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Introduction

Natural Language Processing (NLP) is pervasive in the technologies people use to curate, consume and
create information on a daily basis. Moreover, it is increasingly found in decision-support systems in
finance and healthcare, where it can have a powerful impact on peoples’ lives and society as a whole.
Unfortunately, far from the objective and calculating algorithms of popular perception, machine learned
models for NLP can include subtle biases drawn from the data used to build them and the builders
themselves. Gender-based stereotypes and discrimination are problems that human societies have long
struggled with, and it is the community’s responsibility to ensure fair and ethical progress. The increasing
volume of work in the last few years is a strong signal that researchers and engineers in academia and
industry do care about fairer NLP.

This volume contains the proceedings of the First Workshop on Gender Bias in Natural Language
Processing held in conjunction with the 57th Annual Meeting of the Association for Computational
Linguistics in Florence. The workshop received 19 submissions of technical papers (8 long papers,
11 short papers), of which 13 were accepted (5 long, 8 short), for an acceptance rate of 68%. We
have to thank the high-quality selection of research works thanks to the Program Committee members
which provided extremely valuable reviews. The accepted papers cover a diverse range of topics related
to the analysis, measurement and mitigation of gender bias in NLP. Many of the papers investigate
how automatically learned vector space representations of words are affected by gender bias, but the
programme also features papers on NLP applications such as machine translation, sentiment analysis and
text classification. In addition to the technical papers, the workshop also included a very popular shared
task on gender-fair coreference resolution, which attracted submissions from 263 participants. Many of
them achieved excellent performance. Of the 11 submitted system description papers, 10 were accepted
for publication. We are very grateful to Google for providing a generous prize pool of 25,000 USD for
the shared task, and to the Kaggle team for their great help with the organisation of the shared task.

Finally, the workshop counts on two impressive keynote speakers: Melvin Johnson and Pascale Fung,
who will provide insides in gender-specific translations in the Google system and the gender roles in the
artificial intelligence world, respectively.

We are very excited about the interest that this workshop has generated and we look forward to a lively
discussion about how to tackle bias problems in NLP applications when we meet in Florence!

June 2019

Marta R. Costa-jussà
Christian Hardmeier
Will Radford
Kellie Webster
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Abstract

The 1st ACL workshop on Gender Bias in Nat-
ural Language Processing included a shared
task on gendered ambiguous pronoun (GAP)
resolution. This task was based on the coref-
erence challenge defined in Webster et al.
(2018), designed to benchmark the ability of
systems to resolve pronouns in real-world con-
texts in a gender-fair way. 263 teams com-
peted via a Kaggle competition, with the win-
ning system achieving logloss of 0.13667 and
near gender parity. We review the approaches
of eleven systems with accepted description
papers, noting their effective use of BERT (De-
vlin et al., 2019), both via fine-tuning and for
feature extraction, as well as ensembling.

1 Introduction

Gender bias is one of the typologies of social bias
(e.g. race, politics) that is alarming the Natural
Language Processing (NLP) community. An il-
lustration of the problematic behaviour are the re-
currently appearing occupational stereotypes that
homemaker is to woman as programmer is to man
(Bolukbasi et al., 2016). Recent studies have
aimed to detect, analyse and mitigate gender bias
in different NLP tools and applications including
word embeddings (Bolukbasi et al., 2016; Go-
nen and Goldberg, 2019), coreference resolution
(Rudinger et al., 2018; Zhao et al., 2018), senti-
ment analysis (Park et al., 2018; Bhaskaran and
Bhallamudi, 2019) and machine translation (Van-
massenhove et al., 2018; Font and Costa-jussà,
2019). One of the main sources of gender bias
is believed to be societal artefacts in the data from
which our algorithms learn. To address this, many
have created gender-labelled and gender-balanced
datasets (Rudinger et al., 2018; Zhao et al., 2018;
Vanmassenhove et al., 2018).

We present the results of a shared task eval-
uation conducted at the 1st Workshop on Gen-
der Bias in Natural Language Processing at the

ACL 2019 conference. The shared task is based
on the gender-balanced GAP coreference dataset
(Webster et al., 2018) and allows us to test the
hypothesis that fair datasets would be enough to
solve the gender bias challenge in NLP.

The strong results of submitted systems tend
to support this hypothesis and gives the com-
munity a great starting point for mitigating bias
in models. Indeed, the enthusiastic participation
we saw for this shared task has yielded systems
which achieve near-human accuracy while achiev-
ing near gender-parity at 0.99, measured by the ra-
tio between F1 scores on feminine and masculine
examples. We are excited for future work extend-
ing this success to more languages, domains, and
tasks. However, we especially note future work
in algorithms which achieve fair outcomes given
biased data, given the wealth of information from
existing unbalanced datasets.

2 Task

The goal of our shared task was to encourage re-
search in gender-fair models for NLP by providing
a well-defined task that is known to be sensitive to
gender bias and an evaluation procedure address-
ing this issue. We chose the GAP resolution task
(Webster et al., 2018), which measures the abil-
ity of systems to resolve gendered pronoun ref-
erence from real-world contexts in a gender-fair
way. Specifically, GAP asks systems to resolve
a target personal pronoun to one of two names,
or neither name. For instance, a perfect resolver
would resolve that she refers to Fujisawa and not
to Mari Motohashi in the Wikipedia excerpt:

(1) In May, Fujisawa joined Mari Motohashi’s rink as
the team’s skip, moving back from Karuizawa to Ki-
tami where she had spent her junior days.

The original GAP challenge encourages fairness by
balancing its datasets by the gender of the pro-
noun, as well as using disaggregated evaluation
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with separate scores for masculine and feminine
examples. To simplify evaluation, we did not dis-
aggregate evaluation for this shared task, but in-
stead encouraged fairness by not releasing the bal-
ance of masculine to feminine examples in the fi-
nal evaluation data.1

The competition was run on Kaggle2, a well-
known platform for competitive data science and
machine learning projects with an active commu-
nity of participants and support.

2.1 Setting
The original GAP challenge defines four evalua-
tion settings, depending on whether the candidate
systems have to identify potential antecedents or
are given a fixed choice of antecedent candidates,
and whether or not they have access to the en-
tire Wikipedia page from which the example was
extracted. Our task was run in gold-two-mention
with page-context. This means that, for our task,
systems had access to the two names being evalu-
ated at inference time, so that the systems were not
required to do mention detection and full coref-
erence resolution. For each example, the sys-
tems had to consider whether the target pronoun
was coreferent with the first, the second or nei-
ther of the two given antecedent candidates. A
valid submission consisted of a probability esti-
mate for each of these three cases. The systems
were also given the source URL for the text snip-
pet (a Wikipedia page), enabling unlimited access
to context. This minimized the chance that sys-
tems could cheat, intentionally or inadvertently, by
accessing information outside the task setting.

2.2 Data
To ensure blind evaluation, we sourced 760 new
annotated examples for official evaluation3 using
the same techniques from the original GAP work
(Webster et al., 2018), with three changes. To en-
sure the highest quality of annotations for this task,
we (i) only accepted examples on which the three
raters provided unanimous judgement, (ii) added
heuristics to remove cases with errors in entity
span labeling, and (iii) did an additional, manual
round to remove assorted errors. The final set of

1We used 1:1 masculine to feminine examples.
2https://www.kaggle.com/c/

gendered-pronoun-resolution
3Official evaluation ran in Stage 2, following an

initial, development stage evaluated on the orig-
inal GAP data, available at https://github.com/
google-research-datasets/gap-coreference

logloss F1 Bias
Attree (2019) 0.13667 96.2 0.99
Wang (2019) 0.17289 95.7 0.99
Abzaliev (2019) 0.18397 95.4 0.99

Table 1: Performance of prize-winning submissions on
the blind Kaggle evaluation set. logloss was the official
task metric, and correlates well with F1 score, which
was used in the original GAP work.

760 clean examples was dispersed in a larger set
of 11,599 unlabeled examples to produce a set of
12,359 examples that competing systems had to
rate. This augmentation was to discourage sub-
missions based on manual labeling.

We note many competing systems used the orig-
inal GAP evaluation data4 as training data for this
task, given that the two have the same format, base
domain (Wikipedia), and task definition.

2.3 Evaluation

The original GAP work defined two official evalu-
ation metrics, F1 score and Bias, the ratio between
the F1 scores on feminine and masculine exam-
ples. Bias takes a value of 1 at gender parity; a
value below 1 indicates that masculine entities are
resolved more accurately than feminine ones.

In contrast, the official evaluation metric of the
competition was the logloss of the submitted prob-
ability estimates:

logloss =− 1
N

N

∑
i=1

M

∑
j=1

yi j log pi j, (1)

where N is the number of samples in the test set,
M = 3 is the number of classes to be predicted, yi j

is 1 if observation i belongs to class j according
to the gold-standard annotations and 0 otherwise,
and pi j is the probability estimated by the system
that observation i belongs to class j.

Table 1 tabulates results based on the original
and shared task metrics. Logloss and GAP F1 both
place the winners in the same order.

2.4 Prizes

A total prize pool of USD 25,000 was provided
by Google. The pool was broken down into prizes
of USD 12,000, 8,000, and 5,000 for the top three
systems, respectively. This attracted submissions

4https://github.com/
google-research-datasets/gap-coreference
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from 263 teams, covering a wide diversity of geo-
graphic locations and affiliations, see Section 3.1.
Table 1 lists results for the three prize-winning
systems: Attree (2019), Wang (2019), and Abza-
liev (2019).

3 Submissions

In this section, we describe the diverse set of teams
who competed in the shared task, and the systems
they designed for the GAP challenge. We note
effective use of BERT (Devlin et al., 2019), both
via fine-tuning and for feature extraction, and en-
sembling. Despite very little modeling targeted at
debiasing for gender, the submitted systems nar-
rowed the gender gap to near parity at 0.99, while
achieving remarkably strong performance.

3.1 Teams

We accepted ten system description papers, from
11 of the 263 teams who competed (Ionita et al.
(2019) is a combined submission from the teams
placing 5 and 22). Table 2 characterises the teams
by their number of members, whether their affili-
ation is to industry or an academic institution, and
the geographic location of their affiliation. Details
about participant gender were not collected.

Our first observation is that 7 of the top 10 teams
submitted system descriptions, which allows us
good insight into what approaches work well for
the GAP task (see next, Section 3.2). Also, All
these teams publicly release their code, promoting
transparency and further development.

We note the geographic diversity of teams:
there is at least one team from each of Africa,
Asia, Europe, and USA, and one team collab-
orating across regions (Europe and USA). Five
teams had industry affiliations and four academic;
the geographically diverse team was diverse here
also, comprising both academic and industry re-
searchers.

There is a correlation between team size and af-
filiation: industry submissions were all from in-
dividual contributors, while academic researchers
worked in groups. This correlation is somewhat
indicative of performance: individual contributors
from industry won all three monetary prizes, and
only one academic group featured in the top ten
submissions. A possible factor in this was the con-
current timing of the competition with other con-
ference deadlines.

3.2 Systems

All system descriptions were from teams who
used BERT (Devlin et al., 2019), a method to
create context-sensitive word embeddings by pre-
training a deep self-attention neural network on
a training objective optimizing for cloze word
prediction and recognition of adjacent sentences.
This is perhaps not surprising, given the recent
success of BERT for modeling a wide range of
NLP tasks (Tenney et al., 2019; Kwiatkowski et al.,
2019) and the small amount of training data avail-
able for GAP resolution (which makes LM pre-
training particularly attractive). The different
models built from BERT are summarized in Ta-
ble 3.

Eight of the eleven system descriptions used
BERT via fine-tuning, the technique recommended
in Devlin et al. (2019). To do this, the origi-
nal GAP data release was used as a tuning set to
learn a classifier on top of BERT to predict whether
the target pronoun referred to Name A, Name B,
or Neither. Abzaliev (2019) also made use of
the available datasets for coreference resolution:
OntoNotes 5.0 (Pradhan and Xue, 2009), Wino-
Bias (Zhao et al., 2018), WinoGender (Rudinger
et al., 2018), and the Definite Pronoun Resolution
Dataset (Rahman and Ng, 2012). Given the multi-
ple BERT models available, it was possible to learn
multiple such classifiers; teams marked ensemble
fine-tuned multiple base BERT models and ensem-
bled their predictions, while teams marked single
produced just one, from a BERT-Large variant.

An alternative way to use BERT in NLP model-
ing is as a feature extractor. Teams using BERT

in this capacity represented mention spans as in-
put vectors to a neural structure (typically a linear
structure, e.g. feed-forward network) that learned
some sort of mention compatibility, via interaction
or feature crossing. To derive mention-span repre-
sentations from BERT subtoken encodings, Wang
(2019) found that pooling using an attention-
mediated process was more effective than simple
mean-pooling; most teams pooled using AllenAI’s
SelfAttentionSpanExtractor5. An interesting find-
ing was that certain BERT layers were more suit-
able for feature extraction than others (see Abza-
liev (2019); Yang et al. (2019) for an exploration).

The winning solution (Attree, 2019) used a

5https://github.com/allenai/allennlp/blob/
master/allennlp/modules/span_extractors/self_
attentive_span_extractor.py
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Place logloss Members Affiliation Region
Attree (2019) 1 0.13667 1 Industry USA
Wang (2019) 2 0.17289 1 Industry Asia
Abzaliev (2019) 3 0.18397 1 Industry Europe
Yang et al. (2019) 4 0.18498 4 Academic Asia
Ionita et al. (2019)* 5 0.19189 1 Other Africa
Liu (2019) 7 0.19473 1 Industry USA
Chada (2019) 9 0.20238 1 Industry USA
Bao and Qiao (2019) 14 0.20758 2 Academic Europe
Ionita et al. (2019)* 22 0.22562 4 Mixed Mixed
Lois et al. (2019) 46 0.30151 3 Academic Europe
Xu and Yang (2019) 67 0.39479 2 Academic USA

Table 2: Teams with accepted system description papers. *Note the two teams placing 5 and 22 submitted a
combined system description paper.

Rank logloss Fine-tuning Feature
Crossing

Resources

Attree (2019) 1 0.13667 single – syntax, coref, URL
Wang (2019) 2 0.17289 single linear –
Abzaliev (2019) 3 0.18397 ensemble linear synax, URL
Yang et al. (2019) 4 0.18498 ensemble siamese –
Ionita et al. (2019)* 5 0.19189 ensemble linear syntax, NER, coref
Liu (2019) 7 0.19473 – linear –
Chada (2019) 9 0.20238 ensemble – –
Bao and Qiao (2019) 14 0.20758 single SVM &

BIDAF
–

Ionita et al. (2019)* 22 0.22562 ensemble linear synax, NER, coref
Lois et al. (2019) 46 0.30151 – – –
Xu and Yang (2019) 67 0.39479 – R-GCN syntax

Table 3: Highlights of systems with accepted description papers. *Note the two teams placing 5 and 22 submitted
a combined system description paper.

novel evidence pooling technique, which used the
output of off-the-shelf coreference resolvers in a
way that combines aspects of ensembling and fea-
ture crossing. This perhaps explains the system’s
impressive performance despite its relative sim-
plicity. Two other systems stood out as novel in
their approach to the task: Chada (2019) reformu-
lated GAP reference resolution as a question an-
swering task, and Lois et al. (2019) used BERT in
a third way, directly applying the masked language
modeling task to predicting resolutions.

Despite the scarcity of data for this challenge,
there was little use of extra resources. Only two
teams made use of the URL given in the example,
with Attree (2019) using it only indirectly as part
of a coreference heuristic fed into evidence pool-
ing. Two teams augmented the GAP data by using
name substitutions (Liu, 2019; Lois et al., 2019)

and two automatically created extra examples of
the minority label Neither (Attree, 2019; Bao and
Qiao, 2019).

4 Discussion

Running the GAP shared task has taught us many
valuable things about reference, gender, and BERT

models. Based on these, we make recommenda-
tions for future work expanding from this shared
task into different languages and domains.

GAP Given the incredibly strong performance
of the submitted systems, it is tempting to ask
whether GAP resolution is solved. We suggest the
answer is no. Firstly, the shared task only tested
one of the four original GAP settings. A more chal-
lenging setting would be snippet-context, in which
use of Wikipedia is not allowed, which we would
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extend to LM pre-training. Also, GAP only targets
particular types of pronoun usage, and the time
is ripe for exploring others. We are particularly
excited for future work in languages with differ-
ent pronoun systems (esp. prodrop languages in-
cluding Portuguese, Chinese, Japanese), and gen-
der neutral personal pronouns, e.g. English they,
Spanish su or Turkish o.

Gender It is encouraging to see submitted sys-
tems improve the gender gap so close to parity at
0.99, particularly as no special modeling strate-
gies were required. Indeed, Abzaliev (2019) re-
ported that a handcrafted pronoun gender feature
had no impact. Moreover, Bao and Qiao (2019) re-
port that BERT encodings show no significant gen-
der bias on either WEAT (Caliskan et al., 2017)
or SEAT (May et al., 2019). We look forward to
studies considering potential biases in BERT across
more tasks and dimensions of diversity.

BERT The teams competing in the shared task
made effective use of BERT in at least three dis-
tinct methods: fine-tuning, feature extraction, and
masked language modeling. Many system papers
noted the incredible power of the model (see, e.g.
Attree (2019) for a good analysis), particularly
when compared to hand-crafted features (Abza-
liev, 2019). We also believe the widespread use of
BERT is related to the low rate of external data us-
age, as it is easier for most teams to reuse an exist-
ing model than to clean and integrate new data. As
well as the phenomenal modeling power of BERT,
one possible reason for this observation is that the
public releases of BERT are trained on the same
domain as the GAP examples, Wikipedia. Future
work could benchmark non-Wikipedia BERT mod-
els on the shared task examples, or collect more
GAP examples from different domains.

5 Conclusion

This paper describes the insights of shared task on
GAP coreference resolution held as part of the 1st
ACL workshop on Gender Bias in Natural Lan-
guage Processing. The task drew a generous prize
pool from Google and saw enthusiastic participa-
tion across a diverse set of researchers. Winning
systems made effective use of BERT and ensem-
bling, achieving near human accuracy and gender
parity despite little efforts targeted at mitigating
gender bias. We learned where the next research
challenges in gender-fair pronoun resolution lie,

as well as promising directions for testing the ro-
bustness of powerful language model pre-training
methods, especially BERT.
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Abstract
The purpose of this paper is to present an em-
pirical study on gender bias in text. Current re-
search in this field is focused on detecting and
correcting for gender bias in existing machine
learning models rather than approaching the
issue at the dataset level. The underlying moti-
vation is to create a dataset which could enable
machines to learn to differentiate bias writing
from non-bias writing. A taxonomy is pro-
posed for structural and contextual gender bi-
ases which can manifest themselves in text. A
methodology is proposed to fetch one type of
structural gender bias, Gender Generalization.
We explore the IMDB movie review dataset
and 9 different corpora from Project Guten-
berg. By filtering out irrelevant sentences, the
remaining pool of candidate sentences are sent
for human validation. A total of 6123 judg-
ments are made on 1627 sentences and after a
quality check on randomly selected sentences
we obtain an accuracy of 75%. Out of the 1627
sentences, 808 sentence were labeled as Gen-
der Generalizations. The inter-rater reliability
amongst labelers was of 61.14%.

1 Introduction

The feminist movement which debuted in the late
1960s was a response to gender discourses that
had been problematic and often biased (Messer-
schmidt et al., 2018). Ever since, more empha-
sis has been guided towards outlining these issues
in societal roles, sports, media, religion, culture,
medicine, and education. Haines et al. (2016) have
shown, despite time, from the 1980s to 2014, that
the perception of gender roles has remained stable
for men and women, hence the presence of biased
sociocultural expectations to this day. Research
concerning gender equality has been focused on
quantitative data analysis and has resulted in em-
pirical evidence of inequalities in different sectors.

∗equal contribution

Examples include school enrollments and job em-
ployments, all which have failed to provide the
source responsible for these inequalities (Unter-
halter, 2015). Although the root of these imbal-
ances remain ambiguous, it is known that social
norms have greatly influenced and reinforced in-
consistencies while referring to specific genders
(Robeyns, 2007).

Language is known to reflect and influence so-
ciety in its perception of the world. For these
reasons there has been constant effort to promote
bias-free and non-sexist writing to empower the
fairness movement. However, to our knowledge,
no quantitative study on gender bias in text at the
dataset level has been done. In the era of Machine
Learning (ML), gender biases are translated from
sourced data to existing algorithms that may re-
flect and amplify existing cultural prejudices and
inequalities (Sweeney, 2013) by replicating hu-
man behavior and perpetuating bias. Thus, there
is a need to approach this issue in a ML context in
the hope that it will help raise awareness and min-
imize discrimination at the human-level. To do so,
rather than removing gender bias in current ML
models we want to create a dataset with which to
train a model to detect and help correct gender bias
in written form. In the long run, our dataset would
ideally be extended to encompass all types of bias
such as race, religion, sexual orientation, etc.

1.1 Contributions

• Provide a high-level definition of gender bias
in text

• Present an approach to find one of the sub-
types of gender bias, Gender Generalization

• Provide a small labeled dataset for Gender
Generalization bias.
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2 Related Work

Current ML research has identified gender bias in
various models, each with its own evaluation and
debiasing methods. In Natural Language Process-
ing (NLP), gender bias has been studied in word
embeddings, coreference resolution and recently,
in datasets. Previous work on gender bias in writ-
ing has been addressed by linguists with the cre-
ation of inclusive writing. In the field of gender
studies, gender gaps have been explored through
social contexts.

2.1 Word Embedding

In NLP, word embeddings have become a pow-
erful means of word representations. Bolukbasi
et al. (2016) first experimented with gender in
word embeddings and found that the presence of
gender stereotypes were highly consistent in pop-
ularly used word representation packages such as
Glove and word2vec (Bolukbasi et al., 2016). To
better understand the gender bias subspace, gen-
der specific words were investigated to compare
their distances with respect to other words in the
vector space (Bolukbasi et al., 2016). It is claimed
that the unequal distances measured are due to the
corpora on which an embedding has been trained
on and reflect the usage of language which contain
cultural stereotypes (Garg et al., 2018).

Hard debiasing was developed following the
findings on gender bias in word embeddings. This
method introduced by Bolukbasi et al. (2016) has
the main objective of debiasing word embeddings
while preserving their properties in the embedding
space. To achieve the debiasing of an algorithm,
the assumption was that a group of words needed
to be neutralized to ensure that gender neutral
words were not affected in the gender subspace of
the embedding. Following this work, Zhao et al.
(2018b) have approached the problem differently
and have uptaken the task of training on debi-
ased word embeddings from scratch by introduc-
ing gendered words as seed words. Furthermore,
Gonen and Goldberg (2019) has shown with clus-
tering that debiased word embeddings still con-
tain biases and concluded that the existing bias re-
moval techniques are insufficient, and should not
be trusted for providing gender-neutral modeling.

2.2 Coreference Resolution

Coreference resolution is a task aimed at pairing a
phrase to its referring entity. In the context of this

paper, we are interested in pairing pronouns with
their referring entities. Recent studies by Rudinger
et al. (2018) suggest, however, that state-of-the-
art coreference resolvers are gender biased due in
part to the biased data they have been trained on.
For example, OntoNotes 5.0, a dataset used in the
training of coreference systems, contains gender
imbalances (Zhao et al., 2018a). One such ex-
ample of these imbalances are in the frequency
of gendered mentions related to job titles: ”Male
gendered mentions are more than twice as likely to
contain a job title as female mentions”. Zhao et al.
(2018a) showed that coreference systems are gen-
der biased in this same context of job occupations
since they link pronouns to occupations dominated
by the gender of the pronoun more accurately than
occupations not dominated by the gender of the
pronoun.

When coreference resolution decisions are used
to process text in automatic systems, any bias
present in these decisions will be passed on to
downstream applications. This is something that
we must keep in mind as we rely on coreference
resolution in our filtering system in the later sec-
tion.

2.3 Datasets

In the past few years, the ML community has
created new text datasets with respect to gender
discrimination and have focused on hate speech,
stereotypes and relatedness to gender ambigu-
ous pronouns. Twitter posts have been the pre-
ferred source of investigation when it comes to
understanding and capturing human bias although
this may only focus on one type of gender bias.
The Equity Evaluation Corpus is a dataset of
8,640 English sentences with a race or gendered
word and evaluates the sentiment towards these
sentences. The measurement of sentiment was
achieved by training on the SemEval-2018 Tweets
(Kiritchenko and Mohammad, 2018). Abusive
language datasets have also been based off of
tweets and identify sexist and racist language
(Waseem, 2016). GAP is a dataset focused on
sentences which have references to entities; this
dataset is composed of sentences with proper
nouns and ambiguous gendered pronouns (Web-
ster et al., 2018).
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2.4 Gender Bias in Writing

2.4.1 Inclusive Writing
Gender-neutral writing was developped to avoid
sexism and generic mental images for gender roles
(Corbett, 1990). Guidelines for inclusive writing
were created following surveys and offer insights
on different biases including gender related bi-
ases (Schwartz, 1995). A study by Vainapel et al.
(2015) demonstrated that male-inflected terms in
a survey have affected the responses of women
leading to lower task value beliefs. Motivations
behind the utilization of gender inclusive writing
is to disrupt the current educational system which
is tailored for masculinized vocational professions
(Ray et al., 2018).

2.4.2 Gender Gap
The gender gap in writing has resurfaced multiple
times through history. The meaning of gender was
studied by Simone de Beauvoir and was defined
as something which is prescribed by society with
preferences towards men (Cameron, 2005). This
societal role of the toy and media culture has influ-
enced the writing of boys and girls at schools and
has related boys to violence and girls to subordi-
nate roles (Newkirk, 2000). The online writing of
of women and men on Wikipedia has also been un-
equal as most editors have been males thus creat-
ing a gender gap in their content (Graells-Garrido
et al., 2015).

3 Proposed Gender bias Taxonomy

As most work in the ML community related to
gender bias has been focused on debiasing exist-
ing algorithms, the creation of a dataset will en-
able to tackle the issue at its root and allow for
observation of its impact on different ML models.

The first step to the data creation is to quantify
the qualitative definition of gender bias. Thus, a
gender bias taxonomy is proposed after consulting
language and gender experts. We define gender
bias in text as the use of words or syntactic con-
structs that connote or imply an inclination or prej-
udice against one gender. Gender bias can mani-
fest itself structurally, contextually or both. More-
over, there can be different intensities of biases
which can be subtle or explicit.

3.1 Structural Bias

Under our definition, structural gender bias oc-
curs when bias can be traced down from a specific

grammatical construction. This includes looking
up of any syntactic patterns or keywords that en-
force gender assumptions in a gender neutral set-
ting. This type of bias can be analyzed through
popularly used text processing techniques used in
NLP.

3.1.1 Gender Generalization
The first subtype of structural bias, that we re-
fer to as Gender Generalization, appears when a
gender-neutral term is syntactically referred to by
a gender-exclusive pronoun, therefore, making an
assumption of gender. Gender-exclusive pronouns
include: he, his, him, himself, she, her, hers and
herself.

• “A programmer must always carry his lap-
top with him.” - gives a fact about an arbi-
trary programmer and assumes a man to be
the programmer by referring to “he”.

• “A teacher should always care about her
students.” - gives a fact about an arbi-
trary teacher and assumes a woman to be the
teacher by referring to “she”.

Counter example:

• “A boy will always want to play with his
ball.” - although representing a stereotype,
it is not assuming the gender for a gender
neutral word since the word boy (gendered -
male) is linked to a male pronoun. Thus, it is
not Gender Generalization bias.

3.1.2 Explicit Marking of Sex
A second subtype of structural bias appears with
the use of gender-exclusive keywords when refer-
ring to an unknown gender-neutral entity or group.

• “Policemen work hard to protect our city.” -
the use of “policemen” instead of “police offi-
cers” directly excludes all women that could
also hold that position.

• “The role of a seamstress in the workforce is
undervalued.” - the usage of a gender-marked
title for women for a job that can be done by
both sexes is biased unless referring only to
the female counterpart.

3.2 Contextual Bias
On the other hand, contextual gender bias does
not have a rule-based definition. It requires
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the learning of the association between gender-
marked keywords and contextual knowledge. Un-
like structural bias, this type of bias cannot be
observed through grammatical structure but re-
quires contextual background information and hu-
man perception.

3.2.1 Societal Stereotype
Societal stereotypes showcase traditional gender
roles that reflects social norms. The assumption of
roles predetermines how one gender is perceived
in the mentioned context.

• “Senators need their wives to support them
throughout their campaign.” - the word
“wife” is depicted as a supporting figure when
we do not know the gender of the senator and
the supporting figure can be a male partner, a
husband.

• “The event was kid-friendly for all the
mothers working in the company.” - assumes
women as the principal caretakers of children
by using the word “mothers” instead of us-
ing “parent” that would encompass possibly
more workers.

3.2.2 Behavioural Stereotype
Behavioural stereotypes contain attributes and
traits used to describe a specific person or gender.
This bias assumes the behaviour of a person from
their gender.

• “All boys are aggressive.” - misrepresenta-
tion of all boys as aggressive.

• “Mary must love dolls because all girls like
playing with them.” - assumes that dolls are
only liked by girls.

4 Empirical Pilot Study

Two different surveys were deployed, first to bet-
ter understand if the proposed definition of gen-
der bias was well accepted and second to decide
whether categorical or binary labeling should be
used when presenting sentences to human labelers.
The definition survey was distributed to individu-
als from the field of sociolinguistics, linguistics,
and gender studies. The second survey on categor-
ical and binary labeling was deployed on Mechan-
ical Turk1 and to the same gender and language

1https://www.mturk.com/

experts for the definition survey.

4.1 Definition Survey
The survey form was designed to be shared with
individuals who had some relatedness to the topic
in a research context. The motivation was to start a
dialogue across disciplines to observe if some sort
of consensus could be achieved and to recognize
potential factors influencing the bias towards gen-
der. The questions asked were short answers, long
answers and multiple choices.

Questions:

1. Do you think gender bias is influenced by
demographics (gender, age, geographic loca-
tion, professional status., etc...)? Please jus-
tify your answer.

2. Where is it most likely to find gender bias?
(work place, home, legal system, academia,
media and other)

3. Do you think there are subtypes of gender
bias? (yes/no)

4. If yes, which are the subtypes of gender bias?

5. Our current understanding of gender bias in
text is : Gender bias in text is the use of
words/syntactic constructs that connote or
imply an inclination or prejudice against one
gender. It can be structural (when the con-
struction of sentences show patterns that are
closely tied to the presence of gender bias) or
contextual (when the tone, the words use or
simply the context of a sentence shows gen-
der bias). Do you agree with this definition?

6. Would you add/remove something to/from
the previous definition?

7. Do you have any comments/feedback?

8. Having a well-labeled dataset is key for the
success of our project. In the future, would
you be willing to help label a subset of sen-
tences as gender biased or non-gender bi-
ased?

4.2 Data Presentation Survey
A data presentation survey was sent out to the
same group of people and was also launched on
a crowdsourcing platform, Mechanical Turk. The
survey had two sections of 10 questions; the first
section contained categorical labeling with all of
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the potential types of gender bias in text and the
second section was binary labeling confirming if a
sentence was gender biased or not. At the end of
each survey, optional feedback was collected from
the participants to ask for their preference and
clarity on labeling format. The sentences chosen
to be presented to the participants were selected
from various journal sources which had been web-
scraped previously.

4.3 Deductions

Both surveys provided insightful information for
the data collection. The responses from the defini-
tion survey included:

• 90% agreed that gender bias is influenced by
demographics.

• Respondents had consensus that gender bias
can be found in academia, households, me-
dia, legal systems, sport coverage, literature
and in medical treatments.

• 100% agreed that there are different subtypes
of gender bias in writing.

• The top three subtypes identified were stereo-
types with 100% agreement, Gender Gener-
alizations with 90% agreement and abusive
language with 80% agreement.

A total of 44 participants responded to the data
presentation survey and 77.3% preferred binary la-
beling versus categorical labeling. A good take-
away from this survey was that the presentation of
all subtypes of gender bias for categorical labeling
may complicate understanding of different defini-
tions we present for future labelers to be able to
identify every types of biases. Following both sur-
veys, we decided to focus on extracting one sub-
type of biases at a time.

5 Methodology

In the previous section, we define different types
of biases that can occur which can induce both ex-
plicit and implicit biases. In this paper, we focus
on one of the structural biases, Gender General-
ization, that can be analyzed through observing
the syntactic structure of text. Under our defini-
tion, Gender Generalization occurs when a gen-
dered pronoun is linked to a gender-neutral term
in a gender-free context.

5.1 Corpora Selection

The frequency of Gender Generalizations in texts
are unknown and for this reason different types
of writing styles were considered for exploration.
The biggest challenge in corpus selection was
finding sources which talked about human indi-
viduals in a general way rather than specific indi-
viduals. Our starting point was the IMDB dataset
(Maas et al., 2011), followed by multiple corpora
from Project Gutenberg 2. This selection provided
a range of writings from the 1800s to modern col-
loquial English. The texts from Project Gutenberg
used for the experiment were: Business Hints for
Men and Women, Magna Carta, The Federalists
Papers, The Constitution of the United States of
America: Analysis and Interpretation, The Com-
mon Law, Langstroth on the Hive and the Honey-
Bee: A Bee Keeper’s Manual, Scouting For Girls:
Official Handbook of the Girl Scouts, Boy Scouts
Handbook and Practical Mind-Reading. These
texts were chosen on the belief that we could cap-
ture Gender Generalization sentences; this selec-
tion includes guidelines, law and instructions.

5.2 Preprocessing

All texts were preprocessed in order to pass on to
the filters and labelers. All texts were split into
sentences, no punctuation was stripped and letter
cases remained in their original form for integrity
purposes. For the IMDB dataset, HTML tags
were removed and text was decoded from unicode
matching the closest ASCII characters to handle
any special symbols present in the text. All text
from Project Gutenberg came in a text format in
UTF-8 encoding. All document formatting of in-
dentations, blank spaces and quotation marks were
removed.

5.3 Design of Filters

The objective behind gathering Gender General-
ization sentences is to start constructing a dataset
of gender biased sentences with a subtype of bias
that is easy to recognize structurally. To gather text
data that falls into this category of bias, we have
decided to filter sentences based on their syntac-
tic structure. The strategy was to find all the links
between expressions that refer to the same entity
in text and observe their property with respect to

2https://www.gutenberg.org/
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the gender they are associated with. Following our
definition, the main characteristics of Gender Gen-
eralization bias is the existence of a link between a
gendered pronoun to any human entity that is not
tied to any gender.

Identifying gender-free mentions was challeng-
ing since they appear in diverse forms and are
closely connected with their context in which they
appear, making it necessary for human validation.
The filters were used as tools to reduce the scope
of the labeling pool, which was sent to the labelers
for human judgment.

The filters were applied to every sentence and
if any sentence did not meet one of the criteria,
it was removed from the potential pool of Gen-
der Generalization candidates. The order of fil-
ters applied were as such: coreference resolution,
verification of gendered pronoun, human-name re-
moval, gendered-term removal, and pronoun-link.
The coreference resolution was achieved using Al-
lenNLP and the other filters were dependent on the
NLTK library.

5.3.1 Coreference Resolution Filter
Coreference resolution was chosen as a filter for
fetching Gender Generalizations as it is by defi-
nition identifying different mentions referring to
the same entity. AllenNLP’s3 pre-trained model
was used to gather coreference clusters. This
model implements the current state-of-the-art end-
to-end neural coreference resolution by Lee et al.
(2017) which is trained on a biased word embed-
ding (Bolukbasi et al., 2016). The models utilizes
GloVe and Turian embeddings (Pennington et al.,
2014) which result in preferred resolution for gen-
dered pronouns. While the accuracy of corefer-
ence resolvers given the gender of the pronoun
may differ, it did not affect our coreference res-
olution filter since we were simply interested in
using the resolver to indicate the presence of an
antecedent linked to a pronoun. As such, the accu-
racy of the resolver was of diminished concern.

5.3.2 Gendered Pronoun Filter
After acquiring the information of coreference re-
lationships, we filtered out sentences which we
know confidently are not human related. Gener-
alization of gender by definition assumes a partic-
ular pronoun to be assigned to a person entity with

3https://allennlp.org/

an unknown gender. Such datapoints were traced
down by checking the existence of gendered pro-
nouns in text using simple list manipulations. The
gendered pronouns in our list included: he, him,
his, himself, she, her, hers, herself.

5.3.3 Human Name Filter
While sentences containing human names can be
biased, they were not identified as a Gender Gen-
eralization. This type of bias requires gender-free
context and having a specific person referenced to
a gendered pronoun enforces gender in the text as
seen in the example below.

• “Jason must not abandon the place where he
was brought up.” - The pronoun “he” is used
because it refers to Jason who is a male.

• “A politician must not abandon the place
where he was brought up.” - Exhibiting gen-
der bias because the pronoun “he” was used
when “a politician” is a gender-free term.

To make our system recognize human names,
we utilized Named Entity Recognition (NER)
from Natural Language Toolkit (NLTK). For ev-
ery mention in a coreference cluster, we checked
if NER classifies the mention as a person-type cat-
egory when tokenized sentences were fed into the
system; identified clusters resulted in the removal
of sentences.

5.3.4 Gendered Term Filter
Gendered terms are the words which exhibit spe-
cific gender and confirm a person’s gender without
needing context . For example, the term ‘sister’
always refers to female sibling and is always as-
sociated with female pronouns whereas ‘brother’
refers to male sibling with male pronouns. These
types of terms in the coreference relationship were
discarded for Gender Generalization bias text min-
ing. Since there is no such system that detected
gender assignments of human words, we explored
the Lesk algorithm from NLTK which performs
Word Sense Disambiguation (WSD) using Word-
Net. WordNet is a lexical database for the English
language and it provides access to dictionary def-
initions along with related synonyms. The Lesk
algorithm utilizes sense-labeled corpus to identify
word senses in context using definition overlap.

Our approach was to acquire the adequate word
sense of mentions in the coreference cluster given
sentences as a context for WSD. The Morphy al-
gorithm in WordNet was then utilized; it uses a
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combination of inflectional ending rules and ex-
ception list to find the base form of the word
of interest. When the base forms were attained,
we looked up the definitions associated with their
synsets (word sense token). If the definitions con-
tained any gendered terms in table 1 , the sentence
was removed.

Type Male Term Female Term
Base Term male female

man woman
boy girl

Pronoun he she
him her
his hers
himself herself

Family Term husband wife
father mother
son daughter
brother sister
grandfather grandmother
grandson granddaughter
uncle aunt
nephew niece

Table 1: Gendered terms used in the filter.

Below in Table 2 are some example words
that have passed through the definitions of human
nouns that we have obtained.

Word Definition Gendered?
landlord a landowner who leases to others No
landlady a landlord who is a woman Yes
gentleman a man of refinement Yes
lady a polite name for any woman Yes
actor a theatrical performer No
actress a female actor Yes

Table 2: Example definitions provided by WordNet.

5.3.5 Pronoun Link Filter

The pronoun link filter detected any coreference
clusters that are linked with just pronouns. Our
definition of structural Gender Generalization re-
quires at least one gender-neutral human entity in
each datapoint. If a cluster contained only pro-
noun links, the original mention happened in the
scope outside of the sentence which was consid-
ered. Thus, these sentences were removed from
the labeling pool before they were sent to the hu-
man labelers.

5.4 Crowdsourcing

The labeling task was designed and implemented
on the crowdsourcing platform Figure Eight4 (pre-
viously known as CrowdFlower). The question-
naire form was created based off of a template for
categorical labeling of data provided by the crowd-
sourcing platform. The categories presented to
the labelers were “Gender Generalization” , “not
a Gender Generalization” and “problematic sen-
tence”. The third option was added as a choice for
labelers to indicate when a sentence did not have
any mention of a human entity, if the sentence was
not grammatical and if the sentence was wrongly
picked up by our filters.

Labelers were presented with 10 sentences per
page and a limit was set to 100 judgements per
labeler. Each page of the task contained a ran-
dom number of golden sentences to ensure the
quality of labelers. The golden set is a set of 20
sentences which were labeled by gender and lan-
guage experts. The golden sentences were used
as a mechanism to filter good labelers from bad
labelers. The labelers had to label correctly 80%
of the golden sentences presented to them in or-
der for their results to be taken into account. Each
sentence needed three trusted judgments at a min-
imum before obtaining the final label.

To ensure better quality of the data, additional
measures were taken to ensure labelers were tak-
ing the time to understand the proposed definition
of Gender Generalization. Level 2 contributors
who were endorsed as experienced, higher accu-
racy contributors on Figure Eight were chosen to
participate in the task. This provides us with a set
of labelers that were more experienced. Each time
a new page of 10 sentences were presented, the la-
belers had to spend a minimum of 120 seconds on
each page. Equally, the Google translate option on
Figure Eight was disabled for labelers while par-
ticipating in this task in order to preserve the con-
text of the sentences presented to them.

6 Results

Once the 15,000 datapoints from IMDB train set
were split into sentences, the dataset contained
180,119 sentences. The 9 Project Gutenberg cor-
pora yielded a total of 55,966 sentences. The

4https://www.figure-eight.com/
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search space of IMDB was reduced to 7876 candi-
date sentences for the labeling pool, representing
4.4% of the original set used. The search space of
all Project Gutenberg ebooks was reduced to 1627
sentences, representing 2.7% of the original data.
It is important to note that the quality of the pre-
trained models used in the filters can impact the
sentences retained.

As a preliminary test to validate the quality of
sentences filtered from IMDB, randomly chosen
1000 sentences were sent for labeling. It was
observed that sentences provided from movie re-
views were person specific and they contained in-
formation about specific movie characters, actors
or directors rather than displaying gender assump-
tions towards gender-neutral human entities. This
introduced too much noise in the data and the qual-
ity of the filtration was altered accordingly. Thus,
true Gender Generalization sentences were less
likely to be found even after going through human
validation due to vast noise in the data. This sug-
gests that finding adequate data sources for Gen-
der Generalization is important and confirms our
hypothesis that good source for Gender General-
ization is dependent on the style of writing.

Corpora from Project Gutenberg on the other
hand contained sentences that can be applied to
general population, making them more relevant to
Gender Generalization bias. We present our result
on label quality in the later section. Furthermore,
it is observed that the amount of Gender Gener-
alization candidate sentences represented a small
fraction of each corpus explored from Project
Gutenberg.

As seen in table 3, the search space for Gen-
der Generalization was greatly reduced when the
filtering approach was undertaken. This allowed
for only the relevant sentences to be validated by
human labelers. Reducing the search space helps
human labelers to focus on one type of syntac-
tic structure, which can directly impact the qual-
ity of final labels. Finally, 808 out of 1627 fil-
tered sentences were accepted as Gender General-
ization bias which accounts for 49.7% of filtered
data across our corpora and 819 are labeled as not
Gender Generalization bias.

6.1 Quality of Judgments

A total of 6123 judgements were made on the po-
tential Gender Generalization candidates (a set of
1627 sentences). Out of the total amount of judge-

Source S ΣC
ΣS

ΣT
ΣC

Boy Scouts Handbook 6330 3.6% 61.2%
Business Hints for Men
and Women 2162 4.0% 63.6%

The Common Law 6101 5.8% 53.8%
The Constitution of the
United States of Amer-
ica

21920 2.2% 44.3%

The Federalists Papers 5981 1.5% 27.0%
the Hive and the
Honey-Bee: A Bee
Keeper’s Manual

4430 4.0% 36.5%

Magna Carta 407 4.4% 55.5%
Official Handbook of
the Girl Scouts 7687 1.9% 51.7%

Practical Mind-
Reading 948 4.5% 55.8%

All Corpora 55,966 2.9% 49.7%
Mean - 2.9% 55.4%
Standard deviation - 1.4% 11.9%

Table 3: Candidate and Gender Generalization sen-
tences by source - {S: total number of sentences in each
corpus, C: sentences remaining after filtration, T: sen-
tences identified as true Gender Generalization bias}

ments, 4881 were trusted and accepted as final
labels; these judgments represent 79.7% out of
the total judgments. Each sentence was validated
three times by the labelers who maintained a min-
imum accuracy of 80% on the golden sentences.
1242 judgements were untrusted, meaning the la-
belers who did not maintain an accuracy of 80% of
the golden sentences were not accounted for in the
final labeling; these judgments represent 20.3% of
the total judgements.

Full agreement of labels only happened for 637
out of 1627 presented sentences. The remaining
990 sentences had an agreement of 66.7% which
means 2 out of 3 labels were in accordance per
data point. The inter-rater reliability for the full set
of sentences was of 61.14%. Consequently, we de-
cided to investigate a random subset of sentences
to evaluate the quality and to better understand the
low level of agreement. A total of 108 sentences,
12 sentences from each corpus, were randomly
chosen from the final labeled pool to test the qual-
ity of labels assigned to each sentence. An f1
score of 73.9% was achieved with 75% accuracy.
The percentage of correctly labeled Gender Gen-
eralization sentences were 70.4% and correctly la-
beled not Gender Generalization bias was 79.6%
respectively. Sentences falsely classified as true
Gender Generalization bias exhibited gender bias
that did not fall into the Gender Generalization
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category. Moreover, sentences which should have
been filtered out that remained in the labeling pool
also created confusion, suggesting that improving
the quality of the filters could impact the quality
of the final labels. On the other hand, falsely clas-
sified as not Gender Generalization bias sentences
tend to be in longer length and contained multi-
ple pronouns linked to different human entities.
This suggests that the labeler’s judgment is altered
when longer attention span is required. Follow-
ing this, a minimum and maximum time allocation
for labeling can be studied in the future as Cooley
et al. (2018) observes that predefined social attri-
butions may affect human perception and conse-
quently may affect our labeling.

7 Conclusion and Future Work

In this paper, we propose a gender bias taxonomy
as well as a means for capturing Gender General-
ization sentences. The purpose of capturing these
sentences is to build a dataset so that we can train
a ML classifier to identify gender bias writing as
well as to see the impact of clean dataset on differ-
ent ML models. In future work, we hope to pro-
pose a method to capture the other types of gen-
der bias in text that we identified in our taxonomy.
Capturing qualitative bias is a challenging task and
there is a need for designing systems in order to
better understand bias. The approach we took was
based off the proposed definition that was trans-
lated into a fetching mechanism which can aid hu-
man validation. With an initial set of 55,966 sen-
tences, the search space was filtered down to 1627
candidates of which 808 were labeled as Gender
Generalization. The presence of Gender General-
izations in text was small and represented below
5% of each corpus explored.

Our method suggests that there is a small search
space for sentences with Gender Generalizations.
Future work to increase the number of fetched sen-
tences an quality of labeling are:

• Explore different state-of-art models for fil-
ters

• Upgrade to an automatized filtering and clas-
sification mechanism to enhance the quality
and quantity of the labeling pool.

• Explore different data presentation for label-
ing (ie. longer response time, highlighting
parts of sentences, etc)

• Create different methodologies to look for
different types of gender bias in text.

• Create a full dataset of different gender biases
in text.
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Abstract

Modern models for common NLP tasks of-
ten employ machine learning techniques and
train on journalistic, social media, or other
culturally-derived text. These have recently
been scrutinized for racial and gender biases,
rooting from inherent bias in their training
text. These biases are often sub-optimal and
recent work poses methods to rectify them;
however, these biases may shed light on ac-
tual racial or gender gaps in the culture(s) that
produced the training text, thereby helping us
understand cultural context through big data.
This paper presents an approach for quanti-
fying gender bias in word embeddings, and
then using them to characterize statistical gen-
der gaps in education, politics, economics, and
health. We validate these metrics on 2018
Twitter data spanning 51 U.S. regions and 99
countries. We correlate state and country word
embedding biases with 18 international and 5
U.S.-based statistical gender gaps, characteriz-
ing regularities and predictive strength.

1 Introduction

Machine-learned models are the de facto method
for NLP tasks. Recently, machine-learned mod-
els that utilize word embeddings (i.e., vector-based
representations of word semantics) have come un-
der scrutiny for biases and stereotypes, e.g., in race
and gender, arising primarily from biases in their
training data (Bolukbasi et al., 2016). These biases
produce systematic mistakes, so recent work has
developed debiasing language models to improve
NLP models’ accuracy and and remove stereo-
types (Zhao et al., 2018; Zhang et al., 2018).

Concurrently, other research has begun to char-
acterize how biases in language models corre-
spond to disparities in the cultures that produced
the training text, e.g., by mapping embeddings
to survey data (Kozlowski et al., 2018), casting
analogies in the vector space to compute that “man

is to woman as doctor is to nurse” (Bolukbasi
et al., 2016), or varying the training text over
decades and mapping each decade’s model bias
against its statistical disparities to capture periods
of societal shifts (Garg et al., 2018).

Building on previous work, this paper presents
initial work characterizing word embedding bi-
ases with statistical gender gaps (i.e., discrepan-
cies in opportunities and status across genders).
This is an important step in approximating cul-
tural attitudes and relating them to cultural behav-
iors. We analyze 51 U.S. states and 99 countries,
by (1) training separate word embeddings for each
of these cultures from Twitter and (2) correlating
the biases in these word embeddings with 5 U.S.-
based and 18 international gender gap statistics.

Our claims are as follows: (1) some cultural
gender biases in language are associated with gen-
der gaps; (2) we can characterize biases based on
strength and direction of correlation with gender
gaps; and (3) themed word sets, representative of
values and social constructs, capture different di-
mensions of gender bias and gender gaps.

We continue with a brief overview of gender
gaps (Sec. 2) and then a description of our training
data (Sec. 3) and four experiments (Sec. 4). We
close with a discussion of the above claims and
future work (Sec. 5).

2 Gender Gaps and Statistics

Within the social sciences, anthropologists often
attempt to explain the asymmetrical valuations
of the sexes across a range of cultures with re-
spect to patterns of social and cultural experi-
ence (Rosaldo, 1974). This work contributes to
this research by updating traditional qualitative ap-
proaches with computational methods.

The public sphere is often associated with male
and agents traits (assertiveness, competitiveness)
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in domains like politics and executive rules at
work. Private or domestic domains linked to fam-
ily and social relationships are traditionally related
to women, although social relationships are con-
sidered more important by people independent of
gender (Friedman and Greenhaus, 2000). Gen-
der gaps arise form these asymmetrical valuations,
e.g., where men are typically over-represented and
have higher salaries compared to women (Mitra,
2003; Vincent, 2013; Bishu and Alkadry, 2017).

We utilize diverse gender gap statistics in this
work. For international data, we use 18 gender gap
metrics comprising the Global Gender Gap Index
(GGGI) originally compiled for the World Eco-
nomic Forum’s 2018 Gender Gap Report.1 The
GGGI measures clearly-defined dimensions for
which reliable data in most countries was avail-
able (Hawken and Munck, 2013). For domestic
data, we use a 2018 report from the U.S. Center for
Disease Control (CDC) on male and female exer-
cise rate (Blackwell and Clarke, 2018), wage gap
and workforce data published by the U.S. Census
Bureau in 2016, female percentages of math and
computer science degrees from Society of Women
Engineers,2 and female percentages of each state’s
legislators from Represent Women’s 2018 Gender
Parity Report.3

3 Training Data

Our training data include public tweets from U.S.
and international Twitter users over 100 days
throughout 2018, including the first ten days of
each of the first ten months. We use tweet’s lo-
cation property to categorize by location, and we
include only English tweets in our dataset.

We filtered out all tweets with fewer than three
words, and following other Twitter-based embed-
ding strategies (e.g. Li et al., 2017), we replaced
URLs, user names, hashtags, images, and emo-
jis with other tokens. We divided the processed
tweets into two separate datasets: (1) U.S. states
and (2) countries. This helps us validate our ap-
proach with multiple granularities and datasets.

The international dataset contains 99 countries
with varying number of tweets, ranging from 98K
tweets (Mauritius) to 122M tweets (U.K). The
U.S. states dataset contains 51 regions (50 states
and Washington, D.C.) ranging from 450K tweets

1http://reports.weforum.org
2http://societyofwomenengineers.swe.org/
3http://www.representwomen.org

(Wyoming) to 65M tweets (California). For both
datasets, we sampled 10 million tweets for all cul-
tures that exceeded that number. These corpora are
orders of magnitude smaller than other approaches
for tweet embeddings (e.g., Li et al., 2017).

We use Word2Vec to construct word vectors for
our experiments, but we compare Word2Vec with
other algorithms in our analyses (Sec. 4.3).

4 Experiments

4.1 International Analysis

Our international and U.S.-based analyses have an
identical experimental setup, varying only in the
gender gap statistics and the word embeddings.

Our materials included word-sets based in part
on survey data (Williams and Best, 1990) and re-
cent work on word embeddings (Garg et al., 2018).
These word-sets included (1) female words includ-
ing female pronouns and nouns, (2) male words,
including male pronouns and nouns, and (3) neu-
tral words that were grouped thematically. For
instance, we used appearance and intellect ad-
jectives from (Garg et al., 2018), and we gener-
ated other thematic word sets representative of so-
cial constructs: government (democrat, republi-
can, senate, government, politics, minister, pres-
idency, vote, parliament, ...), threat (dangerous,
scary, toxic, suspicious, threat, frightening ...),
communal (community, society, humanity, wel-
fare, ...), criminal (criminal, jail, prison, crime,
corrupt, ...), childcare (child, children, parent,
baby, nanny, ...), excellent (excellent, fantastic,
phenomenal, outstanding, ...) and others.

We use the same male and female word sets for
international and U.S. state analyses, and we com-
pute per-gender vectors

−−−−→
f emale and

−−→
male by av-

eraging the vectors of each constituent word, fol-
lowing (Garg et al., 2018). For any country or
state’s word embedding, we compute the average
axis projection of a neutral word set W onto the
male-female axis as:

avgw∈W(−→w ·
−−−−→
f emale−−−→male

||−−−−→f emale−−−→male||2
) (1)

This average axis projection is our primary mea-
sure of gender bias in word embeddings.

For any neutral word list (e.g., government
terms), we compute the average axis projection for
all countries (or states) and compute its correla-
tion to international (or U.S.) gender gaps. Fig. 2
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govt intellect workplace excellent childcare illness communal victim "pretty" r-1 r-2 r-3 r-4
Index: Overall Gender Gap .30 .11 .17 .12 -.01 -.07 -.20 -.06 -.19 -.01 .02 .03 .02

Sex ratio at birth .00 .01 .03 .00 -.02 -.01 .00 -.02 .00 .00 .03 -.04 .00
Index: Educational Attainment .03 .05 .10 .03 -.18 -.12 -.19 -.23 -.07 -.04 .02 .00 .00

Literacy rate .07 .08 .05 .07 -.18 -.13 -.21 -.23 -.08 -.03 .02 -.05 -.07
Enrollment tertiary education .06 .10 .07 .02 -.24 -.20 -.12 -.11 -.06 -.01 -.01 -.08 -.03

Enrollment secondary education .02 .01 .03 .00 -.08 -.01 -.21 -.13 -.02 .00 .04 -.02 -.01
Enrollment primary education .01 .01 .05 .01 -.05 -.06 -.15 -.12 -.06 -.01 .04 .01 .03
Index: Political Empowerment .28 .02 .10 .01 .04 .01 -.03 .04 -.14 .07 .01 -.04 .00

Women in ministerial positions .25 .03 .17 .09 .00 -.02 -.02 .00 -.08 .04 .03 -.01 -.07
Women in parliament .16 .04 .07 .02 .01 .03 -.02 .05 -.06 .02 .06 -.09 .00

% 50 years female head of state .05 -.04 .01 -.07 .02 .01 .00 .00 -.06 .01 -.02 -.01 .01
Index: Economic Participation .10 .04 .13 .10 -.02 -.12 -.33 -.09 -.10 -.07 .04 -.05 .04

Professional and technical workers .20 .23 .27 .23 -.15 -.21 -.19 -.12 -.14 -.05 .08 -.08 .06
Legislators, officials, managers .08 .15 .10 .18 -.05 -.14 -.18 -.10 -.01 -.05 .04 .00 .03

Labour force participation .03 .04 .08 .02 -.03 -.09 -.21 -.04 -.14 -.09 .02 -.03 .01
Wage equality (survey) -.02 -.04 -.02 -.02 .03 .04 .00 .00 -.02 .00 -.02 -.03 -.05

Index: Health and Survival .03 .09 .08 .06 -.12 -.13 -.02 -.06 .00 -.02 .09 .01 .00
Healthy life expectancy .06 .09 .12 .14 -.16 -.31 -.07 -.11 -.01 -.02 .07 .01 -.01

Figure 1: Correlation of themed neutral word sets’ gender bias (columns) against categories of gender gaps from
worldbank.org (rows). Values are R2 coefficient of determination, where negation is added to indicate inverse
correlation. The rightmost four word sets (r-1 to r-4) were randomly sampled from the vocabulary for comparison.

neutral word set: government

Figure 2: Correlation of country’s gender bias of gov-
ernment words (x-axis; female association increases
in positive direction) against the World Economic Fo-
rum’s political empowerment gender gap index (y-axis;
gender gap decreases in positive direction).

plots each country’s government/political word
bias against the World Economic Forum’s Politi-
cal Empowerment Gender Gap sub-index (from 0
to 1, where greater score indicates less gap). The
value 0.0 on the x-axis indicates no gender bias,
and female bias increases along the x-axis.

Consequently, Fig. 2 is consistent with the
hypothesis that— globally, over our set of
99 countries— women’s political influence and
power increase (relative to men) as political lan-
guage shows a more female bias.

We present results of each thematic word set
regressed against all available international statis-
tics. For each pair of themed word set and gender

gap statistic, the algorithm (1) performs feature
selection on 20% of the countries to optionally
down-select from the set of words in the themed
word set, (2) uses the down-selected word set to
compute the R2 determination against the full set
of countries, and then (3) repeats a total of five
times and averages the answers. Feature selection
monotonically increases the R2, and using 20% of
countries helps prevent over-fitting.

Fig. 1 includes our results over this analysis,
grouping gender gap sub-indices (bold) with their
related statistics. This illustrates that different
word sets vary in their correlation direction and
strength across different statistic groups: the po-
litical set is positively correlated with the politi-
cal empowerment subgroup and marginal on some
economic statistics, but weak over health and ed-
ucation; intellectual and workplace terms posi-
tively correlate with economic statistics but are
weak predictors otherwise; illness terms indirectly
correlated with health and survival statistics, but
are weak correlates elsewhere; and so-forth. The
word “pretty,” shown in Fig. 1, was the single
word with the strongest determination against the
overall gender gap and other sub-indices. Fig. 1
also includes four randomly-generated word sets,
which do not exceed R2 = 0.09 for any gender gap.

The selective correlation of these thematic word
sets with related gender gap statistics supports
our claim that gender biases in word embeddings
can help characterize and predict statistical gender
gaps across cultures. Since we trained our embed-
dings on tweets alone— with as few as 98K tweets
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threat unintelligent criminal persistent excellent stem-alum childcare victim appearance r-1 r-2 r-3 r-4
CDC Activity Proportion .09 .05 -.03 .41 .07 -.04 -.02 .03 -.03 -.01 .07 .00 .00

Female State Legislators -.16 -.22 -.42 .11 .11 .03 -.24 -.04 -.12 .00 -.08 -.03 -.06
Math & CS Degrees -.15 -.27 -.02 -.07 .01 .28 .01 -.09 -.07 -.03 -.01 .00 -.01

Census Wage Gap -.51 -.15 -.12 .04 .21 .11 -.06 -.17 -.15 .01 -.06 .02 .04
Census Workforce Ratio -.06 -.30 -.06 -.04 .00 .03 .01 -.03 -.06 .01 -.03 -.03 -.04

Figure 3: Correlation of themed neutral word sets’ gender bias (columns) against U.S. gender disparity statistics
from CDC, US Census Bureau, and Represent Women’s 2018 Gender Parity Report (rows). Values are R2 coeffi-
cient of determination, where negation is added to indicate inverse correlation. The rightmost four word sets (rand
1-4) were randomly sampled from the vocabulary for comparison.

neutral word set: threat

Figure 4: Correlation of states’ gender bias of threat
words’ (x-axis; female association is positive direction)
against the pay gap reported by U.S. Census Bureau in
2016 (y-axis; pay gap decreases in positive direction).

for some countries— this also supports our claim
that social media is a plausible source to compute
a culture’s gender bias in language.

None of our themed word sets strongly corre-
lated with: (1) sex ratio at birth, which was 1.0
for the vast majority of countries; (2) percentage
of last 50 years with female head of state; and (3)
survey-based wage equality. The latter two gender
gaps may correlate with other themed word sets,
or they may have a more complex or nonlinear re-
lationship to a culture’s gender bias in language.

4.2 U.S. State Analysis

Our analysis of 51 U.S. regions (50 U.S. states and
Washington, D.C.) is analogous to our Sec. 4.1 in-
ternational analysis; we only vary the word em-
beddings and the statistical gender gap data.

Fig. 4 shows an example of indirect correlation
(R2 = 0.51) of our threat word set (threat, dan-
gerous, toxic, suspicious, scary, frightening, hor-
rifying, ...) against U.S. Census Bureau data re-
ported in 2016 on the gender pay gap. The y-axis
indicates cents on the dollar earned by women for
the same work as men, ranging from 69.9¢ (UT)

to 91.2¢ (VT). This inverse correlation is consis-
tent with the hypothesis that when masculinity is
threatened in some cultures, men react by assert-
ing dominance (Zuo and Tang, 2000; Schmitt and
Branscombe, 2001).

Fig. 3 illustrates different word sets’ determina-
tion on U.S. regions’ statistical gender gaps. The
word set describing persistence and devotion had
strongest direct correlation with reduced gender
gap in exercise. The word set for criminal behav-
ior had strongest negative correlation with female
proportion of state legislators. Words for STEM
disciplines and alumni directly correlated with in-
creased percentages of female math and CS de-
grees. Threat-based words negatively correlated
with pay equality, and words for unintelligent and
inept negatively correlated with female percentage
of the workforce. Other word sets from the inter-
national analysis (e.g., childcare and victimhood)
had less determination of gender gaps than in the
international setting.

As with our international analysis, this domes-
tic analysis supports our claim that gender biases
in cultural language models can predict and char-
acterize statistical gender gaps.

4.3 Algorithm Comparison

We compare four word embedding algorithms and
three bias metrics using our gender gap statis-
tics and word sets. We compare four algorithms:
(1) GloVe, (2) Word2Vec (skip-gram), (3) CBOW
Word2Vec, and (4) FastText (skip-gram). For
each algorithm we utilize a window size 10, filter
words that occur fewer than 5 times, and produce
200-dimension output vectors.

GloVe (Pennington et al., 2014) uses count-
based vectorization to reduce dimensionality by
minimizing reconstruction loss. The dot product
of two GloVe vectors equals the log of the number
of times those two words occur near each other.

Word2Vec (Mikolov et al., 2013) uses a predic-
tive model to learn geometric encodings of words
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Rel L2 Diff Rel L2 Ratio
Gender Gap Word set w2v w2v CBOW GloVe FastText w2v w2v

Census Wage Gap threat -0.61 -0.37 -0.30 -0.38 -0.52 -0.49
Female Legislators criminal -0.49 -0.33 -0.19 -0.17 -0.39 -0.38
Math & CS Degrees stem-alum 0.30 0.28 0.30 0.26 0.28 0.29

Axis Projection

Figure 5: Comparison of three bias metrics and four word embedding algorithms correlating themed word sets’
gender bias with U.S. gender gap statistics. Unlike in Fig. 2, we perform feature selection using all countries.
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Figure 6: Ten adjectives with highest bias correlations
to reduced pay gap (top, blue), and ten with highest
correlation to increased pay gap (bottom, red).

through a feed-forward neural network optimized
by stochastic gradient descent. The Word2Vec
continuous bag-of-words (CBOW) setting predicts
the most probable word given a context. The
Word2Vec skip-gram setting differs slightly by in-
putting a target word and predicting the context.

FastText (Joulin et al., 2016) characterizes each
word as an n-gram of characters rather than an
atomic entity. So each word vector is the sum
of word vectors of the target word’s n-gram (e.g.
“app,” “ppl,” “ple” for “apple”). This is especially
useful for rare words that might not exist in the
corpus and accounting for misspellings.

Fig. 5 illustrates the above word embedding al-
gorithms used on three different correlated word
sets and statistics. In addition to comparing differ-
ent word embedding algorithms, we also compare
three different bias metrics on the Word2Vec al-
gorithm: (1) the axis projection metric defined in
Sec. 4.1; (2) the relative L2 norm difference (Garg
et al., 2018); and the (3) relative L2 norm ratio.
Unlike the axis projection, metrics (2) and (3) both
compute the L2 norm from each word in the neu-
tral word set to the

−−→
male and

−−−−→
f emale vectors, and

then subtract or divide the two norms, respectively,
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Figure 7: Valence and dominance scores for decreased
pay gap words (blue) and increased pay gap words
(red). Affect is neutral at 4.5 (plotted in green).

returning the average over the word set.
The Fig. 5 results demonstrate that the gen-

der bias is present in the product of all four
word embedding algorithms, and is detectable
with all three metrics. The Word2Vec approach
with axis projection yields the highest coefficient
of determination— for both direct and indirect
correlation— across all three gender gap and word
set pairs. This is the algorithm and bias metric that
we use for all other experiments.

4.4 Valence and Dominance Analysis

Our Sec. 4.1 and Sec. 4.2 experiments specified
word sets a priori, but we can also identify and an-
alyze the individual words whose gender biases di-
rectly and indirectly correlate with statistical gen-
der gaps to find trends and commonalities.

We identified all adjectives in the word embed-
dings using WordNet and then computed each ad-
jective’s R2 score for direct or indirect correla-
tion with each U.S. gender gap statistic. We fil-
tered down the adjectives to those that correlate
directly or indirectly with R2 > 0.1. To illustrate,
Fig. 6 plots ten highest R2 words for direct (blue)
and indirect (red) correlation against the pay gap,
where blue adjectives’ female bias correlates with
reduced pay gap (higher wages) and red adjec-
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tives’ female bias correlates with increased pay
gap (lower wages) in U.S. embeddings.

For each statistic, we measured the valence
and the dominance of the directly- and indirectly-
correlated adjectives using scores from Warriner
et al. (2013). Fig. 7 shows a box plot of the valence
and dominance of the reduced-gender-gap adjec-
tives (blue) against increased-gender-gap adjec-
tives (red) for the gender pay gap statistic, where
the valence and dominance values for reduced gap
(Lo-Gap) are significantly higher than the valence
and dominance for increased gap (Hi-Gap) via t-
test, where p < 1.0e−7.

The same valence and dominance pattern held
for adjectives directly and indirectly correlated
with economic and educational gaps (i.e., Census
Workforce Ratio, Female State Legislators, and
Math & CS Degrees), where the valence and dom-
inance of Lo-Gap words were significantly higher
than Hi-Gap words with p < .005 throughout. The
difference in valence and dominance for CDC Ac-
tivity gap was not significant.

5 Conclusions

This paper characterized gender biases in Twitter-
derived word embeddings from multiple cultures
(99 countries and 51 U.S. regions) against statisti-
cal gender gaps in those cultures (18 international
and 5 U.S.-based statistics).

We demonstrated that thematically-grouped
word sets’ gender biases correlate with gender
gaps intuitively: word sets with a central topic
or valence correlate with gender gaps of a sim-
ilar topic, in a meaningful (positive or negative)
direction. This supports our claims (from Sec. 1)
that (1) cultural biases in language are correlated
with cultural gender gaps and (2) we can char-
acterize biases based on strength and direction of
correlation with these gaps. We also demonstrated
that these correlations are selective: not all topical
word sets’ biases correlate with all gender gaps,
and random word sets do not correlate. This sup-
ports our claim that themed word sets capture dif-
ferent dimensions of gender bias and gender gaps.

Finally, we identified adjectives whose biases
were highly correlated with increased and de-
creased gender gaps in education and economics,
and we found that the adjectives correlated with
increased gender gaps had statistically signifi-
cantly lower valence and dominance than those
correlated with decreased gender gaps. This is ev-

idence of a cross-cutting attitude towards gender
that we can characterize with future work.

The results of our three bias analyses are con-
sistent with the social theory that differences in
implicit gender valuation (e.g., linguistic gen-
der bias) manifest in different gender opportuni-
ties and status (e.g., gender gaps) (Berger et al.,
1972; Rashotte and Webster Jr, 2005). Specifi-
cally, when a culture attributes greater competence
and social status to a gender, that gender receives
higher rewards and evaluations (Dini, 2017).

Limitations and Future Work. Our use of
English-only tweets facilitated comparison across
embeddings, but it eliminates the native language
of many countries and creates cultural blind-spots.
Specifically, our use of English tweets does not
capture the voices of those that (1) lack access to
technology, (2) have poor knowledge of English,
and (3) simply do not use Twitter. One might
even argue that the gender bias effects may be even
more pronounced off-line due to social desirabil-
ity effects. Expanding to other languages presents
additional challenges, e.g., gendered words and
many-to-one vector mappings across languages,
but recent language transformers facilitate this
(Devlin et al., 2018). Incorporating additional lan-
guages and cultural texts are important next steps.

Previous Twitter word embedding approaches
blend tweets with news or Wikipedia to improve
NLP accuracy, using orders of magnitude more
text per embedding (Li et al., 2017). Blending
tweets with news may improve the embeddings’
accuracy for NLP tasks, but it also risks diluting
their implicit biases.

Finally, while our analyses illustrate correla-
tions between gender biases and statistical gen-
der gaps, they do not describe causality and they
have limited interpretive power. We believe that
integrating these methods with additional data and
causal models (e.g., Dirichlet mixture models and
Bayesian networks) will jointly improve interpre-
tation and accuracy.
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Abstract

Prior work has shown that word embeddings
capture human stereotypes, including gender
bias. However, there is a lack of studies testing
the presence of specific gender bias categories
in word embeddings across diverse domains.
This paper aims to fill this gap by applying
the WEAT bias detection method to four sets
of word embeddings trained on corpora from
four different domains: news, social network-
ing, biomedical and a gender-balanced cor-
pus extracted from Wikipedia (GAP). We find
that some domains are definitely more prone
to gender bias than others, and that the cat-
egories of gender bias present also vary for
each set of word embeddings. We detect some
gender bias in GAP. We also propose a sim-
ple but novel method for discovering new bias
categories by clustering word embeddings. We
validate this method through WEAT’s hypoth-
esis testing mechanism and find it useful for
expanding the relatively small set of well-
known gender bias word categories commonly
used in the literature.

1 Introduction

Artificial intelligence (AI) acquired from machine
learning is becoming more prominent in decision-
making tasks in areas as diverse as industry,
healthcare and education. AI-informed decisions
depend on AI systems’ input training data which,
unfortunately, can contain implicit racial, gender
or ideological biases. Such AI-informed deci-
sions can thus lead to unfair treatment of certain
groups. For example, in Natural Language Pro-
cessing (NLP), résumé search engines can pro-
duce rankings that disadvantage some candidates,
when these ranking algorithms take demographic
features into account (directly or indirectly) (Chen
et al., 2018), while abusive online language detec-
tion systems have been observed to produce false
positives on terms associated with minorities and

women (Dixon et al., 2018; Park et al., 2018).
Another example where bias (specifically gender
bias) can be harmful is in personal pronoun coref-
erence resolution, where systems carry the risk of
relying on societal stereotypes present in the train-
ing data (Webster et al., 2018).

Whilst gender bias in the form of concepts
of masculinity and femininity has been found
inscribed in implicit ways in AI systems more
broadly (Adam, 2006), this paper focuses on gen-
der bias on word embeddings.

Word embeddings are one of the most common
techniques for giving semantic meaning to words
in text and are used as input in virtually every neu-
ral NLP system (Goldberg, 2017). It has been
shown that word embeddings capture human bi-
ases (such as gender bias) present in these corpora
in how they relate words to each other (Boluk-
basi et al., 2016; Caliskan et al., 2017; Garg et al.,
2018). For the purposes of this paper, gender bias
is understood as the inclination towards or preju-
dice against one gender.

Several methods have been proposed to test
for the presence of gender bias in word em-
beddings; an example being the Word Embed-
ding Association Test (WEAT) (Caliskan et al.,
2017). WEAT is a statistical test that detects
bias in word embeddings using cosine similar-
ity and averaging methods, paired with hypothe-
sis testing. WEAT’s authors applied these tests to
the publicly-available GloVe embeddings trained
on the English-language “Common Crawl” corpus
(Pennington et al., 2014) as well as the Skip-Gram
(word2vec) embeddings trained on the Google
News corpus (Mikolov et al., 2013). However,
there is a diverse range of publicly-available word
embeddings trained on corpora of different do-
mains. To address this, we applied the WEAT
test on four sets of word embeddings trained on
corpora from four domains: social media (Twit-
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ter), a Wikipedia-based gender-balanced corpus
(GAP) and a biomedical corpus (PubMed) and
news (Google News, in order to reproduce and val-
idate our results against those of Caliskan et al.
(2017)) (see Section 3).

Caliskan et al. (2017) confirmed the presence of
gender bias using three categories of words well-
known to be prone to exhibit gender bias: (B1)
career vs. family activities, (B2) Maths vs. Arts
and (B3) Science vs. Arts. Garg et al. (2018) ex-
panded on this work and tested additional gender
bias word categories: (B4) differences on personal
descriptions based on intelligence vs. appear-
ance and on (B5) physical or emotional strength
vs. weakness. In this paper, we use these five cat-
egories to test for the presence of gender bias in
the aforementioned domain corpora. Notice that
one of the tested corpora is the gender-balanced
GAP corpus (Webster et al., 2018). We specif-
ically chose this corpus in order to test whether
the automatic method used to compile it (based on
sampling an equal number of male and female pro-
nouns from Wikipedia) yielded a set that was bal-
anced according to these five well-known gender
bias word categories. GAP’s authors acknowledge
that Wikipedia has been found to contain gender
biased content (Reagle and Rhue, 2011).

We confirmed bias in all five categories on the
Google News embeddings but far less bias on
the rest of the embeddings, with the biomedical
PubMed embeddings showing the least bias. We
did find some bias on GAP. However, given the
small size of this corpus, many test words were
not present (see Section 4).

The six word categories studied here are word
lists manually curated by Psychology researchers
based on their studies (e.g. Greenwald et al.,
1998). However, it is difficult to establish whether
they are exhaustive as there could be other word
categories presenting bias, which may well be
domain-dependant. In response, we developed a
simple method to automatically discover new cat-
egories of gender bias words based on word clus-
tering, and measuring statistical associations of
the words in each cluster to known female and
male attribute words. Assuming that each clus-
ter roughly represents a topic in the corpus, the
set of gender bias words in each cluster/topic in
the corpus corresponds to a potentially new cat-
egory of gender-biased words. As far as we are
aware, this is the first time a method to discover

new gender bias word categories is proposed. We
used WEAT’s hypothesis testing mechanism to au-
tomatically validate the induced gender bias word
categories produced by our system. A visual in-
spection on a sample of these induced categories
is consistent with the authors’ intuitions of gender
bias. We make these induced categories available
to other researchers to study.1 An advantage of
this discovery method is that it allows us to detect
bias based on a corpus’ own vocabulary, even if it
is small, as is the case in the GAP corpus embed-
dings.

2 Previous Work

In word embeddings, words are represented in a
continuous vector space where semantically sim-
ilar words are mapped to nearby points (Gold-
berg, 2017, ch. 10). The underlying assump-
tion is that words that appear in similar con-
texts share similar meaning (Harris, 1954; Miller
and Charles, 1991). This context-based similar-
ity is operationalised through cosine similarity, a
well-established method for measuring the seman-
tic similarity of words in vector space (Schütze,
1998). Recently, however, researchers noticed
that cosine similarity was able to exhibit gender
biases captured through training on corpora and
started developing methods for mitigating this bias
(Bolukbasi et al., 2016). Caliskan et al. (2017)
then developed the Word Embedding Associa-
tion Test (WEAT), which is an adaptation of the
Implicit Association Test (IAT) from Psychology
(Greenwald et al., 1998) to measure biases in word
embeddings. The IAT measures a person’s auto-
matic association between mental representations
of concepts, based on their reaction times. Instead
of relying on reaction times, WEAT relies on co-
sine similarity. WEAT is based on two statistical
measures: (1) the effect size in terms of Cohen’s d,
which measures the association between suspected
gender biased words and two sets of reference
words (attribute words in WEAT’s terminology)
known to be intrinsically male and female, respec-
tively; and (2) a statistical hypothesis test that con-
firms this association. We borrow these statistical
measures in this paper. Garg et al. (2018) mea-
sured gender bias synchronically across historical
data covering 100 years of English language use.

Most work however has concentrated in meth-
1Code, generated embeddings and data available at

https://github.com/alfredomg/GeBNLP2019
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ods for mitigating gender bias in word embed-
dings. One approach is debiasing learnt cor-
pora (Bolukbasi et al., 2016), which is achieved
using algorithms that modify word embeddings
in such a way that neutralises stereotypical co-
sine similarities. Another approach is creating
gender-balanced corpora, such as the GAP corpus
(balanced corpus of Gendered Ambiguous Pro-
nouns) (Webster et al., 2018). Roughly speaking,
GAP was developed by sampling sentences from
Wikipedia in such a way that an equal number of
male and female personal pronouns was obtained.
Its main use is in the evaluatiation of systems that
resolve the coreference of gendered ambiguous
pronouns in English. In a similar vain, Dixon et al.
(2018) builds a balanced corpora that seeks to neu-
tralise toxic mentions of identity terms.

To the best of our knowledge there has not been
work testing for bias on corpora from different
domains. Also, we believe this is the first time
an unsupervised method for discovering new gen-
der bias word categories from word embeddings is
proposed.

3 Choice of Word Embeddings

English-language word embeddings were selected
with the intention of giving an insight into gender
bias over a range of domains and with the expec-
tation that some word embeddings would demon-
strate much more bias than others. The word em-
beddings selected were: (a) Skip-Gram embed-
dings trained on the Google News corpus2, with
a vocabulary of 3M word types (Mikolov et al.,
2013); (b) Skip-Gram embeddings trained on 400
million Twitter micro-posts3, with a vocabulary of
slightly more than 3M word types (Godin et al.,
2015); (c) Skip-Gram embeddings trained on the
PubMed Central Open Access subset (PMC) and
PubMed4, with a vocabulary of about 2.2M word
types (Chiu et al., 2016) and trained using two dif-
ferent sliding window sizes: 2 and 30 words; (d)
FastText embeddings trained on the GAP corpus
(Webster et al., 2018) by us5, with a vocabulary of
7,400 word types.

2https://tinyurl.com/mpzqe5o
3https://github.com/loretoparisi/

word2vec-twitter
4https://github.com/cambridgeltl/

BioNLP-2016
5See footnote 1.

4 WEAT Hypothesis Testing

4.1 Experimental Protocol

We largely follow the WEAT Hypothesis testing
protocol introduced by Caliskan et al. (2017). The
input is a suspected gender bias word category rep-
resented by two lists, X and Y , of target words,
i.e. words which are suspected to be biased to one
or another gender. E.g. X = {programmer, en-
gineer, scientist}, Y = {nurse, teacher, librarian}.
We wish to test whether X or Y is more biased to
one gender or the other, or whether there is not dif-
ference in bias between the two lists. Bias is com-
pared in relation to two reference lists of words
that represent unequivocally male and female con-
cepts. E.g. M = {man, male, he}, F = {woman,
female, she}. In WEAT’s terminology these refer-
ence lists are called the attribute words. Table 1
shows the target and attribute word sets used in our
experiments.

The null hypothesis Ho is that there is no differ-
ence between X and Y in terms of their relative
(cosine) similarity to M and F . Assuming that
there is a word embedding vector ~w (trained on
some corpus from some domain) for each word w
in X , Y , M and F , we compute the following test
statistic:

s(X,Y,M,F ) =
∑

x∈X
s(x,M,F )−

∑

y∈Y
s(y,M,F )

(1)
where s(w,M,F ) is the measure of association
between target word w and the attribute words in
M and F :

s(w,M,F ) =

1

|M |
∑

m∈M
cos(~w, ~m)− 1

|F |
∑

f∈F
cos(~w, ~f) (2)

In Caliskan et al. (2017) Ho is tested through
a permutation test, in which X ∪ Y is parti-
tioned into alternative target lists X̂ and Ŷ ex-
haustively and computing the one-sided p-value
p[s(X̂, Ŷ ,M, F ) > s(X,Y,M,F )], i.e. the pro-
portion of partition permutations X̂ , Ŷ in which
the test statistic s(X̂, Ŷ ,M, F ) is greater than the
observed test statistic s(X,Y,M,F ). This p-value
is the probability that Ho is true. In other words,
it is the probability that there is no difference be-
tween X and Y (in relation to M and F ) and
therefore that the word category is not biased. The
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Attribute words
M male, man, boy, brother, he, him, his, son, father, uncle, grandfather
F female, woman, girl, sister, she, her, hers, daughter, mother, aunt, grandmother

Ta
rg

et
w

or
ds

B1: career vs family
X executive, management, professional, corporation, salary, office, business, career
Y home, parents, children, family, cousins, marriage, wedding, relatives

B2: maths vs arts
X math, algebra, geometry, calculus, equations, computation, numbers, addition
Y poetry, art, Shakespeare, dance, literature, novel, symphony, drama

B3: science vs arts
X science, technology, physics, chemistry, Einstein, NASA, experiment, astronomy
Y poetry, art, Shakespeare, dance, literature, novel, symphony, drama

B4: intelligence vs appearance

X

precocious, resourceful, inquisitive, genius, inventive, astute, adaptable, reflective,
discerning, intuitive, inquiring, judicious, analytical, apt, venerable, imaginative,
shrewd, thoughtful, wise, smart, ingenious, clever, brilliant, logical, intelligent

Y

alluring, voluptuous, blushing, homely, plump, sensual, gorgeous, slim, bald,
athletic, fashionable, stout, ugly, muscular, slender, feeble, handsome, healthy,
attractive, fat, weak, thin, pretty, beautiful, strong

B5: strength vs weakness
X

power, strong, confident, dominant, potent, command, assert, loud, bold, succeed,
triumph, leader, shout, dynamic, winner

Y
weak, surrender, timid, vulnerable, weakness, wispy, withdraw, yield, failure, shy,
follow, lose, fragile, afraid, loser

Table 1: Target words used for each gender-bias word category and attribute words used as gender reference

higher this p-value is the less bias there is. Follow-
ing Caliskan et al. (2017), in this work we consider
a word category to have statistically significant
gender bias if its p-value is below the 0.05 thresh-
old. Given that a full permutation test can quickly
become computationally intractable, in this pa-
per we instead use randomisation tests (Hoeffding,
1952; Noreen, 1989) with a maximum of 100,000
iterations in each test.

4.2 WEAT Results

Before experimentation we expected to find a
great deal of gender bias across the Google News
and Twitter embedding sets and far less in the
PubMed and GAP sets. However, results in Ta-
ble 2 are somewhat different to our expectations:

Google News We detect statistically significant
(p-values in bold) gender bias in all 5 categories
(B1-B5) on this corpus. Although one would hope
to find little gender bias in a news corpus, given
that its authors are professional journalists, bias
had already been detected by Caliskan et al. (2017)
and Garg et al. (2018) using methods similar to
ours. This is not surprising given that women rep-
resent only a third (33.3%) of the full-time journal-
ism workforce (Byerly, 2011). In addition, it has
been found that news coverage of female person-
alities more frequently mentions family situations
and is more likely to invoke matters of superficial
nature, such as personality, appearance and fash-
ion decisions, whereas the focus on men in news
coverage tends to be be given to their experience
and accomplishments (Armstrong et al., 2006).

Twitter On this social media set, we surpris-
ingly only detected bias on the career vs. family
(B1) category, although science vs. maths (B2) is
a borderline case with a p-value of just 0.0715, and
the rest of the values are not particularly high. We
also observe that most effect sizes (Cohen’s d) are
under 1, indicating relatively weaker associations
with the gender-specific attribute words from Ta-
ble 1. We leave for future work further analysis on
this set, however we hypothesise that the idiosyn-
cratic language use common in micro-blogging,
such as non-standard spelling and hashtags, divide
up the semantic signal of word embeddings, per-
haps diluting their association bias. Indeed, the
word categories showing most gender bias in the
discovery experiments (Section 5) include many
hashtags, punctuation marks and words with non-
standard spellings such as “alwaaaaays”, which
will not be tested for bias using standard-spelling
target words.

PubMed This biomedical set showed the least
gender bias, which was expected given its scien-
tific nature. However, it has been documented
that gender bias exists in biomedical studies given
that more clinical studies involve males than fe-
males, and also based on the differences in which
male and female patients report pain and other
medical complaints and, in turn, the differences in
which male and female health practitioners record
and understand these complaints (Fillingim et al.,
2009). It is possible that gender bias is still present
in these texts but it is manifested differently and
perhaps cannot be detected through word embed-
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Google News Twitter PubMed w2 PubMed w30 GAP
Categories p d p d p d p d p d

B1: career vs family 0.0012 1.37 0.0029 1.31 0.7947 -0.42 0.0962 0.67 0.0015 1.44

B2: maths vs arts 0.0173 1.02 0.1035 0.65 0.9996 -1.40 0.9966 -1.20 0.0957 1.04

B3: science vs arts 0.0044 1.25 0.0715 0.74 0.9797 -0.98 0.7670 -0.37 0.1434 0.71

B4: intelligence vs appearance 0.0001 0.98 0.1003 0.37 0.2653 0.18 0.0848 0.36 0.9988 -0.64

B5: strength vs weakness 0.0059 0.89 0.2971 0.20 0.0968 0.48 0.0237 0.72 0.0018 0.77

Table 2: WEAT hypothesis test results for corpora tested for five well-known gender-biased word categories. p-
values in bold indicate statistically significant gender bias (p < 0.05).

dings. Also of note is that across all five cate-
gories, bias is greater (smaller p-values) on the
30-word window set than on the 2-word window
set. It is known that window size affects seman-
tic similarity: larger window sizes tend to capture
broader, more topical similarities between words
whilst smaller windows capture more linguistic or
even syntactic similarities (Goldberg, 2017, Sec.
10.5). We leave for future work further analysis
on the bias effects of window sizes.

GAP Whilst GAP was specifically developed
with gender balance in mind, we did find some de-
gree of gender bias. In fact, given that it is derived
from a gender-biased source text (Wikipedia), we
actually expected to measure a higher degree of
gender bias. This relatively low bias measurement
could be due in part to the fact that GAP’s vocabu-
lary lacks many of the attribute and target word
lists used in the tests. Table 3 shows the num-
ber of out-of-vocabulary words from these lists
in PubMed and GAP (Google News and Twitter
did not have any out-of-vocabulary words). No-
tice that the category missing most target words
(intelligence vs. appearance category, B4) shows
the least bias. However, the second category that
misses most words (strength vs weakness, B5)
does indeed show bias to a medium-high effect
size of 0.77. This difficulty in assessing the relia-
bility of these tests, in the face of a relatively high
number of out-of-vocabulary attribute and target
words, is one of the reasons that inspired us to de-
velop a method for discovering new categories of
biased words from an embedding set’s own vocab-
ulary. Section 5 covers this method.

5 Discovering New Gender Bias Word
Categories

We propose a method for automatically detect-
ing new categories of gender-biased words from
a word embedding set. The simplest method in-

Attrs. Target Words
B1 B2 B3 B4 B5

M F X Y X Y X Y X Y X Y
TOTAL 11 11 8 8 8 8 8 8 25 25 15 15
PubMed 0 0 0 0 0 0 0 0 0 1 0 0

GAP 0 1 1 1 6 1 4 1 21 18 7 9

Table 3: Number of out-of-vocabulary target and at-
tribute words in the PubMed and GAP embeddings.
Google and Twitter embeddings contain all words.

volves constructing a list of male- and female-
biased words from a word embedding vocabulary
through eq. (2). However, the resulting list would
not have a topical or semantic cohesion as the cat-
egories B1-B5 have. We propose instead to first
cluster the word vectors in an embedding set and
then return a list of male- and female-associated
word lists per cluster. We expect these cluster-
based biased word lists to be more topically co-
hesive. By controlling for the number and size of
clusters it should be possible to find more or less
fine-grained categories.

We cluster embedings using K-Means++
(Arthur and Vassilvitskii, 2007), as implemented
by scikit-learn (Pedregosa et al., 2011), using 100
clusters for GAP and 3,000 for Google News,
Twitter and PubMed (window size 30 only). This
algorithm was chosen as it is fast and produces
clusters of comparable sizes. For each cluster
we then return the list of n most male- and
female-associated words (as per eq. 2): these
are the discovered gender bias word categories
candidates. Table 4 shows a selection of these
candidates.6

Upon visual inspection, most of these candi-
dates seem to be somewhat cohesive. We notice
that on Google News and GAP many of the clus-
ters relate to people’s names (Google News clus-
ter 2369) whilst others mix people’s names with

6All candidates in paper repo. See footnote 1.

29



Gender Biased words
Clus. Male Female d

2763 1.97

2369 1.97

2995 1.97

2424 1.97

7 1.97

991 1.97

2998 1.97

2993 1.97

1092 1.97

559 1.97

84 1.74

93 1.95

73 1.91

18 1.91

eating_cheeseburgers, Tuna_Helper, 
Kielbasa, Turtle_Soup, beef_patty_topped, 
noodle_stir_fry, fried_broiled, trencherman, 
magnate_Herman_Cain, knockwurst, 
cracklins, hearty, juicy_steaks, 
Philly_Cheesesteak, duck_goose, PBJ, 
loafs, Eat_MREs, Cheddar_cheeses, 
pizzas_salads

Gingersnap, Blueberry_Pie, 
champagne_truffles, bake_brownies, 
Bon_Bons, Seasonal_Fruit, bakes_cakes, 
Sinfully, Lemon_Curd, Tagalong, 
Godiva_Chocolate, brownie_bites, Adoree, 
apple_crisps, Elinor_Klivans, Mud_Pie, 
decorate_cupcakes, granola_cereal, 
baked_apple_pie, cakes_cupcakes

Luke_Schenscher, Stetson_Hairston, 
Jake_Odum, Maureece_Rice, 
Errick_Craven, Marcus_Hatten, 
Jeremiah_Rivers, JR_Pinnock, 
Tom_Coverdale, Isacc_Miles, 
Brian_Wethers, Jeff_Varem, Matt_Pressey, 
Tyrone_Barley, Tavarus_Alston, 
Kojo_Mensah, Marcellus_Sommerville, 
Lathen_Wallace, Jordan_Cornette, 
Willie_Deane

Jayne_Appel, Cappie_Pondexter, 
Betty_Lennox, Kara_Lawson, 
Janel_McCarville, Lisa_Leslie, 
Deanna_Nolan, Sancho_Lyttle, 
Seimone_Augustus, Candice_Wiggins, 
Gearlds, Jessica_Davenport, 
Plenette_Pierson, Wisdom_Hylton, 
Lindsey_Harding, Yolanda_Griffith, 
Elena_Baranova, Loree_Moore, Taurasi, 
Noelle_Quinn

vetran, defens, ennis, 3AW_Debate, efore, 
carrer, redknapp, exellent, shanny, slater, 
shanahan, afridi, brees, westbrook, Thudd, 
dirk, feild, righ, duhhh, arsene_wenger

lolita, shiloh, beverly_hills, middleton, extr, 
leah, dwts, sophie, aniston, kathryn, liza, 
kristen_stewart, celine, kristin, tess, elena, 
alexandra, versace, alison, michelle_obama

brewing_vats, Refrigeration_Segment, 
Sealy_mattress, anesthesia_workstations, 
outdoor_Jacuzzis, Otis_elevators_Carrier, 
panels_moldings, Van, CPVC_pipes, 
refurbed, dome_coverings, 
covered_amphitheater_Astroturf, 
JES_Restaurant, 
beakers_flasks_wiring_Hazmat, 
Home_3bdrm_2ba, mold_peeling_paint, 
Zanussi, hoovers, Brendan_Burford, 
grills_picnic_tables

Corningware, Lowenborg_Frick, 
Aveda_bath, upholstery_carpets, 
bedside_commodes, 
Janneke_Verheggen_spokeswoman, 
hipster_tastemaker_Kelly_Wearstler, 
vacuuming_robot, dinettes, 
comforters_sheets, robes_slippers, 
Wolfgang_Puck_Bistro, neck_massager, 
breakrooms, china_cutlery, 
jewelers_florists, linen_towels, 
Frette_sheets, holding_freshly_diapered, 
china_flatware

#HEG_NUMBER_, #zimdecides, 
#goingconcern, #twobirdswithonestone, 
#BudSelig, #LeedsUnitedAFC, #Buyout, 
#Batting, #rickyhatton, #baddeal, 
#ChaudhryAslam, #radio_NUMBER_today, 
DETROYT, #findtim, #houndsleadthepack, 
#Warcriminal, #spil, #kenyakwanza, 
#commonpurpose, #patriotway

#Charade, #lcchat, #charlizetheron, 
#horoscopo, #DiamondJubilee, #paternity, 
#tombola, #singlepeople, #Fabian, #Flipper, 
#toilettraining, #eca_NUMBER_, 
#financialadvisers, #tn_NUMBER_, Swift-
boated, #dailytips, #Aramex, #MBCAware, 
#Glaciers, #RiverValley

hewy, Suchecki, furgie, Huebert, bseball, 
jump-pass, gaudreau, #Thakur, lookalikey, 
lavalle, _NUMBER_verse, Timonen's, 
#Kipper, Kouleas, Mannjng, #wetpanda, 
oriels, Drowney, Brucato, sczesney

perrrrlease, VoteVictorious, olone, Chick-fi-
la, InVasion, #DinahTo_NUMBER_K, 
Chika's, 
relaxxxxxxxxzzzxxzxxzxzxzxzzzzxxsssseee
eeeezzzxxx, Heliodore, Kandia, Shakeita, 
flowers/plants, dress/heels, sexy-times, 
#sobersunday, Teonia, shrinkies, Kokiri's, 
solutely, gayke

Swishhhhhh, Johnsonnn, #dadadadadada, 
Coyh, #HappyBdaySpezz, #RawRivals, 
#Fastandthefurious, 
#HedoIsTheBestOnTwitter, LeJames, 
#spursheat, #sidelined, #BackInYourBox, 
#fuckmanutd, #FellainiFacts, #LosBravos, 
#GreatestPlayerIHaveEverSeen, 
TouchDwn, #celticsvsknicks, Irte, 
#MSQuotes

#tiffanymynx, #solvetheriddle, 
#mandybright, #getthehelloutofhere, 
#RedSoles, #that'lldopig, #MeetVirginia, 
#freenudes, #KeepitClassy, #lushlive, 
#PeaceMessageIn_NUMBER_FromCarolis
hFamily, #GotOne, #itsnotfine, 
#thursdayhurryup, #gentletweets, 
#InDesperateNeed, #PackInMore, 
masterpieceee, somebodytellmewhy, 
#biggestflaw

JSK, 1938-1952, Johann-Wolfgang-Goethe, 
Winstein, Argenteuil, Alfried, Critica, NUST, 
traumatologie, Saarow, Urologische, 
carDiac, Neustadt/Saale, Massy, 
Umgebung, 1925-1927, Eli-Lilly, 
Commented, Senden, Maisons

gynecology-important, non-CEE, Breast-, 
Oketani, RiSk, MIREC, NASPAG, Cervitula, 
PDCU, cervical-ripening, Step-2, Kimia, 
Skin-to-Skin, Eeva, AdHOC, NMDSP, lipid-
management, CEPAM, NCT00397150, 
Mass-screening

3beta, 19-NA, Leyding, u-PAI, 
nonpinealectomized, DHA-s, 
hydrocortisone-supplemented, misulban, 
Burd, CHH/KS, NEP28, adrenostasis, JNF, 
dihydrotestosterone-, appetite-stimulatory, 
P-hGH, d-Leu6, GIP-treated, alpha-methyl-
DHT, pineal-gland, DESPP

embryo/foetus, hormonally-dependent, 
gland-stroma, 16α-OHE1, conceptus-
produced, Lactogenesis, nERalpha, mid-
reproductive, relaxin-deficient, 64.0-kDa, 
pre-synchronized, 17alpha, 20alpha-
dihydroxypregn-4-en-3-one, 
pseudogestation, foetectomy, E2-
dominated, Pinopodes, 
midpseudopregnancy, estrous-cycle, LH-
only, blood-mammary

examiniations, cholangiocarcinoma., 
phlebolithiasis, Celiacography, 79-year-old-
woman, 6 cases, spermatocystitis, 
microbladder, otorhino-laryngological, 
FACD, neurogen, Cryodestruction, 
bladder-, Diverticuli, pseudo-angina, 
epididymo-testicular, Rendu-Weber-Osler, 
Dystopic, Lazorthes, AISO

Conisation, TV-US, sonohysterogram, peri, 
tracheloscopy, Salpingo-oophorectomy, 
hysteroscopic-guided, endosalpingitis, 
perifimbrial, previa-percreta, hystero-
salpingography, pudendum, auto-
amputated, hysterometry, Peritubal, 
isthmocervical, ovserved, hemosalpinx, 
Hysterosalpingo, necrosis/dehiscence

critical, artistic, commercial, vocal, era, pop, 
article, project, comic, projects, 
commercials, science, artists, editions, 
critic, popular, sports, introduction, articles, 
vocals

roles, films, television, two, drama, 
producer, worker, musicians, producers, 
magazine, produce, programmes, version, 
products, credits, music, opera, portrayal, 
features, direct

captures, tribe, struck, brain, Asgard, 
capacity, coin, reinforcements, favour, 
corpse, assault, license, referee, system, 
aide, proceedings, strigoi, loyalty, Yu, 
energy

Owen, green, parole, rapper, telephone, 
together, personally, shoe, heroine, chosen, 
between, storyline, clothes, ghost, daily, 
Pink, spell, neighborhood, adult, Ramona

resulted, responded, considered, 
constructed, used, respected, accused, 
committed, ordered, recognized, 
participated, charged, recommended, 
focused, devoted, instructed, captured, 
regarded, demonstrated, controlled

played, disappeared, stayed, named, 
arranged, betrayed, hatred, displayed, 
Damaged, danced, shared, Jared, Named, 
hosted, abandoned, teamed, separated, 
Voiced, appealed, welcomed

treat, inside, demands, capable, proceeds, 
crash, skills, buy, far, unable, cash, 
struggle, promises, guilty, threat, fun, 
engage, bail, boat, toward

stolen, actually, friend, even, stays, fallen, 
Tina, sit, sex, doll, alive, sick, night, totally, 
boy, sheet, step, knew, still, Esme
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Table 4: Selection of induced gender bias word cate-
gories per cluster.

more obviously biased words (Google News clus-
ter 2995 and most GAP clusters). It is clear that
this method detects thematically-cohesive groups
of gender-associated words. However, not all
words seem to be genuinely gender biased in a
harmful way. We leave for future work the devel-
opment of a filtering or classification step capable
of making this distinction.

In order to test whether the candidates’ bias is
statistically significant, we applied the full WEAT
hypothesis testing protocol, using randomised
tests of 1,000 iterations per cluster to make the
computation tractable. All clusters across all em-
bedding sets returned a p-value < 0.001. The ef-
fect size (Cohen’s d) was quite high across all clus-
ters, averaging 1.89 for Google News, 1.87 for
Twitter, 1.88 for PubMed and 1.67 for GAP. We
leave for future work to conduct a human-based
experiment involving experts on gender bias on
different domains and languages other than En-
glish to further validate our outputs. Emphasis will
be placed on assessing the usefulness of this tool
for domains and languages lacking or seeking to
develop lists of gender bias word categories.

6 Conclusions and Future Work

We have shown that there are varying levels of
bias for word embeddings trained on corpora of
different domains and that within the embed-
dings, there are different categories of gender bias
present. We have also developed a method to
discover potential new word categories of gender
bias. Whilst our clustering method discovers new
gender-associated word categories, the induced
topics seem to mix harmless gender-associated
words (like people names) with more obviously
harmful gender-biased words. So as a future de-
velopment, we would like to develop a classifier
to distinguish between harmless gender-associated
words and harmful gender-biased words. We wish
to involve judgements by experts on gender bias in
this effort, as well as exploiting existing thematic
word categories from lexical databases like Word-
Net (Fellbaum, 1998), ontologies and terminolo-
gies. At the same time, we will also seek to mea-
sure the negative impact of discovered categories
in NLP systems’ performance. We also wish to
more closely investigate the relationships between
different word embedding hyperparameters, such
sliding window size in the PubMed set, and their
learned bias.
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Abstract

Gender bias is highly impacting natural lan-
guage processing applications. Word embed-
dings have clearly been proven both to keep
and amplify gender biases that are present in
current data sources. Recently, contextual-
ized word embeddings have enhanced previ-
ous word embedding techniques by computing
word vector representations dependent on the
sentence they appear in.

In this paper, we study the impact of this con-
ceptual change in the word embedding compu-
tation in relation with gender bias. Our analy-
sis includes different measures previously ap-
plied in the literature to standard word em-
beddings. Our findings suggest that contextu-
alized word embeddings are less biased than
standard ones even when the latter are debi-
ased.

1 Introduction

Social biases in machine learning, in general and
in natural language processing (NLP) applications
in particular, are raising the alarm of the scien-
tific community. Examples of these biases are
evidences such that face recognition systems or
speech recognition systems work better for white
men than for ethnic minorities (Buolamwini and
Gebru, 2018). Examples in the area of NLP are
the case of machine translation that systems tend
to ignore the coreference information in benefit of
a stereotype (Font and Costa-jussà, 2019) or sen-
timent analysis where higher sentiment intensity
prediction is biased for a particular gender (Kir-
itchenko and Mohammad, 2018).

In this work we focus on the particular NLP area
of word embeddings (Mikolov et al., 2010), which
represent words in a numerical vector space. Word
embeddings representation spaces are known to
present geometrical phenomena mimicking rela-
tions and analogies between words (e.g. man is to

woman as king is to queen). Following this prop-
erty of finding relations or analogies, one popular
example of gender bias is the word association be-
tween man to computer programmer as woman to
homemaker (Bolukbasi et al., 2016). Pre-trained
word embeddings are used in many NLP down-
stream tasks, such as natural language inference
(NLI), machine translation (MT) or question an-
swering (QA). Recent progress in word embed-
ding techniques has been achieved with contex-
tualized word embeddings (Peters et al., 2018)
which provide different vector representations for
the same word in different contexts.

While gender bias has been studied, detected
and partially addressed for standard word embed-
dings techniques (Bolukbasi et al., 2016; Zhao
et al., 2018a; Gonen and Goldberg, 2019), it is not
the case for the latest techniques of contextualized
word embeddings. Only just recently, Zhao et al.
(2019) present a first analysis on the topic based on
the proposed methods in Bolukbasi et al. (2016).
In this paper, we further analyse the presence of
gender biases in contextualized word embeddings
by means of the proposed methods in Gonen and
Goldberg (2019). For this, in section 2 we pro-
vide an overview of the relevant work on which
we build our analysis; in section 3 we state the
specific request questions addressed in this work,
while in section 4 we describe the experimental
framework proposed to address them and in sec-
tion 5 we present the obtained and discuss the re-
sults; finally, in section 6 we draw the conclusions
of our work and propose some further research.

2 Background

In this section we describe the relevant NLP tech-
niques used along the paper, including word em-
beddings, their debiased version and contextual-
ized word representations.
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2.1 Words Embeddings

Word embeddings are distributed representations
in a vector space. These vectors are normally
learned from large corpora and are then used in
downstream tasks like NLI, MT, etc. Several ap-
proaches have been proposed to compute those
vector representations, with word2vec (Mikolov
et al., 2013) being one of the dominant options.
Word2vec proposes two variants: continuous bag
of words (CBoW) and skipgram, both consisting
of a single hidden layer neural network trained on
predicting a target word from its context words for
CBoW, and the opposite for the skipgram variant.
The outcome of word2vec is an embedding table,
where a numeric vector is associated to each of the
words included in the vocabulary.

These vector representations, which in the end
are computed on co-occurrence statistics, exhibit
geometric properties resembling the semantics of
the relations between words. This way, subtract-
ing the vector representations of two related words
and adding the result to a third word, results in a
representation that is close to the application of the
semantic relationship between the two first words
to the third one. This application of analogical re-
lationships have been used to showcase the bias
present in word embeddings, with the prototypical
example that when subtracting the vector repre-
sentation of man from that of computer and adding
it to woman, we obtain homemaker.

2.2 Debiased Word Embeddings

Human-generated corpora suffer from social bi-
ases. Those biases are reflected in the co-
occurrence statistics, and therefore learned into
word embeddings trained in those corpora, ampli-
fying them (Bolukbasi et al., 2016; Caliskan et al.,
2017).

Bolukbasi et al. (2016) studied from a geomet-
rical point of view the presence of gender bias in
word embeddings. For this, they compute the sub-
space where the gender information concentrates
by computing the principal components of the dif-
ference of vector representations of male and fe-
male gender-defining word pairs. With the gender
subspace, the authors identify direct and indirect
biases in profession words. Finally, they mitigate
the bias by nullifying the information in the gen-
der subspace for words that should not be associ-
ated to gender, and also equalize their distance to
both elements of gender-defining word pairs.

Zhao et al. (2018b) proposed an extension
to GloVe embeddings (Pennington et al., 2014)
where the loss function used to train the embed-
dings is enriched with terms that confine the gen-
der information to a specific portion of the embed-
ded vector. The authors refer to these pieces of
information as protected attributes. Once the em-
beddings are trained, the gender protected attribute
can be simply removed from the vector representa-
tion, therefore eliminating any gender bias present
in it.

The transformations proposed by both Boluk-
basi et al. (2016) and Zhao et al. (2018b) are down-
stream task-agnostic. This fact is used in the work
of Gonen and Goldberg (2019) to showcase that,
while apparently the embedding information is re-
moved, there is still gender information remaining
in the vector representations.

2.3 Contextualized Word Embeddings

Pretrained Language Models (LM) like ULMfit
(Howard and Ruder, 2018), ELMo (Peters et al.,
2018), OpenAI GPT (Radford, 2018; Radford
et al., 2019) and BERT (Devlin et al., 2018), pro-
posed different neural language model architec-
tures and made their pre-trained weights avail-
able to ease the application of transfer learning
to downstream tasks, where they have pushed the
state-of-the-art for several benchmarks including
question answering on SQuAD, NLI, cross-lingual
NLI and named identity recognition (NER).

While some of these pre-trained LMs, like
BERT, use subword level tokens, ELMo provides
word-level representations. Peters et al. (2019)
and Liu et al. (2019) confirmed the viability of
using ELMo representations directly as features
for downstream tasks without re-training the full
model on the target task.

Unlike word2vec vector representations, which
are constant regardless of their context, ELMo
representations depend on the sentence where the
word appears, and therefore the full model has to
be fed with each whole sentence to get the word
representations.

The neural architecture proposed in ELMo (Pe-
ters et al., 2018) consists of a character-level con-
volutional layer processing the characters of each
word and creating a word representation that is
then fed to a 2-layer bidirectional LSTM (Hochre-
iter and Schmidhuber, 1997), trained on language
modeling task on a large corpus.
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3 Research questions

Given the high impact of contextualized word em-
beddings in the area of NLP and the social con-
sequences of having biases in such embeddings,
in this work we analyse the presence of bias in
these contextualized word embeddings. In partic-
ular, we focus on gender biases, and specifically
on the following questions:

• Do contextualized word embeddings exhibit
gender bias and how does this bias compare
to standard and debiased word embeddings?

• Do different evaluation techniques identify
bias similarly and what would be the best
measure to use for gender bias detection in
contextualized embeddings?

To address these questions, we adapt and con-
trast with the evaluation measures proposed by
Bolukbasi et al. (2016) and Gonen and Goldberg
(2019).

4 Experimental Framework

As follows, we define the data and resources that
we use for performing our experiments. The ap-
proach motivation is applying the experiments on
contextualized word embeddings.

We worked with the English-German news cor-
pus from the WMT181. We used the English side
with 464,947 lines and 1,004,6125 tokens.

To perform our analysis, we used a set of lists
from previous work (Bolukbasi et al., 2016; Go-
nen and Goldberg, 2019). We refer to the list of
definitional pairs 2 as ‘Definitonal List’ (e.g. she-
he, girl-boy). We refer to the list of female and
male professions 3 as ‘Professional List’ (e.g. ac-
countant, surgeon). The ‘Biased List’ is the list
used in the clustering experiment and it consists of
biased male and female words (500 female biased
tokens and 500 male biased token). This list is
generated by taking the most biased words, where
the bias of a word is computed by taking its projec-
tion on the gender direction (

−→
he-
−→
she) (e.g. breast-

feeding, bridal and diet for female and hero, cigar
and teammates for male). The ‘Extended Biased

1http://data.statmt.org/
wmt18/translation-task/
training-parallel-nc-v13.tgz

2https://github.com/tolga-b/debiaswe/
blob/master/data/definitional_pairs.json

3https://github.com/tolga-b/debiaswe/
blob/master/data/professions.json

List’ is the list used in classification experiment,
which contains 5000 male and female biased to-
kens, 2500 for each gender, generated in the same
way of the Biased List4. A note to be considered,
is that the lists we used in our experiments (and
obtained from Bolukbasi et al. (2016) and Gonen
and Goldberg (2019)) may contain words that are
missing in our corpus and so we cannot obtain
contextualized embeddings for them.

Among different approaches to contextualized
word embeddings (mentioned in section 2), we
choose ELMo (Peters et al., 2018) as contextual-
ized word embedding approach. The motivation
for using ELMo instead of other approaches like
BERT (Devlin et al., 2018) is that ELMo provides
word-level representations, as opposed to BERT’s
subwords. This makes it possible to study the
word-level semantic traits directly, without resort-
ing to extra steps to compose word-level informa-
tion from the subwords that could interfere with
our analyses.

5 Evaluation measures and results

There is no standard measure for gender bias, and
even less for such the recently proposed contextu-
alized word embeddings. In this section, we adapt
gender bias measures for word embedding meth-
ods from previous work (Bolukbasi et al., 2016)
and (Gonen and Goldberg, 2019) to be applicable
to contextualized word embeddings.

We start by computing the gender subspace
from the ELMo vector representations of gender-
defining words, then identify the presence of direct
bias in the contextualized representations. We then
proceed to identify gender information by means
of clustering and classifications techniques. We
compare our results to previous results from debi-
ased and non-debiased word embeddings (Boluk-
basi et al., 2016) .

Detecting the Gender Space Bolukbasi et al.
(2016) propose to identify gender bias in word rep-
resentations by computing the direction between
representations of male and female word pairs
from the Definitional List (

−→
he-
−→
she,−−→man-−−−−−→woman)

and computing their principal components.
In the case of contextualized embeddings, there

is not just a single representation for each word,
but its representation depends on the sentence it

4Both ‘Biased List’ and ‘Extended Biased List’ were
kindly provided by Hila Gonen to reproduce experiments
from her study (Gonen and Goldberg, 2019)
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Figure 1: (Left) the percentage of variance explained in the PC of definitional vector differences. (Right) The
corresponding percentages for random vectors.

appears in. Hence, in order to compute the gender
subspace we take the representation of words by
randomly sampling sentences that contain words
from the Definitional List and, for each of them,
we swap the definitional word with its pair-wise
equivalent from the opposite gender. We then ob-
tain the ELMo representation of the definintional
word in each sentence pair, computing their differ-
ence. On the set of difference vectors, we compute
their principal components to verify the presence
of bias. In order to have a reference, we computed
the principal components of representation of ran-
dom words.

Similarly to Bolukbasi et al. (2016), figure 1
shows that the first eigenvalue is significantly
larger than the rest and that there is also a single di-
rection describing the majority of variance in these
vectors, still the difference between the percentage
of variances is less in case of contextualized em-
beddings, which may refer that there is less bias
in such embeddings. In the right graph of the fig-
ure, we can easily note the difference in the case
of random, where the data is not concentrated in
a specific direction, as the weight is spread among
all components.

A similar conclusion was stated in the recent
work (Zhao et al., 2019) where the authors ap-
plied the same approach, but for gender swapped
variants of sentences with professions. They com-
puted the difference between the vectors of occu-
pation words in corresponding sentences and got a
skewed graph where the first component represent
the gender information while the second compo-
nent groups the male and female related words.

Direct Bias Direct Bias is a measure of how
close a certain set of words are to the gender vec-
tor. To compute it, we extracted from the training

data the sentences that contain words in the Profes-
sional List. We excluded the sentences that have
both a professional token and definitional gender
word to avoid the influence of the latter over the
presence of bias in the former. We applied the def-
inition of direct bias from Bolukbasi et al. (2016)
on the ELMo representations of the professional
words in these sentences.

1

|N |
∑

wεN

|cos(~w, g)| (1)

where N is the amount of gender neutral words,
g the gender direction, and ~w the word vector of
each profession. We got direct bias of 0.03, com-
pared to 0.08 from standard word2vec embeddings
described in Bolukbasi et al. (2016). This reduc-
tion on the direct bias confirms that the substan-
tial component along the gender direction that is
present in standard word embeddings is less for the
contextualized word embeddings. Probably, this
reduction comes from the fact that we are using
different word embeddings for the same profes-
sion depending on the sentence which is a direct
consequence and advantage of using contextual-
ized embeddings.

Male and female-biased words clustering. In
order to study if biased male and female words
cluster together when applying contextualized em-
beddings, we used k-means to generate 2 clusters
of the embeddings of tokens from the Biased list.
Note that we cannot use several representations for
each word, since it would not make any sense to
cluster one word as male and female at the same
time. Therefore, in order to make use of the ad-
vantages of the contextualized embeddings, we re-
peated 10 independent experiments, each with a
different random sentence of each word from the
list of biased male and female words.

36



Figure 2: K-means clustering, the yellow color repre-
sents the female and the violet represents the male

Among these 10 experiments, we got a min-
imum accuracy of 69.1% and a maximum of
71.3%, with average accuracy of 70.1%, much
lower than in the case of biased and debiased word
embeddings which were 99.9 and 92.5, respec-
tively, as stated in Gonen and Goldberg (2019).
Based on this criterion, even if there is still bias in-
formation to be removed from contextualized em-
beddings, it is much less than in case of standard
word embeddings, even if debiased.

The clusters (for one particular experiment out
of the 10 of them) are shown in Figure 2 after
applying UMAP (McInnes et al., 2018; McInnes
et al., 2018) to the contextualized embeddings.

Classification Approach In order to study if
contextualized embeddings learn to generalize
bias, we trained a Radial Basis Function-kernel
Support Vector Machine classifier on the embed-
dings of random 1000 biased words from the Ex-
tended Biased List. After that, we evaluated the
generalization on the other random 4000 biased to-
kens. Again, we performed 10 independent exper-
iments, to guarantee randomization of word repre-
sentations. Among these 10 experiments, we got a
minimum accuracy of 83.33% and a maximum of
88.43%, with average accuracy of 85.56%. This
number shows that the bias is learned in these em-
beddings with high rate. However, it learns in
a lower rate than the normal embeddings, whose
classification reached 88.88% and 98.25% for de-
biased and biased versions, respectively.

K-Nearest Neighbor Approach To understand
more about the bias in contextualized embeddings,
it is important to analyze the bias in the profes-
sions. The question is whether these embeddings
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Figure 3: Visualization of contextualized embeddings
of professions.

stereotype the professions as the normal embed-
dings. This can be shown by the nearest neighbors
of the female and male stereotyped professions,
for example ‘receptionist’ and ‘librarian’ for fe-
male and ‘architect’ and ‘philosopher’ for male.
We applied the k nearest neighbors on the Profes-
sional List, to get the nearest k neighbor to each
profession. We used a random representation for
each token of the profession list, after applying
the k nearest neighbor algorithm on each profes-
sion, we computed the percentage of female and
male stereotyped professions among the k nearest
neighbor of each profession token. Afterwards,
we computed the Pearson correlation of this per-
centage with the original bias of each profession.
Once again, to assure randomization of tokens,
we performed 10 experiments, each with differ-
ent random sentences for each profession, there-
fore with different word representations. The min-
imum Pearson correlation is 0.801 and the max-
imum is 0.961, with average of 0.89. All these
correlations are significant with p-values smaller
than 1×10−40. This experiment showed the high-
est influence of bias compared to 0.606 for de-
biased embeddings and 0.774 for biased. Figure
3 demonstrates this influence of bias by showing
that female biased words (e.g. nanny) has higher
percent of female words than male ones and vice-
versa for male biased words (e.g. philosopher).

6 Conclusions and further work

While our study cannot draw clear conclusions
on whether contextualized word embeddings aug-
ment or reduce the gender bias, our results show
more insights into which aspects of the final con-
textualized word vectors get affected by such phe-
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nomena, with a tendency more towards reducing
the gender bias rather than the contrary.

Contextualized word embeddings mitigate gen-
der bias when measuring in the following aspects:

1. Gender space, which is capturing the gender
direction from word vectors, is reduced for
gender specific contextualized word vectors
compared to standard word vectors.

2. Direct bias, which is measuring how close set
of words are to the gender vector, is lower
for contextualized word embeddings than for
standard ones.

3. Male/female clustering, which is produced
between words with strong gender bias, is
less strong than in debiased and non-debiased
standard word embeddings.

However, contextualized word embeddings pre-
serve and even amplify gender bias when taking
into account other aspects:

1. The implicit gender of words can be pre-
dicted with accuracies higher than 80% based
on contextualized word vectors which is only
a slightly lower accuracy than when using
vectors from debiased and non-debiased stan-
dard word embeddings.

2. The stereotyped words group with implicit-
gender words of the same gender more than
in the case of debiased and non-debiased
standard word embeddings.

While all measures that we present exhibit cer-
tain gender bias, when evaluating future debiasing
methods for contextualized word embeddings it
would be worth putting emphasis on the latter two
evaluation measures that show higher bias than the
first three.

Hopefully, our analysis will provide a grain of
sand towards defining standard evaluation meth-
ods for gender bias, proposing effective debiasing
methods or even directly designing equitable algo-
rithms which automatically learn to ignore biased
data.

As further work, we plan to extend our study to
multiple domains and multiple languages to ana-
lyze and measure the impact of gender bias present
in contextualized embeddings in these different
scenarios.

Acknowledgements

We want to thank Hila Gonen for her support dur-
ing our research.

This work is supported in part by the Cata-
lan Agency for Management of University and
Research Grants (AGAUR) through the FI PhD
Scholarship and the Industrial PhD Grant. This
work is also supported in part by the Span-
ish Ministerio de Economa y Competitividad,
the European Regional Development Fund and
the Agencia Estatal de Investigacin, through the
postdoctoral senior grant Ramn y Cajal, con-
tract TEC2015-69266-P (MINECO/FEDER,EU)
and contract PCIN-2017-079 (AEI/MINECO).

References
Tolga Bolukbasi, Kai-Wei Chang, James Y Zou,

Venkatesh Saligrama, and Adam T Kalai. 2016.
Man is to computer programmer as woman is to
homemaker? debiasing word embeddings. In D. D.
Lee, M. Sugiyama, U. V. Luxburg, I. Guyon, and
R. Garnett, editors, Advances in Neural Information
Processing Systems 29, pages 4349–4357. Curran
Associates, Inc.

Joy Buolamwini and Timnit Gebru. 2018. Gender
shades: Intersectional accuracy disparities in com-
mercial gender classification. In Conference on
Fairness, Accountability and Transparency, FAT
2018, 23-24 February 2018, New York, NY, USA,
pages 77–91.

Aylin Caliskan, Joanna J. Bryson, and Arvind
Narayanan. 2017. Semantics derived automatically
from language corpora necessarily contain human
biases. Science, 356:183–186.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.
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Abstract

Bias in word embeddings such as Word2Vec
has been widely investigated, and many ef-
forts made to remove such bias. We show how
to use conceptors debiasing to post-process
both traditional and contextualized word em-
beddings. Our conceptor debiasing can si-
multaneously remove racial and gender biases
and, unlike standard debiasing methods, can
make effect use of heterogeneous lists of bi-
ased words. We show that conceptor debiasing
diminishes racial and gender bias of word rep-
resentations as measured using the Word Em-
bedding Association Test (WEAT) of Caliskan
et al. (2017).

1 Introduction

Word embeddings capture distributional simi-
larities and thus inherit demographic stereo-
types (Bolukbasi et al., 2016). Such embedding
biases tend to track statistical regularities such as
the percentage of people with a given occupa-
tion (Nikhil Garg and Zou, 2018) but sometimes
deviate from them (Bhatia, 2017). Recent work
has shown that gender bias exists in contextual-
ized embeddings (Wang et al., 2019; May et al.,
2019).

Here, we provide a quantitative analysis of bias
in traditional and contextual word embeddings and
introduce a method of mitigating bias (i.e., debias-
ing) using the debiasing conceptor, a clean mathe-
matical representation of subspaces that can be op-
erated on and composed by logic-based manipula-
tions (Jaeger, 2014). Specifically, conceptor nega-
tion is a soft damping of the principal components
of the target subspace (e.g., the subset of words
being debiased) (Liu et al., 2019b) (See Figure 1.)

Key to our method is how it treats word-
association lists (sometimes called target lists),
which define the bias subspace. These lists in-
clude pre-chosen words associated with a target

(a) The original space

(b) After applying the debiasing conceptor

Figure 1: BERT word representations of the union of
the set of contextualized word representations of rel-
atives, executive, wedding, salary projected on to the
first two principal components of the WEAT gender
first names, which capture the primary component of
gender. Note how the debiasing conceptor collapses
relatives and wedding, and executive and salary once
the bias is removed.

demographic group (often referred to as a “pro-
tected class”). For example, he / she or Mary /
John have been used for gender (Bolukbasi et al.,
2016). More generally, conceptors can combine
multiple subspaces defined by word lists. Unlike
most current methods, conceptor debiasing uses a
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soft, rather than a hard projection.
We test the debiasing conceptor on a range of

traditional and contextualized word embeddings1

and examine whether they remove stereotypical
demographic biases. All tests have been per-
formed on English word embeddings.

This paper contributes the following:
• Introduces debiasing conceptors along with

a formal definition and mathematical relation
to the Word Embedding Association Test.
• Demonstrates the effectiveness of the debias-

ing conceptor on both traditional and contex-
tualized word embeddings.

2 Related Work

NLP has begun tackling the problems that inhibit
the achievement of fair and ethical AI (Hovy and
Spruit, 2016; Friedler et al., 2016), in part by de-
veloping techniques for mitigating demographic
biases in models. In brief, a demographic bias is a
difference in model output based on gender (either
of the data author or of the content itself) or se-
lected demographic dimension (“protected class”)
such as race. Demographic biases manifest in
many ways, ranging from disparities in tagging
and classification accuracy depending on author
age and gender (Hovy, 2015; Dixon et al., 2018),
to over-amplification of demographic differences
in language generation (Yatskar et al., 2016; Zhao
et al., 2017), to diverging implicit associations be-
tween words or concepts within embeddings or
language models (Bolukbasi et al., 2016; Rudinger
et al., 2018).

Here, we are concerned with the societal bias to-
wards protected classes that manifests in prejudice
and stereotypes (Bhatia, 2017). Greenwald and
Banaji (1995); implicit attitudes such that “intro-
spectively unidentified (or inaccurately identified)
traces of past experience that mediate favorable or
unfavorable feeling, thought, or action toward so-
cial objects.” Bias is often quantified in people
using the Implicit Association Test (IAT) (Green-
wald et al., 1998). The IAT records subjects re-
sponse times when asked to pair two concepts.
Smaller response times occur in concepts subjects
perceive to be similar versus pairs of concepts they
perceive to be different. A well known example
is where subjects were asked to associate black

1Previous work has shown that debiasing methods can
have different effects on different word embeddings (Kir-
itchenko and Mohammad, 2018).

and white names with “pleasant” and “unpleasant”
words. A significant racial bias has been found in
many populations. Later, Caliskan et al. (2017)
formalized the Word Embedding Association Test
(WEAT), which replaces reaction time with word
similarity to give a bias measure that does not re-
quire use of human subjects. May et al. (2019)
extended WEAT to the Sentence Embedding As-
sociation Test (SEAT); however, in this paper we
instead use token-averaged representations over a
corpus.

Debiasing Embeddings. The simplest way to
remove bias is to project out a bias direction. For
example, Bolukbasi et al. (2016) identify a “gen-
der subspace” using lists of gendered words and
then remove the first principal component of this
subspace. Wang et al. (2019) used both data aug-
mentation and debiasing of Bolukbasi et al. (2016)
to mitigate bias found in ELMo and showed im-
proved performance on coreference resolution.
Our work is complementary, as debiasing concep-
tors can be used in place of hard-debiasing.

Bolukbasi et al. (2016) also examine a soft de-
biasing method, but find that it does not perform
well. In contrast, our debiasing conceptor does a
successful soft damping of the relevant principal
components. To understand why, we first intro-
duce the conceptor method for capturing the “bias
subspaces”, next formalize bias, and then show
WEAT in matrix notation.

2.1 Conceptors
As in Bolukbasi et al. (2016), our aim is to identify
the “bias subspace” using a set of target words, Z
and Z is their corresponding word embeddings. A
conceptor matrix, C, is a regularized identity map
(in our case, from the original word embeddings
to their biased versions) that minimizes

‖Z − CZ‖2F+α−2‖C‖2F . (1)

where α−2 is a scalar parameter.2

To describe matrix conceptors, we draw heavily
on (Jaeger, 2014; He and Jaeger, 2018; Liu et al.,
2019b,a). C has a closed form solution:

C =
1

k
ZZ>(

1

k
ZZ> + α−2I)−1. (2)

Intuitively, C is a soft projection matrix on the lin-
ear subspace where the word embeddings Z have

2Note that the conceptor and WEAT literature disagree
on notation and we follow WEAT. In conceptor notation, the
matrix Z would be denoted as X .
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the highest variance. Once C has been learned, it
can be ‘negated’ by subtracting it from the identity
matrix and then applied to any word embeddings
to shrink the bias directions.

Conceptors can represent laws of Boolean logic,
such as NOT ¬, AND ∧ and OR ∨. For two con-
ceptors C and B, we define the following opera-
tions:

¬C := I−C, (3)

C ∧B :=(C−1 +B−1 − I)−1 (4)

C ∨B :=¬(¬C ∧ ¬B) (5)

Among these Boolean operations, two are critical
for this paper: the NOT operator for debiasing,
and the OR operation ∨ for multi-list (or multi-
category) debiasing. It can be shown that if C and
B are of equal sizes, then C ∨ B is the conceptor
computed from the union of the two sets of sample
points from which C and B are computed (Jaeger,
2014); this is not true if they are of different sizes.

Negated Conceptor. Given that the conceptor,
C, represents the subspace of maximum bias, we
want to apply the negated conceptor, NOT C (see
Equation 3) to an embedding space and remove
its bias. We call NOT C the debiasing concep-
tor. More generally, if we have K conceptors,
Ci derived from K different word lists, we call
NOT (C1 ∨ ... ∨ CK) a debiasing conceptor. The
negated conceptor matrix has been used in the past
on a complete vocabulary to increase the semantic
richness of its word embeddings; Liu et al. (2018)
showed that the negated conceptor gave better per-
formance on semantic similarity and downstream
tasks than the hard debiasing method of Mu and
Viswanath (2018).

As shown in Liu et al. (2018), the negated con-
ceptor approach does a soft debiasing by shrinking
each principal component of the covariance matrix
of the target word embeddings ZZ>. The shrink-
age is a function of the conceptor hyper-parameter
α and the singular values σi of ZZ>: α−2

σi+α−2 .

3 Formalizing Bias

We follow the formal definition of Lu et al. (2018),
where given a class of word sets D and a scoring
function s, the bias of s under the concept(s) tested
by D, written Bs(D), is the expected difference in
scores assigned to expected absolute bias across
class members,

Bs(D) , ED∈D|Bs(D)|.

This naturally gives rise to a large set of concepts
and scoring functions.

3.1 Word Embedding Association Test

The Word Embeddings Association Test (WEAT),
as proposed by Caliskan et al. (2017), is a sta-
tistical test analogous to the Implicit Association
Test (IAT) (Greenwald et al., 1998) which helps
quantify human biases in textual data. WEAT uses
the cosine similarity between word embeddings,
which is analogous to the reaction time when sub-
jects are asked to pair two concepts they find sim-
ilar in the IAT. WEAT considers two sets of target
words and two sets of attribute words of equal size.
The null hypothesis is that there is no difference
between the two sets of target words and the sets
of attribute words in terms of their relative simi-
larities measured as the cosine similarity between
the embeddings. For example, consider the tar-
get sets as words representing Career and Family
and let the two sets of attribute words be Male and
Female, in that order. The null hypothesis states
that Career and Family are equally similar (math-
ematically, in terms of the mean cosine similarity
between the word representations) to each of the
words in the Male and Female word lists.

The WEAT test statistic measures the differen-
tial association of the two sets of target words with
the attribute. The “effect size” is a normalized
measure of how separated the two distributions
are.

To ground this, we cast WEAT in our formula-
tion where X and Y are two sets of target words,
(concretely,X might be Career words and Y Fam-
ily words) andA, B are two sets of attribute words
(A might be female names and B male names)
assumed to associate with the bias concept(s).
WEAT is then 3

s(X ,Y,A,B)

=
1

|X |

[ ∑

x∈X

[∑

a∈A
s(x, a)−

∑

b∈B
s(x, b)

]

−
∑

y∈Y

[∑

a∈A
s(y, a)−

∑

b∈B
s(y, b)

]]
,

where s(x, y) = cos(vec(x), vec(y)) and
vec(x) ∈ Rk is the k-dimensional word embed-
ding for word x. Note that for this definition of

3We assume that there is no overlap between any of the
sets X , Y , A, and B.
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WEAT, the cardinality of the sets must be equal,
so |A|= |B| and |X |= |Y|. Our conceptor formu-
lation given below relaxes this assumption.

To motivate our conceptor formulation, we fur-
ther generalize WEAT to capture the covariance
between the target word and the attribute word em-
beddings. First, let X , Y , A and B be matrices
whose columns are word embeddings correspond-
ing to the words in the sets X ,Y,A,B, respec-
tively (i.e. the two sets of target words and two
sets of attribute words, respectively). To formally
define this, without loss of generality choose X ,
let X = [xi]i∈I where for i in an index set I with
cardinality |X | and xi = vec(x) where the word
x is indexed at the ith value of the index set.4 We
can then write WEAT as,

‖XTA−XTB − (Y TA− Y TB)‖F

= ‖(X − Y )T (A−B)‖F ,
where ‖·‖F is the Frobenius norm. If the embed-
dings are unit length, then GWEAT is the same as
|X | times WEAT.5

Suppose we want to mitigate bias by applying
the k × k bias mitigating matrix, G = ¬C, which
optimally removes bias from any matrix of word
embeddings. We select G to minimize

‖(G(X − Y ))TG(A−B)‖F ,

= ‖(X − Y )TGTG(A−B)‖F .
Since the conceptor, C, is calculated using the
word embeddings of Z = X ∪Y , the negated con-
ceptor will mitigate the variance from the target
sets, which hopefully identifies the most important
bias directions.

4 Embeddings

For context-independent embeddings, we used
off-the-shelf Fasttext subword embeddings6,
which were trained with subword information on
the Common Crawl (600B tokens), the GloVe
embeddings 7 trained on Wikipedia and Gigaword
and word2vec8 trained on roughly 100 billion

4To clarify, in our notation xi ∈ Rk and x ∈ X .
5Our generalization of WEAT is different from Swinger

et al. (2018).
6https://dl.fbaipublicfiles.

com/fasttext/vectors-english/
crawl-300d-2M-subword.zip.

7https://nlp.stanford.edu/projects/
glove/

8

words from a Google News dataset. The embed-
dings used are not centered and normalized to unit
length as in Bolukbasi et al. (2016).

For contextualized embeddings, we used ELMo
small which was trained on the 1 Billion Word
Benchmark, approximately 800M tokens of news
crawl data from WMT 2011.9 We also ex-
perimented with the state-of-the-art contextual
model “BERT-Large, Uncased” which has 24-
layer, 1024-hidden, 16-heads, 340M parameters.
BERT is trained on the BooksCorpus (0.8B words)
and Wikipedia (2.5B words). We used the last four
hidden layers of BERT. We used the Brown Cor-
pus for the word contexts to create instances of
the ELMo and BERT embeddings. Embeddings
of English words only have been used for all the
tests.

5 WEAT Debiasing Experiments

As described in section 3.1, WEAT assumes as its
null hypothesis that there is no relative bias be-
tween the pair of concepts defined as the target
words and attribute words. In our experiments,
we measure the effect size (the WEAT score nor-
malized by the standard deviation of differences of
attribute words w.r.t target words) (d) and the one-
sided p-value of the permutation test. A higher
absolute value of effect size indicates larger bias
between words in the target set with respect to the
words in the attribute set. We would like the ab-
solute value of the effect size to be zero. Since
the p-value measures the likelihood that a random
permutation of the attribute words would produce
at least the observed test statistic, it should be high
(at least 0.05) to indicate lack of bias in the posi-
tive direction.

Conceptually, the conceptor should be a soft
projection matrix on the linear subspace represent-
ing the bias direction. For instance, the subspace
representing gender must consist of words which
are specific to or in some sense related to gender.

A gender word list might be a set of pronouns
which are specific to a particular gender such as
he / she or himself / herself and gender specific
words representing relationships like brother / sis-
ter or uncle / aunt. We test conceptor debias-
ing both using the list of such pronouns used by

9https://s3-us-west-2.amazonaws.com/
allennlp/models/elmo/2x1024_128_2048cnn_
1xhighway/elmo_2x1024_128_2048cnn_
1xhighway_weights.hdf5
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Embedding Subspace
Without Debiasing Mu et al. Bolukbasi et al. Conceptor Negation

d p d p d p d p

Glove

Pronouns

1.78 0.00

1.81 0.00 1.24 0.01 0.13 0.40
Extended List 1.86 0.00 1.24 0.01 0.36 0.26
Propernouns 1.74 0.00 1.24 0.01 0.78 0.07

All 1.75 0.00 1.20 0.01 0.35 0.27
OR NA NA NA NA -0.51 0.81

word2vec

Pronouns

1.81 0.00

1.79 0.00 1.55 0.00 1.09 0.02
Extended List 1.79 0.00 1.59 0.00 1.38 0.00
Propernouns 1.70 0.0 1.59 0.0 1.45 0.00

All 1.71 0.00 1.56 0.00 1.40 0.00
OR NA NA NA NA 0.84 0.05

Fasttext

Pronouns

1.67 0.00

1.70 0.0 1.45 0.00 0.95 0.04
Extended List 1.70 0.0 1.47 0.00 0.84 0.04
Propernouns 0.86 0.06 1.47 0.00 0.85 0.06

All 0.82 0.05 1.14 0.01 0.81 0.06
OR NA NA NA NA 0.24 0.33

Table 1: Gender Debiasing non-contextualized embeddings: (Career, Family) vs (Male, Female)

Embedding Subspace
Without Debiasing Mu et. al. Conceptor Negation

d p d p d p

ELMo

Pronouns

1.79 0.0

1.79 0.00 0.70 0.10
Extended List 1.79 0.00 0.06 0.46
Propernouns 1.79 0.00 -0.61 0.89

All 1.79 0.00 -0.28 0.73
OR NA NA -0.85 0.96

BERT

Pronouns

1.21 0.01

1.21 0.01 1.31 0.00
Extended List 1.27 0.00 1.33 0.01
Propernouns 1.27 0.01 0.92 0.04

All 1.27 0.01 0.63 0.13
OR NA NA 0.97 0.02

Table 2: Gender Debiasing Contextualized embeddings: (Career, Family) vs (Male, Female)

Embedding Subspace
Without Debiasing Mu et al. Bolukbasi et al Conceptor Negation

d p d p d p d p

Glove

Pronouns

1.09 0.02

0.89 0.04 -0.53 0.85 1.04 0.01
Extended List 1.07 0.02 -0.60 0.86 -0.52 0.83
Propernouns 1.04 0.02 -0.56 0.86 0.20 0.33

All 1.03 0.02 -0.53 0.82 0.18 0.35
OR NA NA NA NA -0.48 0.82

Word2vec

Pronouns

1.00 0.02

0.89 0.03 -1.09 0.99 1.10 0.01
Extended List 1.00 0.03 -1.14 1.00 -0.49 0.82
Propernouns 0.88 0.04 -1.17 1.00 0.33 0.27

All 0.90 0.04 -1.07 0.99 0.25 0.34
OR NA NA NA NA -0.47 0.81

Fasttext

Pronouns

1.19 0.01

1.08 0.01 0.18 0.35 -0.36 0.76
Extended List 0.71 0.08 0.21 0.353 0.73 0.09
Propernouns 0.12 0.43 0.15 0.40 -0.47 0.80

All 0.038 0.47 0.20 0.32 -0.50 0.84
OR NA NA NA NA -0.46 0.78

Table 3: Gender Debiasing non-contextualized embeddings: (Math, Arts) vs (Male, Female)
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Embedding Subspace
Without Debiasing Mu et. al. Conceptor Negation

d p d p d p

ELMo

Pronouns

0.94 0.02

0.94 0.03 -0.03 0.38
Extended List 0.95 0.02 0.27 0.29
Propernouns 0.94 0.02 0.85 0.05

All 0.94 0.04 0.87 0.05
OR NA NA 0.53 0.13

BERT

Pronouns

0.23 0.777

0.23 0.79 0.15 0.15
Extended List 0.16 0.82 0.06 0.53
Propernouns 0.16 0.82 0.75 0.08

All 0.16 0.85 0.43 0.24
OR NA NA -0.07 0.59

Table 4: Gender Debiasing contextualized embeddings: (Math, Arts) vs (Male, Female)

Embedding Subspace
Without Debiasing Mu et al. Bolukbasi et al. Conceptor Negation

d p d p d p d p

Glove

Pronouns

1.34 0.0

1.23 0.01 -0.46 0.819 -0.20 0.66
Extended List 1.27 0.00 -0.51 0.83 0.93 0.04
Propernouns 1.21 0.011 -0.48 0.839 0.65 0.10

All 1.21 0.00 -0.45 0.81 0.68 0.10
OR NA NA NA NA 0.60 0.12

Word2vec

Pronouns

1.16 0.01

1.09 0.02 -0.46 0.80 0.45 0.21
Extended List 1.20 0.01 -0.50 0.80 0.59 0.13
Propernouns 1.08 0.02 -0.55 0.86 0.69 0.10

All 1.08 0.02 -0.46 0.80 0.66 0.13
OR NA NA NA NA 0.09 0.45

Fasttext

Pronouns

1.48 0.00

1.51 0.00 0.88 0.04 0.93 0.03
Extended List 0.85 0.04 0.85 0.04 1.36 0.00
Propernouns 1.01 0.03 0.85 0.05 0.75 0.08

All 0.98 0.03 0.88 0.03 0.89 0.05
OR NA NA NA NA 0.89 0.05

Table 5: Gender Debiasing non-cotextualized embeddings: (Science, Arts) vs (Male, Female)

Embedding Subspace
Without Debiasing Mu et. al. Conceptor Negation

d p d p d p

ELMo

Pronouns

1.32 0.0

1.31 0.00 0.41 0.22
Extended List 1.32 0.005 0.52 0.24
Propernouns 1.38 0.00 1.28 0.00

All 1.34 0.00 0.92 0.03
OR NA NA 0.82 0.05

BERT

Pronouns

-0.91 0.88

-0.91 0.87 -1.23 0.97
Extended List -0.90 0.91 -1.10 0.99
Propernouns -0.90 0.92 -0.93 0.92

All -0.90 0.90 -0.38 0.70
OR NA NA 0.97 0.02

Table 6: Gender Debiasing cotextualized embeddings: (Science, Arts) vs (Male, Female)

Caliskan et al. (2017) and using a more compre-
hensive list of gender-specific words that includes
gender specific terms related to occupations, rela-
tionships and other commonly used words such as

prince / princess and host / hostess10. We further
tested conceptor debiasing using male and female

10https://github.com/uclanlp/corefBias,
https://github.com/uclanlp/gn_glove
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names such as Aaron / Alice or Chris / Clary11.
We also tested our method with the combination
of all lists. The combination of the subspace was
done in two ways - either by taking the union of all
word lists or by applying the OR operator on the
three conceptor matrices computed independently.

The subspace for racial bias was determined us-
ing list of European American and African Amer-
ican names.

We tested target pairs of Science vs. Arts, Math
vs. Arts, and Career vs. Family word lists with the
attribute of the male vs. female names to test gen-
der debiasing. Similarly, we examined European
American names vs. African American names as
target pairs with the attribute of pleasant vs. un-
pleasant to test racial debiasing.

Our findings indicate that expanded lists give
better debiasing for word embeddings; however,
the results are not as clear for contextualized em-
beddings. The OR operator on two conceptors de-
scribing subspaces of pronouns/nouns and names
generally outperforms a union of these words.
This further motivates the use of the debiasing
conceptor.

5.1 Racial Debiasing Results

Embedding Original Conceptor
Negation

d p d p
GloVe 1.35 0.00 0.69 0.01
word2vec -0.27 0.27 -0.55 0.72
Fasttext 0.41 0.04 -0.27 0.57
ELMo 1.37 0.00 -0.45 0.20
BERT 0.92 0.00 0.36 0.61

Table 7: Racial Debiasing: (European American
Names, African American Names) vs (Pleasant, Un-
pleasant). d is the effect size, which we want to be
close to 0 and p is the p-value, which we want to be
larger than 0.05.

Table 7 summarizes the effect size (d) and the
one-sided p-value we obtained by running WEAT
on each of the word embeddings for racial debias-
ing. In this experiment we used the same setup
as Caliskan et al. (2017) and compare attribute
Words of European American / African American
names with target words “pleasant” and “unpleas-
ant”. In Table 7 we see that racial bias is mitigated

11https://www.cs.cmu.edu/Groups/AI/
areas/nlp/corpora/names/

in all cases aside from GloVe. Furthermore, for
word2vec the associational bias is not significant.
We also found that the conceptor nearly always
outperforms the hard debiasing methods of Mu
and Viswanath (2018) and Bolukbasi et al. (2016).

5.2 Gender Debiasing Results

Tables 1, 3 and 5 show the results obtained on gen-
der debiasing between attribute words of “Family”
and “Career’, “Math” and “Arts” and “Science”
and “Arts” with the target words “Male” and “Fe-
male” respectively for the traditional word embed-
dings. We show the results for all the word rep-
resentations; however, the method of Bolukbasi
et al. (2016) can only be applied to standard word
embeddings.12 We show the results when embed-
dings are debiased using conceptors computed us-
ing different subspaces. It can be seen in the ta-
bles that the bias for the conceptor negated embed-
dings is significantly less than that of the original
embeddings. In the tables, the conceptor debias-
ing method is compared with the hard-debiasing
technique proposed by Mu and Viswanath (2018)
where the first principal component of the sub-
space from the embeddings is completely project
off. The debiasing conceptor outperforms the hard
debiasing technique in almost all cases. Note that
the OR operator can not be used with the hard de-
biasing technique and thus is not reported.

Similarly, Tables 2, 4 and 6 show a compari-
son of the effect size and p-value using the hard
debiasing technique and conceptor debiasing on
conceptualized embeddings. It can be seen that
conceptor debiasing generally outperforms other
methods in mitigating (has a small absolute value)
bias with the ELMo embeddings for all the sub-
spaces. The results are less clear for BERT as ob-
served in Table 6, which we will discuss in the fol-
lowing section. Note that combining all subspaces
gives a significant reduction in the effect size.

5.3 Discussion of BERT Results

One of our most surprising findings is that un-
like ELMo, the bias in BERT according to WEAT
is less consistent than other word representations;
WEAT effect sizes in BERT vary largely across
different layers. Furthermore, the debiasing con-
ceptor occasionally creates reverse bias in BERT,
suggesting that tuning of the hyper-parameter α

12The concurrent work of Wang et al. (2019) was not avail-
able in time for us to compare with this method.
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may be required. Another possibility is that BERT
is capturing multiple concepts, and the presump-
tion that the target lists are adequately capturing
gender or racial attributes is incorrect. This sug-
gests that further study into word lists is called for,
along with visualization and end-task evaluation.
It should also be noted that our results are in line
with those from May et al. (2019).

6 Retaining Semantic Similarity

In order to understand if the debiasing conceptor
was harming the semantic content of the word em-
beddings, we examined conceptor debiased em-
bedding for semantic similarity tasks. As done
in Liu et al. (2018) we used the seven stan-
dard word similarity test set and report Pearson’s
correlation. The word similarity sets are: the
RG65 (Rubenstein and Goodenough, 1965), the
WordSim-353 (WS) (Finkelstein et al., 2002), the
rare-words (RW) (Luong et al., 2013), the MEN
dataset (Bruni et al., 2014), the MTurk (Radinsky
et al., 2011), the SimLex-999 (SimLex) (Hill et al.,
2015), and the SimVerb-3500 (Gerz et al., 2016).
Table 8 shows that conceptors help in preserving
and at times increasing the semantic information
in the embeddings. It should be noted that these
tasks can not be applied to contextualized embed-
dings such as ELMo and BERT. So, we do not re-
port these results.

GloVe word2vec Fasttext
Orig. CN Orig. CN Orig. CN

RG65 76.03 70.92 74.94 78.58 85.87 85.94
WS 73.79 75.17 69.34 69.34 78.82 77.44
RW 51.01 55.25 55.78 56.04 62.17 62.48
MEN 80.13 80.10 77.07 77.85 83.64 82.64
MTurk 69.16 71.17 68.31 67.68 72.45 71.34
SimLex 40.76 45.85 44.27 46.05 50.55 50.78
SimVerb 28.42 34.51 36.54 37.33 42.75 42.72

Table 8: Word Similarity comparison with conceptor
debiased embeddings using all gender words as con-
ceptor subspace.

7 Conclusion

We have shown that the debiasing conceptor can
successfully debias word embeddings, outper-
forming previous state-of-the art ’hard’ debiasing
methods. Best results are obtained when lists are
broken up into subsets of ’similar’ words (pro-
nouns, professions, names, etc.), and separate con-
ceptors are learned for each subset and then OR’d.
Conceptors for different protected subclasses such

as gender and race can be similarly OR’d to jointly
debias.

Contextual embeddings such as ELMo and
BERT, which give a different vector for each
word token, work particularly well with concep-
tors, since they produce a large number of embed-
dings; however, further research on tuning concep-
tors for BERT needs to be done. Finally, we note
that embedding debiasing may leave bias which
is undetected by measures such as WEAT Gonen
and Goldberg (2019); thus, all debiasing meth-
ods should be tested on end-tasks such as emotion
classification and co-reference resolution.
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Abstract

When translating from a language that does
not morphologically mark information such
as gender and number into a language that
does, translation systems must “guess” this
missing information, often leading to incor-
rect translations in the given context. We pro-
pose a black-box approach for injecting the
missing information to a pre-trained neural
machine translation system, allowing to con-
trol the morphological variations in the gen-
erated translations without changing the un-
derlying model or training data. We evaluate
our method on an English to Hebrew trans-
lation task, and show that it is effective in
injecting the gender and number information
and that supplying the correct information im-
proves the translation accuracy in up to 2.3
BLEU on a female-speaker test set for a state-
of-the-art online black-box system. Finally,
we perform a fine-grained syntactic analysis of
the generated translations that shows the effec-
tiveness of our method.

1 Introduction

A common way for marking information about
gender, number, and case in language is mor-
phology, or the structure of a given word in the
language. However, different languages mark
such information in different ways – for exam-
ple, in some languages gender may be marked
on the head word of a syntactic dependency re-
lation, while in other languages it is marked on
the dependent, on both, or on none of them
(Nichols, 1986). This morphological diversity cre-
ates a challenge for machine translation, as there
are ambiguous cases where more than one cor-
rect translation exists for the same source sen-
tence. For example, while the English sentence
“I love language” is ambiguous with respect to
the gender of the speaker, Hebrew marks verbs

for the gender of their subject and does not al-
low gender-neutral translation. This allows two
possible Hebrew translations – one in a mascu-
line and the other in a feminine form. As a con-
sequence, a sentence-level translator (either hu-
man or machine) must commit to the gender of
the speaker, adding information that is not present
in the source. Without additional context, this
choice must be done arbitrarily by relying on lan-
guage conventions, world knowledge or statistical
(stereotypical) knowledge.

Indeed, the English sentence “I work as a doc-
tor” is translated into Hebrew by Google Translate
using the masculine verb form oved, indicating a
male speaker, while “I work as a nurse” is trans-
lated with the feminine form ovedet, indicating a
female speaker (verified on March 2019). While
this is still an issue, there have been recent efforts
to reduce it for specific language pairs.1

We present a simple black-box method to in-
fluence the interpretation chosen by an NMT sys-
tem in these ambiguous cases. More concretely,
we construct pre-defined textual hints about the
gender and number of the speaker and the audi-
ence (the interlocutors), which we concatenate to
a given input sentence that we would like to trans-
late accordingly. We then show that a black-box
NMT system makes the desired morphological de-
cisions according to the given hint, even when
no other evidence is available on the source side.
While adding those hints results in additional text
on the target side, we show that it is simple to re-
move, leaving only the desired translation.

Our method is appealing as it only requires sim-
ple pre-and-post processing of the inputs and out-
puts, without considering the system internals, or
requiring specific annotated data and training pro-
cedure as in previous work (Vanmassenhove et al.,

1blog.google/products/translate/
reducing-gender-bias-google-translate/
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2018). We show that in spite of its simplicity, it
is effective in resolving many of the ambiguities
and improves the translation quality in up to 2.3
BLEU when given the correct hints, which may
be inferred from text metadata or other sources.
Finally, we perform a fine-grained syntactic anal-
ysis of the translations generated using our method
which shows its effectiveness.

2 Morphological Ambiguity in
Translation

Different languages use different morphological
features marking different properties on different
elements. For example, English marks for num-
ber, case, aspect, tense, person, and degree of
comparison. However, English does not mark
gender on nouns and verbs. Even when a cer-
tain property is marked, languages differ in the
form and location of the marking (Nichols, 1986).
For example, marking can occur on the head of
a syntactic dependency construction, on its argu-
ment, on both (requiring agreement), or on none of
them. Translation systems must generate correct
target-language morphology as part of the trans-
lation process. This requires knowledge of both
the source-side and target-side morphology. Cur-
rent state-of-the-art translation systems do cap-
ture many aspects of natural language, including
morphology, when a relevant context is available
(Dalvi et al., 2017; Bawden et al., 2018), but resort
to “guessing” based on the training-data statistics
when it is not. Complications arise when different
languages convey different kinds of information
in their morphological systems. In such cases, a
translation system may be required to remove in-
formation available in the source sentence, or to
add information not available in it, where the lat-
ter can be especially tricky.

3 Black-Box Knowledge Injection

Our goal is to supply an NMT system with knowl-
edge regarding the speaker and interlocutor of
first-person sentences, in order to produce the de-
sired target-side morphology when the informa-
tion is not available in the source sentence. The
approach we take in the current work is that of
black-box injection, in which we attempt to inject
knowledge to the input in order to influence the
output of a trained NMT system, without having
access to its internals or its training procedure as
proposed by Vanmassenhove et al. (2018).

We are motivated by recent work by Voita et al.
(2018) who showed that NMT systems learn to
track coreference chains when presented with suf-
ficient discourse context. We conjecture that there
are enough sentence-internal pronominal coref-
erence chains appearing in the training data of
large-scale NMT systems, such that state-of-the-
art NMT systems can and do track sentence-
internal coreference. We devise a wrapper method
to make use of this coreference tracking ability by
introducing artificial antecedents that unambigu-
ously convey the desired gender and number prop-
erties of the speaker and audience.

More concretely, a sentence such as “I love
you” is ambiguous with respect to the gender of
the speaker and the gender and number of the audi-
ence. However, sentences such as “I love you, she
told him” are unambiguous given the coreference
groups {I, she} and {you, him} which determine
I to be feminine singular and you to be mascu-
line singular. We can thus inject the desired infor-
mation by prefixing a sentence with short generic
sentence fragment such as “She told him:” or
“She told them that”, relying on the NMT sys-
tem’s coreference tracking abilities to trigger the
correctly marked translation, and then remove the
redundant translated prefix from the generated tar-
get sentence. We observed that using a parataxis
construction (i.e. “she said to him:”) almost ex-
clusively results in target-side parataxis as well (in
99.8% of our examples), making it easy to iden-
tify and strip the translated version from the target
side. Moreover, because the parataxis construc-
tion is grammatically isolated from the rest of the
sentence, it can be stripped without requiring ad-
ditional changes or modification to the rest of the
sentence, ensuring grammaticality.

4 Experiments & Results

To demonstrate our method in a black-box setting,
we focus our experiments on Google’s machine
translation system (GMT), accessed through its
Cloud API. To test the method on real-world sen-
tences, we consider a monologue from the stand-
up comedy show “Sarah Silverman: A Speck of
Dust”. The monologue consists of 1,244 English
sentences, all by a female speaker conveyed to
a plural, gender-neutral audience. Our parallel
corpora consists of the 1,244 English sentences
from the transcript, and their corresponding He-
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Speaker Audience BLEU
Baseline 18.67

He – 19.2
He him 19.25
He her 19.3
He them 19.5
I – 19.84
I them 20.23
She – 20.8
She him 20.82
She her 20.98
She them 20.97

Table 1: BLEU results on the Silverman dataset

brew translations based on the Hebrew subtitles.2

We translate the monologue one sentence at a time
through the Google Cloud API. Eyeballing the
results suggest that most of the translations use
the incorrect, but default, masculine and singular
forms for the speaker and the audience, respec-
tively. We expect that by adding the relevant con-
dition of “female speaking to an audience” we will
get better translations, affecting both the gender of
the speaker and the number of the audience.

To verify this, we experiment with translating
the sentences with the following variations: No
Prefix—The baseline translation as returned by
the GMT system. “He said:”—Signaling a male
speaker. We expect to further skew the system to-
wards masculine forms. “She said:”—Signaling
a female speaker and unknown audience. As
this matches the actual speaker’s gender, we ex-
pect an improvement in translation of first-person
pronouns and verbs with first-person pronouns as
subjects. “I said to them:”—Signaling an un-
known speaker and plural audience. “He said to
them:”—Masculine speaker and plural audience.
“She said to them:”—Female speaker and plu-
ral audience—the complete, correct condition. We
expect the best translation accuracy on this setup.
“He/she said to him/her”—Here we set an (in-
correct) singular gender-marked audience, to in-
vestigate our ability to control the audience mor-
phology.

4.1 Quantitative Results

We compare the different conditions by compar-
ing BLEU (Papineni et al., 2002) with respect

2The data is obtained from www.opensubtitles.
org

to the reference Hebrew translations. We use
the multi-bleu.perl script from the Moses
toolkit (Koehn et al., 2007). Table 1 shows BLEU
scores for the different prefixes. The numbers
match our expectations: Generally, providing an
incorrect speaker and/or audience information de-
creases the BLEU scores, while providing the cor-
rect information substantially improves it - we see
an increase of up to 2.3 BLEU over the base-
line. We note the BLEU score improves in all
cases, even when given the wrong gender of ei-
ther the speaker or the audience. We hypothesise
this improvement stems from the addition of the
word “said” which hints the model to generate a
more “spoken” language which matches the tested
scenario. Providing correct information for both
speaker and audience usually helps more than pro-
viding correct information to either one of them
individually. The one outlier is providing “She”
for the speaker and “her” for the audience. While
this is not the correct scenario, we hypothesise it
gives an improvement in BLEU as it further rein-
forces the female gender in the sentence.

4.2 Qualitative Results

The BLEU score is an indication of how close the
automated translation is to the reference transla-
tion, but does not tell us what exactly changed
concerning the gender and number properties we
attempt to control. We perform a finer-grained
analysis focusing on the relation between the in-
jected speaker and audience information, and the
morphological realizations of the corresponding
elements. We parse the translations and the ref-
erences using a Hebrew dependency parser.3 In
addition to the parse structure, the parser also per-
forms morphological analysis and tagging of the
individual tokens. We then perform the following
analysis.

Speaker’s Gender Effects: We search for first-
person singular pronouns with subject case (ani,
unmarked for gender, corresponding to the En-
glish I), and consider the gender of its governing
verb (or adjectives in copular constructions such
as ‘I am nice’). The possible genders are ‘mas-
culine’, ‘feminine’ and ‘both’, where the latter in-
dicates a case where the none-diacriticized writ-
ten form admits both a masculine and a feminine
reading. We expect the gender to match the ones

3https://www.cs.bgu.ac.il/˜yoavg/software/hebparsers/
hebdepparser/
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Figure 1: Gender inflection statistics for verbs gov-
erned by first-person pronouns.
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Figure 2: Number inflection statistics for second-
person pronouns.

requested in the prefix.

Interlocutors’ Gender and Number Effects:
We search for second-person pronouns and con-
sider their gender and number. For pronouns in
subject position, we also consider the gender and
number of their governing verbs (or adjectives in
copular constructions). For a singular audience,
we expect the gender and number to match the re-
quested ones. For a plural audience, we expect the
masculine-plural forms.

Results: Speaker. Figure 1 shows the result
for controlling the morphological properties of the
speaker ({he, she, I} said). It shows the propor-
tion of gender-inflected verbs for the various con-
ditions and the reference. We see that the base-
line system severely under-predicts the feminine
form of verbs as compared to the reference. The
“He said” conditions further decreases the number
of feminine verbs, while the “I said” conditions
bring it back to the baseline level. Finally, the “She
said” prefixes substantially increase the number
of feminine-marked verbs, bringing the proportion
much closer to that of the reference (though still
under-predicting some of the feminine cases).

Results: Audience. The chart in Figure 2
shows the results for controlling the number of
the audience (...to them vs nothing). It shows the
proportion of singular vs. plural second-person
pronouns on the various conditions. It shows a
similar trend: the baseline system severely under-
predicts the plural forms with respect to the refer-
ence translation, while adding the “to them” con-
dition brings the proportion much closer to that of
the reference.

4.3 Comparison to Vanmassenhove et al.
(2018)

Closely related to our work, Vanmassenhove et al.
(2018) proposed a method and an English-French
test set to evaluate gender-aware translation, based
on the Europarl corpus (Koehn, 2005). We evalu-
ate our method (using Google Translate and the
given prefixes) on their test set to see whether it
is applicable to another language pair and domain.
Table 2 shows the results of our approach vs. their
published results and the Google Translate base-
line. As may be expected, Google Translate out-
performs their system as it is trained on a differ-
ent corpus and may use more complex machine
translation models. Using our method improves
the BLEU score even further.

Male Female
VHW (2018) Baseline 37.58 37.75
VHW (2018) + TAG 38.71 38.97
Google Translate 39.33 39.02
Google Translate + Prefix 39.95 39.95

Table 2: Comparison of our approach (using
Google Translate) to Vanmassenhove et al. (2018)
on their English-French gender corpus.

4.4 Other Languages

To test our method’s outputs on multiple lan-
guages, we run our pre-and post-processing steps
with Google Translate using examples we sourced
from native speakers of different languages. For
every example we have an English sentence and
two translations in the corresponding language,
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English Text Masculine Feminine
Hebrew I am nice ani nehmad ani nehmada
Prefix ani nehmad ani nehmada
Spanish I am delighted Estoy encantado Estoy encantada
Prefix Estoy encantado Estoy encantada
Portuguese I was called Eu fui chamado Eu fui chamada
Prefix Eu fui chamado Eu fui chamado
French I am patient je suis patient je suis patiente
Prefix je suis patient je suis patiente
Italian I am beautiful Sono bello Sono bella
Prefix io sono bello io sono bella
Russian I wrote a message Я написал сообщение Я написала сообщение
Prefix Я написал сообщение Я написал сообщение
Czech I gave her the flower já jsem ji dal květinu já jsem ji dala květinu
Prefix Dala jsem jı́ květinu Dala jsem jı́ květinu
Romanian I am patient Sunt răbdător Sunt răbdătoare
Prefix Sunt răbdător Sunt răbdătoare
Catalan I am rich sóc ric sóc rica
Prefix sóc ric sóc ric
Polish I am nice Jestem miły Jestem miła
Prefix Jestem miły Jestem miła

Table 3: Examples of languages where the speaker’s gender changes morphological markings in different
languages, and translations using the prefix “He said:” or “She said:” accordingly

one in masculine and one in feminine form. Not
all examples are using the same source English
sentence as different languages mark different in-
formation. Table 3 shows that for these specific
examples our method worked on 6/10 of the lan-
guages we had examples for, while for 3/10 lan-
guages both translations are masculine, and for 1
language both are feminine.

5 Related Work

Rabinovich et al. (2017) showed that given input
with author traits like gender, it is possible to re-
tain those traits in Statistical Machine Translation
(SMT) models. Grönroos et al. (2017) showed
that incorporating morphological analysis in the
decoder improves NMT performance for morpho-
logically rich languages. Burlot and Yvon (2017)
presented a new protocol for evaluating the mor-
phological competence of MT systems, indicat-
ing that current translation systems only manage
to capture some morphological phenomena cor-
rectly. Regarding the application of constraints in
NMT, Sennrich et al. (2016) presented a method
for controlling the politeness level in the generated
output. Ficler and Goldberg (2017) showed how
to guide a neural text generation system towards

style and content parameters like the level of pro-
fessionalism, subjective/objective, sentiment and
others. Tiedemann and Scherrer (2017) showed
that incorporating more context when translating
subtitles can improve the coherence of the gen-
erated translations. Most closely to our work,
Vanmassenhove et al. (2018) also addressed the
missing gender information by training propri-
etary models with a gender-indicating-prefix. We
differ from this work by treating the problem in
a black-box manner, and by addressing additional
information like the number of the speaker and the
gender and number of the audience.

6 Conclusions

We highlight the problem of translating between
languages with different morphological systems,
in which the target translation must contain gen-
der and number information that is not available
in the source. We propose a method for injecting
such information into a pre-trained NMT model in
a black-box setting. We demonstrate the effective-
ness of this method by showing an improvement
of 2.3 BLEU in an English-to-Hebrew translation
setting where the speaker and audience gender can
be inferred. We also perform a fine-grained syn-
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tactic analysis that shows how our method enables
to control the morphological realization of first
and second-person pronouns, together with verbs
and adjectives related to them. In future work we
would like to explore automatic generation of the
injected context, or the use of cross-sentence con-
text to infer the injected information.
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Abstract

Systemic bias in word embeddings has been
widely reported and studied, and efforts made
to debias them; however, new contextualized
embeddings such as ELMo and BERT are only
now being similarly studied. Standard de-
biasing methods require large, heterogeneous
lists of target words to identify the “bias sub-
space”. We show that using new contextu-
alized word embeddings in conceptor debias-
ing allows us to more accurately debias word
embeddings by breaking target word lists into
more homogeneous subsets and then combin-
ing (”Or’ing”) the debiasing conceptors of the
different subsets.

1 Introduction

Contextualized word representations are replac-
ing word vectors in many natural language pro-
cessing (NLP) tasks such as sentiment analysis,
coreference resolution, question answering, tex-
tual entailment, and named entity recognition (Pe-
ters et al., 2018; Devlin et al., 2018). However,
ELMo and BERT have bias similar (Wang et al.,
2019; May et al., 2019; Kurita et al., 2019) to
the well documented bias in traditional word em-
bedding methods (Bolukbasi et al., 2016; Bha-
tia, 2017; Caliskan et al., 2017; Nikhil Garg and
Zou, 2018; Kiritchenko and Mohammad, 2018;
Rudinger et al., 2018; Zhang et al., 2018), and this
could cause bias in NLP pipelines used for high
stakes downstream tasks such as resume selection
or bail setting algorithms (Hansen et al., 2015;
Bolukbasi et al., 2016; Ayres, 2002). Traditional
word embeddings, such as word2vec (Mikolov
et al., 2013), GloVe (Pennington et al., 2014), and
Fasttext (Bojanowski et al., 2017) require large
sets of target words, since debiasing is generally
done in the space of the PCA of the word em-
beddings. (If one only uses a two words, like

Figure 1: ELMo word representations of tokens of man
and woman projected onto their first and second princi-
pal components.

”man” and ”woman”, the PCA space is just a sin-
gle vector pointing in the difference between those
two vectors.) Context-sensitive embedding such
as ELMo and BERT give an embedding for every
token (based on its context), giving large numbers
of embedding for each word (such as ”man”), so
that principal components can be calculated even
for word lists of size two as shown in Figure 1.

Use of contextualized word embedding allows
better debiasing by allowing one (as will be de-
scribed below) to break up target word lists into
smaller homogeneous subsets; it also gives better
insight into where the bias may be coming from.

Word embeddings capture distributional simi-
larities; just as humans come to associate cer-
tain professions (homemaker or computer pro-
grammer) with certain genders (woman or man),
word embeddings capture very similar associa-
tions (Bolukbasi et al., 2016). Such embedding
biases tend to track statistical regularities such
as percentage of people with a given occupation
(Nikhil Garg and Zou, 2018) but sometimes devi-
ate from them (Bhatia, 2017).
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A number of debiasing methods have been pro-
posed. Most of them use hard debiasing – zero-
ing out one or more directions in the embedding
space, generally selected using principal compo-
nents (Bolukbasi et al., 2016; Wang et al., 2019).
In this paper, we use a soft debiasing method, con-
ceptor debiasing, which also works in the prin-
cipal component space, but does a softer shrink-
age of the bias and close-by directions (Liu et al.,
2018).

Many debiasing algorithms rely entirely on so
called “target lists” of protected classes in order
to identify and mitigate the “bias subspace”; how-
ever, to our knowledge no work examines the role
of these target lists in defining this space. This in
part due to the fact that in standard word embed-
dings there is only one embedding for a token. In
contrast, new contextualized word representations
such as BERT and ELMo have a different embed-
ding for each word token in a context. This allows
us an opportunity to more closely examine what
information target word lists are capturing.

This paper:
• Examines bias in ELMo and BERT, taking

advantage of their context-sensitivity to give
better visualizations.
• Shows how heterogeneity in content and size

of the ”target list” of gendered or racially
marked terms interferes with debiasing, and
how conceptors on contextual embeddings
can be used to address such target list hetero-
geneity.

2 Related Work

NLP has begun tackling the problems that are lim-
iting the achievement of fair and ethical AI (Hovy
and Spruit, 2016; Friedler et al., 2016), including
techniques for mitigating demographic biases in
models. In brief, a demographic bias is taken to
mean a difference in model output based on gen-
der (either of the data author or within the content
itself) or selected demographic dimension (“pro-
tected class”) such as race. Demographic biases
manifest in many ways, from disparities in tagging
and classification accuracy depending on author
age and gender (Hovy, 2015; Dixon et al., 2018),
to over-amplification of demographic differences
in language generation (Yatskar et al., 2016; Zhao
et al., 2017), to diverging implicit associations be-
tween words or concepts within embeddings or
language models (Bolukbasi et al., 2016; Rudinger

et al., 2018).
Recent work of Wang et al. (2019) shows bias in

ELMo and presents several examples of successful
debiasing. However, May et al. (2019) found that
bias in BERT may be more difficult to identify, but
Kurita et al. (2019) did indeed find bias in BERT.
However, prior work has not focused on identify-
ing word lists as a potential area of research.

3 Target Word Lists

To debias word embeddings, an appropriate word
list representing the bias in question needs to be
used to define the subspace. 1 For example, a gen-
der word list might be a set of pronouns which are
specific to a particular gender such as he / she or
himself / herself and gender specific words rep-
resenting relationships like brother / sister or un-
cle / aunt. We test conceptor debiasing both us-
ing the list of such pronouns2 used by Caliskan
et al. (2017) and using a more comprehensive list
of gender-specific words that also includes gender-
specific terms related to occupations, relationships
and other commonly used words such as prince
/ princess and host / hostess3. We further tested
conceptor (Jaeger, 2014; Liu et al., 2018) (soft)
debiasing using male and female names such as
Aaron / Alice or Chris / Clary.4

Previous researchers used a variety of different
word lists, but did not study the effect of word list
selection; we show below that the word list mat-
ters. However, we leave systematic study for fu-
ture work.

3.1 Word Lists and Principal Components
Recall most debiasing methods rely on principal
components of the matrix of embeddings of the
target words. Hard debiasing methods remove the
first or first several principal components (Boluk-
basi et al., 2016; Mu and Viswanath, 2018). Con-
ceptors, as explained below, do soft debiasing in
the same principal component space.

Paired nouns and pronouns should provide bet-
ter support for debiasing than names if we as-
sume that the linguistic markers are unambiguous

1Some methods also require a list of unbiased words as
well, but we will not address those since conceptor debiasing
does not require them.

2https://github.com/jsedoc/
ConceptorDebias/tree/master/lists

3https://github.com/uclanlp/corefBias,
https://github.com/uclanlp/gn_glove

4https://www.cs.cmu.edu/Groups/AI/
areas/nlp/corpora/names/
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(a) BERT

(b) ELMo

Figure 2: BERT and ELMo word representations of the
union of the set of contextualized word representations
of the pairs man / woman and Mary / John projected
onto their first and second principal components.

(a counterexample is ”guys”), and there is no pol-
ysemy. Names of people can also be ambiguous
(e.g. “Pat”). A possible solution for this which
we leave for future work is to regress the first few
principal components of a word pair with the bi-
nary attribute to verify that the pair is properly
captures the attribute of interest on out-of-sample
lists. In fact, for racial names Gaddis (2017)’s
method (using linear regression) can be used to
both filter and pair names. While this is difficult to
achieve using word embeddings which are at the
type level (i.e. one vector per word as in Fasttext
and word2vec), for contextualized word represen-
tations, which are token level (i.e. one vector per
word and context), this is completely feasible.

Figure 1 shows how the pair man / woman
cleanly separates across the first principal com-
ponent of the space of their contextualized repre-
sentations. However, even though one word pair
give good results, combining it with a second word
pair can have unfortunate effects; debiasing be-
comes more complicated if we add another pair of

words, say Mary / John to the pair man / woman,
as shown in Figure 2. The first principal compo-
nent is now capturing pronoun vs proper noun dif-
ference, which we do not desire to remove after
debiasing.

(a) BERT

(b) ELMo

Figure 3: BERT and ELMo word representations of the
union of the set of contextualized word representations
of the pairs man / woman and boy / girl projected onto
their first and second principal components.

It is also critical to note that contextualized
word embeddings are very rich, so while one
might think the union of the contextualized word
representations of man / woman and boy / girl
would yield a good gender direction, in fact we
find that the first principal component of these four
words is along the direction of adults vs. children
(see Figure 3). There is some separation between
“husband” and “wife” in this dimension, but none
between “boy” and “girl”. Similarly when names
such as Mary / John are projected onto this sub-
space, little separation occurs. Since most debias-
ing methods remove or shrink these principal com-
ponent directions, this combined word list does
poorly for debiasing.

Furthermore, some apparently sensible target
word lists are not useful for debiasing contextu-
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(a) ELMo PCs of male / female.

(b) ELMo PC of John / Mary

Figure 4: ELMo word representations of man / woman
projected onto the first and second principal compo-
nents defined by the pair (a) male / female and (b) John
/ Mary.

alized representations. Figure 4 shows that the
ELMO vectors of man and /woman separate nicely
when projected on to the first two principal com-
ponents of the Mary / John but fail to separate
when projected on to the first two principal com-
ponents of male / female. The word male / fe-
male word pair form a poor target list since they
are, in fact, rarely used to refer to people; They
are instead applied to animals (the male parrot) or
to distinguish a break of the social bias (the male
model).

Note that none of the above figures could have
been generated using traditional word embed-
dings; one cannot get two PCA dimensions for a
target word list of only two words.

3.2 Conceptors

Conceptors provide and effective, computationally
cheap and mathematically elegant a way of do-
ing soft debiasing of word embeddings. As with
many debiasing methods, the input is matrix Z of
word embeddings corresponding to a set of target

Figure 5: BERT word representations of the union of
the set of contextualized word representations of the
pairs husband / wife and Mary / John projected onto
the first and second principal components.

words, Z . (These can either be one embedding per
word type, for conventional embeddings, or one
vector per word token, as we use here for context-
sensitive embeddings; for best results,Z should be
mean-centered.) A conceptor matrix, C, is a reg-
ularized identity map (in our case, from the origi-
nal word embeddings to their biased versions) that
minimizes

‖Z − CZ‖2F+α−2‖C‖2F . (1)

where α−2 is a scalar parameter. As described
in the orignal work on matrix conceptors (Jaeger,
2014; He and Jaeger, 2018; Liu et al., 2019b,a) C
has a closed form solution:

C =
1

k
ZZ>(

1

k
ZZ> + α−2I)−1. (2)

Intuitively, C is a soft projection matrix on the
linear subspace that gives the largest shrinkage
where the word embeddings Z have the highest
variance. Once C has been learned, it can be
‘negated’ by subtracting it from the identity ma-
trix and then applied to any word embeddings to
shrink their bias directions.

Conceptors can represent laws of Boolean logic,
such as NOT ¬, AND ∧, and OR ∨. For two con-
ceptors C and B, we define the following opera-
tions:

¬C := I−C, (3)

C ∧B :=(C−1 +B−1 − I)−1 (4)

C ∨B :=¬(¬C ∧ ¬B) (5)

Thus, to minimize bias, we apply the negated
conceptor, NOT C (see Equation 3) to an embed-
ding space and reduce its bias. We call NOT C the

58



(a) Original (b) Union of he / she and boy / girl.

(c) Conceptor debiased using he / she (d) Conceptor debiased using boy / girl

(e) Conceptor debiased using the union of he / she, boy / girl (f) Conceptor debiased using OR he / she, boy / girl

Figure 6: Effect of target word lists on debiasing BERT word representations. The union of the set of contextualized
word representations of career, business, family, children, man, woman projected on to the first two principal
components of he / she.

debiasing conceptor. More generally, if we have
K conceptors, Ci derived from K different word
lists, we call NOT (C1∨ ...∨CK) a debiasing con-
ceptor.

Negated conceptors do soft debiasing, shrinking
each principal component of the covariance matrix
of the target word embeddings ZZ> based on the
conceptor hyper-parameter α and the eigenvalues

σi of ZZ>: α−2

σi+α−2 . (Liu et al., 2018).

4 Conceptor Debiasing

Above we showed that visualizations of gender
and racial subspaces gives insight for how word
lists for embedding can fail to produce good re-
sults. We now show how conceptor negation, ap-
plied across homogeneous subsets of the word list
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can improve performance.
Figure 6a shows that there is a gender bias us-

ing career versus family words projected onto the
gender space. Figure 6 shows that after debiasing
using conceptor negation (Liu et al., 2018) (as de-
fined above) there is substantially less bias.

Nonetheless, one should note that gender bias
need not be in the first two dimensions. In fact
recent work by Gonen and Goldberg (2019) has
pointed out that most “debiasing” methods are
simply mitigating bias and thus end task methods
will potentially be able to undo this mitigation. As
a result, we recommend that a method like Gaddis
(2017) be used to identify proper word lists.

5 Conclusion

We showed that one should take care when debias-
ing word embeddings; well-chosen word lists gen-
erally yield better subspaces than poorly-chosen
ones. Combining heterogeneous words into a sin-
gle word list presents a host of problems; a cou-
ple of ’bad’ words like ”male/female” can signifi-
cantly shift the dominant principal components of
the bias space. Conversely, since PCA effectively
weights words by their frequency of occurrence,
combining small word lists (pronouns) with large
word lists (names) means that the longer word lists
carry more weight in the principal components
(unless the rare words ’stick out’ a long way in
a different direction).

Conceptor debiasing provides a simple way of
addressing the problem of combining word lists
of different types and sizes, improving perfor-
mance over state-of-the art ‘hard’ debiasing meth-
ods. Conceptor debiasing has the further benefit
that conceptor negation methods allow one to learn
separate conceptors for each word subset and then
to OR them. The best results are obtained when
lists are broken up into subsets of ‘similar’ words
(pronouns, professions, names, etc). Similarly,
conceptors for different protected subclasses such
as gender and race can be OR’d to simultaneously
debias for both classes. OR’ing has the advantage
that word lists of different size are still treated as
equally important–a key factor when lists such as
pronouns, male and female names and black and
white names may be of vastly different sizes.

Contextual embeddings such as ELMo and
BERT, which give a different vector for each
word token, work particularly well with special-
ized word lists, since they produce a large number

of embeddings, allow principal components to be
computed and used for debiasing even for lists of
two words.

Finally, the main takeaway from this paper is
that word lists matter, especially for debiasing
contextualized word embeddings. Remember Fig-
ures 3 and 4b where intuition fails entirely!
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Abstract
In this work, we investigate the presence of
occupational gender stereotypes in sentiment
analysis models. Such a task has implica-
tions for reducing implicit biases in these mod-
els, which are being applied to an increasingly
wide variety of downstream tasks. We release
a new gender-balanced dataset1 of 800 sen-
tences pertaining to specific professions and
propose a methodology for using it as a test
bench to evaluate sentiment analysis models.
We evaluate the presence of occupational gen-
der stereotypes in 3 different models using our
approach, and explore their relationship with
societal perceptions of occupations.

1 Motivation

Social Role Theory (Eagly and Steffen, 1984)
shows that our ideas about gender are shaped
by observing, over time, the roles that men and
women occupy in their daily lives. These ideas
can crystallize into rigid stereotypes about how
men and women ought to behave, and what work
they can and cannot do. Gendered stereotypes are
powerful precisely for this reason: they define de-
sirable and expected traits, roles and behaviors in
people, and go beyond description to prescription.
Such biases from the social world, when they map
onto machine learning models, serve to reinforce
and propagate stereotypes further.

In this paper, we look specifically at occupa-
tional gender stereotypes in the context of senti-
ment analysis. Sentiment analysis is increasingly
being applied for recruitment, employee retention
and job satisfaction in the corporate world (Costa
and Veloso, 2015). Given the prevalence of oc-
cupational gender stereotypes, our study primarily
deals with the question of whether sentiment anal-
ysis models display and propagate these stereo-
types. To contextualize and ground our study, we

1Link to dataset: https://bit.ly/2HLSKnf

first provide a summary of the relevant sociologi-
cal literature on occupational gender stereotypes.

1.1 Background

Sociological studies as early as 1975 (Shinar,
1975) investigate gender stereotypes of occupa-
tions, and rank occupations in terms of how “mas-
culine”, “feminine” or neutral they are perceived
to be. Cejka and Eagly (1999) successfully pre-
dicted the gender distribution of occupations based
on beliefs about how specific gender-stereotypical
attributes (such as “masculine physical”) con-
tribute to occupational success. Such beliefs - that
success in a male dominated profession, for ex-
ample, requires male-specific traits - directly con-
tribute to sex segregation in occupations. The
study also found that high occupational prestige
and wages are strongly correlated with mascu-
line images. Together, this goes to show that
occupational structure is deeply shaped by gen-
der. More recently, Haines et al. (2016) inves-
tigate how and whether gender stereotypes have
changed between 1983 and 2014, and find conclu-
sive evidence that occupational gender stereotypes
have persisted strongly through the ages and re-
main stable. There is ample sociological evidence
to show that occupational gender stereotypes have
not undergone substantial modification since the
entry of women into the workplace, and that they
remain pervasive and widely held by both men and
women (Glick et al., 1995; Haines et al., 2016).

Since occupational gender stereotypes are
shaped by subjective factors and not objective re-
ality, they remain resistant to contrary evidence.
Theories such as the backlash hypothesis (Rud-
man and Phelan, 2008) further explain their persis-
tence: this theory shows how women in the work-
place must disconfirm female stereotypes in order
to be perceived as competent leaders, yet traits of
ambition and capability in women evoke negative

62



reactions which present a barrier to every level of
occupational success.

The implications of occupational gender stereo-
types are profound. Children and adolescents are
particularly sensitive to gendered language used to
describe occupations and form rigid occupational
gender stereotypes based on this (Vervecken et al.,
2013). In adults, occupational gender stereotypes
directly contribute to the existence of unequal
compensation and discriminatory hiring. They
also lead to self-fulling prophecies: for instance,
individuals may not apply to certain jobs in the
first place because they think they don’t fit the
gender stereotype for occupational success in that
field (Kay et al., 2015).

In the following section, we discuss relevant
prior work on gender bias from the NLP litera-
ture. In Section 3 we describe our methodology,
dataset, and experiments in greater detail. In Sec-
tion 4, we present and analyze our results, and
finally, Section 5 describes possible directions of
future work and concludes2.

2 Prior Work

Word embeddings have been the bedrock of neural
NLP models ever since the arrival of word2vec
(Mikolov et al., 2013), and a variety of topics re-
lated to biases with word embeddings have been
studied in prior literature. Garg et al. (2018) show
the presence of stereotypes in word embeddings
through the ages, while Bolukbasi et al. (2016)
demonstrate explicit examples of social biases that
are introduced into word embeddings trained on
a large text corpus. Prior work has also dealt
with occupational gender stereotypes in different
areas of NLP. Caliskan et al. (2017) formulate a
method to test biases (including gender stereo-
types) in word embeddings, while Rudinger et al.
(2018) investigate such stereotypes in the context
of coreference resolution. There have also been ef-
forts to debias word embeddings (Bolukbasi et al.,
2016) and come up with gender neutral word em-
beddings (Zhao et al., 2018). These efforts, how-
ever, have attracted criticism suggesting that they
do not actually debias embeddings but instead re-
distribute the bias across the embedding landscape
(Gonen and Goldberg, 2019).

Recent trends have been towards replacing fixed
word embeddings with large pretrained contextual

2Source code for this paper: github.com/
jayadevbhaskaran/gendered-sentiment

Figure 1: Simple diagram of our task definition.

representations as building blocks for NLP tasks.
The rise of this paradigm is characterized by the
use of language models for pretraining, exempli-
fied by models such as ELMo (Peters et al., 2018),
ULMFit (Howard and Ruder, 2018), GPT (Rad-
ford, 2018), and BERT (Devlin et al., 2018).

These models have shown marked improve-
ments over word vector based approaches for a va-
riety of tasks. However, their complexity leads to a
tradeoff in terms of interpretability. Recent works
have investigated gender biases in such deep con-
textual representations (May et al., 2019; Basta
et al., 2019) as well as their applications to coref-
erence resolution (Zhao et al., 2019; Webster et al.,
2018); however, no prior work has dealt with
such models in the context of occupational gender
stereotypes in sentiment analysis.

Kiritchenko and Mohammad (2018) introduce
the Equity Evaluation Corpus, a dataset used for
measuring racial and gender biases in sentiment
analysis-like systems. It was initially used to eval-
uate systems that predicted emotion and valence
of Tweets (Mohammad et al., 2018). We use a
similar approach to create a new dataset for mea-
suring gender differences with a specific focus on
occupational gender stereotypes. Our approach is
model-independent and can be used for any senti-
ment analysis system, irrespective of model com-
plexity.

3 Methodology

We create a dataset of 800 sentences, each with the
following structure: noun is a/an profession.
Here, noun corresponds to a male or female
noun phrase, such as “This boy”/“This girl”, and
profession is one of 20 different professions.
Each sentence is an assertion of fact, and by itself
does not seek to exhibit either positive or negative
sentiment. Our dataset is balanced across genders
and has 20 noun phrases for each gender, leading
to a total of 400 sentences per gender.
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The rationale behind our selection of the 20
professions is to include a variety of gender dis-
tribution characteristics and occupation types, in
correspondence with US Current Population Sur-
vey 2018 (CPS) data (Current Population Survey,
2018) and prior literature (Haines et al., 2016).
We select 5 professions that are male-dominated
(truck driver, mechanic, pilot, chef, soldier) and
5 that are female-dominated (teacher, flight at-
tendant, clerk, secretary, nurse) - with domina-
tion meaning greater than 70% share in the job
distribution. Next, we add professions that are
slightly male-dominated (scientist, lawyer, doctor)
and slightly female-dominated (writer, dancer),
with slight domination meaning a 60− 65% share
in the job distribution. We also add professor,
which does not have a clear definition as per CPS
but has been known to have different gender splits
at senior and junior levels. Finally, we include
two professions that show an approximately neu-
tral divide (tailor, gym trainer) and two which
have experienced significant changes in their gen-
der distribution over time (baker, bartender), with
an increasing female representation in recent times
(Haines et al., 2016). As mentioned previously, we
also select our set of occupations with an eye to-
wards representing a range of occupation types.

We evaluate 3 sentiment analysis models
through our experiments. Each model is trained on
the Stanford Sentiment Treebank 2 train dataset
(Socher et al., 2013), which contains phrases from
movie reviews along with binary (0/1) sentiment
labels. We then evaluate each model on our new
corpus and measure the difference in mean pre-
dicted positive class probabilities between sen-
tences with male nouns and those with female
nouns. We test 3 hypotheses (one for each model),
with the null hypotheses indicating no difference
in means between sentences with male and female
nouns. Fig. 1 illustrates our experimental setup.

Our evaluation methodology is very similar to
that used in Kiritchenko and Mohammad (2018).
For each system, we predict the positive class
probability for each sentence. We then apply a
paired t-test (since each pair contains a male and
female version of the same template sentence) to
measure if the mean predicted positive class prob-
abilities are different across genders, using a sig-
nificance level of 0.01. Since we test three hy-
potheses (one for each system), we apply Bonfer-
roni correction (Bonferroni, 1936) to the p-values

that we obtain. In other words, the null hypothesis
is rejected only for calculated p-values less than
0.01/3. We note that we do not perform any cor-
rection to account for the fact that the sentences
within each gender are not iid, and only vary in
the noun and profession words.

The 3 models that we evaluate are as follows:

• M.1: Bag-of-words + Logistic Regres-
sion (baseline): We build a simple bag-of-
words model, apply tf-idf weighting, and
use logistic regression (implemented using
scikit-learn (Pedregosa et al., 2011)) to
classify sentiment. This model is a very sim-
ple approach that has nevertheless been found
to work well in practice for sentiment analy-
sis tasks, and we use it as our baseline model.

• M.2: BiLSTM: We use a bidirectional LSTM
implemented in Keras (Chollet et al., 2015)
to predict sentiment. The words in a sentence
are represented by 300-dimensional GloVe
embeddings (Pennington et al., 2014). This
model is more sophisticated than the base-
line and captures some contextual informa-
tion and long-term dependencies (Hochreiter
and Schmidhuber, 1997). This model also al-
lows us to investigate gender differences that
might be introduced through word embed-
dings, as described in Bolukbasi et al. (2016).

• M.3: BERT (Devlin et al., 2018): We use a
pretrained (uncased) BERT-Base model3 and
finetune it the SST-2 dataset. This shows near
state-of-the-art performance on a wide vari-
ety of NLP tasks, including sentiment analy-
sis (Devlin et al., 2018).

While analysing the results of our experiments,
we measure overall predicted mean positive prob-
abilities (across genders) for each of the 20 pro-
fessions in our newly created dataset, to identify
which professions are rated as high-sentiment by
these models. This helps us investigate relation-
ships between societal perceptions of occupations
and corresponding sentiment predictions from the
models.

We also examine differences in sentiment
among equivalent gender pairs (such as bachelor
and spinster) for the 20 pairs in our dataset, to
investigate differences in predicted sentiment be-
tween different sets of male/female noun pairs.

3Model source: https://bit.ly/2S8w6Jt
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Model Dev Acc. F - M
M.1 (BoW+LogReg) 0.827 0.035**
M.2 (BiLSTM) 0.841 0.077**
M.3 (BERT) 0.930 -0.040**

Table 1: Results. Dev Acc. represents accuracy on
SST-2 dev set. F - M represents difference between
means of predicted positive class probabilities for sen-
tences with female nouns and sentences with male
nouns. ** denotes statistical significance with p < 0.01
(after applying Bonferroni correction).

Finally, we examine differences between male
and female nouns for each individual occupation,
to understand which occupations are susceptible to
gender stereotyping.

4 Results/Analysis

The main results of our experiments are shown
in Table 1. Our null hypothesis is that the pre-
dicted positive probabilities for female and male
sentences have identical means. We notice that
M.1 (Bag-of-words + Logistic Regression) and
M.2 (BiLSTM) show a statistically significant dif-
ference between the two genders, with higher pre-
dicted positive class probabilities for sentences
with female nouns. This effectively represents the
biases seen in the SST-2 train dataset. The
dataset has 1182 sentences containing a male noun
with a mean sentiment of 0.535, and 601 sen-
tences containing a female noun with a mean sen-
timent of 0.599. Thus, biases present in training
data can get propagated through machine learning
models, and our approach can help identify these.

On the contrary, M.3 (BERT) shows that sen-
tences with male nouns have a statistically sig-
nificant higher predicted positive class probabil-
ity than sentences with female nouns. One pos-
sible reason for this might be biases that prop-
agate from the pretraining phase in BERT. This
finding indicates a promising direction of future
work: investigating the effects of gender biases
in the large pretraining corpus versus those in the
smaller fine-tuning corpus (in our case, the SST-2
train dataset).

4.1 Social Stereotypes of Occupations

We now look at mean distributions of positive
class probability (across genders) for each profes-
sion, as shown in Table 2. We notice that secre-
tary shows up as a high positive sentiment profes-

Model Top 3 professions
BoW+LogReg Secretary, Teacher, Writer
BiLSTM Dancer, Secretary, Scientist
BERT Scientist, Chef, Dancer
Model Bottom 3 professions
BoW+LogReg Truck Dr., Fl. Att., (many)
BiLSTM Truck Dr., Gym Tr., Nurse
BERT Truck Dr., Clerk, Tailor

Table 2: Top 3 and bottom 3 professions per model,
based on predicted positive class probability (agnos-
tic of gender). Note: For BoW+LogReg, (many) de-
notes all the professions that did not appear in the SST-
2 train dataset.

sion in both M.1 and M.2. On further investiga-
tion, we notice that this artefact arises because of
the 2002 movie Secretary, starring Maggie Gyl-
lenhall, that has a number of positive reviews that
form a part of the SST-2 train dataset. However,
M.3 (BERT) seems to be impervious to this, in-
dicating that extensive pretraining could have the
potential to remove certain corpus-specific effects
that might have lingered in shallower models.

The profession with the lowest average senti-
ment score across all 3 models is truck driver;
other low scoring professions include clerk, gym
trainer and flight attendant. We also note that
the highest scoring profession (average sentiment
0.99) with M.3 (BERT) is scientist and the low-
est (average sentiment 0.34) is truck driver, dis-
turbingly reflective of societal stereotypes about
white-collar and blue-collar jobs.

To explore this further, we look at data from
the Current Population Survey of the US Bureau
of Labor Statistics (Current Population Survey,
2018). Fig. 2 shows the relationship between me-
dian weekly earnings (for occupations where data
is available) and average positive sentiment pre-
dicted by BERT. While there are some outliers, the
figure shows a positive correlation between earn-
ings and sentiment, indicating that the model may
have incorporated societal perceptions around dif-
ferent occupations. We note that this is only a
rough analysis, as not all occupations directly cor-
respond to entries from the survey data.

4.2 Gendered Stereotypes

We attempt to analyze differences in gender within
occupations by studying the predictions of M.3
(BERT), which incorporates the largest amount
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Figure 2: Median weekly earnings (Current Population
Survey, 2018) vs. mean predicted positive probability
using M.3 (BERT), per profession.

of external data. First, we analyze differences in
mean positive class probability between sentences
with male and female nouns for each profession.
We notice that pilot has the highest positive dif-
ference between female and male noun sentences
(i.e., female is higher), while flight attendant has
the most negative difference (i.e., male is higher).
This provides an interesting dichotomy: pilot is a
male-dominated profession, while flight attendant
is a female-dominated one.

To test whether these are just artefacts of
generic gender bias in the model or specific to
occupational gendered stereotypes, we replace
profession with “person” to create 20 sen-
tence pairs such as ”This man/this woman is a per-
son.”, and predict the sentiment for these 20 pairs.
We notice that the difference between female and
male noun sentences for the control experiment is
0.039, showing that sentences with female nouns
in the control group exhibit higher positive senti-
ment that those with male nouns. The three occu-
pations with the most negative difference (i.e., fe-
male sentences have lower positive sentiment) are
flight attendant (−0.132), bartender (−0.126),
and clerk (−0.116). Of these, flight attendant
(72%) and clerk (86%) are female-dominated pro-
fessions (Current Population Survey, 2018), while
bartender (55%) is a profession that has been
shifting from male to female-dominated in recent
times (Haines et al., 2016).

Finally, we study differences between cor-
responding pairs of female and male nouns,
using predictions from M.3 (BERT). Out
of the 20 pairs in our dataset, the pair with
the greatest difference in mean positive class
probability is spinster and bachelor, with

spinster− bachelor = −0.404 (p < 0.01).
This reflects societal perceptions of spinster as
someone who is characterized as alone, lonely
and resembling an “old maid”, versus bachelor
as someone who might be young, carefree and
fun-loving (Nieuwets, 2015). This is an example
of semantic pejoration seen in society, where the
female form of the noun (i.e., spinster) gradually
acquires a negative connotation. Notably, this
pejorative behavior may have also leaked into the
model, reflecting societal gender stereotypes.

5 Conclusion/Future Work

In this paper, we introduce a new dataset that can
be used to test the presence of occupational gender
stereotypes in any sentiment analysis model. We
then train 3 sentiment analysis models and evalu-
ate them using our dataset. Following that, we an-
alyze our results, exploring social stereotypes of
occupations as well as gendered stereotypes. We
find that all 3 models that we study exhibit differ-
ences in mean predicted positive class probability
between genders, though the directions vary. We
also see that simpler models may be more suscep-
tible to biases seen in the training dataset, while
deep contextual models may exhibit biases poten-
tially introduced during pretraining.

One promising avenue for future work is to
explore occupational stereotypes in deep contex-
tual models by analyzing their training corpora.
This could also help identify techniques to miti-
gate biases in such models, since they could be
relatively impervious to biases introduced by fine-
tuning (especially on smaller datasets).

From a sociological perspective, we plan to
investigate occupational gender stereotypes in
downstream applications such as automated re-
sume screening. Such a task assumes greater im-
portance with the increased use of these systems in
today‘s world. There is prior work on ethnic bias
in such tools (Derous and Ryan, 2018), and we be-
lieve that there is significant value in exploring and
characterizing gender biases in these systems.
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Abstract
(Bolukbasi et al., 2016) demonstrated that pre-
trained word embeddings can inherit gender
bias from the data they were trained on. We
investigate how this bias affects downstream
classification tasks, using the case study of
occupation classification (De-Arteaga et al.,
2019). We show that traditional techniques for
debiasing embeddings can actually worsen the
bias of the downstream classifier by providing
a less noisy channel for communicating gen-
der information. With a relatively minor ad-
justment, however, we show how these same
techniques can be used to simultaneously re-
duce bias and maintain high classification ac-
curacy.

1 Introduction

A trend in the construction of deep learning mod-
els for natural language processing tasks is the
use of pre-trained embeddings at the input layer
(Mikolov et al., 2013; Pennington et al., 2014; Bo-
janowski et al., 2017). These embeddings are usu-
ally learned by solving a language modeling task
on a large unsupervised corpus, allowing down-
stream models to leverage the semantic and syn-
tactic relationships learned from this corpus. One
issue with using such embeddings, however, is that
the model might inherit unintended biases from
this corpus. In (Bolukbasi et al., 2016), the au-
thors highlight some gender bias at the embedding
layer through analogy and occupational stereotyp-
ing tasks, but do not investigate how these biases
affect modeling on downstream tasks. It has been
argued (Gonen and Goldberg, 2019) that such de-
biasing approaches only mask the bias in embed-
dings and that bias remains in a form that down-
stream algorithms can still pick up.

This paper investigate the impact of gender bias
in these pre-trained word embeddings on down-

∗Equal contribution.

stream modeling tasks. We build deep neural net-
work classifiers to perform occupation classifica-
tion on the recently released “Bias in Bios” dataset
(De-Arteaga et al., 2019) using a variety of dif-
ferent debiasing techniques for these embeddings
introduced in (Bolukbasi et al., 2016) and com-
paring them to the scrubbing of gender indicators.
The main contributions of this paper are:

• Comparing the efficacy of embedding based
debiasing techniques to manual word scrub-
bing techniques on both overall model per-
formance and fairness.

• Demonstrating that standard debiasing ap-
proaches like those introduced in (Boluk-
basi et al., 2016) actually worsen the bias
of downstream tasks by providing a denoised
channel for communicating demographic in-
formation.

• Highlight that a simple modification of this
debiasing technique which aims to com-
pletely remove gender information can si-
multaneously improve fairness criteria and
maintain a high level of task accuracy.

2 Classification Task

This work utilizes the BiosBias dataset introduced
in (De-Arteaga et al., 2019). This dataset con-
sists of biographies identified within the Common
Crawl. 397,340 biographies were extracted from
sixteen crawls from 2014 to 2018. Biography
lengths ranged from eighteen to 194 tokens and
were labelled with one of twenty-eight different
occupations and a binary gender (see Table 1 for
a more detailed breakdown of statistics). The goal
of the task is to correctly classify the subject’s oc-
cupation from their biography. Each comment is
assigned to our train, dev, and test split with prob-
ability 0.7, 0.15, and 0.15 respectively.

69



Occupation Female Bios Male Bios

accountant 3579 2085
architect 7747 2409
attorney 20182 12531
chiropractor 1973 705
comedian 2223 594
composer 4700 921
dentist 9573 5240
dietitian 289 3696
dj 1279 211
filmmaker 4712 2314
interior designer 282 1185
journalist 10110 9896
model 1295 6244
nurse 1738 17263
painter 4210 3550
paralegal 268 1503
pastor 1926 609
personal trainer 782 656
photographer 15669 8713
physician 20805 20298
poet 3587 3448
professor 65049 53438
psychologist 7001 11476
rapper 1274 136
software engineer 5837 1096
surgeon 11637 2023
teacher 6460 9813
yoga teacher 259 1408

Table 1: Dataset Statistics

In (De-Arteaga et al., 2019), this task is used to
explore the level of bias present in three different
types of models: a bag of words logistic regres-
sion, a word embedding logistic regression, and a
bi-directional recurrent neural network with atten-
tion. The models are trained with two different to-
kenization strategies, i.e. with and without scrub-
bing gender indicators like pronouns. We will use
the two variants of the deep neural network model
as a baseline in this work.

3 Debiasing Methodology

3.1 Debiasing Word Embeddings

Our DNN models use 100 dimensional normal-
ized GloVe embeddings (Pennington et al., 2014)
at the input layer. (Bolukbasi et al., 2016) showed
through analogy and occupational stereotyping
tasks that such embeddings contain instances of

direct and indirect bias. They also provide a tech-
nique that can be used to remove this bias as mea-
sured by this task. In this section, we review the
specifics of this technique.

The first step to produce debiased word embed-
dings from our input GloVe embeddings {~w ∈
Rd} is to define a collection of word-pairs
D1, ..., Dn which can be used to identify the gen-
der subspace. For this work, we use the same in-
put word pairs as (Bolukbasi et al., 2016). The
k-dimensional gender subspace B is then defined
to be the first k rows of the singular value decom-
position of

1

2

n∑

i=1

∑

~w∈Di

(~w − µi)T (~w − µi)

where µi :=
∑

~w∈Di
~w/2. For our experiments,

we set k = 1.
The next step is to modify the embedding of a

set of “neutral” (i.e. non-gendered) words N by
projecting them orthogonally to the gender sub-
space. If we let ~wB denote the projection of a word
embedding ~w orthogonally to the gender subspace
B then this would be equivalent to, for all neutral
word vectors ~w ∈ N , changing their embedding
to:

~w := ~wB/ ‖~wB‖ .
The final step in the algorithm is to define a col-

lection of equality sets E1, ..., Em of words which
we believe should differ only in the gender com-
ponent. For our purposes we use all the word pairs
used in (Bolukbasi et al., 2016) as well as the sets
of words that are scrubbed in (De-Arteaga et al.,
2019). For each Ei we equalize by taking the
mean µ =

∑
~w∈Ei

~w/|Ei| and projecting that or-
thogonally to the gender subspace to obtain µB .
The new embeddings for each word in the equal-
ize set ~w ∈ Ei can then be set to

µB +

√
1− ‖µB‖2

~wB

‖ ~wB‖
.

To compute these debiased embeddings, we
build on the github library1 provided by the au-
thors of (Bolukbasi et al., 2016).

3.2 Strong Debiasing

In the original work, (Bolukbasi et al., 2016) dif-
ferentiate between neutral words in the set N and

1https://github.com/tolga-b/debiaswe
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gender specific words, removing the gender sub-
space component of the former while preserving
it for the latter. While this appears to be a good
strategy for maintaining the maximum semantic
information in the embeddings while removing as
much biased gender information as possible, we
show in Sections 5 and 6 that, by providing a
clear channel to communicate gender information,
this technique can make the gender bias worse in
downstream modeling tasks.

To mitigate this effect, we study strongly de-
biased embeddings, a variant of the algorithm in
the previous section where we simply set N to be
all of the words in our vocabulary. In this case,
all words including those typically associated with
gender (e.g. he, she, mr., mrs.) are projected or-
thogonally to the gender subspace. This seeks to
remove entirely the gender information from the
corpus while still maintaining the remaining se-
mantic information about these words. It should
be noted that for words in our equalize sets, i.e.
those that differ only by gender, this results in all
the words within one set being embedded to the
same vector. As we will see in Section 5, this re-
sults in an improved performance over techniques
like scrubbing which remove this semantic infor-
mation entirely and disrupt the language model of
the input sentence. In Section 6.3, we also per-
form ablation studies to show how important each
of the steps in the algorithm is to achieving high
accuracy with low bias.

4 Evaluation Metrics

We will evaluate our models on the dimensions of
overall performance and fairness. For the over-
all performance of these models, we will use the
standard accuracy metric of multi-class classifi-
cation. There are a number of metrics and cri-
teria that offer different interpretations of model
fairness (Dixon et al., 2018; Narayanan, 2018;
Friedler et al., 2019; Beutel et al., 2019). In this
work, we use the method introduced by (Hardt
et al., 2016) as Equality of Opportunity.

If your data has binary labels Y and some de-
mographic variable A, in our case whether the bi-
ography is about a female, then Equality of Op-
portunity is defined as

Pr{Ŷ = 1|Y = 1, A = 1} = Pr{Ŷ = 1|Y = 1, A = 0}.

i.e. the true positive rate of the model should

be independent of the demographic variable con-
ditioned on the true label.

In order to measure deviation from this ideal cri-
teria we follow a number of other authors (Garg
et al., 2019) and define the True Positive Rate Gap
(TPRgap) to be:

|Pr{Ŷ = 1|Y = 1, A = 1} − Pr{Ŷ = 1|Y = 1, A = 0}|.

Since in our context, we are dealing with a
multi-class classifier, we will measure the TPRgap
for each class as a separate binary decision and
will aggregate by averaging over all occupations.

We can analagously define the TNRgap with the
True Negative Rates taking the place of True Pos-
itive Rates in the above discussion. We will also
report the average TNRgap across occupations.

5 Experiments

To understand how the embedding layer affects
our deep learning classifiers, we will train classi-
fiers with a variety of embeddings. As baselines,
we will use the GloVe embeddings with and with-
out the gender indicator scrubbing described in
(De-Arteaga et al., 2019). Additionally, we train
a classifier on GloVe embeddings debiased using
both techniques discussed in Section 3. These em-
beddings are fixed (rather than trainable) param-
eters of our network. For each of these models,
we evaluate their classification performance (ac-
curacy) alongside their overall fairness (TPRgap).

5.1 Model architecture
Our architecture follows the DNN approach used
in (De-Arteaga et al., 2019). After tokenization
and embedding, we encode the input sentence with
a bidirectional Recurrent Neural Network with
GRU cells and extract the sentence representation
by applying an attention layer over the bi-RNN
outputs. After a dense layer with Relu activation,
we compute a logit for each class via a linear layer.
We use the softmax cross-entropy to compute the
loss.

All hyper parameters were tuned for the stan-
dard GloVe model and the optimal values were
used for the subsequent runs.

5.2 Scrubbing explicit gender indicators
As a baseline with which to compare embed-
ding based debiasing, we implement the scrubbing
technique described in (De-Arteaga et al., 2019),
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Embedding Acc. TPRgap TNRgap

GloVe 0.818 0.091 0.0031
Scrubbed 0.804 0.070 0.0024
Debiased 0.807 0.119 0.0037
Strongly debiased 0.817 0.069 0.0023

Table 2: Model metrics

which consists of preprocessing the text by re-
moving explicit gender indicators. To provide a
fair comparison, we scrub explicit gender indica-
tors that combine all the equalizing pairs used in
(Bolukbasi et al., 2016) as well as the sets of words
that are scrubbed in (De-Arteaga et al.,2019).

5.3 Results

Our results are displayed in Table 2 which records
the values of accuracy, TPRgap and TNRgap for
each model. We focus on the TPRgap as our pri-
mary fairness metric but the results still hold if the
TNRgap is used instead.

As we can see, the strongly debiased model
performs best overall. It reduces the bias (-.022
TPRgap) slightly more than the scrubbed technique
(-.021 TPRgap). However, it has a much smaller
cost to classification accuracy than scrubbing (-
0.1% vs -1.4%) as the embeddings still retain most
of the semantic and syntactic information about
the words in the comment.

Our results also indicate that using debiased em-
beddings has a counter-productive effect on bias as
they significantly increase the TPRgap. We explore
this further in the next section.

6 Analysis

In this section, we provide some analysis to ex-
plain our experimental results. First, we look at the
sentence representation of each model and mea-
sure how much gender information it contains. We
confirm empirically that both strongly debiasing
and scrubbing techniques reduce the gender infor-
mation that is used by the model. Secondly, we
explain why using debiased embeddings does not
reduce the amount of bias in the classification task
and highlight how the algorithm for strongly debi-
asing addresses this issue. Finally, we explore the
relative importance of the two components of the
debiasing algorithm: projection and equalization.

Embedding Accuracy

GloVe 0.86
Scrubbed 0.68
Debiased 0.88
Strong Debiased 0.66

Table 3: Gender classifier accuracy

6.1 Connecting bias to gender information

The debiasing techniques studied in this paper all
modify the way the gender information is fed to
the model. The scrubbed technique masks the ex-
plicit gender indicators, the debiased algorithm re-
duces the indirect gender bias in the embeddings
and the strongly debiased approach aims at remov-
ing the gender component in them entirely.

We investigate how each of these embeddings
affect the amount of gender information available
to the model for occupation classification. To that
end, after each model is trained on occupation
labels, we train a separate logistic classifier that
takes as input the sentence representation of the
previous model (i.e. the last layer before the log-
its) and predicts the gender of the subject of the
biography. We keep the remaining model layers
frozen so that we do not change the representa-
tion of the sentence. The accuracy of these gender
classifiers (reported in Table 3) provide a measure
of the amount of gender information contained in
each of our models.

We see that the representation of the baseline
GloVe model keeps a significant amount of gen-
der information, allowing for a gender classifica-
tion accuracy of 0.86. With strongly debiased em-
beddings, the model representation contains much
less gender information than the GloVe model and
slightly less than scrubbing out the gender indica-
tors. This suggests that both scrubbing and strong
debiasing are effective at reducing the amount of
gender information the overall model is able to
capture, which explains the fairer occupational
classifications. Debiased embeddings, on the other
hand, slightly increase the gender information that
the model can learn. In the next section, we inves-
tigate this phenomenon further.

6.2 Impact of debiasing on the gender
component

The above experiments show that debiased em-
beddings cause models to act “less fairly” than

72



Figure 1: Gender component of a biography

standard Glove embeddings (20% higher TPRgap)
by allowing them to better represent the gender
of the subject of the biography. We hypothesize
that this is due to an undesirable side-effect of the
debiasing algorithm introduced in Section 3.1: it
clarifies information coming from gender specific
words by removing the noise from coming neutral
words and therefore makes it easier for the model
to communicate gender features.

To validate this hypothesis, we run the follow-
ing analysis. Beginning with the standard GloVe
embeddings, we define the gender component of
a word as its projection on the gender direction
and the gender component of a biography to be
the average gender component of all the words it
contains.

Figure 1 is a histogram of the gender compo-
nent of the biographies in our data. A negative
value means that the gender component of the bi-
ography is more male than female. We observe
that, surprisingly, all biographies have a negative
gender component 2.

As expected, male biographies have a slightly
more negative gender component on average than
female biographies (-.166 vs -.138), which indi-
cates that they include words that are more asso-
ciated with male concepts. However, both distri-
butions have a high variance and they are there-
fore not clearly separable. This plot indicates that,
with standard GloVe embeddings, the gender com-
ponent of a biography is only a weak signal for its
gender.

Figure 2 is a histogram of the gender com-
ponents of biographies which distinguishes the
gender-specific words (top) and the neutral words
(bottom). We see that the gender component based
on gender specific words gives a clear separa-

2By comparing to other large datasets, we’ve established
that this is an idiosyncrasy of the BiosBias dataset, which
overall contains words with a more male gender component.

Figure 2: Gender component of a biography based on
gender specific words (top) and based on neutral words
(bottom)

tion between male and female biographies, with
a threshold at 0, whereas the distribution for neu-
tral words (bottom) has more noise and does not
clearly indicate the gender of the biography. In-
terestingly, for neutral words, the average gender
component for male biographies is lower than for
female ones (-.159 vs -.148), which indicates some
indirect bias.

As about 95% of the words of a biography are
neutral, its gender component is mostly driven by
this set of words and not by the gender-specific
ones. This explains why the plot in Figure 1 has
a noisy distribution without any clear gender sep-
aration. In other words, when using regular Glove
embeddings, the neutral words are actually mask-
ing the clearer signal coming from gender specific
words.

This analysis provides some explanation for the
counter-intuitive impact of debiased embeddings.
By construction, they remove the gender compo-
nent of neutral words and leave unchanged that
of gender specific words. While this is desirable
for analogy tasks, using these embeddings in a
text classifier actually allows the model to easily
identify the gender of a biography and potentially
learn a direct relationship between gender and oc-
cupation. On the opposite end, strongly debiased
embeddings remove the entire signal and make it
harder for the classifier to learn any such relation-
ship.
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Embeddings Acc. TPRgap TNRgap

GloVe 0.818 0.091 0.0031
Strongly debias 0.817 0.069 0.0023
Project only 0.815 0.103 0.0032
Equalize only 0.817 0.080 0.0029

Table 4: Ablation study: Metrics for projection and
equalization step

6.3 Ablation analysis of debiasing

As mentioned in Section 3.1, the algorithm for
strongly debiasing includes two successive steps.
First, we project all words orthogonally to the gen-
der subspace. Then we equalize the non-gender
part of a predefined list of pairs. We conducted an
ablation study to analyze the impact of each step
separately. More precisely, we train one model
project only where we project all the words or-
thogonally to the gender direction and another one
equalize only where we equalize all pairs - which
is equivalent to replacing each element of a pair by
the mean vector.

Results are displayed in Table 4. We observe
that the equalization step has the strongest impact
in bias reduction, while the projection is inefficient
when used separately. We hypothesize that the
projection is not able to correctly handle the ex-
plicit gender indicator words and therefore leaves
too much direct bias. However both combined as
in the strong debias technique provide the best re-
sults.

7 Conclusion

In this paper, we investigate how debiased embed-
dings affect both performance and fairness met-
rics. Our experiments reveal that debiased em-
beddings can actually worsen a text classifier’s
fairness, whereas strongly debiased embeddings
can reduce gender information and improve fair-
ness while maintaining good classification perfor-
mance. As these embeddings provide a simple tool
that can be injected as is within model architec-
tures, they do not result in much additional burden
for ML practitioners (e.g. model tweaks, labelled
data). In the future, we would like to confirm that
this approach generalizes to a variety of datasets
and to other identity groups.
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Abstract

This paper explains the TALP-UPC partici-
pation for the Gendered Pronoun Resolution
shared-task of the 1st ACL Workshop on Gen-
der Bias for Natural Language Processing. We
have implemented two models for mask lan-
guage modeling using pre-trained BERT ad-
justed to work for a classification problem.
The proposed solutions are based on the word
probabilities of the original BERT model, but
using common English names to replace the
original test names.

1 Introduction

The Gendered Pronoun Resolution task is a nat-
ural language processing task whose objective is
to build pronoun resolution systems that identify
the correct name a pronoun refers to. It’s called
a co-reference resolution task. Co-reference res-
olution tackles the problem of different elements
of a text that refer to the same thing. Like for ex-
ample a pronoun and a noun, or multiple nouns
that describe the same entity. There are multiple
deep learning approaches to this problem. Neu-
ralCoref 1 presents one based on giving every pair
of mentions (pronoun + noun) a score to represent
whether or not they refer to the same entity. In our
current task, this approach is not possible, because
we don’t have the true information of every pair of
mentions, only the two names per entry.

The current task also has to deal with the prob-
lem of gender. As the GAP researchers point
out (Webster et al., 2018), the biggest and most
common datasets for co-reference resolution have
a bias towards male entities. For example the
OntoNotes dataset, which is used for some of the
most popular models, only has a 25% female rep-
resentation (Pradhan and Xue, 2009). This creates

1https://medium.com/huggingface/state-of-the-art-
neural-coreference-resolution-for-chatbots-3302365dcf30

a problem, because any machine learning model
is only as good as its training set. Biased training
sets will create biased models, and this will have
repercussions on any uses the model may have.

This task provides an interesting challenge spe-
cially by the fact that it is proposed over a gender
neutral dataset. In this sense, the challenge is ori-
ented towards proposing methods that are gender-
neutral and to not provide bias given that the data
set does not have it.

To face this task, we propose to make use of the
recent popular BERT tool (Devlin et al., 2018).
BERT is a model trained for masked language
modeling (LM) word prediction and sentence pre-
diction using the transformer network (Vaswani
et al., 2017). BERT also provides a group of pre-
trained models for different uses, of different lan-
guages and sizes. There are implementations for
it in all sorts of tasks, including text classification,
question answering, multiple choice question an-
swering, sentence tagging, among others. BERT
is gaining popularity quickly in language tasks,
but before this shared-task appeared, we had no
awareness of its implementation in co-reference
resolution. For this task, we’ve used an imple-
mentation that takes advantage of the masked LM
which BERT is trained for and uses it for a kind of
task BERT is not specifically designed for.

In this paper, we are detailing our shared-task
participation, which basically includes descrip-
tions on the use we gave to the BERT model and
on our technique of ’Name Replacement’ that al-
lowed to reduce the impact of name frequency.

2 Co-reference Resolution System
Description

2.1 BERT for Masked LM

This model’s main objective is to predict a word
that has been masked in a sentence. For this exer-
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cise that word is the pronoun whose referent we’re
trying to identify. This one pronoun gets replaced
by the [MASKED] tag, the rest of the sentence is
subjected to the different name change rules de-
scribed in section 2.2.

The text is passed through the pre-trained BERT
model. This model keeps all of its weights intact,
the only changes made in training are to the net-
work outside of the BERT model. The resulting
sequence then passes through what is called the
masked language modeling head. This consists of
a small neural network that returns, for every word
in the sequence, an array the size of the entire
vocabulary with the probability for every word.
The array for our masked pronoun is extracted and
then from that array, we get the probabilities of
three different words. These three words are : the
first replaced name (name 1), the second replaced
name (name 2) and the word none for the case of
having none.

This third case is the strangest one, because the
word none would logically not appear in the sen-
tence. Tests were made with the original pronoun
as the third option instead. But the results ended
up being very similar albeit slightly worse, so the
word none was kept instead. These cases where
there is no true answer are the hardest ones for
both of the models.

We experimented with two models.

Model 1 After the probabilities for each word
are extracted, the rest is treated as a classification
problem. An array is created with the probabili-
ties of the 2 names and none ([name 1, name 2,
none]), where each one represents the probability
of a class in multi-class classification. This array
is passed through a softmax function to adjust it to
probabilities between 0 and 1 and then the log loss
is calculated. A block diagram of this model can
be seen in figure 1.

Model 2 This model repeats the steps of model 1
but for two different texts. These texts are mostly
the same except the replacement names name 1
and name 2 have been switched (as explained in
the section 2.2). It calculates the probabilities for
each word for each text and then takes an aver-
age of both. Then finally applies the softmax and
calculates the loss with the average probability of
each class across both texts. A block diagram of
this model can be seen in figure 2.

2.2 Name Replacement
The task contains names of individuals who are
featured in Wikipedia, and some of these names
are uncommon in the English language. As part of
the pre-processing for both models, these names
are replaced. They are replaced with common En-
glish names in their respective genders2. If the
pronoun is female, one of two common English
female names are chosen, same thing for the male
pronouns. In order to replace them in the text, the
following set of rules are followed.

1. The names mentioned on the A and B
columns are replaced.

2. Any other instances of the full name as it ap-
pears on the A/B columns are replaced.

3. If the name on the A/B column contains a first
name and a last name. Instances of the first
name are also replaced. Unless both entities
share a first name, or the first name of one is
contained within the other.

4. Both the name and the text are converted to
lowercase

This name replacement has two major benefits.
First, the more common male and female names
work better with BERT because they appear more
in the corpus in which it is trained on. Secondly,
when the word piece encoding splits certain words
the tokenizer can be configured so that our chosen
names are never split. So they are single tokens
(and not multiple word pieces), which helps the
way the model is implemented.

Both models (1 and 2 presented in the above
section) use BERT for Masked LM prediction
where the mask always covers a pronoun, and
because the pronoun is a single token (not split
into word pieces), it’s more useful to compare the
masked pronoun to both names, which are also
both single tokens (not multiple word pieces).

Because the chosen names are very common
in the English language, BERT’s previous train-
ing might contain biases towards one name or the
other. This can be detrimental to this model where
it has to compare between only 3 options. So the
alternative is the approach in model number 2. In
model 2 two texts are created. Both texts are ba-
sically the same except the names chosen as the

2https://www.ef.com/wwen/english-resources/english-
names/
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Figure 1: Model 1 representation.

Figure 2: Model 2 representation.

Figure 3: Example of a text present in the dataset and
how the word replacement was done for the model 2.

replacement names 1 and 2 are switched. So, as
figure 3 shows, we get one text with each name in
each position.

For example lets say we get the text:
”In the late 1980s Jones began working with

Duran Duran on their live shows and then in the
studio producing a B side single “This Is How A
Road Gets Made”, before being hired to record the
album Liberty with producer Chris Kimsey.”,

A is Jones and B is Chris Kimsey. For the name
replacement lets say we choose two common En-
glish names like John and Harry. The new text
produced for model 1 (figure 1) would be some-
thing like:

”in the late 1980s harry began working with du-
ran duran on their live shows and then in the stu-
dio producing a b side single “this is how a road
gets made”, before being hired to record the album
liberty with producer john.”

And for model 2 (figure 2) the same text would
be used for the top side and for the bottom side
it would have the harry and john in the opposite
positions.
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3 Experimental Framework

3.1 Task details

The objective of the task is that of a classifica-
tion problem. Where the output for every entry
is the probability of the pronoun referencing name
A, name B or Neither.

3.2 Data

The GAP dataset (Webster et al., 2018) created by
Google AI Language was the dataset used for this
task. This dataset consists of 8908 co-reference la-
beled pairs sampled from Wikipedia, also it’s split
perfectly between male and female representation.
Each entry of the dataset consists of a short text, a
pronoun that is present in the text and its offset and
two different names (name A and name B) also
present in the text. The pronoun refers to one of
these two names and in some cases, none of them.
The GAP dataset doesn’t contain any neutral pro-
nouns such as it or they.
For the two different stages of the competition dif-
ferent datasets were used.

• For Stage 1 the data used for the submission
is the same as the development set available
in the GAP repository. The dataset used for
training is the combination of the GAP vali-
dation and GAP testing sets from the reposi-
tory.

• For Stage 2 the data used for submission was
only available through Kaggle3 and the cor-
rect labels have yet to be released, so we can
only analyze the final log loss of each of the
models. This testing set has a total of 12359
rows, with 6499 male pronouns and 5860 fe-
male ones. For training, a combination of the
GAP development, testing and validation sets
was used. And, as all the GAP data, it is
evenly distributed between genders.

The distributions of all the datasets are shown in
table 1. It can be seen that in all cases, the None
option has the least support by a large margin.
This, added to the fact that the model naturally is
better suited to identifying names rather than the
absence of them, had a negative effect on the re-
sults.

3https://www.kaggle.com/c/gendered-pronoun-
resolution/overview

Stage 1 Stage 2
Train Test Train

Name A 1105 874 1979
Name B 1060 925 1985
None 289 201 490

Table 1: Dataset distribution for the datasets of stages
1 and 2.

3.3 Training details

For the BERT pre-trained weights, several models
were tested. BERT base is the one that produced
the best results. BERT large had great results
in a lot of other implementations, but in this
model it produced worse results while consuming
much more resources and having a longer training
time. During the experiments the model had an
overfitting problem, so the learning rate was tuned
as well as a warm up percentage was introduced.
As table 2 shows, the optimal learning rate was
3e − 5 while the optimal with a 20% warm up.
The length of the sequences is set at 256, where it
fits almost every text without issues. For texts too
big, the text is truncated depending on the offsets
of each of the elements in order to not eliminate
any of the names or the pronoun.

Accuracy Loss
Learning Rate Warmup mean min mean min
0.00003 0.0 0.840167 0.8315 0.519565 0.454253

0.2 0.844444 0.8340 0.502667 0.442313
0.00004 0.0 0.822389 0.7970 0.556491 0.473528

0.2 0.834000 0.7925 0.530862 0.456223
0.00005 0.1 0.743500 0.7435 0.666750 0.666750
0.00006 0.0 0.756333 0.7040 0.630707 0.544841

0.2 0.802278 0.7465 0.587041 0.497051

Table 2: Results of the tuning for both models. Min-
imum and average Loss and Accuracy across all the
tuning experiments performed.

The training was performed in a server with
an Intel Dual Core processor and Nvidia Titan X
GPUs, with approximately 32GB of memory. The
run time varies a lot depending on the model. The
average run time on the stage 1 dataset for model
1 is from 1 to 2 hours while for model 2 it has a
run time of about 4 hours. For the training set for
stage 2, the duration was 4 hours 37 minutes for
model 1 and 8 hours 42 minutes for model 2. The
final list of hyperparameters is in table 3.
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Parameter Value
Optimizer Adam
Vocabulary Size 28996
Dropout 0.1
Sequence Length 256
Batch Size 32
Learning Rate 3e− 5
Warm Up 20%
Steps Stage 1: 81 — Stage 2: 148
Epochs 1
Gradient Accumulation Steps 5

Table 3: Hyperparameters for the model training

4 Results

Tables 4 and 5 report results for models 1 and 2
reported in section 2.1 for stage 1 of the compe-
tition. Both models 1 and 2 have similar overall
results. Also both models show problems with the
None class, model 2 specially. We believe this is
because our model is based on guessing the correct
name, so the guessing of none is not as well suited
to it. Also, the training set contains much less of
these examples, therefore making it even harder to
train for them.

Precision Recall F1 Support
A 0.83 0.87 0.85 874
B 0.88 0.88 0.88 925
None 0.64 0.52 0.57 201
Avg 0.83 0.84 0.84 2000

Table 4: Model 1 results for the testing stage 1.

Precision Recall F1 Support
A 0.81 0.86 0.83 874
B 0.88 0.78 0.82 925
None 0.48 0.62 0.54 201
Avg 0.81 0.80 0.80 2000

Table 5: Model 2 results for the testing stage 1.

4.1 Advantages of the Masked LM Model
As well as the Masked LM, other BERT imple-
mentations were experimented with for the task.
First, a text multi class classification model (figure
4) where the [CLS] tag is placed at the beginning
of every sentence, the text is passed through a pre-
trained BERT and then the result from this label is
passed through a feed forward neural network.

And a multiple choice question answering
model (figure 5), where the same text with the

Figure 4: Model: BERT for text classification

Figure 5: Model: BERT for multiple choice answering

[CLS] label is passed through BERT with different
answers and then the result these labels is passed
through a feed forward neural network.

These two models, which were specifically de-
signed for other tasks had similar accuracy to
the masked LM but suffered greatly with the log
loss, which was the competition’s metric. This
is because in a lot of examples the difference be-
tween the probabilities of one class and another
was minimal. This made for a model where each
choice had low confidence and therefore the loss
increased considerably.

Accuracy Loss
BERT for Classification 0.8055 0.70488
BERT for Question Answering 0.785 0.6782
BERT for Masked LM 0.838 0.44231

Table 6: Results for the tests with different BERT im-
plementations.

4.2 Name Replacement Results
As table 2.2 shows, name replacement consid-
erably improved the model’s results. This is in
part because the names chosen as replacements are
more common in BERT’s training corpora. Also,
a 43% of the names across the whole GAP dataset
are made up of multiple words. So replacing these
with a single name makes it easier for the model
to identify their place in the text.
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Accuracy Loss
Model 1 Original Names 0.782 0.7021
Model 1 Name Replacement 0.838 0.4423

Table 7: Results for the models with and without name
replacement.

4.3 Competition results
In the official competition on Kaggle we placed
46th, with the second model having a loss around
0.301. As the results in table 8 show, the results of
stage 2 were better than those of stage 1. And the
second model, which had performed worse on the
first stage was better in stage 2.

Model 1 Model 2
Stage 1 0.44231 0.49607
Stage 2 0.31441 0.30151

Table 8: Results for both models across both stages of
the competition

5 Conclusions

We have proved that pre-trained BERT is useful
for co-reference resolution. Additionally, we have
shown that our simple ’Name Replacement’ tech-
nique was effective to reduce the impact of name
frequency or popularity in the final decision.

The main limitation of our technique is that it
requires knowing the gender from the names and
so it only makes sense for entities which have a
defined gender. Our proposed model had great
results when predicting the correct name but had
trouble with with the none option.

As a future improvement it’s important to an-
alyze the characteristics of these examples where
none of the names are correct and how the model
could be trained better to identify them, specially

because they are fewer in the dataset. Further im-
provements could be made in terms of fine-tuning
the weights in the actual BERT model.

Acknowledgements

This work is also supported in part by the Span-
ish Ministerio de Economı́a y Competitividad,
the European Regional Development Fund and
the Agencia Estatal de Investigación, through the
postdoctoral senior grant Ramón y Cajal, con-
tract TEC2015-69266-P (MINECO/FEDER,EU)
and contract PCIN-2017-079 (AEI/MINECO).

References
Jacob Devlin, Ming-Wei Chang, Kenton Lee, and

Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

Sameer S. Pradhan and Nianwen Xue. 2009.
OntoNotes: The 90% solution. In Proceedings
of Human Language Technologies: The 2009
Annual Conference of the North American Chapter
of the Association for Computational Linguis-
tics, Companion Volume: Tutorial Abstracts,
pages 11–12, Boulder, Colorado. Association for
Computational Linguistics.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In I. Guyon, U. V. Luxburg, S. Bengio,
H. Wallach, R. Fergus, S. Vishwanathan, and R. Gar-
nett, editors, Advances in Neural Information Pro-
cessing Systems 30, pages 5998–6008. Curran As-
sociates, Inc.

Kellie Webster, Marta Recasens, Vera Axelrod, and Ja-
son Baldridge. 2018. Mind the GAP: A balanced
corpus of gendered ambiguous pronouns. Transac-
tions of the Association for Computational Linguis-
tics, 6:605–617.

81



Proceedings of the 1st Workshop on Gender Bias in Natural Language Processing, pages 82–88
Florence, Italy, August 2, 2019. c©2019 Association for Computational Linguistics

Transfer Learning from Pre-trained BERT for Pronoun Resolution

Xingce Bao∗
School of Engineering, EPFL

Switzerland
xingce.bao@epfl.ch

Qianqian Qiao∗
School of Engineering, EPFL

Switzerland
qianqian.qiao@epfl.ch

Abstract

The paper describes the submission of the
team ”We used bert!” to the shared task Gen-
dered Pronoun Resolution (Pair pronouns to
their correct entities). Our final submis-
sion model based on the fine-tuned BERT
(Bidirectional Encoder Representations from
Transformers) (Devlin et al., 2018) ranks 14th
among 838 teams with a multi-class logarith-
mic loss of 0.208. In this work, contribution
of transfer learning technique to pronoun res-
olution systems is investigated and the gender
bias contained in classification models is eval-
uated.

1 Introduction

The shared task Gendered Pronoun Resolution
aims to classify the pronoun resolution in the sen-
tences, hereby to find the true name referred by a
given pronoun, such as she in:

In May, Fujisawa joined Mari Motohashi’s rink
as the team’s skip, moving back from Karuizawa
to Kitami where she had spent her junior days.

This task for pronoun resolution closely relates
to the traditional coreference resolution task in
natural language processing. Many works (Wise-
man et al., 2016; Clark and Manning, 2016; Lee
et al., 2017) related to coreference resolution have
been published recently and all of them are evalu-
ated with CoNLL-2012 shared task dataset (Prad-
han et al., 2012). However, simply pursuing the
best score over the entire dataset may cause the
neglect of the model performance gap between the
two genders.

To explore the existence of gender bias in
such tasks, researchers from Google built and
released GAP (Gendered Ambiguous Pronouns)
(Webster et al., 2018), a human-labeled corpus
of 8908 ambiguous pronoun-name pairs derived

∗Both authors contributed equally in this work.

from Wikipedia with balanced gender pronouns.
It has been shown that most of the recent repre-
sentative coreference systems struggled on GAP
dataset with a overall mediocre performance and a
large performance gap between genders. This may
be due to both unbalanced training dataset used by
these coreference systems or the design of the sys-
tems. Up to now, detecting and eliminating gender
bias in such systems still remains a challenge.

In this paper, we explore transfer learning from
pre-trained models to improve the performance
of tasks with limited data. Various efficient ap-
proaches to reuse the knowledge from pre-trained
BERT on this shared task are proposed and com-
pared. The final system significantly outperforms
the off-the-shelf resolvers, with a balanced predic-
tion performance for two genders. Moreover, gen-
der bias in word and sentence level embeddings is
studied with a scientific statistical experiment on
Caliskan dataset (Caliskan et al., 2017).

2 Data

This shared task is based on GAP dataset includ-
ing:

• Test 4,000 pairs: used for official evaluation

• Development 4,000 pairs: used for model de-
velopment

• Validation 908 pairs: used for parameter tun-
ing

In the first stage, we use part of the released data
on Google GAP Github repository, which includes
2000 development pairs, 2000 test pairs, and 454
validation pairs.1 We refer the test pairs as training

1The testing data from the Kaggle website is the devel-
opment data in the GAP github repository. So we use the
development pairs to evaluate our model, and the test pairs to
train in order to conform the Kaggle competition rule.
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data, the development pairs as testing data and the
validation pairs as validation data. Each sample
contains a sentence and three mentions, A, B and
pronoun. Each pronoun has been labeled as A, B,
or NEITHER. Submissions are evaluated using the
multi-class logarithmic loss.

Table 1 shows the frequency of the different
types of pronouns in the dataset. The number of
masculine pronouns and feminine pronouns are
strictly equal.

Pronoun type Training Test Validation
he 348 373 93
him 96 98 26
his 556 529 108
her 603 572 140
hers 1 0 0
she 396 428 87
masculine 1000 1000 227
feminine 1000 1000 227

Table 1: Pronoun gender frequency

3 Data Preparation

We introduced the procedure for processing the
data before training in detail in this section.

3.1 Data Preprocessing
Data preprocessing can be summarized into the
following steps:

BERT embeddings generation: We use pre-
trained bert-large-uncased model to obtain contex-
tual embeddings as features. This part is imple-
mented with the bert-as-service library based on
Tensorflow (Xiao, 2018).

Dimension reduction: The dimension reduc-
tion for the original BERT contextual embeddings
is performed to mitigate the overfitting problems.
This approach is inspired by the Algorithm 2
(PPA-PCA-PPA) proposed in Raunak (2017).

For large scale vectors with dimension of 1024,
instead of directly using PCA (principal compo-
nent analysis), we train a linear autoencoder to ap-
proximate the linear PCA procedure. Namely, we
train the autoencoder by minimizing the loss:

L(X,W1,W2) = ||X −W2W1X||22, (1)

where X is the contextual embedding. W1 and W2

are m × n and n × m matrices to project vec-
tors to lower dimensional space and recover from

lower dimensional space, respectively (m < n).
Hence, the PCA part in the original algorithm is
performed by computing W1X , and the PPA part
in the original algorithm is performed by comput-
ing X −W2W1X .

Here the PPA procedures remove the first 4 prin-
cipal components. The PCA procedure maps 1024
dimension vectors to 256 dimension vectors.

Processing mention: A mention in the data (A,
B or the pronoun) can be a single word or mul-
tiple words. Also, since BERT is based on the
word piece model (Wu et al., 2016), a word may
be cut into multiple word pieces after the BERT
tokenization. We define the mention index as the
index for the tokenized word piece list which cor-
responds to the original mention.

The vectors in the BERT contextual embed-
dings which correspond to the mention index are
extracted. Meanwhile, vectors of mentions are the
mean value of all the vectors which correspond to
the mention. We call this mention vector.

Find names: All names in the sentences except
A and B are extracted with the named entity recog-
nition tool. After that, their mention indices are
found by the same procedure in the previous step.
We call these indices neither mention index. Stan-
ford Named Entity Tagger is used for finding the
names in the sentences in this step (Finkel et al.,
2005).

An example of tokenization and mention index
is shown in table 2.

Sentence: When asked in a 2010 interview with The
Mirror what her favourite scenes were, Beverley
Callard replied, “when Jim beat up Liz.
Names Except A and B: Jim
Tokens: [’when’, ’asked’, ’in’, ’a’, ’2010’, ’interview’,
’with’, ’the’, ’mirror’, ’what’, ’her’, ’favourite’,
’scenes’, ’were’, ’,’, ’beverley’, ’call’, ’##ard’,
’replied’, ’,’, ’‘’, ’‘’, ’when’, ’jim’, ’beat’, ’up’, ’liz’, ’.’]
Mention A: Beverley Callard
Mention B: Liz
Mention Pronoun: her
Mention Neither: Jim
A Mention Index: 15,16,17
B Mention Index: 26
Pronoun Mention Index: 10
Neither Mention Index: 23

Table 2: An example of tokenization and mention index

3.2 Data Augmentation

We replace the originally referred mention by a
different random mention in the sentence, then
change the label to neither. This creates 1445 sam-
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ples labeled neither from training data. Original
training data together with augmented neither data
make up the augmented training set.

4 Architecture

We mainly explored two sub-categories of mod-
els as shown in figure 1. One category is based
on fine-tuned BERT with different top layers. For
this category, Back-propagation is done to both top
layers and the pre-trained BERT model. Another
idea is to use BERT as a feature extractor. Differ-
ent from fine-tuned BERT, models in the second
category do not back propagate to BERT weights
during training. All of these base models con-
tribute to our final model.2

 Fine-tuned BERT
MLP-top

SVM BIDAF

Initial Sentences & Mention Indices

 Fine-tuned BERT
POS-top Feature Extractor

 x 1  x 7

LR MLP

 x 7  x 5  x 2  x 1 

Meta Classifier

Output Probabilities

 FINE-TUNED BERT  BERT AS FEATURE EXTRACTOR

BASE
MODELS

STACKING
MODEL

Figure 1: Structure of the final system. It contains 23
base models with different structures, different embed-
ding dimensions and data whether augmented.

4.1 Fine-tuned BERT

We propose two different kinds of top layers
to fine-tune BERT model on GAP task and im-
plemented with PyTorch Pretrained BERT li-
brary(Hugging-Face, 2018). The first kind of top
layer shown in figure 2 is called MLP-top. It ex-
tracts and aggregates vectors for all mentions by
concatenation, which are then fed into a multiple
layer neural network.

The second kind of top layer first map the out-
put of BERT into a scalar by a linear layer whose
output size is 1. Then we extract the value corre-
sponding to the mention index and feed it into a
softmax layer for a 3-class-probability-output. We
call this Positional-top which is illustrated in Fig-
ure 3.3

2Due to the space limit, we do not explain all the base
models that we use to produce the final ensemble model in
detail. The models in the following description are only ef-
ficient and representative base models. For a comprehensive
list of the base models we use, please check: https://
github.com/bxclib2/kaggle_gender_coref/

3Both figure 2 and figure 3 show the mentions which con-
tain only a single word-piece after tokenization. If one men-
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Figure 2: Fine-tuned BERT with MLP-top layer
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Figure 3: Fine-tuned BERT with Positional-top layer.
Linear layers for A,B and Pronoun are with the same
parameter.

4.2 BERT as Feature Extractor

When BERT is used as a feature extractor, the
contextual embeddings and the mention vectors
prepared are passed to the subsequent classifier.
Here we use SVM (support vector machine) and
BIDAF (bi-directional attention flow layer) (Seo
et al., 2017) as classifiers.

SVM: We denote the mention vector of A, B
and pronoun as hA, hB and hpron. The vector:

[hA,hB,hpron,hA � hpron,hB � hpron] (2)

is fed as the input of the SVM, where the�means
point-wise product. The multiclass support is han-
dled according to a one-vs-one scheme. The SVM

tion contains multiple word-pieces, the mean of the multiple
positions in BERT output layer should be computed in order
to generate a tensor with desired size to be fed into the top
layer.
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classifier is implemented with Scikit-Learn library
(Pedregosa et al., 2011).

BIDAF: BERT contextual embeddings and the
pronoun mention vectors are passed to the bi-
directional attention flow layer as the context and
the query, respectively. We use the original em-
bedding extracted from BERT large with embed-
ding dimension of 1024 here. Then a two-layer
point-wise fully-connected neural network is con-
nected to map the output embedding vectors to
scalars. The fully-connected layer has 64 hid-
den units with ELU as activation function (Djork-
Arn Clevert, 2016). Finally, the scalars corre-
sponding to the A, the B and the neither are fed
into a softmax layer to generate 3-class probabili-
ties.

Two Layer Point-wise 
Fully-connected 
Neural Network

Output Probabilities for Three Classes

Query2Context
&

Context2Query
Attention

Query(Pronoun)

BERT Pre-extracted
Embeddings of Context

Probabilities RI�$�%�DQG�1HLWKHU
softmax

Extract the mention
vector as query 

Extract the positions corresponding to
the A mention index, 
the B mention index

and the neither mention index 

Extract Indices

Figure 4: Structure of BIDAF network

The top layer of BIDAF network works simi-
larly to the positional head of the fine-tuned BERT.
However, there are two major differences: the po-
sitional head of the fine-tuned BERT uses only
a linear layer to map the embeddings to scalars,
while the BIDAF network uses a two-layer neu-
ral network with the ELU activation layer. Also,
the output of BIDAF is from the positions corre-
sponding to the A, the B and the neither mention
respectively, while the BERT positional head ex-
tracts the scalars corresponding to the A, the B and
the pronoun mention respectively.

4.3 Model Ensemble

Ensemble learning greatly improves the results
compared to single models. Stacking method is
used for ensemble. During ensemble, several base
classifiers are trained to make preliminary predic-
tions, and a meta classifier is used to make a final

prediction based on these predictions.
In order to reduce the data leakage, 5-fold cross

validation is performed when building the train-
ing data for the meta classifier from the original
training data. In other words, we avoid the base
classifiers and meta classifier to be trained with
the same fold of data (Beaudon, 2016). For each
training time 4-fold of data is used to train, and the
resulting model predicts the remaining one fold of
data to build one fold of training data for the meta
classifier, as shown in figure 5. Here we use the
logistic regression as the meta classifier.
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Figure 5: 5-Fold cross validation for stacking

5 Experiment

In this section, we present the result of different
classifiers to the shared task.

5.1 Experiment setting

For SVM, C equals to 5.0 and the kernel function
is the RBF function. The SVM is trained both
with the original 1024 dimension mention vectors
and the 256 dimension-reduced mention vectors
respectively for comparison.

The BIDAF network is trained for 50 epoches
with a batch size of 25. We use the Adam opti-
mizer with a learning rate of 1e-3 for training. For
each fully-connected layer in BIDAF, a dropout
with probability 0.7 is performed. It is trained both
with the original training set and the augmented
training set for comparison. This training process
takes about 10 minutes with the GTX 1070 GPU.

The fine-tuned BERT models are trained with
the Adam optimizer with a learning rate of 2e-5.
All the dropout layers in the original BERT model
are set to a dropout rate of 0.15. Models are trained
for 1 epoch with a batch size of 16. Note that it is
not possible to fit 16 training sentences at one time
due to the limited GPU memory. Hence, gradient
accumulation trick is used. Every time we fit 2
training sentences and we accumulate the gradient
for 8 times. This fine-tuning process takes about
10 minutes with the Tesla K80 GPU.
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The meta classifier is the logistic regression
with l2 regularization of the regularization con-
stant C which equals to 0.5.

5.2 Evaluation
The results are shown in table 3. The masculine
data loss and feminine data loss are shown respec-
tively in order to show the gender bias. We com-
pute the model loss for testing data (stage 1) and
the loss caused by the masculine part and the fem-
inine part in stage 1 testing data. We also submit
our base model results after the competition fin-
ishes in order to get the private testing data (stage
2) loss.

M F T PT
SVM 256 0.516 0.495 0.506 0.395
SVM 1024 0.619 0.574 0.596 0.475
BIDAF 0.490 0.498 0.494 0.364
BIDAF-aug 0.550 0.579 0.565 0.422
BERT-pos 0.376 0.377 0.377 0.280
BERT-mlp 0.360 0.365 0.362 0.351
Ensemble 0.325 0.337 0.331 0.208

Table 3: Evaluation results (multi-class logarithmic
loss) for models. SVM 256: SVM trained with the
mention vector after dimension reduction. SVM 1024:
SVM trained with the original 1024 dimension men-
tion vector. BIDAF: BIDAF trained with the origi-
nal training set. BIDAF-aug: BIDAF trained with the
augmented training set. BERT-pos: Fine-tuned BERT
with the Positional-top. BERT-mlp: Fine-tuned BERT
with the MLP-top. Masculine, Feminine, Testing data
and Private Testing data results are shown respectively.
Bold indicates the best performance.

We derive the following conclusions:

• The dimension reduction greatly enhances
the result of SVM which reduces about 0.1
multi-class logarithmic loss. The SVM 1024
has a loss of 0.184 and 0.597 with respect to
training and testing data, while the SVM 256
has a loss of 0.250 and 0.505. Both SVM
model overfit a lot, while the dimension re-
duction of BERT contextual embeddings effi-
ciently mitigate overfitting, which bridges the
performance gap between training data and
testing data.

• The BIDAF model performs worse when
trained with the augmented training set than
the original training set, due to the distribu-
tion mismatching caused by data augmenta-

tion that, the portion of the neither data is
larger in the training set than in the testing
set.

• Both two fine-tuned BERT models achieve
much more competitive results compared to
Bert as Feature Extractor models.4

• The ensemble learning with logistic regres-
sion greatly enhances the overall classifica-
tion result.

Although the data augmentation does not im-
prove the BIDAF model directly, it still helps
to make more accurate predictions of the neither
class in the ensemble model. The BIDAF-aug and
the BIDAF reach the loss of 0.982 and 1.095, re-
spectively. In the testing data (stage 1), the respec-
tive accuracy of A, B and neither class is 89.8%,
89.5% and 73.1%, indicating that predicting the
neither class correctly is much harder than predict-
ing A and B. We can observe that it is easier for
the model to choose an answer as A or B than to
predict as no reference.

We also evaluate our system F1 score with stage
1 testing dataset to compare to the off-the-shelf re-
solvers in table 4:

M F B O
Wiseman et al. 68.4 59.9 0.88 64.2
Lee et al. 67.2 62.2 0.92 64.7
BERT-pos 86.8 86.1 0.99 86.5
BERT-mlp 86.3 85.9 1.00 86.1
Our ensemble 88.1 87.9 1.00 88.0

Table 4: Comparison to off-the-shelf resolvers, split
by Masculine and Feminine (Bias shows F/M), and
Overall. Bold indicates the best performance.

6 Gender Bias in the Embeddings

To further demonstrate the presence or absence of
gender bias in embeddings, we use both the Word
Embedding Association Test (WEAT) (Caliskan
et al., 2017) and Sentence Embedding Association
Test (SEAT) (May et al., 2019) to measure it. As
fine-tuned BERT large models with Positional-top
contribute a lot to our final ensemble model, we
only focus on this category of models in this sec-
tion.

4Here the experiment shows that the MLP-top is slightly
better than the Positional-top. However, the Positional-top is
more stable with different random seeds. Also it is obvious
that the MLP-top performs worse than the Positional-top in
the private testing data.

86



6.1 WEAT & SEAT

For both word-level test and sentence level test, let
X and Y be two sets of target concept word or sen-
tence embeddings, and let A and B be two sets of
attribute word embeddings. The test statistic is the
difference between sums of similarities of the re-
spective attributes over target concepts, which can
be calculated as:

s(X,Y,A,B) =
∑

x∈X
s(x,A,B)−

∑

y∈Y
s(y,A,B),

(3)
where:

s(w,A,B) =meana∈Acos(w, a)−
meanb∈Bcos(w, b),

(4)

the p-values on s(X,Y,A,B) is used to compute
the significance between (A,B) and (X,Y ),

p = Pr[s(Xi, Yi, A,B) > s(X,Y,A,B)], (5)

where Xi and Yi are of equal size. Also the effect
size d is used to measure the magnitude of associ-
ations:

d =
meanx∈Xs(x,A,B)−meany∈Y s(y,A,B)

std devw∈X∪Y s(w,A,B)
(6)

6.2 Experiments and Results

We apply WEAT and SEAT on Caliskan Test of
male/female names with career and family, which
corresponds to past social psychology studies.

Method GloVe ELMo BERT F-BERT
WEAT 1.81∗ −0.45 0.21 0.38
SEAT 1.74∗ −0.38 0.08 0.07

Table 5: Effect sizes for male/female names with ca-
reer/family task with word and sentence level embed-
dings. ∗: significant at 0.01. F-BERT indicates Fine-
tuned BERT.

Table 5 shows the result of WEAT and SEAT.
Sentence vectors are aggregated by taking the
mean value of all word vectors in the sentences
for GloVe (Pennington et al., 2014), ELMo (Peters
et al., 2018), BERT and Fine-tuned BERT.5 With
p-values lower than 0.01, embeddings by GloVe

5Here we use a different method to aggregate sentence
vector for BERT, comparing to the cited paper which uses
[CLS] vector as sentence vector for better comparison.

on both word level and sentence level show signif-
icant gender bias, indicating that women are asso-
ciated with family while men are associated with
career.

However, p-values of all contextual embeddings
including ELMo, BERT and Fined-tuned BERT
are larger than 0.05, which suggests that there is
no evidence suggesting existence of gender bias
in these embeddings. One possible explanation
is that, by training contextual word embeddings,
a single word is usually represented differently
in different sentences, resulting in more flexible
word representations focusing on single context
within a sentence rather than the overall word fre-
quency distribution.

7 Conclusion and Future Work

We propose a transfer-learning-based solution
for pronoun resolution. The proposed solution
leads to gender balance in both word embed-
dings and overall predictions. It greatly improves
the prediction accuracy of this task by 23.3% F1
against the off-the-shelf solutions proposed by Lee
et al. (2017) on the widely studied Google GAP
dataset. Meanwhile, among several single models
in our ensemble solution, BERT-mlp and BERT-
pos model highly outperform others in the exper-
iments. Overall this work shows the efficacy of
employing BERT in downstream natural language
processing classification tasks.

In the future, we would like to investigate var-
ious transfer structures on the top of pre-trained
BERT, especially for the sake of enhancing the
stability of the fine-tune process. We observe in
our experiments that the performance of fine-tune
models based on BERT strongly depends on ini-
tial random state, thus, further research on build-
ing more robust models is indispensable.
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Abstract
The pre-trained BERT model achieves a re-
markable state of the art across a wide range
of tasks in natural language processing. For
solving the gender bias in gendered pronoun
resolution task, I propose a novel neural net-
work model based on the pre-trained BERT.
This model is a type of mention score classi-
fier and uses an attention mechanism with no
parameters to compute the contextual repre-
sentation of entity span, and a vector to repre-
sent the triple-wise semantic similarity among
the pronoun and the entities. In stage 1 of
the gendered pronoun resolution task, a vari-
ant of this model, trained in the fine-tuning
approach, reduced the multi-class logarithmic
loss to 0.3033 in the 5-fold cross-validation of
training set and 0.2795 in testing set. Besides,
this variant won the 2nd place with a score at
0.17289 in stage 2 of the task.

The code in this paper is available at:
https://github.com/ziliwang/
MSnet-for-Gendered-Pronoun-
Resolution

1 Introduction

Coreference resolution is an essential field of nat-
ural language processing (Sukthanker et al., 2018)
and has been widely used in many systems such as
dialog system (Niraula et al., 2014; Wessel et al.,
2017), relation extraction (Wang et al., 2018) and
question answer (Vicedo and Ferrández, 2000).
Up to now, various models for coreference resolu-
tion have been proposed, and they can be generally
categorized as (1) mention-pair classifier model
(Webster and Nothman, 2016), (2) entity-centric
model (Clark and Manning, 2015), (3) ranking
model (Lee et al., 2017, 2018). However, some
of these models implicate gender bias (Koolen and
van Cranenburgh, 2017; Rudinger et al., 2018). To
address this, Webster et al. (2018) presented and

released Gendered Ambiguous Pronouns (GAP)
dataset.

Recent work indicated that the pre-trained lan-
guage representation models benefit to the coref-
erence resolution (Lee et al., 2018). In the past
years, the development of deep learning meth-
ods of language representation was swift, and the
newer methods were shown to have significant
effects on improving other natural language pro-
cessing tasks(Peters et al., 2018; Radford and Sal-
imans, 2018; Devlin et al., 2018). The latest
one is Bidirectional Encoder Representations from
Transformers (BERT) (Devlin et al., 2018), which
is the cornerstone of the state of the art models in
many tasks.

In this paper, I present a novel neural network
model based on the pre-trained BERT for the
gendered pronoun resolution task. The model is a
kind of mention score classifier, and it is named
as Mention Score Network (MSNet in short) and
trained on the public GAP dataset. In particular,
the model adopts an attention mechanism to com-
pute the contextual representation of the entity
span, and a vector to represent the triple-wise
semantic similarity among the pronoun and the
entities. Since the MSnet can not be tuned in
a general way, I employ a two-step strategy to
achieve the tuning-fine, which tunes the MSnet
with freezing BERT firstly and then tunes them
together. Two variants of MSnet are submitted in
the gendered pronoun resolution task, and their
logarithmic loss of local 5-fold cross-validation
of train dataset is 0.3033 and 0.3042 respectively.
Moreover, in stage 2 of the task, they acquired
the score at 0.17289 and 0.18361 respectively, by
averaging the predictions on the test dataset, and
won the 2nd place in the task.
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2 Model

As the target of the Gendered Pronoun Resolu-
tion task is to label the pronoun with whether
it refers to entity A, entity B, or NEITHER. I
aim to learn the reference probability distribution
P (Ei|D) from the input document D:

P (Ei|D) =
exp(s(Ei|D))∑

j∈E exp(s(Ej |D))

where Ei is the candidate reference entity of pro-
noun, E = {A,B,NEITHER} and s is the score
function which is implemented by a neural net-
work architecture, which is described in detail in
the following subsection.

2.1 The Mention Score Network

The mention score network is build on the pre-
trained BERT model (Figure 1). It has three layers,
the span representation layer, the similarity layer,
and the mention score layer. They are described in
detail in the following part.

Span Representation Layer: The contextual
representation is crucial to accurately predict the
relation between the pronouns and the entities. In-
spired by Lee et al. (2017), I adopt the hidden
states of transformers of the pre-trained BERT as
the contextual representation. As Devlin et al.
(2018) showed that the performance of the con-
catenation of token representations from the top
hidden layers of pre-trained Transformer of BERT
is close to fine-tuning the entire model, the top
hidden states will be given priority to compute
the representation of entity spans. Since most en-
tity spans consist of various tokens, the contextual
representation of them should be re-computed to
maintain the correspondence. I present two meth-
ods to re-compute the span representations: 1)
Meanpooling method:

x∗(j,l) =
1

N̂

∑

i∈Spanj

x(i,l)

where x(i,l) denotes the hidden states of i-th token
in l-th layer of BERT, and x∗(j,l) denotes the con-

textual representation of entity span j, and N̂ is the
token counts of span j. 2) Attention mechanism:
Instead of weighting each token equality, I adopt
the attention mechanism to weight the tokens by:

s(i,l) =
1√
dH

norm(x(i,l)) · x(p,l)

a(i,j,l) =
exp(s(i,l))∑

k∈Spanj
exp(s(k,l))

, i ∈ Spanj

x∗(j,l) =
∑

i∈Spanj

a(i,j,l)x(i,l)

The weights a(i,j,l) are learned automatically from
the contextual similarity s(i,l) between pronoun
x(p,l) and the token x(i,l) in the span j. Different
from the commonly used attention functions, the
above one has no parameters and is more space-
efficient in practice. The scaling factor dH de-
notes the hidden size of BERT and is designed
to counteract the effect of extremely small gradi-
ents caused by the large magnitude of dot products
(Vaswani et al., 2017).

Similarity Layer: Inspired by the pairwise
similarity of Lee et al. (2017), I assume a vector
ŝl to represent the triple-wise semantic similarity
among the pronoun and the entities of l-layer in
BERT:

al = x∗(a,l)

bl = x∗(b,l)

pl = x(p,l)

ŝl = WT [pl, al, bl, al ◦ pl, bl ◦ pl] + b

where al, bl and pl denote the contextual represen-
tation of the pronoun, entity A and entity B of the
l-th layer in BERT, · denotes the dot product and
◦ denotes the element-wise multiplication. The ŝl
can be learned by a single layer feed-forward neu-
ral network with the weights W and the bias b.

Mention Score Layer: Mention score layer
is also a feed-forward neural network architecture
and computes the mention scores given the dis-
tance vector d between the pronoun and its candi-
date entities and the concatenated similarity vector
ŝ:

da = tanh(wdist(START(A)−START(P)) + bdist)

db = tanh(wdist(START(B)−START(P)) + bdist)

d = [da, db]

ŝ = [̂s0, ŝ1, ..., ŝl, ..., ŝL]

s(Ei|D) = WEi · [̂s,d] + bEi

where da (or db) denotes the distance encoding of
entity A (or B), ŝl denotes the similarity vector
computed by the representation of the l-th layer
in BERT. L is the total layers for representation,
and START denotes the index of the start token of
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Figure 1: The architecture of MSnet.

the span. wdist is a learnable weight for encoding
the distance which corresponds to a learnable bias
bdist and WEi is the learnable weights for scoring
entity Ei which corresponds to a learnable bias
bEi .

3 Experiments

I train the model on the Kaggle platform by us-
ing scripts kernel which using the computational
environment from the docker-python 1. I em-
ploy pytorch as the deep learning framework, and
the pytorch-pretrained-BERT package 2

to load and tune the pre-trained BERT model.

3.1 Dataset

The GAP Coreference Dataset 3 (Webster et al.,
2018) has 4454 records and officially split into
three parts: development set (2000 records),
test set (2000 records), and validation set (454
records). Conforming to the stage 1 of Gendered
Pronoun Resolution 4 task, the official test set and
validation set are combined as the training dataset
in the experiments, while the official development
set is used as the test set correspondingly.

1https://github.com/Kaggle/docker-
python

2https://github.com/huggingface/
pytorch-pretrained-BERT

3https://github.com/google-research-
datasets/gap-coreference

4https://www.kaggle.com/c/gendered-
pronoun-resolution

3.2 Preprocessing

In the experiments, the WordPiece is used to tok-
enize the documents. To ensure the token counts
less than 300 after tokenizing, I remove the head
or tail tokens in a few documents. Next, the spe-
cial tokens [CLS] and [SEP] are added into the
head and end of the tokens sequences.

3.3 Hyper-parameters

Pre-trained BERT model: As increasing model
sizes of BERT may lead to significant improve-
ments on very small scale tasks (Devlin et al.,
2018), I explore the effect of BERTBASE and
BERTLARGE in the experiments. I employ
the uncased_L-12_H-768_A-12 5 as the
BERTBASE and cased_L-24_H-1024_A-16
6 as the BERTLARGE, and both of them are trans-
formed into the pytorch-supported format by the
script in pytorch-pretrained-BERT.

Hidden Layers for Representation: Devlin
et al. (2018) showed that using the representation
from appropriate hidden layers of BERT can im-
prove the model performance, the hidden layers L
(described in Section 2) is therefore utilized as a
hyper-parameter tuned in the experiments.

Dimension of Similarity Vector: Since a vec-
tor is used to represent the task-specific semantic
similarity, its dimension ŝdim may have potential
influence the performance. A smaller dimension

5https://storage.googleapis.com/bert_
models/2018_10_18/uncased_L-12_H-768_A-
12.zip

6https://storage.googleapis.com/bert_
models/2018_10_18/cased_L-24_H-1024_A-
16.zip
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will partly lose information, while a bigger one
will cause generalization problems.

Span Contextual Representation: As section
2 described, both the meanpooling and attention
method can be used to compute the contextual rep-
resentation of the tokens span of the entity. There-
fore, the choice of them is a hyper-parameter in
the experiment.

Tunable Layers: I use two different approaches
to train the MSnet model. The first one is the
feature-based approach which trains MSnet with
freezing the BERT part. The second one is the
fine-tuning approach, which tunes the parameters
of BERT and MSnet simultaneously. Howard
and Ruder (2018) showed the discriminative fine-
tuning gets a better performance than the ordi-
nary, which possibly means that the pre-trained
language model has a hierarchical structure. One
possible explanation is that the lower hidden lay-
ers extract the word meanings and grammatical
structures and the higher layers process them into
higher-level semantic information. In this, I freeze
the embedding layer and bottom hidden layers of
BERT to keep the completeness of word meaning
and grammatical structure and tune the top hidden
layers Ltuning.

3.4 Training Details

For improving the generalization ability of the
model, I employ the dropout mechanism (Srivas-
tava et al., 2014) on the input of the feed-forward
neural network in the similarity layer and the con-
catenation in the mention score layer. The rate of
dropout is set at 0.6 which is the best setting af-
ter tuned on it. I also apply the dropout on the
representation of tokens when using the attention
mechanism to compute the contextual representa-
tion of span, and its dropout rate is set at 0.4. Ad-
ditionally, I adopt the batch normalization (Ioffe
and Szegedy, 2015) before the dropout operation
in the mention score layer. As introduced in sec-
tion 3.3, I use the feature-based approach and the
fine-tuning approach separately to train the MSnet,
and the training details are described in the follow-
ing.

Feature-based Approach: In the feature-based
approach, I train the model by minimizing the
cross-entropy loss with Adam (Kingma and Ba,
2014) optimizer with a batch size of 32. To adapt
to the training data in the experiments, I tuned the
learning rate and found a learning rate of 3e-4 was

the best setting. The maximum epoch set at 30
and early stopping method is used to prevent the
over-fitting of MSnet.

Fine-tuning Approach: In the fine-tuning ap-
proach, the generic training method was not work-
ing. I adopt a two-step tuning strategy to achieve
the fine-tuning. In step 1, I train the MSnet in
the feature-based approach. And in step 2, MSnet
and BERT are tuned simultaneously with a small
learning rate.

Since the two steps have the same optimization
landscape, in step 2, the model may not escape the
local minimum where it entered in step 1. I adopt
two strategies of training in step 1 to reduce the
probability of those situations: 1) premature. The
MSnet is trained to under-fitting by using a small
maximum training epoch which is set at 10 in the
experiments. 2) mature. In this strategy, MSnet is
trained to proper-fitting, and it is applied by adopt-
ing a weight decay at 0.01 rate, an early stopping
at 4 epoch, and the maximum training epoch at
20 in the experiments. In addition, other training
parameters of the two strategies have the same set-
ting as in the feature-based approach.

In step 2, I also trained the model by mini-
mizing the cross-entropy loss but with two dif-
ferent optimizers. For BERT, I used the Adam
optimizer with the weight decay fix which imple-
mented by pytorch-pretrained-BERT. For
MSnet, the generic Adam was used. Both of the
two optimizers are set with a learning rate at 5e-6
and a weight decay at 0.01. The maximum train-
ing epoch is set at 20, and the early stopping is
set at 4 epoch. The batch size was 5 as the GPU
memory limitation.

3.5 Evaluation

I report the multi-class logarithmic loss of the
5-fold cross-validation on train and the average
of their predictions on the test. Also, the running
time of the scripts is reported as a reference of the
performance of the MSnet.

4 Results and Discussion

4.1 Feature-based Approach

The results of MSnet variants trained in feature-
based approach are shown in Table 1. The com-
parison between model #1 and model #2 shows
that the combination of the top 4 hidden layers
for contextual representation is better than the top
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Model# BERT L ŝdim Span 5-fold CV on train test runtime(s)
1 BASE 1 32 Meanpooling 0.5247±0.0379 0.4891 232.8
2 BASE 4 32 Meanpooling 0.4699±0.0431 0.4270 317.3
3 LARGE 4 32 Meanpooling 0.4041±0.0532 0.3819 358.3
4 LARGE 8 32 Meanpooling 0.3783±0.0468 0.3519 372.2
5 LARGE 12 32 Meanpooling 0.3879±0.0461 0.3546 415.4
6 LARGE 8 8 Meanpooling 0.3758±0.0430 0.3490 436.2
7 LARGE 8 16 Meanpooling 0.3736±0.0465 0.3488 415.0
8 LARGE 8 64 Meanpooling 0.3780±0.0441 0.3518 447.6
9 LARGE 8 16 Attention 0.3582±0.0435 0.3349 828.2

Table 1: Results of Feature-based Aproach.

Model# Based Model method Ltuning 5-fold CV on train test runtime(s)
10 #9 premature 12 0.3033±0.0367 0.2795 6909.5
11 #9 mature 12 0.3042±0.0352 0.2856 7627.7
12 #9 mature 8 0.3110±0.0352 0.2876 8928.1
13 #9 mature 16 0.3185±0.0465 0.2820 7763.4
14 #9 mature 24 0.3169±0.0440 0.2843 8695.4

Table 2: Results of Fine-tuning Aproach.

layer. The possible reason is that the seman-
tic information about gender may be partly trans-
formed to the higher level semantic information
during the hidden layers in BERT. In addition,
changing BERTBASE to the BERTLARGE reduces
the loss in 5-fold CV on train from 0.4699±0.0431
to 0.4041±0.0532, which demonstrate increasing
model size of BERT can lead to remarkable im-
provement on the small scale task. The explo-
ration of contextual representation layers shows
the proper representation layers is proportionate
to the number of hidden layers of BERT. In other
words, the modeling ability of BERTLARGE is
more powerful than BERTBASE by using a more
complex function to do the same work.

The comparison among the model #4, model
#6, model #7 and model #8 shows the dimension
of the similarity vector has a slight affection for
the performance of MSnet (Table 1) and the best
loss is 0.3736±0.0465 with the dimension set at
16. Changing the method for computing the span
contextual representation from meanpooling to at-
tention mechanism reduces the loss in CV on train
by ∼0.02, which demonstrates that the attention
mechanism used in the experiment is effective to
compute the contextual representation of the entity
span. To the best of my knowledge, it is a novel
attention mechanism with no learnable parameters
and more space-efficient and more explainable in

practice.

4.2 Fine-tuning Approach
The experiments in fine-tuning approach was
based on model #9, and the results are shown in
table 2. The comparison between model #10 and
model #11 shows that their difference on perfor-
mance is slight. Also, both of them are effec-
tive to the fine-tuning of MSnet and reduce loss
in the CV of train by ∼0.054 compared to the
feature-based approach. Furthermore, the tuning
on Ltuning shows the best setting is tuning top 12
hidden layers in BERT, and more or fewer layers
will reduce the performance of MSnet. The possi-
ble reason is that tuning fewer layers will limit the
ability of the transformation from basic semantic
to gender-related semantic while tuning more bot-
tom layers will damage the extraction of the un-
derlying semantics when training on a small data
set.

As the apporach transformed from the feature-
based to the fine-tuning, the intentions of some
hyper-parameters were changed. The obvious one
is the hidden layers for contextual representation,
which is used to combine the semantic in each
hidden layers in the feature-based approach and
changed to constrain the contextual representation
to include the same semantic in fine-tuning ap-
proach. Although, the change on the intentions
was not deliberate, the improvement on the per-
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formance of the model was observed in the exper-
iments.

4.3 Results in Stage 2

The gendered pronoun resolution was a two-stage
task, and I submitted the model #10 and #11
in stage 2 as their best performances in 5-fold
cross-validation of the training dataset. The final
scores of the models were 0.17289 (model #10 )
and 0.18361 (model #11). This result featurely
demonstrates the premature strategy is better than
the mature one and can be explained as former one
keeps more explorable optimization landscape in
step 2 in the fine-tuning approach.

5 Conclusion

This paper presented a novel pre-trained BERT
based network model for the gendered pronoun
resolution task. This model is a kind of mention
score classifier and uses an attention mechanism
to compucate the contextual representation of en-
tity span and a vector to represent the triple-wise
semantic similarity among the pronoun and the
entities. I trained the model in the feature-based
and the two-step fine-tuning approach respec-
tively. On the GAP dateset, the model trained by
the fine-tuning approach with premature strategy
obtains remarkable multi-class logarithmic loss
on the local 5-fold cross-valication at 0.3033,
and 0.17289 on the test dataset in stage 2 of the
task. I believe the MSnet can serve as a new
strong baseline for gendered pronoun resolution
task as well as the coreference resolution. The
code for training model are available at: https:
//github.com/ziliwang/MSnet-for-
Gendered-Pronoun-Resolution
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Abstract

Gender bias has been found in existing coref-
erence resolvers. In order to eliminate gender
bias, a gender-balanced dataset Gendered Am-
biguous Pronouns (GAP) has been released
and the best baseline model achieves only
66.9% F1. Bidirectional Encoder Represen-
tations from Transformers (BERT) has bro-
ken several NLP task records and can be used
on GAP dataset. However, fine-tune BERT
on a specific task is computationally expen-
sive. In this paper, we propose an end-to-
end resolver by combining pre-trained BERT
with Relational Graph Convolutional Network
(R-GCN). R-GCN is used for digesting struc-
tural syntactic information and learning bet-
ter task-specific embeddings. Empirical re-
sults demonstrate that, under explicit syntac-
tic supervision and without the need to fine
tune BERT, R-GCN’s embeddings outperform
the original BERT embeddings on the coref-
erence task. Our work significantly improves
the snippet-context baseline F1 score on GAP
dataset from 66.9% to 80.3%. We participated
in the Gender Bias for Natural Language Pro-
cessing 2019 shared task, and our codes are
available online. 1

1 Introduction

Coreference resolution aims to find the linguistic
mentions that refer to the same real-world entity
in natural language (Pradhan et al., 2012). Am-
biguous gendered pronoun resolution is a subtask
of coreference resolution, where we try to resolve
gendered ambiguous pronouns in English such as
”he” and ”she”. This is an important task for nat-
ural language understanding and a longstanding
challenge. According to (Sukthanker et al., 2018),
there are two main approaches: heuristics-based

∗* Equal contribution.
1Our codes and models are available at: https://

github.com/ianycxu/RGCN-with-BERT.

approaches and learning-based approaches, such
as mention-pair models, mention-ranking mod-
els, and clustering models (McCarthy and Lehn-
ert, 1995; Haghighi and Klein, 2010; Fernandes
et al., 2014). Learning-based approaches, espe-
cially deep-learning-based methods, have shown
significant improvement over heuristics-based ap-
proaches.

However, most state-of-art deep-learning-based
resolvers utilize one-directional Transform-
ers (Stojanovski and Fraser, 2018), limiting the
ability to handle long-range inferences and the use
of cataphors. Bidirectional Encoder Representa-
tions from Transformers, or BERT (Devlin et al.,
2018) learns a bidirectional contextual embedding
and has the potential to overcome these prob-
lems using both the previous and next context.
However, fine-tuning BERT for a specific task is
computationally expensive and time-consuming.

Syntax information has always been a strong
tool for semantic tasks. Most heuristics-based
methods use syntax-based rules (Hobbs, 1978;
Lappin and Leass, 1994; Haghighi and Klein,
2009). Many of learning based models also rely
on syntactic parsing for mention or entity extrac-
tion algorithms and compute hand-crafted features
as input (Sukthanker et al., 2018).

Can we learn better word embeddings than
BERT on the coreference task with the help of
syntactic information and without computation-
ally expensive fine-tuning of BERT? Marcheg-
giani and Titov et al. (2017) successfully use
Graph Convolutional Networks (GCNs) (Duve-
naud et al., 2015; Kipf and Welling, 2016) to learn
word embeddings for the semantic role labeling
task and outperform the original LSTM contextual
embeddings.

Inspired by Marcheggiani and Titov (2017), we
create a ’Look-again’ mechanism which combines
BERT with Gated Relational Graph Convolutional
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Networks (R-GCN) by using BERT embeddings
as initial hidden states of vertices in R-GCN. R-
GCN’s structure is derived from a sentence’s syn-
tactic dependencies graph. This architecture al-
lows contextual embeddings to be further learned
and encoded into better task-specific embeddings
without fine tuning BERT which is computation-
ally expensive.

2 Contributions

Our main contributions are: (1) Our work is the
first successful attempt of using R-GCN to boost
the performance of BERT contextual embeddings
without the need to fine tune BERT. (2) Our work
is the first to use R-GCN on the coreference res-
olution task. (3) Our work improves the snippet-
context baseline F1 score on Gendered Ambigu-
ous Pronouns dataset from 66.9% to 80.3%.

3 Methodology

We propose a series connection architecture of
pre-trained BERT with Gated Relational Graph
Convolutional Network (Gated R-GCN). Gated R-
GCN is used for digesting structural syntactic in-
formation. This architecture, which we name as
’Look-again’ mechanism can help us learn embed-
dings which have better performance on corefer-
ence task than original BERT embeddings.

3.1 Syntactic Structure Prior

As mentioned in the Introduction section, syn-
tactic information is beneficial to semantic tasks.
However, how to encode syntactic information di-
rectly into deep learning systems is difficult.

Marcheggiani and Titov (2017) introduces a
way of incorporating syntactic information into
sequential neural networks by using GCN. The
syntax prior is transferred into a syntactic depen-
dency graph, and GCN is used to digest this graph
information. This kind of architecture is utilized
to incorporate syntactic structure prior with BERT
embeddings for coreference task in our work.

3.2 GCN

Graph Convolutional Networks (GCNs) (Duve-
naud et al., 2015; Kipf and Welling, 2016) take
graphs as inputs and conduct convolution on each
node over their local graph neighborhoods. The
convolution process can also be regarded as a sim-
ple differentiable message-passing process. The
message here is the hidden state of each node.

Consider a directed graph G = (V, E) with
nodes vi ∈ V and edges (vi, vj) ∈ E . The orig-
inal work of GCN (Kipf and Welling, 2016) as-
sumes that every node v contains a self-loop edge,
which is (vi, vi) ∈ E . We denote hidden state or
features of each node vi as hi, and neighbors of
each node as N (vi), then for each node vi, the
feed-forward processing or message-passing pro-
cessing then can be written as:

h
(l+1)
i = ReLU


 ∑

u∈N (vi)

1

ci
W (l)h(l)u


 (1)

Note that we ignore the bias term here. l here
denotes the layer number, and ci is a normalization
constant. We use ci = |N (vi)|, which is the in-
degree of the node. Weight W (l) is shared by all
edges in layer l.

3.3 R-GCN
Each sentence is parsed into its syntactic depen-
dencies graph and use GCN to digest this struc-
tural information. Mentioned in (Schlichtkrull
et al., 2018), when we construct the syntactic
graph we also allow the information to flow in the
opposite direction of syntactic dependency arcs,
which is from dependents to heads. Therefore, we
have three types of edges: first, from heads to de-
pendents; second, from dependents to heads and
third, self-loop (see Fig. 1).

Traditional GCN cannot handle this multi-
relation graph. Schlichtkrull (2018) proposed
a Relational Graph Convolutional Networks (R-
GCNs) structure to solve this multi-relation prob-
lem:

h
(l+1)
i = ReLU


∑

r∈R

∑

u∈Nr(vi)

1

ci,r
W (l)

r h(l)
u


 (2)

whereNr(vi) and W
(l)
r denote the set of neigh-

bor of node i and weight under relation r ∈ R
respectively. In our case, we have three relations.

3.4 Gate Mechanism
Because the syntax information is predicted by
some NLP packages, which might have some er-
ror, we need some mechanism to reduce the effect
of erroneous dependency edges.

A gate mechanism is introduced in (Marcheg-
giani and Titov, 2017; Dauphin et al., 2017; Li
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Figure 1: Syntactic dependencies graph with three re-
lations

et al., 2015). The idea is calculating a gate value
ranging from 0 to 1, and multiplying it with the in-
coming message. The gate value is computed by:

g(l)u,v = Sigmoid
(
h(l)u ·Wr,g

)
(3)

The final forward process of Gated R-GCN is:

h
(l+1)
i = ReLU


∑

r∈R

∑

u∈Nr(vi)

g(l)u,vi

1

ci,r
W (l)

r h(l)
u


 (4)

3.5 Connect BERT and R-GCN in Series

We use pre-trained BERT embeddings (Devlin
et al., 2018) as our initial hidden states of ver-
tices in R-GCN. This series connection between
pre-trained BERT and Gated R-GCN forms the
’Look-again’ mechanism. After pre-trained BERT
encodes tokens’ embeddings, Gated R-GCN will
’look again’ at the syntactic information which
is presented as structural information and further
learn semantic task-specific embeddings with the
explicit syntactic supervision by syntactic struc-
ture.

A fully-connected layer in parallel with Gated
R-GCN is utilized to learn a compact represen-
tation of BERT embeddings of two mentions (A
and B) and the pronoun. This representation is
then concatenated with Gated R-GCN’s final hid-
den states of those three tokens. The reason of
concatenating R-GCN’s hidden states with BERT
embeddings’ compact representation is that graph
convolution of the GCN model is actually a spe-
cial form of Laplacian smoothing (Li et al., 2018),
which might mix the features of vertices and make
them less distinguishable. By concatenation, we
maintain some original embeddings information.
After concatenation, we use a fully-connect layer
for the final prediction. The visualization of the
final end-to-end model is shown in Fig. 2.

Figure 2: End-to-end coreference resolver

4 Experimental Methodology and
Results

In the experiment, it shows that, with the explicit
syntactic supervision by syntactic structure, Gated
R-GCN structure can learn better embeddings that
improve performance on the coreference resolu-
tion task. Two sets of experiments were designed
and conducted: Stage one experiments and Full
GAP experiments.

Stage one experiments used the same setting
as stage one of shared-task competition, where
we had 4454 data samples in total. ’Gap-
validation.tsv’ and ’gap-test.tsv’ were used as
training dataset, while ’gap-development.tsv’ was
used for testing.2

Full GAP experiments used full 8908 samples
of Gendered Ambiguous Pronouns (GAP) dataset
in order to compare with the baseline result from
the GAP paper (Webster et al., 2018).

4.1 Dataset

The dataset provided by the shared task is Google
AI Language’s Gendered Ambiguous Pronouns
(GAP) dataset (Webster et al., 2018), which
is a gender-balanced dataset containing 8,908
coreference-labeled pairs of (ambiguous pronoun,
antecedent name), sampled from Wikipedia.

In stage one of the shared task, only 2454 sam-
ples were used as the training dataset, and 2000
samples were used as the test dataset.

2https://www.kaggle.com/c/
gendered-pronoun-resolution/data.
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4.2 Data Preprocessing
SpaCy was used as our syntactic dependency
parser. Deep Graph Library (DGL)3 was used to
transfer each dependency graph into a DGL graph
object. Several graphs were grouped together as
a larger DGL batch-graph object for batch train-
ing setting. R-GCN model was also implemented
with DGL.

4.3 Training settings
Adam was used (Kingma and Ba, 2014) as our op-
timizer. Learning rate decay was applied. l2 reg-
ularization of both R-GCN’s and fully-connected
layer’s weights was added to the training loss func-
tion. Batch-normalization and drop-out were used
in all fully-connection layers. We used one layer
for R-GCN which captures immediate syntactic
neighbors’ information. BERT in our model was
not fined tuned and was fixed for training. We used
’bert-large-uncased’ version of BERT for generat-
ing original embeddings.

The five-fold ensemble was used to achieve bet-
ter generalization performance and more accurate
estimation of the model’s performance. The train-
ing dataset was divided into 5 folds. Each time of
training we trained our model on 4 folds and chose
the model which had the best validation perfor-
mance on the left fold. This best model then was
used to predict the test dataset. In the end, pre-
dicted results from 5 folds were averaged as the
final result.

4.4 Stage One Experiments
There are 4 different settings for Stage One exper-
iments for comparisons (see Fig. 3):

1. Only BERT embeddings are fed into an ad-
ditional MLP for prediction.

2. Connect BERT with Gated R-GCN, but only
feed Gated R-GCN’s hidden states into MLP for
prediction.

3. Connect BERT with R-GCN, and the con-
catenation is fed into MLP for prediction. The gate
mechanism is not applied to R-GCN

4. Connect BERT with Gated R-GCN, and the
concatenation is fed into MLP for prediction. The
gate mechanism is applied.

4.4.1 Evaluation Metrics
The competition used multi-class log-loss as eval-
uation metrics.

3DGL official website: https://www.dgl.ai/
pages/about.html.

Figure 3: Stage one experiments

logloss = − 1

N

N∑

i=1

M∑

j=1

yij log(pij),

where N is the number of samples in the test
set, M is 3, log is the natural logarithm.

4.4.2 Results
Table 1 presents the results of four different set-
tings. it demonstrates that R-GCN structure does
learn better embeddings and improve the perfor-
mance. Setting three and setting four show the ef-
fectiveness of the Gate Mechanism.

BERT R-GCN Concatenation Gate Test Log-loss
Yes No No No 0.5301
Yes Yes No Yes 0.5142
Yes Yes Yes No 0.5045
Yes Yes Yes Yes 0.4936

Table 1: Stage one results

By comparing setting two and setting four, we
can see that because graph convolution of the R-
GCN model brings the potential problem of over-
smoothing the information (Li et al., 2018), model
without concatenation might lose some perfor-
mance.

4.5 Full GAP Experiments and Results
We also tested our model on the full GAP dataset
which contains 8,908 samples. 4908 samples were
used as training data, and 4000 samples were used
as test data. We used micro F1 score as our metric.
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The GAP paper (Webster et al., 2018) intro-
duced several baseline methods: (1) Off-the-shelf
resolvers including a rule-based system of Lee et
al. (2013) and three neural resolvers from Clark
and Manning (2015), Wiseman et al. (2016), and
Lee et al. (2017); (2) Baselines based on tradi-
tional cues for coreference; (3)Baselines based on
structural cues: syntactic distance and Parallelism;
(4) Baselines based on Wikipedia cues; (5) Trans-
former models (Vaswani et al., 2017).

Model F1 Score
Lee et al. (2017) 64.0%
Parallelism 66.9%
Parallelism+URL 70.6%
BERT only 78.5%
Ours 80.3%

Table 2: GAP experiments results

Three best models (Lee et al. (2017), Paral-
lelism, and Parallelism+URL) from above base-
lines were chosen for comparison. We first
used pre-trained BERT embeddings and fully-
connected layers for prediction (see Fig. 3 (1)).
Not surprising, BERT embeddings outperformed
all of the previous work.

We then tested our Gated R-GCN model. The
model further improved the F1 score by us-
ing explicitly syntactic information and learn-
ing coreference-task-specific word representa-
tions. The final model largely increased the base-
line F1 score from 70.6 % to 80.3 % and the BERT
embeddings’ result from 78.5 % to 80.3 %.

4.6 Final Submission and Shared-Task Score
For the final submission for stage 2 of the shared
task, we averaged our result with a BERT-score-
layer (Zhang et al., 2018; Clark and Manning,
2016) result. In stage two, our work reaches log-
loss of 0.394 on the private leaderboard showing
that our model is quite effective and robust. This
result is obtained without any data augmentation
prepossessing.

5 Discussion and Conclusion

The Gender Bias for Natural Language Processing
(GeBNLP) 2019 shared-task is a competition for
building a coreference resolution system on GAP
dataset. We participate in this shared-task by using
a novel approach which combines Gated R-GCN
with BERT. R-GCN is used for digesting syntactic

dependency graph and leveraging this syntactic in-
formation to help our semantic task. Experiments
with four settings were conducted on the shared
task’s stage one data. We also tested our model
on the full GAP dataset where our model im-
proved the best snippet-context baseline F1 score
from 66.9 % to 80.3 % (by 20 %). The results
showed that, under explicit syntactic supervision
and without the need to fine tune BERT, our gated
R-GCN model can incorporate syntactic structure
prior with BERT embeddings to improve the per-
formance on the coreference task.
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Abstract

In this paper, we describe our entry in the gen-
dered pronoun resolution competition which
achieved fourth place without data augmen-
tation. Our method is an ensemble system
of BERTs which resolves co-reference in an
interaction space. We report four insights
from our work: BERT’s representations in-
volve significant redundancy; modeling inter-
action effects similar to natural language infer-
ence models is useful for this task; there is an
optimal BERT layer to extract representations
for pronoun resolution; and the difference be-
tween the attention weights from the pronoun
to the candidate entities was highly correlated
with the correct label, with interesting impli-
cations for future work.

1 Introduction

The Gendered Ambiguous Pronouns (GAP)
dataset1 (Webster et al., 2018) addresses gender
bias by providing a dataset balanced over male and
female pronouns. The task is made challenging by
long paragraph lengths of multiple sentences with
a variety of named entities. The text comes from
the encyclopedia genre which is more formal and
contains numerous technical terms. Furthermore,
world knowledge is indispensable to this task. An
example is given in Figure 1 where the pronoun
is highlighted in green and the entities are high-
lighted in blue. To know that She refers to Chris-
tine rather than Elsie Tanne, a model requires
knowing that “never been mentioned again” is a
result of having died.

Due to the small size of the dataset (Table 1),
our solution was mainly based on transfer learn-
ing. Specifically, we used representations of the
pronoun and entities from an optimal frozen BERT

1https://github.com/
google-research-datasets/gap-coreference

Christine sent a telegram to congratulate Elsie and Steve Tan-
ner on their wedding day in 1967. In 1984, Elsie Tanner
informed Ken Barlow that Christine had died of liver fail-

ure after becoming an alcoholic in the late 1970s. She has
never been mentioned again.

Figure 1: An example in GAP dataset. To refer “she” to
“Christine”, a model has to connect “never been men-
tioned again” with “had died of liver failure”, which
requires world knowledge.

layer (Devlin et al., 2018) as inputs to a novel en-
coder architecture (Figure 2), whose results were
then ensembled (Maclin and Opitz, 2011) over
various BERT models (base and large, cased and
uncased) using shallow neural networks.

Our result achieved fourth place in the Kag-
gle shared-task competition2. The competition is
composed of two stages. In the first stage, the
the development set of GAP which is used for
evaluation and is entirely public to help competi-
tors search for model architectures. In the second
stage, a large and unpublished dataset was used to
test generalization ability as well as prevent label
probing.

Our model makes the following contributions
to this task. We propose a multi-head natural
language inference (NLI) encoder which resolves
co-reference though heuristic interaction and effi-
ciently addresses the redundancy in BERT by ap-
plying dropout to inputs directly. With layer-by-
layer exploration, we extract the task-specific fea-
tures from the optimal layer of BERT for coref-
erence resolution where we observe pronouns
strongly attend to the corresponding candidate en-
tities.

2https://www.kaggle.com/c/
gendered-pronoun-resolution/over
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Figure 2: Our multi-head NLI encoder model. The in-
puts are representations of the pronoun and candidate
entities from frozen BERT models.

Dataset Size Label Distribution
A B Neither

Validation 454 0.412 0.452 0.136
Development 2,000 0.437 0.463 0.100
Testing 2,000 0.459 0.428 0.113

Table 1: GAP dataset sizes and label distributions.

2 Methodology

2.1 Overview

We use the GAP dataset to train and evaluate our
model. For stage 1, following the evaluation set-
tings of Kaggle, our models were trained with the
test set, validation set and evaluated on the devel-
opment set. For stage 2, the models were trained
with the whole GAP dataset. The number of sam-
ples and distribution of labels in each dataset is
shown in Table 1.

Given a query (entitya, entityb, pronoun), we
obtain deep contextual representations from the
optimal layer of BERT for the pronoun and each
entity. Where the entities are composed of multi-
ple word pieces, we take the mean of those vec-
tors.

The relations between query words were mod-
eled by two base neural architectures. The first
architecture concatenates the contextual represen-
tations and aggregates the features with a shal-
low MLP, which turns out to be simple yet effi-
cient. The second architecture is based on natu-
ral language inference. It projects the contextual
representations into several low-dimensional sub-
spaces to extract task-specific features which are

Figure 3: Performance of representations from differ-
ent BERT layers. Log loss is calculated with the first
stage evaluation set.

then passed to an interaction layer and Siamese
encoders. We chose the second method as our
main model because it is more structural and in-
terpretable. Each base model is trained on frozen
BERT Base and Large, and from both cased and
uncased versions. The final prediction was an
ensemble over all types of base models using a
densely connected neural network.

2.2 Optimal BERT Layer

Unlike the common practice of taking the last
hidden layer of BERT, we searched for a task-
specific layer to obtain the most relevant contex-
tualized representations, which yielded significant
improvements. As pointed out by Peters et al.
(2018), the hidden layers in language models en-
code different linguistic knowledge. We therefore
conducted a layer by layer analysis to find the best
features for this task. As shown in Figure 3, not
all BERT layers performed equally well. A similar
pattern is observed in both BERT Base and Large,
where performance increases until around three
quarters of the depth, before becoming worse. The
optimal layers turn out to be 8 and 19 for BERT
Base and Large, respectively.

103



Figure 4: Redundancy in BERT Base and Large. Log
loss is calculated with the first stage evaluation set. We
can still achieve close to the best log loss in each case
by taking a subset of the BERT vectors. This has a
regularization benefit overall.

2.3 Redundancy in BERT

Manual analysis of the progression of attention
distributions through each layer of BERT indi-
cated the potential for a lot of redundancy in the in-
formation attended to, and therefore encoded. We
empirically tested this idea by randomly sampling
a subset of features in the BERT vectors (held con-
stant through training) and comparing log loss to
the sampling rate. Performance degradation halts
well before the entire BERT vector is included.
This indicates information necessary for this task
is present in about 70% to 80% of the BERT vec-
tors (taken from the optimal layer).

Based on this observation, we leverage the
redundancy by adding dropout(Srivastava et al.,
2014) directly to BERT features, which can be
considered a kind of model boosting (Breiman,
1998), similar to training several prototypes with
subsets that are randomly sampled from the BERT
vector, and letting the neural network figure out
the best ensemble architecture through back prop-
agation.

The idea of sampling subsets and then training
several models is quite similar to random forests
(Breiman, 2001). However, unlike the general sit-
uation in random forests where the performance
of base models degrade when using less data, our
base models can still achieve strong performance
because of the redundancy in BERT.

2.4 Word Encoder

Because of the small size of the dataset and
the redundency in the BERT vectors, we chose
to project the BERT representations into several

lower-dimensional spaces using multiple affine
layers with SELU activation (Klambauer et al.,
2017), rather than using the whole BERT vector
directly. For a k-dimensional word embedding w,
the word encoder of the head h encodes it as a n-
dimensional vector, which is described as:

xh = SELU(Wehw + beh) (1)

where Weh ∈ Rn×k is shared for the pronoun
and entities. Our word encoder was also inspired
by the multi-head attention (Vaswani et al., 2017),
an essential component in BERT, which projects
hidden representations into multiple sub-spaces
where it can infer the relations between query and
key efficiently. We attempted to use more com-
plicated architectures, such as independent trans-
formations for pronouns and entities, or deeper
highway transformations (Srivastava et al., 2015),
which all resulted in overfitting.

2.5 Modeling Interactions
This task can be considered a sub-task of binary
answer selection. We found success modeling in-
teractions between the representations of each en-
tity and the pronoun. We use an established tech-
nique from successful natural language inference
models (Mou et al., 2015) to model the interaction
of encoded results from every head. For the head
h, the interaction between encoded entities ah, bh
and the pronoun ph is modeled as:

iah = [[ah; ph]; ah − ph; ah ∗ ph] (2)

ibh = [[bh; ph]; bh − ph; bh ∗ ph] (3)

where iha,hb ∈ R4n and [.; .] is the concatenation
operator. The interaction vectors are then aggre-
gated to m-dimensional vectors by Siamese en-
coders which share parameters for (ah, ph) and
(bh, ph), but not shared to different heads:

eah = SELU(Wnh
iah + bnh

) (4)

ebh = SELU(Wnh
ibh + bnh

) (5)

where Wnh
∈ Rm×4n. We then sum the results

from each Siamese encoder to gather the evidence
from all heads:

ea =
∑

h

eah ; eb =
∑

h

ebh (6)

2.6 Handcrafted Features
We also manually create features from parse trees
which were generated by spacy,(Honnibal and
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Model Stage 1 Stage 2
Handcrafted features baseline 0.60 -
BERT (B) 0.50 -
BERT (B) + drop. 0.45 0.38
BERT (B) + drop. + inter. 0.43 -
BERT (B) + drop. + inter. + proj. 0.39 0.32
BERT (B) + all∗ 0.38 0.32
BERT (L) + drop. 0.39 0.31
BERT (L) + drop. + inter. + proj. 0.32 0.24
BERT (L) + all∗ 0.31 0.24
BERT (B) and BERT (L) ensemble 0.30 0.18

Table 2: The performance gain of each component for
both Bert Base and Bert Large, where all denotes using
input dropout, interaction layers, projection, and hand-
crafted features at the same time. Performance is log
loss from the stage 1 and stage 2 testing data.

Figure 5: Overview of our ensemble.

Montani, 2017) and from heuristics such as the
number of words between the candidate and pro-
noun. We normalized the hand-crafted features
into the range [0, 1] and aggregated them using a
feature encoder which consists of an affine layer
with SELU activation. To combine the hand-
crafted features with our encoder architecture, we
concatenate the outputs of feature encoder with ea
and eb.

2.7 Putting it Together
Table 2 shows the performance gains of imple-
menting input dropout, projection, interactions
and handcrafted features. In the case all, hand-
crafted features are included. We saw a steady im-
provement in performance implementing these to-
gether that carried over from BERT Base to BERT
Large on the both stage 1 and stage 2 evaluation
data.

2.8 Ensemble
Figure 5 shows the overview of our ensemble ar-
chitecture. The ensemble was composed of mod-
els whose inputs were from different types of
BERTs and handcrafted features. We then ag-
gregated the predictions of the base models with
a five-layer densely-connected feedforward net-
work.

Figure 6: Average attention energy from the pronoun
to the entity A and B as a function of layer. Due to im-
balance in the dataset, B is more likely to be the correct
answer, which explains BERT’s preference for B.

2.9 Experiment Setting

Our models were built with Keras. The input
dropout rates were 0.6 and 0.7 for BERT Base and
Large, respectively. For the concatenation based
model, the classifier was composed of a single hid-
den layer with size 37 following a batch normal-
ization layer and a dropout layer with rate 0.6. For
the multi-head NLI encoder, the number of heads
was 6 and the dimension of the down-projected
vector space was 37. The interactive encoder as
composed of a hidden layer with size 37 following
SELU activation. To summarize the output from
each NLI encoders, we used either a concatena-
tion or summation operation following a dropout
layer with rates 0.8, 0.85 respectively. The classi-
fier of the multi-head NLI encoder was exactly the
same as the concatenation based encoder.

For training, we validated our models with 7-
fold cross-validation and early-stopping on cross-
entropy with patience 20. The batch size was 32
and the optimizer was Adam (Kingma and Ba,
2014) with initial learning rate 1e−3 for all mod-
els. We regularized the output layer with 0.1 L2
penalty. The overall training time was about 8
hours for stage 1. For other detailed settings and
hyper-parameters please refer to our public code
repository.3

3 Conclusion

We have demonstrated that BERT has an opti-
mal layer for this task. We also showed that
BERT’s representations contain redundant infor-

3https://github.com/zake7749/
Fill-the-GAP
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Figure 7: Average attention energy from the pronoun
to the correct (YES) and incorrect entity (NO), and the
difference between them. These attention distributions
provide a signal may be useful for further improve-
ments to our solution.

mation, and that dropout can be used to over-
come this problem. Projecting to lower dimen-
sions with multiple heads also allowed us to con-
sider multiple perspectives on this information in
more tractable space. Considering interactions be-
tween these perspectives also proved beneficial for
this task. However, manual error analysis still re-
vealed a large number of world knowledge cases,
a major limitation of our solution.

4 Future Work

Post-competition analysis revealed that the differ-
ence between attention weights from the target
pronoun to the candidate entities in the optimal
layer was found to be highly predictive of the cor-
rect label. In Figure 6 we can see the overall en-
ergy of attention from the pronoun to the candidate
entities’ peaks. Notice that due to imbalance in the
dataset, B is more likely to be the correct answer,
which explains BERT’s preference for B. Figure
7 shows the average difference in attention energy
from the pronoun to the entity that is referred to,
or not referred to, and the difference. There are
significant gaps between the correct and incorrect
candidates in layers 17 to layers 20. The pattern
of attention energies is consistent as the observa-
tions in section 2.2, which indicates that instead
of using the attended vectors, the energies in the
attention process can also be efficient and highly-
interpretable features for correference resolution.

In future work, we intend to add features from
BERT’s attention layers to see if we can improve
our performance. Furthermore, this discovery
could lead to a more general pronoun resolution

technique based on BERT that doesn’t require can-
didate entity labeling. We would also like to inves-
tigate using this signal for unsupervised and semi-
supervised pronoun resolution.
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Abstract

This paper presents the 3rd-place-winning
solution to the GAP coreference resolution
shared task. The approach adopted consists
of two key components: fine-tuning the BERT
language representation model (Devlin et al.,
2018) and the usage of external datasets dur-
ing the training process. The model uses hid-
den states from the intermediate BERT layers
instead of the last layer. The resulting system
almost eliminates the difference in log loss per
gender during the cross-validation, while pro-
viding high performance.

1 Introduction

The GAP coreference resolution shared task pro-
motes gender fair modelling with its GAP dataset
(Webster et al., 2018). GAP is a coreference
dataset for the resolution of ambiguous pronoun-
name pairs in real-world context. GAP has a
particular focus on the balance of masculine and
feminine pronouns and allows for gender-specific
evaluation. The challenge was hosted by Kaggle
and consisted of two stages. Stage 1 attracted 838
participants, and stage 2 involved 263 participants.

GAP training examples look the following way:

Burnett Stone (Peter Fonda) is Lily’s
grandfather and Lady’s caretaker. He
keeps her in Muffle Mountain.

where her is ambiguous pronoun, Lily is candi-
date mention A, and Lady is the candidate men-
tion B. The data was extracted from Wikipedia,
so, in addition to the text, the source URL of the
article is given. The goal is to predict whether the
ambiguous pronoun refers to the mention A, to the
mention B or to NEITHER of them. The problem
was treated as gold-two-mention task, where the
model has the access to the position of the men-
tions.

2 The data

The GAP dataset is split into training, validation
and test set. Training and test set contain 2000
examples each, validation includes 454 examples.
During the stage 1 of the competition, the test
set was used to evaluate the model performance,
while train and validation sets together were used
for training with 5 fold cross-validation scheme.
This choice initially was made because of the rela-
tively little amount of data and the instability of the
predictions (the score on one fold can significantly
differ from the other fold). There were several er-
rors in labels of all three GAP dataset, reported by
the competition participants1. The current solution
employs the GAP data with manual corrections.

During the stage 2 of the competition, all three
datasets with resulting 4454 observations were
used for the training, while the new test set with
12,359 examples was used for the prediction.

2.1 Additional data

There are several coreference datasets available
for training and evaluating. Besides GAP data,
the presented solution uses four external data
sources: Winobias (Zhao et al., 2018), Wino-
gender (Rudinger et al., 2018), The Definite Pro-
noun Resolution (DPR) Dataset (Rahman and Ng,
2012; Peng et al., 2015) and Ontonotes 5.0 (Prad-
han et al., 2012). Each of them was processed
to be compatible with the GAP format. After the
cleaning this resulted in 39,452 training examples
for Ontonotes 5.0, 360 for Winogender, 3162 for
Winobias and 1400 for DPR. In this paper, this ex-
ternal data (Ontonotes 5.0, Winobias, Winogden-
der, DPR) will be called warm-up data, because it
was used to fine-tune the BERT embeddings, and
the weights learned from this data served as ’warm

1https://www.kaggle.com/c/gendered-pronoun-
resolution/discussion/81331
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up’ for the training on the GAP dataset.
There was one more candidate to the additonal

datasets pool, namely PreCo (Chen et al., 2018),
but despite many efforts this dataset did not pro-
vide any score improvement. Presumably, this
is mainly due to the different structure of the
data, and the high amount of noise. For instance,
some training examples contained the same word
as both mention and pronoun, which may have
worsen the model performance.

There were several attempts to include all the
additional datasets to the training procedure. The
naive attempt to concatenate GAP data and addi-
tional data into one big training set did not work,
because the additional data has a different struc-
ture and does not have the URL feature. The sec-
ond attempt was to use a two-step approach:

1. Warm-up step: pretrain the part of the model
(namely the head, see section 3 for the expla-
nations) on the external data only. Then, se-
lect the weights from the model that performs
best on the warm-up validation set.

2. GAP step: continue training on GAP data,
using the weight from the best-performing
warm-up model instead of randomly initial-
ized weights.

The warm-up data was randomly split into train-
ing and validation set with 95%-5% proportions.
This strategy slightly improved the model per-
formance, showing that warming-up on external
dataset can be a promising direction. One pos-
sible explanation is that starting with pretrained
weights allowed the model to reach flatter opti-
mum and generalize better. In addition, the exter-
nal data contained many more training examples
for the category NEITHER (see Table 1), result-
ing in better performance for this group.

During the third attempt, the validation set was
not randomly chosen, but replaced by Winobias
only. It was done to ensure that gender fair repre-
sentation will be chosen as initialization weights
for the GAP step. This action further provided
small improvement in the evaluation metric. How-
ever, the negative effect of choosing Winobias as
validation data was the complete exclusion of the
class NEITHER from the validation data (see Ta-
ble 1). Surprisingly, this effect was not detrimental
to the performance, most likely because the train-
ing data contained enough training examples for
this class.

GAP
train

Warm-up
train

Warm-up
val

A 43.71% 31.91% 50%
B 44.65% 31.40% 50%
NEITHER 11.63% 36.68% 0

Table 1: Class distribution for the datasets used. GAP
train includes all the gap datasets available (gap devel-
opment, gap val, gap test). Warm-up train includes
Ontonotes, DPR and Winogender. Warm-up val only
includes Winobias.

The final version of the model also fine-tunes
the particular layers of BERT embeddings, in ad-
dition to the warm-up of the head. For a full de-
scription, see section 3.

2.2 Evaluation metrics and class
distributions

Class distributions Table 1 shows the class dis-
tributions for the three final datasets used: GAP
train, which includes all GAP data, warm-up train,
which includes Ontonotes 5.0, Winogdender, DPR
and warm-up validation, which is Winobias. As
can be seen, warm-up train has the most bal-
anced distribution of classes, while GAP train has
a lower portion of the category NEITHER.

Evaluation metrics Solutions were evaluated
using the multi-class logarithmic loss. For each
pronoun, the participants had to provide the prob-
abilities of it belonging to A, B, or NEITHER. The
formula to evaluate the performance of the model
is:

logloss = − 1

N

N∑

i=1

M∑

j=1

yijlog(pij)

where N is the number of samples in the test set,
M is number of classes, 3, log is the natural log-
arithm, yij is 1 if observation i belongs to class j
and 0 otherwise, and pij is the predicted probabil-
ity that observation i belongs to class j.

2.3 Features

Besides the direct textual input, the current solu-
tion uses some manually constructed features. The
majority of them were already mentioned by Web-
ster et al. (2018) as single baseline models. The
following features were used:

• Token Distance. Distance between mentions
and the pronoun, and also between the men-
tions themselves.
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• Syntactic distance between mentions and
pronoun. The distances were extracted with
the StandfordCoreNLP.

• URL. Whether the Wikipedia URL contains
the mention.

• Sentence of the mention. Index of the sen-
tence, where the mention is located, divided
by total number of sentences in the snippet.

• Syntactic distance to the sentence root.
The distance between the mention and its
syntactic parent.

• Character position. The relative character
position of the mention in the text.

• Pronoun gender. Gender of the pronoun. It
was noticed that in some examples, mentions
were of different gender, so the hope was that
this feature could help. It did not help, but it
did not hurt either. The fact that this feature
did not affect the performance can be a good
indicator of gender-neutral learning.

The features that provided the biggest improve-
ments were URL (0.07 decrease on log loss) and
syntactic distance between mentions and pronoun
(0.01). The contribution of other features was very
limited.

3 The system

The final solution uses an ensemble of four
neural networks. They are: fifth-to-last-layer
with cased BERT, fifth-to-last-layer with uncased
BERT, sixth-to-last-layer with uncased BERT,
sixth-to-last-layer with cased BERT. The explana-
tion is in the next subsection of the paper. Each
network consists of two main parts:

• BERT part: contextual representations of the
text with fine-tuned BERT embeddings

• Head part: using the embeddings together
with manually crafted features to produce
softmax probabilities of the three classes

All networks have the same architecture for the
head part and the only difference is in the BERT
part.

Figure 1: The effect of the output layer choice on the
performance of the model. Layer index [-5] means
fifth-to-last output layer. Log loss is reported on the
stage 1 test dataset, at the beginning of the competition,
keeping all the other parameters fixed.

3.1 BERT part
BERT is general purpose language model, pre-
trained on Wikipedia and BookCorpus. It lever-
ages high amount of unannotated data on the web
and produces context-aware word embeddings.
The current solution uses pytorch-pretrained-
BERT2. Besides fine-tuning BERT weights, the set
of possible parameters for the pretrained BERT is
limited. The possibilities are:

• Amount of layers in the Transformer model:
12-layer (bert-base) or 24-layer (bert-large)

• Cased or uncased model

• Multilingual or single-language model

One additional peculiarity, discovered by sev-
eral contestants independently, is that using the
output of the last layer may be an inferior option
compared to the deeper ones. For the architec-
ture presented in this paper, optimal layers were
fifth-to-last ([-5]) and sixth-to-last ([-6]). Figure
1 shows the log loss during stage 1 for different
ouput layers, keeping all other parameters of the
network fixed.

One possible explanation for this phenomenon
is that the last output layer specializes on pre-
dicting the masked words, while the intermediate
layers contain more general information. The U -
shaped curve also shows that taking much deeper
layers negatively affect the model performance.

Fine-tuning. As mentioned in the section 2.1,
initially only the head part was fine-tuned on the

2https://github.com/huggingface/pytorch-pretrained-
BERT
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warm-up dataset and the learned weights were
used as initialization weights for the GAP train-
ing. The logical step would also be to fine-tune
the BERT embeddings themselves. It was done
in the following way: first, the head was trained
for 16 epochs, with the parameters of BERT being
frozen. Afterwards, all of the parameters of the
head were frozen, and one particular layer (either
fifth-to-last or sixth-to-last) of BERT was fine-
tuned. The small learning rate was very crucial
at this step, because the number of parameters is
high (12,596,224). The current solution uses 4e−5

as learning rate, trained for 16 epochs with batch
size of 32. Every 400 steps the network perfor-
mance was estimated on the evaluation data, and
only the best performing model was used after the
training was done.

3.2 Head part

The head network always takes BERT contextual
embeddings of shape [batch size, seq len, 1024]
(for BERT-large). These embeddings are pro-
cessed with the 1d-convolutional layer of size 64
and kernel=1 in order to reduce the dimensional-
ity. Interestingly, increasing kernel size to 2 or 3
deteriorates the performance. This may be due to
the fact that the context just around the mentions
was not that informative.

Because the positions of mentions and pronoun
are known in advance, the embeddings of only
those three phrases are extracted. This is done by
using SelfAttentiveSpanExtractor from AllenNLP
(Gardner et al., 2017). This span extractor will
generate 3 vectors of size 64 - for A, B and Pro-
noun. For single token mentions the span repre-
sentation is just the original vector itself, while
for mentions with more than two tokens, the span
extractor will produce weighted representation by
using the attention scores. Other span extractors
from AllenNLP did not perform as good as the
self-attentive span extractor.

The resulting three vectors of size 64 are con-
catenated and processed with the standard fully-
connected block: BatchNorm1d(192) → Linear
(192, 64) → ReLU → BatchNorm1d → Dropout
(0.6). This output is concatenated with all the
manual features mentioned in the section 2.3,
which results in the vector of length 96. Adding
features directly to the last layer is important, oth-
erwise they do not bring any improvement. Fi-
nally, Linear (96, 3) layer on top produces the log-

its. The softmax probabilities are computed in the
numerically stable way in the loss function.

3.3 Training details

For the GAP training, Adam optimizer with the
learning rate 2e−3 is used. The batch size is 20.
For both BERT fine-tuning and GAP training the
triangular learning rate schedule is used (Smith,
2017). The loss used is CrossEntropyLoss, which
combines numerically stable computation of soft-
max probabilities with negative log-likelihood loss
function.

The predictions for each of the four networks
are done in 10 fold cross-validation stratified by
the class distribution, i.e. the model is trained on
90% of the data and the other 10% is used for
the evaluation. The final predictions is the aver-
age across all folds and all models, overall of 40
models. Final predictions were clipped to be in
the interval (1e−2, 1− 1e−2), because log loss pe-
nalizes the predictions heavily as they drift away
from ground truth.

The training runs approximately one day on sin-
gle NVIDIA Tesla P100. This can be substantially
reduced with proper code optimization (for in-
stance, removing BERT computations for all lay-
ers after the fifth-to-last). The framework used for
the implementation is PyTorch3

4 Results

The described solution provides the log loss of
0.1839 on the test stage 2 data, which results in
the third place on Kaggle leaderboard. The results
of single models are presented in the Table 3. As
can be seen, the cased version performs generally
better. One reason may be given by the variety of
personal names in the GAP, and the cased version
is able to recognize them better.

On the cleaned stage 1 test data, the best-
performing single model (cased BERT, fifth-to-
last layer) provided the log loss of 0.23819. Be-
cause the true labels are available for the test stage
1 data, the loss for the masculine and the feminine
pronouns was estimated separately. For masculine
pronouns the log loss was equal to 0.24014, while
for feminine it was equal to 0.23623. The differ-
ence is 3e−3, which can be considered insignifi-
cant.

The error matrix for the whole stage one dataset
(10-fold cross-validated) is presented in the Table

3https://pytorch.org/
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A pred B pred NEITHER pred
A 1849 72 26
B 57 1908 24
NEITHER 58 59 401

Table 2: Confusion matrix on the whole stage 1 data
with 10 fold cross validation.

Model name Log loss
Cased [-5] 0.20592
Cased [-6] 0.20429
Uncased [-5] 0.22834
Uncased [-6] 0.21088
Ensemble 0.18397

Table 3: Performance of the models on the test stage 2
data.

2. As can be seen, the performance for the cate-
gory NEITHER is worse than for other categories.
Most likely this is because of the lower amount
of training examples. Even though the warm-up
data contained many observations with this cate-
gory, these examples were quite trivial, and the fi-
nal model still struggles on the GAP data. This
indicates a potential area for the improvement of
the model. For the wrong predictions, some addi-
tional metrics were also examined, like the length
of the text or the number of words in the men-
tions. These properties are not significantly dif-
ferent from those for the correct predictions. Af-
ter manual examination, it appears that the model
makes mistakes on the examples that are also quite
challenging for humans.

5 Discussion

One of the weaknesses of the presented system is
the training and prediction time. Because there are
four networks, training takes a long time, and the
prediction on the test set requires almost 2 hours.
The attempt to concatenate several intermediate
BERT layers, or to use a linear combination of
them did not work, although it was reported to
have a positive effect (Tenney et al., 2018). Using
the information from the whole Wikipedia page
also did not provide any improvements.

During the early stages of the competition,
when only GAP data was used, the sources of
model mistakes were analyzed. It was found, that
despite the best efforts of the authors, there are still
some mislabelled examples in the GAP data itself.

dataset errors female errors male
gap development 35 31
gap val 12 9
gap test 45 28

Table 4: Number of mislabelled examples in the
datasets per gender.

Other participants reported errors as well4. Some
of these errors are quite simple, but the majority
require substantial human efforts and sometimes
were impossible to detect without reading the cor-
responding Wikipedia article.

The number of erroneous labels for different
GAP datasets separated by gender is reported in
Table 4. This list is based on the mistakes reported
on the forum, as well as own single checks, but it is
not comprehensive. It can be seen that mislabelled
examples represent less than 5% of all cases. They
are usually equally distributed between genders,
besides gap test, where mislabelled examples for
female cases are 30% higher.

6 Conclusion

This paper presents the solution for the corefer-
ence resolution on GAP shared task. The solu-
tion utilizes the pretrained contextual embeddings
from BERT and fine-tunes them for the corefer-
ence problem on additional data. One of the find-
ings is that the output of BERT’s intermediate lay-
ers gives better representation of the input text
for the coreference task. Another contribution is
that the gender bias in external data can be mit-
igated by using gender-fair datasets as validation
data during the pretraining phase.
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Abstract

Pronoun resolution is part of coreference res-
olution, the task of pairing an expression to
its referring entity. This is an important task
for natural language understanding and a nec-
essary component of machine translation sys-
tems, chat bots and assistants. Neural machine
learning systems perform far from ideally in
this task, reaching as low as 73% F1 scores on
modern benchmark datasets. Moreover, they
tend to perform better for masculine pronouns
than for feminine ones. Thus, the problem is
both challenging and important for NLP re-
searchers and practitioners. In this project, we
describe our BERT-based approach to solving
the problem of gender-balanced pronoun reso-
lution. We are able to reach 92% F1 score and
a much lower gender bias on the benchmark
dataset shared by Google AI Language team.

1 Introduction

In this work, we are dealing with gender bias in
pronoun resolution. A more general task of coref-
erence resolution is reviewed in Sec. 2. In Sec.
3, we give an overview of a related Kaggle com-
petition. Then, Sec. 4 describes the GAP dataset
and Google AI’s heuristics to resolve pronomial
coreference in a gender-agnostic way, so that pro-
noun resolution is done equally well in cases of
masculine and feminine pronouns. In Sec. 5,
we provide the details of our BERT-based solution
while in Sec. 6 we analyze pleasantly low gender

bias specific for our system (our code is shared on
GitHub1). Lastly, in Sec. 7, we draw conclusions
and express some ideas for further research.

2 Related work

Among popular approaches to coreference res-
olution are:2 rule-based, mention pair, mention
ranking, and clustering. As for rule-based ap-
proaches, they describe naïve Hobbs algorithm
(Hobbs, 1986) which, in spite of being naïve,
has shown state-of-the-art performance on the
OntoNotes dataset3 up to 2010.

Recent state-of-the-art approaches (Lee et al.,
2018, 2017; Peters et al., 2018a) are pretty
complex examples of mention ranking systems.
The 2017 version is the first end-to-end corefer-
ence resolution model that didn’t utilize syntactic
parsers or hand-engineered mention detectors. In-
stead, it used LSTMs and attention mechanism to
improve over previous NN-based solutions.

Some more state-of-the-art coreference resolu-
tion systems are reviewed in (Webster et al., 2018)
as well as popular datasets with ambiguous pro-
nouns: Winograd schemas (Levesque et al., 2012),
WikiCoref (Ghaddar and Langlais, 2016), and

1https://github.com/Yorko/
gender-unbiased_BERT-based_pronoun_
resolution

2https://bit.ly/2JbKxv1
3https://catalog.ldc.upenn.edu/

LDC2013T19
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The Definite Pronoun Resolution Dataset (Prad-
han et al., 2007). We also refer to the GAP paper
for a brief review of gender bias in machine learn-
ing.

We further outline that e2e-coref model (Lee
et al., 2018), in spite of being state-of-the-art in
coreference resolution, didn’t show good results in
the pronoun resolution task that we tackled, so we
only used e2e-coref predictions as an additional
feature.

3 Kaggle competition “Gendered
Pronoun Resolution”

Following Kaggle competition “Gendered Pro-
noun Resolution”,4 for each abstract from
Wikipedia pages we are given a pronoun, and we
try to predict the right coreference for it, i.e. to
which named entity (A or B) it refers. Let’s take a
look at this simple example:

“John entered the room and saw [A] Julia.
[Pronoun] She was talking to [B] Mary Hendriks
and looked so extremely gorgeous that John was
stunned and couldn’t say a word.”

Here “Julia” is marked as entity A, “Mary Hen-
driks” – as entity B, and pronoun “She” is marked
as Pronoun. In this particular case the task is to
correctly identify to which entity the given pro-
noun refers.

If we feed this sentence into a coreference res-
olution system (see Fig. 1 and online demo5), we
see that it correctly identifies that “she” refers to
Julia, it also correctly clusters together two men-
tions of “John” and detects that Mary Hendriks is
a two-word span.

For instance, if you take an abstract like this it’s
pretty hard to resolve coreference.

“Roxanne, a poet who now lives in France. Is-
abel believes that she is there to help Roxanne dur-
ing her pregnancy with her toddler infant, but later
realizes that her father and step-mother sent her
there so that Roxanne would help the shiftless Is-
abel gain some direction in life. Shortly after she
(pronoun) arrives, Roxanne confides in Isabel that
her French husband, Claude-Henri has left her.”

Google AI and Kaggle (organizers of this com-
petition) provided the GAP dataset (Webster et al.,
2018) with 4454 snippets from Wikipedia articles,
in each of them named entities A and B are labeled

4https://www.kaggle.com/c/
gendered-pronoun-resolution

5https://bit.ly/2I4tECI

along with a pronoun. The dataset is labeled, i.e.
for each sentence a correct coreference is speci-
fied, one of three mutually-exclusive classes: ei-
ther A or B or “Neither”. Thus, the prediction task
is actually that of multiclass classification type.

Moreover, the dataset is balanced w.r.t. mascu-
line and feminine pronouns. Thus, the competition
was supposed to address the problem of building
a coreference resolution system which is not sus-
ceptible to gender bias, i.e. works equally well for
masculine and feminine pronouns.

These are the columns provided in the dataset
(Webster et al., 2018):

• ID - Unique identifier for an example
(matches to Id in output file format)

• Text - Text containing the ambiguous pro-
noun and two candidate names (about a para-
graph in length)

• Pronoun - target pronoun (text)

• Pronoun-offset - character offset of Pronoun
in Text

• A - first name candidate (text)

• A-offset - character offset of name A in Text

• B - second name candidate

• B-offset - character offset of name B in Text

• URL - URL of the source Wikipedia page for
the example

Evaluation metric chosen for the competition6

is multiclass logarithmic loss. Each pronoun has
been labeled with whether it refers to A, B, or
“Neither”. For each pronoun, a set of predicted
probabilities (one for each class) is submitted. The
formula is then

logloss = − 1

N

N∑

i=1

M∑

j=1

yij log pij ,

where N is the number of samples in the test set,
M is 3, log is the natural logarithm, yij is 1 if ob-
servation i belongs to class j and 0 otherwise, and
pij is the predicted probability that observation i
belongs to class j.

6https://www.kaggle.com/c/
gendered-pronoun-resolution/overview/
evaluation
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Figure 1: Coreference resolution visualized with HuggingFace demo https://huggingface.co/coref/.

Unfortunately, the chosen evaluation metric
does not reflect the mentioned above goal of build-
ing a gender-unbiased coreference resolution al-
gorithm, i.e. the metric does not account for gen-
der imbalance - logarithmic loss may not reflect
the fact that e.g. predicted pronoun coreference
is much worse for masculine pronouns than for
feminine ones. Therefore, we explore gender bias
separately in Sec. 6 and compare our results with
those published by the Google AI Language team
(reviewed in Sec. 4).

4 Mind the GAP: A Balanced Corpus of
Gendered Ambiguous Pronouns

Google AI Language team addresses the prob-
lem of gender bias in pronoun resolution (when
systems favor masculine entities) and a gender-
balanced labeled corpus of 8,908 ambiguous
pronoun-name pairs sampled to provide diverse
coverage of challenges posed by real-world text
(Webster et al., 2018) (further referred to as the
GAP dataset). They run 4 state-of-the-art coref-
erence resolution models (Lee et al., 2013; Clark
and Manning, 2015; Wiseman et al., 2016; Lee
et al., 2017) on the OntoNotes and GAP datasets
reporting F1 scores separately for masculine and
feminine pronoun-named entity pairs (metrics M
and F in the paper). Also they measure “gender
bias” defined as B = F / M. In general, they con-
clude, these models perform better for masculine
pronoun-named entity pairs, but still pronoun res-
olution is challenging - all achieved F1 scores are
less than 0.7 for both datasets.

Further, they propose simple heuristics (called
surface, structural and Wikipedia cues). The best
reported cues are “Parallelism” (if the pronoun is
a subject or direct object, select the closest can-

didate with the same grammatical argument) and
“URL” (select the syntactically closest candidate
which has a token overlap with the page title).
They compare the performance of “Parallelism +
URL” cue with e2e-coref (Lee et al., 2017) on
the GAP dataset and, surprisingly enough, con-
clude that heuristics work better achieving bet-
ter F1 scores (0.742 for M and 0.716 for F) at
the same time being less gender-biased (some of
heuristics are totally gender-unbiased, for “Paral-
lelism + URL” B = F / M = 0.96).

Finally, they explored Transformer architecture
(Vaswani et al., 2017) for this task and observed
that the coreference signal is localized on specific
heads and that these heads are in the deep layers
of the network. In Sec. 5 we confirm this obser-
vation. Actually, they select the candidate which
attends most to the pronoun (“Transformer heuris-
tic” in the paper). Even though they conclude
that Transformer models implicitly learn language
understanding relevant to coreference resolution,
as for F1 scores, they didn’t make it work bet-
ter than e2e-coref or Parallelism cues (F1 scores
lower that 0.63). More to that, proposed Trans-
formers heuristics are a bit biased towards mascu-
line pronouns with B from 0.95 to 0.98.

Further we report a much stronger gender-
unbiased BERT-based (Devlin et al., 2018) pro-
noun resolution system.

5 System

BERT (Devlin et al., 2018) is a transformer archi-
tecture, pre-trained on a large corpus (Wikipedia
+ BookCorpus), with 12 to 24 transformer layers.
Each layer learns a 1024-dimensional representa-
tion of the input token, with layer 1 being similar
to a standard word embedding, layer 24 special-
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ized for the task of predicting missing words from
context. At the same time BERT embeddings are
learned for a second auxiliary task of resolving
whether two consequent sentences are connected
to each other or not.

In general, motivated by (Tenney et al., 2019),
we found that BERT provides very good token em-
beddings for the task in hand.

Our proposed pipeline is built upon solutions
by teams “Ken Krige” and “[ods.ai] five zeros”
(placed 5 and 22 in the final leaderboard7 corre-
spondingly). The way these two teams approached
the competition task are described in two Kaggle
posts.89 The combined pipeline includes several
subroutines:

• Extracting BERT-embeddings for named en-
tities A, B, and pronouns

• Fine-tuning BERT classifier

• Hand-crafted features

• Neural network architectures

• Correcting mislabeled instances

5.1 Extracting BERT-embeddings for named
entities A, B, and pronouns

We concatenated embeddings for entities A, B,
and Pronoun taken from Cased and Uncased large
BERT “frozen” (not fine-tuned) models.10 We no-
ticed that extracting embeddings from intermedi-
ate layers (from -4 to -6) worked best for the task.
Also we added pointwise products of embeddings
for Pronoun and entity A, Pronoun and entity B as
well as AB - PP. First of these embedding vectors
expresses similarity between pronoun and A, the
second one expresses similarity between pronoun
and B, the third vector is supposed to represent the
extent to which entities A and B are similar to each
other but differ from the Pronoun.

7https://www.kaggle.com/c/
gendered-pronoun-resolution/leaderboard

8https://www.kaggle.com/c/
gendered-pronoun-resolution/discussion/
90668

9https://www.kaggle.com/c/
gendered-pronoun-resolution/discussion/
90431

10https://github.com/google-research/
bert

5.2 Fine-tuning BERT classifier

Apart from extracting embeddings from original
BERT models, we also fine-tuned BERT classi-
fier for the task in hand. We made appropri-
ate changes to the “run_classifier.py” script from
Google’s repository.11 Preprocessing input data
for the BERT input layer included stripping text to
64 symbols, then into 4 segments, running BERT
Wordpiece for each segment, adding start and end
tokens (with truncation if needed) and concatenat-
ing segments back together. The whole prepro-
cessing is reproduced in a Kaggle Kernel12 as well
as in our final code on GitHub.13

5.3 Hand-crafted features

Apart from BERT embeddings, we also added 69
features which can be grouped into several cate-
gories:

• Neuralcoref,14 Stanford CoreNLP (Manning
et al., 2014) and e2e-coref (Lee et al., 2017)
model predictions. It turned out that these
models performed not really well in the task
in hand, but their predictions worked well as
additional features.

• Predictions of a Multi-Layered Perceptron
trained with ELMo (Peters et al., 2018b) em-
beddings

• Syntactic roles of entities A, B, and Pro-
noun (subject, direct object, attribute etc.) ex-
tracted with SpaCy 15.

• Positional and frequency-based (distances
between A, B, Pronoun and derivations,
whether they all are in the same sentence or
Pronoun is in the following one etc.). Many
of these features we motivated by the Hobbs
algorithm (Hobbs, 1986) for coreference res-
olution.

• Named entities predicted for A and B with
SpaCy

11https://github.com/google-research/
bert

12https://www.kaggle.com/kenkrige/
bert-example-prep

13https://github.com/Yorko/
gender-unbiased_BERT-based_pronoun_
resolution

14https://github.com/huggingface/
neuralcoref

15https://spacy.io/
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• GAP heuristics outlined in the corresponding
paper (Webster et al., 2018) and briefly dis-
cussed in Sec. 4

We need to mention that adding all these fea-
tures had only minor effect on the quality of pro-
noun resolution (resulted in a 0.01 decrease in log-
arithmic loss when measured on the Kaggle test
dataset) as compared to e.g. fine-tuning BERT
classifier.

5.4 Neural network architectures

Final setup includes:

• 6 independently trained fine-tuned BERT
classifiers with preprocessing described in
Subsec. 5.2. In Tables 1, 2, and 3, we re-
fer to their averaged prediction as to that of a
“fine-tuned” model ( )

• 5 multi-layered perceptrons trained with dif-
ferent combinations of BERT embeddings for
A, B, Pronoun (see Subsec. 5.1) and hand-
crafted features (see Subsec. 5.3), all together
referred to as “frozen” in Tables 1, 2, and 3
( ). Using MLPs with pre-trained BERT
embeddings is motivated by (Tenney et al.,
2019). Two MLPs- separate for Cased and
Uncased BERT models - both taking 9216-
d input and outputting 112-d vectors. Two
Siamese networks were trained on top of dis-
tances between Pronoun and A-embeddings,
Pronoun and B-embeddings as inputs. One
more MLP took only 69-dimensional fea-
ture vectors as an input. Finally, a single
dense layer mapped outputs from the men-
tioned 5 models into 3 classes corresponding
to named entities A, B or “Neither”.

• Blending ( ) involves taking predicted
probabilities for A, B and “Neither” with
weight 0.65 for the “fine-tuned” model and
summing the result with 0.35 times corre-
sponding probabilities output by the “frozen”
model.

In the next Section, we perform the analysis
identical to the one done in (Webster et al., 2018)
to measure the quality of pronoun resolution and
the severity of gender bias in the task in hand.

GAP test Kaggle test
fine-tuned 0.29 0.192
frozen 0.299 0.226
blend 0.257 0.185

Table 1: Logarithmic loss reported for the GAP test set,
and Kaggle test (Stage 2) data for the model with fine-
tuned BERT classifier ( ), MLPs with pre-trained
BERT embeddings and hand-crafted features ( ) and
a blend of the previous two ( ). There are 66 correc-
tions done for GAP test labels as described in Subsec.
5.5.

5.5 Correcting mislabeled instances
During the competition, 158 label corrections
were proposed for the GAP dataset16 - when Pro-
noun is said to mention A but actually mentions
B and vice versa. For the GAP test set, this re-
sulted in 66 pronoun coreferences being corrected.
It’s important to mention that the observed misla-
beling is a bit biased against female pronouns (39
mislabeled feminine pronouns versus 27 misla-
beled masculine ones), and it turned out that most
of the gender bias for F1 score and accuracy comes
from these mislabeled examples.

6 Results

In Table 1, we report logarithmic loss that we
got on GAP test (“gap-test.tsv”), and Kaggle test
(Stage 2) datasets. Kaggle competition results
can also be seen on the final competition leader-
board.17 We report GAP test results as well to
further compare with the results reported in the
GAP paper: measured are logarithmic loss, F1
score and accuracy for masculine and feminine
pronouns (Table 2). Logarithmic loss and accu-
racy are computed for a 3-class classification prob-
lem (A, B, or Neither) while F1 is computed for
a 2-class problem (A or B) to compare with re-
sults reported by the Google AI Language team in
(Webster et al., 2018).

We also incorporated 66 label corrections as de-
scribed in 5.5 and, interestingly enough, this lead
to a conclusion that with corrected labels, models
are less susceptible to gender bias. Table 3 reports
the same metric in case of corrected labeling, and
we see that in this case the proposed models are

16https://www.kaggle.com/c/
gendered-pronoun-resolution/discussion/
81331

17https://www.kaggle.com/c/
gendered-pronoun-resolution/leaderboard
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Logarithmic loss Accuracy F1 score
M F O B M F O B M F O B

fine-tuned 0.294 0.398 0.346 0.738 0.908 0.884 0.896 0.974 0.927 0.9 0.914 0.971
frozen 0.308 0.368 0.338 0.837 0.883 0.866 0.874 0.981 0.904 0.882 0.893 0.976
blend 0.259 0.338 0.299 0.766 0.907 0.883 0.895 0.974 0.923 0.898 0.911 0.973

Table 2: Performance of the proposed two models and their blending on the GAP test set, split by Masculine,
Feminine (Bias shows F/M in case of F1 and accuracy, and M/F in case of logarithmic loss), and Overall.

almost gender-unbiased.
These results imply that:

• Overall, in terms of F1 score, the proposed
solution compares very favorably with the re-
sults reported in the GAP paper, achieving as
high as 0.911 overall F1 score, compared to
0.729 for “Parallelism + URL” heuristic from
(Webster et al., 2018);

• Blending model predictions improves loga-
rithmic loss pretty well but does not impact
F1 score and accuracy that much. It can be
explained: logarithmic loss is high for con-
fident and at the same time incorrect predic-
tions. Blending averages predicted probabil-
ities so that they end up less extreme (not so
close to 0 or 1);

• With original labeling, all models are some-
what susceptible to gender bias, especially in
terms of logarithmic loss. However, in terms
of F1 score, gender bias is still less than for
e2e-coref and “Parallelism + URL” heuristic
reported in (Webster et al., 2018);

• Fixing some incorrect labels almost elimi-
nates gender bias, when we talk about F1
score and accuracy of pronoun resolution.

7 Conclusions and further work

We conclude that we managed to propose a BERT-
based approach to pronoun resolution which re-
sults in considerably better quality (as measured
in terms of F1 score and accuracy) than in case of
pronoun resolution done with heuristics described
in the GAP paper. Moreover, the proposed solu-
tion is almost gender-unbiased - pronoun resolu-
tion is done almost equally well for masculine and
feminine pronouns.

Further we plan to investigate which semantic
and syntactic information is carried by different
BERT layers and how it refers to coreference reso-
lution. We are also going to benchmark our system
on OntoNotes, Winograd, and DPR datasets.
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Abstract
We present our 7th place solution1 to the Gen-
dered Pronoun Resolution challenge, which
uses BERT without fine-tuning and a novel
augmentation strategy designed for contextual
embedding token-level tasks. Our method
anonymizes the referent by replacing candi-
date names with a set of common place-
holder names. Besides the usual benefits of
effectively increasing training data size, this
approach diversifies idiosyncratic information
embedded in names. Using same set of com-
mon first names can also help the model rec-
ognize names better, shorten token length, and
remove gender and regional biases associated
with names. The system scored 0.1947 log
loss in stage 2, where the augmentation con-
tributed to an improvements of 0.04. Post-
competition analysis shows that, when using
different embedding layers, the system scores
0.1799 which would be third place.

1 Introduction

Gender bias has been an important topic in nat-
ural language processing in recent years (Boluk-
basi et al., 2016; Reddy and Knight, 2016; Chi-
appa and Gillam, 2018; Madaan et al., 2018).
GAP (Gendered Ambiguous Pronouns) dataset is
a gender balanced labeled corpus of 8,908 am-
biguous pronoun-name pairs sampled from En-
glish Wikipedia, built and released by Webster
et al. (2018) to challenge the community for gen-
der unbiased pronoun resolution systems.

In the Gendered Pronoun Resolution challenge
which is based on GAP dataset, we designed a
unique augmentation strategy for token-level con-
textual embedding models and applied it to fea-
ture based BERT (Devlin et al., 2019) approach
for a 7th place finish. BERT is a large bidirec-
tional transformer trained with masked language

1The code is available at
https://github.com/boliu61/gendered-pronoun-resolution

model, which is fine-tuned to state-of-the-art re-
sults on a variety of NLP benchmark tasks. Four
version of BERT model weights were released in
October 2018, following a family of NLP transfer
learning models in the same year, ELMo (Peters
et al., 2018), ULMFit (Howard and Ruder, 2018)
and OpenAI GPT (Radford et al., 2018).

Although augmentation has been shown to be
very effective in deep learning (Xie et al., 2019),
most NLP augmentation methods are on document
or sentence level, such as synonym replacement
(Zhang et al., 2015), data noising (Xie et al., 2017)
and back-translation (Yu et al., 2018). For token
level tasks like pronoun resolution, only the name
and pronoun embeddings are in the model input.
Even though altering whole document also affect
these embeddings, direct change to the names has
much bigger impact to the model.

The main idea of our augmentation is to re-
place each name in the name-pronoun pair by a
set of common placeholder names, in order to
(1) diversify the idiosyncratic information embed-
ded in individual names and leave only the con-
textual information and (2) remove any gender
or region related bias in names. In other words,
to anonymize the names and make BERT extract
name-independent features purely about context.
With the same set of common first names from the
training corpus as the placeholders, the model can
recognize candidate names more easily and em-
bed contextual information more compactly into
single tokens. This technique could also be used
in other token level tasks to anonymize people or
entity names.

2 Model

Our system is an ensemble of two neural network
models, the “End2end” model and the “Pure Bert”
model.
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End2end model: This model uses the scor-
ing architecture proposed in Lee et al. (2017),
but with BERT embeddings. Since candidate
names A and B are already given in this task,
the model doesn’t have mention scores, only an-
tecedent scores, which is a concatenation of BERT
embeddings of the name (A or B); BERT embed-
dings of the pronoun; their element-wise similar-
ity (between A/B and P); and non-BERT features
such as distance between the name and the pro-
noun, whether the name is in the URL and lin-
guistic features (syntactic distances and parts of
sentence etc).

Pure BERT model: The input of this model is
only the concatenated BERT embeddings of name
A, name B and the pronoun, which are fed into
two fully connected hidden layers of dimensions
512 and 32 before the softmax output layer.

2.1 Augmentation

Our augmentation strategy works this way: for
each sample, replace all the occurrences of names
A and B by 4 sets of placeholder names during
both training and inference unless certain condi-
tions are met. In training, it will make the epoch
size 5 times as big. In inference, the model will
make 5 predictions for each sample which are to
be ensembled—this is also known as TTA (test
time augmentation).

The 4 sets of placeholder names are

F: Alice, Kate, M: John, Michael

F: Elizabeth, Mary, M: James, Henry

F: Kate, Elizabeth, M: Michael, James

F: Mary, Alice, M: Henry, John

The names were chosen from most common
names in stage 1 data. For each sample, use
the male pair if the pronoun is masculine (“he”,
“him”, or “his”) and female pair otherwise.

We have experimented with fewer or more
sets of placeholder names, and alternative name
choices which are more “modern” (common
names in GAP are mostly old fashioned, as many
articles are about historical figures), but none
worked better than the original set of names we
initially chose.

The conditions for not applying augmentation
are:

1. If the placeholder name already appear in
original document. e.g. in the following doc-
ument, do not apply the augmentation sets
that have “Alice” as a placeholder name,

Alice went to live with Nick’s sister
Kathy, who desperately tried to ...

2. If A or B is full name (first and last name),
but the first name or last name appear alone
elsewhere in the document. e.g. If we re-
place “Candace Parker” (name B) by “Kate”
in the following sentence, the model would
not known “Kate” and “Parker” are the same
person

... the Shock’s Plenette Pierson
made a hard box-out on Candace
Parker , causing both players to
become entangled and fall over. As
Parker tried to stand up, ...

3. If the name has more than two words, such as
“Elizabeth Frances Zane” or “Jose de Vene-
cia Jr”, We don’t replace it because it would
be difficult to implement rule 2.

4. If one of name A or B is a substring of the
other, e.g. name A is “Erin Fray” and name
B is “Erin”. These are likely tagging errors.

In stage 1 data, for each set of placeholder
names there are 8%, 2%, 1% and 1% data that
met these conditions respectively and 88% was
augmented. Note that the first 8% are different for
each set of placeholder names—only the 4% cor-
responding to conditions 2-4 wasn’t augmented at
all.

3 Experiments

We used the official GAP dataset to build the sys-
tem. There are 2000 data in both test and devel-
opment sets and 454 in validation set. We used
all of test and development plus 400 random rows
in validation set (4400 in total) to train the system
and left 54 as a sanity check to test the inference
pipeline. The gender is nearly equally distributed
in the training data with 2195 male and 2205 fe-
male examples.

There are 12359 samples in stage 2 test data, but
only 760 were revealed to have been labeled and
used for scoring. Effectively, there are 760 stage 2
test data—all the others were presumably added to
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prevent cheating. The gender distribution is again
almost equal with 383 female and 377 male exam-
ples.

The meta information for both End2end and
Pure Bert model is shown in Table 1. For each
model, we trained two versions, one based on
BERT Large Uncased, the other based on BERT
Large Cased. For the competition, we used layer
-4 (fourth to last hidden layer) embeddings for
the End2end model and a concatenation of lay-
ers -3 and -4 for the Pure BERT model. As will
be shown in the results section, we re-trained the
models after the competition with layers -5 and -6
and achieved better results.

Pre-processing: As reported in the competition
discussion forum, there are some clear label mis-
takes in GAP dataset. We identified 159 misla-
bels (74 development, 68 test, 17 validation) to the
best of our ability by going through all the exam-
ples with a log loss of 1 or larger. We trained the
system using corrected labels but report all results
evaluated with original labels.

Post-processing: The problem with using
clean labels to train and dirty labels to evaluate
is that, loss will be huge for very confident
predictions if the label is wrong (i.e. when the
predicted probability for the wrong-label class is
very small). We solved this problem by clipping
predicted probabilities smaller than a threshold
0.005, which was tuned with cross validation. The
idea is similar to label smoothing (Szegedy et al.,
2016) and confidence penalty (Pereyra et al.,
2017)

All the training was done in Google Colab with
a single GPU. We used 5-fold cross validation for
stage 1 results, and 5-fold average for stage 2 test
results. End2end model was trained 5 times us-
ing different seeds with each seed taking about 30
minutes; Pure BERT model was trained only once
which took about 50 minutes.

Each team is allowed two submissions for this
shared task. Above described is our submission
A. Submission B is the same except that (1) it
was trained on GAP test and validation sets only
(2454 training samples instead of 4400), and (2)
it didn’t use the linguistic features. Submission B
has worse results than A in both stage 1 and stage
2 as expected.

4 Results and discussion

4.1 Augmentation results
In Table 2, we show the contribution of augmen-
tation to the End2end model. In both uncased
and cased versions and their ensemble, stage 1 log
loss improved by about 0.01 when augmentation
is added in training but not inference. And an-
other massive 0.05 and 0.04 improvement for the
uncased and cased version respectively is achieved
when TTA is used. For the ensemble, augmenta-
tion improved the score from 0.3470 to 0.3052.

The reason that this augmentation method
worked so well can be explained in number of
ways.

1. BERT contextual embeddings of a name con-
tain information of both the context and the name
itself. Only the contextual information is relevant
for coreference resolution—whether the name is
Alice or Betty or Claire does not matter at all.
By replacing all names by the same set of place-
holders, only the useful contextual information re-
mains for the model to learn.

2. By using the same set of names in both
training and inference, the noise from individual
names are further reduced, i.e., the model will
likely know they are names when it sees the same
placeholder names during inference. This is even
more so for foreign (non Western) names, as there
are some articles in GAP about foreign figures.
Without augmentation, it’s less likely that BERT
model trained on English corpus can recognize,
for example, a lowered cased (Romanized) Chi-
nese name as a name.

3. For gender-neutral names (including certain
foreign names) and males with a typically femi-
nine name or females with a typically masculine
name, the model can much easily resolve the gen-
der after augmentation.

4. When a long name or uncommon name is
tokenized into multiple word-piece tokens, we use
the average embeddings of all these tokens. Since
all the placeholder names are common first names
thus tokenized into single token, the syntactic in-
formation may be embedded better into a single
vector than the average of a few.

5. TTA will generate four additional predictions
for each sample. Ensemble of them and the un-
augmented one gives an extra boost.

Reason #1 is related to training only, #5 related
to inference only, #2-4 to both training and infer-
ence. An indirect proof of #2-4 is: in TTA, the
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Model End2end Pure BERT
ensemble weights 0.9 0.1
BERT embeddings layer -4 concatenation of layer -3 and -4
architecture Lee et al. (2017) concatenation of A, B, Pronoun embeddings and FCN
non-BERT features yes no
model size 5 MB 36 MB
seed average average of 5 seeds only 1 seed
training time per seed 30 min 50 min

Table 1: Meta information of two models.

model uncased cased ensemble
no augmentation 0.3878 0.3771 0.3470
augmentation only in training 0.3796 0.3671 0.3355
augmentation in both training and inference 0.3308 0.3308 0.3052

Table 2: Stage 1 results improvements in End2end model due to augmentation

order of the 4 augmentations’ scores varies de-
pending on the model (not reported due to space
limit), but they all always outperform the one with-
out augmentation. In other words, given a trained
model, the prediction on any of four augmented
version is better than prediction on original data.

4.2 Overall results

In Table 3, we report the log loss scores of single
models and the ensemble. For stage 1, we use the
5-fold cross validation scores, trained with cleaned
labels and evaluated using original labels. We also
tuned the ensemble weights based on scores with
cleaned labels (not shown).

During the competition, we experimented with
BERT embedding layers -1 to -4 by trying dif-
ferent combinations of layers and their sum and
concatenation and settled on layer -4 for End2end
model and concatenation of -3 and -4 for Pure
BERT model. After the competition ended, we re-
alized lower layers work better on this task. So we
re-trained the models using layer -5 for End2end
model and layer -5 and -6 for Pure BERT model.

The results are significantly better across the
board, as shown in Table 4. In fact, the stage 2
score 0.1799 is good enough for third place on the
leaderboard. The ensemble weights were tuned
on stage 1 data using clean labels as before.

After the competition, we also calculated the
gender breakdown for all single and ensemble
models based on the gender of the pronoun, re-
ported also in Table 3 and 4. During the competi-

tion, we trained the system and tuned the ensem-
ble weights solely based on overall score. As a re-
sult, it exhibits some degree of gender bias in both
stages, similar to Webster et al. (2018) and the sys-
tems cited therein. The final ensemble’s bias is
0.93 in stage 1 and 0.96 in stage 2, with bias rep-
resented by the ratio of masculine and feminine
scores.

Interestingly, the 4 single models demonstrate
different level of bias, ranging from 0.91 to 1.03
in stage 1, and from 0.85 to 1.09 in stage 2. The
larger variance is due to the much smaller stage 2
test size. Had the evaluation metrics been different
than the overall log loss, we could have addressed
it by assigning different weights to each single
model. For instance, if systems were judged
by the worse of feminine and masculine scores
(to penalize heavily biased systems), we would
have tuned the weights differently, sacrificing
some overall score for a more balanced perfor-
mance. For example, with ensemble weights
[0.18, 0.42, 0.12, 0.28] and clipping threshold of
0.006, the overall score and gender bias of our
post-competition system would be 0.2855 and
0.97 in stage 1 instead of the original version with
better overall (0.2846) and a larger bias (0.93), as
shown in the last row of Table 4. On stage 2 data,
the bias became slightly worse to 0.96 from 0.97.
But since the stage 1 dataset is about six times as
large as stage 2, the latter version is still the more
gender unbiased system considering both sets.

During results checking, we noticed a clear
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discrepancy between the document styles of two
stages. There are many more shorter documents
in stage 2, as shown in the top plot of Figure 1. In
many of the shorter documents, the pronoun refers
to name A, which is the page entity. The aver-
age predicted probabilities of the three classes A,
B and Neither are 0.61, 0.35 and 0.05, compared
with 0.44, 0.46 and 0.10 in stage 1.

However, as revealed by the stage 2 solution,
94% of the stage 2 data are unlabeled, which was
probably generated differently (e.g. most unla-
beled data have length smaller than 455). The
length distribution of the 760 “real” labeled data
used for scoring is very close to stage 1, as shown
in the bottom plot of Figure 1. So is the predicted
probability distribution (0.45, 0.46, 0.09). Then
what could explain the 0.1 log loss difference be-
tween the two stage 2? We boostrapped 760 sam-
ples from stage 1 predictions for 10,000 times, the
simulated stage 2 score is smaller than actual stage
2 score for only once (0.01%). So the discrepancy
is not solely due to variance from smaller sample
size in stage 2.

Our best educated guess is cleaner labels: our
stage 1 score evaluated using clean labels is
0.1993, which is much closer to stage 2 score.
The organizer likely spent more effort quality-
checking the smaller stage 2 labels. Obviously,
different pre-processing criteria during data prepa-
ration could also have made stage 2 data inherently
easier to resolve.

5 Conclusion

We presented a simple yet effective augmenta-
tion strategy that helped us finishing 7th place
in the Gendered Pronoun Resolution challenge
without fine-tuning. We reasoned how this tech-
nique helped the model achieving higher scores
by anonymizing idiosyncrasy in individual names
while also handling gender and other biases to
some degree. We demonstrated how the sys-
tem could be altered slightly to (1) get a better
score good for 3rd place by only changing BERT
embedding layers or (2) become more gender-
unbiased by using different ensemble weights.

Even though our solution only used feature-
based approach, we expect this augmentation
method to work as well with fine-tune BERT ap-
proach, which could potentially further improve
the score.

Figure 1: Comparisons of document length distribu-
tions of two stages. Top: all 12359 documents in stage
2. Bottom: the 760 “real” documents used for scoring
in stage 2.
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Abstract

The resolution of ambiguous pronouns is a
longstanding challenge in Natural Language
Understanding. Recent studies have suggested
gender bias among state-of-the-art coreference
resolution systems. As an example, Google
AI Language team recently released a gender-
balanced dataset and showed that performance
of these coreference resolvers is significantly
limited on the dataset. In this paper, we pro-
pose an extractive question answering (QA)
formulation of pronoun resolution task that
overcomes this limitation and shows much
lower gender bias (0.99) on their dataset. This
system uses fine-tuned representations from
the pre-trained BERT model and outperforms
the existing baseline by a significant margin
(22.2% absolute improvement in F1 score)
without using any hand-engineered features.
This QA framework is equally performant
even without the knowledge of the candidate
antecedents of the pronoun. An ensemble of
QA and BERT-based multiple choice and se-
quence classification models further improves
the F1 (23.3% absolute improvement upon the
baseline). This ensemble model was submitted
to the shared task for the 1st ACL workshop on
Gender Bias for Natural Language Processing.
It ranked 9th on the final official leaderboard.

1 Introduction

Coreference resolution is a task that aims to iden-
tify spans in a text that refer to the same en-
tity. This is central to Natural Language Un-
derstanding. We focus on a specific aspect of
the coreference resolution that caters to resolving
ambiguous pronouns in English. Recent studies
have shown that state-of-the-art coreference reso-
lution systems exhibit gender bias (Webster et al.,
2018) (Rudinger et al., 2018) (Zhao et al., 2018).
(Webster et al., 2018) released a dataset that con-
tained an equal number of male and female ex-

amples to encourage gender-fair modeling on the
pronoun resolution task. A shared task for this
dataset was then published on Kaggle1. The task
involves classifying a specific ambiguous pronoun
in a given Wikipedia passage as coreferring with
one of the three classes: first candidate antecedent
(hereby referred to as A), second candidate an-
tecedent (hereby referred to as B) or neither of
them (hereby referred to as N). The authors show
that even the best of the baselines such as (Clark
and Manning, 2015), (Wiseman et al., 2016), (Lee
et al., 2017) achieve an F1 score of just 66.9% on
this dataset. The limited number of annotated la-
bels available in this unbiased setting makes the
modeling a challenging task. To that end, we
propose an extractive question answering formu-
lation of the task that leverages BERT (Devlin
et al., 2018) pre-trained representations and sig-
nificantly improves (22.2% absolute improvement
in F1 score) upon the best baseline (Webster et al.,
2018). In this formulation, the task is similar to
a SQUAD (Rajpurkar et al., 2016) style question
answering (QA) problem where the question is the
context window (neighboring words) surrounding
the pronoun to be resolved and the answer is the
antecedent of the pronoun. The answer is con-
tained in the provided Wikipedia passage. The in-
tuition behind using the pronoun’s context window
as a question is that it allows the model to rightly
identify the pronoun to be resolved as there can be
multiple tokens that match the given pronoun in a
passage. There has been previous work that cast
the coreference resolution as a Question Answer-
ing problem (Kumar et al., 2016). But the ques-
tions used in their approach take the form “Who
does “she” refer to?”. This would necessitate in-
cluding additional information such as an indica-
tor vector to identify the exact pronoun to be re-

1https://www.kaggle.com/c/
gendered-pronoun-resolution
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Number of examples
Stage 1 Stage 2

T A B N T A B N
5-Fold Dev (80-20 split) 2454 1105 1060 289 4454 1979 1985 490

Test 2000 874 925 201 760 340 346 74

Table 1: Stage 1 and Stage 2 Dataset statistics.

solved when there are multiple of them in a given
passage. Furthermore, their approach doesn’t im-
pose that the answer should be contained within
the passage or the question text. (McCann
et al., 2018) model the pronoun resolution task of
the Winograd schema challenge (Levesque et al.,
2012) as a question answering problem by in-
cluding the candidate antecedents as part of the
question. An unique feature of the question an-
swering framework (referred to as CorefQA) we
propose is that it doesn’t require the knowledge
of the candidate antecedents in order to produce
an answer for the pronoun resolution task. The
model “learns”, from training on the QA version
of the shared task dataset, the specific task of
extracting the appropriate antecedent of the pro-
noun given just the Wikipedia passage and the
pronoun’s context window. We also demonstrate
other modeling variants for the shared task that
use the knowledge of the candidate antecedents A
and B. The first variant (CorefQAExt) is an ex-
tension of the CorefQA model that uses its pre-
dictions to produce probabilities over A, B and
N. The second variant (CorefMulti) takes the for-
mulation of a SWAG (Zellers et al., 2018) style
multiple choice classification and the final variant
(CorefSeq) takes the standard sequence classifica-
tion formulation. An ensemble of CorefQAExt,
CorefMulti and CorefSeq models shows further
performance gains (23.3% absolute improvement
in F1 score).

2 Data

The dataset used for this shared task is the GAP
dataset (Webster et al., 2018) where each row con-
tains a Wikipedia text snippet, the corresponding
page’s URL, the pronoun to be resolved, the two
candidate antecedents (A and B) of the pronoun,
the text offsets corresponding to A, B, pronoun
and boolean flags indicating the pronoun’s coref-
erence with A and B. The Kaggle competition for
this shared task was conducted in two stages. Ta-
ble 1 shows the aggregate statistics for each stage.

The 5-Fold Dev row represents the number of ex-
amples used for 5-fold stratified cross validation
done based on the gender of the pronoun. This
could lead to different distributions of A and B
during the training of each fold. We chose to do
so because we wanted to retain the perfect balance
between male and female representations during
training and thereby minimize the bias from the
data. The columns T, A, B and N refer to the
total number of examples, the number of exam-
ples where the pronoun’s antecedent is A, B and
neither respectively. We should note that for the
question answering model, we exclude all the nei-
ther examples from the training data as we dont
have an exact answer. While this seems destruc-
tive, the model doesn’t need, by design, an explicit
supervision on the ”neither” examples to predict
an antecedent that’s neither A nor B. The male
and female pronoun examples are equally repre-
sented (50-50 split) in the development, valida-
tion and test datasets - with the exception of stage
2 test dataset. The stage 2 test dataset has 377
male and 383 female examples. We use lower-
cased BERT word-piece tokenizer for preprocess-
ing. This comes with a pre-built vocabulary of size
30522.

3 System Description

The final model used for submission is an ensem-
ble of the question answering (CorefQAExt), mul-
tiple choice (CorefMulti) and sequence classifica-
tion (CorefSeq) models. We describe each of these
models in the following sections. We chose the
pytorch-pretrained-bert2 library to implement all
models. The source code is available at https:
//github.com/rakeshchada/corefqa

2https://github.com/huggingface/
pytorch-pretrained-BERT
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[SEP]
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Figure 1: Architecture of CorefQA, CorefQAExt models

3.1 Question Answering System (CorefQA,
CorefQAExt)

3.1.1 Inputs and Architecture

The architecture of this system is shown in Fig-
ure 1. The input I to the system can be repre-
sented as I = “[CLS] Q [SEP] W [SEP]” where
Q represents the question text, W represents the
Wikipedia passage text and [CLS], [SEP] are the
delimiter tokens used in the BERT model. The
question text Q is the pronoun context window of
up to 5 words. The context window is the pronoun
itself and its two neighboring words to the left and
right. So, if W is “They say John and his wife
Carol had a son”, then Q would be “John and his
wife Carol” assuming “his” is the pronoun to be
resolved. In the case where there are less than two
words on a given side, we just use the words avail-
able within the window - so these cases would lead
to the window with less than 5 words. The text at
this point is still un-tokenized so the “words” are
just space separated tokens in a given text. The an-

swer text is either A’s or B’s name (“neither” cases
have been initially filtered). The rest of the ar-
chitecture until the Span-wise Max Pooling layer
follows the standard SQUAD formulation in (De-
vlin et al., 2018). It’s worth noting that the archi-
tecture until this point (before the Span-wise Max
Pooling layer) doesn’t use candidate antecedents’
A and B text or offset information. The output at
this intermediate layer (Dense Layer) contains two
sets of logits: start and end logits for each token.
These can then be used to extract the maximum
scoring span as an answer as demonstrated in (De-
vlin et al., 2018). We refer to the architecture until
the Span-wise Max Pooling Layer as CorefQA.

3.1.2 Probability Estimation

The shared task requires the output to be proba-
bilities over the given A, B and N spans. So, we
implement a mechanism that combines Span-wise
Max Pooling and Logistic Regression to extract
probabilities from start and end logits obtained in
the previous step. Since we have access to offsets
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of A and B, we simply extract span logits corre-
sponding to those offsets. Span logits are calcu-
lated by taking the maximum value of each of the
individual token logits in a span. This gives us
four values that represent maximum logits for the
start and end of A and B spans. We also calcu-
late maximum start and end logits over the entire
sequence. These six logits are then fed as input
features to a multi-class logistic regression. The
output of this classifier then gives us the desired
probabilities PA,PB&PN . We refer to this end-
to-end architecture (from input layer to the Multi-
class Logistic Regression layer) as CorefQAExt.

3.1.3 Training & Hyperparameters

We use Adam optimizer with learning rate of 1e-5,
β1=0.9, β2=0.999, L2 weight decay of 0.01, learn-
ing rate warmup over the first 10% of total train-
ing steps, and linear decay of the learning rate.
The maximum sequence length is set to 300 and
batch size of 12 is used during training. We use
BERT Large Uncased pre-trained model for ini-
tializing the weights of BERT layers. This model
has 24 layers with each producing a 1024 dimen-
sional hidden representation. The whole system
is trained in an end-to-end fashion. We fine-tune
the last 12 BERT Encoder layers (layer 13 to layer
24) and freeze layers 1 to 12 - meaning the param-
eters of those layers aren’t updated during train-
ing. This leads to total trainable parameters in the
order of 150 million. We didn’t use any dropout.
The hyperparameter C for the logistic regression
is set to 0.1. This model was trained for 2 epochs
on a NVIDIA K80 GPU. The training with the
5-fold cross validation finished in about 30 min-
utes. The average of the predictions of each fold
on the test dataset is used as the final prediction.
We had experimented with different choices for
each of these hyperparameters - such as freezing or
unfreezing more layers, choosing different learn-
ing rates, different batch sizes - but these numbers
gave us the best results. Another hyperparameter
the model was sensitive to was the context window
size. Lower window sizes gave us better results
with 5 being the ideal size.

3.2 Multiple Choice classification
(CorefMulti)

Here, we formulate the task as a SWAG (Zellers
et al., 2018) style multiple choice problem among
A, B and N classes.

3.2.1 Inputs and Architecture

For each example, we construct four input se-
quences, which each contain the concatenation of
the the two sequences S1 and S2. S1 is a concate-
nation of the given Wikipedia passage with an ad-
ditional sentence of the form “P is ” where P is the
text of the pronoun in question. So, for a passage
that ends with the sentence “They say John and his
wife Carol had a son”, the sequence S1 would be
“They say John and his wife Carol had a son. his
is ” assuming “his” is the pronoun to be resolved.
The sequence S2 is one of A’s name, B’s name or
the word “neither” if the pronoun in the example
doesn’t co-refer with A and B. Once we represent
the inputs in this fashion, the rest of the architec-
ture follows the design of BERT based SWAG task
architecture discussed in (Devlin et al., 2018).

3.2.2 Training & Hyperparameters

We use a batch size of 4 for training, initialize
the BERT layers with the weights from the BERT
Large Uncased pre-trained model and maintain the
rest of the hyperparameters the same as the ones
used for CorefQAExt model. Layers 12 to 24 of
the BERT Encoder are fine-tuned and the rest of
the layers are frozen. We use 5-fold cross valida-
tion with test prediction averaging from each fold.
This model took about 100 minutes to run on Stage
1 data on a NVIDIA K80 GPU.

3.3 Sequence classification (CorefSeq)

This involves framing the problem as a standard
sequence classification task.

3.3.1 Inputs and Architecture

The input is the given Wikipedia passage without
any additional augmentation. The sequence fea-
tures are extracted by concatenating token embed-
dings corresponding to the A, B and the pronoun
spans. These span embeddings are calculated by
concatenating token embeddings of the start to-
ken, end token and the result of an element-wise
multiplication of start and end token embeddings.
The token embeddings are the output of the last
encoder layer of the (fine-tuned) BERT. These fea-
tures are then fed to a single hidden layer feed-
forward neural network with a ReLU activation.
This hidden layer has 512 hidden units. A soft-
max layer at the output then provides the desired
A, B and N probabilities.

129



Model
Stage 1 Stage 2

M* F* B* O* L* M* F* B* O* L*

CorefQA 88.8 87.8 0.99 88.3 N/A# 93.2 91.3 1.0 92.2 N/A#

CorefQAExt 91.1 87.1 0.95 89.1 0.38 93.7 94.6 1.0 94.2 0.22

CorefMulti 87.9 87.4 0.99 87.6 0.40 92.8 92.3 0.99 92.7 0.24

CorefSeq 88.7 86.4 0.97 87.6 0.38 90.9 88.9 0.98 89.9 0.29

Full Ensemble 90.9 89.5 0.98 90.2 0.32 94.1 94.0 1.0 94.0 0.20

QAMul Ensemble+ 91.1 88.4 0.97 89.7 0.35 93.9 94.3 1.0 94.1 0.19
* L = Log-Loss, O = Overall F1, M = Male F1, F = Female F1, B = Bias (F/M)
# N/A = Not Applicable
+ Post competition Stage 2 deadline

Table 2: Stage 1 and Stage 2 Test Results. Bold indicates best performance.

3.3.2 Training & Hyperparameters
A dropout of 0.1 is applied before the inputs are
fed from the BERT’s last encoder layer to the feed
forward neural network. The model is trained for
30 epochs with a batch size of 10. Layers 12 to
24 of the BERT Encoder are fine-tuned and the
rest of the layers are frozen. A learning rate of
1e-5 is used with a triangular learning rate sched-
uler (Smith, 2017) whose steps per cycle is set to
100 times the length of training data. We use 5-
fold cross validation with test prediction averag-
ing from each fold. This model took 105 minutes
to run on Stage 1 data on a NVIDIA K80 GPU.

4 Results and discussion

Table 2 shows the results of all models for Stage 1
and Stage 2. We calculate Log-Loss, Male F1, Fe-
male F1, Overall F1 score and Bias (Female F1
/ Male F1) as metrics on the test data sets. As
the results show, all individual models improve
upon the baseline model by a significant margin
with the CorefQAExt model showing the high-
est absolute improvement of 22.2%. It is inter-
esting to note that the CorefQA model3 still im-
proved upon the baseline by 21.4% despite not us-
ing the knowledge of candidate antecedents A and
B. Infact, it slightly outperforms, on the Overall
Stage 1 F1 score, both CorefMulti and CorefSeq
models that explicitly encode the knowledge of A
and B. A few input/output samples of the Core-
fQA model are shown in the Supplemental Section
A. It is worth noticing that this model (correctly)
selects, most of the time, the spans correspond-
ing to named entities as answers even though that

3Sample predictions shown in the Supplemental Material
Section A

constraint wasn’t explicitly encoded in its design.
The CorefQA model doesn’t produce probabili-
ties over A, B and N classes as that information
isn’t available to the model. Hence, we report
Log-loss as “N/A” in Table 2. The probabilities
from the CorefQAExt, CorefMulti and CorefSeq
are averaged to obtain the ensemble models prob-
abilities. This ensemble model, with an Overall F1
score of 90.2, improves upon the baseline by 23.3
percentage points. This model ranked ninth on
the final leaderboard of the Kaggle competition.
The CorefMulti model seemed most robust to bias
(0.99). The ensemble model had the best log loss
in stage 2 even though the CorefQAExt model had
the best Overall F1 score. This might be a reflec-
tion of the issues with probability calibration. An-
other explanation of this might be just the smaller
stage 2 data size as compared to stage 1. Finally,
although the CorefSeq model doesn’t individually
outperform other models, we get a better ensemble
performance by including it rather than by exclud-
ing it.

4.1 Freezing BERT weights

We tried freezing all BERT layer weights for some
of our initial experiments but hadn’t seen much
success - especially when we used the weights
from the last encoder layer of the BERT. The Stage
1 Overall F1 score for the CorefQAExt model
dropped down significantly to 63.6% in this set-
ting. This improved to 72.1% if we used layer 18
weights. We also tried concatenating the last four
encoder layer outputs of BERT. This resulted in an
slightly better Overall F1 score of 74.4% for Stage
1. So, the performance seemed to be sensitive to
the choice of the encoder layer outputs. However,
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from the preliminary experiments, there seemed
to be a big gap of about 15% on the Overall F1
when compared to the fine-tuned model. A more
principled & thorough analysis of this phenomena
makes an important future area of work.

4.2 Post Stage 2 deadline Results

After the competition had finished, we experi-
mented with a few model variations on the final
stage 2 test dataset that gave us interesting in-
sights. Firstly, we tried excluding each model
from the full ensemble. We noticed that we ob-
tained a better Log Loss of 0.195 when we ex-
cluded CorefSeq. This model is listed as QAMul
Ensemble in Table 2. We carried another experi-
ment where we trained the CorefQAExt using the
cased version of the BERT model. An ensembling
of the uncased version with this cased version de-
livered further performance gains (3% absolute F1
improvement upon uncased CorefQAExt). Then,
we tried ensembling the cased and uncased ver-
sions of all the three individual models - Core-
fQAExt, CorefMulti and CorefSeq on stage 2 test
data. This resulted in an overall F1 score of 94.7%
, Male F1 of 94.8%, Female F1 of 94.6%, bias of
1.0 and a log loss of 0.197.

4.3 Failed Experiments

1. We tried fine-tuning the BERT model in
an unsupervised manner by training a lan-
guage model on the texts extracted from the
Wikipedia pages corresponding to the URLs
provided in the dataset. The idea behind this
one was to see if we can get better BERT
layer representations by tuning them to the
shared task’s dataset. However, this is a com-
putationally expensive step to run and we
didn’t see promising gains from initial runs.
We hypothesize that this may be due to the
fact that BERT representations were origi-
nally obtained by training on Wikipedia as
one of the sources. So, fine-tuning on the
task’s dataset which is also from Wikipedia
might not have added an extra signal.

2. For the CorefMulti model, we tried adding to
the token embedding vector, an additional en-
tity embedding vector that encodes the word-
piece token level info of whether it belongs
to one of A, B or P. We hypothesized this
should help the model focus its attention on
the relevant entities to the coreference task.

But we weren’t able to make a successful use
of these embeddings to improve the model
performance within the competition deadline.
However, this is a promising future direction.

3. For the CorefQAExt model, we appended the
title extracted from the provided wikipedia
page’s URL into the input token sequence to
evaluate if the page URL provides useful sig-
nal to the model. This made the performance
slightly worse.

5 Conclusion

We proposed an extractive question answering
(QA) formulation of the pronoun resolution task
that uses BERT fine-tuning and shows strong per-
formance on the gender-balanced dataset. We
have shown that this system can also effectively
extract the antecedent of the pronoun without
using the knowledge of candidate antecedents.
We demonstrated three other formulations of the
task that uses this knowledge. The ensemble
of all these models obtained further gains (Table
2). This work showed that the pre-trained BERT
representations provide a strong signal for the
coreference resolution task. Furthermore, thanks
to training on the gender-balanced dataset, this
modeling framework was able to generate un-
biased predictions despite using pre-trained rep-
resentations. An important future work would
be to analyze the gains obtained from BERT
representations in more detail and perhaps com-
pare it with alternate contextual token represen-
tations and fine-tuning mechanisms (Peters et al.,
2018) (Howard and Ruder, 2018). We also would
like to apply our techniques to the Winograd
schema challenge (Levesque et al., 2012), the Def-
inite Pronoun Resolution dataset (Rahman and Ng,
2012), the Winogender schema dataset (Rudinger
et al., 2018) and explore extensions to other lan-
guages perhaps using the CoNLL 2012 shared task
dataset (Pradhan et al., 2012).
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A Supplemental Material

This section lists a few example input/outputs of
the CorefQA model that predicts answers to the
gendered pronoun resolution task using just the
Context and the Question (without the knowledge
of the candidate antecedents A and B).
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Context: “Alice (19), Kathleen Mary (12),
Gertrude (10) and Mabel (7). In the 1901 cen-
sus Allen was living at Fox Lane in Leyland
with his 2nd wife Margaret (Whittle), daughter
of James Whittle, a coachman, & Ann Mills,
whom he had married in 1900. She was some
18 years his junior.”
Question: “1900. She was some”
Predicted Answer (Correct): “Margaret
(Whittle)”

InfoBox 1: CorefQA Prediction Sample 1

Context: “He then announced that CMU will
celebrate Pausch’s impact on the world by
building and naming after Pausch a raised
pedestrian bridge to connect CMU’s new
Computer Science building and the Center for
the Arts, symbolizing the way Pausch linked
those two disciplines. Brown University pro-
fessor Andries van Dam followed Pausch’s last
lecture with a tearful and impassioned speech
praising him for his courage and leadership,
calling him a role model.”
Question: “speech praising him for his”
Predicted Answer (Correct): “Pausch”

InfoBox 2: CorefQA Prediction Sample 2

Context: “Walter S. Sheffer (August 7, 1918 -
July 14, 2002) was an American photographer
and teacher, born in Youngsville, Pennsylva-
nia. He moved to Milwaukee, Wisconsin in
1945 to work at the studio of John Platz, Mil-
waukee’s main society photographer. When
Platz retired, Sheffer inherited his clientele and
was able to establish his own “look” and very
successful portrait studio by 1953.”
Question: “Sheffer inherited his clientele and”
Predicted Answer (Wrong): “Sheffer’

InfoBox 3: CorefQA Prediction Sample 3

Context: “I would never write a book about
the bad parts. I would mostly revel in the
fantastic parts, of which there were so many.”
In early 2007, reports surfaced concerning
Lindsay Lohan’s interest in buying the rights
to Nicks’ life story and developing a motion
picture in which she planned to play her.”
Question: “in which she planned to”
Predicted Answer (Wrong): “Lindsay Lo-
han’s interest in buying the rights to Nicks”

InfoBox 4: CorefQA Prediction Sample 4. The model
wrongly predicts a bigger span as an answer.

Context: “The president of SAG – future
United States President Ronald Reagan – also
known to the FBI as Confidential Informant
“T-10”, testified before the committee but
never publicly named names. Instead, accord-
ing to an FBI memorandum in 1947: “T-10
advised Special Agent (name deleted) that
he has been made a member of a committee
headed by Mayer, the purpose of which is
allegedly is to ‘purge’ the motion-picture
industry of Communist party members, which
committee was an outgrowth of the Thomas
committee hearings in Washington and subse-
quent meetings ....”
Question: “) that he has been”
Predicted Answer (Correct): “Special
Agent”

InfoBox 5: CorefQA Prediction Sample 5

Context: “Emily Thorn Vanderbilt (1852–
1946) was a member of the prominent United
States Vanderbilt family. The second daughter
of William Henry Vanderbilt (1821–1885) and
Maria Louisa Kissam (1821–1896), Emily
Thorn Vanderbilt was named after her aunt,
Emily Almira (Vanderbilt) Thorn, daughter of
dynasty founder Cornelius Vanderbilt.”
Question: ‘named after her aunt,”
Predicted Answer (Correct): “Emily Thorn
Vanderbilt”

InfoBox 6: CorefQA Prediction Sample 6
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Abstract

This paper presents a strong set of results
for resolving gendered ambiguous pronouns
on the Gendered Ambiguous Pronouns shared
task. The model presented here draws upon
the strengths of state-of-the-art language and
coreference resolution models, and introduces
a novel evidence-based deep learning architec-
ture. Injecting evidence from the coreference
models compliments the base architecture, and
analysis shows that the model is not hindered
by their weaknesses, specifically gender bias.
The modularity and simplicity of the architec-
ture make it very easy to extend for further im-
provement and applicable to other NLP prob-
lems. Evaluation on GAP test data results in a
state-of-the-art performance at 92.5% F1 (gen-
der bias of 0.97), edging closer to the human
performance of 96.6%. The end-to-end solu-
tion1 presented here placed 1st in the Kaggle
competition, winning by a significant lead.

1 Introduction

The Gendered Ambiguous Pronouns (GAP)
shared task aims to mitigate bias observed in
the performance of coreference resolution systems
when dealing with gendered pronouns. State-of-
the-art coreference models suffer from a system-
atic bias in resolving masculine entities more con-
fidently compared to feminine entities. To this
end, Webster et al. (2018) published a new GAP
dataset2 to encourage research into building mod-
els and systems that are robust to gender bias.

The arrival of modern language models like
ELMo (Peters et al., 2018), BERT (Devlin et al.,
2018), and GPT (Radford et al., 2018), have sig-
nificantly advanced the state-of-the art in a wide

1The code is available at https://github.com/
sattree/gap

2https://github.com/
google-research-datasets/gap-coreference

Language Model (BERT)

Input text (+ mention tags)

Pronoun Pooling

Softmax

Output Probabilities

Figure 1: ProBERT: Pronoun BERT. Token embed-
dings corresponding to the labeled pronoun in the input
text are extracted from the last layer of the language
model (BERT) and used for prediction.

range of NLP problems. All of them have a com-
mon theme in that a generative language model is
pretrained on a large amount of data, and is subse-
quently fine-tuned on the target task data. This ap-
proach of transfer learning has been very success-
ful. The current work applies the same philosophy
and uses BERT as the base model to encode low-
level features, followed by a task-specific module
that is trained from scratch (fine-tuning BERT in
the process).

GAP shared task presents the general GAP
problem in gold-two-mention (Webster et al.,
2018) format and formulates it as a classification
problem, where the model must resolve a given
pronoun to either of the two given candidates or
neither3. Neither instances are particularly dif-
ficult to resolve since they require understand-
ing a wider context and perhaps a knowledge of
the world. A parallel for this case can be drawn
from Question-Answering systems where identi-
fying unanswerable questions confidently remains
an active research area. Recent work shows that
it is possible to determine lack of evidence with

3There is a case in the GAP problem where the pronoun
in question may not be coreferent with either of the two men-
tioned candidates. Such instances will be referred to as Nei-
ther.
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M F Total
gap-development 1000 1000 2000
gap-validation 227 227 454
gap-test 1000 1000 2000
gpr-neither (section 2.1) 129 124 253
stage 2 test (kaggle)† 6499 5860 12359

Table 1: Corpus statistics. Masculine (M) and Femi-
nine (F) instances were identified based on the gender
of the pronoun mention labeled in the sample. †Only a
subset of these may have been used for final evaluation.

greater confidence by explicitly modeling for it.
Works of Zhong et al. (2019) and Kundu and Ng
(2018) demonstrate model designs with special-
ized deep learning architectures that encode evi-
dence in the input and show significant improve-
ment in identifying unanswerable questions. This
paper first introduces a baseline that is based on
a language model. Then, a novel architecture for
pooling evidence from off-the-shelf coreference
models is presented, that further boosts the con-
fidence of the base classifier and specifically helps
in resolving Neither instances. The main contribu-
tions of this paper are:

• Demonstrate the effectiveness of pretrained
language models and their transferability to
establish a strong baseline (ProBERT) for the
gold-two-mention shared task.

• Introduce an Evidence Pooling based neu-
ral architecture (GREP) to draw upon the
strengths of off-the-shelf coreference sys-
tems.

• Present the model results that placed 1st in
the GAP shared task Kaggle competition.

2 Data and Preprocessing

Table 1 shows the data distribution. All datasets
are approximately gender balanced, other than
stage 2 test set. The datasets, gap-development,
gap-validation, and gap-test, are part of the pub-
licly available GAP corpus. The preprocessing
and sanitization steps are described next.

2.1 Data Augmentation: Neither instances
In an attempt to upsample and boost the classifier’s
confidence in the underrepresented Neither cat-
egory (Table 2), about 250 instances were added
manually. These were created by obtaining clus-
ter predictions from the coreference model by Lee

et al. (2018) and choosing a pronoun and the two
candidate entities A and B from disjoint clusters.
However, in the interest of time, this strategy was
not fully pursued. Instead, the evidence pooling
module was used to resolve this problem, as will
become clear from the discussion in section 6.

2.2 Mention Tags

The raw text snippet is manipulated by enclosing
the labeled span of mentions with their associated
tags, i.e. <P> for pronoun, <A> for entity men-
tion A, and <B> for entity mention B. The pri-
mary reason for doing this is to provide the posi-
tional information of the labeled mentions implic-
itly within the text as opposed to explicitly through
additional features. A secondary motivation was
to test the language model’s sensitivity to noise in
input text structure, and its ability to adapt the pro-
noun representation to the positional tags. Figure
2 shows an example of this annotation scheme.

... NHLer Gary Suter and Olympic-medalist <A>
Bob Suter <A> are <B> Dehner <B>’s uncles.
<P> His <P> cousin is Minnesota Wild’s alter-
nate captain Ryan ...

Figure 2: Sample text-snippet after annotating the men-
tions with their corresponding tags. Bob Suter and
Dehner were tagged as entities A and B, and the men-
tion ’His’ following them was tagged as the pronoun.

2.3 Label Sanitization

Only samples where labels can be corrected un-
ambiguously based on snippet-context were cor-
rected4. The Wikipedia page-context and url-
context were not used. A visualization tool 5 was
also developed as part of this work to aid in this
activity. Table 2 lists the corpus statistics before
and after the sanitization process.

2.4 Coreference Signal

Transformer networks have been found to have
limited capability in modeling long-range depen-
dency (Dai et al., 2018; Khandelwal et al., 2018).
It has also been noticed in the past that the coref-
erence problem benefits significantly from global

4Corrected labels can be found at https:
//github.com/sattree/gap. This set was gen-
erated independently to avoid any unintended bias. More sets
of corrections can be found at https://www.kaggle.
com/c/gendered-pronoun-resolution/
discussion/81331#503094

5https://github.com/sattree/gap/
visualization
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Before sanitization After sanitization
A B NEITHER A B NEITHER Total

gap-development 874 925 201 857(-37)(+20) 919(-32)(+26) 224(-4)(+27) 2000
gap-validation 187 205 62 184(-10)(+7) 206(-7)(+8) 64(-4)(+6) 454
gap-test 918 855 227 894(-42)(+18) 860(-27)(32) 246(-8)(27) 2000

Table 2: GAP dataset label distribution before and after sanitization. (-x) indicates the number of samples that
were moved out of a given class and (+x) indicates the number of samples that were added post-sanitization.

knowledge (Lee et al., 2018). Being cognizant
of these two factors, it would be useful to inject
predictions from off-the-shelf coreference mod-
els as an auxiliary source of evidence (with input
text context being the primary evidence source).
The models chosen for this purpose are Paral-
lelism+URL (Webster et al., 2018), AllenNLP6,
NeuralCoref7, and e2e-coref (Lee et al., 2018).

3 Model Architecture

3.1 ProBERT: baseline model

ProBERT uses a fine-tuned BERT language model
(Devlin et al., 2018; Howard and Ruder, 2018)
with a classification head on top to serve as base-
line. The snippet-text is augmented with mention-
level tags (section 2.2) to capture the positional in-
formation of the pronoun, entity A, and entity B
mentions, before feeding the text as input to the
model. Position-wise token representation corre-
sponding to the pronoun is extracted from the last
layer of the language model. With GAP dataset
and WordPiece tokenization (Devlin et al., 2018),
all pronouns were found to be single token entities.

Let Ep ∈ RH (where H is the dimensionality
of the language model output) denote the pooled
pronoun vector. A linear transformation is applied
to it, followed by softmax, to obtain a probabil-
ity distribution over classes A, B, and NEITHER,
P = softmax(W TEp), where W ∈ RH×3 is the
linear projection weight matrix. All the parame-
ters are jointly trained to minimize cross entropy
loss. This simple architecture is depicted in Figure
1. Only H × 3 new parameters are introduced in
the architecture, allowing the model to use training
data more efficiently.

A natural question arises as to why this model
functions so well (see section 5.2) with just the
pronoun representation. This is discussed in sec-
tion 6.1.

6https://allennlp.org/models
7https://github.com/huggingface/

neuralcoref

3.2 GREP: Gendered Resolution by
Evidence Pooling

The architecture for GREP pairs the simple
ProBERT architecture with a novel Evidence
Pooling module. The Evidence Pooling (EP) mod-
ule leverages cluster predictions from pretrained
(or heuristics-based) coreference models to gather
evidence for the resolution task. The internals of
the coreference models are opaque to the system,
allowing for any evidence source such as a knowl-
edge base to be included as well. This design
choice limits us from propagating the gradients
through the coreference models, thereby losing in-
formation and leaving them noisy. The difficulty
of efficiently training deeper architectures paired
with the noisy cluster predictions (the best coref-
erence model has an F1 performance of only 64%
on gap-test) makes this a challenging design prob-
lem. The EP module uses self-attention mecha-
nism described in Vaswani et al. (2017) to com-
pute the compatibility of cluster mentions with re-
spect to the pronoun and the two candidates, entity
A, and entity B. The simple and easily extensible
architecture of this module is described next.

Coref Mention

Multihead Attention

Entity A

Attention
Pooling

Entity B

x M

Attention Pooling

x N

Evidence Vector

FFN

Pronoun

Multihead Attention

FFN

Multihead Attention
FFN

Attention Pooling

Attention
Pooling

Attention
Pooling

Figure 3: Evidence Pooling module architecture
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Suppose we have access to N off-the-shelf
coreference models and each predicts Tn mentions
that are coreferent with the given pronoun. Let
P, A, and B, refer to the mentioned entities la-
beled in the text-snippet as the pronoun and en-
tities A and B, respectively. Without loss of gen-
erality, let us consider the nth coreference model
and mth mention in the cluster predicted by it. Let
Em ∈ RTm×H , Ep ∈ RTp×H , Ea ∈ RTa×H and
Eb ∈ RTb×H , denote the position-wise token em-
beddings obtained from the last layer of the lan-
guage model for each of the mentions, where T
is the number of tokens in each mention. The first
step is to aggregate the information at the mention-
level. Self-attention is used to reduce the men-
tion tokens, an operation that will be referred to
as AttnPool (attention pooling) hereafter. A sin-
gle layer MLP is applied to compute position-wise
compatibility score, which is then normalized and
used to compute a weighted average over the men-
tion tokens for a pooled representation of the men-
tion as follows:

Mm = tanh(EmWm + bm) ∈ RTm×H (1)

am = softmax(Mm) ∈ RTm (2)

AttnPool(Em,Wm) = Am =

Tm∑

i

amEm ∈ RH

(3)
Similarly, a pooled representation of all men-

tions in the cluster predicted by the nth corefer-
ence model, and of P, A, and B entity mentions is
obtained. Let An ∈ RTn×H denote the joint rep-
resentation of cluster mentions, and Ap, Aa, and
Ab, the pooled representations of entity mentions.
Next, to compute the compatibility of the cluster
with respect to the given entities, we systemati-
cally transform the cluster representation by pass-
ing it through a transformer layer (Vaswani et al.,
2017). A sequence of such transformations is ap-
plied successively by feeding Ap, Aa, and Ab as
query vectors at each stage. Each such transformer
layer consists of a multi-head attention and feed-
forward (FFN) projection layers. The reader is re-
ferred to Vaswani et al. (2017) for further informa-
tion on MultiHead operation.

FFN(x) = tanh(Wxx+ bx) ∈ RTp×H (4)

Cp = FFN(MultiHead(Ap, Am, Am)) ∈ RTp×H

(5)

Ca = FFN(MultiHead(Aa, Cp, Cp)) ∈ RTa×H

(6)
Cb = FFN(MultiHead(Ab, Ca, Ca)) ∈ RTb×H

(7)
The transformed cluster representation Cb is

then reduced at the cluster-level and finally at the
coreference model level by attention pooling as:

Ac = AttnPool(Cb,Wc) ∈ RN×H (8)

Aco = AttnPool(Ac,Wco) ∈ RH (9)

Aco represents the evidence vector that en-
codes information obtained from all the corefer-
ence models. Finally, the evidence vector is con-
catenated with the pronoun representation, and is
once again fed through a linear layer and softmax
to obtain class probabilities.

C = [Ep;Aco] ∈ R2H (10)

P = softmax(W TC + b) ∈ R3 (11)

Language Model (BERT)

Input text (+ mention tags) Input text

Coref model

Evidence PoolingPronoun Pooling

Concat

Softmax

x N

Output Probabilities

Figure 4: GREP model architecture

The end-to-end GREP model architecture is il-
lustrated in Figure 4.

4 Training

All models were trained on 4 NVIDIA V100
GPUs (16GB memory each). The pytorch-
pretrained-bert8 library was used as the language
model module and saved model checkpoints were
used for initialization. Adam (Kingma and Ba,
2014) optimizer was used with β1 = 0.9, β2 =

8https://github.com/huggingface/
pytorch-pretrained-BERT/. BertTokenizer from
this package was used for tokenization of the text. BertAdam
was used as the optimizer. This package contains re-
sources for all variants of BERT, i.e. bert-base-uncased,
bert-base-cased, bert-large-uncased and bert-large-cased.
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F1
logloss

M F B O
Lee et al. (2017)† 67.7 60.0 0.89 64.0 -
Parallelism† 69.4 64.4 0.93 66.9 -
Parallelism+URL† 72.3 68.8 0.95 70.6 -
RefReader, LM & coref‡ 72.8 71.4 0.98 72.1 -
ProBERT (bert-base-uncased) 88.9 86.7 0.98 87.8 .382
GREP (bert-base-uncased) 90.4 87.6 0.97 89.0 .350
ProBERT (bert-large-uncased) 90.8 88.6 0.98 89.7 .376
GREP (bert-large-uncased) 94.0 91.1 0.97 92.5 .317
Human Performance (estimated) 97.2 96.1 0.99 96.6 -

Table 3: Single model performance on gap-test set by gender. M: masculine, F: feminine, B: (bias) ratio of feminine
to masculine performance, O: overall. Log loss is not available for systems that only produce labels. †As reported
by Webster et al. (2018). ‡As reported by Liu et al. (2019), their model does not use gold-two-mention labeled
span information for prediction.

0.999, ε = 1e−6, and a fixed learning rate of
4e−6. For regularization, a fixed dropout (Srivas-
tava et al., 2014) rate of 0.1 was used in all layers
and a weight decay of 0.01 was applied to all pa-
rameters. Batch sizes of 16 and 8 samples were
used for model variants with bert-base and bert-
large respectively. Models with bert-base took
about 6 mins to train while those with bert-large
took up to 20 mins.

For single model performance evaluation, the
models were trained on gap-train, early-stopping
was based off of gap-validation, and gap-test
was used for test evaluation. Kaggle compe-
tition results were obtained by training models
on all datasets, i.e. gap-train, gap-validation,
gap-test, and gpr-neither (a total of 4707 sam-
ples), in a 5-Fold Cross-Validation (Friedman
et al., 2001) fashion. Each model gets effectively
trained on 3768 samples, while 942 samples were
held-out for validation. Training would termi-
nate upon identifying an optimal early stopping
point based on performance on the validation set
with an evaluation frequency of 80 gradient steps.
Model’s access is limited to snippet-context, and
the Wikipedia page-context is not used. However,
page-url context may be used via coreference sig-
nal (Parallelism+URL).

5 Results

The performance of ProBERT and GREP models
is benchmarked against results previously estab-
lished by Webster et al. and Liu et al. (2019). It
is worth noting that Liu et al. do not use gold-two-
mention labeled spans for prediction and hence

their results may not be directly comparable. This
section first introduces an estimate of human per-
formance on this task. Then, results for single
model performance are presented, followed by en-
sembled model results that won the Kaggle com-
petition. F1 performance scores were obtained by
using the GAP scorer script9 provided by Webster
et al.. Wherever applicable, log loss (the official
Kaggle metric) performance is reported as well.

5.1 Human Performance

Errors found in crowd-sourced labels are consid-
ered a measure of human performance on this task,
and serve as a benchmark. The corrections are
only a best-effort attempt to fix some obvious mis-
takes found in the dataset labels, and were made
with certain considerations (section 2.3). This per-
formance measure is subject to variation based on
an evaluator’s opinion on ambiguous samples.

5.2 Single Model Performance

Single model performance on GAP test set is
shown in Table 3. The GREP model (with bert-
large-uncased as the language model) achieves a
powerful state-of-the-art performance on this task.
The model significantly benefits from evidence
pooling, gaining 6 points in terms of log loss and
2.8 points in F1 accuracy. Further analysis of the
source of these gains is discussed in section 6.

While it may seem that the significantly im-
proved performance of GREP has been achieved

9https://github.com/
google-research-datasets/
gap-coreference/blob/master/gap_scorer.
py
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Model Dataset
F1

logloss
M F B O

LM=bert-large-uncased, seed=42
OOF all 94.3 93.21 0.99 93.8 .261
OOF gap-test 94.2 93.7 0.99 93.9 .254

LM=bert-large-cased, seed=42
OOF all 94.3 93.9 0.99 94.1 .249
OOF gap-test 94.3 93.5 0.99 93.9 .242

Ensemble:
(LM=bert-large-uncased
+ seeds=42,59,75,46,91)

OOF all 94.8 94.2 0.99 94.5 .195
OOF gap-test 94.5 94.33 1.00 94.4 .193

Ensemble:
(LM=bert-large-cased
+ seeds=42,59,75,46,91)

OOF all 95.1 94.4 0.99 94.7 .187
OOF gap-test 94.9 94.1 0.99 94.4 .183

Ensemble:
(LM=bert-large-uncased,

bert-large-cased
+ seeds=42,59,75,46,91)

OOF all 95.3 94.7 0.99 95.0 .176
OOF gap-test 95.1 94.7 1.00 94.9 .175
Stage 2 test - - - - .137†

Table 4: GREP model performance results in the Kaggle competition. Out-of-fold (OOF) error is reported on all
data, i.e. gap-development, gap-validation, gap-test, and gpr-neither, as well as on gap-test explicitly for compari-
son against single model performance results. Since early stopping is based on OOF samples, OOF errors reported
here cannot be considered as an estimate of test error. Nevertheless, stage 2 test performance benchmarks the
model. †Due to a bug, the model did not fully leverage coref evidence, further gains are expected with the fixed
version.

at a small cost in terms of gender bias, an at-
tentive reader would realize that the model en-
joys improved performance for both genders. Per-
formance gains in masculine instances are much
higher compared to feminine instances, and the
slight degradation in bias ratio is a manifestation
of this. The superior performance of GREP pro-
vides evidence that for a given sample context, the
model architecture is able to successfully discrim-
inate between the coreference signals, and identify
their usefulness.

5.3 Kaggle Competition10

To encourage fairness in modeling, the competi-
tion was organized in two stages. This strategy
eliminates any attempts at leaderboard probing
and other such malpractices. Furthermore, mod-
els were frozen at the end of stage 1 and were only
allowed to operate in inference mode to generate
predictions for stage 2 test submission. Addition-
ally, no feedback was provided on stage 2 submis-
sions (in terms of performance score) until the end
of the competition.

GREP model is trained as described in section
4 and out-of-fold (oof) error on the held-out sam-
ples is reported. The experiments are repeated
with 5 different random seeds (42, 59, 75, 46,
91) for initialization. Finally, two sets of models
are trained with bert-large-uncased and bert-large-

10https://www.kaggle.com/c/
gendered-pronoun-resolution/

cased as the language models. The overall scheme
leads to 50 models being trained in total, and 50
sets of predictions being generated on stage 2 test
data. To generate predictions for submission, en-
sembling is done by simply taking the unbiased
weighted mean over the 50 individual prediction
sets.

Table 4 presents a granular view of the winning
model performance. This performance comes very
close to human performance and has almost no
gender bias. As the table shows, the ensemble
models achieve much larger gains in log loss as
compared to F1 accuracy. This is expected since
the committee of models makes more confident
decisions on “easier” examples. Two insights can
be drawn by comparing these results with the sin-
gle model performance presented in section 5.2:
(1) model accuracy benefits from more training
data, although the gains are marginal at best (92.5
vs 93.9) given that the model was trained on ap-
proximately twice the amount of data; (2) ensem-
bling has a similar effect as evidence pooling, i.e.,
models become more confident in their predic-
tions.

6 Discussion

Results shown in section 5 establish the supe-
rior performance of GREP compared to ProBERT.
This can be attributed to two sources: (1) GREP
corrects some errors made by ProBERT, reflected
in F1; and (2) where predictions are correct, GREP
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(a) A (b) B (c) NEITHER

Figure 5: Comparison of probabilities assigned by ProBERT and GREP. Figures show distribution of predicted
class probabilities assigned by the models to samples from that class.

GREP
ProBERT Incorrect Correct

A
Incorrect 44 38
Correct 28 784

B
Incorrect 37 39
Correct 9 775

NEITHER
Incorrect 45 44
Correct 11 146

Overall
Incorrect 126 121
Correct 48 1705

Table 5: Class-wise comparison of model accuracy for
ProBERT and GREP. Off-diagonal terms show cases
where GREP fixes errors made by ProBERT and vice-
versa.

is more confident in its predictions, reflected in
log loss. To investigate this, error analysis is per-
formed on gap-test.

Figure 5 shows a class-wise comparison of
probabilities generated by the two models. It can
be seen that GREP is more confident in its predic-
tions (all distributions appear translated closer to
1.0), and the improvement is overwhelmingly ev-
ident for the NEITHER class. To understand the
difference between the two models, confusion ma-
trix statistics are presented in table 5. The diago-
nal terms show the number of instances that the
two models agree on, and the off-diagonal terms
show where they disagree. The numbers reveal
that the evidence pooling module not only boosts
the model confidence but also helps in correctly
resolving Neither instances (44 vs 11), indicating
that the model is successfully able to build evi-
dence for or against the given candidates.

Appendix A details the behavior of GREP
through some examples. The first example is par-
ticularly interesting - while it is trivial for a human
to resolve this, a machine would require knowl-

edge of the world to understand “death” and its
implications.

6.1 Unreasonable Effectiveness of ProBERT
It would seem unreasonable that ProBERT is able
to perform so well with the noisy input text (due
to mention tags) and is able to make the classifica-
tion decision by looking at the pronoun alone. The
following two theories may explain this behavior:
(1) attention heads in the (BERT) transformer ar-
chitecture are able to specialize the pronoun repre-
sentation in the presence of the supervision signal;
(2) the special nature of dropout (present in every
layer) makes the model immune to a small amount
of noise, and at the same time prevents the model
from ignoring the tags. The analysis of attention
heads to investigate these claims should form the
scope of future work.

7 Conclusion

A powerful set of results have been established
for the shared task. Work presented in this pa-
per makes it feasible to efficiently employ neural
attention for pooling information from auxiliary
sources of global knowledge. The evidence pool-
ing mechanism introduced here is able to lever-
age upon the strengths of off-the-shelf coreference
solvers without being hindered by their weak-
nesses (gender bias). A natural extension of the
GREP model would be to solve the gendered pro-
noun resolution problem beyond the scope of the
gold-two-mention task, i.e., without accessing the
labeled gold spans.
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A Examples

Tables 6, 7, 8, and Figure 6 show an example of
how incorporating evidence from the coreference
models helps GREP to correct a prediction error
made by ProBERT. While the example is trivial
for a human to resolve, a machine would require
knowledge of the world to understand “death” and
its implications. ProBERT is unsure about the res-
olution and ends up assigning comparable prob-
abilities to both entities A and B. GREP, on the
other hand, is able to shift nearly all the proba-
bility mass from B to the correct resolution A, in
light of strong evidence presented by the coref-
erence solvers. Figure 6 illustrates an interesting
phenomenon; while e2e-coref groups the pronoun
and both entities A and B in the same cluster, the
model architecture is able to harvest information
from AllenNLP predictions, propagating the be-
lief that entity A must be the better candidate. The
above observations indicate that by pooling evi-
dence from various sources, the model is able to
reason over a larger space and build a rudimentary
form of world knowledge.

Tables 9, 10, 11, and Figure 7 show a second
example. This example is not easy even for a hu-
man to resolve without reading and understand-
ing the full context. A model may find this situ-
ation to be adverse given the presence of too many
named entities as distractor elements; and the url-
context can be misleading since the pronoun refer-
ent is not the subject of the article. Nevertheless,
the model is able to successfully build evidence
against the given candidates, and resolve with a
very high confidence of 92.5%.

Finally, a third example is shown in Tables
12 and 13. This example shows that the model
doesn’t simply make a majority decision, rather
considers interactions between the global structure
exposed by the various evidence sources.
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Ground truth

Off-the-shelf coreference model predictions

(a) Parallelism+URL

(b) AllenNLP

(c) NeuralCoref

(d) e2e-coref (Lee et al., 2018)

Table 6: Example 1 - Illustration of ground truth and coreference model predictions. Mentions belonging to a
coreference cluster are color coded and indexed. Visualizations were produced using the code module at https:
//github.com/sattree/gap/visualization.
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(a) Coreference model level attention weights. Indicates weightage given to evidence from each source.

(b) Cluster mention level attention weights. Indicates weightage given to each mention within an evidence cluster.

Figure 6: Example 1 - Visualization of normalized attention scores assigned by the hierarchical attention pooling
layers in the evidence pooling module

id Pronoun Pronoun
offset

A A
offset

A
coref

B B
offset

B
coref

Url

test-
282

her 410
Anna
MacIntosh

338 True
Mildred
Vergosen

475 False

http:
//en.
wikipedia.
org/
wiki/
Cyrus_S.
_Ching

Table 7: Example 1 - Sample details from GAP test set.

P(A) P(B) P(NEITHER)
ProBERT 0.405 0.452 0.142
GREP 0.718 0.038 0.244

Table 8: Example 1 - A comparison of probabilities assigned by ProBERT and GREP
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Ground truth

Off-the-shelf coreference model predictions

(a) Parallelism+URL

(b) AllenNLP

(c) NeuralCoref

(d) e2e-coref (Lee et al., 2018)

Table 9: Example 2 - Illustration of ground truth and coreference model predictions. Mentions belonging to a
coreference cluster are color coded and indexed.
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(a) Coreference model level attention weights. Indicates weightage given to evidence from each source.

(b) Cluster mention level attention weights. Indicates weightage given to each mention within an evidence cluster.

Figure 7: Example 2 - Visualization of normalized attention scores assigned by the hierarchical attention pooling
layers in the evidence pooling module

id Pronoun Pronoun
offset

A A
offset

A
coref

B B
offset

B
coref

Url

test-
406

he 803 Yang 636 False Wei 916 False

http:
//en.
wikipedia.
org/
wiki/
Wei_
Zheng

Table 10: Example 2 - Sample details from GAP test set.

P(A) P(B) P(NEITHER)
ProBERT 0.790 0.038 0.172
GREP 0.055 0.020 0.925

Table 11: Example 2 - A comparison of probabilities assigned by ProBERT and GREP
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Ground truth

Off-the-shelf coreference model predictions

(a) Parallelism+URL

(b) AllenNLP

(c) NeuralCoref

(d) e2e-coref (Lee et al., 2018)

Table 12: Example 3 - Illustration of ground truth and coreference model predictions. Mentions belonging to a
coreference cluster are color coded and indexed.

P(A) P(B) P(NEITHER)
ProBERT 0.028 0.968 0.003
GREP 0.724 0.263 0.012

Table 13: Example 3 - A comparison of probabilities assigned by ProBERT and GREP
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Abstract

Neural machine translation has significantly
pushed forward the quality of the field. How-
ever, there are remaining big issues with the
output translations and one of them is fair-
ness. Neural models are trained on large text
corpora which contain biases and stereotypes.
As a consequence, models inherit these so-
cial biases. Recent methods have shown re-
sults in reducing gender bias in other natu-
ral language processing tools such as word
embeddings. We take advantage of the fact
that word embeddings are used in neural ma-
chine translation to propose a method to equal-
ize gender biases in neural machine transla-
tion using these representations. We evaluate
our proposed system on the WMT English-
Spanish benchmark task, showing gains up to
one BLEU point. As for the gender bias eval-
uation, we generate a test set of occupations
and we show that our proposed system learns
to equalize existing biases from the baseline
system.

1 Introduction

Language is one of the most interesting and com-
plex skills used in our daily life, and may even be
taken for granted on our ability to communicate.
However, the understanding of meanings between
lines in natural languages is not straightforward
for the logic rules of programming languages.

Natural language processing (NLP) is a sub-
field of artificial intelligence that focuses on mak-
ing natural languages understandable to comput-
ers.

Similarly, the translation between different nat-
ural languages is a task for Machine Transla-
tion (MT). Neural MT has shown significant im-
provements on performance using deep learning
techniques, which are algorithms that learn ab-
stractions from data. In recent years, these deep

learning techniques have shown promising re-
sults in narrowing the gap between human-like
performance with sequence-to-sequence learn-
ing approaches in a variety of tasks (Sutskever
et al., 2014), improvements in combination of ap-
proaches such as attention (Bahdanau et al., 2014)
and translation systems algorithms like the Trans-
former (Vaswani et al., 2017).

One downside of models trained with human
generated corpora is that social biases and stereo-
types from the data are learned (Madaan et al.,
2018). A systematic way of showing this bias
is by means of word embeddings, a vector rep-
resentation of words. The presence of biases,
such as gender bias, is studied for these repre-
sentations and evaluated on crowd-sourced tests
(Bolukbasi et al., 2016). The presence of biases
in the data can directly impact downstream appli-
cations (Zhao et al., 2018a) and are at risk of being
amplified (Zhao et al., 2017).

The objective of this work is to study the pres-
ence of gender bias in MT and give insight on
the impact of debiasing in such systems. An ex-
ample of this gender bias is the word “friend” in
the English sentence “She works in a hospital, my
friend is a nurse” would be correctly translated to
“amiga” (girl friend in Spanish) in Spanish, while
“She works in a hospital, my friend is a doctor”
would be incorrectly translated to “amigo” (boy
friend in Spanish) in Spanish. We consider that
this translation contains gender bias since it ig-
nores the fact that, for both cases, “friend” is a
female and translates by focusing on the occupa-
tional stereotypes, i.e. translating doctor as male
and nurse as female.

The main contribution of this study is provid-
ing progress on the recent detected problem which
is gender bias in MT (Prates et al., 2018). The
progress towards reducing gender bias in MT is
made in two directions: first, we define a frame-
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work to experiment, detect and evaluate gender
bias in MT for a particular task; second, we pro-
pose to use debiased word embeddings techniques
in the MT system to reduce the detected bias. This
is the first study in proposing debiasing techniques
for MT.

The rest the paper is organized as follows. Sec-
tion 2 reports material relevant to the background
of the study. Section 3 presents previous work on
the bias problem. Section 4 reports the method-
ology used for experimentation and section 5 de-
tails the experimental framework. The results and
discussion are included in section 6 and section 7
presents the main conclusions and ideas for further
work.

2 Background

This section presents the models used in this paper.
First, we describe the Transformer model which is
the state-of-the-art model in MT. Second, we re-
port describe word embeddings and, then, the cor-
responding techniques to debias them.

2.1 Transformer
The Transformer (Vaswani et al., 2017) is a
deep learning architecture based on self-attention,
which has shown better performance over previ-
ous systems. It is more efficient in using compu-
tational resources and has higher training speed
than previous recurrent (Sutskever et al., 2014;
Bahdanau et al., 2014) and convolutional models
(Gehring et al., 2017).

The Transformer architecture consists of two
main parts: an encoder and a decoder. The en-
coder reads an input sentence to generate a repre-
sentation which is later used by a decoder to pro-
duce a sentence output word by word.

The input words are represented as vectors,
word embeddings (more on this in section 2.2) and
then, positional embeddings keep track of the se-
quentiality of language. The Transformer archi-
tecture computes a reduced constant number of
steps using a self-attention mechanism on each
one. The attention score is computed for all words
in a sentence when comparing the contribution of
each word to the next representation. New repre-
sentations are generated in parallel for all words at
each step .

Finally, the decoder uses self-attention in gener-
ated words and also uses the representations from
the last words in the encoder to produce a single

word each time.

2.2 Word embeddings
Word embeddings are vector representations of
words. These representations are used in many
NLP applications. Based on the hypothesis that
words appearing in same contexts share semantic
meaning, this continuous vector space representa-
tion gathers semantically similar words, thus be-
ing more expressive than other discrete represen-
tations like one-hot vectors.

Arithmetic operations can be performed with
these embeddings, in order to find analogies be-
tween pairs of nouns with the pattern “A is to B
what C is to D” (Mikolov et al., 2013). For nouns,
such as countries and their respective capitals or
for the conjugations of verbs.

While there are many techniques for extract-
ing word embeddings, in this work we are us-
ing Global Vectors, or GloVe (Pennington et al.,
2014). Glove is an unsupervised method for learn-
ing word embeddings. This count-based method,
uses statistical information of word occurrences
from a given corpus to train a vector space for
which each vector is related to a word and their
values describes their semantic relations.

2.3 Equalizing biases in word embeddings
The presence of biases in word embeddings is a
topic of discussion about fairness in NLP. More
specifically, Bolukbasi et al. (2016) proposes a
post-process method for debiasing already trained
word embeddings. (Zhao et al., 2018b) aims to
restrict learning biases during the training of the
embeddings to obtain a more neutral representa-
tion. The main ideas behind these methods are de-
scribed next.

Hard-debiased embeddings (Bolukbasi et al.,
2016) is a post-process method for debiasing word
embeddings. First, the direction of the embed-
dings where the bias is present is identified. Sec-
ond, the gender neutral words in this direction are
neutralized to zero and also equalizes the sets by
making the neutral word equidistant to the remain-
ing ones in the set. The disadvantage of the first
part of the process is that it can remove valuable
information in the embeddings for semantic rela-
tions between words with several meanings that
are not related to the bias being treated.

GN-GloVe (Zhao et al., 2018b) is an algo-
rithm for learning gender neutral word embed-
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dings models. It is based on the GloVe represen-
tation (Pennington et al., 2014) and modified to
learn such word representations while restricting
specific attributes, such as gender information, to
specific dimensions. A set of seed male and fe-
male words are used to define metrics for com-
puting the optimization and a set of gender neu-
tral words is used for restricting neutral words in a
gender direction.

3 Related work

While there are many studies on the presence of
biases in many NLP applications, studies of this
type in MT are quite limited.

Prates et al. (2018) performs a case study on
gender bias in machine translation. They build
a test set consisting of a list of jobs and gender-
specific sentences. Using English as a target lan-
guage and a variety of gender neutral languages as
a source, i.e. languages that do not explicitly give
gender information about the subject, they test
these sentences on the translating service Google
Translate. They find that occupations related to
science, engineering and mathematics present a
strong stereotype toward male subjects.

Vanmassenhove et al. (2018) compile a large
multilingual dataset on the politics domain that
contains the speaker information. They specifi-
cally use this information to incorporate it in a
MT system. Adding this information improves the
translation quality.

Our contribution is different from previous ap-
proaches in the sense that we are explicitly propos-
ing a gender-debiased approach for NMT as well
as an specific analysis based on correference and
stereotypes to evaluate the effectiveness of our
technique.

4 Methodology

In this section, we describe the methodology used
for this study. The prior layer of both the encoder
and decoder in the Transformer (Vaswani et al.,
2017), where the word embeddings are trained, is
adapted to use pre-trained word embeddings. We
train the system with different pre-trained word
embeddings (based on GloVe (Pennington et al.,
2014)) to have a set of models. The scenarios are
the following:

• No pre-trained word embeddings, i.e. they
are learned within the training of the model.

• Pre-trained word embeddings learned from
the same corpus. Specifically, GloVe, Hard-
Debiased GloVe and Gender Neutral Glove
(GN-GloVe) embeddings.

Also, the models with pre-trained embeddings
given to the Transformer have three cases: using
pre-trained embeddings only in the encoder side,
see Figure 1 (left), only in the decoder side, Figure
1 (center), and both in the encoder and decoder
sides, Figure 1 (right).

5 Experimental framework

In this section, we present the experimental frame-
work. We report details on the training of the word
embeddings and the translation system. We de-
scribe the data related to the training corpus and
test sets and the parameters. Also, we comment
on the use of computational resources.

5.1 Corpora
The language pair used for the experiments is
English-Spanish. The training set consists of
16,554,790 sentences from a variety of sources in-
cluding United Nations (Ziemski et al., 2016), Eu-
roparl (Koehn, 2005), CommonCrawl and News
available from the Workshop on Machine Trans-
lation (WMT) 1. The validation and test sets
used are the newstest2012 (3,003 sentences) and
newstest2013 (3,000 sentences), respectively, also
from the same WMT workshop. See Table 2 for
the corpus statistics.

To study gender bias, we have developed an ad-
ditional test set with custom sentences to evaluate
the quality of the translation in the models. We
built this test set using a sentence pattern “I’ve
known {her, him, <proper noun>} for a long
time, my friend works as {a, an} <occupation>.”
for a list of occupations from different profes-
sional areas. We refer to this test as Occupations
test, their related sizes are also listed in Table 2 and
sample sentences from this set are in Table 1. We
use Spanish proper names to reduce ambiguity in
this particular test. These sentences are properly
tokenized before using them in the test.

With these test sentences we see how “friend”
is translated into its Spanish equivalent “amiga”
or “amigo” which has a gender relation for each
word, female and male, respectively. Note that
we are formulating sentences with an ambiguous

1http://www.statmt.org/wmt13/
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Figure 1: (Left) Pre-trained word embeddings in the encoder. (Center) Pre-trained word embeddings in the decoder.
(Right) Pre-trained word embeddings in both the encoder and the decoder.

word “friend” that can be translated into any of the
two words and we are adding context in the same
sentence so that the system has enough informa-
tion to translate them correctly. The list of occupa-
tions is from the U.S. Bureau of Labor Statistics2,
which also includes statistical data for gender and
race for most professions. We use a pre-processed
version of this list from (Prates et al., 2018).

5.2 Models
The architecture to train the models for the transla-
tion task is the Transformer (Vaswani et al., 2017)
and we used the implementation provided by the
OpenNMT toolkit3. The parameter values used in
the Transformer are the same as proposed in the
OpenNMT baseline system. Our baseline system
is the Transformer witout pre-trained word embed-
dings.

Additionally, OpenNMT has built-in tools for
training with pre-trained embeddings. In our case,
these pre-trained embeddings have been imple-
mented with the corresponding github repositories
in GloVe4, Hard-Debiasing with Debiaswe5 and
GN-GloVe6.

The GloVe and GN-GloVe embeddings are
trained from the same corpus presented in the
previous section. We refer to the method from
Bolukbasi et al. (2016) applied to the previously
mentioned GloVe embeddings as Hard-Debiased
GloVe. The dimension of the vectors is settled
to 512 (as standard) and kept through all the ex-
periments in this study. The parameter values for
training the word embedding models are shown in
Table 3.

2https://www.bls.gov/cps/tables.htm#
empstat

3http://opennmt.net/
4https://github.com/stanfordnlp/GloVe
5https://github.com/tolga-b/debiaswe
6https://github.com/uclanlp/gn_glove

Bolukbasi et al. (2016) uses a set of words to
define the gender direction and to neutralize and
equalize the bias from the word vectors. Three
set of words are used: One set of ten pairs of
words such as woman-man, girl-boy, she-he are
used to define the gender direction. Another set
of 218 gender-specific words such as aunt, uncle,
wife, husband are used for learning a larger set of
gender-specific words. Finally, a set of crowd-
sourced male-female equalization pairs such as
dad-mom, boy-girl, granpa-grandma that repre-
sent gender direction are equalized in the algo-
rithm. In fact, for the English side, the gendered
pairs used are the same as identified in the crowd-
sourcing test by Bolukbasi et al. (2016). For the
Spanish side, the sets are translated manually and
modified when necessary to avoid non-applicable
pairs or unnecessary repetitions. The sets from
Zhao et al. (2018b) are similarly adapted to the
Spanish language.

To evaluate the performance of the models we
use the BLEU metric (Papineni et al., 2002). This
metric gives a score for a predicted translation set
compared to its expected output.

5.3 Hardware resources
The GPUs used for training are separate groups of
four NVIDIA TITAN Xp and NVIDIA GeForce
GTX TITAN. The duration time for training is ap-
proximately 3 and 5 days, respectively. In the im-
plementation, the model is set to accumulate the
gradient two times before updating the parameters,
which simulates 4 more GPUs during training giv-
ing a total of 8 GPUs.

6 Results

In this section we report results on translation
quality and present an analysis on gender bias.
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(En) I’ve known her for a long time, my friend works as an accounting clerk.
(Es) La conozco desde hace mucho tiempo, mi amiga trabaja como contable.
(En) I’ve known him for a long time, my friend works as an accounting clerk.
(Es) Lo conozco desde hace mucho tiempo, mi amigo trabaja como contable.
(En) I’ve known Mary for a long time, my friend works as an accounting clerk.
(Es) Conozco a Mary desde hace mucho tiempo, mi amiga trabaja como contable.
(En) I’ve known John for a long time, my friend works as an accounting clerk.
(Es) Conozco a John desde hace mucho tiempo, mi amigo trabaja como contable.

Table 1: Sample sentences from the Occupations test set. English (En) and Spanish (Es).

Language Data set Num. of sentences Num. of words Vocab. size

English (En)
Train 16.6M 427.6M 1.32M
Dev 3k 73k 10k
Test 3k 65k 9k
Occupations test 1k 17k 0.8k

Spanish (Es)
Train 16.6M 477.3M 1.37M
Dev 3k 79k 12k
Test 3k 71k 11k
Occupations test 1k 17k 0.8k

Table 2: English-Spanish data set.

Parameter Value

Vector size 512
Memory 4.0
Vocab. min. count 5
Max. iter. 15
Window size 15
Num. threads 8
X max. 10
Binary 2
Verbose 2

Table 3: Word Embeddings Parameters.

6.1 Translation
For the test set newstest2013, BLUE scores are
given in Table 4. Pre-trained embeddings are used
for training in three scenarios: in the encoder side
(Enc.), in the decoder side (Dec.) and in both
the encoder and decoder sides (Enc./Dec.). These
pre-trained embeddings are updated during train-
ing. We are comparing several pre-trained embed-
dings against a baseline system (‘Baseline’ in Ta-
ble 4) which does not include pre-trained embed-
dings (neither on the encoder nor the decoder).

For the studied cases, values do not differ much.
Using pre-trained embeddings can improve the

Baseline 29.78

Pre-trained emb. Enc. Dec. Enc./Dec.

GloVe 30.21 30.24 30.62
GloVe Hard-Deb. 30.16 30.09 29.95
GN-GloVe 29.12 30.13 30.74

Table 4: BLEU scores for the newstest2013 test set.
English-Spanish. Pre-trained embeddings are updated
during training. In bold best results.

translation, which is coherent with previous stud-
ies (Qi et al., 2018). Furthermore, debiasing with
GN-GloVe embeddings keeps this improvement
and even increases it when used in both the en-
coder and decoder sides. We want to underline that
these models do not decrease the quality of trans-
lation in terms of BLEU when tested in a standard
MT task. Next, we show how each of the models
performs on a gender debiasing task.

6.2 Gender Bias
A qualitative analysis is performed on the Occupa-
tions test set. Examples of this test set are given in
Table 1. The sentences of this test set contain con-
text information for predicting the gender of the
neutral word “friend” in English, either “amigo”
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or “amiga” in Spanish. The lower the bias in
the system, the better the system will be able to
translate the gender correctly. See Table 5 for the
percentages of how “friend” is predicted for each
model.

“Him” is predicted at almost 100% accuracy
for all models. However not all occupations are
well translated. On the other hand, the accuracy
drops when predicting the word “her” on all mod-
els. When using names, the accuracy is even lower
for “Mary” opposite to “John”.

Note that gender debiasing is shown by aug-
menting the percentage of “amiga” in the trans-
lation in the presence of the female pronoun while
keeping the quality of translation (coherently with
generic results in Table 4). Based on accuracy
values from Table 5, the most neutral system is
achieved with GloVe and also with Hard-Debiased
GloVe pre-trained embeddings. The accuracy im-
proves by 30 percentage points compared to the
baseline system and over 10 percentage points
compared to the non-debiased pre-trained word
embeddings.

The quality of the translation also depends on
the professions from the Occupations test and its
predicted gender. Again, the system has no prob-
lem predicting the gender of professions in the
context of “him”, so we focus the analysis on the
context of “her”. With GN-GloVe pre-trained em-
beddings both in the encoder and decoder sides,
the model shows a higher accuracy when predict-
ing the gender of a profession in Spanish. Specifi-
cally, for technical professions such as “criminal
investigator”, “heating mechanic”, “refrigeration
mechanic” and others such as “mine shuttle car
operator”. See Table 6 for the prediction on this
last profession.

7 Conclusions and further work

Biases learned from human generated corpora is
a topic that has gained relevance over the years.
Specifically, for MT, studies quantifying gender
bias present in news corpora and proposing de-
biasing approaches for word embedding models
have shown improvements on this matter.

We studied the impact of gender debiasing on
neural MT. We trained sets of word embeddings
with the standard GloVe algorithm. Then, we
debiased the embeddings using a post-process
method (Bolukbasi et al., 2016) and also trained
a gender neutral version (Zhao et al., 2018b). We

used all these different models on the Transformer
(Vaswani et al., 2017). Experiments were reported
on using these embeddings on both the encoder
and decoder sides, or only the encoder or the de-
coder sides.

The models were evaluated using the BLEU
metric on the standard task of the WMT new-
stest2013 test set. BLEU performance increase
when using pre-trained word embeddings and it is
slightly better for the debiased models.

In order to study the bias on the translations,
we evaluate the systems on a custom test set com-
posed of occupations. This set consists of sen-
tences that include context of the gender of the
ambiguous “friend” in the English-Spanish trans-
lation. This word can be translated to feminine
or masculine and the proper translation has to be
derived from context. We verified our hypothesis
that consisted on the fact that if the translation sys-
tem is gender biased, the context is disregarded,
while if the system is neutral, the translation is cor-
rect (since it has the information of gender in the
sentence). Results show that the male pronoun is
always identified, despite not all occupations are
well translated, while the female pronoun has dif-
ferent ratio of appearance for different models. In
fact, the accuracy when predicting the gender for
this test set is improved for some settings, when
using the debiased and gender neutral word em-
beddings. Also, as mentioned, this system slightly
improves the BLEU performance from the base-
line translation system. Therefore, we are “equal-
izing” the translation, while keeping its quality.
Experimental material from this paper is available
online 7.

As far as we are concerned, this is one of the pi-
oneer works on proposing gender debiased trans-
lation systems with word embedding techniques.

We did our study in the domain of news articles
and professions. However, human corpora has a
broad spectrum of categories, as an instance: in-
dustrial, medical, legal that may rise other biases
particular to each area. Also, other language pairs
with different degree in specifying gender infor-
mation in their written or spoken communication
could be studied for the evaluation of debiasing
in MT. Furthermore, while we studied gender as
a bias in MT, other social constructs and stereo-
types may be present in corpora, whether individ-
ually or combined, such as race, religious beliefs

7https://github.com/joelescudefont/genbiasmt
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Pre-trained embeddings
her him Mary John

amiga amigo amiga amigo

None 99.8 99.9 69.5 99.9
GloVe (Enc.) 2.6 100.0 0.0 100.0
GloVe (Dec.) 95.0 100.0 4.0 100.0
GloVe (Enc./Dec.) 100.0 100.0 90.0 100.0
GloVe Hard-Debiased (Enc.) 100.0 100.0 99.5 100.0
GloVe Hard-Debiased (Dec.) 12.0 100.0 0.0 100.0
GloVe Hard-Debiased (Enc./Dec.) 99.9 100.0 100.0 99.9
GN-GloVe (Enc.) 100.0 100.0 7.7 100.0
GN-GloVe (Dec.) 97.2 100.0 51.8 100.0
GN-GloVe (Enc./Dec.) 99.6 100.0 56.4 100.0

Table 5: Percentage of “friend” being translated as “amiga” or “amigo” in test sentences with female-male pro-
nouns and proper names for the Occupations test. Best results in bold.

or age; this being just a small subset of possible
biases which will present new challenges for fair-
ness both in machine learning and MT.
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Pre-trained word embeddings Prediction
La conozco desde hace mucho tiempo,

None mi amigo trabaja como mecánico de refrigeración.
GloVe (Enc) mi amiga trabaja como mecánico de refrigeración.
GloVe (Dec) mi amiga trabaja como mecánico de refrigeración.
GloVe (Enc+Dec) mi amiga trabaja como mecánico de refrigeración.
GloVe Hard-Debiased (Enc) mi amigo trabaja como mecánico de refrigeración.
GloVe Hard-Debiased (Dec) mi amiga trabaja como mecánico de refrigeración.
GloVe Hard-Debiased (Enc+Dec) mi amiga trabaja como mecánico de refrigeración.
GN-GloVe (Enc) mi amiga trabaja como mecánico de refrigeración.
GN-GloVe (Dec) mi amiga trabaja como mecánico de refrigeración.
GN-GloVe (Enc+Dec) mi amiga trabaja como mecánica de refrigeración.

Reference mi amiga trabaja como mecánica de refrigeración.

Pre-trained word embeddings Prediction
La conozco desde hace mucho tiempo,

None mi amiga trabaja como operador de un coche de enlace
a las minas.

GloVe (Enc) mi amigo trabaja como operador del transbordador espacial.
GloVe (Dec) mi amiga trabaja como un operador de transporte de

camiones.
GloVe (Enc+Dec) mi amiga trabaja como un operator de coches.
GloVe Hard-Debiased (Enc) mi amiga trabaja como mine de minas.
GloVe Hard-Debiased (Dec) mi amigo trabaja como un operador de transporte de coches

para las minas.
GloVe Hard-Debiased (Enc+Dec) mi amiga trabaja como un operator de coches.
GN-GloVe (Enc) mi amiga trabaja como operador de ómnibus de minas.
GN-GloVe (Dec) mi amiga trabaja como un operador de transporte para

las minas.
GN-GloVe (Enc+Dec) mi amiga trabaja como operadora de transporte de minas.

Reference mi amiga trabaja como operadora de vagones de minas.

Table 6: Spanish predictions for the test sentences “I’ve known her for a long time, my friend works as a refriger-
ation mechanic.” “I’ve known her for a long time, my friend works as a mine shuttle car operator.”. Best results in
bold.
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Abstract

The impressive progress in many Natural Lan-
guage Processing (NLP) applications has in-
creased the awareness of some of the biases
these NLP systems have with regards to gen-
der identities. In this paper, we propose an ap-
proach to extend biased single-output gender-
blind NLP systems with gender-specific al-
ternative reinflections. We focus on Ara-
bic, a gender-marking morphologically rich
language, in the context of machine transla-
tion (MT) from English, and for first-person-
singular constructions only. Our contributions
are the development of a system-independent
gender-awareness wrapper, and the building
of a corpus for training and evaluating first-
person-singular gender identification and re-
inflection in Arabic. Our results successfully
demonstrate the viability of this approach with
8% relative increase in BLEU score for first-
person-singular feminine, and 5.3% compara-
ble increase for first-person-singular mascu-
line on top of a state-of-the-art gender-blind
MT system on a held-out test set.

1 Introduction

The impressive progress in the last decade in many
Natural Language Processing (NLP) applications,
from machine translation (MT) to dialogue sys-
tem, has increased awareness of some of the bi-
ases these systems have with regards to gender
identities. A case in point is the I-am-a-doctor/
I-am-a-nurse MT problem in many morphologi-
cally rich languages. While English uses gender-
neutral terms that hide the ambiguity of the first-
person gender reference, many morphologically
rich languages need to use different grammatically
gender-specific terms for these two expressions.
In Arabic, as in other languages with grammatical
gender, gender-blind single-output MT from En-

glish often results in I. �
J.£ A 	K

@ ÂnA Tbyb1 ‘I am a

[male] doctor’/ �é 	�QÜØ A 	K

@ ÂnA mmrD~ ‘I am a [fe-

male] nurse’, which is inappropriate for female
doctors and male nurses, respectively.

Part of this problem comes from human-
generated data that mirrors the social biases and
inequalities of the world we live in, and that re-
sults in biased models and representations. Many
research efforts responded to this problem by de-
biasing and balancing the models created from the
data through model modification or data augmen-
tation (Font and Costa-jussà, 2019; Zmigrod et al.,
2019). However, ultimately, even the most bal-
anced and unbiased of models can be useless in
gender-blind systems that are designed to gener-
ate a single text output. Such systems are doomed
to unsurprisingly pass on the biases of the models
they use, as demonstrated in the doctor/nurse ex-
ample above. In contrast, gender-aware systems
should be designed to produce outputs that are as
gender-specific as the input information they have
access to. The input gender information may be
contextual (e.g., the input ‘she is a doctor’), or ex-
tra linguistics (e.g., the gender feature provided in
the user profile in social media). But, there may be
contexts where the gender information is unavail-
able to the system (e.g., ‘the student is a nurse’). In
such cases, generating both gender-specific forms
or a gender-neutral (gender-ambiguous) form is
more appropriate.

In this paper, we propose an approach that ex-
tends the possibly biased output of gender-blind
NLP systems with gender-specific reinflections.
This is a monolingual postprocessing rephrasing
task that wraps around a gender-blind system to
make it gender-aware, through identifying if there
are gender-specific phrases in its output and of-

1Arabic transliteration is in the HSB scheme (Habash
et al., 2007).
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fering alternative reinflections instead. The se-
lection of the gender-specific form is then left to
the user or another automatic component has ac-
cess to extra-linguistic information, such as pro-
file gender. For example, the Arabic gender-blind
MT output translating English ‘I am a nurse’ as
�é 	�QÜØ A 	K


@ ÂnA mmrD~ ‘I am a [female] nurse’ is

turned into two gender-marked output options: (a)
�é 	�QÜØ A 	K


@ ÂnA mmrD~ ‘[First Person Singular Fem-

inine]’, and (b) 	�QÜØ A 	K

@ ÂnA mmrD ‘[First Per-

son Singular Masculine]’. Since the output of
the gender-blind NLP system is not necessarily
always masculine or feminine, our approach re-
quires two components: gender identification
and gender reinflection, which can be modeled
jointly or in cascade. The approach is system-
independent and can be used with MT, dialogue
systems, etc., as well as, to balance corpora
through augmentation by adding reinflected copies
of gender-specific constructions.

We focus on Arabic, a gender-marking mor-
phologically rich language, in the context of MT
from English, and for first-person-singular con-
structions only. We only work on first-person con-
structions because they tend to be gender-neutral
in English. Furthermore, as sentences may involve
multiple gendered references, we wanted to con-
trol for the number of combinations. We plan to
extend to multiple references in future work.

Our contributions are the development of a
system-independent gender-awareness wrapper,
and the building of a corpus for training and eval-
uating first-person-singular gender identification
and reinflection in Arabic. For gender identifica-
tion, we compare rule-based and machine learning
methods using our annotated corpus. For gender
reinflection, we use a character-level neural MT
(NMT) model in a single step (identify and rein-
flect, jointly), and as the second part of a two-
step (identify then reinflect) system. Our results
successfully demonstrate the viability of this ap-
proach with 8% relative increase in BLEU score
for first-person-singular feminine, and 5.3% com-
parable increase for first-person-singular mascu-
line on top of a state-of-the-art gender-blind MT
system on a held-out test set.

Next, we discuss some related work (Section 2)
and Arabic linguistic facts (Section 3). We present
our Arabic parallel gender corpus in Section 4,
gender identification in Section 5, and gender re-
inflection and MT results in Section 6.

2 Related Work

Gender bias has been detected, studied, and par-
tially addressed for standard and contextualized
word embeddings in a number of studies (Boluk-
basi et al., 2016; Caliskan et al., 2017; Sutton
et al., 2018; Basta et al., 2019; Garg et al., 2018;
Zhao et al., 2018, 2019). These studies showed
that training word embeddings on large human
produced corpora such as news text leads to en-
coding societal biases including gender and race.
Some of these studies focused on quantifying the
bias, and proposed approaches for mitigating it
within word embeddings.

In the context of data augmentation solutions,
Lu et al. (2018) introduced counterfactual data
augmentation (CDA), a generic methodology to
mitigate bias in neural NLP tasks, where for each
training instance, a copy with an intervention on
its targeted words is added, replacing each with its
partner, while maintaining the same ground truth.
The goal here is to encourage learning algorithms
to not pick up on biased distinctions. Building on
CDA, (Zmigrod et al., 2019) presented a genera-
tive model that allows conversion between mas-
culine inflected and feminine inflected sentences
in four morphologically rich languages (Hebrew,
Spanish, French and Italian) with a focus on ani-
mate nouns.

Specifically for MT, Rabinovich et al. (2016)
presented work on the preservation of author
gender. Some researchers suggested improve-
ment through co-reference resolution (Gonzales
and Tuggener, 2017; Luong and Popescu-Belis,
2016). Vanmassenhove et al. (2018) conducted
a series of experiments to improve morpholog-
ical agreement and improve translation quality
in NMT systems for 20 language pairs (none of
which were Arabic). They compiled large datasets
from Europarl (Koehn, 2005), including speaker
gender and age, and trained NMT systems with the
tagged language pair. They showed that provid-
ing tags that indicate the speaker’s gender to the
system leads to significant improvements. Sim-
ilarly, Elaraby et al. (2018) marked speaker and
listener gender as meta-data input on the source
sentence in an English-to-Arabic NMT system.
The training data came from OpenSubtitle (Lison
and Tiedemann, 2016). The authors used rules
to identify the gender in the Arabic text. Prates
et al. (2018) used Google Translate to translate a
set consisting of a list of jobs and gender-specific
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sentences from a variety of gender-neutral lan-
guages into English. They showed that occupa-
tions related to science, engineering and math-
ematics present a strong stereotype towards the
male gender. More recently, Font and Costa-jussà
(2019) studied the impact of gender debiasing on
NMT between English and Spanish using debi-
ased and gender-neutral word embeddings.

Google Translate publicly announced an ef-
fort to address gender bias for a few languages
in different degrees and contexts (Help, 2019).
As of the time of writing this paper, the system
shows both feminine and masculine translations
for some single words in certain languages; and
provides gender-specific pronominal translations
for some gender ambiguous cases (i.e., Turkish-
English MT). In our work, we also evaluate on the
output of Google Translate.

This paper sits in the intersection of efforts like
data augmentation for morphologically rich lan-
guages (Zmigrod et al., 2019) and gender-aware
MT (Vanmassenhove et al., 2018; Elaraby et al.,
2018). Similarly to Zmigrod et al. (2019), we
are interested in reinflection, but we implement it
as character-based NMT. While Vanmassenhove
et al. (2018) and Elaraby et al. (2018) expect
gender meta-information as input, we propose a
gender-aware post-processing approach, that ap-
plies gender identification and reinflection.

3 Arabic Linguistic Facts

We present three specific challenges for Modern
Standard Arabic (MSA) NLP with attention to
gender expression and MT.

Morphological Richness Arabic is a morpho-
logically rich language that inflects for gender,
number, person, case, state, aspect, mood and
voice, in addition to allowing a number of at-
tachable clitics (prepositions, particles, pronouns)
(Habash, 2010). Wright (1955) classifies nouns
according to their gender into three classes: mas-
culine (M), feminine (F), and those that can be ei-
ther masculine or feminine (B). Examples include
I. �
J.£ Tabiyb ‘male doctor’ [M], �éJ. �
J.£ Tabiyba~
‘female doctor’ [F], and words like ��K
Q£ Tariyq
‘road’ [B]. Arabic adjectives have gender-specific
forms (M or F). But some pronouns and some verb
conjugations can be used for either masculine or
feminine (B). For example, the pronoun A 	K


@ ÂanA

‘I’, and the first-person-singular perfect and im-
perfect verbal conjugations (e.g., �I�. �J» katabtu ‘I

wrote’ and I. �J»

@ Âaktub ‘I write’) are all gender-

ambiguous (B).
The Arabic agreement system between verbs

and their subjects, and between nouns and their
adjectives does not just involve gender, number,
case and state, but also a lexical feature called ra-
tionality – a quality typically associated with hu-
man actors (Alkuhlani and Habash, 2011). For in-
stance, while adjectives modifying rational nouns
agree with them in gender and number; adjectives
modifying irrational plural nouns are always fem-
inine and singular.

Orthographic Ambiguity Arabic is also ortho-
graphically ambiguous due to the optionality of
diacritic specification in the written form. This
optionality can lead to gender ambiguous ortho-
graphic forms as some gender-specific forms only
differ in diacritics (short vowel specification).2

For example, the word �I�. �J» can be diacritized as
katabta ‘you [masc.sing] wrote’ or katabti ‘you
[fem.sing] wrote’, and it is ambiguous with yet
two other forms: katabtu ‘I [fem/masc] wrote’ and
katabat ‘she wrote’. In this regard, orthographic
ambiguity reduces gender bias. But it is still an
issue for speech synthesis systems (Halabi, 2016).

In general, for first person expressions, we ex-
pect the verbal sentences to be gender-ambiguous
(B), and the copular/equational sentences involv-
ing adjectives and rational nouns to be gender-
specific ([M] or [F]). We will present an analysis
of our data in the next section that confirms this.

Orthographic Noise MSA unedited text tends
to have a large percentage (∼23%) of spelling er-
rors (Zaghouani et al., 2014). Most common er-
rors involve Alif-Hamza (Glottal Stop) spelling
( @ ,

�
@ , @ ,


@ A, Ā, Ǎ, Â), Ya spelling (ø
 , ø y,

ý), and the feminine suffix Ta-Marbuta spelling
( è , �è h, ~). These errors are so common, that
in Arabic NLP, Alif/Ya normalization is standard
preprocessing (Habash, 2010), and Alif/Ya speci-
fication is done as postprocessing (El Kholy and
Habash, 2010). Since the Arabic text we use from
the OpenSubtitles Corpus (Lison and Tiedemann,
2016), a collection of translated movie subtitles,
has many spelling errors of the above mentioned
kinds, we evaluate MT within an orthographically
normalized space (more details in Section 6).

2We will use the label B to refer to inherent gender ambi-
guity, as well as gender ambiguity resulting from undiacritzed
spelling.
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Original Corpus Balanced Corpus
(a) (b) (c) (d) (e)

Sentences Words WordsMF Input Reinflected Input TargetM TargetF Sentences Words WordsMF

10,242 74,702 0 B B B B 10,242 74,702 0
362 2,720 422 F Mr F Mr F 362 2,720 422
636 4,710 743 M Fr M M Fr 636 4,710 743

Mr Mr F 362 2720 422
Fr M Fr 636 4,710 743

11,240 82,132 1,165 12,238 89,562 2,330

Table 1: Statistics of the original corpus we annotated and the balanced version we report on in the paper experi-
ments. WordsMF refers to the count of gender-marking words, specifically. Mr and Fr are the reinflected versions
of the F and M labelled sentences, respectively, in the same rows they appear in.

English Original Arabic Gender Reinflection
I have no interest in that. @ 	Yë ú


	̄ �éjÊ�Ó ø
 YË ��
Ë B

He shot at me! !ú
Î« PA 	JË @ ��Ê£

@ Y�®Ë B

I’m leaving. �éÊg@P A 	K

@ F Ég@P A 	K


@

I’m rich! I’m rich! �éJ
 	J 	« A 	K

@ �éJ
 	J 	« A 	K


@ F ú


	æ 	« A 	K

@ ú


	æ 	« A 	K

@

I am a Muslim and a Hindu and a Christian and a Jew. ø
 XñîE
 ð ú

	G @Qå� 	� ð ú
æ�ðY	Jë ð ÕÎ�Ó A 	K


@ M �éK
XñîE
 ð �éJ
 	K @Qå� 	� ð �éJ
�ðY	Jë ð �éÒÊ�Ó A 	K


@

I’m the new attending. . YK
Ym.Ì'@ ù

KA� 	k


B@ A 	K


@ M . �èYK
Ym.Ì'@ �éJ
KA� 	k


B@ A 	K


@

Table 2: Examples from the Arabic Parallel Gender Corpus including original sentence, its gender and its reinflec-
tion to the opposite gender where appropriate.

4 The Arabic Parallel Gender Corpus

For the kind of experiments we conduct in this
paper, we need a corpus of first-person-singular
Arabic sentences that are gender-annotated and
gender-translated. That is, for every sentence in
such corpus, we would like the gender of the
sentence’s speaker to be identified as B (gender-
ambiguous), F (feminine) or M (masculine); and
for the F and M cases, we would like the equiv-
alent opposite gender form. Such a corpus needs
to also be paired with English translations to sup-
port possible MT experiments. To the best of our
knowledge, no such corpus exists for Arabic, nor
for any other language. We plan to make this re-
source publicly available.3 We describe next the
approach we followed to build this corpus.

Corpus Selection We decided to use a subset of
the sentences from the OpenSubtitles 2018 cor-
pus (Lison and Tiedemann, 2016). We selected
this corpus because it has parallel English and
Arabic sentences, and because it contains a lot of
first-person-singular sentences. We first extracted
all the English-Arabic sentence pairs that include
first-person-singular pronouns in the English side:
I, me, my, myself, mine. We used English because
it is not a pro-drop language like Arabic. There

3http://resources.camel-lab.com

were 8.5 million sentences of this kind, 5.7 million
of which do not include a second person pronoun
(you, your, yourself, yours). In this work, we de-
cided to focus on the first-person-singular exclu-
sively and excluded all second person cases. Out
of this rich set, we selected 12,000 sentences to be
annotated. All the Arabic sentences were white-
space-and-punctuation tokenized, as well as mor-
phologically analyzed and lemmatized using the
MADAMIRA toolkit for Arabic NLP (Pasha et al.,
2014).

Corpus Annotation Four Arabic native speak-
ers (three female and one male) annotated the cor-
pus. The instructions were simple. First, they are
to identify the grammatical gender of the singu-
lar speaker in each sentence and then label it as
F (feminine), M (masculine), or B (ambiguous).
Second, for the F and M cases, the annotators are
to copy the sentence and minimally modify it so
that it expresses the opposite gender and remains
fully grammatical; they are only allowed to use
word substitutions, i.e., no additions or deletions
so that the total number of words is maintained.
For most words, the gender reinflection main-
tained the same lemma, e.g., I. �
J.¢Ë@ AlTbyb ‘the
doctor’ [M] is reinflected as �éJ. �
J.¢Ë@ AlTbyb~ ‘the
doctor’ [F]. However, gender-specific nouns that
cannot reinflect in the same lemma are mapped
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appropriately to a related lemma expressing the
opposite gender. For example, the word Ð


@ Âm

‘mother’ is mapped to H.

@ Âb ‘father’.4 Proper

names are all treated as gender-neutral (B), even
when they have strong gender-specific associa-
tions, and as such are not reinflected. The annota-
tors were made aware of hetreo-centrist interpreta-
tions and were instructed to suspend any precon-
ceived assumptions, e.g., the sentence ú


�æk. ð 	P ½Ê�K
‘That’s my wife’ is given the label B, not M. Fi-
nally, the annotators were also instructed to flag
bad translations or malformed sentences. Exam-
ples from our corpus are illustrated in Table 2.
The average pairwise inter-annotator agreement
on a 60-sentence set that was annotated by all
annotators is quite high (97.2%), suggesting the
task is reasonable. The points of disagreement
were plausible different interpretations. For exam-
ple, the word @Q 	k


A�JÓ mtÂxrA ‘late’ in the sentence

@Q 	k

A�JÓ 	¡�®J
���


@ ÂstyqĎ mtÂxrA ‘I wake up late’ was

interpreted as an adverb (which would not gender-
inflect) or as an adjective (which would).

The Original Corpus After the annotation was
completed, we excluded all sentences with mal-
formed input, sentences with Latin characters, and
sentences with Arabic-Arabic gender misalign-
ment due to annotation errors. This resulted in
a set of 11,240 sentences (82,132 words), which
constitute our Original Corpus Input (Table 1, col-
umn (a)). In this corpus, about 91% of all the sen-
tences are gender-ambiguous (B). Interestingly,
the M sentences are almost twice as many as the
F sentences. All of the gender-specific sentences
were reinflected (M→ Fr and F→Mr), resulting
in an additional 989 sentences (7,430 words) (Ta-
ble 1, column (b)). Among the words of the first-
person-singular gender-specific sentences, 1,165
are gender-specific (15.7%). The percentage of
these words in the whole corpus is 1.4%.

The Balanced Corpus Given the stark gender
imbalance as well as the small ratio of gender-
specific sentences, we opted to balance the corpus
by introducing the reinflected sentences (Mr and
Fr) as if they were original input and pair them
with their original input as their reinflection. In
Table 1 the added sentence statistics appear in the

4We are aware that sentences with gender-specific English
words, e.g., widow and widower, will be mismatched with the
reinflected Arabic. We do not consider this to be a problem
from the point of view of the spirit of the task as a whole.

two additional rows under Balanced Corpus. In
Table 1 columns (c), (d) and (e), we define three
versions of the balanced corpus, which we will re-
fer to and use in the rest of the paper. The first
is the balanced Arabic input corpus (henceforth,
Balanced Input), which matches the original in-
put plus the added reinflected sentences. The sec-
ond is a masculine target corpus (TargetM ) con-
taining only B, M and Mr sentences. And the
last is a feminine target corpus (TargetF ) con-
taining only B, F, and Fr sentences. All three
corpora naturally have the same number of sen-
tences, words, and gender-specific words. Given
the addition of the reinflected sentences, the per-
centage of all gender-specific sentences in the bal-
anced corpus is 16.3% and the number of mascu-
line and feminine sentences is the same. The bal-
anced corpora were all divided randomly and in
parallel into training (TRAIN: 70% or 8,566 sen-
tences), development (DEV: 10% or 1,224 sen-
tences) and blind test (TEST: 20% or 2,448 sen-
tences). The balanced corpus DEV and TEST

English side sentences were also machine trans-
lated through Google Translate’s API to create the
DEVGT and TESTGT sets5 (See Section 6).

The Synthetic Corpus Given the very small
number of gender-specific words in the corpus,
we created a synthetic corpus consisting of short
gender-inflected sentences using an Arabic mor-
phological analyzer and generator (Taji et al.,
2018). We covered 6,447 adjectives and 2,172
rational nouns (8,619 total) producing 25 differ-
ent expressions for each in parallel, in masculine
and feminine form. The 25 expressions consisted
of simple nominal sentences, including construc-
tions with Aî�E@ñ 	k


@ð 	àA¿ ‘Kan and her sisters’, and

Aî�E@ñ 	k

@ð 	à@ ‘Inna and her sisters’. For example, for

the masculine adjective YJ
ª� sςyd ‘happy’ we in-
clude the sentences YJ
ª� A 	K


@ ÂnA sςyd ‘I am happy’,

@YJ
ª� �I	J» knt sςydA ‘I was happy’, @YJ
ª� �I�Ë lst
sςydA ‘I was not happy’, etc., and their femi-
nine versions, respectively, �èYJ
ª� A 	K


@ ÂnA sςyd~ ‘I

am happy’, �èYJ
ª� �I	J» knt sςyd~ ‘I was happy’,
�èYJ
ª� �I�Ë lst sςyd~ ‘I was not happy’, etc. The
choice of expressions was influenced by a sample
manual analysis, which we discuss in Section 5.1.
In total, the synthetic corpus has 226,175 sentence
pairs covering 5 million words on each side. We
use this corpus for training purposes only.

5Google Translate’s API – April 22-23, 2019.

159



Arabic ÐñJ
Ë @ �é 	JK
YÖÏ AK. ú

	G

B �èPðQå�Ó A 	K @

English I’m just glad I was in town tonight
Tokens AnA msrwr~ lÂny bAlmdyn~ Alywm
Gloss I happy for that I in the city today
Features pron+1s adj+fs li_prep conj_sub+ 1s_pron bi_prep noun+fsi noun+msi

first feminine preposition subordinating first preposition feminine masculine
person singular clitic conjunction person clitic singular singular
singular adjective singular irrational irrational
pronoun pronoun noun noun

Table 3: Example of the morphological features used in automatic gender identification. In the third row, the
Arabic words are presented in transliteration from left to right. The features are paired with the words they are
generated from. The Gloss is the literal translation of the word. The English translation is from the OpenSubtitles
corpus.

5 Automatic First-Person-Singular
Gender Identification

We define the task of automatic first-person-
singular gender identification as taking a sentence
from our Balanced Input corpus (DEV and TEST)
and predicting a label from the set {B, F, M} that
indicates the gender-specificity of the first person
speaker. We present four models for accomplish-
ing this task. The first is a rule-based baseline,
and the other three are machine-learning models
trained on the TRAIN set of the Balanced Input
corpus. Two of the machine learning models and
the rule-based one make extensive use of automat-
ically determined morphological features. All sys-
tem development and parameter tuning was done
using the DEV set. We report only the TEST re-
sults here. The DEV and TEST results were very
similar. We discuss the morphological features
next, followed by the four models, then we present
our results and discussion.

5.1 The Morphological Features

We started this effort with an analysis of 100 sam-
ples from the training data: 50 from B cases, and
50 from M/F cases. For each case, we manually
identified how the first person singular aspect of
the task, and how the gender aspect of the task are
realized linguistically. We identified three cate-
gories for the first person singular: as pro-dropped
subject of a verb, as the pronoun A 	K


@ ÂnA ‘I’, and

as the pronominal clitics ú

	G++ny and ø
 + +y ‘me,

my’. As for gender-specific forms, they were as-
sociated with adjectives and rational nouns. It was
interesting to see that not a single case of the B
sentences had an adjective or rational noun refer-
ring to the first person. Among the gender-specific

cases, 96% of them (all but 2 cases out of 50)
appeared as simple copular sentences with some
variations involving Aî�E@ñ 	k


@ð 	àA¿ ‘the so-called Kan

and her sisters’, or Aî�E@ñ 	k

@ð 	à@ ‘the pseudo verbs so-

called Inna and her sisters’.
For all the collected and created corpora (man-

ually translated, synthetic and machine trans-
lated), we generated a parallel morphologically
analyzed feature corpus using the MADAMIRA
Arabic analysis toolkit (Pasha et al., 2014). Since
MADAMIRA uses the SAMA analyzer (Graff
et al., 2009) which does not provide functional fea-
tures for gender and number, and rationality, we
extended MADAMIRA’s analyses using the work
of Taji et al. (2018). We further extracted a set
of specific morphological features that we deter-
mined to be relevant from the analysis we did. An
example of the features associated with a sentence
from our corpus is shown in Table 3.

5.2 The Rule-based Model

Given the insights developed from our initial anal-
ysis, we created a simple regular expression that
operates on the morphological features discussed
above. This was intended as a baseline system.
The regular expression captured any context in
which a first-person-singular indicator (e.g., the
pronoun A 	K


@ ÂnA ‘I’, a copular verb or pseudo verb

with first person subject, or a subordinating con-
junction with a first person pronominal clitic) fol-
lowed by a singular rational noun or singular ad-
jective. The gender of the noun or the adjective
determines the label for the sentence (M or F). If
there is no match, the sentence receives the label
B. The rule-based model does not include any lexi-
cal features and does not require any training data.
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Rule-based Lexicalized Delexicalized Joint
P R F1 P R F1 P R F1 P R F1

B 92% 99% 95% 93% 98% 96% 93% 98% 95% 94% 98% 96%
F 96% 56% 71% 84% 65% 73% 91% 65% 75% 90% 72% 80%
M 81% 53% 64% 81% 57% 67% 80% 54% 64% 84% 62% 71%
Average 89% 69% 77% 86% 73% 79% 88% 72% 78% 89% 78% 83%

Table 4: First person singular gender identification results on TEST. P, R, and F1 refer to Precision, Recall and
F1-score, respectively. Average is the Macro Average of values in its column.

5.3 The Machine Learning Models

As part of the development of the machine-
learning models, we experimented with a very
large number of learning algorithms, vectorization
features, and hyper parameters. This included the
use of sentence2vec embeddings trained on large
collections of text, and neural models, which were
not competitive due to the limited training data
size. We only report below on the settings and
models that were determined to be optimal during
development.

We trained three models, all using logistic re-
gression with a liblinear solver, and using features
derived from the input sentences or their morpho-
logical features. For the input sentence, we nor-
malized the Alif/Ya forms. We used character
n-gram features from length 1 to length 7, word
n-gram features (from length 1 to length 7), and
morphological n-gram features (from length 1 to
length 7). We imposed a limit of 20,000 features
on each of the character, word, and morphological
n-grams. All these models were implemented us-
ing the scikit-learn toolkit (Pedregosa et al., 2011).

The three machine learning models are as fol-
lows. The Lexicalized Model only used the input
sentence character and word n-gram features as
presented above. The Delexicalized Model only
used the morphological n-gram features as pre-
sented above. And the Joint Model used both sets
of features concatenated for each sentence.

5.4 Results and Discussion

Table 4 presents the results of the four models de-
scribed above, on the blind TEST set. For each
model, we report the precision (P), recall (R) and
F1-score (F1) for the three labels (B, F, and M),
and their macro averages. While F and M are bal-
anced, B is about 84% of all cases.

With regards to the overall performance, the
Joint model outperforms all models in terms of
macro-average F1. Across all models, the preci-

sion, recall and F1 scores for B are the highest,
which makes sense given the higher proportion of
training data. We tried several techniques for bal-
ancing the corpus, but none improved the over-
all scores. Interestingly, the scores for F are al-
ways higher than M. This may be attributed to the
fact that feminine is the marked feature in Arabic,
where specific endings are easy to detect, e.g., the
feminine singular suffix is �è+ +~.

The Rule-based model is the least performing,
although it is very competitive given that it was
‘human learned’ from 100 examples only (50 B,
and 50 M/F). If we use a comparable training set
(50 B with 50 M and F pairs), the Lexicalized,
Delixicalized and Joint macro average F1 scores
decrease to 56%,54%, and 60%, respectively, all
below the Rule-based model. The Rule-based
model also has very high precision, comparable
to that of the Joint model; but it trades off with
the lowest recall. This is expected and typical of
rule-based models.

The Delexicalized and Lexicalized models have
comparable scores and generally lower precision
and higher recall than the Rule-based model. The
Joint model seems to successfully increase both
recall and precision (with a slight reduction of pre-
cision for F in the Delexicalized model). This sug-
gests that the Joint model brings together comple-
mentary strengths from the Lexicalized and Delex-
icalized models.

6 Automatic First Person Singular
Gender Reinflection

We define the task of first-person-singular gender
reinflection as taking a sentence with an unspeci-
fied first-person-singular gender as input and gen-
erating two gender-appropriate versions, one mas-
culine (B or M) and one feminine (B or F). We
model the task in two ways: (a) as a single re-
inflection system, and (b) as a two-step identify-
then-reinflect system.
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6.1 Gender Reinflection as Character-based
NMT

We recast the gender reinflection task as a MT task
that maps the text from one source gender to a tar-
get gender. We use character-based NMT, which
views the input and output sentences as sequences
of characters rather than words and learn to en-
code and decode at the character-level. The main
reason for this setup is that character-level repre-
sentations are reported to be good in capturing and
learning morphological aspects (Ling et al., 2015;
Kim et al., 2016), which is important for a mor-
phologically rich language like Arabic. Further-
more, character-level NMT modeling requires less
vocabulary and helps reduce out-of-vocabulary by
translating unseen words.

Our character-based NMT system is an
encoder-decoder model that uses the general
global attention architecture introduced by Luong
and Manning (2015). All the NMT models
we use have been trained with the OpenNMT
toolkit (Klein et al., 2017) with no restriction
on the input vocabulary size. Specifically, we
use long short-term memory units (LSTM), with
hidden units of size 500 and 2 layers in both the
encoder and decoder. The model is trained for
13 epochs, using Adam with a learning rate of
0.002 and mini-batches of 40 with no pre-trained
embeddings. Our char-level embeddings are
learned within the training of the model.

Using different combinations of the data sets
presented in Section 4, we build four reinflection
models.

• in-to-M is a model trained to map from the
Balanced Input corpus (and Synthetic F) to
the TargetM corpus (and Synthetic M).

• in-to-F is a model trained to map from the
Balanced Input corpus (and Synthetic M) to
the TargetF corpus (and Synthetic F).

• M-to-F is a model trained to map from the
TargetM corpus (and Synthetic M) to the
TargetF corpus (and Synthetic F).

• F-to-M is a model trained to map from
the TargetF corpus (and Synthetic F) to the
TargetM corpus (and Synthetic M).

Single Direct Reinflection System The first two
models (in-to-M and in-to-F) are used for the sin-
gle system reinflection approach, where no in-
put gender identification is needed. The in-to-M

model is used to generate the M target; and the
in-to-F model is used to generate the F target.

Two-step Identify-then-Reinflect System The
last two models (M-to-F and F-to-M) are used
in the two-step reinflection approach. We use
the output of the best sentence-level Arabic gen-
der identification model (Joint model) described
in Section 5 to identify the gender of the sentence.
Then, we proceed as follows. For the M target, if
the identified input sentence gender is B or M, we
pass the input through as is; otherwise, we rein-
flect the F sentence to M using the F-to-M model.
And vice versa for the F target: if the identified
input sentence gender is B or F, we pass the input
through as is; otherwise, we reinflect the M sen-
tence to F using the M-to-F model.

6.2 Experimental Results and Analysis

The character-based NMT reinflection models are
trained using the 8,566 TRAIN sentence pairs and
the 226,175 synthetic corpus sentence pairs (as
discussed above). The DEV and TEST sets com-
prise 1,224 and 2,448 sentences, respectively. We
compare two input settings: (a) the Balanced In-
put DEV and TEST, and (b) the English-to-Arabic
Google Translate output of the English sentences
corresponding the Balanced Input DEV and TEST,
DEVGT and TESTGT (Section 4). We evaluate
sentence gender reinflection against the DEV and
TEST portions of the TargetF and TargetM cor-
pora as references (also, Section 4). In addition
to the single and two-step system, we include a
“do-nothing” baseline that simply passes the input
to the output as is.

Reinflection Evaluation Reinflection results for
each setup are reported in Table 5 in terms of the
MT metric BLEU (Papineni et al., 2002). It is im-
portant to note that all the reported scores are on
AYT-normalized texts.6 This normalization helps
reduce the number of cases in which Alif, Ya, and
Ta Marbuta are inconsistently represented in the
references. The table specifies columns for Target
M, and Target F, which indicate which reference is
used for evaluation.

For the Balanced Input, the best performance
was achieved using the two-step system. The
BLEU scores are very high because most of the

6AYT refers to the orthographic normalization of Alif-
Hamza forms, Ya/Alif-Maqsura forms, and Ta-Marbuta/Ha
forms (Habash, 2010)
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Balanced Input Google Translate Output
DEV TEST DEVGT TESTGT

Target M F M F M F M F
Baseline 97.12 97.12 97.05 97.05 12.23 11.52 11.91 11.18
Single 95.43 95.64 96.12 95.93 12.92 12.70 12.54 12.08
Two Step 98.00 97.92 98.22 98.31 12.27 11.83 11.96 11.42

Table 5: BLEU results (all AYT normalized) for the Baseline, Single and Select systems on the DEV and TEST
sets of the Balanced Corpus Input (Inputar) and English-Arabic Google Translate output (InputGT ) for both F and
M targets.

words are not changed between input and refer-
ence. The single system in fact introduced errors
that made it worse than the do-nothing baseline.
While in the baseline, 91.75% of DEV sentences
are fully accurate; the two-step system sentence
accuracy is 95.42% (M) and 94.68% (F), a ∼40%
error reduction on average.

For the Google Translate results, the single sys-
tem outperforms the two-step system and the base-
line. On the TESTGT set, the single system has
an 8% relative increase in BLEU score for Target
F, and 5.3% relative increase for Target M. The
BLEU scores are much lower than the Balanced
Input case since the actual input to the Google MT
was English and many gender and non-gender re-
lated translation errors occur. Also, we only have
a single MT reference to compare against. We sus-
pect that the reason the two-step system did not do
as well is that the gender identification component
was not trained with the kind of input (and noise)
generated by MT systems. One possible solution
in the future is to train the gender identification
component with MT/NLP output specifically.

Finally, an interesting side observation from this
experiment is that automatic gender identification
for the Google Translate Arabic output showed a
10-to-1 bias of M versus F, compared to the 50-50
distribution in the Balanced Corpus and the 2-to-1
bias in the Original Corpus. This further confirms
the bias towards masculine forms in single-output
MT systems.

Error Examples in MT output We conducted
a limited analysis to understand the behavior of
the NMT reinflection systems. While there were
many cases that were handled properly, and cases
of under-correction where the input is passed to
the output as is; there were also cases of over-
correction where words that should maintain their
form are treated as gender-specific and modified.

One example is the input word é 	«Y 	«YÊË lldγdγh ‘for
tickling’, which is erroneously turned into the non-
sense word Y 	«YÊË lldγd. There were also a few
cases of very long repetitions in the output; as
well as reduced output – simply leading to sen-
tence length mismatch. All of these phenomena
are unsurprising side effects of using character-
based NMT models. In our experiments, they hap-
pened infrequently, but we plan to address them in
future work.

7 Conclusions and Future Work

We presented an approach to gender identifica-
tion and reinflection that can be used together with
any NLP application that generates text interfac-
ing with users. We also presented the first paral-
lel gender corpus for Arabic. We plan on making
this data set publicly available for research pur-
poses. We demonstrated the use of the corpus in
benchmarking the quality of different systems for
automatic gender identification and reinflection in
the context of producing gender-specific machine
translation. Our results are very promising, but
there is still a lot to improve.

In the future, we plan to extend our work be-
yond first-person sentences, annotate additional
data sets, and explore other techniques for gen-
der identification and reinflection. Among the
techniques to plan to explore is word-level gen-
der identification as a sequence labeling task. For
gender reinflection, we plan to consider the ap-
proaches introduced by Cotterell et al. (2017) and
Zmigrod et al. (2019). We are also planning to ex-
plore opportunities of hybrid approaches that ex-
ploit existing Arabic analysis and generation sys-
tems together with more advanced machine learn-
ing models. Finally, we are interested in expand-
ing this work to include Arabic dialects.
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Abstract

Contextual word embeddings such as BERT
have achieved state of the art performance in
numerous NLP tasks. Since they are optimized
to capture the statistical properties of training
data, they tend to pick up on and amplify so-
cial stereotypes present in the data as well. In
this study, we (1) propose a template-based
method to quantify bias in BERT; (2) show that
this method obtains more consistent results in
capturing social biases than the traditional co-
sine based method; and (3) conduct a case
study, evaluating gender bias in a downstream
task of Gender Pronoun Resolution. Although
our case study focuses on gender bias, the pro-
posed technique is generalizable to unveiling
other biases, including in multiclass settings,
such as racial and religious biases.

1 Introduction

Type-level word embedding models, including
word2vec and GloVe (Mikolov et al., 2013; Pen-
nington et al., 2014), have been shown to exhibit
social biases present in human-generated train-
ing data (Bolukbasi et al., 2016; Caliskan et al.,
2017; Garg et al., 2018; Manzini et al., 2019).
These embeddings are then used in a plethora of
downstream applications, which perpetuate and
further amplify stereotypes (Zhao et al., 2017;
Leino et al., 2019). To reveal and quantify corpus-
level biases is word embeddings, Bolukbasi et al.
(2016) used the word analogy task (Mikolov et al.,
2013). For example, they showed that gendered
male word embeddings like he, man are associated
with higher-status jobs like computer programmer
and doctor, whereas gendered words like she or
woman are associated with homemaker and nurse.

Contextual word embedding models, such as
ELMo and BERT (Peters et al., 2018; Devlin et al.,
2019) have become increasingly common, replac-
ing traditional type-level embeddings and attain-
ing new state of the art results in the majority of

NLP tasks. In these models, every word has a dif-
ferent embedding, depending on the context and
the language model state; in these settings, the
analogy task used to reveal biases in uncontextual-
ized embeddings is not applicable. Recently, May
et al. (2019) showed that traditional cosine-based
methods for exposing bias in sentence embeddings
fail to produce consistent results for embeddings
generated using contextual methods. We find sim-
ilar inconsistent results with cosine-based methods
of exposing bias; this is a motivation to the devel-
opment of a novel bias test that we propose.

In this work, we propose a new method to quan-
tify bias in BERT embeddings (§2). Since BERT
embeddings use a masked language modelling ob-
jective, we directly query the model to measure the
bias for a particular token. More specifically, we
create simple template sentences containing the at-
tribute word for which we want to measure bias
(e.g. programmer) and the target for bias (e.g. she
for gender). We then mask the attribute and target
tokens sequentially, to get a relative measure of
bias across target classes (e.g. male and female).
Contextualized word embeddings for a given to-
ken change based on its context, so such an ap-
proach allows us measure the bias for similar cate-
gories divergent by the the target attribute (§2). We
compare our approach with the cosine similarity-
based approach (§3) and show that our measure of
bias is more consistent with human biases and is
sensitive to a wide range of biases in the model
using various stimuli presented in Caliskan et al.
(2017). Next, we investigate the effect of a specific
type of bias in a specific downstream task: gender
bias in BERT and its effect on the task of Gen-
dered Pronoun Resolution (GPR) (Webster et al.,
2018). We show that the bias in GPR is highly cor-
related with our measure of bias (§4). Finally, we
highlight the potential negative impacts of using
BERT in downstream real world applications (§5).
The code and data used in this work are publicly
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available.1

2 Quantifying Bias in BERT

BERT is trained using a masked language mod-
elling objective i.e. to predict masked tokens, de-
noted as [MASK], in a sentence given the entire
context. We use the predictions for these [MASK]
tokens to measure the bias encoded in the actual
representations.

We directly query the underlying masked lan-
guage model in BERT2 to compute the association
between certain targets (e.g., gendered words)
and attributes (e.g. career-related words). For
example, to compute the association between the
target male gender and the attribute programmer,
we feed in the masked sentence “[MASK] is a
programmer” to BERT, and compute the proba-
bility assigned to the sentence ‘he is a program-
mer” (ptgt). To measure the association, however,
we need to measure how much more BERT prefers
the male gender association with the attribute pro-
grammer, compared to the female gender. We thus
re-weight this likelihood ptgt using the prior bias
of the model towards predicting the male gender.
To do this, we mask out the attribute programmer
and query BERT with the sentence “[MASK] is a
[MASK]”, then compute the probability BERT as-
signs to the sentence ‘he is a [MASK]” (pprior).
Intuitively, pprior represents how likely the word
he is in BERT, given the sentence structure and no
other evidence. Finally, the difference between the
normalized predictions for the words he and she
can be used to measure the gender bias in BERT
for the programmer attribute.

Generalizing, we use the following procedure
to compute the association between a target and
an attribute:

1. Prepare a template sentence
e.g.“[TARGET] is a [ATTRIBUTE]”

2. Replace [TARGET] with [MASK] and com-
pute ptgt=P([MASK]=[TARGET]| sentence)

3. Replace both [TARGET] and [ATTRIBUTE]
with [MASK], and compute prior probability
pprior=P([MASK]=[TARGET]| sentence)

4. Compute the association as log ptgt
pprior

1https://bit.ly/2EkJwh1
2For all experiments we use the uncased version of

BERTBASE https://storage.googleapis.com/
bert_models/2018_10_18/uncased_L-12_
H-768_A-12.zip.

We refer to this normalized measure of associa-
tion as the increased log probability score and the
difference between the increased log probability
scores for two targets (e.g. he/she) as log proba-
bility bias score which we use as measure of bias.
Although this approach requires one to construct
a template sentence, these templates are merely
simple sentences containing attribute words of in-
terest, and can be shared across multiple targets
and attributes. Further, the flexibility to use such
templates can potentially help measure more fine-
grained notions of bias in the model.

In the next section, we show that our proposed
log probability bias score method is more effec-
tive at exposing bias than traditional cosine-based
measures.

3 Correlation with Human Biases

We investigate the correlation between our mea-
sure of bias and human biases. To do this, we
apply the log probability bias score to the same
set of attributes that were shown to exhibit human
bias in experiments that were performed using the
Implicit Association Test (Greenwald et al., 1998).
Specifically, we use the stimuli used in the Word
Embedding Association Test (WEAT) (Caliskan
et al., 2017).
Word Embedding Association Test (WEAT):
The WEAT method compares set of target con-
cepts (e.g. male and female words) denoted as X
and Y (each of equal size N ), with a set of at-
tributes to measure bias over social attributes and
roles (e.g. career/family words) denoted as A and
B. The degree of bias for each target concept t is
calculated as follows:

s(t, A,B) = [meana∈Asim(t, a)− meanb∈Bsim(t, b)],

where sim is the cosine similarity between the em-
beddings. The test statistics is

S(X,Y,A,B) = [meanx∈Xs(x,A,B)−
meany∈Y s(y,A,B)],

where the test is a permutation test over X and Y .
The p-value is computed as

p = Pr[S(Xi, Yi, A,B) > S(X,Y,A,B)]

The effect size is measured as

d =
S(X,Y,A,B)

stdt∈X∪Y s(t, A,B)
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Category Templates
Pleasant/Unpleasant (Insects/Flowers) T are A, T is A
Pleasant/Unpleasant (EA/AA) T are A, T is A
Career/Family (Male/Female) T likes A, T like A, T is interested in A
Math/Arts (Male/Female) T likes A, T like A, T is interested in A
Science/Arts (Male/Female) T likes A, T like A, T is interested in A

Table 1: Template sentences used for the WEAT tests (T: target, A: attribute)

Category Targets Templates
Pleasant/Unpleasant (Insects/Flowers) flowers,insects,flower,insect T are A, the T is A
Pleasant/Unpleasant (EA/AA) black, white T people are A, the T person is A
Career/Family (Male/Female) he,she,boys,girls,men,women T likes A, T like A, T is interested in A
Math/Arts (Male/Female) he,she,boys,girls,men,women T likes A, T like A, T is interested in A
Science/Arts (Male/Female) he,she,boys,girls,men,women T likes A, T like A, T is interested in A

Table 2: Template sentences used and target words for the grammatically correct sentences (T: target, A: attribute)

It is important to note that the statistical test is a
permutation test, and hence a large effect size does
not guarantee a higher degree of statistical signifi-
cance.

3.1 Baseline: WEAT for BERT

To apply the WEAT method on BERT, we first
compute the embeddings for target and attribute
words present in the stimuli using multiple tem-
plates, such as “TARGET is ATTRIBUTE” (Re-
fer Table 1 for an exhaustive list of templates used
for each category). We mask the TARGET to
compute the embedding3 for the ATTRIBUTE and
vice versa. Words that are absent in the BERT vo-
cabulary are removed from the targets. We ensure
that the number of words for both targets are equal,
by removing random words from the smaller tar-
get set. To confirm whether the reduction in vo-
cabulary results in a change of p-value, we also
conduct the WEAT on GloVe with the reduced vo-
cabulary.4

3.2 Proposed: Log Probability Bias Score

To compare our method measuring bias, and to
test for human-like biases in BERT, we also com-
pute the log probability bias score for the same
set of attributes and targets in the stimuli. We
compute the mean log probability bias score for
each attribute, and permute the attributes to mea-
sure statistical significance with the permutation
test. Since many TARGETs in the stimuli cause
the template sentence to become grammatically

3We use the outputs from the final layer of BERT as em-
beddings

4WEAT was originally used to study the GloVe embed-
dings

incorrect, resulting in low predicted probabili-
ties, we fixed the TARGET to common pro-
nouns/indicators of category such as flower, he,
she (Table 2 contains a full list of target words and
templates). This avoids large variance in predicted
probabilities, leading to more reliable results. The
effect size is computed in the same way as the
WEAT except the standard deviation is computed
over the mean log probability bias scores.

We experiment over the following categories
of stimuli in the WEAT experiments: Category 1
(flower/insect targets and pleasant/unpleasant at-
tributes), Category 3 (European American/African
American names and pleasant/unpleasant at-
tributes), Category 6 (male/female names and ca-
reer/family attributes), Category 7 (male/female
targets and math/arts attributes) and Category 8
(male/female targets and science/arts attributes).

3.3 Comparison Results

The WEAT on GloVe returns similar findings
to those of Caliskan et al. (2017) except for
the European/African American names and pleas-
ant/unpleasant association not exhibiting signifi-
cant bias. This is due to only 5 of the African
American names being present in the BERT vo-
cabulary. The WEAT for BERT fails to find any
statistically significant biases at p < 0.01. This
implies that WEAT is not an effective measure
for bias in BERT embeddings, or that methods for
constructing embeddings require additional inves-
tigation. In contrast, our method of querying the
underlying language model exposes statistically
significant association across all categories, show-
ing that BERT does indeed encode biases and that
our method is more sensitive to them.
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Category WEAT on GloVe WEAT on BERT Ours on BERT
Log Probability Bias Score

Pleasant/Unpleasant (Insects/Flowers) 1.543* 0.6688 0.8744*
Pleasant/Unpleasant (EA/AA) 1.012 1.003 0.8864*
Career/Family (Male/Female) 1.814* 0.5047 1.126*
Math/Arts (Male/Female) 1.061 0.6755 0.8495*
Science/Arts (Male/Female) 1.246* 0.8815 0.9572*

Table 3: Effect sizes of bias measurements on WEAT Stimuli. (* indicates significant at p < 0.01)

Gender Prior Prob. Avg. Predicted Prob.

Male 10.3% 11.5%
Female 9.8% 13.9%

Table 4: Probability of pronoun referring to neither
entity in a sentence of GPR

4 Case Study: Effects of Gender Bias on
Gendered Pronoun Resolution

Dataset We examined the downstream effects of
bias in BERT using the Gendered Pronoun Res-
olution (GPR) task (Webster et al., 2018). GPR
is a sub-task in co-reference resolution, where a
pronoun-containing expression is to be paired with
the referring expression. Since pronoun resolving
systems generally favor the male entities (Webster
et al., 2018), this task is a valid test-bed for our
study. We use the GAP dataset5 by Webster et al.
(2018), containing 8,908 human-labeled ambigu-
ous pronoun-name pairs, created from Wikipedia.
The task is to classify whether an ambiguous pro-
noun P in a text refers to entity A, entity B or nei-
ther. There are 1,000 male and female pronouns
in the training set each, with 103 and 98 of them
not referring to any entity in the sentence, respec-
tively.

Model We use the model suggested on Kaggle,6

inspired by Tenney et al. (2019). The model uses
BERT embeddings for P , A and B, given the con-
text of the input sentence. Next, it uses a multi-
layer perceptron (MLP) layer to perform a naive
classification to decide if the pronoun belongs to
A, B or neither. The MLP layer uses a single hid-
den layer with 31 dimensions, a dropout of 0.6 and
L2 regularization with weight 0.1.

Results Although the number of male pronouns
associated with no entities in the training data is

5https://github.com/
google-research-datasets/gap-coreference

6https://www.kaggle.com/mateiionita/
taming-the-bert-a-baseline

slightly larger, the model predicted the female pro-
noun referring to no entities with a significantly
higher probability (p = 0.007 on a permutation
test); see Table 4. As the training set is balanced,
we attribute this bias to the underlying BERT rep-
resentations.

We also investigate the relation between the
topic of the sentence and model’s ability to as-
sociate the female pronoun with no entity. We
first extracted 20 major topics from the dataset us-
ing non-negative matrix factorization (Lee and Se-
ung, 2001) (refer to Appendix for the list of top-
ics). We then compute the bias score for each
topic as the sum of the log probability bias score
for the top 15 most prevalent words of each topic
weighted by their weights within the topic. For
this, we use a generic template “[TARGET] are in-
terested in [ATTRIBUTE]” where TARGET is ei-
ther men or women. Next we compute a bias score
for each sample in the training data as the sum
of individual bias scores of topics present in the
sample, weighted by the topic weights. Finally,
we measured the Spearman correlation coefficient
to be 0.207 (which is statistically significant with
p = 4e − 11) between the bias scores for male
gender across all samples and the model’s proba-
bility to associate a female pronoun with no entity.
We conclude that models using BERT find it chal-
lenging to perform coreference resolution when
the gender pronoun is female and if the topic is
biased towards the male gender.

5 Real World Implications

In previous sections, we discussed that BERT has
human-like biases, which are propagated to down-
stream tasks. In this section, we discuss an-
other potential negative impact of using BERT in
a downstream model. Given that three quarters of
US employers now use social media for recruiting
job candidates (Segal, 2014), many applications
are filtered using job recommendation systems and
other AI-powered services. Zhao et al. (2018)
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discussed that resume filtering systems are biased
when the model has strong association between
gender and certain professions. Similarly, certain
gender-stereotyped attributes have been strongly
associated with occupational salary and prestige
(Glick, 1991). Using our proposed method, we
investigate the gender bias in BERT embeddingss
for certain occupation and skill attributes.
Datasets: We use three datasets for our study of
gender bias in employment attributes:

• Employee Salary Dataset7 for Montgomery
County of Maryland- Contains 6882 in-
stances of “Job Title” and “Salary” records
along with other attributes. We sort this
dataset in decreasing order of salary and take
the first 1000 instances as a proxy for high-
paying and prestigious jobs.

• Positive and Negative Traits Dataset8- Con-
tains a collection of 234 and 292 adjectives
considered “positive” and “negative” traits,
respectively.

• O*NET 23.2 technology skills9 Contains
17649 unique skills for 27660 jobs, which are
posted online

Discussion We used the following two templates
to measure gender bias:

• “TARGET is ATTRIBUTE”, where TAR-
GET are male and female pronouns viz. he
and she. The ATTRIBUTE are job titles from
the Employee Salary dataset, or the adjec-
tives from the Positive and Negative traits
dataset.

• “TARGET can do ATTRIBUTE”, where
the TARGETs are the same, but the AT-
TRIBUTE are skills from the O*NET
dataset.

Table 5 shows the percentage of attributes that
were more strongly associated with the male than
the female gender. The results prove that BERT
expresses strong preferences for male pronouns,
raising concerns with using BERT in downstream
tasks like resume filtering.

7https://catalog.data.gov/dataset/
employee-salaries-2017

8http://ideonomy.mit.edu/essays/
traits.html

9https://www.onetcenter.org/database.
html#individual-files

Dataset Percentage

Salary 88.5%
Pos-Traits 80.0%
Neg-Traits 78.9%
Skills 84.0%

Table 5: Percentage of attributes associated more
strongly with the male gender

6 Related Work

NLP applications ranging from core tasks such
as coreference resolution (Rudinger et al., 2018)
and language identification (Jurgens et al., 2017),
to downstream systems such as automated essay
scoring (Amorim et al., 2018), exhibit inherent so-
cial biases which are attributed to the datasets used
to train the embeddings (Barocas and Selbst, 2016;
Zhao et al., 2017; Yao and Huang, 2017). There
have been several efforts to investigate the amount
of intrinsic bias within uncontextualized word em-
beddings in binary (Bolukbasi et al., 2016; Garg
et al., 2018; Swinger et al., 2019) and multiclass
(Manzini et al., 2019) settings.

Contextualized embeddings such as BERT (De-
vlin et al., 2019) and ELMo (Peters et al., 2018)
have been replacing the traditional type-level em-
beddings. It is thus important to understand the ef-
fects of biases learned by these embedding models
on downstream tasks. However, it is not straight-
forward to use the existing bias-exposure methods
for contextualized embeddings. For instance, May
et al. (2019) used WEAT on sentence embeddings
of ELMo and BERT, but there was no clear indica-
tion of bias. Rather, they observed counterintuitive
behavior like vastly different p-values for results
concerning gender.

Along similar lines, Basta et al. (2019) noted
that contextual word-embeddings are less biased
than traditional word-embeddings. Yet, biases
like gender are propagated heavily in downstream
tasks. For instance, Zhao et al. (2019) showed
that ELMo exhibits gender bias for certain pro-
fessions. As a result, female entities are pre-
dicted less accurately than male entities for certain
occupation words, in the coreference resolution
task. Field and Tsvetkov (2019) revealed biases
in ELMo embeddings that limit their applicability
across data domains. Motivated by these recent
findings, our work proposes a new method to ex-
pose and measure bias in contextualized word em-
beddings, specifically BERT. As opposed to previ-
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ous work, our measure of bias is more consistent
with human biases. We also study the effect of this
intrinsic bias on downstream tasks, and highlight
the negative impacts of gender-bias in real world
applications.

7 Conclusion

In this paper, we showed that querying the under-
lying language model can effectively measure bias
in BERT and expose multiple stereotypes embed-
ded in the model. We also showed that our mea-
sure of bias is more consistent with human-biases,
and outperforms the traditional WEAT method on
BERT. Finally we showed that these biases can
have negative downstream effects. In the future,
we would like to explore the effects on other
downstream tasks such as text classification, and
device an effective method of debiasing contextu-
alized word embeddings.
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Appendix

Topic Id Top 5 Words
1 match,round,second,team,season
2 times,city,jersey,york,new
3 married,son,died,wife,daughter
4 best,award,actress,films,film
5 friend,like,work,mother,life
6 university,music,attended,high,school
7 president,general,governor,party,state
8 songs,solo,song,band,album
9 medal,gold,final,won,world
10 best,role,character,television,series
11 kruse,moved,amy,esme,time
12 usa,trunchbull,pageant,2011,miss
13 american,august,brother,actress,born
14 sir,died,church,song,john
15 natasha,days,hospital,helene,later
16 played,debut,sang,role,opera
17 january,december,october,july,married
18 academy,member,american,university,family
19 award,best,played,mary,year
20 jersey,death,james,king,paul

Table 6: Extracted topics for the GPR dataset
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Abstract

Ethics regarding social bias has recently
thrown striking issues in natural language pro-
cessing. Especially for gender-related topics,
the need for a system that reduces the model
bias has grown in areas such as image caption-
ing, content recommendation, and automated
employment. However, detection and evalua-
tion of gender bias in the machine translation
systems are not yet thoroughly investigated,
for the task being cross-lingual and challeng-
ing to define. In this paper, we propose a
scheme for making up a test set that evalu-
ates the gender bias in a machine translation
system, with Korean, a language with gender-
neutral pronouns. Three word/phrase sets are
primarily constructed, each incorporating pos-
itive/negative expressions or occupations; all
the terms are gender-independent or at least
not biased to one side severely. Then, addi-
tional sentence lists are constructed concern-
ing formality of the pronouns and politeness
of the sentences. With the generated sentence
set of size 4,236 in total, we evaluate gender
bias in conventional machine translation sys-
tems utilizing the proposed measure, which is
termed here as translation gender bias index
(TGBI). The corpus and the code for evalua-
tion is available on-line1.

1 Introduction

Gender bias in natural language processing (NLP)
has been an issue of great importance, especially
among the areas including image semantic role la-
beling (Zhao et al., 2017), language modeling (Lu
et al., 2018), and coreference resolution (Lu et al.,
2018; Webster et al., 2018). Along with these, the
bias in machine translation (MT) was also claimed
recently regarding the issue of gender dependency
in the translation incorporating occupation (Prates
et al., 2018; Kuczmarski and Johnson, 2018). That

1https://github.com/nolongerprejudice/tgbi

Figure 1: Occupation gender bias shown in some KR-
EN (Korean-English) translation systems. Note that un-
like this figure, Yale romanization is utilized in the rest
of this paper.

is, the prejudice within people, e.g., cops are usu-
ally men or nurses are usually women, which is
inherent in corpora, assigns bias to the MT models
trained with them.

State-of-the-art MT systems or the ones in ser-
vice are based on large-scale corpora that incorpo-
rate various topics and text styles. Usually, sen-
tence pairs for training are fed into the seq2seq
(Sutskever et al., 2014; Bahdanau et al., 2014) or
Transformer (Vaswani et al., 2017)-based models,
where the decoding process refers to thought vec-
tor of the source data to infer a plausible transla-
tion (Cho et al., 2014). Under some circumstances,
this may incur an association of gender-specified
pronouns (in the target) and gender-neutral ones
(in the source) for lexicon pairs that frequently col-
locate in the corpora. We claim that this kind of
phenomenon seriously threatens the fairness of a
translation system, in the sense that it lacks gener-
ality and inserts social bias to the inference. More-
over, the output is not fully correct (considering
gender-neutrality) and might offend the users who
expect fairer representations.

The aforementioned problem exists in Korean
as well (Figure 1). To look more into this, here
we investigate the issue with the gender-neutral
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pronouns in Korean, using the lexicons regarding
sentiment and occupation. We provide the sen-
tences of the template “걔는 [xx]-해 (kyay-nun
[xx]-hay), S/he is [xx] ”, as in Prates et al. (2018),
to the translation system, and evaluate the bias ob-
served from the portion of pronouns being trans-
lated into female/male/neither. Here, [xx] denotes
either a sentiment word regarding one’s judgment
towards the third person (polar), or an occupa-
tion word (neutral). Since kyay in Korean, which
refers to s/he, is gender-neutral thus the transla-
tion output of the sentence becomes either “She
is [xx]”, “He is [xx]”, or “The person is [xx]”.
Although the expressions as used in the last out-
put are optimal, they are not frequently utilized
in conventional translation systems. Also, such re-
sult is difficult to be mechanically achieved since
transforming all the gender-related pronouns to the
neutral ones may cause loss of information, in the
circumstances where the context is given (e.g., To
tell you one thing about her, [she] is [xx]).

In this study, we collect a lexicon set of the size
of 1,059 for the construction of an equity evalua-
tion corpus (EEC) (Kiritchenko and Mohammad,
2018), specifically 324 sentiment-related phrases
and 735 occupation words. For each sentence of
the above template containing a lexicon, along
with an alternative pronoun (formal version) and
a politeness suffix (on/off), we eventually obtain
4,236 utterances to make up the EEC. We claim
the following as contributions of this paper:

• Construction of a corpus with template
sentences that can check the preservation
of gender-neutrality in KR-EN translation
(along with a detailed guideline)
• A measure to evaluate and compare the per-

formance of translation systems regarding the
preservation of gender neutrality of pronouns
• Rigorous contemplation on why the preserva-

tion of gender neutrality has to be guaranteed
in translation

In the following sections, after an introduction
to the literature, we describe how we made up the
corpus, and how it is utilized in evaluating the con-
ventional machine translation systems in service.

2 Related Work

It is essential to clarify the legitimate ground for
the necessity of mitigating gender bias in machine
learning models. For example, Binns (2017) sug-
gests that it should be considered as a problem of

individuality and context, rather than of statistics
and system. The paper poses a question on the fair-
ness of fairness utilized in fair machine learning,
and concludes that the fairness issue in algorithmic
decision-making should be treated in a contextu-
ally appropriate manner, along with the points that
may hinge on the factors which are not typically
present in the data available in situ. Although lit-
tle study has been undertaken in the field of ethics
in translation, we have plentiful research on the
call for mitigation of gender bias in NLP models.

One of them is image semantic role labeling, as
suggested in Zhao et al. (2017). It is claimed that
due to the bias in the image/caption pairs that as-
sociate specific verb/mood with a specific gender,
e.g., warm tone kitchen and cooking with women;
the trained model infers the wrong gender in the
captioning of some images. The primary reason is
assumed to be a lack of data with cooking males
in warm tone kitchen. However, since data aug-
mentation for all the imbalance is costly and not
promising, the paper proposes giving a constraint
in the training phase in the way of disassociating
verbs and gender information.

Other areas where gender bias is observed are
classification and recommendation, as represented
in a recent article2; in Amazon AI recruiting, the
system came out to recommend the applicants who
had sufficient work experience in the field, in most
cases male. This incident does not merely mean
that the data concerning female occupies much
smaller volume than male; it also conveys that
so-called “good” applicants were selected in per-
spective of choosing experienced and industrious
workers who might have been less forced to devote
their time to housework or childcare. However, it
is questionable that forcing the dataset to be bal-
anced by making the portion of female employ-
ment half is a sound solution. Instead, this is about
disentangling the factors that are less directly re-
lated to working ability.

Above kind of disentanglement is required as
well in the area of inference; for instance, a shared
task of GenderBiasNLP3. For such a task, re-
searchers find how contextual factors can be dis-
associated with gender information. In this pa-
per, a similar problem is discussed in cross-lingual
perspective. Along with the articles that pose the

2https://www.reuters.com/article/us-amazon-com-jobs-
automation-insight/amazon-scraps-secret-ai-recruiting-tool-
that-showed-bias-against-women-idUSKCN1MK08G

3https://www.kaggle.com/c/gendered-pronoun-resolution
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problem4, some studies have been done in an
empirical viewpoint (as coreference resolution in
translation) including Kuczmarski and Johnson
(2018). In Prates et al. (2018) which is the clos-
est to this work, twelve languages are investi-
gated with about 1,000 occupations and 21 adjec-
tives, with a template sentence, demonstrating a
strong male dependency within Google translator.
However, albeit its syntax being similar to that of
Japanese, Korean was omitted due to some techni-
cal reasons. Here, we make the first known attempt
to create a concrete scheme for evaluating the gen-
der bias of KR-EN translation systems regarding
sentiment words and occupations, and propose a
measure for an inter-system comparison. Also, we
state that mitigated male dependency does not nec-
essarily mean that the system bias has reduced,
rather it can imply that another social bias has been
involved.

3 Proposed Method

In this section, we describe how the EEC is created
and how it is utilized in evaluating gender bias in
the MT models.

3.1 Corpus generation

The corpus generation scheme can be compared
with Burlot and Yvon (2017) in the sense that var-
ious morpho-syntactic/semantic features are taken
into account. However, here we focus more on
making the template sentences help discern the
gender bias regarding the translation of gender-
neutral pronouns.

3.1.1 Gender-neutral pronouns
The first thing to be clarified is the distinction of
gender-neutral words in Korean. Unlike some lan-
guages such as German, the Korean language does
not incorporate grammatical gender. However, for
the third person pronouns, there exist ‘그녀 (ku-
nye), she’ and ‘그 (ku), he’, which are clearly
gender-specific. Therefore, in some cases, to avoid
specifying a gender (e.g., in case the speaker asks
the addressee about a person whose gender is not
identified), the speakers use gender-neutral pro-
nouns such as ‘걔 (kyay), s/he’5, which is widely
used to indicate somebody that does not partici-

4https://qz.com/1141122/google-translates-gender-bias-
pairs-he-with-hardworking-and-she-with-lazy-and-other-
examples/

5An abbreviated form of ‘그애 (ku ay), the child’.

pate in the conversation (and who the speakers al-
together know).

Note that for a native speaker, kyay indicates
someone who is younger than or the same age as
the speaker, in an informal way. Thus, ‘그 사람
(ku salam), the person’ was adopted in this study
as well, as a variation of kyay to assign formal-
ity to the utterances. For both kyay and ku salam,
topic marker ‘은/는 (un/nun), is’ was agglutinated
to disambiguate the objectivity. In other words, all
the sentiment words or the occupations introduced
in the following paragraphs denote the property re-
garding the topic (the pronoun) of the sentence.

3.1.2 Sentiment words
Sentiment words in category of positive and neg-
ative polarity lexicons were collected from the
Korean Sentiment Word Dictionary published by
Kunsan National University6. The corpus is re-
ported to be constructed by majority voting of
at least three people. Among the total of 14,843
items including single words and phrases, we
only took roots into account, finally obtaining 124
and 200 items for positive and negative polarity
words. We selected not only single words such as
‘상냥한 (sangnyanghan), kind, positive’, but also
phrases such as ‘됨됨이가 뛰어난 (toymtoymika
ttwienan), be good in manner, positive’, some-
times including verb phrases such as ‘함부로말하
는 (hampwulo malhanun), bombard rough words,
negative’. Additional adverbs were not utilized in
the sentence generation.

In investigating the appropriateness of the sen-
timent words, two factors were considered: first,
does the sentiment word belong to the category of
the positive or negative lexicon? And second, does
it incorporate any prejudice if categorized into
positive or negative? For the first question, three
Korean native speakers examined the EEC and left
only the lexicons with the complete consensus.
For the second question, we removed the words
regarding appearance (e.g., pretty, tall), richness
(e.g., rich, poor), sexual orientation (e.g., ho-
mosexual), disability (e.g., challenged), academic
background (e.g., uneducated), occupation or sta-
tus (e.g., doctor, unemployed), etc. This was also
thoroughly checked.

3.1.3 Occupations
Occupation, which was not incorporated in the
previous section since assigning sentiment polar-

6http://dilab.kunsan.ac.kr/knusl.html
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ity to it may not guarantee fairness, was taken into
account to form a separate corpus. We searched
for the official terms of each job and put them in
the template “S/he is [xx].”7. The occupation list
of size 735 was collected from an official govern-
ment web site for employment8 and was checked
for redundancy.

In choosing the occupations, gender-specificity
had to be concealed, which is disclosed in words
like “발레리노 (palleylino), ballerino” or “해녀
(haynye), woman diver”. Also, the words that con-
vey hate against specific groups of people were
omitted. By this, we made sure that the occupa-
tion words are free from sentiment polarity, even
though some may be listed in the sentiment word
dictionary.

3.1.4 Politeness suffix
Finally, the suffix “요 (yo)” was considered in as-
signing politeness to the sentences. It is usually at-
tached at the end of the sentence; if a straightfor-
ward attachment is not available, then the last part
of the sentence is transformed to guarantee the ut-
terance being polite. Overall, the criteria regard-
ing the construction scheme of the test set com-
prise three factors; formality, politeness, and po-
larity (occupation: neutral).

3.2 Measure
For any set of sentences S where each sentence
contains a pronoun of which the gender-neutrality
should be preserved in translation, let pw be the
portion of the sentences translated as female, pm
as male, and pn as gender-neutral9. Then we have
the following constraints:

pw + pm + pn = 1

0 ≤ pw, pm, pn ≤ 1
(1)

Consequently, by defining

Ps =
√
pwpm + pn (2)

we might be able to see how the translation is far
from guaranteeing gender neutrality. Note that the
measure is between 0 and 1, from constraint (1)10;

7Here, we notice that the Korean template differs regard-
ing the role of [xx]; if [xx] is noun phrase then the template
becomes “걔는 [xx]야 (kay-nun [xx]-ya)”, incorporating -ya
instead of -hay which fits with the modifiers.

8https://www.work.go.kr
9pw regards words such as she, her, woman, girl, and pm

regards he, him, man, guy, boy. Others including the person
were associated with pn.

10The proof is provided in the appendix A.

maximum when pn is 1 and minimum when ei-
ther pw or pm is 1. This condition matches with
the ideal goal of assigning gender-neutrality to
pronouns in context-free situations, and also with
the viewpoint that random guess of female/male
yields the optimum for a fixed pn.

For all the sentence sets namely S1 · · ·Sn and
the corresponding scores PS1 · · ·PSn , we define
the average value P = AV G(PSi) as a trans-
lation gender bias index (TGBI) of a translation
system, which yields 1 if all the predictions incor-
porate gender-neutral terms. Si can be associated
with whatever corpus that is utilized. Here, non-
weighted arithmetic average is used so that the
aspects investigated in each sentence set are not
overlooked for its small volume.

3.2.1 A remark on interpretation
At this point, we want to point out that two factors
should be considered in analyzing the result. The
first one is the bias caused by the volume of ap-
pearance in corpora (VBias), and the other is the
bias caused by the social prejudice which is pro-
jected in the lexicons utilized (SBias).

We assumed that VBias leans toward males and
that low pw might be obtained overall, which came
out to be generally correct. However, pw being rel-
atively high (among sentence sets) does not nec-
essarily mean that the bias is alleviated; rather
it can convey the existence of SBias, which as-
signs female-related translation for some senti-
ment words or occupations. In other words, we
cannot guarantee here that the translation sys-
tem that shows higher pw with a specific sentence
set substantiates their not being biased, consider-
ing both volume-related and social bias-related as-
pects.

3.2.2 Why the measure?
Despite the limitation of the proposed measure, as
explained above, we claim that using the measure
may be meaningful for some reasons. First, the
measure adopts square root function to reduce the
penalty of the result being gender-specific, taking
into account that many conventional translation
systems yield gender-specific pronouns as output.
Secondly, we evaluate the test result with the var-
ious sentence sets that comprise the corpus, not
just with a single set. This makes it possible for
the whole evaluation process to assess gender bias
regarding various topics. Finally, although it is un-
clear if the enhancement of PSi for some Si orig-
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Sentence set [size] Google Translator (GT) Naver Papago (NP) Kakao Translator (KT)
(a) Informal [2,118] 0.4018 (0.2025, 0.0000) 0.3936 (0.1916, 0.0000) 0.1750 (0.0316, 0.0000)
(b) Formal[2,118] 0.0574 (0.0000, 0.0033) 0.0485 (0.0014, 0.0009) 0.0217 (0.0000, 0.0004)
(c) Impolite[2,118] 0.3115 (0.1062, 0.0023) 0.3582 (0.1506, 0.0004) 0.1257 (0.0155, 0.0004)

(d) Polite[2,118] 0.2964 (0.0963, 0.0009) 0.2724 (0.0807, 0.0000) 0.1256 (0.0160, 0.0000)
(e) Negative [800] 0.3477 (0.1362, 0.0037) 0.1870 (0.0350, 0.0012) 0.1311 (0.0175, 0.0000)
(f) Positive [496] 0.4281 (0.2358, 0.0040) 0.2691 (0.0786, 0.0000) 0.1259 (0.0161, 0.0000)

(g) Occupation [2,940] 0.2547 (0.0690, 0.0006) 0.2209 (0.0496, 0.0017) 0.1241 (0.0153, 0.0003)
Average 0.2992 0.2499 0.1184

Table 1: The overall evaluation result for three conventional KR-EN translation systems. Note that the values for
the sentence sets (a-g) denote Ps (pw, pn) for each sentence set S. The bold lines denote the sentence set with
which each translator shows the highest score.

inates in relieved VBias or inserted SBias, the av-
eraged value P is expected to be used as a repre-
sentative value for inter-system comparison, espe-
cially if the gap between the systems is noticeable.

4 Evaluation

For evaluation we investigate seven sentence sets
in total, namely (a) informal, (b) formal, (c) impo-
lite, (d) polite, (e) negative, (f) positive, and (g) oc-
cupation. (a-d) contains 2,118 sentences each and
(e-g) contains 800, 496, and 2,940 each. The va-
lidity of investigating multiple sentence subsets is
to be stated briefly in the appendix B.

In this study, we evaluate three conventional
translation systems in service, namely Google
translator (GT)11, Naver Papago12 (NP), and
Kakao translator (KT)13. Overall, GT scored the
highest and KT the lowest. We conduct additional
analysis to catch the meaning beyond the numbers.

4.1 Quantitative analysis

VBias is primarily assumed to be shown by pm
dominating the others (Table 1). However, in some
cases, VBias is attenuated if SBias is projected into
the translation output in the way of heightening
pw.

4.1.1 Content-related features
Considering the result with the sentence sets (e-g)
which are content-related, the tendency turned out
to be different by the systems; GT and NP show
relatively low score with positive sentiment words
and KT with negative sentiment words. We sus-
pected at first that the negative sentiment words
would be highly associated with translation into a

11https://translate.google.com/
12https://papago.naver.com/
13https://translate.kakao.com/

female, but the result proves otherwise. Instead, in
GT and NP, (f) the positive case shows relatively
more frequent inference as female compared with
(e) the negative case, although the absolute value
suggests that there exists VBias towards men.

For all the systems, intra-system analysis
demonstrates that the result regarding occupation
is more biased than the others. Except for NP, the
social bias inserted in the models seems to lower
the score regarding (g). This is to be investigated
more rigorously in the qualitative analysis.

4.1.2 Style-related features

The sentences in the set (b), with formal and
gender-neutral pronouns, turned out to be signif-
icantly biased to male compared with (a) the in-
formal cases, which was beyond our expectations.
From this, we could cautiously infer that corpora
incorporating relatively formal expressions (such
as news article, technical report, papers, etc.) gen-
erally associate the sentiment or occupation words
with males. With respect to politeness, the systems
did not show a significant difference between (c)
and (d). We infer that the politeness factor does
not affect the tendency of translation much since
it is largely related to the colloquial expressions
which might not have been employed in the train-
ing session.

The result regarding formality reminds us of the
phenomenon which has been discerned in the chal-
lenge on author profiling (Martinc et al., 2017),
that the formal style is known to be predictive for
identifying male authors. Undoubtedly, the iden-
tity of a writer is not direct evidence of s/he uti-
lizing the expressions biased to specific gender in
writing. However, a tendency has been reported
that the male writers frequently assume or refer to
male subject and topic, either unconsciously or to
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follow the convention, in the formal writing (Arg-
amon et al., 2003). Also, it cannot be ignored that
the males are more engaged in formal writing in
the real world14, accounting for a large portion
of the corpora. Thus, it seems not unreasonable
to claim that, although controversial, the positive
correlation between the formal text style and the
male-related translation might have been affected
by the occupation gender ratio15.

The result regarding sentence style-related fea-
tures shows that in giving constraint to prevent the
association of gender-related features and contents
while training, at least in KR-EN translation, the
formality of expressions should not be neglected
since it is largely influenced by the context in the
corpora where the expressions and contents be-
long to, and even real world factors. Politeness
turned out not to be a severe influence, but the po-
liteness suffix can still reflect the relationship be-
tween the speakers, affecting the type of conversa-
tion that takes place.

4.2 Qualitative analysis
In brief, translation into male dominates due to
the bias in volume, and social bias is represented
mainly in the way of informal pronouns being
translated into a female with relative frequency,
although the content-related features do not neces-
sarily prove it to be so. However, qualitative evalu-
ation is indispensable for a comprehensive under-
standing of the bias since the quantitative result
only informs us of the number, not the semantics.

The most significant result was that of occupa-
tions. GT reflects the bias that is usually intimated
by people (e.g., experts such as engineers, techni-
cians, professors are usually men, and art/beauty-
related positions such as fashion designer, hair-
dresser are mainly held by women), and KT shows
the volume dominance of male in the corpus (over-
all score lower than GT and NP in Table 1), with
rare female cases related to design or nursing.
As stated in Section 4.1, we interpreted the re-
sult regarding GT as permeated SBias attenuating
VBias, and KT as VBias not attenuated.

In analyzing the result for NP, we observed
some unexpected inferences such as researchers
and engineers significantly being translated into
female pronoun and cuisine-related occupations
into male, which is different from social prejudice

14E.g., journalists, engineers, researchers; considering the
gender ratio statistics.

15As in https://www.bls.gov/cps/cpsaat11.htm

posed by GT or KT. We assume this phenomenon
as a result of technical modification performed by
NP team to reduce the gender bias in translat-
ing pronouns regarding occupations. The modifi-
cation seems to mitigate both VBias and SBias in
a positive way, although the final goal should be
a guaranteed utilization of gender-neutral expres-
sions rather than a half-half guess.

4.3 Comparison with other schemes

Although the scope and aim do not precisely over-
lap, we find it beneficial for our argument to com-
pare the previous studies with ours. In Kuczmarski
and Johnson (2018), the paper mainly aims to
perform post-processing that yields gender non-
biased result in pronoun translation for Turkish,
but no specific description of the evaluation was
accompanied. In Lu et al. (2018), a score function
on evaluating bias was suggested as a portion of
matched pair among masked occupations. How-
ever, the task was not on translation, and we es-
chew using the suggested type of linear computa-
tion so as to avoid the arithmetic average (TGBI)
not revealing the different performance on various
sentence sets. Most recently, Prates et al. (2018)
utilized a heat map regarding occupation and ad-
jectives in 12 languages to evaluate Google trans-
lator. They computed the p-values relative to the
null hypothesis that the number of translated male
pronouns is not significantly higher than that of fe-
male pronouns, with a significance level of α = .05.
They obtained the outliers in Finnish, Hungarian,
and Basque notably, but the study on Korean was
omitted, and the work only incorporates a single
sentence style, probably for simplicity.

Note that the aforementioned approaches are
not aimed to evaluate multiple translation systems
quantitatively, and omit the portion of gender-
neutral pronouns in translation output; which are
the strong points of utilizing the proposed EEC
and measure for the evaluation of translation gen-
der bias. Also, we take into account both VBias
and SBias in the analysis, of which neither side
should be underestimated. For example, someone
might assume that occupation gender bias is more
severe in NP than GT since the absolute numerics
say so (regarding (g) in Table 1). However, such
a conclusion should be hesitantly claimed since it
is highly probable that GT inherits another kind of
bias (from the corpora) that attenuates the VBias
on males as demonstrated in Section 4.2. Our ap-
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proach aims to make it possible for the evalua-
tors (of the MT systems) to comprehend how the
bias is distributed and to perform an inter- or intra-
system comparison, by providing the various sen-
tence sets of which the corresponding scores rep-
resent content- and style-related aspects of trans-
lation gender bias.

4.4 Discussion

We do not claim here that the model which yields
the translation of test utterances being biased to
one gender is a biased translator, nor that the dis-
tribution of gender-related content in the corpora
should be half-half. However, since we decided to
investigate only the gender non-specific pronouns,
sentiment words, and occupations, so that the gen-
erated sentences hardly incorporate any context
that determines the pronouns to be one specific
gender, we claim that the translation is recom-
mended to contain each gender as equally as pos-
sible for the sentence sets that are constructed, or
use neutral pronouns if available. This is not about
making up a mechanical equality, but about avoid-
ing a hasty guess if the inference is not involved
with a circumstance that requires the resolution of
coreference.

For the user’s sake, Google translator recently
added the service on providing the result contain-
ing both genders as answer if the gender ambigu-
ity is detected16 (Kuczmarski and Johnson, 2018).
This is the first known approach in service that
mitigates gender bias in translation. We are en-
couraged to face this kind of change, although it
is tentative. In the long term, we hope the trans-
lators print random or gender-neutral answers for
the argued type of (or possibly various other kinds
of) sentences.

Another important point is that the systems also
have to distinguish the circumstances that require
a random guess from the ones that gender should
be specified. For example, with a sentence “걔
는 생리중이야 (kyay-nun sayngli-cwung-iya)17”,
GT yields “He’s on a period.”, which is physio-
logically unreasonable. Moreover, the resolution
of coreferences in long-term dependency with the
specified gender is required for a correct transla-
tion of the sentences with context.

16https://blog.google/products/translate/reducing-gender-
bias-google-translate/

17생리중 (saynglicwung) denotes to be in one’s menstrual
period, which matches only if kyay is translated into a female-
related term.

In response to concern on this study being
language-specific, we want to note that the pro-
posed methodology can be applied to other lan-
guages with gender-neutral pronouns, especially
with a high similarity if the source language con-
tains both a formality and politeness-related lex-
icons (e.g., Japanese). The extensibility regard-
ing the source language has recently been dis-
played in Prates et al. (2018), and in this paper,
a further and detailed experiment was conducted
with a language that had not been investigated.
For the cases of the target being non-English, we
assume that the tendency depends on the pres-
ence of gender-neutral pronouns in the target lan-
guage; in our pilot study utilizing Japanese as a
target, the gender-neutrality of the Korean pro-
nouns were preserved mostly in the translation.
However, even for the cases where the target lan-
guage incorporates gender-neutral pronouns, the
proposed scheme is useful since the measure re-
flects the preservation of the gender-neutrality. De-
spite the difficulty of a typological approach re-
garding generalization, our study is relevant for a
broader audience if the source language being an-
alyzed fits the condition above.

5 Conclusion

In this paper, we introduced a test corpus and
measure for the evaluation of multiple KR-EN
translation systems. A criteria set for choosing
the pronouns, lexicons, and markers was stated
in detail, making up a corpus of size 4,236 and
seven sentence subsets regarding (in)formality,
(im)politeness, sentiment polarity, and occupation.
The measurement was performed by averaging
PS for each sentence subsets where PS denotes√
pwpm + pn for pw, pm and pn each the por-

tion of the sentences with pronouns translated into
female/male/gender-neutral terms respectively.

Among the three candidates, Google Transla-
tor scored the highest overall, albeit the qualita-
tive analysis says that an algorithmic modification
seems to be implemented in Naver Papago consid-
ering the result regarding occupations. Although
Kakao Translator scored the lowest, the low score
here does not necessarily mean that the translator
malfunctions. In some sense, a well-biased trans-
lator is a well-performing translator that reflects
the inter-cultural difference. However, we believe
that the bias regarding gender should be reduced
as much as possible in the circumstances where
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the gender specification is not required.
Our future work includes making up a post-

processing system that detects the presence of con-
text and assigning gender specificity/neutrality to
the pronouns in the translation. Though we hesi-
tate to claim that it is the best solution, such an
approach can be another step to alleviating the am-
plification of gender bias in cross-lingual tasks. Si-
multaneously, we aim to have an in-depth analy-
sis in the architecture or model behavior regarding
training datasets, with an extended test set that en-
compasses contextual inference, to find out how
each MT system performs better than others in
some aspects.
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Appendix

A Proof on the boundedness of the
measure

Let W0, x, y, z each denote Ps, pw, pm, pn. Then,
from eqn.s (1-2) in the paper, we have

x+ y + z = 1

0 ≤ x, y, z ≤ 1
(3)
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and
W0 =

√
xy + z (4)

Here, note that we have to show the bound for the
following:

W (x, y, z) = xy + z (5)

Let
D = {(x, y, z)|x+ y + z = 1,

0 ≤ x, y, z ≤ 1} (6)

which is a compact, convex set, and let a La-
grangian L of W be

L = xy + z + λ(x+ y + z − 1)

−µxx− µyy − µzz
(7)

Then, the KKT conditions for optimizing L are
given by

∂L

∂x
= y + λ± µx = 0

∂L

∂y
= x+ λ± µy = 0

∂L

∂z
= 1 + λ± µz = 0

(8)

where µx, µy, µz ≥ 0 and µxx∗ = µyy∗ =
µzz∗ = 0 for an optimal point (x∗, y∗, z∗).

If the optimal point lies in the interior ofD, then
µx = µy = µz = 0. Thus, in the optimal point, to
make ∂L

∂z = 0, we have λ = −1. Thereby, to make
∂L
∂x = ∂L

∂y = 0, we have x = y = 1 which makes
z = 1 that contradicts eqn. (3).

Consequently, the optimal points lie on the
boundary of D which can be decomposed into the
following three independent segments:

(a){x+ y = 1, z = 0}
(b){y + z = 1, x = 0}
(c){z + x = 1, y = 0}

(9)

At most two of (9) can be satisfied.
For (a), optimizing L1 = xy subject to x+ y =

1 and x, y ≥ 0 yields

min = 0,max =
1

4
(10)

For (b) (and possibly (c)), optimizing L2 = z sub-
ject to y + z = 1 and y, z ≥ 0 yields

min = 0,max = 1 (11)

From eqn.s (9,10), we have 0 ≤ W ≤ 1 which
yields the boundedness of the proposed measure
W0. Moreover, we obtain that W0 is maximized if
pn = 1 and minimized if either pw or pm = 1.

Figure 2: A brief illustration on why equal distribution
is difficult to obtain for various subset pairs in deter-
ministic system. Best viewed in color.

B A brief demonstration on the utility of
adopting multiple sentence subsets

We want to recall that the conventional translation
services provide a determined answer to an input
sentence. This can happen to prevent the systems
from achieving a high score with the proposed
measure and EEC.

Let the emerald (top) and magenta (bottom)
discs in Figure 2 denote the gender-neutral pro-
nouns translated into female and male, respec-
tively. Note that for Si and Sj that comprise the
whole corpus, PSi and PSj are both high, whereas
for another sentence subset pair Sk and Sl, there
is high chance of PSk

and PSl
being lower than

the former ones. Thus, in conventional evaluating
schemes as in Lu et al. (2018), arithmetic averag-
ing may not be effective for displaying the amount
of bias.

This property could have deterred adopting the
proposed measure to multiple sentence subset
pairs (or triplets) since a similar mean value is ex-
pected to be obtained if the number of pairs in-
creases. However, since the utilization of pn and
square root function in the measure prevents the
average from being converged into a specific value
in the systems, we keep using all the sentence sets
that comprise the EEC so that we can observe
the tendency regarding various aspects of sociolin-
guistics.
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