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The primary purpose of the supplemental is to provide the theoretical arguments that our algorithm is
correct. We first give the proof that our proposed tree metric is indeed tree additive. We then analyze the
consistency of Algorithm 1.

1 Path Additivity

We first prove that our proposed tree metric is path additive based on the proof technique in Song et al.
(2011).

Lemma 1. If Assumption 1 in the main paper holds then, dspectral is an additive metric.

Proof. For conciseness, we simply prove the property for paths of length 2. The proof for more general
cases follows similarly (e.g. see Anandkumar et al. (2011)).

First note that the relationship between eigenvalues and singular values allows us to rewrite the dis-
tance metric as

dspectral(i, j) = −1

2
log Λm(Σx(i, j)Σx(i, j)>) + 1

4 log Λm(Σx(i, i)Σx(i, i)>) + 1
4 log Λm(Σx(j, j)Σx(j, j)>)

Furthermore, Σx(i, j)Σx(i, j)> is rank m by Assumption 1 and the conditional independence state-
ments implied by the latent tree model. Thus Λm(Σx(i, j)Σx(i, j)>) is equivalent to taking the pseudo-
determinant | · |+ of (Σx(i, j)Σx(i, j)>), which is the product of the non-zero eigenvalues. The pseudo-
determinant can be alternatively defined in the following limit form:

|B|+ = lim
α→0

|B + αI|
αp−m

where B is a p× p matrix of rank m and I is the p× p identity and | · | equals the standard determinant.
Note that if m = p then |B|+ = |B|.

Thus, our distance metric can be further rewritten as:

dspectral(i, j) = −1

2
log |Σx(i, j)Σx(i, j)>|+ + 1

4 log |Σx(i, i)Σx(i, i)>|+ + 1
4 log |Σx(j, j)Σx(j, j)>|+

(1)

We now proceed with the proof. For paths of length 2, i− j − k, there are three cases1:

• i← j → k

• i← j ← k

• i→ j → k

1although the additive distance metric is undirected, A and C in Assumption 1 are defined with respect to parent-child
relationships, so we must consider direction



Case 1: (i← j → k) Note that in this case j must be latent but i and k can be either observed or latent.
We assume below that both i and k are observed. The same proof strategy works for the other cases.

Due to Assumption 1,

Σx(i, k) = E[viv
>
k |x] = Ci|j,xΣx(j, j)C>k|j,x

Thus,

Σx(i, k)Σx(i, k)> = Ci|j,xΣx(j, j)C>k|j,xCk|j,xΣx(j, j)C>i|j,x

Combining this definition with Sylvester’s Determinant Theorem (Akritas et al., 1996), gives us that:

|Σx(i, k)Σx(i, k)>|+ = |Ci|j,xΣx(j, j)C>k|j,xCk|j,xΣx(j, j)C>i|j,x|+
= |C>i|j,xCi|j,xΣx(j, j)C>k|j,xCk|j,xΣx(j, j)|+

(i.e. we can move C>i|j,x the to the front).
Now C>i|j,xCi|j,xΣx(j, j)C>k|j,xCk|j,xΣx(j, j) is m × m and has rank m. Thus, the pseudo-

determinant equals the normal determinant in this case. Using the fact that |AB| = |A||B| if A and B
are square, we get

|Σx(i, k)Σx(i, k)>|+ = |C>i|j,xCi|j,xΣx(j, j)C>k|j,xCk|j,xΣx(j, j)|

= |C>i|j,xCi|j,xΣx(j, j)||C>k|j,xCk|j,xΣx(j, j)|

=
|Σx(j, j)||C>i|j,xCi|j,xΣx(j, j)|

|Σx(j, j)|
×
|Σx(j, j)||C>k|j,xCk|j,xΣx(j, j)|

|Σx(j, j)|

=
|Σx(j, j)C>i|j,xCi|j,xΣx(j, j)|

|Σx(j, j)|
×
|Σx(j, j)C>k|j,xCk|j,xΣx(j, j)|

|Σx(j, j)|

Furthermore, note that

|Σx(j, j)C>i|j,xCi|j,xΣx(j, j)| = |Ci|j,xΣx(j, j)Σx(j, j)C>i|j,x|+
= |Σx(i, j)Σx(i, j)>|+

This gives,

|Σx(i, k)Σx(i, k)>|+ =
|Σx(i, j)Σx(i, j)>|+

|Σx(j, j)|
× |Σx(k, j)Σx(k, j)>|+

|Σx(j, j)|

Substituting back into Eq. 1 proves that

dspectral(i, k) = −1

2
log |Σx(i, j)Σx(i, j)>|+ −

1

2
log |Σx(j, k)Σx(j, k)>|+ +

1

2
log |Σx(j, j)Σx(j, j)>|+

+ 1
4 log |Σx(i, i)Σx(i, i)>|+ + 1

4 log |Σx(k, k)Σx(k, k)>|+
= dspectral(i, j) + dspectral(j, k)

Case 2: i ← j ← k The proof is similar to above. Here since only leaf nodes can be observed,j and
k must be latent but i can be either observed or latent. We assume it is observed, the latent case follows
similarly.

Due to Assumption 1,

Σx(i, k) = E[viv
>
k |x] = Ci|j,xAj|k,xΣx(k, k)



Thus, via Sylvester’s Determinant Theorem as before,

|Σx(i, k)Σx(i, k)>|+ = |Ci|j,xAj|k,xΣx(k, k)Σx(k, k)A>j|k,xC
>
i|j,x|+

= |C>i|j,xCi|j,xAj|k,xΣx(k, k)Σx(k, k)A>j|k,x|+

Now C>i|j,xCi|j,xAj|k,xΣx(k, k)Σx(k, k)A>j|k,x is m × m and has rank m. Thus, the pseudo-
determinant equals the normal determinant in this case. Using the fact that |AB| = |A||B| if A and B
are square, we get

|Σx(i, k)Σx(i, k)>|+ = |C>i|j,xCi|j,xAj|k,xΣx(k, k)Σx(k, k)A>j|k,x|

= |C>i|j,xCi|j,x||Aj|k,xΣx(k, k)Σx(k, k)A>j|k,x|

= |C>i|j,xCi|j,x||Σx(j, k)Σx(j, k)>|

=
|Σx(j, j)||C>i|j,xCi|j,x||Σx(j, j)|

|Σx(j, j)||Σx(j, j)|
× |Σx(j, k)Σx(j, k)>|

=
|Σx(j, j)C>i|j,xCi|j,xΣx(j, j)|

|Σx(j, j)||Σx(j, j)|
× |Σx(j, k)Σx(j, k)>|

Furthermore, note that

|Σx(j, j)C>i|j,xCi|j,xΣx(j, j)| = |Ci|j,xΣx(j, j)Σx(j, j)C>i|j,x)|+
= |Σx(i, j)Σx(i, j)>|+

This gives,

|Σx(i, k)Σx(i, k)>|+ =
|Σx(i, j)Σx(i, j)>|+
|Σx(j, j)||Σx(j, j)|

× |Σx(j, k)Σx(j, k)>|+

Substituting back into Eq. 1 proves that

dspectral(i, k) = −1

2
log |Σx(i, j)Σx(i, j)>|+ −

1

2
log |Σx(j, k)Σx(j, k)>|+ +

1

2
log |Σx(j, j)Σx(j, j)>|+

+ 1
4 log |Σx(i, i)Σx(i, i)>|+ + 1

4 log |Σx(k, k)Σx(k, k)>|+
= dspectral(i, j) + dspectral(j, k)

Case 3: i→ j → k The same argument as case 2 holds here.

2 Theoretical Guarantees For Algorithm 1

Our main theoretical guarantee is that the learning Algorithm 1 will recover the correct undirected tree
u ∈ U with high probability, if the given top bracket is correct and if we obtain a sufficient number of
examples (w(i),x(i)) being generated from the model in §2.

Our kernel is controlled by its “bandwidth” γ, a typical kernel parameter that appears when using
kernel smoothing. The larger this positive number is, the more inclusive the kernel will be with respect
to examples in D in order to estimate a given covariance matrix.

In order for the learning algorithm to be consistent the kernel must be able to effectively manage the
bias-variance trade-off with the bandwidth parameter. Intuitively, if the sample size is small, then the
bandwidth should be relatively large to control the variance. As the sample size increases, the bandwidth
should be decreased at a certain rate to reduce the bias.

In kernel density estimation in Rp, one can put smoothness assumptions on the density being estimated,
such as bounded second derivatives. With these conditions, it can be shown that setting γ = O(N−1/5)
will optimally trade-off the bias and the variance in a way that leads to a consistent estimator.



However, our space of possible sequences is discrete and thus it is much more difficult to define
these analogous smoothness conditions. Therefore, giving an asymptotic rate to set the bandwidth as a
function of the sample size is difficult. To solve this issue, we consider a specific theoretical kernel where
the bandwidth directly relates to the bias of the estimator. Define the following γ-ball

Bj,k,x(γ) = {(j′, k′,x′) : ‖Σx′(j
′, k′)−Σx(j, k)‖F ≤ γ}

where ‖A‖F for a matrix A is the Frobenius norm of that matrix, i.e.: ‖A‖F =
√∑

j,k A
2
jk.

We then define the following kernel:

Kγ(j, k, j′, k′|x,x′)

=

{
1 : (j′, k′,x′) ∈ B(j,k,x)(γ)

0 : (j′, k′,x′) /∈ B(j,k,x)(γ)
(30)

Furthermore, to quantify the expected effective sample size using kernel smoothing we define the
following quantity:

νj,k,x(γ) = ∑
x′∈T ∗

p(x′)

`(x′)2

∑
j′,k′∈[`(x′)]

Kγ(j, k, j′, k′|x,x′)


where p(x) the prior distribution over tag sequences. Let νx(γ) = minj,k νj,k,x(γ). Intuitively, νj,k,x(γ)
represents the probability of finding contexts that are “similar” to (j, k,x) as defined by the kernel.
Consequently, Nνx(γ) represents a lower bound on the expected effective sample size for tag sequence
x.

Denote σx(j, k)(r) as the rth singular value of Σx(j, k). Let σ∗(x) := minj,k∈`(x) min
(
σx(j, k)(m)

)
.

Finally, define φ as the difference of the maximum possible entry in w and the minimum possible entry
in w (i.e. we assume that the embeddings are bounded vectors).

Using the above definitions and leveraging the proof technique in Zhou et al. (2010), we establish that
our strategy will result in a consistent estimation of the word-word distance subblock DWW .

Lemma 2. Assume the kernel used is that in Eq. 30 with bandwidth γ = C1εσ∗(x)
m and that

N ≥ m2φ2

C3ε2σ∗(x)2νx(γ)2
log

(
C2p

2`(x)2

δ

)
Then, for a fixed tag sequence x, and any ε < σ∗(x)

2 :

|dspectral(j, k)− dspectral(j, k)| ≤ ε ∀j 6= k ∈ `(x)

with probability 1− δ.

Then we have the following theorem.

Theorem 1. Define

4(x) :=
minu′∈U :u′ 6=u(x)(c(u(x))− c(u′))

8|`(x)|

where u(x) is the correct tree and u′ is any other tree.
Let û be the estimated tree for tag sequence x. Assume that the kernel in Eq. 30 is used with bandwidth

γ = 4(x)σ∗(x)
C4m

and that

N ≥
C5m

2φ2 log
(
C2p2`(x)2

δ

)
min(σ∗(x)24(x)2, σ∗(x)2)νx(γ)2

Then with probability 1− δ, û = u(x).



Proof. By Lemma 1, and this choice of N and γ,

|dspectral(j, k)− dspectral(j, k)| ≤ 4(x) ∀j 6= k ∈ `(x) (31)

Now for any tree u ∈ U , we can compute c(u) by summing over the distances d(i, j) where i and j
are adjacent in u.

Recall the formulas for d(i, j) (from the main paper):

• leaf edge:

d(i, j) =
1

2
(d(j, a∗) + d(j, b∗)− d(a∗, b∗)) .

• internal edge:

d(i, j) =
1

4

(
d(a∗, g∗) + d(a∗, h∗) + d(b∗, g∗) + d(b∗, h∗)− 2d(a∗, b∗)− 2d(g∗, h∗)

)
.

where a∗, b∗, g∗, h∗ are leaves (i.e. word nodes). Thus, Eq. 31 implies that

|d̂(i, j)− d(i, j)| ≤ 24(x) ∀j 6= k ∈ [M ]

Since there are ≤ 2|`(x)| edges in the tree, this is sufficient to guarantee that |ĉ(u) − c(u)| ≤
4|`(x)|4(x) ∀u ∈ U . Thus,

ĉ(u(x))− ĉ(u′) < 0 ∀u′ ∈ U : u′ 6= u(x)

Thus, the correct tree is the one with minimum estimated cost and Algorithm 1 will return the correct
tree.

3 Lemma Proofs

Instead of proving Lemma 1 directly, we divide it into two stages. First, we show that our strategy yields
consistent estimation of the covariance matrices (Lemma 3). We then show that a concentration bound
on the covariance matrices implies that the empirical distance is close to the true distance (Lemma 4).
Putting the results together proves Lemma 2.

Lemma 3. Assume the kernel used is that in Eq. 30 with bandwidth γ = ε/2 and that

N ≥
log(C1p2`(x)2

δ )φ2

C2ε2νx(ε/2)2

Then for a fixed tag sequence x and ∀j, k ∈ `(x),

‖Σ̂x(j, k)− Σ̂x(j, k)‖F ≤ ε

with probability 1− δ.

Proof. Define the quantity,

Σ̃x(j, k) =

∑M
i=1

∑
j′,k′∈[`(xi)]

Kγ(j, k, j′, k′|x,xi)Σxi(j′, k′)∑N
i=1

∑
j′,k′∈[`(xi)]

Kγ(j, k, j′, k′|x,xi)

Note that via triangle inequality,

‖Σ̂x(j, k)− Σ̂x(j, k)‖F ≤ ‖Σx(j, k)− Σ̃x(j, k)‖F + ‖Σ̂x(j, k)− Σ̃x(j, k)‖F

The first term (the bias) is bounded by ε/2 using the definition of the kernel in Eq. 30 with bandwidth
ε/2. The proof for bound for the second term (the variance) can be derived using the technique of (Zhou
et al., 2010) and is in Utility Lemma 1.



Lemma 3 can then be used to prove that with high probability the estimated mutual information is
close to the true mutual information.

Lemma 4. Assume that

‖Σ̂x(j, k)−Σx(j, k)‖F ≤ ε ≤
σ∗(x)

2
∀j, k ∈ [`(x)]

Then,

|dspectral(j, k)− dspectral(j, k)| ≤ C3mε

σ∗(x)
∀j 6= k ∈ [`(x)]

Proof. By triangle inequality,

|dspectral(j, k)− dspectral(j, k)|

≤ | log Λm(Σx(j, k))− log Λm(Σ̂x(j, k))|

+
1

2
| log Λm(Σx(j, j))− log Λm(Σ̂x(j, j))|

+
1

2
| log Λm(Σ̂x(k, k))− log Λm(Σ̂x(k, k))| (34)

We show the bound on | log Λm(Σx(j, j))− log Λm(Σ̂x(j, j))|, the others follow similarly. By defi-
nition of Λm(·), and triangle inequality we have that,

| log Λm(Σx(j, j))− log Λm(Σ̂x(j, j))| ≤
m∑
r=1

| log(σx(j, j)(r))− log(σ̂x(j, j)(r))|

To translate our concentration bounds on Frobenius norm to concentration of eigenvalues, we apply
Weyl’s Theorem. Assume first that σ̂x(j, j)(r) ≥ σx(j, j)(r). Then,

| log(σx(j, j)(r))− log(σ̂x(j, j)(r))| ≤ | log(σx(j, j)(r))− log(σx(j, j)(r) + ε)|

= | log(σx(j, j)(r))− log(σx(j, j)(r)(1 +
ε

σx(j, j)(r)
))|

≤ log(1 +
ε

σx(j, j)(r)
) ≤ ε

σx(j, j)(r)

Similarly, when σ̂x(j, j)(r) < σx(j, j)(r), then

| log(σx(j, j)(r))− log(σ̂x(j, j)(r))|

≤ ε

σ̂x(j, j)(r)
=

ε

σx(j, j)(r) − ε

Using the fact that ε ≤ σ∗(x)
2 we obtain that,

| log(σx(j, j)(r))− log(σ̂x(j, j)(r))| ≤ 2ε

σx(j, j)(r)

As a result,

| log Λm(Σx(j, j))− log Λm(Σ̂x(j, j))|

≤ m 2ε

σx(j, j)(m)

Repeating this for the other terms in Eq. 34 gives the bound.



Utility Lemma 1.

P (‖Σ̂x(j, k)− Σ̃x(j, k)‖F ≥ ξ) ≤ C1p
2`(x)2 exp

(
−CNνx(γ)2ξ2

φ2

)
∀j, k ∈ [`(x)]

Proof. The proof uses the technique of Zhou et al. (2010).
Define, Nx;j,k(γ) =

∑N
i=1

∑
j′,k′∈[`(xi)]

Kγ(j, k, j′, k′|x,xi) which is the empirical effective sample
size under the smoothing kernel.

We first show that the Nx;j,k(γ) is close to the expected effective sample size Nνx(γ).
Using Hoeffding’s Inequality, we obtain that

P (|Nx;j,k(γ)−Nνx(γ)| ≥ Nνx(γ)/2) ≤ C exp(−Nνx(γ)2/2) (36)

Note that

‖Σ̂x(j, k)− Σ̃x(j, k)‖F ≤ p2 max
a,b
|ς̂x(j, k; a, b)− ς̃x(j, k; a, b)|

where ς̂x(j, k; a, b) is the element on the ath row and bth column of Σ̂x(j, k). Thus, it suffices to bound
|ς̂x(j, k; a, b)− ς̃x(j, k; a, b)|.

Define the boolean variable E = I[Nx;j,k(γ) > Nνx(γ)/2]. Then,

P (‖ς̂x(j, k; a, b)− ς̃x(j, k; a, b)‖F ≥ ξ) =

P (‖ς̂x(j, k; a, b)− ς̃x(j, k; a, b)‖F ≥ ξ|E = 1)P (E = 1)

+P (‖ς̂x(j, k; a, b)− ς̃x(j, k; a, b)‖F ≥ ξ|E = 0)P (E = 0)

≤ P (‖ς̂x(j, k; a, b)− ς̃x(j, k; a, b)‖F ≥ ξ|E = 1) + P (E = 0)

The second term is bounded by Eq. 36. We prove the first term below.
For shorthand, refer to P (‖ς̂x(j, k; a, b)− ς̃x(j, k; a, b)‖F ≥ ξ|E = 1) as

PE(‖ς̂x(j, k; a, b)− ς̃x(j, k; a, b)‖F ≥ ξ|E = 1). Define the following quantities:
For convenience define the following quantity, where w(i)

j,a is the ath element of the vector w(i)
j

δx(i)(j, k; a, b) = w
(i)
j,a(w

(i)
k,b)
>
− ςx(i)(j, k; a, b)

For every κ > 0, by Markov’s inequality,

PE

∑
i∈[N ]

∑
j′,k′∈`(x(i))

Kγ(j, k, j′, k′|x,x(i))δx(i)(j, k; a, b) > Nx;j,k(γ)ξ


= PE

exp

κ ∑
i∈[N ]

∑
j′,k′∈`(x(i))

Kγ(j, k, j′, k′|x,x(i))δx(i)(j, k; a, b)

 > exp (κNx;j,k(γ)ξ)


≤

E
[
exp

(
κ
∑

i∈[N ]

∑
j′,k′∈`(x(i))Kγ(j, k, j′, k′|x,x(i))δx(i)(j, k; a, b)

)]
exp (κNx;j,k(γ)ξ)

We now bound the numerator. Using the fact that the samples are independent, we have that

E

exp

κ ∑
i∈[N ]

∑
j′,k′∈`(x(i))

Kγ(j, k, j′, k′|x,x(i))δx(i)(j, k; a, b)


=

∏
i∈[N ]

∏
j′,k′∈`(x(i))

E
[
exp

(
κKγ(j, k, j′, k′|x,x(i))δx(i)(j, k; a, b)

)]
=

∏
i∈[N ]

∏
j′,k′∈`(x(i))

I[(j′, k′,x(i)) ∈ Bγ(j, k,x)]E [exp(κδx(i)(j, k; a, b))]



From Utility Lemma 2, we can conclude that∏
i∈[N ]

∏
j′,k′∈`(x(i))

I[(j′, k′,x(i)) ∈ Bγ(j, k,x)]E [exp(κδx(i)(j, k; a, b))]

≤
∏
i∈[N ]

∏
j′,k′∈`(x(i))

I[(j′, k′,x(i)) ∈ Bγ(j, k,x)] exp(κ2φ2/8)

≤ exp(Nx;j,k(γ)κ2φ2/8)

PE

∑
i∈[N ]

∑
j′,k′∈`(x(i))

Kγ(j, k, j′, k′|x,x(i))δx(i)(j, k; a, b) > Nx,j,k(γ)ξ


≤ exp(−κNx;j,k(γ)ξ) exp(Nx;j,k(γ)κ2φ2/8)

Setting κ = 4ξ
φ2

, gives us that

PE

∑
i∈[N ]

∑
j′,k′∈`(x(i))

Kγ(j, k, j′, k′|x,x(i))δx(i)(j, k; a, b) > Nx,j,k(γ)ξ


≤ exp(−2Nx;j,k(γ)ξ2/φ2)

≤ exp(−Nνx(γ)ξ2/φ2)

Combining the above with Eq. 36 and taking some union bounds over a, b, j, k proves the lemma.

Helper Lemmas

We make use of the following helper lemma that is standard in the proof of Hoeffding’s Inequality,
e.g. Casella and Berger (1990).

Utility Lemma 2. Suppose that E(X) = 0 and that a ≤ X ≤ b. Then

E[etX ] ≤ et2(b−a)2/8
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