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Abstract

Question Generation (QG) is the task of gen-
erating questions from a given passage. One
of the key requirements of QG is to generate
a question such that it results in a target an-
swer. Previous works used a target answer to
obtain a desired question. However, we also
want to specify how to ask questions and im-
prove the quality of generated questions. In
this study, we explore the use of interroga-
tive phrases as additional sources to control
QG. By providing interrogative phrases, we
expect that QG can generate a more reliable
sequence of words subsequent to an interroga-
tive phrase. We present a baseline sequence-
to-sequence model with the attention, copy,
and coverage mechanisms, and show that the
simple baseline achieves state-of-the-art per-
formance. The experiments demonstrate that
interrogative phrases contribute to improving
the performance of QG. In addition, we report
the superiority of using interrogative phrases
in human evaluation. Finally, we show that a
question answering system can provide target
answers more correctly when the questions are
generated with interrogative phrases.1

1 Introduction

Question Generation (QG) is the task of generat-
ing questions from a given passage. It has several
applications: (1) In the area of the education, QG
can help to generate questions for reading compre-
hension materials (Heilman and Smith, 2010). (2)
QG can aid development of conversational chat-
bots, which ask questions (Mostafazadeh et al.,
2016). (3) QG is useful for development of ques-
tion answering datasets (Duan et al., 2017; Tang
et al., 2018).

1Our code is available at https://github.com/
WERimagin/NQG_Interrogative_Phrases.

One of the key requirements of QG is to gen-
erate a question such that it asks a target answer.
For example, the sentence “Bob went to the airport
yesterday.” can have various candidate questions
such as “When did Bob go to the airport?,” “Where
did Bob go yesterday?,” and “Who went to the air-
port yesterday?” It is necessary for QG to specify
a desired question from among multiple possibili-
ties. Du et al. (2017) and Chali et al. (2018) used
the sequence-to-sequence model (Bahdanau et al.,
2015), which takes only a passage as the input.
Thus, only one question is generated from mul-
tiple possibilities at random. Most recent studies
tried to generate a desired question using a target
answer as the input. Zhou et al. (2017) and Song
et al. (2018) incorporated the target answer using
the answer position feature. Kim et al. (2018) sep-
arated target answer words from the original pas-
sages to address the problem of many generated
questions including the target answer words.

However, we also want to specify how questions
should be asked and improve the quality of the
generated questions. The existing method some-
times generates inappropriate questions whose in-
terrogative phrases do not match the target an-
swers. For example, we specify a target answer,
“in 1920,” but an interrogative phrase of the gen-
erated question is “how much.” Sun et al. (2018)
proposed the answer-focused model to address this
problem. Heilman and Smith. (2010) extracted
target answers from passages and automatically
converted them into interrogative phrases by a se-
quence of general rules.

In this study, we explore the use of interrogative
phrases as additional sources to control QG. Using
appropriate interrogative phrases that match the
target answers is important for generating ques-
tions. Unlike Heilman and Smith (2010) or Sun
et al. (2018), we directly input the correct inter-
rogative phrases. Selecting correct interrogative

https://github.com/WERimagin/NQG_Interrogative_Phrases
https://github.com/WERimagin/NQG_Interrogative_Phrases
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Figure 1: Overview of the proposed method. We concatenate an answer and interrogative phrase at the end of the
passage using the special tokens <IP> and <ANS>. Also, we replace the answer phrase with the special token
<A>. We use this modified passage as the input and generate a question.

phrases manually is not so difficult; thus, using
the correct interrogative phrases as inputs is an
expected experimental setting. We investigate to
what extent using proper interrogative phrases as
inputs contributes to the quality of the questions.
To the best of our knowledge, this is the first study
that studies the use of interrogative phrases as in-
puts to improve the quality of questions in QG.

We test our method on the SQuAD dataset (Ra-
jpurkar et al., 2016). We demonstrate that the use
of interrogative phrases contributes to improving
the performance of QG by automatic metrics and
human evaluation. We also conduct a question an-
swering experiment. We show that it is easier for a
question answering system to provide the correct
target answers when questions are generated using
interrogative phrases.

2 Method

In this work, we generate a question from a pas-
sage, a target answer, and an interrogative phrase.
An outline of our method is shown in Figure 1.

We use the Encoder-Decoder model with an
attention mechanism (Bahdanau et al., 2015) for
generating questions. In order to obtain a ques-
tion that depends on a passage, a target an-
swer and an interrogative phrase, we concatenate
the target answer and the interrogative phrase at
the end of the passage using the special tokens
<IP> and <ANS>. This treatment can inform the
model about the target answer and the interroga-
tive phrase that should be considered in the gen-
erated questions. In addition, we replace the span
of the target answer in the passage with the spe-
cial token <A>. This treatment helps the model to
focus on the words present near the answer in the
passage when generating a question.

Because a question is expected to use the words
appearing in the passage, we incorporate the copy

mechanism (See et al., 2017) into the model. By
copying the words in the passage while generat-
ing the question, this mechanism reduces the risk
of generating words not included in the passage.
We also explore the use of the coverage mecha-
nism (Tu et al., 2016) to avoid generating an inap-
propriate question. This mechanism can also pre-
vent the model from generating the same word re-
peatedly.

Although this model is simpler than other QG
models, it achieves the surprisingly good perfor-
mance on the SQuAD v1.1 dataset, as described
in Sections 3.4 and 3.5.

3 Experiments

3.1 Dataset
We use the SQuAD v1.1 dataset (Rajpurkar et al.,
2016) in this study. The SQuAD dataset is a ques-
tion answering dataset containing 107,785 ques-
tions with 536 articles. We lowercase all the
data. We extract a sentence containing an answer
phrase. Then, we use it as the input passage. If
the answer phrase spans multiple sentences, we
extract these sentencese and use the concatena-
tion of them as the input passage. We use Stan-
ford CoreNLP (Manning et al., 2014) to extract
the interrogative phrases from the questions. If the
CoreNLP detects multiple words as the interroga-
tive phrases (e.g., “how many”, “in what year” or
“what country”), we use all the word as the inter-
rogative phrase. We remove the sentence-question
pairs whose questions do not contain an interrog-
ative phrase. For instance, Yes/No questions (e.g.,
“Did you go to the school?”) or questions whose
interrogative phrase is located in the middle of
the question, which Stanford CoreNLP cannot de-
tect accurately (e.g., “Bob went to the airport how
many times?”). We remove passage-question pairs
that have no content (non-stop) word in common.
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These pairs are unsuitable for the QG dataset be-
cause the passage is not related to the question.
We thus obtain 74,863, 4,658, and 4,658 pairs for
training, development, and test, respectively.

3.2 Experiment setting

We use the OpenNMT system (Klein et al., 2017).
We retain 45,000 of the most frequent words on
the source side and 28,000 of the most frequent
words on the target side. All the other words are
replaced by the <UNK> token. We use 300 di-
mensions pretrained glove.840B.300d (Penning-
ton et al., 2014) embeddings for initialization, and
we fix them during training. We use 2-layer long
short-term memory in both the encoder and the de-
coder. The size of the hidden state is 600. The
dropout rate is 0.3. We use stochastic gradient de-
scent for optimization. The initial learning rate is
1.0. We halve the learning rate every 2,500 steps
from 20,000 steps onwards. We finish the training
at 50,000 steps. We adopt the model that achieves
the highest accuracy in the development set.

During inference, we conduct the beam search
with a beam width of 2. Decoding stops when the
model generates the <EOS> token. All hyperpa-
rameters are tuned using the development set, and
the results are reported using the test set.

We use two models for comparisons.
ASs2s This model is the state-of-the-art of the
neural QG model for the SQuAD dataset (Kim
et al., 2018). Based on the Encoder-Decoder ar-
chitecture, this model incorporates a target answer
using answer-separated seq2seq and the keyword-
net module. This model need to use a target an-
swer. We compare the accuracy of using interrog-
ative phrases as inputs. When we use an interrog-
ative phrase as the input, we concatenate it at the
end of the passage using the special token <IP>.
Seq2Seq This is our baseline model. We use the
RNN-based Encoder-Decoder model with the at-
tention, copy, and coverage mechanisms. We com-
pare the accuracy of using interrogative phrases
or target answers as inputs. When we use an in-
terrogative phrase as the input, we concatenate it
at the end of the passage using the special token
<IP>. When we use a target answer as the input,
we concatenate it at the end of the passage using
the special token <ANS> and replace the span of
the target answer in the passage with special token
<A>.

To check the contributions of the components in

our model, we conduct ablation tests. We remove
each component from the Seq2Seq + Answer + In-
terrogative method.
-Copy: Without the copy mechanism.
-Coverage: Without the coverage mechanism.
-Answer: Without concatenating the target an-
swer at the end of the passage. We use the target
answer by replacing it in the passage.
-Answer separation: Without replacing the target
answer in the passage. We use the target answer
by concatenating it at the end of the passage.

3.3 Evaluation

Following other QG studies, we use three evalu-
ation metrics: BLEU, METEOR, and ROUGEL

similar to other QG studies (Du et al., 2017; Kim
et al., 2018). In the SQuAD dataset, a passage
sometimes has multiple gold questions. Other
studies used all these questions as references. In
this research, we use one gold question that is a
pair of the source passage and the target answer,
as a reference. The score apparently decreases us-
ing this evaluation method. This method is more
accurate to evaluate generated questions using tar-
get answers as inputs.

In addition, the evaluation method has one lim-
itation. As we use interrogative phrases that form
part of the questions, the score increases consider-
ably because the model knows parts of the ques-
tions (interrogative phrases) to be generated. For
this reason, we also evaluate the generated ques-
tions excluding the interrogative phrases. This
treatment helps us verify whether the whole gen-
erated questions will lead to the target answers.

3.4 Result of the experiment

Table 1 shows the main result. Seq2Seq + An-
swer + Interrogative outperforms other methods
by a large margin. Even when we evaluate ques-
tions excluding interrogative phrases, Seq2Seq +
Answer + Interrogative still outperforms Seq2Seq
+ Answer. This result demonstrates that interrog-
ative phrases help to improve the performance of
QG. Furthermore, it is noteworthy that our sim-
ple Seq2Seq model outperforms the state-of-the-
art model ASs2s. The results of the ablation test
show that our components help to increase the ac-
curacy. Notably, the copy mechanism increases
the accuracy to a considerable extent, showing that
it is very useful for the QG task. With regard to
the answers, replacing target answers contributes
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Normal Evaluation Excluding Interrogative Phrases
Model Answer Interrogative BLEU METEOR ROUGEL BLEU METEOR ROUGEL

ASs2s
X 14.6 19.1 43.0 13.7 17.7 40.8
X X 21.6 23.0 51.2 14.4 17.8 41.8

Seq2Seq

12.1 16.4 39.0 11.8 15.5 37.9
X 22.8 23.1 51.6 14.4 17.4 41.6

X 18.7 21.8 47.5 17.9 20.4 45.2
X X 26.4 26.2 55.9 18.6 20.9 46.9

Ablation Tests
- Copy X X 22.0 23.3 52.1 14.2 17.9 42.8
- Coverage X X 26.4 26.1 56.0 18.5 20.8 46.9
- Answer X X 26.1 25.9 55.5 18.3 20.5 46.3
- Answer Sep X X 23.5 23.5 52.2 15.2 17.9 42.4

Table 1: Result of the QG. We use three evaluation metrics: BLEU, METEOR, and ROUGEL. We also evaluate
questions excluding interrogative phrases. In addition, we do four ablation tests.

Seq2Seq+Answer
Seq2Seq+Answer

+Interrogative
Interrogative Phrase

Same as Gold 51% 100%
Appropriate 43% 0%
Inappropriate 6% 0%

Answer
Correct 61% 74%
Incorrect 39% 26%

Table 2: Human evaluations of QG. We check the ques-
tions according to two criteria: (1) Do the interrogative
phrases match the target answers? (2) Can the ques-
tions provide the target answers?

to increasing the accuracy compared to concate-
nating the target answers at the end of the passage.

Human evaluation We conduct human evalua-
tion to check whether the generated questions are
appropriate. We randomly extract 100 generated
questions from the test set. We check the questions
according to two criteria: (1) Do the interrogative
phrases match the target answers? We classify the
generated questions as follows: the same interrog-
ative phrase as one of the gold questions, different
from one of the gold questions but an appropri-
ate interrogative phrase that matches the target an-
swer, and inappropriate interrogative phrase that
do not match the target answer. (2) Can the ques-
tions provide the target answers?

Table 2 shows the result. Seq2Seq + Answer
+ Interrogative always generates questions that in-
clude the same interrogative phrase as one of the
gold questions. Seq2Seq2 + Answer often uses
simpler interrogative phrases than Seq2Seq + An-
swer + Interrogative, and thus, the questions be-
come abstractive. For example, while the gold in-
terrogative phrase is “what year”, Seq2Seq + An-
swer generates “when”. With regard to the an-

Passage: A regulation of the Rhine was called for, with
an upper canal near Diepoldsau and a lower canal at
Fuach, in order to counteract the constant flooding and
strong sedimentation in the western Rhine Delta.
Target Answer: constant flooding
Gold Question: Why was the Rhine regulated?
ASs2s: What is a lower canal by a lower canal at the
western Rhine Delta?
Seq2Seq+Answer: What was the regulation of the
Rhine called for ?
Seq2Seq+Answer+Interrogative: Why was a regula-
tion of the Rhine called ?
Passage: [note 6] In 1978 a disco version of the theme
was released in the UK, Denmark and Australia by the
group Mankind, which reached number 24 in the UK
charts.
Target Answer: number 24
Gold Question: How high on the charts did the
Mankind version of the theme go?
ASs2s: What was the group of the theme ballad re-
leased by the group?
Seq2Seq+Answer: How many number of the UK
charts did the group Mankind reach in the UK charts?
Seq2Seq+Answer+Interrogative: How high on the
charts did the group Mankind reach?

Table 3: Examples of the generated questions. This
shows questions generated by three models: ASs2S,
Seq2Seq + Answer, and Seq2Seq + Answer + Inter-
rogative.

swers, Seq2Seq + Answer + Interrogative outper-
forms Seq2Seq + Answer. This implies that us-
ing interrogative phrases as inputs makes the ques-
tions more informative and answerable.

Case study Table 3 shows two examples gener-
ated by our model. In the first example, ASs2s and
Seq2Seq + Answer use an inappropriate interrog-
ative word “what”, and passages become unnat-
ural. This is probably because the target answer
is a short noun phrase, so the system decided to
use it without considering the context. However,
Seq2Seq + Answer + Interrogative uses the cor-
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Passage: In July 1977, General Zia-ul-Haq overthrew
Prime Minister Zulfiqar Ali Bhutto ’s regime in Pak-
istan .
Interrogative Phrase: What
Generated Question: What was the name of the Prime
Minister who overthrew Pakistan in 1977?
Interrogative Phrase: Who
Generated Question: Who overthrew Prime Minister
in 1977?
Interrogative Phrase: When
Generated Question: When was Zulfiqar Ali Bhutto
elected?
Interrogative Phrase: Where
Generated Question: Where was Zulfiqar Ali Bhutto
from?
Interrogative Phrase: How
Generated Question: How did Zulfiqar Ali Bhutto re-
spond to the Prime Minister?
Interrogative Phrase: Why
Generated Question: Why was Zulfiqar Ali Bhutto
elected?
Interrogative Phrase: In what year
Generated Question: In what year was Zulfiqar Ali
Bhutto elected?
Interrogative Phrase: How many
Generated Question: How many Prime Minister did
Zulfiqar Ali Bhutto have in pakistan?

Table 4: Example of the question generated by the
Seq2Seq + Interrogative model. This model does not
use an answer phrase. Thus, it can generate various
questions only from passages and interrogative phrases.

rect interrogative phrase and the generated ques-
tion can thus provide the target answer.

In the second example, a similar phenomenon
appears. ASs2s use “what” and Seq2Seq + An-
swer use “how many number of the UK charts” as
interrogative phrases for the target answer “num-
ber 24”. They are inappropriate for context, and
the passage become unnatural.

Table 4 shows an example generated by
Seq2Seq + Interrogative model. This example
comprises a passage and eight questions gener-
ated from eight frequently interrogative phrases.
This model does not use answer phrases. Thus, it
can generate various questions only from passages
and interrogative phrases. They can also generate
questions where the answer phrase is not in the
passage although all questions in the train data in-
clude answer phrases in the passage.

3.5 Question answering using generated
questions

We also examine the quality of the generated ques-
tions in the question answering experiments. We
verify whether the generated questions can pro-
vide the target answers. We apply BERT (Devlin
et al., 2019) for the question answering model on

Method Answer Interrogative EM F1

ASs2s
X 68.9 78.7
X X 71.7 80.1

Seq2Seq

34.1 43.4
X 58.7 69.0

X 72.6 82.2
X X 75.3 84.2

Human 81.2 88.9

Table 5: Result of question answering using generated
questions. We use two evaluation metrics: Exact Match
and F1 score.

the SQuAD dataset. We train and test the question
answering model using the generated questions.
We also train and test original passages created by
a human in the SQuAD dataset as the upper bound.
We use two evaluation metrics: Exact Match and
F1 score.

Table 5 shows the result. This demonstrates
that using interrogative phrases helps the ques-
tion answering system to reach the target answers.
The score of Seq2Seq + Answer + Interrogative
is a little lower than the one associated with the
human-generated questions (by 4.7 F1 points).
This shows that for the question answering model,
the system-generated questions are close to those
created by a human.

4 Conclusion and Future Work

In this study, we explore the use of interrogative
phrases as additional sources to control QG. The
results of the experiment show that using inter-
rogative phrases contributes to improving the per-
formance of QG. The question answering experi-
ment demonstrates that using interrogative phrases
helps the question answering system to provide
target answers.

Future studies on QG will focus on the follow-
ing aspects. (1) We directly input the interroga-
tive phrases in this study. However, we also con-
sider automatic selection of appropriate interroga-
tive phrases such that the answerers can reach the
target answer easily. (2) The model sometimes
generates questions that contradict the source pas-
sages. To reduce that risk, we will use textual en-
tailment to verify whether the generated questions
are consistent with the source passages.
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