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Abstract

High agreement is a common objective
when annotating data for word senses.
However, a number of factors make per-
fect agreement impossible, e.g. the limi-
tations of sense inventories, the difficulty
of the examples or the interpretation pre-
ferences of the annotators. Estimating po-
tential agreement is thus a relevant task
to supplement the evaluation of sense an-
notations. In this article we propose two
methods to predict agreement on word-
annotation instances. We experiment with
a continuous representation and a three-
way discretization of observed agreement.
In spite of the difficulty of the task, we find
that different levels of agreement can be
identified—in particular, low-agreement
examples are easier to identify.

1 Introduction

Sense-annotation tasks show less-than-perfect
agreement scores. However, variation in agree-
ment is not the result of featureless, white noise
in the annotations; Krippendorff (2011) defines
disagreement as by chance—caused by unavoid-
able inconsistencies in annotator behavior—and
systematic—caused by properties of the data.

Our goal is to predict the agreement of sense-
annotated examples by examining their linguistic
properties. If we can identify properties predictive
of low or high agreement, then we can claim that
some of the agreement variation in the data is in-
deed systematic.

Artstein and Poesio (2008) provide an interpre-
tation of Kripperdorff’s α coefficient to describe
the reliability of a whole annotation task and the
way that observed agreement (Ao) is calculated
for each example. Strictly speaking, the value of
α only provides an indication of the replicability

of an annotation task, but we propose that the dif-
ficulty of annotating a particular example will in-
fluence its local observed agreement. Thus, easy
examples will have a high Ao, that will be lower
for more difficult examples.

Identifying low-agreement examples by their
linguistic features would help characterize con-
texts that make words difficult to annotate. Es-
timating the agreement of examples has an im-
mediate application for data collection, as a way
of estimating the proportion of examples of each
difficulty level that one wants to sample. More-
over, a model of (dis)agreement can help interpret
the mispredictions of a word-sense disambigua-
tion system without requiring the data to be multi-
ply annotated.

Observed agreement Ao is a continuous-valued
variable in the unit interval and we tackle its pre-
diction as a regression task (Section 4.1). We
also experiment with a discretized version of ob-
served agreement into low, mid and high agree-
ment, which is predicted using classification (Sec-
tion 4.2).

2 Related work

In their study, Yarowsky and Florian (2002) ex-
amine the relation between agreement variation
and predictive power of word-sense disambigua-
tion systems, which is later expanded by Lopez de
Lacalle and Agirre (2015a). Our work is differ-
ent in that we do not study the relation between
agreement and performance, but between exam-
ple properties and agreement. Martı́nez Alonso
(2013) experiments with prediction of agreement
for coarse-sense annotation.

Tomuro (2001) uses the disagreement between
annotators of two English sense-annotated cor-
pora to provide insights on the relations between
synsets, and more recent studies (Jurgens, 2013;
Plank et al., 2014; Jurgens, 2014; Lopez de La-
calle and Agirre, 2015b) have empirically tackled
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the issue of inter-annotator disagreement as a phe-
nomenon that is potentially informative for natural
language processing. Other research efforts advo-
cate for models of annotator behavior (Passonneau
et al., 2009; Passonneau et al., 2010; Passonneau
and Carpenter, 2014; Cohn and Specia, 2013).

3 Data

We conduct our study on sense-annotated datasets,
keeping only the examples with at least two anno-
tations per item. In the datasets with two anno-
tators and one adjudicator, we disregard adjudica-
tions given their potentially different bias.

1 MASCC The English crowdsourced lexical-
sample word-sense corpus from Passonneau
and Carpenter (2014).

2-5 MASCE* The expert annotations for a series
of English lexical-sample words from Pas-
sonneau et al. (2012), with several annota-
tion rounds. We include the second, third
and fourth round of annotation in our ex-
periments. We use on the whole dataset
(MASCEW) pooling all the rounds together,
as well as on each round independently,
namely MASCE2, MASCE3 and MASCE4.

6 FNTW The English Twitter FrameNet data of
Søgaard et al. (2015). We treat the frame-
name layer as a word-sense layer, and disre-
gard the arguments.

7 ENSST The English supersense-annotated
data of Johannsen et al. (2014).

8 EUSC The Basque lexical-sample SemCor of
Agirre et al. (2006).

9 DASST The Danish supersense-annotated
data of Martı́nez Alonso et al. (2015).

Table 1 provides the characteristics of the datasets.
The annotation task can be lexical-sample (ls) or
all-words (aw). The number of instances is dif-
ferent from the number of sentences for all-words
annotation. The type of annotators can be expert
(ex) or crowdsourced (cs). The α scores can differ
from those reported in the datasets’ documentation
given our example-selection criteria. The last two
columns describe the target variables of observed
agreement (Ao) and the proportion of low-, mid-
and high-agreement instances, cf. 3.2 for details.

3.1 Features

We define an instance as a sentence with a target
word for annotation. If a sentence has n annotated
target words, it yields n instances. For each in-

stance, we obtain features for a word w and its
syntactic parent p in a sentence s, organized in fea-
ture groups. The word identities ofw and p are not
included in the features to keep the models more
general. Number of features are in parentheses.
Frequency(2) We calculate the frequency of w
and p, scaling by log(rank(x) + 1)−1.
Morphology (5) We consider the part-of-speech
tag (POS) of w, of p, and the POS-bigram at the
left and at the right of w. In order to incorporate
information on inflectional complexity, we calcu-
late which proportion of the frequency of the stem
of w is covered by w, e.g. the occurrences of
‘jumping’ constitute 22% of the occurrences of the
stem ‘jump’.
Syntax (5) We calculate the number of dependents
of w and p, and a bag of words for the labels of
the dependents of w and p. We also include the
distance from w to the root node, and the linear
distance between w and p.
Context (5) We calculate the length of s in tokens,
the proportion ofw made up of content words, and
a bag of words of the context of w, i.e. all the
words of s except w. To capture context speci-
ficity, we calculate the maximum and the sum of
the sentence-wise idf of each stem in s.
Sense inventory (2) We calculate the number of
possible senses for w, plus an additional sense
when w could be discarded from the annotation—
like the tag ‘O’ for supersenses—or the right
synset was not present in WordNet. We also cal-
culate the sense entropy for each word following
Yarowsky and Florian (2002).

We use TreeTagger (Schmid, 1994) for POS
tagging and TurboParser (Martins et al., 2010)
for dependency parsing, both trained on Univer-
sal Dependencies v1.1,1 to allow cross-language
feature comparison. We estimate frequencies on
a 100M-word corpus for English (Ferraresi et al.,
2008) and Danish (Asmussen and Halskov, 2012),
and on 13M for Basque (Leturia, 2012), using
Snowball stemming.

3.2 Target variable

Regression Instance-wise observed agreement
(Ao) is the target variable for the regression ex-
periments. We obtain Ao for each example by
counting the pairwise matches in the annotation
and dividing over the amount of pairwise combi-

1https://lindat.mff.cuni.cz/
repository/xmlui/handle/11234/LRT-1478
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Dataset lang inventory task sent inst ann type α Ao ± σ L/M/H

MASCC English synset ls 44.6k 44.6k 13-25 cs .40 .14 ± .24 25/44/31
MASCEW English synset ls 2.6k 2.6k 2-6 ex .48 .07 ± .35 24/21/55
—MASCE2 English synset ls 1.5k 1.5k 5-6 ex .51 .41 ± .30 21/36/43
—MASCE3 English synset ls 500 500 3 ex .69 .80 ± .33 28/00/72
—MACSE4 English synset ls 618 618 2 ex .63 .73 ± .44 27/00/73
ENSST English supersense aw 39 326 3 ex .67 .69 ± .36 45/00/55
FNTW English frame aw 236 958 3 ex .82 .82 ± .31 26/00/74
EUSC Basque synset ls 20.6k 20.6k 2 ex .76 .76 ± .43 24/00/76
DASST Danish supersense aw 1.2k 9.5k 2 ex .65 .67 ± .47 33/00/67

Table 1: Dataset characteristics in terms of language, sense inventory, task (al:all-words, ls:lexical sam-
ple), no. of sentences, no. of instances, no. of annotators, type of annotators (ex:expert,cs:crowdsourced),
α, observed agreement and percentage of LOW/MID/HIGH agreement examples.

nations. Note that α is an aggregate measure that
is obtained dataset-wise, and Ao is the only agree-
ment measure available for individual instances.

Classification The target variable for the classi-
fication experiments is a discretization of Ao into
three agreement-level classes, namely LOW, MID

and HIGH. The threshold for LOW is set atAo ≤ 1
3 ,

and for HIGH at Ao ≥ 2
3 . The MID value is only

possible for datasets with more than three annota-
tors (cf. Table 1).

4 Experiments

We use the scikit-learn2 implementation for all
learning algorithms, and train and test on 10-fold
cross validation.

Regression We use L2-regularized linear re-
gression. The baselines for regression are MEAN,
where all instances receive the mean Ao of the
dataset, and MEDIAN, that assigns the median Ao.

Classification We use a maximum-entropy clas-
sifier. The baselines for classification are MFC,
where all instances receive most frequent class,
and the two random baselines: STRA, where the
assigned values are randomly selected via strati-
fied sampling from the distribution of classes in
the dataset, and UNI where values are assigned
from the uniform distribution of the three labels.

4.1 Regression
Table 2 shows the results for regression in terms of
mean absolute error (MAE). This metric is more
suitable than root-mean-square error (RMSE)
when evaluating regression in the [0,1] interval.

2http://scikit-learn.org/

REGRESSION MEAN MEDIAN

MASCC 0.19 0.21 0.21
MASCEW 0.31 0.32 0.37
—MASCE2 0.27 0.26 0.25
—MASCE3 0.36 0.29 0.20
—MASCE4 0.46 0.40 0.27
ENSST 0.43 0.35 0.31
FNTW 0.27 0.26 0.18
EUSC 0.35 0.37 0.24
DASST 0.42 0.44 0.33

Table 2: Mean absolute error of prediction for
regression and for mean and median baselines.
Datasets where the system outperforms the best-
performing baseline are marked in bold.

Datasets where the system outperforms both base-
lines are in bold.

The results for regression show that predicting
instance-wise Ao is a hard task. The learnability
of the task is limited by the resolution of the tar-
get variable; the only two datasets that can beat all
baselines (and thus have lower MAE) have many
instances, and many annotators (about 50% of the
instances in MASCEW have five or more annota-
tors). Also, size of the dataset is a relevant factor
for a good estimation of Ao.

We also examine goodness of fit in terms of R2

(determination coefficient or explained variance).
R2 does not strictly say how much agreement is
systematic, but how much of the agreement varia-
tion within a dataset can be explained by the fea-
tures. The only two datasets with positive R2 are
MASCC and EUSC, at .082 and 0.014 respectively.
EUSC has only two annotators per instance, but it
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MAXENT MFC STRA UNI

MASCC 0.45 (0.13) 0.27 0.35 0.37
MASCEW 0.48 (0.15) 0.39 0.39 0.35
—MASCE2 0.39 (0.08) 0.25 0.34 0.33
—MASCE3 0.62 (0.05) 0.60 0.57 0.53
—MASCE4 0.63 (0.03) 0.62 0.62 0.55
ENSST 0.50 (-0.02) 0.39 0.51 0.49
FNTW 0.71 (0.22) 0.63 0.61 0.51
EUSC 0.68 (0.09) 0.65 0.63 0.54
DASST 0.60 (0.11) 0.53 0.55 0.53

Table 3: Agreement prediction as classification
compared against the most-frequent, stratified and
uniform baseline. Datasets where the system out-
performs the hardest baseline are marked in bold,
error reduction in parentheses.

is a large dataset that allows mapping some prop-
erties of the features onto the variance of Ao.

The two datasets with a goodness of fit over
baseline are the largest ones. This behavior indi-
cates that the regression method suffers from the
data bottleneck. Smooth estimation of continuous
values might be more sensitive to data volume than
estimation of discrete values, therefore we experi-
ment with classification in the next section.

4.2 Classification

Table 3 shows the results for classification in terms
of micro-averaged F1 score. Error reduction over
the hardest baseline is given in parentheses.

The ENSST dataset is the only dataset where
the system cannot beat both baselines, albeit by a
small margin. It is a small, all-words dataset, and
the data might be too heterogenous for the model
to make sense of it with only 326 instances. The
F1 scores are not very high in absolute terms, but
agreement prediction is as least as hard as sense
prediction.

MAE and F1 are not comparable measures;
without evaluating both on error reduction over
equivalent baselines, we cannot strictly say that
classification outperforms regression. Neverthe-
less, classification seems a promising approach.

4.3 Feature analysis

Figure 1 shows the Spearman correlation with
Ao for the numeric features on two English
datasets, namely MASCC and FNTW. Even
though there is variation in the magnitude across

datasets, we observe strong negative correlation
of the sense inventory features (z senseentropy,
z nlabels), but also for the frequency of the target
word (a targetfreq). Notice that these features are
also colinear, and in word-sense annotation high-
frequency words can be partly more difficult to an-
notate because they can be more polysemous.

Given these correlations, the feature repertoire
we use captures better the low-agreement area of
the data, but no feature has a consistently high
positive correlation with agreement. That is, the
predictors for low-agreement are more reliable
than those for high agreement.

A possible candidate for high-agreement pre-
diction could be the proportion of content words
over the length of the context, arguably because
more lexically rich context are easier to desam-
biguate by the annotators. This feature has a pos-
itive value for most datasets except MASCC. This
property has already been noted by Passonneau et
al. (2009), who mention that ‘greater specificity in
the contexts of use leads to higher agreement’.

Syntactic complexity is also an indicator of dif-
ficulty. Words with many dependents are of-
ten more difficult to annotate (d targetdeps has a
consistently negative correlation with Ao), while
words with many syntactic siblings are placed in
more specific contexts and are easier to anno-
tate, giving d headdeps a slight positive correla-
tion with Ao. This behavior holds for all the En-
glish datasets except MASCC, as well as for EUSC.

We have also performed group-wise feature ab-
lation tests on regression and classification, with
similar results. Based on the contribution of single
feature groups, we find that the sense-inventory
group constantly outperforms the other groups,
followed by the morphology group. When the
sense inventory is ignored from the features, per-
formance almost always decreases, indicating that
sense inventory information is very valuable to
predict agreement. However, context informa-
tion is necessary to distinguish between examples
of the same word (say, in a one-lemma lexical-
sample dataset), where the sense-inventory fea-
tures would be constant across the whole dataset.

Similarly, in the class-based experiments of
Martı́nez Alonso (2013), certain features like plu-
ral or number of dependents are strong predictors
for low agreement when annotating between the
container and the content senses of words like
bowl and glass. However, our datasets are ei-
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Figure 1: Correlation between the numeric-valued features and Ao for MASCC and FNTW

ther all-words or groupings of lexical-sample an-
notations for different words (e.g. MASC2 contains
examples of fair-j, know-v, land-n, etc.), which
means that some of the class- or lemma-dependent
features might be swamped by the superposition of
features from the other words.

Nevertheless, the systems do not always im-
prove when adding context features, which sug-
gests that there is room for improvement in cap-
turing contextual information for sense-annotated
instances.

5 Conclusions and further work

This article addresses the prediction of instance-
wise agreement for sense-annotated data. We have
described a method to model agreement as a con-
tinuous value, and as a set of three discrete values.
We use a feature scheme that tries to give account
for the lexical, morphologic and syntactic proper-
ties of the examples. We have conducted experi-
ments on nine datasets, which comprise three lan-
guages, all-words vs. lexical-sample word annota-
tions, and crowdsourced vs. expert annotations.

The overall conclusiveness of the study requires
expanding this research to more datasets and lan-
guages, as well as further exploring the differ-
ence in annotator bias between expert and crowd-
sourced annotations. Our feature repertoire can
be expanded with characteristics of the sense in-
ventory in terms of sense relatedness like autohy-
ponymy, depth in the sense ontology, or qualitative

properties of the senses such abstractness. Context
features can also be expanded by adding informa-
tion from word sense induction and distributional
models.

Moreover, if we are to examine agreement vari-
ation in full-document (as opposed to sentence-by-
sentence) annotation, we suggest that document-
level frequency would help concretize the mean-
ing of a certain word, following the principle of
one sense per discourse (Gale et al., 1992).

If the numeric prediction of agreement is desir-
able over classification, a metric like annotation
entropy (Lopez de Lacalle and Agirre, 2015a) is
worth considering as an alternative measure toAo,
since it an information-theoretical measure that
also gives account for distribution skewness.
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