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We present a general DAG parser for UCCA, AMR, SDP and UD,
and show that multitask learning improves UCCA parsing.

Training data for parsing semantic representations is scarce. We consider four schemes:
UCCA: Intuitive, cross-lingual, and modular semantic representation. Primary edges form a tree.

Remote edges (dashed) allow reentrancy, creating a directed acyclic graph [1].
AMR: Abstract graph on concepts and constants. Rooted DAG with labeled nodes and edges.

Encodes named entities, argument structure, semantic roles, word sense, coreference [3].
SDP: Set of related bilexical semantic DAG schemes: DM, PAS, PSD and CCD. We use

DM (DELPH-IN MRS). Encodes argument structure for many predicate types [7].
UD: Cross-lingual syntactic bilexical tree. Encodes syntactic relations between words [6].

UD++ (Enhanced++ UD) adds and augments edges, creating a bilexical DAG [8].
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Universal Conceptual Cognitive Annotation (UCCA).

P process
S state
A participant
L linker
H linked scene
C center
E elaborator
D adverbial
R relator
N connector
U punctuation
F function unit
G ground

UCCA edge labels.
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Abstract Meaning Representation (AMR).

After graduation , John moved to Paris

ARG2 ARG1

ARG1 top ARG2

ARG1 ARG2

Semantic Dependency Parsing (SDP): DM representation.
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Universal Dependencies (UD).

Semantic representations share much of their content [2].
Multitask learning exploits task overlap, effectively extending the training data.
We focus on UCCA parsing due to its small training set.
As auxiliary tasks, we use unlabeled AMR, SDP and UD parsing.

Data
UCCA: (1) English Wikipedia (Wiki); (2) Twenty Thousand Leagues Under the Sea (20K),
annotated in English (small, only test) French (small), and German (pre-release, noisy).
{AMR: LDC2017T10 (English). SDP: DM part from SDP 2016 (English). UD: v2.1 treebanks:
English (UD++), French and German.}: Only for training. Number of sentences per dataset:
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English corpora.
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German corpora.

Domains differ, too:
UCCA AMR SDP UD
Wikipedia blogs news blogs
books news news

emails emails
reviews reviews

Q&A

TUPA: A Transition-Based DAG Parser
We extend TUPA, a general DAG parser, which has been proposed as a UCCA parser [4].
It is a transition-based parser supporting reentrancy, discontinuity and non-terminal nodes.
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Limited capacity promotes generalization by using the shared parameters for all tasks [5].

Unified DAG Format
We convert all representations into a format similar to UCCA and supported by TUPA.
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Converted AMR.
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Converted UD.

Experiments
English. Train: UCCA Wiki (+aux), test: UCCA Wiki (in-domain) or 20K (out-of-domain).
French and German. Train: 20K (+UD as aux), test: 20K (both in-domain).
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Multitask learning consistently improve UCCA parsing when compared to single-task.

Task Similarity
Does improvement depend on structural task similarity, or training corpus similarity?
We compared annotations of 100 WSJ sentences, and training corpus word distributions.
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