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Abstract
Several typological gaps have attracted
a lot of interest in the linguistic litera-
ture recently. These concern the Person
Case Constraint and the absence of ABA
patterns in adjectival gradation, pronoun
suppletion, case syncretism, and singular
noun allomorphy, among others. This pa-
per is the first to provide a unified ex-
planation of all these phenomena, and it
does so via weakly non-inverting graph-
transductions. A pattern P is absent from
the typology whenever such transductions
cannot produce the graph corresponding to
P from some fixed underlying base graph.
I show that weakly non-inverting graph-
transductions are particularly simple from
a computational perspective, and conse-
quently all these typological gaps follow
from general simplicity desiderata.

1 Introduction

One peculiar property of natural language is that
its typology rarely cover the full range of log-
ically possible options. The Person Case Con-
straint (PCC), for instance, blocks certain combi-
nations of direct objects (DOs) and indirect objects
(IOs) based on their person specification.

(1) a. * Roger
Roger

me
1SG.ACC

leur
3PL.DAT

a
has

présenté.
shown

b. Roger
Roger

le
3SG.ACC

leur
3PL.DAT

a
has

présenté.
shown
‘Roger has shown me/him to them.’

Modulo cases where both DO and IO have the
same person, there are 64 conceivable PCC vari-
ants yet only 4 are attested.

A similar case of limited variation is the ∗ABA
generalization, which was first stated by Bobaljik
(2012) with respect to adjectival gradation. While
many adjectives have regular comparative and su-
perlative forms (smart, smarter, smartest), some
adjectives display stem suppletion (good, better,
best). Bobaljik (2012) claims that there are no lan-
guages where the comparative is suppletive while
the superlative is regular (good, better, good-
est) — in other words, there are no ABA pat-
terns. Since then the ∗ABA generalization has
been observed in a large number of morphologi-
cal paradigms, and many proposals have been put
forward to explain the absence of ABA patterns.

However, cases of limited complexity like the
PCC and the ∗ABA generalization have not re-
ceived much attention from mathematical lin-
guists. One reason may be that these restrictions
on natural languages do not seem to line up with
the usual notions of generative capacity, computa-
tional complexity, learnability or minimal descrip-
tion length. The PCC, for instance, is utterly un-
remarkable from a formal perspective: the con-
strained elements are string adjacent clitics, and
the sets of permitted and blocked configurations
are both finite. As a result, every PCC variant
is strictly 2-local over strings (McNaughton and
Papert, 1971), making it even less complex than
simple phonological processes such as intervo-
calic voicing and locally bounded vowel harmony
(Heinz, 2015). Since different PCCs only vary in
which one of six IO-DO combinations they allow,
there are no quantifiable consequences for learn-
ability, either. The tools of mathematical linguis-
tics are geared towards vertical variation — hier-
archies of expressivity and complexity — whereas
phenomena like the PCC and the ∗ABA general-
ization pertain to horizontal variation, i.e. limita-
tions that seem arbitrary and pointless from a com-
putational perspective.
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I argue in this paper that mathematical linguis-
tics does in fact have a lot to say about such cases
of horizontal variation. Not only does a mathe-
matically informed perspective allow for a level of
abstraction where the PCC and the ∗ABA general-
ization can be given a unified explanation, it even
allows us to derive the limits of variation from
computational considerations. Contrary to initial
appearances, then, horizontal variation is indeed
interwoven with vertical variation upon closer in-
spection.

More concretely, I show that both the PCC and
the ∗ABA generalization can be decomposed into
two components: a base hierarchy that is repre-
sented by a graph, and a graph transduction that
produces a language-specific ordering from the
base hierarchy. The restrictions on cross-linguistic
variation arise from limitations on how the graph
transduction may change the ordering relations in
the base hierarchy. These limitations, in turn,
guarantee that the transductions belong to an es-
pecially weak class of mappings. Viewed from
the perspective of strings, they are input strictly
1-local relations (Chandlee, 2014).

The paper is laid out as follows. The few re-
quired basics of graph theory are summarized and
exemplified in Sec. 2 in an effort to accommo-
date readers from various backgrounds. I then dis-
cuss Graf’s (2014) algebraic account of the PCC,
which forms the basis of my graph-theoretic anal-
ysis. Said analysis is subsequently extended to a
number of phenomena in Sec. 4. All of them are
instances of the ∗ABA generalization or at least
closely related to it: adjectival gradation, pronoun
allomorphy, case syncretism, and noun stem allo-
morphy, With the full analysis in place, I then turn
to the computational investigation (Sec. 5) and ad-
dress some methodological concerns about the vi-
ability of studying horizontal variation across nat-
ural languages (Sec. 6).

2 Preliminaries

Even though the paper presupposes only minimal
familiarity with graph theory, I include a slightly
more accessible explanation of the basic concepts
due to the interdisciplinary subject matter, which
might attract readers without the expected math-
ematical background. The reader can safely skip
this section if they are not puzzled by terms like
weakly connected graph and graph transduction.

A directed graph G := 〈V,E〉 consists of a set

V of vertices and a set E ⊆ V × V of edges
that connect these vertices. Both V and E may
be empty, so there is no requirement for a graph to
contain any vertices or that any of its vertices are
connected by edges. We say that vertex v is imme-
diately reachable from vertex u iff there is an edge
from u to v (i.e. 〈u, v〉 ∈ E). In the special case
where u = v the edge is called a loop. Further-
more, u′ is reachable from u iff there are vertices
v1, . . . , vn such that v1 is immediately reachable
from u, and vi+1 is immediately reachable from
vi (1 ≤ i < n), and u′ is immediately reachable
from vn. Reachability thus holds iff 〈u, v〉 ∈ E+,
where E+ is the transitive closure of E. In this
case we also write u / v. If a vertex is reachable
from itself, the graph contains a cycle.

As an example, consider the following directed
graph G:

1 2

34

Its set of vertices is {1, 2, 3, 4}, and the set of
edges is {〈1, 2〉, 〈2, 1〉, 〈1, 3〉, 〈2, 3〉}. Therefore
2 is immediately reachable from 1, and the other
way round. We also see that 3 is immediately
reachable from 1 and 2, but no vertex is imme-
diately reachable from 3. Moreover, 1 is reach-
able from itself even though it is not immedi-
ately reachable from itself. This is the case be-
cause 2 is immediately reachable from 1 and from
there we can immediately reach 1. Formally, we
have 〈1, 2〉 ∈ E and 〈2, 1〉 ∈ E, which implies
〈1, 1〉 ∈ E+. This also entails that G contains a
cycle even though there is no loop 〈1, 1〉 ∈ E.

A graph is undirected iff its edge relation is
symmetric: for all u, v ∈ V , 〈u, v〉 ∈ E iff
〈v, u〉 ∈ E. In an undirected graph, u is (imme-
diately) reachable from v iff v is (immediately)
reachable from u. An undirected graph is con-
nected iff every node is reachable from every other
node: ∀u, v ∈ V , 〈u, v〉 ∈ E+. A directed graph
is

• connected iff for all u, v ∈ V it holds that
〈u, v〉 ∈ E+ or 〈v, u〉 ∈ E+,

• weakly connected iff adding 〈v, u〉 to E for
every 〈u, v〉 ∈ E yields an undirected graph
that is connected.
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The example graph G above is not connected
because I) 1 and 2 are not reachable from 3,
and II) no node can reach 4 or be reached from
4. Due to II G is not weakly connected ei-
ther. If G were weakly connected, then we
could turn it into a connected undirected graph
by adding the symmetric counterpart of every ex-
isting edge. But this only grows the edge rela-
tion E of G from {〈1, 2〉, 〈2, 1〉, 〈1, 3〉, 〈2, 3〉} to
{〈1, 2〉, 〈2, 1〉, 〈1, 3〉, 〈3, 1〉, 〈2, 3〉, 〈3, 2〉}. The re-
sulting graph is still not connected because there is
no edge from or to 4. But if 4 were to be removed
from the set of vertices, the graph would indeed be
weakly connected (but not connected).

A graph transduction τ is any computable bi-
nary relation between graphs. In this paper, how-
ever, I only consider transductions that do not
change the set of vertices. Given a graph G,
τ(G) := {G′ | 〈G,G′〉 ∈ τ}. In order to distin-
guish reachability in G from reachability in some
g ∈ τ(G) I sometimes use the symbol J instead
of /.

Graph transductions generalize string transduc-
tions and tree transductions from strings and trees
to arbitrary graphs. String transductions are
closely related to phonological and morphologi-
cal rewrite rules (Johnson, 1972; Kaplan and Kay,
1994; Mohri, 1997; Chandlee, 2014, 2016). Tree
transductions are the formal counterpart to syn-
tactic transformations, as is explicitly mentioned
in Rounds (1970), one of the earliest papers on
tree transducers; others include Engelfriet (1975)
and Baker (1978; 1979). For modern surveys see
Knight (2007) and Maletti (2010). For the pur-
poses of this paper, the technical aspects of graph
transductions are of little concern. The only rel-
evant point is that just like string and tree trans-
ductions, graph transductions differ in their com-
putational requirements so that some transductions
are easier to compute than others. For a more for-
mal perspective on graph transductions, the reader
is referred to Courcelle (1992) and Courcelle and
Engelfriet (2012).

3 Person Case Constraint

The vantage point for this project is the algebraic
analysis of the Person Case Constraint (PCC) in
Graf (2014). Once the analysis is recast in graph-
theoretic terms, it is easily extended to the ∗ABA
generalization in Sec. 4. From a didactic perspec-
tive this order of topics is slightly lopsided be-

cause Graf’s (2014) PCC treatment is more com-
plex than the morphological paradigms I extend it
to. But it is still fairly simple, and mastering the
complex case first will greatly speed up the discus-
sion of the simpler phenomena later on.

As I mentioned in the introduction, the
PCC renders the well-formedness of DO-IO-
combinations contingent on their person specifi-
cations. Four PCCs are attested in the literature
(Walkow, 2012). Using 1, 2, and 3 as shorthands
for first, second, and third person, respectively,
they are defined as follows:

S(trong)-PCC DO must be 3. (Bonet, 1994)

U(ltrastrong)-PCC DO is less prominent than
IO, where 3 is less prominent than 2, and 2
is less prominent than 1. (Nevins, 2007)

W(eak)-PCC 3IO combines only with 3DO.
(Bonet, 1994)

M(e first)-PCC If IO is 2 or 3, then DO is not 1.
(Nevins, 2007)

Note that cases where IO and DO have the same
person feature are frequently treated separately in
the literature, so I will not consider them here ei-
ther.

Graf (2014) provides a mathematical account
of the PCC that gradually moves from presemi-
lattices as a purely descriptive device to a more
theoretical proposal that can be recast in graph-
theoretic terms. Rather than reiterate this grad-
ual development, I immediately skip ahead to the
three essential components of the final account.

1. All variants of the PCC are subsumed under
the G(eneralized)-PCC, which states that IO
must not be (strictly) less prominent than
DO (IO 6< DO). This constraint will pro-
duce exactly the four attested PCC variants if
combined with the directed graphs in Fig. 1,
where m is more prominent than n (n < m)
iff n is reachable from m.

2. The independently motivated person hierar-
chy 3 < 2 < 1 of Zwicky (1977) is posited
as a universal base ordering for person. From
our perspective, Zwicky’s person hierarchy is
identical to the graph for the U-PCC.

3. The four PCC-specific prominence rankings
in Fig. 1 are obtained from Zwicky’s hierar-
chy by a graph transduction τ that adds or
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removes edges while preserving three essen-
tial properties of the base structure. In the
following, / and J denote the transitive clo-
sure of the edge relations in the input and out-
put graph, respectively, and all graphs are as-
sumed to contain no loops.

Weak connectedness The output graph pro-
duced by τ must be weakly connected.

Weak maximality If there is no y such that
y / x, then z J x only if we also have
x J z.

Strong minimality If there is no y such that
x / y, then there is no z such that x J z.

Then x < y iff y J x.

The reader is invited to verify for themselves that
the four graphs in Fig. 1, and only those, can be
obtained from Zwicky’s person hierarchy without
violating any of the three constraints above.

As an example of how this account enforces a
specific PCC consider the S-PCC, which only al-
lows IO-DO combinations if DO is 3. Hence the
only allowed combinations are IO1-DO3 and IO2-
DO3. The G-PCC requires IO 6< DO, and the
graph for the S-PCC establishes 2 < 1, 1 < 2,
3 < 1, and 3 < 1. So any instance where DO
is 2 or 1 necessarily results in a violation of the
G-PCC: for 1, IO cannot be 2 or 3, and for 2, IO
cannot be 1 or 3. With a third person DO, on the
other hand, IO can freely vary between 1 and 2.
Consequently, the only allowed combinations are
indeed those where DO is 3.

This graph-based account is remarkably sim-
ple in comparison to syntactic proposals, which
not only have to capture the typological varia-
tion but must also provide a syntactic encoding for
both the G-PCC and the person hierarchy (Anag-
nostopoulou, 2005; Adger and Harbour, 2007;
Nevins, 2007). The specificity of linguistic pro-
posals has certain advantages, as I discuss at the
end of Sec. 5, but it also comes with its fair share
of problems that the graph-theoretic view avoids.
In particular, abstracting away from the details of
syntactic implementation provides a greater de-
gree of flexibility and makes the account more ac-
commodating to new data. For example, recent re-
sults from Slovenian (Stegovec, 2016) suggest that
there are inverted variants of the PCC where the G-
PCC is DO 6< IO instead of IO 6< DO. Most syn-
tactic accounts are entirely built around the idea
that all instances of the PCC involve an IO 6< DO

asymmetry, and thus they must now be rethought
from the ground up or reinterpret the Slovenian
data. The graph-based proposal, by contrast, ends
up even less complex because the very specific
G-PCC has now been reduced to a general ban
against prominence mismatches: x 6< y, with lan-
guages differing in how they instantiate x and y as
IO and DO.

For the purposes of this paper, however, the
more interesting aspect of the graph-theoretic view
is how it captures typological variation in the PCC:
languages all start out with the same base hierar-
chy but may modify it as long as the distinguished
roles of the top and bottom positions are not com-
pletely destroyed. In fact, weak maximality and
strong minimality are instances of more general
order preservation properties.

Strongly non-inverting If x / y, then it is not the
case that y J x.

Weakly non-inverting If x / y, then y J x only
if x J y.

The transductions that produce the PCC graphs
in Fig. 1 are weakly non-inverting but go a little
bit beyond that because they are all strongly non-
inverting with respect to 3.

If weak maximality and strong minimality were
completely replaced by the property of being
weakly non-inverting, this would allow for several
new graphs. However, the prominence ranking <
is defined in terms of reachability rather than im-
mediate reachability, and all the new graphs turn
out to define the same reachability relations as one
of the two graphs depicted in Fig. 2. One is a
variant of U-PCC where we also have 1 < 2 and
2 < 3, the other one a version of the M-PCC with
2 < 3 and 3 < 2. As noted in Graf (2014) the for-
mer is actually attested in Cairene Arabic as a ban
against all DO-IO combinations (Shlonsky, 1997).
Although this phenomenon may not be a genuine
PCC, we may classify it as the I(ndiscriminate)-
PCC. The second PCC variant changes the Me
first-PCC into a Me second-PCC. This M2-PCC is
still unattested. Whether the mathematically more
pleasing notion of being weakly non-inverting
fully captures the PCC thus has to remain an open
question.

Even though not all weakly non-inverting graph
transductions may be suitable for the PCC, it
is certainly the case given our current data that
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1 2

3

(a) S-PCC

1

2

3

(b) U-PCC

1 2

3

(c) W-PCC

1

2 3

(d) M-PCC

Figure 1: Graphs for the four variants of the PCC

1

2 3

(a) M2-PCC

1 2 3

(b) I-PCC

Figure 2: Replacing weak maximality and strong
minimality by the weakly non-inverting property
allows for another two PCC-graphs.

all PCC graph transductions are weakly non-
inverting. In the next section, I argue that many
aspects of morphology are also closely tied to
weakly non-inverting graph transductions. In par-
ticular, the restriction to weakly non-inverting
graph transductions is sufficient to derive the ban
against ABA patterns that has attracted a great
amount of attention since Bobaljik (2012).

4 Deriving the ∗ABA Generalization

4.1 Stem Suppletion in Adjectival Gradation

The ∗ABA generalization refers to a particular gap
in various morphological paradigms. Given a mor-
phological subsystem where one may posit an un-
derlying hierarchy x < y < z, z cannot pat-
tern with x to the exclusion of y. At the begin-
ning of this paper I already presented an example
from suppletion in adjectival gradation, analyzed
at great depth in Bobaljik (2012). Bobaljik points
out that if a language allows for stem suppletion
in either comparatives or superlatives, it must al-
low for both. Data illustrating this generalization
is given in Tab. 1. If one follows the convention to
list the three forms in the order positive, compara-
tive, superlative and uses letters to indicate which
forms use the same stem, one can decompose the

gap into two constraints, ∗AAB and ∗ABA.

In Bobaljik (2012), these constraints are ex-
plained via structural assumptions. Bobaljik de-
composes adjectival forms into a tree template
such that comparatives contain the positive base
form as a subtree and are in turn themselves sub-
trees of the corresponding superlative forms. Then
∗AAB and ∗ABA follow from specific assump-
tions about the rewrite rules (tree-to-string trans-
ducers in computational terms) that map these tree
structures to the output string. Bobaljik and Sauer-
land (2017) provide a less stipulative explanation
grounded in the combinatorics of feature systems,
which is closer to my graph-theoretic proposal (al-
though they ultimately reject this content-agnostic
solution in favor of the structural account). Both
works, however, agree that ∗ABA is the more im-
portant constraint of the two — ∗AAB seems to
be specific to adjectival suppletion whereas ∗ABA
holds for many morphological paradigms (more
on that in the next subsections).

The increased importance of ∗ABA relative to
∗AAB is noteworthy because the former is indeed
more complex than the latter from the perspec-
tive of graph transductions. Suppose that there
is a universal underlying hierarchy of the form
HU := positive < comparative < superlative,
which we may identify with the U-PCC graph and
thus abbreviate as 1 < 2 < 3 (I stipulate that
x < y iff x J y rather than y J x in order to
stay close to linguistic intuitions, but this is im-
material for the actual account). Assume further-
more that two forms m and n of an adjective in-
volve the same (original or suppletive) stem only
if m < n and n < m in the language-specific
hierarchy HL. Applying this idea to the graphs
in Fig. 1 and 2 produces four different patterns:
AAB, ABC, ABB, and AAA (see Tab. 2). Cru-
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Language Positive Comparative Superlative Pattern

English smart smart-er smart-est AAA
English good bett-er be-st ABB
Finnish hyvä pare-mpi parha-in ABB

Latin bon-us mel-ior opt-imus ABC
Welsh da gwell gor-au ABC

unattested good bett-er good-est ∗ABA
unattested good good-er be-st ∗AAB

Table 1: Examples of attested suppletion patterns from Smith et al. (2016)

PCC graph Suppletion pattern

S-PCC AAB
U-PCC ABC
W-PCC ABC
M-PCC ABC

M2-PCC ABB
I-PCC AAA

Table 2: Adjectival gradation patterns defined by
the six PCC graphs

cially, ABA is not among these graphs. So the
ABA pattern cannot be produced from the 1 <
2 < 3 base order assuming that the graph trans-
ductions

• are weakly non-inverting, and

• produce weakly connected graphs, and

• do not relabel any nodes, and

• do not delete any nodes.

Most of these assumptions are innocent from a
linguistic perspective. Deletion of nodes makes no
sense in this case as it would amount to removing
the positive, comparative, or superlative form, but
we are only interested in languages with all three
forms because the ∗ABA generalization is triv-
ially satisfied otherwise. Relabeling nodes would
create an “anything goes” scenario where adjec-
tival gradation hierarchies could even be mapped
to person and number with no rhyme or reason.
And the output graphs must be weakly connected
because hierarchies in natural language never al-
low for elements that are completely unordered
with respect to the other elements in the hierar-
chy. This leaves only two non-trivial assumptions
that do the actual work of blocking ABA patterns:
graph transductions must be weakly non-inverting,

and the base hierarchy is HU := positive <
comparative < superlative.

Note that positing this hierarchy does not en-
tail that the ordering needs to be reflected in the
structure of adjectives as proposed by Bobaljik
(2012). Instead, the hierarchy may be taken to re-
flect the semantics of these constructions or arise
from some other unknown factor. For our pur-
poses, it only matters that we have such an un-
derlying base hierarchy, not what its origins may
be. And this is not a peculiarity of this approach:
even stating the ∗ABA generalization for purely
descriptive purposes presupposes this order. If one
instead assumed an order of, say, comparative <
superlative < positive, then the banned pattern
would be BAA instead of ABA. But the latter
is equivalent to ABB, which is allowed in many
other morphological paradigms that have nothing
to do with adjectives. So an implicit commitment
to HU is required whenever one seeks to analyze
adjectival stem suppletion as an instance of the
general ban against ABA patterns.

As a matter of fact, though, our finding can be
strengthened so that it is compatible with a number
of underlying hierarchies rather than just HU . As
long as the directed graph we start with is one of
the connected PCC graphs, the ABA pattern can-
not be produced.

Theorem 1. Let τ be a non-deleting, weakly non-
inverting graph transduction that does not relabel
any nodes and only produces connected graphs,
and let S be one of the connected graphs in Fig. 1
and 2. Then no G ∈ τ(S) allows for the ABA
pattern.

Proof. Recall that by definition two vertices u and
v may have the same realization iff u/v and v /u.
Therefore the ABA pattern can only be produced
by graphs where both 1/3 and 3/2 hold but for all
x ∈ {1, 3}, x / 2 holds only if 2 / x does not. No
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such graph can be produced by τ from any of the
four choices for S without deleting 2 or relabeling
nodes.

In each S it holds that 1/2 and 2/3 (wherefore
1 / 3). So if 3 J 1 and 1 J 3 in G ∈ τ(S), then
necessarily 3 J 2:

1. Because G ∈ τ(S) is connected, at least one
of the following must hold: 1 J 2, 2 J 1,
3 J 2, 2 J 3.

2. If 2 J 3, then 2 J 1 by transitivity.

3. If 2 J 1, then 1 J 2 because τ is weakly
non-inverting.

4. If 1 J 2, then 3 J 2 by transitivity.

But 3 J 2 implies 2 J 3 because τ is weakly non-
inverting. So either 3 J 2 and 2 J 3 or it does not
hold that both 3 J 1 and 1 J 3.

The proof reveals that the ∗ABA generalization
is compatible with any universal base hierarchy
that specifies at least positive ≤ comparative and
comparative ≤ superlative.

While ∗ABA follows immediately if the graph
transductions must be weakly non-inverting,
∗AAB is much harder to derive. As shown in
Tab. 2, AAB patterns are produced by the S-PCC
graph. In order to block this graph, one has to dis-
allow 2 J 1. But then the I-PCC graph would
be blocked, too. This only leaves the stipulative
option of banning 2 J 1 unless 3 J 1. Intu-
itively, this states that 1 loses its privileged status
only if 1, 2, and 3 are all equally prominent. Just
as in the case of the PCC, then, we have to slightly
strengthen the requirements on the graph transduc-
tion to avoid overgeneration. That this strengthen-
ing pertained to 3 in the case of the PCC but to
1 in the case of adjectives is not significant since
the two are each other’s duals. We could have just
as well identified HU with the inverse of the U-
PCC graph and obtained a strengthening require-
ment with respect to 3 this way.

Putting aside these minor details, we can now
say with certainty that the PCC and the ∗ABA gen-
eralization are remarkably similar from a graph-
theoretic perspective. Both operate within a class
of graphs that are obtained from an underlying
base order by some weakly non-inverting graph
transduction. Each one puts an additional restric-
tion on the transduction, and in each case the re-
striction is designed to preserve the special status

of an element at the top/bottom of the underlying
hierarchy.

4.2 Other Morphological Paradigms
As mentioned earlier on, the ban against ABA pat-
terns also holds with respect to other morpholog-
ical paradigms. Some of those can be explained
in exactly the same manner as the ABA ban with
adjectives, whereas others require minor modifica-
tions.

Pronoun allomorphy The simplest case arises
with pronoun allomorphy. Harbour (2015) con-
ducts an extensive survey of pronoun systems and
shows that all of them adopt one of four systems
with respect to person:

• all persons are the same (AAA),

• first and second person are the same (AAB),

• second and third person are the same (ABB),

• all persons are different (ABC).

Again the ABA pattern is missing, and this fact
is expected if graph transductions must be weakly
non-inverting and the underlying person hierarchy
fixes 3 < 2 and 2 < 1, as we already had to as-
sume for the PCC. However, a quick glance at
Tab. 2 reveals that an even stronger result holds:
AAA, AAB, ABB, and ABC are exactly the pat-
terns that can be generated under our account.
Pronominal systems, then, are the first instance
where our base assumptions give a full characteri-
zation of the morphological paradigm and no extra
stipulations are needed.

Case syncretism Caha (2009; 2013) proposes
the Strong Case Contiguity Hypothesis according
to which case syncretism may only target con-
tiguous areas of Blake’s Case Hierarchy (Blake,
2001):

Nom > Acc > Gen > Dat > Inst > others

This means that a language may mark, say, ac-
cusative, genitive, dative and instrumental the
same, but not accusative and instrumental to the
exclusion of dative and genitive. In other words,
the Strong Case Contiguity Hypothesis extends
the ∗ABA generalization beyond systems with
three-way contrasts.

Using Blake’s Case Hierarchy as a baseline, it
is possible with our current assumptions to gen-
erate graphs that instantiate some ABA patterns.
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Nom

Acc

Dat

Gen

Inst
others

Nom Acc

Dat

Gen

Inst others

Figure 3: Two graphs that generate ABA patterns for case

Two examples are displayed in Fig. 3. A notable
property of these graphs is that they are not con-
nected, even though they are weakly connected. If
the graph transductions are limited to producing
connected graphs, then no ABA patterns can be
generated anymore. So case syncretism may once
again not be too different from the PCC, adjecti-
val gradation, or pronoun allomorphy, except that
it puts more stringent restrictions on what a valid
case hierarchy may look like: no two cases may be
unordered with respect to each other.

That said, Harðarson (2016) points out some
apparent exceptions to Caha’s Strong Case Con-
tinuity Hypothesis in Germanic languages, which
display accusative-dative syncretism in some case
paradigms but not accusative-genitive-dative syn-
cretism. One solution would be to posit a more
relaxed version of Blake’s hierarchy where geni-
tive and dative are unordered with respect to each
other. This allows for all the syncretism patterns
of Blake’s original hierarchy but also includes
accusative-dative syncretism. Whether this is the
right way to deal with these exceptions has to re-
main an open issue for now. Thankfully the ty-
pological literature on this topic is very rich (see
(Zompí, 2016) and references therein), so a deeper
exploration should be possible in the near future.

Noun stem allomorphy Case syncretism has
also been studied with respect to the noun stems
that are chosen for specific cases. In Latin, for ex-
ample, the nominative of ‘man’ is hom-o, whereas
the accusative is homin-em. Nominative and ac-
cusative thus are formed with different stems of
the same noun. In the following, I only consider
the behavior of singular stems because the typol-
ogy of plural stem allomorphy is still understudied
to the best of my knowledge.

McFadden (2017) proposes that all languages
obey the Nominative Stem-Allomorphy General-
ization: if noun stem allomorphy is conditioned
by case, it distinguishes the nominative from all
other cases. In other words, noun stem allomorphy
always displays an ABn pattern. For a language
with three cases, McFadden’s generalization per-
mits only AAA and ABB while excluding AAB,
ABA, and ABC.

This is an even more restrictive paradigm than
the one we encountered for case syncretism. But
it can still be explained in terms that fit naturally
into the graph-theoretic framework. Note that, as
indicated in Tab. 2, AAA and ABB are exactly
the patterns generated by the graphs in Fig. 2 —
the complement set of our four main PCC graphs
from Fig. 1. While at first counterintuitive, this
actually makes it possible to describe noun stem
allomorphy as the combination of case syncretism
with an inverted PCC. First, suppose once more
that the graph transduction must produce a con-
nected graph, as we did for case syncretism. Then
we only need to enforce two more properties for
graph transductions. The first one is weak maxi-
mality, which was also part of our account for the
PCC. The second is weak non-maximality:

Weak non-maximality If there is a y such that y/
x, then x J z iff z J x.

When applied to Blake’s hierarchy, these two
properties ensure that nominative is always a max-
imal vertex, whereas all other vertices are reach-
able from each other. This guarantees that only
ABn and An patterns are possible.

Interim summary We have looked at five dif-
ferent phenomena where typological variation is
much more narrow than one would expect from a
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computational perspective — the PCC, adjectival
gradation, pronoun suppletion, case syncretism,
and singular noun stem allomorphy. In all five
cases, the typology could be derived from a very
natural and independently motivated base hier-
archy in combination with certain assumptions
about structure preservation. For each language,
the base hierarchy is converted into a language-
specific hierarchy by some graph transduction τ
that must not delete or relabel any nodes, has to
produce weakly connected graphs, and, crucially,
is weakly non-inverting. In some cases, this al-
ready explains the full range of variation, while
other paradigms seem to invoke additional restric-
tions on τ . A succinct overview is given in Tab. 3.

5 Why These Properties?

The previous two sections have established that
the range of typological variation across many
morphological paradigms is accurately delimited
if one assumes that there are universally shared
base hierarchies that may only be manipulated
in narrowly restricted ways. At the very center
of my formal investigation was the requirement
that graph transductions be weakly non-inverting.
While descriptively adequate, it seems puzzling
that natural languages should obey such a partic-
ular property. And even if one grants that being
weakly non-inverting is advantageous for some
reason, why is the requirement not strengthened so
that all graph transductions must be strongly non-
inverting. If one is good, then the other should be
even better. I contend that there are indeed rea-
sons that make weakly non-inverting graph trans-
ductions particularly simple from a computational
perspective, whereas strongly non-inverting graph
transductions do not further improve on this sim-
plicity. Weakly non-inverting graph transductions
therefore represent a sweet spot between flexibil-
ity and computational simplicity.

Several computational considerations underly
this claim. First, the property of being weakly
non-inverting enforces a limited amount of order
preservation, and order preservation is known to
play a central role for other aspects of language,
too. Mönnich (2006; 2007) shows that standard
Minimalist grammars (Stabler, 1997), a formal-
ization of the Minimalist syntax (Chomsky, 1995),
generate tree languages that are the image of regu-
lar tree languages under direction preserving MSO

transductions. The tree languages of tree adjoining
grammars (Joshi, 1985), on the other hand, are the
image of regular tree languages under inversely di-
rection preserving MSO transductions (Mönnich,
2006, 2012). Either way order preservation seems
to be an important aspect of tree transductions in
syntax, so it is not unreasonable that graph trans-
ductions in morphology may display similar limi-
tations.

But there are stronger arguments that go beyond
mere analogy. If the computational complexity of
transductions is severely restricted, they are sim-
ply incapable of reversing order and hence are nec-
essarily weakly non-inverting. Unfortunately the
current knowledge of very weak graph transduc-
tions is not as well-developed as that for string and
tree transductions, so I will illustrate my point with
string transductions instead.

Note first that all the graphs in this paper are
strings or string-like. When a graph is not a string,
that is because there are two vertices that either
form a cycle or are not immediately reachable
from each other. We may use the dedicated sym-
bols - and | for these cases such that u-v means
that u and v form a cycle, and u|v denotes that u is
not immediately reachable from v, and vice versa.
With this notation, the four PCC graphs in Fig. 1
correspond to the strings 1-2 3, 1 2 3, 1|2 3, and
1 2|3, respectively. The notation will bring to light
that weakly non-inverting graph transductions in-
voked in this paper correspond to extremely weak
string transductions.

Suppose we have a string transduction τ that
can only insert - or | after a symbol. When this
transduction is applied to the input string 1 2 3, it
produces nine strings:

1 2 3 1 2-3 1 2|3
1-2 3 1-2-3 1-2|3
1|2 3 1|2-3 1|2|3

Among those strings, 1|2-3, 1-2|3 and 1|2|3 are
not weakly connected graphs. The remaining six
strings represent exactly the graphs in Fig 1 and
Fig 2. This establishes that τ computes a weakly
non-inverting graph transduction.

Towards the end of the discussion of case syn-
cretisms I entertained the hypothesis that the base
hierarchy might not be totally ordered. In order to
emulate such cases, the string transduction τ must
also be allowed to delete the symbols - and |. Now
suppose that our base is 1 2 3|4 5, which may be
regarded as a truncated version of the partially or-
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Phenomenon Target graph Additional properties of τ

PCC weakly connected weak maximality, strong minimality
Adjectival gradation weakly connected 2 J 1→ 3 J 1
Pronoun allomorphy weakly connected none

Case syncretism connected none
Noun stem suppletion connected weak maximality, weak non-maximality

Table 3: Parameters of each morphological paradigm

dered case hierarchy I proposed. Then τ yields
all strings of the form 1u 2 v 3x 4 y 5, where u,
v, x, and y may each be |, -, or the empty string
ε. Close inspection of this pattern reveals that τ
still encodes a weakly non-inverting graph trans-
duction.

Among string transductions, τ belongs to a very
weak class. It is computed by a transducer with
a single state (Fig. 4) and can be regarded as in-
put strictly 1-local (ISL-1) in the sense of Chan-
dlee (2014).1 Transductions that invert the order

σ : σ
- : ε
| : ε

ε : -
ε : |

Figure 4: The single state transducer for comput-
ing weakly non-inverting graph transductions over
string representations.

of symbols in arbitrary strings do not belong to this
class. Even switching the order of adjacent sym-
bols cannot be accomplished. This is very clear
from the ISL perspective. A transduction is k-ISL
iff the output for a given node n depends on the
label of n and the labels of the preceding k − 1
symbols. Chandlee (2014; 2016) proves that k-
ISL transductions are only capable of k-bounded
metathesis, which means that two symbols in the
input string can be switched iff they are separated
by at most k − 2 symbols. This immediately en-
tails that the order of two symbols can be reversed
iff k ≥ 2, wherefore 1-ISL transductions are inca-
pable of reversing order.

It seems, then, that the restriction to weakly
non-inverting graph transductions can be derived

1Note however, that the transduction discussed here is a
relation produce as multiple outputs may be produced from a
single input, whereas Chandlee only studies transducers that
compute functions. This difference, while mathematically
important, has no immediate bearing on the overall argument,
which hinges only on the fact that ISL transductions can only
consider a locally bounded context when rewriting strings.

from general simplicity desiderata. The recourse
to strings is inelegant but unfortunately necessary
as long as the class of ISL transductions has not
been lifted from strings to graphs. Hopefully this
will be rectified in the near future.

This still leaves open the question, though, why
subparts of morphology and morphosyntax should
impose additional criteria, in particular odd ones
like 2 J 1 → 3 J 1 for adjectival gradation.
While it is of course possible that a better compu-
tational understanding of graph transductions may
eventually offer a satisfying explanation, a more
likely scenario is that these properties are “echoes”
of mechanisms that operate at a lower level of de-
scription. The graph-theoretic approach provides
a more unified perspective than alternative propos-
als in the literature because it deliberately abstracts
away from how these graphs and transductions are
implemented in the grammar. There is no men-
tion of features, agreement operations, or struc-
tural constraints because those vary wildly across
domains and would obscure what the phenomena
have in common. But these low-level processes
might be subject to additional constraints that limit
the range of typological variation even more. Ab-
stracting away from them means losing the moti-
vation behind those restrictions.

This highlights that the graph-theoretic view
supplements existing approaches in linguistics,
rather than replacing them. Its abstract nature
makes it a lot easier to state general properties that
are shared by all morphological paradigms. But
when studying a single phenomenon in depth, the
more fine-grained approaches favored by linguists
may provide the necessary level of detail to ex-
plain aspects that are reduced to ad hoc stipula-
tions in the graph-theoretic view.

6 Remarks on Data Reliability

This paper is, in essence, a mathematical explo-
ration of a few particularly prominent typological
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universals. A common concern in this regard is
the reliability of the data on the basis of which
these universals are posited. While the general-
izations I discussed in Sec. 3 and 4 draw from
a wide range of typologically diverse languages,
even very extensive surveys such as Smith et al.
(2016) include only about 60 languages. Consid-
ering that there are an estimated 6000 languages
spoken today, this covers only 1% of the poten-
tial data. What more, languages frequently display
a large amount of variation across their dialects,
wherefore the amount of undetected “typological
dark matter” may be even larger. One has to won-
der, then, how reliable these generalizations are
and whether it is even worthwhile to explore them
from a formal perspective.

Unsurprisingly, I believe that they are worth ex-
ploring and that the arguments that are commonly
marshaled against the enterprise do not stand up to
closer scrutiny. If claims about substantive univer-
sals are unreliable due to the relative scarcity of
data, then mathematical linguists should not put
much stock into the mild context-sensitivity hy-
pothesis either. After all, there may be unknown
languages out there that are not even context-
sensitive. One may argue that this is unlikely be-
cause the parsing algorithm for such a language
could not run in polynomial time, but this holds
only if one adopts the competence-performance
distinction.

More importantly, it is just as conceivable that
variation in the realm of substantive universals
is also limited by independent factors — I pre-
sented a computational argument along these lines
in Sec. 5, but beyond that there may be general
principles of human cognition that prefer, say, a
base ordering of 1 < 2 < 3 over 3 < 1 < 2.
Therefore the exploration of substantive universals
is methodologically no different from the study
of formal universals; if the latter is a viable en-
terprise, the former is too. Being doubtful about
all substantive universals while embracing formal
universals cannot be motivated on logical grounds.
And refraining from making any claims in the ab-
sence of rock solid data is unscientific: science
proceeds in the absence of perfect knowledge, and
every inductive step necessarily requires a leap of
faith regarding the universality of the existing data.

That said, there is of course a bigger risk of
overfitting the data in the area of morphosyn-
tax because the models must characterize much

smaller classes. The mildly context-sensitive
hypothesis leaves a lot more room for cross-
linguistic variation, and if it were to be disproved
the problem would be solved by adding an addi-
tional mechanism to push weak generative capac-
ity to the required level. Designing a model around
four attested variants of the PCC or the ∗ABA
generalization increases the risk that a single data
point will render the whole model unsalvageable.

This has happened before: all Minimalist ac-
counts of the PCC assumed a strict asymmetry
with DO more prominent than IO, and conse-
quently they may now need to be redesigned from
the ground up if some languages do indeed dis-
play a mirror-PCC with IO more prominent than
DO (Stegovec, 2016). However, the root of the
problem is not that these proposals treated the data
that was known at that point as an upper bound on
the range of variation, but rather that their param-
eters were too tightly intertwined to allow for easy
modification in the future.

The graph-transduction perspective in this pa-
per, on the other hand, is similar to other math-
ematical approaches in that it displays a great
amount of malleability to accommodate a shifting
empirical landscape. Suppose for the sake of argu-
ment that an ABA pattern exists in some languages
for some morphological or morphosyntactic do-
main. That would disprove the ∗ABA generaliza-
tion, but it would not change the fact that ABA pat-
terns are much rarer than any of the alternatives.
From a formal perspective, this is easy to accom-
modate by moving to weighted graph transduc-
tions that penalize reversal and thus make ABA
patterns more costly. The main insights about the
importance of being weakly non-inverting stay the
same, but they are extended from the Boolean do-
main to a weighted one.

The move towards a quantitative perspective
is prudent anyways because it generalizes claims
about the possibility of certain paradigms to
claims about their relative frequency, which can be
tested even with a non-exhaustive data set. For ex-
ample, Tab. 2 lists three different graphs that pro-
duce ABC patterns, whereas only one graph each
gives rise to AAB, ABB, and AAA. It seems un-
likely that ABC is typologically three times more
common than AAA, but a more sophisticated anal-
ysis may be able to derive better quantitative pre-
dictions. At any rate the approach presented in
this paper has the requisite flexibility to be viable
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even with limited data, and in particular to avoid
irreparable damage due to overfitting.

Conclusion

The account proposed in this paper derives typo-
logical gaps from two components: a fixed un-
derlying hierarchy shared across all languages (a
person hierarchy, case hierarchy, and so on), and
heavily restricted graph transductions that gener-
ate the language-specific graph(s) from said hi-
erarchy. The most important restriction is that
the transductions be weakly non-inverting. Not
only does this property severely limit their ability
to alter the underlying hierarchy, it also reduces
their complexity tremendously. Applying con-
cepts from the theory of subregular string trans-
ductions, we may view these transductions as in-
put strictly 1-local, which is the weakest non-
trivial class of transductions. Overall, then, the
graph-theoretic view sheds new light on these ty-
pological gaps and demonstrates the virtues of a
mathematical approach that abstracts away from
matters of implementation.

Of course a lot of work remains to be done.
The literature on typological generalizations is
enormous, and only a few could be touched on
here. It will be particularly important to extend
this approach to phenomena where multiple hi-
erarchies are combined, e.g. number and person
in pronoun hierarchies. Some other phenomena
such as resolved agreement have more of a group-
theoretic flavor. Resolved agreement refers to
cases where an adjective agrees with multiple co-
ordinated noun phrases. In Icelandic, for example,
the adjective displays masculine agreement if all
noun phrases are masculine, feminine if all noun
phrases are feminine, and neuter in all other cases.
It is still unclear whether the graph-theoretic per-
spective can be fruitfully expanded to such phe-
nomena or whether algebraic techniques might
provide a better fit. Irrespective of the final an-
swer, there is no doubt that the abstraction and
flexibility of mathematical approaches will be a
great aid in the study of typological gaps.
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