

Rumor Detection on Twitter with Tree-structured Recursive Neural Networks

Jing Ma¹, Wei Gao², Kam-Fai Wong^{1,3} ¹The Chinese University of Hong Kong ²Victoria University of Wellington, New Zealand ³MoE Key Laboratory of High Confidence Software Technologies, China

July 15-20, 2018 – ACL 2018 @ Melboume, Australia

Introduction

- Related Work
- Problem Statement
- RvNN-based Rumor Detection
- Evaluation
- Conclusion and Future Work

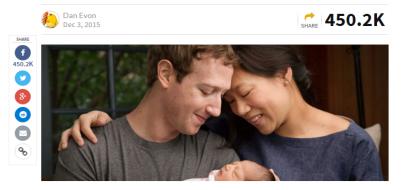
Introduction

What are rumors?

erictucker erictucker Anti-Trump protestors in Austin today are not as organic as they seem. Here are the busses they came in. #fakeprotests #trump2016 #austin

Mark Zuckerberg Is Giving Away Money!

Mark Zuckerberg is not giving \$4.5 million to Facebook users who share a "thank you" message.

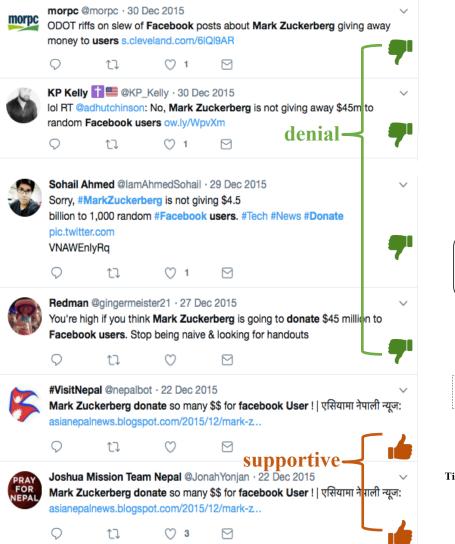


CLAIM: Mark Zuckerberg is giving \$4.5 million to 100 Facebook users who share a specific message on the social networking web site.

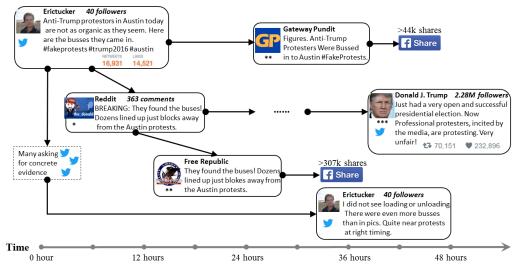
A story or statement whose truth value is **unverified** or deliberately **false**

Introduction

How the fake news propagated?



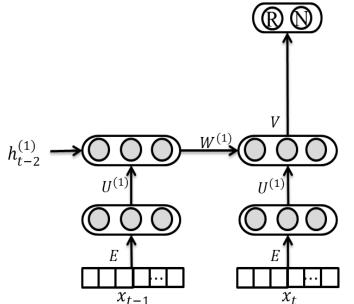
- people tend to stop spreading a rumor if it is known as false. (Zubiaga et al., 2016b)
- Previous studies focused on text mining from <u>sequential</u> microblog streams, we want to bridge the <u>content</u> semantics and <u>propagation</u> clues.

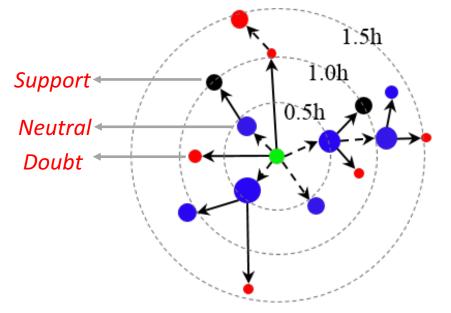


- We generally are not good at distinguishing rumors
- It is crucial to track and debunk rumors early to minimize their harmful effects.
- Online fact-checking services have limited topical coverage and long delay.
- Existing models use feature engineering over simplistic; or recently deep neural networks – ignore propagation structures; Kernel-based method – develop based on tree structure but cannot learn high-level feature representations automatically.

Observation & Hypothesis

 Existing works: Consider *post representation* or *propagation structure*





(a) RNN-based model (Ma et al. 2016)

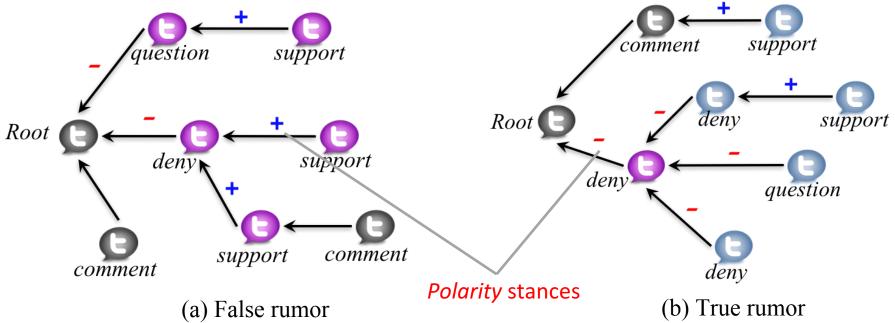
(b) Tree kernel-based model (Ma et al. 2017)

2018/7/15

 IDEA: Combining the two models, leveraging propagation structure by representation learning algorithm

Observation & Hypothesis

Why such model do better?



Local characteristic:

- A reply usually respond to its immediate ancestor rather than the <u>root</u> <u>tweet</u>.
- Repliers tend to disagree with (or question) who support a false rumor or deny a true rumor; repliers tend to agree with who deny a false rumor or support a true rumor.

Contributions

- The first study that deeply integrates both structure and content semantics based on tree-structured recursive neural networks for detecting rumors from microblog posts
- Propose two variants of RvNN models based on bottom-up and top-down tree structures, to generate better integrated representations for a claim by capturing both structural and textural properties signaling rumors.
- Our experiments based on two real-world Twitter datasets achieve superior improvements over state-of-the-art baselines on both rumor classification and early detection tasks.
- We make the source codes in our experiments publicly accessible at <u>https://github.com/majingCUHK/Rumor_RvNN</u>

- Introduction
- Related Work
- Problem Statement
- RvNN-based Rumor Detection
- Evaluation
- Conclusion and Future Work

Related Work

- Systems based on common sense and investigative journalism, e.g.,
 - snopes.com
 - factcheck.org
- Learning-based models for rumor detection
 - Information credibility: Castillo et al. (2011), Yang et al. (2012)
 - Using handcrafted and temporal features: Liu et al. (2015), Ma et al. (2015), Kwon et al. (2013, 2017)
 - Using cue terms: Zhao et al. (2015)
 - Using recurrent neural networks: Ma et al. (2016, 2018)
 - Tree-kernel-based model:

Ma et al. (2017), Wu et al. (2015)

Without handcrafted features

RvNN-based works

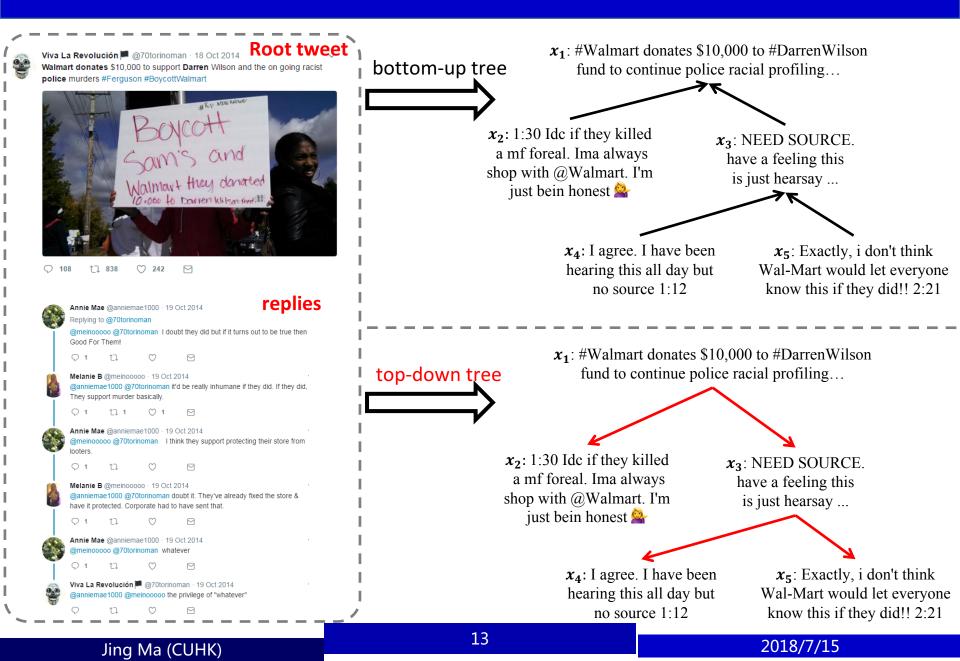
- images segmentation (Socher et al, 2011)
- phrase representation from word vectors (Socher et al, 2012)
- Sentiment analysis (Socher et al, 2013)
- etc

- Introduction
- Related Work
- Problem Statement
- RvNN-based Rumor Detection
- Evaluation
- Conclusion and Future Work

Problem Statement

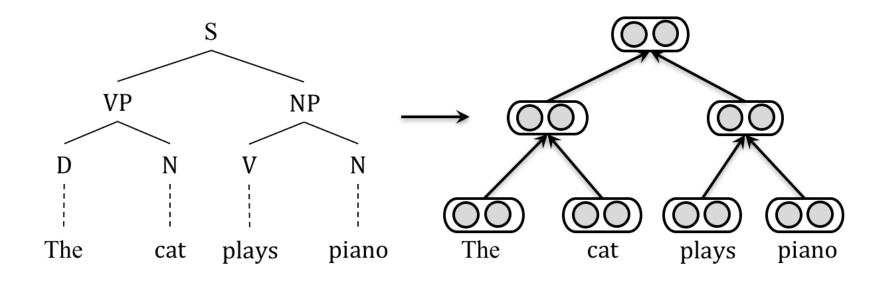
- Given a set of microblog posts R = {r}, model each source tweet as a tree structure T(r) = < V, E >, where each node v provide the text content of each post. And E is directed edges corresponding to response relation.
- Task 1 finer-grained classification for each source post *false rumor, true rumor, non-rumor, unverified rumor*
- Task 2 detect rumor as early as possible

Tweet Structure



- Introduction
- Related Work
- Problem Statement
- RvNN-based Rumor Detection
- Evaluation
- Conclusion and Future Work

Standard Recursive Neural Networks



RvNN (*tree-structured neural networks*) utilize sentence parse trees: representation associated with each node of a parse tree is computed from its direct children, computed by

$$p = f(W \cdot [c_1; c_2] + b)$$

- p: the feature vector of a parent node whose children are c_1 and c_2
- computation is done recursively over all tree nodes

Jing Ma (CUHK)

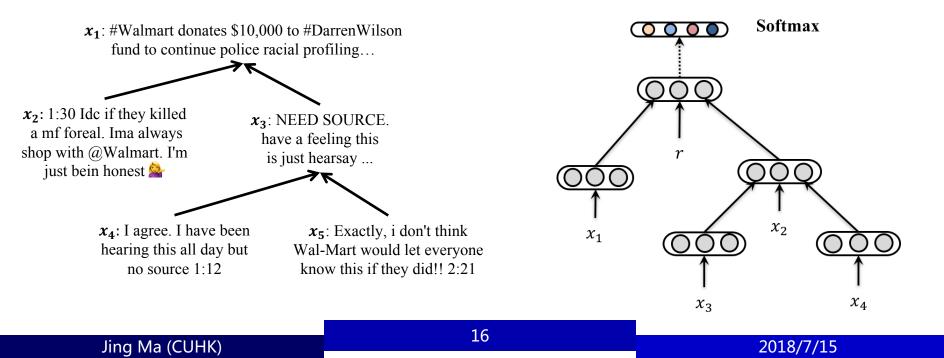
Bottom-up RvNN

- Input: bottom-up tree (node: a post represented as a vector of words)
- Structure: recursively visit every node from the leaves at the bottom to the root at the top (a natural extension to the original RvNN)
- Intuition: local rumor indicative features are aggregated along different branches (e.g., subtrees having a denial parent and a set of supportive children) (generate a feature vector for each subtree)

GRU equation at node j

$$\tilde{x}_j = x_j E$$

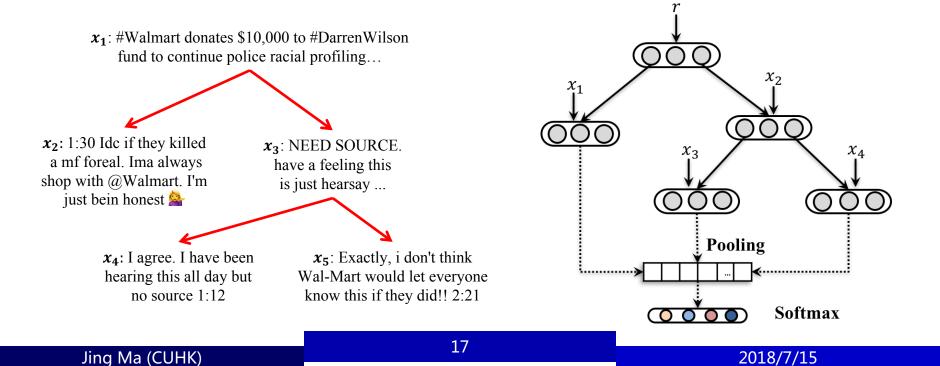
 $h_S = \sum_{s \in S(j)} h_s$
Children node
 $h_S = \sum_{s \in S(j)} h_s$
Own input
 $r_j = \sigma (W_r \tilde{x}_j + U_r h_S)$
 $z_j = \sigma (W_z \tilde{x}_j + U_z h_S)$
 $\tilde{h}_j = tanh (W_h \tilde{x}_j + U_h (h_S \odot r_j))$
 $h_j = (1 - z_j) \odot h_S + z_j \odot \tilde{h}_j$



Top-down RvNN

- > Input: top-down tree
- Structure: recursively visit from the root node to its children until reaching all leaf nodes. (reverse Bottom-up RvNN)
- Intuition: rumor-indicative features are aggregated along the propagation path (e.g., if a post agree with its parent's stance, the parent's stance should be reinforced) (models how information flows from source post to the current node)

 $\blacktriangleright GRU \text{ transition equation at node } j$ Own input Parent node $\tilde{x}_j = x_j E$ $r_j = \sigma \left(W_r \tilde{x}_j + U_r h_{\mathcal{P}(j)} \right)$ $z_j = \sigma \left(W_z \tilde{x}_j + U_z h_{\mathcal{P}(j)} \right)$ $\tilde{h}_j = tanh \left(W_h \tilde{x}_j + U_h (h_{\mathcal{P}(j)} \odot r_j) \right)$ $h_j = (1 - z_j) \odot h_{\mathcal{P}(j)} + z_j \odot \tilde{h}_j$



Model Training

> Comparison:

both of the two RvNN models aim to capture the structural properties by recursively visiting all nodes

Bottom-up RvNN: the state of root node (i.e., source tweet) can be regard as the representation of the whole tree (can be used for supervised classification).

Top-down RvNN: the representation of each path are eventually embedded into the hidden vector of all the leaf nodes.

learned vector of root node

> Output Layer

Bottom-up RvNN: $y = Softmax(Vh_0 + b)$ Top-down RvNN: $y = Softmax(Vh_{\infty} + b)$

the pooling vector over all leaf nodes

> Objective Function: $L = \sum_{n=1}^{N} \sum_{c=1}^{C} (y_c - \hat{y}_c)^2 + \lambda \|\Theta\|_2^2$ prediction Ground truth

Training Procedure

parameters are updated using efficient back-propagation through structure (Goller and Kuchler, 1996; Socher et al., 2013)

Jing Ma (CUHK)

2018/7/15

- Introduction
- Related Work
- Problem Statement
- RvNN-based Rumor Detection
- Evaluation
- Conclusion and Future Work

• Use two reference Tree datasets:

Statistic	Twitter15	Twitter16
# of users	276,663	173,487
# of source tweets	1,490	818
# of threads	331,612	204,820
# of non-rumors	374	205
# of false rumors	370	205
# of true rumors	372	205
# of unverified rumors	374	203
Avg. time length / tree	1,337 Hours	848 Hours
Avg. # of posts / tree	223	251
Max # of posts / tree	1,768	2,765
Min # of posts / tree	55	81

URL of the datasets:

https://www.dropbox.com/s/0jhsfwep3ywvpca/rumdetect2017.zip?dl=0

Approaches to compare with

- DTR: Decision tree-based ranking model using enquiry phrases to identify trending rumors (Zhao et al., 2015)
- DTC: Twitter information credibility model using Decision Tree Classifier (Castillo et al., 2011);
- **RFC**: Random Forest Classifier using three parameters to fit the temporal tweets volume curve (Kwon et al., 2013)
- SVM-TS: Linear SVM classifier using time-series structures to model the variation of social context features. (Ma et al., 2015)
- **SVM-BOW**: linear SVM classifier using bag-of-words.
- SVM-TK and SVM-HK: SVM classifier uses a Tree Kernel (Ma et al., 2017) and that uses a Hybrid Kernel (Wu et al., 2015), both model propagation structures with kernels.
- **GRU-RNN**: The RNN-based rumor detection model. (Ma et al., 2016)
- Ours (BU-RvNN and TD-RvNN): Our bottom-up and topdown recursive models.

Results on Twitter15

NR: Non-Rumor; FR: False Rumor; TR: True Rumor; UR: Unverified Rumor;

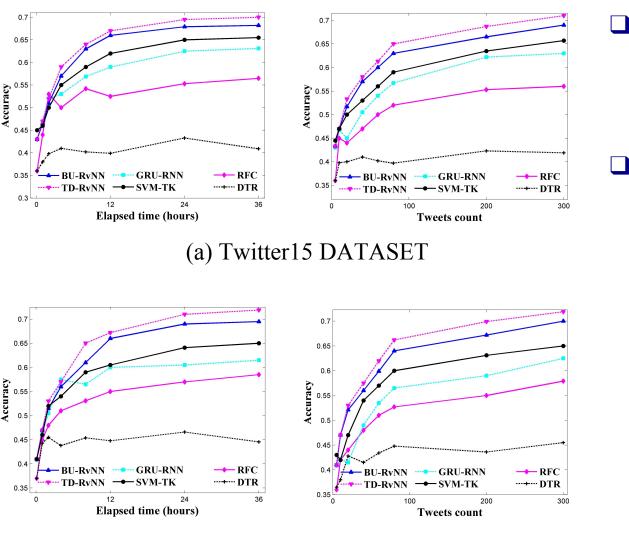
		NR	FR	TR	UR	
Method	thod Accu.	F1	F1	F 1	F1	hand-crafted features (e.g.,
DTR	0.409	0.501	0.311	0.364	0.473	user info \rightarrow NR vs others)
DTC	0.454	0.733	0.355	0.317	0.415	
RFC	0.565	0.810	0.422	0.401	0.543	
SVM-TS	0.544	0.796	0.472	0.404	0.483	
SVM-BOW	0.548	0.564	0.524	0.582	0.512	
SVM-HK	0.493	0.650	0.439	0.342	0.336	Structural info Linear chain input
SVM-TK	0.667	0.619	0.669	0.772	0.645	
GRU-RNN	0.641	0.684	0.634	0.688	0.571	
BU-RvNN	0.708	0.695	0.728	0.759	0.653	More info loss
TD-RvNN	0.723	0.682	0.758	0.821	0.654	

Results on Twitter16

NR: Non-Rumor; FR: False Rumor; TR: True Rumor; UR: Unverified Rumor;

		NR	FR	TR	UR	
Method Aco	Accu.	F1	F 1	F1	F1	
DTR	0.414	0.394	0.273	0.630	0.344	models without hand-crafted features
DTC	0.465	0.643	0.393	0.419	0.403	
RFC	0.585	0.752	0.415	0.547	0.563	
SVM-TS	0.574	0.755	0.420	0.571	0.526	
SVM-BOW	0.585	0.553	0.556	0.655	0.578	
SVM-HK	0.511	0.648	0.434	0.473	0.451	
SVM-TK	0.662	0.643	0.623	<i>0.783</i>	0.655	
GRU-RNN	0.633	0.61 7	0.715	0. 577	0.527	
BU-RvNN	0.718	0.723	0.712	<i>0.779</i>	0.659	
TD-RvNN	0.737	0.662	<i>0.743</i>	0.835	0.708	

Results on Early Detection



- In the first few hours, the accuracy of the RvNNbased methods climbs more rapidly and stabilize more quickly
 - TD-RvNN and BU-RvNN only need around 8 hours or about 90 tweets to achieve the comparable performance of the best baseline model.

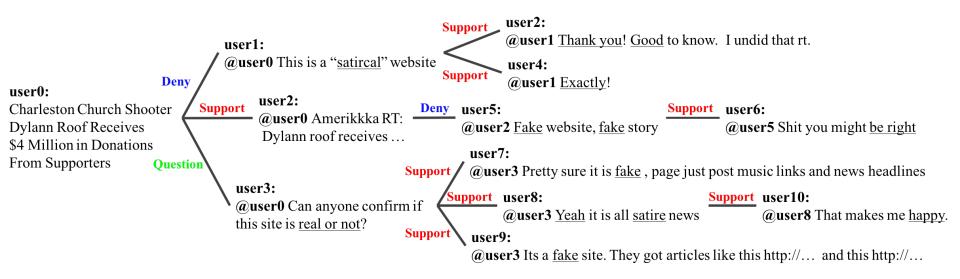
2018/7/15

(b) Twitter16 DATASET

Jing Ma (CUHK)

Early Detection Example

Example subtree of a rumor captured by the algorithm at early stage of propagation



- Bottom-up RvNN: a set of responses supporting the parent posts that deny or question the source post.
- Top-down RvNN: some patterns of propagation from the root to leaf nodes like "support-deny-support"
- Baselines: sequential models may be confused because the supportive key terms such as "be right", "yeah", "exactly!" dominate the responses, and the SVM-TK may miss similar subtrees by just comparing the surface words.

- Introduction
- Related Work
- Problem Statement
- RvNN-based Rumor Detection
- Evaluation
- Conclusion and Future Work

Conclusion and future work

- Propose a bottom-up and a top-down tree-structured model based on recursive neural networks for rumor detection on Twitter.
- Using propagation tree to guide the learning of representations from tweets content, such as embedding various indicative signals hidden in the structure, for better identifying rumors.
- Results on two public Twitter datasets show that our method improves rumor detection performance in very large margins as compared to state-of-the-art baselines.
- Future work:
 - Integrate other types of information such as user properties into the structured neural models to further enhance representation learning
 - Develop unsupervised models due to massive unlabeled data from social media.

