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Abstract
This paper proposes a Gaussian Process model
of sound change targeted toward questions in
Indo-Aryan dialectology. Gaussian Processes
(GPs) provide a flexible means of expressing
covariance between outcomes, and can be ex-
tended to a wide variety of probability distri-
butions. We find that GP models fare better in
terms of some key posterior predictive checks
than models that do not express covariance be-
tween sound changes, and outline directions
for future work.

1 Introduction and Background

There exists today a wealth of digitized etymologi-
cal resources from which etymological headwords
(e.g., words in Latin, Sanskrit, etc.) and their re-
flexes in modern language can be extracted, and by
proxy, information regarding sound changes oper-
ating between ancestral and descendant languages.
This information can be used to address hypothe-
ses regarding dialectal relationships between these
descendant languages, and the accumulation of
large data sets allows such hypotheses to be ad-
dressed probabilistically.

This paper builds upon Cathcart to appear,
which seeks to address the issue of Indo-Aryan di-
alect groupings using data extracted from Turner
(1962–1966). It has generally been held that
sound change holds a great deal of power in de-
termining dialectal relationships in Indo-Aryan
(Masica, 1991), and a number of sound changes
thought to be probative with respect to Indo-Aryan
dialectology have been put forth (Hock, 2016). A
problem, however, is that Indo-Aryan languages
have developed in close contact with each other,
and intimate lexical borrowing between closely
related languages has been widespread. Forms
showing irregular outcomes of sound change are
so great in number that it is difficult to charac-
terize the expected outcomes of sound changes in

many languages, much less identify the so-called
“residual forms” deviating from what is expected
(cf. Bloomfield, 1933).

For this reason, we seek to represent Indo-
Aryan languages using a shared-admixture model
whereby a given Indo-Aryan language (e.g.,
Hindi) inherits its vocabulary from multiple LA-
TENT DIALECTAL COMPONENTS in which differ-
ent SOUND CHANGES have operated; we believe
that this approach explicitly models intimate bor-
rowing between Indo-Aryan dialects, a sociolin-
guistic process that many scholars have argued for
(Turner, 1975 [1967]). We restrict the dossier of
sound changes we work with to include relatively
transparent changes thought to be highly diagnos-
tic for purposes of Indo-Aryan dialectology, with
the additional hope of excluding those where mul-
tiple intermediate developments have been tele-
scoped into a single change.

The main objective of this paper is to deter-
mine the most appropriate way to represent di-
alect component-level distributions over sound
changes. Cathcart to appear compared a shared-
admixture model where a Dirichlet prior was
placed over sound change probabilities with a
model that used a Partitioned Logistic Normal
prior, the latter distribution generating Multino-
mial/Categorical probabilities (like the Dirichlet
distribution) but capable of expressing covariance
between outcomes within and across distributions
(unlike the Dirichlet distribution), and found no
major differences in behavior between these two
models. At the same time, this procedure relied on
a fixed covariance matrix for the Logistic Normal
distribution based on the similarity of segments
across the sound changes in which they are in-
volved. Working within a similar modeling frame-
work, this paper seeks to model this covariance via
a Gaussian Process. Gaussian Processes (GPs) are
a flexible family of prior distributions over covari-
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ance kernel functions. For our purposes, GPs al-
low us to assess the extent to which sound changes
in an evolving linguistic system are correlated, and
which features of sound changes influence this
correlation. Our results are somewhat open ended
at this stage, but we find that GP models fare bet-
ter in terms of certain critical posterior predictive
checks than models that do not express covariance
between sound changes.

2 Sound Change

The sound changes that operate within a lan-
guage’s history tend to be subject to certain con-
straints. In general, most sound changes are
thought to stem from low-level phonetic varia-
tion, though this view has been challenged (Blust,
2005). Additionally, it is often the case that similar
sounds behave similarly in similar environments;
hence, if earlier p undergoes voicing to b between
two vowels, it is reasonable expect the changes t
> d and k > g in the same environment. How-
ever, this systematicity and symmetry cannot al-
ways be relied upon. Different sounds, regardless
of their similarity along a large number of pho-
netic dimensions, are subject to different articula-
tory and perceptual constraints. For instance, it is
less likely for velar plosives such as k to undergo
voicing, because considerable articulatory effort is
required to pronounce g relative to d and b (Mad-
dieson, 2013). The voiceless labial plosive p lacks
perceptual salience, and often is debuccalized, los-
ing its oral constriction, to h (as in Japanese and
Kannada, among other languages) or perceptu-
ally enhanced (e.g., to f), though other voiceless
stops may not undergo the same type of behavior.
In other examples, the phonetic grounding is less
clear: in most High German dialects, the Old High
German consonant shift involved the changes *p
> (p)f and *t > (t)s; in southern dialects, the shift
also involves the change *k > k(x); see Schrijver
2014, 97–121 for a sociolinguistic explanation of
this asymmetry. In short, while sound change has
the tendency to be highly systematic, with similar
sounds moving in lockstep, it is clear that this is
not always the case; an ideal architecture for mod-
eling sound change will allow for, but not enforce,
the possibility of correlation between changes in-
volving similar sounds.

3 Quantitative models of sound change

Under the Neogrammarian view, sound change is
a tightly constrained process with discrete binary
outcomes; a sound in a given environment has
one and only one regular reflex. If irregularity is
seen, it is due to analogy or language contact; if
neither analogy nor language contact (or, accord-
ing to some, a small number of additional minor
processes that are poorly understood) can be con-
vincingly invoked, then we do not understand the
conditioning environment properly. In probabilis-
tic treatments of language change, however, this
assumption is infeasible to implement; generally
some probability mass, however small, must be al-
located to unobserved events (cf. Laplace’s law of
succession). For this reason, it is standard to re-
lax the Neogrammarian hypothesis by assuming a
multinomial/categorical distribution over possible
reflexes of a given sound in a language’s history
(cf. Bouchard-Côté et al., 2007, 2008, 2013); all
of the sound changes that operate in the history of
a given language can be represented as a collection
of multinomial probability distributions, with each
distribution in collection corresponding to the pos-
sible outcomes of an Old Indo-Aryan (OIA) input
in the relevant conditioning environment.

3.1 Prior distributions

In the Bayesian context, an obvious prior for
each Multinomial distribution in a collection is
the DIRICHLET DISTRIBUTION, which generates
probability simplices. The concentration parame-
ter of a SYMMETRIC DIRICHLET DISTRIBUTION

can determine the smoothness/sparsity of the re-
sulting multinomial distribution; this is a desirable
property, since many phenomena in natural lan-
guage, sound change being no exception, are best
represented using sparse distributions (cf. Ran-
ganath et al., 2015). The Dirichlet distribution has
been used to model sound change in previous work
(Bouchard-Côté et al., 2007).

However, the Dirichlet lacks an explicit means
of expressing correlations between the proba-
bilities of events, such as similar outcomes of
sound change, or of modeling dependence be-
tween events across multinomial distributions in a
collection (like the one we use to represent sound
change). An alternative is the LOGISTIC NOR-
MAL DISTRIBUTION (Aitchison, 1986). Under
the logistic normal distribution, unbounded val-
ues representing unnormalized log probabilities
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are generated from a multivariate normal distribu-
tion; these are subsequently transformed to prob-
ability simplices summing to one via the softmax
function. Since the underlying distribution is mul-
tivariate normal, the logistic normal distribution
is capable of modeling covariance between differ-
ent outcomes. At the same time, it is not possi-
ble to control the sparsity of a logistic normal dis-
tribution unless there is high variance and no co-
variance between different outcomes (this makes
it possible to control sparsity in Laplace’s approx-
imation to the Dirichlet distribution). Despite this
tradeoff, we believe that the logistic normal dis-
tribution has promise for modeling sound change,
particularly when distributions are noisy. Cru-
cially, the partitioned logistic normal distribution
(Cohen and Smith, 2009) allows us to capture de-
pendencies across distributions in a collection as
well as within them (i.e., with an eye to modeling
low-level variation within dialect groups), allow-
ing us to treat our collection as a large, interde-
pendent distribution.

3.2 Gaussian Processes

Use of the logistic normal distribution in Natu-
ral Language Processing usually estimates the co-
variance between outcomes empirically (cf. Blei
and Lafferty, 2007). At the outset, we are unsure
of how covariance between two sound changes
drawn from a logistic normal prior should be mod-
eled. In principle, covariance should be based on
the phonetic similarity of the segments involved,
but it is not clear whether all features of all partic-
ipating segments should have equal influence on
the covariance between two changes.

For this reason, we adopt a Gaussian Process
approach (Rasmussen and Williams, 2006) to gen-
erate our unnormalized sound change probabili-
ties. GPs define a flexible prior over continuous
covariance functions. A zero-mean GP assumes
that for a given observable response variable, the
values of N data points are generated from a mul-
tivariate normal distribution with a mean of zero
and some covariance. The distribution’s covari-
ance is modeled via a kernel function, which takes
as its input a measure of distance or dissimilar-
ity between two covarying data points. A popular
function is the squared exponential kernel (KSE),
which we employ in this paper. A basic squared
exponential kernel models the covariance between
two data points with values xi and xj for some

variable in the following manner:

KSE(xi, xj) = α2 exp

(
(xi − xj)2

2ρ2

)
(1)

The function is parametrized by a parameter
α2, determining the dispersion of the variance-
covariance matrix, and a parameter ρ, often
referred to as the CHARACTERISTIC LENGTH

SCALE, since it controls the distance threshold at
which two data points can influence one another,
with high values permitting greater influence be-
tween distant data points. A third dispersion pa-
rameter σ2 is generally added to diagonal values
of the variance-covariance matrix to ensure that it
is positive definite. Given a set of data points dif-
fering according to a predictor value for which re-
sponse values are recorded, the parameters α2, ρ
and σ2 can be fitted conditioned on the data.

We wish to exploit the flexibility of GPs in or-
der to determine how much influence features of
segments participating in sound changes should
have on other coextensive sound changes. Take
the changes p > b and t > d, setting aside the con-
ditioning environment. Both straightforwardly in-
volve voicing of a voiceless plosive. Care must
be taken in representing these changes in a way
that the relevant dimensions of similarity can be
detected by a probabilistic model. If we compute
similarity between them on the basis of whether
the segments involved are identical, we will not be
able to take into account processes such as voic-
ing — i.e., p > b and t > d (which both involve
voicing) will be treated as being as dissimilar as
p > b and d > t (which involve voicing and de-
voicing, respectively). Such a model may not be
completely useless, as it will still capture corre-
lations between identical changes across different
environments, a generalization that the Dirichlet
distribution is not explicitly capable of capturing.

In contrast to a binary approach concerned with
segmental identity, we can make use of distinc-
tive phonological features to capture granular re-
lationships between similar sound changes. If we
assume a simple featural representation for each
change, these changes will differ along the dimen-
sion of PLACE OF ARTICULATION (labial >
labial 6= dental > dental) but not VOIC-
ING (voiceless > voiced = voiceless
> voiced).

We are faced with similar questions when de-
ciding how to represent the conditioning environ-
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ment. While it makes sense that the featural rep-
resentations of the input and output of each indi-
vidual change should be considered jointly, it is
not clear that the environment should be treated
in such a manner. If we look only at the joint dis-
similarity of the lefthand and righthand contexts of
each pair of changes, there is the potential that the
dissimilarity between changes where only one side
of the environment is a relevant conditioning fac-
tor will be inflated if the other side differs. There-
fore it may be more instructive to model similarity
between conditioning environments as a composi-
tion of the similarities of the left- and righthand
contexts, though this model may have the poten-
tial to overgeneralize. We opt to treat the environ-
ment as a whole as a feature of interest, based on
a survey of conditioning environments (Kümmel,
2007), setting this question aside for future work.

There are several ways to deal with multiple
variables or featural dimensions in a GP frame-
work. The simplest approach is to assume a single
length scale for all features, which can potentially
induce behavior similar to an interaction in a lin-
ear model — if the length scale is low, covariance
between two data points will be high only if their
similarity across all dimensions is high as well. An
alternative is to assume a kernel function for each
dimension d ∈ {1, ..., D}, and add these together.
A third approach is to model an additive combina-
tion of the dimensions within the kernel function,
as follows:

KSE(xi,xj) = α2 exp

(
D∑

d=1

(xi,d − xj,d)2

2ρ2
d

)
(2)

A consequence of the structure of this kernel,
known as an Automatic Relevance Determination
(ARD) kernel, is that covariance will not be sen-
sitive to or vary according to differences along
dimensions for which ρd is large, allowing us
to gauge which featural dimensions have greater
“relevance” (Neal, 1996). While interpreting rele-
vance is challenging for featural dimensions which
have different scales (Piironen and Vehtari, 2016),
this is not a concern for our data, since distances
between sound changes across featural dimensions
are binary (i.e., 0 or 1).

We employ an ARD kernel for two types of GP
prior over covariance between sound changes. The
first kernel, the binary GP (BGP) takes into ac-
count two dimensions concerning (1) segmental
identity between inputs and outputs and (2) seg-

mental identity between environments across each
pair of changes. The granular GP (GGP) general-
izes this approach to a larger number of dimen-
sions corresponding to phonological features of
interest, described below.

3.3 Feature representation and kernel
structure

We assume an n-ary featural representation for the
sound types in our data set, similar to that found
in models such as that of Futrell et al. (2017). In
theory, it would be possible to employ binary dis-
tinctive features à la The Sound Pattern of English
(Chomsky and Halle, 1968) and related works,
which would potentially allow a richer represen-
tation (Duvenaud, 2014), but with considerable
computational cost. Embedding representations
for continuous phonetic values present a promis-
ing avenue (cf. Cotterell and Eisner, 2017). The
feature space looks as follows:

• A feature indicating whether a segment is a
CONSONANT or VOWEL

• A set of consonant-specific features:

– Place of articulation: labial, dental,
palatal, retroflex, velar, glottal

– Manner of articulation: plosive, af-
fricate, fricative, approximant, nasal

– Voicing: ±
– Aspiration: ±

• A set of vowel-specific features:

– Height: low, mid, high
– Frontness: front, back
– Rounding: ±
– Orality: oral, nasal

This yields 9 featural dimensions. Each segment
takes an n-ary or binary value for each relevant
attribute; for irrelevant attributes (i.e., consonant-
specific features, if the segment is a vowel, or vice
versa), the segment is assigned a null value.

4 Data

We extracted all modern Indo-Aryan (NIA) forms
from Turner (1962–1966) along with the OIA
headwords from which these reflexes descend
(Middle Indo-Aryan languages such as Prakrit and
Pali were excluded). Transcriptions of the data
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were normalized and converted to the Interna-
tional Phonetic Alphabet (IPA). Systematic mor-
phological mismatches between OIA etyma and
reflexes were accounted for, including stripping
the endings from all verbs, since citation forms
for OIA verbs are in the 3sg present, while most
NIA reflexes give the infinitive. We matched
each dialect with corresponding languoids in Glot-
tolog (Hammarström et al., 2017) containing geo-
graphic metadata, resulting in the merger of sev-
eral dialects. Languages with fewer than 100
forms in the data set were excluded, yielding 50
remaining languages; the best represented lan-
guage is Hindi, with 4012 forms, followed by Sin-
hala, Marathi, Panjabi and Gujarati. We excluded
sound changes appearing fewer than 7 times in
our data set, ultimately yielding 38479 modern
Indo-Aryan words. We preprocessed the data,
first converting each segment into its respective
sound class, as described by List (2012), and sub-
sequently aligning each converted OIA/NIA string
pair via the Needleman-Wunsch algorithm, using
the Expectation-Maximization method described
by Jäger (2014), building off of work by Wiel-
ing et al. (2012). This yields alignments of the
following type: e.g., OIA /a:ntra/ ‘entrails’ >
Nepali /a:n∅ro/, where ∅ indicates a gap where
the “cursor” advances for the OIA string but not
the Nepali string. Gaps on the OIA side are ig-
nored, yielding a one-to-many OIA-to-NIA align-
ment; this ensures that all aligned cognate sets are
of the same length. We restrict our analysis to
changes affecting OIA S, V, ñ, ï, ù, r

"
, h, i, i:, j, kù, l,

n, r, s, u, u:, which are thought to play a meaning-
ful role in Indo-Aryan dialectology (Southworth,
2005; Hock, 2016).

5 Model

Complete information regarding this paper’s
model specification and inference can be found in
the Appendix. Our data set contains W OIA et-
yma, each of which is continued by some of the L
languages in our sample. The data set contains R
OIA inputs (e.g., sounds in a conditioning environ-
ment), each of which have Sr reflexes. We assume
K = 10 dialect groups. At a high-level, our model
is a mixed membership model which assumes that
EACH WORD in EACH LANGUAGE is generated by
one of K latent dialect components, according to
the relevant sound changes whose operation the
word displays. Key parameters are θ (language-

level distributions over dialect components) and φ
(component-level collections of distributions over
sound changes). The stochastic generative process
we assume to underlie the data looks as follows
(for information regarding priors over θ and φ, re-
fer to the Appendix):

For wi : i ∈ {1, ...,W}, the vector of relevant
inputs in each OIA etymon

For each language l ∈ {1, ..., L} continuingwi

zi,l ∼ Categorical(θl) [Draw a dialect com-
ponent label]
For each OIA inputwi,t in etymonwi at index
t : {1, ..., |wi|}
yi,l,t ∼ Categorical(φzw,l,wi,t,·) [Generate
each output]

The likelihood of a given NIA word’s reflexes (i.e.,
outcomes of relevant sound changes) yi,l and its
OIA predecessor wi under the generative process
described above is the following, with the discrete
variable zi,l marginalized out:

P (yi,l,wi|θ,φ) =
K∑
k=1

θl,k

|wi|∏
t=1

φk,wi,t,yi,l,t (3)

We carry out inference for three flavors of this
model involving different versions of φ. In the
Diagonal model, there is no covariance across out-
comes ofφ. In the Binary GP (BGP) and Granular
GP (GGP) models, φ is generated by GPs with the
ARD kernels described in 3.2; these models dif-
fer in that the former takes a 2-dimensional feat-
ural input, while the latter takes a 18-dimensional
one (2 times the number of features given in 3.3).
We fit a variational posterior to the data for multi-
ple separate initializations (as described in the Ap-
pendix) from which we can draw samples.

6 Results

6.1 Geographic distribution
Averaged language-level component distributions
can be visualized geographically in Figure 1.
A number of redundant components are shared
across all languages in each model; this is likely
an artifact of the prior placed over θ; changes to
this prior (see discussion in the Appendix) would
likely assign less probability mass to redundant
components. In general, for all models, certain lin-
guistic groups show a similar component makeup:
these groups include Romani dialects and their
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close relatives Domari and Lomavren; Dardic lan-
guages of northern Pakistan; languages of Eastern
South Asia and the Eastern Indo-Gangetic Plain;
the insular languages Sinhala and Dhivehi; and
western languages such as Marathi and Gujarati.

We measure correlation coefficients to assess
how well the language-level dialect component
makeup inferred in each of our models reflects the
geography of Indo-Aryan dialects. For each of our
three models, we compute the Jensen-Shannon di-
vergence between θl and θl′ for each pair of lan-
guages l, l′, averaging across samples of θ̂, the
language-level posterior over components. We
measure the correlation between (1) average inter-
language JS divergence between dialect compo-
nent makeup and (2) pairwise great circle geo-
graphic distance, using Spearman’s ρ (although
pairwise distances violate the independence as-
sumption). These values are .28 for the Diago-
nal model, .34 for the BGP model, and .26 for the
GGP model. We see that the BGP model shows
the strongest geographic signal. We note that this
metric serves as a basis for comparison, but not
evaluation; if the language contact we are detect-
ing is chronologically deep, it is less likely to show
a strong geographic signal (cf. Haynie, 2012).

6.2 Relevance

We inspect posterior values of ρ−2, the squared
inverse characteristic length scales for each feat-
ural dimension of interest, for both the BGP and
GGP models. Since we work with inverse scales,
high values indicate relevance, while values close
to zero indicate irrelevance.

Figure 2 shows the squared inverse length scales
for the BGP model. The squared inverse length
scale for change is higher than that of environ-
ment, though the multimodality seen may be due
to a lack of convergence across initializations for
the BGP model. This is perhaps not particularly
surprising, though perhaps something of a sanity
check: given a large number of sound changes in-
volving a large number of conditioning environ-
ments, some of them redundant, it is likely that
changes with different environments and identical
input-output pairs will show similar behavior.

Figure 3 shows the squared inverse length scales
for the GGP model. The results seem to suggest
that when input-output pairs and conditioning en-
vironments are decomposed into featural represen-
tations, very few featural dimensions have a strong

influence on the co-occurrence of sound changes
that show featural identity in terms of input-output
pair or conditioning environment — essentially,
these features are the most meaningful when they
are bundled together into individual segments. An
exception is the feature VOWEL HEIGHT for en-
vironment, indicating that changes are likely to
co-occur if their conditioning environments have
the same values for vowel height. Further work
is needed to determine which combination of fea-
ture values for the left- and righthand context in
the conditioning environments actually serves as a
meaningful determinant of correlation.

6.3 Posterior Predictive Checks

6.3.1 Entropy
We carry out model criticism using a posterior pre-
dictive check proposed by Mimno et al. (2015) for
mixed-membership models, inspecting the uncer-
tainty with which each model assigns dialect com-
ponent labels to each word. Recall that during in-
ference, we marginalized out the discrete variables
zi,l, which indicate the dialect component label se-
lected for the reflex of OIA word wi in language l.
Given our fitted parameters θ̂ and φ̂, it is straight-
forward to reconstruct the probability of a label for
a given NIA word:

P (zi,l = k|yi,l,wi,θ,φ) ∝ θl,k
|wi|∏
t=1

φk,wi,t,yi,l,t

(4)
If P (zi,l|yi,l,wi,θ,φ) shows high entropy, then
our fitted parameters do not allow us to assign
a label with certainty. We average the entropy
of P (zi,l|yi,l,wi,θ,φ) across each word for 100
samples of θ̂, φ̂ in each model. Histograms of
these entropy measures can be seen in Figure 4.
The averages of these averaged values are 1.058
for the Diagonal model, 1.255 for the BGP model,
and 1.259 for the GGP model, with the Diagonal
model outperforming the GP models; these values
show a decrease rather than an increase in poste-
rior predictive checks with greater granularity in
the underlying GP.

6.3.2 Accuracy
We assess the extent to which each model’s poste-
rior parameters can accurately regenerate the ob-
served data. For each word, we sample zi,l ∼
Categorical(θ̂l), and then draw outcomes of sound
change ŷi,l,t ∼ Categorical(φzi,l,wi,t,·) : t ∈
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Figure 1: Averaged language-level component distributions for Diagonal (top), BGP (middle), and GGP (bottom)
models.
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Figure 2: Squared inverse scales for the BGP model by
featural dimension.
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Figure 3: Squared inverse scales for the GGP model by
featural dimension.
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Figure 4: Average word-level component assignment
entropies from posterior samples for each model (Di-
agonal = blue, BGP = red, GGP = green).
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Figure 5: Average per-word accuracies from posterior
samples for each model (Diagonal = blue, BGP = red,
GGP = green).

{1, ..., |wi|}. We measure per-word accuracy by
dividing the number of instances of ŷ that were
correctly simulated by the number of relevant
sound changes in the word, |wi|. We take the
mean of per-word averages across the data set for
100 samples of θ̂, φ̂ in each model. Histograms
of these accuracy measures can be seen in Fig-
ure 5. We find that the GP models re-generate
the data with greater accuracy than the Diagonal
model, but the BGP model outperforms the GGP
model. This suggests that the sound change pos-
terior distributions φ̂ of the GP models are more
informative than those of the Diagonal model, and
better capture the structure of the data. It is possi-
ble that the Diagonal model fared better in terms
of entropy due to a trade-off in sparsity between
θ̂ and φ̂, where more informative θ̂ and flatter φ̂
allowed for component labels to be assigned with
greater certainty.

7 Outlook

This paper proposed a probabilistic formalization
of sound change according to the logistic nor-
mal distribution, a distribution that has been un-
derused for such a modeling purpose. We at-
tempted to use GPs in order to induce more re-
alistic sound change distributions for application
to dialectological questions. We described a gen-
erative Bayesian model in which unnormalized lo-
gistic normal weights are generated by a Gaussian
Process, a powerful and flexible prior distribution
over functions that can be used to model covari-
ance for multivariate normal data. GPs have been
put forth as a means of modeling continuous pho-



262

netic changes (Aston et al., 2012), but this paper
is the first to use them as a prior for multinomial
sound change distributions.

While some aspects of our results were dif-
ficult to interpret and remain inconclusive, we
did demonstrate a marginal increase in terms of
key posterior predictive checks with the use of
Gaussian Process models. It is clear that much
work is required in order to bring the automated
methodology described here into line with gold
standards in linguistics as well as the intuitions
of historical linguistics; however, we believe that
this research program is promising and has high
potential impact. Specifically, received wisdom
can be used in the process of prior selection for
Bayesian models. In this paper, we used a stan-
dard and simple covariance kernel function for
our Gaussian process, the squared exponential ker-
nel. We placed relatively uninformative priors
over the parameters of the kernel function in the
hopes that well-informed, highly identifiable pa-
rameters would fall out of the data. Further em-
pirical work is required to determine which priors
over kernel parameters are suitable, if a squared-
exponential kernel is to be used in future work.
Additionally, it is worth noting that there are many
kernel functions to choose from, and that the
squared-exponential kernel has its limitations. It
(along with many other popular functions used for
GPs) cannot model negative covariance, for exam-
ple, whereas highly sophisticated alternatives can
(Wilson and Adams, 2013).

If the methodology described here can be re-
fined, the potential for quantitative historical lin-
guistics is significant. Sound change and mor-
phological change are the cornerstones of tradi-
tional historical linguistics (Meillet, 1922). High-
definition data sets like the one used in this pa-
per are largely unexploited. If the issues outlined
above can be tackled, models like the one em-
ployed in this paper will undoubtedly serve as a
powerful means of inferring key aspects of linguis-
tic prehistory.
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8 Appendix

Here, we describe our model specification as well
as the inference procedure used to fit our model’s
parameters.1 We parameterize our model such that

1All relevant code can be found at https:
//github.com/chundrac/IA_dial/tree/
master/LChange2019.
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no random variables are dependent on other ran-
dom variables, treating such variables as deter-
ministic variables dependent on an auxiliary noise
variable and one or more random variables. This
allows us to construct a straightforward variational
approximation to our model.

8.1 Language-component prior

The parameter θ, representing language-level dis-
tributions over latent dialect components, is gen-
erated as follows:

ηl,k ∼ N (0, 10) : l ∈ {1, ..., L}, k ∈ {1, ...,K}

θl = softmax(ηl)

Placing a large standard deviation on the Gaus-
sian prior passed to the softmax function allows
for sparser multinomial distributions to be gener-
ated, but unlike symmetric Dirichlet priors with a
concentration parameter below 1, does not penal-
ize smoother distributions relative to sparse ones.

In theory, the Gaussian Stick-Breaking con-
struction of (Khan et al., 2012; Miao et al., 2017)
can be used to allow the language-level prior over
dialect components to favor a large or small num-
ber of groups, conditional on the data. We do not
use the GSB prior in this paper, but are exploring
it in ongoing work.

8.2 Component-sound change prior

8.2.1 Diagonal Prior
The diagonal prior (i.e., the prior over sound
changes that is insensitive to correlation) is a
softmax-transformed diagonal multivariate Gaus-
sian distribution with high variance:

ψk,r,s ∼ N (0, 10) : k ∈ {1, ...,K},
r ∈ {1, ..., R}, s ∈ {1, ..., Sr}

φk,r,· = softmax(ψk,r,·)

8.2.2 GP Prior
The following process holds for both the Binary
GP (BGP) and Granular GP (GGP), the only dif-
ference being that the dimensionality D of the
D × S × S matrix δ containing pairwise featural
distances between sound changes is larger for the
GGP model. We use the Cholesky decomposition
of the variance-covariance matrix Σ generated by
the SEK function, coupled with an auxiliary noise

variable, in order to treat ψ as a deterministic ran-
dom variable.

α ∼ N (0, 1),σ ∼ N (0, 10)

ρ−1
d ∼ N (0, .1) : d ∈ {1, ..., D}

2

Σ = α2 exp

(
−

D∑
d=1

δd

2ρ2

)
+ Iσ2 = LL>

zΣ
k,r,s ∼ N (0, 1) : k ∈ {1, ...,K},

r ∈ {1, ..., R}, s ∈ {1, ..., Sr}

ψk,·,· = Lz
Σ
k

φk,r,· = softmax(ψk,r,·)

8.3 Inference
We use Stochastic Gradient Variational Bayes
(Kingma and Welling, 2014) to learn each model’s
parameters. Since all of our priors are Gaussian, it
is straightforward to construct a Gaussian varia-
tional approximation for each parameter with its
own trainable mean and standard deviation. The
objective of Variational Inference is to maximize
the evidence lower bound (ELBO), given below:

ELBO = Ez∼q(z|x) [P (x|z)]−DKL(q(z|x)||p(z))

where the first term denotes the expectation of
the model log likelihood (see eq. 3) under sam-
ples z from the variational posterior q(z|x), and
the second denotes the sum of Kullback-Leibler
(KL) divergences between the variational poste-
rior parameters and their corresponding priors in
p(z), all of which are Gaussian. We use the Adam
optimizer (Kingma and Ba, 2015) with a learn-
ing rate of .1 to optimize the variational param-
eters for 5000 iterations over 3 separate initializa-
tions via batch inference (i.e., fitting the param-
eters on the entire dataset at each iteration), us-
ing 10 Monte Carlo samples per iteration to es-
timate Ez∼q(z|x) [P (x|z)] according to the repa-
rameterization trick (Rezende et al., 2014; Kingma
and Welling, 2014). To deal with label switching
across initializations, we choose the permutation
of labels {1,...,K} of the posterior parameters of
initializations 2 and 3 such that the KL divergence
to the posterior parameters of the first initialization
is minimized.

2In theory, a more informative prior over σ such as
N (10, 1) may be a good choice in order to encourage sparser
distributions.


