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Abstract

We propose prefix constraints, a novel
method to enforce constraints on tar-
get sentences in neural machine transla-
tion. It places a sequence of special
tokens at the beginning of target sen-
tence (target prefix), while side constraints
(Sennrich et al., 2016) places a special to-
ken at the end of source sentence (source
suffix). Prefix constraints can be predicted
from source sentence jointly with target
sentence, while side constraints must be
provided by the user or predicted by some
other methods. In both methods, special
tokens are designed to encode arbitrary
features on target-side or metatextual in-
formation. We show that prefix constraints
are more flexible than side constraints and
can be used to control the behavior of neu-
ral machine translation, in terms of out-
put length, bidirectional decoding, domain
adaptation, and unaligned target word gen-
eration.

1 Introduction

It is difficult to change the behaviors of a current
neural machine translation system, because the in-
ternal states of the system are represented by vec-
tors of real numbers. There are no symbols to be
manipulated and end-to-end optimization makes it
impossible to identify the source of poor perfor-
mance.

Some studies control the output of the
encoder-decoder model, through the use of ad-
ditional information such as target-side informa-
tion and meta-textual information. Target-side
information includes politeness (Sennrich et al.,
2016), voice (Yamagishi et al., 2016), sentence
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length (Kikuchi et al., 2016), and target language
(Johnson et al., 2016). Meta-textual information
include dialogue act (Wen et al., 2015), user per-
sonality (Li et al., 2016), topic (Chen et al., 2016),
and domain (Kobus et al., 2016)

Two approaches can be used to provide addi-
tional information to the encoder-decoder model,
word-level methods and sentence-level meth-
ods. Word-level methods encode the addi-
tional information as a vector (embedding) that
is input together with a word at each time
step of either (or both) encoder and decoder
(Wen et al., 2015; Li et al., 2016; Kikuchi et al.,
2016). Sentence level methods encode the addi-
tional information as special tokens. Side con-
straints are placed at the end of source sen-
tence (Sennrich et al., 2016; Johnson et al., 2016;
Yamagishi et al., 2016), while our proposal, pre-
fix constraints, is placed at the beginning of target
sentence.

The advantage of sentence-level methods over
word-level methods is their simplicity in appli-
cation. The network structure of the underlying
encoder-decoder model does not have to be mod-
ified. The problem with side constraints is that,
at test time, additional information must be either
specified by the user or automatically predicted by
some other method. As prefix constraints move
the special tokens from source to target, they can
be predicted by the network jointly with target sen-
tence. Like side constraints, the user can specify
prefix constraints by using prefix-constrained de-
coding (Wuebker et al., 2016), which can be im-
plemented by a trivial modification of the decoder.

The following sections start by describing the
framework of prefix constraints. We then show
three simple use cases, namely, length control,
bidirectional decoding, and domain adaptation.
We then show a more sophisticated usage of prefix
constraints: unaligned target word generation.
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2 Encoder-Decoder Model with Prefix
Constraints

2.1 Encoder-Decoder Model
First, we briefly describe the attention-based
encoder-decoder model (Bahdanau et al., 2015;
Luong et al., 2015), which is the state-of-the-art
neural machine translation method and the base-
line of this study.

Given input sequence x = x1 . . . xn and model
parameters θ, the encoder-decoder model formu-
lates the likelihood of the output sequences y =
y1 . . . ym as follows:

log p(y|x) =
∑m

j=1
log p (yj |y<j , x; θ) (1)

The encoder is a recurrent neural network (RNN)
which projects input sequence x into a sequence of
hidden states h = h1 . . . hn via non-linear trans-
formation. The decoder is another RNN which
predicts target words y sequentially, one word at
a time. The encoder-decoder model is trained to
maximize the conditional likelihood on a parallel
corpus by stochastic gradient descent.

J = −
∑

(x,y)∈D

log p(y|x) (2)

Attention-based encoder-decoder models have
an additional single-layer feed-forward neural net-
work, called attention layer. It calculates a weight
for each source word xi to predict target word yj

from previous target word yj−1 and hidden states
of the encoder hi.

2.2 Side Constraints
Sennrich et al. (2016) proposed a method to con-
trol the level of politeness in target sentence in
English-to-German translation. They add a T-V
distinction tag at the end of the source sentence,
so that target sentence is either familiar (Latin Tu)
or polite (Latin Vos).

Are you kidding? [T] → Machst du Witze?
Are you kidding? [V] → Machen Sie Witze?

In their method, the features that the generated
target sentence must satisfy are called side con-
straints. At training time, the correct feature is ex-
tracted from the sentence pair. At test time, the
special token is assumed to be provided by the
user. Automatic prediction of the side constraints
from the source sentence at test time is an open
problem. Johnson et al. (2016) used the frame-
work for multilingual translation.

2.3 Prefix Constraints
In our proposed method, a sequence of special to-
kens is placed at the beginning of the target sen-
tence. In other words, they are the prefix to the
extended target sentence.

Let a sequence of features extracted from a pair
of source sentence x and target sentence y be
c = c1 . . . ck, and extended target sentence be
ỹ = cy. The baseline encoder-decoder model
Eq. (1) is extended as follows.

log p(ỹ|x) = log p(c|x) + log p(y|x, c) (3)

log p(c|x) =
∑k

j=1
log p (cj |c<j , x; θ)

log p(y|x, c) =
∑m

j=1
log p (yj |y<j , x, c; θ)

and the objective function becomes

J = −
∑

(x,y)∈D

log p(y|x, c) + log p(c|x). (4)

Prefix constraints can be either automatically
predicted or specified by the user. In the de-
fault use of the decoder, both prefix and target
sentence are jointly generated (predicted) from
source sentence. Prefix can be specified by us-
ing prefix-constrained decoding (Wuebker et al.,
2016), which is a beam search method that con-
strains the output to match a specified prefix. In
the constrained mode, we feed cj directly to the
next time step regardless of the current prediction
of the decoder. Once the specified prefix has been
utilized, the decoder switches to standard (uncon-
strained) beam search and the most probable word
yj is passed to the next time step.

3 Basic Examples

3.1 Length Control
The first example encodes the desired length of the
target sentence for length control.

京都が好きです→ #3 I love Kyoto

Length control is extremely be useful when
translating headlines, captions, and subtitles.
Kikuchi et al. (2016) proposed four methods to
control the length of the sentence generated by
an encoder-decoder model in a text summarization
task; they considered two learning-based methods
using length embeddings, namely LenEmb and
LenInit. LenEmb method explicitly enters the re-
maining length to the decoder at each time step,
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while LenInit method enters the desired length
once at the initial state of the decoder. They
designed a dedicated network structure for each
method.

In spirit, our method is similar to the LenInit
method, but we don’t have to modify the under-
lying network structure. Note that we do not tell
the network that ’#3’ is the length of the target sen-
tence. The network automatically learns the mean-
ing of the symbol from the regularity of the train-
ing data and then calculates its embedding.

3.2 Bidirectional Decoding

The second example encodes the decoding direc-
tion of target sentence for bidirectional decoding.

京都が好きです→ #L2R I love Kyoto
京都が好きです→ #R2L Kyoto love I

We make two sentence pairs, one with prefix
’#L2R’ (left-to-right) and the other with prefix
’#R2L’ (right-to-left) for each sentence pair, and
train a single model. At test time, given an input
sentence, the decoder automatically selects opti-
mal decoding direction either ’#L2R’ or ’#R2L’
depending on their probabilities.

Liu et al. (2016) proposed a target-bidirectional
decoding method that encourages the agreement
between left-to-right and right-to-left decoding.
Their method requires two separate models, one
for left-to-right n-best decoding and the other for
right-to-left rescoring, and an additional mecha-
nism for encouraging agreement (rescoring). Our
method implements bidirectional decoding in one
pass decoding without changing the underlying
network structure.

3.3 Domain Adaptation

The third example encodes dataset names of
a bilingual text for domain adaptation. Here,
IWSLT is a travel expression corpus and KFTT is
a corpus of Japanese Wikipedia pages on Kyoto
and its English translation.

朝食はいくらですか。
→ #IWSLT How much is the breakfast ?
妙法蓮華経を根本経典とする。
→ #KFTT Its fundamental sutra is lotus sutra .

Kobus et al. (2016) proposed a domain adap-
tation method using side constraints. They used
a separate classifier for predicting the domain of
a sentence before translation if it is not known.
Li et al. (2016) used Speaker IDs of Twitter to

add personality to a conversational agent. Speaker
embeddings are learned jointly with word embed-
dings and entered into the decoder at each time
step. Luong and Manning (2015) proposed a do-
main adaptation method based on fine tuning in
which an out-of-domain model is further trained
on in-domain data.

Our method can automatically predict domain
jointly with target sentence. We don’t have to
change the underlying network structure and do-
main embeddings are jointly learned with word
embeddings as a part of target vocabulary. One
of the potential benefits of our method is that only
one model is made and used for all domains. If
multiple domains must be supported, the methods
based on fine tuning (Luong and Manning, 2015)
have to make a model for each domain.

4 Unaligned Target Word Generation

The fourth example encodes information on un-
aligned target words for generating target sen-
tences. It is significantly more complex than the
previous examples. We first describe its moti-
vation and then derive two types of prefix con-
straints.

4.1 Unaligned Target Words

Given a pair of sentences that are translations of
each other, some words in one language cannot be
aligned to any words in the other language. We
call them unaligned words.

Japanese case markers such asが (ga),を (wo),
に (ni) and English articles such as a, an, the do
not have counterparts in the other language. Other
than these grammatical differences between two
languages, unaligned words can be caused by spe-
cific linguistic phenomena in one language, such
as zero pronouns (dropped subject and object) in
Japanese and expletives in English (there in there-
construction, do in interrogative sentence, it in for-
mal subject, etc.).

In machine translation, unaligned words in
target sentence are problematic because the in-
formation required for translation is not explic-
itly present in the source sentence. There are
many works that aim at improving machine
translation performance by supplementing un-
aligned words, but they focus on specific lin-
guistic phenomena such as Japanese case marker
(Hisami and Suzuki, 2007), Chinese zero pro-
noun (empty category) (Chung and Gildea, 2010;
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Xiang et al., 2013; Wang et al., 2016), Japanese
zero pronoun (Taira et al., 2012; Kudo et al.,
2014) and English determiner (Tsvetkov et al.,
2013). There are no language independent meth-
ods that can cope with unaligned target words.

4.2 Identifying Unaligned Target Words

We first propose a language independent method
for automatically identifying unaligned target
words. We assume word alignment is given for
a bilingual sentence pair, where NULL represents
empty word. We define a score Su(w). It repre-
sents the likelihood that a word w in target sen-
tence e aligns to the NULL in source sentence f .
The most straightforward way to define Su(w) is
to use the word translation probability obtained
from the word alignment in the training corpus,

Su(w) = p(f = NULL|e = w) (5)

Our preliminary experiment showed that the
scores yielded by Eq. (5) are not reliable for low
frequency target words. We therefore use the fol-
lowing equation to filter out low frequency NULL-
generated target words.

Su(w) = p(e = w|f = NULL)
∗ p(f = NULL|e = w) (6)

We use GIZA++ (Och and Ney, 2003) to ob-
tain word alignment for both translation direc-
tions. Word alignment is symmetrized by inter-
section heuristics, because the word alignment ob-
tained by grow-diag-final-and, is noisy for un-
aligned words.

Table 1 shows the top 50 unaligned target words
as determined by Eq. (6) in the IWSLT-2005
Japanese-to-English translation dataset, which is
described in the experiment section. We can see
that the automatically extracted unaligned target
words include zero pronouns (i, you, it), articles
(a, the), light verbs (take, get, make), and exple-
tives (do, does).

4.3 Prefix Constraints for Unaligned Target
Words

We propose here two types of prefix constraints
for improving the translation of unaligned target
words: LEX and COUNT.

LEX places a sequence of unaligned target
words at the beginning of the target sentence in
the same order they appear in the target sentence.

A special token, #GO, is added to delimit the vari-
able length prefix relative to target sentence. In the
following examples, words with underline indicate
unaligned target words.

赤ワインを頂けますか。
→#i #GO may i have some red wine ?
では当日御待ちして居ります。
→#we #you #GO we are waiting for you that day
.

COUNT uses the number of unaligned target
words as a prefix. As shown in the following ex-
amples, the number of unaligned target words are
surrounded by “[” and “]” to distinguish the (fixed
length) prefix from target sentence 1.

赤ワインを頂けますか。
→ [1] may i have some red wine ?
では当日御待ちして居ります。
→ [2] we are waiting for you that day .

5 Experiment

5.1 Datasets and Tools
The experiments used five publicly available
Japanese-English parallel corpora, namely
IWSLT-2005, KFTT, GVOICES, REUTERS, and
TATOEBA, as shown in Table 2. IWSLT-2005 is a
dataset for Japanese-English Tasks of the Interna-
tional Workshop on Spoken Language Translation
(Eck and Hori, 2005). It is available from ALA-
GIN2. KFTT (Kyoto Free Translation Task) is a
Japanese-English translation task on Wikipedia
articles related to Kyoto3. Parallel Global Voices
is a multilingual corpus created from Global
Voices websites which translate social media
and blogs (Prokopidis et al., 2016). Tatoeba is a
collection of multilingual translated example sen-
tences from Tatoeba website. These last two are
available from OPUS (Tiedemann, 2012). Reuters
are Japanese-English parallel corpus made by
aligning Reuters RCV1 RCV2 multilingual text
categorization test collection data set (RCV1 for
English and RCV2 for other languages) available
from NIST (Utiyama and Isahara, 2003)4.

The unaligned target word generation exper-
iments used two additional proprietary spoken

1The COUNT feature can be thought of a substitute
for the fertility of the IBM model (Brown et al., 1993),
or the generative model for NULL-generated target words
(Schulz et al., 2016).

2http://alagin.jp/
3http://www.phontron.com/kftt/index.html
4The aligned parallel corpus is available from the home-

page of the first author of (Utiyama and Isahara, 2003)

58



Su(w) Su(w) Su(w) Su(w) Su(w)
i 0.263 like 0.119 ’s 0.090 be 0.070 want 0.060

the 0.233 of 0.118 can 0.090 ’ll 0.070 that 0.059
a 0.214 me 0.114 ’m 0.089 take 0.068 there 0.059

you 0.171 in 0.109 at 0.084 would 0.068 one 0.054
, 0.166 my 0.108 how 0.082 and 0.067 could 0.051
it 0.155 have 0.101 some 0.078 what 0.067 was 0.051
to 0.133 on 0.098 your 0.077 get 0.066 make 0.051
for 0.132 we 0.097 will 0.075 any 0.066 this 0.049
do 0.129 ’d 0.094 with 0.074 an 0.064 here 0.049

please 0.126 is 0.091 are 0.074 does 0.063 by 0.048

Table 1: Top 50 unaligned target words in IWSLT2005

Name Label Sents. len.(ja) len.(en)
IWSLT-2005 train 19,972 9.9 9.4
(Conversation) dev 506 8.1 7.5

test 1,000 8.2 7.6
KFTT train 440,288 27.0 26.3
(Wikipedia) dev 1,235 27.8 25.1

test 1,160 24.5 23.5
GVOICES train 43,488 26.3 19.8
(Blog) dev 1,000 25.1 18.9

test 1,000 28.7 21.2
REUTERS train 54,011 34.3 25.2
(News) dev 1,000 34.4 25.2

test 1,000 34.6 25.5
TATOEBA train 185,426 10.1 9.14
(Examples) dev 1,000 10.2 9.21

test 1,000 11.8 9.23
ALL train 753,185 23.3 21.2

dev 4,741 23.2 18.6
test 5,160 22.2 17.5

Table 2: Datasets Statistics

language corpora as the IWSLT-2005 dataset is
very small. One is the Daionsen parallel sen-
tence database, made by Straightword Inc5, which
is a phrase book for daily conversation. It has
50,709 sentences with 431,258 words in English
and 471,677 words in Japanese. The other is
the HIT (Harbin Institute of Technology) paral-
lel corpus (Yang et al., 2006) developed for speech
translation. It is a collection of 62,727 sen-
tences with 635,809 words in English and 796,200
words in Japanese. We call this dataset IWSLT-
2005+EXTRA.

English sentences are tokenized and lower-
cased by the scripts used in Moses (Koehn et al.,
2007). Japanese sentences are normalized by
NFKC (a unicode normalization form) and word
segmented by MeCab6 with UniDic. For neural

5http://www.straightword.jp/
6http://taku910.github.io/mecab/

machine translation, we used seq2seq-attn7, which
implements an attention-based encoder-decoder
(Luong et al., 2015). We used default settings un-
less otherwise specified. Translation accuracy is
measured by BLEU (Papineni et al., 2002).

5.2 Length Control
Table 3 compares side constraints with prefix con-
straints in terms of length control for IWSLT-2005
dataset. Baseline is a NMT system trained on
the parallel corpus without length tag. Side Con-
straints and Prefix Constraints stand for NMT sys-
tems trained on the corpus with length tags placed
at the end of source sentence and at the begging
of target sentence, respectively. In None, source
sentences without length tag are entered into the
system at test time. In Oracle, reference length
is encoded as length tag and prefix constrained de-
coding is used in Prefix Constraints. In the training
for Side Constraints, we mixed tagged sentences
and non-tagged sentences to avoid over-fitting to
length tag as described in (Sennrich et al., 2016).

None Oracle
Baseline 34.8 -
Side Constraints 33.0 35.4
Prefix Constraints 31.7 35.7

Table 3: Comparison between side constraints and
prefix constraints on length control

As shown in Table 3, Prefix Constraints are
comparable to or better than Side Constraints in
controlling the length of the target sentence if the
correct length is known and provided as an oracle.
It is difficult to predict the length of target sen-
tence from source sentence, which lowered the ac-

7
https://github.com/harvardnlp/seq2seq-attn
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curacy of Prefix Constraints for None. The accu-
racy of length prediction for short sentences (less
than 10 words) is 97.7%, while that for long sen-
tences (more than or equal to 10 words) is 45.7%.

We found that length control for short sentence
worked surprisingly well. The following is an ex-
ample of prefix constrained decoding where length
tags were changed from #2 to #9 for the source
sentence どういたしまして (You’re welcome).
All of them are acceptable and have the specified
length.

どういたしまして→
#2 anytime .
#3 you welcome .
#4 you ’re welcome .
#5 you ’re welcome up .
#6 you ’re welcome , sir .
#7 you ’re welcome . thank you .
#8 you ’re welcome . you ’re welcome .
#9 it ’s all right . you ’re welcome .

5.3 Bidirectional Decoding

IWSLT KFTT REUTERS
L2R 34.8 20.9 19.7
R2L 32.8 20.1 19.6
Target-Bidi 35.8 21.1 20.2
Predict-Dir 35.6 21.5 20.6

Table 4: Comparison of target bidirectional
method (Liu et al., 2016) and decoding direction
prediction using prefix constraints

Table 4 shows a comparison between our imple-
mentation of target-bidirectional method (Target-
Bidi) (Liu et al., 2016) and decoding direction
prediction using prefix constraints (Predict-Dir)
on IWSLT-2005, KFTT, and REUTERS datasets.
L2R and R2L are baseline NMT system with left-
to-right and right-to-left decoding, respectively.
For the evaluation of Predict-Dir, sentences with
’#R2L’ tags are reversed and both ’#L2R’ and
’#R2L’ tags are removed. Predict-Dir is compara-
ble to or better than Target-Bidi. Considering the
simplicity of the proposed method, it is a viable
option for bidirectional decoding.

5.4 Domain adaptation
Table 5 shows BLEU scores for the five datasets
for different systems in terms of domain adap-
tation techniques. In Single, for each domain
(dataset), the translation model is trained using

only each dataset in isolation. In Join, one trans-
lation model is trained using a corpus made by
simply concatenating all datasets without domain
tags. In Predict and Oracle, one translation model
is trained using a corpus made by concatenating all
datasets with domain tags as target prefix. In Pre-
dict, domain tag is automatically predicted, while
in Oracle, the domain tag of the reference is pro-
vided and used for prefix constrained decoding.

Comparing Single and Join, Small corpora such
as GVOICES and REUTERS benefit most when
additional parallel data is used, while the largest
corpus KFTT experiences no such benefit. By
adding domain tags (Predict and Oracle), all cor-
pora including the largest KFTT can benefit from
the combination of data sources. As the difference
in accuracy between Predict and Oracle is small,
we assume the domain prediction accuracy for the
proposed method is high enough for the task.

In order to understand what is happening when
domain tags are used as prefix constraints, we ran-
domly selected 100 sentences from each dataset
and calculated the hidden states for each refer-
ence. We then visualized the hidden state of the
last layer of the decoder in the first time step (be-
fore domain tag entered) and the second time step
(after domain tag entered) using t-SNE in Figure 1.

The figure shows the proximity between do-
mains. In the initial step of the decoder, some
domains such as IWSLT-2005 and TATOEBA, or
GVOICES and REUTERS are very close each
other. After domain tags are entered, all domains
are clearly separated. Specifying the domain tag
corresponds to moving the point in the figure from
one cluster to another.

5.5 Unaligned target word generation

We made two lists of unaligned target words, top
10 and top 50, based on Eq. (6). For each sentence
in the training data, unaligned target words were
identified and used to make prefix constraints if
they are in the list and unaligned in the sentence
pair. Table 6 shows translation accuracy when
COUNT and LEX are used as prefix constraints,
where the candidates of target unaligned words are
either top-10 or top-50. Baseline is the attention-
based encoder-decoder model without prefix con-
straints. In Predict, prefix constraints are predicted
from source sentence. In Oracle, prefix constraints
are specified using reference target sentence and
prefix constrained decoding is used.
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Single Join Predict Oracle
GVOICES (43k sents.) 6.31 16.9 17.0 17.1

IWSLT (20k sents.) 34.8 36.8 37.1 37.1
KFTT (440k sents.) 20.9 20.8 21.1 21.1

REUTERS (54k sents.) 19.7 24.6 25.0 25.0
TATOEBA (185k sents.) 36.0 59.4 59.5 59.7

Table 5: BLEU scores for different systems in terms of domain adaptation techniques
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Figure 1: t-SNE visualization of the hidden states of the decoder for various domains

IWSLT-2005+EXTRA
#UTW Predict Oracle

Baseline 36.5 -
COUNT 10 37.5 38.1

50 36.9 38.0
LEX 10 36.4 41.7

50 32.4 46.9

Table 6: Translation accuracy of prefix constraint
prediction and prefix-constrained decoding

As for Predict, COUNT is significantly better
than Baseline (about 1 BLEU point) when the
small list of unaligned words, top-10, is used. It
shows that translation accuracy can be improved
by predicting prefix constraints and generating tar-
get sentence at the same time 8.

The accuracies for Oracle show that translation
accuracy can be greatly improved if the user pro-
vides some information on unaligned target words.

8The average numbers of unaligned target words in train,
dev, test set of IWSLT-2005+EXTRA are 3.1, 2.5, 2.6, re-
spectively

Precision Recall
i 76 68
you 72 78
it 61 67

Table 7: Precision and recall of pronouns

If the number of unaligned words is provided,
translation accuracy can be improved by about 3
BLEU points, and if the correct list of unaligned
target words is provided, it can be improved by
about 10 points. There is still much room for im-
provement as regards the problem of unaligned
target words.

Table 7 shows precision and recall of unaligned
target pronouns when COUNT based on top-10
list is used for prefix constraint prediction and the
dataset is IWSLT-2005+EXTRA. We think the ac-
curacies of around 70% are reasonable consider-
ing that some pronouns are context dependent.

Table 8 is a real example of the outputs of LEX
and COUNT. In fact, it is very difficult to predict
the correct set of unaligned words from just the
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Input いつ で も 話し合い に 応じる 準備 は でき て いる から 、ゴー サイン を
送って下さい。

Reference #i #GO i ’m ready to start talks anytime so just say when .
Baseline you ’re always ready to talk to me , so you ’ll have to have a thorough signature .
Predict (LEX) #you #have #to #and #you #GO you ’re ready to let us have ready and sent them

to you .
Predict (COUNT) [4] you ’re always ready to talk with us . please send us a liqueur .

Table 8: A real example of the outputs of LEX and COUNT

source sentence without context. Leaving aside
the errors caused by the unknown Japanese words
ゴーサイン (go-ahead, green light, literally “go-
sign”), the major challenge here is the Japanese
zero subject. It could be ”i”, ”you”, ”he/she”, and
depends on the context. In the other words, Oracle
(LEX) is significantly better than Baseline because
this kind of context dependent information is pro-
vided from the outside.

6 Conclusion

In this paper, we showed that prefix constraints
can be used as a general framework for controlling
the target features commonly needed in neural ma-
chine translation, such as length control, bidirec-
tional decoding, domain adaptation, and unaligned
target word generation.

There are many issues that must be tackled:
For length control, translation accuracy could be
improved if we can accurately predict the length
of target sentence from source sentence. For
domain adaptation, rigorous comparison between
prefix constraints with other domain adaptation
techniques, such as side constraints (Kobus et al.,
2016), fine tuning (Luong and Manning, 2015),
and their combination (Chu et al., 2017), are re-
quired to realize its full effectiveness. For un-
aligned target word generation, applying the pro-
posed method to other domains such as news arti-
cles and other language pairs such as Chinese-to-
English is required to show its generality.

References
Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-

gio. 2015. Neural Machine Translation by Jointly
Learning to Align and Translate. In Proceedings of
the ICLR-2015.

Peter E. Brown, Stephen A. Della Pietra, Vincent
J. Della Pietra, and Robert L. Mercer. 1993. The
mathematics of statistical machine translation: Pa-

rameter estimation. Computational Linguistics
19(2):263–311.

Wenhu Chen, Evgeny Matusov, Shahram Khadivi, and
Jan-Thorsten Peter. 2016. Guided Alignment Train-
ing for Topic-Aware Neural Machine Translation. In
Proceedings of AMTA-2016.

Chenhui Chu, Raj Dabre, and Sadao Kurohashi. 2017.
An empirical comparison of domain adaptation
methods for neural machine translation. In Proceed-
ings of the ACL-2017.

Tagyoung Chung and Daniel Gildea. 2010. Effects of
Empty Categories on Machine Translation. In Pro-
ceedings of the EMNLP-2010. pages 636–645.

Matthias Eck and Chiori Hori. 2005. Overview of the
iwslt 2005 evaluation campaign. In Proceedings of
the IWSLT-2005. pages 1–22.

Toutanova Hisami and Kristina Suzuki. 2007. Gener-
ating case markers in machine translation. In Pro-
ceedings of the NAACL-HLT-2007. pages 49–56.

Melvin Johnson, Mike Schuster, Quoc V Le, Maxim
Krikun, Yonghui Wu, Zhifeng Chen, Nikhil Tho-
rat, Fernanda Viegas, Martin Wattenberg, Greg Cor-
rado, Macduff Hughes, and Jeffrey Dean. 2016.
Google’s Multilingual Neural Machine Translation
System: Enabling Zero-Shot Translation. arXiv
preprint arXiv:1611.04558 .

Yuta Kikuchi, Graham Neubig, Ryohei Sasano, Hiroya
Takamura, and Manabu Okumura. 2016. Control-
ling Output Length in Neural Encoder-Decoders. In
Proceedings of the EMNLP-2016. pages 1328–1338.

Catherine Kobus, Josep Maria Crego, and Jean Senel-
lart. 2016. Domain control for neural machine trans-
lation. arXiv preprint arXiv:1612.06140 .

Philipp Koehn, Hieu Hoang, Alexandra Birch, Chris
Callison-Burch, Marcello Federico, Nicola Bertoldi,
Brooke Cowan, Wade Shen, Christine Moran,
Richard Zens, Chris Dyer, and Ondrej Bojar and.
2007. Moses: Open source toolkit for statistical ma-
chine translation. In Proceedings of the ACL-2007.

Taku Kudo, Hiroshi Ichikawa, and Hideto Kazawa.
2014. A joint inference of deep case analysis and
zero subject generation for Japanese-to-English sta-
tistical machine translation. In Proceedings of the
ACL-2014. pages 557–562.

62



Jiwei Li, Michel Galley, Chris Brockett, Georgios Sp-
ithourakis, Jianfeng Gao, and Bill Dolan. 2016. A
Persona-Based Neural Conversation Model. In Pro-
ceedings of the ACL-2016. pages 994–1003.

Lemao Liu, Masao Utiyama, Andrew Finch, and
Eiichiro Sumita. 2016. Agreement on target-
bidirectional neural machine translation. In Pro-
ceedings of the NAACL-HLT-2016. pages 411–416.

Minh-Thang Luong and Christopher D. Manning.
2015. Stanford neural machine translation systems
for spoken language domains. In Proceedings of the
IWSLT-2015.

Minh-Thang Luong, Hieu Pham, and Christopher D
Manning. 2015. Effective approaches to attention-
based neural machine translation. In Proceedings of
the EMNLP-2015.

Franz Josef Och and Hermann Ney. 2003. A systematic
comparison of various statistical alignment models.
Computational Linguistics 29(1):19–51.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic eval-
uation of machine translation. In Proceedings of the
ACL-2002. pages 311–318.

Prokopis Prokopidis, Vassilis Papavassiliou, and Ste-
lios Piperidis. 2016. Parallel global voices: a collec-
tion of multilingual corpora with citizen media sto-
ries. In Proceedings of the LREC-2016.

Philip Schulz, Wilker Aziz, and Khalil Sima’an. 2016.
Word alignment without null words. In Proceedings
of the ACL-2016.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Controlling Politeness in Neural Machine
Translation via Side Constraints. In Proceedings of
the NAACL-HLT-2016. pages 35–40.

Hirotoshi Taira, Katsuhito Sudoh, and Masaaki Na-
gata. 2012. Zero pronoun resolution can improve
the quality of je translation. In Proceedings of the
SSST-2012. pages 111–118.

Jörg Tiedemann. 2012. Parallel data, tools and inter-
faces in opus. In Proceedings of LREC-2012.

Yulia Tsvetkov, Chris Dyer, Lori Levin, and Archna
Bhatia. 2013. Generating english determiners in
phrase-based translation with synthetic translation
options. In Proceeding of the WMT-2013. pages
271–280.

Masao Utiyama and Hitoshi Isahara. 2003. Reliable
measures for aligning japanese-english news articles
and sentences. In Proceedings of ACL-2003. pages
72–79.

Longyue Wang, Zhaopeng Tu, Xiaojun Zhang, Hang
Li, Andy Way, and Qun Liu. 2016. A Novel Ap-
proach to Dropped Pronoun Translation. In Pro-
ceedings of the NAACL-2016. pages 983–993.

Tsung-Hsien Wen, Milica Gasic, Nikola Mrkšić, Pei-
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