
ExProM 2015

Second Workshop on Extra-Propositional Aspects of
Meaning in Computational Semantics (ExProM 2015)

Proceedings

June 5, 2015
Denver, Colorado, USA



Funding for student travel grants was provided by the National Science Foundation under Grant No.
1523586.

Any opinions, findings, and conclusions or recommendations expressed in this material are those of the
author(s) and do not necessarily reflect the views of the National Science Foundation.

c©2015 The Association for Computational Linguistics

Order print-on-demand copies from:

Curran Associates
57 Morehouse Lane
Red Hook, New York 12571
USA
Tel: +1-845-758-0400
Fax: +1-845-758-2633
curran@proceedings.com

ISBN 978-1-941643-44-0

ii



Introduction

During the last decade, semantic representation of text has focused on extracting propositional meaning,
i.e., capturing who does what to whom, when and where. Several corpora are available, and existing
tools extract this kind of knowledge, e.g., semantic role labelers trained on PropBank, NomBank or
FrameNet. But propositional semantic representations disregard significant meaning encoded in human
language. For example, while sentences (1-2) below share the same propositional meaning regarding
verb carry, they do not convey the same overall meaning. In order to truly capture what these sentences
mean, extra-propositional aspects of meaning (ExProM) such as uncertainty, negation and attribution
must be taken into account.

1. Thomas Eric Duncan likely contracted the disease when he carried a pregnant woman sick with
Ebola.

2. Thomas Eric personally told me that he never carried a pregnant woman with Ebola.

The Extra-Propositional Aspects of Meaning (ExProM) in Computational Linguistics Workshop
focuses on a broad range of semantic phenomena beyond propositional meaning, i.e., beyond linking
propositions and their semantic arguments with relations such as AGENT (who), THEME (what),
LOCATION (where) and TIME (when).

ExProM is pervasive in human language and, while studied from a theoretical perspective,
computational models are scarce. Humans use language to describe events that do not correlate with a
real situation in the world. They express desires, intentions and plans, and also discuss events that did
not happen or are unlikely to happen. Events are often described hypothetically, and speculation can be
used to explain why something is a certain way without a strong commitment. Humans do not always
(want to) tell the (whole) truth: they may use deception to hide lies. Devices such as irony and sarcasm
are employed to play with words so that what is said is not what is meant. Finally, humans not only
describe their personal views or experiences, but also attribute statements to others. These phenomena
are not exclusive of opinionated texts. They are ubiquitous in language, including scientific works and
news as exemplified below:

• A better team might have prevented this infection.

• Some speculate that this was a failure of the internal communications systems.

• Infected people typically don’t become contagious until they develop symptoms.

• Medical personnel can be infected if they don’t use protective gear, such as surgical masks and
gloves.

• You cannot get it from another person until they start showing symptoms of the disease, like
fever.

• You can only catch Ebola from coming into direct contact with the bodily fluids of someone who
has the disease and is showing symptoms.
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• We’ve never seen a human virus change the way it is transmitted.

• There is no reason to believe that Ebola virus is any different from any of the viruses that infect
humans and have not changed the way that they are spread.

In its 2015 edition, the Extra-Propositional Aspects of Meaning (ExProM) in Computational Linguistics
Workshop was collocated with the Conference of the North American Chapter of the Association for
Computational Linguistics (NAACL) in Denver, CO. The workshop took place on June 5, 2015, and
the program consisted of five papers (4 long papers and 1 short paper) and an invited talk by Lauri
Karttunen. ExProM 2015 is a a follow-up of two previous events: the 2010 Negation and Speculation
in Natural Language Processing Workshop (NeSp-NLP 2010) and ExProM 2012.

We would like to thank the authors of papers for their interesting contributions, the members of the
program committee for their insightful reviews, and Lauri Karttunen for giving the invited talk. We are
grateful to the National Science Foundation for a grant to support student travel to the workshop.
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Abstract

Statistical Machine Translation has come a
long way improving the translation quality
of a range of different linguistic phenom-
ena. With negation however, techniques pro-
posed and implemented for improving transla-
tion performance on negation have simply fol-
lowed from the developers’ beliefs about why
performance is worse. These beliefs, however,
have never been validated by an error analysis
of the translation output. In contrast, the cur-
rent paper shows that an informative empiri-
cal error analysis can be formulated in terms
of (1) the set of semantic elements involved
in the meaning of negation, and (2) a small
set of string-based operations that can char-
acterise errors in the translation of those ele-
ments. Results on a Chinese-to-English trans-
lation task confirm the robustness of our anal-
ysis cross-linguistically and the basic assump-
tions can inform an automated investigation
into the causes of translation errors. Conclu-
sions drawn from this analysis should guide
future work on improving the translation of
negative sentences.

1 Introduction

In recent years, there has been increasing interest in
improving the quality of SMT systems over a wide
range of linguistic phenomena, including corefer-
ence resolution (Hardmeier et al., 2014) and modal-
ity (Baker et al., 2012). Amongst these, however,
translating negation is still a problem that has not
been researched thoroughly.

This paper takes an empirical approach towards

understanding why negation is a problem in SMT.
More specifically, we try to answer two main ques-
tions:

1. What kind of errors are involved in translating
negation?

2. What are the causes of these errors during de-
coding?

While previous work (section 2) has shown that
translating negation is a problem, it has not ad-
dressed either of these questions.

The present paper focuses on the first one; we
show that tailoring to a semantic task, string-based
error categories standardly used to evaluate the qual-
ity of the machine translation output, allows us
to cover the wide range of errors occurring while
translating negative sentences (section 3). We re-
port the results of the analysis of a Hierarchical
Phrase Based Model (Chiang, 2007) on a Chinese-
to-English translation task (section 4), where we
show that all error categories occur to some extent
with scope reordering being the most frequent (sec-
tion 5).

Addressing question (2) requires connecting the
assumptions behind this manual error analysis to er-
rors occurring along the translation pipeline. As
such, we complete the analysis by briefly introduce
an automatic method to investigate the causes of the
errors at decoding time (section 6).

Conclusion and future works are reported in sec-
tion 7 and 8.
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2 Previous Work

In recent years, automatic recognition of negation
has been the focus of considerable work. Follow-
ing Blanco and Moldoval (2011) and Morante and
Blanco (2012) detecting negation is a task of unrav-
eling its structure, i.e. locating in a text its four main
components:

• Cue: the word or multi-word unit inherently
expressing negation (e.g. ‘He is not driving a
car’)

• Event: the lexical element the cue directly
refers to (e.g. ‘He is not driving a car’)

• Scope: all the elements whose falsity would
prove negation to be false; given that the cue is
not included, the scope is often discontinuous
(e.g. ‘He is not driving a car’)

• Focus: the portion of the statement negation
primarily refers to (e.g. ‘He is not driving
a car).

The *SEM 2012 shared task represented a first at-
tempt to apply machine learning methods to the
problem of automatically detect the aforementioned
elements in English. In particular CRFs and SVMs,
making use of syntactic (both constituent and de-
pendency based) clues, were shown to lead to the
best results in a supervised machine learning setting
(Read et al., 2012; Chowdhury and Mahbub, 2012).
The shared task also saw the release of a fully an-
notated corpus in the literature domain, which rep-
resents, along with the BioScope corpus (Szarvas et
al., 2008), the only resource specifically annotated
for negation.

There were also a few attempts in automatically
detecting negation in Chinese texts. Li et al. (2008)
designed a negation detection algorithm based on
syntactic patterns; similarly, Zheng et al. (2014)
implemented an FSA for automatic recognition of
negation structures in Chinese medical texts, using a
list of manually defined cues and the syntactic struc-
tures they appear in.

In a bilingual setting such as the SMT, however,
most work has only considered negation as a side
problem. For this reason, no actual analysis on the
type of errors involved in translating negation or

their causes has been specifically carried out. The
standard approach has been to formulate an hypoth-
esis about what can go wrong when translating nega-
tion, modify the SMT system in a way aimed at re-
ducing the number of times that happens, and then
assume that any increase in BLEU score - the stan-
dard automatic evaluation metric used in SMT - con-
firms the initial hypothesis. Collins et al. (2005)
and Li et al. (2009) consider negation, along with
other linguistic phenomena, as a problem of struc-
tural mismatch between source and target; Wetzel
and Bond (2012) consider it instead as a problem of
training data sparsity; finally Baker et al. (2012) and
Fancellu and Webber (2014) consider it as a model
problem, where the system needs enhancement with
respect to the semantics of negation. Given that
all these works assess the quality of translation of
negative sentences using an n-gram overlap metric,
there is no certainty whether any improvement de-
rives from a better rendering of negation or from
other, non-negation related elements.

Evaluating the semantic adequacy of the SMT
output has also stimulated interest in recent years.
Traditional error categories, such as the ones pre-
sented in (Vilar et al., 2006), are mostly based on
n-gram overlap between hypothesis and reference
and so are the most widely used automatic evalu-
ation metrics used in SMT (e.g. BLEU (Papineni
et al., 2002) and TER (Snover et al., 2009)). In
contrast, MEANT (Lo and Wu, 2010, 2011) and its
human counterpart, HMEANT, attempt to abstract
from simple string matching and assess the degree of
semantic similarity between machine output and ref-
erence sentence. To do so, both sides are annotated
using Propbank-like semantic labels, and the fillers
matched if both sides contain the same event. To as-
sign a score to the test set evaluated, an F1 measure
over precision and recall of matched fillers is then
computed.

3 Methodology

3.1 Manual Annotation

First, we start with the assumption that negation is a
language independent semantic phenomenon which
can be defined as a structure. This assumption im-
plies that it should be possible to annotate any lan-
guage using the elements in this structure – cue,
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event and scope. Isolating a small set of seman-
tic elements involved in the construction of negation
is useful in the context of SMT to reduce negation
into tangible elements at the string level. Moreover
each of the three elements above represents differ-
ent translation problems: if, for instance, translating
the cue mainly involves ensuring the presence of a
negation marker, translating the scope involves in-
stead ensuring that semantic elements are translated
in the right domain and most of the times, around
the negated event.

We carried out the annotation of cue, event and
scope on both the source Chinese sentences and the
correspondent translation output by the SMT sys-
tem, following the guidelines released during the
SEM* 2012 shared task (Morante et al., 2011). To
our understanding, this is the first work that applies
these guidelines to a language other than English.
It is however worth noticing that while these guide-
lines were released with the goal in mind of auto-
matically extracting information from text, with a
particular emphasis on factuality, the present work
focuses on translation, where each negation instance
is taken into consideration as potential source of er-
ror. This leads to some differences in the annotation
process, especially in the case of the event:

1. While the original guidelines do not annotate
negation scoping on non-factual events, such
as in conditional clauses (‘if he doesn’t come,
I will blame you’), the demands of translation
require it to be annotated.

2. While the original guidelines do not include
modals or auxiliaries in the event annotation (in
order to minimise the number of annotated ele-
ments), getting these elements correct in trans-
lation is needed to distinguish a correct vs. par-
tially correct event (cf. section 3.2).

3. For the same reason as (2), the event in a nom-
inal predicate includes all its modifiers.

4. All these points apply to Chinese as well; in ad-
dition, in the case of resultative constructions
(e.g. fù bù qĭ lit. ‘pay not lift-RES.’, ‘could not
pay, can not afford’) we considered the resulta-
tive particle as part of the event.

With respect to scope, the current work makes a
simple approximation: scope is often discontinu-
ous, with multiple semantic units whose translations
might impact the overall translation of the scope dif-
ferently. To facilitate error analysis we approximate
the scope in terms of its constituent semantic fillers,
here taken to be Propbank-like semantic arguments.
In doing so, we consider the scope as the semantic
domain of negation, where the constituent elements
are expected to remain in its boundaries and to pre-
serve their semantic role (or take an equivalent one)
during translation.

Example (1) illustrates our annotation scheme
over the first instance of bù (not) in a Chinese source
sentence.

(1) [wŏmen]filler

We
bùcue

not
páichúevent

exclude
[qı́zhōng
amidst

yŏu
there is

dăn xı̄n
worried

de
of

huı̀
can

lái
come

zhŭdòng
voluntarily

jiāodài]filler

confess
,
,
dàn
but

páo
run

de qı̆
RES

bù
not

gēng
even

duōme?
more Q
Ref: [We]filler do notcue [rule out]event

[the possibility that some timid ones might
come out and voluntarily confess]filler , but
would n’t many more just run away?

As shown in (1) the scope around the first main
clause can be split into two arguments - a subject
and an object - around the verb páichú(rule out) so
error analysis can be carried on each individually.
We instead consider the second instance of bù/not
as ‘non-functional negation’ and do not annotate it
since it is just part of the question and does not con-
stitute itself a negation instance.

3.2 Manual Error Analysis

A subsequent task is to define categories that are
able to cover potential errors in translating negation.
Our analysis aims at applying a small set of string-
based operations traditionally used in SMT to the
aforementioned elements of negation. We consider
three main operations and apply them to each of the
three elements of negation for a total of 9 main con-
ditions:

3



• Deletion: one of the three sub-constituents of
negation is present in the source Chinese sen-
tence but not in the machine output. This corre-
sponds to the missing words category in (Vilar
et al., 2006).

• Insertion: the negation element is not present
in the source sentence but has been inserted
in the machine output. This resembles the ex-
tra words sub-category in the incorrect words
class.

• Reordering: whether the element has been
moved outside its scope. Since some seman-
tic elements can also move inside the scope and
take a role which they did not have in the orig-
inal source sentence, we define the former re-
ordering error as out-of-scope reordering error
and the latter intra-scope reordering error. The
reordering category represents an adaptation of
the original word order category.

Since we are not concerned with errors regarding
style, punctuation or unknown words, other opera-
tions were left aside.

For a better understanding at when during the
translation process (a.k.a. the decoding process) and
why the error occurs, we also investigated the trace
of rules used to build the 1-best machine output.
This is particularly useful in the case of deletion:
this may occur because a certain Chinese word or
sequence of Chinese words (generally referred in
SMT as phrases) has not been seen during training
(so called out-of-vocabulary items - OOVs) and the
system is therefore unable to translate them.

After the elements of negation have been an-
notated in both the source sentences and machine
outputs, we use the same heuristic as (H)MEANT
(Lo and Wu, 2011) to decide whether a translated
unit is correct or partially correct. We also consider
correct translations that are synonyms of the source
negation element since they are taken to convey the
same meaning. This also includes those elements
that are negated in the source but are rendered in
the machine output by means of a lexical element
inherently expressing negation (e.g. fails) or by
paraphrase into positive (e.g. bù tóng, lit. ‘not
similar’→ different). We consider partially correct
translated elements that do not contain errors which

impact the overall meaning. In the case of the event,
this might be related to tense agreement or wrong
modality, whilst in the case of the scope it is usually
related to the fact that secondary elements are not
translated correctly but the overall meaning is still
preserved.

As in HMEANT, we compute precision, recall
and F1 measure using the following formulae
where e ∈ E = {cue,event,filler}. However, unlike
HMEANT, we do not normalise the number of
correct fillers by the number of total fillers in the
predicate.

P =
(
∑

ecorrect + 0.5 ∗∑
epartial)∑

ehyp

R =
(
∑

ecorrect + 0.5 ∗∑
epartial)∑

esrc

F1 = 2 ∗ P ∗R

P + R

4 System

We carried out the error analysis on the output of
the Chinese-to-English hierarchical phrase based
system submitted by the University of Edinburgh
for the NIST12 MT evaluation campaign.

Hierarchical phrase-based (or HPB) systems are a
class of SMT systems that use syntax-like rules and
hierarchical tree structures to build an hypothesis
translation given a test source sentence and a model
previously trained on a bilingual corpora. Unlike
pure syntax models, HPBMs do not make use of
syntactic constituent tags for non-terminals but
instead use an X as placeholder for recursion. A
rule used in a Hierarchical Phrase based system
looks like the following,

ne veux plus X1→ do not want X1 anymore

where the French source (also referred to as
the left hand side - LHS of the rule) and the English
target side (the right hand side - RHS) allows arbi-
trary insertion of another rule where the placeholder
X is located.

The system was trained on approximately 2.1
million length-filtered segments in the news domain,
with 44678806 tokens on the source and 50452704
on the target, with MGIZA++ (Gao and Vogel,
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2008) used for alignment. The system was tuned
using MERT (Minimal Error Rate Training, (Och,
2003)) on the NIST06 set.

Two different test sets were considered to assess
differences that might be associated with genre:
the NIST MT08 test set, containing data from the
newswire domain and the IWSLT14 tst2012 test
set, containing transcriptions of TED talks. We
hypothesise that the difference in genre can influ-
ence the kinds of negation related error occurring
during translation: as a collection of planned spoken
inspirational talks, we expect the IWSLT’14 test set
to contain shorter sentences, and on average, more
instances of negation. On the contrary, we expect
the NIST MT08, where data are from the written
language domain, to contain longer sentences and
fewer instances of negation.

In order to carry out future work on the effect of
word segmentation on the elements on negation,
we built two different systems (and therefore rule
tables), one from data segmented using the LDC-
WordSegmenter and the other using the Stanford
Word Segmenter. The former matches the segmen-
tation of the NIST08 test set, whilst the latter the
one of the IWSLT14 test set.

Out of the 1397 segments in the IWSLT2014 set
and the 1357 segments in the NIST MT08 set, 250
sentences for each set were randomly chosen to
carry out the manual evaluation.

5 Results

5.1 Manual Analysis

5.1.1 NIST MT08
The results of the manual evaluation for the NIST

MT08 test set are reported in Table 1. It can be
easily seen that getting the cue right is easier than
translating event and scope correctly. The cue is in
fact usually a one-word unit and related errors con-
cern almost entirely whether the system has deleted
it during translation or not. Event and scope instead
are usually multi-word units whose correctness also
depends on whether they interact correctly with the
other negation elements.

In those cases where the cues were deleted during
translation, the trace shows that they were all caused
by a rule application that does not contain negation
on the English right hand side. Also worth notic-

ing is that, in these cases, the negation cue in the
source side is lexically linked to the event (‘bùshăo’
, ‘not few, many’) or lexically embedded in it (e.g.
‘dé bùdao, ‘cannot obtain’). No cases of cues be-
ing deleted were found where the cue is a distinct
unit. Also, no cases of cues were found of cues be-
ing deleted because of not being seen during training
(out-of-vocabulary items).

Other cue-related errors involve the cue being re-
ordered with respect to scope. In one case, cue re-
ordering happens within the same scope, where the
cue is moved from the main clause to the subordi-
nate. In three other cases, the cue is instead trans-
lated outside its source scope and attached to a dif-
ferent event. The two cases are exemplified in (2)
and (3) respectively.

(2) [tā]filler

She
cóngbùcue

never
[yı̄nwèi
because

wŏ
I

gĕi
to

tā
him

tı́
raise

guò
ASP

yı̀jı̀an]filler

opinion
ér
so

[dùi
to

wŏ]filler

I
huài yŏuevent

have
[pı̀anjı̀an]filler

bias
[...]

Ref: He never showed any bias against me
[because i ’d complained to him]sub [...]

Hyp: he never mentioned to him because
my opinions and i have bias against china
[...]

(3) [...]
[...]

jiù
then

huı̀
can

rènwéi
think

bù
not

cúnzài
exist

Ref: [...] people would think [that [they
do]scope not [exist]scope]sub

Hyp: [...] do not think [there is a]sub

As for the translation of events, a trend similar to
the translation of cues can be observed, although
the percentage of deletions is higher than the cue.
The trace shows that in 3 out of 11 cases, deletion
is caused by an OOV item, i.e. a Chinese phrase
which is not seen in training and for which the sys-
tem has not learned any translation. The remaining
cases resemble the cue case, insofar as no rule con-
tains the target side event. Another problem arising
with events is that some fillers in the source might
have erroneously become events in the machine out-
put and vice versa; we found 3 events on the source
becoming fillers in the target and 7 fillers on the
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source becoming events in the machine output, as
shown in (4).

(4) zhè
This

yı̄ge
one

jiēduàn
stage

de
of

biăxiàn
show

shı̀
is

[duănqı̄
short-term

xiāoguō]filler

result
bùdàcue+event

not big
[...]
[...]

Ref: what this stage brings forward is : mod-
est success in the short-term [...]

Hyp: this is a stage performance are notcue

[short-term effect]event

The fact that most of reordering errors are filler-
related is connected to the lack of semantic-related
information during the translation process, a com-
mon problem in machine translation systems. Since
there is no explicit guidance as to which events the
fillers should be attached to and in what order, in-
scope and out-of-scope problems are to be expected.

Around 10% of filler-related errors were caused
by deletion. An investigation of the trace shows
that in all 9 cases, the system has knowledge of the
source words in the rule table but has applied a rule
that does not contain the filler on the target side.

Finally, in the case of fillers, we notice that 2 of
the incorrect fillers in the hypothesis were due to the
insertion in the scope of fillers not present in the
source side. The trace shows that this kind of error
is generated by rules that contain on the right hand
side extra material not related to the source side. We
hypothesised that these rules might have been cre-
ated during training where English words that did
not correspond to any Chinese source words were
arbitrarily added to neighbouring phrases. For in-
stance, in (5) a rule that translates yĭzhı̀yú (‘to the
extent of’) into ‘to the extent of they’ is used, adding
a filler to following negation scope.

(5) [...]
[...]

yı̆zhı̀yú
to the extent

wúfă
not possible

yú
with

oū zhou
Europe

méngguó
union

zhèngcháng
normally

zhănkāi
open

hézuò
cooperation

Ref: [...] even made it is impossible to carry
out cooperation with their European allies as
normal .

Hyp: [...] to the extent that [they]filler are
unable to conduct normal with its european
allies cooperation

NIST MT08 test set
Average Sentence Length 28
Number of negated sentences 54 21.6%
Cue per sentence ratio 1.22%

Src Hyp
Cues 66 57
Events 66 57
Fillers 98 80

# R% # P% F1

Correct cues 58/66 87.87 53/57 92.98 90.35
Correct events 34/66 51.51 29/57 50.88
+ Partial events 34 + 8/66 57.6 29 + 8/57 57.9 57.74
Correct fillers 48/98 48.97 45/80 56.25
+ Partial fillers 48 + 9/98 58.16 45 + 9/80 67.5 62.48
Deleted cues 4/66 6
Deleted events 11/66 16.6
Deleted fillers 9/98 9.18
Inserted fillers 2/80 2.5
Reordered cues same scope 1/66 1.5 1/57 1.75
Reordered cues out of scope 3/66 4.5
Reordered events same scope 3/66 4.5 7/57 12.2
Reordered events out of scope 1/66 1.5
Reordered fillers same scope 8/98 8.16 5/80 6.25
Reordered fillers out of scope 21/98 21.41

Table 1: Results from the error analysis of the 250 sen-
tences randomly extracted from the NIST MT08 test set.

5.1.2 IWSLT ’14 Tst2012 TED Talks

Results for the TED talks test set are reported in
Table 2. It can be observed that results on all three
categories are better than the NIST08 test set, in
particular for the F1 measure of correct events and
scope. A reduction in the percentage of reordered
fillers on the overall number translation errors might
be connected to the fact that on average sentences
in the TED talk, also given their domain, are shorter
than the sentences in the NIST08 test set and there-
fore there is less chance of operating long range re-
ordering.

We can also observe that genre has an effect on
the number of negation cues; despite sentences be-
ing shorter, we found more negative instances in the
TED talks.

As for the errors in the NIST08 test set, we anal-
ysed the trace output after the completion of the
translation process to see whether deletions were
caused by incorrect rule application or by the pres-
ence of OOV items not seen during training. Out of
7 cases of cue deletion, 3 of event deletion and 5 of
filler deletion, only one was caused by the presence
of an OOV vocabulary item in the source. However,
as shown in (6), the OOV error is generated by a
wrong segmentation of two elements in the source,
bùzhī and zĕnme, which end up being collapsed in a
single word unit.
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(6) bùzhı̄zĕnme
do not know how

yòng
use

wŏmen
we

bù
not

néng
be able

wánquán
completely

lı̆jiĕ
understand

de
of

fāngshi
method

[...]
[...]

Ref: ways we cannot fully understand that
we don’t know how to use [...]

Hyp: was converted to the way we cannot
fully understand [..]

This seem to exclude OOV items as a problem in
translating negation for the present system and what
we are left with is a problem of negative elements
not correctly reproduced on the target side of the
rules.

Finally, we have found two cases of insertion, one
cue and the other event related. Overall, cases of
insertion are rare and do not constitute a real prob-
lem for the system here considered. In general, as
for event and scope, a rule application that does not
contain one of these two elements on the Chinese
left hand side but inserts it in the English right hand
side might be just fortuitous. As in the case of (5), it
might have been that a rule containing extra material
was preferred because a better fit in that specific con-
text (a LM score is in fact part of the scoring func-
tion of a SMT system). Insertion of the cue deserves
instead a better investigation. The results shows that
deletion is sometimes associated with rules whose
Chinese (left-hand) side contains a cue whilst the
English side does not. This is most certainly caused
by the training process where rules are extracted ac-
cording to what portion of the source Chinese sen-
tence is aligned to what portion in the target English
sentence. If an Chinese sentence contains negation
but the English does not, a rule learnt from that pair
might learn that a negation cue corresponds to some-
thing positive. This should theoretically happen the
other way around and if so, the application of these
rules should lead to insertion. Further analysis of the
rule table and the sentences used in training might
clarify this point.

6 Towards An Automatic Error Analysis

This manual error analysis assesses the quality of
the 1-best translation output by the system. More
can be done: (i) we can determine which component
of the system is responsible for each error so as to
know where to intervene and (ii) we can automate

IWSLT14 tst2012 TED talks
Average Sentence Length 18
Number of negated sentences 61 24.4%
Cue per sentence ratio 1.13%

Src Hyp
Cues 69 54
Events 69 52
Fillers 103 83

# R% # P% F1

Correct cues 61/69 88.4 53/54 98 92.95
Correct events 48/69 69.56 40/52 76.92
+ Partial events 48 + 3/69 71.73 40 + 3/52 79.8 75.55
Correct fillers 64/103 62 64/83 77
+ Partial fillers 64 + 3/103 63.59 64 + 3 /83 78.9 70.42
Deleted cues 7/69 10.14
Deleted events 5/69 7.2
Deleted fillers 4/103 3.8
Inserted cue 1/54 1.8
Inserted fillers 1/83 1.2
Reordered events same scope 5/69 7.2 1/52 1.9
Reordered events out of scope 4/69 5.7
Reordered fillers same scope 2/103 1.9 6/83 7.2
Reordered fillers out of scope 13/103 12.62

Table 2: Results from the error analysis of the 250 sen-
tences randomly extracted from the IWSLT2014 test set.

the whole process of error finding. Both actions can
be referred to as automatic error analysis, given that
they rely on (semi-)automatic method to analyse er-
rors in translating negation, although they differ in
the scope of their analysis: (i) represents an exten-
sion of the manual error analysis, whilst (ii) aims at
automating it.

Although out of the scope of the present work, we
briefly sketch our current work on (i) whilst leaving
(ii) for future work. The reason for this is because
the assumption behind this as many other manual
analysis, i.e. that a small set of string-based error
categories can be used to characterise different kind
of translation errors (here semantic), can be easily
projected in the automatic error analysis. Moreover,
the importance and indispensability of a manual er-
ror analysis is highlighted when devising an auto-
matic error analysis. This is obvious in the case of
(i), where, in order to find the causes of the errors,
we need to know what these are. However, even we
succeed in (ii) and we are able to spot errors auto-
matically, we still need a manual error analysis as
a benchmark to assess the quality of any automatic
method.

When we talk about detecting errors during de-
coding, we try to determine the reason why our sys-
tem is behaving differently to what we expect. These
expectations depends on the source side negation el-
ement processed at each step during decoding and
are closely linked to both the set of string-based er-
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ror category and the set of negation sub-constituents
used in this manual error analysis:

1. The cue has to be translated correctly; no cue
deletion or insertion should occur.

2. The event has to be translated correctly; no
event deletion or insertion should occur.

3. The cue has to be connected to right event; no
cue or event reordering should occur.

4. The semantic arguments in the source scope
should be translated and reproduced in line
with the target language semantics; no dele-
tion, insertion or reordering of the semantic
fillers should occur.

An ideal system would meet all the above conditions
in translating negation in each cell of the decoding
chart1; if not, we have to inspect the decoding chart
trace and classify the errors occurred. The goal here
is to find which part of the translation system is re-
sponsible for each error category. There are three
main type of errors, each one connected to one com-
ponent of the translation pipeline:

• Induction errors, where the correct translation
for a given element is absent from the search
space. These errors depends on how many tar-
get translations are fetched from the rule table
when a given source span is translated (default
is 20). The more we consider, the more likely is
for the correct translation to be inserted in the
search space. The system component related to
this category is the rule table.

• Search errors, where the correct translation
fetched from the rule table disappears from the
search space before making it to the final cell,
due to pruning or other optimisation heuristics.
The system component responsible for this er-
ror is the search space.

• Model errors, where the system ranks bad
translations better than better translations. The
component responsible is the scoring function.

1Hierarchical phrase-based decoder uses a variant of
bottom-up CKY chart algorithm

Induction errors occur when no negation element is
found in any hypothesis built in any of the chart cell;
search errors occur when, by enlarging the search
space, hypotheses meeting the expected conditions
that were previously absent from the chart are now
present; finally, model errors occur where hypothe-
sis meeting one or more expectation are present but
rank lower than the ones that do not.

Since these expectations are based on source side
elements we need a way to project source side nega-
tion elements into a target language; for expectation
(1) and (2), we are experimenting with two differ-
ent methods: (i) via an automatically extracted list
of potential cues and a bilingual dictionary enriched
with paraphrases; (ii) by extracting cues and events
from the multiple reference translations set. To en-
sure that expectation (3) and (4) are met we instead
use a dependency parse.

Preliminary results on the translation of the cue
alone (expectation (1)) in the NIST08 MT test set
shows that it is uniquely a problem of model er-
ror, where good hypotheses are ranked lower than
bad ones. A comparison between the scores of
good and bad hypotheses show, when the former are
not ranked properly, shows that it is the translation
model the main responsible for such bad ranking.

7 Conclusion

The present paper presents an analysis of the errors
involved in translating negation. We showed that it
is possible to build a clear and robust error analysis
using (1) the set of semantic elements involved in
the meaning of negation (cue, event and scope) and
(2) a sub-set of string-based operations traditionally
used in SMT error analysis (deletion, insertion and
reordering).

Results of a manual error analysis on a Chinese-
to-English output shows that this analysis is easily
portable to a language other than English and allows
us to cover a wide range of potential errors occur-
ring during translating. Our findings also show that
amongst the three elements of negation here consid-
ered, the scope is the most problematic and reorder-
ing is in general the most frequent error in Chinese-
to-English translation. In the case of deletion or
insertion of negation elements, we also found that
the errors are attributable to a rule application that
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prefers positive translations over negative and are
therefore not caused by OOV items not seen during
training.

Using the assumptions and the results of the man-
ual error analysis, we also introduced an automatic
way to inspect the causes of the errors in the de-
coding chart trace. Preliminary results show that
the scoring function is the main responsible for cue
deletion errors observed.

We hope that the methodology and the results of
the present work can guide future work on improv-
ing the translation of negative sentences.

8 Future Work

In the present paper, we have successfully applied
the manual error analysis to the output of a Chinese-
to-English Hierarchical Phrase-based system. Fu-
ture work will extend this method to other language
pairs and different SMT systems. We in fact ex-
pect these two variables to impact the kind of er-
rors found in translation. Chinese and English are
in fact very similar in the way they express nega-
tion: adverbial negation is the most frequent way
of expressing negation (Blanco and Moldoval, 2011;
Fancellu and Webber, 2012); morphological nega-
tion (or affixal) or lexically embedded negation is
present in both languages and affect mainly adjec-
tives; events can be both nominal, verbal and ad-
jectival. If we however extend this analysis to a
language pair where negation is expressed through
different means (e.g. English and Czech), it is un-
likely we will find the same error distribution. More-
over, hierarchical phrase-based models are in fact
non-purely syntax driven methods that are able to
deal with high levels of reordering. That however
also means that (a) there is no concept of syntac-
tic constituent boundaries and (b) when reordering
is performed incorrectly there is a high degree of el-
ement scrambling. For this reason phrase-based sys-
tems (where reordering is limited) and syntax-based
systems (where an explicit knowledge of constituent
boundaries is present) are likely to yield different re-
sults.

Finally, this paper has only discussed manual
detection of translation errors involving negation.
Other ongoing work tries instead to automate this
process.
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Abstract

In this paper, we present a corpus study in-
vestigating the use of the fillers äh (uh) and
ähm (uhm) in informal spoken German youth
language and in written text from social me-
dia. Our study shows that filled pauses oc-
cur in both corpora as markers of hesita-
tions, corrections, repetitions and unfinished
sentences, and that the form as well as the
type of the fillers are distributed similarly in
both registers. We present an analysis of
fillers in written microblogs, illustrating that
äh and ähm are used intentionally and can add
a subtext to the message that is understand-
able to both author and reader. We thus ar-
gue that filled pauses in user-generated con-
tent from social media are words with extra-
propositional meaning.

1 Introduction

In spoken communication, we can find a high num-
ber of utterences that are disfluent, i.e. that include
hesitations, repairs, repetitions etc. Shriberg (1994)
estimates the ratio of disfluent sentences in spon-
taneous human-human communication to be in the
range of 5-6%.

One particular type of disfluencies are filled
pauses (FP) like äh (uh) and ähm (uhm). FP are
a frequent phenomenon in human communication
and can have multiple functions. They can be put
at any position in an utterance and are used when a
speaker encounters planning and word-finding prob-
lems (Maclay and Osgood, 1959; Arnold et al.,
2003; Goffman, 1981; Levelt, 1983; Clark, 1996;

Barr, 2001; Clark and Fox Tree, 2002), or as strate-
gic devices, e.g. as floor-holders or turn-taking sig-
nals (Maclay and Osgood, 1959; Rochester, 1973;
Beattie, 1983). Filled pauses can function as
discourse-structuring devices, but they can also ex-
press extra-propositional aspects of meaning beyond
the propositional content of the utterance, e.g. as
markers of uncertainty or politeness (Fischer, 2000;
Barr, 2001; Arnold et al., 2003).

Examples (1)-(6) illustrate the use of FP to mark
repetitions (1), repairs (2), breaks (3) and hesitations
(4) (the last one often used to bridge word find-
ing problems). FPs can also express astonishment
(5), excitement or negative sentiment (6). Extra-
linguistic reasons also come into play, such as the
lack of concentration due to fatigue or distraction,
which might lead to a higher ratio of FP in the dis-
course.

(1) I will uh I will come tomorrow.
(2) I will leave on Sat uh on Sunday.
(3) I think I uh have you seen my wallet?
(4) I have met Sarah and Peter and uhm Lara.
(5) Sarah is Michael’s sister. Uh? Really?
(6) A: He cheated on her. B: Ugh! That’s bad!

The role of fillers in spoken language has been
discussed in the literature (for an overview, see Cor-
ley and Stewart (2008)). Despite this, work on pro-
cessing disfluencies in NLP has mostly considered
them as mere performance phenomena and focused
on disfluency detection to improve automatic pro-
cessing (Charniak and Johnson, 2001; Johnson and
Charniak, 2004; Qian and Liu, 2013; Rasooli and
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Tetreault, 2013; Rasooli and Tetreault, 2014). Far
fewer studies have focused on the information that
disfluencies contribute to the overall meaning of the
utterance. An exception are Womack et al. (2012)
who consider disfluencies as extra-propositional in-
dicators of cognitive processing.

In this paper, we take a similar stand and present a
study that investigates the use of filled pauses in in-
formal spoken German youth language and in writ-
ten, but conceptually oral text from social media,
namely Twitter microblogs.1 We compare the use
of FP in computer-mediated communication (CMC)
to that in spoken language, and present quantitative
and qualitative results from a corpus study showing
similarities as well as differences between FP in both
the spoken and written register. Based on our find-
ings, we argue that filled pauses in CMC are words
with extra-propositional meaning.

The paper is structured as follows. Section 2 gives
an overview on the different properties of spoken
language and written microblogs. In section 3 we
present the data used in our study and describe the
annotation scheme. Section 4 reports our quantita-
tive results which we discuss in section 5. We com-
plement our results with a qualitative analysis in sec-
tion 6, and conclude in section 7.

2 Filled Pauses in Spoken and Written
Registers

Clark and Fox Tree (2002) propose that FP are words
with meaning, but so far there is no conclusive evi-
dence to prove this. While experimental results have
shown that disfluencies do affect the comprehension
process (Brennan and Schober, 2001; Arnold et al.,
2003), this is no proof that listeners have access to
the meaning of a FP during language comprehen-
sion but could also mean that FP are produced “un-
intentionally [...], but at predictable junctures, and
listeners are sensitive to these accidental patterns of
occurrence.” (Corley and Stewart, 2008), p.12.

To show that fillers are words in a linguistic sense,
i.e. lexical units that have a specific semantics that
is understandable to both speaker and hearer, one
would have to show that speakers are able to pro-
duce them intentionally and that recipients are able

1See the model of medial and conceptual orality and literacy
by Koch & Oesterreicher (1985).

to interpret the intended meaning of a filler.
Assuming that fillers are not linguistic words but

simply noise in the signal, caused by the high de-
mands on cognitive processing in spoken online
communication, we would not expect to find them
in medially written communication such as user-
generated content from social media, where the pro-
duction setting does not put the same time pressure
on the user as there is in oral face-to-face commu-
nication. However, a search for fillers on Twitter2

easily proves this wrong, yielding many examples
for the use of FP in medially written text (7).

(7) Oh uh.. I got into the evolve beta.. yet I have
no idea what this game is.. uhm..

Both, informal spoken dialogues and microblogs
can be described as conceptually oral, meaning that
both display a high degree of interactivity, signalled
by the use of backchannel signals and question tags,
and are highly informal with grammatical features
that deviate from the ones in the written standard va-
riety (e.g. violations of word order constraints, case
marking, etc.). Both registers show a high degree of
expressivity, e.g. interjections and exclamatives, and
make use of extra-linguistic features (spoken lan-
guage: gestures, mimics, voice modulation; micro-
text: emoticons, hashtags, use of uppercased words
for emphasis, and more).

Differences between the two registers concern the
spatio-temporal setting of the interaction. While
spoken language is synchronous and takes place
in a face-to-face setting, microblogging usually
involves a spatial distance between users and is
typically asynchronous, but also allows users to
have a quasi-synchronous conversation.3 Quasi-
synchronous here means that it is possible to com-
municate in real time where both (or all) communi-
cating partners are online at the same time, tweeting
and re-tweeting in quick succession, but without the
need for turn-taking devices as there is a strict first-
come-first-serve order for the transmission of the di-
alogue turns. As a result, microblogging does not
put the same time pressure on the user but permits
them to monitor and edit the text. This should rule
out the use of FP as markers of disfluencies such

2https://twitter.com/search-home
3See (Dürscheid, 2003; Jucker and Dürscheid, 2012) for an

account of quasi-synchronicity in online chatrooms.
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as repairs, repetitions or word finding problems, and
also the use of FP as strategic devices to negotiate
who takes the next turn. Accordingly, we would not
expect to observe any fillers in written microblogs if
their only functions were the ones specified above.

However, regardless of the limited space for
tweets,4 microbloggers make use FP in microtext.
This suggests that FP do indeed serve an important
communicative function, with a semantics that must
be accessible to both the blogger and the recipient.

3 Annotation Experiment

This section describes the data and setup used in our
annotation experiment.

3.1 Data

The data we use in our study comes from two dif-
ferent sources. For spoken language, we use the
KiezDeutsch-Korpus (KiDKo) (Wiese et al., 2012),
a corpus of self-recordings of every-day conversa-
tions between adolescents from urban areas. All in-
formants are native speakers of German. The corpus
contains spontaneous, highly informal peer group
dialogues of adolescents from multiethnic Berlin-
Kreuzberg (around 266,000 tokens excluding punc-
tuation) and a supplementary corpus with adoles-
cent speakers from monoethnic Berlin-Hellersdorf
(around 111,000 tokens). On the normalisation layer
where punctuation is included, the token counts add
up to around 359,000 tokens (main corpus) and
149,000 tokens (supplementary corpus).

The first release of KiDKo (Rehbein et al., 2014)
includes the transcriptions (aligned with the audio
files), a normalisation layer, and a layer with part-
of-speech (POS) annotations as well as non-verbal
descriptions and the translation of Turkish code-
switching.

The data was transcribed using an adapted version
of the transcription inventory GAT 2 (Selting et al.,
1998), also called GAT minimal transcript, which
uses uppercased letters to encode the primary accent
and hyphens in round brackets to mark silent pauses
of varying length.

The microblogging data consists of German-
language Twitter messages from different regions

4The maximum length of a tweet is limited to 140
characters.

KiDKo Twitter
äh 646 35.8 6403 0.6
ähm 360 19.9 4182 0.4
both 1,006 55.7 10,585 1.0
# tokens 180,558 10,000 105,074,399 10,000

Table 1: Distribution of äh and ähm in KiDKo and Twit-
ter microtext (raw counts (grey column) and normalised
numbers (white column) per 10,000 tokens).

of Germany, and includes 7,311,960 tweets with
105,074,399 tokens. For retrieving the tweets we
used the Twitter Search API5 which allows one to
specify the user’s location by giving a latitude and
a longitude pair as parameters for the search. Over
a time period of 6 months we collected tweets from
48 different locations.6 The corpus was automati-
cally augmented with a tokenisation layer and POS
tags.7

A string search in both corpora, looking for vari-
ants of äh and ähm (including upper- and lowercased
spelling variants with multiple ä, with and without
a h, and with one or more m) shows the following
distribution (Table 1). Filled pauses are far less fre-
quent in microblogs compared to spoken language,
but due to the large amount of data we can easily
extract more than 10,000 instances from the Twit-
ter corpus. Note that the tweets in our corpus come
from different registers like news, ads, public an-
nouncements, sports, and more, with only a small
portion of private communication. When constrain-
ing the corpus search to the subsample of private
tweets, we will most likely find a higher proportion
of FP in the social media data.

In summary, we observe a higher amount of FP in
spoken language than in Twitter microblogs. How-
ever, in both corpora variants of äh outnumber ähm
by roughly the same factor. This observation is com-
patible with the results of (Womack et al., 2012) who
report that around 60% of the FP in their corpus of
English diagnostic medical narratives are nasal filled
pauses (uhm, hm) and around 40% are non-nasal
(uh, er, ah).

5https://dev.twitter.com/docs/api
6Note that the Twitter geoposition parameter can only ap-

proximate the regional origin of the speakers as the location
where a tweet has been sent is not necessarily the residence or
place of birth of the tweet author.

7Unfortunately, for legal reasons we are not allowed to dis-
tribute the data.
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Categories Position
1 Repetition B/I
2 Repair B/I
3 Break B/I
4 Hesitation B/I
5 Question B/I
6 Interjection B/I
7 Unknown

Table 2: Labels used for annotating the fillers (B: be-
tween utterances; I: integrated in the utterance).

3.2 Annotating Fillers in Spoken Language
and in Microtext

To be able to compare the use of fillers in spoken
language with the one in Twitter microtext, we ex-
tract samples from the two corpora including 500 ut-
terances/tweets with at least one use of äh and 500
tweets with at least one instance of ähm. At the time
of the investigation, the transcription of KiDKo was
not yet completed, and we only found 360 utterances
including an ähm in the finished transcripts.

For annotation, we used the BRAT rapid annota-
tion tool (Stenetorp et al., 2012). Our annotation
scheme is shown in Table 2. We distinguish be-
tween different categories of fillers, namely between
FP that mark repetitions, repairs, hesitations, or that
occur at the end of an unfinished utterance/tweet
(breaks). We also annotated variants of äh and ähm
which were used as question tags or interjections,
but do not consider them as part of the disfluency
markers we are interested in. The Unknown label
was used for instances which either do not belong
to the filler class and shouldn’t have been extracted,
such as example (8), or which couldn’t be disam-
biguated, usually due to missing context.

(8) Hääähähh !!!

Each filler is labelled with its category and posi-
tion. By position we mean the position of the filler
in the utterance or tweet. Here we distinguish be-
tween fillers which occur between (B) utterances/at
the beginning or end of tweets (example 9b) and
those which are integrated (I) in the utterance/tweet
(9a). The numbers in the first column of Table 2
correspond to examples (1)-(6).

Twitter KiDKo
Sample äh ähm äh ähm

1 n.a. n.a. 0.79 0.75
2 n.a. 0.84 0.73 0.64
3 0.80 0.83 0.78 0.84
4 0.87 0.87 0.78 0.75
5 0.86 0.86 0.74 n.a.

avg. κ 0.84 0.85 0.76 0.75

Table 3: Inter-annotator agreement (κ) for 3 annotators.

(9) a. das
this

’s
’s

irgend
some

so
such

’n
a

äh
uh

(-) RAPper
rapper

der
who

...

...

this is some uh rapper who ... (Hesitation-I)

b. äh
uh

weiß
know

ich
I

nich
not

uh I don’t know (Hesitation-B)

3.3 Inter-Annotator Agreement

The data was divided into subsamples of 100 utter-
ances/tweets. Each sample was annotated by three
annotators. Table 3 shows the inter-annotator agree-
ment (Fleiss’ κ) on the KiDKo and Twitter samples.
We report agreement for all but three samples which
we used to train the annotators, refine the guidelines
and to discuss problems with the annotaton scheme.
As we had only 360 instances of ähm from KiDKo,
we divided them into three samples with 100 utter-
ances and a fourth sample with 60 utterances.

Table 3 shows that the annotation of fillers is not
an easy task. The disagreements in the annotations
concern both the category and the position of the FP.
In some cases the annotators agree on the label but
disagree on the position of the filler (10a). This can
be explained by the fact that spoken language (and
sometimes also tweets) does not come with sentence
boundaries, and it is often not clear where we should
segment the utterance. In example (10a) two anno-
tators interpreted the reparandum as part of the ut-
terance and thus assigned REPAIR-I, while the third
annotator analysed am Samstag (on Saturday) as a
new utterance, resulting in the label REPAIR-B.
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(10) a. SPK39
SPK39

trifft
meets

sich
REFL

am
on-the

SONNtag
Sunday

mit
with

den
the

SPK23
SPK23

ÄH
uh

am
on-the

SAMStag
Saturday

“SPK39 meets SPK23 on Sunday uh on Sat-
urday”

b. wir
we

HAM
have

dann
then

ÄH
uh

wir
we

ham
have

halbe
half

stunde
hour

UNterricht
class
“then we have uh we have class for half an
hour”

More often, however, the disagreements concern
the category of the filler, as in (10b) where two an-
notators analysed the utterance as a repair while the
third annotator interpreted it as a break followed by
a new start. The results show that the annotation of
fillers in KiDKo seems to be much harder, with av-
erage κ scores around 0.1 lower than for the tweets.

4 Quantitative Results

Table 4 shows that the ranking for the different cat-
egories of äh and ähm is the same in both corpora
(11). Hesitations are the most frequent category
marked by äh and ähm, followed by repairs and
breaks. Repetitions are less frequent, especially in
the written microblogs, as are äh and ähm as ques-
tion tags and interjections.

(11) Hesitation > Repairs > Breaks > Repetitions >
Questions/Interjections

äh/ähm KiDKo Twitter
# % # %

Hesitations 557 64.78 759 72.91
Repairs 105 12.21 191 18.35
Breaks 88 10.23 52 0.05
Repetitions 53 6.16 9 0.01
Questions 10 1.16 6 0.01
Interjections 11 1.28 5 0.00
total 860=100% 1041=100%

Table 4: Frequencies of äh/ähm in KiDKo and in Twitter
(note: numbers don’t add up to 100% because of Un-
known cases).

However, we can also observe a substantial dif-
ference between the spoken and the written regis-
ter. In the latter one, the two most frequent cat-
egories, hesitations and repairs, make up for more
than 90% of all instances of äh and ähm, while in
spoken language these two categories only account
for 76-77% of all occurrences of the two fillers. A
possible explanation is that breaks and repetitions in
spoken language are either performance phenomena
or caused by discourse strategies (e.g. floor-holding)
which are both superfluous in asynchronous written
communication. This still leaves us with the ques-
tion why hesitations and repairs do occur in written
text at all. We will come back to this question in
section 6.

The next question we ask is whether the two
forms, äh and ähm, are used interchangeably or
whether the use of each form is correlated with
its function. As shown in Table 5, hesitations and
breaks are more often marked by ähm while äh oc-
curs more frequently as a marker of repairs and rep-
etitions. This observation holds for both the spoken
and the written register. 72.8% and 80.0% of all in-
stances of ähm occur in the context of a hesitation in
KiDKo and Twitter, while only 59.0% (KiDKo) and
65.8% (Twitter) of the non-nasal fillers äh are used
to mark a hesitation. A Fisher’s exact test shows that
for hesitations and repairs, the differences are statis-
tically significant with p < 0.01 and p < 0.05, while
for breaks and repetitions, the differences might be
due to chance.

Next we look at the syntactic position where those
fillers occur in the text. We would like to know how
often FP are integrated in the utterance and how of-
ten they occur between utterances.

KiDKo % Twitter %
äh ähm äh ähm

Hesitation 59.0 72.8 65.8 80.0
Break 9.0 11.9 4.5 5.5
Repair 16.1 5.8 25.4 11.5
Repetition 7.4 4.2 1.2 0.6

Table 5: Distribution of äh and ähm between different
types of disfluencies.
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KiDKo % Twitter %
B I B I

äh Hesitations 24.6 34.4 42.6 23.2
Repairs 0.1 16.0 0.6 24.8
Repetitions 0.0 7.4 0.2 1.0

ähm Hesitations 31.4 41.4 62.4 17.6
Repairs 0.0 5.8 0.4 11.1
Repetitions 0.0 4.2 0.0 0.6

Table 6: Position of äh and ähm in correlation to their
category.

Fox et al. (2010) present a cross-linguistic study
on self-repair in English, German and Hebrew, and
observe that self-corrections in English often include
the repetition of whole clauses, i.e. English speak-
ers “recycle” back to the subject pronouns (Fox et
al. 2010:2491). In their German data this pattern
was less frequent. Fox et al. (2010) conclude that
morpho-syntactic differences between the languages
have an influence on the self-repair practices in the
speakers.

Our findings are consistent with Fox et al. (2010)
in that we mostly observe the repetition of words,
not of clauses (Table 6). Nearly all fillers which
mark repetitions are integrated in the utterance or
tweet, only a few occur between utterances/tweets.
Fillers as markers of repairs are also mostly inte-
grated.

For hesitations, the most frequent category, we
get a more diverse picture. In our spoken language
data, äh and ähm are more often integrated in the
utterance, while for tweets FP as hesitation markers
mostly appear at the beginning or end of the tweet.

So far, our quantitative investigation showed some
striking similarities in the use of filled pauses in the
two corpora. In both registers, the ranking of the
different disfluency types marked by the FP were the
same. Furthermore, we showed that speakers/users
are sensitive to the surface form of a FP and prefer to
use äh in repairs and ähm in hesitations, regardless
of the medium they use for communication.

5 Discussion

In this section we will look at related work on FP
and try to put our findings into context. Previous
work on the difference between nasal and non-nasal
fillers (Barr, 2001; Clark and Fox Tree, 2002) has

described nasal fillers such as uhm, hm as indicators
of a high cognitive load, while their non-nasal vari-
ants indicate a lower cognitive load during speech
production. Clark and Fox Tree (2002) have pro-
posed the filler-as-word hypothesis, stating that FP
like uh and uhm are words in a linguistic sense with
the basic meaning that a minor (uh) or major (uhm)
delay in speaking is about to follow. This analysis is
based on a corpus study showing that silent pauses
following a nasal filler are longer than silent pauses
after a non-nasal filler. Beyond the basic meaning,
FP can have different implicatures, depending on the
context they are used in, such as indicating that the
speaker wants to keep the floor, is planning the next
(part of the) utterance, or wants to cede the floor. To
illustrate this, Clark and Fox Tree (2002) use good-
bye which has the basic meaning “express farewell”
but, when uttered while someone is approaching the
speaker, can have the implicature “Go away”.

We take the filler-as-word hypothesis of Clark and
Fox Tree (2002) as our starting point and see how
adequate it is to describe the use of FP in written mi-
croblogs (section 6). However, we try to avoid the
term implicature which seems problematic in this
context, as we are not dealing with implicatures built
on regular lexical meanings but rather with impli-
catures on top of non-propositional meaning. As a
side-effect, the implicatures based on filled pauses
are not cancellable.

The analysis of Clark and Fox Tree (2002) is not
uncontroversial (see, e.g., Womack et al. (2012) for
a short discussion on that matter). O’Connell and
Kowal (2005) criticise that the corpus study of Clark
and Fox Tree (2002) is based on pause length as per-
ceived by the annotators (instead of being analysed
by means of acoustic measurements).

Furthermore, it might be possible that the seman-
tics of FP to indicate the length of a following de-
lay only applies to English. Belz and Klapi (2013)
have measured pause lengths after nasal and non-
nasal fillers in German L1 and L2 dialogues from a
MAP task and could not find a similar correlation
between filler type and pause length.

In summary, it is not clear whether the different
findings are due to methodological issues, or might
be particular to certain languages and text types.
Shriberg (1994), p.130 suggests that for English,
models of disfluencies based on the ATIS corpus,
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a corpus of task-oriented dialogues about air travel
planning, might not be able to predict the behaviour
of disfluencies in spoken language corpora with data
recorded in a less restricted setting.

The MAP task corpora used in Belz and
Klapi (2013), for example, includes dialogues where
one speaker instructs another speaker to reproduce
a route on a map. Due to the functional design, the
content of the dialogues is constrained to solving the
task at hand and thus the language is expected to dif-
fer from the one used in the London–Lund corpus
(Svartvik, 1990), a corpus of personal communica-
tion, that was used by Clark and Fox Tree (2002).

Fox Tree (2001) presents a perception experiment
showing that uh helps recognizing upcoming words,
while the nasal um doesn’t. In our study we found a
strong correlation between the category of the filler
and its form (nasal vs. non-nasal). Nasal fillers were
mostly used in the context of hesitations, which is
consistent with their ascribed basic function as indi-
cators of longer pauses (Clark and Fox Tree, 2002).
The tendency to use äh within repairs might be ex-
plained by Fox Tree (2001)’s findings that non-nasal
fillers help to recognise the next word. Thus, we
would expect a preference for non-nasal FP to be
used as an interregnum before the repair.

Other evidence comes from Brennan and
Schober (2001) who present experiments where
the subjects had to follow instructions and select
objects on a graphical display. They showed that
insertions of uh after a mid-word interruption in
the instruction helped the subjects to correctly
identify the target object, as compared to the same
instruction where the filler was replaced by a silent
pause. They conclude that fillers help to recover
from false information in repairs.8

So far, our findings are consistent with previous
work outlined above, but do not rule out other ex-
planations. A major argument against the analysis
of FP as linguistic words is that so far there is no
conclusive evidence that speakers do produce them
intentionally (Corley and Stewart, 2008).

Our corpus study provides this evidence by show-
ing that FP in CMC are produced deliberately and
intentionally. Furthermore, we observed a statis-

8Unfortunately, they did not compare the effect of uh in re-
pairs to the one obtained by a nasal filler like um.

tically significant correlation between filler form
(nasal or non-nasal) and filler category, which also
points at äh and ähm being separate words with dis-
tinguishable meanings.

In the next section, we show that FP in CMC can
add a subtext to the original message that can be un-
derstood by the recipients, and that the information
they add goes beyond the contribution made by non-
verbal channels such as facial expressions or ges-
tures. We illustrate this, based on a qualitative anal-
ysis of our Twitter data.

6 Extra-propositional Meaning of FP in
Social Media Text

New text from social media provides us with a
good test case to investigate whether filled pauses
are words with (extra-propositional) meaning, as
the production of written text is to a far greater
extent subject to self-monitoring processes. This
means that we can confidently rule out that the use
of fillers in tweets is due to performance problems
caused by the time pressure of online communica-
tion. Another important point is that communica-
tion on Twitter is not synchronous but can be time-
delayed and works on a first-come-first-serve basis.
This is quite important, as it means that we can also
exclude the discourse-strategic functions of FP (e.g.
floor-holding and turn-taking) as possible explana-
tions for the use of fillers in user-generated micro-
text.

We conclude that there have to be other explana-
tions for the use of filled pauses as markers of hesi-
tations and repairs in microblogs. Consider the fol-
lowing examples (12)-(14).

(12) Mein
My

...

...
ääh
uh

Glückwunsch!
congratulation!

RT
RT

@germanpsycho:
@germanpsycho:

Ich
I

bin
am

nun
now

verheiratet.
married.

“My ... uh congratulations! RT @ger-
manpsycho: I’m married now.”

(13) Die
This one

hat
has

aber
PTCL

schöne
beautiful

ähm
uhm

Augen.
eyes.

“This one has really beautiful uhm eyes.”

(14) Ich
I

frage
ask

für,
for,

ähm,
uhm,

einen
a

Freund.
friend.

“I’m asking for uhm a friend.”
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The fillers in the examples above add a new layer
of meaning to the tweet which results in an inter-
pretation different from the one we get without the
filler. While a simple “Congratulations!” as answer
to the message “I’m married now” would be inter-
preted as a polite phrase, the mere addition of the
filler implies that this tweet should not be taken at
face value and has a subtext along the lines “Actu-
ally, I really feel sorry for you”. The same is true for
(13) where the subtext can be read as “In fact, we’re
talking about some other bodyparts here”. In exam-
ple (14), the subtext added by the filler will most
probably be interpretated as “I’m really asking for
myself but won’t admit it”.9

In the next examples (15)-(17), also hesitations,
the filler is used to express the author’s uncertainty
about the proposition.

(15) 30000
30000

e
e

für
for

die
the

2h
2h

db
db

Show
show

für
for

regiotv...
regiotv...

ähm...?
uhm...?

Ich
I

weiss
know

grad
just now

auch
also

nich..
not..

“30000 e for the 2h db show for regiotv...
uhm...? I don’t know right now, either..”

(16) Tor
Goal

für
for

#Arminia
#Arminia

durch,
by

ääh,
uuh,

wir
we

glauben
believe

Schütz.
Schütz.
“Goal for #Arminia by uuh, we believe
Schütz.”

(17) @zinken
@zinken

äh..
uh..

so
around

98%
98%

“@zinken uh.. around 98%”

Thus, the most general commonality between the
examples above is that the speaker does not make
a commitment concerning the truth content of the
message.

The following examples (18)-(21) show instances
of äh and ähm in repairs where the FP occur as in-
terregnum between reparandum and repair.10

I will leave you on Sat︸ ︷︷ ︸ uh︸ ︷︷ ︸ on Sunday︸ ︷︷ ︸
REPARANDUM INTERREGNUM REPAIR

9In fact, this adds an interesting meta-level to the utterance,
as by inserting the filler the author draws attention to the fact
that there is something she seemingly wants to hide.

10We follow the terminology of Shriberg (1994).

The tweet author enacts a slip of the tongue, either
by using homonymous or near-homonymous words
(Diskus (discus) – Discos (discos), hängst (hang) –
Hengst (stallion)) or by using analogies and conven-
tionalised expressions (off – on, resist – contradict).
The “mistake” was made with humorous intention
and is then corrected. The filler takes again the slot
of the interregnum and serves as a marker of the in-
tended pun.

(18) Ob
Whether

Diskuswerfer
discus-throwers

früher
in the past

immer
always

in
in

Diskus
discus

äh
uh

Discos
discos

geübt
trained

haben,
have,

etwa
perhaps

als
as

Rauswerfer
bouncers

am
at the

Eingang?
entrance?

“In the past, have discus-throwers always trained
in discus uh discos, maybe as bouncers at the
entrance?”

(19) Du
You

Hengst!
stallion!

äh,
uh,

hängst.
hang.

“You stallion! uh, hang.”

(20) MacBook
MacBook

aus,
off,

Handy
mobile

aus,
off,

TV
TV

aus.
off.

Buch
Book

an,
on,

ähh,
uhh,

aufgeklappt.
open.

“MacBook off, mobile off, TV off. Book on,
uhh, open.”

(21) wer
who

könnte
could

Dir
you

schon
PTCL

widerstehen,
resist,

ähm,
uhm,

ich
I

meine
mean

widersprechen.
contradict.

“who could resist you, uhm, I mean contradict.”

In the next set of examples, (22)-(24), a taboo
word or word with a strong negative connotation
is reformulated into something more socially ac-
ceptable (minister of propaganda→ district mayor;
madness → spirit; tantalise → educate). Often,
this is done with a humorous intention, but also
to express negative sentiment (e.g. in (22) towards
Buschkowsky, or in (23) towards Apple).

(22) Exakt.
Exactly.

Wie
How

es
it

das
the

Buch
book

von
of

eurem
your

RMVP Minister Goebbels
RMVP minister Goebbels

äh
uh

Bezirksbürgermeister
district mayor

Buschkowsky
Buschkowsky

so
so

beschrieben
described

hat.
has

:-)
:-)
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“Exactly. Just as the book of your minister
of propaganda Goebbels uh district mayor
Buschkowsky has described :-)”

(23) Du
You

hast
have

den
the

Apple
Apple

Wahnsinn...
madness...

äh,
uh,

Spirit
spirit

einfach
simply

noch
still

nicht
not

verstanden
understood

;)
;)

“You haven’t yet understood the Apple mad-
ness... uh spirit ;)”

(24) ...
...

ein
a

bisserl
little bit

Nachwuchs
new blood

quäl...
tant...

ähm
uhm

ausbilden
educating
“... tant[alising] the new blood uhm educating”

These examples show that the use of äh and ähm
in tweets is intentional and highly edited. The two
forms are used to express the speaker’s uncertainty
about the propositional content of the message, or as
a signal that the speaker does not warrant the truth
of the message. Other functions include the use of
fillers as markers of humorous intentions and of neg-
ative sentiment (see Table 7). Note that the mean-
ings are not necessarily distinct but often overlap.

We thus argue that FP in user-generated content
from social media are linguistic words that are pro-
duced intentionally and have an extra-propositional
meaning that can be understood by the recipients.

Meaning Description
UNCERTAINTY Speaker is uncertain about

the propositional content
TRUTH CONTENT Speaker does not warrant

the truth content of the
proposition

HUMOR Marker of humorous intention
EVALUATION Marker of negative sentiment

Table 7: Extra-propositional meaning of fillers in CMC.

7 Conclusions

The results from our corpus study show that fillers in
user-generated text from social media are linguistic
words that are produced intentionally and function
as carriers of extra-propositional meaning.

This finding has consequences for work on Senti-
ment Analysis and Opinion Mining in social media
text, as it shows that FP are used as a marker of irony
and humour in Twitter, and also indicate uncertainty

and negative sentiment. Thus, filled pauses might be
useful features for irony detection, sentiment analy-
sis, or to assess the strength of an opinion in online
debates.
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Sören Schalowski and Josef Ruppenhofer for valu-
able comments and discussions that contributed to
this work. I would also like to thank our annotators,
Nadine Reinhold and Emiel Visser, and the anony-
mous reviewers for their thoughtful comments.

References
Jennifer E. Arnold, Maria Fagnano, and Michael K.

Tanenhaus. 2003. Disfluencies signal theee, um, new
information. Journal of Psycholinguistic Research,
32(1):25–36.

Dale J. Barr, 2001. Trouble in mind: paralinguistic
indices of effort and uncertainty in communication,
pages 597–600. Paris: L’Harmattan.

Geoff W. Beattie. 1983. Talk: an analysis of speech
and non-verbal behaviour in conversation. Milton
Keynes: Open University Press.

Malte Belz and Myriam Klapi. 2013. Pauses follow-
ing fillers in L1 and L2 German Map Task dialogues.
In The 6th Workshop on Disfluency in Spontaneous
Speech, DiSS.

Susan E. Brennan and Michael F. Schober. 2001. How
listeners compensate for disfluencies in spontaneous
speech. Journal of Memory and Language, 44:274–
296.

Eugene Charniak and Mark Johnson. 2001. Edit de-
tection and parsing for transcribed speech. In Pro-
ceedings of the Second Meeting of the North American
Chapter of the Association for Computational Linguis-
tics on Language Technologies, NAACL.

Herbert H. Clark and Jean E. Fox Tree. 2002. Using uh
and um in spontaneous speech. Cognition, 84:73–111.

Herbert H. Clark. 1996. Using language. Cambridge:
Cambridge University Press.

Martin Corley and Oliver W. Stewart. 2008. Hesitation
disfluencies in spontaneous speech: The meaning of
um. Language and Linguistics Compass, 2:589–602.

Christa Dürscheid. 2003. Medienkommunikation
im Kontinuum von Mündlichkeit und Schriftlichkeit.
Theoretische und empirische Probleme. Zeitschrift für
angewandte Linguistik, 38:3756.

20



Kerstin Fischer. 2000. From cognitive semantics to lex-
ical pragmatics: the functional polysemy of discourse
particles. Mouton de Gruyter: Berlin, New York.

Barbara Fox, Yael Maschler, and Susanne Uhmann.
2010. A cross-linguistic study of self-repair: evidence
from English, German and Hebrew. Journal of Prag-
matics, 42:2487–2505.

Jean E. Fox Tree. 2001. Listeners’ uses of um and uh
in speech comprehension. Memory and Cognition,
2(29):320–326.

Erving Goffman, 1981. Radio talk, pages 197–327.
Philadelphia, PA: University of Pennsylvania Press.

Mark Johnson and Eugene Charniak. 2004. A tag-based
noisy channel model of speech repairs. In Proceed-
ings of the 42Nd Annual Meeting on Association for
Computational Linguistics, ACL.

Andreas H. Jucker and Christa Dürscheid. 2012. The
linguistics of keyboard-to-screen communication. A
new terminological framework. Linguistik Online,
6(56):39–64.

Peter Koch and Wulf Oesterreicher. 1985. Sprache
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Abstract

We propose a compositional method to as-
sess the factuality of biomedical events ex-
tracted from the literature. The composi-
tion procedure relies on the notion of se-
mantic embedding and a fine-grained clas-
sification of extra-propositional phenom-
ena, including modality and valence shift-
ing, and a dictionary based on this classi-
fication. The event factuality is computed
as a product of the extra-propositional op-
erators that have scope over the event. We
evaluate our approach on the GENIA event
corpus enriched with certainty level and
polarity annotations. The results indicate
that our approach is effective in identify-
ing the certainty level component of factu-
ality and is less successful in recognizing
the other element, negative polarity.

1 Introduction

The scientific literature is rich in extra-
propositional phenomena, such as speculations,
opinions, and beliefs, due to the fact that the
scientific method involves hypothesis generation,
experimentation, and reasoning to reach, often
tentative, conclusions (Hyland, 1998). Biomedi-
cal literature is a case in point: Light et al. (2004)
estimate that 11% of sentences in MEDLINE
abstracts contain speculations and argue that
speculations are more important than established
facts for researchers interested in current trends
and future directions. Such statements may also
have an effect on the reliability of the underlying
scientific claim. Despite the prevalence and
importance of such statements, natural language
processing systems in the biomedical domain have

largely focused on more foundational tasks, in-
cluding named entity recognition (e.g., disorders,
drugs) and relation extraction (e.g., biological
events, gene-disease associations), the former task
addressing the conceptual level of meaning and
the latter addressing the propositional level.

The last decade has seen significant research
activity focusing on some extra-propositional as-
pects of meaning. The main concern of the stud-
ies that focused on the biomedical literature has
been to distinguish facts from speculative, tenta-
tive knowledge (Light et al., 2004). The stud-
ies focusing on the clinical domain, on the other
hand, have mainly aimed to identify whether find-
ings, diseases, symptoms, or other concepts men-
tioned in clinical reports are present, absent, or
uncertain (Uzuner et al., 2010). Various corpora
have been annotated for relevant phenomena, in-
cluding hedges (Medlock and Briscoe, 2007) and
speculation/negation (Vincze et al., 2008; Kim et
al., 2008). Several shared task challenges with
subtasks focusing on these phenomena have been
organized (Kim et al., 2009; Kim et al., 2012).
Supervised machine learning and rule-based ap-
proaches have been proposed for these tasks. In
general, these studies have been presented as ex-
tensions to named entity recognition or relation
extraction systems, and they often settle for as-
signing discrete values to propositional meaning
elements (e.g., assessing the certainty of an event).

Kilicoglu (2012) has proposed a unified frame-
work for extra-propositional meaning, encompass-
ing phenomena discussed above as well as dis-
course level relations, such as Contrast and Elabo-
ration, generally ignored in the studies of extra-
propositional meaning (Morante and Sporleder,
2012). The framework uses semantic embedding
as the core notion, predication as the represen-22



tational means, and semantic composition as the
methodology. It relies on a fine-grained linguistic
characterization of extra-propositional meaning,
including modality, valence shifters, and discourse
connectives. In the current work, we present a
case study of applying this framework to the task
of assessing biomedical event factuality (whether
an event is characterized as a fact, a counter-fact,
or merely a possibility), an important step in de-
termining current trends and future directions in
scientific research. For evaluation, we rely on the
meta-knowledge corpus (Thompson et al., 2011),
in which biological events from the GENIA event
corpus (Kim et al., 2008) have been annotated with
several extra-propositional phenomena, including
certainty level, polarity, and source. We discuss in
this paper how two of these phenomena relevant to
factuality (certainty and polarity) can be inferred
from the semantic representations extracted by the
framework. Our results demonstrate that certainty
levels can be captured correctly to a large extent
with our method and indicate that more research
is needed for correct polarity assessment.

2 Related Work

Modality and negation are the two linguistic phe-
nomena that are often considered in computa-
tional treatments of extra-propositional meaning.
Morante and Sporleder (2012) provide a compre-
hensive overview of these phenomena from both
theoretical and computational linguistics perspec-
tives. In the FactBank corpus (Saurı́ and Puste-
jovsky, 2009), events from news articles are anno-
tated with their factuality values, which are mod-
eled as the interaction of epistemic modality and
polarity and consist of eight values: FACT, PROB-
ABLE, POSSIBLE, COUNTER-FACT, NOT PROBA-
BLE, NOT CERTAIN, CERTAIN BUT UNKNOWN,
and UNKNOWN. Saurı́ and Pustejovsky (2012)
propose a factuality profiler that computes these
values in a top-down manner using lexical and
syntactic information. They capture the interac-
tion between different factuality markers scoping
over the same event. de Marneffe et al. (2012) in-
vestigate veridicality as the pragmatic component
of factuality. Based on an annotation study that
uses FactBank and MechanicalTurk subjects, they
argue that veridicality judgments should be mod-
eled as probability distributions. They show that
context and world knowledge play an important
role in assessing veridicality, in addition to lex-

ical and semantic properties of individual mark-
ers, and use supervised machine learning to model
veridicality. Szarvas et al. (2012) draw from pre-
vious categorizations and annotation studies to in-
troduce a unified subcategorization of semantic
uncertainty, with EPISTEMIC and HYPOTHETICAL

as the top level categories. Re-annotating three
corpora with this subcategorization and analyzing
type distributions, they show that out-of-domain
data can be gainfully exploited in assessing cer-
tainty using domain adaptation techniques, despite
the domain- and genre-dependent nature of the
problem.

In the biomedical domain, several corpora have
been annotated for extra-propositional phenom-
ena, in particular, negation and speculation. The
GENIA event corpus (Kim et al., 2008) contains
biological events from MEDLINE abstracts anno-
tated with their certainty level (CERTAIN, PROB-
ABLE, DOUBTFUL) and assertion status (EXIST,
NON-EXIST). The BioScope corpus (Vincze et
al., 2008) consists of abstracts and full-text arti-
cles as well as clinical text annotated with negation
and speculation markers and their scopes. While
they clearly address similar linguistic phenomena,
the representations used in these corpora are sig-
nificantly different (cue-scope representation vs.
tagged events), and there have been attempts at
reconciling these representations (Kilicoglu and
Bergler, 2010; Stenetorp et al., 2012). BioNLP
shared tasks on event extraction (Kim et al., 2009;
Kim et al., 2012) and CoNLL 2010 shared task on
hedge detection (Farkas et al., 2010) have focused
on GENIA and BioScope negation/speculation an-
notations, respectively. Supervised machine learn-
ing techniques (Morante et al., 2010; Björne et
al., 2012) as well as rule-based methods (Kilicoglu
and Bergler, 2011) have been attempted in extract-
ing these phenomena and their scopes. Wilbur
et al. (2006) propose a more fine-grained anno-
tation scheme with multi-valued qualitative di-
mensions to characterize scientific sentence frag-
ments: certainty (complete uncertainty to com-
plete certainty), evidence (from no evidence to
explicit evidence), polarity (positive or negative),
and trend/direction (increase/decrease, high/low).
In a similar vein, Thompson et al. (2011) annotate
each event in the GENIA event corpus with five
meta-knowledge elements: Knowledge Type (In-
vestigation, Observation, Analysis, Method, Fact,
Other), Certainty Level (considerable speculation,23



some speculation, and certainty), Polarity (neg-
ative and positive), Manner (high, low, neutral),
and Source (Current, Other). Their annotations
are more semantically precise as they are applied
to events, rather than somewhat arbitrary sentence
fragments used by Wilbur et al. (2006). Miwa et
al. (2012) use a machine learning-based approach
to assign meta-knowledge categories to events.
They cast the task as a classification problem and
use syntactic (dependency paths), semantic (event
structure), and discourse features (location of the
sentence within the abstract). They apply their
system to BioNLP shared task data, as well, over-
all slightly outperforming the state-of-the-art sys-
tems.

3 Methods

We provide a brief summary of the framework
here, mainly focusing on predication representa-
tion, embedding predicate categorization, and the
compositional algorithm.

3.1 Predications
The framework uses the predication construct to
represent all levels of relational meaning. A pred-
ication consists of a predicate P and n logical ar-
guments (logical subject, logical object, adjuncts).
They can be nested; in other words, they can
take other predications as arguments. We call
such constructs embedding predications to distin-
guish them from atomic predications that can only
take atomic terms as arguments. While some em-
bedding predications operate at the basic proposi-
tional level, extra-propositional meaning is exclu-
sively captured by embedding predications. We
use the notion of semantic scope to characterize
the structural relationships between predications.
A predication Pr1 is said to embed a predication
Pr2 if Pr2 is an argument of Pr1. Similarly, a pred-
ication Pr2 is is said to be within the semantic
scope of a predication Pr1, if a) Pr1 embeds Pr2,
or b) there is a predication Pr3, such that Pr1 em-
beds Pr3 and Pr2 is within the semantic scope of or
shares an argument with Pr3. Scope relations play
an important role in the composition procedure. A
predication also encodes the source (S) and scalar
modality value of the predication (MVSc). A for-
mal definition of predication, then, is:

Pr := [P, S,MVSc, Arg1..n], n >= 1

By default, the source of a predication is the writer
of the text (WR). The source may also indicate a

term or predication that refers to the source (i.e.,
who said what is described by the predication?
what is the evidence for the predication?). The
scalar modality value of the predication is a value
in the [0,1] range on a relevant modality scale
(Sc), which is assigned according to lexical prop-
erties of the predicate P and modified by its dis-
course context. By default, an unmarked, declara-
tive statement has the scalar modality value of 1 on
the EPISTEMIC scale (denoted as 1epistemic), cor-
responding to a fact.

3.2 Categorization
With the embedding categorization, we aim to pro-
vide a fine-grained characterization of the kinds
of extra-propositional meanings contributed by
predicates that indicate embedding. A synthe-
sis of various linguistic typologies and classifi-
cations, the categorization is similar to the cer-
tainty subcategorization proposed by Szarvas et
al. (2012); however, it not only targets certainty-
related phenomena, but is rather a more general
categorization of embedding predicates that in-
dicate extra-propositional meaning. We distin-
guish four main classes of embedding predicates:
MODAL, RELATIONAL, VALENCE SHIFTER and
PROPOSITIONAL; each class is further divided
into subcategories. For the purposes of this pa-
per, MODAL and VALENCE SHIFTER categories
are most relevant (illustrated in Figure 1).

A MODAL predicate associates its embedded
predication with a modality value on a scale de-
termined by the semantic category of the modal
predicate (e.g., EPISTEMIC scale, DEONTIC scale).
The scalar modality value (MVSc) indicates how
strongly the embedded predication is associated
with the scale Sc, 1 indicating strongest posi-
tive association and 0 negative association. VA-
LENCE SHIFTER predicates do not introduce new
scales but trigger a scalar shift of the embedded
predication on the associated scale.

The MODAL subcategories relevant for factual-
ity computation and examples of predicates be-
longing to these categories are as follows:

• EPISTEMIC predicates indicate a judgement
about the factual status of the embedded
predication (e.g., may, possible).

• EVIDENTIAL predicates indicate the type of
evidence (observation, inference, etc.) for
the embedded predication (e.g., demonstrate,
suggest).24



Figure 1. Embedding predicate types.

• DYNAMIC predicates indicate ability or will-
ingness towards an event (e.g., able, want).

• INTENTIONAL predicates indicate effort of
an agent to perform an event (e.g., aim).

• INTERROGATIVE predicates indicate ques-
tioning or inquiry towards the embedded
event (e.g., investigate).

• SUCCESS predicates indicate degree of suc-
cess associated with the embedded predica-
tion (e.g., manage, fail).

Each subcategory is associated with its own
modality scale, except the EVIDENTIAL category,
which is associated with the EPISTEMIC scale.
The categories listed above also have secondary
epistemic readings, in addition to their primary
scale; for example, INTERROGATIVE predicates
can indicate uncertainty. The EPISTEMIC scale
is the most relevant scale to investigate factual-
ity. Our model of this scale and how modal aux-
iliaries correspond to it is illustrated in Figure 2.
It is similar to the characterization of factuality
values by Saurı́ and Pustejovsky (2012), although
numerical epistemic values are assigned to predi-
cations (MVepistemic), rather than discrete values

like Probable or Fact. In this, the characteriza-
tion follows that of Nirenburg and Raskin (2004),
which lends itself more readily to the type of op-
erations proposed for scalar modality values.

Figure 2. The epistemic scale with characteristic
values and corresponding modal auxiliaries.

The SCALE SHIFTER subcategory of valence
shifters also plays a role in factuality assessment.
Predicates belonging to this category change the
scalar modality value of the predications in their
scope. The subtypes of this category are NEGA-
TOR, INTENSIFIER, DIMINISHER, and HEDGE. A
DIMINISHER predicate (e.g., hardly) lowers the
modality value, while an INTENSIFIER increases
it (e.g., strongly). On the other hand, a negation
marker belonging to the NEGATOR category (e.g.,
no in no indication) inverts the modality value of
the embedded predication. The HEDGE category
contains attribute hedges (e.g., mostly, in gen-
eral) (Hyland, 1998), whose effect is to make the
embedded predication more vague. We model this
by decreasing, increasing or leaving unchanged
the modality value depending on the position of
the embedded predication on the scale.

Lexical and semantic knowledge about predi-
cates belonging to embedding categories are en-
coded in a dictionary, which currently consists of
987 predicates, 544 of them belonging to MODAL

and 95 to SCALE SHIFTER categories. A very pre-
liminary version of this dictionary was introduced
in Kilicoglu and Bergler (2008). It was later ex-
tended and refined using several corpora and lin-
guistic classifications (including Saurı́ (2008) and
Nirenburg and Raskin (2004)). Since predicates
collected from external resources do not neatly fit
into embedding categories and we target deeper
levels of meaning distinctions, the dictionary con-
struction involved a fair amount of manual refine-25



ment. The dictionary encodes the lemma and part-
of-speech of the predicate as well as its extra-
propositional meaning senses. Each sense consists
of five elements:

1. Embedding category, such as ASSUMPTIVE.

2. Prior scalar modality value (if any).

3. Embedding relation classes indicate the se-
mantic dependencies used to identify the log-
ical object argument of the predicate.

4. Scope type indicates whether the predicate al-
lows a wide or narrow scope reading (for ex-
ample, in I don’t think that P, because think
allows narrow scope reading, the negation is
transferred to its complement (I think that not
P)).

5. Argument inversion (true/false) determines
whether the object and subject arguments
should be switched in semantic interpreta-
tion.

Lemma may
POS MD (modal)
Sense.01 Category SPECULATIVE

Scalar modality value 0.5
Embedding rel. classes AUX

Sense.02 Category PERMISSIVE
Scalar modality value 0.6
Embedding rel. classes AUX

Table 1. Dictionary entry for may.

The entry in Table 1 indicates that the modal
auxiliary may is associated with two modal senses
(i.e., it is ambiguous) with differing scalar modal-
ity values. It also indicates that a predication em-
bedded by SPECULATIVE may will be assigned
the epistemic value of 0.5 initially. Scope type
and argument inversion attributes are not explic-
itly given, indicating default values for each.

3.3 Composition
Semantic composition is the procedure of bottom-
up predication construction using the knowledge
encoded in the dictionary and syntactic informa-
tion in the form of dependency relations. De-
pendency relations are extracted using the Stan-
ford CoreNLP toolkit (Manning et al., 2014). We
use the Stanford collapsed dependency format (de
Marneffe et al., 2006) for dependency relations.
We illustrate the salient steps of this procedure on
a sentence from the GENIA event corpus (sen-
tence 9 from PMID 10089566 shown in row (1)

in Table 2). For brevity, the simplified version of
the sentence is given in row (2), in which textual
spans are substituted with the corresponding event
annotations.

As the first step in the procedure, the syntactic
dependency graphs of sentences of a document are
combined and transformed into a semantically en-
riched, directed, acyclic semantic document graph
through a series of dependency transformations.
The nodes of the semantic graph correspond to
textual units of the document and the direction of
the arcs reflects the direction of the semantic de-
pendency between its endpoints. The transforma-
tion is guided by a set of rules, illustrated on row
(3). For example, the first three transformations
are due to the Verb Complex Transformation rule,
which reorders the dependencies that a verb is in-
volved in such that semantic scope relations with
the auxiliaries and other verbal modifiers are made
explicit. The resulting semantic dependencies on
the right indicate that involve is within the scope of
not, which in turn is in the scope of may, and the
entire verb complex may not involve is within the
scope of thus, which indicates a discourse relation.

The next steps of the compositional algorithm,
argument identification and scalar modality value
composition, play a role in factuality assessment1.
Argument identification is the process of determin-
ing the logical arguments of a predication, based
on the bottom-up traversal of the semantic graph.
It is guided by argument identification rules, each
of which defines a mapping from a lexical cate-
gory and an embedding class to a logical argument
type. Such a rule applies to a predicate specified
in the dictionary that belongs to the lexical cate-
gory and serves as the head of a semantic depen-
dency labeled with the embedding relation class.
With argument identification rules, we determine,
for example, that the second instance of may in the
example, has as its logical object, the predication
indicated by operate, since there is an AUX em-
bedding relation between may and operate, which
satisfies the constraint defined in the embedding
dictionary (Table 1).

Scalar modality value composition is the proce-
dure of determining the relevant scale for a pred-
ication and its modality value on this scale. The
following principles are applied:

1. Initially, every predication is assigned to
1The compositional steps that we do not discuss here are

source propagation and argument propagation.26



(1) Thus HIV-1 gp41-induced IL-10 up-regulation in monocytes may not involve NF-kappaB, MAPK,
or PI3-kinase activation, but rather may operate through activation of adenylate cyclase
and pertussis-toxin-sensitive Gi/Go protein to effect p70(S6)-kinase activation.

(2) Thus E27 may not E32, E33, or E34, but rather may E39 and E40.
(3) advmod(involve,thus) ADVMOD(thus,may)

aux(involve,may) AUX(may,not)
neg(involve,not) NEG(not,involve)
prep of(activation,cyclase) PREP OF(activation,adenylate cyclase)

(4) involve:CORRELATION(E32,WR,0.5epistemic,E27, E28)
not:NEGATOR(EM53,WR,0.5epistemic,E32)
may:SPECULATIVE(EM57,WR,1.0epistemic,EM53)
operate:REGULATION(E39,WR,0.5epistemic,E38,E27)
may:SPECULATIVE(EM58,WR,1.0epistemic,E39)

Table 2. Composition example for 10089566:S9.

EPISTEMIC scale with the value of 1 (i.e., a
fact).

2. A MODAL predicate places its logical object
on the relevant MODAL scale and assigns to
it its prior scalar modality value, specified in
the dictionary.

3. A SCALE SHIFTER predicate does not intro-
duce a new scale but changes the existing
scalar modality value of its logical object.

4. The scalar influence of an embedding pred-
icate (P) extends beyond the predications it
embeds to another predication in its scope
(Pre), if one of the following constraints is
met:

• P is associated with the epistemic scale
and the intermediate predications (Pri)
are either of SCALE SHIFTER type or are
associated with epistemic scale
• P is of SCALE SHIFTER type and at

most one intermediate predication is of
MODAL type
• P is of a non-epistemic MODAL type and

Pri all belong to SCALE SHIFTER type

Assuming that we have a predicate P which in-
dicates an embedding predication Pr and a pred-
ication (Pre) under its scalar influence, the scalar
modality value of Pre is updated differently, based
on whether the predicate P is a MODAL or a
SCALE SHIFTER predicate. All update opera-
tions used for MODAL predicates are given in Ta-
ble 3 and those for SCALE SHIFTER predicates

in Table 4. For MODAL predicates, the compo-
sition is modeled as the interaction of the prior
scalar modality value of the embedding predicate
(MVSc(Pmodal)) in the first column and the cur-
rent scalar modality value associated with the em-
bedded predication (MVSc(Pre)) in the second col-
umn, resulting in the value shown in the third col-
umn (MVSc(Pre)

′
). When P is a scale-shifting

predicate, the update procedure is guided by its
type, as illustrated in Table 4. X and Y represent
arbitrary values in the range of [0,1].

MVSc(Pmodal) MVSc(Pre) MVSc(Pre)
′

(1) = X = 1.0 X
(2) = X = 0.0 1-X
(3) > Y > 0.5 ∧ = Y min(0.9, Y+0.2)
(4) < Y ∧ >= 0.5 > 0.5 ∧ = Y min(0.5,Y-0.2)
(5) < 0.5 > 0.5 ∧ = Y 1-Y
(6) >= 0.5 < 0.5 ∧ = Y Y
(7) < 0.5 < 0.5 ∧ = Y 1- Y

Table 3. The composition of scalar modality val-
ues in MODAL contexts.

For the example shown in Table 2, the com-
putation in row (1) of Table 3 applies when we
encounter the SPECULATIVE may node dominat-
ing the operate node in the semantic graph: since
MVepistemic(may)=0.5 and operate at the time of
composition has epistemic value of 1, its scalar
modality value gets updated to 0.5.

When not, a NEGATOR, is encountered in com-
position, the scalar modality value of its embedded
predication (involve) is updated to 0, due to row
(2) in Table 4 (1-1=0). In the next step of com-
position, when the first instance of SPECULATIVE

may is encountered, the nodes in its scope, not and27



Type MVSc(Pre) MVSc(Pre)
′

(1) NEGATOR = 0.0 0.5
(2) NEGATOR > 0.0 ∧ = Y 1-Y
(3) INTENSIFIER (= 0.0 ∨ = 1.0)

∧ = Y
Y

(4) INTENSIFIER >= 0.5 ∧ = Y min(0.9,Y+0.2)
(5) INTENSIFIER < 0.5 ∧ = Y max(0.1,Y-0.2)
(6) DIMINISHER (= 0.0 ∨ = 1.0)

∧ = Y
Y

(7) DIMINISHER >= 0.5 ∧ = Y max(0.5,Y-0.2)
(8) DIMINISHER < 0.5 ∧ = Y max(0.4,Y+0.2)
(9) HEDGE = 0.0 0.2
(10) HEDGE = 1.0 0.8
(11) HEDGE = Y Y

Table 4. The composition of scalar modality val-
ues in SCALE SHIFTER contexts.

involve, have epistemic values of 1 and 0, respec-
tively. The scalar modality value of not gets up-
dated to min(0.5,1-0.2)=0.5 (row (4) in Table 3).
Row (2) in Table 3 applies to involve, resulting in
0.5 as its new epistemic value (1-0.5).

Row (4) in Table 2 shows the annotations gen-
erated by the system. The system takes as in-
put GENIA event annotations (e.g., CORRELA-
TION and REGULATION), which we expand with
scalar modality values and sources. For example,
E32..E34, three events triggered by involve and an-
notated as CORRELATION events in GENIA, have
epistemic value of 0.5 and WR as the source (only
one of the events, E32, is shown for brevity). The
system also generates other embedding predica-
tions (indicated with EM) corresponding to fine-
grained extra-propositional meaning. To clarify,
the content of first three predications (first an
event and the latter two extra-propositional) are
expressed in natural language below:

• E32: Correlation between gp41-induced IL-
10 upregulation and NF-kappaB activation is
POSSIBLE according to the author.

• EM53: That there is no correlation between
gp41-induced IL-10 upregulation and NF-
kappaB activation is POSSIBLE according to
the author.

• EM57: That it is possible there no correla-
tion between gp41-induced IL-10 upregula-
tion and NF-kappaB activation is a FACT ac-
cording to the author.

3.4 Data and Evaluation
We assessed our methodology on the meta-
knowledge corpus (Thompson et al., 2011), in

which GENIA events are annotated with certainty
levels (CL) and polarity. This corpus consists
of 1000 MEDLINE abstracts and contains 34,368
event annotations. Uncertainty is only annotated
in this dataset for events with Analysis knowledge
type. Such events correspond to 17.6% of the en-
tire corpus. Of all Analysis events, 33.6% are an-
notated with L2 (high confidence), 11.4% with L1
(low confidence), and 55% with L3 (certain) CL
values. Polarity, on the other hand, is annotated
for all events (6.1% negative).

Factuality values are often modeled as discrete
categories (e.g., PROBABLE, FACT). Thus, to eval-
uate our approach, we converted the scalar modal-
ity values associated with predications (MVSc) to
discrete CL and polarity values using mapping
rules, shown in Table 5. The rules were based on
the analysis of 100 abstracts that we used for train-
ing.

Condition Annotation
MVepistemic = 0 ∨ MVepistemic = 1 L3
MVepistemic > 0.6 ∧ MVepistemic < 1 L2
MVepistemic > 0 ∧ MVepistemic <= 0.6 L1
MVpotential > 0 L2
MVinterrogative = 1 ∨ MVintentional = 1 L1
MVepistemic = 0 ∨ MVpotential = 0 ∨
MVsuccess = 0

Negative

Table 5. Mapping scalar modality values to event
certainty and polarity.

We evaluated CL mappings in two ways: a) we
restricted it only to Analysis type events, the only
ones annotated with L1 and L2 values, and b) we
evaluated them on the entire corpus. For polarity,
we only considered the entire corpus. As evalu-
ation metrics, we calculated precision, recall, and
F1 score as well as accuracy on the discrete values
we obtained by the mapping.

Another evaluation focused more directly on
factuality. We represented the gold CL-polarity
pairs as numerical values and calculated the aver-
age distance between these values and those gen-
erated by the system. The lower the distance, the
better the system can be considered. In this evalua-
tion scheme, annotating a considerably speculative
(L1) event as somewhat speculative (L2) is penal-
ized less than annotating it as certain (L3). We
mapped the gold annotations to the numerical val-
ues as follows: L3-Positive → 1, L2-Positive →
0.8, L1-Positive → 0.6, L1-Negative → 0.4, L2-
Negative→ 0.2, L3-Negative→ 0.28



4 Results and Discussion

The results of mapping the system annotations to
discrete values annotated in the meta-knowledge
corpus are provided in Table 6.

Type Precision Recall F1 Accuracy
CL evaluation limited to Analysis events
CL 81.75
L3 78.43 95.57 86.15
L2 90.65 61.46 73.25
L1 83.22 76.28 79.60
Evaluation on the entire test set
CL 95.13
L3 97.27 97.74 97.51
L2 73.08 61.55 66.61
L1 61.42 76.28 68.05
Polarity 95.32
Positive 95.99 99.15 97.54
Negative 74.17 37.04 49.41

Table 6. Evaluation results.

When the CL evaluation is limited to Anal-
ysis events, we obtain an accuracy of approxi-
mately 82%. The baseline considered by Miwa
et al. (2012) is the majority class, which would
yield an accuracy of 55% for these events. Their
CL evaluation is not limited to Analysis events,
and they report F1 scores of 97.6%, 66.5%, and
74.9% for L3, L2, and L1 levels, respectively, on
the test set. Restricting the system to Analysis
events, we obtain the results shown at the top of
the table (86.2%, 73.3%, and 79.6%). Lifting the
Analysis restriction, we obtain the results shown at
the bottom (97.5%, 66.6%, and 68.1% for L3, L2,
and L1, respectively). The results are very similar
for L3 and L2 levels, while our system somewhat
underperformed on L1. With respect to negative
polarity, our system performed poorly (49.4% vs.
Miwa et al.’s 63.4%), while the difference was mi-
nor for positive polarity (97.5% vs. 97.7%).

In comparing to Miwa et al.’s results, several
points need to be kept in mind. First, in contrast
to their study, we have not performed any training
on the corpus data, except determining the map-
ping rules shown in Table 5. Secondly, knowing
whether an event is an Analysis event or not is a
significant factor in determining the CL value and
their machine learning features are likely to have
exploited this fact, whereas we did not attempt to
identify the knowledge type of the event. Thirdly,

L1 and L2 values appear only for Analysis events,
therefore the evaluation scenario that only consid-
ers Analysis events is likely to overestimate the
performance of our system on L1 and L2 and un-
derestimate it on L3.

While our system performed similarly to Miwa
et al.’s with regards to positive polarity, our map-
pings for negative polarity were less successful,
which suggests that modeling negative polarity as
the lower end of several modal scales (the last row
of Table 5) may not be sufficient for correctly cap-
turing the polarity values. Our preliminary analy-
sis of the results indicate that scope relationships
between predications could play a more significant
role. In other words, whether an event is in the
scope of a predication trigger by a NEGATOR pred-
icate may be a better predictor of negative polarity.

With the evaluation scheme that is based on av-
erage distance, we obtained a distance score of
0.12. For the majority class baseline, this score
would be 0.21. Our score shows clear improve-
ment over the baseline; however, it is not directly
comparable to Miwa et al.’s results. This evalua-
tion scheme, to our knowledge, has not previously
been used to evaluate factuality and we believe it
is better suited to the gradable nature of factuality.

Analyzing the results, we note that many errors
are due to problems in dependency relations and
transformations that rely on them. Errors in de-
pendency relations are common due to complex-
ity of the language under consideration, and these
errors are further compounded by hand-crafted
transformation rules that can at times be inad-
equate in capturing semantic dependencies cor-
rectly. In the following example, the prepositional
phrase attachment error caused by syntactic pars-
ing (to suppress. . . is attached to the main verb
result, instead of to ability) prevents the system
from identifying the semantic dependendency be-
tween ability and suppress, causing a L2 recall er-
ror. While the system uses a transformation rule
to correct some prepositional phrase attachment
problems, this particular case was missed.

• The reduction in gene expression resulted
from the ability of IL-10 to suppress IFN-
induced assembly of signal transducer . . .

• prep to(result,suppress) vs.
prep to(ability,suppress)

Prior scalar modality values in the dictionary
have been manually determined and are fixed.29



They are able to capture the meaning subtleties
to a large extent and the composition procedure
attempts to capture the meaning changes due to
markers in context. However, some uncertainty
markers are clearly more ambiguous than others,
leading to different certainty level annotations in
similar contexts and our method may miss these
differences due to the fixed value in the dictionary.
For example, the adjective potential has been al-
most equally annotated as an L1 and L2 cue in the
meta-knowledge corpus. This also seems to con-
firm the finding of de Marneffe et al. (2012) that
world knowledge and context have an effect on the
interpretation of factuality.

We also noted what seem like annotation errors
in the corpus. For example, in the sentence L-
1beta stimulation of epithelial cells did not gen-
erate any ROIs, the event expressed with genera-
tion of ROIs seems to have negative polarity, even
though it is not annotated as such in the corpus.

5 Conclusion

We presented a rule-based compositional method
for assessing factuality of biological events. The
method is linguistically motivated and emphasizes
generality over corpus-specific optimizations, and
without making much use of the corpus for train-
ing, we were able to obtain results that are compa-
rable to the performance of the state-of-the-art sys-
tems for certainty level assignments. The method
was less successful with respect to polarity assess-
ment, suggesting that the hypothesis that negative
polarity can be modeled as corresponding to the
lower end of the modal scales may be inadequate.
In future work, we plan to develop a more nuanced
approach to negative polarity.
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Abstract

Level of committed belief is a modality in nat-
ural language, it expresses a speak-er/writers
belief in a proposition. Initial work explor-
ing this phenomenon in the literature both
from a linguistic and computational model-
ing perspective shows that it is a challenging
phenomenon to capture, yet of great interest
to several downstream NLP applications. In
this work, we focus on identifying relevant
features to the task of determining the level
of committed belief tagging in two corpora
specifically annotated for the phenomenon:
the LU corpus and the FactBank corpus. We
perform a thorough analysis comparing tag-
ging schemes, infrastructure machinery, fea-
ture sets, preprocessing schemes and data gen-
res and their impact on performance in both
corpora. Our best results are an F1 score of
75.7 on the FactBank corpus and 72.9 on the
smaller LU corpus.

1 Introduction

Level of Committed belief (LCB) is a linguistic
modality expressing a speaker or writer’s (SW) level
of commitment to a given proposition, which could
be their own or a reported proposition. Modeling
this type of knowledge explicitly is useful in deter-
mining an SWs cognitive state, also referred to as
person’s private state (Wiebe et al., 2005). Wiebe et
al. (2005) use the definition of (Quirk et al., 1985),
who defines a private state to be an “internal (state)

that cannot be directly observed by others”. Deter-
mining the cognitive state of an SW can be relevant
to several natural language processing (NLP) tasks
such as question answering, information extraction,
confidence determination in people’s deduced opin-
ions, determining the veracity of information, under-
standing power/influence relations in linguistic com-
munication, etc. As an example, in (Rosenthal and
McKeown, 2012), LCB was used to improve their
claim detector which in turn allowed for improve-
ments in influence prediction.

Initial work addressed the task of automatically
identifying LCB of the SW. Approaches to date have
relied on supervised models dependent on manu-
ally annotated data. There are two standard anno-
tated corpora, the LU corpus (Diab et al., 2009) and
FactBank (Saurı́ and Pustejovsky, 2009). Though
in effect aiming for the same objective, both cor-
pora use different terminology, different annotation
standards, and they cover different genres. Previ-
ous studies performed on these corpora were con-
ducted independently. In this work, we explore both
corpora systematically and investigate their respec-
tive proposed tag sets. We experiment with mul-
tiple machine learning algorithms, varying the tag
sets as we go along. Our goal is to build an auto-
matic LCB tagger that is robust in a multi-genre con-
text. Eventually we aim to adapt this tagger to other
languages. The LCB tagging task aims at automat-
ically identifying beliefs which can be ascribed to a
SW, and at identifying the strength level by which

32



he or she holds them. Across languages, many dif-
ferent linguistic devices are used to denote this atti-
tude towards an uttered proposition, including syn-
tax, lexicon, and morphology. In this work we fo-
cus our investigation of LCB tagging in English and
we only address the problem from the perspective of
the SW. We do not address nested LCB where the
SW is reporting the LCB of other people (leading to
nested attributions, as done in FactBank following
the MPQA Sentiment corpus (Wiebe et al., 2005).

2 Background

Initial work on LCB was undertaken by Diab et al.
(2009), who built the LU corpus that contains be-
lief annotations for propositional heads in text. They
used a 3-way distinction of belief tags: Committed
Belief (CB) where the SW strongly believes in the
proposition, Non-committed belief (NCB) where the
SW reflects a weak belief in the proposition, and
Non Attributable Belief (NA) where the SW is not
(or could not be) expressing a belief in the propo-
sition (e.g., desires, questions etc.). The LU cor-
pus comprises over 13,000 word tokens from sixteen
documents covering four genres: 9 newswire docu-
ments, 4 training manuals, 2 correspondences and
1 interview. One of the issues with this annotation
scheme is that the annotations for NCB conflate the
cases where the SW explicitly conveys the weakness
of belief (e.g., using modal auxiliaries such as may)
and the cases where the SW is reporting someone
else’s belief about a proposition. In this paper, we
tease apart these original NCB cases and arrive at
a 4-way belief distinction using the original anno-
tations in the LU corpus (details to be discussed in
Section 3.1).

The LCB tagger developed using the original LU
corpus (Prabhakaran et al., 2010) obtained a best
performance (64% F-measure) using the Yamcha1

machine learning framework which leverages Sup-
port Vector Machines in a supervised manner, and
a performance of 59% F-measure using the Condi-
tional Random Fields (CRF) algorithm. Their exper-
iments were limited in scope because the LU Corpus
is fairly small. This led to an under-representation
of NCB tags in the training corpus and a relatively
shallow understanding of how LCB tagging per-

1http://chasen.org/∼taku/software/yamcha/

forms across genres. In this paper, we perform
a detailed investigation through extensive machine
learning experiments to understand how the size of
data and genre variations affect the performance of
an LCB tagger. We also systematically measure the
impact of augmenting the training data with more
data as well as measuring performance differences
when the training data comprises a single genre vs.
multiple genres. It should be noted that although
we experiment with similar machine learning frame-
works, our results are not directly comparable since
the Prabhakaran et al. (2010) work applied cross val-
idation to the LU-3 corpus, while we did not follow
the same experimental strategy. Additionally, in this
work we use a lot more features than those reported
in the previous study.

A closely related corpus is FactBank (FB; Saurı́
and Pustejovsky (2009)), which captures factuality
annotations on top of event annotations in TimeML.
FactBank is annotated on the genre of newswire.
FactBank models the factuality of events at three
levels: certain (CT), probable (PB) and possible
(PS), and distinguishes the polarity (e.g., CT- means
certainly not true). Moreover it marks an unknown
category (Uu), which refers to uncommitted or un-
derspecified belief. It also captures the source of
the factuality assertions, thereby distinguishing the
SW’s factuality assertions from those of a source
introduced by the author. Despite the terminology
difference between FactBank (“factuality”) and LU
(“committed belief”), they both address the same
type of linguistic modality phenomenon namely
level of committed belief. Accordingly, with the
appropriate mapping, both corpora can be used in
conjunction to model LCB. From a computational
perspective, FactBank differs from the LU corpus
in two major respects (other than the granularity
in which they capture annotations): 1) FactBank
is roughly four times the size of the LU corpus,
and 2) FactBank is more homogeneous in terms of
genre than the LU corpus as it consists primarily of
newswire. In this paper, we unify the factuality an-
notations in Factback and the level of committed be-
lief annotations present in the LU corpus to a 4-way
committed-belief distinction.2

2For an additional discussion of the relation between factu-
ality and belief, see (Prabhakaran et al., 2015)
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3 Approach

Following previous work (Prabhakaran et al., 2010),
we adopt a supervised approach to the LCB prob-
lem. We experiment with the two available manually
annotated corpora, the LU and FB corpora. Going
beyond previous approaches to the problem reported
in the literature, our goal is to create a robust LCB
system while gaining a deeper understanding of the
phenomenon of LCB as an expressed modality by
systematically teasing apart the different factors that
affect performance.

3.1 Annotation Transformations

The NCB category of the LU tagging scheme cap-
tures two different notions: that of uncertainty of the
speaker/writer and that of belief being attributed to
someone other than the SW. Accordingly, we manu-
ally split the NCB into the NCB tag and the Reported
Belief tag (ROB). Reported belief is the case where
the SW’s intention is to report on someone else’s
stated belief, whether or not they themselves believe
it. An example of this would be the sentence John
said he studies everyday. While the ‘say’ proposi-
tion is an example of committed belief (CB) on the
part of the SW, the SW makes no assertion about the
‘study’ proposition attributed to John, and therefore
studies is labeled ROB. This relabeling of the NCB
tag into NCB and ROB was carried out manually
by co-authors Werner and Rambow, who are native
speakers of English. The inter-annotator agreement
was 93%. The cases where there were contentions
were discussed and an adjudication process was fol-
lowed where a single annotation was agreed upon.
This was a relatively fast process since the number
of NCB annotated data is very small in the original
LU corpus (176 instances). This conversion resulted
in the LU-4 corpus designating the fact that this ver-
sion of the LU corpus is a 4-way annotated corpus.
This is in contrast to the original version of LU cor-
pus with the 3-way distinction, LU-3.

To illustrate the difference between each of the
tags in the LU-4 corpus, we provide a few examples
from the annotated corpus. The sentence 1 shows
the contrast between the committed belief in the au-
thor knowing and the non-committed belief in the
author being uncertain of it (a flu vaccine) working.
The other two tags are demonstrated in the sentence

2 where the author is saying Reed accused however
Reed is the one talking about failing and not the au-
thor. To contrast we note that although Reed is at-
tributed the notion of failing, neither the author nor
Reed demonstrate any belief of the verb to probe and
therefore it is not-attributable to any source men-
tioned in this sentence.

(1) But we only <CB> know </CB> that it might
<NCB> work </NCB> because of laboratory
studies and animal studies uh uh

(2) Democratic leader Harry Reed <CB> accused
</CB> Republicans of <ROB> failing </ROB>

to <NA> probe </NA> allegations ...

In order to render the FactBank (FB) corpus compa-
rable to the LU-4 corpus, we mapped tags in the FB
corpus into the 4-way tag scheme adopted in the LU-
4 framework. Accordingly, we mapped CT directly
into CB, PB and PS directly into NCB, and Uu was
mapped into either NA or ROB. We used the num-
ber and identity of sources to determine if the Uu
of FB was due to belief expressed by a source other
than the SW. Specifically, if the same proposition is
marked Uu for the SW, but the annotations also cap-
ture factuality attributed to another source, then we
conclude the tag should be ROB. If there is no other
attribution on the proposition other than the Uu at-
tributed to the SW, we consider the tag to be NA.
We refer to the resulting version of the FB corpus as
FB-4. It is worth noting that because the genre of the
FB corpus is newswire, it has a relatively large num-
ber of ROB annotations. Moreover, FB explicitly
marks LCB with respect to various nested sources.
However in our mapping, we only consider the an-
notations from the perspective of the SW.

We give a few examples of the original FactBank
work as to compare and contrast the notion of be-
lief carried in each corpus. In sentence 3, we have
clear cut mapping between the certainty of the au-
thor in think and committed belief. Likewise, doing
is a non-committed belief. In each case, the polar-
ity is discarded in our transformations. The sentence
4 reveals the case where teaches takes on a reported
belief meaning as it is given both a certain tag for the
school and an unknown tag for the author. An ex-
ample where Uu does not constitute reported belief
is shown in the sentence 5, where only one entity’s
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belief is conveyed, and that is of the author.

(3) . . . Yeah I <CT+> think </CT+> he’s <PR+> do-
ing </PR> the right thing

(4) The school <CT+> says </CT+> it <CT+>

<Uu> teaches </Uu> </CT+> the children to be
good Muslims and good students.

(5) I <CT+> urge <CT+> you to <Uu> do <Uu>

the right thing . . .

The tag distribution breakdown in the corpora is il-
lustrated in Table 1.

CB NCB ROB NA Total

LU-3 631 176 589 13485

LU-4 631 15 161 589 13485

FB-4 3837 156 2074 661 82845

Table 1: Label distribution in the LU-3, LU-4 and FB-4
corpora.

3.2 Experimental Set Up

3.2.1 Corpus Combination
We experiment with the three corpora LU-3 (with

the labels CB, NCB and NA), LU-4 and FB-4
(each with the labels CB, NCB, NA, and ROB). We
present results on each of the corpora and their com-
binations for training and testing. In general we split
our corpora at the sentence level into training and
test sets with 5/6 for training and 1/6 for test by re-
serving every sixth sentence for the test set.

3.2.2 Features
We use a number of features proposed by Prab-

hakaran et al. (2010), as well as a few more re-
cent additions, and we hold them constant across
our different experimental conditions. This feature
set comprises the following base set of lexical and
syntactic based features. General Features for each
token include its lemma, part of speech (POS), as
well as the lemma and POS of two preceding and
following tokens. Dependency features include sib-
ling’s lemma, sibling’s POS, child’s lemma, child’s
POS, parent’s lemma, parent’s POS, ancestors’ lem-
mas, ancestor’s POS, reporting ancestor’s POS, re-
porting ancestor’s lemma, dependency relationship

said

Frist

Republican leader Bill

hijacked

Senate

the

was

Figure 1: Dependency tree for example sentence.

and lemma of the closest ancestor whose POS is
a noun, dependency relationship and lemma of the
closest ancestor whose POS is a verb, token under
the scope of a conditional (if/when), ancestor under
the scope of a conditional (if/when). We use the
Dependency Parser provided in the Stanford NLP
toolkit. A pictorial explanation of some of these de-
pendency features is given in Figure 1 and Table 2
for the sentence “Republican leader Bill Frist said
the Senate was hijacked”.

Feature Name Value

PosTag VBN

Lemma hijack

WhichModalAmI nil

UnderConditional N/A

AncestorUnderConditional N/A

FirstDepAncestorofPos {hijack, NIL}, {say, ccomp}
DepAncestors {say,VBD}
Siblings {Frist, NNP}
Parent {say, VBD, say-37.7-1}
Child {Senate, NNP}, {be, VBD}
DepRel {ccomp}

Table 2: Representative features for the token hijacked
in the example sentence.

3.2.3 Machine Learning Infrastructure
We experiment with five machine learning algo-

rithms. A. Conditional Random Fields (CRF) to
allow for comparison with previous work; B. Lin-
ear Support Vector Machines (LSVM); C. Quadratic
Kernel Support Vector Machines (QSVM); D. Naive
Bayes (NB); and, E. Logistic Regression (LREG).
We provide NB as a generative contrast to the dis-
criminative SVM and CRF methods. Moreover,
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QSVM quite often yields better results at the ex-
pense of longer runtime, hence, we explore if that
is the case within the LCB task.

The parameters for each of the five algorithms are
held constant across all experiments and not tuned
for specific configurations. The notable parameters
that are used are listed in Table 3.

Algorithm Notable Parameters

CRF Gaussian Variance=10, Orders = 1, It-
erations = 500

LSVM Linear Kernel (t=0), Classification
(z=c), Cost Factor (j=1), Biased Hy-
perplane (b=1), Do not remove incon-
sistent training examples (i=0)

QSVM Polynomial Kernel (t=1), Quadratic
(d=1), Classification (z=c), Cost Fac-
tor (j=1), Biased Hyperplane (b=1), Do
not remove inconsistent training exam-
ples (i=0)

NB Default
LREG Default

Table 3: Parameter settings per algorithm.

3.2.4 Tools

A list of major NLP tools used is illustrated in
Table 4. We used the CoreNLP pipeline for to-
kenization, sentence splitting, part of speech de-
termination, lemmatization, named entity recogni-
tion, dependency parsing and coreference resolu-
tion. ClearTK provided us easy access to the ma-
chine learning algorithms we used which includes
SVM Light for both SVM kernels and Mallet for
CRF. It also provides us the backbone for our an-
notation structure.

4 Experiments

4.1 Evaluation metric

We ran 30 experiments, which are all the possible
permutations of the three variables, listed above: do
we split the NCB tag into 2 tags, what corpora do
we train on, and what machine learning algorithm do
we use. We report results using the overall weighted
micro average F1 score.

Name Source Ver.

CoreNLP (Manning et al., 2014) 3.5

ClearTK (Bethard et al., 2014) 2.0

UIMA https://uima.apache.org/ 2.6

uimaFIT (Ogren and Bethard, 2009) 2.1

Mallet (McCallum, 2002) 2.0.7

SVM Light (Joachims, 1999) 6.0.2

Table 4: NLP Tools Used.

4.2 Condition 1: Impact of splitting NCB tag in
the LU corpus

We show the overall impact of splitting the NCB
tag in the original LU corpus into two tags: NCB
and ROB. The training and test corpora are from the
same corpus, i.e. training and test sets are from LU-
3 or LU-4. The results are reported on the respective
test sets using the F1 score. The hypothesis is that a
4-way tagging scheme should result in better overall
scores if the tagging scheme indeed captures a more
genuine explicit representation for LCB. Table 5 il-
lustrates the results yielded from the 5 ML algo-
rithms. We note that the 4-way tagging outperforms
the 3-way tagging for CRF and LSVM, however, the
NB algorithm doesn’t seem as sensitive to the tag-
ging scheme (3 vs. 4 tags), and QSVM and LREG
seem to be better performing in the 3 tag setting than
the 4 tag setting. This might be a result of the num-
ber of tags in the 4-way tagging scheme breaking
up the space for NCB’s considerably. Overall the
highest score is obtained by LSVM (72.89 F1 score)
for LU-4, namely in the 4-way tagging scheme, sug-
gesting that a 4-way split of the annotation space is
an appropriate level of annotation granularity.

4.3 Condition 2: Impact of size and corpus
genre homogeneity on LCB performance

In this condition we attempt to tease apart the im-
pact of corpus size (FB being 4 times the size of
the LU corpus) as well as corpus homogeneity, since
FB is relatively homogeneous in genre compared to
the LU corpus. Similar to Condition 1, we show
the results yielded by all 5 ML algorithms. Results
are reported in Table 6. Our hypothesis is that the
overall results obtained on the FB should outper-
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Test Set Algorithm Overall F-score

LU-4 CRF 71.33

LU-4 LSVM 72.89
LU-4 QSVM 68.10

LU-4 NB 61.61

LU-4 LREG 70.75

LU-3 CRF 68.25

LU-3 LSVM 69.77

LU-3 QSVM 69.21

LU-3 NB 61.58

LU-3 LREG 71.26

Table 5: Condition 1: LU-3 and LU-4 results using
micro average F1 score on their respective test data.

form those obtained on the LU corpus. Note that
the results in the Table 6 are not directly comparable
across corpora since the test sets are different: each
experimental condition is tested within the same cor-
pus, i.e. FB-4 is trained using FB-4 training data
and tested on FB-4 test data, and LU-4 is trained
using LU-4 training data and tested on LU-4 test
data. However, the results validate our hypothesis
that more data which is more homogeneous results
in a better LCB tagger.

It is noted that the various ML algorithms per-
form differently for LU-4 vs. FB-4. In order, for
FB-4, QSVM outperforms LREG which in turn out-
performs LSVM, CRF and NB. In contrast, for LU
the LSVM is the best performing ML algorithm fol-
lowed by CRF, QSVM, LREG, and finally NB. The
linear kernel SVM, LSVM, has the closest perfor-
mance between the two, yet the difference is still
statistically significant.

A deeper analysis on each of the four tags shows
a remarkable difference in F1-measure for reported
belief (ROB) for the two corpora as illustrated in Ta-
ble 7. ROB is significantly better identified in the
FB-4 corpus compared to the LU-4 corpus. This
is expected since the FB-4 corpus has significantly
more ROB tags in the training data. The number of
ROB tags in training sets for LU-4 is 100 and for
FB-4 it is 1800. The NA tag on the other hand per-
forms better in the LU-4 corpus than in the FB-4 as

Test Set Algorithm Overall F-score

FB-4 CRF 73.34

FB-4 LSVM 74.36

FB-4 QSVM 75.57
FB-4 NB 66.22

FB-4 LREG 74.67

LU-4 CRF 71.33

LU-4 LSVM 72.89
LU-4 QSVM 68.10

LU-4 NB 61.61

LU-4 LREG 70.75

Table 6: Condition 2: FB-4 and LU-4 results using
micro average F1 score on their respective test data.

seen in Table 8. The number of NA tags in the LU-4
training data is 460, while in the FB-4 training data
(which is much larger) there are 600. In the case
of FB-4 they only constitute a small percentage of
the overall data compared to their percentage in the
LU-4 corpus.

Test Set Algorithm P R F

LU-4 CRF 66.67 40.00 50.00
LU-4 LSVM 39.13 45.00 41.86

LU-4 QSVM 50.00 15.00 23.08

LU-4 NB 0.00 0.00 0.00

LU-4 LREG 41.67 25.00 31.25

FB-4 CRF 76.79 73.22 74.97

FB-4 LSVM 76.08 72.13 74.05

FB-4 QSVM 72.86 79.23 75.92
FB-4 NB 57.27 67.76 62.08

FB-4 LREG 74.59 73.77 74.18

Table 7: ROB results in FB-4 and LU-4 Corpora.
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Test Set Algorithm P R F

LU-4 CRF 70.59 77.42 73.85

LU-4 LSVM 80.21 82.80 81.48
LU-4 QSM 64.91 79.57 71.50

LU-4 NB 66.32 67.74 67.02

LU-4 LREG 76.00 81.72 78.76

FB-4 CRF 52.38 44.72 48.25

FB-4 LSVM 50.74 56.10 53.28

FB-4 QSVM 61.76 51.22 56.00
FB-4 NB 0.00 0.00 0.00

FB-4 LREG 54.63 47.97 51.08

Table 8: NA results in FB-4 and LU-4 corpora.

4.4 Condition 3: Measuring impact of training
data size on performance: combining
training FB-4 and LU-4 data

In this condition, we wanted to investigate the im-
pact of training using the combined FB-4 and LU-4
training corpora on 3 test sets: LU-4 Test, FB-4 Test
and LU-4 Test + FB-4 Test. A reasonable hypothesis
is that, with a larger corpus created by combining the
two individual corpora we will see better results on
any test corpus. Table 9 illustrates the experimental
results for this condition where the training data for
both corpora are combined.

The worst overall results are obtained on the LU-
4 test set, while the best are obtained on the FB-
4 test set. This is expected since the size of the
training data coming from the FB-4 corpus over-
whelms that of the LU corpus and the LU corpus is
relatively diverse in genre, potentially adding noise.
Also we note that the results on the LU-4 corpus are
much worse than the results obtained and illustrated
in Table 5 when the training data was significantly
smaller, yet of strictly the same genre of the test
data. This observation seems to suggest that homo-
geneity between training and test data for the LCB
task trumps training data size. We also note that this
observation is furthermore supported by the slight
degradation in performance in the FB-4 test set com-
pared to the performance results reported in Table 6
for the ML algorithms CRF and QSVM. However,
we observe that LREG, NB and LSVM each was

Test Set Algorithm Overall F-score

LU-4 CRF 56.30

LU-4 LSVM 61.10
LU-4 QSVM 58.05

LU-4 NB 45.32

LU-4 LREG 59.90

FB-4 CRF 73.02

FB-4 LSVM 74.99

FB-4 QSVM 75.00

FB-4 NB 67.37

FB-4 LREG 75.23

FB-4 + LU-4 CRF 70.47

FB-4 + LU-4 LSVM 72.85

FB-4 + LU-4 QSVM 72.48

FB-4 + LU-4 NB 64.02

FB-4 + LU-4 LREG 72.88

Table 9: Condition 3: Micro average F1 score results
obtained on three sets of test data while trained using a

combination of FB-4 and LU-4 training data.

able to generalize better from the augmented data
when additionally using the LU-4 training data, but
the improvements were relatively insignificant (less
than 1%). This may be attributed to the addition of
the LU-4 training data, which adds noise to the LCB
training task leading to inconclusive results. Testing
on a combined corpus shows that LREG algorithm
yields the best results.

4.5 Condition 4: Machine Learning Algorithm
Performance

From the first three conditions, we are able to con-
clude how reliably certain machine learning algo-
rithms outperform others. In our research, we
have mainly focused on SVM Light’s linear kernel
(LSVM) and expect it to perform quite well. Cer-
tainly, we would expect it to outperform the CRFs,
as they did in previous work. Changing the linear
kernel to a quadratic kernel might give us some im-
provement at the expense of training time since it
takes much longer to complete. Our intuition as far
as CRFs being outperformed by SVMs seem to hold
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uniformly as Tables 5, 6 and 9 illustrate. To aug-
ment the linear kernel SVM, the quadratic kernel
only gives an improvement in some cases.

The NB models performed predictably poorly.
Surprisingly, the LREG models appear to be ro-
bust, with performance that is comparable to the best
SVM models (LSVM and QSVM) in our experi-
ments. In fact, for the FB-4 case, LREG performed
slightly better than either LSVM or QSVM. Given
the efficiency of LREG in terms of training and test-
ing, and its comparable performance to SVMs, us-
ing LREG for feature exploration in the context of
LCB tagging makes it a very attractive ML frame-
work to tune parameters with, keeping the more so-
phisticated ML algorithms for final testing.

Sometimes it is other components that cause an
error. Take this example sentence from the LSVM
algorithm acting on the LU corpus: It also checks on
guard posts. Checks has been annotated CB and cor-
rectly so by the human involved. The tagger marks
checks as O, or lacking author belief, because the
token checks has been labeled a noun by the part-of-
speech checker. A more proper miss can be found
on the sentence You know what’s sort of interest-
ing Paula once again taken from the LU corpus. Al-
though labeled as NA, the token know is labeled as
CB. Since it has the feel of a question the annotator
has stated that there is no committed belief on the
part of the author. This is one that the algorithm it-
self has clearly gotten wrong. The CRF on the same
sentence chose O, or lack of belief. NB got the to-
ken correct. LREG chose O. QSVM took the same
approach as the LSVM labeling it as CB. This illus-
tration shows the worse performing algorithm on the
LU-4 corpus being the only correct answer showing
perhaps that detecting phrases and sentences formed
as questions are harder to analyze.

5 Conclusions

The results suggest that 4-way LCB tagging is an ap-
propriate LCB granularity level. Training and test-
ing on the FB-4 corpus results in overall better per-
formance than training and testing on the LU cor-
pus. We have seen that the LCB task is quite sensi-
tive to the consistency in genre across training and
test data, and that more out-of-genre data is not al-
ways the best route to overall performance improve-

ment. SVMs were one of the best performing ML
platforms in the context of this task as well as Lo-
gistic regression.
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Abstract

NegEx is a popular rule-based system used
to identify negated concepts in clinical notes.
This system has been reported to perform very
well by numerous studies in the past. In this
paper, we demonstrate the use of kernel meth-
ods to extend the performance of NegEx. A
kernel leveraging the rules of NegEx and its
output as features, performs as well as the
rule-based system. An improvement in per-
formance is achieved if this kernel is cou-
pled with a bag of words kernel. Our exper-
iments show that kernel methods outperform
the rule-based system, when evaluated within
and across two different open datasets. We
also present the results of a semi-supervised
approach to the problem, which improves per-
formance on the data.

1 Introduction

Clinical narratives consisting of free-text documents
are an important part of the electronic medical
record (EMR). Medical professionals often need to
search the EMR for notes corresponding to specific
medical events for a particular patient. Recruitment
of subjects in research studies such as clinical tri-
als involves searching through the EMR of multi-
ple patients to find a cohort of relevant candidates.
Most information retrieval approaches determine a
document to be relevant to a concept based on the
presence of that concept in the document. How-
ever, these approaches fall short if these concepts
are negated, leading to a number of false positives.
This is an important problem especially in the clini-
cal domain. For example, the sentence: “The scan

showed no signs of malignancy” has the concept
‘malignancy’ which was looked for in the patient,
but was not observed to be present. The task of nega-
tion detection is to identify whether a given concept
is negated or affirmed in a sentence. NegEx (Chap-
man et al., 2001) is a rule-based system developed to
detect negated concepts in the clinical domain and
has been extensively used in the literature.

In this paper, we show that a kernel-based ap-
proach can map this rule-based system into a ma-
chine learning system and extends its performance.
We validate the generalization capabilities of our
approach by evaluating it across datasets. Finally,
we demonstrate that a semi-supervised approach can
also achieve an improvement over the baseline rule-
based system, a valuable finding in the clinical do-
main where annotated data is expensive to generate.

2 Related Work

Negation has been a popular research topic in the
medical domain in recent years. NegEx (Chapman
et al., 2001) along with its extensions (South et al.,
2006; Chapman et al., 2013) is one of the oldest and
most widely used negation detection system because
of its simplicity and speed. An updated version -
ConText (Harkema et al., 2009) was also released to
incorporate features such as temporality and experi-
encer identification, in addition to negation. These
algorithms are designed using simple rules that fire
based on the presence of particular cues, before and
after the concept. However, as with all rule-based
systems, they lack generalization. Shortage of train-
ing data discouraged the use of machine learning
techniques in clinical natural language processing
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(NLP) in the past. However, shared tasks (Uzuner et
al., 2011) and other recent initiatives (Albright et al.,
2013) are making more clinical data available. This
should be leveraged to harness the benefits offered
by machine learning solutions. Recently, Wu et al.
(2014) argued that negation detection is not of prac-
tical value without in-domain training and/or devel-
opment, and described an SVM-based approach us-
ing hand-crafted features.

3 Kernel Methods

Our approach uses kernel methods to extend the
abilities of the NegEx system. A kernel is a sim-
ilarity function K, that maps two inputs x and y
from a given domain into a similarity score that is
a real number (Hofmann et al., 2008). Formally, it
is a function K(x, y) = 〈φ(x), φ(y)〉 → R, where
φ(x) is some feature function over instance x. For
a function K to be a valid kernel, it should be sym-
metric and positive-semidefinite. In this section, we
describe the different kernels we implemented for
the task of negation detection.

3.1 NegEx Features Kernel

The source code of NegEx1 reveals rules using three
sets of negation cues. These are termed as pseudo
negation phrases, negation phrases and post nega-
tion phrases. Apart from these cues, the system also
looks for a set of conjunctions in a sentence. We
used the source code of the rule-based system and
constructed a binary feature corresponding to each
cue and conjunction, and thus generated a feature
vector for every sentence in the dataset. Using the
LibSVM (Chang and Lin, 2011) implementation, we
constructed a linear kernel which we refer to as the
NegEx Features Kernel (NF).

3.2 Augmented Bag of Words Kernel

We also designed a kernel that augmented with bag
of words the decision by NegEx. For each dataset,
we constructed a binary feature vector for every sen-
tence. This vector is comprised of two parts, a vec-
tor indicating presence or absence of every word in
that dataset and augment it with a single feature in-
dicating the output of the NegEx rule-based system.
We did not filter stop-words since many stop-words

1From https://code.google.com/p/NegEx/

serve as cues for negated assertions. The idea behind
constructing such a kernel was to allow the model
to learn relative weighting of the NegEx output and
the bag of words in the dataset. Again, a linear ker-
nel using LibSVM was constructed: the Augmented
Bag of Words Kernel (ABoW).

4 Datasets

A test set of de-identified sentences, extracted from
clinical notes at the University of Pittsburgh Medi-
cal Center, is also available with the NegEx source
code. In each sentence, a concept of interest has
been annotated by physicians with respect to being
negated or affirmed in the sentence. The concepts
are non numeric clinical conditions (such as symp-
toms, findings and diseases) extracted from six types
of clinical notes (e.g., discharge summaries, opera-
tive notes, echo-cardiograms).

The 2010 i2b2 challenge (Uzuner et al., 2011) on
relation extraction had assertion classification as a
subtask. The corpus for this task along with the an-
notations is freely available for download.2 Based
on a given target concept, participants had to clas-
sify assertions as either present, absent, or possible
in the patient, conditionally present in the patient un-
der certain circumstances, hypothetically present in
the patient at some future point, and mentioned in
the patient report but associated with someone other
than the patient. Since we focus on negation detec-
tion, we selected only assertions corresponding to
the positive and negative classes from the five as-
sertion classes in the corpus, which simulates the
type of data found in the NegEx Corpus. The i2b2
corpus has training data, partitioned into discharge
summaries from Partners Healthcare (PH) and the
Beth Israel Deaconess (BID) Medical Center. This
gave us datasets from two more medical institutions.
The corpus also has a test set, but does not have a
split corresponding to these institutions.

Using the above corpora we constructed five
datasets: 1) The dataset available with the NegEx
rule-based system, henceforth referred to as the
NegCorp dataset; 2) We adapted the training set
of the i2b2 assertion classification task for negation
detection, the i2b2Trainmod dataset; 3) The train-
ing subset of i2b2Trainmod from Partners Health-

2From https://www.i2b2.org/NLP/DataSets/
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Dataset Affirmed Negated Total

NegCorp 1885 491 2376

i2b2Trainmod 4476 1533 6009
PH subset (1862) (635) (2497)

BID subset (2614) (898) (3512)

i2b2Testmod 8618 2594 11212

Table 1: Number of affirmed and negated concepts in
each dataset.

care, henceforth referred to as the PH dataset; 4) The
training subset of i2b2Trainmod from the Beth Israel
Deaconess Medical Center, henceforth referred to as
the BID dataset; and 5) The adapted test set of the
2010 i2b2 challenge, henceforth referred to as the
i2b2Testmod dataset. Table 1 summarizes the distri-
bution for number of affirmed and negated assertions
in each dataset.

5 Experiments

We implemented the kernels outlined in Section 3
and evaluated them within different datasets using
precision, recall and F1 on ten-fold cross valida-
tion. We compared the performance of each model
against the NegEx rule-based system as baseline.

5.1 Within dataset evaluation
As can be seen in Table 2, the NegEx Features Ker-
nel performed similarly to the baseline (the improve-
ment is not significant). However, the ABoW ker-
nel significantly outperformed the baseline (p<0.05,
McNemar’s test). Joachims et al. (2001) showed that
given two kernels K1 and K2, the composite kernel
K(x, y) = K1(x, y) + K2(x, y) is also a kernel.
We constructed a composite kernel adding the ker-
nel matrices for the ABoW and NF kernels, which
resulted in a further (but not significant) improve-
ment.

5.2 Cross dataset evaluation
In order to test the generalizability of our approach,
we evaluated the performance of the ABoW ker-
nel against the baseline. We trained the ABoW
kernel on different datasets and tested them on the
i2b2Testmod dataset. Table 3 summarizes the results
of these experiments.

Datasets
System NegCorp BID PH

NegEx (baseline) 94.6 84.2 87.3

NF Kernel 95.6 87.3 87.5
ABoW Kernel 97.0 90.6 89.9
ABoW+ NF Kernel 97.3 92.4 91.3

Table 2: Within dataset performance of kernels based on
F1-score using 10-fold cross validation. Bold results indi-
cate significant improvements over the baseline (p<0.05,
McNemar’s test).

System Precision Recall F1

NegEx (baseline) 89.6 79.9 84.5

ABoW trained on
NegCorp 89.9 79.3 84.2

PH 89.4 88.1 88.7
BID 89.2 89.9 89.7

i2b2Trainmod 89.9 90.0 90.0

Table 3: Cross dataset performance on the i2b2Testmod

dataset given different training datasets.

We found that the ABoW kernel significantly out-
performed the baseline when trained on datasets that
were generated from the same corpus, namely PH
and BID. A kernel trained on i2b2Trainmod, i.e.,
combining the PH and BID datasets performs bet-
ter than the individually trained datasets. These ex-
periments also tested the effect of training data size
(PH < BID < i2b2Trainmod) on the kernel perfor-
mance. We observed that the performance of the
kernel increases as the size of the training data in-
creases, though not significantly. The kernel trained
on a dataset from a different corpus (NegCorp) per-
forms as well as the baseline.

5.3 Semi-supervised approach
We tried a semi-supervised approach to train the
ABoW kernel, which we tested on the i2b2Testmod

dataset. We trained a kernel on the NegCorp dataset
and recorded the predictions. We refer to these la-
bels as “pseudo labels” in contrast to the gold la-
bels of the i2b2Trainmod dataset. We then trained
a semi-supervised ABoW kernel, ABoWss on the
i2b2Trainmod dataset to learn the pseudo labels for
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this predicted dataset. Finally, we tested ABoWss

on the i2b2Testmod dataset. Table 4 summarizes
the results of these experiments. For ease of com-
parison, we restate the results of the ABoW ker-
nel, ABoWgold trained on the gold labels of the
i2b2Trainmod dataset.

System Precision Recall F1

NegEx 89.6 79.9 84.5
ABoWss 89.7 82.1 85.7
ABoWgold 89.9 90.0 90.0

Table 4: Semi-supervised models on the i2b2Testmod

dataset.

These results demonstrate that the kernel trained
using a semi-supervised approach performs better
than the baseline (p<0.05, McNemar’s test), but per-
forms worse than a kernel trained using supervised
training. However, supervised training is dependent
on gold annotations. Thus, the semi-supervised ap-
proach achieves good results without the need for
annotated data. This is an important result espe-
cially in the clinical domain where available anno-
tated data is sparse and extremely costly to generate.

6 Dependency Tree Kernels

Dependency tree kernels have been showed to be
effective for NLP tasks in the past. Culotta et al.
(2004) showed that although tree kernels by them-
selves may not be effective for relation extraction,
combining a tree kernel with a bag of words ker-
nel showed promising results. Dependency tree ker-
nels have also been explored in the context of nega-
tion extraction in the medical domain. Recently,
Bowei et al. (2013) demonstrated the use of tree
kernel based approaches in detecting the scope of
negations and speculative sentences using the Bio-
Scope corpus (Szarvas et al., 2008). However, the
task of negation scope detection task is different than
that of negation detection. Among other differences,
an important one being the presence of annotations
for negation cues in the Bioscope corpus. Sohn et
al. (2012) developed hand crafted rules representing
subtrees of dependency parses of negated sentences
and showed that they were effective on a dataset
from their institution.

Therefore, we implemented a dependency tree
kernel similar to the approach described in Culotta
and Sorensen (2004) to automatically capture the
structural patterns in negated assertions. We used
the Stanford dependencies parser (version 2.0.4) (de
Marneffe et al., 2006) to get the dependency parse
for every assertion. As per their representation (de
Marneffe and Manning, 2008) every dependency is
a triple, consisting of a governor, a dependent and
a dependency relation. In this triple, the gover-
nor and dependent are words from the input sen-
tence. Thus, the tree kernel comprised of nodes
corresponding to every word and every dependency
relation in the parse. Node similarity was com-
puted based on features such as lemma, general-
ized part-of-speech, WordNet (Fellbaum, 1998) syn-
onymy and the UMLS (Bodenreider, 2004) semantic
type obtained using MetaMap (Aronson, 2001) for
word nodes.

Node similarity for dependency relation nodes
was computed based on name of the dependency
relation. A tree kernel then computed the simi-
larity between two trees by recursively computing
node similarity between two nodes as described in
(Culotta and Sorensen, 2004). The only difference
being, unlike our approach they have only word
nodes in the tree. The kernel is hence a function
K(T1, T2) which computes similarity between two
dependency trees T1 and T2. See (Culotta and
Sorensen, 2004) for why K is a valid kernel func-
tion. However, we got poor results. In experiments
involving within dataset evaluation, the tree kernel
gave F1 scores of 77.0, 76.2 and 74.5 on NegCorp,
BID and PH datasets respectively. We also tried con-
structing composite kernels, by adding kernel ma-
trices of the tree kernel and the ABoW kernel or
NF kernel, hoping that they captured complimen-
tary similarities between assertions. Although per-
formance of the composite kernel was better than the
tree kernel itself, there was no significant gain in the
performance as compared to those of the reported
kernels.

7 Discussion

We observe that while the precision of all the clas-
sifiers is almost constant across all the set of experi-
ments, it is the recall that changes the F1-score. This
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implies that the kernel fetches more cases than the
baseline. The bag of words contributes towards the
increase in recall and thus raises performance.

It is instructive to look at sentences that were mis-
classified by NegEx but correctly classified by the
ABoWgold system. The NegEx rule-based system
looks for specific phrases, before or after the target
concept, as negation cues. The scope of the nega-
tion is determined using these cues and the presence
of conjunctions. False positives stem from instances
where the scope is incorrectly calculated. For exam-
ple, in “No masses, neck revealed lymphadenopa-
thy”, the concept ‘lymphadenopathy’ is taken to be
negated. The issue of negation scope being a short-
coming of NegEx has been acknowledged by its au-
thors in Chapman et al. (2001). There were cer-
tain instances where the NegEx negation cues and
the target concept overlapped. For example, in “A
CT revealed a large amount of free air”, the target
concept ‘free air’ was wrongly identified by NegEx
as negated. This is because ‘free’ is a post nega-
tion cue, to cover cases such as “The patient is now
symptom free”. Similarly, with ‘significant increase
in tumor burden’ as the target concept, the sentence
“A staging CT scan suggested no significant increase
in tumor burden” was wrongly identified as an affir-
mation. Since the closest negation cue was ‘no sig-
nificant,’ NegEx would identify only concepts after
the phrase ‘no significant’ as negated. We also found
interesting cases such as, the “Ext: cool, 1 + predal
pulses, - varicosities, - edema.” where the concept
‘varicosities’ is negated using the minus sign.

We studied cases where NegEx made the right de-
cision but which were incorrectly classified by our
system. For example, in the assertion “extrm - trace
edema at ankles, no cyanosis, warm/dry”, the ker-
nel incorrectly classified “trace edema” as negated.
In “a bone scan was also obtained to rule out an oc-
cult hip fracture which was negative”, the concept
“occult hip fracture” was incorrectly classified as af-
firmed. We found no evident pattern in these exam-
ples.

The tree kernel was constructed to automati-
cally capture subtree patterns similar to those hand-
crafted by Sohn et al. (2012). Although, it resulted
in a poor performance, there are a number of possi-
bilities to improve the current model of the kernel.
Clinical data often consists of multi-word expres-

sions (e.g., “congestive heart failure”). However, the
word nodes in our dependency tree kernel are uni-
grams. Aggregating these unigrams (e.g., identifica-
tion using MetaMap, followed by use of underscores
to replace whitespaces) to ensure they appear as a
single node in the tree could give dependency parses
that are more accurate. Similarity for nodes involv-
ing dependency tree relations; similarity in our ker-
nel is a binary function examining identical names
for dependency relations. This could be relaxed by
clustering of dependency relations and computing
similarity based on these clusters. We followed Cu-
lotta and Sorensen (2004) and used WordNet syn-
onymy for similarity of word nodes. However, open-
domain terminologies such as WordNet are known
to be insufficient for tasks specific to the biomedical
domain (Bodenreider and Burgun, 2001). This could
be coupled with domain specific resources such as
UMLS::Similarity (McInnes et al., 2009) for a better
estimate of similarity. Finally, since learning struc-
tural patterns is a complex task achieved by the tree
kernel; training with a larger amount of data could
result in improvements.

8 Conclusion

We demonstrate the use of kernel methods for the
task of negation detection in clinical text. Using
a simple bag of words kernel with the NegEx out-
put as an additional feature yields significantly im-
proved results as compared to the NegEx rule-based
system. This kernel generalizes well and shows
promising results when trained and tested on differ-
ent datasets. The kernel outperforms the rule-based
system primarily due to an increase in recall. We
also find that for instances where we do not have ad-
ditional labeled training data, we are able to leverage
the NegEx Corpus as a bootstrap to perform semi-
supervised learning using kernel methods.
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