
A Reproducibility

In this section we disclose the used parameters of
some of the mentioned models for reproducibility
purposes. The only models that are not mentioned
here are RNM and RS as they just apply a random
strategy.

A.1 OSM
We use a SSD-512 model to generate the region
proposals. The model was initialized with weights
from a model pretrained on ImageNet. We used
stochastic gradient descent with initial learning
rate 1e-3, momentum 0.9 and weight decay 5e-4 to
optimize the loss. The learning rate was degraded
by a factor 10 after 80,000 and 100,000 iterations.
Batches of size 32 were used during training. Ad-
ditionally, we found it important to use a warm-up
scheme at the start of the training, where we grad-
ually increased the learning rate from 1e-6 to 1e-3,
after which we resumed the normal learning rate
schedule. We included standard data augmenta-
tions during training, i.e., color jitter, random ob-
ject crops, rescalings and horizontal flips.

The OSM model uses 64 region proposals ex-
tracted by the single-shot detection model. We
used a ResNet-18 model, pretrained on ImageNet
to encode the local regions. A bidirectional GRU
model with one hidden layer of size 512 was used
to encode the sentence. We optimized the loss
with stochastic gradient descent with initial learn-
ing rate 1e-3, momentum 0.9 and weight decay 1e-
4. We ignored the loss term when there were no re-
gion proposals with mean intersection over union
larger than 0.5. The learning rate was reduced by a
factor 10 when the validation performance became
stagnant. We used batches of size 8.

A.2 SCRC
We reused the single shot detection model from
before (see sec. A.1) to generate 64 region pro-
posals per image. The local and global features
were generated by two separate ResNet-18 mod-
els, both pretrained on ImageNet. We used a bidi-
rectional GRU with 512 hidden units for the lan-
guage model. The local and global recurrent con-
text models use a uni-directional GRU with 512
hidden units. In the original paper they also pre-
train the GRUs on the captioning task. We decided
not to do this however as there was no captioning
dataset that was close to the dataset described in
this paper. These GRUs were thus initialised ran-

domly. We reused the optimization scheme from
section A.1 to train the model.

A.3 STACK-NMN
The images were first resized from 1600⇥900 to
512⇥512 before extracting the feature maps with
ResNet-101. To extract the feature maps from this
model we cut it off at the fourth channel. The out-
put of the used ResNet model is a tensor of size
32 ⇥ 32 ⇥ 1024 per image of size 512 ⇥ 512.
The STACK-NMN model makes use of FeatH
and FeatW parameters internally representing the
amount of feature channels for the height and
width. These were both set to 32. These param-
eters are important as they allow the network to
transform the center of a ground truth bounding
box to a cell in the 32 ⇥ 32 grid or vice versa.
An other crucial parameter to the STACK-NMN
model is the amount of reasoning steps. This in-
fluences both inference speed as well as accuracy.
We tested the following values: [1, 2, 4, 6, 8, 9, 16]
and found that 4 reasoning steps gave us the best
results. The model was trained until the validation
accuracy didn’t increase over 10 epochs. The best
model on the validation set is saved and used in
the experiments. We also used a batch size of 64.
The rest of the parameters were not changed and
were left as the original parameters in the imple-
mentation.

A.4 MAC
To extract the visual feature maps from the images
in the Talk2Car dataset we reuse the method
mentioned in STACK-NMN. We used the follow-
ing parameters for the MAC model; We added
L2-regularization to the model and used gradient
clipping at 5. Next, Exponential Moving Average
was also used for the weights of the model with
a weight decay of 0.999. We experimented with
different learning rates but found that 0.0001 gave
us the best results when using the Adam optimizer.
When the loss between two epochs didn’t decrease
more than 0.2 we multiplied the learning rate by
0.5 as is the default value in MAC. The follow-
ing changes were made to transform MAC to the
object referral task based on the implementation
of STACK-NMN; We added a cos/sin based posi-
tional encoding to the feature maps by concatena-
tion inspired by (Vaswani et al., 2017). We also
use 32 for FeatH and FeatW to calculate the cor-
responding cell of the center of a bounding box.
Instead of using the question and memory as the



input to the output unit, we used the pre-Softmax
attention map from the last read unit of the rea-
soning process. This attention map is then passed
to a fully connected layer that predicts the cell in
which the center of the bounding box lies. With
a convolutional layer we pass over the image to
predict the offsets of the bounding box relative to
the center of the bounding box. We also experi-
mented with different amounts of reasoning steps
([1,2,3,4,8,10,12]) and found that with our mod-
ified version of MAC 10 reasoning steps worked
the best for our task. The batch size was set to 32.
The rest of the parameters remained unchanged to
the original paper.

A.5 BOBB
The algorithm that is used for this model is de-
scribed in Algorithm 1 in section A and has been
used on the bounding boxes of the training set. A
heatmap of the location of the objects in the train-
ing set can be seen in Fig. 4(a). The resulting
bounding box that was found is: [0, 435, 445, 325]
with format [x1, y1, w , h]. x1 and y1 represent the
lower left corner of the bounding box. This found
bounding box corresponds with the bias seen on
the map.



(a) Training set (b) Validation set (c) Test set

Figure 4: The heatmaps of the locations of all objects in the training set (a), validation set (b) and test set (c)
respectively.

Algorithm 1 BOBB Algorithm
1: procedure FINDBESTBBOX(train gt bboxes, imgWidth=1600, imgHeight=900, threshold=0.5)
2: bestAm 0
3: bestBox  None
4: X  linspace(0, ImgWidth, step = 5)
5: Y  linspace(0, ImgHeight, step = 5)
6: for x1 in X do
7: for x2 in X do
8: if x2  x1 then continue
9: for y1 in Y do

10: for y2 in Y do
11: if y2  y1 then continue
12: box  [x1, y1, x2 � x1, y2 � y1]
13: am getAmountOfIoUAboveThresh(box , train gt bboxes, threshold)
14: if am > bestAm then
15: bestAm am
16: bestBox  box
17: return bestBox


