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Abstract

Chunking is a pre-processing task generally
dedicated to improving constituency parsing.
In this paper, we want to show that univer-
sal dependency (UD) parsing can also leverage
the information provided by the task of chunk-
ing even though annotated chunks are not pro-
vided with universal dependency trees. In par-
ticular, we introduce the possibility of deduc-
ing noun-phrase (NP) chunks from universal
dependencies, focusing on English as a first
example. We then demonstrate how the task
of NP-chunking can benefit PoS-tagging in a
multi-task learning setting – comparing two
different strategies – and how it can be used
as a feature for dependency parsing in order to
learn enriched models.

1 Introduction

Syntactic chunking consists of identifying groups
of (consecutive) words in a sentence that constitute
phrases (e.g. noun-phrases, verb-phrases). It can
be seen as a shallow parsing task between PoS-
tagging and syntactic parsing. Chunking is known
as being a relevant preprocessing step for syntactic
parsing.

Chunking got a lot of attention when syntactic
parsing was predominantly driven by constituency
parsing and was highlighted, in particular, through
the CoNLL-2000 Shared Task (Tjong Kim Sang
and Buchholz, 2000). Nowadays, studies (Sø-
gaard and Goldberg, 2016; Hashimoto et al., 2017)
still compare chunking –as well as constituency
parsing– performance on these same data from
the Penn Treebank. While dependency parsing
is spreading to different languages and domains
(Kong et al., 2014; Nivre et al., 2017), chunking
is restricted to old journalistic data. Nevertheless,
chunking can benefit dependency parsing as well
as constituency parsing, but gold annotated chunks
are not available for universal dependencies.

We want to automatically deduce chunks from
universal dependencies (UD) (Nivre et al., 2017)
and investigate its benefit for other tasks such
as Part-of-Speech (PoS) tagging and dependency
parsing. We focus on English, which has prop-
erties that make it a good candidate for chunking
(low percentage of non-projective dependencies).
As a first target, we also decide to restrict the task
to the most common chunks: noun-phrases (NP).

We choose to see NP-chunking as a sequence
labeling task where tags signal the beginning (B-
NP), the inside (I-NP) or the outside (O) of chunks.
We thus propose to use multi-task learning for
training chunking along with PoS-tagging and
feature-tagging to show that the tasks can benefit
from each other. We experiment with two differ-
ent multi-task learning strategies (training param-
eters in parallel or sequentially). We also intend to
make parsing benefit from NP-chunking as a pre-
processing task. Accordingly, we propose to add
NP-chunk tags as features for dependency parsing.

Contributions. We show how to (i) deduce NP-
chunks from universal dependencies for English in
order to (ii) demonstrate the benefit of performing
chunking along with PoS-tagging through multi-
task learning and (iii) evaluate the impact of using
NP-chunks as features for dependency parsing.

2 NP-Chunks

While chunks are inherently deduced from con-
stituent trees, we want to deduce chunks from de-
pendency trees in order to not rely on specific con-
stituent annotations which would not be available
for other domains or languages. In this case, it
means that only partial information is provided
by the dependencies to automatically extract the
chunks. We thus choose to only deduce noun-
phrase (NP) chunks (Ramshaw and Marcus, 1995)
from the dependency trees.
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On the next two pictures he took screenshots of two beheading video’s
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Figure 1: NP-chunks deduced from a UD tree of the English Web Treebank (EWT).

Automatic Deduction. We deduce minimal NP-
chunks, which means that embedded prepositional
(PP) chunks are not included in our NP-chunks,
e.g. in Figure 1 “screenshots of two beheading
video’s" is split in two distinct NPs instead of one
long NP with an embedded PP (“of two beheading
video’s").

We first identify the core tokens of NPs: the
nouns (NOUN), proper nouns (PROPN) and some
pronouns1 (PRON). After identifying these core
tokens, we form full NPs by joining these core to-
kens with their direct and indirect children which
are not part of PPs. In practice, they are those for
which the incoming dependency is labeled with
one of the following relations (modulo some in-
dividual conditions):

• compound, compound:prt, flat,
flat:name, goeswith, fixed,
nummod;

• det if the child is located before its head;

• conj if the child and its head are adjectives.
We want “excellent and strong performers" to
be one NP and “these challenges and possible
solutions" to be split in two NPs;

• amod if the child is not an adverb. We
don’t want to attach preceding adverbs such
as “not" to a NP;

• appos if the child is directly before or after
its head;

• advmod if the child is not a PART or a VERB

and its head an adjective;

• nmod:poss if the child is not a NOUN or a
PROPN. We want to group “your world" but
not “John’s last day (where “John" and “last
day" would be two distinct NPs;

1All pronouns but the interrogative and relative pronouns.

• following and preceding obl:npmod and
obl:tmod;

• obl if its head has a amod incoming depen-
dency.

In addition, when grouping a core token with one
of its det, compound, nummod or nmod:poss
children, we automatically attach tokens which are
in between. If split chunks remain, we attach the
non-attached tokens which are in between two part
of a chunk. It allows us to attach the adverbs which
modify adjectives such as “very" in “my very best
friend" or some specific punctuation such as the
slash in “The owner/baker".

Manual Annotation. To assert the correctness
of the automatically deduced chunks, we manu-
ally annotate noun-phrases on a small portion of
the test set of the EWT UD treebank data. For 50
sentences (from which 233 NP chunks were manu-
ally annotated), the accuracy of the automatic de-
duction reaches 98.7%. Errors in deduction are
mostly due to punctual inconsistencies in the UD
annotations.

3 Models

3.1 Sequence Labeling

We implement a deep recurrent neural network
with an architecture based on bidirectional Long
Short-Term Memory (bi-LSTM) (Graves and
Schmidhuber, 2005) that can exploit contextual in-
formation for processing sequences.

The base network is composed of an embed-
ding layer that feeds two hidden bi-LSTM lay-
ers (forward and backward). The outputs of the
bi-LSTMs are then concatenated to feed the next
layer. Multiple bi-LSTM layers can be stacked. In
the end, these outputs are fed to a Softmax output
layer. The embedding layer is a concatenation of a
word embedding layer and a character embedding
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layer. It takes as input a sequence of n tokens. The
output of the network is a sequence of n tags.

We use this architecture for PoS-tagging,
feature-tagging (i.e. morpho-syntactic tagging)
and NP-chunking. In order to make the tasks bene-
fit from each other, we adapt the network to multi-
task learning. We propose to compare two strate-
gies for multi-task learning : shared or stacked.

Shared multi-task learning. In this architec-
ture, different tasks are trained at the same level in
a similar way as in Søgaard and Goldberg (2016).
They share parameters through all the network and
feed different outputs.

Stacked multi-task learning. In this architec-
ture, different tasks are trained at different levels
as proposed by Hashimoto et al. (2017). A bi-
LSTM layer is dedicated to a task. The output of
a layer for a given task feeds the next layer dedi-
cated to the next task.

3.2 Dependency Parsing

Our dependency parser is a reimplementation
of the arc-hybrid non-projective transition-based
parser of de Lhoneux et al. (2017b).

In this version of the arc-hybrid system, the
SWAP transition is added to the original transition
set (Kuhlmann et al., 2011) made up of the stan-
dard transitions RIGHT, LEFT and SHIFT. The
SWAP transition allows to build non-projective
dependency trees. The standard transitions are
trained using a dynamic oracle (Goldberg and
Nivre, 2013), which alleviates error propagation,
and a static oracle for training the SWAP transition.

The parser uses a bi-LSTM network to learn
vector representations of the tokens. These vec-
tors are combined through a feature function and
used for learning and evaluating the transitions us-
ing a multi-layer perceptron with one hidden layer.
In de Lhoneux et al. (2017a), PoS tags are re-
moved from the feature function and instead, the
bi-LSTM is fed with only word and character em-
beddings. In our version of the parser, we reintro-
duce the PoS tags as features and also make use
of the predicted NP-chunks. The PoS and/or NP-
chunk tags are turned into embeddings and con-
catenated with the word and character embeddings
to represent the tokens.

4 Experiments

As a baseline for PoS-tagging, feature-tagging and
NP-chunking, we first train our sequence tagger
for each task separately. We then train the tag-
ger in a multi-task setting –with PoS-tagging as a
main task– alternating the auxiliary tasks and the
strategies (shared or stacked multi-task learning).

As a baseline for dependency parsing, we train
the parser using only word and character embed-
dings as input to the bi-LSTM. We then add the
PoS and NP-chunk embeddings, separately and si-
multaneously, for training enriched models. As an
upper bound, we also propose to run the exper-
iments with “gold" NP-chunks, i.e. we feed the
parser (for training and testing) with NP-chunks
that were automatically deduced from the depen-
dencies.

Data. We evaluate all tasks on the three English
treebanks included in the version 2.1 of the Uni-
versal Dependencies project (Nivre et al., 2017) :
EWT (254k tokens), LinES (82k tokens) and Par-
TUT (49k tokens). In average, 3.8, 3.3 and 6.2
NP-chunks per sentence are deduced respectively
for each treebank. 2 Note that the LinES treebank
does not contain features (morpho-syntactic tags),
so we exclude feature-tagging from the evaluation
for this treebank.

Hyper-parameters. We use the development
data to tune our hyper-parameters and to deter-
mine the number of epochs (via early-stopping)
for each experiment.

For sequence tagging, we use the RMSProp op-
timizer with a learning rate at 0.0005. Hidden lay-
ers of dimension 300 is used for ParTUT and 100
for EWT and LinES. We use a dropout of 0.2 on
the hidden layers. For dependency parsing, the
hidden layer of the bi-LSTM has a dimension set
at 125 and uses a dropout of 0.33.

The dimension of the word and character em-
beddings are respectively 200 and 50. For depen-
dency parsing, embedding dimensions for PoS and
NP-chunk tags are set respectively to 6 and 3.

Evaluation. We average the scores on 5 runs for
each experiment. We evaluate accuracy on PoS-
tagging and feature-tagging and F1

3 on chunking.
2EWT is the biggest treebank but the test contains small

sentences (12.1 average length) while ParTUT is the smallest
treebank but contains long sentences (22.3 average length).

3F1 = 2∗precision∗recall/(precision+recall) where
precision is the percentage of predicted chunks that are cor-
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EWT LinES ParTUT

PoS Feats Chunks PoS Chunks PoS Feats Chunks
acc(%) acc(%) F1 acc(%) F1 acc(%) acc(%) F1

Baseline 93.16 94.06 89.32 93.00 82.74 92.61 91.03 88.01

Shared - P+F 93.29 93.97 - - - 93.04 91.49 -
Shared - P+C 93.11 - 89.98† 92.97 85.63† 93.19† - 89.20†

Shared - P+F+C 93.30 94.01 89.99† - - 93.20† 91.74† 89.26†

Stacked - P+F 93.18 93.92 - - - 92.67 91.00 -
Stacked - P+C 93.16 - 89.09 92.82 83.14 92.96 - 88.28
Stacked - P+F+C 93.00 93.75 89.08 - - 93.13 91.25 89.74†

Table 1: Results of PoS-tagging (P), feature-tagging (F) and NP-chunking (C) trained as one task (baseline) or
via multi-task learning (Shared vs Stacked strategies). Bold scores are the highest of each column. Statistical
significance (T-test>0.05) is marked with †.

EWT LinES ParTUT

LA UAS LAS LA UAS LAS LA UAS LAS

Baseline 87.83 86.26 82.27 82.54 82.06 75.35 87.28 86.00 81.28
+ P 87.01 85.58 81.20 83.71† 83.10† 76.83† 87.63 86.11 81.51
+ C 87.66 86.19 81.86 82.66 82.53 75.57 87.98 86.53 82.17
+ P+C 87.32 85.98 81.59 83.38† 82.87† 76.37† 88.05 86.88† 82.24†

+ gold C 89.99 89.07 85.45 84.31 84.05 77.94 89.47 87.92 84.13

Table 2: Results of dependency parsing using PoS (P) and/or NP-chunk (C) features.The baseline uses only word
and character embeddings. Highest scores are in bold. † indicates statistical significance.

For dependency parsing, we calculate the label
accuracy (LA), the unlabeled attachment score
(UAS) and the labeled attachment score (LAS).
As for the CoNLL 2017 Shared Task (Hajič and
Zeman, 2017), only universal dependency labels
are taken into account (ignoring language-specific
subtypes), i.e. we consider a predicted label cor-
rect if the main type of the gold label is the same,
e.g. flat:name is correct if the gold label is
flat. We also exclude punctuations from the
evaluation.

5 Results

5.1 Tagging results

See PoS-tagging, feature-tagging and NP-
chunking results in Table 1. For all three
treebanks, multi-task learning is beneficial for
at least one task. Only the LinES treebank does
not benefit from it for PoS-tagging (i.e. equiva-
lent performance), however it greatly improves
NP-chunking (+2.9). For the smallest treebank

rect and recall is the percentage of gold chunks that are cor-
rectly predicted.

(ParTUT), multi-task learning is beneficial for
all tasks (at best, +0.6 for PoS-tagging, +0.7
for feature-tagging and +1.73 for NP-chunking).
For the EWT treebank, equivalent scores are
achieved for feature-tagging but PoS-tagging and
NP-chunking are enhanced through multi-task
learning (respectively +0.14 and 0.67).

Globally, the shared multi-task learning strategy
achieves the best results. The stacked strategy out-
performs the baseline for the small treebank but
gets lower scores on the big treebank.

It is also worth noting that multi-task learning
makes the models more stable. We observe a
significant decrease of the standard deviation for
most of the experiments.4

5.2 Dependency Parsing Results

See dependency parsing results in Table 2. Adding
PoS and NP-chunk tags as features significantly
improve dependency parsing performance for the
smallest treebank, ParTUT (+0.96 LAS). Using

410 out of 12 standard deviations are lower when compar-
ing the baseline to the shared multi-task learning (including
chunking as an auxiliary task).
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NP-chunks alone is also beneficial on the LinES
data (+0.22 LAS over the baseline) but using only
PoS-tags is actually more relevant than including
both features. For the biggest treebank, EWT,
the baseline outperforms all other enriched mod-
els. However, the upper-bound shows that the NP-
chunk tags as features are relevant for improving
dependency parsing, suggesting that the quality of
the predicted NP-chunks –as well as the PoS-tags–
is not sufficient for improving parsing.

It is worth noting that training converges faster
when using features (17.6 epochs on average VS
25.8 for the baseline) which might also indicate
a training issue since models that stop after few
epochs (11/12) achieve lower performance.

6 Conclusion

We showed that it is possible to extract NP-chunks
from universal dependencies that can be useful for
improving other tasks such as PoS-tagging and
dependency parsing. While the improvement for
PoS-tagging is systematic on all English UD tree-
banks, the results are mixed for dependency pars-
ing suggesting that NP-chunks as features might
be useful for training on small datasets.

Further experiments will be performed in future
work in order to extend the results to other lan-
guages and to investigate the possibility of extract-
ing embedded chunks.
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Kim Harris, Dag Haug, Barbora Hladká, Jaroslava
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