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Abstract

Due to the short and noisy nature of Twit-
ter microposts, detecting named entities
is often a cumbersome task. As part of
the ACL2015 Named Entity Recognition
(NER) shared task, we present a semi-
supervised system that detects 10 types of
named entities. To that end, we leverage
400 million Twitter microposts to generate
powerful word embeddings as input fea-
tures and use a neural network to execute
the classification. To further boost the per-
formance, we employ dropout to train the
network and leaky Rectified Linear Units
(ReLUs). Our system achieved the fourth
position in the final ranking, without using
any kind of hand-crafted features such as
lexical features or gazetteers.

1 Introduction

Users on Online Social Networks such as Face-
book and Twitter have the ability to share micro-
posts with their friends or followers. These mi-
croposts are short and noisy, and are therefore
much more difficult to process for existing Natural
Language Processing (NLP) pipelines. Moreover,
due to the informal and contemporary nature of
these microposts, they often contain Named Enti-
ties (NEs) that are not part of any gazetteer.

In this challenge, we tackled Named Entity
Recognition (NER) in microposts. The goal was
to detect named entities and classify them in one
of the following 10 categories: company, facility,
geolocation, music artist, movie, person, product,

sports team, tv show and other entities. To do so,
we only used word embeddings that were automat-
ically inferred from 400 million Twitter microp-
osts as input features. Next, these word embed-
dings were used as input to a neural network to
classify the words in the microposts. Finally, a
post-processing step was executed to check for in-
consistencies, given that we classified on a word-
per-word basis and that a named entity can span
multiple words. An overview of the task can be
found in Baldwin et al. (2015).

The challenge consisted of two subtasks. For
the first subtask, the participants only needed to
detect NEs without categorizing them. For the
second subtask, the NEs also needed to be cate-
gorized into one of the 10 categories listed above.
Throughout the remainder of this paper, only the
latter subtask will be considered, given that solv-
ing subtask two makes subtask one trivial.

2 Related Work

NER in news articles gained substantial popularity
with the CoNLL 2003 shared task, where the chal-
lenge was to classify four types of NEs: persons,
locations, companies and a set of miscellaneous
entities (Tjong Kim Sang and De Meulder, 2003).
However, all systems used hand-crafted features
such as lexical features, look-up tables and corpus-
related features. These systems provide good per-
formance at a high engineering cost and need a
lot of annotated training data (Nadeau and Sekine,
2007). Therefore, a lot of effort is needed to adapt
them to other types of corpora.

More recently, semi-supervised systems
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showed to achieve near state-of-the-art results
with much less effort (Turian et al., 2010; Col-
lobert et al., 2011). These systems first learn word
representations from large corpera in an unsu-
pervised way and use these word representations
as input features for supervised training instead
of using hand-crafted input features. There exist
three major types of word representations: distri-
butional, clustering-based and distributed word
representations, and where the last type of repre-
sentation is also known as a word embedding. A
very popular and fast to train word embedding is
the word2vec word representation of Mikolov et
al. (2013). When complemented with traditional
hand-crafted features, word representations can
yield F1-scores of up to 91% (Tkachenko and
Simanovsky, 2012).

However, when applied to Twitter microposts,
the F1-score drops significantly. For example, Liu
et al. (2011) report a F1 score of 45.8% when ap-
plying the Stanford NER tagger to Twitter microp-
osts and Ritter et al. (2011) even report a F1-score
of 29% on their Twitter micropost dataset. There-
fore, many researchers (Cano et al., 2013; Cano
et al., 2014) trained new systems on Twitter mi-
croposts, but mainly relied on cost-intensive hand-
crafted features, sometimes complemented with
cluster-based features.

Therefore, in this paper, we will investigate the
power of word embeddings for NER applied to mi-
croposts. Although adding hand-crafted features
such as lexical features or gazetteers would prob-
ably improve our F1-score, we will only focus on
word embeddings, given that this approach can be
easily applied to different corpora, thus quickly
leading to good results.

3 System Overview

The system proposed for tackling this challenge
consists of three steps. First, the individual words
are converted into word representations. For
this, only the word embeddings of Mikolov et al.
(2013) are used. Next, we feed the word rep-
resentations to a Feed-Forward Neural Network
(FFNN) to classify the individual words with a
matching tag. Finally, we execute a simple, rule-
based post-processing step in which we check the
coherence of individual tags within a Named En-
tity (NE).

3.1 Creating Feature Representations

Recently, Mikolov et al. (2013) introduced an ef-
ficient way for inferring word embeddings that
are effective in capturing syntactic and semantic
relationships in natural language. In general, a
word embedding of a particular word is inferred
by using the previous or future words within a
number of microposts/sentences. Mikolov et al.
(2013) proposed two architectures for doing this:
the Continuous Bag Of Words (CBOW) model and
the Skip-gram model.

To infer the word embeddings, a large dataset of
microposts is used. The algorithm iterates a num-
ber of times over this dataset while updating the
word embeddings of the words within the vocabu-
lary of the dataset. The final result is a look-up ta-
ble which can be used to convert every word w(t)
in a feature vector we(t). If the word is not in the
vocabulary, a vector only containing zeros is used.

3.2 Neural Network Architecture

Based on the successful application of Feed-
Forward Neural Networks (FFNN) using word
embeddings as input features for both recognizing
NEs in news articles (Turian et al., 2010; Collobert
et al., 2011) and Part-of-Speech tagging of Twitter
microposts (Godin et al., 2014), a FFNN is used as
the underlying classification algorithm. Because a
NE can consist of multiple words, the BIO (Begin,
Inside, Outside NE) notation is used to classify the
words. Given that there are 10 different NE cate-
gories that each have a Begin and Inside tag, the
FFNN will assign a tag(t) to every word w(t) out
of 21 different tags.

Because the tag tag(t) of a word w(t) is also
determined by the surrounding words, a context
window centered around w(t) that contains an odd
number of words, is used. As shown in Fig-
ure 1, the corresponding word embeddings we(t)
are concatenated and used as input to the FFNN.
This is the input layer of the neural network.

The main design parameters of the neural net-
work are the type of activation function, the num-
ber of hidden units and the number of hidden
layers. We considered two types of activation
functions, the classic tanh activation function and
the newer (leaky) Rectified Linear Units (ReLUs).
The output layer is a standard softmax function.
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t=1 t=2 t=3 t=4

Look − up table with word embeddings

Figure 1: High-level illustration of the FFNN that classifies each word as part of one of the 10 named
entity classes. At the input, a micropost containing four words is given. The different words w(t) are
first converted in feature representations we(t) using a look-up table of word embeddings. Next, a feature
vector is constructed for each word by concatenating all the feature representations we(t) of the other
words within the context window. In this example, a context window of size three is used. One-by-one,
these concatenated vectors are fed to the FFNN. In this example, a one-hidden layer FFNN is used. The
output of the FFNN is the tag tag(t) of the corresponding word w(t).

3.3 Postprocessing the Neural Network
Output

Given that NEs can span multiple words and given
that the FFNN classifies individual words, we ap-
ply a postprocessing step after a micropost is com-
pletely classified to correct inconsistencies. The
tags of the words are changed according to the fol-
lowing two rules:

• If the NE does not start with a word that has
a B(egin)-tag, we select the word before the
word with the I(nside)-tag and replace the
O(utside)-tag with a B-tag and copy the cate-
gory of the I-tag.

• If the individual words of a NE have differ-
ent categories, we select the most frequently
occurring category. If it is a tie, we select the
category of the last word within the NE.

4 Experimental Setup

4.1 Dataset

The challenge provided us with three different
datasets: train, dev and dev_2015. These datasets
have 1795, 599 and 420 microposts, respectively,
also containing 1140, 356 and 272 NEs, respec-
tively. The train and dev datasets came from
the same period and therefore have some over-
lap in NEs. Moreover, they contained the com-
plete dataset of Ritter et al. (2011). The micro-
posts within dev_2015, however, were sampled
more recently and resembled the test set of this
challenge. The test set consisted of 1000 microp-
osts, having 661 NEs. The train and dev dataset
will be used as training set throughout the exper-
iments and the dev_2015 dataset will be used as
development set.

For inferring the word embeddings, a set of
raw Twitter microposts was used, collected during
300 days using the Twitter Streaming API, from
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1/3/2013 till 28/2/2014. After removing all non-
English microposts using the micropost language
classifier of Godin et al. (2013), 400 million raw
English Twitter microposts were left.

4.2 Preprocessing the Data

For preprocessing the 400 million microposts, we
used the same tokenizer as Ritter et al. (2011). Ad-
ditionally, we used replacement tokens for URLs,
mentions and numbers on both the challenge
dataset and the 400 million microposts we col-
lected. However, we did not replace hashtags as
doing so experimentally demonstrated to decrease
the accuracy.

4.3 Training the Model

The model was trained in two phases. First, the
look-up table containing per-word feature vec-
tors was constructed. To that end, we applied
the word2vec software (v0.1c) of Mikolov et al.
(2013) on our preprocessed dataset of 400 million
Twitter microposts to generate word embeddings.
Next, we trained the neural network. To that end,
we used the Theano library (v0.6) (Bastien et al.,
2012), which easily effectuated the use of our
NVIDIA Titan Black GPU. We used mini-batch
stochastic gradient descent with a batch size of
20, a learning rate of 0.01 and a momentum of
0.5. We used the standard negative log-likelihood
cost function to update the weights. We used
dropout on both the input and hidden layers to pre-
vent overfitting and used (Leaky) Rectified Linear
Units (ReLUs) as hidden units (Srivastava et al.,
2014). To do so, we used the implementation of
the Lasagne1 library. We trained the neural net-
work on both the train and dev dataset and iterated
until the accuracy on the dev_2015 set did not im-
prove anymore.

4.4 Baseline

To evaluate our system, we made use of two differ-
ent baselines. The word embeddings and the neu-
ral network architecture were evaluated in terms
of word level accuracy. For these components, the
baseline system simply assigned the O-tag to ev-
ery word, yielding an accuracy of 93.53%. For the
postprocessing step and the overall system eval-
uation, we made use of the baseline provided by
the challenge, which performs an evaluation at the
level of NEs. This baseline system uses lexical

1https://github.com/Lasagne/Lasagne

Table 1: Evaluation of the influence of the context
window size of the word embeddings on the ac-
curacy of predicting NER tags using a neural net-
work with an input window of five words, 500 hid-
den Leaky ReLU units and dropout. All word em-
beddings are inferred using negative sampling and
a Skip-gram architecture, and have a vector size
of 400. The baseline accuracy is achieved when
tagging all words of a micropost with the O-tag.

Context
Window

Accuracy Error Rate
Reduction

Baseline 93.53%

1 95.64% -32.57%
3 95.57% -31.44%
5 95.52% -30.72%

features and gazetteers, yielding an F1-score of
34.29%. Note that we only report the performance
for subtask two (i.e., categorizing the NEs), except
for the final evaluation.

5 Experiments

5.1 Word Embeddings
For inferring the word embeddings of the 400 mil-
lion microposts, we mainly followed the sugges-
tions of Godin et al. (2014), namely, the best word
embeddings are inferred using a Skip-gram archi-
tecture and negative sampling. We used the de-
fault parameter settings of the word2vec software,
except for the context window.

As noted by Bansal et al. (2014), the type of
word embedding created depends on the size of
the context window. In particular, a bigger context
window creates topic-oriented embeddings while
a smaller context window creates syntax-oriented
embeddings. Therefore, we trained an initial ver-
sion of our neural network using an input window
of five words and 300 hidden nodes, and evaluate
the quality of the word embeddings based on the
classification accuracy on the dev_2015 dataset.
The results of this evaluation are shown in Table 1.
Although the difference is small, a smaller context
window consistently gave a better result.

Additionally, we evaluated the vector size. As
a general rule of thumb, the larger the word em-
beddings, the better the classification (Mikolov et
al., 2013). However, too many parameters and too
few training examples will lead to suboptimal re-
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sults and poor generalization. We chose word em-
beddings of size 400 because smaller embeddings
experimentally showed to capture not as much de-
tail and resulted in a lower accuracy. Larger word
embeddings, on the other hand, made the model
too complex to train.

The final word2vec word embeddings model
has a vocabulary of 3,039,345 words and word
representations of dimensionality 400. The model
was trained using the Skip-gram architecture and
negative sampling (k = 5) for five iterations, with
a context window of one and subsampling with a
factor of 0.001. Additionally, to be part of the vo-
cabulary, words should occur at least five times in
the corpus.

5.2 The Neural Network Architecture

The next step is to evaluate the Neural Network
Architecture. The most important parameters are
the size of the input layer, the size of the hidden
layers and the type of hidden units. Although we
experimented with multiple hidden layers, the ac-
curacy did not improve. We surmise that (1) the
training set is too small and that (2) the word em-
beddings already contain a fixed summary of the
information and therefore limit the feature learn-
ing capabilities of the neural network. Note that
the word embeddings at the input layer can also
be seen as a (fixed) hidden layer.

First, we will evaluate the activation function
and the effectiveness of dropout (p = 0.5). We
compared the classic tanh function and the leaky
ReLU with a leak rate of 0.012. As can be seen in
Table 2, both activation functions perform equally
good when no dropout is applied during training.
However, when dropout is applied, the gap be-
tween the two configurations becomes larger. The
combination of ReLUs and dropout seems to be
the best one, compared to the classic configuration
of a neural network3.

Next, we will evaluate a number of neural net-
work configurations for which we varied the input
layer size and the hidden layer size. The results
are depicted in Table 3. Although the differences
are small, the best configuration seems to be a neu-
ral network with five input words and 500 hidden
nodes.

2This is the default value in Lasagne and showed to work
the best for us

3Given that dropout also acts as a regularization tech-
nique, a comparison with other regularization techniques
should be conducted to be complete (e.g., L2 regularization)

Table 2: Evaluation of the influence of the activa-
tion function and dropout on the accuracy of pre-
dicting NE tags. A fixed neural network with an
input window of five, word embeddings of size
400 and 500 hidden units is used. The baseline
accuracy is achieved when tagging all words of a
micropost with the O-tag.

Activ.
Function

Dropout Accuracy
Error Rate
Reduction

Baseline 93.53%

Tanh
No 95.01% -22.78%
Yes 95.49% -30.30%

L. ReLU
No 95.02% -23.01%
Yes 95.64% -32.57%

Finally, we evaluate our best model on the NE
level instead of on the word level. To that end, we
calculated the F1-score of our best model using the
provided evaluation script. The F1-score of our
best model on dev_2015 is 45.15%, which is an
absolute improvement of almost 11% and an error
reduction of 16.52% over the baseline (34.29%)
provided by the challenge.

5.3 Postprocessing

As a last step, we corrected the output of the neu-
ral network for inconsistencies because our clas-
sifier does not see the labels of the neighbouring
words. As can be seen in Table 4, the postprocess-
ing causes a significant error reduction, yielding a
final F1-score of 49.09% on the dev_2015 devel-
opment set, and an error reduction of 22.52% over
the baseline.

Additionally, we also report the F1-score on the
dev_2015 development set for subtask one, where
the task was to only detect the NEs but not to cat-
egorize them into the 10 different categories. For
this, we retrained the model with the best param-
eters of subtask two. The results are shown in Ta-
ble 5.

If we compare both subtasks, we see that the
neural network has a similar error reduction for
both subtasks but that the postprocessing step ef-
fectuates a larger error reduction for subtask two.
In other words, a common mistake of the neural
network is to assign different categories to differ-
ent words within one NE. These mistakes are eas-
ily corrected by the postprocessing step.

150



Table 3: Evaluation of the influence of the input layer and hidden layer size on the accuracy/error reduc-
tion when predicting NE tags. The fixed neural network is trained with dropout, word embeddings of
size 400 and ReLUs. The error reduction values are calculated using the baseline which tags all words
with an O-tag.

Window
Number of hidden units

300 500 1000

Three 95.63% / -32.35% 95.58% / -31.66% 95.55% / -31.21%
Five 95.57% / -31.44% 95.64% / -32.57% 95.61% / -32.12%

Table 4: Evaluation of the postprocessing step for
detecting named entities. The baseline was pro-
vided by the challenge.

Configuration F1
Error Rate
Reduction

Baseline 34.29%

Without postprocessing 45.15% -16.52%
With postprocessing 49.09% -22.52%

Table 5: Evaluation of the postprocessing step
for detecting named entities without categorizing
them. The baseline was provided by the challenge.

Configuration F1
Error Rate
Reduction

Baseline 52.63%

Without postprocessing 60.04% -15.64%
With postprocessing 60.80% -17.24%

6 Evaluation on the Test Set

Our best model realized a F1-score of 58.82%
on subtask one (no categories), hereby realizing
an error reduction of 17.84% over the baseline
(49.88%). On subtask two (10 categories), an F1-
score of 43.75% was realized, yielding an error re-
duction of 17.32% over the baseline (31.97%). A
break-down of the results on the different NE cate-
gories can be found in Table 6. Our system ranked
fourth in both subtasks.

7 Conclusion

In this paper, we presented a system to apply
Named Entity Recognition (NER) to microposts.
Given that microposts are short and noisy com-

pared to news articles, we did not want to invest
time in crafting new features that would improve
NER for microposts. Instead, we implemented
the semi-supervised architecture of Collobert et al.
(2011) for NER in news articles. This architec-
ture only relies on good word embeddings inferred
from a large corpus and a simple neural network.

To realize this system, we used the word2vec
software to quickly generate powerful word em-
beddings over 400 million Twitter microposts.
Additionally, we employed a state-of-the-art neu-
ral network for classification purposes, using leaky
Rectified Linear Units (ReLUs) and dropout to
train the network, showing a significant benefit
over classic neural networks. Finally, we checked
the output for inconsistencies when categorizing
the named entities.

Our word2vec word embeddings trained
on 400 million microposts are released to
the community and can be downloaded at
http://www.fredericgodin.com/software/.
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