
U n s u p e r v i s e d l earn ing o f d e r i v a t i o n a l m o r p h o l o g y f r o m
in f l ec t i ona l l e x i c o n s

l~ric Gaussier
Xerox Research Centre Europe 6, Chemin de Maupertuis 38240 Meylan F.

Eric.Ga.ussier@xrce.xerox.com

Abs t rac t
We present in this paper an unsupervised method
to learn suffixes and suffixation operations from an
inflectional lexicon of a language. The elements ac-
quired with our method are used to build stemming
procedures and can assist lexicographers in the de-
velopment of new lexical resources.

1 In t roduc t ion
Development of electronic morphological resources
has undergone several decades of research. The first
morphologicM analyzers focussed on inflectional pro-
cesses (inflection, for English, mainly covers verb
conjugation, and number and gender variations).
With the development of Information Retrieval, peo-
ple have looked for ways to build simple analyzers
which are able to recognize the stem of a given word
(thus addressing both inflection and derivation1).
These analyzers are known as stemmers.

Faced with the increasing demand for natural lan-
guage processing tools for a variety of languages,
people have searched for procedures to (semi-
)automatically acquire morphological resources. On
the one hand, we find work fl'om the IR community
aimed at building robust stemmers without much
attention given to the morphologicM processes of
a language. Most of this work relies on a list of
affixes, usually built by the system developer, and
a set of rules to stem words (Lovins, 1968; Porter,
1980). Some of these works fit within an unsuper-
vised setting, (Hafer and Weiss, 1974; Adamson and
Boreham, 1974) and to a certain extent (Jacquemin
and Tzoukerman, 1997), but do not directly address
the problem of learning naorphological processes. On
the other hand, some researchers from the compu-
tational linguistics community have developed tech-
niques to learn affixes of a language and software to
segment words according to the identified elements.
The work described in (Daelemans et al., 1999) is a
good example of this trend, based on a supervised

1The distinction between inflectional and derivational
morphology is fax from clearcut. However, in practice, such
a distinction allows one to divide the problems at hand and
was implicitly adopted in our lexicon development plan.

learning approach. However, it is difficult ill most of
these studies to infer the underlying linguistic frame-
work assumed.

We present in this paper an unsupervised method
to learn suffixation operations of a language from an
inflectional lexicon. This method also leads to the
development of a stemming procedure for the lan-
guage under consideration. Section 2 presents the
linguistic view we adopt on derivation. Section 3 de-
scribes the preliminary steps of our learning method
and constitutes the core of our stemming procedure.
Finally, section 4 describes the learning of suffixation
operations.

2 Derivation in a language
The derivational processes of a language allow speak-
ers of that language to analyse and generate new
words. Most recent linguistic theories view these
processes as operations defined on words to produce
words. From a linguistic point, of view, a word can be
represented as an element made of several indepen-
dent layers (feature structures, for example, could
be chosen for this representation. We do not want
to focus on a particular formalism here, but rather
to explain the model we will adopt). The different
layers and the information they contain vary from
one author to the other. We adopt here the layers
used in (Fradin, 1994), as exemplified on the French
noun table:

(G) table
(F) (teibl)
(M) fem-sg
(SX) N
(S) t a b l e

where (G) corresponds to the graphemic form of the
word, (F) to the phonological form, and (M), (SX)
and (S) respectively contain morphological, syntac-
tic and semantic information. A derivation process
then operates on such a structure to produce a new
structure. Each layer of the original structure is
transformed via this operation.

We can adopt the following probabilistic model to
account for such a derivation process:

24

P(w, = p(w:(G) = o p G (w , (a)) ,
Op

w~(F) = Opp(wl (F)) , w2(M) = OpM(Wl(M)) ,

w~(S.V) = 01,s.x(w~(,5'X)), wE(S) = Op.s.(w~(S)))

where Op is a derivation process, O p t is the compo-
nent of Op which operates on the graphemic layer,
and w(G) is the graphemic layer associated to word
W.

The different layers can be divided up into three
main dimensions, used in linguistic studies to iden-
tify and classify suffixes of a language: the formal
dimension (corresponding to G and F), the morpho-
syntactic dimension (M and SX), and the semantic
dimension (S). The nature of the operation along
these dimensions mainly depend on the language un-
der consideration. For example, for Indo-European
languages, for the formal dimension, a suffixation
operation consists in the concatenation of a suffix
to the original form. Morphographemic as well as
phonological rules are then applied to turn the ideal
form obtained via concatenation into a valid surface
form.

We focus in this article on concatenative lan-
guages, id est languages for which derivation cor-
responds, for the formal dimension, to a concate-
nation operation. We also restrict ourselves to the
study of suffixes and suffixation. Nevertheless, the
principles and methods we use can be extended to
non-concatenative languages and prefixes.

The a.im of the current work is two-fold. On the
one hand we want to develop s temming procedures
for Information Retrieval. On the other hand, we
want to develop methods to assist lexicographers in
the development of derivational lexicons. We posses
inflectional lexicons for a variety of different lan-
guages, and we'll use these lexicons as input to our
system. Furthermore, we are interested in making
the method as language independent as possible,
which means that we will explore languages with-
out a priori knowledge 2 and thus we wish to rely on
an unsupervised learning framework.

The probabilistic model above suggests that, in
order to learn suffixation operations of a language,
one should look at word pairs (wl, w2) of that lan-
guage for which w2 derives from wl, In an unsu-
pervised setting, such pairs are not directly accessi-
ble, and we need to find ways to extract the infor-
mat ion we are interested in from a set of pairs the
words of which are not always related via deriva-
tion. The method we designed first builds, for a
given language, relational families, which are an ap-
proximation of derivational families. These families

2 In p a r t i c u l a r , i t is i n t e r e s t i n g to a v o i d r e l y i n g on suff ix
l i s t s , w h i c h v a r y f r o m one a u t h o r to t he o t h e r .

are then used to produce pairs of words which are
a first approximation of the pairs of related words.
From this set of pairs, we then extract suffixes and
suffixation operations.

The next section addresses the construction of re-
lational families.

3 C o n s t r u c t i o n of re lat ional fami l ies
Our goal is to build families which are close to the
derivational families of a language. This contruction
relies on the notion of suffix pairs that we explain
below.

3.1 Extract ion of suffix pairs
The intuition behind the extraction of suffixes is that
long words of a given language tend to be obtained
through derivation, and more precisely through suf-
fixation, and thus could be used to identify regular
s u f f i x e s .

We first define a measure of similarity between words
based on the comparison of truncations.
D e f i n i t i o n 1: two words Wl and we of a given lan-
guage L are said to be p - s i m i l a r if and only if

i t runc(wl ,p) =- trunc(w2,p), where t runc(w,k)
is composed of the first k characters of w,

ii there is no q such that: q > p and
t,'une(wl, q) _= trune(,v2, V)

The equivalence relation (=) defined on tile alpha.-
bet of L allows one to capture orthographic variants,
such as the alternation c - ¢ in French. The char-
acter strings sl and s2 obtained after truncation of
the first p characters fi'om two p-similar words are
called pseudo-suffixes. The pair (sl,s2) will be called
a pseudo-suffix pair of the language L, and will be
said to link Wl and w2. Note that the strings sl
and/or s2 may be empty: they are both empty if the
words wl and w2 differ only in their part. of speech,
in which case we speak about conversion.
The above definition allows us to state that the En-
glish words "deplorable" and "deploringly" are 6-
similar and that (able,ingly) is an English pseudo-
suffix pair. Since "deplorable" is an adjective and
"deploringly" is an adverb, we can provide a more
precise form for the pseudo-suffix pair, and write
(able+AJ, ingly+AV) (where + A J stands for adjec-
tive and +AV fbr adverb) with the following inter-
pretation: we can go from an adjective (resp. ad-
verb) to an adverb (resp. Adjective) by removing the
string "able" (resp. "ingly") and adding the string
"ingly" (resp. "able").
D e f i n i t i o n 2: a pseudo-suffix pair of a given lan-
guage L is va l id when the pseudo-suffixes involved
are actual suffixes of the language L, and when the
pair can be used to describe the passage fl'om one

25

word of a given derivational family of L to another
word of the same family.
Two parameters are used to determine as precisely
as possible valid pseudo-suffix pairs: the p-similarity
and the number of occurrences of a pseudo-suffix
pair. This last parameter accounts for the fact that
the pseudo-suffix pairs encountered fi'equently are
associated to actual suffixation processes whereas
the less frequent ones either are associated to ir-
regular phenomena or are not valid. But, in order
to design a procedure which can be applied on sev-
eral languages, and to avoid missing too many valid
pseudo-suffix pairs, we have set these two parame-
ters in the following loose way:
D e f i n i t i o n 3: a suffix p a i r of a language L is a
pseudo-suffix pair of L which occurs re, ore than once
in the set of word couples of L which are at least
5-similar.
Rein ar ks:

• two words are at least k-similar if they are p-
similar with p >_ k,

• all the suffix pairs are not valid. The above
definition provides a set of pseudo-suffix pairs
which is approximately contains the set of valid
pseudo-suffix pairs. Our purpose here is not to
miss any valid pseudo-suffix pair,

• the number of occurrences of a pseudo-suffix
pair is set at 2, the minilnal value one can think
of, and which corresponds to our desire to re-
main language independent,,

• the choice of the value 5 for the similarity fac-
tor represents a good trade off between the no-
tion of long words and the desire to be language
independent. We believe anyway that a slight
change in this parameter won't lead to a set of
pseudo-suffix pairs significantly different fi'om
the one we have.

Here is an example of French suffix pairs extracted
from the French lexicon, with their number of oc-
c u r r e n c e s :

at ion+N er+V 782
+ A J ment+AV 460

eur+AJ ion+N 380
er+V on+N 50

sat ion+N tar i sme+N 5

All these suffix pairs are valid except the last one
which is encountered in cases such as "autorisation
- autori tarisme" (author isa t ion- authoritarianism).
One can note that a valid suffix pair does not al-
ways link words which belong to the same deriva-
tiona.l t'amily. For example, the pair (e r+V,on+N)
yields the following link "saler - salon" (salt - lounge)
though the two words refer to different concepts.
The notion of validity only requires that two words

of a same derivational family can be related by the
suffix pair, which is the case for the previous pair in
so far as it relates "friser - frison" (curl (+V) - curl
(+ N))

3.2 C l u s t e r i n g w o r d s in to r e l a t i o n a l
fami l i e s

The problem we have to face now is the one of
grouping words which belong to the same deriva-
tional family, and to avoid grouping words which do
not belong to the same derivational family. A sim-
ple idea one can try consists in adding words into
a family to the extent they are p-similar, with a
value of p to be determined, and related through
suffix pairs. For example, given the two English suf-
fix pairs (+V,ab le+AJ) and (+V,men t+N) , we can
first group the 6-similar words "deploy" and "de-
ployable", and then add to this family the word
"deployment". But such a procedure will also lead
to group "depart" and "departlnent" into the same
family. The problem here is that suffix pairs relate
words which do not belong to the same derivational
family.
There is however one way we can try to au tomate
the control of the removal of a suffix, based on the
following intuitive idea. If the string "lnent" is not. a
suffix, as in "depar tment" , then it is likely that the
word obtained after removal of the string, that is
"depart", will support suffixes which do not usually
co-occur with "ment" , such as "ure" which produces
"departure". The underlying notion is that of suffix
families, notion which accounts for the fact. that the
use of a suffix usually coincides with the use of other
suffixes, and that suffixes from different families do
not co-occur. Such an idea is used in (Debili, 1982),
with manually created suffix families.

To take advantage of this idea, we used hierarchi-
cal agglomerative clustering methods. The following
general algorithm can be given for hierarchicM clus-
tering methods:

1. identify the two most similar points (with sim-
ilarity greater than 0)

2. combine them in a cluster

3. go back to step 1, treating clusters as points,
till no more points can be merged (similarity 0)

Particular methods differ in the way sinfilarity is
computed. In our case, the initial points consist
of words, and we define the similarity between two
words, wl and w2, as the number of occurrences of
the suffix pair of L which links wt and u,~. If such a
suffix pair does not exist, then the similarity equals
0. The similarity between clusters (or points as ref-
ferred to in the above Mgorithm) depends on the
method chosen. We tested 3 methods:

2 6

• single link; the similarity between two clusters is
defined as the similarity between the two most
sin:dlar words,

• group average; the sin:dlarity between two clus-
ters is defined as the average similarity between
words,

• complete link; the similarity between two clus-
ters is defined as the similarity between the two
less similar words,

The single link method makes no use at all of
the notion of suffix families, and corresponds to the
naive procedure described above. The group average
method makes partial use of this notion, whereas the
complete link heavily relies on it.

The clusters thus obtained represent an approx-
imation of the derivational families of a language,
and consitute our relational families.

Here is an exemple of some relational falnilies ob-
tained with the complete link method:

deprecate deprecation deprecator deprecative dep-
lvcativeness dep~vcativelg deprecatwity deprecatorily
dep~vcato'rg dep~vcatingly

deposabilitg deposable deposableness deposablg de-
pose deposer deposal

department departmentality departmental depart-
mentalness departmentally

depart departure departer

3.3 E v a l u a t i o n

We performed an evaluation on English considering
as the gold reference a hand-built derivational lexi-
con that, we have. We extracted derivational families
from this lexicon, and compared them to the rela-
tional families obtained. This comparison is based
on the number of words which have to be moved
to go from one set of families to another set. Due
to overstemming errors, which characterise the fact
that some unrelated words are grouped in the same
relational family, as well as to understemming er-
rors, which correspond to the fact that some related
words are not grouped in the same relational family,
relational and derivational families often overlap.
To account for this fact, we made the assumption
that a word wi was correctly placed in a relational
family ri if this relational family comprised in major-
ity words of the derivational family of wi, and if the
derivational family of wi was composed in majority
by words of ri. That is there must be some strong
agreement between the derivational and relational
families to state that a word is not to move. All the
words which did not follow the preceding constraints
were qualified as "to move". We directly used the
ratio of words "not to move" to compute the prox-
imity between relational and derivational fa.milies.

We, in fact, evaluated several versions of the rela-
tional families we built, in order validate or inval-
idate some of our hypotheses. The following table
summarises the results obtained for the three clus-
tering methods tested, with the parameters set as
described above:

Single link 47%
Group average 77%
Complete link 85%

These results show the importance of the notion
of suffix families, at least with the parameters we
used. As a comparison, we performed the same
evaluation with families obtained by two stemmers,
the SMART and Porter's stemmer, well-known in
the Information Retrieval community. To construct
families with these stemmers, we took the whole
lemmatised lexicon, submitted it to the stemmers
and grouped words which shared the same stem.
We then ran the evaluation above and obtained the
following results: SMART stemmer: 0.82 Porter 's
stemmer: 0.65 Not surprisingly, the SMART stem-
mer, which is the result of twenty years of (level-
opment, is a better approximation of derivational
processes than Porter's stemmer.

4 From re lat ional to derivational
morphology

Once the relational families have been constructed,
they can be used to search for actual suffixes. Rather
than performing this search directly from our lexi-
con, i.e. from all the possible word pairs, the clus-
tering made to obtain word families allows us to re-
strict ourselves to a set of word pairs motivated by
the broad notion of suffix we used in the previous
section.

We thus use the following general algorithm,
which allows us to estimate the parameters of the
general probabilistic model given above:

• 1. from the lexicon, build relational families,

• 2. from relational families, build a set of word
pairs and suffixes,

• 3. from this set, estimate some parameters of
the general model,

• 4. use these parameters to induce a derivation
tree on each relational family,

• 5. use these trees to refine the previous set of
word pairs and suffixes, and go back to step 3
till an end criterion is found

• 6. the trees obtained can then be used to ex-
tract dependencies between suffixation opera-
tions, as well as morphographemic rules.

We will now describe steps 3, 4 and 5, and give an
outline of step 6.

27

4.1 E x t r a c t i o n of sufl=ixation o p e r a t i o n s
Since our lexicons contain neither phonological
nor semantic information, the general probabilistic
model given in the introduction can be simplified, so
that it is based only on the graphemic and morpho-
syntactic dimensions of words. Furthermore, since
we restrict ourselves to concatenative languages, we
adopt the following form for a suffixation operation
S:

S = (a d = c ° n c a t (G ° ' s)) M S o ~ M S d

where G4 (MSa) stands for the graphemic (morpho-
syntactic) form of the derived word produced by the
suffixation operation, Go (MSo) for the graphemic
(morpho-syntactic) form of the original word on
which the suffixation operation operates, conea* is
the concatenation operation, and s is the suffÉx as-
sociated to the suffixation operation S.

We can then write the probability that a word w2
derives, through a suffixation process, from a. word
wl as follows:

P (W l - - + w 2) =

= ~ s p(S)p(Ga -+ G2, MS1 -+ MS',IS)

= ~ s p(S)p(G1 -+ G2]S)p(MS1 ~ MSu]G1 -+ G~, S)

~- ~ s p(5')p(Gi ~ G21S)p(M& ~ M&IS)

the last equation being based on an independence
assumption between the graphetnic form and the
morpho-syutactic information attached to words.
Even though some morpho-syntactic information
can be guessed from the graphical form of words,
it is usually done via the suffixes involved in the
words. Thus, conditioning our probabilities on the
mere suffixation operations represents a. good ap-
proximation to the kind of dependence that exists
between graphemic form and morpho-syntactie in-
formation.

The t.erm involving morpho-syntactic information,
i.e. the probability to produce MS2 from MS1
knowing the suffixation operation S, can be directly
rewritten as:

p(MS~ --+ MS2]S) = ~(MS1, MSo)5(MS2, MSd)

where 5 is the Kronecker symbol (6(x, y) equals 1 if
the two arguments are equal and 0 otherwise).

The words we observe do not exactly reflect
the different elements they are made of. Mor-
phographemie rules, allomorphy and truncation phe-
nomena make it difficult to identify the underlying
structure of words (see (Anderson, 1992; Corbin,
1987; Bauer, 198:3) for discussions on this topic).

That is, the graphemic forms we observe are the re-
sults of different operations, concatenation being, in
most cases, only the first.

Since: allomorphy, truncation and mor-
phographemic phenomena do not depend on
the words themselves but on some subparts of the
words; direct concatenation gives a better access to
the suffix used; and suffixation usually adds element
to the original form 3, we use the following forln for
p(G, ~ G21S):

p(G1 ~ G2]S) = 0 i f l(G1) > l(G2)

else p(G1 ~ G.~IS) =

co i f di f f(G1, G2, s) = 0
el i f di f f (Gx,G2,s) = 1
e:, i f d i f f (G1,G; ,s) = 2
ca i f dif f(G1,G~,s) = 3
0 otherwise

where I(G) is the length of G, di f f (s t r l , str2, su f f)
represents the number of characters differing be-
tween strl and s t r 2 - s u f f (i.e. the string obtained
via removal of s u r f from str2, proceeding backward
from the end of str2), and ei, 0 < i < 3 are arbitrary
constants, the stun of which equals 1, which control
the confidence we have on a suffix with respect to
the edit distance between G1 and G2.

For our first experiments, we set the four constants
co, cl , c,., ca according to the constraint:

1 1 1
c a = = = g c 0

which accounts for tile fact that we give more weight.
to direct concatenation, then to concatenation with
only 1 differing character, etc.

To estimate the probabilities p(S), we first built
a set of suffixation operations from relational fami-
lies; for each word pair (Wl, w~) found in a relational
family, we consider all the suffixation operations S
such that:

(s)
S = MS1 ---+ MS2

with s being a sequence of letters ending G2 such
that:

p(G, --+ G21S) > 0

This process yields, besides the set of suffixation
operations, a set of word pairs (wl, w:~) possibly
linked through a suffixation process. We will denote

aDue to t runca t ion and subt rac t ion , there may be cases
where the derived form is shor ter or the same length as the
original form. However, these eases are not frequent, and
should be recovered by the procedures which follow.

2 8

this last set by W P . Some of the pairs in W'P are
valid, in the sense that the second element of the pair
directly derives from the first element, whereas other
pairs relate words which may or may not belong to
the same family, through a set of deriva.tional pro-
cesses. However, since relational families represent
a good approximation to actual derivational fami-
lies, regular suffixation processes should emerge from
WP.

We then used the EM algorithm, (Dempster et
al., 1977), to est imate the probabilities p(S). Via
the introduction of Lagrange multipliers, we obtain
the following reestimation formula:

po,(S) =

p~(S)p(G1 ~ G~IS)p(MS1 --+ MS, IS)
A-1

A-, ~ s , po(S')p(G~ --+ G2[S')p(MS~ --+ MS2[S') ~,vp
where A is a normalizing factor to assure that prob-
abilities sum up to 1.

This method applied to French yields the follow-
ing results (we display only the first 10 suffixes, i.e.
the string s associated with the suffixation opera-
tion S, together with the POS of the original and
derived words. The first number corresponds to the
probabili ty est imated):

0.071671 Noun ---+ e r ~ Verb
0.019032 Adj ~ e r ~ Verb
0.018231 Verb ~ ion ~ Noun
0.017365 Noun ~ ion ---+ Noun
0.017123 Noun ~ u r --+ Noun
0.012864 Noun ~ e u r ---+ Noun
0.011034 Noun ~ o n ~ Noun
0.010780 Noun ~ t e ~ Noun
0.009955 Adj --+ a t i o n --+ Noun
0.009881 Noun ---+ n t ---+ Adj

As can be seen on these results, certain elements,
such as u r are extracted even though the appro-
priate suffix is eu r , our procedure privileging the
element with direct concatenation (this concatena-
tion happens after a word ending with an e). Note,
however, that the t r u e suffix is close enough to be
retrieved.

4.2 E x t r a c t i o n o f suff ixa l p a r a d i g m s

The suffixes we extracted are derived from relational
families. In these families, some words are related
even though they do not derive from each other. The
set of related words in a relational family defines a
graph on this family, whereas the natural represen-
tat ion of a derivational family is a tree. We want to
present here a method to discover such a tree.

A widely used tree construction method from
a graph is the Minimal(Maximum) Spanning Tree
method. We have adapted this method in the fol-
lowing way:

1. Step 1: for each word pair (w~, w~) in the family,
compute a = p(tv~ --+ w~),

2. Step 2: sort the pairs in decreasing order ac-
cording to their a value,

3. Step 3: select the first pair (wl, u,~), add a link
with wl as father and w2 as daughter,

4. Step 4: for each possible suffixation operation
S such that p(wl ~ w21S) > 0, add to the
node wl the potential allomorph obtained by
removing s from G2, proceeding backward from
the end of G2,

5. Step 5: select the following pair, compute the
set of allomorphs A, and add a link between the
elements, if:

(a) it does not create a loop,

(b) if the first element of the pair, w~, is al-
ready present in the tree, then the set, of
allomorphs of w~ in the tree is either empty
or has common elements with A. In the lat-
ter case, replace the set of al lomorphs of w~
in the tree by its intersection with A,

6. Step 6: go back to Step 5 till all the pairs have
been examined

This algorithm calls for the following remarks:

we use allomorph in a broad sense, for lexelnes:
an allomorph of a word is simply a form associ-
ated to this word and which can be used as the
support to derivation in place of the word itself,

if two sets of allomorphs are not empty and do
not have elements in common, then we face a
conflict between which elements serve as a sup-
port for the different derivation processes. If
they have common elements then the common
elements can be used in the associated deriva-
tion processes. If one set is empty, then the
word itself is used for one derivation process,
and the allomorphs in the other.

Let us illustrate this algorithm on a simple exemple.
Let us assume we have, in the same relational fam-
ily, the three French words produire (En. produce),
production (En. production), producteur (En. pro-
ducer). Step 2 yields the two ordered pairs (produire,
production); (produire, producteur). Steps 3 and 4
for the first pair provide the suffixes (on, ion, tion,
ction) and the associated allomorphs for produire:
(produ, produc, product, p~vducti). When examin-
ing the pair (produire, producteur), we obtain the
suffixes (ur, cur, teur, cteur) with the allomorphs
for produire: (produ, produc, product). The two sets
of allomorphs have common elements. The final set
of allomorphs for produire will obtained by intersect-
ing the two previous sets, leading to: (produ, produc,

29

product). Note that the elimination of the form pro-
ducti will lead to the rejection of the suffix on in
subsequent t reatment (namely the learning of suf-
fixes from the trees, step 5 of the algorithm given at
the beginning of section 2).

Once the trees have been constructed for all rela-
tional families (note that with our procedure, more
than one tree may be used to cover the whole fam-
ily), it is possible to reestimate the probabilities
p(S). This time, the word pairs are directly ex-
tracted from the trees, and, due to the sets of al-
lomorphs, the probabilities p(G1 ---+ G21S) are not
necessary anymore, since we will only rely on direct
concatenation. Lastly, as described in the general al-
gorithm, the new suffixation operations can be used
again to build new trees, and so on and so forth,
until an end condition is reached. A possible end
condition can be the stabilization of the set of suf-
fixation operations. Since our procedure gradually
refines this set (at one iteration, the set ofsuffixation
operations is a subset of the one used in the previous
iteration), the algorithm will stop.

Another extension we can think of is the extrac-
tion, from the final set of trees, of morphographemic
rules. Methods borrowed to Inductive Logic Pro-
gramming seem good candidates for such an extrac-
tion, since these rules can be formulated as logical
clauses, and since we can start from specific exam-
ples to the least general rule covering them (sev-
eral researchers have addressed this problem, such
as (Dzeroski and Erjavec, 1997)).

5 C o n c l u s i o n

We have presented an unsupervised method to ac-
quire derivational rules from an inflectional lexicon.
In our opinion, the interesting points of our method
lie in its ability to automatical ly acquire suffixes, as
well as to induce a linguistically motivated structure
in a lexicon. This structure, together with the ele-
ments extracted, can easily be revised and corrected
by a lexicographer.

Acknowledgements
I thank two anonymous reviewers for useful com-
ments on a first version of this paper.

R e f e r e n c e s

G. Adamson and J. Boreham. 1974. The use of
an association measure based on character struc-
ture to identify semantically related pairs of words
and ocuments titles. Information Storage and Re-
trieval, 10.

S. R. Anderson. 1992. A-morphous morphology.
Cambridge University Press.

L. Bauer. 1983. English word-formation. Cam-
bridge University Press.

V. Cherkassky and F. Muller. 1998. Learning ffrom
data. John Wiley and Sons.

D. Corbin. 1987. Morphologie d(rivationnelle et
structuration du lexique. Presses Universitaires de
Lille.

W. Daelemans, J. Zavrel, K. Van der Sloot, and
A. Van den Bosch. 1999. T imbh Tilbury memory
based learner, version 2.0, reference guide. Tech-
nical report, ILK, Tilburg.

J. Dawson. 1974. Suffix removal and word confla-
tion. ALLC Bulletin.

F. Debili. 1982. Analyse syntaxico-sdmantique
fondde sur une acquisition automatique de rela-
tions lexicales-sdmantiques. Ph.D. thesis, Univ.
Paris 11.

A. P. Dempster, N. M. Laird, and D. B. Dubin.
1977. Maximum likelihood from incomplete da ta
via the em algorithm. Royal Statistical Society,
39.

S. Dzeroski and T. Erjavec. 1997. Induction of
slovene nominal paradigms. In Proceedings of 7th
International Workshop on Inductive Logic PTv-
gramming.

B. Fradin. 1994. L 'approche £ deux niveaux en mor-
phologie computationnelle et les d6veloppements
r~cents de la morphologie. Traitement aatoma-
tique des langues, 35(2).

M. Hafer and S. Weiss. 1974. Word segmentat ion
by letter successor varieties. Information Storage
and Retrieval, 10.

C. Jacquemin and E. Tzoukerman. 1997. Guessing
morphology from terms and corpora. In Proceed-
ings of A CM SIGIR.

J.B. Lovins. 1968. Development of a s temming al-
gorithm. Mechanical Translation and Computa-
tional Linguistics, 11.

C.D. Manning. 1998. The segmentat ion problem
in morphology learning. In Proceedings of New
Methods in Language Processing and Computa-
tional Natural Language Learning.

C. Paice. 1996. Method for evaluation of s temming
algorithms based on error counting. Journal of the
American Society for Information Science, 47(8).

M. F. Porter. 1980. An algorithm for suffix strip-
ping. Program, 14(3).

A. Stolcke and S. Omohundro. 1994. Best-first
model merging for hidden markov model induc-
tion. Technical report, ICSI, Berkeley.

30

