
Proceedings of the 4th BioNLP Shared Task Workshop, pages 73–81,
Berlin, Germany, August 13, 2016. c©2016 Association for Computational Linguistics

Deep Learning with Minimal Training Data: TurkuNLP Entry in the
BioNLP Shared Task 2016

Farrokh Mehryary1,3, Jari Björne2,3, Sampo Pyysalo4, Tapio Salakoski2,3 and Filip Ginter2,3

1University of Turku Graduate School (UTUGS)
2Turku Centre for Computer Science (TUCS)

3Department of Information Technology, University of Turku
Faculty of Mathematics and Natural Sciences, FI-20014, Turku, Finland

4Language Technology Lab, DTAL, University of Cambridge
firstname.lastname@utu.fi, sampo@pyysalo.net

Abstract

We present the TurkuNLP entry to
the BioNLP Shared Task 2016 Bacte-
ria Biotopes event extraction (BB3-event)
subtask. We propose a deep learning-
based approach to event extraction using
a combination of several Long Short-Term
Memory (LSTM) networks over syntac-
tic dependency graphs. Features for the
proposed neural network are generated
based on the shortest path connecting the
two candidate entities in the dependency
graph. We further detail how this network
can be efficiently trained to have good gen-
eralization performance even when only a
very limited number of training examples
are available and part-of-speech (POS)
and dependency type feature representa-
tions must be learned from scratch. Our
method ranked second among the entries
to the shared task, achieving an F-score of
52.1% with 62.3% precision and 44.8% re-
call.

1 Introduction

The BioNLP Shared Task 2016 was the fourth in
the series to focus on event extraction, an infor-
mation extraction task targeting structured asso-
ciations of biomedical entities (Kim et al., 2009;
Ananiadou et al., 2010). The 2016 task was also
the third to include a Bacteria Biotopes (BB) sub-
task focusing on microorganisms and their habi-
tats (Bossy et al., 2011). Here, we present the
TurkuNLP entry to the BioNLP Shared Task 2016
Bacteria Biotope event extraction (BB3-event)
subtask. Our approach builds on proven tools and
ideas from previous tasks and is novel in its ap-
plication of deep learning methods to biomedical
event extraction.

The BB task was first organized in 2011, then
consisting of named entity recognition (NER) tar-
geting mentions of bacteria and locations, fol-
lowed by the detection of two types of relations
involving these entities (Bossy et al., 2011). Three
teams participated in this task, with the best F-
score of 45% achieved by the INRA Bibliome
group with the Alvis system, which used dic-
tionary mapping, ontology inference and seman-
tic analysis for NER, and co-occurrence-based
rules for detecting relations between the entities
(Ratkovic et al., 2011). The 2013 BB task de-
fined three subtasks (Nédellec et al., 2013), the
first one concerning NER, targeting bacteria habi-
tat entities and their normalization, and the other
two subtasks involving relation extraction, the task
targeted also by the system presented here. Sim-
ilarly to the current BB3-event subtask, the 2013
subtask 2 concerned only relation extraction, and
subtask 3 extended this with NER. Four teams par-
ticipated in these tasks, with the UTurku TEES
system achieving the first places with F-scores of
42% and 14% (Björne and Salakoski, 2013).

We next present the 2016 BB3-event subtask
and its data and then proceed to detail our method,
its results and analysis. We conclude with a dis-
cussion of considered alternative approaches and
future work.

2 Task and Data

In this section, we briefly present the BB3-event
task and the statistics of the data that has been used
for method development and optimization, as well
as for test set prediction.

Although the BioNLP Shared Task has intro-
duced an event representation that can capture as-
sociations of arbitrary numbers of participants in
complex, recursive relationships, the BB3-event
task follows previous BB series subtasks in ex-

73

Train Devel Test
Total sentences 527 319 508
Sentences w/examples 158 117 158
Sentences w/o examples 369 202 350
Total examples 524 506 534
Positive examples 251 177 -
Negative examples 273 329 -

Table 1: BB3-event data statistics. (The relation
annotations of the test set have not been released.)

clusively marking directed binary associations of
exactly two entities. For the purposes of machine
learning, we thus cast the BB3-event task as binary
classification taking either a (BACTERIA, HABI-
TAT) or a (BACTERIA, GEOGRAPHICAL) entity
pair as input and predicting whether or not a Lives-
in relation holds between the BACTERIA and the
location (HABITAT or GEOGRAPHICAL).

Our approach builds on the shortest dependency
path between each pair of entities. However, while
dependency parse graphs connect words to oth-
ers in the same sentence, a number of annotated
relations in the data involve entities appearing in
different sentences, where no connecting path ex-
ists. Such cross-sentence associations are known
to represent particular challenges for event extrac-
tion systems, which rarely attempt their extraction
(Kim et al., 2011). In this work, we simply ex-
clude cross-sentence examples from the data. This
elimination procedure resulted in the removal of
106 annotated relations from the training set and
62 annotated relations from the development set.

The examples that we use for the training,
optimization and development evaluation of our
method are thus a subset of those in the origi-
nal data.1 When discussing the training, develop-
ment and test data, we refer to these filtered sets
throughout this manuscript. The statistics of the
task data after this elimination procedure are sum-
marized in Table 1. Note that since there are var-
ious ways of converting the shared task annota-
tions into examples for classification, the numbers
we report here may differ from those reported by
other participating teams.

1Official evaluation results on the test data are of course
comparable to those of other systems: any cross-sentence re-
lations in the test data count against our submission as false
negatives.

3 Method

We next present our method in detail. Preprocess-
ing is first discussed in Section 3.1. Section 3.2
then explains how the shortest dependency path
is used, and the architecture of the proposed deep
neural network is presented in Section 3.3. Sec-
tion 3.4 defines the classification features and em-
beddings for this network. Finally, in Section 3.5
we discuss the training and regularization of the
network.

3.1 Preprocessing

We use the TEES system, previously developed
by members of the TurkuNLP group (Björne and
Salakoski, 2013), to run a basic preprocessing
pipeline of tokenization, POS tagging, and pars-
ing, as well as to remove cross-sentence relations.
Like our approach, TEES targets the extraction
of associations between entities that occur in the
same sentence. To support this functionality, it
can detect and eliminate relations that cross sen-
tence boundaries in its input. We use this feature
of TEES as an initial preprocessing step to remove
such relations from the data.

To obtain tokens, POS tags and parse graphs,
TEES uses the BLLIP parser (Charniak and John-
son, 2005) with the biomedical domain model cre-
ated by McClosky (2010). The phrase structure
trees produced by the parser are further processed
with the Stanford conversion tool (de Marneffe et
al., 2006) to create dependency graphs. The Stan-
ford system can produce several variants of the
Stanford Dependencies (SD) representation. Here,
we use the collapsed variant, which is designed to
be useful for information extraction and language
understanding tasks (de Marneffe and Manning,
2008).

3.2 Shortest Dependency Path

The syntactic structure connecting two entities e1
and e2 in various forms of syntactic analysis is
known to contain most of the words relevant to
characterizing the relationship R(e1, e2), while
excluding less relevant and uninformative words.

This observation has served as the basis
for many successful relation extraction ap-
proaches in both general and biomedical domain
NLP (Bunescu and Mooney, 2005; Airola et al.,
2008; Nguyen et al., 2009; Chowdhury et al.,
2011). The TEES system also heavily relies on
the shortest dependency path for defining and ex-

74

tracting features (Björne et al., 2012; Björne and
Salakoski, 2013). Recently, this idea was applied
in an LSTM-based relation extraction system by
Xu et al. (2015). Since the dependency parse is di-
rected (i.e. the path from e1 to e2 differs from that
from e2 to e1), they separate the shortest depen-
dency path into two sub-paths, each from an entity
to the common ancestor of the two entities, gen-
erate features along the two sub-paths, and feed
them into different LSTM networks, to process the
information in a direction sensitive manner.

To avoid doubling the number of LSTM chains
(and hence the number of weights), we convert the
dependency parse to an undirected graph, find the
shortest path between the two entities (BACTERIA

and HABITAT/GEOGRAPHICAL), and always pro-
ceed from the BACTERIA entity to the HABI-
TAT/GEOGRAPHICAL entity when generating fea-
tures along the shortest path, regardless of the or-
der of the entity mentions in the sentence. With
this approach, there is a single LSTM chain (and
set of LSTM weights) for every feature set, which
is more effective when the number of training ex-
amples is limited.

There is a subtle and important point to be
addressed here: as individual entity mentions
can consist of several (potentially discontinu-
ous) tokens, the method must be able to select
which word (i.e. single token) serves as the start-
ing/ending point for paths through the dependency
graph. For example, in the following training
set sentence, “biotic surfaces” is annotated as a
HABITAT entity:

“We concluded that S. marcescens MG1
utilizes different regulatory systems and
adhesins in attachment to biotic and
abiotic surfaces [...]”

As this mention consists of two (discontinuous)
tokens, it is necessary to decide whether the
paths connecting this entity to BACTERIA men-
tions (e.g., “S. marcescens MG1”) should end at
“biotic” or “surfaces”. This problem has fortu-
nately been addressed in detail in previous work,
allowing us to adopt the proven solution proposed
by Björne et al. (2012) and implemented in the
TEES system, which selects the syntactic head,
i.e. the root token of the dependency parse sub-tree
covering the entity, for any given multi-token en-
tity. Hence, in the example above, the token “sur-
faces” is selected and used for finding the shortest
dependency paths.

3.3 Neural Network Architecture
While recurrent neural networks (RNNs) are in-
herently suitable for modeling sequential data,
standard RNNs suffer from the vanishing or ex-
ploding gradients problem: if the network is deep,
during the back-propagation phase the gradients
may either decay exponentially, causing learning
to become very slow or stop altogether (vanish-
ing gradients); or become excessively large, caus-
ing the learning to diverge (exploding gradients)
(Bengio et al., 1994). To avoid this issue, we
make use of Long Short-Term Memory (LSTM)
units, which were proposed to address this prob-
lem (Hochreiter and Schmidhuber, 1997).

We propose an architecture centered around
three RNNs (chains of LSTM units): one rep-
resenting words, the second POS tags, and the
third dependency types (Figure 1). For a given
example, the sequences of words, POS tags and
dependency types on the shortest dependency
path from the BACTERIA mention to the HABI-
TAT/GEOGRAPHICAL mention are first mapped
into vector sequences by three separate embedding
lookup layers. These word, POS tag and depen-
dency type vector sequences are then input into
the three RNNs. The outputs of the last LSTM
unit of each of the three chains are then concate-
nated and the resulting higher-dimensional vector
input to a fully connected hidden layer. The hid-
den layer finally connects to a single-node binary
classification layer.

Based on experiments on the development set,
we have set the dimensionality of all LSTM units
and the hidden layer to 128. The sigmoid activa-
tion function is applied on the output of all LSTM
units, the hidden layer and the output layer.

3.4 Features and Embeddings
We next present the different embeddings defining
the primary features of our model. In addition to
the embeddings, we use a binary feature which has
the value 0 if the corresponding location is a GEO-
GRAPHICAL entity and 1 if it is a HABITAT entity.
This input is directly concatenated with the LSTM
outputs and fed into the hidden layer. We noticed
this signal slightly improves classification perfor-
mance, resulting in a less than 1 percentage point
increase of the F-score.

3.4.1 Word embeddings
We initialize our word embeddings with vectors
induced using six billion words of biomedical

75

 detection NN products NNSSalmonellae NNP nn prep_in

detection products NNP NN NNS nn prep_in

Concatenate

Fully connected

Fully connected

RNNs

Embedding

Inputs

Shortest path
+ target type

Habitat

Salmonellae

words parts of speech dependencies

Figure 1: Proposed network architecture.

scientific text, namely the combined texts of all
PubMed titles and abstracts and PubMed Central
Open Access (PMC OA) full text articles avail-
able as of the end of September 2013.2 These
200-dimensional vectors were created by Pyysalo
et al. (2013) using the word2vec implementation
of the skip-gram model (Mikolov et al., 2013).

To reduce the memory requirements of our
method, we only use the vectors of the 100,000
most frequent words to construct the embedding
matrix. Words not included in this vocabulary
are by default mapped to a shared, randomly ini-
tialized unknown word vector. As an exception,
out of vocabulary BACTERIA mentions are instead
mapped to the vector of the word “bacteria”.
Based on development set experiments we esti-
mate that this special-case processing improved
the F-score by approximately 1% point.

3.4.2 POS embeddings

Our POS embedding matrix consists of a 100-
dimensional vector for each of the POS tags in the
Penn Treebank scheme used by the applied tagger.
We do not use pre-trained POS vectors but instead
initialize the embeddings randomly at the begin-
ning of the training phase.

2Available from http://bio.nlplab.org/

3.4.3 Dependency type embeddings
Typed dependencies – the edges of the parse
graph – represent directed grammatical relations
between the words of a sentence. The sequence
of dependencies on the shortest path between two
entities thus conveys highly valuable information
about the nature of their relation.

We map each dependency type in the collapsed
SD representation into a randomly initialized 350-
dimensional vector (size set experimentally). Note
that in the applied SD variant, prepositions and
conjunctions become part of collapsed depen-
dency types (de Marneffe et al., 2006), as illus-
trated in Figure 2.

Figure 2: Basic (top) and collapsed (bottom) Stan-
ford Dependency representations

As the collapsed dependencies thus incorporate
preposition and conjunction words into the gram-
matical relations themselves, the set of depen-
dency types is somewhat open-ended. To account
for this, all preposition/conjunction dependency
types not observed in the training and develop-

76

ment sets are mapped to the vectors for the gen-
eral preposition and conjunction types prep and
conj, respectively.

3.5 Training and Regularization

We use binary cross-entropy as the objective func-
tion and the Adam optimization algorithm with the
parameters suggested by Kingma and Ba (2014)
for training the network. We found that this al-
gorithm yields considerably better results than the
conventional stochastic gradient descent in terms
of classification performance.

During training, the randomly initialized POS
and dependency type embeddings are trained and
the pre-trained word embeddings fine-tuned by
back-propagation using the supervised signal from
the classification task at hand.

Determining how long to train a neural network
model for is critically important for its generaliza-
tion performance. If the network is under-trained,
model parameters will not have converged to good
values. Conversely, over-training leads to over-
fitting on the training set. A conventional solu-
tion is early stopping, where performance is eval-
uated on the development set after each set pe-
riod of training (e.g. one pass through the train-
ing set, or epoch) to decide whether to continue
or stop the training process. A simple rule is to
continue while the performance on the develop-
ment set is improving. By repeating this approach
for 15 different runs with different initial ran-
dom initializations of the model, we experimen-
tally concluded that the optimal length of training
is four epochs. Overfitting is a serious problem in
deep neural networks with a large number of pa-
rameters. To reduce overfitting, we experimented
with several regularization methods including the
l1 weight regularization penalty (LASSO) and the
l2 weight decay (ridge) penalty on the hidden layer
weights. We also tried the dropout method (Srivas-
tava et al., 2014) on the output of LSTM chains as
well as on the output of the hidden layer, with a
dropout rate of 0.5. Out of the different combi-
nations, we found the best results when applying
dropout after the hidden layer. This is the only
regularization method used in the final method.

4 Results

4.1 Overcoming Variance

At the beginning of training, the weights of the
neural network are initialized randomly. As we are

Run Recall Precision F-score
12 76.3 60.3 67.3
14 71.2 63.0 66.8
13 75.7 59.3 66.5
10 78.0 56.3 65.4
3 80.8 54.0 64.7
15 79.1 54.3 64.4
1 66.1 62.2 64.1
11 65.0 62.8 63.9
2 67.8 59.4 63.3
5 55.9 69.7 62.1
7 57.6 66.7 61.8
9 53.1 70.2 60.5
8 50.9 74.4 60.4
6 50.3 73.6 59.7
4 46.9 78.3 58.7
x̄ 65.0 64.3 63.3
σ 11.3 7.3 2.6

Table 2: Development set results for 15 repeti-
tions with different initial random initializations
with mean (x̄) and standard deviation (σ). Results
are sorted by F-score.

only using pre-trained embeddings for words, this
random initialization applies also to the POS and
dependency type embeddings. Since the number
of weights is high and the training set is very small
(only 524 examples), the initial random state of the
model can have a significant impact on the final
model and its generalization performance. Lim-
ited numbers of training examples are known to
represent significant challenges for leveraging the
full power of deep neural networks, and we found
this to be the case also in this task.

To study the influence of random effects on our
model, we evaluate it with 15 different random ini-
tializations, training each model for four epochs
on the training data and evaluating on the develop-
ment set using the standard precision, recall and
F-score metrics. Table 2 shows the obtained re-
sults. We find that the primary evaluation met-
ric, the F-score, varies considerably, ranging from
58.7% to 67.3%. This clearly illustrates the extent
to which the random initialization can impact the
performance of the model on unseen data. While
the method is shown to obtain on average an F-
score of 63.3% on the development set, it must be
kept in mind that given the standard deviation of
2.6, individual trained models may perform sub-
stantially better (or worse). It is also important to
note that due to the small size of the development

77

Threshold (t) Recall Precision F-score
1 83.6 53.2 65.1
2 79.7 54.0 64.4
3 78.5 57.0 66.0
4 78.0 59.0 67.2
5 75.7 60.1 67.0
6 70.6 60.7 65.3
7 67.8 61.5 64.5
8 65.5 62.0 63.7
9 62.2 65.5 63.8
10 58.2 66.5 62.1
11 57.1 69.7 62.7
12 52.5 70.5 60.2
13 51.4 72.8 60.3
14 48.6 74.8 58.9
15 45.2 80.0 57.8

Table 3: Development set results for voting based
on the predictions of the 15 different classifiers.
Best results for each metric shown in bold.

set, individual models that achieved high perfor-
mance in this experiment will not necessarily gen-
eralize well to unseen data.

To deal with these issues, we introduce a
straightforward voting procedure that aggregates
the prediction outputs of the 15 classifiers based
on a given threshold value t ∈ {1, . . . , 15}:

1. For each example, predict outputs with the 15
models;

2. If at least t outputs are positive, label the ex-
ample positive, otherwise label it negative.

Clearly, the most conservative threshold is t = 15,
where a relation is voted to exist only if all the 15
classifiers have predicted it. Conversely, the least
conservative threshold is t = 1, where a relation is
voted to hold if any classifier has predicted it.

The development set results for the voting al-
gorithm with different threshold values are given
in Table 3. As expected, the threshold t = 1
produces the highest recall (83.6%) with the low-
est precision (53.2%). With increasing values of
t, precision increases while recall drops, and the
highest precision (80.0%) is achieved together the
lowest recall of (45.2%) with t = 15. The best
F-score is obtained with t = 4, where an example
is labeled positive if at least four classifiers have
predicted it to be positive and negative otherwise.
Figure 3 shows the precision-recall curve for these
15 threshold values.

Figure 3: Precision-recall curve for different val-
ues of the threshold t (shown as labels on the
curve).

As is evident from these results, the voting al-
gorithm can be used for different purposes. If the
aim is to obtain the best overall performance, we
can investigate which threshold produces the high-
est F-score (here t = 4) and select that value when
making predictions for unseen data (e.g., the test
set). Alternatively, for applications that specifi-
cally require high recall or high precision, a dif-
ferent threshold value can be selected to optimize
the desired metric.

To assess the performance of the method on the
full, unfiltered development set that includes also
cross-sentence relations, we selected the threshold
value t = 4 and submitted the aggregated predic-
tion results to the official Shared Task evaluation
server. The method achieved an F-score of 60.0%
(60.9% precision and 59.3% recall), 7.2% points
below the result for our internal evaluation with
filtered data (Table 3).

4.2 Test Set Evaluation

For evaluation of the test set, we applied the pro-
posed model with the voting approach presented
above): 15 neural network models with different
random initializations were trained for 4 epochs
on the combination of the training and the devel-
opment sets. Each trained model was then used to
produce one set of predictions for the test set. To
obtain the final test set predictions, the outputs of
the 15 classifiers were aggregated using the voting
algorithm with a threshold t = 4.

78

Our method achieved an F-score of 52.1% with
a recall of 44.8% and precision of 62.3%, rank-
ing second among the entries to the shared task.
We again emphasize that our approach ignored all
potential relations between entities belonging to
different sentences, which may in part explain the
comparatively low recall.

4.3 Runtime Performance and Technical
Details

We implemented the model using the Python pro-
gramming language (v2.7) with Keras, a model-
level deep learning library (Chollet, 2015). All
network parameters not explicitly discussed above
were left to their defaults in Keras. The Theano
tensor manipulation library (Bastien et al., 2012)
was used as the backend engine for Keras. Com-
putations were run on a single server computer
equipped with a GPU.3 All basic python process-
ing, including e.g. file manipulation, the TEES
pipeline and our voting algorithm, was run on a
single CPU core, while all neural network related
calculations (training, optimization, predictions)
were run on the GPU, using the CUDA toolkit ver-
sion 5.0.

The training process takes about 10 minutes, in-
cluding model building and 4 epochs of training
the network on the training set, but excluding pre-
processing and the creation and loading of the in-
put network. Prediction of the development set
using a trained model with fully prepared inputs
is very fast, taking only about 10 seconds. Finally,
the voting algorithm executes in less than a minute
for all 15 thresholds.

We note that even though the proposed ap-
proach involving 15 rounds of training, predic-
tion and result aggregation might seem to be
impractical for large-scale real-word applications
(e.g., extracting bacteria-location relations from
all PubMed abstracts), it is quite feasible in prac-
tice, as the time-consuming training process only
needs to be done once, and prediction on unseen
data is quite fast.

4.4 Other Architectures

In this section, we discuss alternative approaches
that we considered and the reasons why they were
rejected in favor of that described above.

3In detail: two 6-core Intel R© Xeon R© E5-2620 processors,
32 gigabytes of main memory, and one NVIDIA R© TESLATM

C2075 companion processor with 448 CUDA cores and 6 gi-
gabytes of memory.

One popular and proven method for relation
extraction is to use three groups of features,
based on the observation that the words preceding
the first entity, the words between the entities,
and those after the second entity serve different
roles in deciding whether or not the entities are
related (Bunescu and Mooney, 2006). Given
a sentence S = w1, ..., e1, ..., wi, ..., e2, ..., wn

with entities e1 and e2, one can represent
the sentence with three groups of words:
{before}e1{middle}e2{after} (e1 and e2 can
also be included in the groups). The similarity
of two examples represented in this way can be
compared using e.g. sub-sequence kernels at word
level (Bach and Badaskar, 2007). Bunescu and
Mooney (2006) utilize three subkernels matching
combinations of the before, middle and after
sequences of words, with a combined kernel that
is simply the sum of the subkernels. This kernel is
then used with support vector machines for rela-
tion extraction. Besides the words, other features
such as the corresponding POS tags and entity
types can also be incorporated into such kernel
functions to further improve the representation.

We adapted this idea to deep neural networks.
We started with the simplest architecture, which
contains 3 LSTM networks. Instead of gener-
ating features based on the shortest path, each
LSTM receives inputs based on the sequence of
the words seen in each of the before, middle, and
after groups, where the word embeddings are the
only features used for classification. Similar to the
architecture discussed in Section 3.3, the outputs
of the last LSTM units in each chain are concate-
nated, and the resulting higher-dimensional vector
is then fed into a fully connected hidden layer and
then to the output layer. This approach has a ma-
jor advantage over the shortest dependency path,
in particular for large-scale applications: parsing,
the most time-consuming part in the relation ex-
traction pipeline, is no longer required.

Unfortunately, our internal evaluation on the de-
velopment set showed that this model failed to
achieve results comparable to those of the shortest
dependency path model, only reaching an F-score
of about 57%. Hence, we attempted to use more
features by adding 3 or 6 additional LSTM chains
to the model, for POS or/and dependency type
embeddings. Even in these cases, the F-scores
only varied in the range of 57% to about 63%
(for different random initializations). We conclude

79

that even though not requiring parsing is a benefit
in these approaches, our experiments suggest that
they are not capable of reaching performance com-
parable to methods that use the syntactic structure
of sentences.

5 Conclusions and Future work

We have presented the entry of the TurkuNLP
team to the Bacteria Biotope event extraction
(BB3-event) sub-task of the BioNLP Shared Task
2016. Our method is based on a combination
of LSTM networks over syntactic dependency
graphs. The features for the network are derived
from the POS tags, dependency types, and word
forms occurring on the shortest dependency path
connecting the two candidate entities (BACTERIA

and HABITAT/GEOGRAPHICAL) in the collapsed
Stanford Dependency graph.

We initialize word representations using pre-
trained vectors created using six billion words of
biomedical text (PubMed and PMC documents).
During training, the pre-trained word embeddings
are fine-tuned while randomly initialized POS and
dependency type representations are trained from
scratch. We showed that as the number of train-
ing examples is very limited, the random initial-
ization of the network can considerably impact
the quality of the learned model. To address this
issue, we introduced a voting approach that ag-
gregates the outputs of differently initialized neu-
ral network models. Different aggregation thresh-
olds can be used to select different precision-recall
trade-offs. Using this method, we showed that
our proposed deep neural network can be effi-
ciently trained to have good generalization for un-
seen data even with minimal training data. Our
method ranked second among the entries to the
shared task, achieving an F-score of 52.1% with
62.3% precision and 44.8% recall.

There are a number of open questions regard-
ing our model that we hope to address in future
work. First, we observed how the initial random
state of the model can impact its final performance
on unseen data. It is interesting to investigate
whether (and to what extent) pre-training the POS
and dependency type embeddings can address this
issue. One possible approach would be to ap-
ply the method to similar biomedical relation ex-
traction tasks that include larger corpora than the
BB3-event task (Pyysalo et al., 2008) and use the
learned POS and dependency embeddings for ini-

tialization for this task. This could also establish to
what extent pre-training these representations can
boost the F-score.

Second, it will be interesting to study how the
method performs with different amounts of train-
ing data. On one hand, we can examine to what
extent the training corpus size can be reduced
without compromising the ability of the proposed
network to learn the classification task; on the
other, we can explore how this deep learning
method compares with previously proposed state-
of-the-art biomedical relation extraction methods
on larger relation extraction corpora.

Third, the method and task represent an oppor-
tunity to study how the word embeddings used
for initialization impact relation extraction perfor-
mance and in this way assess the benefits of dif-
ferent methods for creating word embeddings in
an extrinsic task with real-world applications.

Finally, it is interesting to investigate differ-
ent methods to deal with cross-sentence relations.
Here we ignored all potential relations where the
entities are mentioned in different sentences as
there is no path connecting tokens across sen-
tences in the dependency graph. One simple
method that could be considered is to create an
artificial “paragraph” node connected to all sen-
tence roots to create such paths (cf. e.g. Melli et
al. (2007)).

We aim to address these open questions and fur-
ther extensions of our model in future work.

Acknowledgments

We would like to thank Kai Hakala, University
of Turku, for his technical suggestions for the
pipeline development and the anonymous review-
ers for their insightful comments and suggestions.
We would also like to thank the CSC IT Center for
Science Ltd. for computational resources. This
work has been supported in part by Medical Re-
search Council grant MR/M013049/1.

References
Antti Airola, Sampo Pyysalo, Jari Björne, Tapio

Pahikkala, Filip Ginter, and Tapio Salakoski. 2008.
All-paths graph kernel for protein-protein interac-
tion extraction with evaluation of cross-corpus learn-
ing. BMC bioinformatics, 9(11):1.

Sophia Ananiadou, Sampo Pyysalo, Junichi Tsujii, and
Douglas B Kell. 2010. Event extraction for sys-

80

tems biology by text mining the literature. Trends in
biotechnology, 28(7):381–390.

Nguyen Bach and Sameer Badaskar. 2007. A review
of relation extraction. Language Technologies Insti-
tute, Carnegie Mellon University.

Frédéric Bastien, Pascal Lamblin, Razvan Pascanu,
James Bergstra, Ian J. Goodfellow, Arnaud Berg-
eron, Nicolas Bouchard, and Yoshua Bengio. 2012.
Theano: new features and speed improvements.
In Proc. Deep Learning and Unsupervised Feature
Learning NIPS 2012 Workshop.

Yoshua Bengio, Patrice Simard, and Paolo Frasconi.
1994. Learning long-term dependencies with gradi-
ent descent is difficult. IEEE Transactions on Neu-
ral Networks, 5(2):157–166.

Jari Björne and Tapio Salakoski. 2013. TEES 2.1: Au-
tomated annotation scheme learning in the bionlp
2013 shared task. In Proc. BioNLP Shared Task,
pages 16–25.

Jari Björne, Filip Ginter, and Tapio Salakoski. 2012.
University of Turku in the BioNLP’11 shared task.
BMC Bioinformatics, 13(S-11):S4.

Robert Bossy, Julien Jourde, Philippe Bessières,
Maarten van de Guchte, and Claire Nédellec. 2011.
Bionlp shared task 2011: Bacteria biotope. In Proc.
BioNLP Shared Task, pages 56–64.

Razvan C. Bunescu and Raymond J. Mooney. 2005. A
shortest path dependency kernel for relation extrac-
tion. In Proc. HLT-EMNLP, pages 724–731.

Razvan Bunescu and Raymond J. Mooney. 2006. Sub-
sequence kernels for relation extraction. In Proc.
NIPS.

Eugene Charniak and Mark Johnson. 2005. Coarse-
to-fine N-best parsing and maxent discriminative
reranking. In Proc. ACL, pages 173–180.

Franois Chollet. 2015. Keras. https://github.
com/fchollet/keras.

Faisal Mahbub Chowdhury, Alberto Lavelli, and
Alessandro Moschitti. 2011. A study on de-
pendency tree kernels for automatic extraction of
protein-protein interaction. In Proc. BioNLP 2011,
pages 124–133.

Marie-Catherine de Marneffe and Christopher D. Man-
ning. 2008. The stanford typed dependencies repre-
sentation. In Proc. CrossParser, pages 1–8.

Marie-Catherine de Marneffe, Bill MacCartney, and
Christopher D. Manning. 2006. Generating typed
dependency parses from phrase structure parses. In
Proc. LREC-2006, pages 449–454.

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long
short-term memory. Neural Comput., 9(8):1735–
1780.

Jin-Dong Kim, Tomoko Ohta, Sampo Pyysalo, Yoshi-
nobu Kano, and Jun’ichi Tsujii. 2009. Overview of
BioNLP’09 shared task on event extraction. In Proc.
BioNLP Shared Task, pages 1–9.

Jin-Dong Kim, Tomoko Ohta, Sampo Pyysalo, Yoshi-
nobu Kano, and Junichi Tsujii. 2011. Ex-
tracting bio-molecular events from literature - the
BioNLP’09 shared task. Computational Intelli-
gence, 27(4):513–540.

Diederik P. Kingma and Jimmy Ba. 2014. Adam:
A method for stochastic optimization. CoRR,
abs/1412.6980.

David McClosky. 2010. Any Domain Parsing: Au-
tomatic Domain Adaptation for Natural Language
Parsing. Ph.D. thesis.

Gabor Melli, Martin Ester, and Anoop Sarkar. 2007.
Recognition of multi-sentence n-ary subcellular lo-
calization mentions in biomedical abstracts. In Pro-
ceedings of LBM.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013. Distributed representa-
tions of words and phrases and their compositional-
ity. In Advances in Neural Information Processing
Systems 26, pages 3111–3119.

Claire Nédellec, Robert Bossy, Jin-Dong Kim, Jung-
Jae Kim, Tomoko Ohta, Sampo Pyysalo, and Pierre
Zweigenbaum. 2013. Overview of BioNLP shared
task 2013. In Proc. BioNLP Shared Task, pages 1–7.

Truc-Vien T Nguyen, Alessandro Moschitti, and
Giuseppe Riccardi. 2009. Convolution kernels on
constituent, dependency and sequential structures
for relation extraction. In Proc. EMNLP, pages
1378–1387.

Sampo Pyysalo, Antti Airola, Juho Heimonen, Jari
Björne, Filip Ginter, and Tapio Salakoski. 2008.
Comparative analysis of five protein-protein interac-
tion corpora. BMC bioinformatics, 9(3):1.

Sampo Pyysalo, Filip Ginter, Hans Moen, Tapio
Salakoski, and Sophia Ananiadou. 2013. Distribu-
tional semantic resources for biomedical text min-
ing. In Proc. LBM, pages 39–44.

Zorana Ratkovic, Wiktoria Golik, Pierre Warnier,
Philippe Veber, and Claire Nédellec. 2011. BioNLP
2011 task Bacteria Biotope: The Alvis system. In
Proc. BioNLP Shared Task, pages 102–111.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky,
Ilya Sutskever, and Ruslan Salakhutdinov. 2014.
Dropout: A simple way to prevent neural networks
from overfitting. Journal of Machine Learning Re-
search, 15:1929–1958.

Yan Xu, Lili Mou, Ge Li, Yunchuan Chen, Hao Peng,
and Zhi Jin. 2015. Classifying relations via long
short term memory networks along shortest depen-
dency paths. In Proc. EMNLP, pages 1785–1794.

81

