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Preface

We are very pleased to welcome you to the 1st Workshop on Semantics-Driven Statistical Machine
Translation (S2MT) in conjunction with ACL, held on July 30, 2015 at Beijing, China.

Over the last two decades, statistical machine translation (SMT) has made a substantial progress from
word-based to phrase and syntax-based SMT. Recently the progress curve has reached a stage where
translation quality increases more slowly even if we use sophisticated syntactic forest-based models
for translation. On the other hand, crucial meaning errors, such as incorrect translations of word
senses and semantic roles, are still pervasive in SMT-generated translation hypotheses. These errors
sometimes make the meanings of target translations significantly drift from the original meanings of
source sentences. With an eye on the current dilemma of SMT, one might ask questions: Does SMT
reach the maturity stage of its lifespan? Or is it time for us to find a new direction for SMT in order to
catalyse next breakthroughs?

Semantics-driven SMT may be one of these breaking points. Semantics at different levels may
enable SMT to generate not only grammatical but also meaning-preserving translations. Lexical
semantics provides useful information for sense and semantic role disambiguation during translation.
Compositional semantics allows SMT to generate target phrase and sentence translations by means of
semantic composition. Discourse semantics captures inter-sentence dependencies for document-level
machine translation. Large-scale semantic knowledge bases such as WordNet, YAGO and BabelNet, can
provide external semantic knowledge for SMT. Semantics-driven SMT allows us to gradually shift from
syntax to semantics and offers insights on how meaning is correctly conveyed during translation.

The goals of this workshop are to identify key challenges of exploring semantics in SMT, to discuss how
semantics can help SMT and how SMT can benefit from rapid developments of semantic technologies
theoretically and practically, and to find new opportunities emerging from the combination of semantics
and SMT. Our key interest is to provide insights into semantics-driven SMT. Specifically, the motivations
of this workshop are:

• To bring researchers in the SMT and semantics community together and to cultivate new ideas for
cutting-edge models and algorithms of semantic SMT.

• To theoretically examine what semantics can provide for SMT and how SMT can benefit from
semantics from a broad perspective.

• To explore new research horizons for semantics-driven SMT in practice.

We received 8 submissions from Asia, Europe and USA. After a rigorous selection, we only accepted
4 high-quality papers in the workshop program. The accepted papers examine and explore semantics
in machine translation from different angles and perspectives. Alastair Butler studies the round-trip
transformations between parsed sentences and meaning representations. Elior Sulem, Omri Abend
and Ari Rappoport investigate semantic annotations in contrast to syntactic annotations using French-
English language pair as a case study. Jinan Xu, Jiangming Liu, Yufeng Chen, Yujie Zhang, Fang Ming
and Shaotong Li incorporate case frames into hierarchical phrase-based Japanese-Chinese translation.
Aleš Tamchyna, Chris Quirk and Michel Galley present an abstract meaning representation to string
translation model in a discriminative framework.

In addition to the accepted papers, we are very delighted to invite 4 distinguished keynote speakers from
semantics and machine translation to cover topics that cross boundaries of these two areas. Percy Liang
(Stanford University) and Gerard de Melo (Tsinghua University) will give talks in the morning session,
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which connect semantic parsing and multilingual semantics to machine translation. Quoc V. Le (Google)
will give a talk on neural language understanding in the afternoon session. Finally, António Branco
(University of Lisbon) will present high-quality translation via deep language engineering approaches.

The workshop also features a panel on “Semantics and Statistical Machine Translation: Gaps and
Challenges” at the end of the program. We invite Eduard Hovy, Percy Liang, Antonio Branco, Quoc
V. Le and Chris Quirk as our panel speakers. Semantics-driven machine translation is an emerging and
inter-disciplinary direction, which is still in its infancy. The panel discussion will shed light on the future
practices and roadmap of semantics-driven machine translation research.

This is the first time that the workshop is held. The success of the workshop relies on a plenty of
colleagues involved in this event. We would like to thank the whole Program Committee (30 members)
for their invaluable and generous efforts on reviewing the papers this year. We are also very grateful to
our invited keynote and panel speakers. Special thanks goes to Prof. Eduard Hovy who suggested the
topic of the panel discussion. Additionally, we would like to thank all authors who submitted papers to
the workshop. Finally, we acknowledge the general support from our sponsors NiuTrans and the National
Science Foundation of China and Jiangsu Province (grants No. 61403269 and BK20140355).

Organizers of the S2MT workshop
Deyi Xiong, Kevin Duh, Christian Hardmeier and Roberto Navigli
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Keynote Speech (I)
Semantic Parsing as, via, and for Machine Translation

Percy Liang
Stanford University

pliang@cs.stanford.edu

Abstract

Semantic parsing, the task of mapping natural language sentences to logical forms, has recently
played an important role in building natural language interfaces and question answering sys-
tems. In this talk, I will present three ways in which semantic parsing relates to machine trans-
lation: First, semantic parsing can be viewed *as* a translation task with many of the familiar
issues, e.g., divergent hierarchical structures. Second, I discuss recent work in which semantic
parsing is tackled *via* translation (more accurately, paraphrasing) techniques, where original
sentences are mapped into canonical sentences encoding the logical form. Finally, I will dis-
cuss ways in which semantic parsing could be useful *for* translation. Hopefully, this talk will
open a deeper dialogue between the semantic parsing and machine translation communities and
generate some fresh perspectives on semantics and translation.

Biography

Percy Liang is an Assistant Professor of Computer Science at Stanford University (B.S. from
MIT, 2004; Ph.D. from UC Berkeley, 2011). His research interests include (i) modeling natural
language semantics, (ii) developing machine learning methods that infer rich latent structures
from limited supervision, (iii) and studying the tradeoff between statistical and computational
efficiency. He is a 2015 Sloan Research Fellow, 2014 Microsoft Research Faculty Fellow, a
2010 Siebel Scholar, and won the best student paper at the International Conference on Machine
Learning in 2008.
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Keynote Speech (II)
Learning Multilingual Semantics from Big Data on the Web

Gerard de Melo
IIIS

Tsinghua University
Beijing, China

gdm@demelo.org

Abstract

Over the years, statistical machine translation has gradually shifted from surface form projec-
tions to more sophisticated syntactically and to some extent also semantically informed trans-
formations. Still, high-quality semantic analysis of text has to date been a rather elusive goal.
Fortunately, unprecedented amounts of Big Data are now readily available via the Web. While
genuine semantic interpretation remains challenging, these large quantities of data enable us to
develop systems that are more robust and cover a much wider range of concepts and phenomena
than those of the past.

Expanding on this idea, I present a series of results on how we can develop systems that learn
from Big Data in order to derive better semantic analyses, which in turn have the potential to
improve machine translation. These show that it is possible to learn representations that inherit
some of the benefits of language-neutral interlingua-like forms, yet preserve language-specific
subtleties.

One notable example is UWN (de Melo and Weikum, 2009), a highly multilingual lexical re-
source allowing us to better cope with lexical gaps and generalize from observed translations.
Another one is MENTA, a multilingual knowledge graph describing millions of names and
words in over 200 languages in a semantic hierarchy.

The WebChild project (Tandon et al., 2014) mines large amounts of common-sense knowl-
edge from the Web, for instance, that salad is edible and that dogs are capable of barking.

This sort of knowledge extracted from text can additionally be injected into word2vec-style
distributed vector representations of words (Chen and de Melo, 2015).

Finally, efforts such as FrameBase (Rouces et al., 2015) harmonize different ways of expressing
relationships both in knowledge bases and in text (Čulo and de Melo, 2012).

Biography

Gerard de Melo is a Tenure-Track Assistant Professor at Tsinghua University, Beijing, where
he is heading the Web Mining and Language Technology group. He has published over 50
research papers in these areas, being awarded Best Paper awards at CIKM 2010, ICGL 2008,
and the NAACL 2015 Workshop on Vector Space Modeling, as well as an ACL 2014 Best
Paper Honorable Mention, a Best Student Paper Award nomination at ESWC 2015, and the
WWW 2011 Best Demonstration Award, among others. Prior to joining Tsinghua, de Melo had
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spent two years as a Visiting Scholar at UC Berkeley, working in ICSI’s AI/FrameNet group.
He received his doctoral degree at the Max Planck Institute for Informatics in Germany. He
serves on the Editorial Boards of IEEE Collective Intelligence and of the Language Science
Press TMNLP book series. For more information, please refer to his home page at http:
//gerard.demelo.org.
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Keynote Speech (III)
Sequence to Sequence Learning for Language Understanding

Quoc V. Le
Google

qvl@google.com

Abstract

Most language understanding problems can be formulated as a variable-length input and variable-
length output prediction problem. In this talk, I will present a neural network framework to deal
with this problem. Our framework makes use of recurrent networks to read in the input sequence
of word vectors and predict the output sequence, one token at a time. On our benchmark with
WMT’14 our method is as good as with state-of-art phrase based translation methods. I will also
present results applying this method to model conversations and generate captions for images.

Biography

Quoc V. Le is one of leading scientists in Deep Learning and Artificial Intelligence, currently
working at Google Brain. Quoc obtained his PhD at Stanford, undergraduate degree with First
Class Honours and Distinguished Scholar at the Australian National University. He was a re-
searcher at National ICT Australia, Microsoft Research and Max Planck Institute of Biological
Cybernetics. Quoc was named one of the innovators under 35 by the MIT Tech Review.
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Keynote Speech (IV)
Machine Translation and Deep Language Engineering Approaches

António Branco
University of Lisbon

antonio.branco@di.fc.ul.pt

Abstract

The deeper the processing of utterances the less language-specific differences should remain
between the representation of the meaning of a given utterance and the meaning representation
of its translation. Further chances of success can thus be explored by machine translation sys-
tems that are based on deeper semantic engineering approaches.

Deep language processing has its stepping-stone in linguistically principled methods and gener-
alizations. It has been evolving towards supporting realistic applications, namely by embedding
more data based solutions, and by exploring new types of datasets recently developed, such as
parallel DeepBanks.

This progress is further supported by recent advances in terms of lexical processing. These
advances have been made possible by enhanced techniques for referential and conceptual ambi-
guity resolution, and supported also by new types of datasets recently developed as linked open
data.

In this talk, I will be reporting on the collective work done in the QTLeap project. This is
a project that explores novel ways for attaining machine translation of higher quality that we
believe are opened by a new generation of increasingly sophisticated semantic datasets and by
recent advances in deep language processing.

Biography

António Branco is the Director of the Portuguese node of the CLARIN research infrastructure.
He is a professor of language science and technology at the University of Lisbon, where he
was the founder and is the head of research of the Natural Language and Speech Group (NLX
Group) of the Department of Informatics. He is the (co-)author of over 150 publications in the
area of language science and technology and has participated and coordinated several national
and international R&D projects. He was the coordinator of the European project METANET4U,
integrating the R&D network of excellence META-NET. He is a member of the META-NET
Executive Board and he is the first author of the White Paper on the Portuguese Language in
the Digital Age.

António Branco is coordinating the QTLeap project (qtleap.eu), an European research project
on quality machine translation by deep language engineering approaches.
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Round-trips with meaning stopovers

Alastair Butler
Institute for Excellence in Higher Education

Tohoku University
ajb129@hotmail.com

Abstract

This paper describes taking parsed
sentences, going to meaning repre-
sentations (the stopover), and then
back to parsed sentences (the round
trip). Keeping to the same lan-
guage tests the combined success
of building meaning representations
from parsed input and of generating
parsed output. Switching languages
when manipulating meaning repre-
sentations would achieve transla-
tion. Transfer shortfall is seen with
meaning representations built from
parsed parallel corpora data, with
English-Japanese as an example.

1 Introduction

Recent years have seen progress in the
development of open-domain semantic
parsers able to convert natural language in-
put to representations that preserve much
semantic content (see e.g., Schubert 2015
for an overview). This becomes relevant
for translation if there is also a way back
to a language string, that is, if there can
also be generation from meaning represen-
tations. This paper describes a full pipeline:
form (Historical) Penn-treebank parsed sen-
tences, a semantic parser is used to cre-
ate standard predicate logic based mean-
ing representations (see e.g., Dowty, Wall
and Peters 1981), which are converted to
PENMAN notation (Matthiessen and Bate-
man 1991) to form the basis for generation,
which proceeds as a manipulation of tree

structure to produce an output parsed tree
which can yield a language string.

The method is illustrated by round trip-
ping on English, so taking English parsed
sentences, going to meaning representa-
tions, and then back to parsed sentences of
English. It is equally possible to change
the front or back end of the pipeline, e.g.,
calculate a meaning representation for an
English sentence but use generation rules
designed for Japanese. With no modifica-
tion to the stopover meaning representation
this arrives at a result with English words
and concepts and yet Japanese parse struc-
ture. Obtaining meaning representations
from parsed parallel corpora is also illus-
trated to form the basis for capturing data
to inform the gap that remains between the
meaning representations needed to generate
sentences of one language from another.

The paper is structured as follows. Sec-
tion 2 discusses related work. Section 3 in-
troduces the semantic parsing to start the
pipeline. Section 4 details changes for gen-
eration. Section 5 presents results of ex-
periments carried out round tripping on En-
glish data. Section 6 discusses the open
issue of what remains for translation from
one language to another, with an English to
Japanese example. Section 7 concludes.

2 Related work

There are many options for reaching what
might be called meaning representations.
Schubert (2015) is a recent overview of 12
distinct approaches, many with multiple im-
plementations. Of alternatives to section
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3, most closely related is the Boxer sys-
tem (Bos 2008), which is also part of a
pipeline taking parsed input (Boxer uses
CCG derivations), and which also imple-
ments results of Dynamic Semantics, such
as capturing donkey anaphora and handling
quantification (see e.g., Eijck and Visser
2012; Boxer uses DRT (Kamp and Reyle
1993), rather than SCT of section 3.2). A
notable difference in output is with the link-
ing of predicates: Boxer adopts, in con-
trast to classical DRT, a neo-Davidsonian
approach with information loss for how
adjuncts are anchored, posing difficulties
for transforming to the PENMAN notation
used for generation in section 4. Boxer,
the section 3 approach, as well as many
others, aim to capture compositional sen-
tence/discourse meaning by building rep-
resentations with model theoretic embed-
dings, rather than aiming for a more usage
directed “speaker meaning” (see e.g. Ben-
der et al 2015 for a viewpoint against con-
flating sentence/speaker meaning).

With the approach of this paper, after the
meaning representation is reached, much
is accomplished with tree transformations.
Schubert (2014) is an alternative to building
meaning representations from parsed tree-
bank data with only tree transformations,
and with a different tree transforming en-
gine (TTT; Purtee and Schubert 2012).

For semantic parsing directly to PEN-
MAN notation, there is JAMR (Flanigan et
al 2014), a semantic parser natively pro-
ducing Abstract Meaning Representations
(AMRs; Banarescu et al 2013). JAMR
replicates the (by design) limitations of
AMR (e.g., sentence outlook, absence of
quantification, absence of tense informa-
tion), and offers AMR advantages of devel-
oped predicate senses and semantic roles.

Generation from PENMAN notation is
also a well established research area, with
notably the Nitrogen system (Langkilde and
Knight 1998). Nitrogen relies on a statis-
tical component to filter results generated
from a base system with phrase structure

like rules. There are other systems with
generation from representations of argu-
ment structure or quasi-logical forms (e.g.,
Alshawi 1992, Humphreys et al 2001). The
generation of this paper follows a series of
transformation rules most similar to those
proposed in the generative grammar liter-
ature (e.g., Chomsky and Lasnik 1993),
which provides the theoretical foundation
underlying the treebank annotation of sec-
tion 3.1. To the knowledge of the author,
the system of this paper is the first to bring
together components to round trip on lan-
guages and evaluate the results based on a
metric measuring semantic analysis.

3 Reaching meaning
representations

The approach of this paper first requires a
way to reach meaning representations from
natural language input. Here, use is made of
Treebank Semantics (Butler and Yoshimoto
2012, Butler 2015), for the ease with which
it fits into the described pipeline, since it
takes as input the parsed trees that will be
generated as output, and for the quality of
meaning representations produced.

Treebank Semantics works by convert-
ing parsed constituent tree annotations into
expressions of a Dynamic Semantics lan-
guage (Scope Control Theory or SCT; But-
ler 2015) which is processed against a se-
quence based information state (cf. Ver-
meulen 2000, Dekker 2012) to return pred-
icate logic based representations. Section
3.1 outlines the treebank annotation, while
section 3.2 sketches reaching a meaning
representation from an example sentence.

3.1 Treebank annotation
The Treebank Semantics system accepts
parsed data conforming to the Annotation
manual for the Penn Historical Corpora
and the PCEEC (Santorini 2010). This
widely and diversely applied scheme forms
the basis of annotations for over 600,000
analysed sentences of English (Taylor et
al 2003, Kroch, Santorini and Delfs 2004,
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Kroch, Santorini and Delfs 2004), French
(Martineau et al 2010), Icelandic (Wallen-
berg et al 2011), Portuguese (Galves and
Britto 2002), Ancient Greek (Beck 2013),
Japanese (Butler et al 2012), and Chinese
(Zhou 2015) among other languages, and
has parsing systems to produce annotated
trees from raw language input (e.g., Kulick,
Kroch and Santorini 2014, Fang, Butler and
Yoshimoto 2014).

With the annotation scheme constituent
structure is represented with labelled brack-
eting and augmented with grammatical
functions and notation for recovering dis-
continuous constituents. A parse in tree
form for the sentence Pizza that I made was
delicious looks like:

✭✭✭✭✭ ❤❤❤❤❤
✭✭✭✭✭✭ ✥✥✥ ❤❤❤❤❤❤

✭✭✭✭✭ ❤❤❤❤❤

IP-MAT

NP-SBJ

N

Pizza

CP-REL

WNP-1

0

C

that

IP-SUB

NP-OB1

*T*-1

NP-SBJ

PRO

I

VBD

made

BED

was

ADJP

ADJ

delicious

.

.

Every word has a word level part-of-speech
label. Phrasal nodes (NP, PP, ADJP, etc.)
immediately dominate the phrase head (N,
P, ADJ, etc.), so that the phrase head
has as sisters both modifiers and comple-
ments. Modifiers and complements are dis-
tinguished by extended phrase labels mark-
ing function (e.g., CP-REL above encodes
that I made is a relative clause, and so a
modifier of the head noun Pizza). All noun
phrases immediately dominated by IP are
marked for function (NP-SBJ=subject, NP-
OB1=direct object, NP-TMP=temporal NP,
etc.). All clauses have extended labels to
mark function (IP-MAT=matrix clause, CP-
ADV=adverbial clause, etc.). There can be
additional annotation containing scope in-
formation to ensure an unambiguous parse
with respect to a default scope hierarchy.

3.2 Obtaining meaning representations

To obtain meaning representations, the first
step is to convert a labelled bracketed tree
into an expression to input to the SCT eval-

uation system. An SCT expression is built
exploiting the input phrase structure by lo-
cating any complement for the phrase head
to scope over, and adding modifiers as el-
ements that scope above the head. Dur-
ing construction information about binding
names is gathered and integrated with fn

fh => and fn lc => acting as lambda ab-
stractions. As a demonstration, the tree of
section 3.1 converts as follows:

val ex1 =

( fn fh =>

( fn lc =>

( some lc fh "entity"

( relc lc "q1"

( pro fh "I" "arg0"

( arg "q1" "arg1"

( past "event"

( verb lc "event"

["arg0", "arg1"] "made"))))

( nn lc "Pizza"))

"arg0"

( some lc fh "attrib" ( adj lc "delicious")

"attribute"

( past "event"

( verb lc "event" ["arg0"] "was")))))

["attribute", "arg1", "arg0"])

["event", "entity", "attrib"]

This conversion to ex1 notably trans-
forms into operations the part of speech tags
given by the nodes immediately dominat-
ing the terminals of the input constituent
tree (some (indefinite) nn (noun), verb, arg
(trace), etc.), as well as triggering opera-
tions for certain construction types (e.g.,
relc occurs because there is a relative
clause). Conversion also adds (i) infor-
mation about local binding names (e.g.,
"arg0" (logical subject role), "arg1" (log-
ical object role), "attribute"), and (ii) in-
formation about sources for fresh bindings
(e.g., "event", "entity" and "attrib")
for the introduction of variables of differ-
ent sorts. The created operations further re-
duce to primitives of the SCT language as
demonstrated with:

Hide ("event",

Close ("∃", ("entity","entity"),["event", "entity", "attrib"],

...

Lam ("q1", "arg1",

If (fn,

Use ("event",

If (fn,

Rel ([], [], "made", [At (T ("arg0", 0), "arg0"),

At (T ("arg1", 0), "arg1"),

At (T ("event", 0), "event")]),

...
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The SCT language primitives access and
possibly alter the content of a sequence
based information state that serves to re-
tain binding information by assigning (pos-
sibly empty) sequences of values to bind-
ing names, notably: Use (triggers quantifi-
cation introduction), Hide (occludes Use),
At (constructs argument,role pairs), Close
(quantificational closure), Rel (constructs
relations), If (conditional to select what
is evaluated), and Lam (shifts bindings be-
tween binding names). Evaluation of the
resulting SCT expression conspires to bring
about the enforcement of fixed roles on the
binding names from the conversion of the
parsed constituent tree annotation ("arg0",
"arg1", "attrib", etc.).

With evaluation of ex1, the following
meaning representation is returned:

∃z4x1A5e2e3(

past(e2) ∧
past(e3) ∧
delicious(A5) ∧
made(e2, z4, x1) ∧ pizza(x1) ∧
z4 = I ∧ was(e3, x1, A5))

This assumes a Davidsonian theory (David-
son 1967) in which verbs are encoded
with minimally an implicit event argu-
ment which is existentially quantified over
and may be further modified. Such
a meaning representation encodes truth-
conditional content in a standard way, but
also contains clues to assist generation.
Most notably variables have sort informa-
tion, thus: e1, e2, ... are events, x1, x2, ...
are objects, A1, A2, ... are attributes, etc.
Also, the main predicate is the most deeply
embedded right-side predicate.

4 Generation

The idea behind the approach to generation
is, from a meaning representation presented
as a tree, to follow a series of meaning pre-
serving transformations to arrive back at a
parsed syntactic representation, that is, to a
representation of the kind fed to the Tree-
bank Semantics system at the start of the
pipeline. There are two major steps. First,
there is preparation, discussed in section
4.1, and subsequently there is generation,
demonstrated in section 4.2 as building and
transforming tree structure.

4.1 Preparing for generation

Preparation for generation involves obtain-
ing an alternative tree-based representation
of the output produced by Treebank Seman-
tics. Rendering the meaning representation
of section 3.2 as a tree with argument role
information made explicit gives:

✭✭✭✭ ✘✘ ❳❳❤❤❤❤ ✘✘
✭✭✭✭ ❤❤❤❤

❤❤❤❤
✭✭✭✭✭✭ ❤❤❤❤❤❤

QUANT

EXIST

z4 x1 A5 e2 e3

AND

past

e2

past

e3

delicious

A5

made

:arg0

z4

:arg1

x1

:event

e2

pizza

x1

=

z4 I

was

:arg0

x1

:ATTRIBUTE

A5

:event

e3

Content is further re-packaged to a tree for-
mat optimised for generation. Firstly, the
binding of wide-scope existentials is made
implicit with the removal of the top quan-
tification level. Next, an argument of each
predicate is promoted to become the parent
of the predicate, notably: the left-hand ar-
gument of an equality relation, or an event

argument if present, or the sole argument of
a one-place predicate.

✥✥✥ PP

✏✏ PP

❤❤❤❤❤

✭✭✭ ❤❤❤

AND

e2

past

e3

past

A5

delicious

e2

made

:arg0

z4

:arg1

x1

x1

pizza

z4

I

e3

was

:arg0

x1

:ATTRIBUTE

A5

Next, a daughter D of the top level AND is
moved inside a sister S when the argument
name at the root of D is contained as an ar-
gument within S. Movement is to only one
location (the left-most).
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✭✭✭✭ ❤❤❤❤ ✭✭✭✭✭✭ ❤❤❤❤❤❤

AND

e2

made

:arg0

z4

I

:arg1

x1

pizza

:tense

past

e3

was

:arg0

x1

:ATTRIBUTE

A5

delicious

:tense

past

An internal argument is promoted to be-
come the root of a daughter of AND if
this enables further inclusion into a sister.
Promotion relies on folding tree material
around inverse roles from the PENMAN
notation (Matthiessen and Bateman 1991),
e.g., having arg1-of as an inverse of arg1
(logical object) enables transformation to
the following single rooted structure, and
more generally compacts long distance de-
pendencies such as are established as WH-
dependencies in English:

✭✭✭✭✭✭

✏✏ PP

❤❤❤❤❤❤

e3

was

:arg0

x1

pizza

:arg1-of

e2

made

:arg0

z4

I

:tense

past

:ATTRIBUTE

A5

delicious

:tense

past

4.2 Back to a parsed representation
Representations resulting from the changes
of the previous section are now used as the
basis for generation. This proceeds as a se-
ries of tree transformations, implemented as
a tsurgeon script (Levy and Andrew 2006)
with hundreds of transformation rules.

A tsurgeon script contains pattern/action
rules, where the pattern describes tree struc-
ture and the action transforms the tree, e.g.,
moving, adjoining, copying or deleting aux-
iliary trees or relabelling nodes. Trans-

formations are repeatedly made until the
pattern that triggers change is no longer
matched. Thus, clause structure is built
by identifying a main predicate as being
headed by an event variable (so: match e
followed by a number), and adjoining the
projection of a VBP part-of-speech tag, a
VP layer and an IP layer.

/ˆe[0-9]+$/=x !> VBP

adjoinF (IP (VP (VBP @))) x

Action adjoinF adjoins the specified aux-
iliary tree into the specified target node,
preserving the target node as the foot of
the adjoined tree. VBP (present tense
verb) may subsequently change, e.g., tense
past triggers change to VBD (past tense
verb), while was when generating English
brings about further change to BED (past
tense copula).

✭✭✭✭✭✭

✏✏ PP

❤❤❤❤❤❤

IP

VP

VBP

e3

was

:arg0

x1

Pizza

:arg1-of

IP

VP

VBP

e2

made

:arg0

z4

I

:tense

past

:ATTRIBUTE

A5

delicious

:tense

past

Subsequent changes involve moving all
structure under a main predicate into the
clause, starting with the creation of NP-SBJ
from an arg0 argument at the IP-level.
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✭✭✭

✏✏ PP

❤❤❤
IP

NP-SBJ

x1

Pizza

:arg1-of

IP

NP-SBJ

z4

I

VP

VBD

e2

made

VP

VBD

e3

was

:ATTRIBUTE

A5

delicious

The inverse role arg1-of is the foundation
for relative clause structure with an NP-
OB1 (object) trace, while if pizza had been
headed by an event variable, the structure
would bring about a clausal embedding.

✭✭✭✭✭

✘✘ ❳❳
✭✭✭✭✭ ✏✏ ❤❤❤❤❤

✭✭✭ ❤❤❤
✘✘ ❳❳

❤❤❤❤❤
✭✭✭ ❤❤❤

IP

NP-SBJ

x1

XP

Pizza CP-REL

WNP-6

0

C

that

IP

NP-SBJ

z4

I

VP

NP-OB1

*T*-6

VBD

e2

made

VP

VBD

e3

was

:ATTRIBUTE

A5

delicious

✭✭✭✭✭ ❤❤❤❤❤
✭✭✭✭✭✭ ✥✥✥ ❤❤❤❤❤❤

✭✭✭✭✭ ❤❤❤❤❤

IP-MAT

NP-SBJ

N

Pizza

CP-REL

WNP-6

0

C

that

IP-SUB

NP-OB1

*T*-6

NP-SBJ

PRO

I

VBD

made

BED

was

ADJP

ADJ

delicious

.

.

If an arg0 argument happened to be miss-
ing, either a passive transformation may re-
sult or there may be inclusion of a subject

expletive it or there for English. Adjunct
materials can find placement based on argu-
ment role information or subtree size, e.g.,
vocatives (NP-VOC) are always clause ini-
tial, a temporal NP (NP-TMP) will typi-
cally be clause initial, while, for English,
clause final positioning will be favoured for
a heavy PP or NP (whose children reach
large depths). Having arguments with the
same referent can trigger the introduction
of infinitival or participial clause structure
to create control configurations or various
types of ellipsis, such as VP ellipsis.

5 Experiments

In this section, the smatch metric for mea-
suring semantic annotation agreement rates
and semantic parsing accuracy (Cai and
Knight 2013) is used to evaluate the suc-
cess of round tripping on English. This is a
metric to measure whole-sentence semantic
analysis by calculating the degree of over-
lap between meaning representations.

The representation seen at the end of sec-
tion 4.1 is essentially compatible for calcu-
lating a smatch score. This gives a mean-
ing representation for the input sentence. A
meaning representation for the output sen-
tence is achieved by feeding the resulting
output of the round trip back into the Tree-
bank Semantics system.

Table 1 details results for 1452 anno-
tated sentences (14,118 tokens) from four
different registers that were manually se-
lected to illustrate different levels of sen-
tence complexity. All sentences are from
the Treebank Semantics Corpus1 with sen-
tences parsed to gold standard following the
annotation scheme detailed in section 3.1,
and so already unambiguous for feeding to

register sentences tokens precision recall F-score
textbook 687 5194 0.98 0.98 0.98
newswire 121 2381 0.97 0.96 0.97
(simple) fiction 547 5241 0.96 0.96 0.96
non-fiction 97 1302 0.93 0.93 0.93

Table 1: smatch scores comparing meaning representations from original and generated sentences

1https://github.com/ajb129/tscorpus
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the semantic component for the creation of
a gold standard meaning representation.

The results show that in round tripping
with English, so building a meaning repre-
sentation A and generating back to an En-
glish sentence and then building a meaning
representation B from the generated sen-
tence, and then comparing A with B, it is
possible to retain the bulk of semantic con-
tent with high precision and recall.

The results also reflect that performance
starts to decline on more challenging data.
In particular there is a notable reduction in
F-score with the non-fiction data (from a
technical manual describing the IBM 1401
Programming System). Weaknesses re-
vealed typically involve complex interac-
tions, such as happen with coordination, or
stem from constructions that are difficult
to provide a generalisable semantic analy-
sis, such as comparatives. On the genera-
tion side, improvements are possible with
more construction and lexical specific pat-
tern/action rules, reordering existing rules,
or arranging for existing rules to be retrig-
gered.

6 Towards translation

In this section, generation rules for
Japanese are demonstrated. Consider start-
ing with the same meaning representation
input as section 4.2, and first projecting
VP, IP structure. Thereafter rules diverge,
differing mostly in terms of constituent
placement.

✭✭✭

✏✏ PP

❤❤❤
IP

NP-SBJ

x1

Pizza

:arg1-of

IP

NP-SBJ

z4

I

VP

VBD

e2

made

VP

VBD

e3

was

:ATTRIBUTE

A5

delicious

✭✭✭✭✭

✘✘

✏✏ PP

❳❳

❤❤❤❤❤
✭✭✭ ❤❤❤

IP

NP-SBJ

x1

XP

:arg1-of

IP

NP-SBJ

z4

I

VP

VBD

e2

made

Pizza

VP

:ATTRIBUTE

A5

delicious

VBD

e3

was

Projection of relative clause structure is
again triggered, only for Japanese there is
projection of an IP-REL layer to the left
side of the head noun.

✭✭✭✭

✭✭✭
✭✭✭ ❤❤❤

✘✘ ❳❳

❤❤❤

❤❤❤❤
✏✏ PP

IP-MAT

NP-SBJ

x1

IP-REL

NP-SBJ

z4

I

VP

NP-OB1

*T*

VBD

e2

made

N

Pizza

VP

ADJ

delicious

VBD

e3

was

Generation is completed with the addition
of case particles.

✥✥✥
✭✭✭✭✭

✭✭✭✭✭ ✘✘ PP❤❤❤❤❤

❤❤❤❤❤

❤❤❤

✭✭✭ ❤❤❤❤❤
IP-MAT

PP

NP

IP-REL

NP-OB1

*T*

PP

NP

N

I

P

が

NP-SBJ

*が*

VBD

made

N

Pizza

P

が

NP-SBJ

*が*

ADJ

delicious

AXD

was

PU

。

This has demonstrated generation to
Japanese parse structure from a meaning
representation with English words and
concepts. In the case of this illustrative
example there is a close match with the
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corresponding Japanese version 僕 が

作ったピザがおいしかったです, seen
annotated below. However, for the general
translation task, substantial transformation
and lexical substitution of the meaning
representation used for generation will be
required.

✭✭✭
✭✭✭✭✭

✭✭✭ ❤❤❤❤

❤❤❤❤❤

❤❤❤

✭✭✭✭ ❤❤❤
IP-MAT

PP

NP

IP-REL

NP-OB1

*T*

PP

NP

PRO

僕

P

が

NP-SBJ

*が*

VB

作っ

AXD

た

N

ピザ

P

が

NP-SBJ

*が*

ADJI

おいしかっ

AXD

た

AX

です

PU

。

By feeding the Japanese version of the
example sentence into to the Treebank Se-
mantics system a meaning representation is
built:

∃x4x1e2e3(

past(e3) ∧
past(e2) ∧
x4 =僕 ∧
作っ_た(e2, x4, x1) ∧
ピザ(x1) ∧
おいしかっ_た_です(e3, x1))

Such a representation can be modified, as in
section 4.1, to form the basis for generation,
exactly as with the English example.

✏✏

✏✏ PP

PP

e3

おいしかっ_た_です

:arg0

x1

ピザ

:arg1-of

e2

作っ_た

:arg0

x4

僕

:tense

past

:tense

past

Having the above meaning representation
and the meaning representation for the cor-

responding English sentence in section 4.1,
together with meaning representations for
other sentences of parallel corpora, is a ba-
sis for extracting rules for a full translation
system.

7 Conclusion

To sum up, this paper has described a
complete pipeline for taking parsed sen-
tences, going to meaning representations
(initially to standard Davidsonian predicate
logic based meaning representations, then
to PENMAN notation), and then back to
parsed sentences (the round trip). Keep-
ing to the same language tests the com-
bined success of building meaning repre-
sentations from parsed input and of generat-
ing parsed output. Using the smatch metric
reveals that the bulk of semantic content is
retained with high precision and recall on a
range of data.

Results show that, while there is no ex-
plicit flagging in a conventional Davidso-
nian predicate logic meaning representa-
tion, as seen in section 3.2, of what is a
verb, noun, adjective, relative clause, pas-
sive, control relation, etc., much informa-
tion is found to facilitate generation when
there is sort and argument role information
and when there is subsequent re-packaging
of content, as in section 4.1, guided by the
aim to form single rooted structures.

The future direction for this research is to
show relevance for translation in being able
to switch languages at the point of manip-
ulating meaning representations. Current
transfer shortfall is seen with meaning rep-
resentations built from parsed parallel cor-
pora data.
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Abstract
Divergence of syntactic structures be-
tween languages constitutes a major chal-
lenge in using linguistic structure in Ma-
chine Translation (MT) systems. Here, we
examine the potential of semantic struc-
tures. While semantic annotation is ap-
pealing as a source of cross-linguistically
stable structures, little has been accom-
plished in demonstrating this stability
through a detailed corpus study. In this
paper, we experiment with the UCCA
conceptual-cognitive annotation scheme
in an English-French case study. First, we
show that UCCA can be used to annotate
French, through a systematic type-level
analysis of the major French grammatical
phenomena. Second, we annotate a par-
allel English-French corpus with UCCA,
and quantify the similarity of the struc-
tures on both sides. Results show a high
degree of stability across translations, sup-
porting the usage of semantic annotations
over syntactic ones in structure-aware MT
systems.

1 Introduction

Structural information, be it syntactic or semantic,
has the potential to address long-standing prob-
lems in Statistical Machine Translation (SMT),
such as phrase-level (rather than word-level) re-
ordering and discontiguous phrases. Structure-
aware models1 (Chiang, 2005; Liu et al., 2006; Mi
et al., 2008) aim to address these and other prob-
lems by taking into account the hierarchical struc-
ture of language. However, while structure-aware

1We use the term “structure-aware” rather than “syntax-
based” so to include any type of hierarchical structure.

models are effective at improving reordering at the
phrase level, they are limited in their ability to map
between arbitrarily divergent structures. Cross-
linguistic divergences therefore pose a difficult
problem for the integration of structural knowl-
edge into statistical models (Dorr, 1994; Ding and
Palmer, 2004; Zhang et al., 2008).

Consequently, an annotation scheme that as-
signs similar structures to translations has direct
applicative value for structure-aware MT systems.
Such structures can be used either as features in
phrase-based systems, yielding more robust de-
coding, or as a structural scheme which directs the
translation, replacing the PCFG trees often used
today. Using more stable schemes is likely to
result in simpler MT systems, avoiding structure
modifications like pseudo-nodes (Marcu et al.,
2006) or tree sequences (Zhang et al., 2008) used
in syntax-based systems to handle cross-linguistic
divergences.

Semantic annotation is an appealing avenue for
constructing cross-linguistically stable structures,
since a major goal of translation is to preserve
the meaning of a sentence. Cross-linguistically
stable schemes have further benefits for applica-
tions such as knowledge projection across lan-
guages (Kozhevnikov and Titov, 2013), the in-
duction of cross-lingual semantic relations (Lewis
and Steedman, 2013), or in translation studies
(Lembersky et al., 2013) (see Section 7.3). A
recent example of a semantic scheme aiming to
be cross-linguistically stable is AMR (Abstract
Meaning Representation) (Banarescu et al., 2013)
which uses elaborate hierarchical structures in or-
der to abstractly represent semantic information
and presents promising preliminary results for
SMT improvement (Jones et al., 2012). Never-
theless, the stability of semantic annotation across
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translations is seldom addressed and has yet to be
adequately supported (see Section 2), a gap we ad-
dress in this paper using a detailed analysis of a
semantically annotated parallel corpus.

Universal Cognitive Conceptual Annotation
(UCCA) is a coarse-grained semantic annotation
scheme which builds on typological and cognitive
linguistic theory (Abend and Rappoport, 2013a;
Abend and Rappoport, 2013b). The scheme aims
to be applicable cross-linguistically, to abstract
away from specific syntactic forms and to directly
represent semantic distinctions. These properties
make UCCA an appealing source of structural an-
notation which is cross-linguistically stable. We
give an overview of UCCA in Section 3.

This paper focuses on the case study of English-
French, a well studied language pair in MT.
We demonstrate through this language pair both
UCCA’s portability, namely its ability to be ap-
plied to different languages, and its stability,
namely its ability to preserve structure across
translations. We conduct both type-level and
token-level experiments to support our claim.

To verify UCCA’s portability to French, we
first conduct a type-level analysis by systemati-
cally examining UCCA’s applicability over all ma-
jor grammatical phenomena in French. We find
that UCCA is fully applicable to French as ex-
emplified in the case of French-specific phenom-
ena like pronominal verbs (Section 4.1). Further
in the type-level, we apply UCCA to a published
inventory of structural divergences, and find that
UCCA abstracts away from almost all of them
(Section 4.2).

For a token-level analysis, we manually UCCA-
annotated a parallel French-English corpus of over
25K tokens, which we make publically available,
and compare the similarity between the UCCA
structures in the two languages to the correspond-
ing similarity between syntactic annotations. We
find that UCCA is considerably less divergent than
syntactic annotation (Section 6). We expect the
relative stability of UCCA compared to syntactic
schemes to be even greater in language pairs that
are more syntactically different than the relatively
similar English-French.

Finally, we analyze the semantic correspon-
dence between the annotations on both sides of
the parallel corpus (Section 7). We find remark-
ably high semantic correspondence between the
two languages. For instance, over 92% of the

Scenes (a similar notion to a “frame”; see Sec-
tion 3) in both languages have a correspondent in
the other. We analyze the non-corresponding units
in the two languages according to various param-
eters, and show that many of them are due to am-
biguity or semantic changes. These results offer a
better understanding of UCCA’s stability and sug-
gest paths for further improvements.

2 Related Work
We begin by discussing previous work that studied
the portability and stability of semantic schemes.
We then briefly survey the means in which seman-
tic information is integrated into MT systems.
Portability of semantic annotation. Several
works addressed the portability of semantic anno-
tation schemes, namely whether the same scheme,
often originally developed for English, can be ap-
plied to other languages.

Burchardt et al. (2009) addressed the applica-
tion of the English FrameNet (Baker et al., 1998)
to German. They found that about a third of the
verb senses identified in the German corpus were
not covered by FrameNet. Their analysis further
revealed that the English category set is not al-
ways sufficient, resulting in the introduction of
a new category for German. Van der Plas et al.
(2010) addressed the application of English Prop-
Bank (Palmer et al., 2005) to French, and found
that while the scheme can be applied to French,
the annotation requires proficiency in both lan-
guages. Samardzic et al. (2010a; 2010b) also
studied the portability of the English PropBank to
French, and found that the overwhelming major-
ity of the French verbal predicates in the corpus
correspond to a verb sense in the PropBank lex-
icon. The portability of PropBank was also ex-
amined in the case of English-Chinese through the
construction of annotated parallel corpora used in
the OntoNotes project (Weischedel et al., 2012).

Portability has also been studied in the context
of more elaborate hierarchical structures (Dorr et
al., 2010; Banarescu et al., 2013), often with the
intention of producing an inter-language – a rep-
resentation independent of any specific language,
which exhaustively accounts for the meaning of
the sentence. Dorr et al. (2010) studied portabil-
ity through the construction of a set of annotated
parallel corpora in six languages, as part of the
IAMTC project. Portability has also been inves-
tigated through the construction of annotated par-
allel treebanks such as the Prague Czech-English
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Dependency Treebank2, enabling a subsequent va-
lency stability study (Urešová et al., 2015).

Stability of semantic annotation. Another line
of work focused on the stability of specific
schemes, i.e., their ability to preserve structure
across translations. Fung et al. (2006; 2007) stud-
ied the stability of semantic role annotation be-
tween arguments in English and Chinese. They
found that 83% of the alignable verbal arguments
in English have a role-compatible argument in
Chinese, but did not address arguments that have
no correspondent in the other language. This mo-
tivated the use of semantic roles in MT, but also
highlighted the existence of divergences between
the structures in the two languages.

Semantic role schemes used in MT are gener-
ally restricted to verbal predicates, excluding sev-
eral highly frequent constructions, such as copula
clauses and nominalizations, which can result in a
loss of stability. Furthermore, the fine-grained in-
formation such schemes provide as to the role of
the arguments can be difficult to port across lan-
guages. For further discussion, see (Abend and
Rappoport, 2013b) and (Birch et al., 2013).

Abstract Meaning Representation (AMR) (Ba-
narescu et al., 2013) is a hierarchical semantic rep-
resentation scheme whose aim is to provide sim-
ple, readable semantic annotation that can be ap-
plied cross-linguistically and assist MT systems.
While UCCA is encoded over the text, AMR pro-
vides a structure for each sentence that is not triv-
ially alignable with the text (Flanigan et al., 2014).
Xue et al. (2014) studied the scheme’s portabil-
ity and stability when applied to English-Chinese
and English-Czech parallel corpora. They anno-
tated 100 Chinese and Czech sentences translated
from English, and examined the similarities and
differences of the AMRs across translations. In
the English-Czech comparison, 53% of the sen-
tences are reported to be structurally different in
a non-local way. They conclude that at this point
AMR is not stable enough to be used as an inter-
language, but should be used only either on the
target or on the source side.

Focusing on closer languages, namely English-
French, we employ both type-level and token-level
approaches for UCCA, including a comparison to
syntax and a qualitative analysis of divergences,
which are likely to generalize to some extent to
other semantic annotations. We report a prelimi-

2https://ufal.mff.cuni.cz/pcedt2.0/

nary study of the stability of AMR in our corpus.
Integrating semantics into MT systems.
Widely used in early MT (Uchida, 1987; Niren-
burg, 1989), the integration of semantics into
SMT systems is receiving much renewed interest
in recent years. The first line of research is the
integration of semantic features (often semantic
roles) in SMT systems. In the phrase-based SMT
models, they were mainly utilized for influencing
reordering (Wu and Fung, 2009; Xiong et al.,
2012; Feng et al., 2012). In syntax-based SMT
models, semantic roles were involved in assisting
reordering models (Li et al., 2013) and in transla-
tion rules (Zhai et al., 2012; Liu and Gildea, 2010;
Bazrafshan and Gildea, 2013).

The second line of research concerns the use
of an inter-language as an intermediary represen-
tation in SMT. Edelman and Solan (2009), rely-
ing on the cognitive model Revised Hierarchical
Model (RHM), tried to represent the network of
constructions that mediates between concepts and
the channels of linguistic input and output. Jones
et al. (2012) conducted preliminary experiments
on a geographical querying domain using AMR.

3 UCCA Annotation
UCCA is a a semantic annotation scheme, strongly
influenced by typological, notably Basic Lin-
guistic Theory (Dixon, 2010a; Dixon, 2010b;
Dixon, 2012), and cognitive linguistic theories
(Langacker, 2008). The scheme aims to provide
a coarse-grained, cross-linguistically applicable
representation by directly reflecting the major se-
mantic phenomena represented in the text and ab-
stracting away from specific syntactic forms. We
briefly introduce the UCCA formalism and main
categories. For a more elaborate presentation, as
well as evidence for the accessibility of UCCA
to annotators with no linguistic background, see
(Abend and Rappoport, 2013a; Abend and Rap-
poport, 2013b).

UCCA structures are directed acyclic graphs,
where the words in the text correspond to (a sub-
set of) their leaves. The nodes of the graphs,
called units, are either terminals or several ele-
ments jointly viewed as a single entity according
to some semantic or cognitive consideration. The
edges bear one or more categories, indicating the
role of the sub-unit in the relation that the parent
represents.

UCCA is built as a multi-layered scheme, where
each layer represents a different set of distinc-
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tions. In this work we use the foundational
layer of UCCA, which mostly addresses predicate-
argument structures and linkage relations between
them.

UCCA views the text as a collection of Scenes
and relations between them. A Scene, the most ba-
sic notion of this layer, describes a movement, an
action or a state which is persistent in time. Every
Scene contains one main relation, or anchor (sim-
ilar to frame-evoking element in FrametNet), and
is labeled as a State (S) or a Process (P).

A Scene may contain one or more Participants
(A), which are interpreted in a broad sense, and
include locations, destinations and complement
clauses. Secondary relations in the Scene, such
as manner or temporal descriptions, are labeled
as Adverbials (D). For example, the sentence “He
slowly ran into the park” is annotated as follows:
“[He]A [slowly]D [ran]P [into the park]A”.

The definitions of the UCCA categories are not
dependent on POS distinctions. For instance, a
Scene’s main relation can be an adjective (“[He]A
[’s thin]S”) or a noun (“[John ’s]A [decision]P”).

4 Type-Level Analysis

In this section we focus on type-level analysis and
show both the portability of UCCA, examining the
annotation of the French grammatical phenomena
with UCCA, and its stability, assessing UCCA’s
influence on commonly studied structural diver-
gences.

4.1 Portability

We examine UCCA’s applicability to French by
systematically examining the major grammatical
phenomena in French, and verifying that UCCA
categories can be applied to them. To this pur-
pose, we use the same annotation guidelines and
category set previously applied to English, and ap-
ply it to the phenomena and examples described
in a French grammar book (Hawkins and Towell,
2001). Tense and agreement are not covered in the
UCCA foundational layer which we use, and are
therefore disregarded in this work.

We find that even for French-specific phenom-
ena, current UCCA categories permit their anno-
tation in the foundational layer without requiring
changes in the definitions or additional categories.
Due to space limitations, we only present here one
case of interest. The full analysis according to the
grammar book can be found in Sulem (2014) (Ap-

pendix 2) 3.
As an example, we consider reflexive pronouns,

representing the applicability of UCCA to French
phenomena that have no direct parallel in English.
In French, in addition to the counterparts of “him-
self” and “themselves” (“lui-même” and “eux-
mêmes”), reflexivity is also expressed through the
pronouns “se”, “me”, “te”, “nous” and “vous”,
which precede some verbs (termed “pronominal
verbs”). For instance, “lavé” is “washed”, while
“s’est lavé” is “washed himself”. We show that the
UCCA’s category definitions can be applied natu-
rally to this phenomenon.

A key guideline in UCCA is that the annotation
of a unit does not depend on its part of speech
but rather on its meaning and role in the context
it is situated in. We therefore distinguish between
three cases based on their semantics.

First, cases where the reflexive pronoun refers
to the same Participant as the subject. Here the
pronoun is annotated as an A: “[Jean]A [s’]A [est
lavé]P” (“Jean washed himself”).

Second, cases where the pronoun changes the
meaning of the verb in an unpredictable way, or
alternatively, where the verb may only appear in a
pronominal form. In these cases the formal means
of reflexivity is used, but is not associated with the
semantic phenomena of reflexivity. Semantically
then, the reflexive pronoun and the verb form one
unanalyzable unit, as in the following example: “Il
[s’ est aperçu]P qu’il était tard” (“He realized that
it was late”).

Third, cases where the pronoun changes the
meaning and the number of arguments of the verb
without creating semantic reflexivity. In these
cases the verb is the Center (C) of the Process,
while the reflexive pronoun serves as an Elab-
orator (E). For example: “Je [m’E appelleC]P
John” (“my name is John” where “appelle” means
“call”).

4.2 Stability

Overcoming cross-linguistic divergences (or
translation divergences) is one of the main chal-
lenges in machine translation. We briefly review
the main examples of translation divergences pre-
sented in (Dorr, 1994; Dorr et al., 2002; Dorr et
al., 2004), adapting the original English-Spanish
examples to English-French analogues. Then, for
each example, we present its annotation according

3www.cs.huji.ac.il/˜eliors/papers/
elior_sulem_thesis.pdf
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to UCCA. The resulting annotations show that
UCCA abstracts away from almost all of these
divergences and exposes the semantic similarity,
demonstrating the stability of the scheme at the
type-level.

Categorical divergence: Translation of words
in one language into words that have different POS
tags in another language. For example, “to be
cold” – “avoir froid” (“to have cold”). In UCCA
the expression in both languages is annotated as a
State where the Center (similar to the notion of a
semantic head) is “cold” / “froid”.

Conflational divergence: Translation of two
or more words in one language into one word
in another language. For example: “to kick” –
“donner un coup de pied” (“give a kick”). In
UCCA, the expression describes a Process in the
two languages, and the French light verb “donner”
(“give”) is a Function (a unit which does not intro-
duce a relation or participant) inside the Process.

Structural4 divergence: Realization of verb
arguments in different syntactic configurations in
different languages. For example, “to enter the
house” – “entrer dans la maison” (“enter in the
house”). In UCCA there is a Participant in both
languages.

Thematic divergence: Realization of verb ar-
guments in syntactic configurations that reflect
different thematic to syntactic mapping orders.
For example, “I like this house” – “Cette maison
me plaı̂t” (“this house pleases to me”). In UCCA
there are two Participants in English as well as
two Participants in French (“cette maison” / “this
house” and “me” / “me”).

Promotional/Demotional divergence: Promo-
tion is the case where a modifier in the source lan-
guage is promoted to a main verb in the target lan-
guage (Dorr, 1990; Gola, 2012). Demotion is its
mirror image, where a main verb in the source lan-
guage becomes a modifier in the target language.

An example where an English adverb is pro-
moted to a main verb is the French: “John usu-
ally goes home” – “John a l’habitude de rentrer
à la maison” (“John has the habit to go home”).
In UCCA, both “usually” and “a l’habitude” (“has
the habit”) are annotated as Adverbials.

An example where an English verb is demoted
to an adverb is the French “to run in” – “entrer
en courant” (“enter running”). In UCCA, the En-

4Here the term “structural” refers specifically to syntax,
in contrast to the broader sense used elsewhere in the paper.

glish example contains a Process (“to run”) and
a Participant (“in”). The annotation in French is
somewhat different, where “entrer” (“enter”) is a
Process, while “en courant” (“running”) is an Ad-
verbial.

To summarize, aside from the case of demo-
tional divergence, the UCCA annotation (in its
foundational layer) abstracts away from canonical
examples for cross-linguistic divergences. With
demotional divergence, where UCCA annotation
is different across languages, we note that the di-
vergence does correspond to a semantic difference
of emphasis, that is, whether the entering action or
the running action is the main relation. We leave
it open whether this divergence should be consid-
ered a result of a true semantic difference between
the languages or a shortcoming of UCCA that fails
to capture the similarity between them.

5 Parallel French-English UCCA Corpus

The parallel corpus. The French-English cor-
pus used here is an extract from the book Twenty
Thousand Leagues Under the Sea (Vingt Mille
Lieues Sous les Mers), a classic science fiction
novel written in French by Jules Verne (1828–
1905) and first published in 1870. We use an on-
line version of the book and the English translation
by J.P. Walter (Verne, 1870; Verne, 1991). Each
of the two monolingual parts of the corpus contain
583 sentences which correspond to 12.5K tokens
in English and 13.1K tokens in French. The anno-
tated corpus is publically available5.

Initial alignment. We segment the parallel cor-
pus into 154 bilingual pairs of aligned passages.
Each passage in French corresponds to a single
passage in English. The passages correspond to
the paragraphs in the original texts except in a
few cases of long dialogues, where we split the
paragraphs into several passages. A sentence-level
alignment is not necessary in our analysis since
in UCCA, the text is viewed as a collection of
Scenes, where sentence boundaries play no signif-
icant role.
Manual annotation. The annotation was car-
ried out using UCCA’s web application. Both
French and English texts were annotated by the
same annotator (one of the authors of the paper),
according to UCCA annotation guidelines6. Re-

5www.cs.huji.ac.il/˜eliors
6Both the web-application and the guidelines are available

in homepages.inf.ed.ac.uk/oabend/ucca/.
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cent updates to the guidelines concerning the an-
notation of secondary verbs as Adverbials, are not
applied here. We expect these changes to further
improve the quality of the results (Section 7.3).
The annotation in English and French was carried
out separately in each of the languages, rather than
in parallel, thus permitting cases where the same
linguistic form in English and French is subject to
different interpretations, leading to different anno-
tations. This effect on the differences in UCCA
annotation in English and French is discussed in
Section 7.

6 Token-level Analysis

In order to demonstrate UCCA’s stability at a
token-level, we examine the number of UCCA
units of various types in both English and French
for each parallel passage in our annotated paral-
lel corpus. We compare these numbers to those
obtained through syntactic annotation. In light
of our type-level analysis (Section 4), we expect
these UCCA categories to be more stable cross-
linguistically than syntactic ones. The number
of Scenes is compared to the number of non-
auxiliary verbs, and the number of Participants
and Adverbials is compared to the number of noun
phrases (NPs), prepositional phrases (PPs) and ad-
verb phrases (ADVPs).

We note that English-French is a particularly
challenging candidate for this type of analysis
since the language pair is relatively structurally
similar (e.g., measured by word reordering (Birch,
2011)). Syntactic annotation is therefore a strong
baseline. We expect UCCA’s relative stability to
be even greater in more syntactically divergent
language pairs.

We are mainly interested not in the absolute
number of units/constituents of a certain type, but
more in the extent to which this number diverges
between languages. Minimal divergence in the
number of units/constituents of a certain type be-
tween the two languages is an indication of the
scheme’s stability.

We compute the similarity in the number of
units/constituents of each type in the two lan-
guages in the following manner. For each
language l ∈ {Fre,Eng} and for each
unit/constituent type t, we compute the number
of instances of that type n

(t,l)
i in each passage

i = 1, .., N . We thereby obtain for each (t, l) a
vector n(t,l) = {n(t,l)

i }i. For each type t, the sim-

ilarity between n(t,F re) and n(t,Eng), which is an
indication of the stability of the scheme, is com-
puted using l1 and l2 norms of the difference be-
tween them.

We further compute an F-score as follows: pre-
cision and recall of the French vector against
the English one are defined respectively by
P = s/f and R = s/e when s =∑

i min(n(t,Fre)
i , n

(t,Eng)
i ), f =

∑
i n

(t,F re)
i and

e =
∑

i n
(t,Eng)
i . The F-score F is the harmonic

mean of P and R. This measure provides an up-
per bound of the number of aligned units in the
two languages, looking at the category of the units
and their appearance in aligned passages. We note
that the measures described are more applicable
in this context than statistical correlation measures
(e.g., the Pearson correlation coefficient). This is
because a stable scheme is determined by the simi-
larity of the count vectors in absolute terms, rather
than their statistical correlation.
Experimental setup. For tagging, we use the
Stanford POS tagger package (Toutanova et al.,
2003). We compute the number of verbs in the
parallel corpus and compare them to the number
of Scenes. We exclude auxiliaries since such verbs
tend to differ considerably between languages. We
manually correct the tagging (by a single annota-
tor, highly proficient in both languages), and there-
fore expect these numbers to be comparable in
quality to a gold standard7.

The syntactic constituents we study are noun
phrases (NP), prepositional phrases (PP) and
adverb phrases (ADVP in English and AdP in
French). We used the Stanford parser’s pre-
trained models for English (englishPCFG, (Klein
and Manning, 2003)) and French (the frenchFac-
tored (Green et al., 2011)), with the same man-
ual tokenization taken from the UCCA annotation.
Six passages which contain very long sentences in
French and for which the parser was unable to pro-
duce a parse were omitted from this evaluation.
We note that we include in our analysis Scenes
marked as unanalyzable (For example: “Hello!”),
but exclude Scenes appearing as remote Partici-
pants, so to avoid double counting.

In order to correct for possible biases of the
parsers towards overprediction or underprediction
of certain syntactic constituents, we conduct the
following experiment. We manually count the

7The French tagger overestimated the number of verbs by
0.6%, while the English tagger overestimated it by 8.7%.
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l1 l2 F Fr. Avg. En. Avg.
Scenes 124 14.97 0.96 9.25 9.49
Verbs 157 18.79 0.94 9.30 9.10

Participants (As) 273 31.13 0.95 17.68 18.27
NPs and PPs 952 102.74 0.89 26.64 32.33

NPs 847 88.89 0.87 18.78 24.20
PPs 299 32.05 0.87 7.86 8.13

Adverbials (Ds) 133 17.18 0.86 3.3 3.07
Adverb Phrases 342 40.0 0.15 0.24 2.49

As + Ds 334 37.18 0.95 20.99 21.34
NPs+PPs+ADVPs 1226 127.40 0.87 26.88 34.82

Table 1: Comparison of UCCA’s Scene, Participant and
Adverbial stability across the two languages with the stabil-
ity of verbs, NPs, PPs and ADVPs. l1 and l2 represent re-
spectively the l1 and l2 norms of the difference between the
French and English count vectors. The F-score F , resulting
from an upper bound on the number of aligned units in the
two languages, evaluates the similarity between these vectors.
The Scenes and the verbs are computed over the whole cor-
pus (154 passages), while the other categories are computed
on 148 passages (see text).

number of NPs, PPs and ADVPs in the first 10 pas-
sages in English and French, according to the orig-
inal guidelines of the English and French Tree-
banks (Bies et al., 1995; Abeillé et al., 2004). All
borderline cases are counted pessimistically, i.e.,
in the direction that maximizes the difference be-
tween the manual and automatic counts.

Results. Our results are given in Table 1. In
all cases the UCCA annotation is more stable
across annotations than the syntactic counterpart.
The relative similarity between the number of
PPs in the two languages, as reflected in the
relatively low vector distances of n(PP,Eng) and
n(PP,Fre), can be explained by the fact that the
presence of a preposition in French usually re-
quires a preposition in its English translation. PPs
are also less affected than NPs by nominaliza-
tions which often result in cross-linguistic syntac-
tic divergences8. Table 1 also presents the average
number of units/constituents of each type per pas-
sage, on the two right columns. The latter numbers
cannot be seen as a measure of stability, as an ex-
cessive number of units in one passage (relative to
the translation) may cancel out a deficient number
of units in another.

Concerning the correction term for the parsers’
biases, we find that in the first 10 passages, the
English parser overpredicted NPs by 12.2% and
underpredicted ADVPs by 3.8%. The same num-

8The low number of French adverb phrases is partially
due to the presence of some adverbial expressions that were
tagged as multi-word adverbs (MWADV). If we consider
MWADV as adverb phrases as well, the l1 value is 292 and
the l2 value is 33.05, which is still much higher than the dis-
tances for UCCA’s Adverbials (133 for l1 and 17.18 for l2).

ber of English PPs was obtained through manual
and automatic counting. In these passages the
French parser overpredicted NPs by 0.9% and PPs
by 11.4%. The average difference between the
results of the manual and automatic counting of
French adverb phrases was 0.5. The biases are in
an order of magnitude less than the relative differ-
ences in the l1 and l2 norms. Therefore, the stabil-
ity of UCCA relative to syntactic schemes is not a
result of the parsers’ biases.
7 Divergence Analysis and Discussion
The analysis in Section 6 provides a comparison
in terms of the number of units of specific types,
as opposed to corresponding numbers of syntac-
tic constituents. In this section we define a more
refined methodology (Section 7.1) for examining
not only the correspondence in the number of units
between the languages, but also the semantic cor-
respondence between units (Section 7.2 and 7.3).

7.1 Defining Divergences using UCCA
We define a correspondence between two UCCA
annotations to be a one-to-one mapping which
preserves UCCA’s categories and meaning. Con-
cretely, given a parallel corpus, a unit in one lan-
guage corresponds to a unit in the other language if
they have the same category and if the units have
the same meaning. More formally, we define a
sufficient subset of a unit u to be a subset of e that
contains its heads (the main relation in the case of
a Scene, or the Centers in the case of a non-Scene).
For example, “He ran” is a sufficient subset of the
Scene “He slowly ran” since it contains the main
relation “ran”. A unit e in English and a unit f
in French correspond to each other if they have
the same category and any of the three following
conditions hold: (1) e is a translation of f , (2) a
sufficient subset of e is a translation of f , or (3)
a sufficient subset of f is a translation of e. For
example, the English Scene “He slowly ran” cor-
responds to the French Scene “Il a couru” (“He
ran”) since condition (2) holds.

Given a UCCA category, some of the units of
that category are left unaligned between the two
sides of the parallel corpus, creating a UCCA di-
vergence. We classify UCCA divergences accord-
ing to their category, defining Scene, Participant
and Adverbial divergences. We distinguish be-
tween divergences in the English and French sides.

An example of a UCCA divergence from our
French-English corpus is: “of the ship victimized
by this new ramming” – “du navire victime de ce

17



Property Scene Div. Participant Div. Adverbial Div.
Eng. Fre. Eng. Fre. Eng. Fre.

Translation Study
1 Similar Translation Possible 65.18 58.33 50 35.29 70.83 50.0
2 Similar Source Possible 73.21 63.89 54.55 47.06 75.0 46.15
- None 18.75 31.94 38.64 47.06 16.67 42.31

Annotation Study
3 Conforming Analysis 41.96 54.16 72.72 73.53 25.0 53.85
4 Different Interpretation 10.71 1.39 25 23.53 8.33 7.69
– None 55.36 44.44 25 20.59 70.83 46.15

Semantic Effect of the Unaligned Unit
5 Additional Information 38.39 18.06 25.0 20.59 37.50 0.0
6 Tense Information 8.04 5.56 – – – –
7 Emphasis 19.64 8.33 31.82 26.47 41.67 3.85
– None 50.89 80.56 61.36 64.71 58.33 96.15

Table 2: Percentage of UCCA divergences according to their types (columns) that have certain properties (rows). All numbers
are percentages computed over all UCCA divergences of the given type. Note that the properties are not mutually exclusive
(see text). Participant and Adverbial divergences are only evaluated on passages with no Scene divergences.

nouvel abordage”. The French noun “victime” de-
scribes a result, while the corresponding English
“victimized” is an action. The unaligned Scene
is in English. It is therefore an English Scene
divergence. In the example “He slowly ran”/”Il
a couru” we saw above, there is no Scene diver-
gences but the English Adverbial “slowly” is un-
aligned, creating an English Adverbial divergence.

7.2 Number of UCCA Divergences
The analysis of Scene divergences is performed
manually over the entire set of passages. The anal-
ysis of Participant and Adverbial divergences is
restricted to passages with no Scene divergences,
i.e., with a perfect Scene to Scene correspondence
(57 passages of the total 154). This permits the
capture of lower level divergences which are not
just consequences of the divergences at the Scene
level.

We found a total of 112 English Scene diver-
gences and 72 French ones. This amounted to
92.3% of the English Scenes having a French cor-
respondent and 94.9% of the French Scenes hav-
ing an English correspondent. Only 25% of the
sentences (148 out of 583) contains any Scene di-
vergences.

Concerning Participant divergences, we found
that 694 out of 738 English Participants (94.0%)
have a correspondent in French. 694 of the 728
French Participants (95.3%) have a correspondent
in English. 100 out of the 124 English Adverbials
(80.6%) have a correspondent in French, and 100
out of the 126 Adverbials (79.4%) have a corre-
spondent in English. Thus, our results show low
rates of UCCA French-English divergences.

We also conduct a preliminary study into the
applicability of another semantic scheme, namely
AMR, to our domain. We annotate 10 sentence

pairs with AMR. Our analysis shows that AMR
conserves the main structures in most sentences (7
out of 10), and suggests that other semantic anno-
tations may also be structurally stable. However,
semantic roles, used in PropBank and AMR, are
often a source of divergences across the languages.

7.3 Properties of UCCA Divergences
In order to examine the causes and semantic types
of the different divergences, we manually classi-
fied each of them according to three groups of
properties, which are not mutually exclusive. The
results of the divergence analysis are presented in
Table 2.

Translation study: The properties in this group
investigate whether a given UCCA divergence can
be avoided using a different formulation closer to
the one used in the other language. This approach
evaluates the translator’s choices and creativity.
Properties #1 and #2 check whether different for-
mulations can be used in the source and target side
respectively, that would avoid the UCCA diver-
gence. Results show that many of the divergences
can be indeed ascribed to the specific translation
selected. For example, only less than a third of
the Scene divergences in each language could not
have been avoided through a different translation.
We thus speculate that in a more technical and less
literary corpus, the number of UCCA divergences
will be lower.

Annotation study: These properties study the
influence of the annotator’s preferences. Prop-
erty #3 (conforming analysis) covers cases where
UCCA allows another analysis which would have
avoided the divergence. While both annotations
are permitted, one of them is sometimes preferred,
to capture a nuance of meaning conveyed by one
language but not the other. Property #4 refers to
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Replaced by Scene Div. Participant Div. Adverbial Div.
Eng. Fre. Eng. Fre. Eng. Fre.

Linker 6.25 1.39 – – 8.33 7.69
Ground 1.79 1.39 – – 4.17 3.85

Elaborator of Participant – – 0 2.94 4.17 19.23
Main Relation – – 20.45∗ 20.59∗ 25.0∗ 26.92∗

Parallel Scene – – 13.64 2.94 – –
Participant – – – – 4.17 11.54
Adverbial – – 6.82 2.94 – –

2 Participants – – 11.36 2.94 – –
2 Adverbials – – – – 4.17 0.0

None 91.96 98.21 47.73 67.65 50.0 30.77

Table 3: Analysis of divergences in terms of replacements by other UCCA categories. Columns correspond to divergence
types, while rows correspond to the category, as defined in Abend and Rappoport (2013b), of the replacing unit. All numbers
are given in percents. Percentage is taken over all UCCA divergences of the same type. ∗: In these cases, a Participant or an
Adverbial in one of the languages is included in the meaning of the main relation (Process or State) in the other language.

divergences resulting from different readings (am-
biguity) allowed by the text, where one meaning
was selected in one language and another in the
other. The results for this group (properties #3
and #4) reveal that most of the Scene and Ad-
verbial divergences could have been avoided had
a different annotation been selected. This sug-
gests that more restrictive annotation guidelines or
some post-annotation normalization can substan-
tially reduce the number of divergences.

Effect of the unaligned unit: Divergences are
often a result of a semantic or pragmatic difference
between the source text and its translation. Prop-
erty #5 addresses cases where additional informa-
tion is conveyed by the unaligned unit. Property
#6 is a sub-case of #5 that specifically addresses
tense information. Property #7 addresses cases
where the unaligned unit emphasizes some aspect
of meaning. The results show that many diver-
gences can be ascribed to a true semantic differ-
ence between the source and the translation.

Finally, in some cases, the UCCA divergences
simply replace one UCCA category with another
(Table 3). In these cases there are unaligned units
in the English and the French sides that roughly
correspond to one another semantically, but have
different UCCA categories. Cases of replacement
are common with Participant and Adverbial diver-
gences, but fairly rare in the case of Scene diver-
gences. In case of Adverbial divergences, many
of them result from including the meaning of an
Adverbial in one language in the meaning of the
main relation (Process or State) in the other lan-
guage. This can be seen as a generalization of
demotional/promotional divergences (Dorr, 1994)
discussed in Section 4.2. Annotating secondary
verbs (e.g., “begin” or “try”) as Adverbials instead
of being part of the main relation, as was done in
the latest version of UCCA’s guidelines, may con-

siderably reduce this kind of divergence.
To summarize, our study sheds light on the cir-

cumstances in which UCCA divergences arise and
suggests how many divergences can be avoided.
This study also contributes to the understanding
of the differences between original and translated
texts, which can improve MT (Lembersky et al.,
2013).

8 Conclusion
We showed that basic semantic structures can be
stably preserved across English-French transla-
tions. This means that semantic structures may be
more suitable to SMT systems than syntactic ones,
which exhibit well known divergence phenomena.
We used the UCCA scheme, but we expect these
advantages to generalize to other structured se-
mantic schemes. Future work will address the in-
tegration of UCCA into structure-based SMT ei-
ther by adding UCCA as features to phrase-based
and syntax-based systems, or by replacing exist-
ing syntactic structures with UCCA structures. We
also plan to investigate related tasks that would
benefit from UCCA’s stability like bilingual align-
ment and MT evaluation.
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Abstract

This paper presents a novel approach to
enhance hierarchical phrase-based (HP-
B) machine translation systems with case
frame (CF).we integrate the Japanese shal-
low CF into both rule extraction and
decoding. All of these rules are then
employed to decode new sentences in
Japanese with source language case frame.
The results of experiments carried out on
Japanese-Chinese test sets. It shows that
our approach maintains the advantages
of HPB translation systems while at the
same time naturally incorporates CF con-
straints. The case frame rules can com-
plement Hiero-style rules. Our approach
is especially effective for language pairs
with large word order differences, such as
Japanese-to-Chinese.

1 Introduction

In the Japanese-Chinese machine translation task,
reordering is the main problem due to substantial
differences in sentence structures between these
two languages. For example, Japanese has a
subject-object-verb (SOV) structure, while, Chi-
nese has a subject-verb-object (SVO) structure.

The pre-ordering technology is one way to han-
dle this problem (Wu, et al., 2011), but it need-
s to train a pre-ordering model. An hierarchical
phrase-based (HPB) model (Chiang, 2005; Chi-
ang, 2007) is a powerful method to cover any for-
mat of translation pairs by using synchronous con-
text free grammar. Hiero grammars can capture
complex nested translation relationships to handle
reordering. However, due to its compromise on
the efficiency of rule extraction and decoding, (a)
a source language span limit is applied with 10,
(b) the number of non-terminals in one rule is set
to 2, (c) there is a prohibition of consecutive non-
terminals on the source language side of a rule and

Figure 1: The reordering problem in Japanese-
Chinese translation

(d) coarse-grained rules. The HPB model does
not perform well when reordering in a Japanese-
Chinese machine translation task as shown in Fig-
ure 1, which shows an example of long distance
reordering covering 13 words.

With a traditional approach, the typical H-
PB model fails to capture complex reordering
information as shown in Figure 1. By con-
trast, Fillmore (1968) has proposed case grammar,
which is effectively proved and originally used
in rule-based machine translation (RBMT) sys-
tem (Yamabana,1997). Furthermore, Kawahara
(1994, 2002) defines the Japanese shallow CF that
is widely and successfully used in Japanese depen-
dency tasks provided by CoNLL-09 (Hajič, 2011).
Figure 2 shows the CF’s ability to capture reorder-
ing information.

In this paper, we describe effective approach-
es to introducing source language Japanese CF in
the Japanese-Chinese translation task. Unlike pre-
vious work, we are the first to use Japanese CF
information on the HPB model, and to transfor-
m CF information into SCFG style rules, which is
suitable and useful in the original HPB decoder.
By importing CF into the HPB model, we expand
search space and introduce fine-grained rules.

The remainder of this paper is organized as fol-
lows. After introducing Japanese CF,the proposed
approach is introduced in Section 3; the exper-
imental results and associate analysis are given
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Figure 2: Deep verbal CF and shallow verbal case
between Japanese and Chinese

in Section 4. Section 5 briefly discusses related
work; Finally, conclusions are drawn in Section 6.

2 Case Frame

Unlike HPB model’s format grammar, case gram-
mar is linguistically sensible and is applied to se-
mantically analyze sentence. Based on case gram-
mar, a sentence will be analyzed using different
deep case components (agent, instrument, experi-
encer, object, location, benefactive, factitive, goal,
source and time). This way, Fillmore has defined
the deep verb CF, where one example is shown in
Figure 2(a).

Deep case is language independent. If two sen-
tences from different languages have the exactly
same meaning and description, they will have the
same deep case grammar analysis. Figure 2(a)
shows the sentence “today we will get him to the
airport by car” described respectively in Japanese
and Chinese. Meanwhile, Figure 2(a) shows deep
case alignment between these two different lan-
guages. Deep case alignment in two differen-
t languages is one to one mapping. For exam-
ple, in Figure 2(a), “私 達 は” (we) is the agen-
t in Japanese, mapping “ 我们 ” (we) (agent) in
Chinese.

The deep CF is well known, but it is rarely used
in statistical machine translation due to the diffi-
culty of the auto-analysis for all languages includ-
ing Japanese. However, due to the explicit case in
Japanese, Kawahara (2002) redefines the shallow
verbal CF in Japanese shown in Figure 2(b), where
an auxiliary word contributes to the shallow CF

Type Examples of Japanese shallow case
Agent ガ (ga)
Object ニ(ni),ヘ(he),ヲ(wo)
Instrument ニ(ni),デ(de)
Experiencer ニ(ni),ト(to),ヘ(he)
Source ニ(ni),ヘ(he),カラ(kara),ヨリ(uori)

マデ(made),ノ(no)
Goal ニ(ni),ヘ(he)
Location ニ(ni),デ(de),カラ(kara)

ヨリ(yori),マデ(made)
Time ニ(ni),デ(de),カラ(kara)

ヨリ(yori),マデ(made)
Others 無格(none)，修飾(modification)

Table 1: The mapping between a deep case and a
Japanese shallow case.

analysis. As a result, recent research has achieved
high accuracy (more than 90%) on Japanese shal-
low CF analysis (Kawahara and Kurohashi, 2006).
Between the deep case and the Japanese shallow
case, there is a many-to-many relation shown in
Table 1. In this paper, we will only use “case
frame” to represent Japanese verbal shallow CF
for short.

3 The proposed approach

A case frame is the linguistic concept, which pro-
vides linguistic guidance for derivation. Here, we
present a method to alleviate complex reordering
problems in the Japanese-Chinese machine trans-
lation task with case frame.

Generally, we obtain both the case frame and
the hiero-style SCFG from the training data, and
then transfer the case frame rule (CFR) to SCFG
style and use both of them in decoding with the
SCFG. The method benefits from both hiero-style
translation and linguistic information. In the rule
extraction of our approach, we acquire case frame
rules using fuzzy strategy and hiero-style rules us-
ing traditional HPB rule extraction method. In de-
coding, we use the traditional HPB decoder with
CYK and cube pruning.

Figure 3 shows an example of CFRs extraction
processing from a pair of word-aligned Japanese-
Chinese sentences with a source language CF, and
their SCFG style.

3.1 Case Frame Rules Extraction

As described in section 2, the Japanese shallow
case frame can be obtained through surface analy-
sis. This way, we can extract case frame reorder-
ing rules from sentence pairs with alignment infor-
mation as shown in Figure 4, where original case
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Figure 3: Example of CFRs extraction processing.

Figure 4: The fuzzy extraction strategy for CF re-
ordering rule.

frame rules are from o1 to o6.
Given a source language case frame and related

word alignment, one case frame is mapped to the
case frame reordering rule set,where there are two
kinds of rules: reordering rule and phrase rule.
• Phrase rule: Each component in a case frame

generates one phrase rule. We extract the phrase
rule by following the traditional phrase-based
model ’s strategy (Och and Ney, 2004). Each
phrase rule has a case distinction associated with a
shallow case in a case frame like r1 to r5 in Figure
3.
• Reordering rule: One case frame generates

one reordering rule. For reordering rule extrac-
tion, we need to compute the relatively order of
target language span associated with each case s-
lot. The order is relatively soft to the word align-
ment. For example, if a source language phrase
A covers target span [2, 4] and the other source
language phrase B covers target span [1, 3], then
the phrase A is relatively right to the phrase B in
target side; if a span is covered by the other one,
the rule is forbidden during extraction. All of the

Figure 5: The example of transformation for
phrase rule and reordering rule.

possible case frames with word alignment can be
seen in Figure 4, where only (c) rule is forbidden.
The reordering rule is like r6 in Figure 3.

3.2 Transforming Case Frame Rule into
SCFG style

To make case frame rules directly accessible to the
Hiero-style decoder with performs decoding with
SCFG rules, we convert original case frame rules
into SCFG style. And then, case frame rule is
defined as SCFG-style, which is a little different
from hiero rules.
• Phrase rule transformation: We take o1 as

an example transforming into r1 shown in Figure
5(a). We use o1 ’s case distinction as case distinc-
tion of r1 ’s left. The source side of the r1 ’s right
is source phrase in o1 and the target side is target
phrase in o1.
• Reordering rules transformation: We take o6

as an example transforming into r6 shown in Fig-
ure 5(b). We also use o6 ’s verb case distinction
as case distinction of r6 ’s left. (default X if there
is no case distinction in this example). Each slot
of o6 is transformed into related X with respective
case distinction in r6. The target side of the rule
’s right is target language ’s reordering. It is clear-
ly seen that if there is no non-terminals in the right
of reordering rule, reordering rule is the same with
phrase rule.

In this way, each case frame rule is associated
with exactly one SCFG rule. Therefore, we can
obtain a fine-grained SCFG from case frames due
to case distinction. On one hand, non-terminals as-
sociated with case are linguistically sensible. For
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example of r4, “空港 まで” with “マデ” case is
translated to “去 机场” that means “to airport”.
On the other hand, it can capture complex reorder-
ing information. For example of r6, the source side
of the rule’s right means that “ガ” (who) “時間”
(when) “ヲ” (whom) “マデ” (where) “デ” (how)
“送って行きます” (send)in Japanese order, and
the target side of the rule ’s right means that “時
間” (when) “ガ” (who) “デ” (how) “送” (send)
“デ” (whom) “マデ” (where) in Chinese order.

For reordering the rule extraction, we need to
compute the relatively order of target language s-
pan associated with each case slot. The order is
relatively soft to the word alignment. For exam-
ple, if a source language phrase A covers target
span [2, 4] and the other source language phrase
B covers target span [1, 3], then the phrase A is
relatively right to the phrase B on the target side;
if a span is covered by the other one, the rule is
forbidden during extraction. All the possible CF-
s with word alignment can be seen in Figure 4,
where only (c) rule is forbidden.

Generally, we define the transformed case frame
rules as SCFG style:

X → ⟨γ, α,∼⟩ (1)

Where X is non-terminal, γ and α are both
strings of terminals and non-terminals as the same
with SCFG in the HPB model. Compared with
SCFG in the HPB model, the only difference is
that non-terminals are distinguished by case as
shown in Figure 3 from r1 to r6.

3.3 Decoding

Both transformed case frame rules and HPB rules
can be applied using traditional Hiero decoder-
s with a slight modification. Here we follow the
description of Hiero decoding by Chiang (2007).
The source sentence is parsed under the Hiero
grammar using the CYK algorithm. Each cell in
the CYK grid is associated with a list of rules that
applies to its span from the bottom up. For each
derivation, we apply cube pruning (Chiang,2007)
and beam search technology.

This procedure accommodates traditional HPB
rules directly. We use traditional HPB rules for
translation as shown in Figure 6(a). For exam-
ple, the traditional rule can be applied in the span
(14,16). Since the span (4, 18) is longer than 10
words, the traditional rule cannot be applied in the
span.

Figure 6: Decoding with both traditional hiero
grammar and case frame.

We move our focus towards case frame reorder-
ing rules, and analyze sentences and obtain all the
case frames, and then for each CF, we match rules
to the span related to the CF. If a match is found,
the CYK cell for the span is selected, and that rule
is added to the list of rules in the selected CYK
cell as shown in Figure 6(b). For example, the s-
pan (1,18) can be matched with r6. The complex
reordering can be captured by r6.

It is clear that the HPB rules have non-terminals
without any distinction and the case frame rules
have non-terminals with case distinction. Gener-
ally, there are two kinds of non-terminals: X and
X with case. During decoding, we respectively
use three kinds of constraints on case frame rule
matching:

Without constraints ignore all the case distinc-
tion in case frame rules, so case frame rule format
is the same with HPB rules. In this way, we just
expand SCFG.

Soft constraints admit the match between dif-
ferent case distinctions by adding extra dynamic
feature – soft count. For example, X with “ヲ” is
allowed to match X with “マデ” by adding 1 to
soft count.

Hard constraints only admit the completed
and exact match. On one hand, we admit X to
match all of the X with or without distinction, on
the other hand, we only allow X with distinction
to match X with the same distinction.

3.4 Features

The baseline feature set used in this work consists
of 7 features, including a strong 5-gram language
model, bidirectional translation probabilities, bidi-
rectional lexical probabilities, and a word count, a
glue rule count. In the CF reordering rule, bidi-
rectional translation probabilities and bidirection-
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al lexical probabilities are also used during decod-
ing. In addition, we introduce several features for
applying case frame rules, and we adopt these fea-
tures to log-linear model during decoding.
• Rule type indicators. For soft or hard con-

straint, we consider two indicator features, indicat-
ing case frame rules, case frame reordering rules.
Case frame rules indicator feature is used to dis-
tinguish case frame rules and original HPB rules.
Case frame reordering rules indicator feature is
used to distinguish phrase rules and reordering
rules in case frame rule set.
•Dynamic soft constraints. For soft constraints,

we consider the soft constraints. Note that when
X with case mismatches X with other different
case, we add dynamic soft constraints count for
this mismatching instead of prohibition.

4 Evaluation

4.1 Experimental Setup

We report results for this Japanese-Chinese task.
We use two data sets, where one uses news from
the 7th China Workshop on Machine Transla-
tion (CWMT) including 280 thousand sentence
pairs for training, 500 sentence pairs for param-
eter optimization and 900 sentence pairs for test-
ing, the other, from Asian Scientific Paper Ex-
cerpt Corpus-Japanese to Chinese (ASPEC-JC) in-
cludes 680 thousand pairs for training, 2090 sen-
tence pairs for parameter optimization and 1800
sentence pairs for testing.

The source side sentences are parsed by KNP
(Kurohashi and Nagao, 1994) into chunk depen-
dency structures whose nodes are at chunk-level.
Also we achieve corresponding case frame analy-
sis from byproduct of KNP. The word alignmen-
t is obtained by running GIZA++ (Och and Ney,
2003) on the corpus in both direction and applying
“grow-diag-and”refinement (Koehn et al., 2003).
We apply SRI Language Modeling Toolkit (Stol-
cke, 2002) to train a 5-gram language model for
target side sentences.

4.2 Results

For comparison, we also manually modify the ex-
tracted case frame rules of development and test
data with case frame information according to the
Japanese and Chinese grammar. We report ma-
chine translation performance in Table 2 using
case insensitive BLEU-4 metric (Papineni et al.,
2002), considering the balance of the performance

entry system CWMT
Rule ♯ BLEU-4

exp1 baseline 14.70M 0.2805
exp2∗ exp1 + cfr 14.70M+0.71M 0.2836
manually exp1 + cfr / 0.2865

entry system ASPEC
Rule ♯ BLEU-4

exp1 baseline 215.67M 0.2717
exp2∗ exp1 + cfr 215.67+7.21M 0.2748
manually exp1 + cfr / 0.2763

Table 2: BLEU[%] scores of various systems. ∗
means that a system is significantly different from
the baseline at p < 0.01. M means million and +
means hierarchical rules with CFRs.

Figure 7: Comparison of translations generated by
the baseline and improved systems.

of lexical and phrase. The experiments are orga-
nized as follows:
• exp1: we use the NiuTrans (Xiao, 2012) hi-

erarchical phrase-based model as strong baseline
system.
• exp2: we transform CFRs into SCFG-style

rules without any case distinction, and add these
rule into exp1 system.

4.3 Analysis

Finally, we discuss an example of real translation
from our test set. See Figure 7 for translations gen-
erated from different systems. The Japanese input
sentence contains “…下された” which is usual-
ly translated into “下达… ” (i.e. a transformed
CF reordering rule “X → X (下さ れた, 下达”
X)) . However, because the “…下さ れた” pat-
tern spans 12 words and that is beyond the span
limit, our baseline is unable to apply this desired
rule and so it chooses the wrong reordering trans-
lation. When importing CF reordering rule which
captures the CF “（を）下さ れた” , we can
transform the CF reordering rule into one that is
SCFG-style and achieve right reordering informa-
tion.
• Better reordering Main structure in Japanese

structure is SOV-style, which is different from
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Figure 8: Actual translations produced by the
baselines and our system.

Chinese SVO-style. Reordering problem is signif-
icant in Japanese- Chinese translation, especially
with long phrase for S and/or V. Compared with
hierarchical phrase-based rules, case frame rules
have better phrase reordering. In the example as
shown in Figure 8, the source sentence main cen-
tered verbs contain the word “確認(confirm)” and
the word “集合(gather)”. The Hiero result mis-
takenly treats that objective phrase as subjective
(SOV), thus results in translation with differen-
t structure from source sentence. Conversely, our
system captures this component relations in case
frame and translates it into the SVO structure.
• Better exical translation results Moreover,

we also find that our system can get better lexi-
cal translation results, for instance, the result of
the word “時間厳守(punctuality)”,as indicated in
Figure 8.

5 Related Work

Recently linguistically-motivated models have
been intensively investigated in MT. In particular,
source tree-based models (Liu et al., 2006; Huang
et al., 2006; Eisner, 2003; Zhang et al., 2008; Liu
et al., 2009a; Xie et al., 2011) have received grow-
ing interest due to their excellent ability to mod-
el source language syntax for better lexical selec-
tion and reordering. Alternatively, the hierarchical
phrase-based approach (Chiang, 2005) considers
the underlying hierarchical structures of sentences
but does not require linguistically syntactic trees
on either language′s side.

There are several lines of work for augment-
ing hierarchical phrase-based systems with the use
of source language linguistic information. Xiao
(2014) incorporates source syntax into the hierar-
chical phrase-based model. They develop proce-
dures for joint decoding and optimization within a
single system by transforming tree-to-string rules

into SCFG rules. By enlarging SCFG grammar,
they perform well on Chinese-English tasks. Our
approach is motivated by high-precision Japanese
case analysis, and aims to augment the search s-
pace of Hiero with linguistically-motivated hy-
potheses. Moreover, we consider hiero as the
backbone model and only introduce and transfor-
m Japanese CF into SCFG rules where they can
contribute.

Another related line of work is to intro-
duce pre-ordering approach for Japanese main
structure. Wu (2011) and Sudoh (2013) pro-
pose several methods to train pre-ordering mod-
el for pre-ordering. We note that, we have no
need to train extra pre-ordering models for the
Japanese main structure, and we only use the high-
precision Japanese explicit case analysis to im-
prove Japanese-Chinese translation performance
described in this paper.

6 Conclusion and Future Work

We have presented an approach to improving
Hiero-style systems by augmenting the SCFG
with Japanese case frame rules. The input case
frame are used to introduce new linguistically-
sensible hypotheses into the translation search s-
pace while maintaining the Hiero robustness qual-
ities and avoiding computational explosions. We
obtain significant improvements over a strong Hi-
ero baseline in the Japanese-to-Chinese task.

This paper presented an approach to improve H-
PB model systems by augmenting the SCFG with
Japanese CFRs. The CF are used to introduce new
linguistically-sensible hypotheses into the trans-
lation search space while maintaining the Hiero
robustness qualities and avoiding computational
explosions. We obtain significant improvements
over a strong HPB baseline in the Japanese-to-
Chinese task. We will try to improve the per-
formance of our system with soft constraint or
hard constraint using case frame rules, and we
will challenge to resolve the problem of tense, as-
pect and some special grammatical sentences of
Japanese to Chinese translation.
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Abstract

We present a feature-rich discriminative
model for machine translation which uses
an abstract semantic representation on the
source side. We include our model as an
additional feature in a phrase-based de-
coder and we show modest gains in BLEU
score in an n-best re-ranking experiment.

1 Introduction

The goal of machine translation is to take source
language utterances and convert them into fluent
target language utterances with the same mean-
ing. Most recent approaches learn transforma-
tions using statistical techniques on parallel data.
Meaning equivalent representations of words and
phrases are learned directly from natural data, as
are other syntactic operations such as reordering.
However, commonly used methods have a very
simple view of the linguistic data. Each word
is generally modeled independently, for instance,
and the relations between words are generally cap-
tured only in fixed phrases or as syntactic relation-
ships.

Recently there has been a resurgence of interest
in unified semantic representations: deep analy-
ses with heavy normalization of morphology, syn-
tax, and even semantic representations. In par-
ticular, Abstract Meaning Representation (AMR,
Banarescu et al. (2013)) is a novel representation
of (sentential) semantics. Such representations
could influence a number of natural language un-
derstanding and generation tasks, particularly ma-
chine translation.

Deeper models can be used for multiple as-
pects of the translation modeling problem. Build-
ing translation models that rely on a deeper repre-
sentation of the input allows for a more parsimo-
nious translation model: morphologically related
words can be handled in a unified manner; seman-
tically related concepts are immediately adjacent

and available for modeling, etc. Language mod-
els using deep representations might help us model
which interpretations are more plausible.

We present an initial discriminative method for
modeling the likelihood of a target language sur-
face string given source language deep semantics.
This approach relies on an automatic parser for
source language semantics. We use a system that
parses into AMR-like structures (Vanderwende et
al., 2015), and apply the resulting model as an ad-
ditional feature in a translation system.

2 Related Work

There is a large body of related work on utilizing
deep language representation in NLP and MT in
particular. This is not surprising considering that
such representations provide abstractions of many
language-specific phenomena, effectively bring-
ing different languages closer together.

A number of machine translation systems start-
ing as early as the 1950s therefore used a form of
transfer: the source sentences were parsed, and
those parsed representations were translated into
target representations. Finally text generation was
applied. The level of analysis is somewhat ar-
guable – sometimes it was purely syntactic, but in
other cases it reached into the semantic domain.

One of the earliest architectures was described
in 1957 (Yngve, 1957). More contemporary ex-
amples of such systems include KANT (Nyberg
and Mitamura, 1992), which used a very deep rep-
resentation close to an interlingua, early versions
of SysTran and Microsoft Translator, or more re-
cently TectoMT (Popel and Žabokrtský, 2010) for
English→Czech translation.

AMR itself has recently been used for abstrac-
tive summarization (Liu et al., 2015). In this work,
sentences in the document to be summarized are
parsed to AMRs, then a decoding algorithm is run
to produce a summary graph. The surface realiza-
tion of this graph then constitutes the final sum-
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Figure 1: Logical Form (computed tree) for the sentence: I would like to give you a sandwich taken from
the fridge.

mary.
(Jones et al., 2012) presents an MT approach

that can exploit semantic graphs such as AMR, in a
continuation of earlier work that abstracted trans-
lation away from strings (Yamada and Knight,
2001; Galley et al., 2004). While rule extrac-
tion algorithms such as (Galley et al., 2004) op-
erate on trees and have also been applied to se-
mantic parsing problems (Li et al., 2013), Jones
et al. (2012) generalized these approaches by in-
ducing synchronous hyperedge replacement gram-
mars (HRG), which operate on graphs. In contrast
to (Jones et al., 2012), our work does not have
to deal with the complexities of HRG decoding,
which runs in O(n3) (Jones et al., 2012), as our
decoder is simply a phrase-based decoder.

Discriminative models have been used in sta-
tistical MT many times. Global lexicon model
(Mauser et al., 2009) and phrase-sense disam-
biguation (Carpuat and Wu, 2007) are perhaps the
best known methods. Similarly to Carpuat and
Wu (2007), we use the classifier to rescore phrasal
translations, however we do not train a separate
classifier for each source phrase. Instead, we train
a global model – similarly to Subotin (2011) or
more recently Tamchyna et al. (2014). Features
for our model are very different from previous
work because they come from a deep represen-
tation and therefore should capture semantic rela-
tions between the languages, instead of surface or
morpho-syntactic correspondences.

3 Semantic Representation

Our representation of sentence semantics is based
on Logical Form (Vanderwende, 2015). LFs are
labeled directed graphs whose nodes roughly cor-
respond to content words in the sentence. Edge
labels describe semantic relations between nodes.

Additional linguistic information, such as verb
subcategorization frames, definiteness, tense etc.,
is stored in graph nodes as bits.

Figure 1 shows a sentence parsed into the log-
ical form. Nodes are represented by word lem-
mas. Relations include Dsub for deep subject,
Dobj and Dind for direct and indirect objects etc.
Bits are shown as flags in parentheses. Note that
this graph may have cycles – for example, the
Dobj of “take” is “sandwich”, but “take” is also
the Attrib of “sandwich”. The verb “take” is also
missing its obligatory subject which is replaced by
the free variable X.

The logical form can be converted using a se-
quence of rules to a representation which con-
forms to the AMR specification (Vanderwende et
al., 2015). We do not use the full conversion
pipeline in our work, so our semantic graphs are
somewhere between the LF and AMR. Notably,
we keep the bits which serve as important features
for the discriminative modeling of translation.

4 Graph-to-String Translation

We develop models for semantic-graph-to-string
translation. These models are essentially discrim-
inative translation models, relying on a decompo-
sition structure similar to both maximum entropy
language models and IBM Models 1, 2 (Brown et
al., 1993), and the HMM translation model (Vogel
et al., 1996). In particular, we see translation as
a process of selecting target words in order condi-
tioned on source language representation as well
as prior target words. Similar to the IBM Mod-
els, we see each target word as being generated
based on source concepts, though in our case the
concepts are semantic graph nodes rather than sur-
face words. That is, we assume the existence of
an alignment, though it aligns the target words to
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Ich möchte dir ...

I like you ..."Dsub^-1" "Dobj->Dind"

einen

sandwich
"Dind^-1->Dobj"

Sandwich

""

sandwich

Figure 2: An example of the translation process illustrating several first steps of translating the sentence
from Figure 1 into German (“Ich möchte dir einen Sandwich...”). Labels in italics correspond to the
shortest undirected paths between the nodes.

source semantic graph nodes rather than surface
words.

Our model views translation as generation of
the target-side sentence given the source-side se-
mantic graph. We assume a generative process
which operates as follows. We begin in the virtual
root node of the graph. At each step, we transi-
tion to a graph node and we generate a target-side
word. We proceed left-to-right on the target side
and we stop once the whole target sentence is gen-
erated. Figure 2 shows an example of this process.

Say we have a source semantic graph G with
nodes V = {n1..nS}, edges E ⊂ V × V , and a
root node nR for R ∈ 1..S. Then the likelihood
of a target string E = (e1, ..., eT ) and alignment
A = (a1, ..., aT ) with ai ∈ 0..S is as follows, with
a0 = R:

P (A,E|G) =
T∏

i=1

P (ai|ai−1
1 , ei−1

1 , G)

P (ei|ai
1, e

i−1
1 , G)

(1)

In this generative story, we first predict each
alignment position and then predict each trans-
lated word. The transition distribution P (ai| · · · )
resembles that of the HMM alignment model,
though the features are somewhat different. The
translation distribution P (ei| · · · ) may take on
several forms. For the purposes of alignment, we
explore a simple categorical distribution as in the
IBM models. For translation reranking, we instead
use a feature-rich approach conditioned on a vari-
ety of source and target context.

4.1 Alignment of Semantic Graph Nodes
We have experimented with a number of tech-
niques for aligning source-side semantic graph
nodes to target-side surface words.

Gibbs sampling. We can attempt to directly
align the target language words to the source
language nodes using a generative HMM-style

model. Unlike the HMM word alignment model
(Vogel et al., 1996), the likelihood of jumping be-
tween nodes is based on the graph path between
those nodes, rather than the linear distance.

Starting from the generative story of Equa-
tion 1, we make several simplifying assumptions.
First we assume that the alignment distribution
P (ai| · · · ) is modeled as a categorical distribution:

P (ai|ai−1, G) ∝ c(LABEL(ai−1, ai))

The function LABEL(u, v) produces a string de-
scribing the labels along the shortest (undirected)
path between the two nodes.

Next, we assume that the translation distribution
is modeled as a set of categorical distributions, one
for each source semantic node:

P (ei|nai) ∝ c(LEMMA(nai)→ ei)

This model is sensitive to the order in which
source language information is presented in the
target language.

The alignment variables ai are not observed.
We use Gibbs sampling rather than EM so that we
can incorporate a sparse prior when estimating the
parameters of the model and the assignments to
these latent alignment variables. At each iteration,
we shuffle the sentences in our training data. Then
for each sentence, we visit all its tokens in a ran-
dom order and re-align them. We sample the new
alignment according to the Markov blanket, which
has the following probability distribution:

P (t|ni) ∝ c(LEMMA(ni)→ t) + α

c(LEMMA(ni)) + αL

×c(LABEL(ni, ni−1)) + β

T + βP

×c(LABEL(ni+1, ni)) + β

T + βP

(2)

L,P stand for the number of lemma/path types,
respectively. T is the total number of tokens in the
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corpus. Overall, the formula describes the prob-
ability of the edge coming into the node ni, the
token emission and finally the outgoing edge. We
evaluate this probability for each node ni in the
graph and re-align the token according to the ran-
dom sample from this distribution.
α and β are hyper-parameters specifying the

concentration parameters of symmetric Dirichlet
priors over the transition and emission distribu-
tions. Specifying values less than 1 for these
hyper-parameters pushes the model toward sparse
solutions. They are tuned by a grid search which
evaluates model perplexity on a held-out set.

Direct GIZA++. GIZA++ (Och and Ney, 2000)
is a commonly used toolkit for word alignment
which implements the IBM models. In this set-
ting, we linearized the semantic graph nodes us-
ing a simple heuristic based on the surface word
order and aligned them directly to the target-side
sentences. We experimented with different sym-
metrizations and found that grow-diag-final-and
gives the best results.

Composed alignments. We divided the align-
ment problem into two stages: aligning semantic
graph nodes to source-side words and aligning the
source- and target-side words (i.e., standard MT
word alignment). We then simply compose the
two alignments. For the alignment between source
graph nodes and source surface words, we have
two options: we can either train a GIZA++ model
or we can use gold alignments provided by the se-
mantic parser. For the second stage, we need to
train a GIZA++ model.

We evaluated the different strategies by manu-
ally inspecting the resulting alignments. We found
that the composition of two separate alignment
steps produces clearly superior results, even if it
seems arguable whether such division simplifies
the task. Therefore, for the remaining experi-
ments, we used the composition of gold alignment
and GIZA++, although two GIZA++ steps per-
formed comparably well.

4.2 Model

For our discriminative model, the alignment is as-
sumed to be given. At training time, it is the
alignment produced by the parser composed with
GIZA++ surface word alignment. At test time, we
compose the alignment between graph nodes and
source surface tokens (given by the parser) with
the bilingual surface word alignment provided by

the MT decoder.
Turning to the translation distribution, we use a

maximum entropy model to learn the conditional
probability:

P (ei|nai , nai−1 , G, e
i−1
i−k+1) =

exp
(
w · f(ei, nai , nai−1 , G, e

i−1
i−k+1)

)
Z

(3)

where Z is defined as∑
e′∈GEN(nai )

exp(w · f(e′, nai , nai−1 , G, e
i−1
i−k+1))

The GEN(n) function produces the possible
translations of the deep lemma associated with
node n. We collect all translations observed in
the training data and keep the 30 most frequent
ones for each lemma. Our model thus assigns zero
probability to unseen translations.

Because of the size of our training data, we used
online learning. We implemented a parallelized
(multi-threaded) version of the standard stochas-
tic gradient descent algorithm (SGD). Our learn-
ing rate was fixed – using line search, we found
the optimal rate to be 0.05. Our batch size was set
to one; different batch sizes made almost no dif-
ference in model performance. We used online L1
regularization (Tsuruoka et al., 2009) with weight
1. We implemented feature hashing to further im-
prove performance and set the hash length to 22
bits. We shuffled our data and split it into five parts
which were processed independently and their fi-
nal weights were averaged.

4.3 Feature Set

Our semantic representation enables us to use a
very rich set of features, including information
commonly used by both translation models and
language models. We extract a significant amount
of information from the graph node nai aligned to
the generated word:

• lemma,

• part of speech,

• all bits.

We extract the same features from the previous
graph node (nai−1), from the parent node. (If there
are multiple parents in the graph, we break ties in
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a consistent but heuristic manner, picking the left-
most parent node according to its position in the
source sentence) We also gather all the bits of the
parent and the parent relation. These features may
capture agreement phenomena.

We also look at the shortest path in the semantic
graph from the previous node to the current one
and we extract features which describe it:

• path length,

• relations (edges) along the path.

We use the lemmas of all nodes in the seman-
tic graph as bag-of-word features, as well as all
the surface words in the source sentence. We also
extract lemmas of nodes within a given distance
from the current node (i.e. graph context), as well
as the relation that led to these nodes. Together,
these features ground the current node in its se-
mantic context.

An additional set of features handle the fact that
source nodes may generate multiple target words,
and the distribution over subsequent words should
be different. We have a feature indicating the num-
ber of words generated from the current node, both
in isolation, conjoined with the lemma, and con-
joined with the part of speech. We also have a
feature for each word previously generated by this
same node, again in isolation, in conjunction with
the lemma, and in conjunction with the part of
speech. This helps prevent the model from gen-
erating multiple copies of same target word given
a source node.

On the target side, we use several previous to-
kens as features. These may act as discriminative
language model features.

During MT decoding, our model therefore must
maintain state, which could present a computa-
tional issue. The language model features present
similar complexity as conventional MT state, and
the features about prior words generated from the
same node require greater memory. Were this cost
to become prohibitive, a simpler form of the prior
word features would likely suffice.

5 Experiments

We tested our model in an n-best re-ranking ex-
periment.

We began by training a basic phrase-based MT
system for English→French on 1 million paral-
lel sentence pairs and produced 1000-best lists for

three test sets provided for the Workshop on Sta-
tistical Machine Translation (Bojar et al., 2013)
– WMT 2009, 2010 and 2013. This system had
a set of 13 commonly used features: four chan-
nel model scores (forward and backward MLE
and lexical weighting scores), a 5-gram language
model, five lexicalized reordering model scores
(corresponding to different ordering outcomes),
linear distortion penalty, word count, and phrase
count. The system was optimized using minimum
error rate training (Och, 2003) on WMT 2009.

Dataset Baseline +Semantics
WMT 2009 = devset 17.44 17.55
WMT 2010 17.59 17.64
WMT 2013 17.41 17.55

Table 1: BLEU scores of n-best reranking in
English→French translation.

For reranking, we gathered 1000-best lists for
the development and test sets. We added six scores
from our model to each translation in the n-best
lists. We included the total log probability, the
sum of unnormalized scores, and the rank of the
given output. In addition, we had count features
indicating the number of words that were not in
the GEN set of the model, the number of NULLs
(effectively deleted nodes), and a count of times a
target word appeared in a stopword list. In the end,
each translation had a total of 19 features: 13 from
the original features and 6 from this approach.

Next, we ran one iteration of the MERT opti-
mizer on these 1000-best lists for all of the fea-
tures. Because this was a reranking experiment
rather than decoding, we did not repeatedly gather
n-best lists as in decoding. The resulting feature
weights were used to rescore the test n-best lists
and evaluated the using BLEU; Table 1 shows the
results. We obtained a modest but consistent im-
provement. Once the model is used directly in the
decoder, the gains should increase as it will be able
to influence decoding.

6 Conclusion

We have presented an initial attempt at including
semantic features in a statistical machine trans-
lation system. Our approach uses discriminative
training and a broad set of features to capture mor-
phological, syntactic, and semantic information in
a single model. Although our gains are not par-
ticularly large yet, we believe that additional ef-
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fort on feature engineering and decoder integration
could lead to more substantial gains.

Our approach is gated by the accuracy and con-
sistency of the semantic parser. We have used a
broad coverage parser with accuracy competitive
to the current state-of-the-art, but even the state-
of-the-art is rather low. It would be interesting
to explore more robust features spanning multi-
ple analyses, or to combine the outputs of multiple
parsers. Even syntax-based machine translation
systems are dependent on accurate parsers (Quirk
and Corston-Oliver, 2006); deeper analyses are
likely to be more dependent on parse quality.

In a similar vein, it would be interesting to eval-
uate the impact of morphological, syntactic, and
semantic features separately. A careful feature ab-
lation and exploration would help identify promis-
ing areas for future research.

We have only scratched the surface of possi-
ble integrations. Even this model could be ap-
plied to MT systems in multiple ways. For in-
stance, rather than applying from source to tar-
get, we might evaluate in a noisy channel sense.
That is, we could predict the source language sur-
face forms given the target language translations.
Furthermore, this would allow incorporation of a
target semantic language model. This latter ap-
proach is particularly attractive, as it would ex-
plicitly model the semantic plausibility of the tar-
get. Of course, this would require target language
semantic analysis: either we would be forced to
parse n-best outcomes from some baseline system,
or integrate the construction of target language se-
mantics into the MT system. We believe that in-
cluding such models of semantic plausibility holds
great promise in preventing “word salad” outputs
from MT systems: sentences that simply cannot
be interpreted by humans.
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