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Abstract

The paper describes initial experiments
in data-driven cross-lingual morphological
analysis of open-category words using a
combination of unsupervised morpheme
segmentation, annotation projection
and an LSTM encoder-decoder model
with attention. Our algorithm provides
lemmatisation and morphological analysis
generation for previously unseen low-
resource language surface forms with
only annotated data on the related
languages given. Despite the inherently
lossy annotation projection, we achieved
the best lemmatisation F1-score in
the VarDial 2019 Shared Task on
Cross-Lingual Morphological Analysis
for both Karachay-Balkar (Turkic
languages, agglutinative morphology) and
Sardinian (Romance languages, fusional
morphology).

1 Introduction

This paper describes our submission to the
VarDial 2019 Shared Task on Cross-Lingual
Morphological Analysis (Zampieri et al., 2019).
It is the task of producing lemma, part-of-
speech tag and morphosyntactic annotations
for previously unseen surface forms based on
annotated data in related languages. Since
surface forms are likely to be ambiguous,
morphological analysis systems are supposed
to produce a complete list of all possible and

only valid analyses. These may represent not
only multiple sets of morphosyntactic features,
but also distinct lemmas and part-of-speech
tags. For example, given a Turkish word girdi
‘to enter, entry’, the morphological analyzer
should generate a full set of morphological
readings the word can attain. (see Table 1).
In this paper we explore the task of data-

driven cross-lingual morphological analysis.
We apply this to two relatively low-resource
languages: Karachay-Balkar and Sardinian;
the former is Turkic with agglutinative
morphology, while the latter is Romance and
has fusional morphology.
We believe that it is possible to transfer

morphology across related languages by
exploiting cross-lingual inflection patterns
despite language-specific morphological
features inventories. For example, we
can observe orthography specific common
substring in NOUN surface forms in multiple
related languages which stores the same tag
values set Case = Loc, Number = Plur,
Number[psor] = {Sing, Plur}, Person[psor] =
3 (see Table 2).
Our method is inspired by previous

approaches to neural-network based
morphological analysis using inflection
patterns for Polish (Jędrzejowicz and
Strychowski, 2005), to cross-lingual
morphological tagging for low-resource
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iso word form lemma POS MSD
tur girdi gir VERB Aspect = Perf, Number = Plur, Person = 3,

Tense = Past, Valency = 1, VerbForm = Fin
tur girdi girdi NOUN Case = Nom
tur girdi gir VERB Aspect = Perf, Number = Plur, Person = 3,

Tense = Past, Valency = 2, VerbForm = Fin
Table 1: A complete set of morphological annotations for the Turkish word form girdi, meaning
gir- ‘(to) enter’, girdi- ‘entry’.

iso word form lemma POS MSD
tur kenarlarında kenar NOUN Case = Loc, Number = Plur, Number[psor] =

{Sing, Plur}, Person[psor] = 3
kir клеткаларында клетка NOUN Case = Loc, Number = Plur, Number[psor] =

{Sing, Plur}, Person[psor] = 3
tat мәктәпләрендә мәктәп NOUN Case = Loc, Number = Plur, Number[psor] =

{Sing, Plur}, Person[psor] = 3
bak далаларында дала NOUN Case = Loc, Number = Plur, Number[psor] =

{Sing, Plur}, Person[psor] = 3
kaz аңғарларында аңғар NOUN Case = Loc, Number = Plur, Number[psor] =

{Sing, Plur}, Person[psor] = 3
Table 2: An example of morphological grapheme level pattern for a set of NOUN tag values:
-ләрендә (tat), -larında (tur) and -ларында (kir, bak, kaz).

languages (Buys and Botha, 2016) and to
data-driven morphological analysis for Finnish
(Silfverberg and Hulden, 2018). In contrast to
these approaches, our algorithm1 produces full
morphological analyses for previously unseen
surface forms: it provides both morphological
tags and lemmas as output and it can return
multiple alternative analyses for one input
word form.
We now give a brief description of

our algorithm. First, we orthographically
normalize and automatically transliterate
both source and target language data into
a joint orthographic representation using
lookup tables. We model morpheme-to-tag
inventory for each language family employing
unsupervised morpheme segmentation with
Morfessor (Virpioja, 2013). After this, we
cluster all the target surface forms by making
predictions over only part-of-speech tag with
Morphnet (Silfverberg and Tyers, 2019), an
LSTM encoder-decoder model with attention
implemented using the OpenNMT neural
machine translation toolkit (Klein et al.,
2017). Within each cluster, we apply a
greedy annotation algorithm using the cross-

1Code available at https://github.com/
NIS-2018-CROSS-M/vardial-cma

lingual morpheme-to-tag inventory. The next
step is the annotation projection based on
string intersections between source language
data and target language data. Finally, we
transliterate the analyzed target language data
back to its non-normalized format.

2 Related works

Our method is similar to alignment-based
distant supervision approach, where the aim
is to train a morphological tagger in the
low-resource language through annotations
projected across aligned bilingual text corpora
with a high-resource language. (Buys and
Botha, 2016) propose an embedding-based
model using Wsabie, a shallow neural
network that makes predictions at each
token independently. To project annotations
onto the target language, one uses type
and token constraints across parallel text
corpora. However, we transfer morphology for
target surface forms only through the same
language family without manual constraint
implementation, and cover lemmatisation
with ambiguous annotations produced.
Another trend in cross-lingual

morphological analysis is transfer learning.
The key idea is to employ multi-task learning,

https://github.com/NIS-2018-CROSS-M/vardial-cma
https://github.com/NIS-2018-CROSS-M/vardial-cma
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treating each individual language as a
single task and train a joint model for all
the tasks. All learned representations are
jointly embedded into a shared vector space
to transfer morphological knowledge in a
language-to-language manner. (Cotterell and
Heigold, 2017) propose a character-level
recurrent neural morphological tagger to learn
language specific features by forcing character
embeddings for both high-resource language
and low-resource language to share the same
vector space. In contrast to the projection-
based approach, this model requires a minimal
amount of annotated data in the low-resource
target language. However, we do not use
the target language annotated data and
morphological tagging datasets provided by
the Universal Dependencies (UD) treebanks;
and our algorithm generates lemmas and
multiple sets of morphosyntactic annotations.
Our work is most closely related to the

Morphnet model in (Silfverberg and Tyers,
2019). The essential idea is to analyze
previously unseen surface forms using a corpus
of morphologically annotated data in the
related language. This can represent the
solution to low coverage inherent in rule-based
morphological analyzers. They don’t require
constant updating to keep working, but need to
be updated to cover new surface forms. In our
algorithm, we use Morphnet to cluster target
words by predicting over part-of-speech tags
and then to generate a full set of morphological
readings for words not being analyzed with
the greedy annotation algorithm. However, we
do not use the Universal Dependencies (UD)
treebanks and learn the algorithm to analyze
four open class words: nouns, verbs, adjectives
and adverbs.

3 Data

The data used in the experiments consisted of
tab separated files with five columns: language
code, surface form, lemma, part-of-speech
tag and morphosyntactic description (MSD).
We used unannotated data for two Turkic
target languages (Crimean Tatar, Karachay-
Balkar) and for two Romance target languages
(Asturian, Sardinian). We also used annotated
data for five Turkic source languages (Bashkir,
Kazakh, Kyrgyz, Tatar, Turkish) and for five
Romance source languages (Catalan, French,
Italian, Portuguese, Spanish). We compiled a

corpus of segmented target language surface
forms with Morfessor.

3.1 Normalization

We discarded all the diacritics in the
Romance languages set, e.g. a Portuguese word
seqüência ‘sequence’ becomes sequencia. In
the Turkic languages set, the Turkish data
was transliterated from Latin into Cyrillic,
e.g. gelen ‘coming’ becomes гелен. In the
Karachay-Balkar data, we discarded grapheme
‘ъ’ , e.g. чыкъгъанды ‘appeared’ becomes чык-
ганды. We also discarded all the diacritics in
the Bashkir, Kazakh, Kyrgyz and Tatar data,
e.g. Kazakh word шығармалардың ‘complete
works’ becomes шыгармалардын.

3.2 Morpheme segmentation

We employed default recursive training of the
Morfessor model. In recursive training, the
current split for the processed surface form is
removed from the model and its morphemes
are updated accordingly. After this, all possible
splits are tried by choosing one split and
running the algorithm recursively on the
created morphemes. The best split is selected
and the training continues with the next
surface form. We did not tune the Morfessor
model with the average morpheme length and
the approximate number of desired morpheme
types because we want to use the algorithm
unsupervised. To train the model, we split
the data into 80% train data and 20% test
data. Consider an example of the output for
the following input Karachay-Balkar surface
forms, where the + sign implies the morpheme
boundary:

нюзюрлеринде нюзюр+леринде
экземпляр эк+з+е+м+п+ля+р
политикасында политика+сында

4 Methodology

In this section we describe our approach
to data-driven cross-lingual morphological
analysis implemented specifically for the
Turkic languages. We refer to the source
language annotated data as Source, to the
target language unannotated data as Target
and to the corpus of segmented target surface
forms as Morf. POS is always one of NOUN ,
V ERB, ADJ , or ADV .
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Figure 1: A graphical structure for modeling
cross-lingual morpheme-to-tag inventory for
Turkic languages. Source, Target and Morf are
represented as S, T and M, respectively.

4.1 Morpheme-to-tag inventory

The key idea of modeling cross-lingual
morpheme-to-tag inventory is automatic
revealing of cross-lingual inflection patterns
using unsupervised morpheme segmentation
and string intersections between Source,
Target and Morf.
We assume the morpheme-to-tag inventory

to be specific to each part-of-speech tag
and we do not merge the inventories in
the experiments. We also do not compile
the inventory for ADJ and ADV surface
forms, since the latter do not store any
morphosyntactic description in Source, e.g.
борын ‘langsyne’ (word form), борын (lemma),
ADV (POS), ’_’ (MSD). 116 out of 4146
(2%) ADJ surface forms in Source store
only one tag value Degree=Comp which we
consider to be statistically insignificant for
model performance.
In agglutinative languages (Turkic family)

the stem is invariant across different word
forms. We generate distinct morphosyntactic
features with a single root-word and map
morphemes with morphological features,
e.g. morpheme лар stores the feature
Number=Plur for nouns and verbs. We
represent each word as a grapheme level
sequence stemi+m1i+ ...+mni, so that stemi

is a lemmai for word formi. For example,
the stem of a word нюзюрлеринде is ню-
зюр ‘promise’ and the lemma is нюзюр.
We also refer to the first morpheme m1

in each morphologically segmented word
form m1, ...,mn in Morf as the Morfessor
lemma. Consider the segmented word form
нюзюр+леринде with the Morfessor lemma
нюзюр and m2 леринде.
The overall scheme for modeling NOUN

and VERB cross-lingual morpheme-to-tag
inventories is outlined in Figure 1, where
the respective string intersections between
Source, Target and Morf are found. Here,
we first compute the word form intersection
between Source and Target, and the lemma
intersection between Source and Morf . If the
word form in Target can be found in Source
and if the respective lemma in Morf can be
found in Source, we generate the following
unit sequence: Target word form, segmented
Target word form, Morfessor lemma, Source
word form, Source lemma, Source POS and
Source MSD. Within each unit sequence in the
intersection, we project the SourceMSD of the
word form onto the second morpheme m2 in
the Target segmented word form. Finally, we
create the respective morpheme-to-tag pair.
For example, we have the following analysis

in Source: музыкада (word form), музыка
‘music’ (lemma), NOUN (POS), Case=Loc
(MSD). We can also find the same word
form музыкада in Target and the respective
segmented word form музыка+да in Morf
(the Morfessor lemma is музыка and the
segmented morpheme is да). On the basis of
the word form intersection and the lemma
intersection, we project the MSD Case=Loc
onto the morpheme да. Thus, we create the
morpheme-to-tag pair да : Case=Loc.
Since a single morpheme-to-tag pair

can represent a concatenated string of
distinct morphemes mapped with a set of
morphological tag values, we additionally
retrieve morpheme-to-tag pairs within
each cross-lingual inventory. It is achieved
by computing the difference between the
morpheme strings and the difference between
the tag values sets. For example, NOUN
morpheme-to-tag inventory stores the
following pairs:

ларын Case=Acc,
Number=Plur, Number[psor]=
{Sing, Plur}, Person[psor]=3

ын Case=Acc, Number[psor]={Sing,
Plur}, Person[psor]=3

In this case, we compute the difference
between the two morpheme-to-tag pairs, i.e.
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Figure 2: A graphical structure for morphological analysis of Karachay-Balkar surface forms.

ларын− ын→

Case = Acc,

Number = Plur,

Number[psor] =

{Sing, P lur},
P erson[psor] = 3


\


Case = Acc,

Number[psor] =

{Sing, P lur},
P erson[psor] = 3



As a result, we map previously unretrieved
morpheme лар with the tag value
Number=Plur.

4.2 A greedy annotation algorithm

We cluster all the target surface forms by
making predictions over only part-of-speech
tags with Morphnet trained through Source.
Each target surface form is processed in the
following manner (see Figure 2). Due to the
reasons described in Section 4, we consider
word formi to be lemmai and MSDi to be
’_’ for all the surface forms in ADJ and ADV
clusters.
In NOUN and V ERB clusters, we apply a

greedy annotation algorithm to inflect a lemma
and a morphosyntactic description for each
surface form, which we now describe.

All morpheme-to-tag pairs in NOUN and
V ERB cross-lingual inventories are sorted by
the morpheme length in the descending order.
First, the longest cross-lingual morpheme is
matched with a substring of the processed
surface form starting from its end. If match,
the respective inflection pattern is projected
onto the surface form. If it fails to match,
the next surface form is processed. After
this, we deinflect a lemma by computing the
difference between the surface form string and
the matched morpheme string.
For example, one of the longest morphemes

ларындан (Case=Abl, Number=Plur,
Number[psor]={Sing, Plur}, Person[psor]=3)
is matched with a target surface form
ызларындан. The respective inflection
pattern is projected onto the surface form.
The inflected lemma is the difference
ызларындан − ларындан → ыз ‘trace’.
Finally, we get a full analysis set: ызларындан
(word form), ыз (lemma), NOUN (POS),
{Case=Abl, Number=Plur, Number[psor]=
{Sing, Plur}, Person[psor]=3} (MSD).
Out-of-vocabulary cross-lingual morpheme-

to-tag pairs and ambiguous target surface
forms are the potential weak points of the
greedy algorithm. If the analysis with the
greedy algorithm fails:
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• we consider non-analyzed NOUN surface
forms to have the following analysis.
Since a zero affix stores ‘Case=Nom’ tag
value, we assume wordform string to be
the respective lemma and MSD to be
‘Case=Nom’. For example, юг ‘South’
(word form), юг (lemma), NOUN (POS),
’_’ (MSD).

• we give non-analyzed V ERB surface
forms to Morphnet as the input. The
output is a full morphological analysis
with ambiguous annotations, merged with
the previously analyzed surface forms.

To correct the analyses acquired with the
greedy algorithm and Morphnet predictions,
we project annotations from Source across
Target on the basis of string intersection (one-
to-one orthographic match). We suppose that
the intersection keeps loan words and cognates,
which share the same set of morphological
annotations. Finally, we employ transliteration
of the analyzed target data back to its non-
normalized format.

5 Experiments and results

We present results for six experiments and
compare the performance of our algorithm on
the VarDial 2019 CMA Shared Task with the
baseline system. Since analyzed surface forms
can have multiple morphological analyses, the
results are evaluated on precision, recall and
F1-score (Silfverberg and Tyers, 2019).

5.1 Experiment on Test Data

We performed four experiments in the
orthographically non-normalized and
normalized data scenarios on each language
family.

Experiment 1. Turkic languages,
normalized data
Source: Bashkir (bak), Kazakh (kaz), Kyrgyz
(kir), Tatar (tat), Turkish (tur).
Target : Crimean Tatar (crh).

Experiment 2. Turkic languages, non-
normalized data
Source: Bashkir (bak), Kazakh (kaz), Kyrgyz
(kir), Tatar (tat), Turkish (tur).
Target : Crimean Tatar (crh).

Experiment 3. Romance languages,
normalized data
Source: Catalan (cat), French (fra), Italian

(ita), Portuguese (por), Spanish (spa).
Target : Asturian (ast).

Experiment 4. Romance languages, non-
normalized data
Source: Catalan (cat), French (fra), Italian
(ita), Portuguese (por), Spanish (spa).
Target : Asturian (ast).

5.2 Experiment on Surprise Language

In these experiments the target languages
were unknown before the data release.
We performed two experiments only
in the orthographically normalized data
scenario since the normalization improved the
performance on the test data.

Experiment 5. Turkic languages,
normalized data
Source: Bashkir (bak), Kazakh (kaz), Kyrgyz
(kir), Tatar (tat), Turkish (tur).
Target : Karachay-Balkar (krc).

Experiment 6. Romance languages,
normalized data
Source: Catalan (cat), French (fra), Italian
(ita), Portuguese (por), Spanish (spa).
Target : Sardinian (srd).
Tables 3, 4, 5, 6 show the results on

complete analyses including lemma, part-of-
speech tag and morphosyntactic description.
Our algorithm delivers the best F1-score on
lemma prediction for Karachay-Balkar and
Sardinian languages.

6 Discussion

Our approach of representing a surface form
as a grapheme level sequence of stem and
morphemes, along with retrieving cross-lingual
inflection patterns improves performance on
lemmatisation comparing to the baseline
system. Despite the fact that this approach
naively appears suitable only for agglutinative
morphology, we yet achieve the best results
for Sardinian (fusional morphology) in the
VarDial 2019 Shared Task on CMA.
We looked at the analyses for the Karachay-

Balkar language and classified the errors
into nine categories: (1) Out-of-vocabulary
morpheme-to-tag pairs; (2) Boundary
between stem and morphemes; (3) Part-of–
speech tag prediction; (4) Analysis
overgeneration; (5) Insufficient analysis
set; (6) Statistical assumption based error;
(7) Back transliteration; (8) Substandard
forms; (9) Derivational morphemes.
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A common source of first-category errors is
found in lemmatisation and morphosyntactic
description of the surface forms storing out-
of-vocabulary morphemes. For example, the
morpheme ла was not retrieved when modeling
the cross-lingual inventory. As a result, the
algorithm produced the lemma *эмиратла
and the MSD *Case=Acc of the NOUN эми-
ратланы rather than эмират ‘emirate’ and
Case=Acc, Number=Plur.
The algorithm also generated both correct

and incorrect annotations for the same input
form; this can be considered as the second
error category. For example, we get one
correct analysis for the word башланды
with the lemma башлан ‘beginning’ and the
incorrect one with the lemma *башла. It can
be explained as the overenthusiastic greedy
annotation when the cross-lingual morpheme
being a substring of the lemma string.
For the third error category consider the

VERB юлеширге ‘to divide’ analyzed with
Morphnet as *NOUN. Consequently, the
algorithm produced the lemma *юлешир and
the incorrect MSD *Case=Dat instead of
юлеш and Case=Dat, Tense=Aor, Valency=2,
VerbForm=Vnoun.
The fourth error category includes

superfluous analysis generation, e.g. we
get two analyses for the VERB эта (a form
of the auxiliary verb ‘to be’) with the correct
morphosyntactic annotation Aspect=Imp,
Valency=1, VerbForm=Conv and the
redundant one *Aspect=Imp, Valency=2,
VerbForm=Conv. This error can also occur
when one surface form is predicted with
two different part-of-speech tags, e.g. the
word къарачай-малкъар ‘Karachay-Balkar’ is
analyzed as both NOUN and *VERB.
For errors of the fifth type we have

the NOUN джолларын (lemma джол,
meaning ‘road’) given only one correct
annotation Case=Acc, Number=Plur,
Number[psor]={Sing, Plur}, Person[psor]=3
instead of two possible. Moreover, there are
ambiguous morphemes which store more than
one tag value set. Consider the compound
NOUN премьер-министрни with the lemma
премьер-министр, ‘prime-minister’ having
two correct MSDs Case=Acc and Case=Gen.
In contrast, our algorithm provided only one
correct MSD Case=Acc.
Errors of the seventh category can be

model Recall Precision F1
experiment 1 66.91 33.32 44.49
experiment 2 25.07 9.88 14.17
experiment 3 62.09 31.82 42.07
experiment 4 67.70 13.83 22.97
baseline crh 36.43 44.74 40.16
baseline ast 66.64 70.73 68.62
experiment 5 43.01 35.59 38.95
experiment 6 74.58 37.15 49.60
baseline krc 39.59 50.94 44.55
baseline srd 66.42 67.28 66.85

Table 3: Results for morphosyntactic
description prediction.

model Recall Precision F1
experiment 1 76.75 34.85 47.94
experiment 2 32.43 13.15 18.72
experiment 3 35.34 21.02 26.36
experiment 4 58.53 13.43 21.85
baseline crh 56.87 59.66 58.23
baseline ast 62.28 59.90 61.07
experiment 5 63.30 51.82 56.99
experiment 6 48.07 32.55 38.82
baseline krc 54.90 56.91 55.89
baseline srd 35.73 35.59 35.66

Table 4: Results for lemma prediction.

model Recall Precision F1
experiment 1 87.72 67.47 76.27
experiment 2 80.29 33.94 47.71
experiment 3 75.66 61.09 67.60
experiment 4 73.71 23.16 35.25
baseline crh 77.37 79.38 78.36
baseline ast 75.40 73.53 74.45
experiment 5 87.87 67.61 76.42
experiment 6 87.29 62.28 72.69
baseline krc 77.38 79.13 78.25
baseline srd 68.12 68.60 68.36

Table 5: Results for POS prediction.

model Recall Precision F1
experiment 1 58.39 25.53 35.53
experiment 2 24.93 9.13 13.36
experiment 3 26.15 12.76 17.15
experiment 4 49.22 9.54 15.99
baseline crh 29.29 36.04 32.32
baseline ast 44.56 44.26 44.41
experiment 5 39.57 32.38 35.61
experiment 6 36.54 17.08 23.28
baseline krc 34.77 44.94 39.21
baseline srd 26.85 26.10 26.47

Table 6: Results for full analysis prediction:
lemma + POS + MSD.
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found in the lemmas containing mismatched
graphemes къ and гъ. For example, the NOUN
де-факто ‘de facto’ receives the lemma *де-
факъто instead of де-факто.
The eighth error category is represented

by substandard attested word forms, e.g. the
generated lemma *энтта for the ADV энт-
та is confused with the correct lemma энтда
‘again’.
Errors of the ninth category are considered

to be the incorrect lemmas for the word forms
containing the derivational morphemes ду, ды,
and ди. These can be found specifically in
ADJ and do not store any morphosyntactic
description. The algorithm produced the
lemma *джокъду for the ADJ джокъду ‘no’
derived from the underlying stem and the
actual lemma джокъ ‘nothingness’.
We suggest that the rate of errors in the

first and the second categories can probably
be reduced by applying GBUSS algorithm
(Shalonova et al., 2009) which proved to
perform better than Morfessor. Another
approach is to include the morphological
information on lemma and suffixes into
the character-based word representations
learned by the bi-LSTMs (Özateş et al.,
2018). The errors of the third, fourth and
fifth categories might be partially resolved
with the Morphnet hyperparameters tuning,
e.g. increasing a probability threshold and
adjusting the maximal number of output
candidates specifically for each POS cluster.
Back transliteration errors can be reduced
by employing byte-pair encoding (BPE)
which allows to eliminate the orthographic
normalization. Finally, semi-supervised
learning and retrieving ADJ cross-lingual
morpheme-to-tag pairs might solve the sixth,
eighth and ninth error categories.

Future Work

In future work we are planning to experiment
with Slavic languages (fusional morphology).
Hard attention models for morphological

analysis are the object of our further
exploration since these proved to deliver
a better performance in the low-resource
language scenario (Cotterell et al., 2018).
Another direction is to make use of

cognate identification as it might improve
morphology transferring across the single
language family. Cognates tend to share the

same language knowledge, e.g. English tooth
and German Zahn have the same semantic
meaning and morphosyntactic features. This
can be achieved with applying phoneme level
Siamese convolutional networks (Rama, 2016)
or generating multilingual cognate tables by
clustering surface forms from existing lexical
resources (Wu and Yarowsky, 2018).

Conclusion

In this paper we proposed an approach
for data-driven cross-lingual morphological
analysis in a low-resource language setting
based on a combination of unsupervised
morpheme segmentation, annotation
projection and an LSTM encoder-
decoder model with attention. Despite
the morphological differences between
agglutinative and fusional languages, our
algorithm obtains the best performance
on lemmatisation for Karachay-Balkar and
Sardinian languages in the VarDial 2019
Shared Task on CMA.
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