
A Performance/Controllability trade-off

The trade-off between performance and inter-
pretability has been a long-standing problem in
feature selection (Jackson, 1998; Haury et al.,
2011). The trade-off exists because it is usually
very difficult to accurately find the exact features
needed to make the prediction. Safely keeping
more features will almost always lead to better
performance. Some models do succeed in achiev-
ing superior performance by selecting only a sub-
set of the input. However, they mostly still tar-
get at the recall of the selection (Hsu et al., 2018;
Chen and Bansal, 2018; Shen et al., 2018a), i.e., to
select all possible content that might help predict
the target. The final selected contents reduce some
most useful information from the source, but they
still contain many redundant contents (same like
our VRS-(ε = 0) as in Table 6 and 5). This makes
them unsuitable for controllable content selection.
In text generation, a recent work from Moryossef
et al. (2019) shows they could control the contents
by integrating a symbolic selector into the neural
network. However, their selector is tailored by
some rules only for the RDF triples. Moreover,
even based on their fine-tuned selector, the fluency
they observe is still slightly worse than a standard
seq2seq.

We assume the content selector is the major bot-
tle if we want a model that can achieve control-
lability without sacrificing the performance. We
can clearly observe in Table 6 that the performance
drop in Wikibio is marginal compared with Giga-
word. The reason should be that the selection on
Wikibio is much easier than Gigaword. The bi-
ography of a person almost always follow some
simple patterns, like name, birthday and profes-
sion, but for news headlines, it can contain infor-
mation with various focuses. In our two tasks, due
to the independence assumption we made on βi
and the model capacity limit, the content selec-
tor cannot fully fit the true selecting distribution,
so the trade-off is necessary. Improving the se-
lector with SOTA sequence labelling models like
Bert (Devlin et al., 2019) would be worth trying.

There are also other ways to improve. For ex-
ample, we could learn a ranker to help us choose
the best contents (Stent et al., 2004). Or we could
manually define some matching rules to help rank
the selection (Cornia et al., 2018). In Table 2, we
show the VRS model achieves very high metric
scores based on an oracle ranker, so learning a

ranker should be able to improve the performance
straightforwardly.

Source: The sri lankan government on Wednesday an-
nounced the closure of government schools with immediate
effect as a military campain against tamil separatists esca-
lated in the north of the country.
Reference: sri lanka closes schools as war escalates .
b1: sri lanka shuts schools as war escalates .
b2: sri lanka closes schools as violence escalates .
b3: sri lanka shuts schools as fighting escalates .
b4: sri lanka closes schools as offensive expands .
b5: sri lanka closes schools as war continues .

Figure 4: Posterior inference example. Highlighted
words are selected contents according to the posterior
distribution qφ(β|X,Y ). b1-b5 are decoded by fixing
the selected contents.

B Example from Wikibio

To see how we can manually control the content
selection, Figure 5 shows an example from Wik-
ibio, the model is mostly able to form a proper sen-
tence covering all selected information. If the se-
lector assigns very high probability to select some
content and we force to remove it, the resulting
text could be unnatual (as in summary 4 in Fig-
ure 5 because the model has seen very few text
without containing the birthday information in the
training corpus). However, thanks to the diversity
of the content selector as shown in the previous
section, it is able to handle most combinatorial pat-
terns of content selection.

C Posterior inference

Figure 4 further provides an example of how we
can perform posterior inference given a provided
text. Our model is able to infer which source con-
tents are covered in the given summary. With the
inferred selection, we can sample multiple para-
phrases describing the same contents. As seen in
Table 6 and 5, the metric scores are remarkably
high when decoding from the posterior inferred se-
lections (last three rows), suggesting the posterior
distribution is well trained. The posterior infer-
ence part could be beneficial for other tasks like
content transfer among text (Wang et al., 2019;
Prabhumoye et al., 2019). The described source
contents can be first predicted with the posterior
inference, then transferred to a new text.



Figure 5: Example of content selection in Wikibio. Summary 4 in unnatural because we force to remove the
birthday content which the selector assigns very high probability to select.



Gigaword Wikibio
Vocabulary Built with byte-pair segmentation with size 30k Built by keeping the most frequent 20k tokens

Word Embedding Size 300. Initialized with Glove (Pennington et al., 2014). OOVs are randomly initialized from a normal distribution

Inputs Sequence of source word embeddings Sequence of concatenation of source table field,
value, position and reverse position embed-
dings (Lebret et al., 2016)

Source Encoder Single-layer Bi-LSTM with hidden size 512 Single-layer Bi-LSTM with hidden size 500

Target Decoder Single-layer LSTM with hidden size 512 Single-layer LSTM with hidden size 500

Drop out rate 0.3 for both encoder and decoder

Decoding Method Beam search with beam size 5 Greedy decoding. UNK words are replaced with
the most attended source token as in Liu et al.
(2018)

Mini-batch size 256 128

Optimizer Adam, β1 = 0.9, β2 = 0.999, ε = 10−8,weight decay = 1.2× 10−6, gradient clipping in [-5,5]

Initial Learning Rate 0.0005

Prior Selector B(γi) = σ(MLP(hi)). MLP is a multi-layer perceptron. hi comes from the encoder hidden state

Posterior Selector qφ(βi|X,Y ) = σ(MLP([hi ◦ e(y)])). ◦ means concatenation

Table 7: Detailed settings of our experiment. e(y) in the posterior selector is an encoded representation of the
ground-truth text. We use a bi-LSTM encoder. The last hidden state is treated as the representation for the text.


