
Proceedings of the Third Workshop on Abusive Language Online, pages 146–156
Florence, Italy, August 1, 2019. c©2019 Association for Computational Linguistics

146

A Platform Agnostic Dual-Strand Hate Speech Detector

Johannes Skjeggestad Meyer and Björn Gambäck
Department of Computer Science

Norwegian University of Science and Technology
NO–7491 Trondheim, Norway

johannes@skmeyer.com, gamback@ntnu.no

Abstract

Hate speech detectors must be applicable
across a multitude of services and platforms,
and there is hence a need for detection ap-
proaches that do not depend on any infor-
mation specific to a given platform. For in-
stance, the information stored about the text’s
author may differ between services, and so us-
ing such data would reduce a system’s general
applicability. The paper thus focuses on using
exclusively text-based input in the detection,
in an optimised architecture combining Con-
volutional Neural Networks and Long Short-
Term Memory-networks. The hate speech de-
tector merges two strands with character n-
grams and word embeddings to produce the fi-
nal classification, and is shown to outperform
comparable previous approaches.

1 Introduction

An increasing number of online arenas are be-
coming available for users worldwide to publish
their opinions, from Internet fora and blogs, to
microblog services like Twitter and social media
such as Facebook and MeWe, and various chat
rooms. However, in all arenas that are open to
user generated content, there is a risk of some peo-
ple misusing this opportunity to purposefully in-
sult others, or even to convey hateful messages.
This is often in breach of the given arena’s terms
and conditions, and sometimes, in some countries,
illegal. Hence, there is a need for automatic detec-
tion of these messages across a multitude of online
arenas, but without depending on any information
specific to a given forum, so that the systems can
be used across platforms without being changed.

Notably, information about the text’s author,
such as their usage history or their social net-
work and activities, have been shown to be useful
when categorising hate speech (Qian et al., 2018;
Unsvåg and Gambäck, 2018; Mishra et al., 2018).

In particular, on some occasions, an author be-
longing to an exposed group may use language
that would normally be considered hateful towards
that group, without the statement coming through
as hateful. In such cases, disregarding user infor-
mation may lead to misclassifications. However,
what user metadata is stored may differ between
services, and so using such information reduces
the general applicability of a system. The research
in this paper therefore aims at avoiding any such
information, using exclusively text-based input in
the detection. This is accomplished through a
deep learning-based architecture combining Con-
volutional Neural Networks and Long Short-Term
Memory-networks, and by utilising both character
n-grams and word embeddings as input in a dual-
strand methodology.

The rest of the paper is structured as follows:
Section 2 describes prior work on hate speech de-
tection. Section 3 then introduces the data set used
in the experiments and Section 4 the proposed ar-
chitecture. Section 5 presents experiments and re-
sults, while Section 6 discusses those results. Fi-
nally, Section 7 concludes and presents ideas for
future exploration.

2 Related Work

Research on hate speech detection has attempted
many kinds of input features, and many different
classification methods. In the early research, the
input types used were highly language dependent,
utilising specific syntax features and the presence
of certain words. Later, these kinds of features
were exchanged for more general text representa-
tions. Specifically, the approaches got more di-
rected towards word- and character models, and
in various alternations. Some researchers, such as
Gambäck and Sikdar (2017), used both types at the
same time, while others, e.g., Waseem and Hovy
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(2016) and Pavlopoulos et al. (2017), used only
one of the types. Each kind of feature has its own
advantage. The character n-gram approach is rel-
atively resilient against misspellings, while word
embeddings allow related words to produce simi-
lar output. In Mehdad and Tetreault (2016), word
and character n-grams were used separately, in or-
der to compare their performance, showing char-
acter n-grams to be more effective. Some systems,
like that of Founta et al. (2018a), also apply vari-
ous metadata and information about the author of
the text. However, as the aim of this paper is to
achieve classification more independent of the ori-
gin platform of the texts, such platform-dependent
systems will largely be disregarded here.

Early research used traditional machine learn-
ing approaches, e.g., Support Vector Machines
(SVMs) (Yin et al., 2009) and Naïve Bayes-based
classifiers (Razavi et al., 2010). Some more re-
cent research has also used traditional machine
learning approaches, such as Logistic Regression
(Waseem and Hovy, 2016). However, most re-
cent work has focused on Deep Learning ap-
proaches: Gambäck and Sikdar (2017) and Park
and Fung (2017) used Convolutional Neural Net-
works (CNNs), while Pavlopoulos et al. (2017)
used Recurrent Neural Networks (RNNs) with
Gated Recurrent Units (GRUs). Others have com-
bined neural network-types, with Zhang et al.
(2018) utilising a CNN followed by a GRU-based
RNN, and Founta et al. (2018a) a two-part ap-
proach, with one part using word embeddings fed
into an RNN-layer consisting of GRU-nodes, and
the other, parallel part taking metadata as input to
a feed-forward network.

Others have tried combining deep learners with
more traditional methods: Badjatiya et al. (2017)
tested both a CNN-based and a Long Short-Term
Memory (LSTM)-based system (Hochreiter and
Schmidhuber, 1997), in combination with Gradi-
ent Boosted Decision Trees (GBDT), while Gao
et al. (2017) also used an LSTM, but running
in parallel with logistic regression. In the Sem-
Eval 2019 OffensEval shared task (Zampieri et al.,
2019b), the best performing systems utilised pre-
trained contextual embeddings such as BERT (Bi-
directional Encoder Representations from Trans-
formers; Devlin et al. 2018) and ELMo (Embed-
dings from Language Model; Peters et al. 2018), in
essence focusing on word-level n-grams (or word
pieces as defined in BERT).

Several hate speech detection systems have
been tested on the data set from Waseem and
Hovy (2016) and can thus be compared more di-
rectly. Although the SVM-Naïve Bayes classi-
fier of Mehdad and Tetreault (2016) outperformed
their RNN-based system, deep learners seem to
in general perform better than purely traditional
machine learning classifiers on this dataset, with
the CNN-based system of Gambäck and Sikdar
(2017) outperforming the Logistic Regression-
based system of Waseem and Hovy (2016).

Notably, Badjatiya et al. (2017) claimed out-
standing results for a hybrid system combining an
LSTM with a GBDT. However, other researchers
have failed to reproduce the experiments by Bad-
jatiya et al., with Fortuna et al. (2019) indicating
that Badjatiya et al.’s stated results rather were
due to a faulty cross-validation process and with
Mishra et al. (2018) noting that Badjatiya et al.’s
decision tree-boosted version was tested on in-
stances that the LSTM already had been trained
on, leading to over-fitting.

3 Data Set

The largest data set used in research on inappro-
priate language is the one in Pavlopoulos et al.
(2017), with 1.6 million comments from the Greek
sports site Gazzetta. However, the labels in this
data set are based on which comments the site’s
moderators found to be inappropriate in some way,
including, but not restricted to, hate speech.

The Twitter data set from Davidson et al. (2017)
is also reasonably large and could have been an
interesting option, but also somewhat lacks justi-
fications for how each sample has been labelled:
Davidson et al. attempted to differentiate between
hate speech and other offensive content, but relied
heavily on the crowd-sourced (CrowdFlower) an-
notators to make the distinction.

On the other hand, Zampieri et al. (2019a),
Golbeck et al. (2017), Founta et al. (2018b), and
Waseem and Hovy (2016), all used extensive sets
of rules when labelling their data. However, the
first of those is aimed at offensive language, while
the second is not straight-forwardly available.

Furthermore, although the data set of Founta
et al. (2018b) is substantially larger, the older one
by Waseem and Hovy (2016) has been used in
more previous research, and was thus taken as the
basis here, too, for reasons of easier comparison to
previous results.
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Version Neutral Racist Sexist Total

Original 11,559 1,972 3,383 16,914
Available 10,913 1,924 3,097 15,934

Table 1: Size of the Waseem and Hovy (2016) data set

The data set of Waseem and Hovy (2016) orig-
inally contained 16,914 tweets labelled for racism
and sexism. However, 980 of these tweets had
been deleted by the time the data were collected,
leaving 15,934 samples. As Table 1 shows, most
of the deleted tweets were from the neutral group.
As this is the largest group, it is also where the
impact of deletion is the smallest. The small-
est group, on the other hand, is where the loss is
the lowest; more than 97% of the racist-labelled
tweets were still available. The group with the
greatest loss relative to size, is the sexist. Even
here, though, more than 91% of the tweets still re-
mained. In total, the loss constitutes less than 6%
of the original tweets.

An issue with the data set is its representative-
ness. One aspect of this is the relatively high per-
centage of hate speech, at about 30%. In the data
set of Pavlopoulos et al. (2017), too, about 30%
of the samples were considered inappropriate, but
there the ‘positive’ label was not restricted to just
hate speech. In contrast, a study on the Facebook-
pages of two Norwegian TV channels showed
that every 10th comment was hateful (Bjurstrøm,
2018), even after the media outlets had had 12
hours to moderate the debate. Similarly, Burnap
and Williams (2015) found that 11% of tweets
gathered in relation to a particularly hate-inducing
event included offensive or antagonistic content,
while Davidson et al. (2017), with a somewhat
stricter definition, found 5% of their data to con-
tain hate speech. This means that the propensity of
hate speech is higher in the training data than what
the system would face in real use. Furthermore,
the Waseem and Hovy (2016) data was collected
using bootstrapping, in particular of tweets related
to an Australian TV cooking show, which could
affect the results when applying a system trained
on the data to arbitrary tweets.

4 Architecture

As discussed above, the input forms that have
proven best for hate speech identification are word
embeddings and character n-grams. Hence, the
system described here uses both forms as input.

Figure 1: High-level architecture of the system

However, the character- and word-based inputs
are initially treated separately, in a dual-strand ap-
proach. Specifically, the system consists of a pre-
processor and three main components. Two of
those work in parallel, operating on the word and
character-based inputs, respectively. The last com-
ponent determines the final classification by com-
bining the output of the previous two. The high-
level architecture of the system is illustrated in
Figure 1. Apart from the preprocessing, the sys-
tem is implemented using TensorFlow.1

4.1 Text Preprocessing

The text samples (tweets) are first divided into
mini batches, normally containing 20 samples
each. Each tweet is then treated in two disjoint
ways; one to create character representations, the
other to create word representations. In both cases,
Özcan’s tweet-preprocessor2 is used.

In the character-based preprocessing, each
tweet is first cleared of emojis and lowercased,
with each character transformed into a one-hot
vector representation (a vector of length 31, with
one slot each for the 26 letters of the English al-
phabet, four for space, number, ‘#’, and ‘@’, and
one slot for any character that does not fall into
any of the other categories). The samples of each
mini batch are then zero-padded (post-data padded
with only zero-valued vectors) to the length of the
longest sample of that mini batch.

In the word-based preprocessor, emojis, URLs
and Twitter-mentions are replaced with placehold-
ers. Then hashtags are split into single words at
capital letters, and the texts are lowercased, with
punctuation and other symbols removed, and with
all symbols that are not alphanumeric replaced
by a space. The tweets are tokenised by split-
ting on whitespaces and the remaining words are
transformed into their word embedding represen-
tations, with the batch samples zero-padded.

1www.tensorflow.org
2pypi.python.org/pypi/

tweet-preprocessor
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Figure 2: Character-handling component

The word embeddings used here are pretrained
on external data sets, so as to avoid an additional
source of overfitting due to the relatively small size
of the Waseem and Hovy (2016) data set. Two dif-
ferent kinds of embeddings were used, word2vec
(Mikolov et al., 2013) and GloVe (Pennington
et al., 2014). The word2vec-embeddings have a
dimensionality of 300 and were trained on about
100 billion words from the Google News data.3

The GloVe-embeddings on the other hand, were
trained on Twitter, using 2 billion tweets.4 The
highest available dimensionality, 200, was used.
Out of Vocabulary words were given a random
value of corresponding dimensionality.

4.2 Word Input Component

The part of the system working on the word-
based input, i.e., on word embeddings, is in the
form of a Long Short-Term Memory (LSTM) net-
work. The architecture allows for both unidirec-
tional and bidirectional LSTM. The component’s
output for each sample should be the output state
of the LSTM at the sample’s last relevant (non-
zero) time step. This is extracted by finding the
non-padded lengths of the different samples, and
collecting the LSTM-output at the time step corre-
sponding to the last element.

4.3 Character Input Component

The character-based portion of the system is di-
vided into two parts; one convolutional and one
recurrent, as shown in Figure 2. The architecture
is inspired by that of Zhou et al. (2015) in how it
combines these two elements.

3code.google.com/archive/p/word2vec/
4nlp.stanford.edu/projects/glove/

Figure 3: Architecture of the final classifier

The first part takes the input and performs a 1-
dimensional convolution, using multiple filters of
size n, essentially treating the input as character
n-grams. The output of this convolution is sorted
by locations in the input, so that results of differ-
ent filters at any given location appear together.
This way, the results of the convolutions imitate
the time steps of an LSTM. The architecture al-
lows for several layers of convolution.

In the second part of the component, the results
of the convolution are input to an LSTM. The sam-
ple lengths of the LSTM are calculated from the
output of the convolutions and used to extract the
component output.

4.4 Final Classifying Component

Since different input samples vary in length, the
above two components have to treat irregularity in
input size, but the final component requires fixed-
size inputs. Consequently, the outputs at the last
relevant (last non-zero) time step for each of the
first two components are combined by merging the
two output vectors of each sample, with the result
fed into a fully connected, feed-forward network,
as Figure 3 shows. Note that the input layer sim-
ply provides data for subsequent layers, without
applying any activation function.

In the output layer, the network has one node for
each possible label (sexist, racist and neutral). The
hidden nodes use Rectified Linear Unit (ReLU)
as activation, but the output layer uses linear ac-
tivation, with the weighted sum of a node’s inputs
used directly as output. This is run through a soft-
max layer, returning a probability distribution on
which class a sample belongs to.
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4.5 Training

The classification error of a sample during sys-
tem training is calculated using cross entropy. The
gradients of each weight’s contributions to these
losses are then calculated. After this, the gradi-
ents of the entire mini batch are accumulated, and
used to update the system’s weights according to
the Adam optimiser (Kingma and Ba, 2014).

In order to avoid overfitting the network to the
training data, some regularisation is necessary.
The primary means of regularisation in this sys-
tem is dropout (Srivastava et al., 2014), which is
applied to the dense layers of the final component,
as well as the LSTMs of the character- and word-
based components. In the LSTMs, the dropout
nodes vary from one time step to the next, and no
dropout is applied to the states of the LSTM. In ad-
dition, the system uses L2-regularisation, with the
L2-penalty calculated using all non-bias weights
in the system, then added to the cross entropy
classification error. Furthermore, the system uses
early stopping, so that the training does not con-
tinue for too long. Combined, these three regu-
larisers reduce overfitting in the system, thus in-
creasing its general applicability.

In the experiments below, the hyperparameters
of the Adam optimiser had the values suggested
by Kingma and Ba (2014). The probability of
“switching off” nodes due to dropout was set to
0.5, in accordance to the suggestions of Srivastava
et al. (2014). All experiments were run using 10-
fold cross validation, with stratified folds and size
20 mini batches.

5 Experiments and Results

To determine the optimal configurations of the
system described above, experiments were car-
ried out with varying layer sizes of the neural net-
works, as well as varying number of layers used in
the different components. In addition, the system
was tested using both bidirectional and unidirec-
tional LSTMs.

In order to evaluate the effects of the variations
consistently, the sizes of the word-based and the
character-based components were changed sepa-
rately. That is, when the sizes of the character-
based component were changed, the word-based
part was kept constant, and vice versa. This was
done so that the best configuration of each compo-
nent could be found independently, reducing the
number of configurations to explore.

As for variations in the number of layers, these
were, for similar reasons, also made independently
by component. Furthermore, in the character-
based component, the number of convolutional
and LSTM layers were changed separately. In
the experiments with changes to the convolution,
variations in the length of the convolutional filters
were also made.

In addition, the system was tested using only
character-based input, in order to evaluate the ef-
fectiveness of the CNN-LSTM combination on the
character input. For comparative purposes, only
using word-based input was also tested, disabling
the character-based component.

Beyond varying the setup configurations of the
network itself, the effects of using different word
embeddings were explored.

5.1 System Configuration Experiments

The first experiments separately tested variations
to the components, with the unmodified part form-
ing a baseline setup. In the first half of these exper-
iments, each kind of nodes had one layer. Hence,
the character-based component had one convolu-
tional layer, followed by one LSTM layer; the
word-based component had one LSTM layer; and
the dense, feed-forward part had one hidden layer.

In the baseline system, the word-based compo-
nent had one layer of 150 LSTM nodes. This di-
mensionality was chosen because it reduces the
number of dimensions from the word embed-
dings, going down to half the size in the case
of word2vec, without decimating the information
carried through.

The convolutional layer in the character-based
part had 64 filters of length 3. The filter length
here denotes the n in the character n-grams. This
was set to 3 as trigrams have proven useful in
prior work (Waseem and Hovy, 2016; Mehdad and
Tetreault, 2016). 64 convolution filters were used
since 64 is a power of 2 approximately twice the
length of the character vectors. As such, it is sig-
nificantly greater than the character vector size,
while at the same time smaller than the size of each
filter (i.e., 3× 31).

The character-based component’s LSTM layer
had 100 nodes, a number chosen to balance the
impact of the word- and character-based compo-
nents on the final classifier, and since it should not
be too much higher than the dimensionality of the
convolution output (i.e., the number of filters used
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Character Word Unidirectional LSTM Bi-LSTM

Filters LSTM LSTM P R F1 F1

64 100 150 79.12 75.87 77.46 77.46
100 100 150 79.06 74.90 76.93 77.08
50 50 150 79.42 74.94 77.11 77.31
512 256 150 79.59 75.24 77.35 77.06

64 100 50 79.87 74.58 77.13 77.11
64 100 100 79.30 74.67 76.92 77.04
64 100 200 79.10 75.38 77.20 77.21
64 100 250 79.24 74.67 76.89 77.10

Table 2: System configuration experiments.

in the convolution). Hence, the final component
had 250 input elements (150 from the word-based
part and 100 from the character-based) and three
output nodes; one for each class. Basheer and Ha-
jmeer (2000) suggest that the number of nodes in
a hidden layer should be between the numbers of
input and output nodes. While such rules are not
entirely reliable, the hidden layer size was set to
120; near the average of the input and output sizes.

In addition, the bidirectional version of this
baseline configuration was tested, with each di-
rection of the LSTMs having the dimensionality
described above, thus giving the input to the fi-
nal component twice the number of dimensions of
the unidirectional case, so the hidden layer dimen-
sionality was doubled.

The system was then tested with varying con-
figurations in the character-based component, us-
ing 100 convolutional filters along with the 100
dimensions of the character LSTM. Then, the size
was first cut down to 50 for both number of filters
and LSTM layer size, and then increased to 512
filters and an LSTM layer size of 256. Finally, ex-
periments were performed where the dimension-
ality of the word-based component was changed,
while the character-based part had the default con-
figuration, running the system with word-LSTM
sizes of 50, 100, 200 and 250, respectively.

The results are shown in Table 2, for both the
uni- and bidirectional configuration versions (only
unidirectional precision and recall values are dis-
played, since the Bi-LSTM performance did not
vary substantially). As the table shows, the base-
line setup (row 1) worked best in terms of both
recall and F1-score. Several other configurations
had better precision, such as the version where the
word-based, unidirectional LSTM had a layer size
of 50, but the corresponding recall values were
comparatively lower than in the baseline setup.

Layer 1 Layer 2 P R F1

Filters Length Filters Length

64 3 — — 79.50 77.33 78.40
64 4 — — 80.53 76.03 78.22
64 3 64 3 80.45 76.18 78.26
64 3 128 3 79.88 76.58 78.19
128 3 64 3 79.40 76.75 78.05
64 3 64 4 80.01 76.93 78.44
64 3 128 4 79.71 76.20 77.92
128 3 64 4 80.00 76.07 77.98
64 4 64 3 80.51 77.73 79.10
64 4 128 3 80.35 76.88 78.58
128 4 64 3 80.48 76.12 78.24
64 4 64 4 80.57 76.34 78.40
64 4 128 4 79.72 76.89 78.28
128 4 64 4 79.55 76.84 78.17

Table 3: Varying the convolutional segment of the
character-based component. The setup columns show
the number of filters at each consecutive layer, along
with their corresponding filter lengths.

In these first experiments, the coefficient re-
stricting the impact of the L2-regularisation was
given the commonly used value 0.001. However,
the experiments showed that smaller values gave
better results, so later experiments used a value of
0.0002 for this coefficient.

5.2 Convolution Experiments

In the next group of experiments, shown in Ta-
ble 3, variations were made to the convolutional
part of the character-based component (hence
only unidirectional LSTMs were used, not bi-
directional). Specifically, the system performance
with filter length 4 was tested; then, an extra layer
of convolution was added, with combinations of
length 3 and length 4 filters being used. The stan-
dard number of filters in these experiments was
64, with the layers using a higher number having
128 filters. Next, the same three experiments were
performed with the first convolutional layer using
filters of length 3, and the second layer length 4.
Then, the order was reversed, with the first layer
filters having length 4 and the second layer length
3. Finally, the experiments were run with both lay-
ers using length 4 filters.

Since these experiments used a smaller value for
the coefficient controlling L2-regularisation, the
first row of Table 3 reports a different baseline per-
formance than row 1 in Table 2. The baseline setup
still had the second highest score on recall, out-
performed only by the best setup in these experi-
ments. This configuration, with two layers of 64
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Setup P R F1

Baseline setup 79.50 77.33 78.40
Two character-LSTM layers 80.21 76.20 78.15
Two character-LSTM layers, bidirectional 79.73 76.59 78.13
Two word-LSTM layers 79.61 76.31 77.92
Two word-LSTM layers, bidirectional 79.69 76.38 78.00
Two convolutional layers (64× 3, 64× 3)

79.39 76.09 77.71
and two character-LSTM layers
Two convolutional layers (64× 4, 64× 3) 80.29 76.36 78.27
and two character-LSTM layers
Two LSTM layers each 79.40 76.38 77.86

Table 4: Using multiple LSTM layers

convolutional filters where the first layer’s filters
were of length 4, and the second layer’s of length
3, had a substantially better performance than the
rest of the setups.

5.3 Two-layer LSTM Experiments

In addition to multilayer convolution, configura-
tions using two-layer LSTMs were tested, with
two same-sized layers in the LSTM part of the
word- and character-based components, respec-
tively. First, the character-based component’s
LSTM was given two layers of size 100, with
the rest of the system having the settings of the
baseline configuration. Then two 150-dimensional
LSTM layers in the word-based component were
used, reverting the character-based component
back to the baseline.

Further, the system was tested with both two
convolutional layers and two LSTM layers in the
character-based part, trying two settings of the
convolutional section, one ‘baseline-like’ with the
two convolutional layers each having 64 filters all
of length 3, and the other version being the one
which performed best in the convolution experi-
ments above, i.e., two layers of 64 convolutional
filters, with the first layer’s filters having length 4,
and the second layer’s length 3.

Finally, the baseline configuration was ex-
panded to two LSTM layers in each of the system
components holding LSTMs.

Table 4 shows the results and also includes the
performance of the baseline setup, for compari-
son. Using two unidirectional LSTM layers in
the character-based component of the baseline sys-
tem setup and on the optimal convolution config-
uration (i.e., with filters of length 4 in the first
convolutional layer) showed marked precision in-
creases. However, recall in those cases was signif-
icantly weaker than in the baseline setup. Similar
results, but with less marked precision increase,

Setup P R F1

Baseline setup 79.50 77.33 78.40
Baseline, characters only 81.38 77.18 79.23
Two conv. layers (64× 4, 64× 3) 80.51 77.73 79.10
Two conv. layers (64× 4, 64× 3), char. only 80.23 77.84 79.01
Baseline, words only 79.99 77.07 78.50

Table 5: Using only character or only word input

were found when using two LSTM layers in the
word-based part, as well as in the bidirectional
setup versions, and the equivalent two-character
LSTM. Using two convolutional layers with all fil-
ters at length 3 and using two LSTM layers in each
of the system components, gave lower precision
than the baseline.

5.4 Single Component Experiments

Finally, the baseline setup was used, with one con-
volutional layer and one LSTM layer, but with
the word-based LSTM removed and the dense
layer reduced to 50 nodes. Then the equivalent
was done using the best-performing configuration
above, the system having two convolutional lay-
ers of 64 filters each, with lengths 4 and 3. For
comparison, the system was then tested using just
the word-based input. Here, too, the baseline setup
was used as the starting point, meaning one LSTM
layer of size 150.

The results are shown in Table 5. Interestingly,
both of the character-only systems outperformed
the baseline. Furthermore, the characters-only
version of the baseline setup showed the highest
precision of all the experiments in this research.
As for the characters-only version of the config-
uration with two convolutional layers, the recall
was higher than in the version including word-
based input, but the precision was lower. Notably,
it still outperformed the word-inclusive baseline
setup on all measures. The word-only configura-
tion was outperformed by the character-only sys-
tems, but still performed better than the baseline
using all inputs.

All the above experiments utilised pretrained
word2vec embeddings. For comparison, the base-
line and optimal configurations were also evalu-
ated using GloVe embeddings. In terms of F1-
score, both of the tested configurations improved
when changing to GloVe. The baseline setup im-
proved on all measures, though the improvement
in precision was very slight. In the configura-
tion with two convolutional layers, the precision
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got worse when changing to GloVe-embeddings.
However, the recall of this setup using GloVe
was the highest recorded throughout this research
(78.28), outperforming the second best (the same
configuration with the word-based component dis-
abled) by more than 0.4%. In addition, the preci-
sion, while lower than the equivalent word2vec-
performance, was still acceptably high (80.22).
Hence, the resulting macro average F1-score was
79.24 (84.14 micro average), which is higher than
any other configuration in these experiments.

6 Discussion

The experimental results showed several consis-
tencies. Notably, the recall values of all system
configurations were lower than the correspond-
ing precision. Furthermore, the recall had much
greater variations between the different classes.
Specifically, all the setups had the best perfor-
mance on the recall of neutral samples, and the
worst on sexist. The recall of sexist samples was
also where the main difference from the change
in value of the L2-coefficient occurred. Using
the original value of this coefficient, the recall on
sexist samples was mostly in the range 53–58%,
whereas with a lower coefficient value, the aver-
ages were mainly in the range 60–65%.

In general, the performance on neutral samples
was the most stable. The performance on the sexist
class was mainly higher than on the racist one, al-
though they tended to display opposite variations,
so that when one class performed better, the other
performed worse.

As Table 5 shows, using only one type of input
in the default setting improved performance com-
pared to using both. This is likely due to a differ-
ence in convergence rates between the two strands
of the system, similar to the findings of Founta
et al. (2018a). Word embeddings are inherently
more informative than the one-hot vectors used for
character input, and so the word-based strand is
likely to have a significantly higher convergence
rate than the character-based one. Such a discrep-
ancy in convergence rates may cause one of the
strands to dominate the other, hampering the train-
ing and resulting in an overall suboptimal perfor-
mance. This issue may also have affected the ex-
periments on variations in layer sizes and number
of layers, as changes in the size of a system com-
ponent will change its rate of convergence. These
variations would work to the advantage of some

System P R F1

m
ac

ro
av

g

64×4, 64×3, GloVe 80.22 78.28 79.24
Waseem and Hovy (2016) 72.87 77.75 73.89
Waseem (2016), multiclass — — 53.43
Waseem (2016), binary — — 70.05
Gambäck and Sikdar (2017) 85.66 72.14 78.29
Fortuna et al. (2019) — — 78

w
ei

gh
te

d
/m

ic
ro

av
g 64×4, 64×3, GloVe 84.14 84.14 84.14

Zhang et al. (2018) — — 82
Park and Fung (2017) 82.7 82.7 82.7
Founta et al. (2018a) 84 83 83
Badjatiya et al. (2017) 83.9 84.0 83.9
Mishra et al. (2018) (WS) 82.86 83.10 82.37
Mishra et al. (2018) (LR) 84.07 84.31 83.81
Mishra et al. (2018) (HS) 83.50 83.71 83.54

Table 6: System performance comparison

configurations and the disadvantage of others. The
results indicate that this may be the case. How-
ever, they are not sufficient to draw a conclusion.

The difference in performance between using
word2vec- and GloVe-embeddings may to some
extent be explained by the fact that the word2vec-
embeddings were trained after removing stop
words from the training data. Hence, in word2vec-
embeddings, the stop words were considered Out
of Vocabulary terms and given a random value.
With the average number of words in the sam-
ples being 15, the impact of not having a mean-
ingful representation of stop words could be sig-
nificant. GloVe-embeddings, on the other hand,
include representations of typical stop words, and
thus have an advantage in the classification.

Several other researchers have tested their hate
speech detection systems on the Waseem and
Hovy (2016) data set. Table 6 shows the perfor-
mance of some of these. Note though that Waseem
(2016) introduced another, but related, data set,
which Gambäck and Sikdar (2017) used, while
Park and Fung (2017) combined both data sets.

A problem with the results shown in Table 6 is
that different papers have used different methods
to calculate the performance, with some using mi-
cro averaging (or weighted macro averaging) and
others macro averages. Hence, Table 6 includes
both the macro and micro averaged performance
of the optimal configuration found in Section 5
(GloVe-embeddings and two convolutional layers
with 64 filters of lengths 4 and 3, respectively).

As the macro averaged performance (upper part
of Table 6) shows, the system using the optimal
configuration with two convolutional layers and
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GloVe-embeddings outperformed the Waseem and
Hovy (2016) system, and also had a higher perfor-
mance, in terms of F1-score, than the system of
Gambäck and Sikdar (2017). However, since that
paper utilised a slightly different data set, the com-
parison is not entirely valid. In the case of the sys-
tem introduced by Waseem (2016), the approach
described in Section 4 performed significantly bet-
ter, particularly compared to the multiclass version
— although these results are not for the primary
data set of Waseem (2016), which had markedly
higher performance.

Based on micro averaged performance values,
the system clearly outperforms those of Zhang
et al. (2018) and Park and Fung (2017). It also out-
performs the system of Founta et al. (2018a), when
this is restricted to using text as input, and the best
non-GBDT version reported by Badjatiya et al.
(2017). However, since Badjatiya et al.’s GBDT
performance and cross-validation have been found
to be questionable, the row labelled Fortuna et al.
(2019) gives the macro average results Fortuna
et al. reported obtaining using the Badjatiya et al.
(2017) system with decision tree boosting.

Furthermore, Mishra et al. (2018) reimple-
mented three other systems in order to use as base-
lines for testing the improvements that could be
obtained when utilising author profiling features.
Hence, Mishra et al. (2018) (WS; “word-sum”)
is essentially a reproduction of Badjatiya et al.’s
results, but with a slightly different setup, while
Mishra et al. (2018) (LR) reproduces the LR-based
approach taken by Waseem and Hovy (2016), and
Mishra et al. (2018) (HS, “hidden-state”) is their
implementation of the RNN approach used by
Pavlopoulos et al. (2017).

7 Conclusion and Future Work

The dual-stranded CNN-LSTM combination for
hate speech detection outlined here, which uses
both word embeddings and character n-grams as
input, performed relatively well on the Waseem
and Hovy (2016) data set. Specifically, the sys-
tem did well when using two layers of convolu-
tion on the character input, with diminishing fil-
ter lengths, combined with single layer LSTMs in
both strands. Using multiple layers of LSTMs,
on the other hand, actually reduced performance.
With a macro averaged F1-score of 79.24, the ar-
chitecture performed better than all comparable,
state-of-the-art systems on the data set.

It is possible that the different convergence rates
in the architecture’s word-based and character-
based components may have reduced perfor-
mance. A way to avoid this could be to train the
system using an interleaving technique, as done by
Founta et al. (2018a) — or take the similar multi-
task learning approach suggested by Waseem et al.
(2018) — so that only one of the two parallel sys-
tem components is trained at any given time.

Another idea for further research would be to
test the impact of using the architecture described
here in combination with other top-level classi-
fiers, such as the Gradient Boosted Decision Trees
used by Badjatiya et al. (2017). It could also be
interesting to investigate utilising dynamic con-
volutions for classifying hate speech, since Wu
et al. (2019) report those as out-performing ap-
proaches based on self-attention, such as BERT
(Devlin et al., 2018), on some other language pro-
cessing tasks.
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