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Abstract

This paper presents a model that treats seg-
mentation and underlying representation ac-
quisition as parallel, interacting processes. A
probability distribution over mappings from
underlying to surface representations is de-
fined using a Maximum Entropy grammar
which weights a set of underlying represen-
tation constraints (URCs) (Apoussidou, 2007;
Pater et al., 2012). URCs are induced from
observed surface strings and used to gener-
ate candidates. Structural ambiguity aris-
ing from the comparison of segmented out-
puts to unsegmented surface strings is han-
dled with Expectation Maximization (Demp-
ster et al., 1977; Jarosz, 2013). The model suc-
cessfully learns a simple voicing assimilation
rule and segmentation via correspondences
between surface phones and input meanings.
The trained grammar is also able to segment
novel forms affixed with familiar morphemes.

1 Introduction

Segmentation is the task by which continuous
speech is broken up into discrete words. This task
is complicated by the fact that there are no uni-
versal cues to word boundary location. Language-
specific morphological, phonotactic, and prosodic
cues to word boundaries do exist, but these cues are
unavailable in early acquisition because their cooc-
currence with word boundaries has not yet been ob-
served (Perruchet and Vinter, 1998).
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The lexicon and accompanying phonological
knowledge provide a rich source of potential infor-
mation about boundary location. If any substring
from an utterance can be mapped onto a lexical item,
then boundaries can be inferred by identifying the
correspondences between the phones in the surface
string and those in the underlying form. However,
using this knowledge requires that some of the lex-
icon is known to the learner and that segmentation
has already been used successfully to identify sur-
face forms.

The fact that segmentation is a prerequisite to
build the lexicon only precludes lexical information
from being used in segmentation if the two processes
take place in serial, with learners developing the
ability to segment speech before storing any lexical
information. Previous models of segmentation ei-
ther ignore the acquisition of the lexicon (Saffran et
al., 1996a; Saffran et al., 1996b; Perruchet and Vin-
ter, 1998) or do not fully utilize the richness of lex-
ical knowledge (Johnson et al., 2015; Goldwater et
al., 2009). This paper presents a model of segmenta-
tion in which the lexicon, represented by phonologi-
cal underlying forms which correspond to meanings,
is being acquired in parallel with segmentation, and
the two processes are mutually informing. This type
of joint inference has been explored elsewhere, par-
ticularly with regards to the interaction of segmenta-
tion with phonetic categorization and lexical acqui-
sition (Elsner et al., 2013; Elsner et al., 2016), but
little work has been done on the interaction of other
processes with the acquisition of phonological alter-
nations.
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2 Background

2.1 Segmentation

Early work on segmentation excluded the use of
phonological knowledge by design. Saffran et al.
(1996a; 1996b) conducted a series of experiments
in which both infants and adults were tasked with
segmenting continuous speech that had no prosodic
cues to word boundaries, finding in all cases that par-
ticipants were able to segment the data into the com-
posite words. This led to the hypothesis that learners
are able to identify word boundaries solely by track-
ing transitional probability minima in the input.

However, the storage and update of transitional
probabilities is computationally costly and statisti-
cal models have been shown to be successful with-
out relying on their direct computation. One such
model is Perruchet and Vinter’s PARSER (1998).
The PARSER model takes advantage of the fact that
any randomly selected set of syllables is more likely
to reoccur if the syllables are a word than if they
are not, storing a set of weights on encountered sub-
strings rather than explicitly storing and computing
transitional probabilities.

Both of these approaches model segmentation
in isolation. Johnson and Jusczyk (2001) sug-
gested that when phonological cues to word bound-
aries are available, they supercede statistics in word
boundary identification. Infants in their study were
more likely to learn word boundaries cued by
prosodic/phonological information than competing
boundaries cued by statistical information. Further-
more, segmentation is a necessary step toward the
identification of phonological surface forms, which
are the necessary precursor to the learning of phono-
tactics, phonological grammars and underlying rep-
resentations. Phonological acquisition both feeds
and is fed by segmentation; therefore a model of
segmentation that does not incorporate phonological
processes and underlying forms is incomplete.

Similarly, a model of segmentation should not
only model acquisition, but should also model adult-
like behavior. A simple Wug task (Berko Glea-
son, 1958) involves the use of lexical and phono-
logical knowledge to identify correspondences be-
tween phonological content in the surface form and
known morphemes. This results in a segmentation
of the novel word, but this kind of segmentation task

is largely absent from the literature. The use of lexi-
cal knowledge to predict segmentations requires that
the learner entertain multiple possible lexical entries
for a given meaning. The model presented below
uses underlying representation constraints (URCs)
within a standard constraint-based grammar (Prince
and Smolensky, 19932004; Pater et al., 2012; Smith,
2015) to allow the learner to entertain multiple pos-
sible URs. The likelihood of a segmentation is af-
fected by the likelihood of the corresponding URs
and phonological alternations.

2.2 Underlying Representation Constraints
Underlying representation constraints (URCs),
also referred to as lexical constraints, specify the
underlying form for a meaning and are violated
when an alternative underlying form is chosen
(Apoussidou, 2007; Kager, 2008; Eisenstat, 2009).
URCs allow the selection of underlying forms to
happen in parallel with phonological optimiza-
tion, allowing the grammar to choose between
multiple URs with an eye to the phonological
consequences of the decision (Pater et al., 2012).
A sample UR constraint is defined below, using
language from Smith (2015). This constraint spec-
ifies the underlying form /@/ for the indefinite article.

{IND}=/@/ : Assign one violation for
every input set of morphosyntactic fea-
tures corresponding to IND (indefinite
determiner) that is not realized by /@/

URCs represent non-discrete lexical entries. The
phonological representation of a lexical item is dis-
tributed over the set of relevant URCs. When there
are multiple candidate URs and corresponding sur-
face allomorphs, the choice between URs is made
in the phonology in parallel with other phonological
operations (Pater et al., 2012; Smith, 2015) . In-
puts to the phonology are sets of meanings without
any inherent phonological material; following Smith
(2015), these are formalized as sets of morphosyn-
tactic features. Candidates evaluated by the gram-
mar are mappings from underlying to surface forms.

To illustrate how UR constraints interact with the
rest of the phonology, consider the a∼an alternation
in English. Simplifying slightly by ignoring vowel
reduction, the indefinite determiner surfaces as [@]
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before a consonant and [@n] before a vowel.
If the UR of the indefinite determiner were always

/@/, describing this process would require /n/ inser-
tion and the analyst would be tasked with account-
ing for the fact that [n]-epenthesis occurs in only this
specific environment. Likewise, if the UR were as-
sumed to be /@n/, this process would require precon-
sonantal /n/-deletion and the analyst would have to
account for the lack of /n/-deletion elsewhere. With
UR constraints however there is a third possibility:
UR selection. The tableaux in (1) and (2) illustrate
how UR selection can result in a non-default form
surfacing due to pressure from the standard marked-
ness constraint HIATUS, which penalizes adjacent
vowels.

{IND} + DOG HIATUS IND=@ IND=@n

� a. @+dOg→ @dOg ∗
b. @n+dOg→ @ndOg ∗W L

Tableau 1: The default UR, /@/, is chosen when there is no

interaction with markedness constraints

In Tableau (1) there is no possible HIATUS vi-
olation so /@/, the default UR, is chosen. The
default status of /@/ is captured by the ranking
IND=@�IND=@n. Tableau (2) illustrates how a po-
tential HIATUS violation can result in the selection
of a non-default form, creating a surface alternation.
When a markedness constraint outranks the con-
straint specifying the default UR then a non-default
UR can be chosen to repair the markedness viola-
tion.

{IND} + ANT HIATUS IND=@ IND=@n

a. @+ænt→ @ænt ∗W L ∗W
� b. @n+ænt→ @nænt ∗

Tableau 2: The non-default UR, /@n/ is rendered optimal by a

high ranked markedness constraint

The tableaux in (1) and (2) do not consider can-
didates in which the UR→SR mapping is unfaith-
ful. In the URC model, faithfulness constraints eval-
uate faithfulness between the selected UR and cor-
responding surface form. To illustrate the role of
faithfulness in UR selection Tableaux (1) and (2) are
repeated in Tableaux (3) and (4) with MAX and DEP

added to the constraint set and the relevant unfaithful
candidates considered.

{IND} + DOG DEP MAX HIATUS IND=@ IND=@n

� a. @+dOg→ @dOg ∗
b. @n+dOg→ @ndOg ∗W L
c. @+dOg→ @ndOg ∗W ∗
d. @n+dOg→ @dOg ∗W ∗W L

Tableau 3: The default UR is chosen and sufaces faithfully

when there are no interacting markedness constraints

Candidate (d) in (3) illustrates why an /n/-deletion
account if the a∼an alternation does not work, it
is harmonically bounded by (b) due to the lack of
a markedness constraint motivating deletion and (a)
due to the lack of a markedness constraint motivat-
ing non-default UR selection.

{IND} + ANT DEP MAX HIATUS IND=@ IND=@n

a. @+ænt→ @ænt ∗W L ∗W
� b. @n+ænt→ @nænt ∗

c. @+ænt→ @nænt ∗W L ∗W
d. @n+ænt→ @ænt ∗W ∗W ∗

Tableau 4: High ranked faithfulness prevent an unfaithful map-

ping from the default UR from being optimal

Candidate (c) in (4) illustrates why an /n/-
epenthesis analysis of the a∼an alternation does not
work, it is ruled out by high ranked DEP which is
necessary to account for the with the lack of /n/-
epenthesis elsewhere in English in response to HIA-
TUS violations.

UR selection is a viable alternative to faithfulness-
violating phonological alternations when the alter-
nation is either unmotivated or highly restricted.
However, UR selection as described thus far re-
mains a possibility even in cases in which a standard
phonological explanation is preferred. The URC
model provides no convincing reason that UR selec-
tion should not be used in, for example, the English
plural alternation. Smith (2015) holds that the use of
UR selection is limited by the fact that not all inputs
have multiple UR constraints. UR selection is lim-
ited to suppletive forms because only those forms
have multiple URCs. This claim creates problems
for the learnability of URCs. A learner cannot re-
strict the creation of URCs to suppletive forms with-
out first knowing that those forms are suppletive.
The model presented below shows that this stipu-
lation is unnecessary. Removing these restrictions
makes the URC induction task tractable and does not
result in rampant use of UR selection when a simple
phonological solution is available.
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3 Model

3.1 The grammar and learning algorithm
The present model uses URCs along with standard
phonological constraints in a Maximum Entropy
(MaxEnt) grammer (Goldwater and Johnson, 2003)
to learn a probability distribution over segmented
phonological surface forms for any input set of mor-
phosyntactic objects. The training data consists of
mappings from morphosyntactic objects to surface
forms, which have no surface-apparent segmenta-
tion. At no point are segmentations provided to the
learner: segmentations of inputs emerge as a result
of the acquisition of URs, through the induction and
weighting of URCs, and the acquisition of phono-
logical alternations.

In a MaxEnt grammar, constraints are weighted
and candidates’ violations of constraints are repre-
sented by negative integers. The weighted sum of
constraint violations is referred to as the harmony
of a candidate. The closer to 0 the harmony is, the
more likely that candidate is to surface. The prob-
ability distribution over the set of candidates is cal-
culated by applying the softmax function to the set
of harmonies. In this case a single candidate x is a
mapping from underlying to surface form and an in-
put M is a set of morphosyntactic features. This is
shown explicitly in the formula in (1), where ci rep-
resents the number of violations the mapping of M
to x incurs on constraint i, wi represents the current
weight of i, and ΩM represents the set of all candi-
dates in the tableau for input M .

p(x |M) =
e−(

∑
i wici(M,x))

∑
x′∈ΩM

e−(
∑

i wici(M,x′))
(1)

The learner’s goal is to find the set of weights that
maximize the likelihood of the training data T or, in
other words, minimize the negative log likelihood:

L = −
∑

x∈T
log p(x) (2)

This is used as the current model’s objective func-
tion with no regularization. Learning is error-driven
and trained via stochastic gradient descent. In stan-
dard MaxEnt the calculation of the gradient is rela-
tively simple. For a single training datum y, which
in this case is a mapping from a set of morphosyn-
tactic features to a surface string, the gradient of the

loss function with respect to a given weight can be
calculated as follows:

∂L
∂wi

= ci(M,y)−
∑

x∈ΩM

ci(M,x)p(x) (3)

The update to a constraint’s weight given a train-
ing datum is the learning rate times the difference
between the observed number of violations of that
constraint, ci(M,y), and the expected number of
violations based on the current state of the model,∑

x∈ΩM
ci(M,x)p(x).

In this model, however, things are complicated
by the fact that there can be multiple possible seg-
mented outputs that, when segmentation is removed,
produce the observed surface string. As framed here,
the segmentation problem is therefore a problem of
learning structural ambiguity - a topic of much re-
cent work in the phonological learning literature (see
Jarosz (2019) for a recent review). This creates two
challenges for standard stochastic gradient descent
in MaxEnt.

First, the definition of an error must be revised. In
standard error-driven learning it is straighforward to
compare the predicted output and the observed form.
However, in this case the predicted output has more
structure than the observed. Tesar and Smolensky’s
(1998) Robust Interpretive Parsing algorithm over-
comes this issue by using the current grammar to
assign structure to the observed form before mak-
ing a prediction, allowing for the observed and pre-
dicted forms to both be fully structured. Jarosz’s
hidden structure learning algorithm, Expected Inter-
pretive Parsing (2013), is the basis for the algorithm
used here, and the definition of ‘error’ adopted fol-
lows her account: an error occurs when the predicted
form, stripped of structure, does not match the ob-
served form. The learner is therefore agnostic about
segmentation with regard to errors. Both D@1#dOg2

and D@d1#Og2 are acceptable segmented outputs for
the input {DEF}1+{DOG}2, where # represents a
word boundary.

Second, in the update rule above, ci(M,y) refers
to the number of violations of a constraint incurred
by the observed form. However, because the ob-
served form has no structure, the corresponding
structured candidate in the tableau is unknown and
the violations cannot be counted. A solution to this
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problem relies on the use of expectation maximiza-
tion (Dempster et al., 1977; Jarosz, 2013; Jarosz,
2015). An estimate of the observed violations of a
constraint can be made given the grammar’s current
belief about the likelihood of the different segmen-
tations of the unsegmented input. Given a training
datum y, an estimate of the observed violations for a
constraint i can be calculated as in (4), where Zy is
the set of all outputs that are possible segmentations
of the observed string.

ĉi(M,y) =
∑

z∈Zy

ci(M, z)
p(z)∑

z∈Zy
p(z)

(4)

This is equivalent to defining a probability distribu-
tion over the set of segmented candidates that overtly
produce the unsegmented observed form, and then
assigning a probabilistic segmentation to the ob-
served form that is the average of all possible seg-
mentations weighted by their probabilities.

3.2 URC induction

The training data take the form of observed surface
strings and their underlying sets of morphosyntac-
tic objects. Upon encountering a novel datum, the
learner first constructs the complete set of UR con-
straints for all present morphosyntactic objects given
that datum and adds them to the current grammar.
These constraints are then immediately used in the
generation of the candidate set and evaluation of the
grammar.

Given a string and a set of n corresponding mor-
phosyntactic objects, URC induction begins by com-
puting every possible partition of the string into n
non-empty substrings. A URC is then added to the
grammar specifying that every substring is the UR
for every morphosyntactic object in the input. This
process is illustrated below for a sample training da-
tum: the observed surface form [abc] for the mor-
phosyntactic objects {M1}+{M2}.

Segmentation New UR constraints

a#bc
{M1}=a,b {M1}=bc,
{M2}=a, {M2}=bc

ab#c
{M1}=ab, {M1}=c,
{M2}=ab, {M2}=c

Table 1: UR constraints generated from the two possible seg-

mentations of [abc] into two non-vacuous substrings

This method of constraint induction implicitly as-
sumes that all morphosyntactic objects will have
some phonological exponent. It also provides no
mechanism for URCs to specify strings that do not
occur at any point in the training data. In other
words, every underlying form must surface faith-
fully at least once in order to be considered a pos-
sible UR. This assumption is shared by other mod-
els of UR acquisition, such as Albright (2002), and
of segmentation and UR acquisition (Johnson et al.,
2015).

3.3 Candidate generation
For each tableau, candidates are generated from the
input and constraint set. Each URC that makes ref-
erence to a morphosyntactic object in the input de-
fines a possible UR for that object. Candidates are
generated by combining every possible UR for each
morphosyntactic object in the input. Tableau (5) il-
lustrates the set of candidates that would be gener-
ated for the {M1}+{M2} input given the constraints
that had been induced from the [abc] surface form
in Table (5). For the sake of brevity the M1 preced-
ing M2 order is assumed, cutting the number of con-
straints and candidates in half by eliminating all can-
didates that place the exponents of {M2} before that
of {M1}. The actual model assumes no knowledge
of the relative orderings of morphosyntactic objects,
and the candidates with opposite correspondence re-
lations would also be generated. Candidates shown
in bold are consistent with the observed surface form
[abc] and would not produce an error in training.

{M1}1+{M2}2 {M1}=a {M1}=ab {M2}=bc {M2}=c

a. a1#bc2 -1 -1
b. ab1#c2 -1 -1
c. a1#c2 -1 -1
d. ab1#bc2 -1 -1

Tableau 5: Candidates and violations generated from the con-

straints in (5) - the ordering {M1} precedes {M2} is imposed

for brevity

4 Test case: English plural

Voicing assimiliation of the English plural mor-
pheme, by which the plural morpheme surfaces as
[s] after a voiceless consonant and [z] after a voiced
consonant or vowel, was used as a test case for the
model. The model was tasked with segmenting ut-
terences that contained either the definite or indef-
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English Phrase Input String Input Morphemes
a dog @dOg IND, DOG
a cat @kæt IND, CAT

the dog D@dOg DEF, DOG
the cat D@kæt DEF, CAT

the dogs D@dOgz DEF, DOG, PLURAL
the cats D@kæts DEF, CAT, PLURAL

Table 2: Training strings and corresponding sets of morphosyn-

tactic objects for the English plural alternation

inite determiner (DEF/IND) and a singular or plu-
ral noun that ended with either a voiced or voice-
less consonant. The complete set of inputs to the
learner is listed in Table (2); sets of morphemes are
unordered. The task of the learner then, is to learn
the segmentation of the input strings and underly-
ing representations for the definite and indefinite de-
terminers, the roots DOG and CAT, and the plural.
To make possible the learning of voicing assimila-
tion, the constraints AGREE(VOICE), which assigns
violations to adjacent consonants that do not share
the same voicing specification, and IDENT(VOICE),
which assigns violations to corresponding conso-
nants in the UR and surface form that have different
voicing specifications, are added to the constraint
set. The candidate generation algorithm is expanded
to have the ability to generate all IDENT(VOICE) vi-
olating candidates.

It is worth addressing the small size of this test
language, especially in comparison to the corpora
often used to train and test models of segmentation
alone. While small for a model of segmentation, toy
languages of similar size are often used to test mod-
els of phonological alternations (Tesar, 2006; Pater
et al., 2012; Jarosz, 2016) and are justified by the
complexity of the task. The constraint set increases
linearly with the number of unique utterances in the
language, but the number of candidates for any in-
put increases exponentially with the size of the con-
straint set. The small test case was chosen to min-
imize the computational cost of evaluating an ex-
ponentially increasing number of candidates in each
tableau and to ensure an interpretable output.

In all simulations the learner was able segment
with near perfect accuracy. Table (3) shows the total
probability assigned to correct segmentations for all
six inputs after 1000 epochs with a learning rate of
0.1 and an initialization of 1.0 for all weights.

A segmentation was considered correct if a mor-

pheme’s phonological exponent was correctly iden-
tified as corresponding with that morpheme, even
if the resulting phonological surface form was in-
correct. For example, the probability that the
grammar maps the input {√DOG}1+{PLURAL}2 to
the phonological mapping /dOg1+s2/ →[dOg1#s2]
would be included in the total probability for a cor-
rect parse of dogs even though the phonological sur-
face form is incorrect. However, the probabilities
assigned to correct segmentations with incorrect sur-
face forms were very small in all simulations and
should make minimal difference to the total proba-
bility of correct segmentations.

Input String Segmentation Probability
@dOg @#dOg 0.962
@kæt @#kæt 0.959
D@dOg D@#dOg 0.947
D@kæt D@#kæt 0.948
D@dOgz D@#dOg#z 0.954
D@kæts D@#kæt#s 0.933

Table 3: Probability assigned to the correct segmentation of all

phrases after training

The UR learning problem as given to the model
has three solutions. There are two standard solu-
tions in which there is a fixed underlying represen-
tation for the plural, either /s/ or /z/, and it either
voices or devoices, violating IDENT, in order to sat-
isfy AGREE. Given the data in Table (2) there is no
reason to believe that /s/ or /z/ is a more likely UR
for the plural, so the learner should reach these two
solutions with equal likelihood. The third solution is
UR selection, which is specific to the use of URCs,
and involves choosing between the URs /s/ and /z/ to
satisfy AGREE without violating IDENT. The data in
(2) do not suggest that any one solution is preferable
over another, so any solution is considered correct as
long as it results in the desired outputs and segmen-
tations.

In 100 simulations with all weights initialized at
1.0, the learner converged on a single voicing assim-
ilation solution to the critical data points, the cats
and the dogs, 51 times. A dominant solution is de-
fined here as a solution in which there is a single
candidate in both relevant tableau with a probability
greater than 0.70. In 24 of these 51 solutions the plu-
ral was underlyingly voiceless and mapped unfaith-
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4.00 3.75 3.70 0.00
{DOG}+{ PLURAL} {PLURAL}=/z/ AGREE {PLURAL}=/s/ IDENT H p

/dOg+z/→[dOg#z] 0 0 -1 0 -3.70 0.57
/dOg+s/→[dOg#z] -1 0 0 -1 -4.00 0.42
/dOg+s/→[dOg#s] -1 -1 0 0 -7.75 0.01

Tableau 6: A final grammar with free variation between voicing assimilation and UR selection

fully to [+VOICE] after /dOg/, in the remaining 27
the plural was underlyingly [+VOICE] and mapped
unfaithully to [-VOICE] after /kæt/.

In the other 49 runs, UR selection was used to
an extent, but there was no clear dominant solution.
In these cases there was free variation between UR
selection and voicing assimilation candidates which
yielded the same phonological surface form. Be-
cause an error is defined as a mismatch between an
observed surface form and a structureless version of
the predicted surface form, the learner has no rea-
son to select between two candidates with equivalent
surface forms. An example of this type of solution
is shown in Tableau (6). The data as presented in
Table (2) do not favor voicing assimilation or UR
selection, so it is expected that the learner converge
on these kinds of ambiguous solutions frequently.

The effect of a data point that forced one spe-
cific solution to be preferred was tested by adding
the vowel final word eye to the training data in the
singular and plural. The plural form, eyes, surfaces
as [aiz], taking a [+VOICE] plural morpheme with no
possible AGREE violation. To the analyst this sug-
gests that /-z/ is the underlying form of the plural
morpheme and that voicing assimilation is respon-
sible for the [s] that surfaces after voiceless conso-
nants. In 100 more simulations identical to those de-
scribed above but with the eye(s) data points added
to the language, the learner now converged on voic-
ing assimilation with a [+VOICE] UR 96 times. The
remaining four final grammars represented ambigu-
ous solutions similar to that shown in Tableau (6)
and segmentation accuracy remained near ceiling.

Finally, to test the ability of the model to per-
form adult like parsing of novel words the trained
grammar from one of the previous 100 simula-
tions was used to make predictions about the seg-
mentations of the previously unencountered surface
forms [wuks] and [wugz] from the morphosyntac-
tic elements {WUK} and {WUG} plus {PLURAL}.

The probabilities of key candidate segmentations are
shown in Table (4). Generated candidates which are
not possible segmentations of the input string, such
as [wug1#ugz2] are not included in (4), but are all
assigned near zero probabilities.

Input Segmentation Probability
w1#ugz2 0.024

{WUG}1, {PLURAL}2 wu1#gz2 0.009
wug1#z2 0.967
w1#uks2 0.061

{WUK}1, {PLURAL}2 wu1#ks2 0.061
wuk1#s2 0.878

Table 4: Probability of key segmentations of novel words suf-

fixed with the plural morpheme

In these cases the model was able to correctly seg-
ment the novel words based solely on a high ranked
constraint that the underlying form for the plural
morpheme is /z/. In the [wuks] case, the probabil-
ity of the correct segmentation is slightly hurt by the
lack of a surface [z] but [s] here is a possible and
likely phonological exponent of underlying /z/, mak-
ing the correct segmentation drastically more likely
than its competitors.

5 Discussion

When the eye(s) data points were included the train-
ing data were no longer agnostic towards the solu-
tion and the learner converged on the expected as-
similation solution nearly all of the time. Recall that
Smith (2015) stipulates that only suppletive forms
can have multiple URCs in order to prevent the
rampant use of UR selection rather than unfaithful
phonological mappings. In this case, there were a
large number of URCs for every word in the lexicon
but the UR selection solution was reached only 4 out
of 100 times. Consequently the restriction placed on
URCs by Smith seems unnecessary. While there ex-
ists a solution to the dataset in which UR selection
is responsible for every alternation, that solution ap-
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pears strongly disfavored by the learner.
Assimilation represents a large portion of the

space of possible weights compared to UR selec-
tion, making it easier for the learner to find. Setting
aside extraneous UR constraints, the Hasse diagram
in Figure (1) shows the necessary rankings for as-
similation and UR selection. A direct line between
two constraints means that the weight of the higher
constraint must be greater than that of the lower one.

Assimilation:
AGREE {PL}=/Z/

IDENT {PL}=/S/

UR selection:
AGREE IDENT

{PL}=/Z/

{PL}=/S/

Figure 1: Ranking arguments for assimilation and UR selection

Randomly sampling one million sets of weights
from the uniform distribution between 0 and 5, the
range of the final weights of most simulations run
above, the ranking arguments for assimilation are
satisfied 14.68% of the time, and for UR selec-
tion only 3.86%. Assimilation occupies roughly
80% of the solution space. The model implemented
here used no regularization term, but regularization
will further decrease the likelihood of UR selection
as the assimilation solution requires that two con-
straints have weights greater than 0 (AGREE and
IDENT) where the UR selection solution requires
three (AGREE, IDENT, and {PL}=/z/).

6 Conclusions

The acquisition of segmentation, underlying repre-
sentations, and phonological alternations are treated
here as parallel and interacting processes. The result
is a model that succeeds in learning phonological
alternations while also learning segmentation with
near perfect accuracy, albeit on a very simple test
case.

This model succeeds at segmentation for the same
reason that the transitional probability and PARSER
models work. A UR constraint that refers to a
correct UR, such as {√DOG}=/dOg/, will be rein-
forced by every observed output, regardless of the
word’s context. A UR constraint that refers to an
‘incorrect’ UR, such as {√DOG}=/dOgz/, will be

reinforced only by surface forms that result from
one particular concatenation of morphemes. Be-
cause of transitional probability minima, the cor-
rect UR constraints will end up highly ranked. Like
PARSER, this approach effectively tracks statistical
trends in the data without the need to explicitly store
them. Unlike PARSER, this model does so using a
pre-existing phonological framework which allows
for the incorporation of segmentation into a larger
model of phonological learning.

This model relies on the strong assumption that
the meaning of the utterance is known to the learner
as a set of morphosyntactic objects. Consequently,
this model cannot account for Saffran et al.’s (1996)
result, in which participants were able to segment a
language consisting only of nonce words. However,
the Saffran et al. tasks are far removed from nat-
uralistic language acquisition. Segmentation is not
learned in isolation before the rest of acquisition.
Information regarding segmentation, phonological
processes, and underlying representations are made
available to the learner simultaneously.

The assumption that the set of meanings are
known to the learner greatly reduces the complex-
ity of the segmentation task by providing the learner
with the number of boundaries to be drawn, however
this does not necessarily reduce the validity of the
model. A slightly relaxed assumption, that infants
have at least partial knowledge about the meaning of
an utterance and are actively trying to identify corre-
spondences between the phonological material and
this partial meaning, does not seem empirically un-
sound. It is likely that infants are making use of con-
textual cues to make hypotheses about the semantic
content of sentences from an early stage of learning,
as evidenced by research showing that lexical repre-
sentations are present as early as 6 months (Bergel-
son and Aslin, 2017). There is no reason that the in-
fant needs to directly discover how many boundaries
are in an utterance, they need only look for as many
substrings as there are hypothesized meanings.

Beyond acquisition, this model captures the abil-
ity of adult speakers to segment novel words after a
single exposure. Statistical models assume the mini-
mum amount of linguistic knowledge of the learner,
often relying only on representations of phonemes or
syllables. This may be a sound assumption to make
about infants in the earliest stages of acquisition, but
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it fails to allow a mechanism for higher level linguis-
tic information to be incorporated as it is acquired.
The end state of the presented model represents a
speaker that is able to make simultaneous use of lex-
ical and phonological knowledge to segment novel
forms.
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