
Lexical Resource Reconciliation in the Xerox Linguistic
Environment

R o n a l d M . K a p l a n
Xerox Palo Al to Research Cen te r

3333 C o y o t e Hill R o a d
Palo Alto, CA, 94304, USA
kapl an~parc, xerox, com

P a u l a S. N e w m a n
Xerox Palo Al to Resea rch Cen te r

3333 C o y o t e Hill R o a d
Palo Alto, CA, 94304, USA
pnewman©parc, xerox, tom

A b s t r a c t

This paper motivates and describes those
aspects of the Xerox Linguistic Environ-
ment (XLE) that facilitate the construction
of broad-coverage Lexical Functional gram-
mars by incorporating morphological and
lexical material from external resources.
Because that material can be incorrect, in-
complete, or otherwise incompatible with
the grammar, mechanisms are provided to
correct and augment the external material
to suit the needs of the grammar developer.
This can be accomplished without direct
modification of the incorporated material,
which is often infeasible or undesirable.
Externally-developed finite-state morpho-
logical analyzers are reconciled with gram-
mar requirements by run-time simulation
of finite-state calculus operations for com-
bining transducers. Lexical entries derived
by automatic extraction from on-line dic-
tionaries or via corpus-analysis tools are in-
corporated and reconciled by extending the
LFG lexicon formalism to allow fine-tuned
integration of information from difference
sources.

1 I n t r o d u c t i o n

The LISP-based LFG Grammar Writers Workbench
(GWB) (Kaplan and Maxwell, 1996) has long served
both as a testbed for the development of parsing al-
gorithms (Maxwell and Kaplan, 1991; Maxwell and
Kaplan, 1993) and as a self-contained environment
for work in syntactic theory. The C/Unix-based Xe-
rox Linguistic Environment (XLE) further develops
the GWB parsing algorithms, extends them to gen-
eration, and adapts the environment to a different
set of requirements.

This paper motivates and describes the morpho-
logical and lexical adaptations of XLE. They evolved
concurrently with PARGRAM, a multi-site XLF_~
based broad-coverage grammar writing effort aimed
at creating parallel grammars for English, French,
and German (see Butt et. al., forthcoming). The
XLE adaptations help to reconcile separately con-
structed linguistic resources with the needs of the
core grammars.

The paper is divided into three major sections.
The next section sets the stage by providing a short
overview of the overall environmental features of the
original LFG GWB and its provisions for morpho-
logical and lexicon processing. The two following
sections describe the XLE extensions in those areas.

2 T h e G W B D a t a B a s e

GWB provides a computational environment tai-
lored especially for defining and testing grammars
in the LFG formalism. Comprehensive editing fa-
cilities internal to the environment are used to con-
struct and modify a data base of grammar elements
of various types: morphologicalrules, lexical entries,
syntactic rules, and "templates" allowing named ab-
breviations for combinations of constraints. (See Ka-
plan and Maxwell, 1996; Kaplan and Bresnan, 1982;
and Kaplan, 1995 for descriptions of the LFG for-
malism.) Separate "configuration" specifications in-
dicate how to select and assemble collections of these
elements to make up a complete grammar, and al-
ternative configurations make it easy to experiment
with different linguistic analyses.

This paper focuses on the lexical mapping process,
that is, the overall process of translating between the
characters in an input string and the initial edges of
the parse-chart. We divide this process into the typ-
ical stages of tokenization, morphological analysis,
and LFG lexicon lookup. In GWB tokenizing is ac-
complished with a finite-state transducer compiled
from a few simple rules according to the methods

54

described by (Kaplan and Kay, 1994). It tokenizes
the input string by inserting explicit token bound-
ary symbols at appropriate character positions. This
process can produce multiple outputs because of un-
certainties in the interpretation of punctuation such
as spaces and periods. For example, "I like Jan."
results in two alternatives ("I@like@Jan@.@" and
"I@like@Jan.@.@") because the period in "Jan."
could optionally mark an abbreviation as well as a
sentence end.

Morphological analysis is also implemented as a
finite-state transducer again compiled from a set of
rules. These rules are limited to describing only
simple suffixing and inflectional morphology. The
morphological transducer is arranged to apply to in-
dividual tokens produced by the tokenizer, not to
strings of tokens. The result of applying the mor-
phological rules to a token is a stem and one or more
inflectional tags, each of which is the heading for an
entry in the LFG lexicon. Morphological ambiguity
can lead to alternative analyses for a single token, so
this stage can add further possibilities to the alterna-
tives coming from the tokenizer. The token "cooks"
can be analyzed as "cook +NPL" or "cook +V3SG",
for instance.

In the final phase of GWB lexical mapping, these
stem-tag sequences are looked up in the LFG lexicon
to discover the syntactic category (N, V, etc.) and
constraints (e.g. (1" NUM)=PL) to be placed on a
single edge in the initial parse chart. The category of
that edge is determined by the particular combina-
tion of stems and tags, and the corresponding edge
constraints are formed by conjoining the constraints
found in the s tem/ tag lexical entries. Because of the
ambiguities in tokenization, morphological analysis
and also lexical lookup, the initial chart is a network
rather than a simple sequence.

The grammar writer enters morphological rules,
syntactic rules, and lexical entries into a database.
These are grouped by type into named collections.
The collections may overlap in content in that differ-
ent syntactic rule collections may contain alternative
expansions for a particular category and different
lexical collections may contain alternative definitions
for a particular headword. A configuration contains
an ordered list of collection names to indicate which
alternatives to include in the active grammar.

This arrangement provides considerable support
for experimentation. The grammar writer can in-
vestigate alternative hypotheses by switching among
configurations with different inclusion lists. Also,
the inclusion list order is significant, with collec-
tions mentioned later in the list having higher prece-
dence than ones mentioned earlier. If a rule for the

same syntactic category appears m more than one
included rule collection, or an entry for the same
headword appears in more than one included lexical
collection, the instance from the collection of high-
est precedence is the one included in the grammar.
Thus the grammar writer can tentatively replace a
few rules or lexical entries by placing some very small
collections containing the replacements later in the
configuration list.

We constructed XLE around the same database-
plus-configuration model but adapted it to operate
in the C/Unix world and to meet an additional set
of user requirements. GWB is implemented in a res-
idential Lisp system where rules and definitions on
text files are "loaded" into a memory-based database
and then selected and manipulated. In C/Unix we
treat the files themselves as the analog of the GWB
database. Thus, the XLE user executes either a
"create-parser" or "create-generator" command to
select a file containing one or more configurations
and to select one of those configurations to specify
the current grammar. The selected configuration, in
turn, names a list of files comprising the data base,
and identifies the elements in those files to be used
in the grammar.

This arrangement still supports alternative ver-
sions of lexical entries and rules, but the purpose
is not just to permit easy and rapid exploration of
these alternatives. The XLE database facilities also
enable linguistic specifications from different sources
and with different degrees of quality to be combined
together in an orderly and coherent way. For XLE
the goal is to produce efficient, robust, and broad
coverage processors for parsing and generation, and
this requires that we make use of large-scale, in-
dependently developed morphological analyzers and
lexicons. Such comprehensive, well-engineered com-
ponents exist for many languages, and can relieve
the grammar developer of much of the effort and
expense of accounting again for those aspects of lan-
guage processing.

3 X L E Morphological Processing
One obvious obstacle to incorporating externally de-
veloped morphological analyzers, even ones based on
finite-state technology, is that they may be supplied
in a variety of data-structure formats. We overcame
this obstacle by implementing special software inter-
preters for the different transducer formats. But, as
we learned in an evolutionary process, a more fun-
damental problem in integrating these components
with syntactic processing is to reconcile the analyses
they produce with the needs of the grammar.

Externally-available morphological components

55

are, at present, primarily aimed at relatively unde-
manding commercial applications such as informa-
tion retrieval. As such, they may have mistakes or
gaps that have gone unnoticed because they have no
effect on the target applications. For example, func-
tion words are generally ignored in IR, so mistakes
in those words might go undetected; but those words
are crucial in syntactic processing. And even correct
analyses generally deviate in some respects from the
characterizations desired by the grammar writer.

These mistakes, gaps, and mismatches are often
not easy to correct at the source. It may not be
practical to refer problems back to the supplier as
they are uncovered, because of inherent time lags,
economic feasibility, or other factors. But the gram-
mar writer may not have the tools, permissions, or
skills, to modify the source specifications directly.

3.1 Bas i c A p p r o a c h

It is often the case that repairs to an external trans-
ducer whose behavior is unsatisfactory can be de-
scribed in terms of operations in the calculus of reg-
ular relations (Kaplan and Kay, 1994). Transducers
that encode the necessary modifications can be com-
bined with the given one by combinations of com-
position, union, concatenation, and other operators
that preserve regularity.

For example, suppose an externally created finite-
state morphological analyzer for English maps sur-
face forms such as "email" into stem+inflectional-
morpheme sequences such as "email -I-Nmass", but
that certain other relatively recent usages (e.g.
"email" as a verb) are not included. A more ad-
equate transducer can be specified as Exee rna l U
Addi t ion , the union of the external transducer with
a locally-defined modification transducer. XLE pro-
vides a facility for constructing simple Add i t i on
transducers from lists of the desired input /output
pairs:

email : email +Nsg

emails: email +Npl
email : email +Vpres

The relational composition operator is also quite
useful, since it enables the output of the exter-
nal transducer to be transformed into more suit-
able arrangements. For example, suppose the given
transducer maps "buy" into "buy +VBase", where
+VBase subsumes both the present-tense and in-
finitival interpretations. This is not a helpful result
if these two interpretations are treated by separate
entries in the LFG lexicon, but this problem can
be repaired by the composition E x t e r n a l o TagFst,
where TagFst is a transducer specified as

+Vbase : +Verb +Inf

+Vbase : +Verb +Not3Sg

Finally, in cases where the output of the exter-
nal analyzer is simply wrong, corrections can be de-
veloped again in a locally specified way and com-
bined with a "priority union" operator that blocks
the incorrect analyses. The priority union of reg-
ular relations A and B is defined as A Up B =

A U lid(Dora(A)) o B]. The relation A Up B con-
tains all the pairs of strings in A together with all
the pairs in B except those whose domain string is
also in the domain of A. With this definition the ex-
pression C o r r e c t i o n Up E x t e r n a l describes a trans-
ducer that implements the desired overrides.

In principle, these and other modifications to an
externally supplied transducer can be built by us-
ing a full-scale regular expression compiler, such as
the Xerox calculus described in (Karttunen et. al.,
1997). The calculus can evaluate these corrective
expressions in an off-line computat ion to create a
single effective transducer for use in syntactic pro-
cessing. However, in practice it is not always pos-
sible to perform these calculations. The external
transducer might be supplied in a form (e.g. highly
compressed) not susceptible to combination. Or (de-
pending on the modifications) the resultant trans-
ducer may grow too large to be useful or take too
long to create.

Therefore, our approach is to allow transducer
combining operations to be specified in a "mor-
phological configuration" (morph-config) referenced
from the XLE grammar configuration. The effects
of the finite-state operations specified in the morph-
config are simulated at run time, so that we obtain
the desired behavior without performing the off-line
calculations. In the case of union, the analysis is
the combination of results obtained by passing the
input string through both transducers. For compo-
sition, the output of the first transducer is passed
as input to the second. For priority union, the first
transducer is used in an a t tempt to produce an out-
put for a given input; the result from the second
transducer is used only if there is no output from
the first.

Specifying the transducer combining operations
in the XLE morph-config rather than relying on a
script for an offline computat ion has another impor-
tant advantage: it gives the grammar writer a single
place to look to understand exactly what behavior to
expect from the morphological analyzer. It removes
a serious audit-trail problem that would otherwise
arise in large-scale grammar development.

56

n

mm

[]

[]

[]

[]

m

m

m

[]

i

[]

m

[]

l

[]

m

mm

m

3.2 T h e Ro le o f T o k e n i z a t i o n

The role of tokenization in a production-level parser
is more than a mat ter of isolating substrings
bounded by blanks or punctuation or, in genera-
tion, reinserting blanks in the appropriate places.
The tokenizer must also undo various conventions of
typographical expression to put the input into the
canonical form expected by the morphological ana-
lyzer. Thus it should include the following capabili-
ties in addition to substring isolation:

. Normalizing: removing extraneous white-space
from the string.

• Editing: making prespecified types of modifica-
tions to the string, e.g., removing annotations
or SGML tags in an annotated corpus.

• Accidental capitalization handling: analyzing
capitalized words, at least in certain contexts
such as sentence-initial, as, alternatively, their
lower-case equivalents,

• Contraction handling: separating contracted
forms such as:

l~homme --> le homme

du --> de le
John's --> John _poss

These forms represent combinations of elements
that would typically appear under different syn-
tactic nodes. That is, the elements of "du"
fall under both PREP and NP, and those of
"John's" within an NP and a POSS attached to
the NP. Separating these in the tokenizing pro-
cess avoids what would otherwise be unnecess-
sary grammatical complications.

• Compound word isolation: determining which
space-separated words should be considered as
single tokens for purposes of morphological
analysis and parsing, at least as an alternative,
This function can range from simply shielding
blank-containing words from separation, e.g., "a
priori", "United States" to recognizing and sim-
ilarly shielding highly structured sequences such
as date (Karttunen et. al., 1997) and time ex-
pressions.

Because a tokenizing transducer is not only
language-specific but often specific to a particu-
lar application and perhaps also to grammar-writer
preference, it may be necessary to build or modify
the tokenizing transducer as part of the grammar-
writing effort.

Logically, the relationship between the effective
finite-state tokenizer, which carries out all of the
above functions, and the morphological analyzer can
be defined as:

tokenizer o [morph analyzer @]*

That is, the tokenizer, which inserts token bound-
aries (©) between tokens, is composed with a cyclic
transducer that expects a © after each word. How-
ever, the feasibility considerations applying to the
of[line compilation of morphological transducers ap-
ply as well to the pre-compilation of their composi-
tion with the effective tokenizer. So the XLE morph-
config file provides for the specification of a separate
tokenizer, and the cycle and composition in the ex-
pression above are simulated at run-time.

Further, it is advantageous to allow the effective
tokenizer to also be specified in a modular way, as
regular combinations of separate transducers inter-
preted by run-time simulation. The need for modu-
larity in this case is based on both potential trans-
ducer size, as combining some of the tokenizer func-
tions can lead to unacceptably large transducers,
and on the desirability of using the same morph-
config specifications for both parsing and genera-
tion. Most of the tokenizer functions are appropriate
to both of these processes but some, such as white-
space normalization, are not. Our modular specifi-
cation of the effective tokenizer allows the grammar
writer to mark those components that are used in
only one of the processes.

3.3 X L E M o r p h - C o n f i g

The current XLE morph-config provides for these
capabilities in a syntactically-sugared form so that
a grammar writer not interested in the finite-state-
calculus can nevertheless combine externally sup-
plied transducers with locally-developed ones, and
can easily comprehend the expected behavior of the
effective transducer.

The general structure of the morph-config is illus-
trated by the following:

English Morph Config
TOKENI ZE:
P ! b l a n k - n o r m a l i z e r t o k e n i z e r

ANALYZE USEFIRST:

morph-override

main-morph
P!accent-fix main-morph

ANALYZE USEALL:
morph-addl

morph-add2

57

The transducers named in the TOKENIZE section
are applied in sequence to each input string, with
the result being the same as that of applying their
composition. However those prefixed[by P! or G! are
applied only in parsing or generation respectively.

The individual output tokens are submitted to
the transducers specified in the ANALYZE sections.
There may be two such sections. The ANALYZE
USEFIRST section is borrowed directly from the
Rank Xerox transducer "lookup" facility (Karttunen
et. al., 1997). Each line in this section specifies an
effective transducer equivalent to the result of com-
posing all the transducers mentioned on that line.
The effective transducer resulting from the entire
section is equivalent to the combination, by prior-
ity union, of the effective transducers specified by
the individual lines.

So, in the above example of an ANALYZE USE-
FIRST section, the large main-morph, assumed to
be externally supplied, handles most inputs, but its
incorrect analyses are blocked by the preemptive re-
suits of the morph-override transducer• And if nei-
ther the override transducer nor the main transducer
obtains an analysis during parsing, the transduc-
tion specified as the composition of an accent fixer
(e.g., for correcting erroneous accents) with the main
transducer is applied. The accent fixer is not used
in generation, so that only properly accented strings
are produced•

In the ANALYZE USEALL section, transducers
on a single line are again interpreted as composed,
but the resultant transducers from separate lines
are understood as combined by simple union with
each other and with the (single) effective ANALYZE
USEFIRST transducer. In this way the grammar
writer can specify one or more small transducers de-
livering alternative analyses where the results of the
external analyzer are correct, but additional analy-
ses are needed.

The meaning of all the specifications in a morph-
config file can be represented as an expression in
the finite-state calculus that describes a single ef-
fective transducer. This transducer maps from the
characters of an input sentence to a finite-state ma-
chine that represents all possible sequences of mor-
pheme/ tag combinations. The network structure of
that machine is isomorphic to the initial parse-chart.
For our simple morph-config example, the effective
parsing transducer is

blank-normalizer
0

tokenizer
0

morph-override]
Up main-morph |
Up accent-fixo main-morphJ

U @
morph-addl

U
morph-add2

4 XLE Lexicon Structures

The lexical extensions XLE makes to the GWB
database setup are also aimed at obtaining broad
coverage via the use of independently developed re-
sources. External lexical resources may be derived
from machine readable dictionaries or large corpora
by means of corpus analysis tools that can automat-
ically produce LFG lexical entries (for example, the
tools described by Eckle and Held, 1996). However,
the results of using such repositories and tools are
relatively error-prone and cannot be used without
correction. In this section we describe the conven-
tions for combining lexical information from differ-
ent sources.

As in GWB, an entry in the XLE lexicon con-
tains one or more subentries associated with differ-
ent parts of speech, and separate entries for stems
and affixes, e.g.,

cook N BASE (" PRED)= 'cook ~
(" NTYPE) =c COUNT;

V BASE (" PRED)='cook<(~ SUBJ)

(" 0BJ)>'.

+NpI N SFX (" NTYPE) = COUNT

(" NUMBER) = PL.

These entries specify the syntactic categories for
the different senses of the morphemes together with
the LFG constraints that are appropriate to each
sense• The syntactic category for a sense, the one
that matches the preterminal nodes of the phrase-
structure grammar, is created by packing together
two components that are given in the entry, the
major category indicator (N and V above) and a
category-modifier (BASE and SFX). The noun and
verb senses of "cook" are thus categorized as N-
BASE and V-BASE, and the category of the plu-
ral morpheme is N-SFX. These categories are dis-
tinct from the N and V that are normally referenced
by higher-level syntactic rules, and this distinction
permits the grammar to contain a set of "sublexi-
cal" rules that determine what morphotactic combi-

58

nations are allowed and how the constraints for an
allowable combination are composed from the con-
straints of the individual morphemes. The sublexical
rule for combining English nouns with their inflec-
tional suffixes is

N --> N-BASE N-SFX

Here the constraints for the N are simply the con-
junction of the constraints for the base and suffix,
and this rule represents the interpretation that is
built in to the GWB system. By distinguishing the
morphological categories from the syntactic ones and
providing the full power of LFG rules to describe
morphological compositions, the XLE system allows
for much richer and more complicated patterns of
word formation.

Also as in GWB, the lexicon for a grammar can
be specified in the configuration by an ordered list
of identifiers for lexical entry collections such as:

LEXENTRIES (CORPUS ENGLISH)
(CORRECTIONS ENGLISH).

To find the effective definition for a given headword,
the identified lexicons are scanned in order and the
last entry for the headword is used. Thus the order
of lexicon identifiers in an XLE configuration allows
hand-created accurate entries to be identified later
in the list and override all earlier (errorful) entries.

This is a practical approach to correction; the al-
ternative approach of manually correcting erroneous
entries in situ requires the edits to be redone when-
ever new versions of the external lexicon are created.
But more can be done, as discussed in the next sec-
tion.

4.1 L e x i c o n E d i t E n t r i e s

We found that an erroneous entry in an externally
provided lexicon often contains many subentries that
are completely acceptable and should not be thrown
away. However, the complete overrides afforded by
the configuration priority order do not allow these
desirable subentries to be preserved.

For this reason, we defined a new kind of lexical
entry, called an "edit entry", that allows more finely
tuned integration of multiple entries for a head-
word. The category-specific subentries of an edit en-
try are prefixed by operators specifying their effects
on the subentries collected from earlier definitions
in the priority sequence. For example, the external
lexicon might supply the following preposition and
directional-adverb subentries for the word "down":

down P BASE @PREP;
ADV BASE QDIRADV.

where QPREP and QDIRADF invoke the LFG templates
that carry the constraints common to all preposi-
tions and directional adverbs. The following edit
entry specified later in the lexicon sequence can be
used to add the less likely transitive verb reading
(e.g. "He downed the beer"):

down +V BASE @TRANS;
ETC.

The + operator indicates that this V subentry is to
be disjoined with any previous verb subentries (none
in this case). The ETC flag specifies that previous
subentries with categories not mentioned explicitly
in the edit entry (P and ADV in this case) are to be
retained.

We allow three other operators on a category C
besides +. !C indicates that all previous category-C
subentries for the headword should be replaced by
the new one. -C prefixes otherwise empty subentries
and specifies that all previous category-C subentries
for the headword should be deleted. For example,
if the above verbal meaning of "down" actually ap-
peared in the external lexicon and was not desired,
it could be deleted by an edit entry:

down -V;
ETC.

Finally, =C indicates that all previous category-C
subentries should be retained. This is useful when
the flag ONLY appears instead of ETC. ONLY sets the
default that the subentries for all categories not men-
tioned in the current entry are to be discarded; =C
can be used to override that default just for the cat-
egory C..

Combinations of these operators and flags allow
quite precise control over the assembly of a final ef-
fective entry from information coming from different
sources. To give one final example, if the constraints
provided for the adverbial reading were insufficiently
refined, the correcting entry might be:

down +V BASE @TRANS;
!ADV BASE @DIRADV

(" ADV-TYPE) =VPADV-FINAL;
ETC.

This adds the verbal entry as before, but replaces the
previous adverb entry with a new set of constraints.

Edit entries have been especially valuable in the
German branch of the PARGRAM effort, which uses
lexicons automatically derived from many sources.
Subentries in the sequence of automatic lexicons
are generally prefixed by + so that each lexicon
can make its own contributions. Then manually-
coded lexicons are specified with highest precedence
to make the necessary final adjustments.

59

4.2 Defaul t d e f i n i t i o n s a n d u n k n o w n words

Morphological analysis coupled with sublexical rules
determines which categories a word belongs to and
what suffixes it can take. Subentries in the LFG lex-
icons specify additional syntactic properties which
for many words are not predictable from their mor-
phological decompositions. There are large sets of
words in each category, however, that have exactly
the same syntactic properties; most common nouns,
for example, do not take arguments. XLE provides
for default specifications that permit many redun-
dant individual entries to be removed from all lexi-
cons.

The lexical entry for the special headword
-Lunknown contains subentries giving the default
syntactic properties for each category. The entry

-Lunknown N BASE @CN;

V BASE @TRANS.

indicates that the default properties of morpholog-
ical nouns are provided by the common-noun tem-
plate ©ON and that verbs are transitive by default.
-Lunknoun is taken as the definition for each lower-
case word at the beginning of the scan through the
ordered list of lexicons, and these subentries will pre-
vail unless they are overridden by more specific infor-
mation about the word. Another special headword
-LUnknown gives the default definition for upper-case
words (e.g. for proper nouns in English).

To illustrate, suppose that the morphological an-
alyzer produces the following analysis

doors : door -Np1

but that there is no explicit lexical entry for "door".
Edges for both N-SO and V-SC, with constraints
drawn from the -Lunknown entry would be added
to the initial chart, along with edges for the tags.
But only the sublexical rule

N --> N-BASE N-SFX

would succeed, because the morphological analyzer
supplied the -Npl tag and no verbal inflection. Thus
there is no need to have a separate entry for "door"
in the lexicon. This feature contributes to the ro-
bustness of XLE processing since it will produce the
most common definition for words known to the mor-
phology but not known to the lexicon.

5 Summary

While GWB provides a self-contained environment
for work in syntactic theory exploration, XLE is
intended for production grammar development for
parsing and generation. It must therefore provide for
the careful integration of externally--created morpho-
logical and lexical resources. These resources cannot

be used directly because they typically contain er-
rors or are otherwise inconsistent with the needs of
grammar developers.

XLE contains several mechanisms for reconcil-
ing external resources with grammar-specific lexi-
cal and syntactic requirements. XLE allows the
grammar writer to assemble effective tokenizers and
morphological analyzers by combining externally-
provided components with locally-developed ones.
These combinations are expressed with the finite-
state calculus, many of whose operations are sim-
ulated at run-time. XLE also allows the grammar
writer to obtain effective LFG lexical definitions by
means of edit entries that combine information from
various external sources with manually coded and
default definitions. These extensions to the original
GWB specifications have proven extremely helpful
in our large*scale grammar development efforts.

6 Acknowledgements

We would like to thank the participants of the Par-
gram Parallel Grammar project for raising the is-
sues motivating the work described in this paper,
in particular Miriam Butt and Christian Rohrer for
identifying the lexicon-related problems, and Tracy
Holloway King and Marfa-Eugenia Nifio for bring-
ing morphological problems to our attention. We
also thank John Maxwell for his contribution to-
wards formulating one of the approaches described,
and Max Copperman for his help in implementing
the facilities. And we thank Max Copperman, Mary
Dalrymple, and John Maxwell for their editorial as-
sistance.

R e f e r e n c e s

Miriam Butt, Tracy Holloway King, Marfa-Eugenia
Nifio, and Fr~d~rique Segond. Forthcoming. A
grammar writer's handbook, CSLI, Stanford, CA.

Judith Eckle and Ulrich Heid. 1996. Extracting raw
material for a German subcategorization lexicon
from newspaper text. In International Conference
on Computational Lexicography (COMPLEX-96),
Budapest, September.

Ronald M. Kaplan. 1995. The formal architecture of
lexical-functional grammar. In M. Dalrymple, R.
M. Kaplan, J. T. Maxwell, A. Zaenen editors, For-
mal Isssues in Lexical-Functional Grammar, CSLI
Publications, Stanford, CA.

Ronald M. Kaplan and Joan Bresnan. 1982.
Lexical-functional grammar: a formal system for
grammar representation. In J. Bresnan, editor,

60

The Mental Represenation of Grammatical Rela-
tions, M1T Press, Cambridge, MA.

Ronald M. Kaplan and John T. Maxwell 1996
LFG grammar writers workbench. Available at
ftp://ftp.parc.xerox.com/pub/lfg/

19940 Ronald M. Kaplan and Martin Kay. Regular
models of phonological rule systems. Computa-
tional Linguistics, 20:3, pages 331-378.

L. Karttunen, J-P. Chanod, G. Grefenstette, A.
Schiller 1997. Regular expressions for language
engineering. In Natural Language Engineering
Cambrige University Press.

John T. Maxwell, and Ronald M. Kaplan. 1991.
A method for disjunctive constraint satsifaction.
In M. Tomita, editor, Current Issues in Parsing
Technology. Kluwer Academic Publications.

John T. Maxwell, and Ronald M. Kaplan. 1993.
The interface between phrasal and functional con-
straints. Computational Linguistics, 19:4, pages
571-590.

61

