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Introduction

SpLU-RoboNLP 2019 is a combined workshop on spatial language understanding (SpLU) and grounded
communication for robotics (RoboNLP) that focuses on spatial language, both linguistic and theoretical
aspects and its application to various areas including and especially focusing on robotics. The combined
workshop aims to bring together members of NLP, robotics, vision and related communities in order to
initiate discussions across fields dealing with spatial language along with other modalities. The desired
outcome is identification of both shared and unique challenges, problems and future directions across the
fields and various application domains.

While language can encode highly complex, relational structures of objects, spatial relations between
them, and patterns of motion through space, the community has only scratched the surface on how
to encode and reason about spatial semantics. Despite this, spatial language is crucial to robotics,
navigation, NLU, translation and more. Standardizing tasks is challenging as we lack formal domain
independent meaning representations. Spatial semantics requires an interplay between language,
perception and (often) interaction.

Following the exciting recent progress in visual language grounding, the embodied, task-oriented aspect
of language grounding is an important and timely research direction. To realize the long-term goal of
robots that we can converse with in our homes, offices, hospitals, and warehouses, it is essential that
we develop new techniques for linking language to action in the real world in which spatial language
understanding plays a great role. Can we give instructions to robotic agents to assist with navigation and
manipulation tasks in remote settings? Can we talk to robots about the surrounding visual world, and
help them interactively learn the language needed to finish a task? We hope to learn about (and begin to
answer) these questions as we delve deeper into spatial language understanding and grounding language
for robotics.

We accepted 8 archival submissions and 12 cross-submissions.
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Abstract

As autonomous systems become more com-
monplace, we need a way to easily and nat-
urally communicate to them our goals and col-
laboratively come up with a plan on how to
achieve these goals. To this end, we conducted
a Wizard of Oz study to gather data and inves-
tigate the way operators would collaboratively
make plans via a conversational ‘planning as-
sistant’ for remote autonomous systems. We
present here a corpus of 22 dialogs from expert
operators, which can be used to train such a
system. Data analysis shows that multimodal-
ity is key to successful interaction, measured
both quantitatively and qualitatively via user
feedback.

1 Introduction

Our goal is to create a collaborative multimodal
planning system in the form of a conversational
agent called VERSO using both visual and natu-
ral language interaction, which in our case will be
images of the plan and messages. In this work,
we focus on the domain of Autonomous Underwa-
ter Vehicles (AUVs). Experts in this domain typ-
ically create a plan for vehicles using a visual in-
terface on dedicated hardware on-shore, days be-
fore the mission. This planning process is compli-
cated and requires expert knowledge. We propose
a ‘planning assistant’ that is able to encapsulate
this expert knowledge and make suggestions and
guide the user through the planning process us-
ing natural language multimodal interaction. This,
we hope, will allow for more precise and efficient
plans and reduce operator training time. In ad-
dition, it will allow for anywhere access to plan-
ning for in-situ replanning in fast-moving dynamic
scenarios, such as first responder scenarios or off-
shore for oil and gas.

2 Previous work

Conversational agents are becoming more
widespread, varying from social (Li et al., 2016)
and goal-oriented (Wen et al., 2017) to multi-
modal dialog systems, such as the Visual Dialog
Challenge (Das et al., 2017) where an AI agent
must hold a dialog with a human in natural lan-
guage about a given visual content. However, for
systems with both visual and spatial requirements,
such as situated robot planning (Misra et al.,
2018), developing accurate goal-oriented dialog
systems can be extremely challenging, especially
in dynamic environments, such as underwater.

The ultimate goal of this work is to learn a di-
alog strategy that optimizes interaction for qual-
ity and speed of plan creation, thus linking in-
teraction style with extrinsic task success metrics.
Therefore, we conducted a Wizard of Oz (WoZ)
study for data collection that can be used to derive
reward functions for Reinforcement Learning, as
in (Rieser, 2008).

Similar work is shown in (Kitaev et al., 2019),
where the task involves two humans collabora-
tively drawing objects with one being the teller
and the other the person who draws. The agents
must be able to adapt and hold a dialog about novel
scenes that will be dynamically constructed. How-
ever, in our scenario the agent must be capable of
not only adapting but also identifying and editing
specific attributes of the dynamic objects that are
being created in the process.

Previous data collection on situated dialog, such
as the Map Task Corpus (Anderson et al., 1991),
tackle the importance of referencing objects while
giving instructions on a drawn map with land-
marks either for identification purposes or for
displaying the perceived understanding of their
shared environment. Our task is different in that
it involves subjects collaboratively creating a plan
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on a nautical chart rather than passively follow-
ing instructions. In addition, our environment is
dynamic. New objects are being created and the
user with the agent, together, come up with the de-
sired referring expressions (see Figure 3). A sim-
ilar interactive method is described in (Schlangen,
2016), where they ground non-linguistic visual in-
formation through conversation.

In situated dialog, each user can perceive the en-
vironment in a different way, meaning that refer-
ring expressions need to be carefully selected and
verified, especially if the shared environment is
ambiguous (Fang et al., 2013). Our contributions
include: 1) a generic dialog framework and the
implemented software to conduct multiple wiz-
ard WoZ experiments for multimodal collabora-
tive planning interaction; 2) available on request,
a corpus of 22 dialogs on 2 missions with varying
complexities and 3) a corpus analysis (Section 4)
indicating that incorporating an extra modality in
conjunction with spatial referencing in a chatting
interface is crucial for successfully planning mis-
sions.

3 Method and Experiment Set-up

Our ‘planning assistant’ conversational agent will
interface with planning software called SeeTrack
provided by our industrial partner SeeByte Ltd.
SeeTrack can run with real AUVs running See-
Byte’s Neptune autonomy software or in simula-
tion and allows the planning of missions by defin-
ing a set of objectives with techniques described in
(Lane et al., 2013; Miguelanez et al., 2011; Petil-
lot et al., 2009). These can include, for example,
searching for unexploded mines by surveying ar-
eas in a search pattern, while collecting sensor data
and if, for example, a suspect mine is found then
the system can investigate a certain point further
(referred to as target reacquisition).

We used two wizards for our experiment, see
Figure 1 for the set-up. We refer here to the
wizards as 1) Chatting-Wizard (CW), who alone
communicates with the subject getting informa-
tion that is required to create the plan; and 2) the
SeeTrack Wizard (SW), who sits next to the CW
and implements the subject’s requirements into a
plan using SeeTrack and passes plan updates in the
form of images to the CW to pass onto the subject.
The subject was in a separate room to the wizards
and interacted via a chat window for receiving text
and images of the updated plan and sending text.

Figure 1: Experimental Set-Up, where a) SeeTrack
Wizard, b) Chatting Wizard, and c) Subject console.
Figure contains images from Seebyte’s SeeTrack inter-
face.

In order to establish the main actions and dialog
act types for the system to perform, we recorded
an expert planning a mission on SeeTrack whilst
verbalizing the planning process and his reason-
ing. Similar human-provided rationalisation has
been used to generate explanations of deep neural
models for game play (Harrison et al., 2018). Af-
ter analysing the expert video, we implemented a
multimodal Wizard of Oz interface that is capable
of sending messages, either in structured or free
form as well as images of the plan. The Wizard
Interface is made up of four windows (see Fig-
ure 2). The first has all the possible dialog acts
(DA) the wizard can use together with predefined
utterances for expedited responses. Once the DA
is selected the predefined text appears in the chat
window, from there the CW is able to modify as
needed. The third window allows the CW to insert
values (also referred to as ‘slots’) needed for the
plan obtained through interaction from the user.
Finally, the fourth window is for recording session
details such as subject ID. The CW works collab-
oratively with the subject to develop a list of the
necessary parameters that the SW needs to create
the plan.

Each subject was given a short questionnaire to
collect demographic information and instructions
on how to approach the task of planning a mis-
sion using a conversational agent. A mission in
our context is comprised of a nautical chart and
a description of some objective that the subjects,
together with the wizards, have to achieve. There
are two main categories of missions A and B. The
first (A) involves sending AUVs to survey areas of
interest on the chart and is more time consuming.
The second (B) category entails the reacquisition
of a target, which overall can be achieved in less
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Figure 2: Wizard of Oz interface (Figure 1b) used
by the Chatting Wizard, 1) dialog acts and structured
prompts, 2) Chatting window, 3) State of the plan in
the form of value-slots, 4) Session notes. Figure con-
tains images from Seebyte’s SeeTrack interface.

time. This is because surveying an area requires
extra interactions between the operators and typi-
cally more spatial commands. Subjects were told
that they had to plan both missions within a total
time of one hour. Table 1 shows that the first mis-
sion took more time to plan in terms of actual plan-
ning time and number of user/system turns. This
is normal because the first mission was of cate-
gory A, which is by design harder, and the second
mission of category B. The wording of the mission
was very high level, so as not to prime the subjects.
There are many elements that make up a plan (e.g.
survey areas, exclusion zones) and therefore many
variations are possible. Once both missions were
completed, a post-questionnaire was administered
to obtain their subjective opinion on the planning
process. Subjects were told at the end that they
were interacting with a wizard.

3.1 Subject Group

Planning missions for AUVs is a complex task, es-
pecially in the case of sophisticated software, such
as SeeTrack. For this reason, we decided to focus
our study mostly on expert users, who are famil-
iar with SeeTrack and AUVs. We recruited human
operators from industry (10 male, Mage=30), who
all had some experience with SeeTrack.

4 Corpus Analysis

We collected 22 dialogs between the wizards and
the subjects, which were analysed by a single an-
notator (an author). Figure 3 shows an example
of a dialog interaction with corresponding dialog
acts. We split our analysis into objective and sub-
jective measures.

1. USER: ‘move t2 200m west of t1’[inform]

2. SYSTEM:‘Could you repeat that in different
words? t1? t2?’[repeat]

3. USER:‘move target2 200m west of tar-
get1’[inform]

Figure 3: Dialog excerpt and the corresponding image,
displaying 2 targets, a launch and a recovery point [di-
alog act]. Figure contains images from Seebyte’s See-
Track interface.

4.1 Objective Measures
Dialog act types were adopted from the ISO
(24617-2:2012) standard for dialog act annota-
tion. Figure 4 gives the distribution of dialog acts,
which were categorized into five groups:

1. Generic (conversational acts): wait, ack, af-
firm, yourwelcome, thankyou, bye, hello, re-
peat, praise, apology

2. Inform (for informing of values for slots):
inform, negate, delete, create, correction,
plan complete, plan mission

3. Request (for requesting information): re-
quest, enqmore

4. Suggest (for making suggestion): suggest

5. Image (for interacting with images): im-
age caption, show picture

The most frequent user DA is the “inform” dia-
log act (54%), which informs the system about the
plan slot values. This dialog act is also used for
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Measures Mission 1 Mission 2
# of turns 26.4(9.1) 13.1(4.4)
# of system utterances 51.4(21.0) 27.0(7.5)
# of user utterances 36.4(14.4) 19.7(8.1)
# of produced images 8.8(3.8) 5.0(1.3)
Time-on-Task (min) 26.3(0.005) 14.5(0.004)

Table 1: Measures per dialog [mean(sd)]. One turn
comprises one system and one user turn.

utterances that instruct the system to move objects
around the chart by referring either to the object’s
position or to nearby objects. 53% of these “in-
form” acts contain referring expressions (see lines
1 and 3 of Figure 3 for examples). In addition, it is
clear that, due to the spatial nature of the tasks, the
extra modality of plan images is key to successful
planning, as reflected by the frequency of ‘Image’
dialog acts (around 16% of the total dialog acts).
These DAs include the user requesting a plan im-
age ‘show picture’ or ‘image caption’ where the
system, either proactively or as a response to a
user request, sends an image of the plan. The most
used DA by the wizard was “ack” 30%, used for
acknowledging information (e.g. “okay”).

Figure 4: Dialog Act Frequency of the 22 DA types.
“S” is for system only DA, “U” is for user only DA and
“S/U” refers to DA that both the system and the user.

4.2 Quality of the plan
The subjective quality of the plans were measured
by an expert, who has worked for years on plan-
ning missions, using a 5-point scale (see Table
2). The quality of a plan was measured accord-
ing to the completeness, appropriateness and if
it was operationally successful. At least 45% of
the plans for both missions were measured “High
Quality”, with a greater number of lower rated
plans for Mission 1. No correlation was found be-
tween time-on-task and quality of plans, however,

subjective feedback indicates that subjects would
have liked more time to improve their plans. The
response time of the Wizard was slower than nat-
ural interaction (average 15sec), which is a typ-
ical issue in WoZ studies. The dataset contains
plans of varying quality, which we hope will en-
able the system to learn better strategies for cre-
ating optimal plans, as well as, coping strategies.
There is a medium-strong positive correlation of
r = 0.59 (Spearman’s Correlation) between the
expertise of the subjects (as determined by the
pre-questionnaire) and the quality of the plan for
the first mission indicating that, perhaps unsurpris-
ingly, the higher the expertise, the better the qual-
ity of plans.

Quality Mission 1 Mission 2
Very High Quality 0% 9%
High Quality 45% 45%
Neutral 9% 36%
Low Quality 18% 9%
Very Low Quality 27% 0%

Table 2: The quality of all 22 plans measured by an
expert using a 5-point Likert scale.

4.3 Subjective Measures
The post-task questionnaire measured the subjec-
tive scores for User Satisfaction (US), the pace
of the experiment and the importance of mul-
timodality. Specifically the following questions
were asked on a 5-point Likert Scale:

• Q1: I felt that VERSO understood me well
• Q2: I felt VERSO was easy to understand
• Q3: I knew what I could say at each point in

the interaction
• Q4: The pace of interaction of VERSO was

appropriate
• Q5: VERSO behaved as expected
• Q6: It was easy to create a plan with VERSO

• Q7: From my current experience with using
VERSO, I would use the system regularly to
create plans

• Q8: The system was sluggish and slow to re-
spond (reversed)

• Q9: The screen shots of the plan were useful
• Q10: The screen shots of the plan were sent

frequently.
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Mean US is 3.5 out of 5, calculated as an aver-
age of Q1-7, which are questions adapted from the
PARADISE evaluation framework (Walker et al.,
1997). Q8 reflects the speed of the interaction with
the mean/mode/median as 4/4/4. This score is re-
versed and so these high scores indicate high per-
ceived slowness. As mentioned above, this is a
common problem with wizarding set-ups and will
not be a problem for the final implemented sys-
tem. Q9 and Q10 refer to the images sent and
we can see from the mean/mode/median of 4.6/5/5
for Q9 that images were clearly useful but perhaps
could be sent more frequently (3/4/3 for Q10). The
users’ preference for images of plans may be re-
lated to their cognitive styles being mostly spatial.

After both tasks, we collected perceived work-
load using NASA Task Load Index (NASA-
TLX) (Dickinson et al., 1993), where low scores
indicate low cognitive workload. Our mean Raw
TLX score was 46/100 (SD = 9.08). This mean
score is comparable to a study for remote con-
trolling robots through an interface as reported in
(Kiselev and Loutfi, 2012). Further analysis and
data collection would be needed to understand the
user workload with respect to interaction phenom-
ena observed in the corpus.

4.4 Qualitative Feedback

Subjects were asked two open questions of what
they liked or not about VERSO. An inductive, the-
matic analysis was done using grounded theory
with open coding (Strauss, 1987). Themes iden-
tified include:

Theme 1 Suggestions for extra functionality:
Due to delays some subjects were not sure if the
program crashed. We had a dialog act “wait” but
feedback indicated it would be better to have a vi-
sual indicator as well. Note, in the actual future
working system, we will not have the same delays
as in the WoZ experiment.

Theme 2 Chart meta-data: Some subjects (P5
most specifically) desired more meta-data on the
plan images they were receiving when referring to
an object. When performing spatial tasks on the
chart, clear referring expressions are crucial and
meta-data on the chart, such as entity names (as
with the Map Task (Anderson et al., 1991) land-
marks), would help establish grounded referring
expressions.

In our case, some of the referring expressions

were names decided on between the Wizard and
the subject, e.g. survey3. However, if the sub-
ject uses such objects as points of reference, e.g.
”place target1 near survey3”, this can become
problematic when the object (”survey3”) could
measure up to a mile width because the exact lo-
cation for ”target1” is ambiguous.

Theme 3 Mixed initiative & Handling multi-
ple requests: The WoZ interface was designed as
a mixed-initiative dialog system, capable of sug-
gesting actions and the subjects seem to like this
type of interaction. Also noted was the ‘system’s’
ability to handle multiple requests in a single ut-
terance, which will need to be implemented in the
final system.

5 Discussion and Future work

This paper presents a two-wizard WoZ study for
collecting data on a collaborative task, identify-
ing the importance of mixed modalities and object
referencing, for successful interaction during mis-
sion planning. Further data collection on Amazon
Mechanical Turk using Open Street Maps will be
conducted in order to reach a wider audience and
compensate for the gender imbalance.

Deep learning methods have surpassed human
performance in a variety of tasks and one crucial
factor for this achievement is the amount of data
used to tune these models. However, to be able to
learn from limited amounts of data will be key in
moving forward (Daugherty and Wilson, 2018).

In future work, the corpus described here will be
used in the development of a mixed-initiative data-
driven multimodal conversational agent, for plan-
ning missions collaboratively with a human oper-
ator. With the collected WoZ data, we can capture
the main strategies of how to plan a mission and
make data-driven simulations possible. Therefore,
we can train a Reinforcement Learning agent on
simulated dialogs that are fully data-driven with
the reward function being derived from our sub-
jects’ preferences, optimizing for plan quality and
speed. Moreover, supervised approaches that re-
quire less data to learn, such as the Hybrid Code
Networks (HCN) (Williams et al., 2017), could be
used for the creation of such a system. Finally, the
system will be compared to a baseline in a further
human evaluation study.
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Abstract
In this paper we describe a multilingual
grounded language learning system adapted
from an English-only system. This system
learns the meaning of words used in crowd-
sourced descriptions by grounding them in the
physical representations of the objects they are
describing. Our work presents a framework
to compare the performance of the system
when applied to a new language and to identify
modifications necessary to attain equal perfor-
mance, with the goal of enhancing the ability
of robots to learn language from a more di-
verse range of people. We then demonstrate
this system with Spanish, through first ana-
lyzing the performance of translated Spanish,
and then extending this analysis to a new cor-
pus of crowd-sourced Spanish language data.
We find that with small modifications, the sys-
tem is able to learn color, object, and shape
words with comparable performance between
languages.

1 Introduction

With widespread use of products like Roombas,
Alexa, and drones, robots are becoming common-
place in the homes of people. We can see a fu-
ture where robots are integrated into homes to pro-
vide assistance in many ways. This could be es-
pecially beneficial to elders and people with dis-
abilities, where having someone to help with basic
tasks could be what allows them to live indepen-
dently (Broekens et al., 2009). Natural language is
an intuitive way for human users to communicate
with robotic assistants (Matuszek et al., 2012a).
Grounded Language Acquisition is the concept of
learning language by tying natural language inputs
to concrete things one can perceive. This field
of study looks to train language and perceptual
skills simultaneously in order to gain a better un-
derstanding of both (Mooney, 2008). Work in this
field is critical for building robots that can learn

about their environments from the people around
them.

For such a system to truly be useful for the
average user, it is not enough to merely train a
robot how to recognize everyday objects and ac-
tions in a lab. Much like toddlers who grow up in
a family and surrounding culture, a service robot
should be ideally able to learn the acronyms, nick-
names, and other informal language that happens
naturally in human interaction. It logically fol-
lows that a truly well-designed system should not
only be able to handle vocabulary differences be-
tween users but also users that speak different lan-
guages. There are thousands of official languages
spoken around the world, and many more dialects.
In the United States alone, around 21 percent of
residents speak a non-English language as their
primary language at home (United States Cen-
sus Bureau, US Department of Commerce, 2017).
Grounded Language Acquisition takes many of its
roots from Natural Language Processing, which
in the past has had an unfortunate habit of focus-
ing on English-centric methods. This often leads
to systems that perform very well in English and
“well enough” in other languages.

In this paper, we take an existing grounded lan-
guage acquisition system (Matuszek et al., 2012b;
Pillai and Matuszek, 2018) designed for grounding
English language data and examine what adapta-
tions are necessary for it to perform equally well
for Spanish. We explore the extent to which ma-
chine translated data can assist in identifying lin-
guistic differences that can impact system perfor-
mance. We then collect a new comparable corpora
of crowd-sourced Spanish language data and eval-
uate it on the system with and without our pro-
posed modifications.
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2 Previous Work

In this section, we describe relevant previous
works in grounded language acquisition and mul-
tilingual natural language processing. While there
has been past work to apply grounded language
learning systems to multiple languages (Chen
et al., 2010; Alomari et al., 2017) to our knowl-
edge there have been few efforts in the space of
non-English grounded language learning where
comprehensive analysis was done to diagnose dif-
ferences in performance between languages and
work to mitigate these differences.

2.1 Grounded Language Acquisition

Language grounding can be done in many ways.
There is a significant community within computer
vision that works on object recognition with the
help of captions (Krishna et al., 2017; Gao et al.,
2015). These efforts ground objects found in im-
ages with words and relations stated in the cap-
tions. A multilingual example of this by Gella
et al. (2017), used images as pivots between En-
glish and German image descriptions. This paper
has a similar task of mapping language to images,
but does so on a token level, and does not attempt
to combine information between the Spanish and
English corpora. In addition, the image data we
are using includes depth information, as we are
simulating the visual percepts of a robot. It must
be noted that this differs from other works that
use additional products of robotic percepts like
video data, eye tracking, and other forms of ges-
ture recognition (Chen et al., 2010; Alomari et al.,
2017; Kollar et al., 2014; Yu and Ballard, 2004).
In the robotics space, many works tie language
grounding to enable actions like pathfinding (Ma-
tuszek et al., 2012a), household tasks (Alomari
et al., 2017), and building (Brawer et al., 2018).
While performing practical tasks is the eventual
goal of our grounded language system, the current
system focuses on the first step: building repre-
sentations of objects and how they are described
(nouns and adjectives).

There are a few examples of language ground-
ing in multiple languages (Chen et al., 2010; Alo-
mari et al., 2017). Several works tested their sys-
tem in a language besides English and presented
the results for both. While this showed that their
systems could handle multiple languages, none
provided an in-depth analysis into the differences
in performance for their systems, or extrapolated

past the two languages. Our work seeks to ex-
amine and identify causes of differences in perfor-
mance. While our current work only displays this
system with Spanish, we plan to extend our frame-
work to additional languages in the near future.

2.2 Multilingual Natural Language
Processing

There is a strong multilingual community in the
broader field of NLP working in many different
aspects, such as machine translation (Wu et al.,
2016) or multilingual question answering (Gao
et al., 2015). Some works dive deep into specific
language pairs to evaluate how differences be-
tween the languages complicate translation (Alas-
mari et al., 2016; Gupta and Shrivastava, 2016;
Ghasemi and Hashemian, 2016). Several work
with Spanish and English specifically (Le Roux
et al., 2012; Pla and Hurtado, 2014). Analyses
such as these helped to shape our analysis when
comparing the English and Spanish data perfor-
mance, and enabled us to predict points where lin-
guistic differences could impact performance.

There are quite a few examples in literature of
taking a system designed for English and adapt-
ing it for multilingual use (Daiber et al., 2013; Ga-
mon et al., 1997; Macdonald et al., 2005; Poesio
et al., 2010; Jauhar et al., 2018). Sometimes this
involves manually recreating aspects of the sys-
tem to match the rules of the other language (Ga-
mon et al., 1997), or utilizing parallel corpora to
transfer learning between languages (Jauhar et al.,
2018). Other projects look to make an English
system “language agnostic” (not biased towards
any one language) by editing parts of the prepro-
cessing algorithm (Daiber et al., 2013; Wehrmann
et al., 2017). The first method introduces a lot
of additional complications such as manual rule-
building, so it may seem attractive to make a
system that is completely language-blind. The
problem with this is that even generalized prepro-
cessing techniques are often still biased towards
languages with English-like structures (Bender,
2009), and in avoiding specifying anything about
the language one can miss out on common prop-
erties within language families that could increase
performance. For this paper, we strive to find com-
mon ground between making our system as gen-
eralized as possible and taking specific linguistic
structures into account if necessary.

One significant difference between our research
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and many works in grounded language acquisition
is that our system is entirely trained off of noisy
short descriptions collected without filtering. This
has very different characteristics from the more
common corpora built off of newswire and other
forms of well-written text (a very common one
is multilingual Wikipedia), or data that has been
placed into structures like trees (Le Roux et al.,
2012). Our data is prone to errors in grammar and
misspellings; in this regard, our data is most like
that of works that use Twitter data (Pla and Hur-
tado, 2014). However, in contrast to (Pla and Hur-
tado, 2014), our system only uses token extraction
to find the relevant images to extract features from,
rather than extracting all features from just the lan-
guage.

3 Approach

In this paper, instead of building a new grounded
language system, we chose to start with an existing
system presented by Pillai and Matuszek (2018),
which we will refer to as the GLS (Grounded Lan-
guage System). This system attempted to learn
physical groundings of colors, shapes, and objects
by tying color and depth data derived from im-
ages of various items with natural language de-
scriptions of the images. As a broader research
goal, we seek to discover how effective the GLS is
at handling non-English data. We decided to start
with Spanish, due to it being very similar to En-
glish. We wanted to see if and how the slight dif-
ferences between the two languages would affect
the relative performance of the system.

To begin our analysis we explored the perfor-
mance of the system on translated Spanish data
with minimal modifications. Our analysis of these
results concentrated on identifying language dif-
ferences between Spanish and English that intro-
duced new complications in grounding language.
We used our insights from this analysis to inform
our experiments on real Spanish data collected us-
ing Amazon Mechanical Turk.

3.1 Data

Pillai and Matuszek (2018) used a Kinect depth
camera to collect images of fruit, vegetables, and
children’s blocks of various shapes (see figure 1
for examples). There were a total of 18 object
types, with four instances of each object. Each
instance had around five images taken using the
depth camera. For each of these images, RGB and

Figure 1: Examples of images of objects in the original
dataset. Each object had several examples called “in-
stances” and images of each instance were taken from
several angles.

HMP-extracted kernel descriptors (Bo et al., 2011;
Lai et al., 2013) were extracted from the RGB-D
data. The authors then collected descriptions of
these images in English using Amazon Mechani-
cal Turk. About 85 descriptions were collected for
each instance, for a total corpus of about six thou-
sand descriptions. As we discuss in section 6, our
own data collection process replicated this setup.

3.2 Grounding System

The GLS learned classifiers for meaningful tokens
in the categories of color, shape, and object in an
unsupervised setting. The system used the Me-
chanical Turk descriptions to identify which im-
ages were positive or negative examples of each
token. Images that were described with a partic-
ular token often were assumed to be examples of
that token. To find negative examples of tokens,
the GLS used document similarity metrics to com-
pare the descriptions for instances in vector space.
The instances that were sufficiently far away in
vector space from the identified positive instances
for a token that had also never been described with
that token were then chosen as negative examples
of that token. For example, suppose the system
were finding positive and negative instances for
the token “carrot.” A positive instance identified
might be “carrot 4.” In the document vector space,
the instances with the descriptions most different
from “carrot 4” would be “arch 1” and “cuboid
4,” while instances like “tomato 2” and “cucumber
3” are closer but still different enough to possibly
qualify as negative examples of the token “carrot.”

Tokens that did not have any negative exam-
ples or had fewer than three positive examples
were thrown away, with the assumption that there
was not enough data to learn a classifier. The fi-
nal classifiers were scored using the downstream
task of image classification. Held-out positive and
negative examples were presented, and the classi-
fiers were judged by how well they could identify
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which examples were positive or negative.

3.3 Our Modifications

Our research focused on taking the existing sys-
tem and expanding it to work with Spanish. In
the immediate sense, there were low level changes
that had to be made throughout the code. English
uses very few accents and many of the files had to
have their encoding specified as unicode to handle
non-ASCII characters. These changes, though mi-
nor, reflect a potential barrier to the application of
research in new settings.

In addition to these minor fixes, more substan-
tial changes had to be made to the system that
preprocessed the image descriptions. The orig-
inal GLS used an English WordNet lemmatizer.
Lemmatizers are tools that take conjugated words
like “walking” or “brushes” and attempt to turn
them into un-conjugated versions like “walk” or
“brush.” This step can be very helpful for making
sure different versions of the same word are con-
flated. While this system worked well for English
tokens, non-English lemmatizers proved difficult
to find. Since we would ideally like our adap-
tations to the system to generalize well to other
future languages, we decided to first remove the
lemmatization step entirely, and later when this
proved unsatisfactory for Spanish (see Sect. 5), we
replaced the lemmatization step with a more avail-
able but rougher stemming step. Stemmers also
attempt to remove conjugations from words, but
they typically do so by chopping off common af-
fixes without attempting to end up with a real word
at the end. Words like “eating” will become “eat,”
but words like “orange” may become “orang.”

Another step that we modified was the re-
moval of “stop words.” In the original system
non-meaningful words like “the,” “and,” “or,” and
“if” were removed from the English data using
a list of predefined words. This was an impor-
tant step as it ensured that the system did not at-
tempt to learn groundings for words like “and.” At
the same time, we found that there were a num-
ber of words like “object,” “picture,” or “color”
that were used so often in the descriptions that
they held little physical meaning. These are des-
ignated as “domain-specific stop words,” which
refer to words that in general cases hold mean-
ing, but for the particular domain have been ren-
dered meaningless by their frequent and varied
use. We found that these words could be iden-

tified by their inverse-document-frequency (IDF),
where each “document” is the concatenation of all
descriptions for an instance.

4 Analysis with Translated Data

For our preliminary experiments, we only had ac-
cess to the English corpora from Pillai and Ma-
tuszek (2018). We wanted to get baselines in how
a Spanish corpora might perform. To do this, we
translated the existing English phrases to Spanish
through Google Translate’s API (Wu et al., 2016).

4.1 Translation Accuracy

As a sanity check on the quality of translation,
the translated text was translated back into En-
glish (once again with Google translate’s API) and
the English and back-translated English phrases
were compared manually to see if their overall
meanings were preserved. A total of 2,487 out of
the 6,120 (around 40%) phrases remained exactly
the same between translations. For the remaining
60%, five hundred back-translated phrases were
randomly selected and manually compared to their
original English version (see table 3 for examples).
Approximately 87% of the phrases examined pre-
served their meaning between translations, so we
estimated from this that about 90% of the phrases
were translated accurately (shown in figure 2).

Figure 2: Breakdown of meaning preservation for En-
glish and English-Spanish-English translation.

For those phrases that did not translate accu-
rately back to English, we observed a number of
patterns. Some of them were simply due to am-
biguities with the meaning of a word where the
wrong one was selected during one of the trans-
lations (as an example, for the bottom row of ta-
ble 3, “forma” can mean “shape” or “way”). A
common example of this was the phrase “this is
a red cabbage” becoming “this is a red wire,”
which happened six times out of the five hun-
dred selected phrases. Another error that occurred
three times was “laying on its side” becoming “set
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Figure 3: Samples of English descriptions that were translated into Spanish and then back into English. The
column on the right indicates if the meaning of the original English text matches the final back-translated English

aside,” since the Spanish phrase “puesta de lado”
can mean “put sideways” but also “set aside.”

Other translation errors could be related to dif-
ferences in Spanish and English structures. The
pronoun “it” commonly became “he,” as Spanish
nouns are gendered. Phrases with many adjectives
saw them switching places with each other and
the nouns they were attributed to. For example,
“This is a picture of rectangular shaped blue col-
ored solid block” became “This is a solid block
photo of blue with rectangular shape.” This con-
fusion could be due to differences in the rules of
adjective ordering between English and Spanish.

5 Scores for English and Google
Translated Spanish

Figure 4: Proportion of color word forms in raw trans-
lated Spanish.

For the first experiment, we trained the model
on the translated Spanish and English corpora with

minimal preprocessing (lowercasing and remov-
ing punctuation), and tested the color tokens only.
Our goal was to get a baseline for how the system
would perform using words that would be easy to
compare between languages. It was expected that
the Spanish corpus would perform worse, since it
was not perfectly translated. When the tests were
run, the translated Spanish did perform slightly
worse (see figure 5), but an additional interesting
issue emerged.

Spanish is a highly inflected language (Le Roux
et al., 2012) and unlike English has adjective-noun
agreement. This means that a simple color word
like “red,” could translate to “rojo,” “roja,” “ro-
jos,” or “rojas” depending on the gender and plu-
rality of the noun it is describing. For the learn-
ing system this meant that the possible positive in-
stances for color words could be split between the
various forms, since different descriptions of the
same object might use a different form depending
on the structure of the sentence. We can see from
figure 4, that in the overall translated corpus, the
color words were split between different conjuga-
tions. This led to the hypothesis that some form
of lemmatization or stemming would be necessary
for Spanish, in a way that would have been less
essential for English.

We processed both the translated Spanish and
English descriptions with a Snowball stemmer
(Porter, 2001). We chose this stemmer as it is
readily available for a wide variety of languages
through the nltk library. See results in Fig. 5.

We can see from figure 5 that applying stem-
ming to the translated Spanish descriptions had a
small positive effect on the F1-scores of the color
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Figure 5: Average Scores for English and Google
Translated Spanish.

Figure 6: Average number of positive instances for En-
glish and Google Translated Spanish, stemmed and un-
stemmed.

classifiers. It also slightly raised the average num-
ber of positive instances per token, since stem-
ming allowed instances that were split between
small counts of several forms of a word to see
them as the same word. We can see this in more
detail in figures 7 and 8, which show the differ-
ence between the average of the scores for the var-
ious forms of color words in the unstemmed data
(for example amarilla and amarillo would be av-
eraged as amarill*), and the stemmed score of the
stemmed form.

We can see in figure 7 that for the three col-
ors shown, stemming always increased the aver-
age precision for that color, but could reduce re-
call. In addition from figure 8, we see that some of
the colors had a large increase in average positive
instances, while others did not. This was likely
due to a case where many instances labeled with
“rojo” also saw enough “roja” that it was a posi-
tive instance for both. When looking at the counts
per instance, we found that for the 23 instances
that had the token “roj” in their stemmed descrip-
tions, 16 were positive examples of both “roja”
and “rojo” in the un-stemmed version. For objects
like cabbages (coles) and plums (ciruelas), “roja”

Figure 7: Comparison between the average of scores
for various conjugations of color words (shown as *)
and the scores of the stemmed versions.

Figure 8: Comparison between the average number of
positive instances across color word conjugations (see
figure 6) and the number of positive instances of their
stemmed forms.

was used dramatically more, while for tomatoes
(tomates), cubes (cubos), and cylinders (cilindros)
“rojo” appeared more.

As a final check, we examined the number of
occurrences over all descriptions of each instance
of the stemmed and un-stemmed versions of color
words. For most of the colors, instances were
often split between possible conjugations. For
“amarill” (yellow), there were five instances where
the individual counts of both un-stemmed forms
of yellow: “amarillo” and “amarilla” were less
than the threshold for a positive instance, while the
stemmed version “amarill” was able to overcome
that threshold. This is shown in the more dramatic
increase in number of positive examples in figure
8. The effect on the scores is more complicated,
since very yellow instances often had 50 or more
occurrences of “amarill.” Because of the inherent
messy nature of the data, instances with low but
still significant counts of tokens (more than five
occurrences) were much more likely to be falsely
positive examples that could damage a classifier.
We see this in figure 9 where the instance “egg-
plant 1” was called green seven times in the En-
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Figure 9: Sample of instances that had more than five
occurrences of “green” in the English corpora.

glish data. This is clearly because the stem of the
fruit is green. However, a simple classifier may be
confused by this instance, since it is mostly purple.

6 Collection of Real Spanish Data

Exploring comparisons between English and
translated Spanish enabled us to get a basic idea
of how Spanish descriptions might differ from En-
glish. However, in order to truly compare the lan-
guages, we needed to collect real Spanish data. We
attempted to follow the methods described by Pil-
lai and Matuszek (2018) as closely as possible to
obtain comparable Spanish data to their English
data. We utilized Amazon Mechanical Turk to
collect Spanish descriptions of the images in the
database.1 In addition, workers were required to
have at least fifty HITs accepted before being el-
igible to work on our HITs. To avoid biasing the
workers towards a particular type of description,
we provided no example descriptions.

We excluded data from a small number of work-
ers who did not follow the directions (for example,
responding in English or randomly selecting ad-
jectives) and obtained additional high quality data
to replace their submissions. All other submis-
sions were accepted. This allowed for a wide vari-
ety of answers. One worker might simply name a
carrot, while another would describe how it tastes,
what foods it goes well in, or where it comes from.
The English dataset was similarly noisy. This is
desirable, as a robot that is trying to learn language
from an average user must be able to handle the
many ways in which a user might choose to intro-
duce a new object.

One possible danger in collecting Spanish data
that we considered was that someone might be re-
sponding in English and using a translation tool.
We attempted to check for this by comparing our
real Spanish data to the translated Spanish data.
We found that short descriptions like “Esto es un
limón” (this is a lemon) had a large amount of

1This was accepted as an IRB exempt study.

Figure 10: Total number of descriptions collected per
object in Spanish and English.

overlap, but in general most of the Spanish de-
scriptions were longer and did not mirror any of
the translated results. In future work, we hope
to find a better method to control for respondents
who don’t actually speak the language, likely by
requiring the completion of some short prelimi-
nary task like text summarization or more complex
image captioning.

The total number of Spanish descriptions per
object type was on average slightly lower than in
the English corpus (see figure 10). We controlled
for this in the results (section 7) by taking several
random subsets of both corpora such that each in-
stance had an equal number of Spanish and En-
glish descriptions and averaging the results.

7 Comparison of Spanish and English

7.1 Overall Scores

Figure 11: Average F1 scores for English and Spanish
classifiers, stemmed and un-stemmed, for each classi-
fier type. The error bars show the variance of these
scores across all runs, which was fairly low.
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In figure 11, we see the final averaged F1-Score
for the color, shape, and object classifiers between
the original English and the collected Spanish de-
scriptions. Each score was found by averaging the
results of twenty evaluation runs each of ten train-
test splits. These scores were averaged across
all tokens learned, without specifically sub-setting
for the tokens that naturally represented colors,
shapes, or objects. In general, the scores were
fairly similar, varying between 0.8 and 0.84. From
the small differences we see that stemming ap-
peared to benefit the Spanish data for learning ob-
ject and shape classifiers, but slightly hurt the per-
formance for color classifiers. Un-stemmed En-
glish performed better than either Spanish version
for color and object classifiers. Much like with
Spanish, stemming appeared to help the shape and
object classifiers, and hurt the color ones.

7.2 The Effect of Stemming
As one can see from figure 11, the effect of Stem-
ming on the F1-Scores of the English and Spanish
classifiers was not consistent. For both the object
and shape classifiers, stemming appeared to either
benefit or have little impact on the object recog-
nition task. For the color tokens, stemming either
barely impacted or lowered the scores.

Stemming can cause words to be conflated cor-
rectly or incorrectly. Incorrect stemming can cer-
tainly cause problems, where tokens are conflated
that shouldn’t be (Porter, 2001), or words that
should be conflated are not. However, as discussed
earlier, it is also possible for correct stemming to
cause an instance to barely meet the threshold for
being a positive example of a particular token 9,
when perhaps that instance is not a good exam-
ple of that token in reality. This was a particu-
larly likely occurrence due to the inherent messi-
ness of the data and the fact that the GLS based the
classification label off of these messy descriptions.
Due to this, and the high amount of conjugation
in Spanish, it was decided that stemming likely
would not negatively impact the learning system,
and should most likely be employed.

7.3 Accents
One interesting difference that stood out when ex-
amining the real Spanish data was the use of ac-
cents. Unlike with the translated data, the real
Spanish data was inconsistent with its usage of
accents. While a majority of workers used ac-
cents where they were supposed to go, a not-

insignificant percentage of them left them out (see
figure 12 for examples). This is likely because
those workers did not have easy access to a key-
board with accented characters, and thus chose
to leave them off. We can see in figure 12 that
for common accented words, this had the effect
of splitting the data. Luckily, the snowball stem-
mer (Porter, 2001) automatically removed these
accents. We can see in figure 12 that after stem-
ming, the counts for the accented and unaccented
versions of the token were combined. The com-
bined classifier did not always have a higher score
on the testing data, for similar reasons to those dis-
cussed in section 7.2.

7.4 Stopwords

Without employing stop word removing during
preprocessing, the system learned a total of ten
words that could be classified as general stop
words for English and eight for Spanish (see fig-
ure 13). This means that for these words, there
was at least one instance where the word did not
appear in any description. For Spanish, the tokens
“de,” “es,” “una,” “y,” and “se,” and for English
the tokens “this,” “is,” and “a” all had zero nega-
tive instances and were appropriately removed.

Figure 13 also shows tokens that appeared in the
bottom 2% of tokens when sorted by IDF score.
This was our way of estimating “domain-specific
stop words.” Note that there were quite a few nltk
stop words that also had very low IDF scores.
The IDF method identified tokens like “object”,
or “looks” which were used very often in the En-
glish descriptions and had little physical meaning.
Figures 14 and 15 show how removing each type
of stop word impacted the scores of the raw clas-
sifiers. For both languages, the greatest impact ap-
peared to come from removing both general pur-
pose stop words and low-IDF tokens, though the
impact was small in all cases.

For the Spanish data, the tokens “amarillo” (yel-
low) and “roja” (red) were included in the bottom
2% of tokens by IDF score. These were common
due to the prevalence of red and yellow objects in
the dataset, suggesting a more nuanced approach
such as lowering the threshold for the percent of
low-IDF tokens to be thrown out.

8 Future Work

The work presented in this paper is ongoing. In
the near future we intend to expand the analysis on
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Figure 12: Object Scores for three Spanish that could be written with and without accents. Note that stemming
removed accents, conflating stemmed and un-stemmed versions together.

Figure 13: Stop words that appeared often enough to
have classifiers trained on them. A dotted border indi-
cates a stop word from the language’s nltk stop word
list. A dashed border indicates this token was in the
top 2% tokens by ascending IDF score. A solid border
means the token appeared in both lists.

Figure 14: The impact on the average F1-score of re-
moving nltk stop words versus removing the lowest 2%
tokens by IDF score for English.

Figure 15: The impact on the average F1-score of re-
moving nltk stop words versus removing the lowest 2%
tokens by IDF score for Spanish.

the Spanish data. In addition many other possible
techniques like spell-checking or synonym identi-
fication could be used to improve the ability of the
system to handle the messy data.

A major next step for this research is to run our
analysis on a language that is very different from
English. For this, we intend to look next at Hindi.
Hindi is the native language for hundreds of mil-
lions of people (India: Office of the Registrar Gen-
eral & Census Commissioner, 2015). It is from a
different language family than English or Spanish,
has a wide variety of dialects with small linguis-
tic differences, and uses its own script. We antici-
pate that these properties will make Hindi a com-
plicated and interesting language to analyze, and
that doing so will introduce many new considera-
tions for the grounded language system.

9 Conclusion

We have proposed adaptations to expand an ex-
isting unsupervised grounded language acquisi-
tion system (Pillai and Matuszek, 2018) to work
with Spanish data. We discussed our initial ob-
servations with Google translated Spanish, and
explored the extent to which these observations
could be extended to real Spanish data collected
through Amazon Mechanical Turk. Through our
experiments, we were able to identify several dif-
ferences between the two languages that had to
be addressed in the system to attain comparable
results. At the same time, we did not find that
Spanish did significantly worse than English even
before applying additional steps. In general, the
existing system with slight modifications seems
to work fairly well for both languages, which is
promising when considering its applicability to
real-life situations.
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Abstract 

A Natural Language Understanding (NLU) 

pipeline integrated with a 3D physics-based scene 

is a flexible way to develop and test language-

based human-robot interaction, by virtualizing 

people, robot hardware and the target 3D 

environment. Here, interaction means both 

controlling robots using language and conversing 

with them about the user’s physical environment 

and her daily life. Such a virtual development 

framework was initially developed for the Bot 

Colony videogame launched on Steam in June 

2014, and has been undergoing improvements 

since.     

The framework is focused of developing 

intuitive verbal interaction with various types of 

robots. Key robot functions (robot vision and object 

recognition, path planning and obstacle avoidance,  

task planning and constraints, grabbing and inverse 

kinematics), the human participants in the 

interaction, and the impact of  gravity and other 

forces on the environment are all  simulated using 

commercial 3D tools. The framework can be used 

as a robotics testbed: the results of our simulations 

can be compared with the output of algorithms in 

real robots, to validate such algorithms.  

A novelty of our framework is support for social 

interaction with robots - enabling robots to 

converse about  people and objects in the user’s 

environment, as well as learning about human 

needs and everyday life topics from their owner. 

 

1 Background and motivation 

If robots are to suitably collaborate with humans 

in tasks commonly occurring in settings like the 

home or at work, natural language interaction 

with robots is a must. Connell (2018, 2012) 

argues that the most efficient interface to 

universal helper robots, at least for the elderly, is 

direct speech.  

North Side Inc. (www.northsideinc.com) 

originally developed a Natural Language 

Understanding (NLU) and Generation (NLG) 

pipeline (Joseph 2012, 2014) for its Bot Colony 

video game ( www.botcolony.com ). The game is 

based on the Bot Colony science-fiction novel 

(Joseph 2010), which anticipated the functionality 

of verbal interfaces of intelligent robots circa 

2021.  

An all-graphics (virtual) framework removes 

the constraints related to real hardware, enabling 

one to focus on refining an intuitive language-

based human-robot interaction. With hardware out 

of the way, it is easier, faster and cheaper to make 

progress, and virtual robots are acceptable 

interlocutors (Bainbrige, 2008). All the functions 

described in the paper were implemented and can 

be observed in Bot Colony.  

2 Requirements for natural verbal 

interactions with robots  

When interacting verbally, a person would 

expect a robot to understand whatever he/she 

says just as well as a member of our species 

would (Bisk, 2016). Capabilities (i) – (v) below, 

implemented in our framework, are innovative 

features of the framework.  

(i) To link language to actions and objects in 

the real world, one should be able to refer to 

objects or people using natural speech – using 

similar words, similar syntax, and using pronouns, 

proper names and determiners to refer to entities. 

(ii) The spatial language understood by a robot 

should be full English (or another natural 
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language; our framework currently works only in 

English, but high quality translation to other 

languages is now available and could be 

integrated). ( iii) For natural interaction, the major 

Dialog Acts used in human conversation 

(question, fact statement, command, opinion, Yes 

and No answers, etc.) should be supported. 

(Stolcke, 2000)  ( iv) The conversation should be 

multi-turn and (v) Interlocutors should have the 

ability to refer to context.  

These capabilities represent advances over 

work such as Connell (2018) and others (listed in 

Bisk, 2016) where structured languages with 

small vocabularies and grammars specify the 

acceptable syntax, spanning only a small subset of 

full English. The rest of the paper describes key 

aspects of our implementation.    

3  Grounding Language References to Entities 

People refer to actions and entities in many 

different ways, using their own words. Resolving 

references to individual entities is a major 

problem in NLU, known as coreference 

resolution. See Elango (2006) for a survey of the 

domain.  In particular, resolving a reference 

should result in a robot knowing the current 

position of the referred entity, so the robot can 

manipulate it. While object recognition is 

required to manipulate an object, it is clearly not 

sufficient: a robotics application in a large 

warehouse will need to process references to 

many thousands of objects. In a household, a 

robot owner will refer to people and hundreds 

(or even thousands) of objects. An Entity 

database, an innovative feature of our framework 

described in section 4, can resolve referring 

expressions in a larger applications.  The Entity 

Database  is distinct from databases containing 

object models used in object recognition tasks, 

like the ROS Household Object database 

(ROS.org). 

A key challenge is referring to instances of 

objects - one of several individuals of the same 

type. When a robot is unable to resolve a 

particular instance (Pick up the guitar in a room 

with 3 guitars), it will ask questions like Which 

guitar? The blue guitar, the black guitar, or the 

silver guitar? Clicking on an instance is one way 

to resolve the instance and is an example of the 

coordination Clark (1996)  referred to. However, 

this clicking to disambiguate may not translate 

well to a real application.  Our framework is able 

to resolve object references using language, the 

way a person distinguishes objects of the same 

type: by specifying an attribute of the object, a 

relation to another object, an index in a list offered 

by the robot, an object state, or by elimination. 

For example: 

- the blue guitar (color attribute) 

- the guitar on top of the bed (spatial 

relation to another object) 

- the first one/ the last one (index in a list, 

resolving respectively to the blue guitar 

or the silver guitar in the example above) 

- for objects that have states, the state of 

an objects can be used to specify the 

instance desired (the open one – for 

something like a drawer or a door). 

- When there are two objects of similar 

type, the robot will point to one of them 

and ask This one? Say Yes or No. 

(discrimination by elimination) 

 

In later versions, the robot defaults to the 

instance closest to it, to reduce the need to clarify 

the instance. If a robot makes an undesirable 

choice, the user can say something like go to the 

other one, and a robot would move to the next 

instance which is spatially closest.  

  

The examples above deal with distinguishing 

individuals of the same type. There are other 

cases requiring resolution of  linguistic 

references (using the user’s words) to entities: 

- anaphoric (pronominal) references (pick 

up the green briefcase, put it on the 

scanner; ‘it’ refers to the green 

briefcase), 

- you (the interlocutor) 

- they, them (intelligent agents vs objects) 

- a child concept from the taxonomic 

parent, as in pick up the toy (the toy 

giraffe, if it’s the only toy in the 

environment), 

-  here (reference to a place in remote 

control situations), 

-  there ( to a previously mentioned place) 

- temporal time-point resolution, like then, 

next, first, last (see Perceptual Memory) 

19



 

 

All these resolutions are supported by the 

Coreference Resolution module of our framework 

(see diagram in 8). In general, coreference 

resolution differentiates between ground entities 

(in EDB) and non-ground entities appearing in 

discourse (eg I like horses). The coreference 

algorithms rely on the EBD and the ontology 

described next. 

4  The Entity Database 

A key part of the solution to general grounding 

and coreference resolution is the Entity Database 

(EDB) – a database containing information about 

all the entities (any physical object, location) in 

the environment (Tellex (2011) refers to a 

location map for grounding). The EBD is 

required for the critical co-reference resolution 

task described above. 

For a virtual simulation, the EDB can be 

created with tools like 3DSMax (which can 

import Autocad). The EDB can be exported to 

Excel, edited there and re-imported into a 

commercial Object-Oriented database used to 

store the Entity Database (Versant Object 

Database, Actian Corp). The challenge is building 

a EDB for the real application.  

In a real application, object recognition is 

necessary. Databases like ROS household_objects 

SQL database (ROS.org), could be used in the 

object recognition task,  which, together with the 

ROS database, would contribute the information 

needed to generate an EDB as described below, 

for coreference resolution purposes.  

Finally, for industrial application, CAD models 

used in manufacturing could be used to train ML 

for object recognition. Majumdar (1997) explores 

using CAD models for object recognition. 

An innovation in our framework is an extensive 

ontology containing all English nouns,  built from 

MRD’s (machine-readable dictionary, such as 

Wordnet). Through the ontology, knowing the 

type of an object (disambiguated to its sense 

number in the MRD) gives one access to its 

ontological parent, its parts, its attributes, its 

purpose, etc. This is a major improvement over 

Connell’s approach which does not use an 

ontology.  Connell’s ‘teaching approach’ is bound 

to introduce problems, as humans cannot be 

expected to use language formally (in Connell 

(2018) the users are elderly people). Take 

Connell’s example to teach a ‘supporting shelf’ 

concept:  ‘Supporting shelf – the LOCATION is a 

supporting shelf’. Ontologically, a supporting 

shelf is not a location, it is in a location. Artifacts 

(such as shelf) have very different properties from 

fixed locations. If  formal reasoning were used on 

learnt concepts,  imprecisions in definitions could 

have undesirable effects on robot task success (eg, 

if locations named differently should be different, 

it could be difficult for a lower shelf to be at the 

location of an upper shelf).  

Irrespective of how the EDB is created, every 

object that needs to be referenced through 

language must be in the EDB.   Objects are given 

common English names (eg, chair), and alternate 

denominations are supported, to support human 

references naturally. When several objects of the 

same type are in the same space, an instance 

number is appended to the type of the object to 

form its name. While the instance number is 

currently entered manually, assigning instance 

numbers to objects of the same type at different 

coordinates could be automated. In addition to a 

type, objects in EDB have geometric properties 

and parenting (on top of) scene information. In 

the virtual framework, attributes are given values 

with a tool like 3DSMax. In the real application 

they would be set through object recognition, and 

scene information. The attributes required by the 

virtual framework include X, Y and Z 

coordinates, dimensions, colors and textures, the 

parent (the object on top of which another object 

is), and a 3D position and orientation of the 

bounding box of the object relative to the origin 

of the coordinate system.  

5  Spatial Relations 

For natural verbal interaction, users should be 

able to refer to spatial relations the same way 

they do in everyday life. In our virtual 

framework, these relations are not difficult to 

compute, as we have the coordinates of every 

object in the environment, and their bounding 

boxes. In the virtual environment, computing a 

spatial relation nvolves comparing the 

coordinates of the relevant planes of the 

bounding boxes of the participating objects. This 

approach could be emulated in the real 

application, provided object recognition works 

well enough. Examples of spatial relations 

computed in this way are: X in the center of Y, 

X in front of Y, X to the left/right of Y, X under 

Y, X on Y, X behind Y, X in front of Y. An 

important design consideration for spatial 
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relations is computing relations like left of 

Y/right of Y, in front of Y/behind Y from the 

point of view of the human user of the robot – as 

an object Y to the left of the robot will be to 

right of a user/operator facing that robot (or 

looking through a camera that faces the robot).  

In our framework, these relations are computed 

relative to the human user’s camera.  

At any point, a robot knows (and can tell when 

asked) the distance between any two objects (so in 

particular, the distance from itself to another 

object). The angle from the center of the robot’s 

viewing frustum and another object is also 

computed and available in the database of 

observations that ground the robot event memory. 

6   Knowledge Grounding and the Robot’s 

Perceptual Memory 

To interact with robots efficiently, a user needs 

to be able to find out what the robot knows. This 

comprises the commands it understands, the 

tasks it can execute, its 3D environment, its 

perception of events in this environment, and its 

background knowledge. In our environment, 

What do you know? is the first step in exploring 

a robot’s knowledge. The wording of the robot’s 

answer is intended to stimulate further 

interactive exploration of the knowledge (which 

can be vast) - by drilling down with additional 

questions. 

Grounding means grounding basic language 

phrases to perceptual or motor skills, objects and 

locations. The grounding of objects and locations 

(the 3D environment) in our framework was 

described above.  Facts known to a robot and 

observations made are labelled with a source of 

knowledge. The sources of knowledge are A) 

perception (SEE, HEAR events) – the perceptual 

memory is described in detail below, B) 

communication with other intelligent agents (a 

blackboard of sorts) and C) factory (static) 

knowledge. Commands are mapped to motor 

skills (see Commands).  

Any robot in our framework will answer that it 

knows:  

(i) its environment 

(ii) its commands 

(iii) its job  

(iv) facts it was taught  

(v) events it witnessed 

(vi) general concepts. 

These can be expanded, eg with  facts about 

named-entities such as supported by, say, Alexa or 

Google  (sports teams, artists, bands, movies, etc.) 

and world knowledge (see Future Work in 9). 

Categories i) – vi) are explored below. 

6.1 Environment knowledge  

Implementing the EDB concept in the real 

application will provide ‘out of the box’ support 

for the verbal interactions described below:  

Spatial relations can be used in questions 

What’s on the table? , or in commands Put the 

vase between the candles.   

Scene contents What do you see? can be useful 

to test the vision and object recognition 

capabilities of remotely-controlled robots.  A 

robot will answer a “What do you see?” question 

with a description of the objects in its viewing 

frustum.  

Our framework can simulate Robot control in 

remote settings. Mediated interface to a robot can 

be via virtual devices such as a  tablet, or cameras 

(in our framework, ceiling or wall cameras for 

interior spaces, or exterior cameras installed, for 

example, on an oil rig). 

Number of objects in a container or area  

How many cups are in the cabinet? As certain 

questions like What’s in this room? can return 

lengthy answers, any robot obeys Stop – which 

interrupts execution of the last command. 

Questions about the attributes of an object in 

the environment  What’s the height of the fridge? 

What’s the color of the vase? are supported 

directly using the EDB. 

Distances in the environment  What’s the 

distance between X and Y? is supported using 

object coordinates in EDB.  

Information on an object in the environment 

In the virtual environment, the user clicks on an 

object, asks What is this? and the robot answers 

with the type of the object from EDB. In a real 

application, the user would click on a point in the 

image returned by the robot’s vision sensor, and 

the recognized object type would be used to query 

the EBD, using knowledge of the robot’s current 

position and position of each object in the scene – 

to identify the particular instance of that object 

type.  
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6.2 Robot Commands 

A robot’s command set is explored with What 

are your commands? Depending on the robot, 

this may return  I know some movement 

commands, some manipulation commands, and 

some communication commands. Asking What 

are your (category) commands? produces a list 

of the commands in that category. 

Movement commands 

- Go to <place> (Go to the bedroom). The robot 

will move to <place>. 

- Go to <object> (go to the vase) the robot will 

turn to face <object>.  

- Face <object> If not already facing <object>, 

the robot turns to face it.  

- Turn clockwise/counterclockwise ( by Y 

degrees)  

- Move forward/back (by Y meters)  

- Stop (to reset a robot).  

- Follow me, stop following me. This command 

is useful in a videogame played in 3
rd

 person, but 

could be changed to follow X (another robot). 

- go up, go down (a robot moving on a rail is 

able to translate up/down or extend the 

manipulator arm to grab baggage from a shelf).  

- Jump (unlikely command in a real application!) 

Manipulation commands 

- Pick up <object> (Pick up the vase). 

Implemented as face, reach and grab, see below. 

The user can ask "What do you hold?".  

- Grab <object> (part of pick up X)  

- Drop <object>  

- Push in <object> (push in the cushion). Close 

the drawer works as an alternative to push in.  

- Put <object1> on <object2> (put the red box on 

the blue box). Put object1 to the left/right of 

object2 (space availability is checked).  

- Put <object1> between <objects> (put the vase 

between the candles, put the bottle between the 

sinks).  

- Put <object1> in the center of 

<object2>. Knowing all dimensions enables us to 

check space availability prior to execution in a 

simpler way than in Howard (2014).  

- Rotate <object> by Z degrees 

clockwise/counterclockwise  

- Swap <object1> with <object2>. Put <object1> 

where <object2> was - also works.  

- Align <object1> with <object2> (the user needs 

to imagine that he/she is on a plane or ship 

looking FORWARD, seeing a red light on his 

left and a green one on his right. The left (red) 

and right (green) and an arrow showing the 

forward direction of the reference object are 

superimposed on the reference object, and a 

yellow arrow is attached to the target object. The 

framework asks Where should the yellow arrow 

point? and differentiates two cases: when the 

target object is on top of the reference object, or 

when the two objects side by side. 

- Open door (open cupboard door - in the 

kitchen);  Close the door (or the drawer, the 

guitar case) 

Body-part commands 

- Reach for <object> (part of pick up X) 

- Point to <object> (or point to room) 

-  Wave 

- Nod  

Expressing commands in different ways can be 

currently done with the Command Teaching 

facility (below). In the future, synonymic 

commands will be supported with semantic 

frames (see Future Work in 9).  

 

Command Execution 

 

Validation  When a robot cannot execute a 

command ( because an object is not reachable, is 

not movable, it is too large/small, there’s not 

sufficient space to place an object, or because the 

robot is already at the destination) it will provide 

a diagnostic. If a command missed an argument, 

the robot will query for the missing argument 

(go where?).  

Help  A Help function is available. For 

complex commands, visual guidance and 

interactive help are available as described above 

for align. In Jimmy’s World (see Future Work in 

9) help is available conversationally. 

 

Execution and Grounding to Motor Skills  In 

our implementation, a robot first navigates 

towards the target and then turns to face it. 

Collision avoidance in the virtual environment is 

done with Havok AI, which supports 3D path 

planning. Collision avoidance in real applications 

requires sensing obstacles and avoiding them, and 

our movement commands could support this if 

necessary.  
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The robot moves close to the target using 

forward kinematics. If required, a humanoid will 

bend at the hips and knees while its effector starts 

reaching forward. This position becomes the 

starting position for inverse-kinematics (IK) 

movement of the robot effector. A similar 

approach that tracks state changes of objects 

during manipulation and after it was described in 

Zielinski (2015). Our framework uses HumanIK 

for inverse kinematics. Optimal grabbing of 

objects is an important area in robotic 

frameworks. In our framework, collision detection 

with Havok Physics ensures that the robot’s 

manipulator does not go through the object is 

manipulates. We’ve implemented finger 

placement algorithms that rely on automatically 

generated ‘grabbing points’ (placed on opposite 

faces of small objects, or towards the end of larger 

objects) so that grabbing objects looks natural. 

Grabbing points can also be edited by users. Our 

framework supports both one-handed and two-

handed grabbing of objects. 

Movement to a target point, body/head rotation, 

effector rotation, reach and grab are basic motor 

skills supported in a server-side client script 

engine (CSE), to ground the higher level English 

commands listed under COMMANDS. 

Translating English to atomic robot commands is 

demonstrated in the Jan 2013 video (A.1). This 

approach was described as early as 2001 in 

Nicolescu, is used in Kress-Gazit (2008), 

Matuszek (2013) and  in Misra (2014) [which 

uses pronouns without mentioning coreference 

resolution]. 

In our framework, objects have physics 

implemented with the commercially available 

Havok Physics tool (so an object falls if a robot 

drops it).  

 

Teaching New Commands Required to 

Streamline Tasks 

A robot will offer to learn a new command if it 

doesn’t know it. Commands are entered one by 

one, and at execution time, they will adapt to 

new target objects. The initial version of Bot 

Colony launched in June 2014 supported 

learning new commands described as a sequence 

of existing (native) commands, where objects are 

parameterized. A similar approach was described 

subsequently in (Gemingnani, 2015). 

EXAMPLE scan the green briefcase  The robot 

replies that it doesn’t know ‘scan’, and ask if the 

user wants to teach it. Commands are entered one 

by one: go to the shelf, pick up the green 

briefcase, go to the scanner, put the briefcase on 

the scanner, End.  

Co-reference resolution kicks in during 

execution to resolve the particular shelf (e.g., 

upper Tokyo shelf).  

 

6.3 Robot tasks 

A robot should be able to tell a user about the 

higher level tasks it can accomplish. Our 

framework treats a task like a new command,  

built from individual commands. Since our 

application was a videogame, there was no need 

to ground robot tasks to skills and objects, and 

these cannot be demonstrated in the framework. 

The conversation related to tasks was prototyped 

for use in the videogame and looks like this:  

What is your job? I can clean the house, cook, 

wash dishes, do the laundry, babysit,…How do 

you clean? I vacuum the floor, I dust the 

furniture, I mop, etc. 

However, if the user asks the robot to mop the 

floor, he’ll learn that this function is not currently 

working. 

6.4 Factual knowledge 

For home or companion applications, knowledge 

of the owner and his family would enable a robot 

to resolve references and understand the context. 

Our framework supports configuring a robot 

with the knowledge required to serve a particular 

owner and family by reading in a fact base and 

updating EDB (it is also possible to give facts 

conversationally at run time).  The  Question 

Answering (QA) component can be used by a 

user to explore a robot’s knowledge.   

EXAMPLES Who are the members of the 

family?Who are Ayame’s children? Who is 

Hideki?   When does X usually come home from 

school? What do you know about X? (Hideki is 8 

years old. Hideki is the son of Ayame. Hideki 

goes to school). What games does Hideki enjoy?   

Is Masaya married? Where does Masaya work? 

What does the family eat for breakfast? How do 

you prepare X? 
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Technically, these questions are not more 

difficult to answer than the ones Alexa or Google 

Assistant answer on named-entities like cities, 

restaurants. Conversely, if the necessary 

information were available, the QA component of  

our framework would enable a robot to fulfill 

functions of smart speakers, in addition to 

performing its physical tasks. 

6.5 Perceptual Memory and Grounding of 

Robot Perceptions 

An innovative feature of our framework is 

logging a robot’s salient observations –  events 

the robot witnessed-  and making these 

accessible through question answering (QA). 

This is important, for example, in a security 

application (When did the XYZ truck come in? 

When did it leave?).  

In our framework, salient observations are 

- objects of interest (people, vehicle, 

animals  – any type declared as being of 

interest, or OOI) entering or exiting  the 

robot’s field of view. An OOI 

entering/exiting the field of view triggers 

logging the sighting (or the speech, if 

applicable)  for the particular type of 

intelligent agent or object.  

- a person performing an action 

- a person speaking  

- any action performed by the robot 

Visual and audio observations are time stamped 

(YYYY-MM-DD HH:MM:SS) and have a range 

and angle to the target. “M. arrived on 19 August 

2021 at 01:10 AM”. “How do you know?” “I’ve 

seen M. from 7.2 m at an angle of 40 degrees”.  In 

our framework, salient observations of a robot can 

be played back (since we control all the actors, 

they are actually re-enacted on the fly).  

Assigning semantics to observed actions like in 

“M. hid the chip in the toilet water tank” is easily 

done in a simulated environment, but is more 

challenging in a real application ( how can a robot 

tell that someone is ‘hiding’ a chip?). In a real 

implementation, a robot could be able to 

recognize people and objects, and some basic 

actions and states of people (moving near an 

object, interacting with objects, sitting, lying 

down, coming into view, becoming not visible). 

Connell is proposing solution for gesture 

recognition in Connell (2018), but it’s not clear if 

these can be extended to recognizing actions.   

Here are some of the most useful questions 

supported for exploring grounding (note 

temporal resolution of ‘first/last’ ‘then’, ‘next’, 

‘before that’, ‘after that’): 

- What did X do at HH:MM on Day/Date? 

(example: What did Ayame do at 20:15 on 

Thursday?) What did she do then? What did 

Masaya do next? What did he do before 

that?  How do you know that? (grounding)  

When did you first/last see X?  What happened 

then? What happened before/after that? What 

happened at HH:MM on (day of week)? (What 

happened at 11:30 on 26/08/2021? – this will 

work even if after/before don’t return more facts 

because Jimmy the robot didn’t look 

back/forward far enough.  When did X 

arrive/enter/leave the house? Where did X go 

after that?  What did X say at (time) on (day)? 

What did X say before/after that?  Where was X 

at (time) on (day of the week)/date?  

6.6 Generic Concepts 

The framework supports accessing a dictionary, 

useful to non-native speakers of English. 

Intelligent conversation going beyond a 

definition, about any concept, requires massive 

knowledge about the world. In our forthcoming 

Jimmy’s World,  Jimmy (or whatever the player 

names his embodied bot) is able to converse on 

any concept and learn from the user and the 

community. The objective is to understand how 

a concept fits into everyday life. (Joseph, 2019) 

7  Framework Implementation  

The architecture of our NLU pipeline is shown 

below. The pipeline software runs on a Linux 

server that communicates with client software 

using the Google/protobuf protocol. The client 

manages the 3D world and robot animation, and 

users can interact through speech or typing. The 

client implements English commands sent from 

the server using the ground motor abilities 

described above. Voice input is processed by the 

client which calls cloud-based speech-to-text, 

sending the resulting text to the server-based 

NLU pipeline.  After the pipeline generates the 

response, text-to-speech server-side sends audio 

files to the client.   Language-understanding is 
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grounded as explained in this paper. A logging 

service logs all interactions, and Competency 

(non-IDK [I don’t know] answers) -  is reported 

as a  percentage of all utterances (see below).  

Our virtual framework represents major types of 

robots operating in various real environments 

(see images to the right). Bot Colony prototype 

scenes include:  a home, an airport with a 

baggage warehouse, an oil rig, a hotel, a village 

filled with robotic vendors, entertainers and 

waiters,  a hotel with robotic personnel, a 

manufacturing facility, a military installation, a 

harbour and a mine. A variety of robots are 

supported: humanoid robots, fixed-base greeting 

robots, mobile observation robots (camera bots), 

a rail telescopic robot, military robots, flying 

robots (Hunter bot) – each with commands 

adapted to their tasks (see Commands section).  

8  Comparison with Related Work 

While small vocabularies and grammars are the 

norm (Bisk, 2016), our pipeline supports full 

English, including idioms and phrasal verbs, in 

conversation. Another major novelty in our 

pipeline (see diagram below) is using syntactic 

and semantic rules mined from dictionaries for 

higher precision. For example, our parsing 

component combines the Stanford Parser, 

Berkeley parser and our own Template Parser, 

which uses syntactic rules mined from 

dictionaries. This parser is used to parse robot 

commands with very high precision (in excess of 

95% on well-formed commands). On other 

Dialog Acts, we achieve a precision slightly 

superior to the component Stanford and Berkeley 

parsers, as we’ve repairing systematic parsing 

errors made by these parsers. 

As explained below, we are currently 

transitioning our disambiguation to semantic 

frames.  Coreference resolution with EDB is 

designed to be interactive and seek user 

clarification when necessary – so precision is high 

for entities that are in EDB. 

We are logging game sessions and we compute 

a Competency metric (%age of utterances that 

don’t cause I Don’t Know answers). As players 

often refer to unknown entities or facts –  

Competency can vary widely from session to 

session.  However, on 400 longer sessions (above 

300 dialogue turns) the average Competency 

observed was 69%. 

 

Figure 1: Humanoid robot 

 

Figure 2: Telescopic rail robot 

 

Figure 3: Airborne hunter robot  

 

Figure 4: Underwater welding robot with welding 

torch and tools 
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Figure 5: A key aspect of our NLU pipeline is a logic form that represents utterances formally. This logic form is 

initially produced from the parse tree of the input utterance. It is refined by the disambiguation module which 

adds sense numbers from the MRD sense inventory, and the coreference resolution module that grounds 

linguistic references to EDB entities. A reasoner applies axioms to this logic form, to infer, eg, that cats are born 

and die. Dialog Mgmt and Natural language generation also use this logic form. 

9  Conclusion and Future Work 

The next frontier is teaching a robot about 

everyday life and user preferences – a fusion 

between robots and intelligent assistants. This is 

the focus of our more recent work in Jimmy’s 

World (Joseph, 2019). If the physical functions 

of a robot can be complemented with a robot 

ability to act as an intelligent assistant and 

companion -   universal helper robots may 

become a compelling offering, especially for the 

elderly and people who live alone.  

The Bot Colony architecture dealt with the 

basic issues of situated (3world based) NLU: 

coreference resolution, commanding robots, 

exploring a robot’s event memory, etc. In Jimmy’s 

World our focus is on knowledge-based NLU, so 

the acquisition and use of knowledge about 

everyday life in conversation – to cater more to 

personalized, intelligent assistant part of a robot’s 

mission. A player’s virtual robot in Jimmy’s 

World will have curated knowledge from 

dictionaries, but will also learn from the user and 

the community. 

Semantic frames are a way to understand 

language independent of the particular words and 

syntax used. Disambiguation to semantic frames, 

instead of the focus on individual Word Sense 

Disambiguation, is a key area of work. 

A major milestone will be acquiring knowledge 

from individual users and the community and  

filtering reliable knowledge from unreliable 

knowledge, humour, witticism,  etc. 

To achieve this, we will need to refine 

knowledge-representation mechanisms for 

everyday life knowledge, and to use this 

knowledge in reasoning and conversation. 

Since a lot of everyday life is about attaining 

goals and overcoming obstacles, reasoning and 

planning how to attain goals is another important 

area of work. 

Machine Learning based NLU provides 

excellent coverage. Complementing a Machine 

Learning pipeline with knowledge-based NLU of 

the kind we are developing will result in higher 

precision, and deeper understanding of user 

utterances and is of strategic importance. 
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Abstract

Human-robot interaction often occurs in the
form of instructions given from a human to
a robot. For a robot to successfully follow
instructions, a common representation of the
world and objects in it should be shared be-
tween humans and the robot so that the in-
structions can be grounded. Achieving this rep-
resentation can be done via learning, where
both the world representation and the language
grounding are learned simultaneously. How-
ever, in robotics this can be a difficult task
due to the cost and scarcity of data. In this
paper, we tackle the problem by separately
learning the world representation of the robot
and the language grounding. While this ap-
proach can address the challenges in getting
sufficient data, it may give rise to inconsisten-
cies between both learned components. There-
fore, we further propose Bayesian learning to
resolve such inconsistencies between the nat-
ural language grounding and a robot’s world
representation by exploiting spatio-relational
information that is implicitly present in instruc-
tions given by a human. Moreover, we demon-
strate the feasibility of our approach on a sce-
nario involving a robotic arm in the physical
world.

1 Introduction

Consider yourself standing in your kitchen and
having your robot assist you in preparing tonight’s
meal. You then give it the instruction: ‘fetch the
bowl next to the bread knife!’. For the robot to
correctly perform your intended instruction, which
is grounded in your world representation, it must

∗Equal contribution
†ocan13@ku.edu.tr
‡pedro.zuidbergdosmartires@cs.kuleuven.be

correctly ground your natural language instruction
into its own world representation.

This small scenario already introduces the two
key components of language grounding in robotics:
the construction of a world representation from sen-
sor data and the grounding of natural language into
the constructed representation. Ideally these two
components would be learned in a joint fashion (Hu
et al., 2017a; Johnson et al., 2017; Santoro et al.,
2017; Hudson and Manning, 2018; Perez et al.,
2018). However, the scarcity of data makes this
approach impractical. The millions of data points
necessary for state-of-the-art joint computer vision
and natural language processing are simply non-
existing. We opt, therefore, to separately learn the
world representation component and the language
grounding component.

One approach for constructing a world represen-
tation of a robot is through so-called perceptual an-
choring. Perceptual anchoring handles the problem
of creating and maintaining, over time, the corre-
spondence between symbols in a constructed world
model and perceptual data that refer to the same
physical object (Coradeschi and Saffiotti, 2000). In
this work, we use sensor driven bottom-up anchor-
ing (Loutfi et al., 2005), whereby anchors (sym-
bolic representations of objects) can be created by
perceptual observations derived directly from the
input sensory data. When modeling a scene, based
on visual sensor data, through object anchoring,
noise and uncertainties will inevitably be present.
This leads, for example, to a green ’apple’ object
being incorrectly anchored as a ’pear’.

For the language grounding, we opt to perform
the learning on synthetic data that simulates the
world represented as anchors. This means that we
do not ground the language using sensor data as
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signal but a symbolic representation of the world.
During training these symbols are synthetic and
simulated, and during the deployment of the lan-
guage grounding these are anchors provided by an
anchoring system. As the real world is inherently
relational and as natural language instructions are
often given in terms of spatial relations as well,
the learned language grounder must also be able to
ground spatial language such as ‘next to’.

As a result of learning the construction of a
world model and the language grounding sepa-
rately, contradictions arise between the world
representations of a human and a robot. The su-
pervision that an instruction would give to a robot is
not present when learning the representation of the
world of a robot. These inconsistencies then propa-
gate through to inconsistencies between the instruc-
tions a human gives to a robot and the robot’s world
model. To ensure that a robot is able to correctly
carry out an instruction, such inconsistencies must
be resolved and the world model of the robot be
matched to the world model of the human.

This is not the first paper that tackles the prob-
lem of belief revision in robotics. However, prior
work (Tellex et al., 2013; Thomason et al., 2015;
She and Chai, 2017), with the notable exception
of (Mast et al., 2016), relied on explicit information
transfer between humans and robots when inconsis-
tencies arose in grounded language and the robot’s
world representation. An example would be a robot
asking clarification questions until it is clear what
the human meant (Tellex et al., 2013).

We propose an approach that probabilistically
reasons over the grounding of an instruction and
a robot’s world representation in order to perform
Bayesian learning to update the world representa-
tion given the grounding. This is closely related to
the work of Mast et al. who also deploy a Bayesian
learning approach. The key difference, however,
is that they do not learn the language component
but ground a description of a scene by relying on a
predefined model to ground language. We demon-
strate the validity of our approach for reconciling
instructions and world representations on a show-
case scenario involving a camera, a robot arm and
a natural language interface.

2 Preliminaries

The overarching objective of our system is to
plan and execute robot manipulation actions based
on natural language instructions. Presumptuously,

this requires, in the first place, that both the plan-
ner of the robot manipulator, as well as the nat-
ural language grounder (cf. Section 2.2), share a
joint semantically rich object-centered model of
the perceived environment, i.e., a semantic world
model (Elfring et al., 2013).

2.1 Visual Object Anchoring

In order to model a semantic object-centered rep-
resentation of the external environment, we rely
upon the notions and definitions found within the
concept of perceptual anchoring (Coradeschi and
Saffiotti, 2000). Following the approach for sensor-
driven bottom-up acquisition of perceptual data, as
described by (Persson et al., 2019), the used an-
choring procedure is, initially, triggered by sensory
input data provided by a Kinect2 RGB-D sensor.
Each frame of input RGB-D data is, subsequently,
processed by a perceptual system, which exploits
both the visual 2-D information, as well as the 3-D
depth information, in order to: 1) detect and seg-
ment the subset of data (referred to as percepts),
that originates from a single individual object in
the physical world, and 2) measure attribute val-
ues for each segmented percept, e.g., measuring a
position attribute as the R3 geometrical center of
an object, or a visual color attribute measured as a
color histogram (in HSV color space).

The percept-symbol correspondence is, there-
after, established by a symbolic system, which han-
dles the grounding of measured attributes values
to corresponding predicate symbols through the
use of predicate grounding relations, e.g., a cer-
tain peek in a color histogram, measured as a color
attribute, is mapped to a corresponding predicate
symbol ‘red’. In addition, we promote the use of an
object classification procedure in order to seman-
tically categorize and label each perceived object.
The convolutional neural network (CNN) architec-
ture that we use for this purpose is based on the
GoogLeNet model (Szegedy et al., 2015), which
we have trained and fine-tuned based on 101 object
categories that can be expected to be found in a
kitchen domain.

The extracted perceptual and symbolic informa-
tion for each perceived object is then encapsulated
in an internal data structure αx

t , called an anchor,
indexed by time t and identified by a unique identi-
fier x (e.g. ‘mug-2’, ‘apple-4’, etc.). The goal of an
anchoring system is to manage these anchors based
on the result of a matching function that compares
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the attribute values of an unknown candidate object
against the attribute values of all previously main-
tained anchors. Anchors are then either created or
maintained through two general functionalities:

• Acquire – initiates a new anchor whenever
a candidate object is received that does not
match any existing anchor αx.

• Re-acquire – extends the definition of a match-
ing anchor αx from time t− k to time t. This
functionality assures that the percepts pointed
to by the anchor are the most recent perceptual
(and consequently also symbolic) representa-
tion of the object.

However, comparing attribute values of an-
chored objects and percepts by some distance mea-
sure and deciding, based on the measure, whether
an unknown object has previously been perceived
or not is a non-trivial task. Nevertheless, since an-
chors are created or maintained through either one
of the two principal functionalities acquire and re-
acquire, it is evident that the desired outcome for
the combined compared values is a binary output,
i.e. should a percept be acquired or re-acquired. In
previous work on anchoring (Persson et al., 2019),
we have therefore suggested that the problem of
invoking a correct anchoring functionality is a prob-
lem that can be approximated through learning
from examples and the use of classification algo-
rithms. For this work, we follow the same approach.

2.2 Natural Language Grounding
In this study, we focus on understanding spatial lan-
guage that includes pick up and place related verbs,
and referring expressions. An instruction refers to
a target object using its representative features (e.g.
color, shape, size). If a noun phrase does not re-
solve the ambiguity in the world, the instruction
resolves the ambiguity by specifying the target ob-
ject with its relative position to other surrounding
objects. This hierarchy tries to bring the attention to
finding the unique object, then shifts the attention
to the targeted object. Based on this idea, we model
the language grounding process as controlling the
attention on the world representation by adapting
the neural module networks approach proposed by
Andreas et al. (2016b).

Our natural language grounder has three compo-
nents: a preprocessor, an instruction parser and a
program executor. Given specific anchor informa-
tion (Figure 1 –№ 1), the preprocessor transforms

Shift the 
attention

Compose the results to 
capture the relation

Predict the location of 
the target object

1.

4.

And

Right of

Locate

2.

Apply filters for nouns 
and adjectives

MugBlack
Apple

Capture the conjunction instead 
of applying an individual 
filter for compound words

And

"pick up the apple to the 
right of the black mug"

3.

Figure 1: Demonstration of the language grounding
process for the instruction ”pick up the apple to the
right of the black mug”. Anchoring system sends the
snapshot of the anchors (1). Then, a preprocessor trans-
forms the anchors into a grid representation which the
language grounding system operates on (2). The parser
parses the given instruction and generates a computa-
tion graph which specifies the execution order of neural
modules (3). Finally, the neural modules are executed
according to the computation graph to produce the ac-
tion (4).

the anchor information into an intermediate repre-
sentation in grid form (Figure 1 – № 2). The in-
struction parser produces a computational program
by exploiting the syntactic representation (Figure 1
–№ 3) of the instruction with a dependency parser1.
The program executor runs (Figure 1 – № 4) the
program on the intermediate representation to pro-
duce commands.

Preprocessor. The anchoring framework main-
tains the object descriptions predicted from the raw
visual input. To be able to ground the language onto
those descriptions, we map the available informa-
tion (object class, color, size and shape attributes)

1https://spacy.io/
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to a 4D grid representation. We represent each an-
chor as a multi-hot vector and assign this vector
to a cell where the real world coordinates of the
object fall into.

Program Executor. The program generated by
the parser is a collection of neural components that
are linked to each other depending on the com-
putation graph. The design of neural components
reflects our intuition about the attention control. A
Detect module is a convolutional neural network
with a learnable filter that captures a noun or an
adjective. This module creates an attention map
over the input grid.

Detect(w, b, x) = relu(w ⊗ x+ b) (1)

The Detect module operates on the original
grid input x tensor, where the dimensions are
(W,H,L,C). The first three dimensions represent
the spatial dimensions and C denotes the length of
the feature vector. w is the filter of size (1, 1, 1, C)
and b is the bias. ⊗ is a convolution operation.

Although a Detect module can capture the mean-
ing of a noun phrase (e.g., red book), the model
cannot generalize to unseen compound words. To
overcome this, we design the And module to com-
pose the output of incoming modules. This mod-
ule multiplies the inputs element-wise in order to
calculate the composition of words (e.g., the big
red book). Since the incoming inputs are attention
maps over the grid world, an And module produces
a new attention map by taking the conjunction of
its inputs. In the following equation, the � denotes
the element-wise multiplication.

And(a1, a2) = a1 � a2 (2)

An output of a subgraph for a noun phrase is an
attention map that highlights the positions for the
corresponding objects that occur. A Shift module
shifts this attention in the direction of the preposi-
tion that the module represents. This module is also
a convolutional neural network similar to a Detect
module. However, the module remaps the attention
instead of capturing the patterns in the grid world.

Shift(w, a) = relu(w ⊗ a) (3)

The Shift module operates on an incoming attention
map, where the dimensions are (W,H,L, 1). w is
the filter of size of (2 ∗W + 1, 2 ∗H + 1, 2 ∗ L+
1, 1). We use the padding to be able to perform the
shifting operation over the whole grid. The pad size
is the same as the input size.

A Locate module takes an attention map and
produces a probability distribution over cells by
applying a softmax classifier for being the targeted
object. We use the cell with the highest probability
as the prediction. A Position module gets a source
anchor, a preposition and a target anchor, and pro-
duces a real world coordinate. It merely calculates
the position available in the direction of the prepo-
sition from the target anchor, where the source an-
chor can fit.

Parser. We find the verbs in the instruction along
with the subtrees attached to them. For each verb
and its subtree, we search for the direct object of the
verb. Then we build a subgraph for the direct object
and its modifiers. Depending on the verb type, we
build different subgraphs. If the verb is ”pick up”
related, then we look for the preposition that relates
the given noun to another noun. If one is found,
then a subgraph is created for the preposition object
using the noun phrase that the object belongs to.
Finally, the end point of the subgraph is combined
with a Shift module. For each preposition object,
we repeat the same process to handle prepositional
phrase chains.

If the verb is ”put” related, we find the preposi-
tion that is linked to the verb and the object of the
preposition. We build a subgraph that refers to the
object of the preposition similar to the ”pick up”
case. Finally, there is a Position module to produce
the coordinates to put the direct object, where the
position is referred with the auxiliary objects.

3 System Description

In the upper part of Figure 2, we illustrate our physi-
cal kitchen table system setup, which consists of the
following devices: 1) a Kinova Jaco light-weight
manipulator (Campeau-Lecours et al., 2019), 2) a
Microsoft Kinect2 RGB-D sensors, and 3) a dedi-
cated PC with an Intel© Core™ i7-6700 processor
and an Nvidia GeForce GTX 970 graphics card.

In addition, we have a modularized software ar-
chitecture that utilizes the libraries and communi-
cation protocols available in the Robot Operating
System (ROS)2. Hence, each of the modules, il-
lustrated in the lower part of Figure 2, consists
of one or several individual subsystems (or ROS
nodes). For example, the visual object anchoring
module consists of the following subsystems: 1) a
perceptual system, 2) a symbolic system, and 3) an
anchoring system. For a seamless integration be-

2http://www.ros.org/
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Action
Planner

Visual Object 
Anchoring

(cf. Section 2.1)

Natural Language 
Grounding

(cf. Section 2.2)

Bayesian 
Learning

(cf. Section 4)

Language Instruction

Explanations:

               Preliminary system

               Extended system

Figure 2: A depiction of both used physical system
setup (upper), as well as used software architecture
(lower). The arrows represent the flow of data between
the modules of the software architecture. Blue solid ar-
rows and boxes illustrate the preliminary system (out-
lined in Section 2), while red dashed arrows and boxes
illustrate the novel extension for reasoning about differ-
ent symbolic label configurations (and hence resolving
inconsistencies between language and perception), by
using Bayesian learning (as presented in Section 4).

tween software and hardware, we are further taking
advantage of both the MoveIt! Motion Planning
Framework3, as well as the ROS-Kinect2 bridge
developed by (Wiedemeyer, 2014 – 2015). The
MoveIt! ”planning scene” of the action planner for
the robot manipulator, as well as the grid world rep-
resentation used by the language grounding system
(cf. Section 2.2), are, subsequently, both populated
by the same updating anchoring representations (cf.
Section 2.1). Hence, the visual sensory input stream
is indirectly mapped to both objects considered in
the dialogue by the language grounder, as well as
the objects upon which actions are executed.

3https://moveit.ros.org/

4 Resolving Inconsistencies

Based purely on the perceptual input, the anchoring
system produces a probability distribution p(l) over
the possible labels (e.g. [0.65 : apple, 0.35 : pear])
for each anchor. We are now interested in the prob-
ability of a label l for an anchor given a natural
language instruction i and the grounding g of that
instruction in the real world. This is the conditional
probability p(l | g, i). We introduce, furthermore,
the notion of a label configuration c. This is easi-
est explained by an example: imagine having two
anchors and each of the anchors has two possible
labels, then there are 2 × 2 possible label config-
urations. A label configuration is, hence, a label
assignment to all the anchors present in the scene.

Now we need to transform the conditional prob-
ability into a function that is computable by the
anchoring system and the language grounder. The
first steps (Equations 4-6) are quite straight forward
and follow basic probability calculus.

p(l|g, i) = ∑
c p(l, c|g, i) (4)

=
∑

c p(l|c, g, i)p(c|g, i) (5)

=
∑

c p(l|c)p(c|g, i) (6)

In Equation 6 we assume that g and i are condition-
ally independent of the label of an anchor given
the label configuration c. This can be seen in the
following way. Imagine two anchors with two pos-
sible labels each. Given that we are in a specific
label configuration, we immediately know what
label the single anchors have. This means that the
probability of a label for an anchor is 1 if it matches
the label in the configuration and 0 otherwise. This
reasoning is independent of the grounding and the
instruction.

We have now split up the labels (produced by
the anchoring system) and the grounding into two
factors, which can be calculated separately. The
first one can be calculated as follows:

p(l | c) = p(l, c)

p(c)
=

∏
j∈c p(lj)

Nc
(7)

This is the product of the probabilities of the labels
that constitute a label configuration divided by the
number of configurations. Assuming a uniform dis-
tribution over the label configurations (division by
Nc) is equivalent to assuming that each possible
label configuration is equally likely a priori. This
means that we make no assumption about which
class of objects occur more regularly or which class
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of objects (of the 101 possible classes) occur more
often together with other classes of objects.

We tackle now the second factor in Equation 6.
Equation 8-11 are again straightforward probabil-
ity calculus. In Equation 12 we assume that the
label configuration and the instruction are indepen-
dent: their probabilities factorize. In Equation 13
the probabilities of i cancel out and we assume
again a uniform distribution for the label configura-
tions (cf Equation 7). In Equation 14 we then have
a numerator and denominator that are expressed in
terms of p(g | c, i), which is exactly the function
approximated by our neural language grounding
system, cf. subsection 2.2.

p(c|g, i) = p(c, g, i)

p(g, i)
(8)

=
p(g|c, i)p(c, i)

p(g, i)
(9)

=
p(g|c, i)p(c, i)∑

c p(c, g, i)
(10)

=
p(g|c, i)p(c, i)∑
c p(g|c, i)p(c, i)

(11)

=
p(g|c, i)p(c)p(i)∑
c p(g|c, i)p(c)p(i)

(12)

=
p(g|c, i)1/Nc∑
c p(g|c, i)1/Nc

(13)

=
p(g|c, i)∑
c p(g|c, i)

(14)

Plugging Equations 7 and 14 back into Equation
6 gives the learned probability of the label l of an
anchor given the instruction i and the grounding g
of that instruction.

p(l | g, i) =
∑

c(
∏

j∈c p(lj))p(g|c,i)
Nc

∑
c p(g|c,i)

(15)

As mentioned in Section 2.1 the anchoring sys-
tem encapsulates 101 object categories, which
means that the anchoring system produces a cate-
gorical probability distribution over 101 different
labels for each anchor. With only two anchors this
results in already 1012 different configurations. It is
easy to see that computing p(l | g, i) (cf. Equation
15) suffers from this curse of dimensionality. There-
fore, we limited ourselves to the two labels with the
highest probability per anchor, in the experiments
too. This gives 2NA possible configurations, with
NA being the number of anchors present.

5 Experiments

5.1 Synthetic Data
Data demanding nature of neural networks requires
large amounts of data to generalize well. Artifi-
cial data generation is one way of generating such
datasets (Andreas et al., 2016b; Kuhnle and Copes-
take, 2017; Johnson et al., 2016). Therefore, we
designed a series of artificial learning tasks before
applying the model to a real-world problem. In
each task, we generate a random grid world that
provides the necessary complexity and ambiguity
that fit the scenario. First, an object is placed on the
grid world and decorated with attributes randomly
as the target object. Then depending on the sce-
nario, an auxiliary object and distractors (objects
that have similar attributes as the target object) are
placed on the grid world. We also generate objects
that are not related to the target (or auxiliary ob-
ject) to introduce additional noise. We limit the
total number of objects to 10. We set the number
of distractors as 2 in the experiments. Finally, we
generate the ground truth computation graph for
composing neural modules. We list the scenarios
below in increasing order of difficulty (i.e., a com-
bination of the ambiguity present in the grid world
and the number of language components involved).

1. Using the name of a targeted object in the
instruction is enough to localize the targeted
object.

2. There is more than one object that has the
same category with a targeted object. To solve
the ambiguity, one or more discriminative ad-
jective(s) are used.

3. The same world configuration as the second
one. To solve the ambiguity, the object is de-
scribed with a prepositional phrase that uti-
lizes a single referent object.

4. The same world configuration as the third. Ad-
jectives are used to describe a targeted ob-
ject in addition to a prepositional phrase. In
this case, adjectives are unnecessary, but the
scenario measures whether additional compo-
nents bring noise or not.

5. All other objects that have the same category
with a targeted object have the same set of
features as the targeted object has. Hence, the
targeted object is only distinguishable by its
position. To solve the ambiguity, the object
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is described with a prepositional phrase that
utilizes a referent object along with necessary
adjectives.

6. It is a random scenario from the above list.

5.2 Training
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Figure 3: Learning curve of the neural modules.

To be able to measure the compositionality of
learned modules, we have two different settings
for the data generation. For training, we constrain
the 75% of possible attributes for an object class
and locations on the grid world that an instance of
that object class can present. During testing, we
use unconstrained samples generated for the same
scenario. This way, we can evaluate if the model
infers unseen word compositions, e.g. inferring red
mug after seeing red book and black mug in the
training time. We follow a curriculum schema to
train our modules. Starting from the first scenario
described in Section 5.1, we train the model on
a stream of constrained randomly generated sam-
ples. We evaluate the model periodically on un-
constrained samples generated for each period and
continue training until the moving average error
on the test data falls under a threshold (e.g. 1e-5
in our experiments). We then continue to train the
model for the next scenario using learned weights.
We set the number of nouns, adjectives and preposi-
tions as 102, 26, and 27, respectively to match with
the anchoring system. We use Adam (Kingma and
Ba, 2014) with default parameters (i.e. lr = 0.001,
β1 = 0.9, β2 = 0.999) for the optimization.

Figure 3 presents the learning curve of the model.
The third graph (yellow) demonstrates that learning
prepositions requires more data as compared to
learning nouns (first graph) or adjectives (second
graph). The reason for this behavior is twofold.

First, the Shift modules have more weights to be
learned than the Detect modules. Second, while
the Detect modules have a one to one mapping
between input and output, the Shift modules have
many to many relations. There might be more than
one active area in the input of a Shift module. Since
it needs to remap highlighted areas on the grid to
other areas , it needs to see different examples that
occur in different parts of the grid world in order
to learn to ignore the position of the active area.

The remaining graphs show the effectiveness of
our design to compose learned modules. Since we
do not train any modules from scratch, we can han-
dle the composition of nouns, adjectives and prepo-
sitions effectively. Since it is the first time we train
all components together in scenario 4, the training
requires more data than one would expect when
compared with graphs 5 (orange) and 6 (cyan).

6 Showcase

We now proceed with a demonstration of the inte-
grated system: we have a Kinect camera that ob-
serves the world, the anchoring representation that
builds up a representation of the world based on
the raw image data, the language grounder that
takes as input a natural language instruction and
a probabilistic reasoning component that resolves
possible inconsistencies between the robot’s world
representation and the instruction.

The physical setup up is identical to the one de-
picted in the image in Figure 2: the robot arm is
mounted on the opposite site of a kitchen table of
the Kinect camera. The natural language instruction
is passed to the language grounder via an instruc-
tion prompt. In each of the four panels in Figure
4, the instruction prompt is seen at the bottom as
rectangular box. We further describe the scenario
in the caption of Figure 4.

7 Related Work

Our work is related to two research domains: mod-
ular neural nets for language grounding and human-
robot interaction for handling ambiguities in one
or more modalities. Andreas et al. (2016b,a) intro-
duced neural module networks for visual question
answering. Johnson et al. (2017); Hu et al. (2017a)
developed policy gradient based approaches to
learn to generate layouts instead of using a depen-
dency parser based method. Hu et al. (2017b); Yu
et al. (2018); Cirik et al. (2018) applied modular
neural networks approach on ‘Referring Expres-
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1. 2.

3. 4.

Figure 4: We give the robot the instruction: ”pick up the ball in front of the can”. The robot executes the action
and waits for further instructions. We then give the instruction to ”drop it in front of the mug”. The problem in this
step is that there is no object classified as ‘mug’, which means that none of the objects has as label with highest
probability ‘mug’. We correct for this through probabilistic reasoning over not only the top label for each object
but a number of top ranked labels per object. This allows the anchoring system to correct its classification of an
object based on what we as humans think an object is. Given the instruction, the anchoring system re-classifies
the black object from ‘pot’ to ‘mug’. The instruction is then successfully carried out. The recorded video can be
found here: https://vimeo.com/302072685.

sion Understanding‘ task. Das et al. (2018) demon-
strated the usage of neural module networks in
decision taking in a simulated environment. To our
knowledge, the present study is the first work that
uses neural module networks approach in the real-
world robotic setting.

Learning from human interaction has been ex-
tensively studied. Lemaignan et al. (2011, 2012)
developed a cognitive architecture that makes de-
cisions by using symbolic information provided as
facts (pre-defined) or extended via human-robot
dialogues. When compared with our system, their
system neither operates on the sensory input nor
deals with the uncertainty in the world. Tellex et al.

(2013) proposed a system to ask questions to dis-
ambiguate the ambiguities presented in the instruc-
tions. The robot decides the most ambiguous part
of the command which is defined based on a metric
derived from entropy and asks questions about it
to reduce the uncertainty. They update the gener-
alized grounding graph (Kollar et al., 2013) with
answers obtained from the user and use these to
perform inference. In contrast, we fix the ambiguity
present in the perceptual data. She and Chai (2017)
proposed a system to learn to ask questions during
the learning of verb semantics. They work on the
Tell me Dave environment (Misra et al., 2014). The
work represents the environment as grounded state
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fluents (i.e. a weighted logic representation). In this
work, language grounding is modeled as the differ-
ence between before and after state for an action
sequence. They modeled the interactive learning as
an MDP and solved it with reinforcement learning.

Thomason et al. (2015) proposed a system that
learns the meaning of natural language commands
through human-robot dialog. They represent the
meaning of instructions with λ-calculus semantic
representation. Their semantic parser starts with
an initial knowledge and learns through training
examples generated by the human-robot conversa-
tions. Their dialog manager is a static policy which
generates questions from a discrete set of action,
patient, recipient tuples. Padmakumar et al. (2017)
improved this work with a learnable dialog man-
ager. They train both the dialog manager and the
semantic parser with reinforcement learning. This
approach was further extended in (Thomason et al.,
2019), where the authors combine the approach in
Thomason et al. (2015) and Thomason et al. (2017)
to obtain a system that is capable of concept ac-
quisition through clarification dialogues. Instead
of asking questions, we implicitly fix the percep-
tion with the information hidden in instructions. A
further difference to these works is that we learn
the language component in a simulated offline step,
whereas they deploy active online learning, starting
from a limited initial vocabulary.

This is also related to the work of Perera and
Allen, who present a system that tries to emulate
child language learning strategies by describing
scenes to a robot agent, which has to learn actively
new concepts. The authors deploy probabilistic rea-
soning to manage erroneous sensor readings in the
vision system. Apart from the active learning ap-
proach, there is also a conceptual difference: in our
work, we do not consider discrepencies between
the perceptual system (anchoring) and the language
grounder as errors in the perceptual system but sim-
ply as different models of the world.4

As mentioned in Section 1, the work related
closest to our approach is presented in Mast et al.
(2016). The authors base their work on geometric
conceptual spaces (Gärdenfors, 2004), which sit-
uates their work in the sub-domain of top-down
anchoring (Coradeschi and Saffiotti, 2000). The
geometric conceptual spaces induce a probabilis-
tic model-based language grounder. This enables

4This view taps into the philosophical question of whether
one can ever truly know the nature of an object, cf. thing-in-
itself (Kant, 1878), for which we omit a discussion.

a robot to reason probabilistically over a descrip-
tion of a scene, given by an other agent, and single
out the object that is most likely being referred
to. In contrast, we present an approach to perform
Bayesian learning over a learned language ground-
ing model and a bottom-up anchoring approach.

8 Conclusions and Future Work

We introduced the problem of belief revision in
robotics based solely on implicit information avail-
able in natural language in the setting of sensor-
driven bottom-up anchoring in combination with
a learned language grounding model. This is in
contrast to prior works, which study either explicit
information or are based on top-down anchoring.
We proposed a Bayesian learning approach to solve
the problem and demonstrated its validity on a real
world showcase involving computer vision, natural
language grounding and robotic manipulation.

In future work we would like to perform a more
quantitative analysis of our approach to which end
it is imperative to circumvent the curse of dimen-
sionality emerging in the Bayesian learning step
(cf. Equation 15). It would also be interesting to
investigate whether our approach is amenable to
natural language other than instructions.

A main limitation of our current approach is
the limited size of the predefined vocabulary. It
would be more practicable if a robot were able
to extend its vocabulary through the interaction
with a human, i.e. through dialogue. A possible
solution would be to learn a probabilistic model
(which resolves inconsistencies between language
and vision) that takes into account the possible of
currently unknown vocabulary occurring. Such an
approach would still allow us to learn the anchoring
of objects and the language grounding separately,
while learning a much richer model to resolve in-
consistencies than the one described in this work.
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Séverin Lemaignan, Raquel Ros, Rachid Alami, and
Michael Beetz. 2011. What are you talking about?
grounding dialogue in a perspective-aware robotic
architecture. In 2011 RO-MAN, pages 107–112.
IEEE.
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Abstract

Vision-and-Language Navigation (VLN) is a
natural language grounding task where agents
have to interpret natural language instructions
in the context of visual scenes in a dynamic
environment to achieve prescribed navigation
goals. Successful agents must have the abil-
ity to parse natural language of varying lin-
guistic styles, ground them in potentially un-
familiar scenes, plan and react with ambigu-
ous environmental feedback. Generalization
ability is limited by the amount of human
annotated data. In particular, paired vision-
language sequence data is expensive to col-
lect. We develop a discriminator that evalu-
ates how well an instruction explains a given
path in VLN task using multi-modal alignment.
Our study reveals that only a small fraction
of the high-quality augmented data from Fried
et al. (2018), as scored by our discriminator,
is useful for training VLN agents with simi-
lar performance on previously unseen environ-
ments. We also show that a VLN agent warm-
started with pre-trained components from the
discriminator outperforms the benchmark suc-
cess rates of 35.5 by 10% relative measure on
previously unseen environments.

1 Introduction

There is an increased research interest in the
problems containing multiple modalities (Yu and
Siskind, 2013; Chen et al., 2015; Vinyals et al.,
2017; Harwath et al., 2018). The models trained
on such problems learn similar representations for
related concepts in different modalities. Model
components can be pretrained on datasets with indi-
vidual modalities, the final system must be trained
(or fine-tuned) on task-specific datasets (Girshick
et al., 2014; Zeiler and Fergus, 2014).

In this paper, we focus on vision-and-language
navigation (VLN), which involves understanding

∗Authors contributed equally.

visual-spatial relations as described in instructions
written in natural language. In the past, VLN
datasets were built on virtual environments, with
MacMahon et al. (2006) being perhaps the most
prominent example. More recently, challenging
photo-realistic datasets containing instructions for
paths in real-world environments have been re-
leased (Anderson et al., 2018b; de Vries et al.,
2018; Chen et al., 2018). Such datasets require
annotations by people who follow and describe
paths in the environment. Because the task is quite
involved–especially when the paths are longer–
obtaining human labeled examples at scale is chal-
lenging. For instance, the Touchdown dataset
(Chen et al., 2018) has only 9,326 examples of the
complete task. Others, such as Cirik et al. (2018)
and Hermann et al. (2019) side-step this problem by
using formulaic instructions provided by mapping
applications. This makes it easy to get instructions
at scale. However, since these are not natural lan-
guage instructions, they lack the quasi-regularity,
diversity, richness and errors inherent in how peo-
ple give directions. More importantly, they lack
the more interesting connections between language
and the visual scenes encountered on a path, such
as head over the train tracks, hang a right just past
a cluster of palm trees and stop by the red brick
town home with a flag over its door.

In general, the performance of trained neural
models is highly dependent on the amount of avail-
able training data. Since human-annotated data
is expensive to collect, it is imperative to maxi-
mally exploit existing resources to train models
that can be used to improve the navigation agents.
For instance, to extend the Room-to-Room (R2R)
dataset (Anderson et al., 2018b), Fried et al. (2018)
created an augmented set of instructions for ran-
domly generated paths in the same underlying en-
vironment. These instructions were generated by
a speaker model that was trained on the available
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human-annotated instructions in R2R. Using this
augmented data improved the navigation models in
the original paper as well as later models such as
Wang et al. (2018a). However, our own inspection
of the generated instructions revealed that many
have little connection between the instructions and
the path they were meant to describe, raising ques-
tions about what models can and should learn from
noisy, automatically generated instructions.

We instead pursue another, high precision strat-
egy for augmenting the data. Having access to
an environment provides opportunities for creating
instruction-path pairs for modeling alignments. In
particular, given a path and a navigation instruction
created by a person, it is easy to create incorrect
paths by creating permutations of the original path.
For example, we can hold the instructions fixed,
but reverse or shuffle the sequence of perceptual
inputs, or sample random paths, including those
that share the start or end points of the original one.
Crucially, given the diversity and relative unique-
ness of the properties of different rooms and the
trajectories of different paths, it is highly unlikely
that the original instruction will correspond well to
the mined negative paths.

This negative path mining strategy stands in stark
contrast with approaches that create new instruc-
tions. Though they cannot be used to directly train
navigation agents, negative paths can instead be
used to train discriminative models that can as-
sess the fit of an instruction and a path. As such,
they can be used to judge the quality of machine-
generated extensions to VLN datasets and possibly
reject bad instruction-path pairs. More importantly,
the components of discriminative models can be
used for initializing navigation models themselves
and thus allow them to make more effective use of
the limited positive paths available.

We present four main contributions. First, we
propose a discriminator model (Figure 1) that can
predict how well a given instruction explains the
paired path. We list several cheap negative sam-
pling techniques to make the discriminator more
robust. Second, we show that only a small por-
tion of the augmented data in Fried et al. (2018)
are high fidelity. Including just a small fraction of
them in training is sufficient for reaping most of the
gains afforded by the full augmentation set: using
just the top 1% augmented data samples, as scored
by the discriminator, is sufficient to generalize to
previously unseen environments. Third, we train

the discriminator using alignment-based similarity
metric that enables the model to align same con-
cepts in the language and visual modalities. We
provide a qualitative assessment of the alignment
learned by the model. Finally, we show that a navi-
gation agent, when initialized with components of
fully-trained discriminator, outperforms the exist-
ing benchmark on success rate by over 10% relative
measure on previously unseen environments.

2 The Room-to-Room Dataset

Room-to-Room (R2R) is a visually-grounded nat-
ural language navigation dataset in photo-realistic
environments (Anderson et al., 2018b). Each en-
vironment is defined by a graph where nodes are
locations with egocentric panoramic images and
edges define valid connections for agent navigation.
The navigation dataset consists of language instruc-
tions paired with reference paths, where each path
is defined by a sequence of graph nodes. The data
collection process is based on sampling pairs of
start/end nodes and defining the shortest path be-
tween the two. Furthermore the collection process
ensures no paths are shorter than 5m and must be
between 4 to 6 edges. Each sampled path is associ-
ated with 3 natural language instructions collected
from Amazon Mechanical Turk with an average
length of 29 tokens from a vocabulary of 3.1k to-
kens. Apart from the training set, the dataset in-
cludes two validation sets and a test set. One of the
validation sets includes new instructions on envi-
ronments overlapping with the training set (Valida-
tion Seen), and the other is entirely disjoint from
the training set (Validation Unseen).

Several metrics are commonly used to evalu-
ate agents’ ability to follow navigation instruc-
tions. Path Length (PL) measures the total length
of the predicted path, where the optimal value is the
length of the reference path. Navigation Error (NE)
measures the distance between the last nodes in
the predicted path and the reference path. Success
Rate (SR) measures how often the last node in the
predicted path is within some threshold distance
dth of the last node in the reference path. More
recently, Anderson et al. (2018a) proposed the Suc-
cess weighted by Path Length (SPL) measure that
also considers whether the success criteria was met
(i.e., whether the last node in the predicted path is
within some threshold dth of the reference path)
and the normalized path length. Agents should
minimize NE and maximize SR and SPL.
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Figure 1: Overview of the discriminator model struc-
ture. Alignment layer corresponds to Eq.5,6,7

3 Discriminator Model

VLN tasks are composed of instruction-path pairs,
where a path is a sequence of connected locations
along with their corresponding perceptual contexts
in some environment. While the core task is to
create agents that can follow the navigation instruc-
tions to reproduce estimates of reference paths, we
instead explore models that focus on the simpler
problem of judging whether an instruction-path
pair are a good match for one another. These mod-
els would be useful in measuring the quality of
machine-generated instruction-path pairs. Another
reasonable expectation from such models would be
that they are also able to align similar concepts in
the two modalities, e.g., in an instruction like “Turn
right and move forward around the bed, enter the
bathroom and wait there.”, it is expected that the
word bed is better aligned with a location on the
path that has a bed in the agent’s egocentric view.

To this effect, we train a discriminator model
that learns to delineate positive instruction-path
pairs from negative pairs sampled using different
strategies described in Sec.3.2. The discrimination
is based on an alignment-based similarity score that
determines how well the two input sequences align.
This encourages the model to map perceptual and
textual signals for final discrimination.

3.1 Model Structure
We use a two-tower architecture to independently
encode the two sequences, with one tower encoding
the token sequence x1, x2, ..., xn in the instruction
X and another tower encoding the visual input se-
quence v1, v2, ..., vm from the path V . Each tower
is a bi-directional LSTM (Schuster and Paliwal,
1997) which constructs the latent space representa-
tion H of a sequence i1, i2, ..., ik following:

H = [h1;h2; ...;hk] (1)

ht = g(
−→
h t,
←−
h t) (2)

−→
h t = LSTM(it,

−→
h t−1) (3)

←−
h t = LSTM(it,

←−
h t+1) (4)

where g function is used to combine the output
of forward and backward LSTM layers. In our
implementation, g is the concatenation operator.

We denote the latent space representation of in-
struction X as HX and path V as HV and compute
the alignment-based similarity score as following:

A = HX(HV )T (5)

{c}l=X
l=1 = softmax(Al) ·Al (6)

score = softmin({c}l=X
l=1 ) · {c}l=X

l=1 (7)

where (.)T is matrix transpose transformation, A is
the alignment matrix whose dimensions are [n,m],
Al is the l-th row vector in A and softmin(Z) =
exp−Zj

∑
exp−Zj

. Eq.6 corresponds to taking a softmax
along the columns and summing the columns,
which amounts to content-based pooling across
columns. Then we apply softmin operation along
the rows and sum the rows up to get a scalar in
Eq.7. Intuitively, optimizing this score encourages
the learning algorithm to construct the best worst-
case sequence alignment between the two input
sequences in latent space.

3.2 Training
Training data consists of instruction-path pairs
which may be similar (positives) or dissimilar (neg-
atives). The training objective maximizes the log-
likelihood of predicting higher alignment-based
similarity scores for similar pairs.

We use the human annotated demonstrations
in the R2R dataset as our positives and explore
three strategies for sampling negatives. For a given
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Learning PS PR RW AUC
no-curriculum 3 64.5
no-curriculum 3 60.5
no-curriculum 3 63.1
no-curriculum 3 3 72.1
no-curriculum 3 3 66.0
no-curriculum 3 3 70.8
no-curriculum 3 3 3 72.0
curriculum 3 3 3 76.2

Table 1: Results on training in different combinations
of datasets and evaluating against validation dataset
containing PR and RW negatives only.

instruction-path pair, we sample negatives by keep-
ing the same instruction but altering the path se-
quence by:

• Path Substitution (PS) – randomly picking
other paths from the same environment as neg-
atives.

• Partial Reordering (PR) – keeping the first
and last nodes in the path unaltered and shuf-
fling the intermediate locations of the path.

• Random Walks (RW) – sampling random paths
of the same length as the original path that
either (1) start at the same location and end
sufficiently far from the original path or (2)
end at the same location and start sufficiently
far from the original path.

4 Results

Our experiments are conducted using the R2R
dataset (Anderson et al., 2018b). Recently, Fried
et al. (2018) introduced an augmented dataset (re-
ferred to as Fried-Augmented from now on)
that is generated by using a speaker model and they
show that the models trained with both the original
data and the machine-generated augmented data
improves agent success rates.

We show three main results. First, the
discriminator effectively differentiates be-
tween high-quality and low-quality paths in
Fried-Augmented. Second, we rank all
instruction-path pairs in Fried-Augmented
with the discriminator and train with a small
fraction judged to be the highest quality—using
just the top 1% to 5% (the highest quality
pairs) provides most of the benefits derived
from the entirety of Fried-Augmented when

Figure 2: Culmulative distributions of discriminator
scores for different datasets. The mean of distribution
for R2R validation seen, Fried-Augmented and
R2R validation unseen is 0.679, 0.501, and 0.382 re-
spectively.

generalizing to previously unseen environments.
Finally, we initialize a navigation agent with the
visual and language components of the trained
discriminator. This strategy allows the agent
to benefit from the discriminator’s multi-modal
alignment capability and more effectively learn
from the human-annotated instructions. This agent
outperforms existing benchmarks on previously
unseen environments as a result.

4.1 Discriminator Results
We create two kinds of dataset for each of the neg-
ative sampling strategies defined in Section 3.2 –
a training set from paths in R2R train split and
validation set from paths in R2R validation seen
and validation unseen splits. The area-under ROC
curve (AUC) is used as the evaluation metric for
the discriminator. From preliminary studies, we
observed that the discriminator trained on dataset
containing PS negatives achieved AUC of 83% on
validation a dataset containing PS negatives only,
but fails to generalize to validation set containing
PR and PW negatives (AUC of 64.5%). This is
because it is easy to score PS negatives by just
attending to first or last locations, while scoring
PR and PW negatives may require carefully align-
ing the full sequence pair. Therefore, to keep the
task challenging, the validation set was limited to
contain validation splits from PR and RW nega-
tive sampling strategies only. Table 1 shows the
results of training the discriminator using various
combinations of negative sampling.

Generally, training the discriminator with PS
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Dataset Score Example

Fried-
Augmented

0.001
Walk out of the bedroom and turn left. Walk past the couch and turn right. Walk past the pool and stop on 

the second step.

Gym

0.999
Go up the stairs and turn left. Walk past the kitchen and dining table. Stop behind the dining table.

Validation
Seen

0.014 Walk across the patio, stop at hanging basket chair.

Hardly visible

0.999
Leave the closet and take a right into the hallway. In the hall walk straight and stick left passing a cabinet 

on your left. Once past the cabinet go into the first room on your left.

Validation
Unseen

0.00004
Exit the room then turn left and go up the steps then turn right and turn right and wait near the beige 

couches.

0.9808 Walk down the stairs, at the landing enter the second doorway on the left. Wait near the bookshelf.

Table 2: Selected samples from datasets with discriminator scores.

negatives helps model performance across the
board. Simple mismatch patterns in PS negatives
help bootstrap the model with a good initial policy
for further fine-tuning on tougher negatives pat-
terns in PR and RW variations. For example in PS
negatives, a path that starts in a bathroom does not
match with an instruction that begins with “Exit
the bedroom.”–this would be an easy discrimina-
tion pair. In contrast, learning from just PR and
RW negatives fails to reach similar performance.
To further confirm this hypothesis, we train a dis-
criminator using curriculum learning (Bengio et al.,
2009) where the model is first trained on only PS
negatives and then fine-tuned on PR and RW nega-
tives. This strategy outperforms all others, and the
resulting best performing discriminator is used for
conducting studies in the following subsections.

Discriminator Score Distribution Fig.2 shows
the discriminator’s score distribution on different
R2R datasets. Since Fried-Augmented con-
tains paths from houses seen during training, it
would be expected that discriminator’s scores on
validation seen and Fried-Augmented datasets
be the same if the data quality is comparable. How-
ever there is a clear gap in the discriminator’s con-

fidence between the two datasets. This matches
our subjective analysis of Fried-Augmented
where we observed many paths had clear start-
ing/ending descriptions but the middle sections
were often garbled and had little connection to the
perceptual path being described. Table 2 contains
some samples with corresponding discriminator
scores.

Finally we note that the discriminator scores
on validation unseen are rather conservative even
though the model differentiates between positives
and negatives from validation set reasonably well
(last row in Table 1).

4.2 Training Navigation Agent

We conducted studies on various approaches
to incorporate selected samples from
Fried-Augmented to train navigation agents
and measure their impact on agent navigation
performance. The studies illustrate that navigation
agents have higher success rates when they are
trained on higher-quality data (identified by
discriminator) with sufficient diversity (introduced
by random sampling). When the agents are
trained with mixing selected samples from
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Dataset size Strategy PL NE ↓ SR ↑ SPL ↑
U S U S U S U S

1%

Top 11.2 11.1 8.5 8.5 20.4 21.2 16.6 17.6
Bottom 10.8 10.7 8.9 9.0 15.4 16.3 14.1 13.1
Random Full 11.7 12.5 8.1 8.3 22.1 21.2 17.9 16.6
Random Bottom 14.2 15.8 8.4 8.1 19.7 21.7 14.3 15.6
Random Top 15.9 15.6 7.9 7.6 22.6 25.4 15.2 14.8

2%

Top 11.3 11.7 8.2 7.9 22.3 25.5 18.5 21.0
Bottom 11.4 14.5 8.4 9.1 17.5 17.7 14.1 12.7
Random Full 13.3 10.8 7.9 7.9 24.3 25.5 18.2 22.7
Random Bottom 15.2 18.2 8.1 8.1 20.5 20.8 11.8 16.0
Random Top 12.9 14.0 7.6 7.5 25.6 25.8 19.5 19.7

5%

Top 17.6 16.9 7.7 7.2 24.6 28.2 14.4 18.2
Bottom 10.0 10.2 8.3 8.2 20.1 23.2 17.1 19.4
Random Full 17.8 21.4 7.3 7.0 27.2 29.1 16.4 14.3
Random Bottom 16.3 10.4 7.9 8.3 22.1 23.0 14.2 20.1
Random Top 20.0 15.0 7.0 6.9 27.7 30.6 14.8 22.1

Table 3: Results on R2R validation unseen paths (U) and seen paths (S) when trained only with small fraction of
Fried-Augmented ordered by discriminator scores. For Random Full study, examples are sampled uniformly
over entire dataset. For Random Top/Bottom study, examples are sampled from top/bottom 40% of ordered dataset.
SPL and SR are reported as percentages and NE and PL in meters.

Fried-Augmented to R2R train dataset, only
the top 1% from Fried-Augmented is needed
to match the performance on existing benchmarks.

Training Setup. The training setup of the navi-
gation agent is identical to Fried et al. (2018). The
agent learns to map the natural language instruc-
tion X and the initial visual scene v1 to a sequence
of actions a1..T . Language instructions X = x1..n
are initialized with pre-trained GloVe word em-
beddings (Pennington et al., 2014) and encoded
using a bidirectional RNN (Schuster and Paliwal,
1997). At each time step t, the agent perceives
a 360-degree panoramic view of its surroundings
from the current location. The view is discretized
intom view angles (m = 36 in our implementation,
3 elevations x 12 headings at 30-degree intervals).
The image at view angle i, heading angle φ and
elevation angle θ is represented by a concatenation
of the pre-trained CNN image features with the
4-dimensional orientation feature [sin φ; cos φ; sin
θ; cos θ] to form vt,i. As in Fried et al. (2018), the
agent is trained using student forcing where actions
are sampled from the model during training, and
supervised using a shortest-path action to reach the
goal state.

Training using Fried-Augmented only.
The experiments in Table 3 are based on training
a navigation agent on different fractions of the

Fried-Augmented dataset (X={1%, 2%, 5%})
and sampling from different parts of the discrim-
inator score distribution (Top, Bottom, Random
Full, Random Top, Random Bottom). The trained
agents are evaluated on both validation seen and
validation unseen datasets.

Not surprisingly, the agents trained on examples
sampled from the Top score distribution consis-
tently outperform the agents trained on examples
from the Bottom score distribution. Interestingly,
the agents trained using the Random Full samples
is slightly better than agents trained using just the
Top samples. This suggests that the agent benefits
from higher diversity samples. This is confirmed
by the study Random Top where the agents trained
using high quality samples with sufficient diversity
consistently outperform all other agents.

Training using both R2R train and
Fried-Augmented. To further investi-
gate the utility of the discriminator, the navigation
agent is trained with the full R2R train dataset
(which contains human annotated data) as well
as selected fractions of Fried-Augmented1.
Table 4 shows the results.

1We tried training on Fried-Augmented first and then
fine-tuning on R2R train dataset, as done in Fried et al. (2018),
but didn’t find any appreciable difference in agent’s perfor-
mance in any of the experiments.
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Dataset PL NE ↓ SR ↑ SPL ↑
U S U S U S U S

Benchmark2 - - 6.6 3.36 35.5 66.4 - -
0% 17.8 18.5 6.8 5.3 32.1 46.1 21.9 30.3
1% 12.5 11.2 6.4 5.7 35.2 45.3 28.9 39.1
2% 14.5 15.1 6.5 5.5 35.7 44.6 27.0 34.1
5% 17.0 12.9 6.1 5.6 36.0 44.8 23.6 37.0
40% 14.9 11.9 6.4 5.5 36.5 49.1 27.1 43.4
60% 16.8 15.7 6.3 5.3 36.0 47.2 24.7 35.4
80% 17.1 18.5 6.2 5.2 35.8 45.0 23.8 29.6
100% 15.6 15.9 6.4 4.9 36.0 51.9 29.0 43.0

Table 4: Results3 on R2R validation unseen (U) and validation seen (S) paths when trained with full training set
and selected fraction of Fried-Augmented. SPL and SR are reported as percentages and NE and PL in meters.

Method Split PL NE ↓ SR ↑ SPL ↑
Speaker-Follower model (Fried et al., 2018)

U - 6.6 35.5 -
S - 3.36 66.4 -

Speaker-Follower model (our implementation)
U 15.6 6.4 36.0 29.0
S 15.9 4.9 51.9 43.0

Our implementation, using discriminator pre-training
U 16.7 5.9 39.1 26.8
S 15.4 5.0 50.4 39.1

Table 5: Results on R2R validation unseen (U) and validation seen (S) paths after initializing navigation agent’s
instruction and visual encoders with discriminator.

Validation Unseen: The performance of the
agents trained with just 1% Fried-Augmented
matches with benchmark for NE and SR. With
just 5% Fried-Augmented, the agent starts out-
performing the benchmark for NE and SR. Since
Fried-Augmented was generated by a speaker
model that was trained on R2R train, the lan-
guage diversity in the dataset is limited, as evi-
denced by the unique token count: R2R train has
2,602 unique tokens while Fried-Augmented
has only unique 369 tokens. The studies
show that only a small fraction of top scored
Fried-Augmented is needed to augment R2R
train to achieve the full performance gain over the
benchmark.

Validation Seen: Since Fried-Augmented
contains paths from houses seen during train-
ing, mixing more of it with R2R train helps
the agent overfit on validation seen. Indeed,
the model’s performance increases nearly mono-
tonically on NE and SR as higher fraction of
Fried-Augmented is mixed in the training data.
The agent performs best when it is trained on all of

Fried-Augmented.
Initializing with Discriminator. To further

demonstrate the usefulness of the discriminator
strategy, we initialize a navigation agent’s instruc-
tion and visual encoder using the discriminator’s in-
struction and visual encoder respectively. We note
here that since the navigation agent encodes the
visual input sequence using LSTM, we re-train the
best performing discriminator model using LSTM
(instead of bidirectional-LSTM) visual encoder so
that the learned representations can be transferred
correctly without any loss of information. We ob-
served a minor degradation in the performance of
the modified discriminator. The navigation agent
so initialized is then trained as usual using student

2For a fair comparison, the benchmark is the Speaker-
Follower model from Fried et al. (2018) which uses panoramic
action space and augmented data, but no beam search (prag-
matic inference).

3Our results of the agents trained on the full R2R train and
100% Fried-Augmented match with Speaker-Follower
benchmark on validation unseen but are lower on validation
seen. This is likely due to differences in model capacity,
hyper-parameter choices and image features used in our im-
plementation. The image features used in our implementation
are obtained through a convolutional network trained with
a semantic ranking objective on a proprietary image dataset
with over 100+ million images (Wang et al., 2014).
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Figure 3: Alignment matrix (Eq.5) for discriminator model trained (a) with curriculum learning on the dataset
containing PS, PR, RW negatives (b) without curriculum learning on the dataset with PS negatives only. Note that
darker means higher alignment.

forcing. The agent benefits from the multi-modal
alignment learned by the discriminator and outper-
forms the benchmark on the Validation Unseen set,
as shown in Table 5. This is the condition that
best informs how well the agent generalizes. Nev-
ertheless, performance drops on Validation Seen,
so further experimentation will hopefully lead to
improvements on both.

4.3 Visualizing Discriminator Alignment

We plot the alignment matrix A (Eq.5) from the
discriminator for a given instruction-path pair to try
to better understand how well the model learns to
align the two modalities as hypothesized. As a com-
parison point, we also plot the alignment matrix for
a model trained on the dataset with PS negatives
only. As discussed before, it is expected that the
discriminator trained on the dataset containing only
PS negatives tends to exploit easy-to-find patterns
in negatives and make predictions without carefully
attending to full instruction-path sequence.

Fig.3 shows the difference between multi-modal

alignment for the two models. While there is no
clear alignment between the two sequences for
the model trained with PS negatives only (except
maybe towards the end of sequences, as expected),
there is a visible diagonal pattern in the alignment
for the best discriminator. In fact, there is appre-
ciable alignment at the correct positions in the two
sequences, e.g., the phrase exit the door aligns with
the image(s) in the path containing the object door,
and similarly for the phrase enter the bedroom.

5 Related Work

The release of Room-to-Room (R2R for short)
dataset (Anderson et al., 2018b) has sparked re-
search interest in multi-modal understanding. The
dataset presents a unique challenge as it not only
substitutes virtual environments (e.g., MacMahon
et al. (2006)) with photo-realistic environments
but also describes the paths in the environment
using human-annotated instructions (as opposed
to formulaic instructions provided by mapping ap-
plications e.g., Cirik et al. (2018)). A number of
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methods (Anderson et al., 2018b; Fried et al., 2018;
Wang et al., 2018a; Ma et al., 2019a; Wang et al.,
2018b; Ma et al., 2019b) have been proposed re-
cently to solve the navigation task described in R2R
dataset. All these methods build models for agents
that learn to navigate in R2R environment and are
trained on the entire R2R dataset as well as the
augmented dataset introduced by Fried et al. (2018)
which is generated by a speaker model trained on
human-annotated instructions.

Our work is inspired by the idea of Generative
Adversarial Nets (Goodfellow et al., 2014), which
use a discriminative model to discriminate real and
fake distribution from generative model. We pro-
pose models that learn to discriminate between
high-quality instruction-path pairs from lower qual-
ity pairs. This discriminative task becomes im-
portant for VLN challenges as the data is usually
limited in such domains and data augmentation
is a common trick used to overcome the short-
age of available human-annotated instruction-path
pairs. While all experiments in this work focus on
R2R dataset, same ideas can easily be extended to
improve navigation agents for other datasets like
Touchdown (Chen et al., 2018).

6 Conclusion

We show that the discriminator model is capable
of differentiating high-quality examples from low-
quality ones in machine-generated augmentation
to VLN datasets. The discriminator when trained
with alignment based similarity score on cheaply
mined negative paths learns to align similar con-
cepts in the two modalities. The navigation agent
when initialized with the discriminator generalizes
to instruction-path pairs from previously unseen
environments and outperforms the benchmark.

For future work, the discriminator can be used in
conjunction with generative models producing ex-
tensions to human-labeled data, where it can filter
out low-quality augmented data during generation
as well as act as a reward signal to incentivize gen-
erative model to generate higher quality data. The
multi-modal alignment learned by the discrimina-
tor can be used to segment the instruction-path pair
into several shorter instruction-path pairs which
can then be used for creating a curriculum of easy
to hard tasks for the navigation agent to learn on. It
is worth noting that the trained discriminator model
is general enough to be useful for any downstream
task which can benefit from such multi-modal align-

ment measure and not limited to VLN task that we
use in this work.
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Abstract
It is important, for human-robot interaction, to
endow the robot with the knowledge neces-
sary to understand human needs and to be able
to respond to them. We present a formalized
and unified representation for indoor environ-
ments using an ontology devised for a route
description task in which a robot must provide
explanations to a person. We show that this
representation can be used to choose a route
to explain to a human as well as to verbalize
it using a route perspective. Based on ontol-
ogy, this representation has a strong possibil-
ity of evolution to adapt to many other applica-
tions. With it, we get the semantics of the envi-
ronment elements while keeping a description
of the known connectivity of the environment.
This representation and the illustration algo-
rithms, to find and verbalize a route, have been
tested in two environments of different scales.

1 Introduction

Asking one’s way, when one does not know ex-
actly where one’s destination is, is something we
all did. Just as we have all responded to such a
request from a lost person. This is the heart of the
road description task. This task, which seems so
natural to us in a human-human context, requires
in fact a set of knowledge (e.g. on the place, on the
possible points of reference in this particular envi-
ronment) and ”good practices” (e.g. to give a path
easy to follow if possible) that need to be modeled
if we want to implement it on a robot. This paper
presents a robotics application of our system but
it would be possible to use it in other applications
such as virtual agent.

This route description task is an interesting ap-
plication case through the variety of the needed in-
formation (e.g. type of elements, place topology,
names of the elements in natural language). It has
been well studied in the field of human-robot inter-
action. Robot guides have already been deployed

in shopping centers (Okuno et al., 2009), museums
(Burgard et al., 1998; Clodic et al., 2006; Sieg-
wart et al., 2003) or airports (Triebel et al., 2016).
However, using metrical (Thrun, 2008), topolog-
ical (Morales Saiki et al., 2011), semantic repre-
sentations, or trying to mix them together (Satake
et al., 2015b) (Chrastil and Warren, 2014) (Zen-
der et al., 2008), it is difficult to have a uniform
way to represent the environment. In addition, it
is difficult to have a representation which allows to
calculate a route and at the same time to express it
to the human with whom the robot interacts, be-
cause this requires data of different types. Our
aim is to propose a single and standardized rep-
resentation of an environment which can be used
to choose the appropriate route to be explained to
the human and at the same time to verbalize it us-
ing a route perspective. The purpose of this pa-
per is not to be applied to a guiding task in which
a mobile robot accompanies the human to his fi-
nal destination but to explain to a human how to
reach it. Consequently, we will not talk here about
a metrical representation like the one that can be
used to navigate in the environment (Thrun, 2008)
or to negotiate it use in (Skarzynski et al., 2017).

Route perspective means essentially to navigate
mentally in order to verbalize the path to follow
but also to facilitate understanding and memoriz-
ing instructions. The route perspective opposes
the survey perspective which is a top view with
landmarks and paths printed on a map. Morales
et al. (Morales et al., 2015) indicate that nam-
ing parts of a geometric map does not leave the
opportunity to compute such perspective. As in
(Satake et al., 2015a), we have chosen to develop
our representation with an ontology as it allows to
reason about the meaning of words and thus im-
prove the understanding of human demands. In
addition, we propose a way to merge the topologi-
cal representation into the semantic representation
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(the ontology) to get the meaning of the environ-
ment elements while keeping a description of the
connectivity of the elements of the environment.
We propose to name it semantic spatial represen-
tation (SSR). With this, we are able to develop
the two features presented in (Mallot and Basten,
2009) for the route description task, which consist
of selecting a sequence of places leading to the ob-
jective and managing the declarative knowledge to
choose the right action to explain at each point of
the sequence. Based on the principles of topologi-
cal description, although represented semantically,
we are able to compute multiple routes and new
detours for the same objective in contrast with a
route knowledge, which maps a predefined route
to a given request. Thanks to this capacity and to
the semantic knowledge of the environments avail-
able in the representation, it is also possible to pro-
vide the most relevant route to a user according to
his preferences and capabilities. A basic exam-
ple would be that we will never recommend a path
with stairs to a mobility impaired person. More
than the extension of the spatial semantic hierar-
chy (SSH) (Kuipers, 2000) allowing the represen-
tation of the environment, we present here an al-
gorithm to choose the routes and another one to
generate an explanation sentence. Both algorithms
are based solely on the knowledge provided by the
SSR.

Regarding the representation of the environ-
ment generally used in order to find an itinerary,
we have first to analyse GNSS road navigation
systems. In (Liu, 1997) or (Cao and Krumm,
2009), we find the same principle of a topologi-
cal network representing the roads with semantic
information attached to each of them. This type
of representation seems logical regarding the per-
formance required for such systems operating in
very large areas. However, GNSS road navigation
systems must respond only to this unique task of
finding a path when a robot is expected to be able
to answer to various tasks. This is why we have
developed and implemented a representation that
can be used more widely while still allowing the
search for routes.

This paper focuses on the presentation of the
SSR and on its usability for the route description
task. For now, all the ontologies used to test the
SSR have been made by hand. However, many
recent research work leads to automatically gener-
ate a topological representation of an environment

from geometric measurements (e.g. Region Adja-
cency Graphs (Kuipers et al., 2004), Cell and Por-
tal Graphs (Lefebvre and Hornus, 2003) or hierar-
chical models (Lorenz et al., 2006), or from natu-
ral language (Hemachandra et al., 2014)). We have
not done it yet, but our system could benefit from
this work to generate a representation of an envi-
ronment using SSR, which would solve the com-
plexity of creating such a representation by hand.

In order to present our work, we will follow
the three cognitive operations needed to gener-
ate a spatial discourse (Denis, 1997): (section 2)
an activation of an internal representation of the
environment; (sections 3 and 4) the planning of
a route in the mental representation made previ-
ously; (section 5) the formulation of the procedure
that the user must perform to achieve the objec-
tive. The SSR and the algorithms demonstrating
its usability have been tested in two environments
of different scales: an emulated mall in our lab-
oratory and a real mall. Results are presented in
section 6 for the two environments.

2 Environment representation: SSR

In cognitive psychology, Semantic memory refers
to the encyclopedic knowledge of words associ-
ated to their meanings. Some authors have pro-
posed a model of this semantic memory as be-
ing a semantic network in which each concept is
linked to others by properties and have designed a
computer-implemented model (Collins and Quil-
lian, 1969). This initial model has since been for-
malized as an ontology (Berners-Lee et al., 2001)
and is already widely used in the semantic web.

This model is already used in robotics to ob-
tain a detailed representation of the environment
in which robots operate. For example, (Satake
et al., 2015a) and (Beetz et al., 2018) use an on-
tology to represent knowledge about the types of
items such as the types of shops (restaurant, fash-
ion store, for example) or the properties of items
such as the stores where they are sold.

(Kuipers, 2000) introduced the ’topological
level’ with SSH (spatial semantic hierarchy)
which defines a place, a path and a re-
gion and defined several relationships between
them. Ontologies are constructed using triplets
where two concepts are linked by a property
(e.g property(concept1, concept2)), however the
Kuipers SSH does not allow such representa-
tion due to the use of some quadruplets (e.g
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along(view, path, dir)) in addition to triplets. To
overcome this limitation, we propose a formalisa-
tion, that we call Semantic Spatial Representation
(SSR) to represent an environment with ontologies
(i.e. using triplets).

In this section we present the minimal ontology
that constitutes the SSR but it can be extended to
represent the knowledge of the types and the prop-
erties of the elements while preserving the first use
of this model.

2.1 Classes

Figure 1: Classes for a representation of the topology
of an indoor environment in a semantic description.

Region: It represents a two-dimensional area
that is a subset of the overall environment. A de-
scription of the environment must include at least
one region representing the entire environment.
Regions are used to reduce the complexity of the
routes computation, so we recommend to use sev-
eral region especially for large scale areas. A ba-
sic use of the regions is for multi-storey buildings
where each floor should be more naturally consid-
ered as a region. Regions can be described as be-
ing nested.
Path: It is a one dimensional element along

which it is possible to move. A path must have
a direction.

• Corridor: It represents a kind of path with
a beginning and an end, for which beginning
and end are distinct. The arbitrary direction
chosen for a corridor defines the position of
its beginning and end. This defines also the
right and left of the corridor.

• Openspace: It is a kind of path which does
not have any begin or end. It can be viewed
as a ”potato-shaped” describing the outline of
an open space. It materializes the possibil-
ity of turning the gaze around the room and
the fact of not having to go through a defined
path to reach one of its points.

Place: It represents a point of zero dimension
that can represent a physical or symbolic element.
It can be extended to represent stores and land-
marks in the example of a shopping center.

• Path intersection: It represents the con-
nection between only two paths and thus a
waypoint to go from one path to another. In
the case of a crossing between three paths,
three intersections would therefore be de-
scribed.

• Interface: It represents the connection be-
tween only two regions and thus a waypoint
to move from one region to another. It can be
physical, like a door or a staircase, or sym-
bolic like a passage.

The distinction between paths and places is re-
lated to the differences between the types of rooms
made by (Andresen et al., 2016) where some are
used to circulate (corridors) while others have an
explicit use to the exclusion of traffic (place).

2.2 Properties
Properties are used to express topological rela-
tionships such as connections between paths and
places or the order of places along a path. All
the properties presented here can be extended with
their inverse (e.g. isIn and hasIn) for a more ex-
pressive model and thus easier handling.

Figure 2: Properties for a representation of the topol-
ogy of an indoor environment in a semantic description.

isIn(path/place, region): path or place is in
region.
isAlong(place, path): place is along path.

• isAlong(place, openspace): For open
spaces, since there is no beginning or end,
places are only defined as being along an
open space.

• isAlong(place, corridor): For
corridors, the specific proper-
ties isAtBeginEdgeOfPath,
isAtEndEdgeOfPath,
isAtLeftOfPath, isAtRightOfPath
must be used. The choice of these properties
is made with the arbitrary direction defined
by positioning itself at its beginning and by
traversing it towards its end.
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isBeside(place1, place2): place1 is beside
place2. Specified properties isAtLeftOf and
isAtRightOf must be used to express the order
of places. The choice of these properties is made
by positioning themselves at the place and facing
the path along the place.
isInfrontOf(place1, place2): place1 is in

front of place2. This property does not need to
be applied to all the places described. The more it
is used, the more the verbalization of the itinerary
will be easy. It is important to always define a
place in front of an intersection to be able to de-
termine if the guided human will have to go left
or right in some cases. If there is no described
place in front of an intersection, we can use a
emptyP lace class that would inherit the place
class.

The following axioms reduce the complexity of
the description of the environment. The logical
relations will therefore be solved by the ontology
reasoner.

• isAtLeftOf(place1, place2) ↔
isAtRightOf(place2, place1)

• isInfrontOf(place1, place2) ↔
isInfrontOf(place2, place1)

• isAlong(place, path) ∧
isIn(path, region)→ isIn(place, region)

3 Computing routes

At this point, we have built an internal represen-
tation of the environment using the Semantic Spa-
tial Representation (SSR). We illustrate how this
representation can be used to compute the pos-
sible routes from one place to another. Even if
the length of a route is taken into account in the
choice, the complexity of the description is an im-
portant criterion (Morales et al., 2015). When
someone asks his way, the guide will not necessar-
ily try to give him the shortest way. His main goal
is to make sure the person reach her goal. In the
example of Figure 3, even if the red route is little
longer than blue route, he will certainly propose it
instead. Every intersection or change of direction
is a risk for the guided person to make a mistake
and thus get lost.

In this section, the goal is to provide multiple
routes so that we can allow to choose the best route
based on the person preferences. The possibility

Figure 3: Comparison of two routes in terms of com-
plexity and length. The blue route (. . .) is the shortest
but is complex to explain while the red (- - -) is simpler
although a bit longer.

of making this choice using the SSR will be pre-
sented in section 4. In order to reduce the com-
plexity of the search, especially for large scale en-
vironments, we propose to work at two levels:

• First : Region level: considers only areas and
passages such as doors, stairs or elevators.

• Then : Place level: provides complete routes
description including paths and intersections
within regions.

3.1 Region level

In large-scale environments such as multi-storey
buildings, routes computation can lead to combi-
natorial explosion. Exploration at the region level
decreases this effect by conducting a first high-
level exploration. In Figure 4 we can see that the
exploration of paths of regions 4 and 5 is useless
because these regions do not lead to the region
containing the goal. This exploration uses only the
regions and interface elements described in sec-
tion 2.

Figure 4: Representation of an environment at the re-
gional level.

Each interface is connected to regions thanks to
the isIn property. With this property, a route find-
ing algorithm, based on the breadth-first search,
makes possible to find the shortest routes connect-
ing two regions by using the semantic knowledge.
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By including the knowledge base exploration di-
rectly inside the search algorithms, it it not neces-
sary to extract a topological graph with nodes and
arcs. It is carried out within the search algorithm
without preprocessing.

This algorithm applied to the example presented
in Figure 4 gives the tree of Figure 5. The final
routes found by the algorithm are :

• region 1 − interface 1 − region 2 −
interface 2− region 3

• region 1 − interface 1 − region 2 −
interface 3− region 3

Region 5 has never been explored and region 4
is not present in the final result. However, both so-
lutions with interfaces 2 and 3 have been taken into
account. This type of results makes possible to
quickly eliminate unnecessary solutions and thus
reduces the complexity for a more detailed search
in a second time. This technique is similar to what
is done for GNSS road navigation systems where
the main roads are studied upstream of secondary
roads with pyramidal (or hierarchical) route struc-
ture (Bovy and Stern, 1990).

Figure 5: Exploration graph resulting from region-
level search (sec.3.1) and the aggregation of start and
end places (sec.3.2) .

3.2 Place level

Place-level search is based on the Region-level
search results with the aggregation of start and
end places, so the format changes from region −
place−region−...−region to a place−region−
place− ...− place.

Place-level search works from one place to an-
other through a single region. We have therefore
divided the previous solutions to meet this con-
straint. This step aims to reduce complexity again.

Indeed, if several routes pass through the same re-
gion with the same places of departure and arrival,
the inner route can be calculated once and for all.
In our example, the division gives five sub-routes
instead of six:

• start− region 1− interface 1

• interface 1− region 2− interface 2

• interface 2− region 3− end
• interface 1− region 2− interface 3

• interface 3− region 3− end
The place-level algorithm aims to replace each

sub-route region with a succession of paths and
intersections. It works on the same principle as
the previous search algorithm using the isAlong
property instead of the isIn property. To im-
prove performance, we use moving forward for
the breadth-first search. It stops the exploration
of the routes passing through a path already used
in previous route calculation steps. In addition, it
prevents loops.

Figure 6: Representation of corridors and intersections
in region 1 from the example 4

Taking the example of Figure 4 and focusing
on region 1, we can solve the sub-route start −
region 1 − interface 1. Region 1 is repre-
sented with its corridors and intersections in Fig-
ure 6. By applying the algorithm at the place
level, we have the solution start − corridor 1 −
intersection 1− corridor 5− interface 1. By
doing the same for each sub-route, we can then re-
compose the global routes and give the set detailed
of routes from start to end.

4 Choosing the best route

Since the SRR is based on an ontology, we can
have the meaning of each element of the environ-
ment and we can attach additional information to
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them as features. Now that we have found sev-
eral routes to the same goal, we want to select one
based on different criteria. This selection of routes
is independent of the previous section and a vari-
ety of cost functions can be implemented based on
specific application needs. In the following sub-
section, we present an example of cost function
using SSR and designed for robot guide to be de-
ployed by the European project MuMMER (Foster
et al., 2016).

4.1 Example of cost function
As mentioned in (Morales et al., 2015), the com-
plexity of the route to explain to a human, which is
the number of steps in a route, is the most impor-
tant criterion in choosing the route. A cost func-
tion taking into account only the complexity of a
route R in the environmental context M would be
f(R,M) with N being the number of steps of R.

f(R,M) = N (1)

However, to find a good itinerary, it is impor-
tant to take into account the preferences and capa-
bilities of the guided person. An easy example is
that we will never indicate a route with stairs to
a person with reduced mobility. Using an ontol-
ogy and therefore the possibility of describing the
properties of elements of the environment, we add
the property hasCostwhich associates an element
with a criterion. Criteria rated σi are: saliency, ac-
cessibility, comfort, security, ease of explanation
and speed. Other criteria could easily be added
through the use of ontology according to the spe-
cific needs of the environment. All these criteria
and their antonyms can be applied to each element
n. The preferences of a person P are costs related
to the criterion σi noted ϕσi . This represents the
sensitivity of P to the σi criterion. The cost func-
tion becomes f(P,R,M) to take into account the
preference of person P .

f(P,R,M) = N ×
N∏

n=0

[
∏

i

(σin × ϕσi)] (2)

Because we focused only on the complexity of
the route explanation and the characteristics of the
elements of the environment, in the presented cost
function 2, the distances are not taken into ac-
count. This information could be added by work-
ing with a metric representation. Another possi-
bility that can be explored is to add some of the

metric knowledge, such as the length of the cor-
ridor, into the semantic representation of the en-
vironment to preserve the working principle of a
unique representation of the environment in this
route description task.

5 Explanation generation

This section describes the third cognitive opera-
tion of (Denis, 1997) to generate a spatial dis-
course: the formulation of the procedure. As
(Kopp et al., 2007), we define a route description
as a set of route segments, each connecting two
important points and explained in a chronologi-
cal way. As (Tversky and Lee, 1999), we add
to each route segment a triplet: orientation, ac-
tion, and landmark to enable its explanation. The
division into segments corresponds to all paths,
with their entry and exit points, provided by our
planning part. However, the semantic representa-
tion (SSR) used to plan the route is not directly
usable to generate the formulation of the proce-
dure. With the current representation, the orien-
tation and action are too complex to extract (given
that they depend on the direction by which the per-
son arrives). It is however possible to interpret
the semantic representation in relation to the esti-
mated future position of the human. This interpre-
tation is what we call the internal representation.
This internal representation is composed of several
sub-representations each representing a path of the
global environment. Each segment of the route is
represented independently of the others. For open
space, we generate an ordered array of all loca-
tions along it. For the corridors, we generate four
ordered arrays to represent the left, the right,
the beginedge and the endedge of the corridors.
These information can be found in the ontology
with the properties isAlong, isAtLeftOfPath,
and so on. To order the places in each array, we use
the properties isAtLeftOf and isAtRightOf
also present in the ontology. This internal repre-
sentation can be displayed and gives Figure 7 for
the corridor 1 of region 1 from the example 4. The
isInfrontOf property is used to generate better
placements.

Once we have an internal representation of
each segment, we can determine the procedure
that the user must perform. (Kopp et al., 2007)
mention that an action, a reorientation, a pro-
gression or a positioning must be carried out
at the end of each segment. The end of one
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Figure 7: Internal representation of a the corridor 1
of region 1 from the example 6, extracted from the se-
mantic representation.

segment being the beginning of the next, we
choose to determine the actions at the beginning
of each segment (which corresponds more to our
internal representation). It allows to work on
one path at a time. This rule is formalized as
”choosing action Ai at place Pj will lead
to place Pk” by (Mallot and Basten, 2009). This
determination of actions can be made with our in-
ternal representation, as shown in Figure 8 where
Pj is the gray place and Pk can be one of the
other. The red information at the top gives the
”turn right” action with Pk being Place 9 or
Place 10, ”go in front of you” with Pk be-
ing Place 3 and ”turn left” for the other places.
The blue information on the sides gives the ori-
entation of the sub-goal place Pk taking into ac-
count the previous reorientation. With this ori-
entation information we can give an explanation
of the form ”take the corridor at your right”
where the action is determined by the type of
Pk and the side given by the orientation informa-
tion. On the example of corridor 1, to go from
start to intersection 1, the full sentence will be
turn left then take the corridor at your right.
Moreover, by taking into account the orientation
of the guided person after an action we allow to
provide directions in the route perspective and so
the guided person to perform an imaginary tour of
the environment (Kopp et al., 2007).

By working segment by segment in the order
given by the route search algorithm, we necessar-
ily generate the explanations with a temporospa-
tial ordering. This criterion is an important point
in Allen’s best practice in communicating route
knowledge (Allen, 2000).

The latest critical information presented by
(Tversky and Lee, 1999) is landmark and we
have it in our representation. (Tversky and Lee,
1998) noted that more than 90% of the guiding
spots on maps and verbal directions contained ad-
ditional information, which corresponds also to

Figure 8: Resolution of directions and directions with
an entry in the hallway by the gray square ”start”.

the results of (Denis, 1997) and the Allen’s best
practice (Allen, 2000). With our internal rep-
resentation, we provide all the landmarks (cor-
responding to places because being defined as
such) around which action must be taken and
we can therefore refer to it to help the guided
person. On the previous example, the sentence
may be confusing because there are two cor-
ridors on the left. We are able to refer to
place 8 which will be on the left or place 6
which will be on the right by projecting the fu-
ture position of the human at intersection 1.
With this new information, the situation can be
disambiguated. The full sentence will became
turn left then take the corridor at your right
straight after place 6.

The verbalization software based on the SSR
and the principles described above was created
based on a human-human study (Belhassein et al.,
2017). Among the set of route description sen-
tences, we have identified four types of explana-
tory components: those corresponding to the be-
ginning of route description, to the end of a route,
of progress in the route and the particular case of
explanations with one step. These four types are
only dependent of the position of the segment to be
included in the global explanation procedure. For
each type, we have identified various sub-types de-
pending on the actions to be performed or the lo-
cation of actions. For example, for the types of
end-of-procedure sentences, we distinguish those
where the end goal will be on the side, in front or at
the current future position. In total, we have iden-
tified 15 sub-types. Each component of the ex-
planation sentence has been classified into one of
these sub-types. We want to be able to propose dif-
ferent ways to express the same things so the sys-
tem does not have only one way to express the very
same information. To represent similar sentences
and to be able to generate sentences with varia-
tions, we have grouped sentences with close lex-
ical structures. Each sentence is then represented
with its variations as follows: [”you will ”], [”see
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”, ”find ”],[”it ”, ”/X ”], [”on ”], [”your ”, ”the ”],
[”/D ”],[”side ”, ”when you walk ”, ””]. When us-
ing a sentence, the variations are randomly chosen
with a uniform distribution. We can notice in the
previous example the use of variables such that X
which corresponds to the name of an element of
the environment and D to a direction. We also
used the Y variables for a reference points and
DY for a reference point directions. If a sentence
requires a variable that we have not been able to
extract from our internal representation, then an-
other sentence with the same meaning or another
variation of the sentence that does not require the
variable is chosen.

6 Applications

The SSR was first applied in an emulated mall to
develop the algorithms 1, but we also tested it in
a real mall to study its applicability in a larger en-
vironment. Table 1 indicates the number of ele-
ments described in both environments. The num-
ber of places does not correspond only to the sum
of the shops, interfaces and intersections because
much more elements have been described, such as
ATMs, restrooms or carts location.

emulated real
place 83 249
shop 19 135

interface 11 18
path intersection 10 52

path 11 42
region 5 4

Table 1: Number of elements described in the emu-
lated and real environment.

Table 2 presents the CPU time needed for the
routes computation and cost function algorithms
for several cases, applied to the real environment
representation. Even though specialized algo-
rithms that work with a specific representation of
the environment may be faster than ours, we can
see here that they are acceptable in the context
of a human robot interaction and especially in a
route description task to both compute the path
and verbalize it. Indeed, by providing semantic,
topological and spatial knowledge within a sin-
gle representation it can be used by several algo-
rithms usually requiring different representations.

1https://cloud.laas.fr/index.php/s/Mvfty2xN9qymR2T

We can also see the use of the regions to reduce the
computation times with the two cases where three
routes were found, one of the cases crossing one
region and the other two.

Number Number Number Path
of of of finding

routes regions paths execution
found crossed used time (ms)

1 1 1 < 10

1 1 3 [20, 25]

3 1 9 [50, 55]

3 2 12 [30, 35]

16 2 75 [160, 170]

20 2 129 [180, 190]

Table 2: CPU time (min-max interval) time for com-
puting routes in a big shopping mall description. Each
row refers to a single request that can provide multiple
routes to the goal.

To show the usability of the internal representa-
tion extracted from the SSR in the verbalization of
the route, we have developed a software 2 that is
able to verbalize the route found by our semantic
planner. In examples of the sentences synthesized
by this software (Table 3), we can see that for the
same goal, it is possible to use different points of
reference and to position them with respect to an-
other element in the environment. All directions
shown in the A and B examples take into account
the future position of the guided human and pro-
vide indications from the perspective of the route.

Goal Sentence
Y You see there Y.
Y It’s on the right side of Z.
Y It’s on the left side of X.
A Go through the door. Take the stairs at

your left and turn left. Go almost at the
very end of the corridor and, turn left at
the door. After that you will see A on
your right.

B Go straight down this aisle. Then, walk
to the very end of the corridor and
it’s on the left there.

Table 3: Sentences generated by a software using the
internal representation extracted from the SSR.

The applications presented previously have not
2https://github.com/LAAS-HRI/route verbalization
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only been tested as such, but have been integrated
into a global robotic architecture and deploy in a
mall center 3 as shown in figure 9. This integra-
tion shows that the results obtained by algorithms
working with a single semantic representation of
an environment are usable and are relevant in a
more global task.

Figure 9: Robot describing a route to a human in a
mall using the SSR and the associated algorithms. The
sentence in green is the explanation of the route verbal-
ized by the robot from the SSR representation: ”just go
down the corridor and then go almost at the very end of
this corridor and it’s on the left when you walk”.

7 Conclusions

We have proposed an environment model that suit-
able to find routes, to choose one and ro be able to
verbalize it using a single representation. The key
contribution of our work is the semantic spatial
representation (SSR), a formalization of how to
describe an environment such as a large and com-
plex public space mall using an ontology. We have
also presented results about the use of our system
by a robot that provides route guiding to humans
in a shopping mall.

To benefit from our system, it could be interest-
ing to integrate this representation and the corre-
sponding algorithms to a dialog system (Papaioan-
nou et al., 2018) in order to exploit more deeply
its capacities. An interesting usage of this sys-
tem already possible but not yet exploited because
of the need of a dialog system, would be to use
the guided person previous knowledge to choose
a route and/or to generate an explanation (”If you
know the place 2, from this one ...”). In the same
vein, it would be possible to link it with a system
such as Shared Visual Perspective Planner (Wald-
hart et al., 2018) to begin explaining the route from
a visible point. This would reduce the length of the

3https://cloud.laas.fr/index.php/s/CJcPWmMU7TZGQJB

explanations and thus ensure a better understand-
ing of the itinerary for the guided person. An-
other improvement would be to use an ontology
to ground the interaction (Lemaignan et al., 2012)
as part of the route description task.

At this stage, only the topological representa-
tion has been integrated into the semantic repre-
sentation. This is a good first step in working with
a single representation that is easier to evolve and
ensure consistency of knowledge. Future work
would involve the integration of metric informa-
tion, and thus geometric representation.
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Abstract

This paper introduces SpatialNet, a novel re-
source which links linguistic expressions to
actual spatial configurations. SpatialNet is
based on FrameNet (Ruppenhofer et al., 2016)
and VigNet (Coyne et al., 2011), two resources
which use frame semantics to encode lexical
meaning. SpatialNet uses a deep semantic
representation of spatial relations to provide
a formal description of how a language ex-
presses spatial information. This formal rep-
resentation of the lexical semantics of spatial
language also provides a consistent way to
represent spatial meaning across multiple lan-
guages. In this paper, we describe the structure
of SpatialNet, with examples from English and
German. We also show how SpatialNet can be
combined with other existing NLP tools to cre-
ate a text-to-scene system for a language.

1 Introduction

Spatial language understanding is a research area
in NLP with applications from robotics and nav-
igation to paraphrase and image caption genera-
tion. However, most work in this area has been
focused specifically on English. While there is a
rich literature on the realization of spatial relations
in different languages, there is no comprehensive
resource which can represent spatial meaning in
a formal manner for multiple languages. The de-
velopment of formal models for the expression of
spatial relations in different languages is a largely
uninvestigated but relevant problem.

By way of motivation, consider the following
translation examples. We use an NP in which we
have a PP modifier, and we complete the sentence
with a copula and an adjective to obtain a full sen-
tence. The prepositions are marked in boldface.
The English sentence is a word-for-word gloss of
the German sentence except for the preposition.

In our first example, English on is correctly
translated to German an:1

(1) a. The painting on the wall is abstract.
b. Correct translation: Das Gemälde an der

Mauer/Wand ist abstrakt.
c. Google Translate/Bing Translator (cor-

rect): Das Gemälde an der Wand ist ab-
strakt.

However, the correct translation changes if we are
relating a cat to a wall:

(2) a. The cat on the wall is grey.
b. Correct translation: Die Katze auf der

Mauer ist grau.
c. Google Translate/Bing Translator (incor-

rect): Die Katze an der Wand ist grau.

The problem here is that the English preposition
on describes two different spatial configurations:
‘affixed to’, in the case of the painting, and ‘on top
of’, in the case of the cat.2

Similar problems appear when we translate
from German to English. The painting again trans-
lates correctly:

(3) a. Das Gemälde an der Mauer ist abstrakt.
b. Correct translation: The painting on the

wall is abstract.
c. Google Translate/Bing Translator (cor-

rect): The painting on the wall is ab-
stract.

1Note that English wall should be translated to Wand if
it is a wall which has a ceiling attached to it, and Mauer if
it is freestanding and does not help create an enclosed three-
dimensional space. We ignore this particular issue in this dis-
cussion.

2We set aside the interpretation in which the cat is affixed
to the wall similarly to a clock, which is an extraordinary in-
terpretation and would require additional description in either
language.
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But when we replace the painting with the house,
we no longer obtain the correct translation:

(4) a. Das Haus an der Mauer ist groß.
b. Correct translation: The house at the

wall is large/big.
c. Google Translate (incorrect): The house

on the wall is large.
Bing Translator (incorrect): The house
on the wall is big.

The problem is again that the German preposition
an corresponds to two different spatial configura-
tions, ‘affixed to’ (painting) and ‘at/near’ (house).

We address the issue of modeling cross-
linguistic differences in the expression of spatial
language by developing a deep semantic represen-
tation of spatial relations called SpatialNet. Spa-
tialNet is based on two existing resources: Frame-
Net (Baker et al., 1998; Ruppenhofer et al., 2016),
a lexical database linking semantic frames to man-
ually annotated text, and VigNet (Coyne et al.,
2011), a resource extending FrameNet by ground-
ing abstract lexical semantics with concrete graph-
ical relations. VigNet was developed as part of
the WordsEye text-to-scene system (Coyne and
Sproat, 2001). SpatialNet builds on both these re-
sources to provide a formal description of the lex-
ical semantics of spatial relations by linking lin-
guistic expressions both to semantic frames and to
actual spatial configurations. Because of the link
to VigNet and WordsEye, SpatialNet can also be
used to create a text-to-scene system for a lan-
guage. This text-to-scene system can be used to
verify the accuracy of a SpatialNet resource with
native speakers of a language.

SpatialNet is divided into two modules: Spatio-
graphic primitives (SGPs) represent possible
graphical (spatial) relations. The ontology repre-
sents physical objects and their classification into
semantic categories. Both are based on physical
properties of the world and do not depend on a
particular language. Spatial frames are language-
specific (though, like the frames of FrameNet, may
be shared among many languages) and represent
the lexical meanings a language expresses. Spa-
tial vignettes group together lexical items, spatial
frames, and SGPs with spatial and graphical con-
straints from the ontology, grounding the meaning
in a language-independent manner.

In Section 2, we discuss related work. In Sec-
tion 3, we provide background information on

FrameNet and VigNet. In Section 4, we describe
the SpatialNet structure, with English and German
examples. In Section 5, we show how the Spatial-
Net for a language can be used in conjunction with
the WordsEye text-to-scene system to generate 3D
scenes from input text in that language. We con-
clude in Section 6 and discuss future work.

2 Related Work

Spatial relations have been studied in linguistics
for many years. One study for English by Her-
skovits (1986) catalogs fine-grained distinctions in
the interpretation of prepositions. For example,
she distinguishes among the uses of on to mean
‘on the top of a horizontal surface’ (the cup is on
the table) or ‘affixed to a vertical surface’ (the pic-
ture is on the wall). Likewise, Feist and Gentner
(1998) describe user perception experiments that
show that the shape, function, and animacy of the
figure and ground objects are factors in the percep-
tion of spatial relations as in or on.

Other work looks at how the expression of spa-
tial relations varies across languages. Bowerman
and Choi (2003) describe how Korean linguisti-
cally differentiates between putting something in
a loose-fitting container (nehta, e.g. fruit in a bag)
vs. in a tight fitting wrapper (kkita, e.g. hand in
glove). Other languages (English included) do not
make this distinction. Levinson (2003) and col-
leagues have also catalogued profound differences
in the ways different languages encode relations
between objects in the world. Our work differs
from linguistic efforts such as these in that we are
building a formal representation of how a language
expresses spatial information, which can be ap-
plied to a variety of NLP problems and applica-
tions. Since the representation is human- as well
as machine-readable, it can also be used in more
traditional linguistics.

Another area of research focuses on computa-
tional processing of spatial language. Pustejovsky
(2017) has developed an annotation scheme for la-
beling text with spatial roles. This type of anno-
tation can be used to train classifiers to automat-
ically perform the task, as demonstrated by the
SpaceEval task (Pustejovsky et al., 2015). Al-
though this work provides examples of how a lan-
guage expresses spatial relations, annotation of
spatial roles does not provide a formal description
of the link between surface realization and under-
lying semantics. Our work provides a formal de-
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scription and also a semantic grounding that tells
us the actual spatial configuration denoted by a set
of spatial roles. Also, our work extends to lan-
guages other than English.

Petruck and Ellsworth (2018) advocate using
FrameNet (Ruppenhofer et al., 2016) to represent
spatial language. FrameNet uses frame seman-
tics to encode lexical meaning. VigNet (Coyne
et al., 2011) is an extension of FrameNet used
in the WordsEye text-to-scene system (Coyne and
Sproat, 2001). SpatialNet builds on both Frame-
Net and VigNet; we will describe FrameNet and
VigNet in more detail in the next section.

3 Background on FrameNet and VigNet

FrameNet encodes lexical meaning using a frame-
semantic conceptual framework. In FrameNet,
lexical items are grouped together in frames ac-
cording to shared semantic structure. Every frame
contains a number of frame elements (seman-
tic roles) which are participants in this structure.
Words that evoke a frame are called lexical units.
A lexical unit is also linked to sentences that have
been manually annotated to identify frame ele-
ment fillers and their grammatical functions. This
results in a set of valence patterns that represent
possible mappings between syntactic functions
and frame elements for the lexical unit. Frame-
Net already contains a number of frames for spa-
tial language. Spatial language frames in Frame-
Net inherit from LOCATIVE-RELATION, which de-
fines core frame elements FIGURE and GROUND,
as well as non-core frame elements including DIS-
TANCE and DIRECTION. Examples of spatial lan-
guage frames are SPATIAL-CONTACT, CONTAIN-
MENT and ADJACENCY.

VigNet, a lexical resource inspired by and based
on FrameNet, was developed as part of the Words-
Eye text-to-scene system. VigNet extends Frame-
Net in several ways. It adds much more fine-
grained frames, primarily based on differences
in graphical realization. For example, the verb
“wash” can be realized in many different ways,
depending on whether one is washing dishes or
one’s hair or a car; VigNet therefore has several
different wash frames. VigNet also adds graph-
ical semantics to frames. It does this by adding
primitive graphical (typically, spatial) relations be-
tween frame element fillers. These graphical rela-
tions can represent the position, orientation, size,
color, texture, and poses of objects in the scene.

The graphical semantics can be thought of as a se-
mantic grounding; it is used by WordsEye to con-
struct and render a 3D scene. Frames augmented
with graphical semantics are called vignettes.

The descriptions of the graphical semantics in
vignettes make use of object-centric properties
called affordances (Gibson, 1977; Norman, 1988).
Affordances include any functional or physical
property that allows an object to participate in ac-
tions and relations with other objects. For exam-
ple, a SEAT of a chair is used to support a sitter
and the INTERIOR of a box is used to hold the con-
tents. VigNet has a rich set of spatial affordances.
Some examples are CUPPED REGIONS for objects
to be in, CANOPIES for objects to be under, and
TOP SURFACES for objects to be on.

Information about the 3D objects in WordsEye
is organized in VigNet into an ontology. The on-
tology is a hierarchy of semantic types with mul-
tiple inheritance. Types include both 3D objects
and more general semantic concepts. For exam-
ple, a particular 3D rocking chair is a sub-type
of ROCKING-CHAIR.N. Every 3D object has a
semantic type and is inserted into the ontology.
WordsEye also includes lexicalized concepts (e.g.
chair tied to CHAIR.N) in the ontology. The ontol-
ogy includes a knowledge base of assertions that
provide more information about semantic con-
cepts. Assertions include sizes of objects and con-
cepts, their parts, their colors, what they typically
contain, what affordances they have, and informa-
tion about their function. Spatial affordances and
other properties can be applied to both 3D graph-
ical objects and to more general semantic types.
For example, the general semantic type CUP.N has
a CUPPED REGION affordance, since this affor-
dance is shared by all cups. A particular 3D graph-
ical object of a cup might have a HANDLE affor-
dance, while another might have a LID affordance,
but these spatial affordances are not tied to the
super-type CUP.N.

Figure 1 shows an example of two vignettes:
SELF-MOTION-FROM-FRONT.R and SELF-
MOTION-FROM-PORTAL.R. Both are subtypes
of SELF-MOTION-FROM.R. The yellow ovals
contain semantic constraints on the objects used
to instantiate the frame. For example, while
the relation SELF-MOTION-FROM-FRONT.R
requires only that the source of the motion
be a PHYSICAL-ENTITY.N, SELF-MOTION-
FROM-PORTAL.R requires that the source has a
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self-motion-from-front.r

animate-
being.n

agent

physical-
entity.n

source

number

distance

pose.n

pose

in-pose.r

entity

orientation-away-from.r

fig

in-front-of.r

fig gnd gnd distpose

self-motion-from-portal.r

animate-
being.n

agent

entity-with-door-
gate-affordance.n

source

number

distance

pose.n

pose

in-pose.r

entity

orientation-away-from.r

fig

distance-from.r

figgnd gnd distpose

door-gate-
affordance.n

gnd-part gnd-part

outward.n

dir

Figure 1: Two frames augmented with primitive graphical relations. The high-level semantics of SELF-MOTION-
FROM-FRONT.R and SELF-MOTION-FROM-PORTAL.R are decomposed into semantic types and graphical relations.

DOOR-GATE-AFFORDANCE.N as a part.

4 Structure of SpatialNet

SpatialNet provides a formal description of spa-
tial semantics by linking linguistic expressions
to semantic frames and linking semantic frames
to actual spatial configurations. To do this, we
adopt some conventions from FrameNet and Vig-
Net, making some changes to address some of the
shortcomings of these resources.

FrameNet provides semantic frames including
frames for spatial language. However, the syn-
tactic information provided in the valence patterns
is often insufficient for the purpose of automati-
cally identifying frame elements in new sentences.
One example is frames where the target word is
a preposition, which includes many of the frames
for spatial language. According to the Frame-
Net annotation guidelines for these (Ruppenhofer
et al., 2016, page 50), the GROUND is assigned the
grammatical function Obj(ect), and the FIGURE is
tagged as an Ext(ernal) argument. Given a pre-
viously unseen sentence, automatic methods can
identify the object of the preposition and therefore
the GROUND, but the sentence may contain sev-
eral noun phrases outside the prepositional phrase,
making the choice of FIGURE ambiguous. Frame-
Net also does not provide a semantic grounding.
To create SpatialNet, we adopt the concept of a
FrameNet frame, including the definition of frame
elements and lexical units. However, we modify
the valence patterns to more precisely define syn-
tactic patterns in a declarative format. In addi-
tion, to facilitating the use of SpatialNet across dif-
ferent languages, we specify syntactic constraints
in valence patterns using labels from the Univer-
sal Dependencies project (Universal Dependen-
cies, 2017).

VigNet does provide a grounding in graphical

semantics, but presents other problems. First, Vig-
Net does not currently include a mapping from
syntax to semantic frames. Although vignettes
provide a framework for linking semantic frames
to primitive graphical relations, the VigNet re-
source does not include frames for spatial prepo-
sitions, but only for higher-level semantic con-
structs. Finally, since VigNet has been developed
specifically for English, some parts of the exist-
ing resource do not generalize easily to other lan-
guages. To create SpatialNet, we adopt from Vig-
Net the concept of a vignette and the semantic on-
tology. However, we make the resource more ap-
plicable across languages by (a) formalizing the
set of primitive graphical relations and constraints
used in vignettes into what we call spatio-graphic
primitives (SGPs), and (b) moving the language-
specific mapping of lexical items to semantic cat-
egories out of the VigNet ontology and into a sep-
arate database. The SGPs and semantic ontology
are used to define a language-independent seman-
tic grounding for vignettes.

A SpatialNet for a particular language consists
of a set of spatial frames, which link surface lan-
guage to lexical semantics using valence patterns,
and a set of spatial vignettes, which link spatial
frames and lexical units to SGPs based on seman-
tic/functional constraints. We are developing Spa-
tialNet resources for English and German.

4.1 Ontology of Semantic Categories

The ontology in VigNet consists of a hierarchy of
semantic types (concepts) and a knowledge base
containing assertions. SpatialNet uses the VigNet
ontology and semantic concepts directly, under the
assumption that the semantic types and assertions
are language-independent. Thus far, our work on
English and German has not required modifica-
tion of the ontology; however, since it was de-
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veloped for English, it may need to be extended
or modified in the future to be relevant for other
languages and cultures. VigNet also includes lex-
icalized concepts (e.g. chair tied to CHAIR.N)
in the ontology. For SpatialNet, we store this
language-dependent lexical information in a sep-
arate database.

The mapping from lexical items to semantic
concepts is important for the decomposition of text
into semantics. For English SpatialNet, we use
the lexical mapping extracted from VigNet. To
facilitate creation of lexical mappings for other
languages, we mapped VigNet concepts to entries
in the Princeton WordNet of English (Princeton
University, 2019). An initial mapping was con-
structed as follows: For each lexicalized concept
in VigNet, we looked up each of its linked lexical
items in WordNet. If the word (with correct part
of speech) was found in WordNet, we added map-
pings between the VigNet concept and each Word-
Net synset for that word. This resulted in a many-
to-many mapping of VigNet concepts to WordNet
synsets. We are currently working on manually
correcting this automatically-created map.

To obtain a lexical mapping for German, we
use the VigNet–WordNet map in conjunction with
GermaNet (Henrich and Hinrichs, 2010; Hamp
and Feldweg, 1997). GermaNet includes map-
pings to Princeton WordNet 3.0. For a given Ger-
man lexical item, we use the GermaNet links to
Princeton WordNet to obtain a set of possible Vig-
Net concepts from the VigNet–WordNet mapping.
We are also experimenting with the Open German
WordNet (Siegel, 2019), although in general we
have found it to be less accurate. Open German
WordNet includes links to the EuroWordNet In-
terlingual Index (ILI) (Vossen, 1998), which are
in turn mapped to the Princeton English WordNet.
Table 1 shows the VigNet concepts for German
words used in the sentences in Figure 2, obtained
using GermaNet and Open German WordNet.

4.2 Spatio-graphic Primitives

To create the set of spatio-graphic primitives used
in SpatialNet, we began with relations already in
VigNet. VigNet contains a range of semantic re-
lations, from high-level abstract relations origi-
nating in FrameNet, such as ABANDONMENT.R,
to low-level graphical relations, such as RGB-
VALUE-OF.R. We extracted from VigNet a list of
relations representing basic spatial configurations

Lexical
item

VigNet concepts
GermaNet ODE-WordNet

Mauer WALL.N WALL.N
RAMPART-

WALL.N
RAMPART.N

Katze DOMESTIC-CAT.N DOMESTIC-CAT.N
HOUSE-CAT.N HOUSE-CAT.N

TRUE-CAT.N
Gemälde PAINTING.N PICTURE.N

PICTURE.N ICON.N
IMAGE.N

Haus HOUSE.N SHACK.N
HUTCH.N
HOUSE.N
FAMILY.N
HOME.N

Table 1: Mapping from German lexical items to Vig-
Net semantic categories, obtained using two different
German WordNet resources.

and graphical properties, separating these from
the higher-level relations in VigNet which may be
English-specific.

We also wanted to ensure that our list of spatio-
graphic primitives was as comprehensive as possi-
ble, and not limited to the graphical capabilities of
WordsEye. To that end, we annotated each picture
in the Topological Relations Picture Series (Bow-
erman and Pederson, 1992) and the Picture Se-
ries for Positional Verbs (Ameka et al., 1999) with
the spatial and graphical primitives it represents.
When an appropriate spatial primitive did not ex-
ist in VigNet, we created a new one. These new
SGPs have also been added it to a list of “pend-
ing” graphical relations that the WordsEye devel-
opers plan to implement in the future. In total, we
have about 100 SGPs.

We use WordsEye as a realization engine for
the SGPs. This is done using the WordsEye web
API, which can generate a 3D scene from a se-
mantic representation. The semantic representa-
tion consists of a list of entities, each with a se-
mantic type from the VigNet ontology, and a list
of relations between entities. SpatialNet SGPs
can be used as relations in this semantic input;
we are working closely with the WordsEye de-
velopers to ensure that SGPs in SpatialNet con-
tinue to be compatible with the WordsEye sys-
tem. In some cases, graphical functionality for an
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(a)

ON-TOP-SURFACE.SGP

HOUSE-CAT.N

figure

WALL.N

ground

(b)
ON-FRONT-SURFACE.SGP

PAINTING.N

figure

WALL.N

ground

(c)

NEXT-TO.SGP

HOUSE.N

figure

WALL.N

ground

(a)

(b)

(c)

(a) (b) (c)
English The cat is on the wall. The painting is on the wall. The house is at the wall.
German Die Katze ist auf der Mauer. Das Gemälde ist an der Mauer. Das Haus ist an der Mauer.

Figure 2: Examples of spatio-graphic primitives: (a) ON-TOP-SURFACE, (b) ON-FRONT-SURFACE, and (c) NEXT-
TO and English/German descriptions.

SGP is not yet supported by WordsEye. For exam-
ple, WordsEye currently cannot graphically repre-
sent a FITTED-ON relation, e.g. a hat on a head
or a glove on a hand. When WordsEye encoun-
ters a relation that it cannot decompose into sup-
ported graphical primitives, the relation is ignored
and not included in the 3D graphics. The entities
referenced by the relations will be displayed in a
default position (side-by-side). Figure 2 shows a
scene created in WordsEye that demonstrates the
spatio-graphic primitives ON-TOP-SURFACE, ON-
FRONT-SURFACE, and NEXT-TO.

4.3 Spatial Frames

Spatial frames represent the lexical meanings a
language can express. The structure of spatial
frames is closely based on FrameNet frames. We
have incorporated many of the FrameNet spatial
language frames into SpatialNet, adding to these
as needed. For example, for English we have
added an ON-SURFACE frame that inherits from
SPATIAL-CONTACT. The main difference between
SpatialNet frames and FrameNet frames is in the
definition of the valence patterns. SpatialNet de-
fines valence patterns by precisely specifying lex-
ical and syntactic constraints, which can be based
on the syntactic dependency tree structure, gram-
matical relations, parts of speech, or lexical items.
Figure 4, which provides examples of spatial vi-
gnettes, includes a valence pattern for the English
lexical unit on.adp. This pattern specifies a syntac-

tic structure consisting of a root (which must have
part of speech NOUN), an nsubj dependent, and a
case dependent (which must be the word “on”).
The declarative format used to define this spatial
frame is shown in Figure 3 (top).

4.4 Spatial Vignettes

Spatial vignettes use spatial frames, SGPs, and the
ontology to interpret prepositions and other lex-
ical information in a language. They relate lin-
guistic realization (e.g. a preposition with its ar-
gument structure) to a spatial frame (such as ON-
SURFACE), and at the same time to a graphical
semantics expressed in terms of SGPs and addi-
tional constraints. This lexical information is of-
ten ambiguous. Consider the English and German
descriptions in Figure 2. In English, the prepo-
sition on is ambiguous; it can mean either ON-
TOP-SURFACE or ON-FRONT-SURFACE. In Ger-
man, the preposition an is ambiguous; it can mean
either ON-FRONT-SURFACE or NEXT-TO. To re-
solve such ambiguities, vignettes place selectional
restrictions on frame elements that require fillers
to have particular spatial affordances, spatial prop-
erties (such as the object size, shape, and orienta-
tion), or functional properties (such as whether the
object is a vehicle or path). This information is
found in the ontology.

Consider the spatial vignettes that would be
used to disambiguate the meanings of English on
from Figure 2. The declarative format used to de-
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<frame name="On_surface">
<parent name="Spatial_contact"/>
<FE name="Figure"/>
<FE name="Ground"/>
<lexUnit name="on_top_of.adp">
<pattern>
<dep FE="Ground" tag="NOUN">

<dep FE="Figure" reln="nsubj"/>
<dep reln="case" word="on">

<dep word="top" reln="mwe"/>
<dep word="of" reln="mwe"/>

</dep>
</dep>

</pattern>
</lexUnit>

<lexUnit name="on.adp">
<pattern>
<dep FE="Ground" tag="NOUN">

<dep FE="Figure" reln="nsubj"/>
<dep reln="case" word="on"/>

</dep>
</pattern>

</lexUnit>
</frame>

<vignette name="on-vertical-surface">
<input frame="On_surface"

lexUnit="on.adp"/>
<type-constraint FE="Ground"

type="vertical-surface.n"/>
<type-constraint FE="Figure"

type="wall-item.n"/>
<output relation="on-front-surface.r">
<map FE="Ground" arg="ground"/>
<map FE="Figure" arg="figure"/>

</output>
</vignette>

<vignette name="on-top-surface">
<input frame="On_surface"

lexUnit="on.adp"/>
<input frame="On_surface"

lexUnit="on_top_of.adp"/>
<type-constraint FE="Ground"

type="upward-surface.n"/>
<output relation="on-top-surface.r">
<map FE="Ground" arg="ground"/>
<map FE="Figure" arg="figure"/>

</output>
</vignette>

Figure 3: Declarative format for spatial frames (top)
and spatial vignettes (bottom)

fine these spatial vignettes is shown in Figure 3
(bottom). A visual representation of the vignettes
is shown in Figure 4 (top). The vignettes link
the spatial frame ON-SURFACE to different SGPs
based on features of the frame element fillers.

The first vignette, ON-FRONT-SURFACE, adds
semantic type constraints to both the FIGURE

and the GROUND. The Figure must be of type
WALL-ITEM.N and the Ground must be of type

VERTICAL-SURFACE.N. If these constraints are
met, the vignette produces the SGP ON-FRONT-
SURFACE as output, mapping FIGURE to the SGP
argument figure, and GROUND to the SGP ar-
gument ground. The second vignette, ON-TOP-
SURFACE, has a semantic type constraint only that
GROUND be of type UPWARD-SURFACE.N. If this
constraint is met, the vignette produces the SGP
ON-TOP-SURFACE. Note that, while in this case
the frame elements and SGP arguments have the
same names, this is not necessarily true for all vi-
gnettes (cf. the vignettes in Figure 1). Note also
that in English, painting on wall is actually am-
biguous, since a painting can technically be bal-
anced on the top of a wall rather than hanging on
its front surface. The spatial vignettes allow for
either interpretation.

Figure 4 also shows the two vignettes which
would be used to disambiguate the meanings of
German an from Figure 2. The German vignettes
link the spatial frame ADJACENCY to SGPs. The
first vignette, ON-FRONT-SURFACE, is identical to
the English vignette of the same name, except for
the input frame and lexical unit. The semantic type
constraints, SGPs, and frame element to SGP ar-
gument mappings are the same. The second vi-
gnette, NEXT-TO, does not have any semantic type
constraints and thus outputs the SGP NEXT-TO

with the familiar FIGURE–figure and GROUND–
ground argument mappings. In the next section,
we provide a complete example of using spatial
vignettes to interpret these German sentences.

5 Using SpatialNet for Text-to-Scene
Generation

SpatialNet can be used in conjunction with the
graphics generation component of the WordsEye
text-to-scene system to produce a 3D scene from
a spatial description which can be used to verify
the spatial frames and vignettes defined in Spatial-
Net. Figure 5 shows an overview of our system
for text-to-scene generation. Although Spatial-
Net focuses on semantics, the system also requires
modules for morphological analysis and syntac-
tic parsing. For English and German, we use the
Stanford CoreNLP Toolkit (Manning et al., 2014).
In this section, we describe how we use Stanford
CoreNLP, SpatialNet, and WordsEye to convert
text into a 3D scene. We illustrate using German
sentences (b) and (c) from Figure 2.

First, Stanford CoreNLP is used to perform
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Figure 4: Spatial vignettes for different meanings of English on (top) and German an (bottom). Vignettes resolve
the spatial relation given the spatial and functional object features. Spatial frames are represented by blue octagons,
and SGPs by pink rectangles.

lemmatization, part-of-speech tagging, and depen-
dency parsing. Figure 6 shows the resulting de-
pendency structures. The dependency structures
are matched against the valence patterns in spa-
tial frames. Sentences (b) and (c) both match the

valence pattern for the lexical unit an.prep in the
ADJACENCY frame. The valence pattern identi-
fies which lexical items in the sentence will act
as frame element fillers. These lexical items are
converted into semantic concepts using the lexical
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Figure 5: Pipeline for text-to-scene generation with SpatialNet

Das/ART

Gemälde/NN

det

ist/VAFIN an/APPR der/ART

Mauer/NN

nsubj cop case det

(b)

Das/ART

Haus/NN

det

ist/VAFIN an/APPR der/ART

Mauer/NN

nsubj cop case det

(c)

Figure 6: Results of morphological and syntactic anal-
ysis for German sentences (b) and (c)

mapping from Section 4.1. We refer to Table 1
to obtain the semantic concepts for the German
lexical items. For the purposes of this example,
we select the first semantic concept from the Ger-
maNet mapping, which maps Gemälde to PAINT-
ING.N, Mauer to WALL.N, and Haus to HOUSE.N.

The system then identifies the spatial vignettes
which accept the frame and lexical unit as in-
put. The features of the semantic concepts ob-
tained for each frame element are checked against
the semantic constraints in these spatial vignettes.
For German sentence (b), since a WALL.N has
a VERTICAL-SURFACE and a PAINTING.N is a
WALL-ITEM, the ON-FRONT-SURFACE vignette
is a possible match. Since a WALL.N also has
an UPWARD-SURFACE, the ON-TOP-SURFACE vi-

gnette is also a possible match. For now, we select
the first matching vignette, which produces the
SGP ON-FRONT-SURFACE with figure PAINT-
ING.N and ground WALL.N. For German sen-
tence (c), since HOUSE.N is not a WALL-ITEM,
only the NEXT-TO vignette is matched. This pro-
duces the SGP NEXT-TO, with figure HOUSE.N
and ground WALL.N. The entities and SGPs for
each sentence are then converted into a semantic
representation compatible with the WordsEye web
API, which is used to generate a 3D scene.

6 Summary and Future Work

We have described our development of a novel re-
source, SpatialNet, which provides a formal repre-
sentation of how a language expresses spatial re-
lations. We have discussed the structure of the re-
source, including examples from the English and
German SpatialNets we are developing. We have
also introduced a text-to-scene generation pipeline
for using SpatialNet to convert text into 3D scenes.

In future, we will extend our semantic represen-
tation to handle motion as well as static spatial re-
lations. A motion vignette could be represented by
a labeled sequence of SGPs associated with key
stages of the action, e.g. INITIAL-STATE, START-
OF-ACTION, MIDDLE-STATE, END-OF-ACTION,
FINAL-STATE. For example, The dog jumped off
the log could be represented by the dog standing
on the log, the dog leaping off with legs still on
the log, the dog in mid air, the front paws touching
the ground, and the dog on the ground.

In addition, we hope to extend SpatialNet to
other languages, particularly low-resource and
endangered languages, by incorporating it into
the WordsEye Linguistics Tools (Ulinski et al.,
2014a,b).

69



References
Felix Ameka, Carlien de Witte, and David P. Wilkins.

1999. Picture series for positional verbs: Eliciting
the verbal component in locative descriptions. In
David P. Wilkins, editor, Manual for the 1999 Field
Season, pages 48–54. Max Planck Institute for Psy-
cholinguistics, Nijmegen.

Collin F. Baker, Charles J. Fillmore, and John B. Lowe.
1998. The Berkeley FrameNet Project. In Pro-
ceedings of the 36th Annual Meeting of the Associ-
ation for Computational Linguistics and 17th Inter-
national Conference on Computational Linguistics,
Volume 1, pages 86–90, Montreal, Quebec, Canada.

Melissa Bowerman and Soonja Choi. 2003. Space un-
der Construction: Language-Specific Spatial Cate-
gorization in First Language Acquisition. In Lan-
guage in Mind: Advances in the Study of Language
and Thought, pages 387–428. MIT Press, Cam-
bridge, MA, US.

Melissa Bowerman and Eric Pederson. 1992. Topolog-
ical relations picture series. In Stephen C. Levin-
son, editor, Space Stimuli Kit 1.2, volume 51. Max
Planck Institute for Psycholinguistics, Nijmegen.

Bob Coyne, Daniel Bauer, and Owen Rambow. 2011.
VigNet: Grounding Language in Graphics using
Frame Semantics. In Proceedings of the ACL 2011
Workshop on Relational Models of Semantics, pages
28–36, Portland, Oregon, USA.

Bob Coyne and Richard Sproat. 2001. WordsEye:
An Automatic Text-to-scene Conversion System. In
Proceedings of the 28th Annual Conference on Com-
puter Graphics and Interactive Techniques, SIG-
GRAPH ’01, pages 487–496, New York, NY, USA.

Michele I. Feist and Dedre Gentner. 1998. On Plates,
Bowls, and Dishes: Factors in the Use of English
IN and ON. In Proceedings of the Twentieth An-
nual Meeting of the Cognitive Science Society, pages
345–349, Hillsdale, NJ. Erlbaum.

James J. Gibson. 1977. The Theory of Affordances. In
The Ecological Approach to Visual Perception. Erl-
baum.

Birgit Hamp and Helmut Feldweg. 1997. GermaNet -
a Lexical-Semantic Net for German. In Automatic
Information Extraction and Building of Lexical Se-
mantic Resources for NLP Applications.

Verena Henrich and Erhard Hinrichs. 2010. GernEdiT
- The GermaNet Editing Tool. In Proceedings of the
Seventh Conference on International Language Re-
sources and Evaluation (LREC’10), Valletta, Malta.

Annette Herskovits. 1986. Language and Spatial Cog-
nition: An Interdisciplinary Study of the Preposi-
tions in English. Cambridge University Press.

Stephen C. Levinson. 2003. Space in Language and
Cognition: Explorations in Cognitive Diversity.
Cambridge University Press, Cambridge, UK.

Christopher Manning, Mihai Surdeanu, John Bauer,
Jenny Finkel, Steven Bethard, and David McClosky.
2014. The Stanford CoreNLP Natural Language
Processing Toolkit. In Proceedings of 52nd Annual
Meeting of the Association for Computational Lin-
guistics: System Demonstrations, pages 55–60, Bal-
timore, Maryland.

Donald A Norman. 1988. The Psychology of Every-
day Things. Basic Books, New York. OCLC:
874159470.

Miriam R L Petruck and Michael J Ellsworth. 2018.
Representing Spatial Relations in FrameNet. In Pro-
ceedings of the First International Workshop on Spa-
tial Language Understanding, pages 41–45, New
Orleans. Association for Computational Linguistics.

Princeton University. 2019. WordNet: A Lexi-
cal Database for English. https://wordnet.
princeton.edu/.

James Pustejovsky. 2017. ISO-Space: Annotating
Static and Dynamic Spatial Information. In Nancy
Ide and James Pustejovsky, editors, Handbook of
Linguistic Annotation, pages 989–1024. Springer
Netherlands, Dordrecht.

James Pustejovsky, Parisa Kordjamshidi, Marie-
Francine Moens, Aaron Levine, Seth Dworman,
and Zachary Yocum. 2015. SemEval-2015 Task 8:
SpaceEval. In Proceedings of the 9th International
Workshop on Semantic Evaluation (SemEval 2015),
pages 884–894, Denver, Colorado.

Josef Ruppenhofer, Michael Ellsworth, Miriam R. L
Petruck, Christopher R. Johnson, Collin F. Baker,
and Jan Scheffczyk. 2016. FrameNet II: Extended
Theory and Practice.

Melanie Siegel. 2019. Open German WordNet.

Morgan Ulinski, Anusha Balakrishnan, Daniel Bauer,
Bob Coyne, Julia Hirschberg, and Owen Rambow.
2014a. Documenting Endangered Languages with
the WordsEye Linguistics Tool. In Proceedings of
the 2014 Workshop on the Use of Computational
Methods in the Study of Endangered Languages,
pages 6–14, Baltimore, Maryland, USA.

Morgan Ulinski, Anusha Balakrishnan, Bob Coyne, Ju-
lia Hirschberg, and Owen Rambow. 2014b. WELT:
Using Graphics Generation in Linguistic Fieldwork.
In Proceedings of 52nd Annual Meeting of the As-
sociation for Computational Linguistics: System
Demonstrations, pages 49–54, Baltimore, Mary-
land.

Universal Dependencies. 2017. Universal Dependen-
cies. https://universaldependencies.
org/.

Piek Vossen, editor. 1998. EuroWordNet: A Multi-
lingual Database with Lexical Semantic Networks.
Springer Netherlands.

70



Proceedings of SpLU-RoboNLP, pages 71–81
Minneapolis, MN, June 6, 2019. c©2019 Association for Computational Linguistics

What a neural language model tells us about spatial relations

Mehdi Ghanimifard Simon Dobnik
Centre for Linguistic Theory and Studies in Probability (CLASP)

Department of Philosophy, Linguistics and Theory of Science (FLoV)
University of Gothenburg, Sweden

{mehdi.ghanimifard,simon.dobnik}@gu.se

Abstract

Understanding and generating spatial descrip-
tions requires knowledge about what objects
are related, their functional interactions, and
where the objects are geometrically located.
Different spatial relations have different func-
tional and geometric bias. The wide usage of
neural language models in different areas in-
cluding generation of image description moti-
vates the study of what kind of knowledge is
encoded in neural language models about in-
dividual spatial relations. With the premise
that the functional bias of relations is ex-
pressed in their word distributions, we con-
struct multi-word distributional vector repre-
sentations and show that these representations
perform well on intrinsic semantic reasoning
tasks, thus confirming our premise. A compar-
ison of our vector representations to human se-
mantic judgments indicates that different bias
(functional or geometric) is captured in differ-
ent data collection tasks which suggests that
the contribution of the two meaning modalities
is dynamic, related to the context of the task.

1 Introduction

Spatial descriptions such as “the chair is to the left
of the table” contain spatial relations “to the left
of” the semantic representations of which must
be grounded in visual representations in terms of
geometry (Harnad, 1990). The apprehension of
spatial relations in terms of scene geometry has
been investigated through acceptability scores of
human judges over possible locations of objects
(Logan and Sadler, 1996). In addition, other re-
search has pointed out that there is an interplay be-
tween geometry and object-specific function in the
apprehension of spatial relations (Coventry et al.,
2001). Therefore, spatial descriptions must be
grounded in two kinds of knowledge (Landau and
Jackendoff, 1993; Coventry et al., 2001; Coven-
try and Garrod, 2004; Landau, 2016). One kind
of knowledge is referential meaning, expressed in

the geometry of scenes (geometric knowledge or
where objects are) while the other kind of knowl-
edge is higher- level conceptual world knowl-
edge about interactions between objects which is
not directly grounded in perceivable situations but
is learned through our experience of situations
in the world (functional knowledge or what ob-
jects are related). Furthermore, Coventry et al.
(2001) argue that individual relations have a par-
ticular geometric and functional bias and “under”
and “over” are more functionally-biased than “be-
low” and “above”. For instance, when describ-
ing the relation between a person and an um-
brella in a scene with a textual context such as
“an umbrella a person”, “above” is associ-
ated with stricter geometric properties compared
to “over” which covers a more object-specific
extra-geometric sense between the target and the
landmark (i.e. covering or protecting in this case).
Of course, there will be several configurations of
objects that could be described either with “over”
or “above” which indicates that the choice of a
description is determined by the speaker, in par-
ticular what aspect of meaning they want to em-
phasise. Coventry et al. (2001) consider this bias
for prepositions that are geometrically similar and
therefore the functional knowledge is reflected in
different preferences for objects that are related.
However, such functional differences also exist
between geometrically different relations.

This poses two interesting research questions
for computational modelling of spatial language.
The first one is how both kinds of knowledge in-
teract with individual spatial relations and how
models of spatial language can be constructed and
learned within end-to-end deep learning paradigm.
Ramisa et al. (2015) compare the performance
of classifiers using different multi-modal features
(visual, geometric and textual) to predict a spa-
tial preposition. Schwering (2007) applies seman-
tic similarity metrics of spatial relations on geo-
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graphical data retrieval. Collell et al. (2018) show
that word embeddings can be used as predictive
features for common sense knowledge about loca-
tion of objects in 2D images. The second question
is related to the extraction of functional knowl-
edge for applications such as generation of spa-
tial descriptions in a robot scenario. Typically, a
robot will not be able to observe all object inter-
actions as in (Coventry et al., 2004) to learn about
the interaction of objects and choose the appro-
priate relation. Following the intuition that the
functional bias of spatial relations is reflected in
a greater selectivity for their target and landmark
objects, Dobnik and Kelleher (2013, 2014) pro-
pose that the degree of association between rela-
tions and objects in the corpus of image descrip-
tions can be used as filters for selecting the most
applicable relation for a pair of objects. They also
demonstrate that entropy-based analysis of the tar-
gets and landmarks can identify the functional and
geometric bias of spatial relations. They use de-
scriptions from a corpus of image descriptions be-
cause here the prepositions in spatial relations are
used mainly in the spatial sense. The same inves-
tigation of textual corpora such as BNC (Consor-
tium et al., 2007) does not yield such results as
there prepositions are used mainly in their non-
spatial sense.1 Similarly, Dobnik et al. (2018) in-
spect the perplexity of recurrent language models
for different descriptions containing spatial rela-
tions in the Visual Genome dataset of image cap-
tions (Krishna et al., 2017) in order to investigate
their bias for objects.

In this paper, we follow this line of work and
(i) further investigate what semantics about spatial
relations are captured from descriptions of images
by generative recurrent neural language models,
and (ii) whether such knowledge can be extracted,
for example as vector representations, and evalu-
ated in tests. The neural embeddings are opaque
to interpretations per se. The benefit of using re-
current language models is that they allow us to
(i) deal with spatial relations as multi-word ex-
pressions and (ii) they learn their representations
within their contexts:

(a) a cat on a mat
(b) a cat on the top o f a mat
(c) a mat under a cat

1We may call this metaphoric or highly functional usage
which is completely absent of the geometric dimension.

In (a) and (b), the textual contexts are the same
“a cat a mat” but the meaning of the spatial
relations, one of which is a multi-word expression,
are slightly different. In (c) the context is made
different through word order.

The question of what knowledge (functional or
geometric) should be represented in the models
can be explained in information-theoretic terms.
The low surprisal of a textual language model on
a new text corpora is an indication that the model
has encoded the same information content as the
text. In the absence of the geometric knowledge
during the training of the model, this means that
a language model encodes the relevant functional
knowledge. We will show that the degree to which
each spatial description containing a spatial re-
lation encodes functional knowledge in different
contexts can be used as source for building distri-
butional representations. We evaluate these repre-
sentations intrinsically in reasoning tests and ex-
trinsically against human performance and human
judgment.

The contributions of this paper are:

1. It is an investigation of the semantic knowl-
edge about spatial relations learned from tex-
tual features in recurrent language models
with intrinsic and extrinsic methods of evalu-
ation on internal representations.

2. It proposes a method of inspecting contextual
performance of generative neural language
models over a wide categories of contexts.

This paper is organised as follows: in Section 2
we describe how we create distributional represen-
tations with recurrent neural language models, in
Section 3 we describe our computational imple-
mentations that build these representations, and in
Section 4 we provide their evaluation. In Section 5
we give our final remarks.

2 Neural representations of spatial
relations

Distributional semantic models produce vector
representations which capture latent meanings
hidden in association of words in documents
(Church and Hanks, 1990; Turney and Pantel,
2010). The neural word embeddings were initially
introduced as a component of neural language
models (Bengio et al., 2003). However, subse-
quently neural language models such as word2vec
(Mikolov et al., 2013) and GloVe (Pennington
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et al., 2014) have become used to specifically
learn word embeddings from large corpora. The
word embeddings trained by these models capture
world-knowledge regularities expressed in lan-
guage by learning from the distribution of con-
text words which can be used for analogical rea-
soning2. Moreover, sense embeddings (Neelakan-
tan et al., 2014) and contextual embeddings (Pe-
ters et al., 2018) have shown to provide fine-
grained representation which can discriminate be-
tween different word senses or contexts, for ex-
ample in substituting synonym words and multi-
words in sentences (McCarthy and Navigli, 2007).

However, meaning is also captured by genera-
tive recurrent neural language models used to gen-
erate text rather than predict word similarity. The
focus of our work is to investigate what semantics
about spatial relations is captured by these models.
Generative language models use the chain rule of
probability for step-by-step prediction of the next
word in a sequence. In these models, the probabil-
ity of a sequence of words (or sometimes charac-
ters) is defined as the multiplication of conditional
probabilities of each word given the previous con-
text in a sequence:

P(w1:T ) =
T−1

∏
t=1

P(wt+1|w1:t) (1)

where T is the length of the word sequence. The
language model estimates the probability of a se-
quence in Equation (1) by optimising parameters
of a neural network trained over sufficient data.
The internal learned parameters includes embed-
dings for each word token which can be used as
word level representations directly.

An alternative way of extracting semantic pre-
diction from a generative neural language model
which we are going to explore in this paper is
to measure the fidelity of the model’s output pre-
dictions against a new ground truth sequence of
words. This is expressed in the measure of Per-
plexity as follows:

PP(S) = (∏
s∈S

P(w1:t = s))
−1
|S| (2)

where S is a collection of ground truth sentences.
Perplexity is a measure of the difficulty of a gen-

2For example, “a is to a∗ as b is to b∗” can be queried
with simple vector arithmetic king−man+woman≈ queen.
More specifically, with a search over vocabulary with cosine
similarity: argmax

b∗∈V/{a∗,b,a}
cos(b∗,a∗−a+b)

eration task which is based on the information the-
oretic concept of entropy (Bahl et al., 1983). It is
based on cross-entropy which takes into account
the probability of a sequence of words in ground
truth sentences and the probability of a language
model generating that sequence. It is often used
for intrinsic evaluation of word- error rates in NLP
tasks (Chen et al., 1998). However, in this pa-
per we use perplexity as a measure of fit of a pre-
trained generative neural language model to a col-
lection of sentences.

Our proposal is as follows. We start with the
hypothesis that in spatial descriptions some spa-
tial relations (those that we call functional) are
more predictable from the associated word con-
texts of targets and landmarks than their ground-
ing in the visual features. Hence, this will be
reflected in a perplexity of a (text-based) gener-
ative language model trained on spatial descrip-
tions. Descriptions with functionally-biased spa-
tial relations will be easier to predict by this lan-
guage model than geometrically-biased spatial de-
scriptions and will therefore have lower perplexity.
If two sequences of words where only the spatial
relations differ (but target and landmark contexts
as well as other words are the same) have similar
perplexity, it means that such spatial relations have
similar selectional requirements and are therefore
similar in terms of functional and geometric bias.
We can exploit this to create vector representations
for spatial relations as follows. Using a dictionary
of spatial relations, we extract collections of sen-
tences containing a particular spatial relation from
a held-out dataset not used in training of the lan-
guage model. The collection of sentences with
a particular spatial relation are our context tem-
plates. More specifically, for our list of spatial re-
lations {r1,r2, ...,rk}, we replace the original re-
lation ri with a target relation r j in its collection
of sentences, e.g. we replace to the right of i with
in front of j. The outcome is a collection of artifi-
cial sentences Si→ j that are identical to the human-
generated sentences except that they contain a sub-
stituted spatial relation. The perplexity of the lan-
guage model on these sentences represents the as-
sociation between the original spatial relation and
the context in which this has been projected:

PP(Si→ j) = PPi, j = P(reli,crel j)
1
−N′ (3)

where crel j is the context of reli, and PPi, j is the
perplexity of the neural language model on the
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sentence collection where relation reli is artifi-
cially placed in the contexts of relation rel j. If reli
and rel j are associated with similar contexts, then
we expect low perplexity for Si→ j, otherwise the
perplexity will be high. Finally, the perplexity of
reli against each collection crel j is computed and
normalised within each collection (Equation 4)
and the resulting vector per reli over all contexts
is represented as a unit vector (Equation 5).

mi, j =
PPi, j

∑k
i′=1 PPi′, j

(4)

v̂i =
vi

||vi||
vi = (mi,1, ...,mi,k)

T (5)

where v̂i is the vector representation of the rela-
tion reli. These vectors create a matrix. In a par-
ticular cell of some row and some column, high
perplexity means that the spatial relation in that
row is less swappable with the context in the col-
umn, while a low perplexity means that the spa-
tial relation is highly swappable with that context.
This provides a measure similar to mutual infor-
mation (PPMI) in traditional distributional vectors
(Church and Hanks, 1990).

In conclusion, representing multi-word spatial
relations in a perplexity matrix of different con-
texts allows us to capture their semantics based
on the predictions and the discriminatory power
of the language model. If all spatial relations
are equally predictable from the language model
such vector representations will be identical and
vector space norms will not be able to discrimi-
nate between different spatial relations. In the fol-
lowing sections we report on the practical details
how we build the matrix (Section 3) and evalu-
ate it on some typical semantic tasks (Section 4).
The implementation and evaluation code: https:
//github.com/GU-CLASP/what_nlm_srels

3 Dataset and models

3.1 Corpus and pre-processing

We use Visual Genome region description cor-
pus (Krishna et al., 2017). This corpus contains
5.4 million descriptions of 108 thousand images,
collected from different annotators who described
specific regions of each image. As stated earlier,
the reason why we use a dataset of image descrip-
tions is because we want to have spatial usages
of prepositions. Other image captioning datasets
such as MSCOCO (Lin et al., 2014) and Flickr30k

(Plummer et al., 2015) could also be used. How-
ever, our investigation has shown that since the
task in these datasets in not to describe directly the
relation between selected regions, common geo-
metric spatial relations are almost missing in them:
there are less then 30 examples for “left of ” and
“right of ” in these datasets.

After word tokenisation with the space operator,
we apply pre-processing which removes repeated
descriptions per-image and also descriptions that
include uncommon words with frequency less than
1003 Then we split the sentences into 90%-10%
portions. The 90% is used for training the lan-
guage model (Section 3.2), and 10% is used for
generating the perplexity vectors by extracting
sentences with spatial relations that represent our
context bins (Section 3.3). The context bins are
used for generating artificial descriptions Si→ j on
which the language model is evaluated for per-
plexity.

3.2 Language model and GloVe embeddings

We train a generative neural language model on
the 90% of the extracted corpus (Section 3.1)
which amounts to 4,537,836 descriptions of max-
imum length of 29 and 4,985 words in the vocab-
ulary. We implement a recurrent language model
with LSTM (Hochreiter and Schmidhuber, 1997)
and a word embeddings layer similar to Gal and
Ghahramani (2016) in Keras (Chollet et al., 2015)
with TensorFlow (Abadi et al., 2015) as back-end.
The Adam optimiser (Kingma and Ba, 2014) is
used for fitting the parameters. The model is set
up with 300 dimensions both for the embedding-
and the LSTM units. It is trained for 20 epochs
with a batch size of 1024.

In addition to the generative LSTM language
model, we also train on the same corpus GloVe
(VG) embeddings with 300 dimensions and a
context-window of 5 words. Finally, we also use
pre-trained GloVe embeddings on the Common
Crawl (CC) dataset with 42B tokens4.

3The pre-processing leaves 5,042,039 descriptions in the
corpus with maximum 31 tokens per sentence. The relatively
high threshold of 100 tokens is chosen to insure sufficient
support in the 10% of held-out data for bucketing. We did
not use OOV tokens because the goal of the evaluation is to
capture object-specific properties about spatial relations and
OOV tokens would interfere with this.

4http://nlp.stanford.edu/data/glove.42B.
300d.zip
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Figure 1: Generating perplexity-based vectors for each
spatial relation.

3.3 Perplexity vectors

Based on the lists of spatial prepositions in (Lan-
dau, 1996) and (Herskovits, 1986), we have cre-
ated a dictionary of spatial relations which include
single word relations as well as all of their possible
multi-word variants. This dictionary was applied
on the 10% held-out dataset where we found 67
single- and multi-word spatial relation types in to-
tal. As their frequency may have fallen below 100
words due to the dataset split, we further remove
all relations below this threshold which gives us
57 relations. We also create another list of re-
lations where composite variants such as “to the
left of” and “on the left of” are grouped together
as “left” which contains 44 broad relations. We
group the sentences by the relation they are con-
taining to our context bins using simple pattern
matching on strings. Table 1 contains some ex-
amples of our context bins. The bins are used for
artificial sentence generation as explained in the
previous section.

Relation (reli) Context bin (creli)
above scissors the pen

tall building the bridge
· · ·

below pen is scissors
bench the green trees
· · ·

next to a ball-pen the scissors
car the water
· · ·

Table 1: Examples of context bins based on extracted
descriptions from Visual Genome. The images that be-
long to these descriptions are shown in Appendix B.

For each of the 67 spatial relations extracted
from the larger corpus, there are 57 collections of

sentences (=the number of relations in the smaller
corpus). Hence, there are 3,819(= 67× 57) pos-
sible projections Si→ j, where a relation i is placed
in the context j, including the case where there
is no swapping of relations when j = i. The pro-
cess is shown in Figure 1. The vector of resulting
perplexities in different contexts is normalised ac-
cording to Equation 5 which gives us perplexity
vectors (P-vectors) as shown in Figure 2.
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Figure 2: A matrix of perplexity vectors for 28 spatial
relations and 26 contexts. For the full 67× 57 matrix
see Appendix C. The rows represent spatial relations
and columns represent the normalised average perplex-
ity of a language model when this relation is swapped
in that context.

In addition to the P-vectors we also create repre-
sentations learned by the word embedding layer in
the generative language model that we train. For
each of the 44 broad single-word spatial relations
we extract a 300-dimensional embedding vector
from the pre-trained recurrent language model
(LM-vectors). In order to produce LM-vectors for
the multi-word spatial relations, we simply sum
the embeddings of the individual words. For ex-
ample the embedding vector for “to the left of” is
vto + vthe + vle f t + vo f . The same method is also
used for the GloVe embeddings.

3.4 Human judgments

In order to evaluate our word representations we
compare them to three sources of human judg-
ments. The first one are judgments about the
the fit of each spatial relation over different ge-
ometric locations of a target object in relation to
a landmark which can be represented as spatial
templates (Logan and Sadler, 1996). The second
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are 88,000 word association judgments by English
speakers from (De Deyne et al., 2018). In each in-
stance participants were presented a stimulus word
and were asked to provide 3 other words. The
dataset contains 4 million responses on 12,000
cues. Based on the collective performance of an-
notators, the dataset provides association strengths
between words (which contain any kind of words,
not just spatial words) as a measure of their se-
mantic relatedness. Finally, we collected a new
dataset of word similarity judgments using Ama-
zon Mechanical Turk. Here, the participants were
presented with a pair of spatial relations at a time.
Their task was to use a slider bar with a numer-
ical indicator to express how similar the pair of
words are. The experiment is similar to the one de-
scribed in (Logan and Sadler, 1996) except that in
our case participants only saw one pair of relations
at a time rather than the entire list. The shared vo-
cabulary between these three datasets covers left,
right, above, over, below, under, near, next, away.

4 Evaluation

As stated in Section 2 the P-vectors we have built
are intended to capture the discriminatory power
of a generative language model to encode and
discriminate different spatial relations, their func-
tional bias. In this section we evaluate the P-
vectors on several common intrinsic and extrinsic
tests for vectors. If successful, this demonstrates
that such knowledge has indeed been captured by
the language model. We evaluate both single- and
multi-word relations.

4.1 Clustering
Method Figure 2 and its complete version in
Appendix C show that different spatial relations
have different context fingerprints. To find sim-
ilar relations in this matrix we can use K-means
clustering. K-mean is a non-convex problem: dif-
ferent random initialisation may lead to different
local minima. We apply the clustering on 67 P-
vectors for multi-word spatial relations and qual-
itatively examine them for various sizes k. The
optimal number of clusters is not so relevant here,
only that for each k we get reasonable associations
that follow our semantic intuitions.

Results As shown in Table 2, with k = 30, the
clustering of perplexity vectors shows acceptable
semantics of each cluster. There are clusters with
synonymous terms such as (15. above, over) or

1. to
2. on
3. away
4. here
5. into
6. from
7. during
8. back of
9. through

10. alongside
11. along side
12. underneath
13. in; against
14. in front of
15. above; over
16. to the side
17. onto; toward

18. up; down; off
19. with; without
20. together; out
21. outside; inside
22. near; beside; by
23. top; front; bottom
24. in between; between
25. along; at; across; around
26. beneath; below; under; behind
27. right; back; left; side; there
28. to the left of; to the right of; next to
29. in back of; in the back of; on the

back of; at the top of
30. on the top of; on side of; on the bot-

tom of; on left side of; on top of; on
the front of; on back of; on the side
of; on front of; on bottom of

Table 2: K-means clusters of spatial relations based on
their P-vectors.
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Figure 3: The P-vectors of two clusters.

(26. below, under). Some clusters have variants of
multi-word antonymous such as (30. on the top of,
on the bottom of ). Other clusters have a mixture
of such relations, e.g. (27. right, back, left, side,
and there).

Discussion The inspection of the perplexities of
two of these clusters in Figure 3 shows that the
language model has learned different selectional
properties of spatial relations: above and over are
generally more selective of their own contexts,
while to the left of and to the right of show a
higher degree of confusion with a variety of the
P-vector contexts. High degree of confusion in
left and right is consistent with the observation
in (Dobnik and Kelleher, 2013) that these rela-
tions are less dependent on the functional relation
between particular objects and therefore have a
higher geometric bias. On the other hand, above
and over seem to be more selective of their con-
texts. The functional distinction between above
and over is mildly visible: the shades of blue in
above are slightly darker than over.

4.2 Analogical reasoning with relations
The intrinsic properties of vector representations
(the degree to which they capture functional asso-
ciations between relations and their objects) can
be tested with their performance in analogical rea-
soning tasks. We compare the performance of
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Single word Multi-words
GloVe (CC) 0.56 0.36
GloVe (VG) 0.43 0.29
LM 0.86 0.45
P-vectors 0.62 0.47
Random 0.11 0.05

Table 3: The accuracies of different representations on
the word analogy test.

the P-vectors (Section 3.3), the embeddings of the
language model used to create the P-vectors and
GloVe embeddings (Section 3.2) in two analogical
tasks which require both geometric and functional
reasoning.

4.2.1 Predicting analogical words
Method The task is similar to the analogy test
(Mikolov et al., 2013; Levy et al., 2015) where two
pairs of words are compared in terms of some rela-
tion “a is to a′ as b is to b′”. We manually grouped
spatial relations that are opposite in one geomet-
ric dimension to 6 groups. These are: Group 1:
left, right; Group 2: above, below; Group 3: front,
back; Group 4: with, without; Group 5: in, out;
and Group 6: up, down. We generate all possible
permutations of these words for the analogical rea-
soning task which gives us 120 permutations. We
expand these combinations to include multi-word
variants. This dataset has 85,744 possible analogi-
cal questions such as (above :: below, to the left of
:: ?). We accept all variants of a particular relation
(e.g. to the right side of and to the right of ) as the
correct answer.

Results As shown in in Table 3, on the single-
word test suite, the LM-embeddings perform bet-
ter than other models. On multi-word test suite
the P-vectors perform slightly better. On both test
suites, GloVe trained on Common Crawl performs
better than GloVe trained on Visual Genome.
However, its performance on multi-word relations
is considerably lower. We simulated random an-
swers as a baseline to estimate the difficulty of
the task. Although the multi-word test suite has
∼ 700 times more questions than the test suite with
single-word relations, it is only approximately 2-
times more difficult to predict the correct answer
in the multi-word dataset compared to the single-
word dataset.

Discussion The perplexity of the language
model on complete context phrases (Multi-words)
is as good indicator of semantic relatedness as
the word embeddings of the underlying language

model and much better than GloVe embeddings.
The good performance of the P-vectors explains
the errors of the language model in generating
spatial descriptions. The confusion between in
front of and on the back of is similar to the con-
fusion between to the left of and to the right
of in terms of their distribution over functional
contexts. Hence, a similar lack of strong func-
tional associations allows the vectors to make in-
ference about geometrically related word-pairs.
This indicates that functional and geometric bias
of words are complementary. There are two
possible explanations why P-vectors perform bet-
ter than LM-embeddings on multi-word vectors:
(i) low-dimensions of P-vectors (57D) intensify
the contribution of spatial contexts for analogi-
cal reasoning compared to high-dimensional LM-
embeddings (300D); (ii) summing the vectors of
the LM-embeddings for multi-words reduces their
discriminatory effect.

4.2.2 Odd-one-out

Method Based on the semantic relatedness of
words, the goal of this task is to find the odd mem-
ber of the three. The ground truth for this test are
the following five categories of spatial relations,
again primarily based on geometric criteria: X-
axis: left, right; Y-axis: above, over, under, below;
Z-axis: front, back; Containment: in, out; and
Proximity: near, away. Only the Y-axis contains
words that are geometrically similar but function-
ally different, e.g. above/over. In total there are
528 possible instances with 3,456 multi-word vari-
ations. The difficulty of the task is the same for
both single- and multi-word expressions as the
choice is always between three words. Hence, the
random baseline is 0.33.

Results Table 4 shows the accuracy in predict-
ing the odd relation out of the three. We also
add a comparison to fully geometric representa-
tions captured by spatial templates (Logan and
Sadler, 1996). Ghanimifard and Dobnik (2017)
show that spatial templates can be compared with
Spearman’s rank correlation coefficient ρX ,Y and
therefore we also include this similarity measure.
Since our groups of relations contain those that are
geometric opposites in each dimension, we take
the absolute value of |ρX ,Y |. Spatial templates are
not able to recognise relatedness without the right
distance measure, |ρX ,Y |. LM-embeddings per-
form better than other vectors in both tests, but
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Single word Multi-words
1− cos |ρ| 1− cos |ρ|

GloVe (CC) 0.62 0.68 0.52 0.58
GloVe (VG) 0.61 0.61 0.58 0.59

LM 0.87 0.90 0.82 0.88
P-vectors 0.72 0.70 0.64 0.52

Sp Templates 0.22 1.0 - -

Table 4: The accuracies in odd-one-out tests.

P-vectors follow closely. All models have a low
performance on the multi-word test suite. When
using |ρX ,Y | all vectors other than P-vectors pro-
duce better results. While we do not have an ex-
planation for this, it is interesting to observe that
|ρX ,Y | is a better measure of similarity than cosine.

Discussion The results demonstrate that using
functional representations based on associations of
words can predict considerable information about
geometric distinctions between relations, e.g. dis-
tinguishing to the right of and above, and this is
also true for P-vectors. As stated earlier, our ex-
planation for this is that functional and geomet-
ric knowledge is in complementary distribution.
This has positive and negative implications for
joint vision and language models used in generat-
ing spatial descriptions. In the absence of geomet-
ric information, language models provide strong
discriminative power in terms of functional con-
texts, but even if geometric latent information is
expressed in them, an image captioning system
still needs to ground each description in the scene
geometry.

4.3 Similarity with human judgments

We compare the cosine similarity between words
in LM- and P-vector spaces with similarities from
(i) word association judgments (De Deyne et al.,
2018), (ii) our word similarity judgments from
AMT, and (iii) spatial templates (Section 3.4). We
take the maximum subset of shared vocabulary be-
tween them, including on, in only shared between
(i) and (ii). Since (i) is an association test, unre-
lated relations do not have association strengths.
There are 55 total possible pairs of 11 words,
while only 28 pairs are present in (i) as shown in
Figure 4.

Method We take the average of the two way as-
sociation strengths if the association exists and for
(i) we assign a zero association for unrelated pairs
such as left and above. Spearman’s rank correla-
tion coefficient ρX ,Y is used to compare the calcu-
lated similarities.
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Figure 4: (i) Word association judgments and (ii) word
similarity judgments

Results Table 5 shows ranked correlations of
different similarity measures. Spatial templates
do not correlate with (WA) word associations and
(WS) word similarities. On 28 pairs there is a
weak negative correlation between spatial tem-
plates and WS. The correlation of similarities of
two different human judgments is positive but
weak (ρ = 0.33). The similarities predicted by
LM-vectors and P-vectors correlate better with
WA than WS.

55 pairs 28 pairs
WA WS WA WS

SpTemp −0.02 −0.08 0.06 −0.35
LM 0.48∗∗∗ 0.15 0.59∗∗∗ 0.08

P 0.48∗∗∗ 0.19 0.40∗∗ −0.08
p-values: ∗< 0.01, ∗∗< 0.01, ∗∗∗< 0.001

Table 5: Spearman’s ρ between pairwise lists of simi-
larities. WA are similarities based on word associations
and WS are direct word similarities from human judg-
ments.

Discussion The low correlation between the two
similarities from human judgments is surprising.
Our explanation is that this is because of different
priming to functional and geometric dimension of
meaning in the data collection task. In the WA
task participants are not primed with the spatial
domain but they are providing general word as-
sociations, hence functional associations. On the
other hand, in the WS task participants are pre-
sented with two spatial relations, e.g. left of and
right of, and therefore the geometric dimension
of meaning is more explicitly attended. We also
notice that judgments are not always unison, the
same pair may be judged as similar and dissimi-
lar which further confirms that participants are se-
lecting between two different dimensions of mean-
ing. This observation is consistent with our argu-
ment that LM-vectors and P-vectors encode func-
tional knowledge. Both representations correlate
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better with WA than with WS. Finally, (Logan and
Sadler, 1996) demonstrate that WS judgments can
be decomposed to dimensions that correlate with
the dimensions of the spatial templates. We leave
this investigation for our future work.

5 Conclusion and future work

In the preceding discussion, we have examined
what semantic knowledge about spatial relations is
captured in representations of a generative neural
language model. In particular, we are interested if
the language model is able to encode a distinction
between functional and geometric bias of spatial
relations and how the two dimensions of mean-
ing interact. The idea is based on earlier work
that demonstrates that this bias can be recovered
from the selectivity of spatial relations for target
and landmark objects. In particular, (i) we test the
difference between multi-word spatial relations at
two levels: the word embeddings which are a form
of internal semantic representations in a language
model and the perplexity-based P-vectors which
are external semantic representations based on the
language model performance; (ii) we project spa-
tial relations in the contexts of other relations and
we measure the fit of the language model to these
contexts using perplexity (P-vectors); (iii) we use
these contexts to build a distributional model of
multi-word spatial relations; (iv) in the evalu-
ation on standard semantic similarity tasks, we
demonstrate that these vectors capture fine seman-
tic distinctions between spatial relations; (v) we
also demonstrate that these representations based
on word-context associations latently capture geo-
metric knowledge that allows analogical reasoning
about space; this suggests that functional and ge-
ometric components of meaning are complemen-
tary: (vi) doing so we also demonstrated that gen-
eration of spatial descriptions is also dependent on
textual features, even if the system has no access
to the visual features of the scene. This has impli-
cations for baselines for image captioning and how
we evaluate visual grounding of spatial relations.

Our work could be extended in several ways, in-
cluding by (i) using the knowledge about the bias
of spatial relations to evaluate captioning tasks
with spatial word substitutions (Shekhar et al.,
2017a,b); (ii) examining how functional knowl-
edge is complemented with visual knowledge in
language generation (Christie et al., 2016; Dele-
craz et al., 2017) (iii) using different contextual

embeddings such as ELMo (Peters et al., 2018)
and BERT (Devlin et al., 2018) for the embedding
layer of the generative language model rather than
our specifically-trained word embeddings; note
that P-vectors are representations of collections of
context based on the performance of the decoder
language model while ELMo and BERT are repre-
sentations of specific context based on the encoder
language model; (iv) comparing language mod-
els for spatial descriptions from different prag-
matic tasks. As the focus of image captioning is
to best describe the image and not for example,
spatially locate a particular object, the pragmatic
context of image descriptions is biased towards the
functional sense of spatial relations. Our analysis
should be extended to different kinds of corpora,
for example those for visual question answering,
human-robot interaction, and navigation instruc-
tions where we expect that precise geometric lo-
cating of objects receives more focus. Therefore,
we expect to find a stronger geometric bias across
all descriptions and a lower performance of our
representations on analogical reasoning.
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Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and
Christian Jauvin. 2003. A neural probabilistic lan-
guage model. Journal of machine learning research,
3(Feb):1137–1155.

Stanley F Chen, Douglas Beeferman, and Ronald
Rosenfeld. 1998. Evaluation metrics for language
models. In DARPA Broadcast News Transcription
and Understanding Workshop, pages 275–280. Cite-
seer.

François Chollet et al. 2015. Keras. https://
github.com/keras-team/keras.

Gordon Christie, Ankit Laddha, Aishwarya Agrawal,
Stanislaw Antol, Yash Goyal, Kevin Kochersberger,
and Dhruv Batra. 2016. Resolving language and
vision ambiguities together: Joint segmentation
& prepositional attachment resolution in captioned
scenes. arXiv preprint arXiv:1604.02125.

Kenneth Ward Church and Patrick Hanks. 1990. Word
association norms, mutual information, and lexicog-
raphy. Computational linguistics, 16(1):22–29.

Guillem Collell, Luc Van Gool, and Marie-Francine
Moens. 2018. Acquiring common sense spatial
knowledge through implicit spatial templates. In
Thirty-Second AAAI Conference on Artificial Intel-
ligence.

BNC Consortium et al. 2007. The british national cor-
pus, version 3 (bnc xml edition). Distributed by Ox-
ford University Computing Services on behalf of the
BNC Consortium.

Kenny R Coventry, Angelo Cangelosi, Rohanna Ra-
japakse, Alison Bacon, Stephen Newstead, Dan
Joyce, and Lynn V Richards. 2004. Spatial prepo-
sitions and vague quantifiers: Implementing the
functional geometric framework. In International
Conference on Spatial Cognition, pages 98–110.
Springer.

Kenny R Coventry and Simon C Garrod. 2004. Saying,
seeing, and acting: the psychological semantics of
spatial prepositions. Psychology Press, Hove, East
Sussex.

Kenny R Coventry, Mercè Prat-Sala, and Lynn
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