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Abstract

Cancer stages, which summarizes extent
of cancer progression, is an important
tool for evidence-based medical research.
However, they are not always recorded in
the electronic medical record. In this pa-
per, we describe work for annotating a
medical text corpus with the goal of pre-
dicting patient level liver cancer staging in
hepatocellular carcinoma (HCC) patients.

Our annotation consisted of identify-
ing 11 parameters, used to calculate liver
cancer staging, at the text span level as
well as at the patient level. Also at
the patient level, we annotated stages for
three commonly-used liver cancer stag-
ing schemes. Our inter-rater agreement
showed text annotation consistency 0.73
F1 for partial text match and 0.91 F1 at the
patient level.

After annotation, we performed sev-
eral document classification experiments
for the text span annotations using stan-
dard machine learning classifiers, includ-
ing decision trees, maximum entropy,
naive Bayes and support vector machines.
Thereby, we identified baseline perfor-
mances for our task at 0.63 F1 as well as
strategies for future improvement.

1 Introduction

Despite their importance in research, cancer stages
are not always recorded in the electronic medical
record (EMR) in structured or unstructured format
(Evans et al., 1998). Even when collected they are
often inaccurate (Yau et al., 2002)(Sexton et al.,
2006). On the other hand, review of patient notes
for medical conditions is both time-consuming
and expensive. One strategy to minimize these
costs is to leverage natural language processing
(NLP) to automate the process.

In this paper, we describe work for annotating
a corpus with the goal of predicting patient level
liver cancer staging in hepatocellular carcinoma
(HCC) patients. Our group took a detailed anno-
tation approach, which included text span level
and patient level annotation of parameters used
in staging, as well as patient level annotation of
stages for three liver cancer staging schemes. In
our results we present our inter-rater agreements
and our analysis from studying our domain
experts’ annotations. Finally, in our last section
we deliver preliminary information extraction
baselines using several standard machine learning
classifiers.

Clinically relevancy for this task is especially
well exemplified by HCC for which has many
competing treatment options but no universally
accepted clinical guidelines (Han et al., 2011).
Moreover, HCC progresses differently across
various age groups, ethnicities, lifestyles, and
associated co-mordidities (McGlynn and London,
2011). Automatic staging may facilitate evidence-
based research for targeted disease management
by leveraging the EMR for best outcomes. Its
scaleable nature would allow the process to be
adapted for volumes of historical data, efficiently
unlocking more information than comparable
prospective trial studies.

2 Background

Cancer staging is used to summarize the extent
of disease for cancer patients. Each cancer do-
main may have different criteria for its stages.
For example, ovarian cancer stages differentiates
between whether one ovary is invaded, both, or
the entire pelvic region (American Cancer Soci-
ety, 2014).

For liver cancers, in addition to tumor morphol-
ogy and spread, patient performance status as well
as liver function variables are incorporated into
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Figure 1: BCLC staging logic

various staging schemes. However, because there
are various measures of tumor growth, liver fail-
ure, and overall patient well-being, over six dif-
ferent international liver cancer staging schemes
exist (Sirivatanauksorn and Tovikkai, 2011). For
our project we focus on capturing the parameters
and classifications for three commonly used stag-
ing schemes: the American Joint Committee on
Cancer (AJCC), the Barcelona Clinic Liver Can-
cer (BCLC), and the Cancer of the Liver Italian
Program (CLIP) staging schemes (França et al.,
2004). Figure 1 shows an example of the stage
parameters, e.g. ECOG, and the decision logic for
classifying BCLC stages, e.g. Stage A1.

In all, there are a total of 11 text parameters and
4 structured data laboratory parameters among the
3 staging schemes. Because Child-Pugh, one of
the text parameters, is itself a classification sys-
tem for severity of liver disease, when necessary,
it must be calculated according to Table 1 logic.

The purpose of annotating stage parameters, in
addition to overall stages, is two-fold. Firstly,
more detailed annotation can presumably help
with performance. Secondly, stage parameters

Variable
Points

1 2 3
Albumin (g/dL) > 3.5 2.8-3.5 < 2.8

Ascites None Mild/Moderate Severe
Bilirubin (mg/dL) < 2 2-3 > 3

Hepatic Encephalopathy None Grade 1-2 Grade 3-4
Prothrombin INR < 1.7 1.7-2.3 > 2.3

Table 1: Child-Pugh parameters. Adding up the
points for all variables, stage is assigned where
Child-Pugh A: 5-6 points, Child-Pugh B: 7-9
points, and Child-Pugh C: 10-15 points.

may be used in more than one staging scheme, or
may be re-used if a staging classification algorithm
changes, given some little additional annotation.

3 Related work

We describe previous work by grouping systems
by those that predict a cancer stage and those that
extract cancer characteristics which make up stage
parameters.

3.1 Cancer stage prediction
Previous work in automatic cancer staging from
clinical documents focused on TNM cancer stage
classification using document classification. A
brief explanation: T, N, and M represent tumor
size, lymph node spread, and metastasis, respec-
tively. Each parameter takes different values de-
pending on spread. For example T0 means no tu-
mor, while T1-T4 are increasingly larger sizes. An
example TNM stage for a patient is T2 N1 M0.

Nguyen et al. (2007) predicted patient TNM
stage by using multi-class document classification
of concatenated records with support vector ma-
chines (SVM). They tested various hierarchical
set-ups, i.e. binary for each variable vs. all ver-
sus all, etc, achieving accuracies of 64% and 82%
for T and N sub-stages. The same group, Mc-
Cowan et al. (2007) divided the document classi-
fication problem into a number of sentence-level
classifications, in which a sentence is first clas-
sified for a particular parameter, e.g. T2, N1,
etc. After predicting a value for each sentence,
using SVM or some rules, the final stages were
determined by post-processing heuristics. This
strategy improved T and N accuracy to 74% and
87%. In their latest work, Nguyen et al. (2010)
used a symbolic logic approach. Rules leveraged
concept-normalization, negation, and normaliza-
tion through the SNOMED-CT hierarchy. Their
accuracy using these methods improved to 72%,
78%, and 94% for T, N, and M, respectively.
Martinez and Li (2011) classified report level TN
and ACPS stages, testing a mixture of document
classification, sentence-level extraction, and rule-
based methods and arrived at best F1 scores of
82%, 81%, and 75% for T, N, and ACPS staging,
respectively.

Viewed from a larger scope, patient cancer stage
prediction may be framed as a special case of clin-
ical phenotype identification, which similarly in-
volves distilling a patient’s multiple clinical data
sources, free-text and structured, to identify a spe-
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cific disease or set of conditions. We will not dis-
cuss this with regards to our work here, but shall
point the reader to an excellent review on pheno-
type cohorts using EMRs (Shivade et al., 2014).

3.2 Cancer information extraction

Two previous works focused specifically on liver
cancer information extraction. One was a 2013
rule-based system (Ping et al., 2013) that ex-
tracted elements of liver cancer diagnosis, tumor
characteristics, staging (BCLC and Child-Pugh),
co-morbidities, and treatments using regular
expression and rules. They captured concepts
and relations in a diverse set of report types, with
performances ranging 92-99% F1.

The other study was a 2014 hybrid system,
Wang et al. (2014), in which HCC information
was extracted from operation notes. First, relevant
sentences of interest for a parameter were iden-
tified with keyword look-ups, then information
was structured using a conditional random field
algorithm. They achieved a 64% F1 performance.

A plethora of general cancer information
extraction systems exist, concentrating on param-
eters such as tumor size, number and metastasis.
Many use dictionary-based methods (Coden,
2009)(Ashish et al., 2014) for extracting entities
before structuring them using specific algorithms.
However statistical named entity recognition
methods (Ou and Patrick, 2014) and document
classification methods are also used (Jouhet et al.,
2012)(Kavuluru et al., 2013).

Our annotation approach combines previous meth-
ods. Similar to McCowan et al. (2007) we an-
notated for stage parameters at a sub-document
level before making an overall staging classifica-
tion. However, we additionally annotated liver
cancer specific information and marked at a text
span level, as in Ping et al. (2013) and Wang et
al. (2014). Unlike previous information extrac-
tion approaches, we annotated stage parameters at
a patient level in addition to text span levels. Un-
like previous cancer stage prediction systems, we
classify over various report types instead of only
histology and pathology reports.

4 Corpus Creation

4.1 Data and Processing

A cohort was drawn from new patients visiting the
University of Washington (UW) Medical Center

primary liver cancer clinic from 1/2011-12/2013
with approval by the UW Human Subjects Com-
mittee of Institutional Review Board. Included
data for each patient comprised of: (1) all clinical
notes from the day of visit to the clinic, including
surgery, admit notes etc, (2) all laboratory results
within 30 days prior to and following the visit day,
and (3) radiology reports within 3 months prior to
and 1 month following the visit day.

Patient records were manually reviewed by our
clinical expert to exclude patients who had been
seen prior to the start of the study and patients
who had an obviously irrelevant diagnoses. Pre-
viously seen patients were excluded because they
most likely had already started treatment, and our
population of interest were patients at first presen-
tation. Irrelevant report types were removed from
the annotation set. For our study, we focused on
the subset of patients that had at least one clini-
cal report, at least one radiology report, and the
full set of labs needed for staging. The resulting
dataset included 236 patients and their associated
422 clinical and 309 radiology reports.

4.2 Guideline Creation

Guidelines for liver cancer stage and stage param-
eter annotations were developed primarily by an
interventional radiologist with input from another
interventional radiologist and a group of NLP sci-
entists. Stage parameter values were discretized
according to stage guidelines. The stage and stage
parameters are described following.

Stage:
AJCC has classifications (I, II, IIIA, IIIB, IIIC,

IVA, IVB) and is based on the TNM stage frame-
work that primarily addresses tumor characteris-
tics and spread but not liver functioning statuses.

BCLC has classifications (A1, A2, A3, A4, B,
C, D) and is the only staging scheme that takes
into account overall performance status (ECOG).

CLIP has classifications (0, 1, 2, 3, 4, 5, 6) and
is the only staging scheme that takes into account
the relative size of the tumor to the liver.

Stage parameters:
Ascites : accumulation of fluid in the peritoneal

cavity (e.g., “no significant ascites,” “does not
endorse abdominal swelling”) with values (None,
Mild, Moderate-Severe)

Child-Pugh : a measurement of liver cirrhosis
(e.g., “Child’s B,” “his CTP score would be 5”)
with values (A, B, C)

ECOG (Eastern Cooperative Oncology
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Group) Performance Status : a scaled measure
of general well-being where 0 is fully active
and 5 is dead (e.g., “ECOG 0,” “She notes good
energy”) with values (0, 1, 2, ≥3)

Extrahepatic invasion : direct spread of
cancer outside of the liver (e.g., “No evidence
of extrahepatic extension,” “the tumor may [...]
extend from the liver to the right ribs or muscular
wall”) with values (No, Yes)

Hepatic encephalopathy : confusion or
altered consciousness due to liver failure (e.g.,
“patient denies confusion, forgetfulness, or other
symptoms of hepatic encephalopathy,” “lactulose”
in the medication list) with values (None, Mild,
Severe)

Macrovascular invasion : spread of cancer
to nearby blood vessels (e.g. “vascular inva-
sion: possible involvement of middle hepatic
vein branches,” “no evidence of portal vein
thrombosis”) with values (No, Yes-minor branch,
Yes-major branch)

Metastasis : spread of cancer to outside the
liver, such as to lymph nodes (e.g., “lymph
nodes suspicious for metastatic involvement:
none,” “no lymphadenopathy”) with values (No,
Yes-regional, Yes-distal)

Portal hypertension : elevation of hepatic
venous pressure gradient to greater than 5 mm Hg
(e.g., “no evidence of cirrhosis or portal hyperten-
sion,” “patient had an EGD which showed small
varices”) with values (No, Yes)

Tumor morphology : number and size of
tumor relative to the liver (e.g., “small segment 7
hepatic mass”) with values (Massive ≥ 50% of
liver, Multinodular < 50% of liver, Uninodular
< 50% of liver)

Tumor number : number of liver tumors (e.g.,
“two new liver lesions noted [...] suggesting
hepatomas”) with values (Single, 2-3, >3)

Tumor size : diameter size of liver tumor (e.g.,
“1 lesion measuring 2.1 x 1.7 cm [...] HCC”) with
values (<3 cm, 3-5 cm, >5 cm).

Specifications on which sections to look for stage
parameters in a report were formalized into anno-
tation rules. Hepatic encephalopathy, Child-Pugh,
and ECOG parameters were marked in clinical
notes. Ascites was marked in both clinical notes
and radiology notes. The remaining parameters
were marked in radiology notes and only in clini-
cal notes if they could not be found in radiology
notes. For clinical notes, the annotators started

at the “History of Present Illness” section before
marking the rest of the note. For radiology notes,
the annotators started at the “Impression” section,
and if information could not be found there they
would move on to “Findings” section or the rest
of the report. Repeats of the same information
were not annotated. The exception was for ECOG
in which all descriptive mentions were also anno-
tated. If multiple pieces of information contribute
to the overall value, they were all marked.

4.3 Annotation workflow and software

Annotation occurred in two phases, carried out by
two interventional radiologist. In the first phase,
relevant parts of reports for the 11 stage param-
eters were identified by single annotation, where
the corpus was divided evenly among the anno-
tators by patient. Annotators marked text anno-
tations using Brat (Stenetorp et al., 2012), a web-
based graphical annotation tool, and assigned each
a label, e.g. ECOG, and a value, e.g. 0. Irrel-
evant patients, e.g. patients with irrelevant diag-
nosis, and files, e.g. addenda, abbreviated notes,
and post-treatment radiology notes, were flagged
for exclusion. Figure 2 shows example mark-ups.

During the second phase, the 3 overall stages
and the 11 liver cancer parameters were annotated
at the patient level by the consensus annotation of
the two annotators. This stage required simulta-
neous review of all clinical and radiology notes as
well as laboratory information related to the pa-
tient. The patient level annotation for the 11 liver
cancer parameters was necessary to resolve miss-
ing and conflicting values from the phase I text
annotations. Annotators used a specially built in-
house python Tkinter (Hughes, 2000) interface,
shown in Figure 3. Annotators had access to the
full marked reports as well as a summarized ver-
sion of their annotations displayed in the interface,
along with pertinent laboratory values.

4.4 Text annotations inter-rater agreement

A subset of 20 patients were double annotated
for phase I text annotations to calculate inter-rater
agreement. After one round of annotations, the
annotators met to resolve conflicts and fine-tuned
annotation guidelines. We used precision, (P =

TP
TP+FP ), recall (R = TP

TP+FN ), and F1-measure,
(F1 = 2PR

P+R ), to measure inter-rater agreement,
where TP is true positives, FP is false positives,
and FN is false negatives. True positive matches
were measured by label, value, and partial text
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Figure 2: Example phase I text annotations using Brat

Figure 3: Example phase II patient level annotations. Display panels shows summarized text annotations
(left) and lab values (right). Bottom buttons allow annotation of patient level label-values, including the
11 stage parameters (first four rows) and overall 3 stagings (bottom row).

span overlap. For example, two text annotations
were considered matching if its label, e.g. ascites,
its value, e.g. none, matches exactly and its text
spans (document character offsets) overlap. It is
also possible, to calculate the agreement of text
annotations (still phase I annotations) resolved to
the patient level, e.g. if two annotators both iden-
tify text spans in any patient 0 file with ascites -
none, it is a match.

After the annotator meeting, the microscore
agreement for phase I text annotations improved
from 0.45 to 0.73 F1. Table 2 shows the final
inter-rater microscore agreement consolidated by
label. Phase I patient level agreement improved
from 0.76 to 0.91 F1. The final patient level agree-
ment breakdown is shown in Table 3. Of the 20

sample patients, 3 patients were excluded due to
irrelevant diagnosis.

Discrepancy between the text span and patient
levels quantify how often the two annotators find
the same information in separate files or different
parts of the same document. The higher perfor-
mance at the patient level was expected given the
lower amount of precision needed for patient level
agreement.

Ascites, ECOG, and hepatic encephalopathy,
had lower agreements because they were often re-
peated in different expression formats in differ-
ent report sections. Additionally, one annotator
marked ascites drugs while the other did not. Ex-
trahepatic invasion differences were due to one an-
notator identifying more descriptive information.
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Label TP FP FN P R F1
Ascites 10 9 12 0.53 0.45 0.49
ChildPugh 7 0 0 1.00 1.00 1.00
ECOG 23 6 9 0.79 0.72 0.75
Extrahepatic invasion 6 4 0 0.60 1.00 0.75
Hepatic encephalopathy 12 3 5 0.80 0.71 0.75
Macrovascular invasion 16 6 0 0.73 1.00 0.84
Metastasis 10 2 1 0.83 0.91 0.87
Portal hypertension 11 7 5 0.61 0.69 0.65
Tumor morphology 15 8 8 0.65 0.65 0.65
Tumor number 17 6 7 0.74 0.71 0.72
Tumor size 18 5 5 0.78 0.78 0.78
ALL 145 56 52 0.72 0.74 0.73

Table 2: Phase I inter-rater partial match of label-
value per text span, consolidated by label

Label TP FP FN P R F1
Ascites 9 4 2 0.69 0.82 0.75
ChildPugh 6 0 0 1.00 1.00 1.00
ECOG 14 1 3 0.93 0.82 0.88
Extrahepatic invasion 5 4 0 0.56 1.00 0.71
Hepatic encephalopathy 8 2 2 0.80 0.80 0.80
Macrovascular invasion 13 2 0 0.87 1.00 0.93
Metastasis 9 1 0 0.90 1.00 0.95
Portal hypertension 11 3 0 0.79 1.00 0.88
Tumor morphology 17 1 0 0.94 1.00 0.97
Tumor number 17 0 0 1.00 1.00 1.00
Tumor size 17 0 0 1.00 1.00 1.00
ALL 126 18 7 0.88 0.95 0.91

Table 3: Phase I inter-rater exact match of label-
value per patient, consolidated by label

4.5 Phase I annotation statistics

A total of 36 patients and 91 documents were
marked for exclusion during phase I of annotation.
The total number of patients and associated docu-
ments left were 200 and 545, respectively. Of 545
documents, 303 were clinical notes and 242 were
radiology notes. There was a total of 2108 text
annotations. A breakdown is shown in Table 4.

4.6 Phase II annotation

At the time this paper was written, phase II patient
level annotations were still under way, however
the corresponding 20 patients used for inter-rater
agreement had been staged. For this sample, we
found cases where discrepancies in data sources
or missing information led to indeterminable stage
labels. This occurred for 2 out of 17 non-excluded
patients in the 20 patient sample, in which BCLC
staging could not be determined due to irreconcil-
able ECOG values.

5 Analysis of text annotation evidence

In this section, we describe the characteristics of
text annotation evidence from the completed phase
I of annotations, with the goal of highlighting id-

Label Value Freq
Ascites Mild-Suppressed 56

Moderate-Severe/Refractory 21
None 189

Child-Pugh A 73
B 36
C 7

ECOG 0 179
1 102
2 29
≥ 3 10

Extrahepatic No 74
invasion Yes 3
Hepatic Mild/Suppressed 48

encephalopathy None 120
Severe/Refactory 3

Macrovascular No 168
invasion Yes - major branch 24

Yes - minor branch 10
Metastasis No 141
invasion Yes - distal 7

Yes - regional 8
Portal No 16

hypertension Yes 138
Tumor Massive, ≥ 50% liver 26

morphology Multinodular, < 50% liver 56
Uninodular, < 50% liver 132

Tumor number Single 139
2-3 47

> 3cm 26
Tumor size < 3cm 100

3-5 cm 63
> 5 cm 57

Table 4: Text annotation statistics

iosyncracies or potential challenges for building
an information extraction system.

5.1 Data sparsity for severe conditions

Not all values for each parameter label are well
populated in our dataset, as shown in Table 4. Typ-
ically the more severe cases are less represented
in our data. This was probably due to the na-
ture of our exclusion criteria (only new patients
were included), as well as the rapidly declining na-
ture of liver cancer. Five year survival rate is less
than 20%, with late-stage patients having less than
a year to live (American Cancer Society, 2014).
Thus, patients diagnosed at more advanced stages
may not be referred to the liver tumor clinic. In
our system, we will have to handle these cases of
class imbalance.

5.2 Overlapping evidence

Studying our annotations, we observed that related
stage parameter types may be referenced by the
same text evidence. For example, “Lesion in seg-
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ment 4A measuring 3.9 x 3.6 cm” implies both that
there is a single tumor number and a tumor size be-
tween 3-5 cm. Similarly, “Extrahepatic metastatic
disease: None” suggests both that there is no ex-
trahepatic invasion and no metastasis. Knowl-
edge that some parameters may be grouped into
the same evidence may be useful when building
the system in terms of joint classification or high-
level features. Table 5 gives the groupings of the
various stage parameters. Parameters in the same
group are more likely to have overlapping evi-
dence, though portal hypertension and macrovas-
cular invasion tend to have little overlap with other
evidence types. Ascites and hepatic encephalopa-
thy sometimes reference the same passage, e.g.
“no evidence of liver disease sequelae.” Mean-
while, tumor size, morphology, and number rarely
do not reference the same text.

Liver/liver disease Ascites
ChildPugh

Hepatic encephalopathy
Portal hypertension

Overall health ECOG
Tumor Tumor morphology

Tumor number
Tumor size

Liver/liver disease Extrahepatic invasion
AND Macrovascular invasion

tumor Metastasis

Table 5: Stage parameter groupings

5.3 Explicit vs. non-explicit ECOG evidence

In our annotations, we observed a distinction
between text annotation evidence that explicitly
mentions an ECOG performance status and those
that do not. We define text annotation evidence for
a stage parameter as explicit: if ECOG (Eastern
Cooperative Oncology Group) performance status
or any of its abbreviations and acronyms are men-
tioned in the text evidence.

For example, a text annotation highlight for
ECOG, e.g. “ECOG performance 0,” is con-
sidered explicit. Meanwhile, another ECOG ref-
erence, e.g. “He is cachetic. He is decondi-
tioned and needs a wheelchair to walk greater
than 10 feet,” is considered non-explicit. Other
non-explicit mentions may consider patient voca-
tion and habits, e.g. “He continues to work full
time as a security officer” or “He lives alone and
cares for himself without difficulty.”

To get a sense about the complexity of our task,
we divided our ECOG text annotation evidence
into explicit and non-explicit evidence by itera-

tively creating rules and manually inspecting the
classification. We found that 170 patients out of
the 200 non-excluded patients had some mention
of ECOG and as much as 23% of these patients
have only non-explicit mentions. Because this di-
vision is quite dramatic, we plan to build a sepa-
rate extraction system for explicit and non-explicit
ECOG evidence.

5.4 Missing, ambiguous, and conflicting
Child-Pugh evidence

From our 200 patient cohort, only 91 patients had
some textual mention of Child-Pugh class. This
will necessitate that over half of patients shall re-
quire Child-Pugh class calculated according to the
logic in Table 1. Accurate Child-Pugh identifica-
tion will then depend on correct extraction of as-
cites and hepatic encephalopathy variables. Fur-
ther complicating the issue, we found cases of am-
biguity, e.g. “He has well-compensated liver dis-
ease, with Child-Pugh score of 6 or 7 [...] This
puts him at a class A/B” and cases where sepa-
rate patient documents gave different Child-Pugh
scores. After our final patient level annotations,
we can evaluate whether calculated versions of
Child-Pugh match with the notes’ versions.

5.5 Tumor characteristic reference resolution
We observed for our notes, references to tumor
characteristics were often equivocal. Not only
were there temporal references to disambiguate,
e.g. tumor information from previous readings,
but also tumors were identified from radiology ar-
tifacts such as “lesions,” not all of which were ac-
tual tumors. Table 6 shows an example in which
3 lesions are found but only one was suspected to
be a HCC tumor. Thus, true tumor size and num-

Focal lesions:
Total number: 3:
Lesion 1: segment 4A, cm 6.3 x 7.1 X 6.4 cm ... periph-
erally located lesions are noted in segment 6 measuring
7 mm .. another ...

Impression:
...
One focal lesion in the segment 4a measuring 6.3 x 7.1
x 6.4 cm.
This lesion does not have a typical appearance, but is ...
highly suggestive of HCC.
Exception: 2 smaller lesions noted in segment 6 periph-
erally, measuring 11 and 13 mm ... are likely to be arte-
riovenous shunting.

Table 6: Radiology report excerpt
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bers will depend on resolving which lesions are
actually tumors, as well as handling reference res-
olution and temporal factors. Tumor morphology
additionally must reason about multiple tumors.

5.6 Discussion
Our inter-rater experiment showed that text anno-
tations are being consistently captured with patient
level agreement of 0.91 F1 and partial text span
level agreement of 0.73 F1.

A limitation to our process is that most of our
phase I text annotations were single annotated.
Moreover, we assumed that specific text span pas-
sages may be attributed with a label and value as-
signments however some parameters may require
a more patient level holistic view. Furthermore,
for our study we focused on patients with available
laboratory parameters in structured form. This is
not always the case when patients are referred by
outside organizations.

Although our annotation phase II has not been
fully explored here, we have been able to charac-
terize some of the characteristics in our text anno-
tation evidence, which will inform our extraction
task. When our patient level annotations are com-
pleted, our multi-level annotation will allow us to
run several experiments, including: Given gold pa-
tient level stage parameters, how well can a sys-
tem classify staging? Given gold text level stage
parameters, how well can a system predict patient
level stage parameters?

6 Machine learning baselines

Once our annotation phase I was completed, we
wanted to gauge the complexity of our stage pa-
rameter information extraction task. To do so, we
created a simple document classification baseline
to identify information from phase I text annota-
tions. We chose this baseline because of our sparse
annotation approach, i.e. a single document may
have several occurrences of the same value but
may be annotated only once. Our findings from
these experiments will be used to advise us of rea-
sonable performance results and issues to consider
for our final system.

6.1 Data
The full corpus of patients was randomly divided
into a 20% test, 80% training set. The 160 patient
training set included 439 documents (243 clinical,
196 radiology) and 1681 text annotations. The test
set will be used in a future comparison of the full

staging system against a human abstractor. The
training set of patients was divided into 5 folds for
training and evaluation.

6.2 Methods

Document level classification was performed for
each label-value, e.g. ascites-none. The gold stan-
dard document label was automatically inferred by
the text annotations from annotation phase I (i.e. If
document0.txt has been highlighted for ascites-
none, then document0.txt is marked positive for
the gold standard in that classification). The clas-
sification was binary, since multiple values for the
same label may appear in a single document.

Each label-value document classification only
classified document types as prescribed by an-
notation guidelines. For example, tumor size
is restricted to classifying radiology document
types, since it is possible they appear in clini-
cal notes but are not annotated due to annota-
tion guidelines. Therefore, ascites label-values
classifications occurred over all documents (439
documents), Child-Pugh, ECOG, and hepatic en-
cephalopathy classifications were performed over
clinical notes only (243 documents), and the re-
maining label classifications were on radiology
notes only (196 documents).

The features included lower-cased unigram, bi-
gram, and trigram counts after tokenization with
punctuations removed. We tested four algorithms
with default configurations: C4.5 decision tree,
discrete-variable decision tree, and maximum en-
tropy from MALLET (McCallum, 2002), and a
linear kernel SVM, scaled by min/maximum val-
ues, from LibSVM (Chang and Lin, 2011).

6.3 Results

Results are shown in Table 7. The overall classi-
fication performance was 0.63 micro-F1 with the
highest and lowest F1 at 0.83 and 0.00, respec-
tively. Best performances per label typically came
from the highest frequency class. The best clas-
sifiers were the two decision trees, however each
classifier was the best in at least one classification.

6.4 Discussion

Analysis of the best-performing baseline models
revealed some common limitations. One was the
inability to capture long-range logical construc-
tions. One example is for ascites - none and
metastasis - no, which often has passages with
long-range negation of related terms. And, as
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Label Freq. Value Class. P R F1
Ascites 44 Mild C45 0.24 0.18 0.21

20 Moderate-Severe DT 0.50 0.30 0.38
146 None DT 0.77 0.36 0.49

ChildPugh 53 A DT 0.46 0.49 0.47
25 B C45 0.84 0.64 0.73
7 C DT 0.50 0.14 0.22

ECOG 105 0 C45 0.71 0.71 0.71
65 1 DT 0.85 0.54 0.66
18 2 C45 0.89 0.44 0.59
8 ≥ 3 DT 0.25 0.13 0.17

Extrahepatic 59 No SVM 0.81 0.85 0.83
invasion 2 Yes ≈ 0.00 0.00 0.00
Hepatic 34 Mild DT 0.70 0.76 0.73
encephalopathy 95 None DT 0.71 0.73 0.72

1 Severe ≈ 0.00 0.00 0.00
Macro-vascular 127 No NB 0.71 0.96 0.82
invasion 20 Yes-major branch C45 0.50 0.55 0.52

8 Yes-minor branch C45 1.00 0.50 0.67

Label Freq. Value Class. P R F1
Metastasis 108 No DT 0.78 0.70 0.74

6 Yes-distal DT 0.50 0.17 0.25
7 Yes-regional ≈ 0.00 0.00 0.00

Portal 5 No ≈ 0.00 0.00 0.00
hypertension 84 Yes C45 0.84 0.80 0.82
Tumor 23 Massive DT 0.37 0.30 0.33
morphology 40 Multinodular, <50% ME 0.50 0.15 0.23

105 Uninodular, <50% NB 0.62 0.80 0.70
Tumor 112 Single NB 0.64 0.84 0.73
number 32 2-3 DT 0.24 0.25 0.25

19 >3 ME 0.67 0.11 0.18
Tumor 82 < 3 ME 0.64 0.62 0.63
size 45 3-5 C45 0.43 0.27 0.33

46 >5 ME 0.59 0.28 0.38
ALL 1551 0.66 0.60 0.63

Table 7: Best baseline performances for training set. (Freq = frequency of positive cases, Class = classifier, C45 =
C4.5 decision tree, DT = binary decision tree, ME = maximum entropy, NB = naive Bayes, SVM = support vector machine)

mentioned in Section 5.5, tumor characteristics re-
quire reasoning over several sentences.

Another problem was that these simplistic base-
line models and features had difficulty normaliz-
ing variations in less frequent equivalent evidence.
For example, “abdominal distension” and “ab-
dominal girth” both define ascites but neither term
is as frequent as “ascites” so did not become strong
features. Similarly, many less frequent Child-
Pugh acronyms and abbreviations were missed.

Our baselines also lacked the ability to incorpo-
rate outside or domain knowledge to infer infor-
mation. For example, text evidence for ascites -
none and hepatic encephalopathy - none can be
“he has no known liver disease,” which requires
knowledge that ascites and hepatic encephalopa-
thy are liver disease symptoms. Non-explicit men-
tions of ECOG, as discussed in Section 5.3, fall
under this category as well. There were also cases
in which different values for the same label had
very similar language, requiring domain knowl-
edge to differentiate. For example, for macrovas-
cular invasion, while, “There is thrombus in the
right posterior branch of the portal vein [...] pos-
sibly [...] tumor thrombus” is considered yes - mi-
nor branch, “There is enhancing tumor thrombus
in the right portal vein.” is yes - major branch.

Label-value parameters with higher perfor-
mances, often harbored strong n-gram features.
For example “lactulose,” a drug to treat hepatic
encephalopathy, was found to be used as an early
decision point for both mild and none values.
For portal hypertension, besides “hypertension”,
“splenomegaly,” spleen enlargement often due to
portal hypertension, was a top feature.

Some strategies to overcome current limitations
are to use medical ontologies and statistical fea-
ture selection to identify terms of interest, which
can help normalize for term variations. To han-
dle long-range within-sentence relations, we will
apply assertion or negation classifiers and use de-
pendency tree parses to build more complex fea-
tures. For multi-sentence problems such as the tu-
mors, we will use tools for coreference resolution
and time parsing. Furthermore, to reduce noise,
we may consider using sub-document level classi-
fications, e.g. at the sentence level.

7 Conclusions and Future Work

In our paper, we described our detailed annotation
process, carried out an inter-annotator agreement
experiment, and analyzed some of the domain
challenges and characteristics of our liver cancer
patient data. We were further able to present docu-
ment classification baselines and analyze their per-
formance. In future work, we will improve infor-
mation extraction over our current baselines by us-
ing targeted feature-rich approaches. We will also
extend our system to patient level cancer staging,
compare results against a human abstractor, and
analyze the affects of using multi-levels of gold
input. For example, we may experiment with pre-
dicting stages using document-level features vs.
extracted text level parameter features.

Although we focus on liver cancer, our work-
flow may be generalizeable to other cancer or
phenotype identification annotation tasks. Futher-
more, successful liver cancer parameter identifica-
tion may be useful for other liver cancer staging
schemes or other phenotype cohorts.
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