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Background - Dialog

p Personal assistant, helps people 
complete specific tasks

p Combination of rules and statistical 
components

Task-‐Oriented Dialog Chit-‐Chat Dialog
p No	  specific	  goal,	  attempts	  to	  
produce	  natural	  responses

p Using	  variants	  of	  seq2seq	  model	  



Background – Neural Model

Must support! Cheer!

Support! It’s good.

My friends and I are shocked!

• utterance-response: n-to-1
relationship

• e.g., the response “Must 
support! Cheer!” is used 
for 1216 different input 
utterances 

• treat all the utterance-response pairs uniformly
• employ a single model to learn the mapping

between utterance and response

• introduce latent responding 
factors to model multiple 
responding mechanisms 

• lack of interpretation 

Rank-frequency distribution

Seq2Seq framework

• pre-defined a set of topics 
from an external corpus 

• rely on external corpus 

favor such general responses with high frequency 

Performance

TA-Seq2Seq

MARM



How to capture different utterance-response relationships ?
Conversation context 
Topic information
Keyword
Coherence
Scenarios heuristics

Our motivation comes from
Human Conversation Process



Human Conversation Process

Do you know a good eating place for Australian special food?

current mood

I don’t know

Good Australian 
eating places include 
steak, seafood, cake, 

etc. What do you 
want to choose?

general response

specific response
knowledge state dialogue partner



Key Idea

• introduce an explicit specificity control variable s to represent the 
response purpose

- s summarizes many latent factors into one variable
- s has explicit meaning on specificity
-‐‑ 𝑠 actively controls the generation of the response 

current mood

knowledge state dialogue partner
𝑺



Model Architecture 

• the specificity control variable 𝑠 is introduced into the Seq2Seq model 
• single model -> multiple model
• different <utterance, response>, different 𝑠, different models

• word representation
• semantic representation: relates to the semantic meaning  
• usage representation: relates to the usage preference 
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Utterance 
Encoder

Response
Decoder

0 U

Gaussian Kernel Layer

Specificity 
Control Variable

Semantic-based & Specificity-based Generation



Model - Encoder

p Bi-RNN: modeling the utterance from both forward and backward directions 
n {𝒉&→, … , 𝒉*→} 𝒉𝑻←, … , 𝒉&←
n 𝐡/ = [𝒉/→,𝒉*2/3&← ]



Model - Decoder

• predict target word based on a mixture of two probabilities:  the semantic-based 
and specificity-based generation probability 

𝑝 𝑦/ = 𝛽𝑝8 𝑦/ + 𝛾𝑝;(𝑦/)

Ø semantic-based probability
- decides what to say next given the input

𝑝8 𝑦/ = 𝑤 = 𝒘* 𝑾8
A B 𝒉CD + 𝑾𝑴

𝒆 B 𝒆/2& + 𝒃8

hidden state semantic representation 



Model - Decoder

Ø specificity-based probability
- decides how specific we should reply

l Gaussian Kernel layer 
ü the specificity control variable interacts with the usage 

representation of words through the layer
ü let the word usage representation regress to the variable 
𝑠 through certain mapping function (sigmoid)

l specificity control variable 𝑠 ∈ [0,1]
ü 0 denotes the most general response 
ü 1 denotes the most specific response 

𝑝; 𝑦/ = 𝑤 =	  
1
2𝜋𝜎

exp(−
(Ψ; 𝑼,𝒘 − 𝑠)U

2𝜎U )

	  Ψ; 𝑼,𝒘 = 𝜎(𝒘*(𝑼 B 𝑾V + 𝒃V))

usage representation
variance



Model Training

• Objective function – log likelihood
ℒ = X log𝑃(𝒀|𝑿, 𝑠; 𝜃)

(𝑿,𝒀)b𝒟

• Training data: triples (𝑿,𝒀, 𝑠)
• s is not directly available in the raw conversation corpus 

How to obtain s to learn our model? 

We propose to acquire distant labels for 𝑠



Distant Supervision

l Normalized Inverse Response Frequency (NIRF) 
Ø a response is more general if it corresponds to more input utterances 
Ø the Inverse Response Frequency (IRF) in a conversation corpus

l Normalized Inverse Word Frequency (NIWF)
Ø a response is more specific if it contains more specific words 
Ø the maximum of the Inverse Word Frequency (IWF) of all the words in a response



Specificity Controlled Response Generation

• Given a new input utterance, we can generate responses at different 
specificity levels by varying the control variable s
• Different s, different models, different responses

n 𝑠 = 1: the most informative response 
n 𝑠 ∈ 0,1 : 	  more	  dynamic	  , enrich the styles in the response
n 𝑠 = 0: the most general response

0 1
General response Specific response

s



Experiments - Dataset

l Short Text Conversation (STC) dataset 
Ø released in NTCIR-13 
Ø a large repository of post-comment pairs from the Sina Weibo
Ø 3.8 million post-comment pairs
Ø Jieba Chinese word segmenter



Experiments – Model Analysis

1. We vary the control variable s by setting it to five different values (i.e., 0, 0.2, 0.5, 0.8, 1) 
2. NIWF (word-based) is a good distant label for the response specificity



Experiments – Model Analysis

1. Varying the variable s from 0 to 1, the generated responses turn from general to specific 
2. Different s -> different models -> different focus

general

specific



Experiments – Comparisons

When	  𝑠 = 1, our SC-Seq2Seqopqr model can achieve the best specificity performance



Experiments – Comparisons

1. our SC-Seq2Seqopqr model can best fit the ground truth data
2. there are diverse responses in real data in terms of specificity 



Experiments – Comparisons

1. SC-Seq2Seqopqr,st& generates the most informative responses and interesting and the 
least general responses than all the baseline models
2. The largest kappa value is achieved by SC-Seq2SeqNIWF,s=0 



Experiments – Case study

The responses generated by the four baselines are often quite general and short



Experiments – Case study

With s from 1 to 0, SC-Seq2Seqopqr can generate very long and specific responses, to 
more general and shorter responses.



Experiments – Analysis

1. Neighbors based on semantic 
representations are semantically related
2. Neighbors based on usage 
representations are not so related but with 
similar specificity levels 



Conclusion

l We argue 
n employing a single model to learn the mapping between the utterance and 

response will inevitably favor general responses

l We propose 
n an explicit specificity control variable is introduced into the Seq2Seq model 

handle different utterance-response relationships in terms of specificity 

l Future work
Ø employ some reinforcement learning technique to learn to adjust the control 

variable depending on users’ feedbacks
Ø apply to other tasks, like summarization, QA, etc
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