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Abstract

This paper introduces the Ky-
otoEBMT example-based machine
translation framework. Since last
year’s workshop we have replaced
input trees with forests, improved
alignment, added new features, and
introduced bilingual neural network
reranking. The major benefits of
our system include online example
retrieval and flexible reordering. We
also use syntactic dependency analysis
for both source and target languages
in the hope of learning how to trans-
late non-local structure. The system
implementation (this paper refers to
version 1.0) is available as open-source.

1 Introduction

This paper describes the KyotoEBMT system
used in the 2nd Workshop on Asian Transla-
tion (Nakazawa et. al, 2015).

Our system is a fully-fledged Example-
Based Machine Translation (EBMT) plat-
form making use of both source-language and
target-language dependency structure. This
approach has been explored comparatively
less in studies on syntax-based SMT/EBMT,
which tend to focus on constituent trees rather
than dependency trees, and on tree-to-string
rather than tree-to-tree approaches. Further-
more, we employ separate dependency parsers
for each language rather than projecting the
dependencies from one language to another,
as in (Quirk et. al, 2005).

The dependency structure information is
used end-to-end: for improving the quality
of the alignment of the translation examples,
for constraining the translation rule extraction
and for guiding the decoding. We believe that

dependency structure, which considers more
than just local context, is important in order
to generate fluent and accurate translations
of complex sentences across distant language
pairs.

The experiments described in this paper
focus on technical domain translation for
Japanese-Chinese and Japanese-English, how-
ever our implementation is applicable to any
domain and language pair for which there exist
parallel sentences and dependency parsers.

A further unique characteristic of our sys-
tem is that, again contrary to the majority of
similar systems, it does not rely on precompu-
tation of translation rules. Instead it matches
each input sentence to the full database of
translation examples before extracting trans-
lation rules online. This has the merit of max-
imizing the information available when creat-
ing and combining translation rules, while re-
taining the ability to produce excellent trans-
lations for input sentences similar to an exist-
ing translation example.

The system is mostly developed in C++
and is available as open source. The code
and documentation are available from
http://nlp.ist.i.kyoto-u.ac.jp/kyotoebmt/.
Experiments are facilitated through the inclu-
sion of an end-to-end experiment management
system (EMS) which has been greatly im-
proved in this version. The framework is
simple to use and supports model training
with multiple threads or across a cluster.

2 System Overview
Figure 1 shows the basic structure of the Ky-
otoEBMT translation pipeline.

The training process begins with parsing
and aligning parallel sentences from the train-
ing corpus. The alignments are then used to
build an example database (‘translation mem-
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Figure 1: The translation pipeline can be
roughly divided in 3 steps. Step 1 is the cre-
ation of the example database, trained from
a parallel corpus. Step 2 is the parsing of an
input sentence and the generation of sets of
initial hypotheses. Step 3 consists in decoding
and reranking. The tuning of the weights for
decoding and reranking is done by a modified
version of step 3.

ory’) containing ‘examples’ or ‘treelets’ that
form the hypotheses to be combined during
decoding.

Translation is performed by first parsing
an input sentence then searching for treelets
matching entries in the example database.
The retrieved treelets are combined by a
lattice-based decoder that optimizes a log lin-
ear model score. Finally, we use a reranker to
select the optimal translation from the n-best
list provided by the decoder using additional
non-local features (see section 3.4).

Figure 2 shows the process of combining ex-
amples matching the input tree to create an
output sentence.

2.1 Example retrieval and translation
hypothesis construction

An important characteristic of our system is
that we do not extract and store translation
rules in advance: the alignment of translation
examples is performed offline. However, for a
given input sentence i, the steps for finding
examples partially matching i and extracting
their translation hypotheses is an online pro-
cess. This approach could be considered to be

more faithful to the original EBMT approach
advocated by Nagao (1984). It has already
been proposed for phrase-based (Callison-
Burch et al., 2005), hierarchical (Lopez, 2007),
and syntax-based (Cromières and Kurohashi,
2011) systems. It does not however, seem to
be very commonly integrated in syntax-based
MT.

This approach has several benefits. The first
is that we are not required to impose a limit
on the size of translation hypotheses. Systems
extracting rules in advance typically restrict
the size and number of extracted rules for fear
of becoming unmanageable. In particular, if
an input sentence is the same or very similar
to one of our translation examples, we will be
able to retrieve a perfect translation. A second
advantage is that we can make use of the full
context of the example to assign features and
scores to each translation hypothesis.

The main drawback of our approach is that
it can be computationally more expensive to
retrieve arbitrarily large matchings in the ex-
ample database online than it is to match pre-
computed rules. We use the techniques de-
scribed in Cromières and Kurohashi (2011) to
perform this step as efficiently as possible.

Once we have found an example translation
(s, t) for which s partially matches i, we pro-
ceed to extract a translation hypothesis from
it. A translation hypothesis is defined as a
generic translation rule for a part p of the in-
put sentence that is represented as a target-
language treelet, with non-terminals repre-
senting the insertion positions for the transla-
tions of other parts of the sentence. A trans-
lation hypothesis is created from a translation
example as follows:

1. We project the part of s that is matched
into the target side t using the alignment
of s and t. This is trivial if each word of
s and t is aligned, but this is not typi-
cally the case. Therefore our translation
hypotheses will often have some target
words/nodes marked as optionals: this
means that we will decide if they should
be added to the final translation only at
the moment of combination.

2. We insert the non-terminals as child
nodes of the projected subtree. This is
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Figure 2: The process of translation. The source sentence is parsed and matching subtrees from
the example database are retrieved. From the examples, we extract translation hypotheses than
can contain optional target words and several position for each non-terminals. For example the
translation hypothesis containing “textbook” has three possible position for the non-terminal X3
(as a left-child before “a”, as a left-child after “a” or as a right-child). The translation hypotheses
are then combined during decoding. Choice of optional words and final non-terminal positions
is also done during decoding.

Figure 3: A translation hypothesis endoded
as a lattice. This representation allows us to
handle efficiently the ambiguities of our trans-
lation rules. Note that each path in this lat-
tice corresponds to different choices of inser-
tion position for X2, morphological forms of
“be”, and the optional insertion of “at”.

simple if i, s and t have the same struc-
ture and are perfectly aligned, but again
this is not typically the case. A conse-
quence is that we will sometimes have sev-
eral possible insertion positions for each
non-terminal. The choice of insertion po-
sition is again made during combination.

2.2 Decoding
After having extracted translation hypotheses
for as many parts of the input tree as possible,
we need to decide how to select and combine
them. Our approach here is similar to what
has been proposed for Corpus-Based Machine
Translation. We first choose a number of fea-
tures and create a linear model scoring each
possible combination of hypotheses (see Sec-
tion 3.3). We then attempt to find the combi-
nation that maximizes this model score.

The combination of rules is constrained by
the structure of the input dependency tree. If
we only consider local features1, then a simple
bottom-up dynamic programming approach
can efficiently find the optimal combination
with linear O(|H|) complexity2. However,
non-local features (such as language models)

1The score of a combination will be the sum of the
local scores of each translation hypothesis.

2H = set of translation hypotheses
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will force us to prune the search space. This
pruning is done efficiently through a varia-
tion of cube-pruning (Chiang, 2007). We
use KenLM3 (Heafield, 2011) for computing
the target language model score. Decoding
is made more efficient by using some of the
more advanced features of KenLM such as
state-reduction ((Li and Khudanpur, 2008),
(Heafield et al., 2011)) and rest-cost estima-
tions(Heafield et al., 2012).

Compared with the original cube-pruning
algorithm, our decoder is designed to han-
dle an arbitrary number of non-terminals.
In addition, as we have seen in Section 2.1,
the translation hypotheses we initially extract
from examples are ambiguous in term of which
target word is going to be used and which will
be the final position of each non-terminal. In
order to handle such ambiguities, we use a
lattice-based internal representation that can
encode them efficiently (see Figure 3). This
lattice representation also allows the decoder
to make choices between various morpholog-
ical variations of a word (e.g. be/is/are).
We use the decoding algorithm described in
(Cromières and Kurohashi, 2014).

3 Improvements from WAT2014

3.1 Alignment
Based on the findings of Neubig and Duh
(2014), we experimented with supervised
alignment using Nile (Riesa et al., 2011) as
part of our translation framework. We found
that using supervised alignments made a con-
siderable improvement to translation qual-
ity. Since Nile supports only constituency
parses, we also perform constituency parsing
for source and target languages for generating
bidirectional word alignments.

For the initial alignments for Nile, we use
the alignments generated from the model
described in last year’s system description
(Richardson et al., 2014), which makes use
of our dependency parses in order to capture
non-local reorderings.

3.2 Forest Input
We found that the quality of the source-side
dependency parsing had an important impact

3http://kheafield.com/code/kenlm/

on translation quality. Unfortunately, pars-
ing errors are unavoidable. Chinese parsing is
maybe especially challenging and our Chinese
parser still produces a significant number of
parsing errors. In order to mitigate this prob-
lem, last year we used a k-best list of input
parses. We found this was somewhat success-
ful but inefficient, and therefore have moved
from a k-best list representation of multiple
parses to a more compact and efficient forest
representation.

In the future, we will consider also using
forests for all the translation examples (and
not just the input sentence).

3.3 Features

During decoding we use a linear model to score
each possible combination of hypotheses. This
linear model is based on a linear combination
of both local features (local to each translation
hypothesis) and non-local features (such as a
5-gram language model score of the final trans-
lation). Despite our already relatively large
set of dense features, we found there were a
number of cases where these features were not
enough to differentiate between good and bad
translation hypotheses.

This year we have added ten new features,
now reaching a total of 52, a selection of which
are shown below:

• Forest parse scores

• Number of content/function words
aligned to content/function words

• Number of times a subtree is inserted in
a position (left or right of parent) that is
not the most common in the training data

• Number of examples sharing the same in-
formation used to create an initial hy-
pothesis

• Similarity between source and input word
embeddings (Mikolov et al., 2013)

The optimal weights for each feature are as
before estimated using the implementation of
k-best batch MIRA (Cherry and Foster, 2012)
included in Moses.

57



3.4 Reranking
A final reranking step allows us to use more
advanced features for selecting the best trans-
lations. We reranked the n-best output of our
system using several additional language mod-
els: a standard 7-gram language model with
Modified Kneser-Ney smoothing, a Recurrent
Neural Network Language Model (RNNLM)
(Mikolov et. al, 2010) and several variations
of a Bilingual Recurrent Neural Network Lan-
guage Model.

The RNNLM model was trained with hid-
den layer size 200, and 5000 sentences from
the training fold were used as validation data.

For the bilingual language model, we used
the Neural Machine Translation Model of
(Bahdanau et. al, 2014) which has an
open source implementation in the Ground-
Hog/Theano framework4. For each language
pair we trained two models, one for each trans-
lation direction. In addition, for Japanese and
Chinese, we considered two types of segmenta-
tion: the segmentation produced by our mor-
phological analyzer, and a character-level seg-
mentation. We had therefore up to four mod-
els per language pair. Rescoring our transla-
tions with these models gave up to four addi-
tional features. It is interesting to note that
although trying to directly translate our input
sentences using these neural MT models typ-
ically resulted in a comparatively low BLEU
score, they turned out to be useful for rerank-
ing in our system. This is probably due to the
fact that, since they represent a very differ-
ent approach to translation, the models tend
to learn different aspects of the translation and
make different mistakes to our system. Using a
character-based segmentation further ensured
the neural models learned a different kind of
information. The models took two to four days
each to train on a GPU. The settings we used
were mostly the defaults of the implementa-
tions5.

Reranking was conducted by first calculat-
ing the various language model scores for each

4https://github.com/lisa-groundhog/GroundHog
5More precisely, the hidden layer size was 1000.

Training done with a minibatch size of 64 and the
adadelta algorithm (rho = 0.95, eps = 1e-6). Vocabu-
lary size was reduced to 20,000 for the word-segmented
model. Backpropagation through time number of steps
increased to up to 100 for the character-based models.

translation in the n-best list. These features
were added to those used in the first round of
tuning, then one final iteration of tuning was
run. The tuning algorithm and settings were
the same as for standard tuning. This retun-
ing step was added in order to find an optimal
combination of the additional features with re-
lated features such as sentence length and the
score given by the 5-gram language model used
inside the decoder.

4 Experiments
We conducted translation experiments on the
four language pairs in the scientific papers
subtask: Japanese-English (JA–EN), English-
Japanese (EN–JA), Japanese-Chinese (JA–
ZH) and Chinese-Japanese (ZH–JA).

The proposed system used the following de-
pendency parsers and show below their ap-
proximate parsing accuracies (micro-average),
which were evaluated by hand on a random
subset of sentences from the test data. The
parsers were trained on domains different to
those used in the experiments.

• English: NLParser6 (92%) (Charniak and
Johnson, 2005)

• Japanese: KNP (96%) (Kawahara and
Kurohashi, 2006)

• Chinese: SKP (88%) (Shen et al., 2012)

For generating input for Nile we used the
following constituency parsers:

• English: Berkeley Parser (Petrov et al.,
2006)

• Japanese: Cyklark (Oda et al., 2015)

• Chinese: Berkeley Parser (Petrov et al.,
2006)

Forests were created by packing the 200-best
dependency parses for Japanese and English,
and 50-best parses for Chinese.

4.1 Results
Table 1 shows the results of our proposed
system (WAT15) and a comparison with the
system from last year (WAT14) (Richardson

6Converted to dependency parses with in-house
tool.
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Language Pair System BLEU RIBES HUMAN
JA–EN Baseline 18.45 64.51 n/a

WAT15 21.31 70.65 16.50
WAT15+Rerank 22.89 72.46 32.50

WAT14 20.60 70.12 (21.50)
WAT14+Rerank 21.07 69.90 (25.00)

EN–JA Baseline 27.48 68.37 n/a
WAT15 30.69 76.78 40.50

WAT15+Rerank 33.06 78.95 51.00
WAT14 29.76 75.21 (33.75)

WAT14+Rerank 31.09 75.96 (38.00)
JA–ZH Baseline 27.96 78.90 n/a

WAT15 29.99 80.71 16.00
WAT15+Rerank 31.40 82.70 12.50

WAT14 27.21 79.13 (-0.75)
WAT14+Rerank 27.67 78.83 (-8.75)

ZH–JA Baseline 34.65 77.25 n/a
WAT15 36.30 81.97 16.75

WAT15+Rerank 38.53 84.07 18.50
WAT14 33.57 80.10 (6.00)

WAT14+Rerank 34.75 80.26 (7.50)

Table 1: Official evaluation results for BLEU/RIBES/HUMAN. (NB: Human evaluation scores
of WAT2014 and WAT2015 are not comparable.)

et al., 2014) and official baseline (phrase-
based SMT, for details see Nakazawa et al.
(2015)). We give results for evaluation on
the test set after tuning (WAT15, WAT14)
and tuning plus reranking (WAT15+Rerank,
WAT14+Rerank). Tuning was conducted over
10 iterations on the development set using an
n-best list of length 500, and we used the 1000-
best for reranking.

WAT15+Rerank was the strongest system
in our comparison, outperforming the offi-
cial baseline, non-reranked system (WAT15)
and last year’s systems in all metrics for all
languages, with the minor exception of JA–
ZH human evaluation for reranked vs. non-
reranked.

5 Conclusion
In this paper we have described the latest
version of the KyotoEBMT example-based
translation system. Since last year we have
improved alignment, introduced forest input,
added new features and used bilingual neural
network features in reranking.

In our preparation for this workshop we
have focused mainly on improving Japanese–

Chinese and Chinese–Japanese translation,
particularly in terms of dealing with poor qual-
ity Chinese dependency parses. As future
work we plan to perform more extensive er-
ror analysis on the other language pairs. We
also found that despite using forest input there
are still many issues caused by incorrect pars-
ing and will consider in the future how best to
overcome this.
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