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Abstract

In this paper, we study AMR-to-text genera-
tion, framing it as a translation task and com-
paring two different MT approaches (Phrase-
based and Neural MT). We systematically
study the effects of 3 AMR preprocess-
ing steps (Delexicalisation, Compression, and
Linearisation) applied before the MT phase.
Our results show that preprocessing indeed
helps, although the benefits differ for the two
MT models. The implementation of the mod-
els are publicly available1.

1 Introduction

Natural Language Generation (NLG) is the process
of generating coherent natural language text from
non-linguistic data (Reiter and Dale, 2000). While
there is broad consensus among NLG scholars on
the output of NLG systems (i.e., text), there is far
less agreement on what the input should be; see Gatt
and Krahmer (2017) for a recent review. Over the
years, NLG systems have taken a wide range of in-
puts, including for example images (Xu et al., 2015),
numeric data (Gkatzia et al., 2014) and semantic
representations (Theune et al., 2001).

This study focuses on generating natural lan-
guage based on Abstract Meaning Representations
(AMRs) (Banarescu et al., 2013). AMRs encode
the meaning of a sentence as a rooted, directed and
acyclic graph, where nodes represent concepts, and
labeled directed edges represent relations among
these concepts. The formalism strongly relies on the
PropBank notation. Figure 1 shows an example.

1https://github.com/ThiagoCF05/LinearAMR

AMRs have increased in popularity in recent
years, partly because they are relatively easy to pro-
duce, to read and to process automatically. In addi-
tion, they can be systematically translated into first-
order logic, allowing for a well-specified model-
theoretic interpretation (Bos, 2016). Most earlier
studies on AMRs have focused on text understand-
ing, i.e. processing texts in order to produce AMRs
(Flanigan et al., 2014; Artzi et al., 2015). However,
recently the reverse process, i.e. the generation of
texts from AMRs, has started to receive scholarly
attention (Flanigan et al., 2016; Song et al., 2016;
Pourdamghani et al., 2016; Song et al., 2017; Kon-
stas et al., 2017).

We assume that in practical applications, con-
ceptualisation models or dialogue managers (mod-
els which decide “what to say”) output AMRs.
In this paper we study different ways in which
these AMRs can be converted into natural lan-
guage (deciding “how to say it”). We approach this
as a translation problem—automatically translating
from AMRs into natural language—and the key-
contribution of this paper is that we systematically
compare different preprocessing strategies for two
different MT systems: Phrase-based MT (PBMT)
and Neural MT (NMT).

We look at potential benefits of three preprocess-
ing steps on AMRs before feeding them into an MT
system: delexicalisation, compression, and lineari-
sation. Delexicalisation decreases the sparsity of an
AMR by removing constant values, compression re-
moves nodes and edges which are less likely to be
aligned to any word on the textual side and lineari-
sation ‘flattens’ the AMR in a specific order. Com-
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Figure 1: Example of an AMR

bining all possibilities gives rise to 23 = 8 AMR
preprocessing strategies, which we evaluate for two
different MT systems: PBMT and NMT.

Following earlier work in AMR-to-text genera-
tion and the MT literature, we evaluate the sys-
tem outputs in terms of fluency, adequacy and
post-editing effort, using BLEU (Papineni et al.,
2002), METEOR (Lavie and Agarwal, 2007) and
TER (Snover et al., 2006) scores, respectively. We
show that preprocessing helps, although the extent
of the benefits differs for the two MT systems.

2 Related Studies

To the best of our knowledge, Flanigan et al. (2016)
was the first study that introduced a model for nat-
ural language generation from AMRs. The model
consists of two steps. First, the AMR-graph is con-
verted into a spanning tree, and then, in a second
step, this tree is converted into a sentence using a
tree transducer.

In Song et al. (2016), the generation of a sentence
from an AMR is addressed as an asymmetric gen-
eralised traveling salesman problem (AGTSP). For
sentences shorter than 30 words, the model does not
beat the system described by Flanigan et al. (2016).
However, Song et al. (2017) treat the AMR-to-text
task using a Synchronous Node Replacement Gram-
mar (SNRG) and outperform Flanigan et al. (2016).

Although AMRs do not contain articles and do
not represent inflectional morphology for tense and
number (Banarescu et al., 2013), the formalism is
relatively close to the (English) language. Motivated
by this similarity, Pourdamghani et al. (2016) pro-
posed an AMR-to-text method that organises some
of these concepts and edges in a flat representation,
commonly known as Linearisation. Once the lin-
earisation is complete, Pourdamghani et al. (2016)
map the flat AMR into an English sentence using

a Phrase-Based Machine Translation (PBMT) sys-
tem. This method yields better results than Flanigan
et al. (2016) on development and test set from the
LDC2014T12 corpus.

Pourdamghani et al. (2016) train their system us-
ing a set of AMR-sentence pairs obtained by the
aligner described in Pourdamghani et al. (2014). In
order to decrease the sparsity of the AMR formal-
ism caused by the ratio of broad vocabulary and rel-
atively small amount of data, this aligner drops a
considerable amount of the AMR structure, such as
role edges :ARG0, :ARG1, :mod, etc. However, in-
spection of the gold-standard alignments provided
in the LDC2016E25 corpus revealed that this rule-
based compression can be harmful for the genera-
tion of sentences, since such role edges can actually
be aligned to function words in English sentences.
So having these roles available arguably could im-
prove AMR-to-text translation. This indicates that a
better comparison of the effects of different prepro-
cessing steps is called for, which we do in this study.

In addition, Pourdamghani et al. (2016) use
PBMT, which is devised for translation but also
utilised in other NLP tasks, e.g. text simplification
(Wubben et al., 2012; Štajner et al., 2015). However,
these systems have the disadvantage of having many
different feature functions, and finding optimal set-
tings for all of them increases the complexity of the
problem from an engineering point of view.

An alternative MT model has been proposed:
Neural Machine Translation (NMT). NMT models
frame translation as a sequence-to-sequence prob-
lem (Bahdanau et al., 2015), and have shown strong
results when translating between many different lan-
guage pairs (Bojar et al., 2015). Recently, Konstas
et al. (2017) introduce sequence-to-sequence models
for parsing (text-to-AMR) and generation (AMR-to-
text). They use a semi-supervised training proce-
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dure, incorporating 20M English sentences which do
not have a gold-standard AMR, thus overcoming the
limited amount of data available. They report state-
of-the-art results for the task, which suggests that
NMT is a promising alternative for AMR-to-text.

3 Models

We describe our AMR-to-text generation models,
which rely on 3 preprocessing steps (delexicalisa-
tion, compression, and/or linearisation) followed by
a machine translation and realisation steps.

3.1 Delexicalisation

Inspection of the LDC2016E25 corpus reveals that
on average 22% of the structure of an AMR are
AMR constant values, such as names, quantities,
and dates. This information increases the sparsity
of the data, and makes it arguably more difficult to
map an AMR into a textual format. To address this,
Pourdamghani et al. (2016) look for special reali-
sation component for names, dates and numbers in
development and test sets and add them on the train-
ing set. On the other hand, similar to Konstas et al.
(2017), we delexicalised these constants, replacing
the original information for tags (e.g., name1 ,
quant1 ). A list of tag-values is kept, aiming to

identifying the position and to insert the original in-
formation in the sentence after the translation step is
completed. Figure 2 shows a delexicalised AMR.

3.2 Compression

Given the alignment between an AMR and a sen-
tence, the nodes and edges in the AMR can either be
aligned to words in the sentence or not. So before
the linearisation step, we would like to know which
elements of an AMR should actually be part of the
‘flattened’ representation.

Following the aligner of Pourdamghani et al.
(2014), Pourdamghani et al. (2016) clean an AMR
by removing some nodes and edges independent of
the context. Instead, we are using alignments that
may relate a given node or edge to an English word
according to the context. In Figure 1 for instance,
the first edge :ARG1 is aligned to the preposition to
from the sentence, whereas the second edge with a
similar value is not aligned to any word in the sen-
tence. Therefore, we need to train a classifier to de-

cide which parts of an AMR should be in the flat-
tened representation according to the context.

To solve the problem, we train a Conditional Ran-
dom Field (CRF) which determines whether a node
or an edge of an AMR should be included in the flat-
tened representation. The classification process is
sequential over a flattened representation of an AMR
obtained by depth first search through the graph.
Each element is represented by their name and par-
ent name. We use CRFSuite (Okazaki, 2007) to im-
plement our model.

3.3 Linearisation

After Compression, we flatten the AMR to serve as
input to the translation step, similarly as proposed in
Pourdamghani et al. (2016). We perform a depth-
first search through the AMR, printing the elements
according to their visiting order. In a second step,
also following Pourdamghani et al. (2016), we im-
plemented a version of the 2-Step Classifier from
Lerner and Petrov (2013) to preorder the elements
from an AMR according to the target side.

2-Step Classifier We implement the preordering
method proposed by Lerner and Petrov (2013) in the
following way. We define the order among a head
node and its subtrees in two steps. In the first, we use
a trained maximum entropy classifier to predict for
each subtree whether it should occur before or after
the head node. As features, we represent the head
node by its frameset, whereas the subtree is repre-
sented by its head node frameset and parent edge.

Once we divide the subtrees into the ones which
should occur before and after the head node, we use
a maximum entropy classifier for the size of the sub-
tree group to predict their order. For instance, for
a group of 2 subtrees, a maximum entropy classi-
fier specific for groups of 2 subtrees would be used
to predict the permutation order of them (0-1 or 1-
0). As features, the head node is also represented by
its PropBank frameset, whereas the subtrees of the
groups are represented by their parent edges, their
head node framesets and by which side of the head
node they are (before or after). We train classifiers
for groups of sizes between 2 and 4 subtrees. For
bigger groups, we used the depth first search order.
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Figure 2: Example of a Delexicalised, Compressed and Linearised AMR

3.4 Translation models
To map a flat AMR representation into an English
sentence, we use phrase-based (Koehn et al., 2003)
and neural machine translation (Bahdanau et al.,
2015) models.

3.4.1 Phrase-Based Machine Translation
These models use Bayes rule to formalise the

problem of translating a text from a source language
f to a target language e. In our case, we want to
translate a flat amr into an English sentence e as
Equation 1 shows.

P (e | amr) = argmax P (amr | e)P (e) (1)

The a priori function P (e) usually is represented
by a language model trained on the target language.
The a posteriori equation is calculated by the log-
linear model described at Equation 2.

P (amr | e) = argmax

J∑
j=1

λjhj(amr, e) (2)

Each hj(amr, e) is an arbitrary feature function
over AMR-sentence pairs. To calculate it, the flat
amr is segmented into I phrases ¯amrI

1, such that
each phrase ¯amri is translated into a target phrase
ēi as described by Equation 3.

hj(amr, e) = argmax hj( ¯amrI
i , ē

I
i ) (3)

As feature functions, we used direct and inverse
phrase translation probabilities and lexical weight-
ing; word, unknown word and phrase penalties.

We also used models to reorder a flat amr accord-
ing to the target sentence e at decoding time. They
work on the word-level (Koehn et al., 2003), at the
level of adjacent phrases (Koehn et al., 2005) and
beyond adjacent phrases (hierarchical-level) (Gal-
ley and Manning, 2008). Phrase- and hierarchical
level models are also known as lexicalized reorder-
ing models.

As Koehn et al. (2003), given si the start position
of the source phrase ¯amri translated into the English
phrase ēi, and fi−1 the end position of the source
phrase ¯amri−1 translated into the English phrase
ēi−1, a distortion model α|si−fi−1−1| is defined as
a distance-based reordering model. α is chosen by
tunning the model.

Lexicalised models are more complex than
distance-based ones, but usually help the system
to obtain better results (Koehn et al., 2005; Galley
and Manning, 2008). Given a possible set of target
phrases e = (ē1, ... , ēn) based on a source amr,
and a set of alignments a = (a1, ... , an) that maps
a source phrase ¯amrai into a target phrase ēi, a lex-
icalised model aims to predict a set of orientations
o = (o1, ... , on) as Equation 4 shows.

P (o | e, amr) =
n∏

i=1

P (oi | ēi, ¯amrai , ai−1, ai)

(4)
Each orientation oi, attached to the hypothesised

target phrase ei, can be a monotone (M), swap (S) or
discontinuous (D) operation according to Equation
5.
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oi =


M, if ai − ai−1 = 1
S, if ai − ai−1 = −1
D, if |ai − ai−1| 6= 1

(5)

In the hierarchical model, we distinguished the
discontinuous operation by the direction: discontin-
uous right (ai − ai−1 < 1) and discontinuous left
(ai − ai−1 > 1). These models are important for
our task, since the preordering method used in the
Linearisation step can be insufficient to adequate it
to the target sentence order.

3.4.2 Neural Machine Translation
Following the attention-based Neural Ma-

chine Translation (NMT) model introduced
by Bahdanau et al. (2015), given a flat
amr = (amr1, amr2, · · · , amrN ) and its En-
glish sentence translation e = (e1, e2, · · · , eM ), a
single neural network is trained to translate amr
into e by directly learning to model p(e | amr). The
network consists of one encoder, one decoder, and
one attention mechanism.

The encoder is a bi-directional RNN with gated
recurrent units (GRU) (Cho et al., 2014), where
one forward RNN

−→
Φ enc reads the amr from left

to right and generates a sequence of forward an-
notation vectors (

−→
h 1,
−→
h 2, · · · ,−→h N ) at each en-

coder time step i ∈ [1, N ], and a backward RNN←−
Φ enc reads the amr from right to left and gen-
erates a sequence of backward annotation vectors
(
←−
h N ,

←−
h N−1, · · · ,←−h 1). The final annotation vector

is the concatenation of forward and backward vec-
tors hi =

[−→
hi;
←−
hi

]
, and C = (h1,h2, · · · ,hN ) is

the set of source annotation vectors.
The decoder is a neural LM conditioned on the

previously emitted words and the source sentence
via an attention mechanism over C. A multilayer
perceptron is used to initialise the decoder’s hidden
state s0, where the input to this network is the con-
catenation of the last forward and backward vectors[−→
hN ;
←−
h1

]
.

At each time step t of the decoder, we compute a
time-dependent context vector ct based on the anno-
tation vectors C, the decoder’s previous hidden state
st−1 and the target English word ẽt−1 emitted by
the decoder in the previous time step. A single-layer
feed-forward network computes an expected align-

ment at,i between each source annotation vector hi

and the target word to be emitted at the current time
step t, as in (6):

at,i = va
T tanh(Uast−1 + Wahi). (6)

In Equation (7), these expected alignments are
normalised and converted into probabilities:

αt,i =
exp (at,i)∑N

j=1 exp (at,j)
, (7)

where αt,i are called the model’s attention weights,
which are in turn used in computing the time-
dependent context vector ct =

∑N
i=1 αt,ihi. Finally,

the context vector ct is used in computing the de-
coder’s hidden state st for the current time step t, as
shown in Equation (8):

st = Φdec(st−1,We[ẽt−1], ct), (8)

where st−1 is the decoder’s previous hidden state,
We[ẽt−1] is the embedding of the word emitted in
the previous time step, and ct is the updated time-
dependent context vector. Given a hidden state st,
the probabilities for the next target word are com-
puted using one projection layer followed by a soft-
max, as illustrated in eq. (9), where the matrices Lo,
Ls, Lw and Lc are transformation matrices and ct is
the time-dependent context vector.

3.5 Realisation

Since we delexicalise names, dates, quantities and
values from AMRs, we need to textually realise
this information once we obtain the results from the
translation step. As we kept all the original informa-
tion and their relation with the tags, we just need to
replace one for the other.

We implement some rules to adequate our gener-
ated texts to the ones we saw in the training set. Dif-
ferent from the AMRs, we represent months nom-
inally, and not numerically - month 5 will be May
for example. Values and quantities bigger than a
thousand are also part realised nominally. The value
8500000000 would be realised as 8.5 billion for in-
stance. On the other hand, names are realised as they
are.
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p(et = k | e<t, ct) ∝ exp(Lo tanh(Lsst + LwEe[êt−1] + Lcct)). (9)

4 Evaluation

4.1 Data

We used the corpus LDC2016E25 provided by the
SemEval 2017 Task 9 in our evaluation. This cor-
pus consists of aligned AMR-sentence pairs, mostly
newswire. We considered the train/dev/test sets
splitting proposed in the original setting, totaling
36,521, 1,368 and 1,371 AMR-sentence pairs, re-
spectively. Compression and Linearisation methods,
as well as Phrase-based Machine Translation models
were trained over the gold-standard alignments be-
tween AMRs and sentences on the training set of the
corpus.

4.2 Evaluated Models

We test models with and without the Delexicalisa-
tion/Realisation (-Delex and +Delex) and Compres-
sion (-Compress and +Compress) steps. In models
without the Compression step, we include all the el-
ements from an AMR in the flattened representation.
For the Linearisation step, we flatten the AMR struc-
ture based on a depth-first search (-Preorder) or pre-
order it with our 2-step classifier (+Preorder). Fi-
nally, we translate a flattened AMR into text using a
Phrase-based (PBMT) and a Neural Machine Trans-
lation model (NMT). In total, we evaluated 16 mod-
els.

Phrase-based Machine Translation We used a
standard PBMT system built using Moses toolkit
(Koehn et al., 2007). At training time, we extract
and score phrase sentences up to the size of 9 to-
kens. All the feature functions were trained using
the gold-standard alignments from the training set
and their weights were tuned on the development
data using k-batch MIRA with k = 60 (Cherry and
Foster, 2012) with BLEU as the evaluation metric.
A distortion limit of 6 was used for the reordering
models. Lexicalised reordering models were bidi-
rectional. At decoding time, we use a stack size of
1000.

Our language model P (e) is a 5-gram LM trained
on the Gigaword Third Edition corpus using KenLM
(Heafield et al., 2013). For the models with the
Delexicalisation step, we trained the language model

with a delexicalised version of Gigaword by parsing
the corpus using the Stanford Named Entity Recog-
nition tool (Finkel et al., 2005). All the entities la-
beled as LOCATION, PERSON, ORGANISATION
or MISC were replaced by the tag nameX .
Entities labeled as NUMBER or MONEY were re-
placed by the tag quantX . Finally, entities la-
beled as PERCENT or ORDINAL were replaced by
valueX . In the tags, X is replaced by the ordinal

position of the entity in the sentence.

Neural Machine Translation The encoder is a
bidirectional RNN with GRU, each with a 1024D
hidden unit. Source and target word embeddings
are 620D each and are both trained jointly with the
model. All non-recurrent matrices are initialised by
sampling from a Gaussian (µ = 0, σ = 0.01), recur-
rent matrices are random orthogonal and bias vec-
tors are all initialised to zero. The decoder RNN
also uses GRU and is a neural LM conditioned on
its previous emissions and the source sentence by
means of the source attention mechanism.

We apply dropout with a probability of 0.3 in
both source and target word embeddings, in the en-
coder and decoder RNNs inputs and recurrent con-
nections, and before the readout operation in the de-
coder RNN. We follow Gal and Ghahramani (2016)
and apply dropout to the encoder and decoder RNNs
using the same mask in all time steps.

Models are trained using stochastic gradient de-
scent with Adadelta (Zeiler, 2012) and minibatches
of size 40. We apply early stopping for model selec-
tion based on BLEU scores, so that if a model does
not improve on the validation set for more than 20
epochs, training is halted.

4.3 Models for Comparison

We compare BLEU scores for some of the AMR-
to-text systems described in the literature (Flanigan
et al., 2016; Song et al., 2016; Pourdamghani et
al., 2016; Song et al., 2017; Konstas et al., 2017).
Since the models of Flanigan et al. (2016) and Pour-
damghani et al. (2016) are publicly available, we
also use them with the same training data as our
models. For Flanigan et al. (2016), we specifically
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use the version available on GitHub2.
For Pourdamghani et al. (2016), we use the ver-

sion available at the first author’s website3. The
rules used for the preordering model and the feature
functions from the PBMT system are trained using
alignments over AMR–sentence pairs from the train-
ing set obtained with the aligner described by Pour-
damghani et al. (2014). We do not use lexicalised
reordering models as Pourdamghani et al. (2016).
Moreover, we tune the weights of the feature func-
tions with MERT (Och, 2003).

Both models make use of a 5-gram language
model trained on Gigaword Third Edition corpus
with KenLM.

4.4 Metrics
To evaluate fluency, adequacy and post-editing ef-
fort of the models, we use BLEU (Papineni et al.,
2002), METEOR (Lavie and Agarwal, 2007) and
TER (Snover et al., 2006), respectively.

5 Results

Table 1 depicts the scores of the different mod-
els by the size of the data they were trained on.
For illustration, we depicted the BLEU scores of
all the AMR-to-text systems described in the litera-
ture. The models of Flanigan et al. (2016) and Pour-
damghani et al. (2016) were officially trained with
10,313 AMR-sentence pairs from the LDC2014T12
corpus, and with 36,521 AMR-sentence pairs from
the LDC2016E25 in our study (as our models).
The ones of Song et al. (2016) and Song et al.
(2017) were trained with 16,833 pairs from the
LDC2015E86 corpus. Konstas et al. (2017), which
presents the highest quantitative result in the task
so far, also used the LDC2015E86 corpus plus 20
million English sentences from the Gigaword corpus
with a semi-supervised approach. We report the re-
sults when their model were trained only with AMR-
sentence pairs from the corpus, and when improved
with more 20 million sentences.

Among the PBMT models, the Delexicalisation
step (+Delex) does not seem to play a role in obtain-
ing better sentences from AMRs. All the models
with the preordering method in Linearisation

2http://github.com/jflanigan/jamr/tree/
Generator

3http://isi.edu/˜damghani/papers/amr2eng.zip

Data BLEU METEOR TER
Size

(Flanigan et al., 2016) ∼10K 22.1 – –
(Pourdamghani et al., 2016) ∼10K 26.9 – –
(Konstas et al., 2017) ∼17K 22.0 – –
(Song et al., 2016) ∼17K 22.4 – –
(Song et al., 2017) ∼17K 25.6 – –
(Flanigan et al., 2016) ∼36K 19.6 – –
(Pourdamghani et al., 2016) ∼36K 24.3 – –
(Konstas et al., 2017) ∼20M 33.8 – –

NMT

+Delex-Compress-Preorder

∼36K

18.9 26.6 66.2
+Delex+Compress-Preorder 14.6 23.6 77.0
+Delex-Compress+Preorder 19.3 26.3 69.3
+Delex+Compress+Preorder 15.2 23.8 77.8
-Delex-Compress-Preorder 18.2 24.8 67.7
-Delex+Compress-Preorder 15.2 22.4 72.8
-Delex-Compress+Preorder 19.0 25.5 66.6
-Delex+Compress+Preorder 15.9 22.6 71.4

PBMT

+Delex-Compress-Preorder

∼36K

20.6 32.8 64.5
+Delex+Compress-Preorder 22.2 33.0 63.3
+Delex-Compress+Preorder 24.6 34.3 60.4
+Delex+Compress+Preorder 23.9 33.7 60.5
-Delex-Compress-Preorder 21.0 32.7 65.5
-Delex+Compress-Preorder 25.6 34.1 60.9
-Delex-Compress+Preorder 26.5 34.9 59.9
-Delex+Compress+Preorder 26.8 34.7 59.4

Table 1: MT scores for the evaluated models by the
size of the training data. Best baseline, PBMT and
NMT results were underlined.

(+Preorder) introduce better results than Flanigan
et al. (2016) and Song et al. (2016), whereas only
the lexicalised models with the preordering method
(PBMT+Delex[+|-]Compress+Preorder) outper-
form Song et al. (2017) and introduce competitive
results with Pourdamghani et al. (2016).

In our NMT models, apparently the Compression
step is harmful to the task, whereas Delexicalisation
and preordering in Linearisation lead to better re-
sults. However, none of the NMT models outper-
form neither the PBMT models nor the baselines.

6 Discussion

In this paper, we studied models for AMR-to-text
generation using machine translation. We systemat-
ically analysed the effects of 3 processing strategies
on AMRs before feeding them either to a Phrase-
based or a Neural MT system. The evaluation was
performed on the LDC2016E25 corpus, provided by
SemEval 2017 Task 9. All the models had the flu-
ency, adequacy and post-editing effort of their pro-
duced sentences measured by BLEU, METEOR and
TER, respectively. In general, we found that pro-
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cessing AMRs helps, although the effects differ for
the different systems.

Phrase-based MT Delexicalisation (+Delex)
does not seem to play a role in obtaining better
sentences from AMRs using PBMT. Our best model
(PBMT-Delex+Compress+Preorder) presents com-
petitive results to Pourdamghani et al. (2016) with
the advantage that no technique is necessary to
overcome data sparsity.

Compressing an AMR graph with a classifier
shows improvements over a comparable model with-
out compression, but not as strong as preordering
the elements in the Linearisation step. In fact, pre-
ordering seems to be the most important prepro-
cessing step across all three MT preprocessing met-
rics. We note that the preordering success was ex-
pected, based on previous results (Pourdamghani et
al., 2016).

Neural MT The first impression from our NMT
experiments is that using Compression consistently
deteriorates translations according to all metrics
evaluated. Delexicalisation seems to improve re-
sults, corroborating the findings from Konstas et al.
(2017). While Delexicalisation is harmful and Com-
pression is beneficial for PBMT, we see the opposite
in NMT models. Besides the differences between
these two MT architectures, applying preordering in
the Linearisation step improves results in both cases.
This seems to contradict the finding in Konstas et al.
(2017) regarding neural models. We conjecture that
the additional training data used by Konstas et al.
(2017) may have decreased the gap between using
and not using preordering (see also below). More
research is necessary to settle this point.

PBMT vs. NMT PBMT models generate much
better sentences from AMRs than NMT models in
terms of fluency, adequacy and post-editing effort.
We believe that the lower performance of NMT
models is due to the small size of the training set
(36,521 AMR-sentence pairs). Neural models are
known to perform well when trained on much larger
data sets, e.g. in the order of millions of entries, as
exemplified by Konstas et al. (2017). PBMT models
trained on small data sets clearly outperform NMT
ones, e.g. Konstas et al. (2017) reported 22.0 BLEU,
whereas Pourdamghani et al. (2016)’s best model

achieved 26.9 BLEU, and our best model performs
comparably (26.8 BLEU).

Model comparison While the best PBMT mod-
els are comparable to the state-of-the-art AMR-to-
text systems, the current best results are reported by
Konstas et al. (2017), showing the potential of ap-
plying deep learning onto large amounts of train-
ing data with a 33.8 BLEU-score. However, this
result crucially relies on the existence of a very
large dataset. Interestingly, when applied in a sit-
uation with limited amounts of data, Konstas et
al. (2017) report substantially lower performance
scores. In such situations, our PBMT models, like
Pourdamghani et al. (2016), look appear to be a good
alternative option.

7 Conclusion

In this work, we systematically studied different MT
models to translate AMRs into natural language.
We observed that the Delexicalisation, Compres-
sion, and Linearisation steps have different impacts
on AMR-to-text generation depending on the MT
architecture used. We observed that delexicalising
AMRs yields the best results in NMT models, in
contrast to PBMT models. On the other hand, for
both PBMT models and NMT models, preordering
the AMR in Linearisation introduces better results.

Among our models, PBMT generally outperforms
NMT. Finally, the literature suggests that the im-
provements obtained by having more data are larger
than those obtained with improved preprocessing
strategies. Nonetheless, combining the right prepro-
cessing strategy with large volumes of training data
should lead to further improvements.
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Sanja Štajner, Iacer Calixto, and Horacio Saggion. 2015.
Automatic text simplification for spanish: Compar-
ative evaluation of various simplification strategies.
In Proceedings of the International Conference Re-
cent Advances in Natural Language Processing, pages
618–626, Hissar, Bulgaria, September.

Sander Wubben, Antal van den Bosch, and Emiel Krah-
mer. 2012. Sentence simplification by monolingual
machine translation. In Proceedings of the 50th An-
nual Meeting of the Association for Computational
Linguistics: Long Papers - Volume 1, ACL ’12, pages
1015–1024, Stroudsburg, PA, USA. Association for
Computational Linguistics.

Kelvin Xu, Jimmy Ba, Ryan Kiros, Kyunghyun Cho,
Aaron Courville, Ruslan Salakhudinov, Rich Zemel,
and Yoshua Bengio. 2015. Show, attend and tell: Neu-
ral image caption generation with visual attention. In
David Blei and Francis Bach, editors, Proceedings of
the 32nd International Conference on Machine Learn-
ing (ICML-15), pages 2048–2057. JMLR Workshop
and Conference Proceedings.

Matthew D. Zeiler. 2012. ADADELTA: An Adaptive
Learning Rate Method. CoRR, abs/1212.5701.

10


