
Proceedings of The 11th International Natural Language Generation Conference, pages 431–440,
Tilburg, The Netherlands, November 5-8, 2018. c©2018 Association for Computational Linguistics

431

Neural Transition-based Syntactic Linearization

Linfeng Song1, Yue Zhang2 and Daniel Gildea1

1Department of Computer Science, University of Rochester, Rochester, NY 14627
2School of Engineering, Westlake University, China

Abstract

The task of linearization is to find a gram-
matical order given a set of words. Tradi-
tional models use statistical methods. Syn-
tactic linearization systems, which gen-
erate a sentence along with its syntactic
tree, have shown state-of-the-art perfor-
mance. Recent work shows that a multi-
layer LSTM language model outperforms
competitive statistical syntactic lineariza-
tion systems without using syntax. In this
paper, we study neural syntactic lineariza-
tion, building a transition-based syntactic
linearizer leveraging a feed forward neural
network, observing significantly better re-
sults compared to LSTM language models
on this task.

1 Introduction

Linearization is the task of finding the grammat-
ical order for a given set of words. Syntactic
linearization systems generate output sentences
along with their syntactic trees. Depending on
how much syntactic information is available dur-
ing decoding, recent work on syntactic lineariza-
tion can be classified into abstract word ordering
(Wan et al., 2009; Zhang et al., 2012; de Gispert
et al., 2014), where no syntactic information is
available during decoding, full tree linearization
(He et al., 2009; Bohnet et al., 2010; Song et al.,
2014), where full tree information is available, and
partial tree linearization (Zhang, 2013), where par-
tial syntactic information is given as input. Lin-
earization has been adapted to tasks such as ma-
chine translation (Zhang et al., 2014), and is po-
tentially helpful for many NLG applications, such
as cooking recipe generation (Kiddon et al., 2016),
dialogue response generation (Wen et al., 2015),
and question generation (Serban et al., 2016).

Previous work (Wan et al., 2009; Liu et al.,
2015) has shown that jointly predicting the syn-
tactic tree and the surface string gives better re-
sults by allowing syntactic information to guide
statistical linearization. On the other hand, most
such methods employ statistical models with dis-
criminative features. Recently, Schmaltz et al.
(2016) report new state-of-the-art results by lever-
aging a neural language model without using syn-
tactic information. In their experiments, the neu-
ral language model, which is less sparse and cap-
tures long-range dependencies, outperforms previ-
ous discrete syntactic systems.

A research question that naturally arises from
this result is whether syntactic information is help-
ful for a neural linearization system. We em-
pirically answer this question by comparing a
neural transition-based syntactic linearizer with
the neural language model of Schmaltz et al.
(2016). Following Liu et al. (2015), our lin-
earizer works incrementally given a set of words,
using a stack to store partially built dependency
trees, and a set to maintain unordered incoming
words. At each step, it either shifts a word onto
the stack, or reduces the top two partial trees on
the stack. We leverage a feed forward neural net-
work, which takes stack features as input and pre-
dicts the next action (such as SHIFT, LEFTARC

and RIGHTARC). Hence our method can be re-
garded as an extension of the parser of Chen and
Manning (2014), adding word ordering function-
alities.

In addition, we investigate two methods for
integrating neural language models: interpolat-
ing the log probabilities of both models and in-
tegrating the neural language model as a feature.
On standard benchmarks, our syntactic linearizer
gives results that are higher than the LSTM lan-
guage model of Schmaltz et al. (2016) by 7 BLEU
points (Papineni et al., 2002) using greedy search,
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and the gap can go up to 11 BLEU points by in-
tegrating the LSTM language model as features.
The integrated system also outperforms the LSTM
language model by 1 BLEU point using beam
search, which shows that syntactic information is
useful for a neural linearization system.

2 Related work

Previous work (White, 2005; White and Rajku-
mar, 2009; Zhang and Clark, 2011; Zhang, 2013)
on syntactic linearization uses best-first search,
which adopts a priority queue to store partial hy-
potheses and a chart to store input words. At each
step, it pops the highest-scored hypothesis from
the priority queue, expanding it by combination
with the words in the chart, before finally putting
all new hypotheses back into the priority queue.
As the search space is huge, a timeout threshold
is set, beyond which the search terminates and the
current best hypothesis is taken as the result.

Liu et al. (2015) adapt the transition-based de-
pendency parsing algorithm for the linearization
task by allowing the transition-based system to
shift any word in the given set, rather than the
first word in the buffer as in dependency parsing.
Their results show much lower search times and
higher performance compared to Zhang (2013).
Following this line, Liu and Zhang (2015) fur-
ther improve the performance by incorporating
an n-gram language model. Our work takes the
transition-based framework, but is different in two
main aspects: first, we train a feed-forward neu-
ral network for making decisions, while they all
use perceptron-like models. Second, we investi-
gate a light version of the system, which only uses
word features, while previous works all rely on
POS tags and arc labels, limiting their usability on
low-resource domains and languages.

Schmaltz et al. (2016) are the first to adopt neu-
ral networks on this task, while only using surface
features. To our knowledge, we are the first to
leverage both neural networks and syntactic fea-
tures. The contrast between our method and the
method of Chen and Manning (2014) is reminis-
cent of the contrast between the method of Liu
et al. (2015) and the dependency parser of Zhang
and Nivre (2011). Comparing with the depen-
dency parsing task, which assumes that POS tags
are available as input, the search space of syntactic
linearization is much larger.

Recent work (Zhang, 2013; Song et al., 2014;

Liu et al., 2015; Liu and Zhang, 2015) on syn-
tactic linearization uses dependency grammar. We
follow this line of works. On the other hand, lin-
earization with other syntactic grammars, such as
context free grammar (de Gispert et al., 2014) and
combinatory categorial grammar (White and Ra-
jkumar, 2009; Zhang and Clark, 2011), has also
been studied.

3 Task

Given an input bag-of-words x = {x1, x2, ..., xn},
the goal is to output the correct permutation y,
which recovers the original sentence, from the set
of all possible permutations Y . A linearizer can
be seen as a scoring function f over Y , which is
trained to output its highest scoring permutation
ŷ = argmaxy′∈Y f(x, y

′) as close as possible to
the correct permutation y.

3.1 Baseline: an LSTM language model
The LSTM language model of Schmaltz et al.
(2016) is similar to the medium LSTM setup of
Zaremba et al. (2014). It contains two LSTM lay-
ers, each of which has 650 hidden units and is
followed by a dropout layer during training. The
multi-layer LSTM language model can be repre-
sented as:

ht,i, ct,i = LSTM(ht,i−1,ht−1,i, ct−1,i) (1)

p(wt,j |wt−1, ..., w1) =
exp(vᵀ

jht,I)∑
j′ exp(v

ᵀ
j′ht,I)

, (2)

where ht,i and ct,i are the output and cell memory
of the i-th layer at step t, respectively, ht,0 = xt is
the input of the network at step t, I is the number
of layers, wt,j represents outputting wj at t step,
vj is the embedding ofwj , and the LSTM function
is defined as:

i
f
o
g

 =


σ
σ
σ

tanh

W4n,2n

(
ht,i−1
ht−1,i

)
(3)

ct,i = f � ct−1,i + i� g (4)

ht,i = o� tanh(ct,i), (5)

where σ is the sigmoid function, W4n,2n is the
weights of LSTM cells, and � is the element-wise
product operator.

Figure 1 shows the linearization procedure of
the baseline system, when taking the bag-of-words
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Figure 1: Linearization procedure of the baseline.

{“NLP”,“love”,“I”} as input. At each step, it takes
the output word from the previous step as input
and predicts the current word, which is chosen
from the remaining input bag-of-words rather than
from the entire vocabulary. Therefore it takes n
steps to linearize a input consisting of n words.

4 Neural transition-based syntactic
linearization

Transition-based syntactic linearization can be
considered as an extension to transition-based de-
pendency parsing (Liu et al., 2015), with the main
difference being that the word order is not given in
the input, so that any word can be shifted at each
step. This leads to a much larger search space. In
addition, under our setting, extra dependency rela-
tions or POS on input words are not available.

The output building process is modeled as a
state-transition process. As shown in Figure 2,
each state s is defined as (σ, ρ,A), where σ is a
stack that maintains a partial derivation, ρ is an un-
ordered set of incoming input words and A is the
set of dependency relations that have been built.
Initially, the stack σ is empty, while the set ρ con-
tains all the input words, and the set of depen-
dency relations A is empty. At the end, the set
ρ is empty, while A contains all dependency rela-
tions for the predicted dependency tree. At a cer-
tain state, a SHIFT action chooses one word from
the set ρ and pushes it onto the stack σ, a LEFT-
ARC action makes a new arc {j ← i} from the
stack’s top two items (i and j), while a RIGHTARC

action makes a new arc {j → i} from i and j. Us-
ing these possible actions, the unordered word set
{“NLP0”,“love1”,“I2”} is linearized as shown in
Table 1, and the result is “I2← love1→ NLP0”.1

1For a clearer introduction to our state-transition process,
we omit the POS-p actions, which are introduced in Section
4.2. In our implementation, each SHIFT-w is followed by
exact one POS-p action.

Figure 2: Deduction system of transition-based
syntactic linearization

step action σ ρ A

init [] (1 2 3) ∅
0 Shift-I [1] (2 3)
1 Shift-love [1 2] (3)
2 Shift-NLP [1 2 3] ()
3 RArc-dobj [1 2] () A ∪ {2→ 3}
4 LArc-nsubj [2] () A ∪ {1← 2}
5 End [] () A

Table 1: Transition-based syntactic linearization
for ordering {“NLP3”,“love2”,“I1”}, where RArc
and LArc are the abbreviations for RightArc and
LeftArc, respectively. More details on actions are
in Section 4.2.

4.1 Model

To predict the next transition action for a given
state, our linearizer makes use of a feed-forward
neural network to score the actions as shown in
Figure 3. The network takes a set of word, POS
tag, and arc label features from the stack as in-
put and outputs the probability distribution of the
next actions. In particular, we represent each word
as a d-dimensional vector ewi ∈ Rd using a word
embedding matrix is Ew ∈ Rd×Nw , where Nw is
the vocabulary size. Similarly each POS tag and
arc label are also mapped to a d-dimensional vec-
tor, where etj , e

l
k ∈ Rd are the representations of

the j-th POS tag and k-th arc label, respectively.
The embedding matrices of POS tags and arc la-
bels are Et ∈ Rd×Nt and El ∈ Rd×Nl , where
Nt and Nl correspond to the number of POS tags
and arc labels, respectively. We choose a set of
feature words, POS tags, and arc labels from the
stack context, using their embeddings as input to
our neural network. Next, we map the input layer
to the hidden layer via:

h = g(Ww
1 x

w +Wt
1x

t +Wl
1x

l + b1), (6)
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Figure 3: Neural syntactic linearization model

where xw, xt, and xl are the concatenated fea-
ture word embeddings, POS tag embeddings, and
arc label embeddings, respectively, Ww

1 , Wt
1, and

Wl
1 are the corresponding weight matrices, b1 is

the bias term and g() is the activation function of
the hidden layer. The word, POS tag and arc label
features are described in Section 4.3.

Finally, the hidden vector h is mapped to an out-
put layer, which uses a softmax activation function
for modeling multi-class action probabilities:

p(a|s, θ) = softmax(W2h), (7)

where p(a|s, θ) represents the probability distribu-
tion of the next action. There is no bias term in
this layer and the model parameter W2 can also
be seen as the embedding matrix of all actions.

4.2 Actions

We use 5 types of actions:

• SHIFT-w pushes a word w onto the stack.

• POS-p assigns a POS tag p to the newly
shifted word.

• LEFTARC-l pops the top two items i and j off
stack and pushes {j l←− i} onto the stack.

• RIGHTARC-l pops the top two items i and j
off stack and pushes {j l−→ i} onto the stack.

• END ends the decoding procedure.

Given a set of nwords as input, the linearizer takes
3n steps to synthesize the sentence. The number
of actions is large, making it computationally in-
efficient to do softmax over all actions. Here for
each set of words S we only consider all possible
actions for linearizing the set, which constraints
SHIFT-wi to all words in the set.

(1) S1.w; S1.t; S2.w; S2.t; S3.w; S3.t;

(2)

i = 1, 2
lc1(Si).w; lc1(Si).t; lc1(Si).l;
lc2(Si).w; lc2(Si).t; lc2(Si).l;
rc1(Si).w; rc1(Si).t; rc1(Si).l;
rc2(Si).w; rc2(Si).t; rc2(Si).l;

(3)

i = 1, 2
lc1(lc1(Si)).w; lc1(lc1(Si)).t;
lc1(lc1(Si)).l; rc1(rc1(Si)).w;
rc1(rc1(Si)).t; rc1(rc1(Si)).l;

Table 2: Feature templates, where Si denotes the
ith item on the stack, w, t and l denotes the word,
POS tag and arc label, respectively.

4.3 Features

The feature templates our model uses are shown
in Table 2. We pick (1) the words and POS tags
of the top 3 items on the stack, (2) the words, POS
tags, and arc labels of the first and the second left-
most / rightmost children of the top 2 items on the
stack and (3) the words, POS tags and arc labels
of the leftmost of leftmost / rightmost of rightmost
children of the top two items on the stack. Under
certain states, some features may not exist, and we
use special tokens NULLw, NULLt and NULLl to
represent non-existent word, POS tag, and arc la-
bel features, respectively. Our feature templates
are similar to that of Chen and Manning (2014),
except that we do not leverage features from the
set, because the words inside the set are unordered.

4.4 The light version

We also consider a light version of our linearizer
that only leverages words and unlabeled depen-
dency relations. Similar to Section 4.1, the sys-
tem also uses a feed-forward neural network with
1 hidden layer, but only takes word features as in-
put. It uses 4 types of actions: SHIFT-w, LEFT-
ARC, RIGHTARC, and END. All actions are same
as described in Section 4.2, except that LEFTARC

and RIGHTARC are not associated with arc labels.
Given a set of n words as input, the system takes
2n steps to synthesize the sentence, which is faster
and less vulnerable to error propagation.

5 Integrating an LSTM language model

Our model can be integrated with the baseline
multi-layer LSTM language model. Existing work
(Zhang et al., 2012; Liu and Zhang, 2015) has
shown that a syntactic linearizer can benefit from
a surface language model by taking its scores as
features. Here we investigate two methods for
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the integration: (1) joint decoding by interpolat-
ing the conditional probabilities and (2) feature-
level integration by taking the output vector (hI )
of the LSTM language model as features to the
linearizer.

5.1 Joint decoding
To perform joint decoding, the conditional action
probability distributions of both models given the
current state are interpolated, and the best action
under the interpolated probability distribution is
chosen, before both systems advancing to a new
state using the action. The interpolated conditional
probability is:

p(a|si, hi; θ1, θ2) = log p(a|si; θ1)
+ α log p(a|hi; θ2), (8)

where si and θ1 are the state and parameters of the
linearizer, hi and θ2 are the state and parameters
of the LSTM language model, and α is the inter-
polation hyper parameter.

The action spaces of the two systems are dif-
ferent because the actions of the LSTM language
model correspond only to the shift actions of the
linearizer. To match the probability distributions,
we expand the distribution of the LSTM language
model as shown in Equation 9, where wa is the
associated word of a shift action a. Generally,
the probabilities of non-shift actions are 1.0, and
those of shift actions are from the LSTM language
model with respect to wa:

p(a|hi; θ2) =

{
p(wa|hi; θ2), if a is shift
1.0, otherwise

(9)

We do not normalize the interpolated probability
distribution, because our experiments show that
normalization only gives around 0.3 BLEU score
gains, while significantly decreasing the speed.
When a shift action is chosen, both systems ad-
vance to a new state; otherwise only the linearizer
advances to a new state.

5.2 Feature level integration
To take the output of an LSTM language model as
a feature in our model, we first train the LSTM lan-
guage model independently. During the training of
our model, we take hI , the output of the top LSTM
layer after consuming all words on the stack, as a
feature in the input layer of Figure 3, before finally
advancing both the linearizer and the LSTM lan-
guage model using the predicted action. This is

analogous to adding a separately-trained n-gram
language model as a feature to a discriminative
linearizer (Liu and Zhang, 2015). Compared with
joint decoding (Section 5.1), p(a|si, hi; θ1, θ2) is
calculated by one model, and thus there is no need
to tune the hyper-parameter α. The state update
remains the same: the language model advances
to a new state only when a shift action is taken.

6 Training

Following Chen and Manning (2014), we set
the training objective as maximizing the log-
likelihood of each successive action conditioned
on the dependency tree, which can be gold or au-
tomatically parsed. To train our linearizer, we
first generate training examples {(si, ti)}mi=1 from
the training sentences and their gold parse trees,
where si is a state, and ti ∈ T is the correspond-
ing oracle transition. We use the “arc standard”
oracle (Nivre, 2008), which always prefers SHIFT

over LEFTARC. The final training objective is
to minimize the cross-entropy loss, plus an L2-
regularization term:

L(θ) = −
∑
i

log pti +
λ

2
‖θ‖2,

where θ represents all the trainable parameters:
W1,b1,W2,E

w,Et,El. A slight variation is
that the softmax probabilities are computed only
among the feasible transitions in practice. As de-
scribed in Section 4.2, for an input set of words,
the feasible transitions are: SHIFT-w, where w is a
word in the set, POS-p for all POS tags, LEFTARC-
l and RIGHTARC-l for all arc labels, and END.

To train a linearizer that takes an LSTM lan-
guage model as features, we first train the LSTM
language model on the same training data, then
train the linearizer with the parameters of the
LSTM language model unchanged.

7 Experiments

7.1 Setup
We follow previous work and conduct experiments
on the Penn Treebank, using Wall Street Journal
sections 2-21 for training, 22 for development and
23 for final testing. Gold-standard dependency
trees are derived from bracketed sentences in the
treebank using Penn2Malt.2 In order to study the
influence of parsing accuracy of the training data,

2https://stp.lingfil.uu.se/∼nivre/research/Penn2Malt.html
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System BEAMSIZE=1 BEAMSIZE=10 BEAMSIZE=64 BEAMSIZE=512
BLEU Time BLEU Time BLEU Time BLEU Time

LSTM 14.01 6m26s 26.83 13m 33.05 54m41s 37.08 405m10s
SYN 20.97 11m39s 27.72 26m40s 30.01 113m19s 31.12 891m39s
SYN+LSTM 21.17 18m15s 30.43 37m15s 34.35 157m16s 36.84 1058m
SYN×LSTM 24.91 18m12s 32.75 37m12s 35.88 156m50s 36.96 1070m
SYNl×LSTM 24.55 9m50s 32.84 23m7s 36.11 77m6s 37.99 624m39s

Table 3: Main results and decoding times.

ID #training sent #iter F1
syn90 all 30 90.28
syn85 all 1 85.38
syn79 9000 1 79.68
syn54 900 1 54.86

Table 4: Parsing accuracy settings, the F1 scores
are measured on the training set.

we use ten-fold jackknifing to construct WSJ train-
ing data with different accuracies. More specifi-
cally, the data is first randomly split into ten equal-
size subsets, and then each subset is automati-
cally parsed with a constituent parser trained on
the other subsets, before the results are finally con-
verted to dependency trees using Penn2Malt. In
order to obtain datasets with different parsing ac-
curacies, we randomly sample a small number of
sentences from each training subset and choose
different training iterations, as shown in Table 4.
In our experiments, we use ZPar3 (Zhu et al.,
2013) for automatic constituent parsing.

Our syntactic linearizer is implemented with
Keras.4 We randomly initialize Ew, Et, El, W1

and W2 within (−0.01, 0.01), and use default set-
ting for other parameters. The hyper-parameters
and parameters which achieve the best perfor-
mance on the development set are chosen for final
evaluation. Our vocabulary comes from SENNA5,
which has 130,000 words. The activation func-
tions tanh and softmax are added on top of the
hidden and output layers, respectively. We use
Adagrad (Duchi et al., 2011) with an initial learn-
ing rate of 0.01, regularization parameter λ =
10−8, and dropout rate 0.3 for training. The in-
terpolation coefficient α for joint decoding is set
0.4. During decoding, simple pruning methods are
applied, such as a constraint that POS-p actions al-
ways follow SHIFT-w actions.

We evaluate our linearizer (SYN) and its vari-
ances, where the subscript “l” denotes the light

3https://github.com/frcchang/zpar
4https://keras.io/
5http://ronan.collobert.com/senna/

version, “+LSTM” represents joint decoding with
an LSTM language model, and “×LSTM” repre-
sents taking an LSTM language model as features
in our model. We compare results with the cur-
rent state-of-the-art: an LSTM (LSTM) language
model from Schmaltz et al. (2016), which is sim-
ilar in size and architecture to the medium LSTM
setup of Zaremba et al. (2014). None of the sys-
tems use future cost heuristic. All experiments are
conducted using Tesla K20Xm.

7.2 Tuning

We show some development results in this sec-
tion. First, using the cube activation function
(Chen and Manning, 2014) does not yield a good
performance on our task. We tried other activa-
tions including Linear, tanh and ReLU (Nair and
Hinton, 2010), and tanh gives the best results.
In addition, we tried pretrained embeddings from
SENNA, which does not yield better results com-
pared to random initialization. Further, dropout
rates from 0.3 to 0.8 give good training results. Fi-
nally, we tried different values from 0.1 to 1.0 for
the interpolation coefficient α, finding that values
between 0.3 and 0.7 give the best performances,
while values larger than 1.5 yield poor perfor-
mances.

7.3 Main results

The main results on the test set are shown in Ta-
ble 3. Compared with previous work, our lin-
earizers achieve the best results under all beam
sizes, especially under the greedy search scenario
(BEAMSIZE=1), where SYN and SYN×LSTM
outperform the baseline of LSTM by 7 and 11
BLEU points, respectively. This demonstrates
that syntactic information is extremely important
when beam size is small. In addition, our syntac-
tic systems are still better than the baseline under
very large beam sizes (such as, BEAMSIZE=512),
which lead to slow performance and are less use-
ful practically. On the other hand, the baseline
(LSTM) benefits more from beam size increases.
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System sentences
LSTM-512 the bush administration , known as 31 , 1992 , earlier this year said it would extend voluntary restraint

agreements steel quotas until march .
SYNl×LSTM-512 earlier this year , the bush administration said it would extend steel agreements until march 31 , 1992

, known as voluntary restraint quotas .
REF the bush administration earlier this year said it would extend steel quotas , known as voluntary re-

straint agreements , until march 31 , 1992 .
LSTM-512 shearson lehman hutton inc. said , however , that it is “ going to set back with the customers , ”

because of friday ’s plunge , president of jeffrey b. lane concern “ reinforces volatility relations .
SYNl×LSTM-512 however , jeffrey b. lane , president of shearson lehman hutton inc. , said that friday ’s plunge is “

going to set back with customers because it reinforces the volatility of “ concern , ” relations .
REF however , jeffrey b. lane , president of shearson lehman hutton inc. , said that friday ’s plunge is “

going to set back ” relations with customers , “ because it reinforces the concern of volatility .
LSTM-512 the debate between the stock and futures markets is prepared for wall street will cause another situa-

tion about whether de-linkage crash undoubtedly properly renewed friday .
SYNl×LSTM-512 the wall street futures markets undoubtedly will cause renewed debate about whether the stock situa-

tion is properly prepared for an other crash between friday and de-linkage .
REF the de-linkage between the stock and futures markets friday will undoubtedly cause renewed debate

about whether wall street is prope rly prepared for another crash situation .

Table 5: Output samples.

The results are consistent with (Ma et al., 2014)
in that both increasing beam size and using richer
features are solutions for error propagation.

SYN×LSTM is better than SYN+LSTM. In
fact, SYN×LSTM can be considered as interpo-
lation with α being automatically calculated un-
der different states. Finally, SYNl×LSTM is bet-
ter than SYN×LSTM except under greedy search,
showing that word-to-word dependency features
may be sufficient for this task.

As for the decoding times, SYNl×LSTM
shows a moderate time growth along increas-
ing beam size, which is roughly 1.5 times
slower than LSTM. In addition, SYN+LSTM and
SYN×LSTM are the slowest for each beam size
(roughly 3 times slower than LSTM), because
of the large number of features they use and the
large number of decoding steps they take. SYN is
roughly 2 times slower than LSTM.

Previous work, such as Schmaltz et al. (2016),
adopts future cost and the information of base
noun phrase (BNP) and shows further improve-
ment on performance. However, these are highly
task specific. Future cost is based on the assump-
tion that all words are available at the beginning,
which is not true for other tasks. On the other
hand, our model does not rely on this assumption,
thus can be better applicable on other tasks. BNPs
are the phrases that correspond to leaf NP nodes in
constituent trees. Assuming BNPs being available
is not practical either.

10 15 20 25 30 35 40 45 50
sentence length
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Figure 4: Performance on different lengths.

7.4 Influence of sentence length

We show the performances on different sentence
lengths in Figure 4. The results are from LSTM
and SYNl×LSTM using beam size 1 and 512.
Sentences belonging to the same length range
(such as 1–10 or 11–15) are grouped together,
and corpus BLEU is calculated on each group.
First of all, SYNl×LSTM-1 is significantly bet-
ter than LSTM-1 on all sentence lengths, explain-
ing the usefulness of syntactic features. In ad-
dition, SYNl×LSTM-512 is notably better than
LSTM-512 on sentences that are longer than 25,
and the difference is even larger on sentences that
have more than 35 words. This is an evidence that
SYNl×LSTM is better at modeling long-distance
dependencies. On the other hand, LSTM-512 is
better than SYNl×LSTM-512 on short sentences
(length ≤ 10). The reason may be that LSTM is
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Data SYN×LSTM SYNl×LSTM
Gold 36.03 36.41
syn90 35.91 36.31
syn85 35.84 36.22
syn79 35.40 35.96
syn54 33.32 34.98

Table 6: Results of various parsing accuracy.

good at modeling relatively shorter dependencies
without syntactic guidance, while SYNl×LSTM,
which takes more steps for synthesizing the same
sentence, suffers from error propagation. Overall,
this figure can be regarded as empirical evidence
that syntactic systems are better choices for gener-
ating long sentences (Wan et al., 2009; Zhang and
Clark, 2011), while surface systems may be better
choices for generating short sentences.

Table 5 shows some linearization results of long
sentences from LSTM and SYNl×LSTM using
beam size 512. The outputs of SYNl×LSTM are
notably more grammatical than those of LSTM.
For example, in the last group, the output of
SYNl×LSTM means “the market will cause an-
other debate about whether the situation now is
prepared for another crash”, while the output of
LSTM is obviously less fluent, especially for the
parts “... markets is prepared for wall street will
cause ...” and “... crash undoubtedly properly re-
newed ..”.

In addition, LSTM makes locally grammati-
cal outputs, while suffering more mistakes in the
global level. Taking the second group as an exam-
ple, LSTM generates grammatical phrases, such
as “going to set back with the customers” and “be-
cause of friday ’s plunge”, while misplacing “pres-
ident of”, which should be in the very front of
the sentence. On the other hand, SYNl×LSTM
can capture patterns such as “president of some
inc.” and “someone, president of someplace said”
to make the right choices. Finally, SYNl×LSTM
can makes grammatical sentences with different
meanings. For example in the first group, the re-
sult of SYNl×LSTM means “the bush adminis-
tration will extend the steel agreement”, while the
true meaning is “the bush administration will ex-
tend the steel quotas”. For syntactic linearization,
such semantic variation is tolerable.

7.5 Results with auto-parsed data

There is no syntactically annotated data in many
domains. As a result, performing syntactic lin-
earization in these domains requires automatically

Actions Top similar actions
S-wednesday S-tuesday S-friday S-thursday S-monday
S-huge S-strong S-serious S-good S-large
S-taxes S-bills S-expenses S-loans S-payments
S-secretary S-department S-officials S-director
S-largely S-partly S-primarily S-mostly S-entirely

Table 7: Top similar actions for shift actions
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Figure 5: t-SNE visualization of POS embeddings

parsed training data, which may affect the per-
formance of our syntactic linearizer. We study
this effect by training both SYN×LSTM and
SYNl×LSTM with automatically parsed training
data of different parsing accuracies, and show the
results, which are generated with beamsize 64 on
the devset, in Table 6. Generally, a higher parsing
accuracy can lead to a better linearization result for
both systems. It conforms to the intuition that syn-
tactic quality affects the fluency of surface texts.
On the other hand, the influence is not large, the
BLEU scores of SYNl×LSTM and SYN×LSTM
drop by 1.5 and 2.8 BLEU points, respectively, as
the parsing accuracy decreases from gold to 54%.
Both observations are consistent with that of Liu
and Zhang (2015) for discrete syntactic lineariza-
tion. Finally, SYNl×LSTM shows less BLEU
score decreases than SYN×LSTM. The reason is
that SYNl×LSTM only takes word features, and
is less vulnerable to parsing accuracy decrease.

7.6 Embedding similarity

One main advantage of neural systems is that they
use vectorized features, which are less sparse than
discriminative features. Taking W2 as the embed-
ding matrix of actions, we calculate the top similar
actions for the SHIFT-w actions by cosine distance
and show examples in Table 7. In addition, Fig-
ure 5 presents the t-SNE visualization (Maaten and
Hinton, 2008) of the embeddings for the POS-p
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actions. Generally, the embeddings of similar ac-
tions are closer than these of other actions. From
both results, we can see that our model learns rea-
sonable embeddings from the Penn Treebank, a
small-scale corpus, which shows the effectiveness
of our system from another perspective.

8 Conclusion

We studied neural transition-based syntactic lin-
earization, which combines the advantages of both
neural networks and syntactic information. In ad-
dition, we compared two ways of integrating a
neural language model into our system. Experi-
mental results show that our system achieves im-
proved results comparing with a state-of-the-art
multi-layer LSTM language model. To our knowl-
edge, we are the first to investigate neural syntactic
linearization.

In the future work, we will investigate LSTM
on this task. In particular, an LSTM decoder, tak-
ing features form the already-built subtrees as part
of its inputs, is taken to model the sequences of
shift-reduce actions. Another possible direction
is creating complete graphs with their nodes be-
ing the input words, before encoding them with
self-attention networks (Vaswani et al., 2017) or
graph neural networks (Kipf and Welling, 2016;
Beck et al., 2018; Zhang et al., 2018; Song et al.,
2018). This approach can be better at capturing
word-to-word dependencies than simply summing
word embeddings up.
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