
Proceedings of the Second Workshop on Computational Approaches to Code Switching, pages 65–70,
Austin, TX, November 1, 2016. c©2016 Association for Computational Linguistics

SAWT: Sequence Annotation Web Tool

Younes Samih and Wolfgang Maier and Laura Kallmeyer
Heinrich Heine University

Department of Computational Linguistics
Universitätsstr. 1, 40225 Düsseldorf, Germany

{samih,maierwo,kallmeyer}@phil.hhu.de

Abstract

We present SAWT, a web-based tool for the
annotation of token sequences with an arbi-
trary set of labels. The key property of the tool
is simplicity and ease of use for both anno-
tators and administrators. SAWT runs in any
modern browser, including browsers on mo-
bile devices, and only has minimal server-side
requirements.

1 Introduction

Code-switching (Bullock and Toribio, 2009) occurs
when speakers switch between different languages
or language variants within the same context. In
the Arab world, for instance, it is a common phe-
nomenon. Both Modern Standard Arabic (MSA)
and Dialectal Arabic (DA) variants co-exist, MSA
and DA being used for formal and informal com-
munication, respectively (Ferguson, 1959). Par-
ticularly recently, the computational treatment of
code-switching has received attention (Solorio et al.,
2014).

Within a project concerned with the processing
of code-switched data of an under-resourced Ara-
bic dialect, Moroccan Darija, a large code-switched
corpus had to be annotated token-wise with the ex-
tended label set from the EMNLP 2014 Shared Task
on Code-Switching (Solorio et al., 2014; Samih
and Maier, 2016). The label set contains three la-
bels that mark MSA and DA tokens, as well as to-
kens in another language (English, French, Spanish,
Berber). Furthermore, it contains labels for tokens
which mix two languages (e.g., for French words to

which Arabic morphology is applied), for ambigu-
ous words, for Named Entities, and for remaining
material (such as punctuation).

The annotation software tool had to fulfill the fol-
lowing requirements.

• It should excel at sequence annotation and not
do anything else, i.e., ”featuritis” should be
avoided, furthermore it should be as simple as
possible to use for the annotators, allowing for
a high annotation speed;

• It should not be bound to a particular label
set, since within the project, not only code-
switching annotation, but also the annotation of
Part-of-Speech was envisaged;

• It should allow for post-editing of tokenization
during the annotation;

• It should be web-based, due to the annotators
being at different physical locations;

• On client side, it should be platform-
independent and run in modern browsers in-
cluding browsers on mobile devices, using
modern technologies such as Bootstrap1 which
provide a responsive design, without requiring
a local installation of software;

• On server side, there should be safe stor-
age; furthermore, the administration overhead
should be kept minimal and there should
only be minimal software requirements for the
server side.

1http://getbootstrap.com

65



Even though several annotation interfaces for
similar tasks have been presented, such as COLANN
(Benajiba and Diab, 2010), COLABA (Diab et al.,
2010), and DIWAN (Al-Shargi and Rambow, 2015),
they were either not available or did not match our
needs.

We therefore built SAWT. SAWT has been suc-
cessfully used to create a code-switched corpus
of 223k tokens with three annotators (Samih and
Maier, 2016). It is currently used for Part-of-Speech
annotation of Moroccan Arabic dialect data. The re-
mainder of the article is structured as follows. In
section 2 we present the different aspects of SWAT,
namely, its data storage model, its server side struc-
ture and its client side structure. In section 3, we
review related work, and in section 4, we conclude
the article.

2 SAWT

SAWT is a web application. Its client side is ma-
chine and platform independent and runs in any
modern browser. On the server side, only a PHP-
enabled web server (ideally Apache HTTP server)
and a MySQL database instance are needed.

We now describe our strategy for data storage, as
well as the server side and the client side of SAWT.

2.1 Data storage

Data storage relies on a MySQL database. One ta-
ble in the database is used to store the annotator ac-
counts. At present, there is no separate admin role,
all users are annotators and cannot see or modify
what the other annotators are doing.

The annotation of a text with a label set by a given
user requires two MySQL tables. One table contains
the actual text which is to be annotated by the user,
and the other table receives the annotation; this ta-
ble pair is associated with the user account which is
stored in the user table mentioned above. In the first
table, we store one document per row. We use the
first column for a unique ID; the text is put in the
second column. It is white-space tokenized at the
moment it is loaded into the annotation interface (see
below). In the second table, we store the annotation.
Again, the document ID is put into the first column.
The labels are stored in the remaining columns (one
column per label).

2.2 Server side and administration

The complete code of SAWT will be distributed on
github. The distribution will contain the complete
web application code, as well as two Python scripts
to be used for configuration.

The first script configures the SAWT installation
and the database. It takes a configuration file as pa-
rameter (the distribution will contain a configura-
tion file template), in which the following parame-
ters must be specified:

• List of tags: A space-separated list of tags to
be used in the annotation. From this list, the
PHP code for the model and the view are gen-
erated which handle the final form in the inter-
face. The generated code is then copied to the
correct locations within the complete web ap-
plication code.

• Server information: MySQL server IP, port and
user account information.

• Predictor: The interface can show sugges-
tions for each token, provided that a suitable
sequence labeling software with a pre-trained
model runs on the web server. If suggestions
are desired, then in the configuration file, the
corresponding path and parameters for the soft-
ware must be given. If the parameter is left
blank, no suggestions are shown.

• Search box activation: A boolean parameter in-
dicating if a search box is desired. In the search
box, the annotator can look up his previous an-
notations for a certain token.

• Utility links: The top border of the user inter-
face consists of a link bar, the links for which
can be freely configured. In our project, e.g.,
they are used for linking to the list of Univer-
sal POS tags (Petrov et al., 2012), to a list of
Arabic function words, to an Arabic Morpho-
logical Analyzer (MADAMIRA) (Pasha et al.,
2014), and to an Arabic screen keyboard, as can
be seen in figures 2 and 3.

Once the configuration script has been run, the
web application code must be copied to a suitable
place within a web server installation.

66



In order to upload a text which is to be annotated
by a certain user, the second script must be used. It
takes the following command line parameters.

• Input data: The name of the file containing the
data to be annotated. The text must be pre-
tokenized (one space between each token), and
there must be one document per line.

• Server information: MySQL server IP, port,
and user account information.

• Annotator information: Annotator user name.
If the annotator account does not exist in the
respective database table, it is created, and a
password must be specified.

Of course, this script can be used any number of
times. At runtime, it will connect to the database and
create two tables for the annotation (as mentioned
above, one for the data itself and one for the anno-
tation). It will insert the data in the first one, and
insert the user account in the user account table, if
necessary.

In general, for security reasons, two different
servers should be used for front-end (web applica-
tion) and back-end (database), but in principle, noth-
ing stands in the way of installing everything on a
single machine or even locally.

2.3 Client side and annotator interface

The client side interface is written with several tech-
nologies. As a basis, we have used a MVC PHP
framework, namely CodeIgniter version 3.0.2 Fur-
thermore, in order to achieve a responsive mobile-
ready design, we have employed to the Bootstrap
framework, HTML 5, and JQuery.3

When accessing the URL where SAWT is located,
the annotator is queried its user name and password.
After logging in, the annotation interface is shown.
On top of the page, a link bar makes available several
tools which are useful for the annotation, to be freely
configured during installation (see above). If config-
ured (see above), a search box is shown, in which
the annotator can look up his previous annotations
of a token. In a top line above the text, the ID of the

2http://codeigniter.net
3http://jquery.com

document is shown, the number of tokens to be an-
notated, and the annotation progress, i.e., the num-
ber of tokens which have already been annotated (in
previous documents). Also it is shown if the current
document itself has already been annotated. Finally,
there are buttons to navigate within the documents
(first, previous, next, last).

For the annotation, the interface pulls the first
document to be annotated from the database, applies
white-space tokenization, and renders it for presen-
tation to the user. The material to be annotated is
presented with one document per page and token
per line. Each line has four columns, the first one
showing the absolute token ID within the complete
corpus, the second one showing the token to be an-
notated, the third one showing a prediction of a pos-
sible tag (if configured), and the fourth one showing
the possible labels. There is an edit facility, in which
the annotator can correct an erroneous tokenization
of the document. If an edit is performed, the mod-
ified document is white-space tokenized again and
reloaded in the interface.

For label selection, we offer check-boxes. Even
though radio buttons would seem to be the more
natural choice, check-boxes allow us to assign sev-
eral tags to a single token. This is, e.g., essential
for Part-of-Speech annotation in Arabic: Due to a
rich morphology, a single word can incorporate sev-
eral POS functions (Habash, 2010). When the user
has finished the annotation of a document, a button
must be clicked. This button first triggers a valida-
tion function which checks the annotation for com-
pleteness. If there are tokens which have not been
annotated, a colored alert bar is shown. Otherwise,
a form is submitted which saves the annotation in
the database; then the next document is loaded and
rendered for annotation. We have implemented the
policy that an annotator cannot change the annota-
tion of a document once it is submitted. However,
a minimal change in the code could allow a post-
editing of the annotation.

We have tested the interface extensively in Google
Chrome (on both PC and Android) and Mozilla Fire-
fox.

As an example, figure 2 shows a screenshot
of the annotator interface configured for Part-of-
Speech annotation with the Google Universal Part-
of-Speech tag set (Petrov et al., 2012). Figure 3

67



Figure 1: Screenshot of SAWT: Annotation on Android device

shows a screenshot of code-switching annotation
done in the context of our earlier work (Samih and
Maier, 2016). Finally, figure 1 shows a screenshot
of the POS annotation interface used on the Asus
Nexus 7 2013 tablet running Google Chrome on An-
droid 6.

3 Related Work

As mentioned above, we are not aware of a software
which would have fulfilled our needs exactly. Previ-
ously released annotation software can be grouped
into several categories.

Systems such as GATE (Cunningham et al.,
2002), CLaRK (Simov et al., 2003) and MMAX2
(Müller and Strube, 2006) are desktop-based soft-
ware. They offer a large range of functions, and are
in general oriented towards more complex annota-
tion tasks, such as syntactic treebank annotation.

In the context of Arabic dialect annotation, sev-
eral systems have been created. COLANN GUI
(Benajiba and Diab, 2010), which unfortunately was
not available to us, is a web application that special-
ized on dialect annotation. DIWAN (Al-Shargi and
Rambow, 2015) is a desktop application for dialect
annotation which can be used online.

The systems that came closest to our needs were
WebANNO (Yimam et al., 2013) and BRAT (Stene-
torp et al., 2012). Both are web-based and built
with modern technologies. They allow for a multi-
layered annotation, including a token-wise annota-
tion. However, we decided against them due to fact
that we just needed the token-wise annotation and
we wanted the simplest annotator interface possible.
For just sequence annotation, our annotator interface

allows for a very high speed, since only one click per
token is required.

4 Conclusion

We have presented SAWT, a web-based tool for se-
quence annotation. The main priorities of the tool
are ease of use on the client side and a low require-
ments for the server side.

SAWT is under active development. We are cur-
rently simplifying the installation process on server
side and plan to offer an admin role in the front-end.
Furthermore, we want to provide a way of obtain-
ing the annotation in a standardized format (TEI) di-
rectly from the database.

Acknowledgments

We would like to thank Ikram Zeraa and Miloud
Samih for enlightening discussions and the three
anonymous reviewers for helpful comments and
suggestions. The authors were partially funded by
Deutsche Forschungsgemeinschaft (DFG).

68



Figure 2: Screenshot of SAWT: Annotation with Universal Part Of Speech tags

Figure 3: Screenshot of SAWT: Annotation with code-switching labels

69



References
Faisal Al-Shargi and Owen Rambow. 2015. Diwan: A

dialectal word annotation tool for Arabic. In Proceed-
ings of the Second Workshop on Arabic Natural Lan-
guage Processing, pages 49–58, Beijing, China. Asso-
ciation for Computational Linguistics.

Yassine Benajiba and Mona Diab. 2010. A web applica-
tion for dialectal Arabic text annotation. In Proceed-
ings of the LREC Workshop for Language Resources
(LRs) and Human Language Technologies (HLT) for
Semitic Languages: Status, Updates, and Prospects,
Valletta, Malta. ELRA.

Barbara E. Bullock and Almeida Jacqueline Toribio.
2009. The Cambridge handbook of linguistic code-
switching. Cambridge University Press.

Hamish Cunningham, Diana Maynard, Kalina
Bontcheva, and Valentin Tablan. 2002. Gate:
an architecture for development of robust hlt appli-
cations. In Proceedings of the 40th annual meeting
on association for computational linguistics, pages
168–175. Association for Computational Linguistics.

Mona Diab, Nizar Habash, Owen Rambow, Mohamed
Altantawy, and Yassine Benajiba. 2010. COLABA:
Arabic dialect annotation and processing. Proceed-
ings of the LREC Workshop for Language Resources
(LRs) and Human Language Technologies (HLT) for
Semitic Languages: Status, Updates, and Prospects,
pages 66–74.

Charles Ferguson. 1959. Diglossia. Word, 15:325–340.
Nizar Y. Habash. 2010. Introduction to Arabic natural

language processing. Synthesis Lectures on Human
Language Technologies, 3(1):1–187.

Christoph Müller and Michael Strube. 2006. Multi-level
annotation of linguistic data with mmax2. Corpus
technology and language pedagogy: New resources,
new tools, new methods, 3:197–214.

Arfath Pasha, Mohamed Al-Badrashiny, Mona Diab,
Ahmed El Kholy, Ramy Eskander, Nizar Habash,
Manoj Pooleery, Owen Rambow, and Ryan Roth.
2014. Madamira: A fast, comprehensive tool for
morphological analysis and disambiguation of arabic.
In Proceedings of the Ninth International Conference
on Language Resources and Evaluation (LREC’14),
pages 1094–1101, Reykjavik, Iceland.

Slav Petrov, Dipanjan Das, and Ryan McDonald. 2012.
A universal part-of-speech tagset. In Proceedings of
the Eight International Conference on Language Re-
sources and Evaluation (LREC), Istanbul, Turkey.

Younes Samih and Wolfgang Maier. 2016. An arabic-
moroccan darija code-switched corpus. In Proceed-
ings of the Tenth International Conference on Lan-
guage Resources and Evaluation (LREC 2016), Por-
toroz, Slovenia.

Kiril Simov, Alexander Simov, Milen Kouylekov,
Krasimira Ivanova, Ilko Grigorov, and Hristo Ganev.
2003. Development of corpora within the CLaRK sys-
tem: The BulTreeBank project experience. In Pro-
ceedings of the tenth conference on European chap-
ter of the Association for Computational Linguistics-
Volume 2, pages 243–246. Association for Computa-
tional Linguistics.

Thamar Solorio, Elizabeth Blair, Suraj Maharjan, Steven
Bethard, Mona Diab, Mahmoud Ghoneim, Abdelati
Hawwari, Fahad AlGhamdi, Julia Hirschberg, Alison
Chang, and Pascale Fung. 2014. Overview for the
first shared task on language identification in code-
switched data. In Proceedings of the First Work-
shop on Computational Approaches to Code Switch-
ing, pages 62–72, Doha, Qatar.

Pontus Stenetorp, Sampo Pyysalo, Goran Topić, Tomoko
Ohta, Sophia Ananiadou, and Jun’ichi Tsujii. 2012.
brat: a web-based tool for nlp-assisted text annotation.
In Proceedings of the Demonstrations at the 13th Con-
ference of the European Chapter of the Association for
Computational Linguistics, pages 102–107, Avignon,
France, April. Association for Computational Linguis-
tics.

Seid Muhie Yimam, Iryna Gurevych, Richard Eckart de
Castilho, and Chris Biemann. 2013. Webanno: A
flexible, web-based and visually supported system for
distributed annotations. In Proceedings of the 51st
Annual Meeting of the Association for Computational
Linguistics: System Demonstrations, pages 1–6, Sofia,
Bulgaria, August. Association for Computational Lin-
guistics.

70


