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A b s t r a c t  

This paper Is astudy in the tactics of content selection and realization at the micro-planning 

level. It presents a .technique for controlling the content and phrasing of complex sentences 

through• the use of data derived from a parser that has read through a corpus and taken note of  

which variations do and do not occur in the realization of the concepts in the genre the corpus is 

taken from. These findings are entered as annotations on a new representational• device, a 

'saturation lattice', that provides a systematic way to define partial information and is the 

jumping off point for the micro-planner. The generator and parser are both based •on a 

declarative, bi-directional representation of realization relationship between concepts and text. 

Keywords: • generation, bi-directional, realization, model-driven 

1. Motivations 

If research on natural language generation ('nlg'), as it is understood by the audience of this 

workshop, • is to garner support from. Commercial interests and move beyond sponsored research and 

academics, it will have to provide a set of commercially valuable, sophisticated tools that can achieve 

results well beyond those of a good database system's report generator ('dbg')----our practical 

competition. In the early days of work in nlg i t  was •difficult enough to say "The Knox is enroute to 

Sarasibo", but any dbg can say that today. NLG techniques now ten years old can apply techniques for 

subsequent reference and aggregation• and produce reasonably fluent paragraphs from sets of simple 

• propositions, e,g., "The Knox, which is C4, is••enroute to Sarasibo. It will arrive ..."; see Hovy (1990). A 

tool set that can provide that sort of smoothing over the outPut of a dbgis a good start, but we need to do 

better. 

When we look at human report generators, such as journalists or the authors of press releases, we 

see two skills that are utterly beyond the abilities of a dbg: compact, syntactically rich sentence structure,. 
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and the ability to realize partially saturated relations. The first ability is familiar to the nlg community 

and is typified by state of the art systems such as Robin's Streak (Robin & McKeown •I996). The second 

is best shown through an example• Consider the following sentence, l which was produced by a computer 

program applying the techniques describe in this paper~ 

(1) "'Net income in the third quarter ended Nov. 30, 1995 totaled $55.9 million, a 34 percent 
increase over net income of  $41.8 million in the comparable quarter of the preceding 
fiscal year." 

This sentence is missing one of the terms required to make it a complete (saturated) relation, •namely the 

company whose earnings these are. The person who originally planned this sentence recognized that the 

identity of the company would be 'obvious from context' and that it should beomitted here in order to be 

cohesive. 

In a corpus of such earnings reports we see the primary, 14 term "financial report' relation sliced 

and diced • in myriad ways, with variations in what  terms are omitted, how they are grouped into 

maximally projecting phrases, how they are distributed into sentences, and which terms are used as the 

head. Almost without exception each instance is the realization of only part of  the relation, and the Skill 

of  the authors is in appreciating what combinations (partial saturations) they can legitimately express 

given the style that the intended audience is accustomed to. Capturing this skill in a natural language 

generation system will take us in the right direction visa vie our commercial competition. The question, 

of  course, is how to do it. 

The problem naturally divides into two aspects. Following Levelt (1989), these are macro-planning: 

the selection of what sets of terms are to be included, how they are to be distributed within the text as a 

whole, and most of  the lexical selection; and micro-planning: determining the Structure of the text and 

the apportioning of the terms into phrases, clauses and sentences that properly realize the macro- 

planner's specifications of salience while maintaining cohesion, avoiding unintendedredundancy, and 

the like. 

• • 2 

In  this paper I propose how to solve, even finesse, the micro-planning problems posed by a 

complex yet mundane domain such as earnings reports ( 'era'),  namely by reversing the output of a 

parser. In broad outline this is done as follows. 

This is an exampleof the sort of sentence one tends to see at the beginning of the second paragraph of a press 
release reporting a company's quarterly earnings: the one that contains the primary information to be coiiveyed 

I frankly do not understand the basis of the macro-planning evidenced by the authors of ern articles. Perhaps 10% 
of the variance can be explained by the occasional goal of hiding bad news, but otherwise the pattern of the 
distribution and inclusion of information is anything but obvious; I suspect that much of the decision making is a 
rote form of copying what other authors write. A careful longitudinal study of the structure articles from known 

39 



T h e  parser 3 is augmented to record the manner in which the phrases that it parses have been 

realized. This record is couched in terms of the same set of linguistic resources as used by the generator, 

in this instance a TAG and a set o f  reversible mapping rules linking concepts and resources. After 

parsing a corpus of  texts, the result is an annotation of all the particular ways in which the phrases(those 

that were understood) have been realized (and implicitly the  ways in which they have not been realized). 

This lattice of realization types is deployed in the micro-planner by starting with the content selected by 

the macro-p lanner(some structure over partially saturated relations), finding the point in the lattice that 

corresponds to (each of) the partial relations, and then selecting from among the  strands of alternative 

realization types within the  lattice according to  simple notions like theme vs. background. The selection 

is read out to create the text structure, and the rest o f  the generation process (surface realization) 

proceeds normally. 

2. A r c h i t e c t u r e  

The overall design of the generation architecture used here is as described in Meteer 1992, 

following a set of principles laid out in McDonald, Pustejovsky, and Meteer 1988. It is a message-driven 

system that begins with Structures taken directly from the underlying system for which it is speaking, 

realizing them monotonically via  a succession of progressively more linguistic represen-tational .levels 

through t he  use of an •extensive set of abstract linguistic resources ultimately grounded in a TAG 

grammar of English. 

" The source structures are represented in a Kl-one derived system called Krisp (McDonald 1994s), 

and the parser that produces the corpus-based lattice of realization types is Sparser (McDonald 1992, 

1994a)mtwo complete, mature systems. W e  will introduce only as much information about them as 

necessary to support the res t  of the discussion. M u c h  of this paper will be devoted to an extension to 

Krisp, a "saturation lattice', that is the basis of this technique of micro-planning by reversing the parser's 

output. 

At present the new generator, to be christened ,Magellan",  implements only the micro-planning and 

later stages of generation. There is no speaker in a situation with genuine motivations, without which a 

authors might shed some light on the problem. If pressed, I would make a macro-planner from reverse engineered 
schemas with a randQm element. 

3 
I will use the term 'parse' and 'parser' as a convenient • short-hand for designating the full natural language 
understanding system that is actually being used. This does not Stretch the usual senses of the term too much since 
Sparser does do its semantic interpretation at literally the same time as its parsing into syntactic phrases. The key 
difference from the usual parser is that the end result is a set of objects in a domain model rather than just a parse 
tree. 
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generation system (or certainly a fully-articulated theory of generation) is incom-plete. In its stead, as a 

way to exercise the micro-planner, is a windup t o y - - a  largely graphical interface that permits the 

experimenter to stipulate the inpu t and decision criteria that a macro-planner would have produced and 

see what text results. 

T h e  generation proces s starts with the Krisp units representing a full relation. We select by hand the 

fragment of  it to be expressed and some simple information-structure parameters. Then the micro- 

planning mechanism described here is deployed to populate a Text Structure representation, which has 

been excerpted directly from Meteer's Spokesman system (1992). Spokesman's mechanisms then read 

out the Text Structure to create the TAG derivation tree that is the input to Mumble (Meteer et al. !987), 

which in turn produces a TAG-based surface structure and from that the eventual text. ~ 

2.1 Categories in the domain model 

The micro-planner's task is to realize a single, highly-structured, compositional •relation as a Text 

Structure. To illustrate theresources it uses to do this, consider these two (made up) sentences:. 

(2) "GTE owns BBN." 

(3) "BBN is a Subsidiary o f  GTE." 

These express the same information. They should be represented by the same object in the domain 

model. Which of the two alternative realizations of this object a speaker will c h o o s e  is a question of 

which of the two companies they decide to make the theme. 

The expression below defines the type, or 'semantic category', that these texts instantiate. This is a 

Lisp expression that is evaluated at the time the domain model is loaded. It makes reference to several 

things that will already have been defined, notably thecategory 's  parent super-category in the taxonomic 

lattice, named 'owner-owns-owned', 4 and two tree families in the grammar. Once the expression has 

been executed, theresult  is (1) a category object representing the type in the domain model; (2) a s e t o f  

phrase structure rules in the semantic grammar used by the  parser (based on the 'realization' field); and 

(3) a "saturation lattice' (based on the 'binds' field) which is described below. (The realization field is 

only sketched here since it's values would make little sense without the background that will be supplied 

4 
There is an unfortunate tendency for names like these to dominate how a person thinks aboutconcepts. Simply 
because names are necessarily (if they are to be useful) comprised of regular, suggestive natural language words, 
they can too often cloud the mind to the possibility that there are many different ways to realize the same 
conceptual content (see, e.g., Elhadad et al. 1996) This is something always to be guarded against. 

The choice of names for all the objects in this domain model and grammar is arbitrary and strictly for the 
convenience of the human designer. Because they are implemented in terms of objects and pointers, the names 
are not even used at runtime, and serve only to provide a way to uniquely designate the objects in the written 
expressions that are needed to initially define them when a direct manipulation interface is not being used 
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in a later section; here simply observe that there are two alternative classes of realizations available to 

• objects of this category, each with its own family of syntactic trees and own primary, content-beating 

lexeme.) 

(define-category co-owns-co 
:binds ((parent . company) 

(subsidiary . company) 
:specializes (owner-owns-owned (owner . parent) 

(owned subsidiary) ) 
: reali zat ion 

( ( : tree-family transitive/passive 
:mapping ( ... "own" _ ) ) 

( : tree-family nominal-binary-relation 
:mapping ( ... "subsidiary" ... ) ) ) ) 

This category corresponds roughly to a K L O n e  concept with two slots named 'parent '  and 'subsidiary', 

whose values are restricted to objects of type (category) company. The "specializes' field indicates how 

this category is knit into the taxonomic lattice and the inheritance path of its slots, which are termed 

'variables' in Krisp. 

2.2 S a t u r a t i o n  latt ices 

The reference model for Krisp is the Lambda Calculus, where there is a well articulated notion of 

expressions that have only bound a few of their variables to specific values and left the others open. Such 

'partially saturated relations' have a first class representation in Krisp. This representation is supported 

by a lattice 'below' each of the categories of the normal taxonomic (is-a) lattice. This lattice defines 

types for all of the category's sets of possible partial instantiations and provides a representational anchor 

for the realization annotations that the parser lays down and the micro-planner uses. 

As shown below, a Saturation latticeconsists of a linked set of nodes that represent all the possible 

combinations of bound and open variables of the category, including a pseudo-variable "self that allows 

us to include the category itself. (This variable is usually realized as the verb of a clause or the head noun 

of a np.) Notice the use of single-letter abbreviations for the variables when they appear i n multi-variable 

nodes. 

sel f  ( ' s ' )  p reat  ( t ip)  ' 

s +  p + b  

s a id i aby ( '  ' )b  
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In the present example, the lattice is relatively simple with just three levels, s At the top we have the 

information states where one of  the three variables is bound and the other two open. Next these nodes 

('lattice points') converge to form a level where each possible combination of  two bound and "one open 

variable is represented. These then join to form the lattice point that represents the state where the 

relation is  fully saturated, i.e. all of  its variables are bound. This bottom node in the lattice is annotated 

by the various contexts in this category has appeared as a contiguous phrase: as a whole sentence, as a 

subordinated clause, as a reduced phrase in a conjunct, etc. The abstract resources for these contexts 

correspond to attachment points in Mumble and usually adjunctions in a TAG. 

The saturation lattice is used in the parsing direction to provide a set of  indexes that anchor and 

organize partial results so that phrases with the same denotation are directed, through the paths of  the 

lattice, to the same model-level object. 6 In the generation direction it is used to inform the micro-planner 

of the realization potential of each of  the partial relation types. The basis of  this information is a set of  

annotations on the lattice points that record what realizations the parser has seen for that combination of  

bound and open variables and in what context s they have occurred. 

These annotations are recorded or elaborated every time the parser reads a text that has instances 

(partial or full) of  that category. For example, if we imagine that the parser has seen just examples 2 and 

3, then, roughly speaking, it will have recorded that the combination of self and subsidiary ( 's+b')  can be 

realized as a VP ("owns BBN") and that s+p can be realized as a possessive NP ("subsidiary of GTE"), 

but it will have no reason to believe that there is a direct (self-contained) realization of  p+b since.it has 

never seen them together as the only content elements in one phrase. 7 Should it later read a text that 

includes the phrasing "'...BBN, a subsidiary of GT ..." (or for that matter "'...lsoQuest, a subsidiary of 

SRA..."), it will extend the annotation on the s+b lattice point to include that relative clause pattern. 

7 

If a category defines N variables then its saturation lattice has N+I factorial nodes over N+I" levels. For the initial 
financial example, which is the realization of a 14-tuple, this means its lattice could in principle contain several 
billion nodes distributed across 15 levels. ! t obviously does not, and the reason is simply that the lattice is 0nly 
instantiated as the parser finds particular combinations of variables. Because the compartmentalization of the 
elements of the 14 tuple is high and their actual patterns of combination relatively few, the lattice has not quite a 
hundred nodes as this is written. 

This is the way that Krisp implements the 'uniqueness principle' articulated by Maida and Shapiro 1982 whereby 
every individual has a single representation in thedomain model regardless of how often or in what context it 
Occurs. 

Given our knowledge of English grammar, we can imagine the gapping construction where this would occur: 
"GTE owns BBN and IBM Lotus", but i t has not occurred in this corpus, therefore it is not included in the 
realization patterns recorded in the saturation lattice. 
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2.3 S t r ands  of anno ta t ions  

The annotations on the lattice points are not independent. They are linked together i n  strands 

running down through the saturation lattice that reflect the parser's derivation tree as it accdmulated 

successively larger portions of the text to the head-line of its maximal phrases, binding one variable after 

another in a particular order and thereby following a particular path down through the lattice. Each 

derivation tree that has been seen for a given combination of variable bindings is a separate strand. It is 

the micro-planner's job to choose one 0f these strands based on the properties of the individual nodes it 

i s  Comprised of (one for each binding). Having selected a strand, i t  then Creates (or extends) the Text 

Structure by taking the concrete relation that it has been given by the macro planner and using the strand 

as a recipe for introducing the objects in the relation into the Text Structure. They are added one by one 

as the micro-planner reads out the strand from top to bottom, at each step adding the object that is bound 

to the variable that was added at that lattice point. 

This use of Strands lets us capture some delicate co-occurrence Constrains for free because :the 

realizations of the terms in a relation (and their constituent terms) are not independent but must follow 

the pattern defined by the selected strand. In the ern domain consider the common alternation in the 

placement of the "fractional time period' term ("quarter", "'nine months", etc.) with respect to the 

'financial item' term ("earnings", "'turnover", etc.) in a phrase that anchors the reporting period to a 

particular point in the calendar. We typically see phrasings like #4 or #5 but never the combination in #6. 

(4) "'..,quarterly earnings for the period ending March 31..." " 

(5) ...earnings for  the quarter ending March 31..." 

(6)  * "...quarterly earnings for the quarter ending March 31..." 

The question is how is #6 to be  avoided. The source for the anchor adjunct includes the fact that the 

'period' is one fiscal quarter; what is the constraint mechanism that suppresses the expression of the 

actual time period when it has been stipulated, thematically, tO appear with the head noun? 

The answer is simply that the pattern of realiz~itions in #6 has never been seen by the parser and 

consequently there is 90 strand for it in the lattice. The parser has done all the work and the micro- 

planne r reaps the benefitS without the need for any sort of active constraint propagation mechanism. It 

just reads out the template that the parser has provided. 

3. Bi-directional Resources 

This technique is predicated on the parser and generator sharing the same model of the language so 

that the observations of the parser can be capitalized on by the generator. Such reversibility is a common, 
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if  seldom deployed, idea in computational linguistics (see papers in Strzalkowski 1994). Here the turn- 

around point i s  in the domain model that represents what the parser understood rather than at the 

typically chosen level of  logical form (see, e.g., Shieber et al. 1990). This has choice has considerable 
° 

advantage in leverage because the model can be very abstract, and in practical engineering since the 

domain model is invariably developed by reverse-engineering actual texts. We earlier saw an example of  

a category in the model. Now we turn to the resources that define the (bulk of) the linguistic knowledge. 

The grammar is a TAG, •given in its usual form on  the generation side in Mumble, but a very 

different one on the parsing side. s For the parser, the TAG is •reorganized (by hand) by sectioning the 

trees horizontally into patterns of  immediate constituents in the manner of  SchabeS and Waters (1992) as 

shown in the example below, 9 which is followed by the full detail of  the part o f  the realization field of  

co-owns-co that goes  with this tree family; syntactic categories on the left side of the mapping are 

replaced with the semantic categories on the right. 

(define-exploded-tree-family transitive/passive 
:binding-parameters ( agent patient ) 
labels ( s vp vg np/subject np/object ) 
cases ((:theme (s (np/subject vp) 

: head right-edge 
:binds (agent left-edge))) 

(:theme (s (np/subject vg) 
:head right-edge 
:binds (agent left-edge))) 

(:final (vp (vg np/object) 
:head left-edge 
:binds (patient right-edge))) 

(:theme (s (np/object vg/+ed) 
:head right-edge 
:binds (patient left-edge))) 

(:subordinated (vp (vg/+ed by/pp/np/subject) 
:head left-edge 
:binds (agent right-edge) ) ) ) ) 

( : tree-family transitive/passive 
:mapping ((agent . parent) 

(patient . subsidiary) 

( s  . s e l f )  ;,  i . e .  the category c o - o w n s - c o  
(vp . self) 
(vg . "own") 
(np/subject . company) 
(np/object . company) ) ) 

The annotations left by the parser on the nodes of the saturation lattice are essentially just pointer s back 

to the rule in the 'exploded' tree family that it applied when it added the constituent that bound that term. 

In the sense of Appeit (1988) this is a 'compilation'-based treatment Of bi-directional processing. 

Note that it does not include rewrite expressions for any of the 'oblique' forms that clauses are subject to 
(relatives, reductions under conjunction, clefts); these are standard to clauses of all sorts and the parser handles 
them through a common set of rules of a different kind. 
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• Thus the annotation includes the label, such as theme or final, that characterizes the comparative status 

of the np te rm in the rule, making it available to the micro-planner to aid in its choice of strands. 

• \ 

4. C o n c l u s i o n s  

By u s i n g  the saturation lattices to guide its micro,planning process and control its choice • of 

mappings from conceptual objects to. linguistic resources, this system can readily produce the long, 

syntactically elaborate texts that a common in commercial  news sources (after all, the parser has virtually 

laid down a template for the generator to follow), and by being trained on the appropriate corpus i t can 

do  so using thes ty le  that is natural to the genre. The macro-planner can freely rearrange or factor • the 

informat ion that the parser read when it goes to generated new texts, but it will be unable to violate the 

norms of how that information is expressed simply •because it wi l l  be uSing no source other than the 

saturation lattices to make the final realization decisions. 

These sub-categ0ry saturation lattices are( to  my knowledge) a new representational device, one that 

permits us to make use of the knowledge  of how particular types of information are expressed that any 

parser  implicitly deploys. As implemented , the process o f  annotating the nodes is a completely automatic 

side-effect of  incrementally indexing the information contained in partial phrases during the course of a 

parse. Because the process is ubiquitous and covers all the particular facts I° that are acquired from the 

reading (and these are all the facts the system knows), the planning that is done during generation is 

freed from needing to worry about fine-grained details, is assured that its text plans will be expressible, 

and can concentrate on the substantive issues of what  particulars to include and where to place the 

•emphasis. 

Finally, this approach may lead us to a psycholinguistic model of how it is that people  so readily 

adapt their style of writing or speaking to the patterns what they have recently heard or read. 
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