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Abstract

The segmentation of argumentative units is an
important subtask of argument mining, which
is frequently addressed at a coarse granular-
ity, usually assuming argumentative units to be
no smaller than sentences. Approaches focus-
ing at the clause-level granularity, typically ad-
dress the task as sequence labeling at the token
level, aiming to classify whether a token be-
gins, is inside, or is outside of an argumenta-
tive unit. Most approaches exploit highly engi-
neered, manually constructed features, and al-
gorithms typically used in sequential tagging
– such as Conditional Random Fields, while
more recent approaches try to exploit manu-
ally constructed features in the context of deep
neural networks. In this context, we examined
to what extend recent advances in sequential
labelling allow to reduce the need for highly
sophisticated, manually constructed features,
and whether limiting features to embeddings,
pre-trained on large corpora is a promising ap-
proach. Evaluation results suggest the exam-
ined models and approaches can exhibit com-
parable performance, minimising the need for
feature engineering.

1 Introduction

Argument mining involves the automatic discov-
ery of argument components (such as claims,
premises, etc.) and the argumentative relations
(i.e. support, attack, etc.) among these com-
ponents in texts. Primarily aiming to extract ar-
guments from texts in order to provide struc-
tured data for computational models of argu-
ment and reasoning engines (Lippi and Torroni,
2015a), argument mining has additionally the po-
tential to support applications in various research
fields, such as opinion mining (Goudas et al.,
2015), stance detection (Hasan and Ng, 2014),
policy modelling (Florou et al., 2013; Goudas
et al., 2014), legal information systems (Palau and

Moens, 2009), fact checking (Naderi and Hirst,
2018), etc.

The identification of argumentative discourse
structures typically consists of two main tasks:
1) the identification of the locations in text and
the type of the argument components, and 2) the
identification of how these argument components
related to each other (Persing and Ng, 2016). As
a result, argument mining is usually addressed
as a pipeline of several sub-tasks. Typically the
first sub-task is the separation between argumen-
tative and non-argumentative text units, which can
be performed at various granularity levels, from
clauses to several sentences, usually depending on
corpora characteristics. Detection of argumenta-
tive units (AU)1, as discussed in Section 2, is typ-
ically modeled as a fully-supervised classification
task, either a binary one, where units are separated
in argumentative and non-argumentative ones with
argumentative ones to be subsequently classified
in major claims, claims, premises, etc. as a sec-
ond step, or as a multi-class one, where identifi-
cation of argumentative units and their classifica-
tion into claims and premises are performed as a
single step. Typically the granularity of this task
is coarse, with most approaches considering sen-
tences as the smallest argumentative unit (Florou
et al., 2013; Moens et al., 2007; Song et al., 2014;
Swanson et al., 2015), although some works fo-
cused on the most difficult task of detecting units
at the clause level (Park and Cardie, 2014; Goudas
et al., 2014, 2015; Sardianos et al., 2015; Stab,
2017; Ajjour et al., 2017; Eger et al., 2017). Ac-
cording to a recent survey (Lippi and Torroni,
2015a), the performance of proposed approaches
depends on highly engineered and sophisticated,
manually constructed, features.

Approaches focusing at the clause-level granu-
1Also known as “Argumentative Discourse Units –

ADUs” (Peldszus and Stede, 2013).
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larity, typically address the task as sequence label-
ing at the token level, aiming to classify whether
a token begins, is inside, or is outside of an argu-
mentative unit through the IOB format (Ramshaw
and Marcus, 1995). Most of the approaches em-
ploy Conditional Random Fields (CRFs) (Lafferty
et al., 2001) with hand-crafted features (Goudas
et al., 2014), as CRFs are the prominent and most
reliable algorithm for many sequential labelling
tasks (Zeng et al., 2017), and have been applied
to a wide range of segmenting tasks, from named-
entity recognition (McCallum and Li, 2003) and
shallow parsing (Sha and Pereira, 2003), to aspect-
based sentiment analysis (Patra et al., 2014). Se-
quence labeling algorithms take as input a set of
features for each token in a sequence (such as a
sentence) and learn to predict an optimal sequence
of labels for all tokens in the input sequence, while
performance depends on the provided (typically
manually engineered features) and how well these
features can help the model predicting the like-
lihood of every label in the sequence. However,
as deep learning is slowly replacing CRFs for se-
quence labelling (i.e. (Ajjour et al., 2017)), it is
interesting to examine whether these hand-crafted
features are still important, or comparative levels
of performance can be achieved without them.

In this paper we examine whether a “CRF-
inspired” neural model without the hand-crafted
features, can be applied to the task of argumen-
tative unit segmentation at the clause level, and
whether its performance is comparable to ap-
proaches exploiting such features. In addition,
we study whether contextualised word represen-
tations can help in this task, and provide an alter-
native to hand-crafted features. These can be re-
flected in the following two questions:

1. Can approaches that do not use manually en-
gineered features achieve performances com-
parable to approaches that exploit such fea-
tures?

2. Can contextualised word representations
(pre-trained in large corpora) replace manu-
ally engineered features in argument mining?

The motivation behind the work presented in
this paper originates from the advances performed
in the state of art of named-entity recognition by
Bidirectional LSTM-CRF Models for Sequence
Tagging (Huang et al., 2015; Ma and Hovy, 2016),
a variation of Long Short-Term Memory (LSTM)

based models with a decoding layer that considers
relations between neighbouring labels and jointly
decodes the optimal sequence of labels for a given
input sequence (Ma and Hovy, 2016), using a
Conditionally Random Field. Recognising a sim-
ilar evolution pattern also in the area of argument
mining segmentation – starting with CRF’s and
manually constructed features (Park and Cardie,
2014; Goudas et al., 2014, 2015; Stab, 2017), then
employing word embeddings as features in CRFs
(Sardianos et al., 2015) and subsequently apply-
ing bi-directional LSTMs (Ajjour et al., 2017) on
manually engineered features – poses the ques-
tion if a similar advancement can be achieved by
introducing the currently missing pieces (LSTM-
CRF models or contextualised word representa-
tions such as (Peters et al., 2018)), in an attempt
to eliminate – or reduce the need for – manually
engineered features.

In order to approach our research questions we
have used the second version of the Argument An-
notated Essay Corpus (Stab, 2017), a collection
of 402 essays, which has been manually anno-
tated with major claims (one per essay), claims
and premises at the clause level. In addition, the
corpus contains manual annotations of argumen-
tative relations, where the claims and premises are
linked, while claims are linked to the major claim
either with a support or an attack relation. We have
applied LSTM-CRF models (using the implemen-
tation reported in (Akbik et al., 2018)) employ-
ing various word embeddings (including contex-
tualised word representations like “ELMo” (Pe-
ters et al., 2018), “Flair” (Akbik et al., 2018) and
“BERT” (Devlin et al., 2018)). Evaluation results
suggest that all studied approaches are comparable
or slightly better to the current state of art.

2 Related work

Almost all argument mining frameworks proposed
so far employ a pipeline of stages, each of which
is addressing a sub-task of the argument mining
problem (Lippi and Torroni, 2015a). The segmen-
tation of text into argumentative units is typically
the first sub-task encountered in such an argument
mining pipeline, aiming to segment texts into ar-
gumentative and non-argumentative text units (i.e.
segments that do contain or do not contain argu-
ment components, such as claims or premises).
The granularity of argument components is text-
dependant. For example, in Wikipedia articles
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studied in (Rinott et al., 2015), argument compo-
nents spanned from less than a sentence to more
than a paragraph, although 90% of the cases was
up to 3 sentences, with 95% of components being
comprised of whole sentences.

Several approaches address the identification of
argumentative units at the sentence level, a sub-
task known as “argumentative sentence detection”,
which typically models the task as a binary clas-
sification problem. Employing machine learn-
ing and a set of features representing sentences,
the goal is to discard sentences that are not part
(or do not contain a component) of an argument.
As reported also by Lippi and Torroni (2015a),
the vast majority of existing approaches employ
“classic, off-the-self” classifiers, while most of
the effort is devoted to highly engineered features.
A plethora of learning algorithms have been ap-
plied on the task, including Naive Bayes (Moens
et al., 2007; Park and Cardie, 2014), Support Vec-
tor Machines (SVM) (Mochales and Moens, 2011;
Rooney et al., 2012; Park and Cardie, 2014; Stab
and Gurevych, 2014; Lippi and Torroni, 2015b),
Maximum Entropy (Mochales and Moens, 2011),
Logistic Regression (Goudas et al., 2014, 2015;
Levy et al., 2014), Decision Trees and Random
Forests (Goudas et al., 2014, 2015; Stab and
Gurevych, 2014). There is also a limited num-
ber of approaches addressing the task in a semi-
supervised or unsupervised manner, such as (Fer-
rara et al., 2017).

The identification of argumentative units at the
clause level has been less studied than its more
coarse counterpart. (Park and Cardie, 2014) has
exploited n-grams and a large number of ad-
ditional, manually crafted, binary (denoting the
presence of features) and numeric (containing
counts) features in a supervised manner with Sup-
port Vector Machine as classifier, achieving a
macro-averaged F1 = 68.99% on a corpus man-
ually annotated by the authors. In (Goudas et al.,
2014, 2015) the authors have examined segmen-
tation both at sentence and clause level, for the
Greek language, using a corpus manually anno-
tated by the authors. They have exploited both fea-
tures from previous approaches and features pro-
posed by the authors, achieving F1 = 42.37%, as
measured by “conlleval.pl” (taking into account
correct sequences and not only labels at the to-
ken level). The same Greek corpus has been used
in (Sardianos et al., 2015), where word2vec em-

beddings (Mikolov et al., 2013) have been used as
features in a supervised setting using CRFs, com-
bined with part-of-speech tags and a small lexi-
con with cue phrases, to report a small increase
in performance (F1 = 32.12%) over the baseline
(F1 = 27.04%).

CRFs have been also used in (Stab, 2017),
along with an extensive set of highly engineered
features, including structural, syntactic, lexico-
syntactic and probabilistic features. The approach
has been evaluated on the second version of the
Argument Annotated Essay Corpus (the same cor-
pus has been used for evaluation in this work),
created by the authors, achieving macro-averaged
F1 = 86.70%. Similar features (with the addi-
tion of pragmatic features) have been exploited in
(Ajjour et al., 2017) using a bidirectional LSTM
model as classifier in a supervised setting, achiev-
ing macro-averaged F1 = 88.54% on the second
version of the Argument Annotated Essay Corpus,
with lower scores on two other corpora. In in-
teresting aspect of this work is the out-of-domain
evaluation, performing evaluations on different
corpora from the ones used for training. Deep neu-
ral networks have been also employed by (Eger
et al., 2017), using bidirectional LSTM-CRF mod-
els in a supervised setting, as an end-to-end sys-
tem. Framing argument mining as a sequence tag-
ging at the token level, they learn simultaneously
four different sets of labels, encoding both seg-
mentation of argumentative units, their types and
their relations. The approach has been evaluated
on the second version of the Argument Annotated
Essay Corpus (the same corpus has been used for
evaluation in this work) achieving F1 = 69.49%.

In (Persing and Ng, 2016) the authors propose
a rule-based approach, with manually constructed
rules applied on top of syntactic trees, achiev-
ing a performance of 92.1% on the first version
of the Argument Annotated Essay Corpus (Stab
and Gurevych, 2014). In (Lawrence et al., 2014)
the authors propose a two-stage approach: Dur-
ing the first stage text is segmented into proposi-
tions using two Naive Bayes classifiers (Nir Fried-
man and Goldszmidt, 1997) with simple features
(words, lengths and a sliding window of three to-
kens) in a supervised setting. Then, as a second
step, propositions are scored based on their simi-
larities to document topic retrieved through Latent
Dirichlet Allocation (LDA) and their distances, to
decide whether they constitute an argumentative
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unit or not.

3 Data

For our experiments, we have used the second
version of the Argument Annotated Essay Corpus
(Stab, 2017; Eger et al., 2017; Stab and Gurevych,
2017), which contains 402 student essays written
in response to controversial topics. The corpus has
been manually annotated with major claims (one
per essay), claims and premises at the clause level.
In addition, the corpus contains manual annota-
tions of argumentative relations, where the claims
and premises are linked, while claims are linked
to the major claim either with a support or an at-
tack relation. Essays are on average 370 tokens
long, while most of the tokens (∼ 70%) are part
of an argumentative unit. The corpus is split into
train and test sets at the essay level, provided by
the authors. We have converted the corpus into the
CoNLL token-based sequence tagging format (us-
ing the tools provided by the “BRAT” annotation
toolkit) and we extracted a small development set
(< 10%) from the training set randomly, with the
help of “scikit-learn” toolkit.

4 Models

Following the typical setting in argumentative unit
segmentation at the clause level, we are going to
also frame the task as a sequence labelling clas-
sification problem. In sequential labelling the la-
bel of an instance does not depend only on the
instance itself, but also depends on the instances
previously seen. A natural choice for sequence
labelling are recurrent neural networks (RNNs),
which consider “hidden” states computed from
previous points in time (instances already classi-
fied) during classification. For our experiments we
have chosen LSTMs (Hochreiter and Schmidhu-
ber, 1997), a type of RNNs able to learn long-term
dependences, as their structure allows them to con-
trol how much information is shared across points
in time.

However, a single LSTM is able to have access
to a single context (typically to the left context
of a token) when assigning a label. Bidirectional
LSTMs employ two separate LSTM layers, look-
ing at the input from opposite directions, while
their output is concatenated into a single vector.
Finally, in order to reflect all CRF capabilities,
and especially its ability to assign labels taking
into account contextual dependencies from all tags

in a sequence, a CRF network can be combined
with an LSTM or a bidirectional LSTM to form
an LSTM-CRF (or bi-LSTM-CRF model) (Huang
et al., 2015), which can use features from all in-
stances in a sequence (past and future) for assign-
ing a label to an instance (Fig 1).

Figure 1: A BI-LSTM-CRF model. (Huang et al.,
2015)

4.1 Argument Mining as Sentence Labelling

In a simple scenario, argumentative unit identifica-
tion can be performed at the sentence level, where
labeling consists in distinguishing between sen-
tences that are argumentative units (y = au) and
sentences that are not argumentative units (y =
au).

4.2 Argument Mining as Sequence Labelling

In a more articulated scenario, argumentative unit
identification must decide not only whether a sen-
tence contains an argumentative unit, but in addi-
tion to identify the exact words that represent each
argumentative unit within each sentence. Framing
this task as a sequence labelling task, each token
is assigned a label from y, where y = {(b, t) | b ∈
{B, I,O}, t ∈ {au}}.

4.3 Embeddings

As input to the aforementioned model, we are go-
ing to use dense representations, and more specifi-
cally pre-trained word embeddings, such as GloVe
(Pennington et al., 2014). Depending on the way
word embeddings were generated and the infor-
mation they represent, word embeddings can be
seen as a form of transfer learning, providing a
model additional information, typically acquired
from a larger corpus than a training dataset for
a task. In addition to these embeddings, we
are going to examine more recent deep contextu-
alised word representations, such as “ELMo” (Pe-
ters et al., 2018), “Flair” (Akbik et al., 2018) and
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Number of tokens
Part # Documents B-Arg I-Arg O-Arg Total Average
Train + Development 322 4,823 75,657 38,195 118,675 368.56
Test 80 1,266 18,837 9,442 29,545 369.31

Table 1: Number of documents, tokens per class, and average number of tokens per document.

“BERT” (Devlin et al., 2018). These represen-
tations are able to model “both characteristics of
word usage (e.g. syntax and semantics) and how
these uses vary across linguistic contexts (i.e. to
model polysemy)” (Peters et al., 2018). These rep-
resentations assign a different vector to each word
based on its context, in contrast to embeddings like
GloVe that assign the same vector to a word, irre-
spectively of context.

5 Experiments

5.1 Argument Mining as Sentence Labelling

Using the corpus described in Section 3, we have
applied four classifiers to the task of classifying a
sentence as argumentative or not. Using as only
features the GloVe2 vectors for each token in a
sentence, we have applied Convolutional Neural
Networks (CNNs) the following implementation,
BI-LSTM-CRF, and bidirectional Sentence-State
LSTMs (S-LSTMs) (Zhang et al., 2018)3. All ap-
proaches involve the usage of non-contextualised
embeddings (GloVe), keeping the most frequent
15,000 words in the corpus, following the train-
ing details as described in (Zhang et al., 2018).
All models are trained using SGD with no mo-
mentum (with a mini-batch size of 32), clipping
gradients at 5, for a maximum 40 epochs. A sim-
ple learning rate annealing method is employed in
which we halve the learning rate if training loss
does not fall for 5 consecutive epochs, initialising
learning rate to 10−3. The hidden states per-layer
was set to 300, and variational dropout was used.
The number of hidden layers was fine-tuned in the
range 1 − 8, and model selection was performed
by choosing the model with the best accuracy on
the development set. The split provided by the au-
thors of the corpus regarding the training and test
sets was used, while a small development set was
extracted from the training set, containing 21 es-

2Wikipedia 2014 + Gigaword 5, 6B tokens, 400K vocab-
ulary, uncased, 300 dimensions.

3We have used the following implementation for
CNNs, LSTMs and S-SLTMs: https://github.com/
leuchine/S-LSTM

says4. Regarding stability and reproducibility of
results, we have used 20195 as the seed value. The
aforementioned approaches were compared to the
“BERT” (Devlin et al., 2018) contextual embed-
dings6, using a single feed-forward layer on top
of the embeddings, with a hidden layer equal to
the size of the embeddings (768)7. Minimal fine-
tuning has been performed, allowing only a single
epoch with mini-batch size of 32 and a learning
rate equal to 2e−5.

Embedding Architecture Accuracy
GloVe CNN 0.8391
GloVe LSTM 0.8488
GloVe S-LSTM 0.8619
BERT Feed Forward 0.8874

Table 2: Argument Mining as Sentence Labelling:
Evaluation Results.

Our experiment results are summarised in Ta-
ble 2. While BERT embeddings (even with mini-
mal fine-tuning of a single hidden layer) have out-
performed all other approaches, traditional word
embeddings (“GloVe” + S-LSTM) may still be
useful as their performance is still very close to
BERT, while employing 6 Bi-S-LSTM-CRF lay-
ers, with a window of 5 tokens, and after 15 epochs
of fine-tuning to the task.

5.2 Argument Mining as Sequence Labelling

For our second experiment, which combines the
identification of argumentative units with their lo-
calisation as textual segments, we have employed

4The essays randomly selected for the development set
are: 13, 38, 41, 115, 140, 152, 156, 159, 162, 164, 201, 257,
291, 324, 343, 361, 369, 371, 387, 389, 400.

5The same seed value, 2019, has been used for all experi-
ments performed in this paper.

6We have adapted the implementation that can be found
here: https://colab.research.google.com/
github/google-research/bert/blob/master/
predicting_movie_reviews_with_bert_on_
tf_hub.ipynb

7The used embeddings can be found at: https:
//tfhub.dev/google/bert_uncased_L-12_
H-768_A-12/1

https://github.com/leuchine/S-LSTM
https://github.com/leuchine/S-LSTM
https://colab.research.google.com/github/google-research/bert/blob/master/predicting_movie_reviews_with_bert_on_tf_hub.ipynb
https://colab.research.google.com/github/google-research/bert/blob/master/predicting_movie_reviews_with_bert_on_tf_hub.ipynb
https://colab.research.google.com/github/google-research/bert/blob/master/predicting_movie_reviews_with_bert_on_tf_hub.ipynb
https://colab.research.google.com/github/google-research/bert/blob/master/predicting_movie_reviews_with_bert_on_tf_hub.ipynb
https://tfhub.dev/google/bert_uncased_L-12_H-768_A-12/1
https://tfhub.dev/google/bert_uncased_L-12_H-768_A-12/1
https://tfhub.dev/google/bert_uncased_L-12_H-768_A-12/1
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an end-to-end system that utilises a BI-LSTM-
CRF architecture with 2 layers, with each layer
employing 256 hidden nodes. This model has been
trained and evaluated with a series of traditional
“(GloVe”, character embeddings) and contextual
embeddings (“ELMo”, “Flair”, and “BERT”). All
experiments we have used the “Flair”8 framework.
Fine-tunning was performed for a maximum of
150 epochs, using SGD with a mini-batch size of
32,and simulated annealing, with a starting learn-
ing rate of 0.1. The same random seed (2019) was
used for all experiments.

We report the macro F-score as an evaluation
measure, since this allows for a comparison to
related work. The macro F1-score considers all
the classes to be equally important, without taking
into consideration the number of instances each
class has. (The distribution of classes in the corpus
is shown in Table 1.)

5.2.1 Comparison with previous work

Features Model Macro F1

All (Semantic+Syntactic SVM 61.40
+Structural+Pragmatic) CRF 79.16
(Ajjour et al., 2017) BI-LSTM 88.54
All
(Stab, 2017) CRF 86.70
GloVe + Character BI-LSTM-CRF 85.92
GloVe + Character BI-LSTM-CRF 88.17
+ Flair
ELMo BI-LSTM-CRF 88.62
BERT BI-LSTM-CRF 89.31
GloVe + Flair BI-LSTM-CRF 90.13
+ BERT
GloVe + Flair BI-LSTM-CRF 87.42
+ ELMo + BERT

Table 3: Argument Mining as Sequence Labelling:
Evaluation Results.

In order to enable comparison with existing ap-
proaches, we have tried to imitate the experimen-
tal settings found in (Stab, 2017) and (Ajjour et al.,
2017). Table 3 shows the results of the approaches
presented in (Ajjour et al., 2017) in the upper part
of the table, followed by the best overall result
presented in (Stab, 2017), including all features
(semantic, syntactic and structural) and the CRF
classifier. Both approaches employ a large number

8https://github.com/zalandoresearch/
flair

of highly engineered and sophisticated, manually
constructed, features. Finally, in the lower part of
the table, we report our results of the BI-LSTM-
CRF model with the various tested embeddings.

From Table 3 it can be seen that almost all
embeddings (especially the contextual ones) out-
perform the approaches with manually engineered
features (Ajjour et al., 2017; Stab, 2017), with the
combination of contextual embeddings achieving
new state-of-art (MacroF1 = 90.13) on the Es-
says v2.0 corpus, especially when considering the
absence of manually constructed features.

5.3 Error Analysis
We analysed the results obtained with the
GloVe+Flair+BERT experiment. The test dataset
contains 1448 annotated sentences, where 1,178
sentences were correctly annotated, while 270 sen-
tences were erroneously annotated by our model.
According to the confusion matrix, the two ma-
jor sources of errors are 1767 “O” tokens erro-
neously classified as “I-Arg”, and 829 “I-Arg” er-
roneously classified as “O”. The majority of the er-
rors (104 sentences) were sentences that the model
erroneously annotated as containing argumenta-
tive components, while these sentences did not
contain any argumentative component according
to the gold annotation. Some examples of such
sentences are displayed in the following list (an-
notated segments by the model are highlighted):

1. In spite of this, the disadvantages of the pro-
motion of a universal language cannot be de-
nied.

2. It is obvious that the benefits of the Internet
undoubtedly outweigh its disadvantages.

3. It would be highly unpractical to ask people
to adopt a simpler way of life.

4. Some people claim that without this pun-
ishment our lives would be less secure and
crimes of violence would increase.

5. It is evident that technology promotes econ-
omy.

The second most important source of errors,
are sentences containing argumentative units that
were not annotated as such by our model. 43 sen-
tences belong in this category, while some exam-
ples are shown as follows:

1. However, it is not sufficient in itself.

https://github.com/zalandoresearch/flair
https://github.com/zalandoresearch/flair
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2. Some people claim that the prevalent of En-
glish brings a great number of benefits for
people.

3. In the modern world, computers are used ev-
erywhere.

4. There is no end to the evolution of computers.

5. Many people hold the opinion that past be-
haviour determines the future actions, which
could be the main reason to support the idea
of revealing the record to the jury.

The rest of the errors (123 sentences in total)
are various errors, like two argumentative units
merged in one (errors by our model in red):

1. For instance , some Asians are seeking indi-
vidualism, previously denied by many Asian
countries, due to the fact that they have grad-
ually identified with such values expressed in
American movies, which are imported by the
governments as a result of the proliferation of
English.

2. First and foremost, sports events are good
chances for excellent athletes to meet and
learn valuable experiences from one another.
so that they can improve their results, break
records and bring victories to their own coun-
tries.

Finally, in some cases, our model missed the be-
ginning of an argumentative unit (in red the part
not annotated by our model):

1. From personal level, it fosters a sense of un-
fairness between the older and younger gen-
erations.

2. From social perspective, massively forcing
the early retirement would be one of financial
burden to the local government.

5.4 Discussion
Evaluation results suggest that omitting highly en-
gineered, manually crafted features, and replacing
them with embeddings (pre-trained on large cor-
pora and possibly exploiting multiple sources of
information), is a promising approach and a viable
alternative.

Research Question 1: Can approaches that do
not use manually engineered features achieve per-
formances comparable to approaches that exploit
such features?

Evaluation results suggest that a large part of
the information provided by the plethora of manu-
ally constructed features can be substituted with a
fairly standard architecture and word embeddings,
especially contextualised embeddings that can be
tuned to the task at hand, like the contextualised
word representations ELMo (Peters et al., 2018)
and BERT (Devlin et al., 2018). Further optimi-
sation is of course possible (especially with re-
spect to the architectures on top of embeddings,
the number of layers, and the fine-tune of the
many hyper-parameters associated with the em-
ployed neural models). However, there are some
limiting factors, mainly the absence of a develop-
ment set in the corpus used for evaluation, and the
computational requirements of the models, espe-
cially in the case of contextualised word embed-
dings.

Research Question 2: Can contextualised
word representations replace manually engineered
features?

Evaluation results are promising, especially
since the examined approaches have achieved a
small increase over the current state-of-art. How-
ever, the examined approaches have not exceeded
significantly the current state-of-art, suggesting
that manually engineered features are still relevant
and significant at least for this task, the segmenta-
tion of argumentative units at the clause level. One
of the findings in (Ajjour et al., 2017) is that the
semantic features appear to be the most significant
features, achieving the highest F-scores, an obser-
vation that seems to hold also in our experiments,
as reverting to embeddings that enhance seman-
tic modelling (through implicit word sense disam-
biguation performed based on contextual informa-
tion) seems to provide a significant increase in per-
formance. At the same time, the performance dif-
ference with the CRF exploiting the manually con-
structed features (Stab, 2017) is small, suggesting
that removing the highly engineered features may
have a small penalty in performance, at least for
the approach of (Stab, 2017).

6 Conclusion

The segmentation of argumentative units is an
important subtask of argument mining, which
is frequently addressed at a coarse granularity,
usually assuming argumentative units to be no
smaller than sentences. Approaches focusing at
the clause-level granularity, typically address the
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task as sequence labeling at the token level, aiming
to classify whether a token begins, is inside, or is
outside of an argumentative unit through the IOB
format (Ramshaw and Marcus, 1995). Most ap-
proaches exploit highly engineered, manually con-
structed features, and algorithms typically used
in sequential tagging – such as CRFs (Park and
Cardie, 2014; Goudas et al., 2014, 2015; Stab,
2017), while more recent approaches try to ex-
ploit manually constructed features in the con-
text of deep neural networks (Ajjour et al., 2017;
Eger et al., 2017). In this context, we examined
to what extend recent advances in sequential la-
belling and contextualised word embeddings al-
low to reduce the need for manually constructed
features, and whether limiting features to embed-
dings, pre-trained on large corpora is a promising
approach. Evaluation results suggest the exam-
ined models and approaches can exhibit compara-
ble performance, minimising the need for feature
engineering.

Regarding directions for further research, there
are several axes that can be explored. Evalua-
tion on more corpora will provide enhanced in-
sights about the performance of the examined ap-
proaches on different document types. At the
same time, there is a significant optimisation po-
tential, especially in hyper-parameter tuning of
the employed algorithms, provided that a suitable
development set is available, and the computa-
tional requirements of some models (especially
the ones employing contextualised word represen-
tation) are significantly reduced in order to consti-
tute experimentation more tractable and practical.
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