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A b s t r a c t  

This paper motivates and describes those 
aspects of the Xerox Linguistic Environ- 
ment (XLE) that facilitate the construction 
of broad-coverage Lexical Functional gram- 
mars by incorporating morphological and 
lexical material from external resources. 
Because that material can be incorrect, in- 
complete, or otherwise incompatible with 
the grammar, mechanisms are provided to 
correct and augment the external material 
to suit the needs of the grammar developer. 
This can be accomplished without direct 
modification of the incorporated material, 
which is often infeasible or undesirable. 
Externally-developed finite-state morpho- 
logical analyzers are reconciled with gram- 
mar requirements by run-time simulation 
of finite-state calculus operations for com- 
bining transducers. Lexical entries derived 
by automatic extraction from on-line dic- 
tionaries or via corpus-analysis tools are in- 
corporated and reconciled by extending the 
LFG lexicon formalism to allow fine-tuned 
integration of information from difference 
sources. 

1 I n t r o d u c t i o n  

The LISP-based LFG Grammar Writers Workbench 
(GWB) (Kaplan and Maxwell, 1996) has long served 
both as a testbed for the development of parsing al- 
gorithms (Maxwell and Kaplan, 1991; Maxwell and 
Kaplan, 1993) and as a self-contained environment 
for work in syntactic theory. The C/Unix-based Xe- 
rox Linguistic Environment (XLE) further develops 
the GWB parsing algorithms, extends them to gen- 
eration, and adapts the environment to a different 
set of requirements. 

This paper motivates and describes the morpho- 
logical and lexical adaptations of XLE. They evolved 
concurrently with PARGRAM, a multi-site XLF_~ 
based broad-coverage grammar writing effort aimed 
at creating parallel grammars for English, French, 
and German (see Butt et. al., forthcoming). The 
XLE adaptations help to reconcile separately con- 
structed linguistic resources with the needs of the 
core grammars. 

The paper is divided into three major sections. 
The next section sets the stage by providing a short 
overview of the overall environmental features of the 
original LFG GWB and its provisions for morpho- 
logical and lexicon processing. The two following 
sections describe the XLE extensions in those areas. 

2 T h e  G W B  D a t a  B a s e  

GWB provides a computational environment tai- 
lored especially for defining and testing grammars 
in the LFG formalism. Comprehensive editing fa- 
cilities internal to the environment are used to con- 
struct and modify a data base of grammar elements 
of various types: morphologicalrules, lexical entries, 
syntactic rules, and "templates" allowing named ab- 
breviations for combinations of constraints. (See Ka- 
plan and Maxwell, 1996; Kaplan and Bresnan, 1982; 
and Kaplan, 1995 for descriptions of the LFG for- 
malism.) Separate "configuration" specifications in- 
dicate how to select and assemble collections of these 
elements to make up a complete grammar, and al- 
ternative configurations make it easy to experiment 
with different linguistic analyses. 

This paper focuses on the lexical mapping process, 
that is, the overall process of translating between the 
characters in an input string and the initial edges of 
the parse-chart. We divide this process into the typ- 
ical stages of tokenization, morphological analysis, 
and LFG lexicon lookup. In GWB tokenizing is ac- 
complished with a finite-state transducer compiled 
from a few simple rules according to the methods 
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described by (Kaplan and Kay, 1994). It tokenizes 
the input string by inserting explicit token bound- 
ary symbols at appropriate character positions. This 
process can produce multiple outputs because of un- 
certainties in the interpretation of punctuation such 
as spaces and periods. For example, "I like Jan." 
results in two alternatives ("I@like@Jan@.@" and 
"I@like@Jan.@.@") because the period in "Jan." 
could optionally mark an abbreviation as well as a 
sentence end. 

Morphological analysis is also implemented as a 
finite-state transducer again compiled from a set of 
rules. These rules are limited to describing only 
simple suffixing and inflectional morphology. The 
morphological transducer is arranged to apply to in- 
dividual tokens produced by the tokenizer, not to 
strings of tokens. The result of applying the mor- 
phological rules to a token is a stem and one or more 
inflectional tags, each of which is the heading for an 
entry in the LFG lexicon. Morphological ambiguity 
can lead to alternative analyses for a single token, so 
this stage can add further possibilities to the alterna- 
tives coming from the tokenizer. The token "cooks" 
can be analyzed as "cook +NPL" or "cook +V3SG",  
for instance. 

In the final phase of GWB lexical mapping, these 
stem-tag sequences are looked up in the LFG lexicon 
to discover the syntactic category (N, V, etc.) and 
constraints (e.g. (1" NUM)=PL) to be placed on a 
single edge in the initial parse chart. The category of 
that edge is determined by the particular combina- 
tion of stems and tags, and the corresponding edge 
constraints are formed by conjoining the constraints 
found in the s tem/ tag  lexical entries. Because of the 
ambiguities in tokenization, morphological analysis 
and also lexical lookup, the initial chart is a network 
rather than a simple sequence. 

The grammar writer enters morphological rules, 
syntactic rules, and lexical entries into a database. 
These are grouped by type into named collections. 
The collections may overlap in content in that differ- 
ent syntactic rule collections may contain alternative 
expansions for a particular category and different 
lexical collections may contain alternative definitions 
for a particular headword. A configuration contains 
an ordered list of collection names to indicate which 
alternatives to include in the active grammar. 

This arrangement provides considerable support 
for experimentation. The grammar writer can in- 
vestigate alternative hypotheses by switching among 
configurations with different inclusion lists. Also, 
the inclusion list order is significant, with collec- 
tions mentioned later in the list having higher prece- 
dence than ones mentioned earlier. If a rule for the 

same syntactic category appears m more than one 
included rule collection, or an entry for the same 
headword appears in more than one included lexical 
collection, the instance from the collection of high- 
est precedence is the one included in the grammar. 
Thus the grammar writer can tentatively replace a 
few rules or lexical entries by placing some very small 
collections containing the replacements later in the 
configuration list. 

We constructed XLE around the same database- 
plus-configuration model but adapted it to operate 
in the C/Unix world and to meet an additional set 
of user requirements. GWB is implemented in a res- 
idential Lisp system where rules and definitions on 
text files are "loaded" into a memory-based database 
and then selected and manipulated. In C/Unix we 
treat the files themselves as the analog of the GWB 
database. Thus, the XLE user executes either a 
"create-parser" or "create-generator" command to 
select a file containing one or more configurations 
and to select one of those configurations to specify 
the current grammar.  The selected configuration, in 
turn, names a list of files comprising the data  base, 
and identifies the elements in those files to be used 
in the grammar. 

This arrangement still supports alternative ver- 
sions of lexical entries and rules, but the purpose 
is not just to permit easy and rapid exploration of 
these alternatives. The XLE database facilities also 
enable linguistic specifications from different sources 
and with different degrees of quality to be combined 
together in an orderly and coherent way. For XLE 
the goal is to produce efficient, robust, and broad 
coverage processors for parsing and generation, and 
this requires that we make use of large-scale, in- 
dependently developed morphological analyzers and 
lexicons. Such comprehensive, well-engineered com- 
ponents exist for many languages, and can relieve 
the grammar developer of much of the effort and 
expense of accounting again for those aspects of lan- 
guage processing. 

3 X L E  Morphological Processing 
One obvious obstacle to incorporating externally de- 
veloped morphological analyzers, even ones based on 
finite-state technology, is that they may be supplied 
in a variety of data-structure formats. We overcame 
this obstacle by implementing special software inter- 
preters for the different transducer formats. But, as 
we learned in an evolutionary process, a more fun- 
damental problem in integrating these components 
with syntactic processing is to reconcile the analyses 
they produce with the needs of the grammar.  

Externally-available morphological components 
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are, at present, primarily aimed at relatively unde- 
manding commercial applications such as informa- 
tion retrieval. As such, they may have mistakes or 
gaps that have gone unnoticed because they have no 
effect on the target applications. For example, func- 
tion words are generally ignored in IR, so mistakes 
in those words might go undetected; but those words 
are crucial in syntactic processing. And even correct 
analyses generally deviate in some respects from the 
characterizations desired by the grammar writer. 

These mistakes, gaps, and mismatches are often 
not easy to correct at the source. It may not be 
practical to refer problems back to the supplier as 
they are uncovered, because of inherent time lags, 
economic feasibility, or other factors. But the gram- 
mar writer may not have the tools, permissions, or 
skills, to modify the source specifications directly. 

3.1 Bas i c  A p p r o a c h  

It is often the case that repairs to an external trans- 
ducer whose behavior is unsatisfactory can be de- 
scribed in terms of operations in the calculus of reg- 
ular relations (Kaplan and Kay, 1994). Transducers 
that encode the necessary modifications can be com- 
bined with the given one by combinations of com- 
position, union, concatenation, and other operators 
that preserve regularity. 

For example, suppose an externally created finite- 
state morphological analyzer for English maps sur- 
face forms such as "email" into stem+inflectional- 
morpheme sequences such as "email -I-Nmass", but 
that certain other relatively recent usages (e.g. 
"email" as a verb) are not included. A more ad- 
equate transducer can be specified as Exee rna l  U 
Addi t ion ,  the union of the external transducer with 
a locally-defined modification transducer. XLE pro- 
vides a facility for constructing simple Add i t i on  
transducers from lists of the desired input /output  
pairs: 

email : email +Nsg 

emails: email +Npl 
email : email +Vpres 

The relational composition operator is also quite 
useful, since it enables the output  of the  exter- 
nal transducer to be transformed into more suit- 
able arrangements. For example, suppose the given 
transducer maps "buy" into "buy +VBase",  where 
+VBase subsumes both the present-tense and in- 
finitival interpretations. This is not a helpful result 
if these two interpretations are treated by separate 
entries in the LFG lexicon, but this problem can 
be repaired by the composition E x t e r n a l  o TagFst, 
where TagFst  is a transducer specified as 

+Vbase : +Verb +Inf 

+Vbase : +Verb +Not3Sg 

Finally, in cases where the output  of the exter- 
nal analyzer is simply wrong, corrections can be de- 
veloped again in a locally specified way and com- 
bined with a "priority union" operator that blocks 
the incorrect analyses. The priority union of reg- 
ular relations A and B is defined as A Up B = 

A U lid(Dora(A)) o B]. The relation A Up B con- 
tains all the pairs of strings in A together with all 
the pairs in B except those whose domain string is 
also in the domain of A. With this definition the ex- 
pression C o r r e c t i o n  Up E x t e r n a l  describes a trans- 
ducer that implements the desired overrides. 

In principle, these and other modifications to an 
externally supplied transducer can be built by us- 
ing a full-scale regular expression compiler, such as 
the Xerox calculus described in (Karttunen et. al., 
1997). The calculus can evaluate these corrective 
expressions in an off-line computat ion to create a 
single effective transducer for use in syntactic pro- 
cessing. However, in practice it is not always pos- 
sible to perform these calculations. The external 
transducer might be supplied in a form (e.g. highly 
compressed) not susceptible to combination. Or (de- 
pending on the modifications) the resultant trans- 
ducer may grow too large to be useful or take too 
long to create. 

Therefore, our approach is to allow transducer 
combining operations to be specified in a "mor- 
phological configuration" (morph-config) referenced 
from the XLE grammar configuration. The effects 
of the finite-state operations specified in the morph- 
config are simulated at run time, so that we obtain 
the desired behavior without performing the off-line 
calculations. In the case of union, the analysis is 
the combination of results obtained by passing the 
input string through both transducers. For compo- 
sition, the output  of the first transducer is passed 
as input to the second. For priority union, the first 
transducer is used in an a t tempt  to produce an out- 
put for a given input; the result from the second 
transducer is used only if there is no output  from 
the first. 

Specifying the transducer combining operations 
in the XLE morph-config rather than relying on a 
script for an offline computat ion has another impor- 
tant advantage: it gives the grammar writer a single 
place to look to understand exactly what behavior to 
expect from the morphological analyzer. It removes 
a serious audit-trail problem that  would otherwise 
arise in large-scale grammar development. 
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3.2 T h e  Ro le  o f  T o k e n i z a t i o n  

The role of tokenization in a production-level parser 
is more than a mat ter  of isolating substrings 
bounded by blanks or punctuation or, in genera- 
tion, reinserting blanks in the appropriate places. 
The tokenizer must also undo various conventions of 
typographical expression to put the input into the 
canonical form expected by the morphological ana- 
lyzer. Thus it should include the following capabili- 
ties in addition to substring isolation: 

. Normalizing: removing extraneous white-space 
from the string. 

• Editing: making prespecified types of modifica- 
tions to the string, e.g., removing annotations 
or SGML tags in an annotated corpus. 

• Accidental capitalization handling: analyzing 
capitalized words, at least in certain contexts 
such as sentence-initial, as, alternatively, their 
lower-case equivalents, 

• Contraction handling: separating contracted 
forms such as: 

l~homme --> le homme 

du --> de le 
John's --> John _poss 

These forms represent combinations of elements 
that would typically appear under different syn- 
tactic nodes. That  is, the elements of "du" 
fall under both PREP and NP, and those of 
"John's" within an NP and a POSS attached to 
the NP. Separating these in the tokenizing pro- 
cess avoids what would otherwise be unnecess- 
sary grammatical complications. 

• Compound word isolation: determining which 
space-separated words should be considered as 
single tokens for purposes of morphological 
analysis and parsing, at least as an alternative, 
This function can range from simply shielding 
blank-containing words from separation, e.g., "a 
priori", "United States" to recognizing and sim- 
ilarly shielding highly structured sequences such 
as date (Karttunen et. al., 1997) and time ex- 
pressions. 

Because a tokenizing transducer is not only 
language-specific but often specific to a particu- 
lar application and perhaps also to grammar-writer 
preference, it may be necessary to build or modify 
the tokenizing transducer as part of the grammar- 
writing effort. 

Logically, the relationship between the effective 
finite-state tokenizer, which carries out all of the 
above functions, and the morphological analyzer can 
be defined as: 

tokenizer o [morph analyzer @]* 

That  is, the tokenizer, which inserts token bound- 
aries (©) between tokens, is composed with a cyclic 
transducer that expects a © after each word. How- 
ever, the feasibility considerations applying to the 
of[line compilation of morphological transducers ap- 
ply as well to the pre-compilation of their composi- 
tion with the effective tokenizer. So the XLE morph- 
config file provides for the specification of a separate 
tokenizer, and the cycle and composition in the ex- 
pression above are simulated at run-time. 

Further, it is advantageous to allow the effective 
tokenizer to also be specified in a modular way, as 
regular combinations of separate transducers inter- 
preted by run-time simulation. The need for modu- 
larity in this case is based on both potential trans- 
ducer size, as combining some of the tokenizer func- 
tions can lead to unacceptably large transducers, 
and on the desirability of using the same morph- 
config specifications for both parsing and genera- 
tion. Most of the tokenizer functions are appropriate 
to both of these processes but some, such as white- 
space normalization, are not. Our modular specifi- 
cation of the effective tokenizer allows the grammar 
writer to mark those components that are used in 
only one of the processes. 

3.3 X L E  M o r p h - C o n f i g  

The current XLE morph-config provides for these 
capabilities in a syntactically-sugared form so that 
a grammar writer not interested in the finite-state- 
calculus can nevertheless combine externally sup- 
plied transducers with locally-developed ones, and 
can easily comprehend the expected behavior of the 
effective transducer. 

The general structure of the morph-config is illus- 
trated by the following: 

# English Morph Config 
TOKENI ZE: 
P ! b l a n k - n o r m a l i z e r  t o k e n i z e r  

ANALYZE USEFIRST: 

morph-override 

main-morph 
P!accent-fix main-morph 

ANALYZE USEALL: 
morph-addl 

morph-add2 
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The transducers named in the TOKENIZE section 
are applied in sequence to each input string, with 
the result being the same as that of applying their 
composition. However those prefixed[ by P! or G! are 
applied only in parsing or generation respectively. 

The individual output  tokens are submitted to 
the transducers specified in the ANALYZE sections. 
There may be two such sections. The ANALYZE 
USEFIRST section is borrowed directly from the 
Rank Xerox transducer "lookup" facility (Karttunen 
et. al., 1997). Each line in this section specifies an 
effective transducer equivalent to the result of com- 
posing all the transducers mentioned on that line. 
The effective transducer resulting from the entire 
section is equivalent to the combination, by prior- 
ity union, of the effective transducers specified by 
the individual lines. 

So, in the above example of an ANALYZE USE- 
FIRST section, the large main-morph, assumed to 
be externally supplied, handles most inputs, but its 
incorrect analyses are blocked by the preemptive re- 
suits of the morph-override transducer• And if nei- 
ther the override transducer nor the main transducer 
obtains an analysis during parsing, the transduc- 
tion specified as the composition of an accent fixer 
(e.g., for correcting erroneous accents) with the main 
transducer is applied. The accent fixer is not used 
in generation, so that only properly accented strings 
are produced• 

In the ANALYZE USEALL section, transducers 
on a single line are again interpreted as composed, 
but the resultant transducers from separate lines 
are understood as combined by simple union with 
each other and with the (single) effective ANALYZE 
USEFIRST transducer. In this way the grammar 
writer can specify one or more small transducers de- 
livering alternative analyses where the results of the 
external analyzer are correct, but additional analy- 
ses are needed. 

The meaning of all the specifications in a morph- 
config file can be represented as an expression in 
the finite-state calculus that  describes a single ef- 
fective transducer. This transducer maps from the 
characters of an input sentence to a finite-state ma- 
chine that  represents all possible sequences of mor- 
pheme/ tag  combinations. The network structure of 
that machine is isomorphic to the initial parse-chart. 
For our simple morph-config example, the effective 
parsing transducer is 

blank-normalizer 
0 

tokenizer 
0 

morph-override ] 
Up main-morph | 
Up accent-fixo main-morphJ 

U @ 
morph-addl 

U 
morph-add2 

4 XLE Lexicon Structures 

The lexical extensions XLE makes to the GWB 
database setup are also aimed at obtaining broad 
coverage via the use of independently developed re- 
sources. External lexical resources may be derived 
from machine readable dictionaries or large corpora 
by means of corpus analysis tools that can automat- 
ically produce LFG lexical entries (for example, the 
tools described by Eckle and Held, 1996). However, 
the results of using such repositories and tools are 
relatively error-prone and cannot be used without 
correction. In this section we describe the conven- 
tions for combining lexical information from differ- 
ent sources. 

As in GWB, an entry in the XLE lexicon con- 
tains one or more subentries associated with differ- 
ent parts of speech, and separate entries for stems 
and affixes, e.g., 

cook N BASE (" PRED)= 'cook ~ 
(" NTYPE) =c COUNT; 

V BASE (" PRED)='cook<( ~ SUBJ) 

(" 0BJ)>'. 

+NpI N SFX (" NTYPE) = COUNT 

(" NUMBER) = PL. 

These entries specify the syntactic categories for 
the different senses of the morphemes together with 
the LFG constraints that are appropriate to each 
sense• The syntactic category for a sense, the one 
that matches the preterminal nodes of the phrase- 
structure grammar, is created by packing together 
two components that are given in the entry, the 
major category indicator (N and V above) and a 
category-modifier (BASE and SFX). The noun and 
verb senses of "cook" are thus categorized as N- 
BASE and V-BASE, and the category of the plu- 
ral morpheme is N-SFX. These categories are dis- 
tinct from the N and V that are normally referenced 
by higher-level syntactic rules, and this distinction 
permits the grammar to contain a set of "sublexi- 
cal" rules that determine what morphotactic combi- 
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nations are allowed and how the constraints for an 
allowable combination are composed from the con- 
straints of the individual morphemes. The sublexical 
rule for combining English nouns with their inflec- 
tional suffixes is 

N --> N-BASE N-SFX 

Here the constraints for the N are simply the con- 
junction of the constraints for the base and suffix, 
and this rule represents the interpretation that is 
built in to the GWB system. By distinguishing the 
morphological categories from the syntactic ones and 
providing the full power of LFG rules to describe 
morphological compositions, the XLE system allows 
for much richer and more complicated patterns of 
word formation. 

Also as in GWB, the lexicon for a grammar can 
be specified in the configuration by an ordered list 
of identifiers for lexical entry collections such as: 

LEXENTRIES (CORPUS ENGLISH) 
(CORRECTIONS ENGLISH). 

To find the effective definition for a given headword, 
the identified lexicons are scanned in order and the 
last entry for the headword is used. Thus the order 
of lexicon identifiers in an XLE configuration allows 
hand-created accurate entries to be identified later 
in the list and override all earlier (errorful) entries. 

This is a practical approach to correction; the al- 
ternative approach of manually correcting erroneous 
entries in situ requires the edits to be redone when- 
ever new versions of the external lexicon are created. 
But more can be done, as discussed in the next sec- 
tion. 

4.1 L e x i c o n  E d i t  E n t r i e s  

We found that an erroneous entry in an externally 
provided lexicon often contains many subentries that 
are completely acceptable and should not be thrown 
away. However, the complete overrides afforded by 
the configuration priority order do not allow these 
desirable subentries to be preserved. 

For this reason, we defined a new kind of lexical 
entry, called an "edit entry",  that allows more finely 
tuned integration of multiple entries for a head- 
word. The category-specific subentries of an edit en- 
try are prefixed by operators specifying their effects 
on the subentries collected from earlier definitions 
in the priority sequence. For example, the external 
lexicon might supply the following preposition and 
directional-adverb subentries for the word "down": 

down P BASE @PREP; 
ADV BASE QDIRADV. 

where QPREP and QDIRADF invoke the LFG templates 
that carry the constraints common to all preposi- 
tions and directional adverbs. The following edit 
entry specified later in the lexicon sequence can be 
used to add the less likely transitive verb reading 
(e.g. "He downed the beer"): 

down +V BASE @TRANS; 
ETC. 

The + operator indicates that this V subentry is to 
be disjoined with any previous verb subentries (none 
in this case). The ETC flag specifies that previous 
subentries with categories not mentioned explicitly 
in the edit entry (P and ADV in this case) are to be 
retained. 

We allow three other operators on a category C 
besides +. !C indicates that all previous category-C 
subentries for the headword should be replaced by 
the new one. -C prefixes otherwise empty subentries 
and specifies that all previous category-C subentries 
for the headword should be deleted. For example, 
if the above verbal meaning of "down" actually ap- 
peared in the external lexicon and was not desired, 
it could be deleted by an edit entry: 

down -V; 
ETC. 

Finally, =C indicates that all previous category-C 
subentries should be retained. This is useful when 
the flag ONLY appears instead of ETC. ONLY sets the 
default that the subentries for all categories not men- 
tioned in the current entry are to be discarded; =C 
can be used to override that default just for the cat- 
egory C.. 

Combinations of these operators and flags allow 
quite precise control over the assembly of a final ef- 
fective entry from information coming from different 
sources. To give one final example, if the constraints 
provided for the adverbial reading were insufficiently 
refined, the correcting entry might be: 

down +V BASE @TRANS; 
!ADV BASE @DIRADV 

(" ADV-TYPE) =VPADV-FINAL; 
ETC. 

This adds the verbal entry as before, but replaces the 
previous adverb entry with a new set of constraints. 

Edit entries have been especially valuable in the 
German branch of the PARGRAM effort, which uses 
lexicons automatically derived from many sources. 
Subentries in the sequence of automatic lexicons 
are generally prefixed by + so that  each lexicon 
can make its own contributions. Then manually- 
coded lexicons are specified with highest precedence 
to make the necessary final adjustments. 
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4.2 Defaul t  d e f i n i t i o n s  a n d  u n k n o w n  words  

Morphological analysis coupled with sublexical rules 
determines which categories a word belongs to and 
what suffixes it can take. Subentries in the LFG lex- 
icons specify additional syntactic properties which 
for many words are not predictable from their mor- 
phological decompositions. There are large sets of 
words in each category, however, that have exactly 
the same syntactic properties; most common nouns, 
for example, do not take arguments. XLE provides 
for default specifications that permit many redun- 
dant individual entries to be removed from all lexi- 
cons. 

The lexical entry for the special headword 
-Lunknown contains subentries giving the default 
syntactic properties for each category. The entry 

-Lunknown N BASE @CN; 

V BASE @TRANS. 

indicates that the default properties of morpholog- 
ical nouns are provided by the common-noun tem- 
plate ©ON and that verbs are transitive by default. 
-Lunknoun is taken as the definition for each lower- 
case word at the beginning of the scan through the 
ordered list of lexicons, and these subentries will pre- 
vail unless they are overridden by more specific infor- 
mation about the word. Another special headword 
-LUnknown gives the default definition for upper-case 
words (e.g. for proper nouns in English). 

To illustrate, suppose that the morphological an- 
alyzer produces the following analysis 

doors : door -Np1 

but that there is no explicit lexical entry for "door". 
Edges for both N-SO and V-SC, with constraints 
drawn from the -Lunknown entry would be added 
to the initial chart, along with edges for the tags. 
But only the sublexical rule 

N --> N-BASE N-SFX 

would succeed, because the morphological analyzer 
supplied the -Npl tag and no verbal inflection. Thus 
there is no need to have a separate entry for "door" 
in the lexicon. This feature contributes to the ro- 
bustness of XLE processing since it will produce the 
most common definition for words known to the mor- 
phology but not known to the lexicon. 

5 Summary 

While GWB provides a self-contained environment 
for work in syntactic theory exploration, XLE is 
intended for production grammar development for 
parsing and generation. It must therefore provide for 
the careful integration of externally--created morpho- 
logical and lexical resources. These resources cannot 

be used directly because they typically contain er- 
rors or are otherwise inconsistent with the needs of 
grammar developers. 

XLE contains several mechanisms for reconcil- 
ing external resources with grammar-specific lexi- 
cal and syntactic requirements. XLE allows the 
grammar writer to assemble effective tokenizers and 
morphological analyzers by combining externally- 
provided components with locally-developed ones. 
These combinations are expressed with the finite- 
state calculus, many of whose operations are sim- 
ulated at run-time. XLE also allows the grammar 
writer to obtain effective LFG lexical definitions by 
means of edit entries that combine information from 
various external sources with manually coded and 
default definitions. These extensions to the original 
GWB specifications have proven extremely helpful 
in our large*scale grammar development efforts. 
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