
Extending Neural Question Answering with Linguistic Input Features

Fabian Hommel1 Matthias Orlikowski1 Philipp Cimiano1,2 Matthias Hartung1

1Semalytix GmbH, Bielefeld, Germany
2Semantic Computing Group, Bielefeld University, Germany

first.last@semalytix.com

Abstract

Considerable progress in neural question an-
swering has been made on competitive general
domain datasets. In order to explore methods
to aid the generalization potential of question
answering models, we reimplement a state-
of-the-art architecture, perform a parameter
search on an open-domain dataset and eval-
uate a first approach for integrating linguis-
tic input features such as part-of-speech tags,
syntactic dependency relations and semantic
roles. The results show that adding these in-
put features has a greater impact on perfor-
mance than any of the architectural parameters
we explore. Our findings suggest that these
layers of linguistic knowledge have the poten-
tial to substantially increase the generalization
capacities of neural QA models, thus facilitat-
ing cross-domain model transfer or the devel-
opment of domain-agnostic QA models.

1 Introduction

Recently, deep neural network approaches for
question answering (QA) have gained traction.
The strong interest in this task may be explained
by two promises that resonate in neural QA ap-
proaches: For one thing, QA is claimed to bear
the potential to subsume a lot of other NLP chal-
lenges. From this perspective, almost every task
can be framed as a natural language question (Ku-
mar et al., 2016). Thus, a QA model with the
capacity to learn mappings from natural language
terminology to formal linguistic concepts could be
used as a surrogate model, reducing annotation
and training effort and providing fast solutions to
potentially complex NLP problems. For another,
QA systems have always been considered as in-
tuitive natural language interfaces for information
access in various domains of (technical) knowl-
edge.

As any other practical NLP solution targeting

specialized domains, QA systems face the inher-
ent challenges of cross-domain generalization or
domain adaptation, respectively. However, QA ap-
proaches can be considered particularly suitable
for this kind of problem, as the semantic underpin-
nings of question/answer pairs capture a universal
layer of meaning that is domain-agnostic to some
extent (but might require fine-tuning wrt. particu-
lar domain concepts or terminology).

We hypothesize that a promising approach to-
wards rapid information access in specialized do-
mains would be (i) to learn the aforementioned
universal meaning layer from large collections of
open-domain question/answer pairs, and (ii) adapt
the resulting meaning representations to more spe-
cific domains subsequently. In this paper, we focus
on the first problem.

Our work is based on the assumption that rich
representations of linguistic knowledge at high
levels of syntactic and semantic abstraction fa-
cilitates neural NLP models to capture “univer-
sal”, domain-agnostic meaning, which in turn fos-
ters performance in open-domain QA. Against this
backdrop, we evaluate the impact of explicitly en-
coded linguistic information in terms of part-of-
speech tags, syntactic dependencies and seman-
tic roles on open-domain performance of a state-
of-the-art neural QA model. We find that our
re-implementation of the deep neural QANet ar-
chitecture (Yu et al., 2018) benefits considerably
from these linguistically enriched representations,
which we consider a promising first step towards
generalizable, rapidly adaptable QA models.

2 Related Work

In recent years, research about feature engineer-
ing for NLP models has subsided to some extent.
This might be attributed to the ability of neural
networks to perform hierarchical feature learning

(Bengio, 2009). Using neural approaches, many
of the core NLP tasks like part-of-speech (PoS)
tagging (Koo et al., 2008), dependency parsing
(Chen and Manning, 2014), named entity recog-
nition (Lample et al., 2016) and semantic role la-
belling (Roth and Woodsend, 2014; Zhou and Xu,
2015) have been improved. However, recent pa-
pers that make use of the improved performance
in these areas are few (Alexandrescu and Kirch-
hoff, 2006; Sennrich and Haddow, 2016). Thus,
we want to evaluate whether adding linguistic in-
formation to the inputs of a QA model improves
the performance. Our approach to integrating lin-
guistic input features by embedding each individu-
ally and concatenating the embeddings is inspired
by Sennrich and Haddow (2016), who apply this
approach in the context of machine translation.

This paper builds upon a host of recent develop-
ments in neural architectures for question answer-
ing or reading comprehension. While most ap-
proaches rely heavily on recurrent layers (Huang
et al., 2017; Hu et al., 2018; Seo et al., 2016; Shen
et al., 2017; Wang et al., 2017; Xiong et al., 2016),
we chose to reimplement QANet, a self-attention
based architecture (Yu et al., 2018).

Apart from that, we use the tools from Roth
and Woodsend (2014) for extracting semantic
roles over the whole Stanford Question Answer-
ing Dataset (SQuAD) (Rajpurkar et al., 2016).

3 Extending QANet with Linguistic
Input Features

As a testbed in order to assess the impact of lin-
guistic input features in neural QA models, we
make use of (a re-implementation of) QANet (Yu
et al., 2018). By default, QANet solely uses word
and character inputs. However, numerous off-the-
shelf NLP tools are available that could be used
to enrich these inputs with explicit linguistic infor-
mation. This option is potentially interesting when
trying to adapt a model to other domains: While
additional training data might be expensive to ob-
tain, these linguistic input features could boost
the performance by providing a scalable, domain-
agnostic source of information. We expand the
per-word inputs with three different kinds of lin-
guistic features: part-of-speech (PoS) tags, depen-
dency relation labels and semantic roles.

PoS Tags. We hypothesized that the information
about the part-of-speech of input tokens would
help the neural network by reducing the number of

answer candidates for specific types of questions.
To extract POS tags for all contexts and questions,
we used the coarse-graind PoS tag set of the spaCy
library1.

Dependency Relation Labels. We expected
that syntactic information might help the model to
predict the boundaries of spans with more preci-
sion. Again, we use spaCy to extract dependency
information for questions and contexts. To extract
dependency information per input word, we use
the type label of that dependency relation in which
the word is the child.

Semantic Roles. Semantic Role Labeling (SRL)
deals with the problem of finding shallow seman-
tic structure in sentences by identifying events
(“predicates”) and their participants (“semantic
roles”). By identifying predicates and related
participants and properties, SRL helps to answer
“who” did “what” to “whom”, “where”, “when”
and “how”? To do that, each constituent in a sen-
tence is assigned a semantic role from a predifined
set of roles like agent, patient or location (Márquez
et al., 2008). Since semantic role labeling aims at
identifying relevant aspects of events that are di-
rectly related to the above-mentioned WH ques-
tions, question answering models should directly
benefit from this kinds of information.

We used the mate-plus tools (Roth and Wood-
send, 2014) for parsing the complete SQuAD
dataset and to obtain PropBank-labeled semantic
roles per input word (Palmer et al., 2005). We
added the role <PREDICATE> to the set of se-
mantic roles to provide the model with pointers to
the basic events. Words that did not correspond
to any semantic role were assigned a <NOROLE>
label.

Integration of Linguistic Features in QANet.
In the standard QANet architecture, words and
corresponding characters are embedded individ-
ually and then concatenated to obtain one repre-
sentation vector per input word. Following Sen-
nrich and Haddow (2016), we enrich this process
by mapping each of the linguistic input features
described above to its own embedding space and
then including them into the concatenation. Fig-
ure 1 shows an updated version of the input em-
bedding layer of QANet that includes the linguis-
tic input features.

1Available at https://spacy.io/

Figure 1: The low-level structure of the input embedding layer, enriched with additional linguistic inputs.

Each embedding vector consists of the embed-
ded information of the word, its characters, its PoS
tag, the label of the dependency relation in which
the respective word is the child and its semantic
roles. While the PoS tags and dependency relation
labels are single word-level features and can be
embedded by standard indexing and look-up, each
word can have multiple semantic roles. Therefore,
we embed each semantic role separately and ag-
gregate over them. After preliminary experimen-
tation with convolution, summing and taking the
maximum, we decided for summing along each
dimension of the semantic role embeddings2. This
results in one aggregated semantic role embedding
vector per input word. Note that we intentionally
do not compute any combinations of the features
mentioned above manually. We simply enrich the
available word-level input information and rely on
the network to find meaningful connections.

4 Experiments

To obtain a baseline, we reimplemented QANet
and performed a parameter search. After that, we
evaluated the integration of linguistic input fea-
tures against that baseline.

4.1 Parameter Exploration in QANet
In the first experiment, we explore the effect of
various parameters on open-domain QA perfor-

2We set the maximum of semantic roles per word to 8

mance in our re-implementation of QANet. The
aim is to understand the impact of each parameter
to compare it to the contribution of linguistic input
features.

Dataset. We use the Stanford Question Answer-
ing Dataset (SQuAD) (Rajpurkar et al., 2016) for
parameter search. Yu et al. (2018) state that the re-
sults on development and test set are strongly cor-
related. Thus, improvements on the development
set of SQuAD should also lead to improvements
on the test set. Based on this claim, we only re-
port results on the development set, since the test
set of SQuAD is not publicly available. The train-
ing set consists of 87599 samples and the test set
consists of 10570 samples. All texts are in English
language.

Preprocessing. To preprocess SQuAD, we used
the spaCy library for tokenization. We truncated
or padded each paragraph to length 400 and each
question to length 30. Each token was transformed
into lower case and embedded using pre-trained
GloVe (Pennington et al., 2014) embeddings. All
words that were either out-of-vocabulary or not
present at training time were mapped to a ran-
domly initialized unknown token (<UNK>). For
each token, we extracted all characters and then
truncated or padded them to 16 characters per
word. Each character embedding was initialized
randomly.

Parameter ∆F1 ∆EM

word embeddings 2.4 1.8
character embeddings 1.6 1.7
convolutional layers 1.5 2.2
shared wheights in encoding 1.3 1.3
encoder blocks 0.9 0.9
attention heads 0.6 1.2
highway layers 0.4 1.0
model dimensionalty 0.5 0.8
pointwise feed-forward layers 0.2 0.0

combination of best settings 1.7 1.9

Table 1: Impact of evaluated individual parameters and
the combination of their best settings on F1 and exact
match (EM) scores.

Training Parameters. For regularization, we
adopted the methods from Yu et al. (2018): We
apply L2 weight decay on all trainable variables
with λ = 3 × 10−7 and dropout on word embed-
dings (p = 0.1), as well as on character embed-
dings (p = 0.05). Additionally, a dropout of rate
0.1 is applied on every layer except from the out-
put layer. Apart from that, we employ the stochas-
tic depth method (Huang et al., 2016) inside each
stack of encoder blocks during training. In order
to compute the probabilities pl we use a linear de-
cay rule: pl = 1 − l

L(1 − pL), following Huang
et al. (2016); Yu et al. (2018). L denotes the index
of the last layer in a stack of encoder blocks and
the corresponding probability pL is set to 0.9.

As an optimizer, we use ADAM (Kingma and
Ba, 2014) with β1 = 0.8, β2 = 0.999 and ε =
10−7 (Yu et al., 2018). To prevent an exploding
gradient, we use gradient norm clipping (Pascanu
et al., 2013) with a threshold of 5. We use a learn-
ing rate warm-up schema with a logarithmic in-
crease from 0.0 to 0.001 in the first 1000 gradient
steps. After that, the learning rate is kept fixed
at 0.001. Finally, we apply an exponential mov-
ing average with decay rate 0.9999 on all trainable
variables. We implemented our model in PyTorch3

(Paszke et al., 2017) and trained on a geforce GTX
1080 GPU with 12gb RAM.

Results. For evaluation, we use the F1 and ex-
act match (EM) metrics from the official SQuAD
evaluation script. See Table 1 for an overview of
the impact of parameters on the scores.

3pytorch.org

Looking at the individual impact, the most in-
fluential parameters are the dimensionality of the
inputs, namely the word and character embedding
sizes. The parameter with the highest impact on
F1 and the second highest impact on Exact Match
is the word embedding size (∆F1 = 2.4, ∆EM =
1.8). Surprisingly, the best setting is the smallest
embedding size (50). In contrast, bigger character
embedding sizes perform better than smaller ones.
The best setting was a size of 300 (∆F1 = 1.6,
∆EM = 1.7). Possibly, using no word embed-
dings at all and scaling up the character embed-
dings could increase the performance further and
eliminate the need for pre-trained embeddings al-
together. The most influential architectural pa-
rameter was the number of convolutional layers in
model encoder blocks (∆F1 = 1.5, ∆EM = 2.2),
with the highest impact of all parameters on the
exact match score when using 5 convolutional lay-
ers instead of 2. The second most influential struc-
tural parameter was sharing the weights between
the embedding encoder layers for question and
context (∆F1 = 1.3, ∆EM = 1.3). The third
most influential structural parameter was the num-
ber of encoder blocks in the model encoder layer,
where 5 instead of 7 blocks yielded the best re-
sult (∆F1 = 0.9, ∆EM = 0.9). The number
of attention heads had a minor influence on F1
(∆F1 = 0.6) but a notable influence on exact
match (∆EM = 1.2). Fortunately, these results
are due to using only 2 attention heads. Thus, we
propose to use less attention heads in order to im-
prove results and reduce computational processing
costs. The remaining parameters (the number of
highway layers in the input embedding layer, the
model dimensionality and the usage of pointwise
feed-forward layers) all had negligible impacts on
the performance. In general, we propose to set
them to small values to reduce computational cost.

Combining the best settings for each parame-
ter in isolation did not yield the best overall re-
sults in either F1 or exact match (∆F1 = 1.7,
∆EM = 1.9). This combination was, however, the
second best option for both F1 and exact match.
Since this balanced quality was not apparent in any
other setting, we decided to use this combination
of parameters for all later experiments. The final
performance of this baseline model was F1 = 67.8
and Exact Match = 55.5.

F1 EM

Baseline 67.8 55.5
50d PoS embeddings 69.6 58.1
100d PoS embeddings 69.7 58.9
200d PoS embeddings 69.7 57.8
300d PoS embeddings 69.5 57.9

50d DL embeddings 68.6 56.6
100d DL embeddings 68.9 57.8
200d DL embeddings 67.8 56.6
300d DL embeddings 69.0 57.2

50d SRL embeddings 67.9 55.1
100d SRL embeddings 68.0 55.5
200d SRL embeddings 68.8 56.6
300d SRL embeddings 68.7 56.0

Table 2: Results of enriching the inputs with linguistic
input embeddings of different sizes, in terms of F1 and
exact match (EM) scores. DL refers to dependency la-
bels, SRL to sematic role labels. No linguistic features
were used in the baseline.

4.2 Impact of Linguistic Input Features

For evaluating the impact of linguistic input fea-
tures, we used the same evaluation setup as for
the baseline, including training data and meta-
parameter choices. The embeddings for linguistic
inputs were initialized randomly and then included
as trainable parameters. Table 2 shows the results
for varying the embedding dimensionality for each
type of input feature, respectively, and also their
combination.

PoS Tags. Adding PoS tags to the embedding
space improves the overall performance of the net-
work, regardless of the size of the embeddings.
The best result is obtained by using PoS embed-
dings of size 100 (∆F1 = 1.9,∆EM = 3.4).

Dependency Relation Labels. Enriching the in-
puts with dependency relation information im-
proves the overall performance. To achieve a
strong improvement, the size of the embeddings
matters: While embeddings of size 200 only im-
prove the exact match (∆F1 = 0.0,∆EM = 1.1),
all other sizes increase the F1 score as well. The
biggest improvement in F1 score was achieved by
an embedding size of 300 (∆F1 = 1.2), while the
biggest improvement in EM score was achieved by
an embedding size of 100 (∆EM = 2.3).

F1 EM

Baseline (QANet Re-Impl.) 67.8 55.5
Baseline + Linguistic Inputs 70.5 60.2

Table 3: Results of using the combination of all three
linguistic input features, using the previously opti-
mized embedding sizes (PoS and dependency tags of
size 100, semantic role labels of size 200). No linguis-
tic features were used in the baseline setting.

Semantic Role Labels. Again, the linguistic
inputs improve upon the baseline performance.
However, in the setting with embedding size 50,
the performance slightly deteriorates. The best
performance is achieved when using embeddings
of size 200 (∆F1 = 1.0,∆EM = 1.1).

Combination of all Linguistic Input Features.
Table 3 shows the results for the combination of all
three linguistic input features. The performance is
the best in all our experiments, beating the pre-
vious baseline and individual linguistic input fea-
tures (∆F1 = 2.7,∆EM = 4.7).

5 Discussion

Due to a gap in performance between our imple-
mentation of QANet (cf. Table 3) and the results
from the original paper4, we are not able to tell
whether our optimized parameters are specific to
our settings or should be preferred in general. The
mismatch in performance could be due to various
implementational differences (such as using Py-
Torch instead of Tensorflow), variation in prepro-
cessing (e.g. tokenization with spaCy instead of
NLTK) or the training procedure (such as trainable
word embeddings). Still, we consider the relative
improvements due to linguistic inputs compared to
our baseline to be very insightful and promising.

Overall, each individual linguistic input
achieved a small improvement of the performance.
The best performing feature were the PoS embed-
dings, with the biggest improvements in both F1
and exact match (∆F1 = 1.9,∆EM = 3.4). The
second best feature were the dependency relation
labels (∆F1 = 1.1,∆EM = 2.3), followed by
semantic role labels (∆F1 = 1.0,∆EM = 1.1).
Combining all linguistic input features led to even
better results (∆F1 = 2.7,∆EM = 4.7). This
indicates that although the PoS tag embeddings

4F1=82.7, EM=73.6, as reported by Yu et al. (2018).

have the strongest impact on the performance, de-
pendency relation and semantic role embeddings
still provide useful additional information.

Importantly, this also shows that adding lin-
guistic features into a model that incorporates op-
timally selected hyperparameters yields an addi-
tional performance benefit, suggesting that lin-
guistic input features have a bigger impact on
model performance than hyperparameter opti-
mization alone. These findings underline the use-
fulness of linguistic features as a simple and read-
ily available tool for enhancing the performance
of QA models. Contrary to our intutions, the in-
crease in performance seems to be lower in those
features that are higher up in the hierarchy of lin-
guistic abstraction: PoS tags, which merely pro-
vide a shallow and coarse-grained approximation
of meaning, perform better than semantic roles,
which provide a lot of information that should sup-
port the question answering task. This could be
explained as follows: First, PoS tags (and depen-
dency relation labels) are available for every word
in a sentence, but only some words correspond to
semantic roles. This sparsity renders this input
feature less reliable. Second, our current aggrega-
tion approach towards semantic role embeddings
might not be optimal.

The results suggest that syntactic information in
dependency labels might help the model to find
more precise boundaries: While the F1 score only
increased by 1.1, the exact match was improved by
2.3. Even though the employed embedding pro-
cess for the dependency labels was rather simple
and not tailored to the underlying dependency tree
structure, the feature was useful to the network.
Probably, the performance of this feature could be
increased either by classical feature engineering to
construct more specific information from the de-
pendency tree or by using a more suitable network
architecture for embedding such structures.

Feature Engineering for Neural Architectures
At least in higher-level tasks like QA, we observe
a recent trend in the literature to focus on improv-
ing model architecture over improving input fea-
tures, possibly due to the ability of neural net-
works to learn hierarchical features. Following
this paradigm, the state-of-the-art in many tasks
has recently been improved, for example in se-
mantic role labeling through a deep highway BiL-
STM (He et al., 2017). However, the last papers
that make use of semantic roles are mostly from

the last decade (Shen and Lapata, 2007; Kaisser
and Webber, 2007; Sammons et al., 2009; Wu and
Fung, 2009; Liu, 2009; Gao and Vogel, 2011).
Most current QA architectures use word and char-
acter embeddings only (Seo et al., 2016; Wang
et al., 2017; Xiong et al., 2016; Shen et al., 2017;
Hu et al., 2018; Yu et al., 2018).

Our results suggest that the QANet model ben-
efits more from better inputs than from optimiz-
ing its structure: When exploring the parameters,
we observed that the embedding dimensionality
of words and characters had the biggest impact.
In the experiments regarding linguistic input fea-
tures, we found that injecting linguistic informa-
tion into the input had a stronger effect than any of
the previously explored parameters.

Based on this, it might be worthwhile to invest
more work into the investigation of the type of in-
puts one feeds into a neural model. An advantage
of better inputs is their adaptability, since input
features can possibly be used off-the-shelf for a
wide range of tasks, while architectures typically
have to be fine tuned on supervised training data.
Another advantage might be that empirical gains
are better interpretable: In our experiments, lin-
guistic input features had a bigger impact on exact
match (finding exact boundaries of the correct an-
swer) than on F1 (overlap with correct answer).
A thorough investigation of this intuitive link be-
tween input and output qualities would be neces-
sary to support this claim.

6 Conclusion

This paper addresses the question as to whether
neural QA models benefit from linguistic input
features at different levels of abstraction in terms
of their presumed generalization capacities across
domains. To this end, we evaluate the impact of
injecting different linguistic inputs (PoS tags, syn-
tactic dependencies, semantic roles) into a deep
neural QA architecture on open-domain perfor-
mance over SQuAD, which constitutes the largest
open-domain benchmark data set currently avail-
able.

In our experiments, the highest individual per-
formance gain was achieved by adding PoS tags to
the input representation, but a combination of all
evaluated linguistic features led to the best results
overall. We noticed that linguistic input features
had a bigger impact on the exact match score than
on the F1 score. Thus, we hypothesize that the lin-

guistic information facilitates boundary detection,
while locating answer candidates in general may
largely depend on word-level semantics.

In future work, it might be instructive to explore
how well linguistic features perform without word
or character inputs. This would give a better ba-
sic intuition about the performance of each indi-
vidual feature. Another interesting research direc-
tion could be to investigate further linguistic in-
formation like lemmatized words, subword tags
and morphological features (Sennrich and Had-
dow, 2016), named entity recognition and distance
and position features. Apart from that, novel ap-
proaches for integrating this information could be
worthwhile: While features that have one value
per word (like PoS tags) can be easily embedded,
relational features or features with multiple values
per word (like semantic roles) need some kind of
aggregation. While we chose summing over indi-
vidual dimensions, various other approaches like
convolution, recurrent layers or even self-attention
might lead to better results. Tree-structured fea-
tures like dependency trees might benefit from re-
cursive encoding layers (Socher et al., 2011).

We conclude that linguistic input features pro-
vide meaningful information to neural QA mod-
els and that they improve performance on a gen-
eral domain dataset. In future, we plan to evaluate
whether they might be employed for generalizing
QA models to new specialized domains.

Acknowledgments

This work was supported in part by the H2020
project Prêt-à-LLOD under Grant Agreement
number 825182.

References
Andrei Alexandrescu and Katrin Kirchhoff. 2006. Fac-

tored neural language models. In Human Lan-
guage Technology Conference of the North Amer-
ican Chapter of the Association of Computational
Linguistics, Proceedings, June 4-9, 2006, New York,
New York, USA.

Yoshua Bengio. 2009. Learning deep architectures for
AI. Foundations and Trends in Machine Learning,
2(1):1–127.

Danqi Chen and Christopher D. Manning. 2014. A
fast and accurate dependency parser using neural
networks. In Proceedings of the 2014 Conference
on Empirical Methods in Natural Language Pro-
cessing, EMNLP 2014, October 25-29, 2014, Doha,

Qatar, A meeting of SIGDAT, a Special Interest
Group of the ACL, pages 740–750.

Qin Gao and Stephan Vogel. 2011. Utilizing target-
side semantic role labels to assist hierarchical
phrase-based machine translation. In Proceedings of
Fifth Workshop on Syntax, Semantics and Structure
in Statistical Translation, SSST@ACL 2011, Port-
land, Oregon, USA, 23 June, 2011, pages 107–115.

Luheng He, Kenton Lee, Mike Lewis, and Luke Zettle-
moyer. 2017. Deep semantic role labeling: What
works and what’s next. In Proceedings of the 55th
Annual Meeting of the Association for Computa-
tional Linguistics, ACL 2017, Vancouver, Canada,
July 30 - August 4, Volume 1: Long Papers, pages
473–483.

Minghao Hu, Yuxing Peng, Zhen Huang, Xipeng Qiu,
Furu Wei, and Ming Zhou. 2018. Reinforced
mnemonic reader for machine reading comprehen-
sion. In Proceedings of the Twenty-Seventh Inter-
national Joint Conference on Artificial Intelligence,
IJCAI 2018, July 13-19, 2018, Stockholm, Sweden.,
pages 4099–4106.

Gao Huang, Yu Sun, Zhuang Liu, Daniel Sedra, and
Kilian Q. Weinberger. 2016. Deep networks with
stochastic depth. In Computer Vision - ECCV 2016 -
14th European Conference, Amsterdam, The Nether-
lands, October 11-14, 2016, Proceedings, Part IV,
pages 646–661.

Hsin-Yuan Huang, Chenguang Zhu, Yelong Shen, and
Weizhu Chen. 2017. Fusionnet: Fusing via fully-
aware attention with application to machine compre-
hension. CoRR, abs/1711.07341.

Michael Kaisser and Bonnie Webber. 2007. Question
answering based on semantic roles. In Proceedings
of the workshop on deep linguistic processing, pages
41–48. Association for Computational Linguistics.

Diederik P. Kingma and Jimmy Ba. 2014. Adam:
A method for stochastic optimization. CoRR,
abs/1412.6980.

Terry Koo, Xavier Carreras, and Michael Collins. 2008.
Simple semi-supervised dependency parsing. In
ACL 2008, Proceedings of the 46th Annual Meet-
ing of the Association for Computational Linguis-
tics, June 15-20, 2008, Columbus, Ohio, USA, pages
595–603.

Ankit Kumar, Ozan Irsoy, Peter Ondruska, Mohit
Iyyer, James Bradbury, Ishaan Gulrajani, Victor
Zhong, Romain Paulus, and Richard Socher. 2016.
Ask me anything: Dynamic memory networks for
natural language processing. In Proceedings of The
33rd International Conference on Machine Learn-
ing, volume 48 of Proceedings of Machine Learning
Research, pages 1378–1387, New York, New York,
USA. PMLR.

http://aclweb.org/anthology/N/N06/N06-2001.pdf
http://aclweb.org/anthology/N/N06/N06-2001.pdf
https://doi.org/10.1561/2200000006
https://doi.org/10.1561/2200000006
http://aclweb.org/anthology/D/D14/D14-1082.pdf
http://aclweb.org/anthology/D/D14/D14-1082.pdf
http://aclweb.org/anthology/D/D14/D14-1082.pdf
http://aclweb.org/anthology/W/W11/W11-1012.pdf
http://aclweb.org/anthology/W/W11/W11-1012.pdf
http://aclweb.org/anthology/W/W11/W11-1012.pdf
https://doi.org/10.18653/v1/P17-1044
https://doi.org/10.18653/v1/P17-1044
https://doi.org/10.24963/ijcai.2018/570
https://doi.org/10.24963/ijcai.2018/570
https://doi.org/10.24963/ijcai.2018/570
https://doi.org/10.1007/978-3-319-46493-0_39
https://doi.org/10.1007/978-3-319-46493-0_39
http://arxiv.org/abs/1711.07341
http://arxiv.org/abs/1711.07341
http://arxiv.org/abs/1711.07341
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
http://www.aclweb.org/anthology/P08-1068
http://proceedings.mlr.press/v48/kumar16.html
http://proceedings.mlr.press/v48/kumar16.html

Guillaume Lample, Miguel Ballesteros, Sandeep Sub-
ramanian, Kazuya Kawakami, and Chris Dyer. 2016.
Neural architectures for named entity recognition.
In NAACL HLT 2016, The 2016 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, San Diego California, USA, June 12-17,
2016, pages 260–270.

Tie-Yan Liu. 2009. Learning to rank for information
retrieval. Foundations and Trends in Information
Retrieval, 3(3):225–331.

Lluı́s Márquez, Xavier Carreras, Kenneth C.
Litkowski, and Suzanne Stevenson. 2008. Se-
mantic role labeling: An introduction to the special
issue. Computational Linguistics, 34(2):145–159.

Martha Palmer, Paul Kingsbury, and Daniel Gildea.
2005. The proposition bank: An annotated cor-
pus of semantic roles. Computational Linguistics,
31(1):71–106.

Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio.
2013. On the difficulty of training recurrent neural
networks. In Proceedings of the 30th International
Conference on Machine Learning, ICML 2013, At-
lanta, GA, USA, 16-21 June 2013, pages 1310–1318.

Adam Paszke, Sam Gross, Soumith Chintala, Gre-
gory Chanan, Edward Yang, Zachary DeVito, Zem-
ing Lin, Alban Desmaison, Luca Antiga, and Adam
Lerer. 2017. Automatic differentiation in pytorch.
In NIPS-W.

Jeffrey Pennington, Richard Socher, and Christo-
pher D. Manning. 2014. Glove: Global vectors for
word representation. In Proceedings of the 2014
Conference on Empirical Methods in Natural Lan-
guage Processing, EMNLP 2014, October 25-29,
2014, Doha, Qatar, A meeting of SIGDAT, a Special
Interest Group of the ACL, pages 1532–1543.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. Squad: 100, 000+ questions for
machine comprehension of text. In Proceedings of
the 2016 Conference on Empirical Methods in Nat-
ural Language Processing, EMNLP 2016, Austin,
Texas, USA, November 1-4, 2016, pages 2383–2392.

Michael Roth and Kristian Woodsend. 2014. Com-
position of word representations improves seman-
tic role labelling. In Proceedings of the 2014 Con-
ference on Empirical Methods in Natural Language
Processing, EMNLP 2014, October 25-29, 2014,
Doha, Qatar, A meeting of SIGDAT, a Special In-
terest Group of the ACL, pages 407–413.

Mark Sammons, V. G. Vinod Vydiswaran, Tim Vieira,
Nikhil Johri, Ming-Wei Chang, Dan Goldwasser,
Vivek Srikumar, Gourab Kundu, Yuancheng Tu,
Kevin Small, Joshua Rule, Quang Do, and Dan
Roth. 2009. Relation alignment for textual entail-
ment recognition. In Proceedings of the Second
Text Analysis Conference, TAC 2009, Gaithersburg,
Maryland, USA, November 16-17, 2009.

Rico Sennrich and Barry Haddow. 2016. Linguistic
input features improve neural machine translation.
In Proceedings of the First Conference on Machine
Translation, WMT 2016, colocated with ACL 2016,
August 11-12, Berlin, Germany, pages 83–91.

Min Joon Seo, Aniruddha Kembhavi, Ali Farhadi,
and Hannaneh Hajishirzi. 2016. Bidirectional at-
tention flow for machine comprehension. CoRR,
abs/1611.01603.

Dan Shen and Mirella Lapata. 2007. Using semantic
roles to improve question answering. In EMNLP-
CoNLL 2007, Proceedings of the 2007 Joint Con-
ference on Empirical Methods in Natural Language
Processing and Computational Natural Language
Learning, June 28-30, 2007, Prague, Czech Repub-
lic, pages 12–21.

Yelong Shen, Po-Sen Huang, Jianfeng Gao, and
Weizhu Chen. 2017. Reasonet: Learning to stop
reading in machine comprehension. In Proceedings
of the 23rd ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, Hali-
fax, NS, Canada, August 13 - 17, 2017, pages 1047–
1055.

Richard Socher, Cliff Chiung-Yu Lin, Andrew Y. Ng,
and Christopher D. Manning. 2011. Parsing natu-
ral scenes and natural language with recursive neu-
ral networks. In Proceedings of the 28th Inter-
national Conference on Machine Learning, ICML
2011, Bellevue, Washington, USA, June 28 - July 2,
2011, pages 129–136.

Wenhui Wang, Nan Yang, Furu Wei, Baobao Chang,
and Ming Zhou. 2017. Gated self-matching net-
works for reading comprehension and question an-
swering. In Proceedings of the 55th Annual Meet-
ing of the Association for Computational Linguis-
tics, ACL 2017, Vancouver, Canada, July 30 - August
4, Volume 1: Long Papers, pages 189–198.

Dekai Wu and Pascale Fung. 2009. Semantic roles for
SMT: A hybrid two-pass model. In Human Lan-
guage Technologies: Conference of the North Amer-
ican Chapter of the Association of Computational
Linguistics, Proceedings, May 31 - June 5, 2009,
Boulder, Colorado, USA, Short Papers, pages 13–
16.

Caiming Xiong, Victor Zhong, and Richard Socher.
2016. Dynamic coattention networks for question
answering. CoRR, abs/1611.01604.

Adams Wei Yu, David Dohan, Minh-Thang Luong, Rui
Zhao, Kai Chen, Mohammad Norouzi, and Quoc V.
Le. 2018. Qanet: Combining local convolution
with global self-attention for reading comprehen-
sion. CoRR, abs/1804.09541.

Jie Zhou and Wei Xu. 2015. End-to-end learning of
semantic role labeling using recurrent neural net-
works. In Proceedings of the 53rd Annual Meet-
ing of the Association for Computational Linguistics

http://aclweb.org/anthology/N/N16/N16-1030.pdf
https://doi.org/10.1561/1500000016
https://doi.org/10.1561/1500000016
https://doi.org/10.1162/coli.2008.34.2.145
https://doi.org/10.1162/coli.2008.34.2.145
https://doi.org/10.1162/coli.2008.34.2.145
https://doi.org/10.1162/0891201053630264
https://doi.org/10.1162/0891201053630264
http://jmlr.org/proceedings/papers/v28/pascanu13.html
http://jmlr.org/proceedings/papers/v28/pascanu13.html
http://aclweb.org/anthology/D/D14/D14-1162.pdf
http://aclweb.org/anthology/D/D14/D14-1162.pdf
http://aclweb.org/anthology/D/D16/D16-1264.pdf
http://aclweb.org/anthology/D/D16/D16-1264.pdf
http://aclweb.org/anthology/D/D14/D14-1045.pdf
http://aclweb.org/anthology/D/D14/D14-1045.pdf
http://aclweb.org/anthology/D/D14/D14-1045.pdf
http://www.nist.gov/tac/publications/2009/participant.papers/UI_ccg.proceedings.pdf
http://www.nist.gov/tac/publications/2009/participant.papers/UI_ccg.proceedings.pdf
http://aclweb.org/anthology/W/W16/W16-2209.pdf
http://aclweb.org/anthology/W/W16/W16-2209.pdf
http://arxiv.org/abs/1611.01603
http://arxiv.org/abs/1611.01603
http://www.aclweb.org/anthology/D07-1002
http://www.aclweb.org/anthology/D07-1002
https://doi.org/10.1145/3097983.3098177
https://doi.org/10.1145/3097983.3098177
https://doi.org/10.18653/v1/P17-1018
https://doi.org/10.18653/v1/P17-1018
https://doi.org/10.18653/v1/P17-1018
http://www.aclweb.org/anthology/N09-2004
http://www.aclweb.org/anthology/N09-2004
http://arxiv.org/abs/1611.01604
http://arxiv.org/abs/1611.01604
http://arxiv.org/abs/1804.09541
http://arxiv.org/abs/1804.09541
http://arxiv.org/abs/1804.09541
http://aclweb.org/anthology/P/P15/P15-1109.pdf
http://aclweb.org/anthology/P/P15/P15-1109.pdf
http://aclweb.org/anthology/P/P15/P15-1109.pdf

and the 7th International Joint Conference on Natu-
ral Language Processing of the Asian Federation of
Natural Language Processing, ACL 2015, July 26-
31, 2015, Beijing, China, Volume 1: Long Papers,
pages 1127–1137.

