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Abstract
We apply convolutional neural networks to the
task of shallow morpheme segmentation us-
ing low-resource datasets for 5 different lan-
guages. We show that both in fully supervised
and semi-supervised settings our model beats
previous state-of-the-art approaches. We argue
that convolutional neural networks reflect local
nature of morpheme segmentation better than
other neural approaches.

Morpheme segmentation consists in dividing
a given word to meaningful individual units,
morphs, which are surface realizations of under-
lying abstract morphemes. For example, a word
unexpectedly could be segmented as un-expect-ed-
ly, and the morpheme -ed may be also realized as
-t like in learn-t. The generated segmentation may
be used as input representation for machine trans-
lation (Mager et al., 2018) or morphological tag-
ging (Matteson et al., 2018) or for automatic anno-
tation of digital linguistic resources. Briefly, infor-
mation about internal morpheme structure makes
the data less sparse since an out-of-vocabulary
word may share its morphemes with other words
already present in the training set. This helps to re-
cover semantic and morphological properties of an
unknown word, which otherwise will be unacces-
sible. The task of morpheme segmentation is espe-
cially important for agglutinative languages, such
as Finnish or Turkish, where a word is formed by
attaching a sequence of affixes to its stem. This af-
fixes reflect both derivational and inflectional pro-
cesses. A common example from Turkish is ev-
lerinizden ‘from your houses’, which is decom-
posed as:

ev ler iniz den
house +PL your+PL +ABL

The task of morpheme segmentation is even
harder for polysynthetic languages: while in ag-
glutinative languages morphemes are usually in

one-to-one correspondence with morphological
features, for polysynthetic languages this match-
ing is more complex with no clear bound between
compound words and sentences. For example, in
Chuckchi language the whole phrase ‘The house
broke’ can be expressed as

Ga ra semat ìen
+PF house break +PF+3SG

Consequently, polysynthetic language demon-
strate extremely high morpheme-to-word ratio,
which leads to high type-token ratio, which makes
their automatic processing harder. Even further,
this processing is performed in low-resource set-
ting since most polysynthetic languages have only
few hundreds or thousands of speakers and con-
sequently tend to lack annotated digital resources.
Hence, the algorithms initially designed for less
complex languages with more data (mostly for
English) may change significantly their properties
when applied to low-resource polysynthetic data.
That is especially the case for neural methods,
which are (often erroneously1) believed to be more
data-hungry than earlier approaches.

However, in 2019 it is insufficient to just say
“neural networks” in case of NLP, since there
are various neural networks whose properties may
differ significantly. Leaving aside the immense
diversity of network architectures, they can be
separated in three main categories: the convo-
lutional ones (CNNs), where convolutional win-
dows capture local regularities; the recurrent ones,
where GRUs and LSTMs memorize potentially
unbounded context; and sequence-to-sequence
(seq2seq) models, which perform string transduc-
tions using encoder-decoder approach. Among the
three, convolutional neural networks are the least

1see (Zeman et al., 2018) and (Cotterell et al., 2017) that
show that both in morphological tagging and automatic word
inflection neural networks are clearly superior, though their
architecture should be adapted for the lack of data.



155

explored, however, we argue that they are more ef-
fective for surface morpheme segmentation.

In our work we support two claims: 1) convo-
lutional networks improve seq2seq approaches for
neural morpheme segmentation 2) language model
trained on unlabeled data may be useful to further
improve their performance. We apply our mod-
els to 4 indigenous languages, spoken in Mexico:
Mexicanero, Nahuatl, Wixarika and Yorem Nokki,
since the scores for them are available in recent
studies Kann et al. (2018). We also test our ap-
proach on North Sámi data from Grönroos et al.
(2019).

1 Related work.

Automatic morpheme segmentation was exten-
sively studied in pre-neural years of modern NLP.
The investigations had two principal directions:
several researchers tried to implement the ap-
proach of Harris (1970) and Andreev (1965)
to find a quantitative counterpart of morpheme
boundaries in terms of letter statistics. These
methods were mainly unsupervised and include
the well-known Morfessor system: Creutz and
Lagus (2002) and its successors Creutz and La-
gus (2007) and (Virpioja et al., 2013) (the latter
uses semi-supervised learning). There was also
an extensive work in the field of adaptor gram-
mars.2(Johnson et al., 2007; Sirts and Goldwa-
ter, 2013; Eskander et al., 2018) However, both
these approaches are generative by their nature and
are based on a probabilistic model of word struc-
ture. The most successful pure machine learn-
ing method was CRF-based model designed in
Ruokolainen et al. (2013, 2014), which still re-
mains state-of-the-art on several morpheme seg-
mentation datasets.

There were several attempts to apply neural net-
works for morpheme segmentation and closely
related problem of word segmentation, which is
enevitable for Chinese, Japanese and other lan-
guages with similar graphics. The first one was
probably Wang et al. (2016), which used window
LSTMs, latter works include Kann et al. (2016)
and Ruzsics and Samardzic (2017) which applied
the sequence-to-sequence approach. Our study is
conducted on the material from Kann et al. (2018),
where the sequence-to-sequence model with atten-

2Roughly speaking, an adaptor grammar tries to learn
from data a probabilistic context-sensitive grammar for
morph sequences.

p r e t r a i n s
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Figure 1: Morpheme segmentation of word pre-train-s
expressed with BMES scheme.

tion was applied to the material of 4 indigenous
North-American languages, both is supervised and
semi-supervised manner. All these studies solve
morpheme segmentation as sequence transduc-
tion. In contrast, Shao (2017) treated morpheme
and word segmentation as sequence labeling task
which can be solved with BiRNN-CRF network.

The main inspiration for our work is Sorokin
and Kravtsova (2018), who demonstrated, that at
least for Russian (a fusional language with lots
of data available) convolutional neural networks
significantly outperform all other approaches, also
being the less data-consuming (see also (Bol-
shakova and Sapin, 2019) for detailed compari-
son). The recent study of Grönroos et al. (2019)
modified the decoder in seq2seq architecture to
make its independent of the previous timesteps,
which makes their model essentially an LSTM-
based sequence tagger.

2 Model architecture.

Basing on the ideas from Sorokin and Kravtsova
(2018), we decide to refrain from seq2seq ap-
proaches and reduce the morpheme segmentation
task to sequence labeling problem. We solve
this problem using convolutional neural networks.
Each segmentation in the training set is encoded
using BMES-scheme as illustrated on Figure 1.
Here, S denotes single-letter morpheme; in case
the morph is at least two letters long B stands for
morpheme beginning, E for its end and M for all
interior letters. Thus, the task of the algorithm
is to predict the sequence of labels given the se-
quence of letters (probably, enriched with special
BEGIN and END symbols). Due to the local nature
of CNNs, the model cannot see any symbols ex-
cept those surrounding the current one. However,
the width of this local window may be up to 9 let-
ters,3 which makes the model powerful enough to
capture all relevant local context.

2.1 Basic model.
Our basic architecture closely follows the model
of Sorokin and Kravtsova (2018). The input of

3In case of two layers with convolution width 5.
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the algorithm is a sequence of 0/1-encodings,
which are transformed to symbol embeddings by
an embedding layer. These embeddings are passed
through several stacked convolutional layers of
different widths, as, for example, in Kim et al.
(2016), the final outputs of all layers are concate-
nated. For better convergence we insert batch nor-
malization and dropout layers between consecu-
tive convoluions. The obtained context encodings
are passed through a dense layer with softmax ac-
tivation which generates a probability distribution
over possible tags. Since not every sequence of
tags corresponds to a valid morpheme segmenta-
tion, we find the most probable segmentation us-
ing Viterbi algorithm.

2.2 Multitask training and one-side
convolutions.

Kann et al. (2018) demonstrates that pretraining
on auxiliary task of autoencoding, which is the
restoration of original input sequence, can be ben-
eficial for morpheme segmentation. Autoencod-
ing is an appealing complementary task since it
does not require additional labeled data. It is es-
pecially suitable for encoder-decoder architecture
since the memorization of input sequence is the
natural job of the encoder. However, this objec-
tive does not fit in our paradigm since we try to
avoid global architectures, such as recurrent ones
and especially seq2seq, in favor of the local ones.
Following modern trends in NLP, we select lan-
guage modelling as an auxiliary task, predicting
not only the morpheme boundary of the current
symbol but also the following symbol. However,
this approach fails with basic CNN architecture
since the convolutional window observes the next
symbol and can easily memorize it.

Therefore we slightly modify our model: in-
stead of using a symmetric window around cur-
rent symbol, we have two groups of convolutions:
the left and right ones. The left observes the cur-
rent symbols and also some symbols preceding it,
while the right does not see preceding symbols,
but only the current one and the ones following it.
We again use windows of different size and con-
catenate their outputs, thus obtaining for each po-
sition t two context embeddings ~ht (left) and

←−
h t

(right). They are used to obtain the required dis-
tribution pt over morphological labels as well as
two auxiliary distribution qt−1 and qt+1 over pre-
ceding and following symbols, respectively:

pt = softmaxmorph(U [~ht,
←−
h t]),

qt−1 = softmaxsymb(Vl
←−
h t),

qt+1 = softmaxsymb(Vr
~ht).

Note that this architecture with “unidirectional”
convolutions can be used without auxiliary objec-
tive as well.

3 Data.

We evaluate our model on two datasets: the dataset
of 4 indigenous North American languages from
Kann et al. (2018) and the North Sami dataset
from Grönroos et al. (2019). In this section
we briefly characterize the languages, for more
complete description we refer the reader to the
cited papers or to linguistic resources such as
WALS(Haspelmath et al., 2005).

1. The 4 mexican languages: Mexicanero,
Nahuatl, Wixarika and Yorem Nokki all be-
long to Yuta-Aztecan family. They are mostly
agglutinative and have extremely complex
verb morphology. Some stems and even af-
fixes in case of Mexicanero are Spanish bor-
rowings.

2. North Sámi is a Finno-Ugric language spo-
ken in the North of Finland, Sweden, Norway
and Russia. It is morphologically complex,
featuring derivational, inflectional and com-
pounding processes. It also has regular but
complicated morphonological variation.

The quantitative characteristics of the datasets
used in our study are given in Table 1. For mexican
languages we used the same data as in Kann et al.
(2018). The number of unlabeled words used for
semi-supervised models differ because of different
preprocessing.4

4 Experiments

4.1 Model parameters.
We use symbol embeddings of size 32. The basic
model contains two parallel convolutional groups

4It is not an obstacle for fair comparison since the main
goal of our paper is to compare supervised versions of the
model.

5As in Kann et al. (2018), the same list of words is used
for Mexicanero and Yorem Nokki due to their close related-
ness.

6Actual word lists are larger but we restrict it to random
100000 words to speed up training.
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Language Train Dev Test Unlabeled
Mexicanero 427 106 355 9785

Nahuatl 540 134 449 36149
Wixarika 665 176 553 13092
Yorem Nokki 511 127 425 9785

North Sámi 1044 200 796 1000006

Table 1: Size of the datasets used for evaluation.

of width 5 and 7, each group having 2 layers and
96 neurons on each of the layers. The unidirec-
tional convolutional model has 64 filters for each
window width from 1 to 4 and 2 convolutional lay-
ers as well. Dropout rate was 0.2.

Neural networks are implemented using Keras
framework with TensorFlow backend. They are
trained with Adam optimizer for at most 50
epochs, training is stopped when the accuracy on
development set do not improve for 10 epochs. In
case of multitask training the language models are
trained for 5 epochs jointly with the main model,
batches for different tasks are sampled in random
order. The size of mini-batch is 32 for all the runs.

4.2 Results.

Our first evaluation scores the basic model on
datasets from Kann et al. (2018) and Grönroos
et al. (2019). We compare our with their seq2seq
model, the CRF model of Ruokolainen et al.
(2013) and the semi-supervised neural model (the
one of Kann et al. (2018) using autoencoding
and the one of Grönroos et al. (2019) trained
with Harris features). The supervised CRF model
is retrained by ourselves, while other scores ex-
cept our own are taken from the original papers.
We report two metrics, micro-averaged (per mor-
pheme boundary) boundary F17 and word accu-
racy, which is the fraction of correctly segmented
words. All our scores are averaged over 5 inde-
pendent runs with different random initialization,
the standard error is also reported.

Analyzing the results in Table 2, we see that
our basic model always outperforms sequence-
to-sequence model by a substantial margin, also
being ahead of conditional random fields on 4
datasets of 5. That answers our first question:
convolutional neural networks seem to work bet-

7The work of Kann et al. (2018) reports macro-averaged
one, therefore we do not present their boundary F1. We think
the micro-averaged version better reflects algorithm proper-
ties since the impact of words with larger number of mor-
phemes is higher.

ter than other approaches supervised morpheme
segmentation even in extremely low-resource set-
ting. In Table 3 we present the scores for our uni-
directional model both in its supervised version
and in the semi-supervised one, which is trained
using multitask learning. We observe that unidi-
rectional convolutions work better than the tradi-
tional ones and the multitask training imporves the
scores slightly more further.

We conclude that on the mentioned datasets our
model outperforms other tested approaches, set-
ting a new state-of-the-art score for them. We also
note that one-side CNNs are better than the basic
ones, though they have 4 times more parameters.
However, basic CNNs of comparable size do not
perform better than the smaller ones due to severe
overfitting. Gains from semi-supervised training
are the more substantial the more data we have,
thus the effect on Mexicanero and Yorem Nokki
with less than 1000 unlabeled words is the most
modest.

5 Conclusion and future work.

We demonstrate that convolutional neural net-
works outperform other segmentation models in
low-resource setting. We argue that this is due to
their ability to capture local dependencies, while
morpheme segmentation is essentially local by its
nature. A similar observation on sentence-level
tasks was made in Yin et al. (2017) which demon-
strated that CNNs perform better in tasks like an-
swer selection that do not envolve long-distance
relations. However, the claims made on 6 lan-
guages (5 of the present article and Russian in
Sorokin and Kravtsova (2018) and Bolshakova
and Sapin (2019)), 4 of which belong to the same
family certainly need further proof on other lan-
guages and datasets. However, we note that CNNs
are (arguably) more effective not only in terms of
performance quality, but also in terms of training
complexity.

Nonetheless promising, our results still leave a
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Word accuracy Boundary F1
Language CNN(our) seq2seq CRF semi-sup CNN(our) seq2seq CRF semi-sup
Mexicanero 79,4 (0,4) 75,0 78,3 80,5 89,7(0,3) NA 89,2 NA
Nahuatl 59,9 (1,0) 55,9 64,4 60,3 77,4(1,0) NA 80,4 NA
Wixarika 61,4 (0,6) 57,5 58,6 61,9 88,2(0,5) NA 87,8 NA
Yorem Nokki 69,2(0,7) 65,7 65,9 71,0 82,6(0,7) NA 80,3 NA
North Sámi 71,6(0,8) 69,1 70,9 71,1 80,8(0,9) NA 80,0 NA

Table 2: Results of our basic CNN segmentation model in comparison with sequence-to-sequence model (seq2seq),
conditional random fields (CRF) and semi-supervised extension of seq2seq (semi-sup). Seq2seq and semi-
supervised results for Yuto-Aztecan languages are from Kann et al. (2018), for North Sámi from Grönroos et al.
(2019).

Convolutional (our) Other
Language basic one-side one-side+LM best semi-sup best
Mexicanero 79,4(0,4) 80,6(1,3) 80,1(1,6) 80,5 80,5
Nahuatl 59,9(1,0) 62,8(0,6) 64,4(1,1) 60,3 64,4
Wixarika 61,4(0,6) 62,9(1,5) 64,8(1,1) 61,9 61,0
Yorem Nokki 69,2(0,7) 70,5(0,9) 71,7(0,9) 71,0 71,0
North Sámi 71,6(0,8) 72,0(0,5) 72,5(0,3) 71,1 71,1

Table 3: Results of our extended CNN models in comparison with the basic one and state-of-the-art. Results for
Yuto-Aztecan languages are from Kann et al. (2018), for North Sámi from Grönroos et al. (2019).

huge room for improvement. First of all, the ab-
solute numbers are quite low, only less than two
thirds of the words are segmented correctly. The
first thing to study is the learning curve of neu-
ral segmentation algorithm: it is not so important
that a model achieves 60% accuracy on 1000 an-
notated words, more important is whether it may
reach 80% given another thousand of training ex-
amples. Another open direction is the incorpo-
ration of linguistic features, such as Harris-like
distributional measures used in Ruokolainen et al.
(2014) or intra-segment interactions regulated by
adaptor grammars.

Sometimes morpheme segmentation also re-
quires normalization of morphemes (e.g studied
7→ study + ed). This task is not that straightfor-
ward to address with CNNs since the problem is
no more reduced to sequence labeling. This is ex-
actly the case for Semitic languages, where mor-
pheme segmentation often depends not only from
the word itself, but from wider context (Zeldes,
2018). Since neural networks can work with input
vectors of any origin, CNN models have the po-
tential for these tasks also and we hope to address
some of these questions in future research.
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Géraldine Walther, Ekaterina Vylomova, Patrick
Xia, Manaal Faruqui, Sandra Kübler, David
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