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Abstract
Recent dysarthric speech recognition studies using mixed data

from a collection of neurological diseases suggested articula-

tory data can help to improve the speech recognition perfor-

mance. This project was specifically designed for the speaker-

independent recognition of dysarthric speech due to amy-

otrophic lateral sclerosis (ALS) using articulatory data. In this

paper, we investigated three across-speaker normalization ap-

proaches in acoustic, articulatory, and both spaces: Procrustes

matching (a physiological approach in articulatory space), vocal

tract length normalization (a data-driven approach in acoustic

space), and feature space maximum likelihood linear regression

(a model-based approach for both spaces), to address the issue

of high degree of variation of articulation across different speak-

ers. A preliminary ALS data set was collected and used to eval-

uate the approaches. Two recognizers, Gaussian mixture model

(GMM) - hidden Markov model (HMM) and deep neural net-

work (DNN) - HMM, were used. Experimental results showed

adding articulatory data significantly reduced the phoneme error

rates (PERs) using any or combined normalization approaches.

DNN-HMM outperformed GMM-HMM in all configurations.

The best performance (30.7% PER) was obtained by triphone

DNN-HMM + acoustic and articulatory data + all three normal-

ization approaches, a 15.3% absolute PER reduction from the

baseline using triphone GMM-HMM + acoustic data.

Index Terms: Dysarthric speech recognition, Procrustes

matching, vocal track length normalization, fMLLR, hidden

Markov models, deep neural network

1. Introduction

Although automatic speech recognition (ASR) technologies

have been commercially available for healthy talkers, these

technologies did not perform satisfactorily well when directly

used for talkers with dysarthria, a motor speech disorder due

to neurological or other injury [1]. Dysarthric speech is al-

ways with degraded speech intelligibility due to impaired voice

and articulation functions [1–3]. For example, Parkinson’s dis-

ease and amyotrophic lateral sclerosis (ALS) impact the pa-

tient’s motor functions and therefore impair their speech. Only

a few studies have been focused on dysarthric speech recog-

nition [4–6]. Recent studies using mixed data from a variety

of neurological diseases indicated articulatory data can improve

the speech recognition performance [7, 8]. However, dysarthric

speech recognition particularly for ALS has rarely been studied.

ALS, also known as Lou Gehrig’s disease, is the most com-

mon motor neuron disease that causes the death of both up-

per and lower motor neurons [9]. The cause of the disease

is unknown for most of the patients and only a small portion

(5-10%) of patients is inherited [10]. As the disease progresses,

the patient’s speech intelligibility declines [11, 12]. Eventually

all patients have degraded speech and need an assistive device

for communication [13]. Normal speech recognition technol-

ogy (typically trained on healthy talkers’ data) does not work

satisfactorily well for the patients. Therefore, ALS patients’

ability to use modern speech technology (e.g., smart home en-

vironment control driven by speech recognition) is limited. This

project, to our best knowledge, is the first one specifically de-

signed to improve speech recognition performance for ALS us-

ing articulatory data.

Based on the recent literature on speech recognition with

articulatory data (e.g., [7, 14–20]), we hypothesized the follow-

ings for dysarthric speech recognition for ALS: 1) adding artic-

ulatory data (collected from ALS patients) would improve the

speech recognition performance, 2) feature normalization in ar-

ticulatory, acoustic, and both spaces is critical and necessary for

speaker-independent dysarthric speech recognition with articu-

latory data, and 3) recent state-of-the-art approach, deep neu-

ral network (DNN)-hidden Markov model (HMM) would out-

perform the long-standing approach, Gaussian mixture model

(GMM)-HMM.

The high degree of variation in articulatory patterns across

speakers has been a barrier for speaker-independent speech

recognition with articulatory data. Multiple sources contributed

to the inter-talker variation including gender, dialect, individual

vocal tract anatomy, and different co-articulation patterns [21].

However, speaker-independent approaches are important for re-

ducing the amount of training data required from each user.

Only limited articulatory data samples are often available from

individuals with ALS (even with healthy talkers) due to the

logistic difficulty of articulatory data collection [22]. For ex-

ample, in data collection using electromagnetic articulograph

(EMA), small sensors have to be attached on the tongue using

dental glue [23]. The procedure requires the patient to hold

his/her tongue to a position for a while so that the glue can take

effect.

To reduce speaker-specific difference, researchers have

tried different approaches to normalize the articulatory move-

ments including data-driven approaches (e.g., principal compo-

nent analysis [7]) or physiological approaches including align-

ing the tongue position when producing vowels [24–26], con-

sonants [27, 28], and pseudo-words [29] to a reference (e.g.,

palate [24, 25], or a general tongue shape [27]).
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(a) Wave System (b) Sensor Locations. Labels are described in text.

Figure 1: Data collection setup.

Procrustes matching, a bidimensional shape analysis tech-

nique [30], has been used to minimize the translational, scal-

ing, and rotational effects of articulatory data across speakers

[28, 29, 31]. Recent studies indicated Procrustes matching was

effective for speaker-independent silent speech recognition (i.e.,

recognizing speech from articulatory data only) [18, 19]. Pro-

crustes matching, however, has rarely been used in dysarthric

speech recognition with articulatory data.

In addition, we adopted two other representative ap-

proaches for across-speaker data normalization. Vocal tract

length normalization (VTLN) which has been widely used in

acoustic speech recognition [32–36], a data-driven approach in

acoustic space, was used to extract normalized acoustic fea-

tures. The third approach, feature space maximum likelihood

linear regression (fMLLR), a model-based adaptation, was used

for both acoustic and articulatory data.

In this paper, we investigated the use of 1) articulatory

data as additional information source for speech, 2) Procrustes

matching, VTLN, and fMLLR as feature normalization ap-

proaches individually or combined, 3) two machine learning

classifiers, GMM-HMM and DNN-HMM. The effectiveness

of these speaker-independent dysarthric speech recognition ap-

proaches were evaluated with a preliminary data collected from

multiple early diagnosed ALS patients.

2. Data Collection

The dysarthric speech and articulatory data used in this exper-

iment were part of an ongoing project that targets to assess the

motor speech decline due to ALS [12, 37].

2.1. Participants and stimuli

Five patients with ALS (3 females and 2 males), American En-

glish talkers, participated in the data collection (Table 1). They

are all early diagnosed (within half to one year). Severity of

these participants with ALS was mild with average speech in-

telligibility of 94.54% (SD=3.40), with SPK2 not measured.

The average age of the patients was 59.80 (SD=7.73). Dur-

ing each session, each subject produced up to 2 or 4 repetitions

of 20 unique sentences at their normal speaking rate and loud-

ness. These sentences are used in daily conversations (e.g., How

are you?) or related to patients (e.g., This is an emergency, I

need to see a doctor.). Some of the sentences were selected

from [18, 38].

2.2. Tongue motion tracking device - Wave

The Wave system (NDI Inc., Waterloo, Canada) was used

to register the 3-dimensional (x, y, and z; lateral, vertical,

and anterior-posterior axes) movements of the tongue and lips

during speech production (Figure 1a). Our previous studies

[39–41] found four articulators, tongue tip, tongue body back,

upper lip, and lower lip, are optimal for this application. There-

fore, we used the optimal four sensors for data collection. One

sensor was attached on the subject’s head and the data were

used to calculate the movements of other articulators indepen-

dent of the head [42]. Wave records tongue movements by es-

tablishing a calibrated electromagnetic field that induces elec-

tric current into tiny sensor coils that are attached to the surface

of the articulators. A similar data collection procedure has been

used in [22, 23, 38]. The spatial precision of motion tracking

using Wave is approximately 0.5 mm [43]. The sampling rate

for recording was 100 Hz.

2.3. Procedure

Participants were seated with their head within a calibrated

magnetic field (right next to the textbook-sized magnetic field

generator). Five sensors were attached to the surface of each

articulator using dental glue (PeriAcryl 90, GluStitch) or tape,

including one on the head, two on the tongue and two on the

lips. A three-minute training session helped the participants to

adapt to the wired sensors before the formal data collection.

Figure 1b shows the positions of the five sensors attached to

a participant’s head, tongue, and lips. HC (Head Center) was on

the bridge of the glasses. The movements of HC were used to

calculate the head-independent movements of other articulators.

TT (Tongue Tip) and TB (Tongue Body Back) were attached at

the mid-line of the tongue [22]. TT was about approximately 10

mm from the tongue apex. TB was as far back as possible and

about 30 to 40 mm from TT [22]. Lip sensors were attached to

the vermilion borders of the upper (UL) and lower (LL) lips at

mid-line. Data collected from TT, TB, UL, and LL were used

Table 1: ALS participants and data size information.

Gender Age # Phrases # Frames

SPK1 Female 53 39 5776

SPK2 Female 71 39 5219

SPK3 Male 61 79 9463

SPK4 Female 52 80 13625

SPK5 Male 62 79 9520

Total 316 43603
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Figure 2: Example of a shape (motion path of four articulators; TT, TB, UL, and LL of SPK5) for producing “Call me back when you

can”. In this coordinate system, y is vertical and z is anterior-posterior.

for analysis.

2.4. Data processing

Data processing was applied on the raw sensor position data

prior to analysis. First, the head translations and rotations

were subtracted from the tongue and lip data to obtain head-

independent tongue and lip movement data. The orientation of

the derived 3D Cartesian coordinates system is displayed in Fig-

ure 1b, in which x is left-right, y is vertical, and z is front-back.

Second, a low pass filter (i.e., 20 Hz) was applied for removing

noise [22, 23].

In total, 316 sentence samples (for unique twenty phrases)

were obtained from the five participants and were used for anal-

ysis. It could be expected ALS patients have different lateral

movement patterns with healthy subjects (x in Figure 1b) [22],

however for this study only y and z coordinates of the tongue

and lip sensors were used for analysis.

3. Method

3.1. Procrustes matching: A physiological approach for ar-

ticulatory data

Procrustes matching (or Procrustes analysis [30]) is a robust sta-

tistical bidimensional shape analysis technique, where a shape

is represented by a set of ordered landmarks on the surface of

an object. Procrustes matching aligns two objects by removing

the locational, rotational, and scaling effects [22, 29, 31].

In this project, Procrustes matching was used to match

the physiological inter-talker difference (tongue and lip orien-

tation). The downsampled time-series multi-sensor and multi-

dimensional articulatory data form articulatory shapes. An ex-

ample is shown in Figure 2 [18]. This shape contains trajec-

tories of the continuous motion paths of four sensors attached

on tongue and lips, TT, TB, UL, and LL. A step-by-step pro-

cedure of Procrustes matching between two shapes includes

(1) aligning the centroids of the two shapes, (2) scaling the

shapes to a unit size, and (3) rotating one shape to match the

other [19, 22, 31].

Let S be a set of landmarks as shown below.

S = {(yi, zi)}, i = 1, . . . , n (1)

where (yi, zi) represents the i-th data point (spatial coordinates)

of a sensor, and n is the total number of data points, where y is

vertical and z is front-back. The transformation in Procrustes

matching is described using parameters {(cy, cz), (βy, βz), θ}:

[

ȳi
z̄i

]

=

[

cos θ − sin θ
sin θ cos θ

] [

βy

βz

] [

yi − cy
zi − cz

]

(2)

where (cy, cz) are the translation factors (centroids of the two

shapes); Scaling factor β is the square root of the sum of the

squares of all data points along the dimension; θ is the angle to

rotate [30].

Each participant’s articulatory shape was transformed into

an “normalized shape”, which had a centroid at the origin (0, 0)
and aligned to the vertical line formed by the average positions

(centroids) of the upper and lower lips. Scaling was not used

in this experiment, because preliminary tests indicated scaling

will cause slightly worse performance in speaker-independent

dysarthric speech recognition.

The normalization procedure was done in two steps. First,

all articulatory data (e.g., a shape in Figure 2) of each speaker

were translated to the centroid (average position of all data

points in the shape). This step removed the locational effects

between speakers. Second, all shapes of speakers were rotated

to make sure the sagittal plane was oriented such that the cen-

troid of lower and upper lip movements defined the vertical axis.

This step reduces the variation of rotational effects due to the

difference in facial anatomy between speakers. Thus in Eq. 2,

(cy, cz) are the centroid of shape S; Scaling factor (βy, βz) is

set to [ 1 1 ]′; θ is the angle of the S to the reference shape in

which upper and lower lips form a vertical line. Figure 2 shows

an example, original data (Figure 2a) and the shape after Pro-

crustes matching (Figure 2b).

3.2. Vocal tract length normalization: A data-driven ap-

proach for acoustic data

Vocal tract length normalization is a representative approach to

normalize speaker-dependent characteristics for speech recog-

nition systems [32–36]. This approach is to normalize vocal

tract length indirectly from acoustic data, because vocal tract

length is highly relevant with pitch and formants [34]. Warping

factor α is applied in linear frequency space by Bilinear rule,

F̂ = F + 2 tan−1

(

(1− α) sin(F )

1− (1− α) cos(F )

)

(3)

where F is normalized frequency (i.e., divided by sampling fre-

quency, Fs) and α is the warping factor and F = w/(2πFs).
Warped Mel-frequency is calculated by applying warping factor
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Figure 3: Example of (Mel) warped frequency scale (sampling rate: 16 kHz).

α in Mel-frequency space,

Mα(w) = 2595 log
10

(

1 +
w

α0α

)

(4)

where α0 is 1400π [34] and w = 2πf (f : raw frequency).

Figure 3 shows an example of (Mel) warped frequency scale

between 0.85 and 1.25, the range obtained through empirical

studies [34, 44].

In this work, we used linear transformation-based VTLN

approach in cepstral space (MFCCs) [35, 36, 44], which was

proved equivalent to the above approach [32, 34, 45].

3.3. fMLLR: A model-based approach for both articula-

tory and acoustic data

fMLLR (also called CMLLR; constrained maximum likelihood

linear regression) is one of the representative approaches for

across-speaker feature space normalization.

For each speaker, a transformation matrix A and a bias vec-

tor b are estimated and used for feature vector transformation:

ô(t) = Ao(t) + b (5)

where o(t) is the input feature vector at frame t and is trans-

formed to ô(t). This transformed ô(t) is used for training

GMM-HMM or DNN-HMM and also for decoding. A more

detailed explanation of fMLLR can be found in [46].

3.4. Combination of normalization approaches

Besides the individual use of each normalization approach

above, we also investigated combinations of these approaches.

In this paper, speaker adaptive training (SAT) [46, 47] was con-

ducted using 1) Procrustes matching, VTLN, or fMLLR indi-

vidually, and 2) combinations with these approaches. We as-

sume the speaker labels for observation are known for training

stage. In testing stage, input feature vectors were also trans-

formed using normalization approach(es) as we used in training

before they were fed into GMM-HMM or DNN-HMM.

3.5. Recognizer and experimental setup

The long-standing GMM-HMM and recently available DNN-

HMM were used as the recognizers [16, 20, 44, 48–50]. In this

experiment, window size was 25 ms for acoustic features and

frame rate was 10 ms for both acoustic and articulatory fea-

tures. For each frame, static features plus derivative and accel-

eration form 39-dimensional mel-frequency cepstral coefficient

(MFCC) vectors for acoustic features and 24-dimensional vec-

tors for articulatory features, and these were fed into GMM-

HMM or DNN-HMM. HMM is left-to-right 3-state with a

monophone or a triphone context model. Maximum likelihood

estimation (MLE) training approach (with or without SAT) was

used for training GMM-HMM. The input layer of DNN has 216

(24 × 9 frames – 4 previous plus current plus 4 succeeding

frames) dimensions for articulatory features and 351 (39 × 9

frames) dimensions for acoustic features. The output layer has

113 dimensions (36 phonemes × 3 states + 1 silence × 5 states)

and approximately 200 dimensions (varies for each configura-

tion in triphone model) for monophone and triphone models, re-

spectively. We used 1 to 6 hidden layers and each layer had 512

nodes. The best performance obtained using 1 to 6 layers was

Table 2: Experimental setup.

Acoustic Feature

Feature vector MFCC (13-dim. vectors) + ∆

+ ∆∆ (39 dim.)
Sampling rate 16 kHz
Windows length 25 ms
Articulatory Feature

Feature vector articulatory movement vector (8 dim. )
+ ∆ + ∆∆ (24 dim.)

Low pass filtering 20 Hz cutoff 5th order Butterworth
Sampling rate 100 Hz
Concatenated Feature

Feature vector MFCC + articulatory movement vector
(21 dim.) + ∆ + ∆∆ (63 dim.)

Common

Frame rate 10 ms
Mean normalization Applied

GMM-HMM topology

Monophone 113 states (36 phones × 3 states, 5 states
for silence), total ≈ 1000 mixtures

Triphone ≈ 200 states, total ≈ 1750 mixtures
3-state left to right HMM

Training method Maximum likelihood estimation (MLE)
with and without SAT

DNN-HMM topology

Input layer dim. 216 (articulatory)
351 (acoustic)
567 (concatenated)

Output layer dim. 113 (monophone)
≈ 200 (triphone)

No. of nodes 512 nodes for each hidden layer
Depth 1 to 6-depth hidden layers
Training method RBM pre-training, back-propagation

Language model bi-gram phoneme language model
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Table 3: Angles (in degrees) and centroids (Cy and Cz) in Pro-

crustes matching for each patient.

SPK1 SPK2 SPK3 SPK4 SPK5

Angle 34.20◦ 32.70◦ 22.11◦ 22.85◦ 25.41◦

Cy -62.26 -63.31 -73.29 -71.89 -71.95

Cz -33.51 -40.89 -26.32 -30.61 -19.60

Note: The degree indicates a counterclockwise rotation. Ra-

dians converted from degrees were actually used in the ro-

tation.

Table 4: Warping factor (α) for each speaker in testing or train-

ing stages.

CV1 CV2 CV3 CV4 CV5

SPK1 0.94 0.95 0.96 0.94 0.99

SPK2 0.93 0.95 0.94 0.92 0.98

SPK3 1.01 1.01 0.99 0.99 1.04

SPK4 0.95 0.95 0.97 0.94 1.00

SPK5 1.05 1.05 1.07 1.05 1.06

Note: Diagonal values are for testing and off-diagonal val-

ues are for training in each cross-validation (CV). Speakers

1, 2, and 4 are female; speakers 3 and 5 are male.

reported. Table 2 shows the detailed experimental setup. The

training and decoding were performed using the Kaldi speech

recognition toolkit [44].

Phoneme error rate (PER) was used as the measure of

dysarthric speech recognition performance. PER is the summa-

tion of substitution, insertion, and deletion errors of phonemes

divided by the number of all phonemes.

Leave-one-subject-out cross validation was used in the ex-

periment. In each execution, all samples from one subject were

used for testing and the samples from the rest subjects were

used for training. The average performance of executions was

calculated as the overall performance.

4. Results & Discussion

Table 3 shows detailed parameters (angles and centroids) for

Procrustes matching, which varies for different speakers. Table

4 and Figure 4 show the warping factors for each speaker and

their histogram. The histogram of ALS patients follows general

trend of warping factor distribution for females (typically < 1.0)

and males (typically > 1.0).

Figures 5, 6, 7, and 8 give the PERs of speaker-independent

dysarthric (due to ALS) speech recognition results using dif-

ferent context models and recognizers, respectively: (1) mono-

phone GMM-HMM, (2) triphone GMM-HMM, (3) mono-

phone DNN-HMM, and (4) triphone DNN-HMM with indi-

vidual or combinations of VTLN, Procrustes matching, and

fMLLR. These results suggest that VTLN, Procrustes match-

ing, and fMLLR were all effective for speaker-independent

dysarthric speech recognition from acoustic data, articulatory

data, or combined. When comparing the three normalization

approaches individually (if applies), no approach was univer-

sally better than others in all experimental configurations. A

better performance was always obtained when the normaliza-

tion approaches were combined. Baseline results were obtained

without using any normalization approach.

Adding articulatory data to acoustic data always showed

performance improvement in all configurations (mono-

phone/triphone or GMM-HMM/DNN-HMM), which is con-

sistent with the literature [7]. The overall best performance

Warping factor
0.92 0.94 0.96 0.98 1 1.02 1.04 1.06 1.08

C
ou

nt

0

1

2

3

4

5

6 Female
Male

Figure 4: Histogram of warping factors (step size = 0.02).

was obtained when the three normalization approaches, VTLN

(acoustic space), Procrustes matching (articulatory space), and

fMLLR (both acoustic and articulatory space), were used to-

gether with triphone DNN-HMM model (30.7%).

Surprisingly, speaker-independent silent speech recognition

(using articulatory data only) with DNN-HMM obtained even

better results than the recognition results from acoustic (MFCC)

features (see left half of Figures 7 and 8). This finding shows

the potential of articulatory data when the patient’s speech is

significantly impaired as the disease progresses. However, since

the data set is small, a further study with a larger data set is

required to verify this finding.

Moreover, DNN-HMM outperformed GMM-HMM in all

configurations (monophone/triphone, VTLN/Procrustes match-

ing/fMLLR). This finding is consistent with the acoustic [20,51]

and silent speech recognition literature [17, 19].

In the current approach, fMLLR was not separately applied

to acoustic and articulatory data (i.e., full transformation ma-

trix), because the two types of data are concatenated before ap-

plying fMLLR. Due to the different nature of acoustic (in fre-

quency domain) and articulatory data (in spatial domain), in the

future, we consider to make A in Eq. 5 a block-diagonal trans-

formation matrix. The block-diagonal matrix will separate the

processing for acoustic and articulatory data.

Limitations. Although the experimental results were en-

couraging, the data set used in the experiment contained only

a small number of unique phrases collected from a small num-

ber of ALS patients. Further studies with a larger vocabulary

from more ALS patients are necessary to explore the limits of

the current approaches.

5. Conclusions & Future Work

This paper investigated speaker-independent dysarthric speech

recognition using the data from patients with ALS and also with

three across-speaker normalization approaches: a physiological

approach, Procrustes matching, a data-driven approach, VTLN,

and a model-based approach, fMLLR. GMM-HMM and DNN-

HMM were used as the machine learning classifiers. Experi-

mental results showed the effectiveness of feature normalization

approaches. The best performance was obtained when the three

approaches were used together with triphone DNN-HMM.

Future work includes test of the normalization approaches

using a larger data set collected from more ALS subjects (e.g,

by combining our data set with the ALS data in TORGO [8]).
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Procrustes matching.
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Figure 7: Phoneme Error Rates (PERs; %) of speaker-independent recognition using monophone DNN-HMM with fMLLR, VTLN,

and/or Procrustes matching.
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Figure 8: Phoneme Error Rates (PERs; %) of speaker-independent recognition using triphone DNN-HMM with fMLLR, VTLN, and/or

Procrustes matching.
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