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Source:

› It has 48 columns.
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Do we really need context?

3

Source:

› It has 48 columns.

Possible translations into Russian:

› У него 48 колонн. (masculine or neuter)

› У нее 48 колонн. (feminine)

› У них 48 колонн. (plural)



Do we really need context?

4

Source:

› It has 48 columns.

What do “columns” mean?



Do we really need context?

4

Source:

› It has 48 columns.

Possible translations into Russian:

› У него/нее/них 48 колонн.

› У него/нее/них 48 колонок.



Do we really need context?
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Source:

› It has 48 columns.

Translation:

› У нее 48 колонн.

› Under the cathedral lies the antique chapel.

Context:



Recap: antecedent and anaphora resolution
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Under the cathedral lies the antique chapel. It  has 48 columns.

Wikipedia:

An antecedent is an expression that gives its meaning to 

a proform (pronoun, pro-verb, pro-adverb, etc.)

Anaphora resolution is the problem of resolving references to earlier 

or later items in the discourse.

antecedent anaphoric

pronoun

https://en.wikipedia.org/wiki/Pro-form
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SMT

› focused on handling specific phenomena 

› used special-purpose features

([Le Nagard and Koehn, 2010]; [Hardmeier and Federico, 2010]; [Hardmeier et al., 2015], [Meyer 

et al., 2012], [Gong et al., 2012], [Carpuat, 2009]; [Tiedemann, 2010]; [Gong et al., 2011])
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Context in Machine Translation

7

SMT

› focused on handling specific phenomena 

› used special-purpose features

([Le Nagard and Koehn, 2010]; [Hardmeier and Federico, 2010]; [Hardmeier et al., 2015], [Meyer 

et al., 2012], [Gong et al., 2012], [Carpuat, 2009]; [Tiedemann, 2010]; [Gong et al., 2011])

NMT

› directly provide context to an NMT system at training time

([Jean et al., 2017]; [Wang et al., 2017]; [Tiedemann and Scherrer, 2017]; [Bawden et al., 2018])

› not clear:

what kinds of discourse phenomena are successfully handled

how they are modeled 



Our work

14

› we introduce a context-aware neural model, which is effective 

and has a sufficiently simple and interpretable interface between 

the context and the rest of the translation model

› we analyze the flow of information from the context and identify 

pronoun translation as the key phenomenon captured by the 

model

› by comparing to automatically predicted or human-annotated 

coreference relations, we observe that the model implicitly 

captures anaphora

1 Model Architecture

2 Overall performance

3 Analysis

Plan



Context-Aware Model 
Architecture



Transformer model architecture
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› start with the Transformer 

[Vaswani et al, 2018]
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Context-aware model architecture

10

› start with the Transformer [Vaswani et al, 2018]

› incorporate context information on the encoder side

› use a separate encoder for context

› share first N-1 layers of source and context encoders

› the last layer incorporates contextual information



Overall performance
Dataset: OpenSubtitles2018 (Lison et al., 2018) for English and Russian



Overall performance: models comparison

(context is the previous sentence)
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29.46
29.53

30.14

29

29.2

29.4

29.6

29.8

30

30.2

baseline

concatenation

context encoder (our
work)

› baseline: context-agnostic 

Transformer

› concatenation: modification of the 

approach by [Tiedemann and 

Scherrer, 2017]



Our model: different types of context
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29.46
29.31

29.69

30.14

28.8

29

29.2

29.4

29.6

29.8

30

30.2

30.4

baseline

next sentence

random sentence

previous sentence

› Next sentence does not appear 

beneficial

› Performance drops for a random 

context sentence

› Model is robust towards being 

shown a random context 

sentence

(the only significant at p<0.01 difference is with the best model;

differences between other results are not significant)



Analysis



Our work
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› we introduce a context-aware neural model, which is effective 

and has a sufficiently simple and interpretable interface between 

the context and the rest of the translation model

› we analyze the flow of information from the context and identify 

pronoun translation as the key phenomenon captured by the 

model

› by comparing to automatically predicted or human-annotated 

coreference relations, we observe that the model implicitly 

captures anaphora

1 Top words influenced by context

2
Non-lexical patterns affecting attention 

to context

3 Latent anaphora resolution

Analysis



What do we mean by “attention to context”?
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› attention from source to context

› mean over heads of per-head attention 

weights



What do we mean by “attention to context”?

16

› attention from source to context

› mean over heads of per-head attention 

weights

› take sum over context words 

(excluding <bos>, <eos> and punctuation)



Top words influenced by context 
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word pos

it 5.5

yours 8.4

yes 2.5

i 3.3

yeah 1.4

you 4.8

ones 8.3

‘m 5.1

wait 3.8

well 2.1
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Top words influenced by context 
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word pos

it 5.5

yours 8.4

yes 2.5

i 3.3

yeah 1.4

you 4.8

ones 8.3

‘m 5.1

wait 3.8

well 2.1

Second person

› singular impolite

› singular polite

› plural



Top words influenced by context 

17

word pos

it 5.5

yours 8.4

yes 2.5

i 3.3

yeah 1.4

you 4.8

ones 8.3

‘m 5.1

wait 3.8

well 2.1

Need to know gender, because 

verbs must agree in gender with “I”

(in past tense)



Top words influenced by context 

17

word pos

it 5.5

yours 8.4

yes 2.5

i 3.3

yeah 1.4

you 4.8

ones 8.3

‘m 5.1

wait 3.8

well 2.1

Many of these words appear at 

sentence initial position.

Maybe this is all that matters?



Top words influenced by context 

17

word pos

it 5.5

yours 8.4

yes 2.5

i 3.3

yeah 1.4

you 4.8

ones 8.3

‘m 5.1

wait 3.8

well 2.1

word pos

it 6.8

yours 8.3

ones 7.5

‘m 4.8

you 5.6

am 4.4

i 5.2

‘s 5.6

one 6.5

won 4.6

Only positions 

after the first



Does the amount of attention to 

context depend on factors such 

as sentence length and position?



Dependence on sentence length
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Dependence on sentence length
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short source

long context

high attention to context



Dependence on sentence length

19

long source

short context

low attention to context



Is context especially helpful for short sentences?
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Dependence on token position

21



Analysis of pronoun translation



Ambiguous pronouns and translation quality: 

how to evaluate 
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› feed CoreNLP (Manning et al., 2014) with pairs of sentences

› pick examples with a link between the pronoun and a noun group in a context

› gather a test set for each pronoun

› use the test sets to evaluate the context-aware NMT system

Metric: BLEU (standard metric for MT)

Specific test sets:



Ambiguous pronouns and translation quality: 

noun antecedent
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23.9

29.9
29.1

26.1

31.7

29.7

23

24

25

26

27

28

29

30

31

32

33

it you I

B
L

E
U

baseline

context-aware

+1.8

+0.6

+2.2



Ambiguous “it”: noun antecedent
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26.9

21.8 22.1

18.2

27.2
26.6

24

22.5

17

19

21

23

25

27

29

masculine feminine neuter plural

B
L

E
U

baseline

context-aware
+4.8

+1.9

+4.3

+0.3



“It” with noun antecedent: example
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Source:

› It was locked up in the hold with 20 other boxes of supplies.

Possible translations into Russian:

› Он был заперт в трюме с 20 другими ящиками с припасами. (masculine)

› Оно было заперто в трюме с 20 другими ящиками с припасами. (neuter)

› Она была заперта в трюме с 20 другими ящиками с припасами. (feminine)

› Они были заперты в трюме с 20 другими ящиками с припасами. (plural)



“It” with noun antecedent: example

26

Source:

› You left money unattended?

Possible translations into Russian:

› Они были заперты в трюме с 20 другими ящиками с припасами. (plural)

Context:

› It was locked up in the hold with 20 other boxes of supplies.



Latent anaphora resolution



Hypothesis

28

Observation:

› Large improvements in BLEU on test sets with pronouns 

co-referent with an expression in context

Attention mechanism Latent anaphora resolution

?



How to test the hypothesis: agreement with CoreNLP
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Test set:

› Find an antecedent noun phrase (using CoreNLP)

› Pick examples where the noun phrase contains a single noun

› Pick examples with several nouns in context



How to test the hypothesis: agreement with CoreNLP
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Test set:

› Find an antecedent noun phrase (using CoreNLP)

› Pick examples where the noun phrase contains a single noun

› Pick examples with several nouns in context

Calculate an agreement:

› Identify the token with the largest attention weight (excluding punctuation, 

<bos> and <eos>)

› If the token falls within the antecedent span, then it’s an agreement



Does the model learn anaphora, 

or just some simple heuristic?

Use several baselines:

› random noun

› first noun

› last noun

30



Agreement with CoreNLP predictions
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40
36

52

58

23

28

33

38

43

48

53

58

63

it

random first

last attention › agreement of attention is the 

highest

› last noun is the best heuristic



Agreement with CoreNLP predictions
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42
39

63

56

29

35

67
62

23

28

33

38

43

48

53

58

63

68

73

you I

random first
last attention › agreement of attention is the 

highest

› first noun is the best heuristic



Compared to human annotations for “it”
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54
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72
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last noun CoreNLP

attention
› pick 500 examples from the 

previous experiment

› ask human annotators to mark 

an antecedent

› pick examples where an 

antecedent is a noun phrase

› calculate the agreement with 

human antecedents



Attention map examples
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Source:

› And you, no doubt, would 

have broken it.

› There was a time I would 

have lost my heart to a 

face like yours.

Context:
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Attention map examples
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Source:

› And you, no doubt, would 

have broken it.

› There was a time I would 

have lost my heart to a 

face like yours.

Context:



Conclusions
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› introduce a context-aware NMT system based on the Transformer

› the model outperforms both the context-agnostic baseline and a simple 

context-aware baseline (on an En-Ru corpus)

› pronoun translation is the key phenomenon captured by the model 

› the model induces anaphora relations 



Thank you!

Questions?
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