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Abstract

Level of committed belief is a modality in nat-
ural language, it expresses a speak-er/writers
belief in a proposition. Initial work explor-
ing this phenomenon in the literature both
from a linguistic and computational model-
ing perspective shows that it is a challenging
phenomenon to capture, yet of great interest
to several downstream NLP applications. In
this work, we focus on identifying relevant
features to the task of determining the level
of committed belief tagging in two corpora
specifically annotated for the phenomenon:
the LU corpus and the FactBank corpus. We
perform a thorough analysis comparing tag-
ging schemes, infrastructure machinery, fea-
ture sets, preprocessing schemes and data gen-
res and their impact on performance in both
corpora. Our best results are an F1 score of
75.7 on the FactBank corpus and 72.9 on the
smaller LU corpus.

1 Introduction

Level of Committed belief (LCB) is a linguistic
modality expressing a speaker or writer’s (SW) level
of commitment to a given proposition, which could
be their own or a reported proposition. Modeling
this type of knowledge explicitly is useful in deter-
mining an SWs cognitive state, also referred to as
person’s private state (Wiebe et al., 2005). Wiebe et
al. (2005) use the definition of (Quirk et al., 1985),
who defines a private state to be an “internal (state)

that cannot be directly observed by others”. Deter-
mining the cognitive state of an SW can be relevant
to several natural language processing (NLP) tasks
such as question answering, information extraction,
confidence determination in people’s deduced opin-
ions, determining the veracity of information, under-
standing power/influence relations in linguistic com-
munication, etc. As an example, in (Rosenthal and
McKeown, 2012), LCB was used to improve their
claim detector which in turn allowed for improve-
ments in influence prediction.

Initial work addressed the task of automatically
identifying LCB of the SW. Approaches to date have
relied on supervised models dependent on manu-
ally annotated data. There are two standard anno-
tated corpora, the LU corpus (Diab et al., 2009) and
FactBank (Saurı́ and Pustejovsky, 2009). Though
in effect aiming for the same objective, both cor-
pora use different terminology, different annotation
standards, and they cover different genres. Previ-
ous studies performed on these corpora were con-
ducted independently. In this work, we explore both
corpora systematically and investigate their respec-
tive proposed tag sets. We experiment with mul-
tiple machine learning algorithms, varying the tag
sets as we go along. Our goal is to build an auto-
matic LCB tagger that is robust in a multi-genre con-
text. Eventually we aim to adapt this tagger to other
languages. The LCB tagging task aims at automat-
ically identifying beliefs which can be ascribed to a
SW, and at identifying the strength level by which
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he or she holds them. Across languages, many dif-
ferent linguistic devices are used to denote this atti-
tude towards an uttered proposition, including syn-
tax, lexicon, and morphology. In this work we fo-
cus our investigation of LCB tagging in English and
we only address the problem from the perspective of
the SW. We do not address nested LCB where the
SW is reporting the LCB of other people (leading to
nested attributions, as done in FactBank following
the MPQA Sentiment corpus (Wiebe et al., 2005).

2 Background

Initial work on LCB was undertaken by Diab et al.
(2009), who built the LU corpus that contains be-
lief annotations for propositional heads in text. They
used a 3-way distinction of belief tags: Committed
Belief (CB) where the SW strongly believes in the
proposition, Non-committed belief (NCB) where the
SW reflects a weak belief in the proposition, and
Non Attributable Belief (NA) where the SW is not
(or could not be) expressing a belief in the propo-
sition (e.g., desires, questions etc.). The LU cor-
pus comprises over 13,000 word tokens from sixteen
documents covering four genres: 9 newswire docu-
ments, 4 training manuals, 2 correspondences and
1 interview. One of the issues with this annotation
scheme is that the annotations for NCB conflate the
cases where the SW explicitly conveys the weakness
of belief (e.g., using modal auxiliaries such as may)
and the cases where the SW is reporting someone
else’s belief about a proposition. In this paper, we
tease apart these original NCB cases and arrive at
a 4-way belief distinction using the original anno-
tations in the LU corpus (details to be discussed in
Section 3.1).

The LCB tagger developed using the original LU
corpus (Prabhakaran et al., 2010) obtained a best
performance (64% F-measure) using the Yamcha1

machine learning framework which leverages Sup-
port Vector Machines in a supervised manner, and
a performance of 59% F-measure using the Condi-
tional Random Fields (CRF) algorithm. Their exper-
iments were limited in scope because the LU Corpus
is fairly small. This led to an under-representation
of NCB tags in the training corpus and a relatively
shallow understanding of how LCB tagging per-

1http://chasen.org/∼taku/software/yamcha/

forms across genres. In this paper, we perform
a detailed investigation through extensive machine
learning experiments to understand how the size of
data and genre variations affect the performance of
an LCB tagger. We also systematically measure the
impact of augmenting the training data with more
data as well as measuring performance differences
when the training data comprises a single genre vs.
multiple genres. It should be noted that although
we experiment with similar machine learning frame-
works, our results are not directly comparable since
the Prabhakaran et al. (2010) work applied cross val-
idation to the LU-3 corpus, while we did not follow
the same experimental strategy. Additionally, in this
work we use a lot more features than those reported
in the previous study.

A closely related corpus is FactBank (FB; Saurı́
and Pustejovsky (2009)), which captures factuality
annotations on top of event annotations in TimeML.
FactBank is annotated on the genre of newswire.
FactBank models the factuality of events at three
levels: certain (CT), probable (PB) and possible
(PS), and distinguishes the polarity (e.g., CT- means
certainly not true). Moreover it marks an unknown
category (Uu), which refers to uncommitted or un-
derspecified belief. It also captures the source of
the factuality assertions, thereby distinguishing the
SW’s factuality assertions from those of a source
introduced by the author. Despite the terminology
difference between FactBank (“factuality”) and LU
(“committed belief”), they both address the same
type of linguistic modality phenomenon namely
level of committed belief. Accordingly, with the
appropriate mapping, both corpora can be used in
conjunction to model LCB. From a computational
perspective, FactBank differs from the LU corpus
in two major respects (other than the granularity
in which they capture annotations): 1) FactBank
is roughly four times the size of the LU corpus,
and 2) FactBank is more homogeneous in terms of
genre than the LU corpus as it consists primarily of
newswire. In this paper, we unify the factuality an-
notations in Factback and the level of committed be-
lief annotations present in the LU corpus to a 4-way
committed-belief distinction.2

2For an additional discussion of the relation between factu-
ality and belief, see (Prabhakaran et al., 2015)
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3 Approach

Following previous work (Prabhakaran et al., 2010),
we adopt a supervised approach to the LCB prob-
lem. We experiment with the two available manually
annotated corpora, the LU and FB corpora. Going
beyond previous approaches to the problem reported
in the literature, our goal is to create a robust LCB
system while gaining a deeper understanding of the
phenomenon of LCB as an expressed modality by
systematically teasing apart the different factors that
affect performance.

3.1 Annotation Transformations

The NCB category of the LU tagging scheme cap-
tures two different notions: that of uncertainty of the
speaker/writer and that of belief being attributed to
someone other than the SW. Accordingly, we manu-
ally split the NCB into the NCB tag and the Reported
Belief tag (ROB). Reported belief is the case where
the SW’s intention is to report on someone else’s
stated belief, whether or not they themselves believe
it. An example of this would be the sentence John
said he studies everyday. While the ‘say’ proposi-
tion is an example of committed belief (CB) on the
part of the SW, the SW makes no assertion about the
‘study’ proposition attributed to John, and therefore
studies is labeled ROB. This relabeling of the NCB
tag into NCB and ROB was carried out manually
by co-authors Werner and Rambow, who are native
speakers of English. The inter-annotator agreement
was 93%. The cases where there were contentions
were discussed and an adjudication process was fol-
lowed where a single annotation was agreed upon.
This was a relatively fast process since the number
of NCB annotated data is very small in the original
LU corpus (176 instances). This conversion resulted
in the LU-4 corpus designating the fact that this ver-
sion of the LU corpus is a 4-way annotated corpus.
This is in contrast to the original version of LU cor-
pus with the 3-way distinction, LU-3.

To illustrate the difference between each of the
tags in the LU-4 corpus, we provide a few examples
from the annotated corpus. The sentence 1 shows
the contrast between the committed belief in the au-
thor knowing and the non-committed belief in the
author being uncertain of it (a flu vaccine) working.
The other two tags are demonstrated in the sentence

2 where the author is saying Reed accused however
Reed is the one talking about failing and not the au-
thor. To contrast we note that although Reed is at-
tributed the notion of failing, neither the author nor
Reed demonstrate any belief of the verb to probe and
therefore it is not-attributable to any source men-
tioned in this sentence.

(1) But we only <CB> know </CB> that it might
<NCB> work </NCB> because of laboratory
studies and animal studies uh uh

(2) Democratic leader Harry Reed <CB> accused
</CB> Republicans of <ROB> failing </ROB>

to <NA> probe </NA> allegations ...

In order to render the FactBank (FB) corpus compa-
rable to the LU-4 corpus, we mapped tags in the FB
corpus into the 4-way tag scheme adopted in the LU-
4 framework. Accordingly, we mapped CT directly
into CB, PB and PS directly into NCB, and Uu was
mapped into either NA or ROB. We used the num-
ber and identity of sources to determine if the Uu
of FB was due to belief expressed by a source other
than the SW. Specifically, if the same proposition is
marked Uu for the SW, but the annotations also cap-
ture factuality attributed to another source, then we
conclude the tag should be ROB. If there is no other
attribution on the proposition other than the Uu at-
tributed to the SW, we consider the tag to be NA.
We refer to the resulting version of the FB corpus as
FB-4. It is worth noting that because the genre of the
FB corpus is newswire, it has a relatively large num-
ber of ROB annotations. Moreover, FB explicitly
marks LCB with respect to various nested sources.
However in our mapping, we only consider the an-
notations from the perspective of the SW.

We give a few examples of the original FactBank
work as to compare and contrast the notion of be-
lief carried in each corpus. In sentence 3, we have
clear cut mapping between the certainty of the au-
thor in think and committed belief. Likewise, doing
is a non-committed belief. In each case, the polar-
ity is discarded in our transformations. The sentence
4 reveals the case where teaches takes on a reported
belief meaning as it is given both a certain tag for the
school and an unknown tag for the author. An ex-
ample where Uu does not constitute reported belief
is shown in the sentence 5, where only one entity’s
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belief is conveyed, and that is of the author.

(3) . . . Yeah I <CT+> think </CT+> he’s <PR+> do-
ing </PR> the right thing

(4) The school <CT+> says </CT+> it <CT+>

<Uu> teaches </Uu> </CT+> the children to be
good Muslims and good students.

(5) I <CT+> urge <CT+> you to <Uu> do <Uu>

the right thing . . .

The tag distribution breakdown in the corpora is il-
lustrated in Table 1.

CB NCB ROB NA Total

LU-3 631 176 589 13485

LU-4 631 15 161 589 13485

FB-4 3837 156 2074 661 82845

Table 1: Label distribution in the LU-3, LU-4 and FB-4
corpora.

3.2 Experimental Set Up

3.2.1 Corpus Combination
We experiment with the three corpora LU-3 (with

the labels CB, NCB and NA), LU-4 and FB-4
(each with the labels CB, NCB, NA, and ROB). We
present results on each of the corpora and their com-
binations for training and testing. In general we split
our corpora at the sentence level into training and
test sets with 5/6 for training and 1/6 for test by re-
serving every sixth sentence for the test set.

3.2.2 Features
We use a number of features proposed by Prab-

hakaran et al. (2010), as well as a few more re-
cent additions, and we hold them constant across
our different experimental conditions. This feature
set comprises the following base set of lexical and
syntactic based features. General Features for each
token include its lemma, part of speech (POS), as
well as the lemma and POS of two preceding and
following tokens. Dependency features include sib-
ling’s lemma, sibling’s POS, child’s lemma, child’s
POS, parent’s lemma, parent’s POS, ancestors’ lem-
mas, ancestor’s POS, reporting ancestor’s POS, re-
porting ancestor’s lemma, dependency relationship

said

Frist

Republican leader Bill

hijacked

Senate

the

was

Figure 1: Dependency tree for example sentence.

and lemma of the closest ancestor whose POS is
a noun, dependency relationship and lemma of the
closest ancestor whose POS is a verb, token under
the scope of a conditional (if/when), ancestor under
the scope of a conditional (if/when). We use the
Dependency Parser provided in the Stanford NLP
toolkit. A pictorial explanation of some of these de-
pendency features is given in Figure 1 and Table 2
for the sentence “Republican leader Bill Frist said
the Senate was hijacked”.

Feature Name Value

PosTag VBN

Lemma hijack

WhichModalAmI nil

UnderConditional N/A

AncestorUnderConditional N/A

FirstDepAncestorofPos {hijack, NIL}, {say, ccomp}
DepAncestors {say,VBD}
Siblings {Frist, NNP}
Parent {say, VBD, say-37.7-1}
Child {Senate, NNP}, {be, VBD}
DepRel {ccomp}

Table 2: Representative features for the token hijacked
in the example sentence.

3.2.3 Machine Learning Infrastructure
We experiment with five machine learning algo-

rithms. A. Conditional Random Fields (CRF) to
allow for comparison with previous work; B. Lin-
ear Support Vector Machines (LSVM); C. Quadratic
Kernel Support Vector Machines (QSVM); D. Naive
Bayes (NB); and, E. Logistic Regression (LREG).
We provide NB as a generative contrast to the dis-
criminative SVM and CRF methods. Moreover,
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QSVM quite often yields better results at the ex-
pense of longer runtime, hence, we explore if that
is the case within the LCB task.

The parameters for each of the five algorithms are
held constant across all experiments and not tuned
for specific configurations. The notable parameters
that are used are listed in Table 3.

Algorithm Notable Parameters

CRF Gaussian Variance=10, Orders = 1, It-
erations = 500

LSVM Linear Kernel (t=0), Classification
(z=c), Cost Factor (j=1), Biased Hy-
perplane (b=1), Do not remove incon-
sistent training examples (i=0)

QSVM Polynomial Kernel (t=1), Quadratic
(d=1), Classification (z=c), Cost Fac-
tor (j=1), Biased Hyperplane (b=1), Do
not remove inconsistent training exam-
ples (i=0)

NB Default
LREG Default

Table 3: Parameter settings per algorithm.

3.2.4 Tools

A list of major NLP tools used is illustrated in
Table 4. We used the CoreNLP pipeline for to-
kenization, sentence splitting, part of speech de-
termination, lemmatization, named entity recogni-
tion, dependency parsing and coreference resolu-
tion. ClearTK provided us easy access to the ma-
chine learning algorithms we used which includes
SVM Light for both SVM kernels and Mallet for
CRF. It also provides us the backbone for our an-
notation structure.

4 Experiments

4.1 Evaluation metric

We ran 30 experiments, which are all the possible
permutations of the three variables, listed above: do
we split the NCB tag into 2 tags, what corpora do
we train on, and what machine learning algorithm do
we use. We report results using the overall weighted
micro average F1 score.

Name Source Ver.

CoreNLP (Manning et al., 2014) 3.5

ClearTK (Bethard et al., 2014) 2.0

UIMA https://uima.apache.org/ 2.6

uimaFIT (Ogren and Bethard, 2009) 2.1

Mallet (McCallum, 2002) 2.0.7

SVM Light (Joachims, 1999) 6.0.2

Table 4: NLP Tools Used.

4.2 Condition 1: Impact of splitting NCB tag in
the LU corpus

We show the overall impact of splitting the NCB
tag in the original LU corpus into two tags: NCB
and ROB. The training and test corpora are from the
same corpus, i.e. training and test sets are from LU-
3 or LU-4. The results are reported on the respective
test sets using the F1 score. The hypothesis is that a
4-way tagging scheme should result in better overall
scores if the tagging scheme indeed captures a more
genuine explicit representation for LCB. Table 5 il-
lustrates the results yielded from the 5 ML algo-
rithms. We note that the 4-way tagging outperforms
the 3-way tagging for CRF and LSVM, however, the
NB algorithm doesn’t seem as sensitive to the tag-
ging scheme (3 vs. 4 tags), and QSVM and LREG
seem to be better performing in the 3 tag setting than
the 4 tag setting. This might be a result of the num-
ber of tags in the 4-way tagging scheme breaking
up the space for NCB’s considerably. Overall the
highest score is obtained by LSVM (72.89 F1 score)
for LU-4, namely in the 4-way tagging scheme, sug-
gesting that a 4-way split of the annotation space is
an appropriate level of annotation granularity.

4.3 Condition 2: Impact of size and corpus
genre homogeneity on LCB performance

In this condition we attempt to tease apart the im-
pact of corpus size (FB being 4 times the size of
the LU corpus) as well as corpus homogeneity, since
FB is relatively homogeneous in genre compared to
the LU corpus. Similar to Condition 1, we show
the results yielded by all 5 ML algorithms. Results
are reported in Table 6. Our hypothesis is that the
overall results obtained on the FB should outper-
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Test Set Algorithm Overall F-score

LU-4 CRF 71.33

LU-4 LSVM 72.89
LU-4 QSVM 68.10

LU-4 NB 61.61

LU-4 LREG 70.75

LU-3 CRF 68.25

LU-3 LSVM 69.77

LU-3 QSVM 69.21

LU-3 NB 61.58

LU-3 LREG 71.26

Table 5: Condition 1: LU-3 and LU-4 results using
micro average F1 score on their respective test data.

form those obtained on the LU corpus. Note that
the results in the Table 6 are not directly comparable
across corpora since the test sets are different: each
experimental condition is tested within the same cor-
pus, i.e. FB-4 is trained using FB-4 training data
and tested on FB-4 test data, and LU-4 is trained
using LU-4 training data and tested on LU-4 test
data. However, the results validate our hypothesis
that more data which is more homogeneous results
in a better LCB tagger.

It is noted that the various ML algorithms per-
form differently for LU-4 vs. FB-4. In order, for
FB-4, QSVM outperforms LREG which in turn out-
performs LSVM, CRF and NB. In contrast, for LU
the LSVM is the best performing ML algorithm fol-
lowed by CRF, QSVM, LREG, and finally NB. The
linear kernel SVM, LSVM, has the closest perfor-
mance between the two, yet the difference is still
statistically significant.

A deeper analysis on each of the four tags shows
a remarkable difference in F1-measure for reported
belief (ROB) for the two corpora as illustrated in Ta-
ble 7. ROB is significantly better identified in the
FB-4 corpus compared to the LU-4 corpus. This
is expected since the FB-4 corpus has significantly
more ROB tags in the training data. The number of
ROB tags in training sets for LU-4 is 100 and for
FB-4 it is 1800. The NA tag on the other hand per-
forms better in the LU-4 corpus than in the FB-4 as

Test Set Algorithm Overall F-score

FB-4 CRF 73.34

FB-4 LSVM 74.36

FB-4 QSVM 75.57
FB-4 NB 66.22

FB-4 LREG 74.67

LU-4 CRF 71.33

LU-4 LSVM 72.89
LU-4 QSVM 68.10

LU-4 NB 61.61

LU-4 LREG 70.75

Table 6: Condition 2: FB-4 and LU-4 results using
micro average F1 score on their respective test data.

seen in Table 8. The number of NA tags in the LU-4
training data is 460, while in the FB-4 training data
(which is much larger) there are 600. In the case
of FB-4 they only constitute a small percentage of
the overall data compared to their percentage in the
LU-4 corpus.

Test Set Algorithm P R F

LU-4 CRF 66.67 40.00 50.00
LU-4 LSVM 39.13 45.00 41.86

LU-4 QSVM 50.00 15.00 23.08

LU-4 NB 0.00 0.00 0.00

LU-4 LREG 41.67 25.00 31.25

FB-4 CRF 76.79 73.22 74.97

FB-4 LSVM 76.08 72.13 74.05

FB-4 QSVM 72.86 79.23 75.92
FB-4 NB 57.27 67.76 62.08

FB-4 LREG 74.59 73.77 74.18

Table 7: ROB results in FB-4 and LU-4 Corpora.
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Test Set Algorithm P R F

LU-4 CRF 70.59 77.42 73.85

LU-4 LSVM 80.21 82.80 81.48
LU-4 QSM 64.91 79.57 71.50

LU-4 NB 66.32 67.74 67.02

LU-4 LREG 76.00 81.72 78.76

FB-4 CRF 52.38 44.72 48.25

FB-4 LSVM 50.74 56.10 53.28

FB-4 QSVM 61.76 51.22 56.00
FB-4 NB 0.00 0.00 0.00

FB-4 LREG 54.63 47.97 51.08

Table 8: NA results in FB-4 and LU-4 corpora.

4.4 Condition 3: Measuring impact of training
data size on performance: combining
training FB-4 and LU-4 data

In this condition, we wanted to investigate the im-
pact of training using the combined FB-4 and LU-4
training corpora on 3 test sets: LU-4 Test, FB-4 Test
and LU-4 Test + FB-4 Test. A reasonable hypothesis
is that, with a larger corpus created by combining the
two individual corpora we will see better results on
any test corpus. Table 9 illustrates the experimental
results for this condition where the training data for
both corpora are combined.

The worst overall results are obtained on the LU-
4 test set, while the best are obtained on the FB-
4 test set. This is expected since the size of the
training data coming from the FB-4 corpus over-
whelms that of the LU corpus and the LU corpus is
relatively diverse in genre, potentially adding noise.
Also we note that the results on the LU-4 corpus are
much worse than the results obtained and illustrated
in Table 5 when the training data was significantly
smaller, yet of strictly the same genre of the test
data. This observation seems to suggest that homo-
geneity between training and test data for the LCB
task trumps training data size. We also note that this
observation is furthermore supported by the slight
degradation in performance in the FB-4 test set com-
pared to the performance results reported in Table 6
for the ML algorithms CRF and QSVM. However,
we observe that LREG, NB and LSVM each was

Test Set Algorithm Overall F-score

LU-4 CRF 56.30

LU-4 LSVM 61.10
LU-4 QSVM 58.05

LU-4 NB 45.32

LU-4 LREG 59.90

FB-4 CRF 73.02

FB-4 LSVM 74.99

FB-4 QSVM 75.00

FB-4 NB 67.37

FB-4 LREG 75.23

FB-4 + LU-4 CRF 70.47

FB-4 + LU-4 LSVM 72.85

FB-4 + LU-4 QSVM 72.48

FB-4 + LU-4 NB 64.02

FB-4 + LU-4 LREG 72.88

Table 9: Condition 3: Micro average F1 score results
obtained on three sets of test data while trained using a

combination of FB-4 and LU-4 training data.

able to generalize better from the augmented data
when additionally using the LU-4 training data, but
the improvements were relatively insignificant (less
than 1%). This may be attributed to the addition of
the LU-4 training data, which adds noise to the LCB
training task leading to inconclusive results. Testing
on a combined corpus shows that LREG algorithm
yields the best results.

4.5 Condition 4: Machine Learning Algorithm
Performance

From the first three conditions, we are able to con-
clude how reliably certain machine learning algo-
rithms outperform others. In our research, we
have mainly focused on SVM Light’s linear kernel
(LSVM) and expect it to perform quite well. Cer-
tainly, we would expect it to outperform the CRFs,
as they did in previous work. Changing the linear
kernel to a quadratic kernel might give us some im-
provement at the expense of training time since it
takes much longer to complete. Our intuition as far
as CRFs being outperformed by SVMs seem to hold
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uniformly as Tables 5, 6 and 9 illustrate. To aug-
ment the linear kernel SVM, the quadratic kernel
only gives an improvement in some cases.

The NB models performed predictably poorly.
Surprisingly, the LREG models appear to be ro-
bust, with performance that is comparable to the best
SVM models (LSVM and QSVM) in our experi-
ments. In fact, for the FB-4 case, LREG performed
slightly better than either LSVM or QSVM. Given
the efficiency of LREG in terms of training and test-
ing, and its comparable performance to SVMs, us-
ing LREG for feature exploration in the context of
LCB tagging makes it a very attractive ML frame-
work to tune parameters with, keeping the more so-
phisticated ML algorithms for final testing.

Sometimes it is other components that cause an
error. Take this example sentence from the LSVM
algorithm acting on the LU corpus: It also checks on
guard posts. Checks has been annotated CB and cor-
rectly so by the human involved. The tagger marks
checks as O, or lacking author belief, because the
token checks has been labeled a noun by the part-of-
speech checker. A more proper miss can be found
on the sentence You know what’s sort of interest-
ing Paula once again taken from the LU corpus. Al-
though labeled as NA, the token know is labeled as
CB. Since it has the feel of a question the annotator
has stated that there is no committed belief on the
part of the author. This is one that the algorithm it-
self has clearly gotten wrong. The CRF on the same
sentence chose O, or lack of belief. NB got the to-
ken correct. LREG chose O. QSVM took the same
approach as the LSVM labeling it as CB. This illus-
tration shows the worse performing algorithm on the
LU-4 corpus being the only correct answer showing
perhaps that detecting phrases and sentences formed
as questions are harder to analyze.

5 Conclusions

The results suggest that 4-way LCB tagging is an ap-
propriate LCB granularity level. Training and test-
ing on the FB-4 corpus results in overall better per-
formance than training and testing on the LU cor-
pus. We have seen that the LCB task is quite sensi-
tive to the consistency in genre across training and
test data, and that more out-of-genre data is not al-
ways the best route to overall performance improve-

ment. SVMs were one of the best performing ML
platforms in the context of this task as well as Lo-
gistic regression.
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