of hate speech on the internet has
been described as “an important societal problem
of our time”, with “profound and lasting” psycho-
logical effects on its victims (Mishra et al., 2019).
As such, a substantial amount of NLP research ded-
icated to automating hate speech detection, with
several datasets and approaches being proposed in
recent years (Schmidt and Wiegand, 2017; Mishra
et al., 2019; Vidgen and Derczynski, 2020; Kir-
itchenko and Mohammad, 2018). Most of this re-
search is carried out on data extracted from social
media sources such as Twitter (Founta et al., 2018;
Basile et al., 2019; Waseem and Hovy, 2016) and
Reddit (Tadesse et al., 2019; Farrell et al., 2019),
with both ML-based (Badjatiya et al., 2017) and
count-based approaches (Davidson et al., 2017)
achieving comparable results (Fortuna and Nunes,
2018). In order to estimate the quantity of hate
speech in the Common Crawl, we endeavored to
compare 3 approaches: DELIMIT, a recent BERT-
based model trained on social media data (Aluru
et al., 2020), Hate Sonar, a Logistic Regression
approach trained on data from Web fora and Twit-
ter (Davidson et al., 2017) and a n-gram-based ap-
proach using a list of n-grams extracted from Hate
Base. We present samples of text flagged by all of
these approaches in Table 1, below.

We found that the three approaches compared
suggest similar proportions of websites containing
hate speech : 5.24% of websites from our sample
were flagged by DELIMIT, 4.02% by HateSonar,
and 6.38% by the n-gram approach 2. Qualita-
tive analysis of a sample of sites flagged by each
approach showed that while n-grams picked up
on racial slurs, HateSonar also detected debates
about racial supremacy and racially-charged con-
spiracy theories. Many of the sites that DELIMIT

2We are conscious of the high false positive rate of n-gram

approaches and therefore only consider sites to be flagged if
they contain 3 or more n-grams from the list.



Approach Text

Page URL (http:// removed)

Their US/Euro plan put in your face:
demonic jews hate white goyim!

HateSonar ) ) ]
Such sick and twisted people, white
people are.
.. they are only stupid arab from wp-ar haha
Delimit Y v SHp P
Yeah, dumb ass n*gger 1
N-gram nude attention whore asian bastards

In America all male look like this homo

Table 1: Examples of hate speech found by the ap-
proaches tested. Examples with t have been censored
by the authors.

flagged were adult content with mentions of vio-
lent acts towards specific ethnic groups, illustrat-
ing the fine line between sexual violence and hate
speech, which we elaborate further in the following
subsection. Generally speaking, the presence of
even a small fraction of websites that incite hate in
training corpora is worrisome since it can result in
models that replicate this kind of discourse when
prompted (Wolf et al., 2017; Carlini et al., 2020).

3.2 Sexually Explicit Content

Compared to hate speech, the detection of sexually
explicit content has received less attention from
the NLP community, with existing ML approaches
focusing mainly on the detection of explicit im-
ages (Wehrmann et al., 2018; Rowley et al., 2006)
and URLs (Matic et al., 2020), whereas n-gram-
based approaches remain predominantly used in
practice by web providers (Hammami et al., 2003;
Polpinij et al., 2006; Ho and Watters, 2004). In
our analysis, we used a list of n-grams extracted
from adult websites in order to establish the per-
centage of websites from our sample that contained
sexually explicit content; however, we found no
available statistical or ML-based approach that we
could use to compare our count-based approach
with. The n-gram approach detected that 2.36% of
the web pages that we analyzed contained at least
one of the words from our list, with 1.36% contain-
ing 3 or more and 0.73% containing 10 or more
(see Table 3 for results). We show a sample of the
URLs flagged by our approach in Table 2, below.
While a few percent of sexually explicit content
may not seem like much, the type of language and
content contained on adult websites can have harm-
ful repercussions. For instance, the prevalence of
sexual violence towards women, especially towards
women of color, on adult websites (Foubert et al.,
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adultmovietopl00.com/
erohon.me/
celebrityfan.net/
queantube.com/

adelaide-femaleescorts.webcam

Table 2: Sample of URLs of adult content websites
identified by the n-gram approach. Protocol removed
to prevent URL generation.

2019; Shim et al., 2015; Fritz et al., 2020) may con-
tribute to further dissemination and amplification
of these biases in downstream models. As modern
language models have no way to evaluate genera-
tion appropriateness, models trained with even a
small proportion of these undesirable inputs can-
not be guaranteed to avoid generating outputs with
similar biases if presented with a specific context
or prompt. This is a risk that is important to mit-
igate in applications, where the general-purpose
language models can end up being used in appli-
cations used by sensitive groups in professional
contexts or minors, such as chatbots and toys.

3.3 Filtering by Perplexity Score

While the analyses described above were car-
ried out on unfiltered web pages from the Com-
mon Crawl, the training pipeline of many large-
scale NLP models involves some type of fil-
tering and cleaning, from excluding low-quality
content (Grave et al., 2018) to fuzzy deduplica-
tion (Brown et al., 2020). One such popular filter-
ing approach is based on training a language model
on a target, high-quality domain such as Wikipedia,
and using it to calculate the perplexity score of
web pages using this model (Wenzek et al., 2020).
To test the efficacy of this scoring procedure, we
calculated the perplexity score of each web page
from our sample of the Common Crawl and used it
to separate pages into 3 equal buckets (high, mid-
dle and low-quality) based on their perplexity. We
compare the percentages of hate speech and sexu-
ally explicit content for the entire sample, as well
as the high- and low-quality documents, in Table 3.

While filtering by perplexity does seem to fil-
ter out many websites containing sexual content,
it does not detect much of the hate speech that is
flagged by the count-based or statistical methods.
In fact, perplexity scores had low correlations with
all detection methods tested (Figure 1). This sup-
ports the methodology of Wenzek et al. (2020),



Entire | High Low
Sample | Quality | Quality
1+ sexual 2.36% 1.81% 3.97%
n-grams
3+ sexual 136% | 042% | 3.11%
n-grams
10+ sexual 073% | 0.08% 1.98%
n-grams
1+ hate 17.78% | 18.95% | 17.19%
n-grams
3+hate 6.38% | 6.19% 8.26%
n-grams
10+ hate 1.16% | 1.17% 1.70%
n-grams
Hate speech |, 0 | 3479 | 5.00%
(Sonar)
Hate speech
(Delimity | 4% | 277 | 300%

Table 3: Comparison of hate speech and sexual content
detected in the entire corpus, as well as high- and low-
quality sites.

who noted that while “perplexity was a relative
good proxy for quality”, also argued that some of
the lower-quality texts could still be useful for spe-
cific applications, and therefore did not use it to
exclude documents from the training set of their
language model. While we are exploring ways
of modifying the original approach in order to be
more discerning, we believe that there more nu-
anced metrics that can be used for estimating and
filtering documents based on text, potentially cou-
pling embedding-based approaches with statistical
ones.

3.4 Behaviour of Different Detection
Methods

The approaches that we compared in the current
study are different in the features that they use and
techniques employed for detecting particular types
of content. HateSonar employs classical NLP tech-
niques for hate speech detection, constructing fea-
tures from Penn Part-of-Speech N-grams with TF-
IDF weighting based on a hand-crafted hate speech
dataset, training simple classifier ensembles using
Support Vector Machines, random forests, naive
Bayes, and linear models. Delimit, on the other
hand, is A BERT-based model trained on Twitter
and Reddit posts, not relying on any handcrafted
features. Our simple n-gram approach unsurpris-
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Figure 1: Correlation coefficients (Pearson’s r) calcu-
lated between all content metrics investigated and per-
plexity, a commonly-used text quality metric.

ingly was more in agreement with HateSonar than
Delimit, given that both rely on count-based fea-
tures. The fact that all methods identified differ-
ent instances of clear hate speech implies that we
are far from a general purpose dataset-filtering ap-
proach. These results also imply that deep learning
models learn very different features to classify hate
speech than other methods, and given their sen-
sitivity to the specific composition of the dataset
used to train them (as exposed by the propensity
of large models to memorize training examples
(Carlini et al., 2020)), the presence of undesirable
content in the corpora used to train them should be
taken seriously.

4 Discussion

4.1 Summary of Results

We recognize that the exploratory work presented
above is only the tip of the iceberg in terms of the
analyses that can be done on the massive web cor-
pora that are feeding our language models. How-
ever, analyzing the Common Crawl would require
computational resources far in excess of what is
available to most research institutions. We there-
fore hope that this initial analysis will inspire our
fellow researchers to continue to dig deeper into
this topic, and to propose more scalable, thorough,
and nuanced approaches for analyzing the massive
corpora used to train language models. We also
recognize this analysis would have been more com-
prehensive on a small curated dataset, but given the



amount of data needed to train modern language
models, we believe the community needs to move
beyond analysis techniques only compatible with
small-data, toward something that will scale to the
datasets used to train these large models.

Also, while we have currently adopted a purely
descriptive approach, we feel that it is worth dis-
cussing and debating the consequences of our anal-
ysis, and those of our peers, within the NLP com-
munity. While it can be argued that the Common
Crawl corpus is an accurate portrayal of the dis-
course of modern society — which includes sexual
content, hate speech, and racial and gender biases
— we believe that it is up for debate whether this
discourse is the one that we, as a community, want
to use to train the models that translate our texts,
influence our search results and answer our ques-
tions. Notably, the Common Crawl over-represents
those populations that are avid users of the inter-
net: younger, English-speaking individuals from
developed countries, who are those who have the
most access to the internet globally (World Bank,
2018). Furthermore, internet communities sup-
ported by anonymity and and particular norms can
amplify toxic discourse that would not be found
in mainstream corpora (Massanari, 2017) often ex-
acerbated by the well-documented ’online disinhi-
bition’ phenomenon where users find themselves
more likely to engage in anti-social behaviours due
to the lack of immediate social feedback (Wachs
et al., 2019; Mathew et al., 2019; de Lima et al.,
2021). This can further perpetuate the lack of di-
verse, representative language models that can ad-
equately mirror society beyond the boundaries of
internet communities.

4.2 Future Work

Given the general superior performance of large
language models on common benchmarks, and that
they require ever larger datasets to train them, we
believe it is important that for the ML community
to carry out a more extensive analysis of: 1) the
impact of undesirable content in the datasets used
to train these models on downstream performance;
2) the effect of properly filtering these examples
out of the dataset before model training, and 3)
approaches for regularizing model outputs to be
acceptable regardless of the data used to train the
model. All three directions require a better under-
standing of the contents of the datasets, which we
believe requires new tools that are scalable to the
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Common Crawl (or similarly large and diverse cor-
pora) to identify such examples. Models trained to
detect undesirable examples, like the ones used in
this paper, need to be improved such that they can
reliably generalize to the Common Crawl, which
constitutes a significant undertaking. Additionally,
future work could explore the utility of controlling
model generation using labelled “undesirable” ex-
amples (Zhang et al., 2020; Engel et al., 2017), or
human-in-the-loop learning methods (Wang et al.,
2021) for fine-tuning a language model trained us-
ing undesirable examples. It will also be important
to evaluate whether curation is sufficient: it remains
possible that a model could create an undesirable
generation from multiple distinct innocuous exam-
ples (Bender et al., 2021; Gehman et al., 2020). It is
also worth considering that for some applications,
task-focused models with curated training exam-
ples may perform better than large models trained
on unfiltered corpora, so that their behaviour can be
more reliably guaranteed: these are all interesting
avenues for future work.

Finally, while larger corpora generally result
in better models (Kaplan et al., 2020; Sun et al.,
2017), data quality and corpora content also plays
a major role in the caliber and appropriateness of
these models for the various downstream applica-
tions (Florez, 2019; Abid et al., 2021; Bhardwaj
et al., 2021). To produce high quality and safe neu-
ral language models will likely require the commu-
nity to adopt more mindful data collection practices
(Gehman et al., 2020; Bender and Friedman, 2018;
Gebru et al., 2018; Jo and Gebru, 2020; Paullada
et al., 2020; Bender et al., 2021), establish standard-
ized filtering pipelines for corpora (Roziewski and
Stokowiec, 2016; Ortiz Suarez et al., 2019; Wenzek
et al., 2020), and develop methods for evaluating
the bias in trained models (Schick et al., 2021). We
recognize that this is not a straightforward task with
a one-size-fits all solution, but we propose that as
much attention should be dedicated to the corpora
used for training language models as to the mod-
els themselves, and that corpora transparency is a
prerequisite for language model accountability.
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Abstract

Most current quality estimation (QE) models
for machine translation are trained and evalu-
ated in a static setting where training and test
data are assumed to be from a fixed distribu-
tion. However, in real-life settings, the test
data that a deployed QE model would be ex-
posed to may differ from its training data. In
particular, training samples are often labelled
by one or a small set of annotators, whose
perceptions of translation quality and needs
may differ substantially from those of end-
users, who will employ predictions in practice.
To address this challenge, we propose an on-
line Bayesian meta-learning framework for the
continuous training of QE models that is able
to adapt them to the needs of different users,
while being robust to distributional shifts in
training and test data. Experiments on data
with varying number of users and language
characteristics validate the effectiveness of the
proposed approach.

1 Introduction

Quality Estimation (QE) models aim to evaluate
the output of Machine Translation (MT) systems at
run-time, when no reference translations are avail-
able (Blatz et al., 2004; Specia et al., 2009). QE
models can be applied for instance to improve trans-
lation productivity by selecting high-quality trans-
lations amongst several candidates. A number of
approaches have been proposed for this task (Spe-
ciaetal., 2009, 2015; Kim et al., 2017; Kepler et al.,
2019; Ranasinghe et al., 2020), and a shared task
yearly benchmarks proposed approaches (Fonseca
et al., 2019; Specia et al., 2020).

Different users of MT output have varying qual-
ity needs and standards, depending for instance on
the downstream task at hand, or the level of their
knowledge of the languages involved, and training
for the task. Thus, the perception of the quality

of MT output can be subjective, and therefore the
quality estimates obtained from a model trained on
data from one set of users may not serve the needs
of a different set users. However, most existing QE
models are trained and evaluated in a static setting
which assumes a fixed distribution of train and test
data. This consequently leads to suboptimal perfor-
mance when faced with test data from a different
set of users in practice.

The few previous approaches to develop QE
models that are able to learn from a continuous
stream of data suffer from the following limita-
tions: they do not have an explicit objective that
encourages the model to exploit common structures
shared among different users to continually adapt
efficiently for new users (Turchi et al., 2014), or as-
sume a fixed number of users, and that the identity
of each user is known in advance (de Souza et al.,
2015). In addition, these previous approaches do
not explicitly account for the underlying uncertain-
ties in the data in order to improve performance.

In contrast, we propose a continual meta-
learning framework that makes none of the afore-
mentioned assumptions, but instead considers each
user as a task and explicitly meta-learns the com-
mon structure shared among different users. This
approach further exploits the underlying uncertain-
ties in the streaming data through Bayesian infer-
ence to improve performance. In addition, the
proposed approach is applicable even in a setting
where no user identities are available, for instance
due to privacy concerns, but where we still want
to learn and adapt as efficiently as possible from
supervision data that arrives incrementally.

2 Background

2.1 Continual Learning

Continual learning (Ring, 1994; Thrun, 1996; Zhao
and Schmidhuber, 1996) aims to develop mod-
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els that are capable of learning from a continuous
stream of sequential tasks, 71, 7, .., T, with each
task 7; having its associated train D’émm, valida-
tion Dy and test Dt splits. A major challenge
associated with learning in this setting is the issue
of catastrophic forgetting, where a model forgets
knowledge of how to perform previous tasks as
new tasks are encountered. Most recent work in
lifelong learning has focused on ways of mitigat-
ing catastrophic forgetting, and approaches pro-
posed include replay-based methods (Rebuffi et al.,
2017; Lopez-Paz and Ranzato, 2017; Chaudhry
et al., 2019), which replay either stored or gener-
ated samples to remind the model of how to per-
form previous tasks; regularization-based methods
(Kirkpatrick et al., 2017; Zenke et al., 2017), which
utilize an additional regularization term to enforce
retaining knowledge learned from previous tasks;
and parameter-isolation methods, which make use
of dedicated parameters for each task to prevent
interference among tasks (Rusu et al., 2016; Fer-
nando et al., 2017). Lange et al. (2019) presents
an overview of recent continual learning methods.
Research in continual learning can generally be
carried in one of two settings (Aljundi et al., 2019):
in a task-incremental continual learning setting,
where the learner is sequentially given access to
all the data of each task and is allowed to make
multiple passes over it, with task boundaries and
identities known to the learner; or in an online con-
tinual learning setting, where the learner is only
allowed a single pass over the data of each task,
and with no task identities or boundaries known to
the learner. In this work we conduct experiments
in the online continual learning setting.

2.2 Meta-Learning

The goal of meta-learning, also known as learn-
ing to learn (Schmidhuber, 1987; Thrun and Pratt,
1998), is to develop models that can learn more
efficiently over time, by generalizing from knowl-
edge of how to solve related tasks from a given
distribution of tasks. Given a learner model f,,, for
instance a neural network parametrized by w, and
a distribution p(7) over tasks 7, gradient-based
meta-learning approaches such as MAML (Finn
et al., 2017) seek to learn the parameters of the
learner model which can be quickly adapted to new
tasks sampled from the same distribution of tasks.
In formal terms, these approaches seek parameters
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that optimize the meta-objective:

minEr 7 [L7 (U (w; D)) (D)
where L is the loss and D7 is training data from
task 77, and U}, denotes k steps of a gradient descent
learning rule such as SGD.

In order to account for uncertainty and improve
robustness, Bayesian approaches to meta-learning
have also been proposed (Kim et al., 2018; Finn
et al., 2018; Ravi and Beatson, 2019; Wang et al.,
2020; Nguyen et al., 2020).

2.3 Meta-Learning for Continual Learning

Meta-learning for continual learning methods gen-
erally make use of the meta-learning objective one
task at a time to ensure that learning on the current
task does not lead to catastrophic forgetting on pre-
vious tasks. For instance, both Riemer et al. (2019)
and Obamuyide and Vlachos (2019) propose to
combine REPTILE (Nichol and Schulman, 2018),
a first order meta-learning algorithm, together with
experience replay to improve performance during
continual learning. Javed and White (2019) pro-
posed an online-aware meta-learning (OML) objec-
tive for learning representations that are less prone
to catastrophic forgetting during continual learning.
Holla et al. (2020) proposed to combine the OML
objective together with experience replay for im-
proved continual learning performance. Recently,
Gupta et al. (2020) proposed Look-Ahead MAML
(LA-MAML), which meta-learns per-parameter
learning rates to help adapt to changing data distri-
butions during continual learning.

These approaches have demonstrated that meta-
learning can yield performance improvements for
continual learning. Our work builds on these ap-
proaches and additionally demonstrates that the
performance of meta-learning for continual learn-
ing can be further improved with the combination
of an adaptive learning rate and Bayesian inference.

2.4 Bayesian Inference with Stein Variational
Gradient Descent

Stein Variational Gradient Descent (SVGD) (Liu
and Wang, 2016) is a Bayesian inference method
which works by initializing a set of samples, also
known as particles, from a simple distribution and
iteratively updating the particles to match samples
from a target distribution. Because its particle up-
date rule is deterministic and differentiable, it can



be used to perform Bayesian inference in the meta-
learning inner loop, since the entire update pro-
cess can still be differentiated through for gradient-
based updates from the outer loop.

In order to obtain N samples from a posterior
P(w), SVGD maintains N samples of model pa-
rameters, and iteratively transports the samples to
match samples from the target distribution. Let the
samples be represented by W = {w"}ﬁle. At
each successive iteration £, SVGD updates each
sample with the following update rule:

Wiyl < Wi + CMtqb (wt) 2

where ¢ (w¢) =

N
1 n n n
5 D [ (wl we) Vg Togp (wh) + Vap k (] w,)]
n=1

3

oy is a step-size parameter and k (., .) is a positive-
definite kernel, such as the RBF kernel.
Intuitively, the first term in Equation 3 im-
plies that a particle determines its update direction
through a weighted aggregate of the gradients from
the other particles, with the kernel distance between
the particles serving as the weight. Thus, closer
particles have more weight in the aggregate. The
second term of the equation can be understood as
a repulsive force that prevents the particles from
collapsing to a single point. For the case when
the number of particles is one, the SVGD update
procedure reduces to standard gradient ascent on
the objective p(w) for any kernel with the property
Vwk (w, w) = 0, such as the RBF kernel. SVGD
has been applied in a wide range of settings, in-
cluding reinforcement learning (Liu et al., 2017;
Haarnoja et al., 2017), uncertainty quantification
(Zhu and Zabaras, 2018) and to improve perfor-
mance in an offline meta-learning setup (Kim et al.,
2018) which requires all tasks ahead of training. In
this work we adapt SVGD to an online continual
meta-learning setting for a natural language task.

3 Meta-Learning for Continual Learning
with Adaptive SVGD

Learning continually from a stream of observa-
tions with varying underlying distributions involves
dealing with various sources of uncertainty, which
a model should properly account for in order to
enhance its continual learning performance. One
source of uncertainty is in the learning rate, that
is, how fast learning should proceed on new data

in order to both reduce catastrophic forgetting and
enhance performance on the current task. Another
source is the inherent uncertainty in the values of
the model’s parameters themselves. Learning an
adaptive learning rate, for instance as proposed
in Gupta et al. (2020), can help account for the
first source of uncertainty, and Bayesian inference
can be used to help a model account for the other
source of uncertainty. In order to properly model
both sources of uncertainty during continual learn-
ing, we propose to both perform inference of model
parameters with SVGD, and meta-learn an adap-
tive per-parameter learning rate for SVGD updates.
Thus, the SVGD update in Equation 2 now be-
comes:

Wi < W + oy - (,25 ('wt) (4)

where o is a learnable parameter containing per-
parameter learning rates, and - is the dot product.

The aim is then to meta-learn both the parame-
ters of the model and the per-parameter learning
rates that enhance continual learning performance.
The advantage of this approach is that it allows for
greater flexibility to adapt to non-stationary data
distributions during continual learning. In the ex-
periments, we demonstrate that this change leads
to improved performance for the task of contin-
ual quality estimation. The proposed approach is
illustrated in Algorithm 1.

We first initialize the parameters of the QE
model, and the learning rate (line 1). Then for
each mini-batch in a task ¢ that arrives, we store its
training instances in the buffer with a probability p
(lines 2-6). In the inner loop, we perform K SVGD
updates (using Equation 4) starting from the initial
model parameters Wy (lines 7-9). In the outer loop,
instances in the current mini-batch are augmented
with instances sampled from the buffer (line 10).
Finally, the augmented mini-batch is used to per-
form a meta-update on the learning rate (line 11),
and on the parameters of the QE model (line 12).
Because this approach can also be considered the
online counterpart to the Bayesian Model Agnos-
tic Meta-Learning approach of Kim et al. (2018),
we refer to it as Continual Quality Estimation with
Online Bayesian Meta-Learning (CQE-OBML).

4 Experiments and Results

The QT21 Dataset We evaluate our approach
with the publicly available QT21 (Specia et al.,
2017), a large-scale dataset containing translations
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Algorithm 1 Continual Quality Estimation with
Online Bayesian Meta-Learning (CQE-OBML)

Require: QE model fy,, learning rates o, 8
Require: Buffer B, update probability p

1: Initialize Wy , oo
2: fort=1,23,...do

3:  foreach (X;,Y;) in D{™" do

4 if random() < p then

5: Update B < B U (X4, Yz)

6: end if

7: fork=1,.K do

8: Wi = SVGD(Wi_1, a0, X4, Yr)

9: end for

10: (X, Ys) < (X¢,Y:) Usample(B)

11: ap < ag — BV Li (f, (Xv), Yy)

12: Wo <—W0—Olo'VW0[,t (fwk(Xv),Yv)

13: end for

14: end for
PEID  Train Dev Test
PE1 1440 360 200
PE2 2160 540 300
PE3 1444 361 195
PE4 1834 459 244
PE5 4866 1217 617
PE6 1677 420 203
PE7 1567 392 241
Total 14988 3749 2000

(a) QT21 en-lv (nmt)

PEID  Train Dev Test
PE1 9952 2488 559
PE2 3445 862 193
PE3 8770 2193 537
PE4 4579 1145 276
PE5 7651 1913 435
Total 34397 8601 2000

(b) QT21 en-cs (smt)

Table 1: Number of instances per post-editor (PE) for
the QT21 dataset.

from both statistical (smt) and neural (nmt) ma-
chine translation systems in multiple language di-
rections.! This is the largest dataset with annota-
tor information available. We use data from the
English-Latvian (en-1v) and English-Czech (en-cs)
language pairs. These languages were chosen as
they contain the largest number of annotators. Each
instance in the dataset is a tuple of source sen-
tence, its machine translation, the corresponding
post-edited translation by a professional translator
(post-editor), a reference translation and other in-
formation such as (anonymized) post-editor identi-
fier. We construct a QE dataset from this corpus by

'http://www.qt21.eu/resources/data/
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computing the HTER (Snover et al., 2006) values
between each source sentence and its post-edited
translation. We thereafter split the data into train,
dev and test splits for each post-editor. A break-
down of the number of train, dev and test instances
per post-editor is available in Table 1.

Benchmark Approaches SEQUENTIAL is a
baseline trained sequentially over the streaming
data of each task. In each round, the model param-
eters are initialized from that of the previous round;
A-GEM (Chaudhry et al., 2019) is a continual learn-
ing method which utilizes the gradients of samples
of previous tasks saved in a buffer as an optimiza-
tion constraint to prevent catastrophic forgetting;
OML-ER (Holla et al., 2020) augments the Online-
Aware Meta-Learning approach of Javed and White
(2019) with experience replay from a buffer; LA-
MAML (Gupta et al., 2020) learns per-parameter
learning rates using meta-learning; MTL-IID is
trained on the concatenated and shuffled data from
all users for multiple epochs in multi-task fashion.
It assumes i.i.d access to the data from all users, and
thus serves as an upper-bound for the performance.

QE Model The quality estimation model used by
all continual learning methods is based on multi-
lingual DistilBERT (Sanh et al., 2019), a smaller
version of multi-lingual BERT (Devlin et al., 2019)
trained with knowledge distillation (Bucilud et al.,
2006; Hinton et al., 2015). It accepts as input the
source and machine translation outputs concate-
nated as a single text, separated by a ‘[SEP]’ token
and prepended with a ‘[CLS]’ token. The repre-
sentation of the ‘[CLS]’ token is then passed to a
linear layer to predict HTER (Snover et al., 2006)
values as regression targets.

Evaluation We report Pearson’s r correlation
scores and Mean Absolute Error (MAE) between
model output and gold labels, both standard evalu-
ation metrics in QE.

Each experiment is repeated across five (5) differ-
ent orders of the tasks and five (5) different random
seeds, and we report the average.

4.1 Comparison with Benchmark
Approaches

The results of our approach in comparison with
other benchmark approaches are presented in Table
2. We can observe that naively training sequentially
on the data of each task as it arrives (SEQUEN-
TIAL) leads to poor results.



en-lv en-cs
Method Pearson T MAE | Pearson 1 MAE |
MTL-IID 59.17  0.1450 54.79  0.1547
SEQUENTIAL 47.07 0.1773  50.08 0.1689
A-GEM 46.29  0.1794 4649 0.1736
OML-ER 52.58 0.1621 50.40 0.1635
LA-MAML 52.86  0.1621  50.56  0.1631
CQE-OBML 53.67 0.1596 51.19 0.1619

Table 2: Comparison with benchmark approaches.

OML-ER outperforms both SEQUENTIAL and
A-GEM, likely because of its combination of meta-
learning and experience replay, which makes it
better able to combat forgetting. LA-MAML
slightly improves over the results of OML-ER,
as a result of its meta-learned learning rate. We
find that our approach, CQE-OBML, which com-
bines a meta-learned adaptive learning rate together
with Bayesian inference, outperforms previous ap-
proaches. This demonstrates the effectiveness of
adequately modelling the various sources of uncer-
tainty in continual meta-learning.

4.2 Analysis of Model Components

We investigate the effect of the various compo-
nents of our approach through an ablation study.
As shown in Table 3, our approach (CQE-OBML)
without the adaptive learning rate (-LR («x)) has a
drop in performance, especially for en-cs. With-
out inference with SVGD (-SVGD), we observe a
larger reduction in performance on both datasets,
demonstrating the usefulness of incorporating
Bayesian inference into the continual meta-learning
of quality estimation models.

en-lv en-cs
Method Pearson T MAE | Pearson T MAE |
CQE-OBML 53.67 0.1596 51.19 0.1619
-LR (@) 5348 0.1598 5094  0.1623
-SVGD 52.86 0.1621 50.56  0.1631

Table 3: Ablation of model components.

5 Conclusions

We proposed a framework for the continual meta-
learning of machine translation quality estimation
models, which is able to learn continually from the
streaming data of multiple quality estimation users.
We further incorporate an adaptive learning rate to-
gether with online Bayesian inference for improved
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performance. In experiments on quality estimation
data from two language directions, we demonstrate
improved performance over recent state-of-the-art
continual learning methods.
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A Additional Results

We present additional results on the WPTP12
dataset (Koponen et al., 2012),which is a small
English-Spanish (en-es) translation dataset con-
sisting of documents from the news domain. It
features translations from eight different machine
translation systems. Each instance in the dataset in-
cludes the corresponding post-edited translation
along with post-editing time and HTER scores
computed between the translation and the corre-
sponding post-edit. Statistics about the number of
instances per post-editor are in Table 4.

Table 5 contains the results obtained on this
dataset. As a result of its size, all methods gener-
ally find it challenging, with reduced performance
across-the-board. Despite reduced performance in
terms of mean absolute error, our approach obtains
better Pearson correlation than all previous meth-
ods.

PEID Train Dev Test

Al 121 40 42
A2 121 40 42
A3 121 40 42
A4 121 40 42
A5 121 40 42
A6 121 40 42
A7 121 40 42
A8 121 40 42

Total 968 320 336

Table 4: Number of instances per Post Editor (PE) for
the WPTP12 dataset.

WPTP12

Pearson T MAE |
SEQUENTIAL 33.05 0.2061

Method

A-GEM 38.95  0.2066
OML-ER 39.17  0.1786
LA-MAML 38.89  0.1772

CQUEST-OBML 40.11 0.1780

Table 5: Averaged performance for all methods.

B Additional Experimental Details

All models make use of the same values for hyper-
parameters such as learning rate and batch size,
selected by manual search in initial experiments.
These are provided in Table 6.
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Hyper-parameter Value

Learning rate 3e-5
Mini-batch size 16
Max. sequence length 100

Table 6: Hyper-parameter values for all compared ap-
proaches
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Abstract

Sequential sentence classification aims to clas-
sify each sentence in the document based on
the context in which sentences appear. Most
existing work addresses this problem using a
hierarchical sequence labeling network. How-
ever, they ignore considering the latent seg-
ment structure of the document, in which con-
tiguous sentences often have coherent seman-
tics. In this paper, we proposed a span-based
dynamic local attention model that could ex-
plicitly capture the structural information by
the proposed supervised dynamic local atten-
tion. We further introduce an auxiliary task
called span-based classification to explore the
span-level representations. Extensive experi-
ments show that our model achieves better or
competitive performance against state-of-the-
art baselines on two benchmark datasets.

1 Introduction

The goal of Sequential Sentence Classification
(SSC) is to classify each sentence in a document
based on rhetorical structure profiling process (Jin
and Szolovits, 2018), and the rhetorical label of
each sentence is related to the surrounding sen-
tences, which is different from the general sentence
classification that does not involve context. An
example is shown in Figure 1, the document is di-
vided into rhetorical labels such as “background”
and “outcome” for five sentences in NICTA dataset.
The SSC task is crucial for downstream domains
such as information retrieval (Edinger et al., 2017),
question answering (Cohen et al., 2018) and so on.

Traditional statistical methods, such as
HMM (Lin et al., 2006), CRF (Hirohata et al.,
2008; Hassanzadeh et al., 2014), etc., heavily rely
on numerous carefully hand-designed features.
In contrast, recent methods based on end-to-end
neural networks utilize hierarchical sequence

*Corresponding author

with left abducens palsy. (s,) Preoperative
imaging showed no atlanto-axial or occipito-

(s1) On admission the patient was tetraparetic
background {
atlantal dislocation .

(s3) Two years after the trauma, the patient
had mild left hemiparesis but was able to walk
normally . (s4) Head motion was normal , but
just mildly decreased by pain in flexion and
extension. (s5) Imaging control did not show
any occipito-atlantal instability .

outcome

Figure 1: An example of NICTA dataset for SSC task.
The text has five sentences and is divided into two seg-
ments {(s1, s2), (83, 84, $5)} by labels.

encoders followed by the CRF layer to contextu-
alize sentence representations, which achieved
promising results. The first neural network
approach (Lee and Dernoncourt, 2016) combined
RNN with CNN that incorporates preceding
sentences to encode the contextual content and
further use a CRF layer to optimize the predicted
label sequence. Recently, Jin and Szolovits (2018)
propose a hierarchical sequential labeling network
to make use of the contextual information within
surrounding sentences to help classify. Conversely,
Cohan et al. (2019) employ BERT (Devlin et al.,
2018) to capture contextual dependencies without
hierarchical encoding or CRF layer. Yamada
et al. (2020) introduce Semi-Markov CRFs (Ye
and Ling, 2018) to assign a rhetorical label at
span-level rather than single sentence.
Nevertheless, the above-mentioned methods ig-
nore the latent structural information (e.g. seg-
mentation) in the document, which is the grouping
of content into topically coherent segments. In-
tuitively, a segment with several continuous sen-
tences is expected to be more coherent semantics
than the text spanning different segments, e.g., the
text with two segments in Figure 1. In this paper,
we propose a novel span-based dynamic local atten-
tion model to explore the latent segment structure
in a document for SSC task. First, we introduce
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dynamic local attention guided by segmentation
supervision signal to focus on the surrounding sen-
tences with coherent semantics, called Supervised
Dynamic Local Attention (SDLA). Furthermore,
we introduce an auxiliary task called span-based
classification, which calculates semantic represen-
tations of spans and performs span classification
on them to obtain predicted rhetorical labels. The
dynamic local attention mechanism and the aux-
iliary task complement each other to enhance the
model capacity to perceive segment structure and
improve the performance of SSC task. The results
on two benchmark datasets show that our method
achieves better or competitive performance than
state-of-the-art baselines.

2 Proposed Method

In this paper, we propose a Span-based Dynamic
Local Attention Model for sequential sentence clas-
sification with two novel components: supervised
dynamic local attention and auxiliary span-based
classification task, respectively. The architecture
of our model is shown in Figure 2.

2.1 Sentence Representations

For SSC task, given a sequence of sentences
X ={x1,29, -+ ,zN}, the model needs to predict
the label of each sentence Y = {y1,v2, - ,yn}
based on the context which the sentence appears,
where IV is the number of sentences. Following the
previous work (Yamada et al., 2020), we first feed
each sentence into BERT pre-trained with PubMed
(Peng et al., 2019) and then extract the encoding
corresponding to [CLS] token as sentence encod-
ing S = {s1, 52, -+, sy} (we implement it using
Sentence-BERT (Reimers and Gurevych, 2019)).
Then, we employ two bidirectional LSTM layers to
produce context-informed sentence representation
h¢ € R4 for whole document :

HC:{hT’ 57"'7 ?V}

2.2 Supervised Dynamic Local Attention

(1)

In this section, we introduce dynamic local atten-
tion guided by a supervised segmentation signal
to learn latent segment structure in a document.
Firstly, we generate the sentence-level attention
spans for each sentence by training soft mask-
ing (Nguyen et al., 2020), using pointing mech-
anism (Vinyals et al., 2015) to approximate left and
right boundary positions of the mask vector. Given
the query Q and key K, where Q = K = H€,
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Figure 2: The overview of our model, exemplified by
the sample in Figure 1. The labels b’ and ’0’ stand
for “background” and “outcome”, respectively. Cipan
denotes Auxiliary Span-based Classification Task.

we calculate the left and right boundary matrix
o1, ¢r € RV*N for query Q as follows:

. TwQ KWK T
@:&Q L&lL)QM) )
Tyi7@ K\T
b =5 WR%WR) oM")  (3)
o —00, 1<]J
Mg = { 1, > @

where S is the softmax function, ® is element-
wise product, and W]? , Wff , Wg ) Wg e Rdxd
are trainable parameters. Eq. (2)-(3) approximate
the left and right boundary positions of the mask
matrix for the query ) (Each row approximate the
mask vector of the entire document correspond-
ing to each sentence in sequence order). Note that
we additionally introduce mask matrix M to en-
sure that the left boundary position [ and the right
boundary position r generated at position ¢ satisfy
this relationship such that 0 <[ <: <r < N.

Given the above definitions, the attention span
masking matrix M, can be achieved by composit-
ing the left and right boundary matrix :

M, = (&Ln) © (¢, LY) o)
where Ly € {0, l}NXN denotes a unit-value (1)
upper-triangular matrix.

Then we combine self-attention with the atten-
tion span masking, enabling the model to focus
on semantically related sentences around the target



position and eliminate noisy aggregations :

_ QWO (EWH)T
A= Ja © M, (6)
HY = S(A)(H W) (7)

where W, W WH are the trainable parameters.

However, in the absence of a supervised process,
the dynamic local attention may fail to focus on the
corresponding informative sentences of the target,
especially for limited data, so we further introduce
the segmentation signal to guide the learning of dy-
namic local attention to capture coherent semantics
more accurately. Specifically, we employ binary
cross-entropy loss to describe the differences be-
tween attention matrix A and segment signal Y %/*:

Lo = BCOE(a(A),Y") (®)
at _ ) 1, Eij=1
Yii = { 0, else ©)

where o is sigmoid function. E;; = 1 denotes -
th sentence and j-th are in the same segment (e.g.
(s1, s2) and (s4, s5) in Figure 1).

Finally, we concatenate H¢ and H?" as the con-
textual representations // and add a CRF layer to
classify each sentence.

2.3 Auxiliary Span-based Classification Task

Due to the obvious label consistency of sentences
within spans, we introduce an additional auxiliary
task called span-based classification to improve the
performance at the span-level. To this effect, we
consider all possible spans of various lengths and
propose a tagging scheme for span-based classifica-
tion. The scheme uses the same labels as sentence-
level to represent the label of a span. Firstly, we
represent a span from the ¢-th sentence to the j-th
sentence as a vector h;;, which is concatenated by
four-vectors similar to Zhao et al. (2020):
hij = {hi; hjs hijso(j —i+1)} (10)
where ﬁi;j is the attention output over the final
sentence representation H in the span, and ¢(j —
i + 1) is the feature vector encoding the span size.
We employ a cross-entropy category loss for
span-based classification:

Lspan = CE(Y Py span) (11)
label, F;; =1
span __ ) 1]
Y= { 0, else (12)

where Y7 is the output probability at span-level,
F;; denotes i-th sentence and j-th sentence (i, j sat-
isfy the relationship ¢ < j ) are in the same segment
and 7, j is the beginning and end of the segment
respectively (e.g. (s1, s2) and (s3, s5) in Figure 1).

2.4 Objective Function

The overall objective function includes cross-
entropy loss Lsen, Lspan for sentence and span-
based classification and supervised attention loss
Latt

L= Esen + )\attﬁatt + )\span['span (13)
where Agi¢, Aspan are the hyperparameters for bal-
ancing the strength of L4 and Lspan.

3 Experiments

3.1 Experimental Setup

Datasets and Baselines To evaluate the effec-
tiveness of our model, we conduct extensive exper-
iments on two standard benchmark datasets from
medical scientific abstracts, i.e. NICTA-PIBOSO
(Kim et al., 2011) and PubMed 20k RCT (Dernon-
court and Lee, 2017). The detailed description of
both datasets can be found in the appendix. We
compare our model with three recent strong neu-
ral models, i.e., those of Jin and Szolovits (2018),
Cohan et al. (2019), Yamada et al. (2020).
Implementation Details We set the size of
hidden state to 200 and apply dropout with the prob-
ability of 0.5 for BILSTM. Both hyperparameters
Aatt and Agpqp are set to 0.3. The batch size is 30.
We use Adam optimizer with learning rate 0.003
and weight decay 0.99 for training. For evaluation,
we maximize the score from sentence-level CRF
to get the predicted labels of the corresponding se-

Models Sentence-F1 Span-F1 P
NICTA-PIBOSO
Jin and Szolovits (2018) 82.3 51.1 173
Cohan et al. (2019) 83.0 543 213
Yamada et al. (2020) 84.4 58.7 -
Ours 86.8 629 122
PubMed 20k RCT
Jin and Szolovits (2018) 92.8 829 53
Cohan et al. (2019) 92.9 822 5.1
Yamada et al. (2020) 93.1 84.3 -
Ours 92.8 845 4.1

Table 1: The results comparison of our model and base-
lines on two benchmark datasets.
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background other intervention study design population outcome

Avg Num. Sent. 2.8 2.6 1.3 1.0 1.1 52

Jin and Szolovits (2018) 53.5 34.0 31.7 64.1 70.8 514
Cohan et al. (2019) 55.5 41.0 36.9 63.0 69.9 57.4
Yamada et al. (2020) 60.5 44.8 343 62.4 72.9 64.3
Ours 60.8 354 49.0 714 77.6 64.4

Table 2: Average number of sentences in spans and Span-F1 scores for each rhetorical label on NICAT-PIBOSO.

background objective methods results conclusions

Avg Num. Sent. 2.6 1.5 4.1 4.2 1.8

Jin and Szolovits (2018) 73.8 73.8 86.7 83.1 90.8
Cohan et al. (2019) 70.6 70.8 86.3 83.9 92.0
Yamada et al. (2020) 74.7 73.8 88.5 85.8 91.9
Ours 67.1 74.4 89.3 85.7 93.2

Table 3: Average number of sentences in spans and Span-F1 scores for each rhetorical label on PubMed 20k RCT.

quence. Following Yamada et al. (2020), we use
Sentence-F1 and Span-F1 as evaluation metrics'.

3.2 Experimental Results

Tabel 1 report the performance of our approaches
against other methods on PubMed 20k RCT and
NICTA-PIBOSO, respectively. The results of other
methods are obtained from Yamada et al. (2020).
We can observe that our model, whether
Sentence-F1 or Span-F1, is significantly better
than other methods on NICTA-PIBOS, and we get
a result comparable to Yamada et al. (2020) on
PubMed 20k RCT. We believe that our model has
remarkable performance on NICTA-PIBOS, which
has fewer training samples but larger label space,
because our model can capture latent segment struc-
ture by SDLA component and improve span repre-
sentations by auxiliary span-based classification.
In addition, table 2 and 3 show the detail re-
sults of Span-F1 scores for each rhetorical label.
Our model achieves better or similar performance
than other baselines, except for “other” on NICAT-
PIBOSO and “background” on PubMed 20k RCT.
We speculate that the reason is that the sentence
semantics corresponding to the “other” label are
diverse and not signifi