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Abstract. In this paper, we investigate the language model (LM) adaptation issue for Statis-
tical Machine Translation (SMT). In order to overcome the weight bias on the LM obtained
from the development data, a simple but effective method is proposed to adapt the LM for
diverse test datasets by employing the cross entropy of translation hypotheses as a metric to
measure the similarity between different datasets. Experimental results show that the cross
entropy of a test dataset is closely correlated with the bias in estimating the language models
and our adaptation strategy significantly outperforms a strong baseline.

Keywords: Statistical machine translation, Language model, Weight adaptation, Cross-
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1 Introduction

Language modeling is applied in many natural language processing (NLP) applications, including
automatic speech recognition (ASR) and SMT. In reality, we often encounter the scenario in which
the performance of language model learned from given dataset changes drastically among different
datasets. Many adaptation techniques have been proposed to tackle this problem in the field of
ASR. A similar situation arises with respect to SMT. In SMT we build language model from large
amounts of monolingual data but incorporate it in the translation task of the dataset that is not well
covered by the model. This inconsistency inevitably affects the SMT training procedure, making
adaptation techniques a necessity.

Different from other tasks, language model is incorporated under a log-linear framework in
SMT. Specifically, for each source sentence f , we search for the final translation e∗ among all
possible candidates under the following equation:

P (e∗|f) = argmax
e
Pr(e|f) (1)

Under log-linear model, the posterior probability Pr(e|f) can be decomposed as:

Pr(e|f) = pλ(e|f)

=
exp(

∑M
m=1(λm · hm(e, f)))∑

e′ exp(
∑M

m=1(λm · hm(e′, f)))
(2)

where hm(e, f) is a feature function and λm is related weight for m = 1, . . . ,M .
Under the above framework, we tune the model weight on an independent development dataset,

and then we use the obtained weight to translate diverse datasets whose domain or related informa-
tion might be previously unknown. It is noticeable that the weight obtained from Minimum Error
Rate Training (MERT) matches the development dataset well, whereas it would be bias-estimated
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for others. Although the value of each feature’s weight represents its importance in the decoding
procedure, such type of importance might vary for different datasets under a specific language
model. In this article we concentrate on the bias-estimation of language model weight, i.e., the
difference between the oracle and actual LM weight as shown in section 3. We measure the simi-
larity between datasets based on cross-entropy of translation output according to a given language
model, adapt the LM weight based on the ratio of the cross-entropy and obtain the final results
through a second-pass translation. Our LM weight adaptation method is also related with density
ratio estimation, as mentioned in (Tsuboi et al., 2008), in which reweighting approach is proposed
to overcome the bias due to the different distribution of test and training data.

The remainder of this paper is organized as follows: Related work of LM adaptation is present-
ed in Section 2. In Section 3 we discuss the problem of LM weight bias-estimation in machine
translation. And in Section 4, cross-entropy is proposed as a metric for measuring the similarity
between different datasets and we further present our adaptation method. Experimental results are
shown in Section 5. We conclude and present several directions for future work in the last section.

2 Related Work
Nowadays LM adaptation in SMT has been paid lots of attentions. There are two main categories
for this problem.

The first one is data selection, i.e., when given a test dataset and a large general corpus, which
tries to extract sentences from the whole corpus that are relevant to the test dataset under some met-
ric. There are two main approaches for the measurement: One is to apply tf-idf metric (Hildebrand
et al., 2005; Lü et al., 2007; Zhao et al., 2004), which arises from information retrieval; while for
the other approach cross-entropy (perplexity) is adopted for selection, as reported in (Axelrod et
al., 2011; Moore and Lewis, 2010).

The second is model weighting. The main idea is to assign appropriate weight to each model
according to the similarity between the model corpus and test dataset. In this approach, the models
could be built from domain-specific corpus (Koehn and Schroeder, 2007) when domain of the test
dataset is known, or from datasets that belong to different sources (Foster and Kuhn, 2007; Lü
et al., 2007) when it is unavailable in advance. Such weighting method even could be apply to
either each sentence from the training corpus (Matsoukas et al., 2009) or phrase pair from the
phrase-table (Foster et al., 2010). Besides, the work of (Mohit et al., 2009; Mohit et al., 2010)
also belongs to such scenario, in which they attempt to build a classifier to predict whether or
not a phrase is difficult, then the LM weight is updated for each phrase segment according to its
difficulty.

The methods mentioned above try to overcome the difference between the training and the test
data. However, the bias between the development and the test data is also an open issue. Not
much attention has been paid to the such weight adaptation. In Li et al. (2010), the model weight
is tuned on a subset of the development set, which is extracted based on the relevance to the test
set.

In this paper, different from (Li et al., 2010), we focus on the adaptation of LM weight only, as
LM is one of the key components of SMT and has its own characteristic. In our work, we adopt
cross-entropy as a metric, just as (Axelrod et al., 2011; Moore and Lewis, 2010), to measure the
similarity between different datasets. However, only LM weight is adjusted during the adaptation,
and no extra model needs to be built. Although our method is quite simple and straightforward,
the improvements obtained from the adaptation show that the bias-estimation of LM weight due
to the difference between development and test dataset is also quite an important issue in SMT.

3 Language Model Weight Mismatch in Statistical Machine Translation
As model weight is tuned on development dataset only but applied to various test datasets, the
mismatch between development and test is inevitable. To verify the LM weight bias-estimation
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for different dataset pairs, we conduct the following experiment in this section: for development
dataset pair D(development) and T (test), we firstly learn the weight via MERT on D. Then with
all other feature weights fixed, we translate T and record the change of BLEU score compared
with baseline during the step-by-step modification of the LM weight by starting from the initial
weight with a constant value each time.

Based on the above approach, we use four dataset pairs for comparison under a large scale
experiment setting (Section 5.1). Figure 1 shows the relation between the BLEU score of the test
datasets and the corresponding LM weight. Specifically speaking, each point (x, y) in the figure
means that under new LM weight x∗ baseline-LM -weight, the BLEU score of test dataset under
new weight changes y points compared with baseline. We could observe that for some datasets pair
like MT03 as development and MT08 as test, the weight is seriously bias-estimated. The detailed
comparison is shown in table 1, in which the oracle performance represents the maximal BLEU
score obtained when we manually modify the LM weight. The significant difference between
baseline and oracle result (about 3 BLEU points) shows much room for potential improvement.
Meanwhile, the weight fits well for dataset pair MT03(development) and MT04(test), since the
baseline performance is close to the oracle.

Based on the above observation, we find that the LM weight mismatch is a common phe-
nomenon in SMT. And the bias-estimation is different for various dataset pairs. Thus it is nec-
essary to propose a metric that could measure the similarity between datasets and an adaptation
strategy on LM weight, as we will discuss in the next section.

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−12

−10

−8

−6

−4

−2

0

2

4

Language model weight variation percentage

B
LE

U
 s

co
re

 v
ar

ia
tio

n

 

 
Dev:MT03 Test:MT08
Dev:MT08 Test:MT03
Dev:MT03 Test:MT04
Dev:MT04 Test:MT03

Figure 1: The variation of BLEU score (in value) vs. variation of language model weight (in percentage)

DEV TEST Baseline Oracle
MT03 MT04 37.54 37.55(+0.01)
MT04 MT03 38.76 38.96(+0.20)
MT03 MT08 24.86 28.66(+3.80)
MT08 MT03 35.86 38.77(+2.91)

Table 1: Comparison between baseline and oracle performance under language model weight for different
dataset pairs.

4 Dynamic Language Model Weight Adaptation Under Cross Entropy
Entropy is used as a metric to show how much information one dataset contains. Given sentence
Xi = (x1, x2, . . . , xn), the corresponding cross-entropy under specific language model lm could

22



be calculated as:
H(Xi) = −

1

n
logPlm(x1, x2, . . . , xn) (3)

Given two datasets and one language model, we could use cross-entropy to identify which dataset
matches the language model better. As the language model is built on target language in SMT task,
we can use the entropy of the translation outputs for each dataset as a measurement of the dataset.
Given a language model and two datasets (development and test), the model weights are tuned
through MERT on development dataset. Then we compute their cross-entropy after translating
both datasets under current weight. Specifically speaking, for a dataset X that contains multiple
sentences, we obtain its cross-entropy according to the following equation:

H(X) = −
∑

i

∑
j logPlm(X

j
i )∑

i

∑
j length(X

j
i )

(4)

in which,Xj
i denotes the jth best translation or reference for the ith sentence in the dataset. As the

decoder generates translation outputs together with corresponding feature vectors, logPlm(X
j
i )

could be viewed as equivalent to the language model feature.
According to the property of cross-entropy, we can know how the dataset fits the language

model. Empirically speaking, a small cross-entropy value indicates a well-matching between
the language model and dataset. The language model could thus play a more important role in
the translating procedure, which further reveals a large value relatively. Hence, if the test data
matches language model better than the development data, the language model weight might be
under-estimated; otherwise it would be over-estimated. So we could conclude that cross-entropy
difference can be used as a metric for how well the LM weight is estimated.

However, we encounter two problems: Firstly, how can we estimate the degree to which the
LM weight is bias-estimated and the second is how we can adjust the weight appropriately. Here
we hold the straightforward opinion that the difference of the cross-entropy between test and
development data can be a metric for the LM bias-estimation. For the adaptation on the language
model weight, we propose an effective method that merely uses cross-entropy. Let D be the
development dataset and T be the test dataset. The adaptation approach is shown as follows:

1. Train a log-linear model based on D and obtain feature weight W .

2. Translate D using W and calculate the cross-entropy of D as H(D), similarly translate T
and obtain H(T ).

3. Modify the LM weight in Wlm by:

Wlm =Wlm
H(D)

H(T )

and get new weight W ′.

4. Translate T again under W ′ and get the final result.

In the third step, we use the ratio of the entropy of the development and the test dataset for
weight adjustment, as it could reflect the variance between these two datasets. It is known that in
development dataset each sentence owns references, the reason we use entropy of translation out-
puts rather than references for development is that in real application we usually translate datasets
without references, although it is included for standard SMT evaluation datasets. In fact we could
observe that the adaptation result based on the cross-entropy of translation outputs is consistent
with that based on cross-entropy of the references, as shown in section 5.2.
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5 Experiments
5.1 Experiment Settings
We implement a hierarchical phrase-based decoder according to Chiang (2005). The development
data includes NIST 2003 (MT03), NIST 2004 (MT04), NIST 2005 (MT05), NIST 2006 (MT06)
and NIST 2008 (MT08). Besides the above four datasets, the test datasets contain all portions of
MT06, including newswire (MT06nw), newsgroup (MT06wg) and weblog (MT06wl), and two
portions of MT08, including newswire (MT08nw) and webgroup (MT08wg). The statistics are
shown in Table 2. All results are measured in case-insensitive BLEU4 (Papineni et al., 2002).

Dataset MT03 MT04 MT05 MT06 MT08 MT06bc MT06nw MT06ng MT08nw MT08wg
#Sentence 919 1,788 1,082 1,664 1,357 565 616 483 691 666

#Word 24,900 50,061 30,512 38,984 33,259 11,884 17,971 9,146 18,124 15,145

Table 2: Statistics on development and test datasets.

In the experiments, the training corpus includes LDC2002E18, LDC2003E07, LDC2003E14,
LDC2004E12, LDC2004T08, LDC2005E83, LDC2005T06, LDC2005T10, LDC2006E26, LD-
C2006E34, LDC2006E85, LDC2006E92, and LDC2007T09, which consists of about 8.5M sen-
tence pairs. The word alignment result is trained by GIZA++ in both directions and refined under
intersect-diag-grow heuristics. The plain phrases are extracted from the all bilingual training data,
while hierarchical rules are only extracted from selected datasets, including LDC2003E14, LD-
C2003E07, LDC2005T10, LDC2006E34, LDC2006E85, and LDC2006E92, which covers nearly
467K sentence pairs. We further train the 5-gram language model over the English part of training
data plus Xinhua portion of the English Gigaword corpus.

5.2 Adaptation on 1-best Translation Result
In this part, we will evaluate the performance of our method introduced in section 4. Under each
development dataset, we calculate the cross-entropy of all test datasets, which are displayed in
table 3. The results of both baseline and under our adapted method are also presented in table 5.

DEV MT03 MT04 MT05 MT06 MT08
TEST Baseline Adapted Baseline Adapted Baseline Adapted Baseline Adapted Baseline Adapted
MT03 1.8842 1.8842 1.8507 1.8701 1.9953 1.9958 1.8058 1.7992 1.8800 1.8564
MT04 1.7556 1.7353 1.7264 1.7264 1.8720 1.8482 1.6900 1.6679 1.7600 1.7191
MT05 1.8880 1.8884 1.8621 1.8776 2.0022 2.0022 1.8109 1.8091 1.8759 1.8513
MT06 1.9287 1.9361 1.8997 1.9185 2.0459 2.0571 1.8408 1.8408 1.9224 1.9012
MT08 2.1462 2.1787 2.1176 2.1550 2.2890 2.3488 2.0376 2.0587 2.1224 2.1224

MT06bc 1.8324 1.8260 1.8262 1.8150 1.9425 1.9292 1.7657 1.7536 1.8352 1.7995
MT06nw 1.8480 1.8412 1.8175 1.8294 1.9535 1.9469 1.7607 1.7502 1.8378 1.8108
MT06ng 2.2962 2.3440 2.2660 2.3069 2.4436 2.5170 2.1692 2.2047 2.2637 2.2737
MT08nw 2.0602 2.0786 2.0208 2.0556 2.1913 2.2304 1.9548 1.9665 2.0271 2.0166
MT08wg 2.2649 2.3191 2.2544 2.2995 2.4204 2.5120 2.1511 2.1815 2.2527 2.2664

Table 3: .Cross entropy of test datasets on different development datasets, under large scale setting.

From table 5, we may find that the cross-entropy is quite close for some dataset pairs like MT03
and MT05 , which indicates that the adapted score would change little compared with baseline.
While for the pair like MT03 and MT08, the remarkable difference means that we can achieve
significant improvement (1.60 BLEU points for MT08 test and MT03 development, and 0.99
BLEU points for the reverse). We also obtain similar results on the other dataset pairs, including
all separate portions of MT06 and MT08 whose genre information is available. Table 6 displays
the oracle test performance in each dataset pair. We can observe that oracle performance for
MT05(test) under MT03(development) is 37.54, while the baseline is 37.33, which is consistent
with the ratio of cross-entropy between two datasets.
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DEV:TEST Method 1-gram 2-gram 3-gram 4-gram BP BLEU TER
MT03:MT08 Baseline 0.7866 0.4155 0.2276 0.1278 -0.2282 0.2486 0.5904
MT03:MT08 Adapted 0.7708 0.4033 0.2186 0.1222 -0.1318 0.2646 0.5910
MT08:MT03 Baseline 0.7703 0.4611 0.2773 0.1679 0.0000 0.3586 0.5912
MT08:MT03 Adapted 0.7851 0.4733 0.2860 0.1735 0.0000 0.3685 0.5682

Table 4: Detailed analysis of BLEU scores, including n-gram precision and length penalty and TER scores,
based on dataset pair of MT03 and MT08.

DEV MT03 MT04 MT05 MT06 MT08
TEST Baseline Adapted Baseline Adapted Baseline Adapted Baseline Adapted Baseline Adapted
MT03 39.14 39.14 (|) 38.77 38.45 (↓) 38.61 38.69 (|) 37.31 37.44 (|) 35.86 36.85 (↑)
MT04 37.52 36.74 (↓) 37.93 37.93 (|) 36.72 36.12 (↓) 35.81 36.84 (↑) 34.66 36.23(↑)
MT05 37.33 37.37 (|) 36.94 37.24(↑) 36.87 36.87 (↑) 35.93 36.07(|) 34.15 35.29 (↑)
MT06 33.58 34.04 (↑) 33.63 35.13 (↑) 33.44 33.49 (|) 36.36 36.36 (↑) 35.04 35.87 (↑)
MT08 24.86 26.46 (↑) 24.18 27.03 (↑) 25.43 26.65 (↑) 27.74 28.86 (↑) 29.29 29.29 (|)

MT06bc 24.22 27.20 (↑) 23.77 27.70 (↑) 24.64 26.26 (↑) 27.37 28.14 (↑) 28.87 28.43 (↓)
MT06nw 40.36 39.91 (↓) 39.97 40.74 (↑) 39.85 39.72 (|) 39.57 40.26 (↑) 37.71 39.72 (↑)
MT06ng 33.81 33.65 (|) 34.23 34.71 (↑) 33.79 33.45 (↓) 36.72 36.53 (|) 35.58 36.61 (↑)
MT08nw 29.40 30.66 (↑) 28.95 31.32 (↑) 29.67 30.31 (↑) 32.47 33.31 (↑) 33.03 33.23 (↑)
MT08wg 18.78 21.09 (↑) 17.81 21.04 (↑) 19.74 20.91 (↑) 21.35 23.06 (↑) 22.72 23.13 (↑)

Table 5: Comparison between baseline and LM weight adaption method using 1-best translation on dif-
ferent dataset pairs, under large scale setting. Symbol(↑) indicates improvement over 0.2 BLEU points,
(↑) indicates improvement over 0.2 BLEU points, (↓) means decline over 0.2 BLEU points, (|) shows no
noticeable change.

We also calculate the entropy on translations after adaptation of all dataset pairs, which is
also listed in table 3. From the results in table 3, we find that the cross entropy usually changes
according to the ratio of cross-entropy of development and test datasets. Specifically, the cross
entropy of test dataset increases as LM weight decreases, as shown in figure 2, in which we use
the same dataset pairs as in section 3. The reason for the phenomenon in figure 2 is that when the
LM weight increases, the language model turns to play a more important role in the whole SMT
system. As a result, the decoder prefers to select the translations with higher LM scores, which
are also with shorter length and smaller cross-entropy.

Furthermore, we want to know what the improvements could be under our adaptation method.
Here we take the pair MT03 and MT08 as example, the details of the results are shown in table 4.
We may observe that for the pair of MT03 as development and MT08 as test, the length penalty is
quite large. Meanwhile our adaptation method could notably reduce such penalty and get signifi-
cant improvement based on BLEU metric. Although the n-gram precision decrease in some sense,

MT03 MT04 MT05 MT06 MT08
MT03 39.14 38.92 38.77 38.24 38.44
MT04 37.56 37.93 36.78 37.53 37.48
MT05 37.54 37.55 36.87 36.99 37.21
MT06 36.30 36.42 35.03 36.36 36.43
MT08 28.58 28.55 27.50 29.04 29.29

MT06bc 40.98 41.41 40.18 40.29 40.60
MT06nw 36.74 36.75 35.40 36.74 36.60
MT06ng 28.15 28.31 27.22 28.77 28.77
MT08nw 32.82 33.03 31.79 33.71 33.22
MT08wg 22.83 22.79 21.26 23.24 23.22

Table 6: Oracle performance of different dataset pairs under large scale setting.
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Figure 2: The cross entropy of test vs. LM weight variation in percentage for different dataset pairs

the gain from the length penalty decrease could counteract reduction on the precision. While for
the case in which MT08 as development and MT03 as test, the length penalty of both baseline
and adapted results are equal, while n-gram precision of adapted method is higher than that of
baseline, which leads to improvements on final performance. Meanwhile, we also apply another
SMT metric TER (Snover et al., 2006) to evaluate the results of the dataset pair MT03 and MT08,
as shown in table 4. When we use MT03 as development and MT08 as test, the TER result shows
no improvement. This is consistent with observation from above discussion, as improvement for
BLEU mainly comes from length penalty, not n-gram precision. Meanwhile, when we use MT08
as development and MT03 as test, we achieve significant improvement on the TER score. This
inconsistency shows some potential difference between the TER metric and the BLEU metric.

However, for some dataset pairs, the adapted result is not so good as the baseline. The reason
might be that the closeness of test and development measured through cross-entropy is more sig-
nificant than the real difference. Taking MT03(development) and MT04(test) for example, from
figure 1 we could find that the baseline is almost the same as oracle (0.01 BLEU points differ-
ence), while the ratio of the cross-entropy from table 3 is larger than our intuition, making the LM
weight over-adapted and the performance decreased. Nevertheless, the results in table 5 show that
our method works well for most dataset pairs (33 of 50 groups increase, while only 6 of 50 groups
decrease). Although our adaption method is in a sense empirical, we believe it reflects the inherent
relations in the LM adaptation.

Furthermore, we want to know the influence of the cross-entropy variation on BLEU score im-
provements. In figure 3, the X-axis represents the absolute value of relative change between devel-
opment and test dataset (i.e., |H(D)

H(T ) − 1|), and the Y-axis displays the improvements of the BLEU
score under adaptation. We would observe that all five groups of points are well linear, show-
ing strong correlations between adaptation improvements and cross-entropy difference. Based on
above results, we can draw the conclusion that even if cross-entropy may not be the only factor
that determines the bias-estimation of LM weight, it is still one of the most important.

5.3 1-best VS. N-best Translation Result Adaptation
In the above part, we utilize mere 1-best translation results for entropy calculation. We wonder
what the result would be if more outputs are used. With MT03 as development, MT05 and MT08
as test respectively, we run adaptation under number from 1 to 20 best translations. Results in
figure 4 show that the number of translation outputs shows little impact on the adaptation results,
since the deviation between maximal and minimal score is quite small(less than 0.2 BLEU score
points). And in the following parts, we adopt 1-best translation as default setting.
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Figure 3: The variation of BLEU score (in value) vs. cross-entropy ratio between development and test
dataset under each development datasets

DEV MT03 MT04 MT05 MT06 MT08
TEST Baseline Adapted Baseline Adapted Baseline Adapted Baseline Adapted Baseline Adapted
MT03 39.14 39.14 (|) 38.76 38.82 (|) 38.59 38.49 (|) 37.32 37.47 (|) 35.87 36.70 (↑)
MT04 37.52 37.04 (↓) 37.93 37.93 (|) 36.72 36.50 (↓) 35.80 36.53 (↑) 34.66 35.73 (↑)
MT05 37.33 37.11 (↓) 36.92 37.18 (↑) 36.87 36.87 (|) 35.90 36.22 (↑) 34.15 35.36 (↑)
MT06 33.58 33.85(↑) 33.62 34.51 (↑) 33.41 33.55 (|) 36.36 36.36 (|) 35.04 35.77 (↑)
MT08 24.86 26.23(↑) 24.18 26.30 (↑) 25.43 26.32 (↑) 27.75 28.93 (↑) 29.29 29.29 (|)

MT06bc 24.22 26.06 (↑) 23.77 26.44(↑) 24.64 26.18 (↑) 27.40 28.61 (↑) 28.87 28.48 (↓)
MT06nw 40.36 39.48(↓) 39.97 39.46 (↓) 39.78 39.63 (|) 39.57 40.54 (↑) 37.71 39.75 (↑)
MT06ng 33.81 34.08(↑) 34.23 34.72 (↑) 33.76 33.80(|) 36.73 36.74 (|) 35.59 36.08 (↑)
MT08nw 29.40 30.64 (↑) 28.95 30.85(↑) 29.67 30.32(↑) 32.49 33.10 (↑) 33.05 33.20 (|)
MT08wg 18.78 20.35 (↑) 17.81 20.03(↑) 19.74 20.88(↑) 21.35 22.65 (↑) 22.73 22.99 (↑)

Table 7: Comparison between baseline and LM weight adaption method using references on different
dataset pairs, under large scale setting.

5.4 Adaptation on Translation References
In practice, entropy of translation outputs, rather than references, is used for adaptation. Nev-
ertheless, we want to know whether there exists some difference between these two approaches.
Table 7 shows the results under adaptation on entropy of references, while the related entropy is
shown in Table 8. We could find that adapted results and the cross-entropy are both consistent
with those of using 1-best translation, as in SMT the model weight is tuned in the way that tries to
make translation outputs as close as possible to the references.

Dataset MT03 MT04 MT05 MT06 MT08 MT06bc MT06nw MT06ng MT08nw MT08wg
Entropy 2.3450 2.2456 2.3019 2.3854 2.5778 2.2105 2.3690 2.6281 2.4955 2.6791

Table 8: Cross entropy of each dataset calculated on references.

5.5 Adaptation on Random Test Data
In our experiment, we always use the standard NIST datasets to evaluate the adaptation method.
We also want to validate our method under more datasets in this section. Using MT03 as devel-
opment, we build six extra test datasets by randomly selecting 50, 100, 300, 600, 1200 and 2000
sentences respectively from the collections of MT04, MT05, MT06 and MT08. Related results are
shown in Table 9, in which improvements still could be achieved but not so significant as the re-
sults in table 5. Based on experimental results, we know that some datasets like MT04 and MT05
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Figure 4: The adaptation results under entropy calculation on different number of translation outputs, with
MT03 as Development and MT05 as Test(Left), MT08 as Test(Right)

Random Baseline Adapted Oracle
50 34.52 35.03(+0.51) 35.05
100 34.79 34.33(-0.46) 34.94
300 33.06 33.38(+0.32) 33.82
600 33.48 33.72(+0.24) 34.91

1200 33.64 33.92(+0.28) 35.03
2000 33.72 34.04(+0.32) 35.22

Table 9: Results with MT03 as development and random selected datasets as test, under large scale setting

are close to the development MT03, while some others are different. One basic assumption for our
adaptation method is that the dataset is composed of several documents, each belongs to a specific
domain. Hence for the random datasets, their distribution is a mixture of multiple sources, making
the adaptation performance not so significant as that on normal MT evaluation datasets.

6 Conclusion
In this article, we address the problem of LM weight mismatch between tuning and testing. In
particular, cross-entropy on n-best translation hypotheses is adopted as a metric to indicate the
bias-estimation in language modeling. Furthermore, an adaptation approach is proposed to adjust
the LM weight using the ratio of cross-entropy between different datasets. Experimental results
show that our cross-entropy based adaptation strategy significantly alleviates the bias problem of
language modeling and significant improvements could be achieved when the test data is quite
different from the development.

In this paper, we only tackle the adaptation on corpus level. In future we are going to explore
LM adaptation on document and sentence level. Besides, we also intend to apply adaptation to
multiple LMs. Although our method works well on most dataset pairs, there still exist some pairs
on which our method fails. Therefore, it will be interesting to further investigate the factors that
determine the adaptation performance.
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