
Proceedings of the 4th Workshop on Representation Learning for NLP (RepL4NLP-2019), pages 235–243
Florence, Italy, August 2, 2019. c©2019 Association for Computational Linguistics

235

Effective Dimensionality Reduction for Word Embeddings

Vikas Raunak
Carnegie Mellon University
vraunak@cs.cmu.edu

Vivek Gupta
University of Utah

vgupta@cs.utah.edu

Florian Metze
Carnegie Mellon University
fmetze@cs.cmu.edu

Abstract

Pre-trained word embeddings are used in
several downstream applications as well as
for constructing representations for sentences,
paragraphs and documents. Recently, there
has been an emphasis on improving the pre-
trained word vectors through post-processing
algorithms. One improvement area is re-
ducing the dimensionality of word embed-
dings. Reducing the size of word embed-
dings can improve their utility in memory
constrained devices, benefiting several real-
world applications. In this work, we present a
novel technique that efficiently combines PCA
based dimensionality reduction with a recently
proposed post-processing algorithm (Mu and
Viswanath, 2018), to construct effective word
embeddings of lower dimensions. Empirical
evaluations on several benchmarks show that
our algorithm efficiently reduces the embed-
ding size while achieving similar or (more of-
ten) better performance than original embed-
dings. To foster reproducibility, we have re-
leased the source code along with paper 1.

1 Introduction

Word embeddings such as Glove (Pennington
et al., 2014) and word2vec Skip-Gram (Mikolov
et al., 2013) obtained from unlabeled text cor-
pora can represent words in distributed dense real-
valued low dimensional vectors which geometri-
cally capture the semantic ‘meaning’ of a word.
These embeddings capture several linguistic regu-
larities such as analogy relationships. Such em-
beddings are of a pivotal role in several natural
language processing tasks.

Recently, there has been an emphasis on apply-
ing post-processing algorithms on the pre-trained
word vectors to further improve their quality. For
example, algorithm in (Mrkšic et al., 2016) tries

1 https://github.com/vyraun/Half-Size

to inject antonymy and synonymy constraints into
vector representations, while (Faruqui et al., 2015)
tries to refine word vectors by using relational in-
formation from semantic lexicons such as Word-
Net (Miller, 1995). (Bolukbasi et al., 2016) tries
to remove the biases (e.g. gender biases) present
in word embeddings and (Nguyen et al., 2016)
tries to ‘denoise’ word embeddings by strength-
ening salient information and weakening noise.
In particular, the post-processing algorithm in
(Mu and Viswanath, 2018) tries to improve word
embeddings by projecting the embeddings away
from the most dominant directions and consider-
ably improves their performance by making them
more discriminative. However, a major issue re-
lated with word embeddings is their size (Ling
et al., 2016), e.g., loading a word embedding ma-
trix of 2.5 M tokens takes up to 6 GB memory
(for 300-dimensional vectors, on a 64-bit system).
Such large memory requirements impose signifi-
cant constraints on the practical use of word em-
beddings, especially on mobile devices where the
available memory is often highly restricted. In this
work we combine the simple dimensionality re-
duction technique, PCA with the post processing
technique of (Mu and Viswanath, 2018), as dis-
cussed above.

In Section 2, we first explain the post processing
algorithm (Mu and Viswanath, 2018) and then our
novel algorithm and describe with an example the
choices behind its design. The evaluation results
are presented in section 3. In section 4, we discuss
the related works, followed by the conclusion.

2 Proposed Algorithm

We first explain the post-processing algorithm
from (Mu and Viswanath, 2018) in section 2.1.
Our main algorithm, along with the motivations is
explained next, in the section 2.2.

https://github.com/vyraun/Half-Size


236

2.1 Post-Processing Algorithm
(Mu and Viswanath, 2018) presents a simple post-
processing algorithm that renders off-the-shelf
word embeddings even stronger, as measured on
a number of lexical-level and sentence-level tasks.
The algorithm is based on the geometrical obser-
vations that the word embeddings (across all rep-
resentations such as Glove, word2vec etc.) have a
large mean vector and most of their energy, after
subtracting the mean vector is located in a sub-
space of about 8 dimensions. Since, all embed-
dings share a common mean vector and all embed-
dings have the same dominating directions, both of
which strongly influence the representations, elim-
inating them makes the embeddings stronger. De-
tailed description of the post-processing algorithm
is presented in Algorithm 1 (PPA).

Algorithm 1: Post Processing Algorithm PPA(X, D)
Data: Word Embedding Matrix X, Threshold Parameter

D
Result: Post-Processed Word Embedding Matrix X
/* Subtract Mean Embedding */

1 X = X - X ;
/* Compute PCA Components */

2 ui = PCA(X), where i = 1,2, . . . ,d. ;
/* Remove Top-D Components */

3 for all v in X do
4 v = v −

∑D
i=1(u

T
i · v)ui

5 end

Figure 1 demonstrates the impact of the post-
processing algorithm (PPA, with D= 7) as ob-
served on wiki pre-trained Glove embeddings
(300-dimensions). It compares the fraction of
variance explained by the top 20 principal com-
ponents of the original and post-processed word
vectors respectively 2. In the post-processed word
embeddings none of the top principal components
are disproportionately dominant in terms of ex-
plaining the data, which implies that the post-
processed word vectors are not as influenced by
the common dominant directions as the original
embeddings. This makes the individual word vec-
tors more ‘discriminative’, hence, improving their
quality, as validated on several benchmarks in (Mu
and Viswanath, 2018).

2.2 Proposed Algorithm
This section explains our algorithm, 2 that effec-
tively uses the the PPA algorithm, along with PCA
for constructing lower dimensional embeddings.
2 the total sum of explained variances over the 300 principal
components is equal to 1.0

Figure 1: Comparison of the fraction of variance ex-
plained by top 20 principal components of the Original
and Post-Processing (PPA) applied Glove embeddings
(300D).

Figure 2: Comparison of the fraction of variance ex-
plained by top 20 principal components of the PPA +
PCA-150D baseline and Further Post-Processed Glove
embedding (150D).

We first apply the algorithm 1 (PPA) of (Mu and
Viswanath, 2018) on the original word embed-
ding, to make it more ‘discriminative’. We then
construct a lower dimensional representation of
the post processed ‘purified’ word embedding us-
ing Principal Component Analysis (PCA (Shlens,
2014)) based dimensionality reduction technique.
Lastly, we again ‘purify’ the reduced word embed-
ding by applying the algorithm 1 (PPA) of (Mu and
Viswanath, 2018) on the reduced word embedding
to get our final word embeddings.

To explain the last step of applying the algo-
rithm 1 (PPA) on the reduced word embedding,
consider the Figure 2. It compares the variance ex-
plained by the top 20 principal components for the
embeddings constructed by first post-processing
the Glove-300D embeddings according by Algo-
rithm 1 (PPA) and then transforming the embed-



237

dings to 150 dimensions with PCA (labeled as
Post-Processing + PCA); against a further post-
processed version by again applying the Algo-
rithm 1 (PPA) of the reduced word embeddings
3. We observe that even though PCA has been
applied on post-processed embeddings which had
their dominant directions eliminated, the variance
in the reduced embeddings is still explained dis-
proportionately by a few top principal compo-
nents. The re-emergence of this geometrical be-
havior implies that further post-processing (Al-
gorithm 1 (PPA)) could improve the embeddings
further. Thus, for constructing lower-dimensional
word embeddings, we apply the post-processing
algorithm on either side of a PCA dimensionality
reduction of the word vectors in our algorithm.

Finally, from Figures 1 and 2, it is also ev-
ident that the extent to which the top principal
components explain the data in the case of the re-
duced embeddings is not as great as in the case of
the original 300 dimensional embeddings. Hence,
multiple levels of post-processing at different lev-
els of dimensionality will yield diminishing re-
turns as the influence of common dominant direc-
tions decreases on the word embeddings. Details
of reduction technique is given in Algorithm 2.

Algorithm 2: Dimensionality Reduction Algorithm
Data: Word Embedding Matrix X, New Dimension N,

Threshold Parameter D
Result: Word Embedding Matrix of Reduced

Dimension N: X
/* Apply Algorithm 1 (PPA) */

1 X = PPA(X, D) ;
/* Transform X using PCA */

2 X = PCA(X) ;
/* Apply Algorithm 1 (PPA) */

3 X = PPA(X, D) ;

3 Experimental Results

In this section, we evaluate our proposed algo-
rithm on standard word similarity benchmarks and
across a range of downstream tasks. For all our
experiments, we used pre-trained Glove embed-
dings of dimensions 300, 200 and 100, trained
on Wikipedia 2014 and Gigaword 5 corpus (400K
vocabulary) (Pennington et al., 2014) 4 and fast-
Text embeddings of 300 dimensions trained on
Wikipedia using the Skip-Gram model described
in (Bojanowski et al., 2017) (with 2.5M vocabu-
3 the total sum of explained variances over
the 150 principal components is equal to 1.0
4 nlp.stanford.edu/projects/glove/

lary) 5. The next subsection also presents results
using word2vec embeddings trained on Google
News dataset 6.

3.1 Word Similarity Benchmarks
We use the standard word similarity benchmarks
summarized in (Faruqui and Dyer, 2014) for eval-
uating the word vectors.

Dataset: The datasets (Faruqui and Dyer, 2014)
have word pairs (WP) that have been assigned sim-
ilarity rating by humans. While evaluating word
vectors, the similarity between the words is calcu-
lated by the cosine similarity of their vector repre-
sentations. Then, Spearman’s rank correlation co-
efficient (Rho × 100) between the ranks produced
by using the word vectors and the human rankings
is used for the evaluation. The reported metric in
our experiments is Rho × 100. Hence, for bet-
ter word similarity, the evaluation metric will be
higher.
Baselines: To evaluate the performance of our al-
gorithm, we compare it against different schemes
of combining the post-processing algorithm with
PCA 7 as following baselines:

• PCA: Transform word vectors using PCA.

• P+PCA: Apply PPA (Algorithm 1) and then
transform word vectors using PCA.

• PCA+P: Transform word vectors using PCA
and then apply PPA.

These baselines can also be regarded as ab-
lations on our algorithm and can shed light on
whether our intuitions in developing the algorithm
were correct. In the comparisons ahead, we rep-
resent our algorithm as Algo-N ,where N is the
reduced dimensionality of word embeddings. We
use the scikit-learn (Pedregosa et al., 2011) PCA
implementation.

Evaluation Results: First we evaluate our algo-
rithm on the same embeddings against the 3 base-
lines, we then evaluate our algorithm across word
embeddings of different dimensions and different
types. In all the experiments, the threshold param-
eter D in the PPA algorithm was set to 7 and the
new dimensionality after applying the dimension-
ality reduction algorithms, N was set to d

2 , where
5 github.com/facebookresearch/fastText/
6 https://code.google.com/archive/p/word2vec/ 7 Generic
non-linear dimensionality-reduction techniques performed
worse than baselines, presumably because they fail to
exploit the unique geometrical property of word embeddings
discussed in section 2.

nlp.stanford.edu/projects/glove/
github.com/facebookresearch/fastText/


238

Table 1: Performance (Rho × 100) of Algo. 2 on different embedding and dimensions across multiple datasets.
Bold represent the best value in each column.

Dataset M WS M VE WS RW Men RG MC Sim WS YP
Turk 353 Turk RB -353 Stan -TR -65 -30 Lex -353 -130
-771 SIM -287 -143 -ALL ford -3K -999 -Rel

Glove-300D 65.01 66.38 63.32 30.51 60.54 41.18 73.75 76.62 70.26 37.05 57.26 56.13
PCA-150D 52.47 52.69 56.56 28.52 46.52 27.46 63.35 71.71 70.03 27.21 41.82 36.72

P+PCA-150D 65.59 70.03 63.38 39.04 66.23 43.17 75.34 73.62 69.21 36.71 62.02 55.42
PCA-150D+P 63.86 70.87 64.62 40.14 66.85 40.79 75.37 74.27 72.35 33.81 60.5 50.2

Algo-150D 64.58 71.61 63.01 42.24 67.41 42.21 75.8 75.71 74.8 35.57 62.09 55.91
FastText-300D 66.89 78.12 67.93 39.73 73.69 48.66 76.37 79.74 81.23 38.03 68.21 53.33

Algo-150D 67.29 77.4 66.17 34.24 73.16 47.19 76.36 80.95 86.41 35.47 69.96 50.9
Glove-200D 62.12 62.91 61.99 28.45 57.42 38.95 71.01 71.26 66.56 34.03 54.48 52.21
Algo-100D 61.99 68.43 63.55 36.82 65.41 39.8 74.44 71.53 69.83 34.19 61.56 49.94
Glove-100D 58.05 60.35 61.93 30.23 52.9 36.64 68.09 69.07 62.71 29.75 49.55 45.43
Algo-50D 58.85 66.27 64.09 33.04 62.05 36.64 70.93 64.56 68.79 29.13 59.55 41.95

d is the original dimensionality. The value of pa-
rameter D was set to 7, because from Figure 1,
we observe that the top 7 components are dispro-
portionately contributing to the variance. Choos-
ing a lower D will not eliminate the disproportion-
ately dominant directions, while choosing a higher
D will eliminate useful discriminative information
from the word vectors. We choose N = d

2 as
we observed that going below half the dimensions
(N < d

2 ) significantly hurts performance of all
embeddings.

Results Across Different Baselines: Table 1
shows the results of different baselines on the 12
datasets. As expected from discussions in Sec-
tion 2, our algorithm achieves the best results on
6 out of 12 datasets when compared across all
other baselines. In particular, the 150-dimension
word embeddings constructed with our algorithm
performs better than the 300-dimension embed-
dings in 7 out of 12 datasets with an average im-
provement of 2.74% across the 12 datasets, thus
performing significantly better than PCA, PCA+P
baselines and beating P+PCA baseline in 8 out of
the 12 tasks.

Results Across Different Embeddings: Table 1
also shows the results of our algorithm on 300-
dimension fastText embeddings, 100-dimension
Glove embeddings and 200-dimension Glove em-
beddings. In fastText embeddings, the 150-
dimension word vectors constructed using our al-
gorithm gets better performance on 4 out of 12
datasets when compared to the 300-dimension em-
beddings. Overall, the 150-dimension word vec-
tors have a cumulative score of 765.5 against the
771.93 of the 300-dimension vectors. The per-
formance is similar to the 300-dimension em-
beddings with an average performance decline of

0.53% across the 12 datasets. With Glove em-
beddings of 100 and 200 dimensions, our algo-
rithm leads to significant gains, with average per-
formance improvements of 2.6% and 3% respec-
tively over the original embeddings and achieves
much better performance on 8 and 10 datasets re-
spectively. Another observation is the embeddings
generated by reducing Glove-200D to 100 dimen-
sions using our algorithm outperform the original
Glove-100D embeddings, with an average perfor-
mance improvement of 6% across all 12 datasets.
Hence, empirical results validate that our algo-
rithm is effective in constructing lower dimension
word embeddings, while maintaining similar or
better performance than the original embeddings.

3.2 Downstream Tasks

Embeddings obtained using the proposed dimen-
sionality reduction algorithm can be used as direct
features for downstream supervised tasks. We ex-
perimented with textual similarity tasks (27 data-
sets) and text classification tasks (9 data-sets) to
show the effectiveness of our algorithm. We used
the SentEval (Conneau and Kiela, 2018) toolkit for
all our experiments. In all cases, sentences were
represented as the mean of their words’ embed-
dings and in the classification tasks, logistic re-
gression was used as the classifier. Table 2 give
an overview of the downstream tasks we evaluated
our reduced representation.

Table 2: Downstream Task Overview

Task # of Datasets
Textual Classification Task 9
Sentence Similarity Task 5 (27)



239

Sentence Similarity Task: We further evaluate
our algorithm against the baselines on the Se-
mEval dataset (2012-2016) which involved 27 se-
mantic textual similarity (STS) tasks (2012 - 2016)
(Agirre et al., 2012), (Agirre et al., 2013), (Agirre
et al., 2014), (Agirre et al., 2015), and (Agirre
et al., 2016). The objectives of these tasks are to
predict the similarity between two sentences. We
used the average Spearmans rank correlation coef-
ficient (Rho × 100) between the predicted scores
and the ground-truth scores as the evaluation met-
ric. Table 4 show performance of all reduction
methods with varying reduction dimensions. Fig-
ure 3 - 8 compare performance of all reduction
methods with varying reduction dimensions (in
all these figures, X-axis represents the number of
dimensions of reduced embeddings while Y-axis
represents the score: Rho × 100). Similar to pre-
vious observations8 our reduction technique out-
performs all other baselines.

Textual Classification Task: We also performed
the experiments on several textual classifica-
tion tasks using SentEval (Conneau and Kiela,
2018) toolkit, which includes binary classification
(MR, CR, SUBJ, MPQA), multiclass classification
(SST-FG, TREC), entailment (SICK-E), seman-
tic relatedness (STS-B) and Paraphrase detection
(MRPC) tasks, across a range of domains (such as
sentiment, product reviews etc). We observe that
our embedding is effective on downstream clas-
sification tasks and can effectively reduce the in-
put size and the model parameters without distinc-
tively reducing the performance (<= 1.0%). Ta-
ble 3 compares the accuracy of reduced embed-
dings for multiple dimensions to the original em-
beddings on classification for several datasets. It
can be clearly seen that the reduced embeddings
at 200-D perform comparable to the orignal em-
beddings. The results confirm that 9 one can ef-
fectively reduce the input size and the model pa-
rameters without distinctively reducing the perfor-
mance (<= 1.0%).

3.3 Analysis and Discussion
The performance of reduced embeddings matches
that of unreduced embeddings in a range of word
8 We only report the results with Glove embedding, how-
ever we obtain similar observations with other embeddings
such as fasttText and word2vec. 9 We used the com-
monly used pre-trained 300 dimensional embeddings trained
on wikipedia for our experiments. Lower-dimensional pre–
trained embeddings trained on wikipedia were unavailable for
most embedding types.

Figure 3: STS-12

Figure 4: STS-13

Figure 5: STS-14



240

Table 3: Comparison of performance (in terms of test accuracy) on several classification datasets with original
embeddings and the reduced embeddings obtained using the proposed algorithm. Bold represents the reduced
embeddings performance with is within <= 1% of the original 300D dimensional embeddings.

Model MR CR SUBJ MPQA STS-B SST TREC SICK-E MRPC
-FG

Glove-300D 75.59 78.31 91.58 86.88 78.03 41 68 78.49 71.48
Algo-50D 66.52 70.49 85.6 77.5 68.92 35.48 50 73.25 71.01

Algo-100D 70.43 75.34 88.31 82.3 71.99 38.42 55 75.6 71.42
Algo-150D 73.45 77.43 89.86 85.59 76.33 40.18 59.6 76.76 71.54
Algo-200D 75.23 78.17 90.61 86.51 78.09 41.36 65.4 77.35 73.1

word2vec-300D 77.65 79.26 90.76 88.3 61.42 42.44 83 78.24 72.58
Algo-50D 71.84 72.79 88.1 83.53 54.89 39.37 64.6 73.03 71.07

Algo-100D 73.89 75.65 89.56 84.81 59.54 39.95 69 74.97 71.42
Algo-150D 75.88 77.06 90.01 86.13 61.42 41.27 73.4 76.42 71.19
Algo-200D 76.77 77.88 90.15 86.9 61.5 41.45 77.4 76.98 71.77

fastText-300D 78.23 80.4 92.52 87.67 68.33 45.02 85.8 79.2 73.04
Algo-50D 71.23 75.36 87.88 82.25 57.01 38.87 66.8 71.91 72.06

Algo-100D 73.94 77.64 89.88 84.34 62.67 40.86 72.8 74.79 73.16
Algo-150D 75.52 78.2 90.96 86.18 63.46 41.4 75.2 75.06 73.39
Algo-200D 77.18 79.76 91.6 86.64 64.32 43.48 77.4 76.76 72.93

Figure 6: STS-15

Figure 7: STS-16

Figure 8: STS Average

and sentence similarity tasks. Considering the fact
that semantic textual similarity (Majumder et al.,
2016) is an important task across several fields,
the resulting gains in efficiency, resulting from an
efficient embeddings reduction, can prove useful
to a range of applications. We obtain good per-
formance on the similarity tasks since the pro-
posed algorithm effectively exploits the geome-
try of the word embeddings (Mu and Viswanath,
2018) to reduce irrelevant noise in the word rep-
resentations. In the sentence classification tasks,
the reduced embeddings suffer from a slight per-
formance loss in terms of test accuracy, which we
suspect is due to the limitation of variance based
techniques themselves in the context of word em-
beddings, i.e. owing to the disproprortionate dis-
tribution of linguistic features across the princi-
pal components themselves. Therefore, the loss of



241

STS-12 200 150 100 50
PCA 51.32 50.39 48.68 46.15

ALGO 53.76 53.34 51.56 48.46
PCA-PPA 51.76 51.26 49.12 42.45
PPA-PCA 51.91 50.91 49.27 46.73

Glove 51.42 51.26 51.1 51.33
STS-13 200 150 100 50

PCA 46.51 44.16 40.8 35.47
ALGO 58.47 58.08 53.51 48.42

PCA-PPA 56.71 54.26 50.11 43.46
PPA-PCA 56.98 55.12 52.43 45.94

Glove 47.1 46.19 45.27 45.06
STS-14 200 150 100 50

PCA 53.33 51.66 49.86 44.95
ALGO 62.33 62.32 60.85 56.4

PCA-PPA 61.62 61.04 58.59 54.24
PPA-PCA 61.66 61.13 58.84 54.67

Glove 52.56 51.44 50.31 49.71
STS-15 200 150 100 50

PCA 57.11 55.82 53.81 49.91
ALGO 68.1 67.35 66.46 60.95

PCA-PPA 65.49 64.78 61.17 56.23
PPA-PCA 65.48 64.92 62.49 57.55

Glove 56.18 55.04 53.89 53.29
STS-16 200 150 100 50

PCA 54.32 52.86 49.16 44.56
ALGO 67.3 66.89 64.48 60.01

PCA-PPA 65.06 63.86 60.07 55.27
PPA-PCA 65.36 64.12 61.16 54.89

Glove 53.52 52.33 51.14 51.8
STS Average 200 150 100 50

PCA 52.52 50.98 48.29 35.31
ALGO 61.99 61.6 59.37 54.85

PCA-PPA 60.13 59.04 55.81 50.33
PPA-PCA 60.28 59.24 56.84 51.96

Glove 52.16 51.25 50.34 50.24

Table 4: Performance in terms of (Rho × 100) be-
tween the predicted scores and the ground-truth scores
for STS tasks.

information which is decorrelated with principal
components (or the amount of variance explained)
leads to decline in performance, since those prop-
erties of the embedding space are lost upon dimen-
sionality reduction.

Another interesting analysis is to compare the
performance of the reduced embeddings against
state-of-the-art neural techniques on each of the
datasets in Tables 3 and 4. In particular, the per-
formance of the reduced embeddings of 200 di-

mensions (using Glove) obtained using the pro-
posed algorithm suffers from an average drop of
4.1% in Spearman’s Rank correlation scores (x
100) across the five sentence similarity datasets in
Table 4, when compared against 4096 (20X more)
dimensional sentence encoding obtained using In-
ferSent 10 (Conneau et al., 2017). In the 9 sen-
tence classification datasets, described in Table 3,
the 200 dimensional reduced embeddings lead to
an average drop of 7.3% in accuracy scores when
compared against the 4096 dimensional Infersent
encodings. If we exclude TREC (on which all pre-
trained embeddings perform poorly), then the 200
dimensional embeddings lead to an average drop
of 5.4% when compared against the 4096 dimen-
sional InferSent encodings, across the remaining 8
sentence classification tasks in Table 3.

4 Comparison with Related Work

Most of the existing work on word embedding
size reduction focuses on quantization (e.g. (Lam,
2018), which requires retraining with a different
training objective), compression or limited preci-
sion training. In particular, (Ling et al., 2016)
tries to reduce the embeddings’ memory footprint
by using limited precision representation during
word embedding use and training while (Andrews,
2016) tries to compress word embeddings using
different compression algorithms and (Shu and
Nakayama, 2017) uses compositional coding ap-
proach for constructing embeddings with fewer
parameters. There hasn’t been much study on di-
mensionality reduction for word embeddings, with
a general consensus on the use of publicly re-
leased pre-trained word embeddings of 300 di-
mensions, trained on large corpora (Yin and Shen,
2018). A recent work (Yin and Shen, 2018) has
addressed the issue of exploring optimal dimen-
sionality by changing the training objective, in-
stead of dimensionality reduction. However, in
this paper we mainly focus on the dimensionality
reduction of the widely used pre-trained word em-
beddings (word2vec, Glove, fastText) and show
that we can half the standard dimensionality by
effectively exploiting the geometry of the embed-
ding space. Therefore, our work is the first to
extensively explore directly reducing the dimen-
sionality of existing/pre-trained word embeddings,
making it both different and complementary to the
existing methods.
10 https://github.com/facebookresearch/InferSent



242

5 Conclusions and Future Work

Empirical results show that our method is effec-
tive in constructing lower dimension word embed-
dings, having similar or (more often) better perfor-
mance than the original embeddings. This could
allow the use of word embeddings in memory-
constrained environments. In future, an interest-
ing area to explore would be the application of
compressed and limited precision representations
on top of dimensionality reduction to further re-
duce the size of the word embeddings. Deriv-
ing an algorithm to choose D, N and the lev-
els of post-processing automatically, while opti-
mizing for performance could also make the di-
mensionality reduction pipeline simpler for down-
stream applications. Further, owing to the growing
popularity of contextualized embeddings such as
ElMo (Peters et al., 2018) and BERT (Devlin et al.,
2018), it would be interesting to explore whether
the geometric intuitions used for developing the
proposed algorithm for word embedding dimen-
sionality reduction could be leveraged for contex-
tualized embeddings as well.

References
Eneko Agirre, Carmen Banea, Claire Cardie, Daniel

Cer, Mona Diab, Aitor Gonzalez-Agirre, Weiwei
Guo, Inigo Lopez-Gazpio, Montse Maritxalar, Rada
Mihalcea, et al. 2015. Semeval-2015 task 2: Seman-
tic textual similarity, english, spanish and pilot on
interpretability. In (SemEval 2015), pages 252–263.

Eneko Agirre, Carmen Banea, Claire Cardie, Daniel
Cer, Mona Diab, Aitor Gonzalez-Agirre, Weiwei
Guo, Rada Mihalcea, German Rigau, and Janyce
Wiebe. 2014. Semeval-2014 task 10: Multilin-
gual semantic textual similarity. In (SemEval 2014),
pages 81–91.

Eneko Agirre, Carmen Banea, Daniel Cer, Mona Diab,
Aitor Gonzalez-Agirre, Rada Mihalcea, German
Rigau, and Janyce Wiebe. 2016. Semeval-2016
task 1: Semantic textual similarity, monolingual and
cross-lingual evaluation. In (SemEval-2016), pages
497–511.

Eneko Agirre, Daniel Cer, Mona Diab, Aitor Gonzalez-
Agirre, and Weiwei Guo. 2013. * sem 2013 shared
task: Semantic textual similarity. In (SemEval
2013), volume 1, pages 32–43.

Eneko Agirre, Mona Diab, Daniel Cer, and Aitor
Gonzalez-Agirre. 2012. Semeval-2012 task 6: A
pilot on semantic textual similarity. In (SemEval
2012), pages 385–393. Association for Computa-
tional Linguistics.

Martin Andrews. 2016. Compressing word embed-
dings. In International Conference on Neural In-
formation Processing, pages 413–422. Springer.

Piotr Bojanowski, Edouard Grave, Armand Joulin, and
Tomas Mikolov. 2017. Enriching word vectors with
subword information. Transactions of the Associa-
tion of Computational Linguistics, 5(1):135–146.

Tolga Bolukbasi, Kai-Wei Chang, James Y Zou,
Venkatesh Saligrama, and Adam T Kalai. 2016.
Man is to computer programmer as woman is to
homemaker? debiasing word embeddings. In Ad-
vances in Neural Information Processing Systems,
pages 4349–4357.

Alexis Conneau and Douwe Kiela. 2018. Senteval: An
evaluation toolkit for universal sentence representa-
tions. arXiv preprint arXiv:1803.05449.

Alexis Conneau, Douwe Kiela, Holger Schwenk, Loic
Barrault, and Antoine Bordes. 2017. Supervised
learning of universal sentence representations from
natural language inference data. arXiv preprint
arXiv:1705.02364.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

Manaal Faruqui, Jesse Dodge, Sujay Kumar Jauhar,
Chris Dyer, Eduard Hovy, and Noah A Smith. 2015.
Retrofitting word vectors to semantic lexicons. In
NAACL-HLT 2015, pages 1606–1615.

Manaal Faruqui and Chris Dyer. 2014. Improving vec-
tor space word representations using multilingual
correlation. In Proceedings of the 14th Conference
of the European Chapter of the Association for Com-
putational Linguistics, pages 462–471.

Maximilian Lam. 2018. Word2bits-quantized word
vectors. arXiv preprint arXiv:1803.05651.

Shaoshi Ling, Yangqiu Song, and Dan Roth. 2016.
Word embeddings with limited memory. In Pro-
ceedings of the 54th Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 2: Short
Papers), volume 2, pages 387–392.

Goutam Majumder, Partha Pakray, Alexander Gelbukh,
and David Pinto. 2016. Semantic textual similarity
methods, tools, and applications: A survey. Com-
putación y Sistemas, 20(4):647–665.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013. Distributed representa-
tions of words and phrases and their compositional-
ity. In Advances in neural information processing
systems, pages 3111–3119.

George A Miller. 1995. Wordnet: a lexical database for
english. Communications of the ACM, 38(11):39–
41.



243

Nikola Mrkšic, Diarmuid OSéaghdha, Blaise Thom-
son, Milica Gašic, Lina Rojas-Barahona, Pei-Hao
Su, David Vandyke, Tsung-Hsien Wen, and Steve
Young. 2016. Counter-fitting word vectors to lin-
guistic constraints. In Proceedings of NAACL-HLT,
pages 142–148.

Jiaqi Mu and Pramod Viswanath. 2018. All-but-the-
top: Simple and effective postprocessing for word
representations. In International Conference on
Learning Representations.

Kim Anh Nguyen, Sabine Schulte im Walde, and
Ngoc Thang Vu. 2016. Neural-based noise filtering
from word embeddings. In Proceedings of COLING
2016, the 26th International Conference on Compu-
tational Linguistics: Technical Papers, pages 2699–
2707.

Fabian Pedregosa, Gaël Varoquaux, Alexandre Gram-
fort, Vincent Michel, Bertrand Thirion, Olivier
Grisel, Mathieu Blondel, Peter Prettenhofer, Ron
Weiss, Vincent Dubourg, et al. 2011. Scikit-learn:
Machine learning in python. Journal of machine
learning research, 12(Oct):2825–2830.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. Glove: Global vectors for word
representation. In Proceedings of the 2014 confer-
ence on empirical methods in natural language pro-
cessing (EMNLP), pages 1532–1543.

Matthew E Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word rep-
resentations. arXiv preprint arXiv:1802.05365.

Jonathon Shlens. 2014. A tutorial on principal compo-
nent analysis. arXiv preprint arXiv:1404.1100.

Raphael Shu and Hideki Nakayama. 2017. Com-
pressing word embeddings via deep compositional
code learning. In International Conference on Neu-
ral Information Processing, page arXiv:1711.01068.
arXiv preprint.

Zi Yin and Yuanyuan Shen. 2018. On the dimension-
ality of word embedding. In Advances in Neural In-
formation Processing Systems, pages 895–906.

https://openreview.net/forum?id=HkuGJ3kCb
https://openreview.net/forum?id=HkuGJ3kCb
https://openreview.net/forum?id=HkuGJ3kCb

