
A The GLUE and SciTail Datasets

Basically, the GLUE dataset (Wang et al., 2019)
consists of three types of tasks: single-sentence
classification, similarity and paraphrase tasks, and
inference tasks, as shown in Table 1.

Single-Sentence Classification. The model
needs to make a prediction given a single sentence
for this type of tasks. The goal of the CoLA
task is to predict whether an English sentence is
grammatically plausible and the goal of the SST-2
task is to determine whether the sentiment of a
sentence is positive or negative.

Similarity and Paraphrase Tasks. For this type
of tasks, the model needs to determine whether or
to what extent two given sentences are semanti-
cally similar to each other. Both the MRPC and
the QQP tasks are classification tasks that require
the model to predict whether the sentences in a
pair are semantically equivalent. The STS-B task,
on the other hand, is a regression task and requires
the model to output a real-value score representing
the semantic similarity of the two sentences.

Inference Tasks. Both the RTE and the MNLI
tasks aim at predicting whether a sentence is en-
tailment, contradiction or neutral with respect to
the other. QNLI is converted from a question
answering dataset, and the task is to determine
whether the context sentence contains the answer
to the question. WNLI is to predict if the sen-
tence with the pronoun substituted is entailed by
the original sentence. Because the test set is im-
balanced and the development set is adversarial, so
far none of the proposed models could surpass the
performance of the simple majority voting strat-
egy. Therefore, we do not use the WNLI dataset
in this paper.

SciTail is a textual entailment dataset that
is derived from a science question answering
dataset (Khot et al., 2018). Given a premise and a
hypothesis, the model need to determine whether
the premise entails the hypothesis. The dataset is
fairly difficult as the sentences are linguistically
challenging and the lexical similarity of premise
and hypothesis is high.

B Implementation Details

Our implementation is based on the PyTorch im-
plementation of BERT.1 We first load the pre-
trained BERTBASE model. We use the Adam opti-
mizer (Kingma and Ba, 2015) with a batch size of
32 for both meta-learning and fine-tuning. We set
the maximum length to 80 to reduce GPU memory
usages.

In the meta-learning stage, we use a learning
rate of 5e-5 to train the models for 5 epochs. Both
the dropout and the warm-up ratio are set to 0.1
and we do not use gradient clipping. We set the
update step k to 5, the number of sampled tasks in
each step to 8 and α to 1e-3.

For fine-tuning, again the dropout and warum-
up ratio are set to 0.1 and we do not use gradient
clipping. The learning rate is selected from {5e-
6, 1e-5, 2e-5, 5e-5} and the number of epochs is
selected from {3, 5, 10, 20}. We select hyper-
parameters that achieve the best performance on
the development set.

We do not use the stochastic answer network as
in MT-DNN for efficiency.

C Linguistic Information

In this part, we use 10 probing tasks (Conneau
et al., 2018) to study what linguistic information
is captured by each layer of the models.

A probing task is a classification problem that
requires the model to make predictions related to
certain linguistic properties of sentences. The ab-
breviations for the 10 tasks are listed in Table 2.
Basically, these tasks are set to test the model’s
abilities to capture surface, syntactic or semantic
information. We refer the reader to Conneau et al.
(2018) for details. We freeze all the parameters of
the models and only train the classification layer
for the probing tasks.

First, we can see that the BERT model captures
more surface, syntactic and semantic information
than other models, suggesting it learns more gen-
eral representations. MT-DNN and our models, on
the other hand, learn representations that are more
tailored to the GLUE tasks.

Second, our models perform better than MT-
DNN on the probing tasks, indicating meta-
learning algorithms may find a balance between
general linguistic information and task-specific in-
formation. Among the three meta-learning algo-

1https://github.com/huggingface/pytorch-pretrained-
BERT



Corpus Task # Train # Label Metrics
Single-Sentence Tasks

CoLA Acceptability 8.5k 2 Matthews correlation
SST-2 Sentiment 67k 2 Accuracy

Similarity and Paraphrase Tasks
MRPC Paraphrase 3.7k 2 F1/Accuracy
STS-B Similarity 7k 1 Pearson/Spearman correlation
QQP Paraphrase 364k 2 F1/Accuracy

Inference Tasks
MNLI NLI 393k 3 Accuracy
QNLI QA/NLI 105k 2 Accuracy
RTE NLI 2.5k 2 Accuracy

WNLI NLI 634 2 Accuracy
SciTail NLI 23.5k 2 Accuracy

Table 1: Basic information and statistics of the GLUE and SciTail datasets (Williams et al., 2018).

Model Surface Syntactic Semantic
SentLen Word TreeDep ToCo BShif Tense SubNum ObjNum SOMO CoIn

Majority Voting 16.67 0.10 17.88 5.00 50.00 50.00 50.00 50.00 50.13 50.00
BERT-Layer 1 90.84 7.54 32.31 57.91 50.67 78.83 77.50 75.65 50.13 50.05
BERT-Layer 6 69.87 1.06 31.96 76.97 79.66 86.19 84.33 77.58 57.73 63.43
BERT-Layer 12 63.15 32.98 28.80 71.36 85.67 89.72 76.63 76.52 60.92 70.91

MTDNN-Layer 1 92.43 25.84 33.57 58.64 50.00 78.00 80.70 79.83 51.26 51.57
MTDNN-Layer 6 80.11 21.41 31.73 59.58 76.00 81.89 80.36 80.00 55.52 58.31

MTDNN-Layer 12 58.15 23.49 28.03 56.93 75.58 85.47 76.94 72.76 58.16 66.09
MAML-Layer 1 92.21 2.09 30.64 55.27 50.00 77.71 72.61 70.44 50.13 52.49
MAML-Layer 6 76.26 32.13 28.24 67.45 68.43 87.88 80.79 80.07 55.40 59.38
MAML-Layer 12 61.50 20.32 27.31 60.15 79.47 85.56 77.60 75.86 56.76 63.59

FOMAML-Layer 1 88.39 3.22 30.91 51.01 49.97 79.56 74.53 71.28 50.13 50.00
FOMAML-Layer 6 81.33 22.63 30.44 69.48 77.01 88.89 81.81 80.18 57.93 60.11
FOMAML-Layer 12 62.93 30.84 28.33 59.15 79.96 87.60 79.33 77.98 58.05 64.58

Reptile-Layer 1 87.97 3.26 30.00 52.88 50.74 80.48 74.32 70.90 50.13 50.00
Reptile-Layer 6 77.55 24.52 30.74 69.18 75.20 88.42 82.11 81.03 58.52 61.39
Reptile-Layer 12 60.02 29.07 27.78 59.00 82.95 87.34 77.75 75.21 59.23 67.60

Table 2: Accuracy numbers on the 10 probing tasks (Conneau et al., 2018).

rithms, Reptile can capture more general linguistic
information than others. Considering Reptile has
outperformed the other two models on the GLUE
dataset, these results further demonstrate Reptile
may be more suitable for NLU tasks.

Third, we find that there may not always exist
a monotonic trend on what linguistic information
each layer captures. Also, contrary to the findings
from Liu et al. (2019) which suggest the middle
layers of BERT are more transferable and contain
more syntactic and semantic information, our ex-
perimental results demonstrate that this may not
always be true. We conjecture this is because both
syntactic and semantic information are broad con-
cepts and the probing tasks in Liu et al. (2019) may

not cover all of them. For example, there exist a
monotonic trend for SOMO while the middle lay-
ers of these models are better at tasks like Sub-
Num.

Another interesting thing to note is that the
lower layers of models perform rather poorly on
the word content task, which tests whether the
model can recover information about the orig-
inal words in the sentence. We attribute this
phenomenon to the use of subwords and posi-
tion/token embeddings. In the higher layers,
the model may gain more word-level information
through the self-attention mechanism.
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