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Abstract

In text generation, generating long stories is
still a challenge. Coherence tends to decrease
rapidly as the output length increases. Espe-
cially for generated stories, coherence of the
narrative is an important quality aspect of the
output text. In this paper we examine how nar-
rative coherence is attained in the submissions
of NaNoGenMo 2018, an online text genera-
tion event where participants are challenged to
generate a 50,000 word novel. We list the main
approaches that were used to generate coher-
ent narratives and link them to scientific liter-
ature. Finally, we give recommendations on
when to use which approach.

1 Introduction

Coherence is generally considered to be a property
of a good story. For a story to be coherent, “all
the parts of the story must be structured so that the
entire sequence of events is interrelated in a mean-
ingful way” (Shapiro and Hudson, 1991), p.960.
For generated stories, in particular those generated
using neural models, coherence tends to decrease
rapidly as the output length increases. For this
reason, generating long stories is still a challenge
(Kiddon et al., 2016).

To gain more insight in how generation of long
stories is done ‘in the wild’, we review a collection
of story generation projects that were created as
part of the online challenge NaNoGenMo.

NaNoGenMo, or National Novel Generation
Month1, is a yearly online event that challenges
participants to create a novel using text genera-
tion. Participants have one month (November) to
develop a text generator and use it to procedurally
generate the text of their novel. GitHub is used
to register for the event and share participants’
progress throughout the month. To qualify as a

1https://www.github.com/nanogenmo

NaNoGenMo winner, participants have to publish
their code and share a generated text of at least
50,000 words.

Since NaNoGenMo takes place online, we can
use it to study practical approaches to text genera-
tion and story generation. Participants do not nec-
essarily use state-of-the-art techniques from story
generation research. Instead, the NaNoGenMo en-
tries offer us a look into practical novel generation
methods used in a (mostly) non-academic context.
NaNoGenMo provides an accessible repository of
story generation projects (including both code and
output) that is incomparable to any academic gen-
eration challenge in terms of diversity and scale.
What makes NaNoGenMo extra interesting is that
it focuses on the generation of texts with a much
longer length than addressed in most scientific re-
search.

We analysed the work of participants from
NaNoGenMo 20182, see Section 3. We start with
categorising the projects by their output type, focus-
ing on projects that generate text with a novel-like
structure. We then list the main methods for text
generation used by participants in Section 4, since
text generation methods influence the coherence of
the output text. In Section 5, we discuss projects
that generate text with a coherent narrative struc-
ture. We list the different approaches that were used
to achieve this narrative structure, and link them
to scientific literature. Finally, we provide some
recommendations on when to use which approach.

2 Related work

2.1 NaNoGenMo

NaNoGenMo was invented in 2013 by Darius
Kazemi. His inspiration was NaNoWriMo, or Na-
tional Novel Writing Month, another online event

2https://github.com/NaNoGenMo/2018

https://www.github.com/nanogenmo
https://github.com/NaNoGenMo/2018
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in November where participants are challenged to
write a 50,000 word novel.

The first attempt to create a survey of text gener-
ation methods used by NaNoGenMo participants
was a blog post3 in Russian. The author dis-
cussed projects of NaNoGenMo 2013-2015, and
categorised them by generation technique, such
as Markov chains, recycling existing works of fic-
tion, simulation, high-level plot generation, and
neural networks. Inspired by this blog post, the
NaNoGenMo community conducted their own sur-
vey4 of methods (2016) and programming lan-
guages (2014–2017) as part of the event.

There is some cross-pollination between the
NaNoGenMo community and academia. Partic-
ipants sometimes refer to research articles, either
for their own projects or to help other participants.
Additionally, NaNoGenMo has been mentioned
in scientific literature in fields that have a close
connection to the goal of the event: procedural
generation for games (Karth, 2018), story gener-
ation (Montfort, 2014; Horswill, 2016) and com-
putational creativity (McGovern and Scott, 2016;
Cook and Colton, 2018; Compton et al., 2015).

Cook and Colton (2018) discuss the
NaNoGenMo community in detail in their
paper on online communities in computational
creativity. Although they review some of the
projects from NaNoGenMo 2016, the focus of
their article was not the methods or quality of the
projects, but rather the community of NaNoGenMo
itself. Montfort (2014) developed a novel generator
called World Clock, as entry for NaNoGenMo
2013. Interestingly, most of the researchers citing
NaNoGenMo have participated themselves in the
past.

2.2 Story generation

Story generation is the procedural creation of sto-
ries. Mostafazadeh et al. (2016) define a story or
narrative as “anything which is told in the form of
a causally (logically) linked set of events involving
some shared characters.” Yao et al. (2019) split
story generation into two distinct tasks: on the one
hand generating the sequence of events, and on
the other hand generating the surface text, i.e. the
actual text that makes up the story. This is reminis-
cent of the classic NLG pipeline (see, e.g., (Reiter

3https://habr.com/en/post/313862/
4The programming language surveys can be found by

searching for issues labeled ‘admin’ in the GitHub reposi-
tories for those respective years.

and Dale, 1997), in which planning stages precede
surface realisation. Story generation is sometimes
limited to the first aspect, generating the underlying
sequence of events, or fabula, with generation of
the surface text of the story out of scope (Martin
et al., 2018; Porteous and Cavazza, 2009; Lebowitz,
1987). Some story generation systems focus on gen-
erating the surface text, given a fabula as input. For
example, Storybook (Callaway and Lester, 2002),
the Narrator (Theune et al., 2007) and Curveship
(Montfort, 2009) all generate story text from an un-
derlying fabula. Other research focused on aspects
of the telling of the story, for example stylistic vari-
ation (Montfort, 2007), affective language (Strong
et al., 2007) and personality (Lukin et al., 2014;
Walker et al., 2011).

2.3 Narrative coherence

The generation of long stories, such as the 50,000
word novels of NaNoGenMo, places strong de-
mands on coherence: the set of events in the story
need to be linked, and preferably also fit into some
overarching dramatic structure.

One way of achieving coherence in generated
stories is by imposing a specific structure on the
output text. Researchers have investigated the struc-
ture inherent in existing stories to find out how hu-
mans do this. Propp’s model of the structure of
Russian folktales has been used in various story
generation systems (Gervás, 2013). Alternative
narrative structures that have been used to guide
story generation are Booker’s seven basic plots
(Hall et al., 2017), the Hero’s journey or Mono-
myth (Garcı́a-Ortega et al., 2016) and the Fool’s
journey from tarot cards (Sullivan et al., 2018).

In neural text generation, it is less easy to impose
a narrative structure on the generated texts – unless
the task is split into two steps, like in the work of
Yao et al. (2019). An alternative way improve the
global coherence in texts generated with recurring
neural networks was proposed by Holtzman et al.
(2018), who used a set of discriminators to encode
various aspects of proper writing.

Another way of achieving coherence is through
emergent narrative (Aylett, 1999). This is a type
of narrative (at the fabula level) that emerges from
simulating simple behaviours that, when interact-
ing, create a complex whole. The simulation gives
rise to a sequence of causally linked events which
give coherence to the story. The coherence in emer-
gent narrative tends to be mostly local in nature:

https://habr.com/en/post/313862/
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although the events are linked through their im-
mediate causes and consequences, it is difficult to
impose a global dramatic arc on them. Examples of
generation systems that use the emergent narrative
approach are FearNot! (Aylett et al., 2005), the Vir-
tual Storyteller (Swartjes and Theune, 2008) and
the simulation framework from Talk of the Town
(Ryan et al., 2016).

Simulation-based narratives are particularly suit-
able for game-based story generation, since games
often already have a world-state, characters, objects
and a set of rules that describe valid changes to the
game state. The rule system of role-playing game
Dungeons & Dragons is the most well-known of its
kind. Various story and quest generation systems
(Martens, 2015; Tapscott et al., 2018; Kybartas and
Verbrugge, 2014) have been built upon this and
other related rule systems.

3 Data

NaNoGenMo uses GitHub’s built-in issue tracker
to keep track of all user submissions. Every issue
corresponds to one NaNoGenMo project. In the is-
sue thread, participants can post comments, interact
with other users, share their development process
and publish previews of the generated novels.

We downloaded all issues from the NaNoGenMo
2018 repository as JSON data using the GitHub
API. We took issues into account that were opened
between the start of NaNoGenMo 2018 and March
2019, that were labels as ‘completed’ and not la-
beled as ‘admin’. The label ‘completed’ means that
both the generator code and a 50,000 word output
are publicly available. All 61 issues5 were manu-
ally reviewed by the first author, by looking at the
programming code, the output, the tools and used
datasets. For practical reasons, we ignored projects
in other languages than English.

NaNoGenMo uses a loose definition of ‘novel’:
any text of more than 50,000 words qualifies as an
acceptable output. There are no rules dictating the
format, style, grammaticality, subject or content
of the text. As a result, the outputs vary greatly
from one another. See Figure 1 for a categorisation
of NaNoGenMo projects according to their output
type. Most projects generate a novel-like text, with
a form that resembles sentences, paragraphs and
chapters. One participant (project 72) created a

5Throughout this paper we will reference each project
by its issue number on GitHub. The details of each project
can be found on the corresponding issue page on GitHub, i.e.
https://github.com/NaNoGenMo/2018/issues/{issuenumber}.
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text
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Figure 1: Output type of completed NaNoGenMo 2018
projects.

Language Projects

Python 19
Javascript 8
Lua 3
Bash 3
C 2
Samovar 1
Ruby 1
Perl 1
PHP 1
ML 1
Julia 1
Java 1

Figure 2: Programming languages used in
NaNoGenMo projects that generate novel-like
text. Projects that use more than one programming
language are counted multiple times.

generator for an Interactive Fiction game. Other
projects generated word art, e.g. repetitions of one
word, ASCII art or text without meaning, poems,
graphs or lists. In the rest of this paper, we will
limit our discussion to the 35 projects that generate
novel-like text.

For an overview of the programming languages
used in the projects, see Figure 2. Some projects
used multiple languages. The availability of good
NLP and NLG resources in a particular language
has probably contributed to people choosing those
languages. Consequently, the choice for a particu-
lar programming language may have influenced the
chosen text generation and narrative generation ap-
proach, and vice versa. Both Python and Javascript,
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the two most popular programming languages with
NaNoGenMo participants, have accessible libraries
for text processing and text generation. Participants
that programmed in Python mainly used Markovify,
SpaCy and NLTK; Javascript projects used mostly
Tracery (Compton et al., 2015), a Javascript library
for text generation with context-free grammars.
The developers of Tracery specifically mention the
NaNoGenMo community as the target audience
for Tracery, which could explain the wide adoption
of Tracery within the NaNoGenMo community, as
well as the large number of projects in Javascript,
a programming language that is not typically used
for text generation or text processing.

In addition to NLP libraries and tools, most par-
ticipants use externally sourced text data. Public do-
main books from Project Gutenberg6 and The Inter-
net Archive7 were very popular with NaNoGenMo
participants, as was Darius Kazemi’s Corpora8

repository, which is a collection of word lists orga-
nized by subject, such as games, medicine and reli-
gion. Some participants created their own corpus
from online resources, such as subtitles, marathon
reports, horror stories and reports of personal expe-
riences with psycho-active drugs.

4 Text generation methods

The 35 novel generation projects of NaNoGenMo
2018 use a variety of text generation methods to
create the surface text of their novel. In this section,
we provide a survey of the various approaches we
have seen.

4.1 Templating

More than 10 projects use some form of templating.
Libraries like Tracery offer a fast way to implement
this in Javascript and Python. Most text templates
were hard-coded in the generator, which is time-
consuming and requires manual effort. An alter-
native approach used in some projects (projects
64, 101 and 104) was to create templates automati-
cally, e.g. by running all sentences from a corpus
through a part-of-speech (POS) tagger and creating
sentence templates from the POS-tags.

The popularity of templating is not surprising,
as templates offer a strong form of control over the
surface text. However, using templates does not
guarantee a good quality output. If templates are

6www.gutenberg.org
7www.archive.org
8https://github.com/dariusk/corpora

filled with randomly chosen phrases, as was done
in some projects, the quality of the generated text
may be worse than that of a text generated with
Markov chains (discussed next).

4.2 Markov chains

At least 8 projects used Markov chains for text
generation. Markov chains are statistical language
models, which can be created fully automatically
from corpora. They can be used for text generation
by choosing a start token and using the probabili-
ties in the model to choose the next token. Using
Markov chains is an accessible approach to text
generation, as it does not require coding the con-
tent of the output. Markovify9, a Python library
for working with Markov chains, was used by the
majority of users that used Markov chains for gen-
eration. We believe that Markovify has contributed
to the popularity of the Markov chain approach
under NaNoGenMo participants.

Not your average ultra (project 89) creatively
mixes the outputs of two Markov chains. One
Markov chain was trained on a collection of
marathon reports, the other on a dataset of reports
of personal experiences with psychoactive drugs.
As the generator produced more text, the influence
of the second Markov chain on the generator grew
stronger, which resulted in output in the form of a
race journal that becomes progressively delirious
over time.

Although the outputs from a Markov chain are
often less coherent than those produced by tem-
plates, the advantage of Markov chains is that they
often yield surprising or interesting results. For
participants that value creativity over coherence,
Markov chains are a suitable technique for text gen-
eration. As we will see in Section 5, the lack of
coherence is not always a problem.

4.3 Remixing

Remixing external sources, such as text from exist-
ing novels, was also a popular approach with par-
ticipants. More than half of the projects use some
form of remixing to create their output. One ex-
ample of remixing is creating a new text by taking
a source text and substituting words from the text
according to specific rules. A hilarious example
of this is Textillating (project 96), where Dickens’
Great Expectations is ‘improved’ by increasing the
number of exclamation marks and substituting each

9https://github.com/jsvine/markovify

www.gutenberg.org
www.archive.org
https://github.com/dariusk/corpora
https://github.com/jsvine/markovify
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adjective in the text with its most extreme synonym.
Some participants collected external sources and

composed their novel by cutting-and-pasting sen-
tences from these. For example, Doctor, doctor!
(project 86) used the corpus of Yahoo! health ques-
tions and answers to generate a dialogue between a
doctor and a patient. Another participant scraped
sentences from GoogleBooks about a set of topic
words, and created an original text by cutting-and-
pasting snippets from Google Books preview files.
In some cases, remixing was paired with statisti-
cal modeling. The author of Angela’s claustrum
(project 28) transformed an old NaNoWriMo novel
draft into an outline and remixed this into a new
novel by using a stochastic model of Gutenberg
texts.

With this category of methods, either the output
text is very similar to the source text (and simi-
larly coherent), or the output is completely new but
loses some coherence in the process, often because
developers chose to introduce random words into
existing sentences in their word substitution.

4.4 Machine Translation

There were various generators that used machine
translation techniques for creating a novel. Project
22 created a new text by mapping every sentence
of Northanger Abbey by Jane Austen to a sentence
written by Sir Arthur Conan Doyle, using sentence
embeddings.

Project 61 used machine translation to transform
the text of one of L. Frank Baum’s Oz books. All
dialogue from the book was translated to the “lan-
guage” of The Muppets’ Swedish Chef, and all
other text was translated to Valleyspeak.10

One participant (project 33) used a public do-
main movie as the basis for their novel. They
turned the movie into a collection of screenshots
and fed this to Microsoft Cognitive services to
generate captions for the screenshots. The cap-
tions were then transformed into novel text. This
can be seen as a form of machine translation. In-
stead of translating between different languages,
this project translates between different modalities
(video to image, image to text).

Machine translation within NaNoGenMo can be
seen as a form of remixing, and the drawbacks are
indeed very similar. Either the output text shows
a strong resemblance to the original text, or it is

10Valleyspeak is an American social dialect that originates
from the San Fernando Valley in Southern California.

more creative but ends up incoherent.

4.5 Deep learning
Finally, there were three projects that used deep
learning to create their novel. Two projects, project
73 and project 76, used Torch11 to create an LSTM
architecture trained on an external dataset. Project
73 trained the LSTM on a crowdsourced collec-
tion12 of Dungeons & Dragons character biogra-
phies, and project 76 used user-written horror sto-
ries scraped from CreepyPasta13. Both projects
have output that is neither coherent nor grammati-
cal. However, the LSTM does manage to convey
the typical style of RPG biographies and horror sto-
ries. Finally, project 99 used machine learning to
see whether a neural network trained on the text of
Moby Dick could succesfully reconstruct the origi-
nal text, by predicting the sequence of sentences.

5 Methods for narrative coherence

NaNoGenMo output is at least 50,000 words, or
roughly 75 pages of text. This is a much greater
length than is usually produced by story generation
systems. In computational creativity and creative
NLG, typical outputs range from tweets (140-280
characters) to stories of one or two pages, with ex-
ceptions such as Curveship (Montfort, 2009), UNI-
VERSE (Lebowitz, 1987) and World clock (Mont-
fort, 2014).

To see how NaNoGenMo participants generate
coherent novel-length narratives, the first author
performed an informal analysis of the outputs of the
35 text generation projects, specifically focusing
on coherence and the presence of narrative struc-
ture. Out of the 61 projects of NaNoGenMo, only
14 projects had a narrative structure, that is, they
exhibited coherence as discussed in Section 2.3.
Below we give an overview of the approaches used
to achieve this. We can categorise the approaches
for generating this narrative as follows.

5.1 High-level specification
Some projects achieve coherence by hard-coding
a narrative structure in their input. The League of
Extraordinarily Dull Gentlemen (project 6) defines
that narrative structure in a specification written
in Samovar, a PROLOG-like domain-specific lan-
guage for world-modeling using propositions. The

11http://torch.ch/
12https://github.com/janelleshane/DnD_

bios
13https://www.creepypasta.com/

http://torch.ch/
https://github.com/janelleshane/DnD_bios
https://github.com/janelleshane/DnD_bios
https://www.creepypasta.com/
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specification is a high-level description of the story,
with its representation level a mix of a fabula and
surface text: it is not just a sequence of events,
but also includes dialogue and narrative exposition.
The surface text for its output was generated by run-
ning the specification through Samovar’s assertion-
retraction engine14, taking the resulting sequence
of events and realising those into sentences with a
Python script. This approach is similar to that of
other story generation systems that use logic pro-
gramming to generate stories or fabulas, such as
(Martens, 2015), (Robertson and Young, 2015) and
(Garcı́a-Ortega et al., 2016).

Hard-coding a narrative arc in a specification can
be seen as high-level templating. It also has sim-
ilar advantages as templating: because the author
specifies the narrative arc by hand, they have tight
control over the surface text, which results in an
output that looks like it was written by a human.
However, this approach places an authorial burden
on the developer of the generator. The story of
project 6 of 50,000 words was generated in 930
lines of Samovar. We expect that the effort of writ-
ing this specification could be further reduced with
code generation. Another disadvantage is that one
story specification defines exactly one surface text.
The surface text of project 6 includes little varia-
tion. The book consists of scenes where multiple
characters perform the same action in sequence.
Repeating patterns are clearly visible in the output
text, making for a dull read – hence the title of
the project. However, the output of project 6 sets
itself apart from other generated novels by having
grammatical surface text and maintaining a clear
traditional narrative arc throughout the entire story
with a beginning, an incident, a climax and a prob-
lem resolution.

For authors that want to generate a story out
of a high-level story description, using a domain
specific language like Samovar might be a suitable
solution. The code for this NaNoGenMo project is
very readable and could serve as an introduction to
this approach. As this approach requires the user to
write part of the story, it is less suitable for projects
where the author also wants the generator to create
the contents of the fabula, or requires a lower cost
in terms of writing the code and specification.

14https://catseye.tc/article/Languages.
md#samovar

5.2 Hard-coded narrative elements

Instead of hard-coding the narrative structure of
the entire story in the generator, it can be hard-
coded only in specific places. An example of this
approach from outside NaNoGenMo is described
in Reed (2012), where the author used a gram-
mar to generate ‘satellite sentences’ that can be
inserted in a larger human-authored narrative for
an interactive fiction game. Satellite sentences are
sentences that “moderate pacing and reestablish
context within dialogue scenes” (Reed, 2012), such
as “She coughed”, “The clock was ticking” and “It
was getting late”.

There were a few NaNoGenMo projects where
the generated text itself had no structure at all, but
where the developer still created a narrative by pro-
viding a hard-coded section at the beginning and/or
ending of the book. Having a fixed beginning and
ending can tie otherwise incoherent pieces of gen-
erated text together, as it gives readers a context in
which they can interpret the generated text. Even
text generation techniques that normally do not
lead to coherent output, such as Markov chains and
random generation, can still be ‘saved’ by using
this technique.

An example is Not your average ultra (project
89), which succesfully frames the (in)coherence of
Markov chains by naming the specific setting of the
novel at the beginning and end: an ultramarathon.

Similarly, The Defeat at Procyon V (project 83)
contains 50,000 words of dialogue between a sci-
ence fiction Fleet Commander and their Super Ad-
miral. The lines of dialogue are randomly gen-
erated from a grammar of science fiction techno-
babble, occasionally interspersed with exposition
sentences, similar to the satellite sentences from
Reed (2012). Because the beginning and ending
of the novel are fixed, the reader has a context in
which to interpret the conversation: the conversa-
tion is about the various weapons and technologies
that were deployed in the defense of Procyon V.

With this approach, the problem of generating a
coherent narrative is transformed into writing narra-
tive elements that frame the generated text in such
a way that the reader perceives a narrative in the
entire text. It particularly useful in instances where
developers prefer straight-forward text generation
techniques over narrative generation techniques,
and for developers that want to write as few lines
of code as possible.

https://catseye.tc/article/Languages.md#samovar
https://catseye.tc/article/Languages.md#samovar
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5.3 Simulation

There were various projects (projects 11, 18, 39,
60 and 100) that used simulation as the basis for
their narrative. The projects with simulation-based
narratives had two things in common.

Firstly, most projects used rule systems that are
similar to those of well-known role-playing games.
For example, The Longest Corridor (project 18)
uses a combat system that closely resembles that
of Dungeons & Dragons. The project generates
stories about a mythical corridor filled with mon-
sters and treasure. For each chapter of the novel,
the system generates a hero who has to fight their
way through the corridor. If the hero is defeated by
the inhabitants, the hero’s remains will stay in the
corridor for later heroes to find. If the hero reaches
the end of the corridor and finds the treasure, they
install themselves as the new master of the corridor,
waiting for new adventurers to come and challenge
them. This continuity, where characters of previous
chapters (old world state) can interact with char-
acters from current chapters (current world state),
is what moves this project from a straight-forward
simulation into the realm of narrative. Similarly,
Of Ork, Fae, Elf and Goblin (project 39) generates
a fabula of a group of creatures that fight each other
with procedurally generated weapons in different
rooms.

Another roleplaying-game inspired project is
High Fantasy with Language Generator (project
60). Instead of having one global text-level simu-
lation that tracks the world state and governs the
entire narrative, it uses multiple low-level simu-
lations that each govern one type of event. The
project follows a group of adventurers on their
quest. During their travels, the characters encounter
monsters, visit local taverns and play dice games
with strangers. For each of these scenes, the gener-
ator uses a separate simulation.

A second property of simulation-based novels
is that they often have a journal-like format. The
world state of the simulation gives rise to the sur-
face text of the story. Since the world state is up-
dated with each clock tick, it is intuitive to let the
novel’s sections (chapters, paragraphs) correspond
to one clock tick. Consequently, simulation-based
narratives are particularly suitable for generating
journals or logbooks, in which each section corre-
sponds to one unit of time. The Pilgramage (project
11) is an example of a project that follows a journal
format.

A weakness of some of the simulation-based
projects in NaNoGenMo is that they generate
events that are not linked to each other. An ex-
ample is Wheel of Fortune (project 100), which
simulates characters who slowly grow old and die,
all the while experiencing events that are generated
from randomly drawn tarot cards. The resulting
sequence of events looks like a fabula. However,
the events are not related to each other and do not
influence each other: the characters’ actions hap-
pen completely in a vacuum. This does invite the
reader to imagine their own narrative, but this re-
quires a lot of effort on part of the reader. Still,
symbolism from tarot cards can be used success-
fully to shape a narrative when combined with other
methods, such as high-level specification of narra-
tive structure (see Section 5.1). A story generator
from outside NaNoGenMo that also used the tropes
from tarot was developed by Sullivan et al. (2018).
However, Sullivan et al. (2018) used the tarot cards
to generate movie-like story synopses, with a plot
structure based on Booker’s seven basic plots and
screenwriting principles.

5.4 Evoking a narrative

Some of the project outputs evoke a narrative, even
though there is no narrative structure explicitly
present in the text. This can even be the case for
output texts that are not grammatical. Incoherent
texts that still have a recognizable novel form force
the reader to guess the meaning of the author. This
subjective interpretation might still evoke a narra-
tive in the reader.

As Veale (2016) notes in his paper on poetry gen-
eration, form can be more important than content.
Veale calls this effect ‘charity of interpretation’: if
humans see a text in a well-known form (or con-
tainer), they are disposed to attribute more meaning
to the text than it actually has. We saw two distinct
ways of achieving this.

If the text of the novel is limited to a specific
subject, readers will try to fill in the gaps in the
structure with their own knowledge and expecta-
tions. An example of a project that limits its topic
to instill a sense of coherence is Doctor, doctor!
(project 86). The output text has the form of a di-
alogue, consisting of randomly chosen questions
and answers from a dataset of Yahoo! questions
from the health domain. The questions and answers
have no logical connection whatsoever, but the vo-
cabulary and writing style will be recognizable to
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readers who are familiar with medical discussions
on the internet. Even though the answers of the doc-
tor make no sense in the context of the respective
questions, readers will infer that this novel is about
a dialogue between a doctor and their hypochon-
driac patient.

Another technique for evoking a narrative is by
connecting unrelated random elements with each
other to improve the perceived coherence. Out of
Nowhere (project 57) simulates an interaction be-
tween its characters by connecting interactions at
the word level, which we explain below. Out of
Nowhere produces the script for a play, based on
lines of English text from public-domain phrase
books. The characters represent different nation-
alities, and their dialogue lines are based on the
text of phrase books for their respective languages.
The character dialogue is generated by choosing
lines from each character’s phrase book. Most dia-
logue lines are chosen randomly, but the generator
increases the coherence of the output with a few
tricks. Both the location and the interactions are
influenced by the words that occur in previous lines.
For example, if the previous line contains the word
‘waiter’, the generator will include a restaurant or
cafe in the scene. Similarly, if one of the previous
lines contains a question mark and an interroga-
tive word (“what”, “who”, etc.), the generator will
assign a higher probability to lines that would con-
stitute a logical answer. For example, if previous
lines contain the phrase “Where is ...?” the gen-
erator favors sentences like “In Timbuktu” or “At
my house”. This is a similar approach as is used in
Reed (2012), where the text generator takes differ-
ent types of context into account, such as dialogue
progression, location and time of day. The differ-
ence is that Reed tagged his text with locations
for the satellite sentences, whereas the generator
of project 6 generates all sentences and their con-
nections on the fly. The result of project 57 is a
script that has similar quality as the generators that
use the simulation approach, even though there is
no underlying world state for this play. All the
coherence comes from word-level choices.

Besides limiting the topic of a text, using the
right style can increase the perceived coherence of a
text as well. If a reader recognizes a particular style
from a particular type of narrative, the reader might
infer meaning where there is none. A project that
adapts this idea in an original way is Velvet black
skies (project 65), which uses statistical modeling

to find the most cliche sentences in a corpus of
science fiction writing. The developers defined
cliches as “n-grams that occur in the texts of more
than 30 authors.” The generator creates a new text
from these cliches by clustering them by topic and
by remixing them into a chapter for each topic.
Readers of science fiction classics will immediately
recognize the particular style of vintage science
fiction.

The above techniques ask something extra of the
reader during the interpretation of the text. As such,
they are suitable for situations where the writer
wants to highlight the subjective experience of the
reader in ascribing meaning to a text. Additionally,
these techniques could be used for collaborative
creation in text generation (authoring aids), i.e. ap-
plications where a computer generates a first draft
of a story and the human finishes it. In the lat-
ter case, the human author can take the concepts
created by the generator and polish them before
publication.

6 Conclusion

We discussed the most prevalent text generation
methods from NaNoGenMo 2018 and their re-
spective advantages and disadvantages. We dis-
cussed four different approaches that were used to
achieve coherence (or the semblance of it) in novel-
length texts, highlighting some of the most creative
projects.

If there is already a high-level story arc thought
out for the surface text, using a high-level specifi-
cation to define this story arc is a good approach.
Hard-coding the high-level narrative arc in a spec-
ification can reduce the authorial burden of man-
ually writing the full text significantly. However,
the approach is not suitable for projects where the
generator should generate the fabula in addition to
the surface text.

If the generator is also in charge of generating
the events that underlie the surface text, simulation-
based approaches are a good choice. It has been
applied in various story generation systems already,
most notably for the game domain, because of the
overlap in functionality between simulations for
narratives and rule systems for games. A weakness
of simulation approaches is that, if the generated
events are not interrelated, the sequence of events
generated by a simulation lacks narrative coher-
ence.

However, even text generation methods that do
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not create coherent text can be turned into a narra-
tive, either by hardcoding narrative elements, such
as a contextualising beginning or ending, or by
evoking a narrative by exploiting readers’ charity
of interpretation.

In this paper we could only give a high-level
overview of the different approaches, and briefly
discuss a few example projects. Those who want
to see more examples and study the different ap-
proaches in detail can refer to the NaNoGenMo
repository on GitHub. We have made the data for
our analysis in this paper available online.15
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Ivo Swartjes and Mariët Theune. 2008. The virtual sto-
ryteller: Story generation by simulation. In Proceed-
ings of the 20th Belgian-Netherlands Conference on
Artificial Intelligence (BNAIC), pages 257–264.

Alan Tapscott, Carlos León, and Pablo Gervás. 2018.
Generating stories using role-playing games and
simulated human-like conversations. In Proceed-
ings of the 3rd Workshop on Computational Cre-
ativity in Natural Language Generation (CC-NLG
2018), pages 34–42.

Mariet Theune, Nanda Slabbers, and Feikje Hielkema.
2007. The Narrator: NLG for digital storytelling.
In Proceedings of the Eleventh European Workshop
on Natural Language Generation, pages 109–112,
Saarbrücken, Germany.

Tony Veale. 2016. The shape of tweets to come: Au-
tomating language play in social networks. Multiple
Perspectives on Language Play, 1:73–92.

Marilyn A. Walker, Ricky Grant, Jennifer Sawyer,
Grace I. Lin, Noah Wardrip-Fruin, and Michael
Buell. 2011. Perceived or not perceived: Film
character models for expressive NLG. In Interna-
tional Conference on Interactive Digital Storytelling,
pages 109–121. Springer.

Lili Yao, Nanyun Peng, Weischedel Ralph, Kevin
Knight, Dongyan Zhao, and Rui Yan. 2019. Plan-
and-write: Towards better automatic storytelling. In
Thirty-Third AAAI Conference on Artificial Intelli-
gence (AAAI-19).

https://www.aclweb.org/anthology/W09-2008
https://www.aclweb.org/anthology/W09-2008
https://doi.org/10.18653/v1/N16-1098
https://doi.org/10.18653/v1/N16-1098
https://doi.org/10.18653/v1/N16-1098
https://www.aclweb.org/anthology/W07-2317

