
Proceedings of the 2018 EMNLP Workshop BlackboxNLP: Analyzing and Interpreting Neural Networks for NLP, pages 240–248
Brussels, Belgium, November 1, 2018. c©2018 Association for Computational Linguistics

240

Under the Hood: Using Diagnostic Classifiers to Investigate and Improve
how Language Models Track Agreement Information

Mario Giulianelli
University of Amsterdam

Jack Harding
University of Amsterdam

{mario.giulianelli, jack.harding, florian.mohnert}@student.uva.nl

Florian Mohnert
University of Amsterdam

Dieuwke Hupkes
ILLC, University of Amsterdam

d.hupkes@uva.nl

Willem Zuidema
ILLC, University of Amsterdam
w.h.zuidema@uva.nl

Abstract

How do neural language models keep track
of number agreement between subject and
verb? We show that ‘diagnostic classifiers’,
trained to predict number from the internal
states of a language model, provide a detailed
understanding of how, when, and where this
information is represented. Moreover, they
give us insight into when and where number
information is corrupted in cases where the
language model ends up making agreement
errors. To demonstrate the causal role played
by the representations we find, we then use
agreement information to influence the course
of the LSTM during the processing of difficult
sentences. Results from such an intervention
reveal a large increase in the language model’s
accuracy. Together, these results show that
diagnostic classifiers give us an unrivalled
detailed look into the representation of
linguistic information in neural models, and
demonstrate that this knowledge can be used
to improve their performance.

1 Introduction

Machine learning models for estimating the prob-
abilities of potential next words (and hence, for
predicting the next word) in a running text have
seen enormous improvements in performance over
the last few years (Merity et al., 2018). These
newer models—all based on deep learning tech-
niques such as LSTMs (Hochreiter and Schmid-
huber, 1997)—allow some language technologies,
such as speech recognisers, to reach ‘human par-
ity’. From their high accuracy and from further
analysis, it is clear that LSTM-based language
models have learned a great deal about both short
and long distance relations in sentences and dis-
course. In particular, Gulordava et al. (2018) re-

port that for several languages, their LSTM-based
language model performs remarkably well on a set
of long-distance number agreement tasks.

The Gulordava study, however, does not clarify
which components of the LSTM are responsible
for storing or processing syntactic features, and
how such features are represented. Understanding
how trained recurrent networks such as LSTMs
might represent syntax and other structural infor-
mation is currently a key area of research. Popular
approaches include visualising the state space of
these networks, performing ablations to the net-
work, or using the internal states of the networks
for some auxiliary task (e.g., Adi et al., 2016;
Kádár et al., 2017; Conneau et al., 2018; Khan-
delwal et al., 2018).

In this paper, we analyse the phenomenon of
subject-verb agreement in English using the di-
agnostic classification approach of Hupkes et al.
(2018). We start with replicating the results of Gu-
lordava et al. (2018) on English, and we then show
that diagnostic classifiers can be used to give a
fine-grained analysis of how neural language mod-
els capture structural dependencies. In particular,
we examine how information about subject-verb
agreement is represented by an LSTM (Section 4),
(ii) how that information varies across timesteps
(Section 5), and (iii) where and how the problems
arise that let the model commit agreement errors
(Section 5 and 6). Finally, to demonstrate how pre-
cisely and accurately this method can identify the
network’s internal representations, we (iv) show
that we can alter the representation to strongly im-
prove the models ability to predict verb number
(Section 7). In the next section, after discussing
subject-verb agreement, we outline the data used
throughout our experiments.
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2 Data

The work in this paper focuses on understanding
how recurrent neural language models can under-
stand subject-verb agreement, which is used as a
proxy for understanding syntactic structure. In this
section, we discuss subject verb agreement and the
type of sentences we look at throughout the rest of
this paper. We then briefly describe the data that
we use for our investigation.

2.1 Subject-verb agreement

Subject-verb agreement is a variable-distance syn-
tactic dependency, and a classic example of a
structural dependency in natural language (Chom-
sky, 1957; Tesnière, 1959). In English, a present
tense verb and the head of its syntactic subject
must agree on their number (singular or plural).
Thus, “The dog chases the cat” is grammatical,
whilst “The dog chase the cat” is not. In princi-
ple, subject and verb can be separated by an ar-
bitrary number of tokens, often including other
nouns with a potentially different number (for an
example, see Figure 1). We call the number of to-
kens between the subject head and the mean verb
the context size.

Without any syntactic analysis, it is unclear how
to identify all subject-verb pairs in a sentence
within an arbitrarily large window of tokens, es-
pecially since intervening nouns can themselves
be candidates for agreement. To respect subject-
verb agreement, a language model needs to de-
tect the grammatical number of both the subject
head and the verb, store this information across
timesteps, and identify which nouns correspond
to which verbs. When intervening nouns carry
the opposite grammatical number from the sub-
ject head—as do both intervening nouns in the ex-
ample sentence in Figure 1—we refer to them as
agreement attractors, or simply attractors.

2.2 Datasets

For the experiments described in this paper we use
two different datasets. The first is the one intro-
duced by Gulordava et al. (2018), which contains
410 sentences with at least three tokens occurring
between subject head and verb. For each of 41
original sentences, nine ‘nonce’ variants were gen-
erated by substituting each context word in the
sentence by a random word with the same part-
of-speech tag and morphological features. This
data construction method is motivated by the fact

that grammaticality judgements should not be in-
fluenced by the meaningfulness of a sentence,
and ensures that frequency-based confounds are
avoided. Every sentence in the dataset is anno-
tated with the correct and incorrect verb forms, the
morphological features of the former, the position
of the subject head and of the verb, the number of
agreement attractors, and the type of construction
spanning the long-distance dependency.

Additionally, we extract different subsets of the
Universal Dependency (UD) corpus (ca. 1.5 mil-
lion sentences) for our experiments. The large
amount of annotated sentences in this dataset al-
lows us to retrieve sets of sentences that satisfy
specific conditions relevant to subject-verb agree-
ment. In particular, we can extract sentences with
specific context sizes, and fixed numbers of words
before the subject and after the verb. We are also
able to specify whether the sentences in the set
should have an attractor and—if so—at which in-
dex (or, in our terminology, timestep) the attractor
should appear. Similarly, we can ensure that there
is no other noun between subject and verb that has
the same number as the subject (we call these help-
ful nouns). As we will see, this allows us to exam-
ine the dynamic effect of attractors in the way the
LSTM processes subject-verb agreement.

In this paper, the specific subset of the univer-
sal dependency dataset we use varies from exper-
iment to experiment, as different experiments re-
quire different constraints. We will specify our se-
lection of data for each experiment in the relevant
sections. To clarify which subset of the UD cor-
pus is used in an experiment, we use the follow-
ing notation: UD-Kk-Ll-Mm-Aa, where k refers to
the minimal number of words appearing before the
subject, l to the number of words between the sub-
ject and verb (the context size), m to the minimal
number of words after the verb, and a to the po-
sition of the attractor relative to the subject. We
use an asterisk to indicate that no restrictions are
placed on one of the above mentioned variables;
e.g., A* indicates that there may or may not be an
attractor. Finally, we denote datasets of sentences
that have no attractor with a minus following the
attractor index (i.e., A−).

3 Replication

We start with replicating the experiment per-
formed in (Gulordava et al., 2018), using the pre-
trained LM and the English test set made available
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The average of estimates of the 10 economists polled puts the dollar around 1.820 marks
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Figure 1: An example dependency parse of a sentence with a singular subject head and main verb (marked
in boldface). As the subject average and the verb put are separated by 7 tokens, the context size (l) of this
sentence is 7. Within this context, there are two intervening plural nouns, estimates (a1) and economists
(a2), which we call agreement attractors.

by the authors of the paper.1 Following Linzen
et al. (2016) and Gulordava et al. (2018), we
use the LSTM language model to process a cor-
pus of sentences containing long-distance subject-
verb relations, and test whether the model assigns
a higher probability to the verb that originally
occurred in the sentence than to its incongruent
counterpart.

Gulordava et al. Our Accuracy
Original 81.0 78.1
Nonce 74.1 70.7

Table 1: LM accuracy on both English sets from
Gulordava et al. (2018). Reported are the percent-
ages of sentences for which the correct verb form
is assigned a higher likelihood under the LM than
the incorrect form.

In Table 1 we report both Gulordava’s original
accuracies, and the results from our replication.
Overall we obtain similar results, but our accuracy
scores are slightly lower2 than those reported by
Gulordava et al. (2018).

4 Diagnostic Classification to Predict
Number

After confirming Gulordava et al. (2018)’s re-
sults, we now investigate how the LSTM repre-

1github.com/facebookresearch/
colorlessgreenRNNs/tree/master/data

2The results we obtain with our implementation exactly
match those we get when running the script publicly shared
by Gulordava et al. (2018); we currently have no explanation
for the discrepancy in overall scores but consider the differ-
ences small enough to proceed with the real purpose of our
study: understanding how the models work.

sents the required number information, how this
information is built up over time and where in the
network the representation resides. To this end,
we use diagnostic classifiers (DCs, Hupkes et al.,
2018). The key idea of diagnostic classification
is to test whether an LSTM’s intermediate repre-
sentations contain information about a particular
phenomenon—such as subject-verb agreement—
by training another model to recognise the infor-
mation relevant to the phenomenon in the internal
activations of the LSTM. More precisely, given a
dataset of intermediate LSTM representations and
a set of labels that describe the hypothesis to be
tested, a meta model can be trained to predict the
correct label from the representations. If the model
succeeds in this task (i.e. if it achieves a perfor-
mance significantly above chance on test data dis-
joint from the training data), this constitutes evi-
dence that the LSTM is in fact computing or keep-
ing track of the hypothesised information.

Training We create a training set containing
1000 sentences that all have 5 words between sub-
ject and verb (i.e. the context size is 5), have at
least one word before the subject and after the
verb, and for which no attractor based constraints
are placed on the training set (UD-K1-L5-M1-
A−). We run the pretrained LM of Gulordava et al.
(2018)—a two layer LSTM model with 650 hid-
den units—on this corpus, and for both layers we
extract activation data for both the hidden and gate
activations (the hidden activation ht and memory
cell ct, and the forget gate ft, input gate it and out-
put gate ot). For example, for a single sentence of
length nwe obtain 5×2×n activation vectors, be-
cause we have 2 layers, n timesteps, and 5 types of
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ht ct ft it ot
Layer 0 0.74 / 0.57 0.76 / 0.58 0.69 / 0.55 0.68 / 0.56 0.69 / 0.56
Layer 1 0.90 / 0.62 0.91 / 0.65 0.86 / 0.61 0.86 / 0.60 0.87 / 0.60

Table 2: Mean accuracy of DCs (correct/wrong) across timesteps, averaged over datasets drawn from
different context sizes and attractor positions (with K=0, M=0, 5≤L≤7 and with a variable number
of attractors at different positions).

Figure 2: Accuracies over time (on UD-K1-L5-M1-A3) of 10 diagnostic classifiers trained and tested on
data from different components of the LSTM. As in this testset one word occurs before the subject, the
subject is at timestep 1. Green lines represent sentences for which the LSTM predicts the correct verb,
blue lines sentences for which the LSTM assigns a higher probability to the incongruent counterpart.

activations at each time step t: ht, ct, ft, it,ot).
We then label all activations with the number of
the main verb of the sentence from which it was
generated (either ‘singular’ or ‘plural’) and train a
separate DCs for each of the 10 components of the
LSTM.

Results We test the trained DCs on two test sets,
that differ with respect to whether the LM cor-
rectly or incorrectly classified the sentences they
contain (i.e. a sentence s is in the ‘correct’ set
iff the LM assigns higher probability to the cor-
rect form of the sentence than to the incorrect
form). Otherwise, the two sets have similar fea-
tures, containing both sentences from UD-K1-L5-
M1-A3. While we strive to generate the ‘wrong’
and ‘correct’ test sets with 100 sentences each, this
is not always possible due to data sparsity. How-
ever, we ensure that both test sets have approxi-
mately the same size and do contain at least 50
sentences.

In Table 2, we print the average DC accura-
cies. We observe that for both the ‘wrong’ and
the ‘correct’ test sets, the accuracies are highest at
the second layer (layer 1) across almost all LSTM

components, suggesting that the last LSTM layer
reaches the level of abstraction which can best
capture long-distance dependencies.

In Figure 2, we plot the average DC accuracy
at different timesteps when processing sentences
(from a set with a context size of 5 and a sin-
gle attractor located three words after the subject).
Unsurprisingly, the DCs obtain their best accu-
racy scores at (or just after) the subject and verb
timestep. This pattern is consistent across context
sizes, attractor positions, and number of words be-
fore the subject and after the verb, and regardless
of whether the LSTM prediction was correct or in-
correct. This result illustrates that the LM learns to
recognise the number information of subject heads
and present tense verbs.

The figure furthermore shows that performance
differs between layers and between components.
The DC performance of the layer 1 compo-
nents, moreover, critically differs for ‘correct’ and
‘wrong’ sentences, For example, classifiers that
make predictions based on ct and ht activations
of ‘correct’ sentences are the most stable in terms
of accuracy, in particular at layer 1. Although all
LSTM components outperform the random base-
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line of 50%, these results imply that the cell state
and the hidden activation are the LSTM compo-
nents that are most specialised at processing num-
ber information. We test this claim in Section 5.

Another cause of differences across diagnostic
classification error rates is the presence of agree-
ment attractors. Accuracies for the test sets with
an attractor are overall lower than those obtained
on sentences without an attractor. While the error
rate rises in Figure 2 and diverges between ‘cor-
rect’ and ‘wrong’ at the position of the attractor,
the same does not happen for sentences without
attractors (not plotted).

5 Representations Across Timesteps

Results so-far show us that number information is
most easily retrieved from the internal states of the
LM when the noun or verb have just been pre-
sented, but not very well from the internal states
at intermediate timesteps. The good performance
of the LM in predicting the number of the verb,
however, indicates that the LM does retain the sub-
ject’s number information during those intermedi-
ate timesteps—but apparently it does so using a
different representation. In this section, we focus
on these changing representations.

In the previous experiment we trained diagnos-
tic classifiers on activation data for all words in
the sentence. In contrast, we now train separate
diagnostic classifiers for each timestep: each DCt

is trained with activation data at timestep t only.
We test, however, each DCt on data from all other
timesteps as well. With a total of T timesteps, this
gives us T×T DC-accuracies that together consti-
tute a Temporal Generalization Matrix (King and
Dehaene, 2014; Fyshe et al., 2016).

In effect, we are forcing each DC to specialise
on timestep-specific representations of subject-
verb agreement information. If this information
is represented uniformly across timesteps, a clas-
sifier trained at the subject timestep should also
have a high accuracy when applied to the activa-
tions corresponding with the timestep in which the
attractor occurs. If, on the other hand, informa-
tion is dynamically encoded, no such generality of
classifiers is to be expected.

Data To test the development of the encoding
over time, we create a corpus with sentences that
are identical with respect to the position of the
subject, attractor and main verb. We train on sen-
tences with 5 intervening words between the sub-

Figure 3: The temporal generalization matrices for
DCs trained on memory cell activation at differ-
ent timesteps, for correctly (top) and incorrectly
classified (bottom) sentences. Timestep 0 corre-
sponds to the subject of the sentence, the attractor
and main verb of the sentence occur at timesteps
3 and 6, respectively. The corpus used for testing
here is UD-K*-L5-M*-A3.

ject, containing one attractor 3 timesteps after the
subject, and a variable number of words before
the subject and after the verb (UD-K*-L5-M*-A3).
After computing the activations for all sentences,
we collect the activations corresponding to all 6
timesteps from subject to verb, in 6 different bins.
For each bin, we train a separate DC.

For testing we create again a ‘correct’ and an
‘incorrect’ test set, drawing both sets from UD-
K*-L5-M*-A3. Following the same procedure as
for the training data, we split both test sets up into
6 timesteps. In the remainder of this section, po-
sition 0 thus always refers to the position of the
subject, while the attractor and main verb of the
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sentence occur at timestep 3 and 6, respectively.
In Figure 3, we plot the Temporal Generaliza-

tion Matrix for the memory cell (c1t ) activation
data, containing the accuracies of T DC’s eval-
uated on T timestep datasets each. The top fig-
ure plots results for ‘correct’ sentences, the bottom
figure for ‘incorrect’ sentences.

A first observation is that accuracies on the
diagonals—which correspond to classifiers that
were trained and tested on the same timestep—
are typically high for sentences that are processed
correctly, while being lower for incorrectly pro-
cessed sentences. Interestingly, this difference al-
ready emerges at the first two timesteps, where no
attractor has yet appeared—suggesting that an im-
portant part of the problem with misclassified sen-
tences is the encoding of the relevant information
already when the subject occurs.

Comparing the plots for correctly and incor-
rectly processed sentences, we notice that the at-
tractor (timestep 3) has a very large effect on the
accuracies for incorrectly classified sentences. For
those sentences, the LM’s internal states contain
no information anymore after the attractor is pro-
cessed: timesteps 4 and 5 receive below chance
accuracies, whereas for correctly processed sen-
tences the attractor prompts only a slight dip in
accuracy.

Focussing on the correctly processed sentences,
an interesting observation that can be made is the
discrepancy between column 0 and 6 (the columns
corresponding to the subject and verb of a sen-
tence) and the rest of the columns. While the
first and last column generalise poorly to differ-
ent timesteps, the classifiers trained and tested on
timesteps 1-5 show a different pattern: despite
potential effects from the attractor at timestep 3,
the accuracy scores do not change substantially
across timesteps. This implies that the LSTM rep-
resents subject-verb agreement information in at
least two different ways: a short-term ‘surface’
level at and around the subject timestep, and a
longer-term ‘deep’ level for successive sequence
processing. This deep level information seems to
be represented most generically at timestep 4, the
classifier for which has the highest accuracy across
timesteps.

In the next section, we delve deeper into the rep-
resentations at this timestep and investigate which
components of the LSTM are most crucial in rep-
resenting this information.

Figure 4: The spatial generalization matrices at
timestep 4. Shown are accuracies of DCs trained
on activation data of each component separately
(horizontal), and tested on each component sep-
arately (vertical). Results for correctly (top) and
incorrectly (bottom) classified sentences.

6 Comparing Representations Across
Components

In this section, we briefly investigate the stability
of information across components of the LSTM.
Rather than comparing DCs that are trained on dif-
ferent timesteps, we now compare DCs that are
trained on different components. We focus on
timestep 4 which, following our previous exper-
iments, optimally represents ‘deep’ information
about subject-verb agreement. For our experi-
ments, we use the same training set as for the pre-
vious experiment, with sentences with a context
size of 5 and a single attractor located three words
after the subject (UD-K*-L5-M*-A3).

Figure 4 presents the ‘spatial generalization ma-
trix’, with DCs trained at timestep 4 with data
from each components separately. The matrix
shows that deep information is best represented in
the hidden activation and memory cell of layer 1,
and that the representations in these two compo-
nents are similar.
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Figure 5: Mean accuracies for each component of the LSTM after an intervention of ct and ht at the
subject timestep 0. An attractor and the agreeing verb occur at timestep 3 and 6, respectively.

An official estimate issued in 2003 suggests suggest
Original -11.05 -8.426 -8.472 -1.243 -3.951 -5.753 -5.6979
Intervention -11.05 -8.426 -8.472 -1.268 -3.97 -5.691 -6.4361

Table 3: Example sentence as processed by the neural language model of Gulordava et al. (2018), without
and with our intervention. Shown are perplexities per word, for two versions of the sentence (featuring
the verb ‘suggests’ or ‘suggest’).

7 Improving the Language Model Using
Diagnostic Classifiers

In the experiments presented above, we used diag-
nostic classifiers to investigate the way the LSTM
performs the verb number prediction task. In this
section, we take one step further: rather than using
DCs to analyse what neural networks are encod-
ing, we try to use them to actively influence their
behaviour through what they learned.

We use the same data as we used for the exper-
iments described in the previous section: a corpus
of sentences with the subject at timestep 0, one
attractor 3 timesteps after (at timestep 3) and the
main verb at timestep 6 (UD-K0-L5-M0-A3). We
train 4 DCs to predict the number of the sentence
from the hidden layer activations and memory cell
activations for both layers, respectively.

We then use the trained DCs to actively in-
fluence the course of processing by the LSTM.
We start processing sentences from the Gulordava
et al. (2018) corpus, but after processing the sub-
ject of a sentence—the point where we discov-
ered information is stored in a corrupted way for
‘wrong’ sentences—we halt the LSTM’s process-
ing, extract the hidden activation and the activation
of the memory cell, and apply the trained diagnos-
tic classifier to predict whether the main verb in
the sentence is singular or plural. We then slightly
adapt the activations based on the error that is de-

fined by the difference between the predicted label
and the correct label for this particular sentence.
We compute the gradients of this error with respect
to the activations of the network, and we modify
the activations using the delta-rule (we empirically
decided on η = 0.5). In other words, we change
the activations such that the prediction of the di-
agnostic classifier is slightly closer to the gold la-
bel. After adapting the activations, we continue to
process the rest of the sentence given the adapted
activations.

DC accuracy In Figure 5 we plot the accura-
cies of DCs trained on different components of the
LSTM when we apply them on activations result-
ing from sentences processed with the above de-
scribed intervention. Trivially, the intervention in-
creases the accuracy of DCs for the hidden activa-
tion and memory cell of the network at timestep
1. More interestingly, this effect persists while
the processing of the sentence proceeds—in some
cases it grows even stronger—and thus in fact
changes how the LSTM processes the sentence.
This effect is not only visible in the components on
which the intervention is done, but also displays in
the gate-values, that are not directly updated but
only changed indirectly through the interventions
in the memory cell and hidden activations.

Language modelling To put our interventions
to the test, we now assess the predictions made
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without with
intervention intervention

Original 78.1 85.4
Nonce 70.7 75.6

Table 4: Accuracy of the LSTM on the Gulordava
et al. (2018) agreement test, with and without an
intervention at the subject timestep.

by the LSTM as a consequence of the interven-
tions. First, we confirm that the intervention does
not cause strong anomalies in the LSTM, by com-
paring the perplexity of a small corpus of sen-
tences processed with interventions at the subject
timestep with sentences processed without any in-
terventions. Table 3 shows an example sentence.
We do not find any strong differences, confirm-
ing that the intervention is minor with respect to
the overall behaviour of the LSTM. On the agree-
ment test described by Gulordava et al. (2018) and
conducted earlier in Section 3, however, the inter-
vention does have a strong effect, as can be seen
in Table 4. The accuracy of predicting the correct
verb number increases from 78.1 to 85.4 and from
70.7 to 75.6 for original and nonce sentences, re-
spectively.

These results provide evidence that DCs are
able to pick up features that are actually used by
the LSTM, rather than relying on idiosyncrasies
in the high dimensional spaces that happen to be
aligned with the predicted labels. Furthermore,
they illustrate how diagnostic classifiers can be
used to actively change the course of processing in
a recurrent neural network, and with this opens a
path that moves from merely analysing to actively
influencing black box neural models.

8 Conclusions

In this paper, we focus on understanding how
an LSTM language model processes subject-verb
congruence, using a task first presented by Linzen
et al. (2016), in which it is tested whether a lan-
guage model prefers congruent over incongruent
verbs. After replicating their results, we train diag-
nostic classifiers (Hupkes et al., 2018) to discover
where and how number information is encoded by
the LSTM; we find that number information is en-
coded dynamically over time, rather than remain-
ing constant. Using a cognitive-neuroscience in-
spired method, we then train different diagnostic
classifiers for different timesteps, resulting in a

Temporal Generalisation Matrix, which provides
more information about changing representations
over time. We find that while number information
is stored in very different ways at the beginning
and end of a sentence, in between a relatively sta-
ble ‘deep’ representation is maintained. Addition-
ally, we find that for sentences in which the LSTM
prefers an incongruent verb over congruent one,
the information appears to be stored wrongly al-
ready at the beginning of the sentence, far before
the verb is to appear.

Combining this information, we invert the pro-
cess of diagnostic classification, using the classi-
fiers to influence rather than merely observe. To
this end, we process sentences with our language
model and, at the point where we find information
to be often corrupted, we intervene by (slightly)
changing the hidden activations of the network us-
ing a trained DC. After this intervention, we con-
tinue processing the sentence as normal. This
small intervention has little effect on the overall
course of the LSTM, but a very large effect on
the verb prediction at the end: the percentage of
sentences for which the model prefers the congru-
ent over the incongruent verb rises from 78.1% to
85.4%.

With these results, we not only show that di-
agnostic classifiers offer a detailed understanding
of where and when information is encoded in a
neural model, but also that this information can be
used post hoc to change the course of the process-
ing of such a model.

Acknowledgements

DH and WZ are funded by the Netherlands Orga-
nization for Scientific Research (NWO), through a
Gravitation Grant 024.001.006 to the Language in
Interaction Consortium.

References
Yossi Adi, Einat Kermany, Yonatan Belinkov, Ofer

Lavi, and Yoav Goldberg. 2016. Fine-grained anal-
ysis of sentence embeddings using auxiliary predic-
tion tasks. In International Conference on Learning
Representations (ICLR).

Noam Chomsky. 1957. Syntactic Structures. Mouton
and Co., The Hague.

Alexis Conneau, German Kruszewski, Guillaume
Lample, Loı̈c Barrault, and Marco Baroni. 2018.
What you can cram into a single vector: Probing



248

sentence embeddings for linguistic properties. In
Association for Computational Linguistics (ACL).

Alona Fyshe, Gustavo Sudre, Leila Wehbe, Nicole
Rafidi, and Tom M Mitchell. 2016. The semantics of
adjective noun phrases in the human brain. bioRxiv,
page 089615.

Kristina Gulordava, Piotr Bojanowski, Edouard Grave,
Tal Linzen, and Marco Baroni. 2018. Colorless
green recurrent networks dream hierarchically. In
Proceedings of the 2018 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
Volume 1 (Long Papers), volume 1, pages 1195–
1205.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural computation,
9(8):1735–1780.

Dieuwke Hupkes, Sara Veldhoen, and Willem
Zuidema. 2018. Visualisation and ’diagnostic classi-
fiers’ reveal how recurrent and recursive neural net-
works process hierarchical structure. Journal of Ar-
tificial Intelligence Research, 61:907–926.

Akos Kádár, Grzegorz Chrupała, and Afra Alishahi.
2017. Representation of linguistic form and func-
tion in recurrent neural networks. Computational
Linguistics, 43(4):761–780.

Urvashi Khandelwal, He He, Peng Qi, and Dan Juraf-
sky. 2018. Sharp nearby, fuzzy far away: How neu-
ral language models use context. In Association for
Computational Linguistics (ACL).

JR King and Stanislas Dehaene. 2014. Characterizing
the dynamics of mental representations: the tempo-
ral generalization method. Trends in cognitive sci-
ences, 18(4):203–210.

Tal Linzen, Emmanuel Dupoux, and Yoav Goldberg.
2016. Assessing the ability of lstms to learn syntax-
sensitive dependencies. Transactions of the Associ-
ation for Computational Linguistics, 4:521–535.

Stephen Merity, Nitish Shirish Keskar, and Richard
Socher. 2018. An analysis of neural language
modeling at multiple scales. arXiv preprint
arXiv:1803.08240.

Lucien Tesnière. 1959. Eléments de syntaxe struc-
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