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Abstract

We present a feature-rich discriminative
model for machine translation which uses
an abstract semantic representation on the
source side. We include our model as an
additional feature in a phrase-based de-
coder and we show modest gains in BLEU
score in an n-best re-ranking experiment.

1 Introduction

The goal of machine translation is to take source
language utterances and convert them into fluent
target language utterances with the same mean-
ing. Most recent approaches learn transforma-
tions using statistical techniques on parallel data.
Meaning equivalent representations of words and
phrases are learned directly from natural data, as
are other syntactic operations such as reordering.
However, commonly used methods have a very
simple view of the linguistic data. Each word
is generally modeled independently, for instance,
and the relations between words are generally cap-
tured only in fixed phrases or as syntactic relation-
ships.

Recently there has been a resurgence of interest
in unified semantic representations: deep analy-
ses with heavy normalization of morphology, syn-
tax, and even semantic representations. In par-
ticular, Abstract Meaning Representation (AMR,
Banarescu et al. (2013)) is a novel representation
of (sentential) semantics. Such representations
could influence a number of natural language un-
derstanding and generation tasks, particularly ma-
chine translation.

Deeper models can be used for multiple as-
pects of the translation modeling problem. Build-
ing translation models that rely on a deeper repre-
sentation of the input allows for a more parsimo-
nious translation model: morphologically related
words can be handled in a unified manner; seman-
tically related concepts are immediately adjacent

and available for modeling, etc. Language mod-
els using deep representations might help us model
which interpretations are more plausible.

We present an initial discriminative method for
modeling the likelihood of a target language sur-
face string given source language deep semantics.
This approach relies on an automatic parser for
source language semantics. We use a system that
parses into AMR-like structures (Vanderwende et
al., 2015), and apply the resulting model as an ad-
ditional feature in a translation system.

2 Related Work

There is a large body of related work on utilizing
deep language representation in NLP and MT in
particular. This is not surprising considering that
such representations provide abstractions of many
language-specific phenomena, effectively bring-
ing different languages closer together.

A number of machine translation systems start-
ing as early as the 1950s therefore used a form of
transfer: the source sentences were parsed, and
those parsed representations were translated into
target representations. Finally text generation was
applied. The level of analysis is somewhat ar-
guable – sometimes it was purely syntactic, but in
other cases it reached into the semantic domain.

One of the earliest architectures was described
in 1957 (Yngve, 1957). More contemporary ex-
amples of such systems include KANT (Nyberg
and Mitamura, 1992), which used a very deep rep-
resentation close to an interlingua, early versions
of SysTran and Microsoft Translator, or more re-
cently TectoMT (Popel and Žabokrtský, 2010) for
English→Czech translation.

AMR itself has recently been used for abstrac-
tive summarization (Liu et al., 2015). In this work,
sentences in the document to be summarized are
parsed to AMRs, then a decoding algorithm is run
to produce a summary graph. The surface realiza-
tion of this graph then constitutes the final sum-
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Figure 1: Logical Form (computed tree) for the sentence: I would like to give you a sandwich taken from
the fridge.

mary.
(Jones et al., 2012) presents an MT approach

that can exploit semantic graphs such as AMR, in a
continuation of earlier work that abstracted trans-
lation away from strings (Yamada and Knight,
2001; Galley et al., 2004). While rule extrac-
tion algorithms such as (Galley et al., 2004) op-
erate on trees and have also been applied to se-
mantic parsing problems (Li et al., 2013), Jones
et al. (2012) generalized these approaches by in-
ducing synchronous hyperedge replacement gram-
mars (HRG), which operate on graphs. In contrast
to (Jones et al., 2012), our work does not have
to deal with the complexities of HRG decoding,
which runs in O(n3) (Jones et al., 2012), as our
decoder is simply a phrase-based decoder.

Discriminative models have been used in sta-
tistical MT many times. Global lexicon model
(Mauser et al., 2009) and phrase-sense disam-
biguation (Carpuat and Wu, 2007) are perhaps the
best known methods. Similarly to Carpuat and
Wu (2007), we use the classifier to rescore phrasal
translations, however we do not train a separate
classifier for each source phrase. Instead, we train
a global model – similarly to Subotin (2011) or
more recently Tamchyna et al. (2014). Features
for our model are very different from previous
work because they come from a deep represen-
tation and therefore should capture semantic rela-
tions between the languages, instead of surface or
morpho-syntactic correspondences.

3 Semantic Representation

Our representation of sentence semantics is based
on Logical Form (Vanderwende, 2015). LFs are
labeled directed graphs whose nodes roughly cor-
respond to content words in the sentence. Edge
labels describe semantic relations between nodes.

Additional linguistic information, such as verb
subcategorization frames, definiteness, tense etc.,
is stored in graph nodes as bits.

Figure 1 shows a sentence parsed into the log-
ical form. Nodes are represented by word lem-
mas. Relations include Dsub for deep subject,
Dobj and Dind for direct and indirect objects etc.
Bits are shown as flags in parentheses. Note that
this graph may have cycles – for example, the
Dobj of “take” is “sandwich”, but “take” is also
the Attrib of “sandwich”. The verb “take” is also
missing its obligatory subject which is replaced by
the free variable X.

The logical form can be converted using a se-
quence of rules to a representation which con-
forms to the AMR specification (Vanderwende et
al., 2015). We do not use the full conversion
pipeline in our work, so our semantic graphs are
somewhere between the LF and AMR. Notably,
we keep the bits which serve as important features
for the discriminative modeling of translation.

4 Graph-to-String Translation

We develop models for semantic-graph-to-string
translation. These models are essentially discrim-
inative translation models, relying on a decompo-
sition structure similar to both maximum entropy
language models and IBM Models 1, 2 (Brown et
al., 1993), and the HMM translation model (Vogel
et al., 1996). In particular, we see translation as
a process of selecting target words in order condi-
tioned on source language representation as well
as prior target words. Similar to the IBM Mod-
els, we see each target word as being generated
based on source concepts, though in our case the
concepts are semantic graph nodes rather than sur-
face words. That is, we assume the existence of
an alignment, though it aligns the target words to
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Ich möchte dir ...

I like you ..."Dsub^-1" "Dobj->Dind"

einen

sandwich
"Dind^-1->Dobj"

Sandwich

""

sandwich

Figure 2: An example of the translation process illustrating several first steps of translating the sentence
from Figure 1 into German (“Ich möchte dir einen Sandwich...”). Labels in italics correspond to the
shortest undirected paths between the nodes.

source semantic graph nodes rather than surface
words.

Our model views translation as generation of
the target-side sentence given the source-side se-
mantic graph. We assume a generative process
which operates as follows. We begin in the virtual
root node of the graph. At each step, we transi-
tion to a graph node and we generate a target-side
word. We proceed left-to-right on the target side
and we stop once the whole target sentence is gen-
erated. Figure 2 shows an example of this process.

Say we have a source semantic graph G with
nodes V = {n1..nS}, edges E ⊂ V × V , and a
root node nR for R ∈ 1..S. Then the likelihood
of a target string E = (e1, ..., eT ) and alignment
A = (a1, ..., aT ) with ai ∈ 0..S is as follows, with
a0 = R:

P (A,E|G) =
T∏

i=1

P (ai|ai−1
1 , ei−1

1 , G)

P (ei|ai
1, e

i−1
1 , G)

(1)

In this generative story, we first predict each
alignment position and then predict each trans-
lated word. The transition distribution P (ai| · · · )
resembles that of the HMM alignment model,
though the features are somewhat different. The
translation distribution P (ei| · · · ) may take on
several forms. For the purposes of alignment, we
explore a simple categorical distribution as in the
IBM models. For translation reranking, we instead
use a feature-rich approach conditioned on a vari-
ety of source and target context.

4.1 Alignment of Semantic Graph Nodes
We have experimented with a number of tech-
niques for aligning source-side semantic graph
nodes to target-side surface words.

Gibbs sampling. We can attempt to directly
align the target language words to the source
language nodes using a generative HMM-style

model. Unlike the HMM word alignment model
(Vogel et al., 1996), the likelihood of jumping be-
tween nodes is based on the graph path between
those nodes, rather than the linear distance.

Starting from the generative story of Equa-
tion 1, we make several simplifying assumptions.
First we assume that the alignment distribution
P (ai| · · · ) is modeled as a categorical distribution:

P (ai|ai−1, G) ∝ c(LABEL(ai−1, ai))

The function LABEL(u, v) produces a string de-
scribing the labels along the shortest (undirected)
path between the two nodes.

Next, we assume that the translation distribution
is modeled as a set of categorical distributions, one
for each source semantic node:

P (ei|nai) ∝ c(LEMMA(nai)→ ei)

This model is sensitive to the order in which
source language information is presented in the
target language.

The alignment variables ai are not observed.
We use Gibbs sampling rather than EM so that we
can incorporate a sparse prior when estimating the
parameters of the model and the assignments to
these latent alignment variables. At each iteration,
we shuffle the sentences in our training data. Then
for each sentence, we visit all its tokens in a ran-
dom order and re-align them. We sample the new
alignment according to the Markov blanket, which
has the following probability distribution:

P (t|ni) ∝ c(LEMMA(ni)→ t) + α

c(LEMMA(ni)) + αL

×c(LABEL(ni, ni−1)) + β

T + βP

×c(LABEL(ni+1, ni)) + β

T + βP

(2)

L,P stand for the number of lemma/path types,
respectively. T is the total number of tokens in the
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corpus. Overall, the formula describes the prob-
ability of the edge coming into the node ni, the
token emission and finally the outgoing edge. We
evaluate this probability for each node ni in the
graph and re-align the token according to the ran-
dom sample from this distribution.
α and β are hyper-parameters specifying the

concentration parameters of symmetric Dirichlet
priors over the transition and emission distribu-
tions. Specifying values less than 1 for these
hyper-parameters pushes the model toward sparse
solutions. They are tuned by a grid search which
evaluates model perplexity on a held-out set.

Direct GIZA++. GIZA++ (Och and Ney, 2000)
is a commonly used toolkit for word alignment
which implements the IBM models. In this set-
ting, we linearized the semantic graph nodes us-
ing a simple heuristic based on the surface word
order and aligned them directly to the target-side
sentences. We experimented with different sym-
metrizations and found that grow-diag-final-and
gives the best results.

Composed alignments. We divided the align-
ment problem into two stages: aligning semantic
graph nodes to source-side words and aligning the
source- and target-side words (i.e., standard MT
word alignment). We then simply compose the
two alignments. For the alignment between source
graph nodes and source surface words, we have
two options: we can either train a GIZA++ model
or we can use gold alignments provided by the se-
mantic parser. For the second stage, we need to
train a GIZA++ model.

We evaluated the different strategies by manu-
ally inspecting the resulting alignments. We found
that the composition of two separate alignment
steps produces clearly superior results, even if it
seems arguable whether such division simplifies
the task. Therefore, for the remaining experi-
ments, we used the composition of gold alignment
and GIZA++, although two GIZA++ steps per-
formed comparably well.

4.2 Model

For our discriminative model, the alignment is as-
sumed to be given. At training time, it is the
alignment produced by the parser composed with
GIZA++ surface word alignment. At test time, we
compose the alignment between graph nodes and
source surface tokens (given by the parser) with
the bilingual surface word alignment provided by

the MT decoder.
Turning to the translation distribution, we use a

maximum entropy model to learn the conditional
probability:

P (ei|nai , nai−1 , G, e
i−1
i−k+1) =

exp
(
w · f(ei, nai , nai−1 , G, e

i−1
i−k+1)

)
Z

(3)

where Z is defined as∑
e′∈GEN(nai )

exp(w · f(e′, nai , nai−1 , G, e
i−1
i−k+1))

The GEN(n) function produces the possible
translations of the deep lemma associated with
node n. We collect all translations observed in
the training data and keep the 30 most frequent
ones for each lemma. Our model thus assigns zero
probability to unseen translations.

Because of the size of our training data, we used
online learning. We implemented a parallelized
(multi-threaded) version of the standard stochas-
tic gradient descent algorithm (SGD). Our learn-
ing rate was fixed – using line search, we found
the optimal rate to be 0.05. Our batch size was set
to one; different batch sizes made almost no dif-
ference in model performance. We used online L1
regularization (Tsuruoka et al., 2009) with weight
1. We implemented feature hashing to further im-
prove performance and set the hash length to 22
bits. We shuffled our data and split it into five parts
which were processed independently and their fi-
nal weights were averaged.

4.3 Feature Set

Our semantic representation enables us to use a
very rich set of features, including information
commonly used by both translation models and
language models. We extract a significant amount
of information from the graph node nai aligned to
the generated word:

• lemma,

• part of speech,

• all bits.

We extract the same features from the previous
graph node (nai−1), from the parent node. (If there
are multiple parents in the graph, we break ties in
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a consistent but heuristic manner, picking the left-
most parent node according to its position in the
source sentence) We also gather all the bits of the
parent and the parent relation. These features may
capture agreement phenomena.

We also look at the shortest path in the semantic
graph from the previous node to the current one
and we extract features which describe it:

• path length,

• relations (edges) along the path.

We use the lemmas of all nodes in the seman-
tic graph as bag-of-word features, as well as all
the surface words in the source sentence. We also
extract lemmas of nodes within a given distance
from the current node (i.e. graph context), as well
as the relation that led to these nodes. Together,
these features ground the current node in its se-
mantic context.

An additional set of features handle the fact that
source nodes may generate multiple target words,
and the distribution over subsequent words should
be different. We have a feature indicating the num-
ber of words generated from the current node, both
in isolation, conjoined with the lemma, and con-
joined with the part of speech. We also have a
feature for each word previously generated by this
same node, again in isolation, in conjunction with
the lemma, and in conjunction with the part of
speech. This helps prevent the model from gen-
erating multiple copies of same target word given
a source node.

On the target side, we use several previous to-
kens as features. These may act as discriminative
language model features.

During MT decoding, our model therefore must
maintain state, which could present a computa-
tional issue. The language model features present
similar complexity as conventional MT state, and
the features about prior words generated from the
same node require greater memory. Were this cost
to become prohibitive, a simpler form of the prior
word features would likely suffice.

5 Experiments

We tested our model in an n-best re-ranking ex-
periment.

We began by training a basic phrase-based MT
system for English→French on 1 million paral-
lel sentence pairs and produced 1000-best lists for

three test sets provided for the Workshop on Sta-
tistical Machine Translation (Bojar et al., 2013)
– WMT 2009, 2010 and 2013. This system had
a set of 13 commonly used features: four chan-
nel model scores (forward and backward MLE
and lexical weighting scores), a 5-gram language
model, five lexicalized reordering model scores
(corresponding to different ordering outcomes),
linear distortion penalty, word count, and phrase
count. The system was optimized using minimum
error rate training (Och, 2003) on WMT 2009.

Dataset Baseline +Semantics
WMT 2009 = devset 17.44 17.55
WMT 2010 17.59 17.64
WMT 2013 17.41 17.55

Table 1: BLEU scores of n-best reranking in
English→French translation.

For reranking, we gathered 1000-best lists for
the development and test sets. We added six scores
from our model to each translation in the n-best
lists. We included the total log probability, the
sum of unnormalized scores, and the rank of the
given output. In addition, we had count features
indicating the number of words that were not in
the GEN set of the model, the number of NULLs
(effectively deleted nodes), and a count of times a
target word appeared in a stopword list. In the end,
each translation had a total of 19 features: 13 from
the original features and 6 from this approach.

Next, we ran one iteration of the MERT opti-
mizer on these 1000-best lists for all of the fea-
tures. Because this was a reranking experiment
rather than decoding, we did not repeatedly gather
n-best lists as in decoding. The resulting feature
weights were used to rescore the test n-best lists
and evaluated the using BLEU; Table 1 shows the
results. We obtained a modest but consistent im-
provement. Once the model is used directly in the
decoder, the gains should increase as it will be able
to influence decoding.

6 Conclusion

We have presented an initial attempt at including
semantic features in a statistical machine trans-
lation system. Our approach uses discriminative
training and a broad set of features to capture mor-
phological, syntactic, and semantic information in
a single model. Although our gains are not par-
ticularly large yet, we believe that additional ef-
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fort on feature engineering and decoder integration
could lead to more substantial gains.

Our approach is gated by the accuracy and con-
sistency of the semantic parser. We have used a
broad coverage parser with accuracy competitive
to the current state-of-the-art, but even the state-
of-the-art is rather low. It would be interesting
to explore more robust features spanning multi-
ple analyses, or to combine the outputs of multiple
parsers. Even syntax-based machine translation
systems are dependent on accurate parsers (Quirk
and Corston-Oliver, 2006); deeper analyses are
likely to be more dependent on parse quality.

In a similar vein, it would be interesting to eval-
uate the impact of morphological, syntactic, and
semantic features separately. A careful feature ab-
lation and exploration would help identify promis-
ing areas for future research.

We have only scratched the surface of possi-
ble integrations. Even this model could be ap-
plied to MT systems in multiple ways. For in-
stance, rather than applying from source to tar-
get, we might evaluate in a noisy channel sense.
That is, we could predict the source language sur-
face forms given the target language translations.
Furthermore, this would allow incorporation of a
target semantic language model. This latter ap-
proach is particularly attractive, as it would ex-
plicitly model the semantic plausibility of the tar-
get. Of course, this would require target language
semantic analysis: either we would be forced to
parse n-best outcomes from some baseline system,
or integrate the construction of target language se-
mantics into the MT system. We believe that in-
cluding such models of semantic plausibility holds
great promise in preventing “word salad” outputs
from MT systems: sentences that simply cannot
be interpreted by humans.
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