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Abstract

The conversion of romanized texts back to the
native scripts is a challenging task because
of the inconsistent romanization conventions
and non-standard language use. This prob-
lem is compounded by code-mixing, i.e., us-
ing words from more than one language within
the same discourse. In this paper, we propose
a novel approach for handling these two prob-
lems together in a single system. Our approach
combines three components: language iden-
tification, back-transliteration, and sequence
prediction. The results of our experiments on
Bengali and Hindi datasets establish the state
of the art for the task of deromanization of
code-mixed texts.

1 Introduction

Ad-hoc romanization is the practice of using the
Roman script to express messages in languages
that have their own native scripts (Figure 1). The
phenomenon is observed in informal settings, such
as social media, and is due to either unavailability
of a native-script keyboard, or the writer’s prefer-
ence for using a Roman keyboard. Rather than fol-
lowing any predefined inter-script mappings, ro-
manized texts typically constitute an idiosyncratic
mixture of phonetic spelling, ad-hoc translitera-
tions, and abbreviations. A great deal of informa-
tion is lost in the romanization process due to the
difficulty of representing native phonological dis-
tinctions in the Roman script. This makes dero-
manization of such messages a challenging task
(Irvine et al., 2012).

Another phenomenon that further complicates
the task of deromanization is code-mixing, which
occurs when words from another language (typi-
cally English) are introduced in the messages (e.g.,
the word decent in Figure 1). Code-mixing is par-
ticularly common in multi-lingual areas such as
South Asia (Bali et al., 2014). In many cases, the

(a) tomake to decent mone hoyechilo 

(b) B B E B B 

(c) ত োমোকে ত ো decent মকে হকেছিল 

(d) "you" "like" "decent" "in mind" "was" 

(e) "you seemed a decent person" 

Figure 1: An example Bengali sentence that involves
both romanization and code-mixing: (a) original mes-
sage; (b) implied language tags; (c) target deroman-
ization; (d) word-level translation; (e) sentence-level
translation.

English words have no transliterated equivalents
in the native language and script.

In this paper, we address the task of deroman-
ization of code-mixed texts. This normalization
process is necessary in order to take advantage of
NLP resources and tools that are developed and
trained on text corpora written in the standard form
of the language, which in turn can facilitate tasks
such as sentiment analysis and opinion mining in
the social media. In addition, web-search queries
are often expressed in a romanized form by speak-
ers of languages that use non-Latin scripts, such as
Arabic, Greek, and Hindi (Gupta et al., 2014b).

The task of deromanization of code-mixed texts
is related to the study of language variation. Ad-
hoc romanization represents a language variety,
which resembles the usage of multiple scripts in
some languages (e.g., Tajik). Code-mixing can
also be considered a language variety, which ex-
hibits similarities to dialects whose lexicons are
strongly influenced by a different language (e.g.,
Upper Silesian).

The individual sub-tasks of deromanization of
code-mixed texts have been investigated in prior
work, but we are the first to incorporate them in a
single system. Workshops and shared tasks have
been devoted to code-mixing, including the prob-
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lem of word-level language identification (Chit-
taranjan et al., 2014; Choudhury et al., 2014).
Transliteration and back-transliteration is a well-
understood problem, which also has been the
topic of several shared tasks (Duan et al., 2016;
Chen et al., 2018). However, unlike romanization,
transliteration is focused on names rather than dic-
tionary words, and usually performed without con-
sidering the context of the word in a sentence. Fi-
nally, a number of papers address the deromaniza-
tion of social media contents and informal texts,
but propose no effective way of handling the code-
mixing issue (Irvine et al., 2012; May et al., 2014).
We show that this limitation leads to sub-optimal
performance on deromanization.

In this paper, we propose a novel approach for
tackling the problem of romanization and code-
mixing together in a single system. Since suf-
ficiently large annotated data sets for training an
end-to-end approach are not available, we com-
bine supervised models for the three main com-
ponents of the complete task: (a) word-level lan-
guage identification, (b) back-transliteration, and
(c) word sequence prediction. These modules in-
volve several diverse techniques, including neu-
ral networks, character-level and word-level lan-
guage models, discriminative transduction, joint
n-grams, and HMMs. We perform experiments
on three datasets that represent two languages, in-
cluding a new dataset that we have collected and
annotated ourselves. The results show that our
system is substantially more accurate than Google
Translate, which is the only publicly available tool
that can be applied to this task.

Our main contributions are: (1) a novel ap-
proach to deromanization of code-mixed texts
through the combination of word-level language
identification, back-transliteration, and sequence
prediction; (2) a system that establishes the state of
the art on the task; and (3) an annotated dataset of
romanized Bengali messages. We make our code
and data publicly available.1

2 Related Work

The tasks of deromanization and word-level lan-
guage identification have been considered sepa-
rately in the majority of the previous work.

1https://github.com/x3r/deromanization

2.1 Language Identification

While the identification of language of a monolin-
gual document is a well studied problem, the task
of word-level language identification has also gar-
nered a fair amount of attention recently. A num-
ber of different approaches have been proposed
for the task. Among the unsupervised approaches,
dictionary-based and statistical language model-
ing approaches are the most common. Conditional
Random Fields (CRF) and Support Vector Ma-
chines (SVMs) are among the most used super-
vised approaches.

The unsupervised approaches require no word-
level annotation of mixed-code texts, but gener-
ally achieve low accuracy. Dictionary-based ap-
proaches make use of words and their frequen-
cies in wordlists to determine the origin of a to-
ken (Barman et al., 2014; Das and Gambäck,
2014; Verulkar et al., 2015). However, those ap-
proaches cannot handle spelling variations and
non-standard romanizations in code-mixed data.
Statistical language modeling approaches em-
ploy n-gram probabilities which are derived from
monolingual corpora. Both word and character n-
grams have been used in the literature. The ap-
proach of Yu et al. (2013), which determines the
probability of the next word being a code-switched
word based on the previous n-words, achieves
only 53% accuracy on the Sinica (Mandarin-
Taiwanese) corpus. A character n-gram based ap-
proach of Das and Gambäck (2014) achieves ap-
proximately 70% accuracy when tested on Bengali
and Hindi.

The supervised approaches for language iden-
tification generally employ hand-crafted features
such as capitalization information, character n-
gram, and lexicon presence etc. CRFs make use
of a set of features to determine the most prob-
able language labels for a token sequence (King
and Abney, 2013; Chittaranjan et al., 2014; Bar-
man et al., 2014), and achieve accuracy in the low
90% on the evaluated languages. SVMs are also
commonly employed for language classification
(Barman et al., 2014) and achieve consistent per-
formance (low 90%) on Bengali and Hindi. King
and Abney (2013) employ Hidden Markov Mod-
els (HMM) trained using Expectation Maximiza-
tion (EM) algorithm for the task, which can per-
form on par with the CRFs. Finally, supervised
approaches that use contextual features generally
outperform approaches that cannot utilize them.
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2.2 Deromanization

Though a number of papers address the deroman-
ization of social media contents and informal texts,
they propose no effective way of handling the
code-mixing issue.

Short Message Service (SMS) is a potential
source of romanized texts due to the difficulty of
typing in the native-script keyboard. A supervised
deromanization approach of Irvine et al. (2012)
uses an HMM to combine the candidates derived
from a character-level transliteration model and
a dictionary derived from automatically aligned
words. The approach achieves 51% word-level
accuracy on a self-annotated corpus of informal
Urdu text messages.

Chakma and Das (2014) employ several su-
pervised approaches for the automatic transliter-
ation of code-mixed social media texts, which are
based on joint source channel (JSC) and Interna-
tional Phonetic Alphabet (IPA). The experiments
on Bengali-English and Hindi-English social me-
dia datasets show that the IPA-based approach out-
performs the JSC-based approaches, achieving ap-
proximately 80% accuracy.

A supervised approach for converting Dialec-
tical Arabic written in Latin script (Arabizi) to
Arabic script of Al-Badrashiny et al. (2014) em-
ploys a character-level finite state transducer that
generates transliteration candidates. A morpho-
logical analyzer is then used to filter the candi-
dates and a language model to choose the output
transliteration. The approach achieves 74% word-
level transliteration accuracy on a Egyptian Ara-
bizi SMS corpus.

A supervised approach of van der Wees
et al. (2016) uses a character-based transliteration
model which is incorporated as a component in the
pipeline for an Arabizi-to-English phrase-based
machine translation system. A contextual disam-
biguation with a character-level language model is
then used for selecting between the transliteration
candidates. When evaluated in the context of the
NIST OpenMT evaluation campaign, the approach
achieves 50% word-level accuracy on the Arabizi
to Arabic deromanization.

Hellsten et al. (2017) propose a supervised ap-
proach for transliteration of romanized keyboard
input to native scripts based on Weighted Finite
State Transducers (WFST). The approach em-
ploys target word lists and pair language mod-
els constructed from the source and target align-

ments, and incorporates several weight pushing
approaches for fast and memory-efficient decod-
ing. The experiments are conducted on manually
annotated Hindi and Tamil datasets and achieve
84% and 78% word-level accuracy, respectively.
The approach was launched in the Google Gboard
keyboard for 22 South Asian languages.

3 Methods

In this section, we present our approach for con-
verting romanized code-mixed texts to their na-
tive scripts. It consists of three main compo-
nents: language identification (Section 3.1), back-
transliteration (Section 3.2), and sequence predic-
tion (Section 3.3).

3.1 Language Identification

We approach language identification as a sequence
labeling task, in which a sequence of word to-
kens in a code-mixed text is transformed into a
sequence of the binary language tags (c.f., Fig-
ure 1b). Without loss of generality, we assume that
one of the languages is English. Depending on the
language label generated by this module, each in-
put word is either fed into our back-transliteration
module (Section 3.2) or copied unchanged to the
final output.

Our supervised language identification module
is based on the encoder-decoder model of Najafi
et al. (2018).2 On the language identification task,
the encoder-decoder model achieves higher accu-
racy than a bi-directional Long Short Term Mem-
ory (LSTM) network with a CRF layer which is
designed for sequence labeling tasks such as part-
of-speech tagging (POS) and named entity recog-
nition (NER) (Huang et al., 2015). This may be
due to the nature of the language identification
task, or the use of rich features in the encoder
RNN.

The encoder takes character-level and word-
level embedding of the input tokens as features in
a bi-directional LSTM network over the input se-
quence. The outputs of bi-directional LSTM ap-
plied to characters of each word are concatenated
and passed through a dropout layer to construct
the character-level embedding. The capitalization
pattern indicators (e.g. first letter is capital or all
letters are capital) are then concatenated to these
feature vectors. Pre-trained English word- and

2https://github.com/SaeedNajafi/ac-tagger
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character-embeddings help the model identify En-
glish words in romanized texts. A fully-connected
layer produces the final hidden vectors of the in-
put sequence. The decoder’s forward-LSTM gen-
erates output tokens incrementally from left-to-
right; the output tokens are conditioned on the hid-
den vectors and the generated tokens from the pre-
vious steps. During the test phase, beam search is
used to generate the outputs.

3.2 Back-Transliteration

Back-transliteration from romanized texts to the
native scripts is difficult because there is gener-
ally only one correct way to render the roman-
ized word to the native form (Knight and Graehl,
1998). We propose to overcome this problem by
pooling the top-n predictions from three diverse
transliteration systems: (a) Sequitur, a generative
joint n-gram transducer; (b) DTLM, a discrim-
inative string transducer; and (c) OpenNMT, a
neural machine translation tool. In addition, we
bolster the transliteration accuracy by leveraging
target word lists, character language models, as
well as synthetic training data, whenever possible.
All of the generated candidate transliterations are
then provided to the sequence prediction module,
which is described in Section 3.3.

Sequitur (Bisani and Ney, 2008) is a data-
driven transduction tool which derives a joint n-
gram model from unaligned source-target data.3

The model reflects the edit operations used in
the conversion from source to target, and allows
for the inclusion of source context in the gen-
erative model. Higher n-gram order models are
trained iteratively from the lower order models.
Sequitur was adopted as a baseline in the most re-
cent NEWS shared task on transliteration (Chen
et al., 2018).

DTLM is a new system that combines discrimi-
native transduction with character and word lan-
guage models (LM) derived from large unanno-
tated corpora (Nicolai et al., 2018).4 DTLM is
an extension of DirecTL+ (Jiampojamarn et al.,
2010). For target language modeling, which is
particularly important in low-data scenarios, Di-
recTL+ uses binary n-gram features based exclu-
sively on the forms in the parallel training data.
This limitation often results in many ill-formed
output candidates. DTLM avoids the error prop-

3https://github.com/sequitur-g2p/sequitur-g2p
4https://github.com/GarrettNicolai/DTLM

agation problem that is inherent in pipeline ap-
proaches by incorporating the LM feature sets di-
rectly into the transducer. The weights of the new
features are learned jointly with the other features
of DirecTL+.

In addition, the quality of transduction is bol-
stered by employing a novel alignment method,
which is referred to as precision alignment.5 The
idea is to allow null substrings on the source side
during the alignment of the training data, and
then apply a separate aggregation algorithm to
merge them with adjoining non-empty substrings.
This method yields precise many-to-many align-
ment links that result in substantially higher trans-
duction accuracy. DTLM was among the best-
performing systems at the recent NEWS shared
task on transliteration (Chen et al., 2018).

As our neural transliteration system, we adopt
the PyTorch variant of the OpenNMT tool (Klein
et al., 2017).6 The system employs an encoder-
decoder architecture with an attention mechanism
on top of the decoder RNN. We insert word
boundaries between all characters in the input
and output, resulting in translation models which
view characters as words and words as sentences.
We apply the default translation architecture pro-
vided by OpenNMT with the exception of using a
bidirectional-LSTM in the encoder model. We op-
tionally generate additional synthetic training data
for the neural system, using a simple romanization
table that maps each native script character to a set
of English letters.

3.3 Sequence Prediction

The transliteration systems process individual
words in isolation, and thus fail to take into ac-
count the context of a word in a sentence. How-
ever, multiple native words may have the same ro-
manized form, so the top-scoring prediction is of-
ten incorrect in the given context. To solve this
problem, we propose a sequence prediction sys-
tem that attempts to select the best prediction from
the pooled candidate list using both the transliter-
ation score and the word trigram language model
score.

We frame the task as a Hidden Markov Model,
where the romanized words are the observed
states, and the words in their original scripts are
the hidden states. The emission probabilities are

5https://github.com/GarrettNicolai/M2MP
6https://github.com/OpenNMT/OpenNMT-py
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Task Language Train Tune Test

LI Bengali 18660 † 2000 † 539 †
Hindi 15980 † 1780 † 3287 †

TL Bengali 12623 ‡ 1000 ‡ 363 †
Hindi 11937 ‡ 1000 ‡ 2465 †

Table 1: The size of the datasets used in our experi-
ments. The sets from the FIRE 2014 and NEWS 2018
shared tasks are marked with † and ‡, respectively.

based on the prediction scores from the translit-
eration systems, which are normalized to repre-
sent valid probability distributions. The transition
probabilities are based on the trigram probabili-
ties from a word language model created with the
KenLM language modeling tool.7 The candidates
and scores of all the systems are then concatenated
together. If a transliteration candidate is gener-
ated by more than one system, the best prediction
score among the systems is considered. Finally,
the combined scores are normalized again.

We use a modified Viterbi decoder to deter-
mine the most likely transliteration sequence from
the generated candidates. The scores are linearly
combined to produce the score of a hidden se-
quence, score(s). Due to the large number of n-
grams and small number of transliteration candi-
dates, the score(s) is heavily skewed towards the
emission scores. To mitigate this imbalance, we
use exponent parameters pt and pe for the tran-
sition scores T (s) and emission scores E(s), re-
spectively. These parameters are tuned on a de-
velopment set. The scoring function is computed
using the following formula:

score(s) = max
k

([log T (s)]pt + [logE(s)]pe) =

max
k

(
n∑

k=1

[T̂ (bk|bk−1bk−2)]
pt +

n∑
k=1

[Ê(ek|bk)]pe)

where T̂ represents the probability of transitioning
from state bk−2 to state bk, and Ê is the probability
of observing ek from state bk.

Both generated transliteration candidates and
foreign words in the code-mixed texts are sources
of out-of-vocabulary (OOV) tokens. Prior to
building the language model, we add a single
UNK token to the corpus. During decoding, the
identified English words and OOV transliterations
are replaced with the UNK token. This results
with OOV words being assigned very low prob-

7https://github.com/kpu/kenlm

Dataset Bengali English Hindi English
Train 48.0 52.0 46.2 53.8
Dev 87.1 12.9 - -
Test 68.3 31.7 75.0 25.0

Table 2: The language balance in the code-mixed
datasets (% of word tokens).

abilities, biasing the sequence prediction module
towards in-vocabulary words.

4 Data

In order to demonstrate the generality of our
approach, we perform experiments on two lan-
guages: Bengali and Hindi. In addition to the
datasets from the FIRE 2014 and NEWS 2018
shared tasks, we create our own annotated devel-
opment set, and generate synthetic romanization
data.

4.1 Code-mixed Data

The data for our language identification module is
from the track on transliterated search of the FIRE
2014 shared task (Choudhury et al., 2014). The
data consist of transliterated search queries, which
include a substantial number of English words,
as shown in Table 2. Search queries constitute a
very different domain from social media messages
that our system is designed for. In particular, they
are rarely composed of complete sentences, which
limits the ability of our sequence prediction mod-
ule to take advantage of the word context.

We hold out approximately 10% of the origi-
nal training data for tuning the hyper-parameters
of our language identification module (Table 1).
Since we have no access to the test sets of the
shared task, we use the development sets as our
test sets. These sets contain 100 Bengali and 500
Hindi search queries, respectively.

In order to mitigate the sparsity of annotated re-
sources, we create our own Bengali development
set. This allows us to develop and tune our system
independently from the test sets. We collect ro-
manized posts from several Facebook groups and
pages, and manually deromanize them. Our devel-
opment set contains 247 sentences and 1990 word
tokens. The percentage of English word tokens in
the development set is much smaller than in the
FIRE 2014 datasets, as shown in Table 2.
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System Bengali Hindi
Dev Test Test

Majority baseline 87.1 68.3 75.0
Word-level ID 87.0 87.5 87.4

Bi-LSTM + CRF 92.4 90.9 93.2
Encoder-decoder 95.2 92.2 95.3

Table 3: Language identification accuracy (in %).

4.2 Transliteration Data
All back-transliteration systems are trained on the
Bengali and Hindi datasets from the NEWS 2018
shared task (Chen et al., 2018). Their parame-
ters are tuned on the corresponding development
sets from the shared task. We create our back-
transliteration test sets from the FIRE 2014 devel-
opment sets by extracting romanized Bengali and
Hindi word tokens together with their correspond-
ing forms in the native scripts. As with the code-
mixed data, the transliteration training and test sets
are heterogeneous: the NEWS 2018 datasets con-
tain mostly proper names, while the FIRE 2014
datasets contain mostly dictionary words.

We derive the character language models and
target word lists for DTLM from publicly avail-
able unannotated monolingual corpora: Bengali
Wikipedia8, a Bengali news corpus9, and a Hindi
news corpus10.

While no additional data is used for the
Hindi models, we experiment with leveraging
language-specific expertise to improve Bengali
back-transliteration. First, since the training data
contains mostly named entities, we augment it
with manually-created transliterations of the most
frequent 700 Bengali words from the news corpus.
Second, since the performance of the neural sys-
tem depends strongly on the amount of training
data, we automatically generate romanizations for
50,000 Bengali words from Wikipedia.

The romanizations are generated with a context-
free mapping from Bengali characters into Latin
letters. As there are many ways to represent Ben-
gali characters to Latin letters, and some Bengali
characters have different representations based on
their position in a word, we allow multiple map-
pings. For example, the Bengali character ‘BO’ is
mapped to three English substrings: ‘b’, ‘ba’, and
‘bo’. Each Bengali character is represented using
on average 1.8, and maximum 3 Latin letters. (We

8https://bn.wikipedia.org/wiki/
9https://scdnlab.com/corpus/

10http://wortschatz.uni-leipzig.de/

System NEWS 2018 data + Annotated data
top-1 top-10 top-1 top-10

Sequitur 22.1 58.7 34.6 69.3
DTLM 29.1 43.9 40.5 61.5
NMT 35.8 52.1 45.7 63.4

Table 4: Impact of manually created transliteration data
on the Bengali development set (in % word accuracy).

make our mapping publicly available.11) In order
to estimate the quality of the mapping script, we
applied it to the Bengali-English training dataset
from the NEWS 2018 shared task, which yielded
21.7% word-level and 78.9% character-level accu-
racy.

5 Experiments

In this section, we present the results for each of
the three tasks.

5.1 Setup

We tune all parameters, including the exponents
pt and ps, of our sequence prediction module, on
the Bengali development set, and apply them un-
changed to both test sets. For the transliteration,
we set the n-gram order of Sequitur to 6. We ap-
ply a grid-search to establish the parameters for
the DTLM transducer and aligner. We set param-
eters of the OpenNMT system to the default set-
tings.

For the sequence prediction, we use pre-trained
Glove word-embeddings of 100 dimensions (Pen-
nington et al., 2014), and derive the character-
embedding of 32 dimensions from the training
data. The training is accomplished with Adam op-
timizer (Kingma and Ba, 2014), dropout regular-
ization, and batch size of 64.

5.2 Language Identification

We evaluate our encoder-decoder model against a
strong general sequence tagging system (Huang
et al., 2015). For this purpose, we adapt an im-
plementation12 of a CRF-based sequence tagging
model on top of RNNs to the language identifica-
tion task (Bi-LSTM + CRF). In addition, we com-
pare to a word-level language identification sys-
tem13 based on word frequencies and character n-
grams (Word-level ID). We also report the result

11https://github.com/x3r/deromanization
12https://github.com/guillaumegenthial/tf ner
13https://github.com/eginhard/word-level-language-id
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System Bengali Hindi
top-1 top-10 top-1 top-10

Sequitur 42.0 82.7 43.6 89.9
DTLM 48.8 70.2 42.7 82.7

OpenNMT 61.0 81.7 41.1 80.4

Table 5: Back-transliteration accuracy on the test sets.

of a majority baseline which classifies every token
as non-English.

The results are shown in Table 3. Our encoder-
decoder achieves the highest accuracy on all sets,
with the CRF system close behind. The lower re-
sults of the n-gram based approach highlight the
issue of the ambiguity introduced through roman-
ization. Because the gold tags for the FIRE 2014
test sets are not publicly available, we are unable
to directly compare to the systems that partici-
pated in that shared task; the best reported results
were 90.5% on Bengali (Banerjee et al., 2014) and
87.9% on Hindi (Gupta et al., 2014a).

5.3 Back-Transliteration

Table 4 shows the impact of enhancing the NEWS
2018 training data with manually-annotated
dataset described in Section 4.2. The result is a
substantial improvement in accuracy of all three
back-transliteration systems. The synthetic data
generated with our mapping script further boosts
the top-1 accuracy of the OpenNMT system by
4.7%, but the impact on Sequitur and DTLM is
negligible.

The results on the test sets are shown in Table 5.
All three systems obtain similar top-1 results on
Hindi. The neural system has the best top-1 accu-
racy on Bengali, which we attribute to the use of
the synthetic data for training. However, Sequitur
achieves the best accuracy among the top-10 pre-
dictions on both languages. The substantial dis-
crepancy between the results on the Bengali de-
velopment and test sets (Tables 4 and 5) are due
to their different domains. The development set is
curated from social media messages which contain
a higher degree of spelling variation that reflects
non-standard language use, while the test set con-
sists of queries from search engine logs.

5.4 Sequence Prediction

We evaluate two variants of our system: the com-
plete system that incorporates all three modules,
and a restricted variant without language identi-
fication, which indiscriminately deromanizes ev-

System
Bengali Hindi

Dev Test Test
Sequitur 47.6 51.0 49.2

Our system 78.2 79.8 84.3
w/o language ID 69.6 50.5 61.6
Google Translate 77.1 60.4 64.4

Table 6: The results on deromanization of code-mixed
texts (in % word accuracy).

ery input word. For the baseline, we concatenate
the top-1 predictions of the Sequitur system. As
we are unaware of another publicly-available sys-
tem for deromanization of code-mixed texts, we
compare to the output of Google Translate (Fig-
ure 2).14

The end results are presented in Table 6.
Our complete system substantially outperforms
Google Translate (GT) on both Bengali and Hindi
test sets. Both GT and our restricted variant un-
conditionally deromanize all tokens regardless of
their language origin. On average, 27% of errors
made by GT on the test sets are due to deroman-
ization of English words. GT outperforms our re-
stricted variant, which we attribute to their vastly
superior resources. These results highlight the im-
portance of handling the code-mixing issue in the
deromanization task.

For the reasons explained in Section 5.2, we are
unable to directly compare to the systems that par-
ticipated in the FIRE 2014 shared task. The best
reported F-score results on the deromanization of
transliterated search subtask were 7.3% for Ben-
gali (Gupta et al., 2014a) and 30.4% for Hindi
(Mukherjee et al., 2014). We attribute the supe-
rior results of our system to its ability to han-
dle spelling variations found in romanized code-
mixed texts.

5.5 Error Analysis

An example output of the proposed deromaniza-
tion system is presented in Figure 3. The errors
are marked in bold and red. Our system incor-
rectly classifies the words ‘1’ and ‘bar’ as English.
These errors can be attributed to the existence of
words with the same spelling in English, as well as
the presence of another English word ‘only’ in the
context. Google Translate avoids making these er-

14Although Google Gboard performs word-level deroman-
ization of a mobile keyboard input, it has no interface for au-
tomatically deromanizing large number of sentences.
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Figure 2: Google Translate interface. The errors are highlighted in yellow.15

(a) but amdr belay only 1 bar 

(b) E B B E B B 

(c) but আমােদর έবলায় only ১ বার 

(d) “but” “our” “case” “only” “one” “time” 

(e) “but only once in our case” 

(f) but আমার έবলায় only 1 bar 

Figure 3: An example system error: (a) original mes-
sage; (b) implied language tags; (c) gold output; (d)
word-level translation; (e) complete translation; (f) our
system output.

rors by always deromanizing all tokens; however,
this indiscriminate approach also produces bewil-
dering Bengali forms that reflect the pronunciation
of English function words ‘but’ and ‘only’ (Figure
2). In addition, both systems make deromaniza-
tion errors on ‘amdr’, which is a contracted form
of the Bengali word ‘amader’. This example il-
lustrates the inherent difficulty of the task, and the
importance of handling the code-mixing and dero-
manization together.

6 Conclusion

We have presented a joint approach for deroman-
ization of code-mixed texts. The experiments
on two languages show that our system achieves
state-of-the-art results. In the future, we plan to
apply our approach to other languages and scripts
that involve both code-mixing and romanization.
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