
On aligning trees

J o C a l d e r

U n i v e r s i t y o f E d i n b u r g h

L a n g u a g e T e c h n o l o g y G r o u p , H u m a n C o m m u n i c a t i o n R e s e a r c h C e n t r e a n d

C e n t r e fo r C o g n i t i v e Sc ience

2 B u c c l e u c h P l a c e

E d i n b u r g h , S c o t l a n d E H 8 9 L W

J . C a] . d e r C e d . a c . uk

Abstract

The increasing availability of corpora anno-
tated for linguistic structure prompts the
question: if we have the same texts, anno-
ta ted for phrase structure under two dif-
ferent schemes, to what extent do the an-
notations agree on structuring within the
text? We suggest the term tree alignment
to indicate the situation where two markup
schemes choose to bracket off the same text
elements. We propose a general method for
determining agreement between two anal-
yses. We then describe an efficient im-
plementation, which is also modular in
that the core of the implementation can be
reused regardless of the format of markup
used in the corpora. The output of the
implementation on the Susanne and Penn
treebank corpora is discussed.

1 I n t r o d u c t i o n

We present here a general design for, and mod-
ular implementation of, an algorithm for comput-
ing areas of agreement between structurally anno-
tated corpora. Roughly speaking, if two corpora
bracket off the same stretches of words in their struc-
tural analysis of a text, the corpora agree that that
stretch of text should be considered a single unit at
some level of structure. We will (borrowing a usage
from (Church and Gale, 1993) term this agreement
(sub)tree alignment.

We make the following assumptions, which appear
reasonable for markup schemes with which we are
familiar:

• the "content" of each text consists of a sequence
of "terminal" elements. That is, the content is
a collection of elements generally correspond-
ing to words and punctuation and this will be

roughly constant across the two corpora. It may
also contain additional elements to represent,
for example, the positing of orthographically
null categories.

• the two corpora whose trees are to be aligned
contain identifiable structural markup. That is,
structural "delimiters" are distinct from other
forms of markup and content.

• two corpora agree on an analysis when they
bracket off the same content.

• The corpora may contain additional markup
provided this is distinct from content and struc-
tural markup.

Our goal, then, is to determine those stretches of
a text 's content which two corpora agree on. Why
might we want to do this? There are several reasons:

• increase confidence in markup and determine
areas of disagreement

If two or more corpora agree on parts of an anal-
ysis, one may "trust" that choice of grouping
more than those groupings on which the cor-
pora differ. Alignment can be used to detect
disagreements between manual annotators.

• verify preservation of analyses across multiple
versions of a corpus

If all the subtrees of a corpus are aligned with
those of another, then the second is consistent
with the first, and represents analyses at least
as detailed as those in the first. Such automatic
checking will be useful both in the case of man-
ual edits to a corpus, and also in the case where
automatic analysis is performed.

• import markup from one corpus to another

If one corpus contains "richer" information than
another, for example in terms of annotation

7 5

of syntactic function or of lexical category, the
markup from the first may be interpreted with
respect to analyses in the second.

• determine constant markup transformations

Having identified aligned subtrees, the labels of
a pair of trees may be recorded, and the results
for the pair of corpora analysed to determine
consistent differences in markup.

• determine constant tree transformations

A set of pairings between aligned subtrees can
be used as a bootstrap for semi-automatic
markup of corpora.

We can also identify some specific motivations
and applications. First, in the automatic determina-
tion of subcategorization information, confidence in
the choice of subcategorization may be improved by
analyses which confirm that subcategorization from
other corpora. Second, the algorithm we have devel-
oped is robust in the face of minor editorial differ-
ences, choice of markup for punctuation, and overall
presentation of the corpora. We have processed the
Susanne corpus (Sampson, 1995) and Penn treebank
(Marcus et al, 1993) to provide tables of word and
subtree alignments. Third, on the basis of the com-
puted alignments between the two corpora, and the
tree transformations they imply, the possibility is
now open to produce, semi-antomatically, versions
of those parts of the Brown corpus covered by the
Penn treebank but not by Susanne, in a Susanne-
like format. Finally, in the development of phrasal
parsers, our results can be used to obtain a measure
of how contentious the analysis of different phrase
types is.

Obviously, the utility of algorithms such as the
one we present here is dependent on the quality and
reliability of markup in the corpora we process.

2 T h e T a s k

In this section, we provide a general characterization
of agreement in analysis between two corpora.

We assume the existence of two corpora, C l and
C r l . The contents of each corpus is a sequence of
elements drawn from a collection of terminal ele-
ments, markers for the left and right structural de-
limiters (LSD and RSD, respectively) and possibly
other markup irrelevant to the content of the text or
its structural analysis. Occurrences of structural de-
limiters are taken to be properly nested. We assume
only that the terminal elements of some corpus can

1for left and right.

be determined, and not that the definition of termi-
nal element correspond to some notion of, say, word.
A consequence of this is tha t markers in a corpus for
empty elements may be retained, and operated on,
even if such markers are additional to the original
text, and represent part of a hypothesis as to the
text 's linguistic organization.

The following sequences can then be computed
from each corpus:

W (z,*} the terminal elements
S {t,*} the terminal elements

and structural delimiters

So S is the corpus retaining structural annotation,
and W is a "text only" version of the corpus. As each
of these is a sequence, we can pick out elements of
each by an index, that is W~ will pick out the n th
terminal element of the left corpus.

The following definitions allow us to refer to struc-
tural units (subtrees) within the two corpora. (We
omit the superscript indicating which corpus we are
dealing with.)

N u m b e r i n g s u b t r e e s We number the subtrees in
each corpus as follows. If Si is the i th occurrence of
LSD in S and Sj is the matching RSD of Si, then the
extent of subtree (i) of S is the sequence S i . . . Sj.
The terminal yield of a subtree is then its extent
less any occurrences of LSD and RSD. This can be
conveniently represented as the stretch of terminal
elements included within a pair of structural delim-
iters, i.e.

yield(t) = (k,l)

where W k is the first element in the extent of t and
Wt the last. We'll refer to a subtree's number as its
index. Let Subtrees(C) be the set of yields in C.

T w o coro l la r i es The following result will be use-
ful later on: for two subtrees from a corpus, if t < t ~
then either t t is a subtree of t or there is no domi-
nance relation between t and t t.

Likewise, we claim that , if a subtree is greater
than unary branching, then it is uniquely identified
by its yield. To see this, suppose that there are two
distinct subtrees, t, t r such that yield(t) = yield(t t)
or = (i , j) . Then, no terminal element intervenes
between Wi and t's LSD, or between Wj and t's
RSD, and the same condition holds of t ~. It must
therefore follow that t is a subtree of t ~ or vice versa
and that they are connected by a series of only unary
branching trees.

A l i g n m e n t o f t e r m i n a l e l e m e n t s We want to
compute the minimal set of differences between W l

7 6

and W r, i.e. a monotone, bijective partial function
defined as follows: 2

Let 5 be the largest subset of i x j for
0 < i < length(W l) and 0 < j < length(W r) such
that 5 is monotone and bijective, and

5 (i) = j if either W / t = W ~
or 1 < i < length(Wt),

=

1 < j < length(Wr),
and Wit+l = W ~ j + l

In other words, 6 records exact matches between the
left and right corpora, or mismatches involving only
a single element, with exact matches to either side.
This allows minor editorial differences and choice of
markup for terminal elements to have no effect in
overall alignment.

A l igne d s u b t r e e s We now offer the following def-
inition. Two trees in C t and C r are aligned, if they
share the same yield (under the image of ~), i.e.:

(W[, W;) e Subtrees(C r) and
(WE(i), W~t(j)/E Subtrees(C t)

Two subtrees are strictly aligned if the above con-
ditions hold and neither tree is a unary branch.
(This definition will be extended shortly.) We saw
above that , if a tree is not unary branching then its
yield is unique.

U n a r y b r a n c h i n g In the case of unary branch-
ing, the inverse of yield will not be a function. In
other words, two subtrees have the same yield. The
situation is straightforward if both corpora share the
same number of unary trees for some yield: we can
pair off subtrees in increasing order of index. (Re-
call that, under dominance, a higher subtree index
indicates domination by a lower index.) In this case
we will say that the unary trees in question are also
strictly aligned.

If the two corpora differ on the number of unary
branches relating two nodes, there is no principled
way of pairing off nodes, without exploiting more
detailed, and probably corpus- or markup-specific
information about the contents of the corpora.

Linking to original c o r p u s For each of the cor-
pora we assume we can define two functions, one
terminal location will give the location in the orig-
inal corpus of a terminal element (e.g. a function

2Of course, in the general case, such a function may
not be unique: It seems a reasonable assumption in the
case of substantial texts in a natural language that the
function will be unique (although perhaps empty).

from terminal indices to, say, byte offsets in a file),
and the other tree location will give the location in
the original corpus of a subtree (in terms, say, of
byte offsets of the left and right delimiters). Tree
locations will therefore include any additional infor-
mation within the corpus stored between the left and
right delimiters.

O u t p u t o f t h e p r o c e d u r e The following infor-
mation may be output from this procedure in the
form of tables

• of subtree indices indicating strict alignment of
two trees

• a table of pairs of sequences of subtree indices
indicating potential alignment

• of pairs of terminal element indices, (i.e. the
function 5) and

• of single terminal element mismatches, for later
processing to detect consistent differences in
markup.

• of the results of applying the functions terminal
location and tree location to the relevant infor-
mation above.

This output can be thought of as a form of "stand
off" annotation, from which other forms of informa-
tion about the corpora can be derived.

3 A p o r t a b l e i m p l e m e n t a t i o n

In this section we describe the implementation of the
above procedure which abstracts away from details
of the markup used in any particular corpus. The
overall shape of the implementation is shown in Fig-
ure 1. The program described here is implemented
in Perl.

N o r m a l i z a t i o n We can abstract away from de-
tails of the markup used in a particular corpus by
providing the following externally defined functions.

annotat ion removal and t r a n s f o r m a t i o n
As our procedure works only in terms of ter-
minal elements and structural annotation, all
other information may be removed from a cor-
pus before processing. We also take this oppor-
tunity to transform the LSD and RSD used in
the corpus into tokens used by the core proces-
sor (that is, { and } respectively). We may also
choose at this point to normalize other aspects
of markup known to consistently differ between
the two corpora.

7 7

leR corpus

right corpus

, Normalize to token stream
/

/
j t

/

Terminal alignment

Figure 1: Overall view of processing

te rmina l and t ree locat ions Similarly, separate
programs may be invoked to provide tables of
byte offsets of terminals and start- and end-
points of trees.

With these functions in place, we proceed to the
description of the core algorithm.

C o m p u t i n g minimal differences We use the
program d i f f and interpret its output to compute
the function 6. Specifically we use the Free Software
Foundations g d i f f with the options --minimal,
--ignore-case and --ignore-all-space, to guar-
antee optimal matches of terminals, and allowing ed-
itorial decisions that result in differences in capital-
ization.

Subt ree indexing and a l ignment de tec t ion
We use the following for representation of subtrees
and the time-efficient detection of aligned trees.
Trees in the right corpus (which we can think of
as the target) are represented as elements in a hash
table, whose key is computed from the terminal in-
dices of the start and end of its yield. Each element
in the hash table is a set of numbers, to allow for
the hashing of multiple unary trees to the same cell

in the table.
In processing the subtrees for the left corpus, we

can simply check whether there is an element in the
hash table for the terminal indices of the yield of
the tree in the left corpus under the image of the
function 6.

4 A n e x a m p l e

IN this section we give a brief example to illustrate
the operations of the algorithm. The start of the
Susanne corpus is shown in the table here:

the [O[S[Nns:s.
[Nns.
.Nns]

Fulton
county
grand
jury .Nns:s]
say [Vd.Vd]
Friday [Nns:t.Nns:t]

while the corresponding part of the treebank looks
as follows.

((S
(NP (DT The) (NNP Fulton) (NNP County)

(NNP Grand) (NNP Jury))
(VP (VBD said)

78

(NP (NNP Friday))

The process of numbering the terminal elements
and computing the set of minimal differences will
give rise to a normalized form of the two corpora
something like the following, where the two leftmost
columns come from Susanne, the others from Penn.
(The numbers here have been altered slightly for the
purposes of exposition.)

Susanne word position Penn word position
the 2 the 1
Fulton 3 Fulton 2
County 4 County 3
Grand 5 Grand 4
Jury 6 Jury 5

Note that the function ~ will in this case map 2
to 1, 3 to 2 and so on. Note that the whole of this
sequence of words is bracketed off in both corpora.
Accordingly, we will record the existence of a tree
spanning 1 to 5 in the treebank. The alignment of
the corresponding tree from Susanne will be detected
by the noting that 5(2) = 1 and 5(6) = 5.

5 R esu l t s of p rocess ing on two
c o r p o r a

We have processed the entire Susanne corpus and the
corresponding parts of the Penn treebank, and pro-
duced tables of alignments for each pair of marked-
up texts. Inputs for this process were a Susanne
file and the corresponding "combined" file from the
treebank (i.e. including part:of-speech information).
Recalling that the treebank marks up the relation-
ship between pre-terminal and terminal as a unary
tree (and that Susanne doesn't do this), the treebank
regularly contains more trees than Susanne.

First, a definition: a tree is maximal if it is not
part of another tree within a corpus. We ignore max-
imal trees of depth one in both corpora (as these cor-
respond to indications of textual units rather than
sentence-internal structural markup). Each maxi-
mal tree containing a tree of greater than depth one
in the treebank may also contain sentence punctua-
tion which is t reated within the structural markup.
As such markup is typically treated as external to
structural annotations within Susanne, trees con-
taining a sentence and sentence punctuation cannot
be a possible target for alignment across the two
corpora. We can take the number of maximal trees
of depth more than one within Susanne as an indi-
cation of the number of trees within the treebank
which are unalignable as a consequence of decisions
about markup. This figure comes to 2431.

With those considerations, we report the following
findings:

• There are 156584 terminal elements in Susanne
and of those we find a total of 145583 (93%) for
which a corresponding element is identified in
the treebank. The corresponding figure for the
treebank is 86% (of 169782 terminal elements
in the treebank).

• There are 110484 trees in Susanne (including
1952 maximal trees of depth one) and so a to-
tal of 108532 potentially aligned trees. Of these
76011 (70%) are aligned with trees in the tree-
bank.

• There are 301086 trees in the treebank, of
which we can eliminate 169782 as trees indi-
cating preterminals (which includes 122174 con-
taining just a textual delimiter), and an esti-
mated further 2431 as representing trees includ-
ing sentence punctuation. This gives a total of
128873 (= 59%) of trees in the treebank pos-
sibly aligned with those in Susanne are in fact
aligned.

The figures above bear out the impression that
trees in the Penn treebank are more highly artic-
ulated than those in Susanne, even leaving aside
the additional structure induced by the treatment
of punctuation and preterminals in the treebank.

The entire process of computing the above out-
put completes in approximately fifty minutes on an
unloaded Sun SparcStation 20.

6 Conc lus ions and L i m i t a t i o n s

We have seen above a formal characterization and
implementation of an algorithm for determining the
extent of agreement between two corpora. The core
algorithm itself and output formats are completely
independent of the markup used for the different cor-
pora. The alignments computed for the Susanne cor-
pus and corresponding portion of the Penn treebank
have been presented and discussed.

Having computed the alignment of trees across
corpora, one option is to compute (either explic-
itly or in some form of stand-off annotation) a cor-
pus combining the information from both sources,
thereby allowing the use of the distinctions made by
each corpus at once.

There are many future experiments of obvious in-
terest, particularly those to do with examining po-
tential factors in cases of agreement or disagreement:

• analysis of consistency of annotation by markup
label

Certain phrase types may be more consistently
annotated than others, so that we can be more
confident in our analyses of such phrases.

79

• analysis of consistency of annotation by depth
in tree

From the above discussion we can see that
alignment of maximal trees approximates 100%,
while that for terminals approximates 90%.
Therefore (and unsurprisingly) the bulk of dis-
agreement lies somewhere in between. Is that
disagreement evenly distributed or are there
factors to do with the complexity of analysis
at play?

These proposals have to do essentially with formal
aspects of markup. Other, perhaps more interesting
questions, touch on the linguistic content of anal-
yses, and whether for example particular linguistic
phenomena are associated with divergence between
the corpora.

The assumption that trees within corpora are
strictly nested represents an obvious limitation on
the scope of the algorithm. In cases where markup
is more complex, other strategies will have to be
developed for detecting agreement between corpora.
That said, the class of markup for which the algo-
rithm presented here is applicable is very large, in-
cluding perhaps most importantly normalized forms
of SGML (Goldfarb, 1990), for example that pro-
posed by (Thompson and McKelvie, 1996).

7 A c k n o w l e d g e m e n t s

I would like to thank Chris Brew for conversations on
the topics discussed in this paper and the anonymous
referees for their comments. This work was funded
by the UK DTI/SERC-funded SALT Programme as
part of the project ILD: The Integrated Language
Database.

applications. In SGML Europe. Graphical Com-
munications Association: Alexandria, VA.

R e f e r e n c e s

Kenneth W. Church and William A. Gale. 1993. A
Program for Aligning Sentences in Bilingual Cor-
pora. Computational Linguistics, 19:75-102.

Charles F. Goldfarb 1990. The SGML Handbook.
Oxford: Clarendon Press.

Mitchell P. Marcus, Beatrice Santorini and Mary
Ann Mercinkiewicz. Building a Large Annotated
Corpus of English: The Penn Treebank. Compu-
tational Linguistics, 19:313-330.

Geoffrey Sampson 1995. English for the Computer:
The SUSANNE Corpus and Analytic Scheme.
Oxford: Clarendon Press.

Henry S. Thompson and David Mckelvie. 1996 A
software architecture for simple, efficient SGML

80

