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Abstract

We present a high-level description and er-
ror analysis of the Columbia-NYUAD sys-
tem for morphological reinflection, which
builds on previous work on supervised
morphological paradigm completion. Our
system improved over the shared task
baseline on some of the languages, reach-
ing up to 30% absolute increase. Our rank-
ing on average was 5th in Track 1, 8th in
Track 2, and 3rd in Track 3.

1 Introduction

In this paper, we present a high-level description
and error analysis of the Columbia University -
New York University Abu Dhabi system for mor-
phological reinflection, which was submitted to
the SIGMORPHON 2016 shared task on morpho-
logical reinflection (Cotterell et al., 2016). The
system builds on previous work on supervised
morphological paradigm completion (Eskander et
al., 2013). Although the core system is the same,
additional efforts were needed to preprocess the
shared task data in order to make it compatible
with our existing approach, as well as to create a
new interface that targets morphological reinflec-
tion specifically. Our system improved over the
baseline on some of the languages, reaching up
to 30% absolute increase. Our ranking on aver-
age was 5th in Track 1, 8th in Track 2, and 3rd in
Track 3.

The rest of this paper is structured as follows.
We present some related work in computational
morphology in Section 2. We then discuss our ap-
proach to the shared task in Section 3. We discuss
our performance and insights in Section 4. Finally,
we give an outlook on our approach in Section 5.

2 Related Work

The area of computational morphology includes
a rich and varied continuum of approaches and
techniques. Within it, we find, on one end, sys-
tems painstakingly designed by hand (Kosken-
niemi, 1983; Buckwalter, 2004; Habash and Ram-
bow, 2006; Détrez and Ranta, 2012); and on the
other end, unsupervised methods that learn mor-
phology models from unannotated data (Creutz
and Lagus, 2007; Dreyer and Eisner, 2011; Ra-
sooli et al., 2014; Monson et al., 2008; Ham-
marström and Borin, 2011). Closer to the former
side of the continuum, we find work on minimally
supervised methods for morphology learning that
make use of available resources such as paral-
lel data, dictionaries or some additional morpho-
logical annotations (Yarowsky and Wicentowski,
2000; Snyder and Barzilay, 2008; Cucerzan and
Yarowsky, 2002). Closer to the other end, we find
work that focuses on defining morphological mod-
els with limited lexicons that are then extended us-
ing raw text (Clément et al., 2004; Forsberg et al.,
2006). The setting of the shared task on morpho-
logical reinflection (Cotterell et al., 2016), which
provides a rich partly annotated training data set,
encourages methods that are supervised.

Our shared task submission builds on our pre-
viously published work on paradigm completion
(Eskander et al., 2013), which falls somewhere in
the middle of the continuum outlined above. Our
approach learns complete morphological models
using rich morphological annotations. The match
of the requirements for our approach and those
for the shared task was far from perfect, but it
was interesting to participate since we have always
wanted to explore ways to reduce some of the ex-
pected input annotations – in particular word seg-
mentations, which are not provided in the shared
task.
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3 Approach

Our basic approach is supervised paradigm com-
pletion as presented in (Eskander et al., 2013). It
was designed to learn a morphological analyzer
and generator from data that has been manually
segmented and clustered by lexeme. To adapt
our approach to the shared task, we added two
phases that sandwich the basic paradigm comple-
tion in a pipeline architecture: an initial segmen-
tation phase to preprocess the shared task data to
match our approach’s expectations; and a phase
to perform reinflection as specified in the various
sub-tasks in the shared task.

3.1 Word Segmentation

In the segmentation phase, we segment every
word in the training dataset (TRAIN) into pre-
fix, stem, and suffix. For example, the Arabic
word al-muhandisatu is ideally segmented into al-
+muhandis+atu. This phase has three steps.

In the first step, we estimate the probability of
every possible affix-feature and stem-POS (Part-
of-Speech).1 This is accomplished by summing
over the partial counts of all possible segmenta-
tions of every word in TRAIN, constrained only by
a minimal stem length parameter, s.2

In the second step, we cluster the words in
lemma clusters, which are groups of words that
share the same lemma and only vary in terms of in-
flectional morphology. For Task 1, lemmas were
given in TRAIN, and we clustered all the words
that appear with each given lemma. For Task 2
and Task 3, we used cooccurrence evidence to de-
termine the clusters, where if two words appeared
together in the same training instance, we assigned
them to the same lemma cluster. This may result
in under-clustering due to words not appearing to-
gether, as well as over-clustering, when the entries
consist of derivational rather than inflectional mor-
phology. To normalize the treatment of the dif-
ferent tasks, lemmas in Task 1 were included as
words with the feature feat=lemma; and words ap-
pearing with no features in Task 3 were given the
POS of the word they appeared with and the fea-
ture feat=UNK.

Finally, we decide on the optimal segmentation
1For the Arabic word al-muhandisatu, the ideal affix-

feature pairs the affix al-+ _ +atu, with the feature set that
appears with this word, pos=ADJ, def=DEF, case=NOM,
gen=FEM, num=SG. The ideal stem-POS pairs the stem
muhandis with the POS, pos=ADJ.

2s = 3, determined empirically.

for each word in the context of its lemma cluster in
the following manner. For every word in the clus-
ter, we produce a ranking of top b segmentations3

as an initial filter. This rank is based on P(stem-
POS)*P(affix-feature), which were computed in
the first step. We select for each word the seg-
mentation that minimizes the overall number of
stems in the lemma cluster, with a bias towards the
stem with the highest prominence score. A stem
prominence score is computed as the probability
of the stem-POS multiplied by the number of oc-
currences it has in the top b segmentation choices
(for all words in the cluster). This ensures that, for
all the words that have a segmentation including
the top stem, this segmentation is selected. For the
words that do not have the top stem among their
b segmentations, we go for the next stem in the
prominence score ranking, and so on.

Two problematic cases are handled exception-
ally: words with feat=UNK, because it appears
very frequently, and features that are infrequent
(below a threshold x4). Those words are not used
as part of determining the prominence score, but
the stem is forced upon them.

At the end of this process, we should have a
specific segmentation for every word. To assess
the algorithm’s performance, we ran it on an ex-
ternal data set of Egyptian Arabic (Eskander et
al., 2013), for which we had a manually anno-
tated gold standard. Our segmentation algorithm
achieves a word segmentation accuracy of 84.7%
when tested on this dataset.

3.2 Paradigm Completion

The core of our work is paradigm completion,
in which we build complete inflectional classes
(ICs) based on corpus annotations. The construc-
tion of the ICs follows the technique we presented
in (Eskander et al., 2013), where the ICs have
all the possible morphosyntactic feature combina-
tions for every lemma in TRAIN.

The paradigm completion step works as fol-
lows. First, the entries in TRAIN are converted into
paradigms, where each paradigm lists all the in-
flections of all morphosyntactic feature combina-
tions for a specific lemma seen in the training data.
The paradigms are then converted into inflectional
classes (ICs), where stem entries are abstracted as
templates by extracting out the root letters. We de-

3b = 10, determined empirically.
4x = 5, determined empirically.
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termine which letters should be considered pattern
(non-root) letters for each language. These are let-
ters that change between stems in the same IC. For
example, in English sing, sang, sung, we observe
that the vowel i can change to a or u. So these
three letters change in this IC. For each letter, we
count the number of ICs in which the letter under-
goes a change in the IC stems; and we order the
letters by this frequency. We then use a small tun-
ing corpus to determine what subset of letters is
optimal for the specific language: we repeatedly
perform paradigm completion with all initial seg-
ments of the ordered list of letters. We choose the
subset which results in the best performance on the
task. 5 Finally, the generated ICs are merged to-
gether into a smaller number of more condensed
ICs, where two ICs merge if they share the same
inflectional behavior. The ICs are then completed
by sharing affix and stem information with each
other. We apply the above process to the different
POS types in the shared task, independently.

3.3 Morphological Reinflection

The set of ICs created in paradigm completion are
used to create a morphological analyzer and gen-
erator. In cases in which the input is a previously
seen (i.e., in TRAIN) lemma (Task 1) or an in-
flected form with a tag (Task 2) or without a tag
(Task 3), we can match the input against the IC
which was created from that item, and then we
can just generate the requested form. In cases of
unseen lemmas or forms, we run the ICs as a mor-
phological analyzer, which matches it against an
IC, and we again proceed to generate the inflected
form.

4 Results

4.1 Shared Task

We participated in all the tracks and tasks of the
shared task, with a total of nine submissions for
almost all languages. Our ranking, on average
over all languages and tasks, was 5th (5.4) in
Track 1, 8th (7.6) in Track 2, and 3rd (2.6) in
Track 3. The best performing systems used neu-
ral network models, which have improved perfor-
mance in many areas of NLP (Manning, 2016).

5We do this for Task 1 (in which the lemma is available
as input), and then use the same set in all task/track combi-
nations. For some task/track combinations we should have
used different data, but did not do this for lack of time. We
acknowledge the methodological flaw, but we suspect that do-
ing it differently would not have changed our results much.

In Table 1, we present the results for our system
(Track 3 Task 3) and baseline together with a num-
ber of features of the different language sets and
their correlations with the final scores. We do not
include the results for Finnish and Russian as our
system had many problems and we believe the re-
sults are not meaningful.6 We also do not present
any results on the other tasks and tracks, although
we participated in all of them, because of limited
space. The results across tasks and tracks are com-
parable to the task we selected here. For some lan-
guages, our approach did well, increasing quality
over the official baseline for six languages by up
to 30% absolute (Turkish).

Given our previous work on Arabic (Eskander
et al., 2013), we were dismayed to see the low-
ish results on Arabic; although this was not un-
expected given that the Arabic used in the shared
task was not in standard Arabic orthography. Ara-
bic has a morphophonemic orthography that hides
some of the allomorphic distinctions made explicit
in the shared task, and some of which we do not
do well on. For instance, the Arabic definite arti-
cle morpheme al- has a number of allomorphs that
assimilate to the consonant that follows the article
when the consonant is one of the 14 sun letters (see
(Habash, 2010) for a discussion), e.g., al-daftaru
→ ad-daftaru ‘the notebook’, and al-numūru →
an-numūru ‘the tigers’, as opposed to the de-
fault al-’uk

¯
ti → al-’uk

¯
ti ‘the sister’. In Arabic’s

morphophonemic orthography, the different allo-
morphs are written using one form Al: Ald∼aftaru
Q�� 	̄ YË @, Aln∼umuwru PñÒ	JË @, and AlÂuxti �I 	k


B@.7

4.2 Correlation Insights

We present next some insights gained by con-
sidering correlations between specific features of
the data sets for different languages and the lan-
guages’ performance in the baseline and our sys-
tem. We expect some of these insights to be gen-
eral indicators of the complexity of modeling dif-
ferent languages morphologically.

The first two columns in Table 1, Stemallo and
Affixallo, are the stem allomorphy rate and the
affix allomorphy rate, respectively. Stemallo is
computed as the ratio of unique stems divided by
the number of lemmas in our training data. The

6Our official system’s performance on Track 3 Task 3 for
Finnish and Russian are 20% (40% below baseline) and 62%
(19% below baseline), respectively.

7Arabic transliteration is presented in the Habash-Soudi-
Buckwalter scheme (Habash et al., 2007).

73



Language Stemallo Affixallo Features Lemmas Examples log(F) log(A/S) log(L/F) log(E/F) System Baseline
Arabic 2.8 8.0 232 5,357 47,298 2.37 0.5 1.36 2.3 59% 51%
Georgian 1.1 5.9 96 9,483 49,813 1.98 0.7 1.99 2.7 90% 87%
German 1.2 6.7 105 10,834 49,633 2.02 0.8 2.01 2.7 79% 82%
Hungarian 2.0 14.3 91 6,936 82,244 1.96 0.9 1.88 3.0 89% 78%
Maltese 4.5 2.6 3,825 3,186 65,597 3.58 -0.2 -0.08 1.2 29% 25%
Navajo 5.9 22.8 58 2,235 41,401 1.76 0.6 1.59 2.9 84% 60%
Spanish 1.2 13.5 90 9,374 48,217 1.95 1.0 2.02 2.7 79% 89%
Turkish 1.8 9.9 195 5,620 46,693 2.29 0.7 1.46 2.4 84% 54%
Systemcorrel -0.43 0.54 -0.90 0.45 -0.16 -0.93 0.89 0.91 0.94
Baselinecorrel -0.67 0.26 -0.76 0.81 -0.08 -0.82 0.88 0.93 0.85

Table 1: Results for our system (Track 3 Task 3) and baseline together with a number of features of the
different language sets and their correlations with the final scores. In columns 7 through 10: F=Features,
L=Lemmas, E=Examples, A=Affixes, and S=Stems.

Affixallo is computed as the ratio of unique affixes
divided by the number of features in our training
data. Ideally, these two measures would reflect the
complexity of the language, as well as how well
we model it. The numbers may be larger than
or smaller than the ideal model depending on the
quality of our segmentation step and the amount
of training data. Next in Table 1 are the counts of
features, lemmas, and training examples. Finally,
we present four metrics that are derived from the
previously shown values, e.g. logE/F is the log of
the ratio of training examples to features. In the
last two rows, we show the correlation coefficient
between each presented value and the final score
over all languages.

The languages vary widely in performance in
both the baseline and our system. It is imme-
diately evident that among the basic aspects of
the training data, the number of features has a
very high negative correlation with the results –
see Features, and log(F) in Table 1. The number
of training examples is not an indicator of per-
formance ranking in this set. However, the log
of the ratio of training examples to features is a
very strong indicator with very high correlation.
This makes sense since we expect languages with
richer morphology to require relatively more ex-
amples than languages with poorer morphology.
We computed the Stemallo and Affixallo because
we thought they may give us insights into how our
approach handles different languages and perhaps
reflect errors in the segmentation process: we ex-
pected segmentation errors to inflate these two val-
ues. This hypothesis was not possible to confirm
since the number of variant forms is not only de-
pendent on segmentation and number of features
in a language, but ultimately the number of train-

ing examples in relation to the number of features.
As such, these two values are not well correlated
with the results; although, interestingly, the ratio
of Affixallo to Stemallo is. This may simply reflect
that languages with less variable stems and more
content-heavy affixes may be easier to model. The
log of the ratio of lemmas to features, is another in-
teresting measure with very high correlation (par-
ticularly in the baseline). This measure reflects
that it is harder to model languages with very rich
features without providing lots of collections of
examples (lemma sets).

4.3 Error Analysis
When analyzing the errors in our output, we ob-
served a number of overlapping phenomena that
made the identification of the specific sources of
the errors difficult. The following are the three
main phenomena we noted.

(1) Stemming errors, where the segmentation
process added letters to the stem or ignored let-
ters in the stem. For example, the Arabic word
al-‘ajalatu was stemmed to l-‘ajala instead of
‘ajala, and the system ended up generating l-
‘ajalatay as the dual possessive noun instead of
‘ajalatay. Similarly, in Maltese the stem of the
word nqtilthomx was determined to be the word
itself, thus generating nqtilthomxthulhomx instead
of nqtilthulhomx.

(2) Paradigm errors, where the system opti-
mized for the wrong pattern because of possible
previous stemming errors. In Spanish, for exam-
ple, the word curta was reinflected as curtéis in-
stead of curtáis, and in Turkish ortağa generated
ortağlara instead of ortaklara.

(3) Allomorphy modeling errors, which can
be present in affixes or in stems. When one mor-
pheme can have multiple allomorphs, the system
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might prefer the wrong allomorph. This can be
observed in the cases of the Arabic definite arti-
cle’s so-called sun letters, where the system gen-
erated al-dafı̄’i instead of ad-dafı̄’i, as well as the
Turkish vowel harmony issues, where uğratmiyor-
sunuz was generated instead of uğratmıyorsunuz.
Stem allomorphy happens when the stem slightly
changes depending on specific features, for exam-
ple, in Arabic qāmūs and qawāmı̄s are stems for
the same noun (one singular and one broken plu-
ral), which caused the generation of al-qāmūsi in-
stead of al-qawāmı̄si.

5 Outlook

We built our morphological paradigm completion
system for a specific purpose: we are annotating
texts by hand in order to develop morphological
analyzers and taggers for Arabic dialects. The
question now arises whether we can reduce the
human annotation work (say, by not requiring hu-
man segmentation of the input data) while still
maintaining the same quality of morphological re-
sources.

We intend to explore methods to improve the
segmentation step in order to reduce the errors pro-
duced in it. In particular, we will explore joint
segmentation and paradigm completion; better al-
lomorphy modeling, perhaps by introducing new
models for allomorphy detection, and for phono-
logical and morphological rewrites; and applica-
tion of deep learning.
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