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Abstract

We model the production of quantified refer-

ring expressions (QREs) that identify collec-

tions of visual items. To address this task,

we propose a method of perceptual cost prun-

ing, which consists of two steps: (1) deter-

mine what subset of quantity information can

be perceived given a time limit t, and (2) ap-

ply a preference order based REG algorithm,

such as the Incremental Algorithm (IA), to

this reduced set of information. We demon-

strate that this method successfully improves

the human-likeness of the IA in the QRE gen-

eration task by successfully modeling human-

generated language in most cases.

1 Introduction

Production of natural and human-like referring ex-

pressions in visual contexts is an ongoing chal-

lenge in natural language generation (NLG). What

makes referring expression generation (REG) in

visual contexts difficult is that it strongly depends

on the dynamics of human perception (Clarke

et al., 2013; Elsner et al., 2018). How to in-

tegrate REG algorithms with dynamic and in-

cremental human-like perception is still an open

problem. Starting with the Incremental Algo-

rithm (IA) (Dale and Reiter, 1995), REG algo-

rithms have sought to model factors of perceptual

salience by considering a preferred ordering of vi-

sual attributes. Building off of the IA, the Visual

Object Algorithm (VOA) favors certain visual at-

tributes based on relative perceptual cost (Mitchell

et al., 2013). However, these algorithms assume

complete knowledge and model perceptual cost

through preference orderings. In practice, some

visual information is not just dis-preferred, but im-

possible to ascertain under time constraints.

In this paper, we investigate a more radical

means to integrate perceptual cost in REG: prun-

ing a knowledge base according to perceptual
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Figure 1: Examples of QRE generation tasks. Target

referent collection highlighted in red.

costs. Specifically, we propose using only infor-

mation in a preference-based REG algorithm (i.e.,

IA) that a psychological model suggests is plau-

sible to have encoded under particular time con-

straints. To evaluate this proposed solution, we

examine the problem of quantified referring ex-

pression (QRE) generation. First, we introduce

QREs and give a brief overview of the psychol-

ogy of numerical perception. Second, we detail

a mathematical model of the time requirements

of exact numerical perception and how we apply

the proposed method of perceptual cost pruning

(PCP) to the QRE task. We demonstrate that this

method successfully improves the human-likeness

of the IA in the quantified REG task by success-

fully modeling human-generated language in most

cases.

2 The Case of QREs

In contrast to previous visual REG tasks based on

identification of a single object (Mitchell et al.,

2010, 2013), QRE tasks involve referring to col-

lections of visual items. Two examples of QRE

problems are found in Figure 1. Given that the

items are homogeneous and randomly arranged,
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quantity becomes a salient means of describing a

target set of items (indicated in red). For example,

one could use an exact number expression (e.g.,

“the box with eighteen circles” (A) or “the box

with three circles” (B)). One could also refer to

relative quantity (e.g., “the box with more circles”

(A&B)). Other forms of expression include vague

expressions of quantity (e.g., “the box with many

circles” (A) or “the box with a few circles” (B))

and absolute descriptions that refer to the presence

of items (e.g., “the box with dots” (A&B)). The

reader may find that the sort of expression he or

she finds natural differs between problems A and

B. It is likely the case that the reader finds it natu-

ral to describe the target in (B) with exact number,

whereas the reader is more likely to describe the

target in (A) in less precise terms. To account for

this phenomenon, we turn to the psychophysics of

human numerical perception.

The perception of quantity consists of multi-

ple processes, each occurring at different rates

and resulting in mental representations of vary-

ing precision. Explicit counting provides a slow,

but precise, determination of number (Gelman and

Gallistel, 1986), in which each visual item re-

quires roughly 250–350 ms to enumerate (Trick

and Pylyshyn, 1994). Estimation provides a rapid,

but less precise, judgment of the quantity of a

group of objects (Barth et al., 2003). A third pro-

cess exists: subitizing, i.e. the rapid and pre-

cise judgment of numerosity for quantities from

1-4 (Kaufman et al., 1949). Within the subitiz-

ing range, each visual item requires only 40–100

ms to accurately enumerate (Trick and Pylyshyn,

1994). Thus, accurate exact numerical descrip-

tions of small collections of items are fast and

easy, whereas such descriptions require time and

effort for larger quantities of items, so that vague,

relative, or absolute descriptions are quicker and

easier to produce for larger quantities.

Human subject experiments in QRE generation

(Barr et al., 2013) show that this perceptual ef-

fort affects language usage even when there are

no time limits in viewing the stimuli or generat-

ing QREs. The frequency of QRE types produced

by subjects in Barr et al. (2013) study (for partici-

pants that gave more than one type of response) is

plotted in the top portion of Figure 2. In the prob-

lem IDs, the number preceded by a ‘T’ indicates

the target set quantity, while numbers preceded by

‘D’ indicate distractor set quantities. While the

data suggest a general tendency toward exact re-

sponses, it is clear that exact responses are signifi-

cantly preferred in the subitizing range, while dis-

preferred outside the subitizing range.

One could propose that algorithms used to

tackle QREs simply have a rule that treats quanti-

ties under four differently. However, studies have

shown that common arrangements of visual items,

such as the faces of six-sided dice, have been

shown to be rapidly and accurately enumerated

even beyond the traditional four-item subitizing

limit (Mandler and Shebo, 1982) and that subitiz-

ing can be disrupted by attentional load (Railo

et al., 2008). This suggests that a general solu-

tion in adapting current REG algorithms lies not

in simple ad hoc rules, but rather in using more

comprehensive models of human perception to in-

form what can or cannot be plausibly perceived

given situational constraints, such as exogenous

time limitations, or the desire to minimize percep-

tual effort or cost (self-imposed time limitations).

3 Approach

To apply perceptual cost pruning to QREs, our ap-

proach consists of two steps: (1) determine what

quantified information can be perceived given a

time limit t, and remove information that does not

meet this threshold, and (2) apply the Incremen-

tal Algorithm to this reduced set of information,

ignoring attributes that have been removed.

3.1 Time Cost of Exact Enumeration

Given that estimation occurs rapidly, we focus

on modeling the time course of exact enumera-

tion. The literature on numerical perception sug-

gests that the time it takes to exactly enumerate n

items follows a bilinear time function (Trick and

Pylyshyn, 1994) that can be expressed as follows:

Texact(n) ≈ Tf ·min(rs, n)

+
∏

max(rs,n)≤i≤n

Tsubvocal(i) + Tf

where Tf denotes the time necessary to attend

to encode a single item into visual memory, rs de-

notes the subitizing limit, and Tsubvocal(i) denotes

the time necessary to subvocalize the i-th count

word. Briggs et al. (2017) present a computational

implementation of subitizing and counting that ex-

hibits the above function for exact enumeration re-

sponse time. In this paper, we draw from Briggs
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Figure 2: Graphical plot of frequency (darker shading indicates higher frequency) of each category of reference

expression (y-axis) for each QRE problem (x-axis) for both human participants from (Barr et al., 2013) (above);

the results of the best preference ordering for the Incremental Algorithm (IANAR) after perceptual cost adjustment

of the knowledge base (middle); and recoded responses (bottom). In the problem names, the number preceded by

a ‘T’ indicates the target set quantity, while numbers preceded by ‘D’ indicate distractor set quantities.

et al. (2017) to set the following values: Tf =
50ms, rs = 4, Tsubvocal(i) = 250 ms, which is

shown to be a good fit with human response time

data.

3.2 Factoring In Perceptual Cost

The first step in QRE generation is producing

a knowledge base for a particular QREG trial.

In this paper, we consider three types of quanti-

fied expression: absolute (A), exact number (N ),

and relative (R). The presented classification

scheme is different from Barr et al. (2013)’s orig-

inal scheme in that it consolidates the categories

superlative and comparative into the category rel-

ative. We leave the production of vague quantified

expression for future work. This is due in part to

the relative infrequency of vague expressions in

the human data.1

To demonstrate the application of perceptual

1Additionally, vague quantified expressions (such as “sev-
eral” or “many”) lack intensional definitions that would en-
able us to code simple rules to appropriately populate our
knowledge base with the correct vague expressions. Addi-
tional human data is needed to inform an extensional defini-
tion of vague quantified expressions.

cost pruning, we consider an example from Barr

et al. (2013), whose study was made up of 20

QREG tasks, each consisting of a target (T) and

two distractors (D). Each QREG task is specified

by the number of items in the target collection and

in each distractor collection. Therefore, the ex-

act number information is available without fur-

ther processing. Absolute attributes are derived by

a simple check as to whether or not the number of

items in each collection is greater than or equal to

zero. Relative attributes are derived by checking

whether or not the target or distractor is the col-

lection with the maximum or minimum number of

items. If not, then the collection can be labeled as

not having the most or least items.

To illustrate, let us consider the problem

T21:D11:D0, in which the target collection has

21 items and the two distractors have 11 and 0

items, respectively. We can translate the informa-

tion about each item into the following collection

of quantity attributes:

• Target = [A : “has items”; N : “has 21

items”; R : “has the most items”]
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• Distractor1 = [A : “has items”; N : “has 11

items”; R : “does not have the most items”]

• Distractor2 = [A : “has no items”; N : “has

0 items”; R : “has the fewest items”]

Without perceptual cost pruning, the above

knowledge base is passed to the REG algorithm

as is. However, with perceptual cost pruning, we

replace values that cannot be perceived under time

constraints with null tokens. For example, if we

assume only 0.5s are available to evaluate each

collection (either through external time limitations

or through deliberate choice to limit gaze time),

our model of exact enumeration (above) would

indicate that 21 and 11 items cannot be exactly

enumerated and therefore would be pruned. This

would result in the following modified knowledge

base:

• Target = [A : “has items”; N : ∅; R : “has the

most items”]

• Distractor1 = [A : “has items”; N : ∅; R :

“does not have the most items”]

• Distractor2 = [A : “has no items”; N : “has

0 items”; R : “has the fewest items”]

To handle a pruned knowledge base, we imple-

mented a modified version of the IA, which we

describe in the following section.

3.3 Modified IA

Given a target referent T , a set of distractors D =
D1, ..., Dn, and a preference ordering of attributes

A = [a1, ..., am], the IA selects a subset of at-

tributes to include in a referring expression (RE)

by traversing the set of attributes in order of pref-

erence, adding the current attribute to the RE if it

eliminates any of the remaining distractors (Krah-

mer and Van Deemter, 2012). Perceptual cost

pruning can be accommodated by allowing the al-

gorithm to skip an attribute if the target’s value for

the current attribute is equal to the null token.

Note that we also assume that if a distractor ob-

ject’s attribute value has been replaced by the null

token, but the target’s matching attribute value has

not been replaced, then the speaker still represents

this as a difference that allows for the elimina-

tion of that distractor. This can be justified under

the simplifying assumption built into our knowl-

edge base pruning method that people would de-

vote equal time to perceive all collections. There-

fore, if one collection’s quantity was able to be

perceived exactly under t seconds, while the other

was not, it is evidence against the two collections

having the same quantity. However, as this is a

preliminary idea, further investigation is needed to

establish the limitations of this assumption.

4 Initial Evaluation

To evaluate the effectiveness of the IA with and

without perceptual cost pruning, we rely on the

Dice coefficient, commonly used in REG tasks,

and defined below (Van Deemter, 2016):

Dice(H,A) =
2× |H ∩A|

|H|+ |A|

where H is the set of attributes found in a

human-generated description and A is the set of at-

tributes found in an algorithmically generated de-

scription. As previously mentioned, we consider

here three types of quantified expression: absolute

(A), exact number (N ), and relative (R). Combin-

ing these three options into all possible orderings

generates six preference orderings for the Incre-

mental Algorithm. For example, an IA ordering of

A ≻ N ≻ R is denoted IAANR.

We calculated Dice scores for the IA for all pos-

sible orderings of these expression types. To test

perceptual cost pruning, Dice scores were calcu-

lated for all six preference orderings for time lim-

its between 0.5s ms and 10s (at 0.1s intervals). As

originally reported by Barr et al. (2013), roughly

20% of participants only gave exact number re-

sponses. This could reflect different perceptual

and generation strategies, specifically the differ-

ence between a fixed strategy, in which the speaker

always takes time to count and reports an exact

numerical description, and a flexible strategy, in

which the speaker takes a more limited time to

perceive each item and reports a description based

on what was plausibly perceived in the limited

timeframe. We predict that perceptual cost prun-

ing will help account for participants that exhibit

a flexible strategy. In our analysis, we calculate

three Dice scores corresponding to the 20% of par-

ticipants that exhibited the fixed strategy, the re-

maining participants that exhibited a flexible strat-

egy, and the combined set of all participants. We

report the results from the time ranges found to

yield the highest Dice score for perceptual cost

pruning in Table 1.
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REG Algorithm Subject Group No PCP PCP

IAARN Flexible + Fixed (All) 0.300 0.300 (2.2s ≤ t ≤ 4.4s)

Flexible Only 0.368 0.368 (0.5s ≤ t ≤ 1.9s)

Fixed Only 0.0 0.0 (t > 7.0s)

IAANR Flexible + Fixed (All) 0.571 0.635 (2.2s ≤ t ≤ 4.4s)

Flexible Only 0.535 0.703 (0.5s ≤ t ≤ 1.9s)

Fixed Only 0.730 0.734 (t > 7.0s)

IARAN Flexible + Fixed (All) 0.235 0.235 (2.2s ≤ t ≤ 4.4s)

Flexible Only 0.289 0.289 (0.5s ≤ t ≤ 1.9s)

Fixed Only 0.0 0.0 (t > 7.0s)

IARNA Flexible + Fixed (All) 0.235 0.235 (2.2s ≤ t ≤ 4.4s)

Flexible Only 0.289 0.289 (0.5s ≤ t ≤ 1.9s)

Fixed Only 0.0 0.0 (t > 7.0s)

IANAR Flexible + Fixed (All) 0.649 0.706 (2.2s ≤ t ≤ 4.4s)

Flexible Only 0.568 0.752 (0.5s ≤ t ≤ 1.9s)

Fixed Only 1.0 1.0 (t > 7.0s)

IANRA Flexible + Fixed (All) 0.649 0.716 (2.2s ≤ t ≤ 4.4s)

Flexible Only 0.568 0.713 (0.5s ≤ t ≤ 1.9s)

Fixed Only 1.0 1.0 (t > 7.0s)

Table 1: DICE scores for all IA preference orderings with no knowledge base adjustment (left) and with adjustment

by perceptual cost pruning (right).

4.1 Naive IA

Because referring to the exact quantity of the tar-

get set was sufficient to eliminate distractors, in-

stances of IAN∗∗ without perceptual cost prun-

ing simply produced all exact number responses.

Given that exact number responses were found to

be most common in the human data, these order-

ings were found to have the highest Dice scores.

Including all participants, the Dice score of IAN∗∗

was 0.649. This score decreased for the subset

of participants that produced more than one type

of response (Dice score of 0.568), showing that

these participants expressed quantity non-exactly

in some problems. In particular, these participants

used non-exact quantified expressions a majority

of the time in 9 out of 20 problems (see Figure 2).

4.2 IA with Perceptual Cost Pruning

Including all participants, the best Dice score

(0.716) was found to be associated with a time

limit of 2.2-4.4 seconds and the IANRA prefer-

ence ordering. With the subset of flexible response

participants, the IANAR preference ordering pro-

duced the best Dice score (0.752), during time lim-

its of 0.5-2.0 seconds. In both cases, perceptual

cost pruning increased the human-likeness of the

IA relative to the baseline IA. As expected, per-

ceptual cost pruning did not improve the similar-

ity scores for subjects with fixed response strate-

gies. More notable, however, is the fact that the IA

with perceptual cost pruning would predict that at

least 7.0 seconds are needed to view some target

collections to obtain an exact numerical descrip-

tion and match the performance of the naive IA.

The generated response types for these best runs

IANAR with perceptual cost pruning are plotted

in the middle chart of Figure 2. In these runs, the

majority human response was correctly predicted

18 out of 20 times.

It is worth noting those instances where the pre-

dictions diverge from the human data. IANAR

predicts an RE with both absolute and relative de-

scriptors, (i.e., ‘Multiple’) on problems such as

T21:D11:D0 and T11:D21:D0. Because a

brief perceptual time limit of less than two sec-

onds is insufficient to exactly enumerate 21 or 11

dots, IANAR would predict that no exact descrip-

tors would be used. However, because one of the

distractors is empty and the other is non-empty, an

absolute descriptor is added to the RE, but is still

insufficient to eliminate all the distractors.

Our model’s prediction for ‘Multiple’ expres-

sion types differs from Barr et al. (2013), as they

did not originally annotate responses as having

more than one type of quantified expression (so
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they could not have any aggregate ‘Multiple’ cat-

egory for expressions with multiple types of de-

scriptors). This additional category provides an

opportunity to plot when our modified IA algo-

rithm with perceptual cost pruning would predict

more than one type of quantified descriptor. For

example, some of the human-generated responses

were consistent with a ‘Multiple’ coding, e.g., in

problem T11:D21:D0 with expressions such as

“the square with some triangles but not the most

triangles,” and “the square containing the smaller

number of symbols but not the blank square.”2

However, the majority of the human-generated re-

sponses for a task like T21:D11:D0 were not

consistent with a ’Multiple’ coding; the majority

response was simply a relative expression. Since

our algorithm generated descriptions according to

a scheme that did not match Barr et al. (2013)’s

original coding, we re-examined and recoded a

subset of their original data.

5 Recoding and Re-evaluation

After surveying the annotations from Barr et al.

(2013), we decided to recode their data for two

key reasons. First, as described above, the original

coding marked responses as having only one ex-

pression type, whereas various expressions in the

data were found to be plausibly ascribed two or

more descriptor types. Second, the original coding

was performed automatically by pattern-matching

and had incorrectly labeled a significant portion of

responses as exact number expressions (e.g., “the

one with the most dots”). The patterns we identi-

fied for potential error and recoding are as follows:

“one with”, “other two’, and “out of the three”. In

such cases, the numbers “one”, “two”, and “three”

refer to the squares containing the collections of

visual objects and not the quantity of items they

contain. In addition, we verified the coding for all

responses first marked OTH (“Other”).

In total, we targeted for recoding 491 of the

1508 responses Barr et al. (2013) reported. Our

recoding was performed by two annotators, who

began by identifying expressions that contained

multiple types of expressions. Agreement was

calculated using Kendall’s coefficient of concor-

dance, which indicated high interannotator agree-

ment (W = .906) regarding which expressions

contained more than one type of expression. Au-

2Data publicly available at:
https://staff.fnwi.uva.nl/r.fernandezrovira/xprag/

REG Algorithm No PCP PCP

IAARN 0.411 0.411

IAANR 0.536 0.732

IARAN 0.312 0.312

IARNA 0.312 0.312

IANAR 0.530 0.773

IANRA 0.530 0.717

Table 2: DICE scores under recoded data for all IA

preference orderings with no perceptual cost pruning

of the knowledge base (left) and with knowledge base

adjustment by perceptual cost pruning (right).

tomated pattern matching was used to identify ex-

pressions that contained the template strings spec-

ified above. High interannotator agreement scores

(Kendell’s coefficient of concordance W > .95)

were found across all expression types (ABS,

NUM, BASE, and OTH).

5.1 Recoding Results

A plot of the recoded human responses can be

found at the bottom of Figure 2. One major re-

sult the revised coding yielded was a revision of

the number of participants that produced only one

QRE type throughout the task. Barr et al. (2013)

reported that 20% of participants only generated

QREs with exact number descriptions. However,

after recoding, only three participants (6% of all

participants) were shown to exclusively use exact

number descriptions, i.e., to rely on a fixed REG

strategy.

Our recoding supported our initial observations

regarding problem T11:D21:D0. Although ex-

act number REs are still the plurality response for

this problem, the plot in Figure 2 does indicate that

the complex RE with multiple quantified expres-

sion types is the second most common response.

As predicted by the IANAR preference ordering,

nearly all of these complex REs use both absolute

and relative descriptions. One possible reason that

an exact number response is still frequent for this

problem, but not for T21:D11:D0, is that the 11

visual items representing the target is at the thresh-

old of what people can quickly judge to be “count-

able” (Mandler and Shebo, 1982). In contrast, 21

items are judged to not be easily “countable.”

5.2 Naive IA

Because the revised number of respondents that

used only one type of RE was significantly re-
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duced, we do not report Dice scores for the dif-

ferent subsets of participants that used flexible

or fixed REG strategies. Instead, we simply re-

port the aggregate Dice score for all participants.

As many previous instances of exact number re-

sponses were reexamined and revised, the Dice

scores of IAN∗∗ preference orderings are reduced

from 0.649 to 0.530. Conversely, the smaller num-

ber of exact number expressions in the revised an-

notations improves the performance of the IAA∗∗

and IAR∗∗ preference orderings: their Dice scores

increase with the new coding scheme. In contrast

to the original coding, the best preference ordering

without perceptual cost pruning is IAANR, with a

Dice score of 0.536.

5.3 IA with Perceptual Cost Pruning

With perceptual cost pruning, the best Dice score

(0.773) was found to be associated with a time

limit of 0.2-1.9 seconds and the IANAR prefer-

ence ordering. This reflects a better fit of the IA

with perceptual cost pruning to the human data

under the revised coding (compared with the best

Dice score of 0.706 for the original coding). Ad-

ditionally, the Dice score of the naive IA also im-

proved under the new coding scheme. Under the

original coding, the aggregate Dice score for all

participants increased by only 0.057 for IANAR

and 0.067 for IANRA. In contrast, the revised

codings yield a Dice score improvement of 0.243

and 0.187 for IANAR and IANRA, respectively.

6 Discussion and Future Work

We have shown that the ability of a preference or-

der based REG algorithm (IA) to produce human-

like responses in QRE generation tasks can be sig-

nificantly improved by integration of a model of

perceptual cost. We believe this success can be at-

tributed to the fact that our perceptual cost pruning

approach captures the underlying tension in QRE

generation between the desire to be as informative

as possible and the desire to minimize perceptual

effort, which reduces the precision of information

(Barr et al., 2013). The desire to be informative is

evidenced by the primacy of exact numbers in the

best fit preference orderings, whereas the desire

to minimize perceptual effort is evidenced by the

fact that the time limit of the best fitting IAs is ≤2

seconds. The tradeoff between the desire to be as

informative as possible and perceptual limitations

has also been shown in recent work, where the pre-

cision of quantified descriptions of visual scenes

decreases as presentation time decreases (Briggs

et al., 2019).

Furthermore, our presented approach leads to

a variety of predictions that we are testing. One

such prediction involves the role of a set of items’

spatial arrangement on QRE production. Findings

in numerical perception indicate that common ar-

rangements of visual items, often deemed canon-

ical patterns, can be exactly enumerated more

quickly than randomized patterns (Mandler and

Shebo, 1982; Wender and Rothkegel, 2000). This

would suggest that a greater amount of exact num-

ber REs would be produced for well-learned pat-

terns (such as dice faces), since their enumeration

is perceptually cheap. On the other hand, it is pos-

sible that canonical patterns would be described as

canonical, without any reference to number (e.g.,

“the square with the dice pattern”). This raises the

larger question of what attributes and descriptions

of a group of visual items are preferred over one

another.

Additionally, we wish to investigate how the

psychophysics of approximate number represen-

tations may also limit what quantity information

is available for REG. In the present study, large

quantities were sufficiently different so that es-

timation easily yields valid relative comparisons.

However, some numerosity differences are not so

easy to assess by estimation (e.g., imagine at-

tempting to tell the difference between 62 and 64

objects without counting). A complete account of

QREG must include both the limitations of exact

and inexact numerical representation.

Finally, if additional experiments are designed

such that the quantity of the total number of indi-

viduals in a collection does not provide a clear dif-

ferentiating attribute, we would predict that other

properties of visual groups would be referenced.

Specifically, our predictions are that the following

properties could be used:

Spatial descriptions of the group - groups of visual

items can be described across a variety of spatial

dimensions that are unrelated to the quantity of

items in the group. Examples of types of spatial

descriptions could include: area, shape, and den-

sity of the cluster of visual items.

Number of subgroups - people have the ability to

group visual items together based on proximity

(Im et al., 2016). In other words, people can not

only refer to the total number of individuals in a
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collection, but also to the number of subgroups

within a collection or the size of these subgroups.

Further data collection is needed to determine

which forms of these visual group properties are

commonly generated and which are preferred over

one another.

7 Conclusion

In this paper, we investigated the problem of gen-

erating referring expressions in visual contexts

based on differences in the quantity of a target

collection and distractor collections. Given the

low performance of a traditional, preference or-

dering based REG algorithm in this task, we have

demonstrated the importance of factoring in per-

ceptual cost in REG. We have also proposed and

validated a novel method, called perceptual cost

pruning, of factoring in perceptual cost by ablat-

ing a knowledge base according to models of hu-

man psychophysical limits. Future work is needed

to further refine this proposed method and explore

REG in the context of differentiating collections

of visual items with varying spatial arrangements.
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